

Beginning Java Objects
From Concepts to Code

Third Edition

Jacquie Barker

Beginning Java Objects: From Concepts to Code

ISBN-13 (pbk): 978-1-4842-9059-0 ISBN-13 (electronic): 978-1-4842-9060-6
https://doi.org/10.1007/978-1-4842-9060-6

Copyright © 2023 by Jacquie Barker

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Gryffin Winkler

Cover image designed by Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at https://github.com/Apress/
Beginning-Java-Objects-3e.

Printed on acid-free paper

Jacquie Barker
Fairfax, VA, USA

https://doi.org/10.1007/978-1-4842-9060-6

To my husband, best friend, and love of my life, Steve,
who supports me each and every day in more ways

than he can possibly imagine.

v

Table of Contents

About the Author ���xvii

About the Technical Reviewer ��xix

Preface ���xxi

Introduction ��xxiii

Student Registration System (SRS) Case Study ��xxxv

Part I: The ABCs of Objects ��� 1

Chapter 1: Abstraction and Modeling ��� 3

Simplification Through Abstraction ��� 3

Generalization Through Abstraction �� 5

Organizing Abstractions into Classification Hierarchies �� 5

Abstraction as the Basis for Software Development ��� 10

Reuse of Abstractions ��� 11

Inherent Challenges �� 13

What Does It Take to Be a Successful Object Modeler? �� 14

Summary��� 17

Chapter 2: Some Java Basics ��� 21

Java Is Architecture Neutral �� 22

Anatomy of a Simple Java Program �� 27

Comments ��� 28

The Class Declaration �� 30

The main Method ��� 31

Setting Up a Simple Java Development Environment ��� 32

https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_1#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec9

vi

The Mechanics of Java ��� 32

Compiling Java Source Code into Bytecode �� 32

Executing Bytecode ��� 33

Primitive Types �� 34

Variables ��� 36

Variable Naming Conventions �� 37

Variable Initialization ��� 39

The String Type ��� 40

Case Sensitivity ��� 41

Java Expressions �� 42

Arithmetic Operators ��� 43

Relational and Logical Operators ��� 45

Evaluating Expressions and Operator Precedence �� 46

The Type of an Expression ��� 48

Automatic Type Conversions and Explicit Casting ��� 48

Loops and Other Flow Control Structures ��� 51

if Statements ��� 52

switch Statements ��� 55

for Statements ��� 58

while Statements��� 61

Jump Statements �� 63

Block-Structured Languages and the Scope of a Variable �� 65

Printing to the Console Window �� 67

print vs� println �� 69

Escape Sequences �� 71

Elements of Java Style �� 72

Proper Use of Indentation �� 72

Use Comments Wisely ��� 76

Placement of Braces ��� 77

Descriptive Variable Names ��� 78

Summary��� 78

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_2#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec25
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec27
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec29
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec30
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec31
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec33
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec34
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec35
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec36
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec37
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec38
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec39
https://doi.org/10.1007/978-1-4842-9060-6_2#Sec40

vii

Chapter 3: Objects and Classes �� 81

Software at Its Simplest �� 81

Functional Decomposition ��� 82

The Object-Oriented Approach �� 85

What Is an Object? �� 85

State/Data/Attributes ��� 87

Behavior/Operations/Methods ��� 89

What Is a Class? �� 91

A Note Regarding Naming Conventions ��� 92

Declaring a Class, Java Style ��� 93

Instantiation �� 94

Encapsulation ��� 96

User-Defined Types and Reference Variables�� 97

Naming Conventions for Reference Variables ��� 99

Instantiating Objects: A Closer Look �� 100

Garbage Collection �� 110

Objects As Attributes ��� 111

A Compilation “Trick”: “Stubbing Out” Classes ��� 115

Composition ��� 118

The Advantages of References As Attributes ��� 120

Three Distinguishing Features of an Object-Oriented Programming Language ������������������������ 121

Summary��� 121

Chapter 4: Object Interactions �� 125

Events Drive Object Collaboration ��� 126

Declaring Methods �� 128

Method Headers �� 129

Method Naming Conventions �� 129

Passing Arguments to Methods ��� 130

Method Return Types ��� 131

An Analogy ��� 133

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_3#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec7

viii

Method Bodies ��� 134

Features May Be Declared in Any Order �� 135

return Statements ��� 136

Methods Implement Business Rules ��� 141

Objects As the Context for Method Invocation �� 142

Java Expressions, Revisited �� 146

Capturing the Value Returned by a Method ��� 147

Method Signatures �� 148

Choosing Descriptive Method Names �� 150

Method Overloading �� 151

Message Passing Between Objects �� 153

Delegation ��� 156

Obtaining Handles on Objects ��� 157

Objects As Clients and Suppliers �� 162

Information Hiding/Accessibility ��� 165

Public Accessibility �� 166

Private Accessibility ��� 168

Publicizing Services �� 169

Method Headers, Revisited �� 171

Accessing the Features of a Class from Within Its Own Methods ��������������������������������������� 171

Accessing Private Features from Client Code ��� 176

Declaring Accessor Methods ��� 176

Recommended “Get”/“Set” Method Headers �� 178

IDE-Generated Get/Set Methods �� 182

The “Persistence” of Attribute Values �� 183

Using Accessor Methods from Client Code �� 183

The Power of Encapsulation Plus Information Hiding ��� 184

Preventing Unauthorized Access to Encapsulated Data �� 185

Helping Ensure Data Integrity �� 185

Limiting “Ripple Effects” When Private Features Change ��� 188

Using Accessor Methods from Within a Class’s Own Methods �� 191

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_4#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec25
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec27
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec29
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec30
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec31
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec33
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec34
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec35
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec36
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec37
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec38

ix

Exceptions to the Public/Private Rule ��� 197

Constructors �� 201

Default Constructors �� 201

Writing Our Own Explicit Constructors �� 202

Passing Arguments to Constructors �� 203

Replacing the Default Parameterless Constructor �� 205

More Elaborate Constructors ��� 206

Overloading Constructors �� 208

An Important Caveat Regarding the Default Constructor �� 210

Using the “this” Keyword to Facilitate Constructor Reuse �� 212

Software at Its Simplest, Revisited ��� 216

Summary��� 218

Chapter 5: Relationships Between Objects ��� 223

Associations and Links ��� 224

Multiplicity ��� 227

Multiplicity and Links �� 229

Aggregation and Composition ��� 232

Inheritance �� 234

Responding to Shifting Requirements with a New Abstraction ��� 234

(Inappropriate) Approach #1: Modify the Student Class �� 235

(Inappropriate) Approach #2: “Clone” the Student Class to Create a GraduateStudent
Class �� 239

The Proper Approach (#3): Taking Advantage of Inheritance ��� 241

The “is a” Nature of Inheritance �� 242

The Benefits of Inheritance ��� 246

Class Hierarchies ��� 247

The Object Class �� 250

Is Inheritance Really a Relationship? �� 250

Avoiding “Ripple Effects” in a Class Hierarchy �� 251

Rules for Deriving Classes: The “Do’s” �� 252

Overriding �� 252

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_4#Sec39
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec40
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec41
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec42
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec43
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec44
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec45
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec46
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec47
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec48
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec49
https://doi.org/10.1007/978-1-4842-9060-6_4#Sec50
https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec20

x

Reusing Superclass Behaviors: The “super” Keyword �� 256

Rules for Deriving Classes: The “Don’ts” ��� 260

Private Features and Inheritance��� 262

Inheritance and Constructors �� 267

A Few Words About Multiple Inheritance ��� 275

Three Distinguishing Features of an OOPL, Revisited ��� 280

Summary��� 280

Chapter 6: Collections of Objects�� 285

What Are Collections? ��� 286

Collections Are Defined by Classes and Must Be Instantiated �� 286

Collections Organize References to Other Objects �� 287

Collections Are Encapsulated �� 289

Three Generic Types of Collection ��� 290

Ordered Lists ��� 290

Dictionaries ��� 292

Sets ��� 293

Arrays As Simple Collections �� 295

Declaring and Instantiating Arrays �� 295

Accessing Individual Array Elements ��� 297

Initializing Array Contents �� 298

Manipulating Arrays of Objects ��� 300

A More Sophisticated Type of Collection: The ArrayList Class ��� 305

Using the ArrayList Class: An Example �� 306

Import Directives and Packages �� 306

The Namespace of a Class �� 310

User-Defined Packages and the Default Package ��� 313

Generics �� 314

ArrayList Features ��� 315

Iterating Through ArrayLists �� 318

Copying the Contents of an ArrayList into an Array ��� 319

The HashMap Collection Class �� 321

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_5#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec29
https://doi.org/10.1007/978-1-4842-9060-6_5#Sec30
https://doi.org/10.1007/978-1-4842-9060-6_6
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec23

xi

The TreeMap Class �� 329

The Same Object Can Be Simultaneously Referenced by Multiple Collections ������������������������� 332

Inventing Our Own Collection Types �� 334

Approach #1: Designing a New Collection Class from Scratch �� 334

Approach #2: Extending a Predefined Collection Class (MyIntCollection) ��������������������������� 335

Approach #3: Encapsulating a Standard Collection (MyIntCollection2) ������������������������������� 341

Trade-Offs of Approach #2 vs� Approach #3 �� 346

Collections As Method Return Types ��� 348

Collections of Derived Types ��� 350

Revisiting Our Student Class Design ��� 351

The courseLoad Attribute of Student ��� 352

The transcript Attribute of Student �� 352

The transcript Attribute, Take 2 �� 356

Our Completed Student Data Structure ��� 363

Summary��� 364

Chapter 7: Some Final Object Concepts �� 367

Polymorphism ��� 368

Polymorphism Simplifies Code Maintenance �� 375

Three Distinguishing Features of an Object-Oriented Programming Language ������������������������ 378

The Benefits of User-Defined Types ��� 378

The Benefits of Inheritance ��� 379

The Benefits of Polymorphism ��� 379

Abstract Classes ��� 380

Implementing Abstract Methods ��� 385

Abstract Classes and Instantiation �� 387

Declaring Reference Variables of Abstract Types �� 389

An Interesting Twist on Polymorphism �� 390

Interfaces �� 392

Implementing Interfaces�� 395

Another Form of the “Is A” Relationship �� 400

Interfaces and Casting ��� 401

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_6#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec25
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec27
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec33
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec35
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec36
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec37
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec38
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec39
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec40
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec41
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec42
https://doi.org/10.1007/978-1-4842-9060-6_6#Sec43
https://doi.org/10.1007/978-1-4842-9060-6_7
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec15

xii

Implementing Multiple Interfaces �� 406

Interfaces and Casting, Revisited �� 409

Interfaces and Instantiation ��� 410

Interfaces and Polymorphism �� 411

The Importance of Interfaces �� 412

Static Features �� 423

Static Variables �� 423

A Design Improvement: Burying Implementation Details �� 428

Static Methods �� 429

Restrictions on Static Methods �� 430

Utility Classes �� 432

The final Keyword �� 433

Custom Utility Classes ��� 437

Summary��� 439

Part II: Object Modeling 101 ��� 443

Chapter 8: The Object Modeling Process in a Nutshell ��� 445

The “Big Picture” Goal of Object Modeling ��� 445

Modeling Methodology = Process + Notation + Tool �� 446

My Recommended Object Modeling Process, in a Nutshell �� 451

Thoughts Regarding Object Modeling Software Tools ��� 452

A Reminder �� 455

Summary��� 455

Chapter 9: Formalizing Requirements Through Use Cases ����������������������������������� 457

What Are Use Cases? �� 458

Functional vs� Technical Requirements ��� 458

Involving the Users �� 460

Actors �� 460

Identifying Actors and Determining Their Roles �� 461

Diagramming a System and Its Actors �� 463

Specifying Use Cases �� 466

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_7#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec25
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec27
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec29
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec31
https://doi.org/10.1007/978-1-4842-9060-6_7#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_8
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_8#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_9
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec7

xiii

Matching Up Use Cases with Actors ��� 468

To Diagram or Not to Diagram? ��� 468

Summary��� 470

Chapter 10: Modeling the Static/Data Aspects of the System ������������������������������ 473

Identifying Appropriate Classes �� 474

Noun Phrase Analysis �� 475

Refining the Candidate Class List �� 483

Revisiting the Use Cases ��� 488

Producing a Data Dictionary ��� 491

Determining Associations Between Classes ��� 492

Association Matrices ��� 495

Identifying Attributes ��� 498

UML Notation: Modeling the Static Aspects of an Abstraction �� 498

Classes, Attributes, and Operations ��� 499

Relationships Between Classes ��� 503

Reflecting Multiplicity �� 511

Object/Instance Diagrams ��� 516

Associations As Attributes ��� 518

Information “Flows” Along an Association “Pipeline” ��� 520

“Mixing and Matching” Relationship Notations �� 527

Association Classes �� 531

Our “Completed” Student Registration System Class Diagram �� 534

Metadata ��� 543

Summary��� 545

Chapter 11: Modeling the Dynamic/Behavioral Aspects of the System ��������������� 547

How Behavior Affects State �� 548

Events �� 551

Scenarios �� 556

Scenario #1 for the “Register for a Course” Use Case �� 557

Scenario #2 for the “Register for a Course” Use Case �� 559

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_9#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_9#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec20
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec21
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_10#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_11
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec10

xiv

Sequence Diagrams �� 560

Determining Objects and External Actors for Scenario #1 �� 561

Preparing the Sequence Diagram �� 563

Using Sequence Diagrams to Determine Methods ��� 568

Communication Diagrams ��� 571

Revised SRS Class Diagram �� 573

Summary��� 575

Chapter 12: Wrapping Up Our Modeling Efforts �� 579

Testing the Model �� 579

Revisiting Requirements ��� 580

Reusing Models: A Word About Design Patterns ��� 584

Summary��� 587

Part III: Translating an Object Blueprint into Java Code ����������������������������� 589

Chapter 13: A Few More Java Details ��� 591

Java-Specific Terminology �� 592

Java Archive (jar) Files �� 593

Creating Jar Files �� 594

Inspecting the Contents of a Jar File ��� 595

Using the Bytecode Contained Within a Jar File �� 596

Extracting Contents from Jar Files �� 597

“Jarring” Entire Directory Hierarchies ��� 597

Javadoc Comments ��� 599

The Object Nature of Strings ��� 608

Operations on Strings �� 608

Strings Are Immutable ��� 612

The StringBuffer Class ��� 616

The StringTokenizer Class ��� 617

Instantiating Strings and the String Literal Pool �� 620

Testing the Equality of Strings ��� 624

Message Chains �� 626

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_11#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec16
https://doi.org/10.1007/978-1-4842-9060-6_11#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_12
https://doi.org/10.1007/978-1-4842-9060-6_12#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_12#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_12#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_12#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec8
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec10
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec11
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec12
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec13
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec14
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec15
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec16

xv

Object Self-Referencing with “this” �� 628

Java Exception Handling ��� 630

The Mechanics of Exception Handling ��� 633

Catching Exceptions �� 645

Interpreting Exception Stack Traces �� 651

The Exception Class Hierarchy �� 654

Catching the Generic Exception Type �� 658

Compiler Enforcement of Exception Handling ��� 659

Taking Advantage of the Exception That We’ve Caught ��� 661

Nesting of Try/Catch Blocks ��� 662

User-Defined Exception Types ��� 663

Throwing Multiple Types of Exception ��� 668

Enum(eration)s �� 668

Providing Input to Command-Line-Driven Programs �� 678

Accepting Command-Line Arguments: The args Array �� 679

Introducing Custom Command-Line Flags to Control a Program’s Behavior ����������������������� 681

Accepting Keyboard Input: The Scanner Class �� 687

Using Wrapper Classes for Input Conversion ��� 689

Features of the Object Class ��� 692

Determining the Class That an Object Belongs To ��� 692

Testing the Equality of Objects �� 694

Overriding the equals Method ��� 700

Overriding the toString Method ��� 704

Static Initializers �� 707

Variable Initialization, Revisited �� 709

Variable Arguments (varargs) �� 712

Summary��� 716

Chapter 14: Transforming the Model into Java Code �� 719

Suggestions for Getting the Maximum Value from This Chapter��� 720

The SRS Class Diagram Revisited ��� 720

The Person Class (Specifying Abstract Classes) �� 724

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_13#Sec17
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec18
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec19
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec23
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec24
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec25
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec27
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec28
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec29
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec30
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec31
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec33
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec34
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec35
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec36
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec37
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec38
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec39
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec40
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec41
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec42
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec43
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec44
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec45
https://doi.org/10.1007/978-1-4842-9060-6_13#Sec46
https://doi.org/10.1007/978-1-4842-9060-6_14
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec3

xvi

The Student Class (Reuse Through Inheritance, Extending Abstract Classes, Delegation) �� 728

The Professor Class (Bidirectionality of Relationships) ��� 740

The Course Class (Reflexive Relationships, Unidirectional Relationships) �������������������������� 742

The Section Class (Representing Association Classes, Public Static Final Attributes,
Enums) �� 747

Delegation Revisited �� 758

The ScheduleOfClasses Class ��� 765

The TranscriptEntry Association Class (Static Methods) �� 767

The Transcript Class �� 772

The SRS Driver Program �� 773

Summary��� 787

Chapter 15: Building a Three-Tier User Driven Application ���������������������������������� 789

A Three-Tier Architecture �� 790

What Does the Controller Do? ��� 791

Building a Persistence/Data Tier ��� 792

Building a Web-Based Presentation Layer �� 795

Example Controller Logic �� 797

The Importance of Model–Data Layer–View Separation ��� 800

Summary��� 802

Further Reading �� 802

 Appendix A: Alternative Case Studies �� 805

 Index ��� 815

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9060-6_14#Sec9
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec22
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec26
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec32
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec40
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec41
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec46
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec50
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec53
https://doi.org/10.1007/978-1-4842-9060-6_14#Sec56
https://doi.org/10.1007/978-1-4842-9060-6_15
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec1
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec2
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec3
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec4
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec5
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec6
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec7
https://doi.org/10.1007/978-1-4842-9060-6_15#Sec8

xvii

About the Author

Jacquie Barker is a professional software engineer, author, and former adjunct faculty

member at both George Mason University in Fairfax, VA, and the George Washington

University in Washington, DC. With over 30 years of experience as a software developer

and project manager, Jacquie has spent the past 15 years focused on object technology

and is proficient as an object modeler and Sun Microsystems Certified Java programmer.

Jacquie earned a Bachelor of Science degree in computer engineering with highest

honors from the Case Institute of Technology/Case Western Reserve University in

Cleveland, Ohio, and a Master of Science degree in computer science, emphasizing

software systems engineering, from the University of California, Los Angeles. She has

subsequently pursued postgraduate studies in information technology at George Mason

University in Fairfax, VA. Jacquie’s winning formula for teaching object fundamentals

continues to receive praise from readers around the world, and Beginning Java Objects:

From Concepts to Code has been adopted by many universities as a key textbook in their

core IT curricula.

On a personal note, Jacquie’s passions include her husband, Steve, and their three

cats, Walter, Rocky, and Tanner; serving as founder and executive director of Pets Bring

Joy, a 501(c)(3) nonprofit animal rescue organization (visit pbj.org); and her recent

launch of a pro bono IT consulting service for start-up nonprofits (visit probonoit.org).

Jacquie can be reached at jacquie.barker@gmail.com.

xix

About the Technical Reviewer

Manuel Jordan is an autodidactic developer and researcher

who enjoys learning new technologies for his own

experiments about creating new integrations among them.

Manuel won the 2010 Springy Award—Community

Champion and Spring Champion 2013. In his little free

time, he reads the Bible and composes music on his bass

and guitar.

Manuel considers that constant education and training

is very valuable for any developer, the same being true about

refactoring and testing. Manuel can offer these services for

your company with his background on Java and Spring.

You can reach him mostly through his Twitter account @dr_pompeii.

xxi

Preface

Welcome to the third edition of Beginning Java Objects (BJO)! Since the first edition of

BJO was published back in November 2000 and the second edition in 2005, I’ve been

delighted by the many emails and positive reviews that I’ve received from readers

who found my book to be a perfect “jump start” into Java and object-oriented (OO)

programming. So many beginning Java books dive into a discussion of the language itself

without properly grounding readers in how to “think” and structure an application from

the ground up to take full advantage of object-oriented principles; I’m delighted that

you’ve chosen BJO to get started on your Java journey.

My book is based on timeless principles that are language version independent,

which means that it needn’t be revised every time a new version of Java is released. What

do change, sometimes seemingly in the blink of an eye, are third-party technologies

used in conjunction with the core Java language, and so we’ve replaced material that

went into detail regarding outdated technologies with a single chapter (Chapter 15) that

explains conceptually how to move forward with building an application that achieves

proper model–data layer–presentation layer separation.

We’ve also included mention of some of the significant enhancements to the Java

language as of versions 8 through 17 (the newest version due out as of the time of writing

of the third edition).

As always, I welcome reader feedback and hope to hear from you at jacquie.barker@

gmail.com.

Best regards,

Jacquie

https://doi.org/10.1007/978-1-4842-9060-6_15

xxiii

Introduction

This is a book, first and foremost, about software objects: what they are, why they are

so “magical” and yet so straightforward, and how one goes about structuring a software

application to use objects appropriately.

This is also a book about Java: not a hard-core, “everything there is to know about

Java” book, but rather a gentle yet comprehensive introduction to the language,

with special emphasis on how to transition from an object model to a working Java

application—something that few, if any, other books provide.

 Goals for This Book
My goals in writing this book (and, hopefully, yours for buying it) are to

• Make you comfortable with fundamental object-oriented (OO)
terminology and concepts.

• Give you hands-on, practical experience with object modeling,

that is, with developing an object-oriented “blueprint” that can

be used as the basis for subsequently building an object-oriented

software system.

• Illustrate the basics of how such an object model is translated into
a working software application—a Java application, to be specific,
although the techniques that you’ll learn for object modeling apply

equally well to any OO language.

• Help you become proficient as a Java programmer along the way.

If you’re already experienced with the Java language (but not with object

fundamentals), it’s critical to your successful use of the language that you learn about its

object-oriented roots. On the other hand, if you’re a newcomer to Java, then this book

will get you properly “jump-started.” Either way, this book is a “must-read” for anyone
who wishes to become proficient with an OO programming language like Java.

xxiv

Just as importantly, this book is not meant to

• Turn you into an overnight pro in object modeling: Like all

advanced skills, becoming totally comfortable with object modeling

takes two things: a good theoretical foundation and a lot of practice!

I give you the foundation in this book, including an introduction to

the Unified Modeling Language (UML), the industry standard for

rendering an object- oriented “blueprint” of a software application.

(UML was first adopted as a standard for modeling objected-oriented

software systems in 1997 and is still relevant today.) That being said,

the only way you’ll really get to be proficient with object modeling

is by participating in OO modeling and development projects

over time.

My book will give you the skills, and hopefully the confidence, to

begin to apply object techniques in a professional setting, which

is where your real learning will take place, particularly if you

have an OO-experienced mentor to guide you through your first

“industrial-strength” project.

• Teach you “everything” you’ll ever need to know about Java: Java

is a very rich language, consisting of hundreds of core classes and

literally thousands of operations that can be performed with and by

these classes. Also, new versions of the Java language are released by

Oracle Corporation every year or so, but the good news is that key

Java features needed to represent a software problem in a proper

object-oriented way have not changed over the years. If Java provides

a dozen alternative ways to do something in particular, I explain

the one or two ways that I feel best suit the problem at hand, to give

you an appreciation for how things are done. Nonetheless, you’ll

definitely see enough of the Java language in this book to prepare you

for a role as a professional Java programmer.

Armed with the foundation you gain from this book, you’ll be poised and ready to

appreciate a more thorough treatment of Java such as that offered by one of the many

other Java references that are presently on the market or a deeper review of object

modeling techniques from an in-depth UML reference. We’ll make recommendations

for such books in Chapter 15.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9060-6_15

xxv

 Why Is Understanding Objects So Critical to Being
a Successful OO Programmer?
Time and again, I meet software developers—at my place of employment, at clients’

offices, at professional conferences, on college campuses—who have attempted to

master an object-oriented programming language (OOPL) like Java by taking a course

in Java, reading a book about Java, or installing and using a Java integrated development

environment (IDE) such as Eclipse, IntelliJ IDEA, NetBeans, or BlueJ. However, there

is something fundamentally missing from virtually all of these approaches: a basic

understanding of what objects are all about and, more importantly, knowledge of how to
structure a software application from the ground up to make the most of objects.

Imagine that you’ve been asked to build a house and that you know the basics of

home construction. In fact, you’re a world-renowned home builder whose services are

in high demand! You’ve built homes of every possible architectural style, using every

known type of building material: brick, lumber, stone, metal, etc. So, when your client

tells you that they want you to use a brand-new type of construction material, which

they’ll provide, you’re happy to oblige.

InTroduCTIon

xxvi

On the day construction is to begin, a truck pulls up at the building site and unloads

a large pile of odd-looking blue star-shaped blocks with holes in the middle. You’re

totally baffled! You’ve built countless homes using more familiar materials, but you

haven’t got a clue about how to assemble a house using blue stars.

Scratching your head, you pull out a hammer and some nails and try to nail the blue

stars together as if you were working with lumber, but the stars don’t fit together very

well. You then try to fill in the gaps with the same mortar that you would use to adhere

bricks to one another, but the mortar doesn’t stick to these blue stars very well. Because

you’re working under tight cost and schedule constraints for building this home for your

client, however (and because you’re too embarrassed to admit that you, as an expert

home builder, don’t know how to work with these modern materials), you press on.

Eventually, you wind up with something that looks (on the surface, at least) like a house.

InTroduCTIon

xxvii

Your client comes to inspect the work and is terribly disappointed. One of the

reasons they had selected blue stars as a construction material was that they are

extremely energy efficient; but, because you have used nails and mortar to assemble the

stars, they have lost a great deal of their inherent ability to insulate the home.

To compensate, your client asks you to replace all of the windows in the home with

triple-pane thermal glass windows so that they will allow less heat to escape. You’re
panicking at this point! Swapping out the windows will require you to literally rip the

walls apart, destroying the house.

When you tell your customer this, they go ballistic! Another reason that they

selected blue stars as a construction material was because of their modularity and hence

ease of accommodating design changes; but, because of the ineffective way with which

you’ve assembled these stars, they’ve lost this flexibility, as well.

InTroduCTIon

xxviii

This is, sad to say, the way many programmers wind up building an OO application

when they don’t have appropriate training in the fundamental properties of the building

blocks of such an application, namely, software objects. Worse yet, the vast majority of

would-be OO programmers are blissfully ignorant of the need to understand objects in

order to program in an OO language. So they take off programming with a language like

Java and wind up with a far from ideal result: an application that lacks flexibility when an

inevitable “midcourse correction” occurs in response to changing requirements after the

application has been deployed.

 Whom Is This Book Written For?
Anyone who wants to get the most out of an object-oriented programming language
like Java! It has been written for

• Anyone who has yet to tackle Java, but wants to get off on the right

foot with the language

• Anyone who has ever purchased a book on Java and has read it

faithfully, who understands the “bits and bytes” of the language,

but doesn’t quite know how to structure an application to best take

advantage of Java’s object-oriented features

InTroduCTIon

xxix

• Anyone who has built a Java application, but was disappointed with

how difficult it was to maintain or modify it when new requirements

were presented later in the application’s life cycle

• Anyone who has previously learned something about object

modeling, but is “fuzzy” on how to transition from an object model to

real, live code (Java or otherwise)

The bottom line is that anyone who really wants to master an OO language like
Java must become an expert in objects FIRST!

In order to gain the most value from this book, you should have some programming

experience under your belt; virtually any language will do. You should understand

simple programming concepts such as

• Simple data types (integer, floating point, etc.)

• Variables and their scope (including the notion of global data)

• Flow control (“if ... then ... else” statements, for/do/while

loops, etc.)

• What arrays are and how to use them

• The notion of a software function/subroutine/procedure: how to pass

data in and get results back out

But you needn’t have had any prior exposure to Java. And you needn’t have ever been

exposed to objects, either—in the software sense, at least! As you’ll learn in Chapter 2,

human beings naturally view the entire world from the perspective of objects.

Even if you’ve already developed a full-fledged Java application, it’s certainly not

too late to read this book if you still feel fuzzy when it comes to the object aspects of

structuring an application; it ultimately makes someone a better Java programmer to

know the “whys” of object orientation rather than merely the mechanics of the language.

You’ll most likely see some familiar landmarks (in the form of Java code examples) in this

book, but will hopefully gain many new insights as you learn the rationale for why we do

many of the things that we do when programming in Java (or any other OO programming

language for that matter).

Because this book has its roots in courses that I teach at the university level, it’s

ideally suited for use as a textbook for a semester-long university or advanced placement

high school course in either object modeling or Java programming.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9060-6_2

xxx

 What If You’re Interested in Object Modeling,
but Not Necessarily in Java Programming?
Will my book still be of value to you? Definitely! Even if you don’t plan on making a

career of programming (as is true of many of my object modeling students), I’ve found

that being exposed to code examples written in an OO language like Java really helps to

cement object concepts. So you’re encouraged to read Parts 1 and 3 even if you never

intend to set your hands to the keyboard for purposes of Java programming afterward.

 How This Book Is Organized
The book is structured around three major topics, as follows.

 Part 1: The ABCs of Objects
Before I dive into the how-to’s of object modeling and the details of OO programming in

Java, it’s important that we all speak the same language with respect to objects. Part 1,

consisting of Chapters 1–7, starts out slowly, by defining basic concepts that underlie

all software development approaches, OO or otherwise. But the chapters quickly ramp

up to a discussion of advanced object concepts so that, by the end of Part 1, you will be

“object savvy.”

 Part 2: Object Modeling 101
In Part 2—Chapters 8–12 of the book—I focus on the underlying principles of how and,

more importantly, why we do the things that we do when we develop an object model

of an application—principles that are common to all object modeling techniques. It’s

important to be conversant in the UML, and so I teach you the basics of the UML and use

it for all of the concrete modeling examples in my book. Using the modeling techniques

presented in these chapters, we’ll develop an object model “blueprint” for a Student

Registration System (SRS), the requirements specification for which is presented at the

end of this introduction.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_7
https://doi.org/10.1007/978-1-4842-9060-6_8
https://doi.org/10.1007/978-1-4842-9060-6_12

xxxi

 Part 3: Translating an Object “Blueprint” into Java Code
In Part 3 of the book—Chapters 13–15—I illustrate how to render the SRS object model

that we’ve developed in Part 2 into a fully functioning Java application, to serve as the

model layer in a three-tier application, and we’ll also talk conceptually about how

third-party technologies can be harnessed to provide both a user interface (known

as the presentation layer or tier) and data persistence (known as the data layer
or tier). The SRS source code is available for download from GitHub (github.com/

Apress/Beginning-Java-Objects-3e), and I strongly encourage you to download and

experiment with this code when you reach that chapter.

The requirements specification for the SRS is written in the narrative style with which

software system requirements are often expressed. You may feel confident that you could

build an application today to solve this problem, but by the end of my book, you should

feel much more confident in your ability to build it as an object-oriented application.

Three additional case studies—for a Prescription Tracking System (PTS), a Conference

Room Reservation System, and an Airline Reservation System, respectively—are

presented in the Appendix; these serve as the basis for many of the exercises presented

at the end of each chapter.

Suggestions have been provided in the final chapter for how you might wish to

continue your object-oriented discovery process after finishing my book. In that chapter,

I furnish you with a list of recommended books that will take you to the next level of

proficiency, depending on what your intention is for applying what you’ve learned in

my book.

 Conventions
To help you get the most from the text and keep track of what’s happening, we’ve used a

number of conventions throughout the book.

For instance:

notes are shown in this fashion and reflect important background information.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_15

xxxii

As for styles in the text:

• When we introduce important words, we bold them to

highlight them.

• We show file names, URLs, and code within the text like so:

objectstart.com.

• We bold lines of code within long code passages if we want to call

your attention to those lines in particular:

// Bolding is used to call attention to new or significant code:

Student s = new Student();

// whereas unbolded code is code that's less important in the

// present context, or has been seen before.

int x = 3;

• We use italic vs. regular code font to represent pseudocode:

// This is real code:

for (int i = 0; i <= 10; i++) {

 // This is pseudocode!

 compute the grade for the ith Student

}

 Which Version of Java Is This Book Based On?
As mentioned previously, Oracle Corporation continues to release new versions of the

Java language on a regular basis. The good news is that, because I focus only on core

Java language syntax in my book—language features that have been stable since Java’s

inception—this book isn’t version specific. The techniques and concepts that you’ll learn

by reading my book will serve you equally well when new versions of Java appear. That

being said, all of the code examples in BJO are compatible with Java versions 8 through 17.

(Generally speaking, new versions of the Java language are forward-compatible,

meaning that code written for an older version of the language will compile properly in a

newer version.)

InTroduCTIon

xxxiii

 A Final Thought Before We Get Started
A lot of the material in my book—particularly at the beginning of Part 1—may seem

overly simplistic to experienced programmers. This is because much of object

technology is founded on basic software engineering principles that have been in

practice for many years and, in many cases, just repackaged slightly differently.

There are indeed a few new tricks that make OO languages extremely powerful and

that were virtually impossible to achieve with non-OO languages—inheritance and

polymorphism, for example, which you’ll learn more about in Chapters 5 and 7,

respectively. (Such techniques can be simulated by hand in a non-OO language, just

as programmers could program their own database management system (DBMS) from

scratch instead of using a commercial product like Oracle or SQL Server—but who’d

want to?)

The biggest challenge for experienced programmers in becoming proficient with

objects is in reorienting the manner in which they think about the problem they will be

automating:

• Software engineers/programmers who have developed applications

using non–object-oriented methods often have to “unlearn” certain

approaches used in the traditional methods of software analysis

and design.

• Paradoxically, people just starting out as programmers (or as OO

modelers) sometimes have an easier time when learning the OO

approach to software development as their only approach.

Fortunately, the way we need to think about objects when developing software turns

out to be the natural way that people think about the world in general. So learning to

“think” objects—and to program them in Java—is as easy as (Part) 1, (Part) 2, (Part) 3!

Source code for this book can be found at https://github.com/Apress/Beginning-

Java-Objects-3rd-ed.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_7
https://github.com/Apress/Beginning-Java-Objects-3rd-ed
https://github.com/Apress/Beginning-Java-Objects-3rd-ed

xxxv

 Student Registration System (SRS)
Case Study

STUDENT REGISTRATION SYSTEM (SRS) REQUIREMENTS SPECIFICATION

We have been asked to develop an automated student registration system (srs). This

system will enable students to register online for courses each semester, as well as tracking a

student’s progress toward completion of their degree.

When a student first enrolls at the university, they use the srs to set forth a plan of study

as to which courses they plan on taking to satisfy a particular degree program and choose

a faculty advisor. The srs will verify whether or not the proposed plan of study satisfies

the requirements of the degree that the student is seeking. once a plan of study has been

established, then, during the registration period preceding each semester, students are able

to view the schedule of classes online and choose whichever classes they wish to attend,

indicating the preferred section (day of the week and time of day) if the class is offered

by more than one professor. The srs will verify whether or not the student has satisfied

the necessary prerequisites for each requested course by referring to the student’s online

transcript of courses completed and grades received (the student may review their transcript

online at any time).

assuming that (a) the prerequisites for the requested course(s) are satisfied, (b) the course(s)

meets one of the student’s plan of study requirements, and (c) there is room available in each

of the class(es), the student is enrolled in the class(es).

If (a) and (b) are satisfied, but (c) is not, the student is placed on a first-come, first-served

waiting list. If a class/section that they were previously waitlisted for becomes available (either

because some other student has dropped the class or because the seating capacity for the

class has been increased), the student is automatically enrolled in the waitlisted class, and an

email message to that effect is sent to the student. It is their responsibility to drop the class if

it is no longer desired; otherwise, they will be billed for the course.

3

CHAPTER 1

Abstraction and Modeling
As human beings, we’re flooded with information every day of our lives. Even if we could

temporarily turn off all of the sources of “e-information” that are constantly bombarding

us—emails, voicemails, podcasts, tweets, and the like—our five senses alone collect

millions of bits of information per day just from our surroundings. Yet, we manage

to make sense out of all of this information, typically without getting overwhelmed.

Our brains naturally simplify the details of all that we observe so that these details are

manageable through a process known as abstraction.

In this chapter, you’ll learn

• How abstraction serves to simplify our view of the world

• How we organize our knowledge hierarchically to minimize the

amount of information that we have to mentally juggle at any

given time

• The relevance of abstraction to software development

• The inherent challenges that we face as software developers when

attempting to model a real-word situation in software

 Simplification Through Abstraction
Take a moment to look around the room in which you’re reading this book. At first, you

may think that there really aren’t that many things to observe: some furniture, light

fixtures, perhaps some plants, artwork, even some other people or pets. Maybe there is a

window to gaze out of that opens up the outside world to observation.

Now look again. For each thing that you see, there are a myriad of details to observe:

its size, its color, its intended purpose, the components from which it’s assembled (the

legs on a table, the lightbulbs in a lamp), etc. In addition, each one of these components

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_1

https://doi.org/10.1007/978-1-4842-9060-6_1#DOI

4

in turn has details associated with it: the type of material used to make the legs of the

table (wood or metal), the wattage of the lightbulbs, etc. Now factor in your other senses:

the sound of someone snoring (hopefully not while reading this book!), the smell of

popcorn coming from the microwave oven down the hall, and so forth. Finally, think

about all of the unseen details of these objects: who manufactured them or what their

chemical, molecular, or genetic composition is.

It’s clear that the amount of information to be processed by our brains is truly

overwhelming. For the vast majority of people, this doesn’t pose a problem, however,

because we’re innately skilled at abstraction, a process that involves recognizing and

focusing on the important characteristics of a situation or object and filtering out or

ignoring all of the unessential details.

One familiar example of an abstraction is a road map. As an abstraction, a road

map represents those features of a given geographic area relevant to someone trying

to navigate with the map, perhaps by car: major roads and places of interest, obstacles

such as large bodies of water, etc. Of necessity, a road map can’t include every building,

tree, street sign, billboard, traffic light, fast-food restaurant, etc. that physically exists in

the real world. If it did, then it would be so cluttered as to be virtually unusable; none of

the important features would stand out. Compare a road map to a topographical map, a

climatological map, and a population density map of the same region: each abstracts out

different features of the real world—namely, those relevant to the intended user of the

map in question.

As another example, consider a landscape. An artist may look at the landscape from

the perspective of colors, textures, and shapes as a prospective subject for a painting. A

home builder may look at the same landscape from the perspective of where the best

building site may be on the property, assessing how many trees will need to be cleared

to make way for a construction project. An ecologist may closely study the individual

species of trees and other plant/animal life for their biodiversity, with an eye toward

preserving and protecting them, whereas a child may simply be looking at all of the

trees in search of the best site for a tree house. Some elements are common to all four

observers’ abstractions of the landscape—the types, sizes, and locations of trees, for

example—while others aren’t relevant to all of the abstractions.

Chapter 1 abstraCtion and Modeling

5

 Generalization Through Abstraction
If we eliminate enough detail from an abstraction, it becomes generic enough to apply

to a wide range of specific situations or instances. Such generic abstractions can often

be quite useful. For example, a diagram of a generic cell in the human body, such as the

one in Figure 1-1, might include only a few features of the structures that are found in an

actual cell.

Figure 1-1. A generic abstraction of a cell

This overly simplified diagram doesn’t look like a real nerve cell or a real muscle

cell or a real blood cell; and yet, it can still be used in an educational setting to describe

certain aspects of the structure and function of all of these cell types—namely, those

features that the various cell types have in common.

The simpler an abstraction—that is, the fewer features it presents—the more general

it is, and the more versatile it is in describing a variety of real-world situations. The more

complex an abstraction, the more restrictive it is, and thus the fewer situations it is useful

in describing.

 Organizing Abstractions into Classification Hierarchies
Even though our brains are adept at abstracting concepts such as road maps and

landscapes, that still leaves us with millions of separate abstractions to deal with over our

lifetimes. To cope with this aspect of complexity, human beings systematically arrange

information into categories according to established criteria; this process is known as

classification.

Chapter 1 abstraCtion and Modeling

6

For example, science categorizes all natural objects as belonging to either the

animal, plant, or mineral kingdom. In order for a natural object to be classified as an

animal, it must satisfy the following rules:

• It must be (or have at one time been) a living being.

• It must be capable of spontaneous movement.

• It must be capable of rapid motor response to stimulation.

The rules for what constitutes a plant, on the other hand, are different:

• It must be a living being (same as for an animal).

• It must lack an obvious nervous system.

• It must possess cellulose cell walls.

Given clear-cut rules such as these, placing an object into the appropriate category,

or class, is rather straightforward. We can then “drill down,” specifying additional rules

that differentiate various types of animal, for example, until we’ve built up a hierarchy of

increasingly more complex abstractions from top to bottom. A simple example of such

an abstraction hierarchy is shown in Figure 1-2.

Figure 1-2. A simple abstraction hierarchy of natural objects

Chapter 1 abstraCtion and Modeling

7

When thinking about an abstraction hierarchy such as the one shown in Figure 1-2,

we mentally step up and down the hierarchy, automatically zeroing in on only the single

layer or subset of the hierarchy (known as a subtree) that is important to us at a given

point in time. For example, we may only be concerned with mammals and so can focus

on the mammalian subtree, shown in Figure 1-3, temporarily ignoring the rest of the

hierarchy.

Figure 1-3. Focusing on a small subset of the hierarchy is less overwhelming

By doing so, we automatically reduce the number of concepts that we mentally need

to juggle at any one time to a manageable subset of the overall abstraction hierarchy;

in our simplistic example, we’re now dealing with only four concepts rather than the

original 13. No matter how complex an abstraction hierarchy grows to be, it needn’t

overwhelm us if it’s properly organized.

Coming up with precisely which rules are necessary to properly classify an object

within an abstraction hierarchy isn’t always easy. Take, for example, the rules we might

define for what constitutes a bird: namely, something that

• Has feathers

• Has wings

• Lays eggs

• Is capable of flying

Chapter 1 abstraCtion and Modeling

8

Given these rules, neither an ostrich nor a penguin could be classified as a bird

(although both should be), because neither can fly (see Figure 1-4).

Figure 1-4. Deriving the correct classification rules can be difficult

If we attempt to make the rule set less restrictive by eliminating the “is capable of

flying” rule, we’re left with

• Has feathers

• Has wings

• Lays eggs

According to this rule set, we now may properly classify both the ostrich and the

penguin as birds, as shown in Figure 1-5.

Chapter 1 abstraCtion and Modeling

9

Figure 1-5. Proper classification rules have been established

This rule set is still unnecessarily complicated, because as it turns out, the “lays eggs”

rule is redundant: whether we keep it or eliminate it, it doesn’t change our decision of

what constitutes a bird vs. a non-bird. Therefore, we simplify the rule set once again:

• Has feathers

• Has wings

Feeling particularly daring (!), we try to take our simplification process one step

further by eliminating yet another rule, defining a bird as something that

• Has wings

Chapter 1 abstraCtion and Modeling

10

As Figure 1-6 shows, we’ve gone too far this time: the abstraction of a bird is now so

general that we’d include airplanes, insects, and all sorts of other non-birds in the mix!

Figure 1-6. A rule set that is too relaxed is as much of a problem as an overly
restrictive rule set

The process of rule definition for purposes of categorization involves dialing

in just the right set of rules—not too general, not too restrictive, and containing no

redundancies—to define the correct membership in a particular class.

 Abstraction as the Basis for Software Development
When pinning down the requirements for an information systems development project,

we typically start by gathering details about the real-world situation on which the system

is to be based. These details are usually a combination of

Chapter 1 abstraCtion and Modeling

11

• Those that are explicitly offered to us as we interview the intended

users of the system

• Those that we otherwise observe

We must make a judgment call as to which of these details are relevant to the

system’s ultimate purpose. This is essential, as we can’t automate them all. To include

too much detail is to overly complicate the resultant system, making it that much more

difficult to design, program, test, debug, document, maintain, and extend in the future.

As with all abstractions, all of our decisions of inclusion vs. elimination when

building a software system must be made within the context of the overall purpose and

domain, or subject matter focus, of the future system. When representing a person in

a software system, for example, is their eye color important? How about their genetic

profile? Salary? Hobbies? The answer is any of these features of a person may be relevant

or irrelevant, depending on whether the system to be developed is a

• Payroll system

• Marketing demographics system

• Optometrist’s patient database

• FBI’s “most wanted” tracking system

Once we’ve determined the essential aspects of a situation—something that we’ll

explore in Part 2 of this book—we can prepare a model of that situation. Modeling is the

process by which we develop a pattern for something to be made. A blueprint for a custom

home, a schematic diagram of a printed circuit, and a cookie cutter are all examples of

such patterns. As we’ll cover in Parts 2 and 3, an object model of a software system is

such a pattern. Modeling and abstraction go hand in hand, because a model is essentially

a physical or graphical portrayal of an abstraction; before we can model something

effectively, we must have determined the essential details of the subject to be modeled.

 Reuse of Abstractions
When learning about something new, we automatically search our mental archive

for other abstractions/models that we’ve previously built and mastered, to look for

similarities that we can build upon. When learning to ride a two-wheeled bicycle for the

first time, for example, you may have drawn upon lessons that you learned about riding a

Chapter 1 abstraCtion and Modeling

12

tricycle as a child (see Figure 1-7). Both have handlebars that are used to steer; both have

pedals that are used to propel the bike forward. Although the abstractions didn’t match

perfectly—a two-wheeled bicycle introduced the new challenge of having to balance

yourself—there was enough of a similarity to allow you to draw upon the steering and

pedaling expertise you already had mastered and to focus on learning the new skill of

how to balance on two wheels.

Figure 1-7. The human brain is adept at learning by building upon already-
established abstractions

This technique of comparing features to find an abstraction that is similar enough

to be reused successfully is known as pattern matching and reuse. As we’ll cover

later in the book, pattern reuse is an important technique for object-oriented software

development, as well, because it spares us from having to reinvent the wheel with each

new project. If we can reuse an abstraction or model from a previous project, we can

focus on those aspects of the new project that differ from the old, gaining a tremendous

amount of productivity in the process.

Chapter 1 abstraCtion and Modeling

13

 Inherent Challenges
Despite the fact that abstraction is such a natural process for human beings, developing

an appropriate model for a software system is perhaps the most difficult aspect of

software engineering, because

• There are an unlimited number of possibilities. Abstraction is to a

certain extent in the eye of the beholder: several different observers

working independently are almost guaranteed to arrive at different

models. Whose is the best? Passionate arguments have ensued!

• To further complicate matters, there is virtually never only one

“best” or “correct” model, only “better” or “worse” models relative

to the problem to be solved. The same situation can be modeled

in a variety of equally valid ways. When we get into actually doing

some modeling in Part 2 of this book, we’ll look at a number of valid

alternative abstractions for our Student Registration System (SRS)

case study that was presented at the end of the Introduction.

• Note, however, that there is such a thing as an incorrect model:

namely, one that misrepresents the real-world situation (e.g.,

modeling a person as having two different blood types).

• There is no acid test to determine if a model has adequately captured

all of a user’s requirements. The ultimate evidence of whether

or not an abstraction was appropriate is in how successful the

resultant software system turns out to be. Because of this, it’s critical

that we learn ways of communicating our model concisely and

unambiguously frequently throughout the Agile development life

cycle to

• The intended future users of our application, so that they may

provide a sanity check for our understanding of the problem to be

solved before we embark upon software development

• Our fellow software engineers, so that team members can share a

common vision of what we’re to build collaboratively

Chapter 1 abstraCtion and Modeling

14

Despite all of these challenges, it’s critical to get the up-front abstraction “right”

before beginning to build a system. The later in the software life cycle a modeling error

is detected, the more costly it is to fix by orders of magnitude. This isn’t to imply that an

abstraction should be rigid—quite the contrary! The art and science of object modeling,

when properly applied, yields a model that is flexible enough to withstand a wide variety

of functional changes. In addition, the special properties of software objects further lend

themselves to flexible software solutions, as you’ll learn throughout the rest of the book.

 What Does It Take to Be a Successful Object Modeler?
Coming up with an appropriate abstraction as the basis for a software system model

requires

• Insight into the problem domain: Ideally, we’ll be able to draw

upon our own real-world experiences, such as former or current

experience as a student, which will come in handy when determining

the requirements for the Student Registration System (SRS), the basis

of our modeling and coding efforts in Parts 2 and 3 of the book.

• Creativity: We must be able to think “outside the box,” in case the

future users whom we’re interviewing have been immersed in the

problem area for so long that they fail to see innovations that might

be made.

• Good listening skills: These will come in handy as future users of

the system describe how they do their jobs currently or how they

envision doing their jobs in the future, with the aid of the system that

we’re about to develop.

• Good observational skills: Actions often speak louder than words.

Just by observing users going about their daily business, we may pick

up an essential detail that they have neglected to mention because

they do it so routinely that it has become a habit.

But all this isn’t enough. We also need

• An organized process for determining what the abstraction should

be. If we follow a proven checklist of steps for producing a model,

then we greatly reduce the probability that we’ll omit some important

feature or neglect a critical requirement.

Chapter 1 abstraCtion and Modeling

15

• A way to communicate the resultant model concisely and

unambiguously to our fellow software developers and to the

stakeholders/intended users of our application. While it’s certainly

possible to describe an abstraction in narrative text, a picture is worth

a thousand words, and so the language with which we communicate

a model is often a graphical notation. Throughout this book, we’ll

focus on the Unified Modeling Language (UML; see Figure 1-8)

notation as our model communication language (you’ll learn the

basics of UML in Chapters 10 and 11). Think of a graphical model as a

blueprint of the software application to be built.

Figure 1-8. Describing a landscape in UML notation

• Ideally, a software tool to help us automate the process of producing

such a blueprint.

Part 2 of this book covers these three aspects of modeling—process, notation, and

tool—in detail.

Chapter 1 abstraCtion and Modeling

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11

16

Throughout the remainder of this book, we are going to focus on this following case

study as the basis of object modeling and Java coding lessons:

STUDENT REGISTRATION SYSTEM (SRS) REQUIREMENTS SPECIFICATION

We have been asked to develop an automated student registration system (srs). this

system will enable students to register online for courses each semester, as well as tracking a

student’s progress toward completion of their degree.

When a student first enrolls at the university, they use the srs to set forth a plan of study

as to which courses they plan on taking to satisfy a particular degree program and choose

a faculty advisor. the srs will verify whether or not the proposed plan of study satisfies

the requirements of the degree that the student is seeking. once a plan of study has been

established, then, during the registration period preceding each semester, students are able

to view the schedule of classes online and choose whichever classes they wish to attend,

indicating the preferred section (day of the week and time of day) if the class is offered

by more than one professor. the srs will verify whether or not the student has satisfied

the necessary prerequisites for each requested course by referring to the student’s online

transcript of courses completed and grades received (the student may review their transcript

online at any time).

assuming that (a) the prerequisites for the requested course(s) are satisfied, (b) the course(s)

meets one of the student’s plan of study requirements, and (c) there is room available in each

of the class(es), the student is enrolled in the class(es).

if (a) and (b) are satisfied, but (c) is not, the student is placed on a first-come, first-served

waiting list. if a class/section that they were previously waitlisted for becomes available (either

because some other student has dropped the class or because the seating capacity for the

class has been increased), the student is automatically enrolled in the waitlisted class, and an

email message to that effect is sent to the student. it is their responsibility to drop the class if

it is no longer desired; otherwise, they will be billed for the course.

Chapter 1 abstraCtion and Modeling

17

 Summary
In this chapter, you’ve learned that

• Abstraction is a fundamental technique that people use to perceive

the world.

• Developing an abstraction of the problem to be automated is a

necessary first step of all software development.

• We naturally organize information into classification hierarchies

based upon rules that we carefully structure, so that they are neither

too general nor too restrictive.

• We often reuse abstractions when attempting to model a new

concept.

• Producing an abstraction of a system to be built, known as a model,

is in some senses second nature to us and yet paradoxically is one of

the hardest things that software developers have to do in the life cycle

of an information systems project. It’s also one of the most important.

EXERCISES

 1. sketch a class hierarchy that relates to all of the following classes in a

reasonable manner:

apple

banana

beef

beverage

Cheese

Consumable

dairy product

Food

Chapter 1 abstraCtion and Modeling

18

Fruit

green bean

Meat

Milk

pork

spinach

Vegetable

Justify your answer, noting in particular any challenges that you faced in

doing so.

 2. What aspects of a television set would be important to abstract from the

perspective of

• a consumer wishing to buy one?

• an engineer responsible for designing one?

• a retailer who sells them?

• the manufacturer?

 3. select a problem area that you would like to model from an object-oriented

perspective. ideally, this will be a problem that you’re actually going to be

working on at your place of employment or that you otherwise have a keen

interest in. assume that you’re going to write a program to automate some

aspect of this problem area, and write a one-page overview of the requirements

for this program, patterned after the srs case study.

Make certain that your first paragraph summarizes the intent of the system, as

the first paragraph in the srs case study does. also, emphasize the functional
requirements—that is, those that a nontechnical end user might state as to

how the system should behave—and avoid stating technical requirements,

for example, “this system must run on a Unix platform and must use the tCp/ip

protocol to…”

Chapter 1 abstraCtion and Modeling

19

 4. read the case study for a prescription tracking system (pts) in the appendix.

in your opinion, how effective is this case study as an abstraction? are there

details that you think could have been omitted or missing details that you think

would have been important to include? if you had an opportunity to interview

the intended users of the pts, what additional questions might you ask them to

better refine this abstraction?

Chapter 1 abstraCtion and Modeling

21

CHAPTER 2

Some Java Basics
What you’ll learn conceptually about objects in Part 1 of this book, and about object

modeling in Part 2, is language neutral and thus could apply equally well to Java, Python,

Ruby, or an as-yet-to-be-invented object-oriented (OO) language. Before diving into

the basics of objects in Chapter 3, however, I’d like to spend some time getting you

comfortable with the basics of Java, as this is the programming language that I’ll use to

illustrate object concepts as they are introduced throughout the rest of this book.

In this chapter, you’ll learn about

• The architecture-neutral nature of Java

• The anatomy of a simple Java program

• The mechanics of compiling and running such programs

• Primitive Java types, operators on those types, and expressions

formed with those types

• Java’s block-structured nature

• Various types of Java expressions

• Loops and other flow control structures

• Printing messages to the command window from which a program

was launched, which is especially useful for testing code as it evolves

• Elements of Java programming style

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_2

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_2#DOI

22

 Java Is Architecture Neutral
To execute a program written in a conventionally compiled language like C or C++,

the source code must first be compiled into an executable form known as binary code

or machine code. Binary code, in essence, is a pattern of 1s and 0s understandable

by the underlying hardware architecture of the computer on which the program is

intended to run.

Even if original C or C++ source code is written to be platform independent—that

is, the program does not take advantage of any platform-specific language extensions

such as a specific type of file access or graphical user interface (GUI) manipulation—

the resultant executable version will nonetheless still be tied to a particular platform’s

architecture and can therefore be run on only that architecture. That is, a version of

the program compiled for a Linux workstation will not run on a Windows PC, a version

compiled for a Windows PC will not run on a macOS machine, and so forth. This concept

is depicted in Figure 2-1.

Chapter 2 Some Java BaSiCS

23

Figure 2-1. Conventionally compiled languages yield platform-dependent
executable programs

In contrast, Java source code is not compiled for a particular platform, but rather

into a special intermediate format known as bytecode, which is said to be both platform

independent and architecture neutral. That is, no matter whether a Java program is

compiled under Windows, Linux, macOS, or any other operating system for which a Java

compiler is available, the resultant bytecode turns out to be the same and hence can

be run on any computer for which a (platform-specific) Java Virtual Machine (JVM) is

available. This is illustrated in Figure 2-2.

Chapter 2 Some Java BaSiCS

24

Figure 2-2. The Java compiler yields platform-independent bytecode

The JVM is a special piece of software that knows how to interpret and execute

Java bytecode. That is, instead of a Java program running directly under the control of

the operating system the way traditionally compiled programs do, the JVM itself runs

under direct control of the operating system, and our Java program in turn runs under

control of the JVM, as illustrated in Figure 2-3. The JVM in essence serves as a translator,

translating the universal Java bytecode “language” into the machine code (binary code)

“language” that a particular computer can understand, in the same way that a human

interpreter facilitates a discussion between someone speaking German and someone

speaking Japanese by translating their statements as they converse.

Chapter 2 Some Java BaSiCS

25

Figure 2-3. A platform-dependent JVM is used to execute platform-independent
bytecode

the interpreted nature of the Java language tends to make it execute a tiny bit
slower, in general, than compiled languages because there is an extra processing
layer involved when an application executes, as illustrated in Figure 2-3. For
traditional information systems applications that involve a human user in the loop,
however, the difference in speed is imperceptible; other factors, such as the speed
of the network (in the case of distributed applications), the speed of a DBmS server
(if a database is used), and especially human “think time” while responding to an
application’s user interface, can cause any Jvm response time delays to pale by
comparison.

Chapter 2 Some Java BaSiCS

26

As long as you have the appropriate JVM installed on a given target platform, you can

transfer Java bytecode from one platform to another without recompiling the original

Java source code, and it will still be able to run. That is, bytecode is transferable across

platforms, as illustrated in Figure 2-4.

Figure 2-4. The exact same bytecode is understood by JVMs on two different
platforms

Chapter 2 Some Java BaSiCS

27

PSEUDOCODE VS. REAL JAVA CODE

i occasionally use little bits of pseudocode in the code examples throughout parts 1 and 2 of

this book to hide irrelevant logic details. to make it clear as to when i’m using pseudocode

rather than real code, i use italic rather than regular SansMono condensed font.

this is real Java syntax:

 for (int i = 0; i <= 10; i++) {

this is pseudocode:

 compute the grade for the ith Student

 }

i’ll remind you of this fact a few more times, so that you don’t forget and accidentally try to

type in and compile pseudocode somewhere along the way.

 Anatomy of a Simple Java Program
Figure 2-5 shows one of the simplest of all Java programs.

Figure 2-5. Anatomy of a simple Java program

Let’s go over the key elements of our simple program.

Chapter 2 Some Java BaSiCS

28

 Comments
The first thing we see in our simple Java program is an introductory comment:

// This simple program illustrates some basic Java syntax.

Java supports three different comment styles: traditional, end-of-line, and Java

documentation comments.

 Traditional Comments

Java traditional comments derive from the C language and begin with a forward slash

followed by an asterisk (/*) and end with an asterisk followed by a forward slash (*/).

Everything enclosed between these delimiters is treated as a comment and is therefore

ignored by the Java compiler, no matter how many lines the comment spans:

/* This is a traditional (C-style) comment. */

/* This is a multiline traditional comment. This is a handy way to

temporarily comment out entire sections of code without having

to delete them. From the time that the compiler encounters the

first "slash asterisk" above, it doesn't care what we type here;

even legitimate lines of code, as shown below, are treated as

comment lines and thus ignored by the compiler until the first

"asterisk slash" combination is encountered.

x = y + z;

a = b / c;

j = s + c + f;

*/

/* We often use leading asterisks on the second through last line of a

traditional

 * comment simply for cosmetic reasons, so that the comment is more

visually

 * distinct; but, these extra asterisks are strictly cosmetic – only the

 * initial "slash asterisk" and the final "asterisk slash" are noted by the

 * compiler as having any significance.

 */

Note that we can’t nest block comments—that is, the following will not compile:

Chapter 2 Some Java BaSiCS

29

/* This starts a comment ...

x = 3;

/* Whoops! We are mistakenly trying to nest a SECOND comment

before terminating the FIRST!

This is going to cause us compilation problems, because the

compiler is going to IGNORE the start of this second/inner comment --

we're IN

a comment already, after all! -- and so as soon as we try to terminate

this SECOND/inner comment, the compiler will think that we've

terminated the

FIRST/outer comment instead ... */

z = 2;

// The compiler will "complain" on the next line.

*/

When the compiler reaches what we intended to be the terminating */ of the “outer”

comment on the last line of the preceding code example, the following two compilation

errors will be reported:

 illegal start of expression

 */

 ^

and

 ';' expected

 */

 ^

 End-of-Line Comments

The second type of Java comment derives from C++ and is known as an end-of-
line comment. We use a double slash (//) to note the beginning of a comment that

automatically ends when the end of the line is reached, as shown here:

x = y + z; // text of comment continues through to the end of the line ==>

a = b / c;

// Here's a BLOCK of sequential end-of-line comments.

Chapter 2 Some Java BaSiCS

30

// This serves as an alternative to using traditional comments

// (/* ... */) and is preferred by many Java programmers.

m = n * p;

 Java Documentation Comments

The third and final type of Java comment, Java documentation comments (a.k.a.

“javadoc comments”), can be parsed from source code files by a special javadoc

command-line utility program (which comes standard with the Java Development Kit

[JDK]) and used to automatically generate HTML documentation for an application.

We’ll defer an in-depth look at javadoc comments until Chapter 13.

 The Class Declaration
Next comes a class wrapper—more properly termed a class declaration—of the form

public class ClassName {

 ...

}

For example:

public class SimpleProgram {

 ...

}

where braces { ... } enclose the class body that includes the main logic of the program

along with other optional building blocks of a class.

In subsequent chapters, you’ll learn all about the significance of classes in an OO

programming language. For now, simply note that the symbols public and class are two

of Java’s keywords—that is, symbols reserved for specific uses within the Java language—

whereas SimpleProgram is a name/symbol that I’ve invented.

Chapter 2 Some Java BaSiCS

https://doi.org/10.1007/978-1-4842-9060-6_13

31

 The main Method
Within the SimpleProgram class declaration, we find the starting point for the program,

called the main method in Java. (In an object-oriented language, functions are referred

to as methods.) The main method serves as the entry point for a Java application. When

we execute a Java program by interpreting its bytecode with an instance of the JVM, the

JVM calls the main method to jump-start our application.

With trivial applications such as the SimpleProgram example, all of the
program’s logic can be contained within this single main method. For more
complex applications, on the other hand, the main method can’t possibly contain
all of the logic for the entire system. You’ll learn how to construct an application
that transcends the boundaries of the main method, involving multiple Java source
code files/classes, a bit later in the book.

The first line of the method, shown here

public static void main(String[] args) {

defines what is known as the main method’s method header and should appear exactly

as shown (for now—we’ll revisit this topic again in Chapter 13).

Our main method’s method body, enclosed in braces { ... }, consists of a single

statement:

System.out.println("Hello!");

which prints the message

Hello!

to the command window from which our program is launched. We’ll examine this

statement’s syntax further in a bit, but for now, note the use of a semicolon (;) at the

end of the statement. Semicolons are placed at the end of all individual Java statements.

Braces { ... }, in turn, delimit blocks of code, the significance of which I’ll discuss in

more detail a bit later in this chapter.

Chapter 2 Some Java BaSiCS

https://doi.org/10.1007/978-1-4842-9060-6_13

32

Other things that we’d typically do inside of the main method of a more elaborate

program include declaring variables, initializing data, displaying a user interface,

creating objects, and calling other methods.

Now that we’ve looked at the anatomy of a simple Java program, let’s get a very

simple Java development environment set up for you.

 Setting Up a Simple Java Development Environment
For folks just getting started with Java programming, I advocate using a simple text editor

at first so that you aren’t distracted by the bells and whistles of a specific IDE and so that

the IDE doesn’t do so much work for you that you don’t really learn what’s going on at

the most basic levels. That being said, an editor that understands Java syntax is definitely

helpful, and so I personally recommend a very inexpensive tool called TextPad, available

at www.textpad.com/home.

Once you have installed TextPad or selected another simple text editor of your

choice, it’s time to install the Java development environment. Because vendor

instructions change frequently, it isn’t practical for us to provide step-by-step

instructions; as of the time of writing of this book, the latest instructions can be found on

Oracle’s website at https://docs.oracle.com/en/java/javase/18/install. If this link

is out of date, please search the doc.oracle.com website for the latest version of the Java

Platform, Standard Edition, JDK Installation Guide.

Once you’ve gotten your Java development environment up and running, let’s take a

look at how Java code is compiled and executed.

 The Mechanics of Java
The simplest way to compile and execute a Java program regardless of platform is via

command-line commands.

 Compiling Java Source Code into Bytecode
To compile Java source code from the command line, we use the cd command, as

necessary, to navigate into the working directory where our source code resides. We then

type the following command

Chapter 2 Some Java BaSiCS

http://www.textpad.com/home
https://docs.oracle.com/en/java/javase/18/install

33

javac sourcecode_filename

for example

javac SimpleProgram.java

to compile it.

If there were more than one .java source code file in the same directory, we could

either list the names of the files to be compiled, separated by spaces

javac Foo.java Bar.java Another.java

or use the wildcard character (*), for example

javac *.java

to compile multiple files at the same time.

If all goes well—namely, if no compiler errors arise—then a bytecode file by

the name of SimpleProgram.class will appear in the same directory where the

SimpleProgram.java source code file resides. If compiler errors do arise, on the other

hand, we of course must correct our source code and attempt to recompile it.

 Executing Bytecode
Once a program has been successfully compiled, we execute the bytecode version via

the command

java bytecode_filename (note that we OMIT the .class suffix)

For example:

java SimpleProgram

Note that it’s important to omit the .class suffix of the bytecode file name (which is

SimpleProgram.class in this case). Typing the suffix will result in the error shown in the

following:

Exception in thread "main" java.lang.NoClassDefFoundError: SimpleProgram/java

By default, the JVM will look in your default working directory for such bytecode

files. If the JVM finds the specified bytecode file, it executes its main method, and your

program is off and running!

Chapter 2 Some Java BaSiCS

34

If for some reason the bytecode you are trying to execute is not in this default

location, you must inform the JVM of additional directories in which to search, known

as specifying a classpath. You can do so by specifying a list of directories (separated by

semicolons [;] under Windows or by colons [:] under Linux and macOS) after the -cp

flag on the java command as follows:

java –cp list_of_directory_names_to_be_searched bytecode_filename

For example, on Windows:

java –cp C:\home\javastuff;D:\reference\workingdir;S:\foo\bar\files

SimpleProgram

At a minimum, we typically want the JVM to search our current working directory

for bytecode files. This happens by default if no –cp value is provided

java SimpleProgram

but it’s generally a best practice to specify the current working directory as a single

period (.), which is the Windows/Linux/macOS shorthand for “the current working

directory,” as a classpath entry, for example

java –cp . SimpleProgram

or, when multiple entries are needed in the classpath, to specify “ . ” as one of the entries,

for example, on Windows:

java –cp C:\home\javastuff;D:\reference\workingdir;. SimpleProgram

Now that we’ve looked at the mechanics of compiling and running Java programs,

let’s explore some of the basic syntax features of Java in more detail.

 Primitive Types
Java is said to be a strongly typed programming language in that when a variable is

declared, its type must also be declared. Among other things, declaring a variable’s type

tells the compiler how much memory to allocate for the variable at run time and also

constrains the contexts in which that variable may subsequently be used in our program.

The Java language defines eight primitive types (all eight of these type names are

Java keywords), as follows.

Chapter 2 Some Java BaSiCS

35

Four types of integer numeric data:

• byte: 8-bit unsigned integer

• short: 16-bit signed integer

• int: 32-bit signed integer

• long: 64-bit signed integer

Two floating-point numeric types:

• float: 32-bit single-precision floating point

• double: 64-bit double-precision floating point

Plus two additional primitive types:

• char: A single character, stored using 16-bit Unicode encoding

(vs. 8-bit ASCII encoding), enabling Java to handle a wide range of

international character sets.

• boolean: A variable that may only assume one of two values: true

or false (both of these values are reserved words in Java). Boolean

variables are often used as flags to signal whether or not some code

should be conditionally performed, as in the following code snippet:

boolean error = false; // Initialize the flag.

// ...

// Later in the program (pseudocode):

if (some error situation arises) {

 // Set the flag to true to signal that an error has occurred.

 error = true;

}

// ...

// Still later in the program:

// Test the flag’s value.

if (error == true) {

 // Pseudocode.

 take corrective action ...

}

Chapter 2 Some Java BaSiCS

36

We’ll talk specifically about the syntax of the if statement, one of several different

kinds of Java flow control statements, a bit later in this chapter.

An important reminder if you wish to attempt to compile any of the Java code
snippets that you come across throughout the book, remember that (a) pseudocode
(italicized) won’t compile and (b) all code must, at a minimum, be enclosed within a
main method, which in turn must be enclosed within a class declaration, as was
illustrated in Figure 2-5.

 Variables
Before a variable can be used in a Java program, the type and name of the variable must

be declared to the Java compiler, for example:

 int count;

Assigning a value to a variable is accomplished by using the Java assignment
operator, an equal sign (=). An assignment statement consists of a (previously declared)

variable name to the left of the = and an expression that evaluates to the appropriate type

to the right of the = (we’ll cover some other types of Java expressions later in the chapter).

For example:

int count = 1;

total = total + 4.0; // Here, we assume that total was declared to be

a double

 // variable earlier in the program.

price = cost + (a + b)/length; // We once again assume that all

variables were

 // properly declared earlier in the

program.

An initial value can be supplied/computed on the same line that declares the

variable:

 int count = 3;

Chapter 2 Some Java BaSiCS

37

Or a variable can be declared in one statement and then assigned a value in a

separate statement later on in the program:

double total;

// intervening code ... details omitted

total = total + 4.0;

A value can be assigned to a boolean variable using the true or false literal:

boolean finished;

// ...

finished = true;

A literal value may be assigned to a variable of type char by enclosing the value (a

single Unicode character) in single quotes:

 char c = 'A';

the use of double quotes ("…") is reserved for assigning literal values to String
variables, a distinct type discussed later in this chapter. the following would not
compile in Java:

char c = "A"; // We must use single quotes when assigning
values to char variables.

 Variable Naming Conventions
When discussing Java variable names, there are two aspects to consider:

• First, is a particular name deemed valid by the Java compiler?

• Second, does a particular valid name adhere to the naming

convention that has been adopted by the OO programming

community across all languages?

Valid variable names in Java must start with either an alphabetic character or a

dollar sign (whose use is discouraged, since it is used by the compiler when generating

code) and may contain any of these characters plus numeric digits. No other characters

are allowed in variable names.

Chapter 2 Some Java BaSiCS

38

The following are all valid variable names in Java:

int simple; // starts with alphabetic character

int more$money_is_2much; // may contain dollar signs, and/or

underscores, and/or

 // digits, and/or alphabetic

characters

These are invalid:

int 1bad; // inappropriate starting character

int number#sign; // contains invalid character

int foo-bar; // ditto

int plus+sign; // ditto

int x@y; // ditto

int dot.notation; // ditto

That being said, the convention that is observed throughout the OO programming

community is to form variable names using primarily alphabetic characters, avoiding

the use of underscores, and furthermore to adhere to a style known as camel casing.

With camel casing, the first letter of a variable name is in lowercase, the first letter of

each subsequent concatenated word in the variable name is in uppercase, and the rest

of the characters are in lowercase. All of the following variable names are both valid and

conventional:

int grade;

double averageGrade;

String myPetRat;

boolean weAreFinished;

Recall that, as mentioned earlier, Java keywords can’t be used as variable names. The

following won’t compile, because public is a Java keyword:

int public;

In fact, the compiler would generate the following two error messages:

not a statement

int public;

^

Chapter 2 Some Java BaSiCS

39

';' expected

int public;

 ^

 Variable Initialization
In Java, variables aren’t necessarily assigned an initial value when they’re declared,

but all variables must be explicitly assigned a value before the variable’s value is used

in an assignment statement. For example, in the following code snippet, two int(eger)

variables are declared; an initial value is explicitly assigned to variable foo, but not to

variable bar. A subsequent attempt to add the two variables’ values together results in a

compiler error:

int foo;

int bar;

// We're explicitly initializing foo, but not bar.

foo = 3;

foo = foo + bar; // This line won't compile.

The following compiler error would arise on the last line of code:

variable bar might not have been initialized

foo = foo + bar;

 ^

To correct this error, we would need to assign an explicit value to bar, as well as foo,

before using them in the addition expression:

int foo;

int bar;

foo = 3;

// We're now initializing BOTH variables explicitly.

bar = 7;

foo = foo + bar; // This line will now compile properly.

Chapter 2 Some Java BaSiCS

40

in Chapter 13 you’ll learn that the rules of automatic initialization are somewhat
different when dealing with the “inner workings” of objects.

 The String Type
I’ll discuss one more important Java type in this chapter: the String type, which is not

considered to be a primitive type (we’ll discuss the special nature of Strings as objects in

Chapter 13). A String represents a sequence of zero or more Unicode characters.

The symbol String starts with a capital “S,” whereas the names of primitive types

are expressed in all lowercase: int, float, boolean, etc. This capitalization difference is

deliberate and mandatory—string (lowercase) won’t work as a type:

string s = "foo"; // This won't compile.

Error message:

cannot find symbol

symbol: string

There are several ways to create and initialize a String variable. The easiest and

most commonly used way is to declare a variable of type String and to assign the

variable a value using a string literal. A string literal is any text enclosed in double

quotes, even if it consists of only a single character:

String name = "Steve";

String shortString = "A";

Two commonly used approaches for initializing a String variable with a temporary

placeholder value are as follows:

• Assigning an empty string, represented by two consecutive double

quote marks:

String s = "";

• Assigning the value null, which is a Java reserved word that is used to

signal that a String has not yet been assigned a “real” value:

String s = null;

Chapter 2 Some Java BaSiCS

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_13

41

The plus sign (+) operator is used for arithmetic addition with numeric data types,

but when used in conjunction with Strings, it represents string concatenation. Any

number of String values can be concatenated with the + operator, as the following code

snippet illustrates:

 String x = "foo";

 String y = "bar";

 String z = x + y + "!"; // z assumes the value "foobar!" (x and y's

values are

 // unaffected)

You’ll learn about some of the many other operations that can be performed with or

on Strings, along with insights into their OO nature, in Chapter 13.

 Case Sensitivity
Java is a case-sensitive language. That is, the use of uppercase vs. lowercase in Java is

deliberate and mandatory, for example:

• Variable names that are spelled the same way but that differ in their

use of case represent different variables:

// These are two DIFFERENT variables as far as the Java compiler

// is concerned.

int x; // lowercase

int X; // uppercase

• All keywords are rendered in lowercase: public, class, int, boolean,

and so forth. Don’t get “creative” about capitalizing these, as the

compiler will violently object—often with unintelligible compilation

error messages, as in the following example, where the reserved word

for is improperly capitalized:

// The reserved word 'for' should be lowercase.

For (int i = 0; i < 3; i++) {

Chapter 2 Some Java BaSiCS

https://doi.org/10.1007/978-1-4842-9060-6_13

42

This in turn produces the following seemingly bizarre compiler error:

'.class' expected

For (int i = 0; i < 3; i++) {

 ^

• The name of the main method is lowercase.

• As mentioned earlier, the String type starts with an uppercase “S.”

 Java Expressions
Java is an expression-oriented language. A simple expression in Java is either

• A constant: 7, false

• A char(acter) literal enclosed in single quotes: 'A', '3'

• A String literal enclosed in double quotes: "foo", "Java"

• The name of any properly declared variables: myString, x

• Any two of the preceding types of expression that are combined
with one of the Java binary operators (discussed in detail later in
this chapter): x + 2

• Any one of the preceding types of expression that is modified by
one of the Java unary operators (discussed in detail later in this
chapter): i++

• Any of the preceding types of expression enclosed in
parentheses: (x + 2)

plus a few more types of expression having to do with objects that you’ll learn about later

in the book.

Expressions of arbitrary complexity can be assembled from the various different simple

expression types by nesting parentheses, for example: ((((4/x) + y) * 7) + z).

Chapter 2 Some Java BaSiCS

43

 Arithmetic Operators
The Java language provides a number of basic arithmetic operators, as shown in

Table 2-1.

Table 2-1. Java Arithmetic Operators

Operator Description

+ addition

- Subtraction

* multiplication

/ Division

% remainder (the remainder when the operand to the left of the % operator is divided

by the operand to the right, for example, 10 % 3 = 1, because 3 goes into 10 three

times, leaving a remainder of 1)

The + and - operators can also be used as unary operators to indicate positive or

negative numbers: -3.7, +42.

In addition to the simple assignment operator, =, there are a number of specialized

compound assignment operators, which combine variable assignment with an

arithmetic operation, as shown in Table 2-2.

Table 2-2. Java Compound Assignment Operators

Operator Description

+= a += b is equivalent to a = a + b.

-= a -= b is equivalent to a = a - b.

*= a *= b is equivalent to a = a * b.

/= a /= b is equivalent to a = a / b.

%= a %= b is equivalent to a = a % b.

Chapter 2 Some Java BaSiCS

44

The final two arithmetic operators that we’ll look at are the unary increment (++)

and decrement (--) operators, which are used to increase or decrease the value of an

int variable by 1 or of a floating-point (float, double) value by 1.0. They’re known as

unary operators because they’re applied to a single variable, whereas binary operators

combine the values of two expressions as discussed previously.

The unary increment and decrement operators can also be applied to char variables

to step forward or backward one character position in the Unicode sorting sequence. For

example, in the following code snippet, the value of variable c will be incremented from

‘e’ to ‘f’:

 char c = 'e';

 c++; // c will be incremented from 'e' to 'f'.

The increment and decrement operators can be used in either a prefix or postfix

manner. If the operator is placed before the variable it’s operating on (prefix mode),

the increment or decrement of that variable is performed before the variable’s updated

value is used in any assignments made via that statement. For example, consider the

following code snippet, which uses the prefix increment (++) operator. Assume that a

and b have previously been declared as int variables in our program:

a = 1;

b = ++a;

After the preceding lines of code have executed, the value of variable a will be 2, as

will the value of variable b. This is because, on the second line of code, the increment of

variable a (from 1 to 2) occurs before the value of a is assigned to variable b. Thus, the

single line of code

b = ++a;

is logically equivalent to the following two lines of code:

a = a + 1; // Increment a's value first ...

b = a; // ... THEN use its value.

On the other hand, if the increment/decrement operator is placed after the variable

it’s operating on (postfix mode), the increment or decrement occurs after the variable’s

original value is used in any assignments made via that statement. Let’s look at the same

code snippet with the increment operator written in a postfix manner:

Chapter 2 Some Java BaSiCS

45

a = 1;

b = a++;

After the preceding lines of code have executed, the value of variable b will be 1,

whereas the value of variable a will be 2. This is because, on the second line of code, the

increment of variable a (from 1 to 2) occurs after the value of a is assigned to variable b.

Thus, the single line of code

b = a++;

is logically equivalent to the following two lines of code:

b = a; // Use a's value first `...

a = a + 1; // ... THEN increment its value.

Here’s a slightly more complex example; please read the accompanying comment to

make sure that you can see how x will end up being assigned the value 10:

int y = 2;

int z = 4;

int x = y++ * ++z; // x will be assigned the value 10, because z will be

 // incremented from 4 to 5 BEFORE its value is

used in the

 // multiplication expression, whereas y will remain

at 2 until

 // AFTER its value is used in the multiplication

expression.

As you’ll see in a bit, the increment and decrement operators are commonly used in

conjunction with loops.

 Relational and Logical Operators
A logical expression compares two (simple or complex) expressions exp1 and exp2 in a

specified way, resolving to a boolean value of true or false.

To create logical expressions, Java provides the relational operators shown in

Table 2-3.

Chapter 2 Some Java BaSiCS

46

Table 2-3. Java Relational Operators

Operator Description

exp1 == exp2 true if exp1 equals exp2 (note the use of a double equal sign for testing equality)

exp1 > exp2 true if exp1 is greater than exp2

exp1 >= exp2 true if exp1 is greater or equal to exp2

exp1 < exp2 true if exp1 is less than exp2

exp1 <= exp2 true if exp1 is less than or equal to exp2

exp1 != exp2 true if exp1 is not equal to exp2 (! is read as “not”)

In addition to the relational operators, Java provides logical operators that can be

used to combine/modify logical expressions. The most commonly used logical operators

are listed in Table 2-4.

Table 2-4. Java Logical Operators

Operator Description

exp1 && exp2 Logical “and”; compound expression is true only if both exp1 and exp2 are true.

exp1 || exp2 Logical “or”; compound expression is true if either exp1 or exp2 is true.

!exp Logical “not”; true if exp is false and false if exp is true.

Here’s an example that uses the logical “and” operator to program the compound

logical expression “if x is greater than 2.0 and y is not equal to 4.0”:

if ((x > 2.0) && (y != 4.0)) { ... }

Logical expressions are most commonly seen used with flow control structures,

discussed later in this chapter.

 Evaluating Expressions and Operator Precedence
As mentioned earlier in the chapter, expressions of arbitrary complexity can be built up by

layering nested parentheses—for example, (((8 * (y + z)) + y) * x). The compiler

generally evaluates such expressions from the innermost to outermost parentheses, left to

right. Assuming that x, y, and z are declared and initialized as shown here

Chapter 2 Some Java BaSiCS

47

int x = 1;

int y = 2;

int z = 3;

then the expression on the right-hand side of the following assignment statement

int answer = ((8 * (y + z)) + y) * x;

would be evaluated piece by piece as follows:

((8 * (y + z)) + y) * x

((8 * 5) + y) * x

(40 + y) * x

42 * x

42

In the absence of parentheses, certain operators take precedence over others

in terms of when they will be applied in evaluating an expression. For example,

multiplication or division is performed before addition or subtraction. Operator

precedence can be explicitly altered through the use of parentheses; operations

performed inside parentheses take precedence over operations outside of parentheses.

Consider the following code snippet:

int j = 2 + 3 * 4; // j will be assigned the value 14

int k = (2 + 3) * 4; // k will be assigned the value 20

On the first line of code, which uses no parentheses, the multiplication operation

takes precedence over the addition operation, and so the overall expression evaluates

to the value 2 + 12 = 14; it’s as if we’ve explicitly written 2 + (3 * 4) without having

to do so.

On the second line of code, parentheses are explicitly placed around the operation

2 + 3 so that the addition operation will be performed first, and the resultant sum will

then be multiplied by 4 for an overall expression value of 5 * 4 = 20.

Returning to an earlier example

if ((x > 2.0) && (y != 4.0)) { ... }

Chapter 2 Some Java BaSiCS

48

note that the > and != operators take precedence over the && operator, such that we

could eliminate the nested parentheses as follows:

if (x > 2.0 && y != 4.0) { ... }

However, the extra parentheses certainly don’t hurt, and in fact it can be argued that

they make the expression’s intention clearer.

 The Type of an Expression
The type of an expression is the Java type of the value to which the expression ultimately

evaluates. For example, given the code snippet

double x = 3.0;

double y = 2.0;

if ((x > 2.0) && (y != 4.0)) { ... }

the expression (x > 2.0) && (y != 4.0) evaluates to true, and hence the expression

(x > 2.0) && (y != 4.0) is said to be a boolean-type expression. However, in the

following code snippet

int x = 1;

int y = 2;

int z = 3;

int answer = ((8 * (y + z)) + y) * x;

the expression ((8 * (y + z)) + y) * x evaluates to 42, and hence the expression ((8

* (y + z)) + y) * x is said to be an int(eger)-type expression.

 Automatic Type Conversions and Explicit Casting
Java supports automatic type conversion. This means that if we try to assign a value to a

variable

// Pseudocode.

x = expression;

Chapter 2 Some Java BaSiCS

49

and the expression on the right-hand side of the assignment statement evaluates

to a different type than the type with which the variable on the left-hand side of the

assignment statement was declared, Java will automatically convert the value of the

right-hand expression to match the type of x, but only if precision won’t be lost in doing
so. This is best understood by looking at an example:

int x;

double y;

y = 2.7;

x = y; // We're trying to assign a double value to an int variable.

In the preceding code snippet, we’re attempting to assign the double value of y, 2.7,

to x, which is declared to be an int. If this assignment were to take place, the fractional

part of y would be truncated, and x would wind up with an integer value of 2. This

represents a loss in precision, also known as a narrowing conversion.

A C or C++ compiler will permit this assignment, silently truncating the value. Rather

than assuming that this is what we intend to do, however, the Java compiler will generate

an error on the last line of code as follows:

possible loss of precision

found: double

required: int

In order to signal to the Java compiler that we’re willing to accept the loss of

precision, we must perform an explicit cast—that is, we must precede the expression

whose value is to be converted with the target type, enclosed in parentheses:

// Pseudocode.

x = (type) expression;

In other words, we’d have to rewrite the last line of the preceding example as follows

in order for the Java compiler to permit the assignment of a more precise floating-point

value to a less precise integer variable:

int x;

double y;

y = 2.7;

Chapter 2 Some Java BaSiCS

50

x = (int) y; // This will compile now, because we have explicitly

 // informed the compiler that we WANT a

 // narrowing conversion to occur.

Of course, if we were to reverse the direction of the assignment, assigning the int

value of variable x to the double variable y, the Java compiler would have no problem

with the assignment:

int x;

double y;

x = 2;

y = x; // Assign a less precise int value to a double variable that is

capable of

 // handling more precision – this is fine as is.

In this particular case, we’re assigning a value of less precision—2—to a variable

capable of more precision; y will wind up with the value of 2.0. This is known as a

widening conversion. Such conversions are performed automatically in Java and need

not be explicitly cast.

Note that there’s an idiosyncrasy with regard to assigning constant values to variables

of type float in Java; the following statement won’t compile

 float y = 3.5; // This won't compile!

because a numeric constant value with a fractional component like 3.5 is automatically

treated by Java as a more precise double value and so the compiler will view this as a

narrowing conversion and will refuse to carry out the assignment. To force such an

assignment, we must either explicitly cast the floating-point constant into a float

 float y = (float) 3.5; // This will compile, thanks to the cast.

or, alternatively, we can force the constant on the right-hand side of the assignment

statement to be viewed by the Java compiler as a float by using the suffix F or f, as

shown here:

 float y = 3.5F; // OK, because we're indicating that the constant

is to be

 // treated as a float, not as a double.

Chapter 2 Some Java BaSiCS

51

We’ll typically use doubles instead of floats whenever we need to declare
floating-point variables in our SrS application in part 3 of the book, just to avoid
these hassles of type conversion.

Expressions of type char can be converted to any other numeric type, as illustrated

in this next example:

char c = 'a';

// Assigning a char value to a numeric variable transfers its

// ASCII numeric equivalent value.

int x = c;

double z = c;

System.out.println(x);

System.out.println(z);

Here’s the output:

97

97.0

The only Java type that can’t be cast, either implicitly or explicitly, into another type

is the boolean type.

You’ll see other applications of casting, involving objects, later in the book.

 Loops and Other Flow Control Structures
Very rarely will a program execute sequentially, line by line, from start to finish. Instead,

the path of execution through a program’s logic will often be conditional:

• It may be necessary to have the program execute a certain block

of code if some condition is met or a different block of code if the

condition isn’t met.

• A program may have to repeatedly execute a particular block of code

a fixed number of times or until a particular result is attained.

Chapter 2 Some Java BaSiCS

52

The Java language provides a number of different types of loops and other flow

control structures to take care of these situations.

 if Statements
The if statement is a basic conditional branch statement that executes one or more

lines of code if a condition, represented as a logical expression, is satisfied. Alternatively,

one or more lines of code can be executed if the condition is not satisfied by placing

that code after the keyword else. The use of an else clause within an if statement is

optional.

The basic syntax of the if statement is as follows:

// Pseudocode.

if (logical-expression) {

 execute whatever code is contained within these braces if

 logical-expression evaluates to true

}

Or add an optional else clause:

// Pseudocode.

if (logical-expression) {

 execute whatever code is contained within these braces if

 logical-expression evaluates to true

}

else {

 execute whatever code is contained within these braces if

 logical-expression evaluates to false

}

If only one executable statement follows either the if or (optional) else keyword, the

braces can be omitted, as shown here:

// Pseudocode.

if (logical-expression) single statement to execute if logical-expression

is true;

else single statement to execute if logical-expression is false;

Chapter 2 Some Java BaSiCS

53

For example:

if (x > 3) y = x;

else z = x;

Alternatively, optional line breaks can be inserted:

if (x > 3)

 y = x;

else

 z = x;

But it’s generally considered good practice to always use braces as follows:

if (x > 3) {

 y = x;

}

else {

 z = x;

}

A single boolean variable, as a simple form of Boolean expression, can serve as the

logical expression/condition of an if statement. For example, it’s perfectly acceptable to

write the following:

// Use boolean variable "finished" as a flag that will get set to true when

// some particular operation is completed.

boolean finished;

// Initialize it to false.

finished = false;

// The details of intervening code, in which the flag may or may not

get set to

// true, have been omitted ...

// Test the flag.

if (finished) { // equivalent to: if (finished == true) {

 System.out.println("We are finished! :o)");

}

Chapter 2 Some Java BaSiCS

54

The ! (“not”) operator can be used to negate a logical expression, so that the block

of code associated with an if statement is executed when the expression evaluates to

false instead:

if (!finished) { // equivalent to: if (finished == false)

 System.out.println("We are NOT finished ... :op");

}

When testing for equality of two expressions, remember that we must use two

consecutive equal signs, not just one:

if (x == 3) { // Note use of double equal signs (==) to test for equality.

 y = x;

}

a common mistake made by beginning Java programmers—particularly those
who’ve previously programmed in C or C++—is to try to use a single equal sign
to test for equality, as in this example:

// Note incorrect use of single equal sign below.

if (x = 3) {

y = x;

}

in Java, an if test must be based on a valid logical expression; x = 3 isn’t a
logical expression, but rather an assignment expression. in fact, the preceding
if statement won’t even compile in Java, whereas it would compile in the C and
C++ programming languages, because in those languages, if tests are based on
evaluating expressions to either the integer value 0 (interpreted to mean false)
or nonzero (interpreted to mean true).

It’s possible to nest if-else constructs to test more than one condition. If nested,

an inner if (plus optional else) statement is placed within either the if part or the else

part of an outer if. Here is one commonly seen syntax for a two-level nested if-else

construct:

Chapter 2 Some Java BaSiCS

55

if (logical-expression-1) {

 execute this code

}

else {

 if (logical-expression-2) {

 execute this alternate code

 }

 else {

 execute this code if neither of the above expressions

evaluate to true

 }

}

There’s no limit to how many nested if-else constructs can be used, although if

nested too deeply, the code may become difficult for a human reader to understand and

hence maintain.

The nested if statement shown in the preceding example may alternatively be

written without using nesting as follows:

if (logical-expression-1) {

 execute this code

}

else if (logical-expression-2) {

 execute this alternate code

}

else {

 execute this code if neither of the above expressions evaluate to true

}

Note that the two forms are logically equivalent.

 switch Statements
A switch statement is similar to an if-else construct in that it allows the conditional

execution of one or more lines of code. However, instead of evaluating a logical

expression as an if-else construct does, a switch statement compares the value of

an expression against values defined by one or more case labels. If a match is found,

Chapter 2 Some Java BaSiCS

56

the code following the matching case label is executed. An optional default label can

be included to define code that is to be executed if the expression matches none of the

case labels.

The general syntax of a switch statement is as follows:

switch (int-or-char-expression) {

 case value1:

 one or more lines of code to execute if value of expression

matches value1

 break;

 case value2:

 one or more lines of code to execute if value of expression

matches value2

 break;

 // more case labels, as needed ...

 case valueN:

 one or more lines of code to execute if value of expression

matches valueN

 break;

 default:

 default code to execute if none of the cases match

}

For example:

// x is assumed to have been previously declared as an int.

switch (x) {

 case 1: // executed if x equals 1

 System.out.println("One ...");

 break;

 case 2: // executed if x equals 2

 System.out.println("Two ...");

 break;

 default: // executed if x has a value other than 1 or 2

 System.out.println("Neither one nor two ...");

}

Chapter 2 Some Java BaSiCS

57

Note the following:

• The expression in parentheses following the switch keyword must

be an expression that evaluates to a char or int value (or, as we will

learn later in the book, to a few other special expression types).

• The values following the case labels must be constant char or int

values (or, as we will learn later in the book, to a few other special

expression types).

• The break; statement causes the switch to stop executing once a

given case has been completed; execution resumes after the closing }

of the switch statement.

• Colons (:), not semicolons (;), terminate the case and

default labels.

• The statements following a given case label don’t have to be enclosed

in braces. They constitute a statement list rather than a code block.

Unlike an if statement, a switch statement isn’t automatically terminated when

a match is found and the code following the matching case label is executed. To exit a

switch statement, a break statement must be used. If a break statement isn’t included

following a given case label, execution will “fall through” to the next case or default

label. This behavior can be used to our advantage: when the same logic is to be executed

for more than one case label, two or more case labels can be stacked up back to back, as

shown here:

 // x is assumed to have been previously declared as an int

 switch (x) {

 case 1:

 code to be executed if x equals 1

 case 2:

 code to be executed if x equals 1 OR 2

 case 3:

 code to be executed if x equals 1, 2, OR 3

 break;

 case 4:

 code to be executed if x equals 4

 }

Chapter 2 Some Java BaSiCS

58

 for Statements
A for statement is a programming construct that is used to execute one or more statements

a certain number of times. The general syntax of the for statement is as follows:

for (initializer; condition; iterator) {

 code to execute while condition evaluates to true

}

A for statement defines three elements that are separated by semicolons and placed

in parentheses after the for keyword: the initializer, the condition, and the iterator.

The initializer is used to provide an initial value for a loop control variable. The

variable can be declared as part of the initializer, or it can be declared earlier in the code,

ahead of the for statement, for example:

// The loop control variable 'i' is declared within the for statement:

for (int i = 0; condition; iterator) {

 code to execute while condition evaluates to true

}

// Note that i is no longer recognized by the compiler when the 'for'

loop exits,

// because it was effectively declared within the 'for' loop – we'll talk

about the

// scope of a variable later in this chapter.

or

// The loop control variable 'i' is declared prior to the start of the

'for' loop:

int i;

for (i = 0; condition; iterator) {

 code to execute while condition evaluates to true

}

The condition is a logical expression that typically involves the loop control variable:

for (int i = 0; i < 5; iterator) {

 code to execute as long as the value of i remains less than 5

}

Chapter 2 Some Java BaSiCS

59

The iterator typically increments or decrements the loop control variable:

for (int i = 0; i < 5; i++) {

 code to execute as long as the value of i remains less than 5

}

Again, note the use of a semicolon (;) after the initializer and condition, but not after

the iterator.

Here’s a breakdown of how a for loop operates:

 1. When program execution reaches a for statement, the initializer

is executed first (and only once).

 2. The condition is then evaluated. If the condition evaluates to

true, the block of code following the parentheses is executed.

 3. After the block of code finishes, the iterator is executed.

 4. The condition is then reevaluated. If the condition is still true, the

block of code is executed once again, followed by execution of the

iterator statement.

This process repeats until the condition becomes false, at which point the for loop

terminates.

Here’s a simple example that uses nested for statements to generate a simple

multiplication table. The loop control variables, j and k, are declared inside their

respective for statements. As long as the conditions in the respective for statements are

met, the block of code following the for statement is executed. The ++ operator is used to

increment the values of j and k each time the respective block of code is executed:

public class ForDemo {

 public static void main(String[] args) {

 // Compute a simple multiplication table.

 for (int j = 1; j <= 4; j++) {

 for (int k = 1; k <= 4; k++) {

 System.out.println(j + " * " + k + " = " + (j * k));

 }

 }

 }

}

Chapter 2 Some Java BaSiCS

60

Here’s the output:

1 * 1 = 1

1 * 2 = 2

1 * 3 = 3

1 * 4 = 4

2 * 1 = 2

2 * 2 = 4

2 * 3 = 6

2 * 4 = 8

3 * 1 = 3

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

4 * 1 = 4

4 * 2 = 8

4 * 3 = 12

4 * 4 = 16

As with other flow control structures, if only one statement is specified after the for

condition, the braces can be omitted:

for (int i = 0; i < 3; i++) sum = sum + i;

or alternatively

for (int i = 0; i < 3; i++)

 sum = sum + i;

But it’s considered good programming practice to use braces regardless:

for (int i = 0; i < 3; i++) {

 sum = sum + i;

}

Chapter 2 Some Java BaSiCS

61

 while Statements
A while statement is similar in function to a for statement in that both are used to

repeatedly execute an associated block of code. However, if it’s impractical to predict the

number of times that the code block is to be executed when the loop first begins, a while

statement is the preferred choice, because a while statement continues to execute as

long as a specified condition is met.

The general syntax for the while statement is as follows:

while (condition) {

 code to repeatedly execute while expression continues to

evaluate to true

}

The condition can be either a simple or a complex logical expression that evaluates

to a true or false value, for example:

int x = 1;

int y = 1;

while ((x < 20) || (y < 10)) {

 hopefully we'll do something within this loop body that increments the

value of

 either x or y, to avoid an infinite loop!

}

When program execution reaches a while statement, the condition is evaluated first.

If the condition is true, the block of code following the condition is executed. When

the block of code is finished, the condition is evaluated again, and if it’s still true, the

process repeats itself until the condition evaluates to false, at which point the while

loop terminates.

Chapter 2 Some Java BaSiCS

62

Here’s a simple example illustrating the use of a while loop to print consecutive

integer values from 0 to 3. A boolean variable named finished is initially set to false.

The finished variable is used as a flag: as long as finished is false, the block of code

following the while loop will continue to execute. When the value of i reaches 4, the

finished flag will get set to true, at which point the while loop will terminate:

public class WhileDemo {

 public static void main(String[] args) {

 boolean finished = false;

 int i = 0;

 while (!finished) {

 System.out.println(i);

 i++;

 if (i == 4) {

 finished = true; // toggle the flag to terminate the loop

 }

 }

 }

}

Here’s the output:

0

1

2

3

As with the other flow control structures, if only one statement is specified after the

condition, the braces can be omitted:

while (x < 20) x = x * 2;

or alternatively

while (x < 20)

 x = x * 2;

Chapter 2 Some Java BaSiCS

63

But it’s considered good programming practice to use braces regardless:

while (x < 20) {

 x = x * 2;

}

If you always want the loop to execute at least once before the end condition is

tested, use a do … while statement instead:

do {

 whatever is to be executed at least once;

} while (completion test);

 Jump Statements
The Java language defines two jump statements that are used to redirect program

execution to another statement elsewhere in the code. The two types of jump statement

are the break and continue statements.

You’ve already seen break statements in action earlier in this chapter, when they

were used in conjunction with switch statements. A break statement can also be used to

abruptly terminate for or while loops. When a break statement is encountered during

loop execution, the loop immediately terminates, and program execution is transferred

to the line of code immediately following the loop, as in the following example:

// We start out with the intention of incrementing x from 1 to 4 ...

for (int x = 1; x <= 4; x++) {

 // ... but when x reaches the value 3, we prematurely terminate this

 // loop with a break statement.

 if (x == 3) {

 break;

 }

 System.out.println(x);

}

System.out.println("Loop finished");

Chapter 2 Some Java BaSiCS

64

The output produced by this code would be as follows:

1

2

Loop finished

A continue statement, on the other hand, is used to exit from the current iteration

of a loop without terminating overall loop execution. That is, a continue statement

transfers program execution back up to the top of the loop without finishing the

particular iteration that is already in progress; the loop counter is incremented, in the

case of a for loop, and execution continues.

Let’s look at the same example as before, but we’ll replace the break statement with a

continue statement:

// We start out with the intention of incrementing x from 1 to 4 ...

for (int x = 1; x <= 4; x++) {

 // ... but when x reaches the value 3, we prematurely terminate

 // this iteration of the loop (only) with a continue statement.

 if (x == 3) {

 continue;

 }

 System.out.println(x);

}

System.out.println("Loop finished");

The output produced by this code would be as follows:

1

2

4

Loop finished

Chapter 2 Some Java BaSiCS

65

 Block-Structured Languages and the Scope
of a Variable
Java is a block-structured language. As mentioned earlier in the chapter, a “block” of

code is a series of zero or more lines of code enclosed within braces { ... }.

Blocks may be nested inside one another to any arbitrary depth, as illustrated by the

following code example:

public class SimpleProgram {

 // We're inside of the "class" block (one level deep).

 public static void main(String[] args) {

 // We're inside of the "main method" block (two levels deep).

 int x = 3;

 int y = 4;

 int z = 5;

 if (x > 2) {

 // We're now one level deeper (level 3), in an "if" block.

 if (y > 3) {

 // We're one level deeper still (level 4), in a

 // nested "if" block.

 // (We could go on and on!)

 } // We've just ended the level 4 block.

 // (We could have additional code here, at level 3.)

 } // Level 3 is done!

 // (We could have additional code here, at level 2.)

 } // That's it for level 2!

 // (We could have additional code here, at level 1.)

} // Adios, amigos! Level 1 (the "class" block) has just ended.

Variables can be declared in any block within a program. The scope of a variable is

that portion of code in which the variable can be referenced by name—specifically, from

the point where the variable name is first declared down to the closing (right) brace for

the block of code in which it was declared. A variable is said to be in scope as long as

the compiler recognizes its name. Once program execution exits a block of code, any

variables that were declared inside that block go out of scope and will be inaccessible to

the program; the compiler effectively forgets that the variable was ever declared.

Chapter 2 Some Java BaSiCS

66

As an example of the consequences of variable scope, let’s look at a simple program

called ScopeExample. This program makes use of three nested code blocks: one for the

class body, one for the main method body, and one as part of an if statement inside the

body of the main method. We in turn declare two variables—x, in the main code block (at

level 2), and y, in the if block (level 3):

public class ScopeExample { // Start of block level 1.

 public static void main(String[] args) { // Start of block level 2.

 double x = 2.0; // Declare "x" at block level 2.

 if (x < 5.0) { // Start of block level 3.

 double y = 1.0; // Declare "y" inside block level 3.

 System.out.println("The value of x = " + x); // x, declared at

level 2, is

 // still in scope at

level 3.

 System.out.println("The value of y = " + y);

 } // Variable "y" goes out of scope when the "if" block (level 3) ends.

 // "y" has gone out of scope, and is no longer recognized by the

compiler.

 // If we try to reference "y" in a subsequent statement, the

compiler will

 // generate an error. "x", on the other hand, remains in scope until

the main

 // method block (level 2) ends.

 System.out.println("The value of x = " + x); // This will compile.

 System.out.println("The value of y = " + y); // This WON'T compile.

 } // Variable "x" goes out of scope when the main method block (level

2) ends.

}

In the preceding example, variable y goes out of scope as soon as the if block ends.

If we try to access y later in the program, as we do in the bolded line of the preceding

code, the compiler will generate the following error message:

Chapter 2 Some Java BaSiCS

67

cannot resolve symbol

symbol : variable y

System.out.println("The value of y = " + y);

 ^

Note that a given variable is accessible to any nested inner code blocks that follow its

declaration. For example, in the preceding ScopeExample program, variable x, declared

at the main method block level (level 2), is accessible inside the if statement code block

(level 3).

 Printing to the Console Window
Most applications communicate information to users by displaying messages via an

application’s graphical user interface. However, it’s also useful at times to be able

to display simple text messages to the console window from which we’re running a

program as a quick and dirty way of verifying that a program is working properly.

To print text messages to the screen, we use the following syntax:

System.out.println(expression to be printed);

The System.out.println method can accept very complex expressions and does its

best to ultimately turn these into a single String value, which then gets displayed on the

screen. Here are a few examples:

System.out.println("Hi!"); // Printing a String literal/constant.

String s = "Hi!";

System.out.println(s); // Printing the value of a String

variable.

String t = "foo";

String u = "bar";

System.out.println(t + u + "!"); // Using the String concatenation

operator (+)

 // to print "foobar!".

int x = 3;

int y = 4;

Chapter 2 Some Java BaSiCS

68

System.out.println(x); // Prints the String

representation of the

 // integer value 3 to the screen.

System.out.println(x + y); // Computes the sum of x and y, then

prints the

 // String representation of the

integer value 7

 // to the screen.

Note that on the last line of code, the plus sign (+) is interpreted as the addition

operator, not as the String concatenation operator, because it separates two variables

that are both declared to be of type int. So the sum of 3 + 4 is computed to be 7, which

is then printed. In the next example, however, we get different (and arguably undesired)

behavior:

System.out.println("The sum of x plus y is: " + x + y);

The preceding line of code causes the following to be printed:

The sum of x plus y is: 34

Why is this? Recall that we evaluate expressions from left to right, and so since the

first of the two plus signs separates a String literal and an int

System.out.println("The sum of x plus y is: " + x + y);

the first plus sign is interpreted as a String concatenation operator, producing the

intermediate String value "The sum of x plus y is: 3". The second plus sign

separates this intermediate String value from an int, and so the second plus sign is also

interpreted as a String concatenation operator, producing the final String value "The

sum of x plus y is: 34", which is printed to the command window.

To print the correct sum of x and y, we must force the second plus sign to be

interpreted as an integer addition operator by enclosing the addition expression in

nested parentheses:

System.out.println("The sum of x plus y is: " + (x + y));

Chapter 2 Some Java BaSiCS

69

The nested parentheses cause the innermost expression to be evaluated first, thus

computing the sum of x + y properly. Hence, this println statement displays the

correct message on the screen:

The sum of x plus y is: 7

When writing code that involves complex expressions, it’s a good idea to use

parentheses liberally to make your intentions clear to the compiler. Extra parentheses,

when used correctly, never hurt!

 print vs. println
When we call the System.out.println method, whatever expression is enclosed inside

the parentheses will be printed, followed by a (platform-dependent) line terminator.

The following code snippet

System.out.println("First line.");

System.out.println("Second line.");

System.out.println("Third line.");

produces three separate lines of output:

First line.

Second line.

Third line.

In contrast, the System.out.print() method

System.out.print(expression to be printed);

causes whatever expression is enclosed in parentheses to be printed without a trailing

line terminator. Using print in combination with println allows us to generate a single

line of output across a series of Java statements, as shown by the following example:

System.out.print("J"); // Using print here.

System.out.print("AV"); // Using print here.

System.out.println("A!!!"); // Note use of println as the last statement.

Chapter 2 Some Java BaSiCS

70

This code snippet produces a single line of output:

JAVA!!!

When a single print statement gets too long to fit on a single line, as in this example

 // Pseudocode.

 statement;

 another statement;

 System.out.println("Here's an example of a single print statement

 that is very long ... SO long that it wraps around and makes the

program listing difficult to read.");

 yet another statement;

we can make a program listing more readable by breaking up the contents of such

a statement into multiple concatenated String expressions and then breaking the

statement along plus-sign boundaries:

 // Pseudocode.

 statement;

 another statement;

 System.out.println("Here's an example of how " +

 "to break up a long print statement " +

 "with plus signs.");

 yet another statement;

Even though the preceding System.out.println call is broken across three lines of

code, it will be printed as a single line of output:

Here's an example of how to break up a long print statement with

plus signs.

Chapter 2 Some Java BaSiCS

71

 Escape Sequences
Java defines a number of escape sequences so that we can represent special characters,

such as newline and tab characters, within String or char literals. The most commonly

used escape sequences are listed in Table 2-5.

Table 2-5. Java Escape Sequences

Escape Sequence Description

\n Newline

\b Backspace

\t tab

\\ Backslash

\' Single quote, used within single quotes

(e.g., char singleQuote = '\'';)

\" Double quote, used within double quotes

(e.g., String doubleQuote = "\"";)

One or more escape sequences can be included in the expression that is passed to

the print and println methods. For example, consider the following code snippet:

System.out.println("One ...");

System.out.println("\t... two ...");

System.out.println("\t\t... three ... \"WHEEE!!!\"");

When the preceding code is executed, the following output is displayed:

One ...

 ... two ...

 ... three ... "WHEEE!!!"

The second and third lines of output have been indented one and two tab positions,

respectively, by virtue of the use of \t, and the expression "WHEEE!!!" is printed

enclosed in double quotes because of our use of \".

Chapter 2 Some Java BaSiCS

72

 Elements of Java Style
One of the trademarks of good programmers is that they produce human-readable

code, so that their colleagues will be able to work with and modify their programs. The

following sections present some guidelines and conventions that will help you produce

clear, readable Java code.

 Proper Use of Indentation
One of the best ways to make a Java program readable is through proper use of

indentation to clearly delineate its block structure. Statements within a block of code

should be indented relative to the starting/ending line of the enclosing block (i.e.,

indented relative to the lines carrying the braces). The standard recommendation is to

use four spaces (note that some of the examples in this book vary from that standard).

To see how indentation can make a program readable, consider the following two

programs. In the first simple program, proper indentation is used:

public class IndentationExample {

 public static void main(String[] args) {

 for (int i = 1; i <= 4; i++) {

 System.out.print(i);

 if ((i == 2) || (i == 4)) {

 if (i == 2) {

 System.out.print("Two ");

 }

 else {

 System.out.print("Four ");

 }

 System.out.println("is an even number");

 }

 else if ((i == 1) || (i == 3)) {

 if (i == 1) {

 System.out.print("One ");

 }

Chapter 2 Some Java BaSiCS

73

 else {

 System.out.print("Three ");

 }

 System.out.println("is an odd number");

 }

 }

 }

}

And it’s relatively easy to see how the following output would be produced:

1 is an odd number

2 is an even number

3 is an odd number

4 is an even number

Now let’s remove all indentation from the program:

public class IndentationExample {

public static void main(String[] args) {

for (int i = 1; i <= 4; i++) {

System.out.print(i);

if ((i == 2) || (i == 4)) {

if (i == 2) {

System.out.print("Two ");

}

else {

System.out.print("Four ");

}

System.out.println("is an even number");

}

else if ((i == 1) || (i == 3)) {

if (i == 1) {

System.out.print("One ");

}

Chapter 2 Some Java BaSiCS

74

else {

System.out.print("Three ");

}

System.out.println("is an odd number");

}

}

}

}

Both versions of this program are understood by the Java compiler, and both

produce the same output when executed, but the first version is much more readable to

a human being.

Failure to properly indent not only makes programs unreadable but also makes them

harder to debug, particularly if a compilation error arises due to unbalanced/missing

braces. In such a situation, the compilation error message often gets reported on a line

much later in the program than where the problem actually exists. For example, the

following program is missing an opening/left brace on line 9, but the compiler doesn’t

report an error until line 23:

public class IndentationExample2 {

 public static void main(String[] args) {

 int x = 2;

 int y = 3;

 int z = 1;

 if (x >= 0) {

 if (y > x) {

 if (y > 2) // we're missing a left brace here on line 9,

but ...

 System.out.println("A");

 z = x + y;

 }

 else {

 System.out.println("B");

 z = x - y;

 }

 }

Chapter 2 Some Java BaSiCS

75

 else {

 System.out.println("C");

 z = y - x;

 }

 }

 else System.out.println("D"); // ... compiler first complains here!

 // (line 23)

 }

}

What’s even worse, the error message that the compiler generates in such a situation

can be rather cryptic. In this particular example, the compiler (incorrectly) points to line

23 as the problem, with a misleading error message:

IndentationExample2.java:23: illegal start of type

else System.out.println("D");

^

This error message doesn’t help us locate the real problem on line 9. However, at

least we’ve properly indented our code, and so it will likely be far easier to hunt down the

missing brace than it would be if our indentation were sloppy or nonexistent.

if ever you get a compilation error that makes absolutely no sense whatsoever,
consider looking earlier in the program for missing punctuation—that is, a missing
brace, parenthesis, or semicolon!

Sometimes, we have so many levels of nested indentation, or individual statements

are so long, that lines wrap when viewed in an editor or printed as hard copy:

while (a < b) {

 while (c > d) {

 for (int j = 0; j < 29; j++) {

Chapter 2 Some Java BaSiCS

76

 x = y + z + a - b + (c * (d / e) + f) -

 g + h + j - l - m - n + o + p * q / r + s;

 }

 }

}

To avoid this, it’s best to break the line in question along white space or punctuation

boundaries, indenting continuation lines relative to the start of the line:

while (a < b) {

 while (c > d) {

 for (int j = 0; j < 29; j++) {

 // This is cosmetically preferred. Note indentation

 // of continuation lines.

 x = y + z + a - b + (c * (d / e) + f) -

 g + h + j - l - m - n + o + p *

 q / r + s;

 }

 }

}

 Use Comments Wisely
Another important feature that makes code more readable is the liberal use of

meaningful comments. Always keep in mind when writing code that you may know

what you’re trying to do, but someone else trying to read your code may not. (Actually,

we sometimes even need to remind ourselves of why we did what we did if we haven’t

looked at code that we’ve written in a while.)

Here are some basic rules of thumb:

• If there can be any doubt as to what a passage of code does, precede

it with a comment.

• Indent each comment to the same level as the block of code or

statement to which it applies.

Chapter 2 Some Java BaSiCS

77

 Placement of Braces
For block-structured languages that use braces to delimit the start/end of blocks, there

are two general schools of thought as to where the left/opening brace of a code block

should be placed.

The first style is to place an opening brace at the end of the line of code that starts a

given block. Each closing brace goes on its own line, aligned with the first character of

the line containing the opening brace:

public class Test {

 public static void main(String[] args) {

 for (int i = 0; i < 3; i++) {

 System.out.println(i);

 }

 }

}

An alternative brace placement style is to place every opening brace on a line by

itself, aligned with the immediately preceding line. Each closing brace goes on its own

line as before, aligned with the corresponding opening brace:

 public class Test

 {

 public static void main(String[] args)

 {

 for (int i = 0; i < 3; i++)

 {

 System.out.println(i);

 }

 }

 }

Either approach to left/opening brace placement is fine; the first of the two

approaches produces code listings that are a bit more compact (i.e., contain less

white space) and is the more popular of the two styles. It’s a good practice to maintain

consistency in your code, however, so pick whichever brace placement style you prefer

and stick with it.

Chapter 2 Some Java BaSiCS

78

 Descriptive Variable Names
As with indentation and comments, the goal when choosing variable names is to make

a program as readable, and hence self-documenting, as possible. Avoid using single

letters as variable names, except for loop control variables (or as parameters to methods,

discussed later in the book).

Abbreviations should be used sparingly and only when the abbreviation is

commonly used and widely understood by developers. Consider the following variable

declaration:

int grd;

It’s not completely clear what the variable name grd is supposed to represent. Is the

variable supposed to represent a grid, a grade, or a gourd? A better practice would be to

spell out the entire word:

int grade;

At the other end of the spectrum, names that are too long, such as perhaps

double averageThirdQuarterReturnOnInvestment;

can make a code listing overwhelming to anyone trying to read it. It can sometimes be

challenging to shorten a variable name while still keeping it descriptive, but do try to

keep the length of your variable names within reason, for example:

double avg3rdQtrROI;

 Summary
In this chapter, you’ve learned some basic aspects of the Java language. In particular,

we covered

• The architecture-neutral nature of Java

• The anatomy of a simple Java program

• The mechanics of how to compile and execute a Java program from

the command line

• The eight primitive Java types and the String type

Chapter 2 Some Java BaSiCS

79

• How variables of these types are declared and initialized

• How an expression of one type can be cast into a different type and

when it’s necessary to do so

• Arithmetic, assignment, logical, and relational expressions and

operators

• Loops and several other flow control structures available with Java

• How to define blocks of code and the concept of variable scope

• How to print text messages with the System.out.println and

System.out.print methods

• Some basic elements of good Java programming style

There’s a lot more to learn about Java—things you’ll need to know in building the

SRS application in Part 3 of the book—but I need to explain a number of basic object

concepts first. So on to Chapter 3!

EXERCISES

 1. Compare what you’ve learned about Java so far to another programming

language that you’re already familiar with. What is similar about the two

languages? What is different?

 2. [Coding] Create a program that will print the even numbers from 2 to 10 to the

command window using (a) a for loop and a continue statement and (b) a

while loop and a boolean variable as a flag.

 3. Given the following initial variable declarations and value assignments, evaluate

the expression on the last line of code manually, without using the Java

compiler:

int a = 1;

int b = 1;

int c = 1;

((((c++ + --a) * b) != 2) && true)

Chapter 2 Some Java BaSiCS

https://doi.org/10.1007/978-1-4842-9060-6_3

80

Using nested for or if loops, write a program called Stars.java that produces the

following output:

1: *

2: **

3: ***

4: ****

5: *****

Chapter 2 Some Java BaSiCS

81

CHAPTER 3

Objects and Classes
Objects are the fundamental building blocks of an object-oriented application. Just as

you learned in Chapter 1 that abstraction involves producing a model of the real world,

you’ll see in this chapter that objects are “mini abstractions” of the various real-world

elements that comprise such a model.

In this chapter, you’ll learn

• The advantages of an object-oriented approach to software

development as compared with the “traditional” non-OO approach

• How to use classes to specify an object’s data and behavior

• How to create objects at run time

• How to declare reference variables to refer to objects symbolically

within a program

• How objects keep track of one another in memory

 Software at Its Simplest
At its simplest, every software application consists of two primary components: data

and functions that operate on (i.e., input, output, calculate, store, retrieve, print, etc.)

that data. (See Figure 3-1.)

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_3

https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_3#DOI

82

Figure 3-1. At its simplest, software consists of data and functions that operate on
that data

The pre-OO way of designing software was known as (top-down) functional
decomposition. Let’s compare the functional decomposition approach of designing

software with the OO approach.

 Functional Decomposition
With functional decomposition, we started with a statement of the overall function that

a system was expected to perform—for example, “Student Registration.” We then broke

that function down into subfunctions:

• “Add a New Course to the Course Catalog”

• “Allow a Student to Enroll in a Course”

• “Print a Student’s Class Schedule”

• And so forth

We next decomposed those functions into smaller subfunctions. For example, we

might decompose “Allow Student to Enroll in a Course” into

Chapter 3 ObjeCts and Classes

83

• “Display List of Available Courses”

• “Allow Student to Select a Course”

• “Verify That Student Has Met All Prerequisites”

• And so forth

We kept decomposing functions into smaller and smaller logical pieces until we

could reasonably subdivide no further, as illustrated in Figure 3-2.

Figure 3-2. We functionally decomposed an application from the top down…

We then assigned the lowest-level functions to different programmers to code

and unit test (i.e., test in isolation). Finally, we assembled these functions in modular

fashion from the bottom up, testing the results of each successive stage in the integration

process, until we had a complete application built, as illustrated in Figure 3-3.

Chapter 3 ObjeCts and Classes

84

Figure 3-3. …and assembled the application from the bottom up

With the functional decomposition approach to software development, our

primary focus was on the functions that an application was to perform; data was an

afterthought. That is,

• Data was passed around from one function to the next, like

a car being manufactured via an assembly line process in an

automotive plant.

• Data structure thus had to be understood in many places (i.e., by

many functions) throughout an application.

• If an application’s data structure had to change after the application

was deployed, major “ripple effects” often arose throughout the

application. One of the most dramatic examples of a ripple effect due

to a change in data structure was the Y2K crisis, wherein a seemingly

simple change in date formats—from a two- to four-digit year—

caused a worldwide panic! Billions of dollars were spent on trying

to find and repair what were expected to be disastrous ripple effects

before the clock struck midnight on January 1, 2000.

Chapter 3 ObjeCts and Classes

85

• Despite our best efforts to test an application thoroughly before

deploying it, bugs always manage to creep through undetected.

If data integrity errors arose as a result of faulty logic after an

application had been fully integrated, it was often very difficult to

pinpoint precisely where—that is, in which specific function(s)—the

error might have occurred, because the data had been passed from

function to function so many times.

 The Object-Oriented Approach
As you’ll see over the next several chapters, the OO approach to software development

remedies the vast majority of these shortcomings.

• With OO software development, we focus on designing the

application’s data structure first and its functions second.

• Data is encapsulated inside of objects; thus, data structure has to be

understood only by the object to which the data belongs.

• If an object’s data structure has to change after the application has

been deployed, there are virtually no ripple effects; only the internal

logic of the affected object must change.

• Each object is responsible for ensuring the integrity of its own
data. Thus, if data integrity errors arise within a given object’s data,

we can pretty much assume that it was the object itself that allowed

this to happen, and we can therefore focus on that object’s internal

functional logic to isolate the “bug.”

 What Is an Object?
Before we talk about software objects, let’s talk about real-world objects in general.

According to Merriam-Webster’s Collegiate Dictionary, an object is “(1) something

material that may be perceived by the senses; (2) something mental or physical toward

which thought, feeling, or action is directed.”

Chapter 3 ObjeCts and Classes

86

The first part of this definition refers to objects as we typically think of them: as

physical “things” that we can see and touch and that occupy space. Because we intend

to use the Student Registration System (SRS) case study as the basis for learning about

objects throughout this book, let’s think of some examples of physical objects that make

sense in the general context of an academic setting, namely

• The students who attend classes

• The professors who teach the students

• The classrooms in which class meetings take place

• The audiovisual equipment in these classrooms

• The buildings in which the classrooms are located

• The textbooks students use

• And so forth

Of course, while all of these types of objects are commonly found on a typical college

campus, not all of them are relevant to registering students for courses, nor are they all

necessarily called out by the SRS case study, but we won’t worry about that for the time

being. In Part 2 of this book, you’ll learn a technique for using a requirements specification

as the basis for identifying which types of objects are relevant to a particular abstraction.

Now, let’s focus on the second half of the definition, particularly on the phrase

“something mental… toward which thought, feeling, or action is directed.” There are a

great many conceptual objects that play important roles in an academic setting; some of

these are

• The courses that students attend

• The departments that faculty work for

• The degrees that students receive

And, of course, there are many others. Even though we can’t see, touch, taste, smell,

or hear them, conceptual objects are every bit as important as physical objects in an

overall abstraction.

From a software perspective, a (software) object is a software construct/module

that bundles together state (data) and behavior (functions), which, taken together,

represent an abstraction of a real-world (physical or conceptual) object. This is

illustrated conceptually in Figure 3-4.

Chapter 3 ObjeCts and Classes

87

Figure 3-4. A software object bundles state (data) and behavior (functions)

Let’s explore the two sides of objects—their state and behavior—separately, in

more depth.

 State/Data/Attributes
If we wish to record information about a student, what data might we require? Some

examples might be

• The student’s name

• Their student ID number

• The student’s birth date

• Their address

• The student’s designated major field of study

• Their cumulative grade point average (a.k.a. GPA)

• Whom the student’s faculty advisor is

• A list of the courses that the student is currently enrolled in this

semester (i.e., the student’s current course load)

Chapter 3 ObjeCts and Classes

88

• A history of all of the courses that the student has taken to date,

the semester/year in which each was taken, and the grade that was

earned for each (i.e., the student’s transcript)

• And so on

Now, how about for an academic course? Perhaps we’d wish to record

• The course number (e.g., “ART 101”)

• The course name (e.g., “Introductory Basketweaving”)

• A list of all of the courses that must have been successfully completed

by a student prior to registering for this course (i.e., the course’s

prerequisites)

• The number of credit hours that the course is worth

• A list of the professors who have been approved to teach this course

• And so on

In object nomenclature, the data elements used to describe an object are referred to

as the object’s attributes.

An object’s attribute values, when taken collectively, are said to define the state,

or condition, of the object. For example, if we wanted to determine whether or not a

student is “eligible to graduate” (a state), we might look at a combination of the following

• The student’s transcript (an attribute value)

• The list of courses the student is currently enrolled in (a second

attribute value)

to determine if the student indeed is expected to have satisfied the course

requirements for their chosen major field of study (a third attribute value) by the end of

the current academic year.

A given attribute may be simple—for example, GPA, which can be represented as

a simple floating-point number (perhaps a double in Java)—or complex, for example,

“transcript,” which represents a rather extensive collection of information with no simple

representation.

Chapter 3 ObjeCts and Classes

89

programmers new to the object paradigm often ask, “Why not represent a
transcript as a String? a long String, no doubt, but a String nonetheless?”
You’ll learn over successive chapters that there is a far more elegant way to
represent the notion of a student’s transcript in object-oriented terms.

 Behavior/Operations/Methods
Now, let’s revisit the same two types of object—a student and a course—and talk about

these objects’ respective behaviors.

A student’s behaviors (relevant to academic matters, at any rate!) might include

• Enrolling in a course

• Dropping a course

• Designating a major field of study

• Selecting a faculty advisor

• Telling us their GPA

• Telling us whether or not they have taken a particular course and, if

so, when the course was taken, which professor taught it, and what

grade the student received

It’s a bit harder to think of an inanimate, conceptual object like a course as having

behaviors, but if we were to imagine a course to be a living thing, we could envision that

a course’s behaviors might include

• Permitting a student to register

• Determining whether or not a given student is already registered

• Telling us how many students have registered so far or, conversely,

how many seats remain before the course is full

• Telling us what its prerequisite courses are

• Telling us how many credit hours the course is worth

Chapter 3 ObjeCts and Classes

90

• Telling us which professor is assigned to teach the course this

semester

• And so on

When we talk about software objects specifically, we define an object’s behaviors,

also known as its operations, as both the things that an object does to access its attribute

values (data) and the things that an object does to modify/maintain its attribute

values (data).

If we take a moment to reflect back on the behaviors we expect of a student as listed

previously, we see that each operation involves one or more of the student’s attributes,

for example:

• Telling you their GPA involves accessing the value of the student’s

“GPA” attribute.

• Choosing a major field of study involves modifying the value of the

student’s “major field of study” attribute.

• Enrolling in a course involves modifying the value of the student’s

“course load” attribute.

Since you recently learned that the collective set of attribute values for an object

defines its state, you now can see that operations are capable of changing an object’s
state. Let’s say that we define the state of a student who hasn’t yet selected a major

field of study as an “undeclared” student. Asking such a student object to perform its

“choosing a major field of study” method will cause that object to update the value of

its “major field of study” attribute to reflect the newly selected major field. This, then,

changes the student’s state from “undeclared” to “declared.”

Yet another way to think of an object’s operations are as services that can be

requested of the object on behalf of the application. For example, one service that we

might ask a course object to perform is to provide us with a list of all of the students who

are currently registered for the course (i.e., a student roster).

When we actually get around to programming an object’s behaviors in a language

like Java, we refer to the programming language representation of an operation as a

method, whereas, strictly speaking, the term “operation” is typically used to refer to a

behavior conceptually.

Chapter 3 ObjeCts and Classes

91

 What Is a Class?
A class is an abstraction describing the common features of all objects in a group of

similar objects. For example, a class called “Student” could be created to describe all

student objects recognized by the SRS.

A class defines

• The data structure (i.e., the names and types of attributes) of each

and every object belonging to that class

• The operations/methods to be performed by such objects:

specifically, what these operations are, how an object is formally

called upon to perform them, and what behind-the-scenes actions an

object has to take to actually carry them out

For example, the Student class might be designed to have the nine attributes listed

in Table 3-1.

Table 3-1. Proposed Attributes of the Student Class

Attribute Java Type

name String

studentId String

birthDate Date

address String

major String

gpa Double

advisor ???

courseLoad ???

transcript ???

Note that many of the Student attributes can be represented by built-in Java types

(e.g., String, double, and Date) but that a few of the attributes—advisor, courseLoad,

and transcript—are too complex for built-in Java types to handle. You’ll learn how to

tackle such attributes a bit later on in the book.

Chapter 3 ObjeCts and Classes

92

In terms of operations, the Student class might define five methods whose names

are as follows:

• registerForCourse

• dropCourse

• chooseMajor

• changeAdvisor

• printTranscript

You’ll learn how to formally declare methods in Java in Chapter 4.

Note that an object can only do those things for which methods have been defined

by the object’s class. In that respect, an object is like an appliance: it can do whatever

it was designed to do (a DVD player provides buttons to play, pause, stop, and seek a

particular movie scene) and nothing more (you can’t ask a DVD to toast a bagel—at least

not with much chance of success!). So an important aspect of successfully designing an

object is making sure to anticipate all of the behaviors it will need to perform in order

to carry out its “mission” within the system. You’ll learn how to formally determine

what an object’s mission, data structure, and behaviors should be, based on the overall

requirements for the application that it is to support, in Part 2 of the book.

The term feature is used to collectively refer to both the attributes and methods of a

class. That is, a class definition that includes nine attribute declarations and five method

declarations is said to have 14 features.

 A Note Regarding Naming Conventions
All object-oriented programming languages (OOPLs), including Java, uphold the

following naming conventions:

• When naming classes, we begin with an uppercase letter, but use

mixed case for the name overall: Student, Course, Professor, and so

on. When the name of a class would ideally be stated as a multiword

phrase, such as “course catalog,” we start each word with a capital

letter and concatenate the words without using spaces, dashes, or

underscores to separate them—for example, CourseCatalog. This

style is known as Pascal casing.

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_4

93

• The convention for attribute and method names is to start with a

lowercase letter, but to capitalize the first letter of any subsequent

words in the name. Typical attribute names might thus be name,

studentId, or courseLoad, while typical method names might thus

be registerForCourse and printTranscript. This style is known as

camel casing.

 Declaring a Class, Java Style
Once we’ve determined what common data structure and behaviors we wish to impart

to a set of similar objects, we must formally declare them as attributes and methods in

the context of a Java class. For example, we’d program the Student class data structure as

presented in Table 3-1 as follows:

public class Student {

 // Attribute declarations typically appear first in a class

declaration ...

 String name;

 String studentId;

 Date birthDate;

 String address;

 String major;

 double gpa;

 // type? advisor – we'll declare this attribute later

 // type? courseLoad - ditto

 // type? transcript - ditto

 // ... followed by method declarations (details omitted – you'll

 // learn how to program methods in Java in Chapter 4.)

}

As with all Java class definitions that you’ve seen thus far in the book, this class

definition would reside in a source file named ClassName.java (Student.java, to

be specific) and would be subsequently compiled into bytecode form as a file named

Student.class. Note that the reserved word public appears in the class declaration. We

will be discussing the notion of public visibility later in the book.

Chapter 3 ObjeCts and Classes

94

note that, for the preceding code to compile, we’d need to insert the statement

import java.util.Date;

ahead of the declaration

public class Student { ... }

We’ll discuss import directives in Chapter 6.

Note that our Student class is not required to declare a main method. Unlike the classes

shown previously in the book, which served to encapsulate a program’s main method

public class Simple {

 public static void main(String[] args) {

 System.out.println("I love Java!!!");

 }

}

the Student class serves a different purpose: namely, we’re defining what the data

structure and behaviors of Student objects should be. Because the Student class does

not contain a main method, it makes no sense to try to execute its bytecode with the

JVM—typing

java Student

results in the error message

Error: main method not found in class Student, please define the main

method as:

public static void main(String [] args)

 Instantiation
A class definition may be thought of as a template for creating software objects—a

“pattern” used to

• Allocate a prescribed amount of memory within the JVM to house the

attributes of a new object

• Associate a certain set of behaviors with that object

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_6

95

The term instantiation is used to refer to the process by which an object is created

in memory at run time based upon a class definition. From a single class definition—

for example, Student—we can create many objects with identical data structures and

behaviors, in the same way that we use a single cookie cutter to make many cookies all of

the same shape. Another way to refer to an object, then, is as an instance of a particular

class—for example, “A Student object is an instance of the Student class.” (We’ll talk

about the actual process of instantiating objects as it occurs in Java in a bit more detail

later in this chapter.)

Classes may thus be differentiated from objects as follows:

• A class defines the features—attributes, methods—that every object

belonging to the class must possess; a class can thus be thought of as

serving as an object template, as illustrated in Figure 3-5.

Figure 3-5. A class prescribes a template for instantiating objects…

• An object, on the other hand, is a unique instance of a filled-in
template for which attribute values have been provided and upon

which methods may be performed, as illustrated in Figure 3-6.

Chapter 3 ObjeCts and Classes

96

Figure 3-6. … and an object then fills in its own unique attribute values

 Encapsulation
Encapsulation is a formal term referring to the mechanism that bundles together the

state and behavior of an object into a single logical unit. Everything that we need to

know about a given student is, in theory, contained within the boundaries of a Student

object, either

• Directly, as an attribute of that object

• Indirectly, as a method that can answer a question or make a

determination about the object’s state

encapsulation isn’t unique to OO languages, but in some senses it is perfected by
them. If you’re familiar with C, you know that a C struct(ure) encapsulates data

struct employee {

 char name[30];

 int age;

Chapter 3 ObjeCts and Classes

97

}

and a C function encapsulates logic—data is passed in and operated on, and an
answer is optionally returned:

float average(float x, float y) {

 return (x + y)/2.0;

}

but only with OO programming languages is the notion of encapsulating data and
behavior in a single class construct, to represent an abstraction of a real-world
entity, truly embraced.

 User-Defined Types and Reference Variables
In a non-OO programming language such as C, the statement

int x;

is a declaration that variable x is an int(eger), one of several primitive data types

defined to be part of the C language. What does this really mean? It means that

• x is a symbolic name that we’ve invented to refer to an int(eger)

value that is stored somewhere in the computer’s memory. We don’t

care where this value is stored, however, because

• Whenever we want to operate on this particular integer value in our

program, we refer to it via its symbolic name x, for example:

if (x > 17) x = x + 5;

• Furthermore, the “thing” that we’ve named x understands how to

respond to a number of different operations, such as addition (+),

subtraction (–), multiplication (*), division (/), logical comparisons

(>, <, =), and so on, as defined by the int type.

Chapter 3 ObjeCts and Classes

98

In an OO language like Java, we can define a class such as Student and then declare

a variable to be of type Student, as follows:

 Student y;

What does this really mean? It means that

• y is a symbolic name that we’ve invented to refer to a Student object

(i.e., an instance of the Student class) that is stored somewhere in

the computer’s memory. We don’t care where this object is stored,

however, because

• Whenever we want to operate on this particular object in our

program, we refer to it via its symbolic name y, for example:

if (y.isOnAcademicProbation()) {

 System.out.println ("Uh oh ...");

}

• Furthermore, the “thing” that we’ve named y understands how to

respond to a number of different service requests—how to register

for a course, drop a course, and so on—that have been defined by the

Student class.

Note the parallels between y as a Student and x as an int in the preceding examples.

Just as int is said to be a predefined type in Java (and other languages), the Student

class is said to be a user-defined type. And, because y in the preceding example is a

variable that refers to an instance (object) of class Student, y is known as a reference
variable.

In contrast, variables declared to be one of the eight primitive types in Java—int,

double, float, byte, short, long, char, and boolean—are not reference variables,

because in Java, primitive types are not reference types; that is, they do not refer to

objects:

// x is NOT a reference variable, because in Java,

// an int is NOT an object.

int x;

Chapter 3 ObjeCts and Classes

99

// yesNo is NOT a reference variable, because in Java,

// a boolean is NOT an object.

boolean yesNo;

// etc.

Various OO languages differ in their treatment of simple types. In some OO

languages (e.g., Smalltalk), all types, including “simple” types such as int and char, are

reference types, whereas in other languages (e.g., Java and C++), they are not.

the fact that java contains a mix of reference types and nonreference types
affects the way that we manipulate variables under certain circumstances, such as
when we’re placing primitive values into collections, a subject that we’ll explore in
Chapter 6.

 Naming Conventions for Reference Variables
Names for reference variables follow the same convention as method and attribute

names—that is, they use camel casing. Some sample reference variable declarations are

as follows:

 Course prerequisiteOfThisCourse;

 Professor facultyAdvisor;

 Student student;

The last of these, Student student;, might take some getting used to if you are new

to case-sensitive programming languages. However, it is considered good programming

practice to pattern reference variable names after the name of the class to which they

belong if there is only one such variable within scope in a particular body of code.

Because the class name starts with an uppercase “S” and the reference variable name

starts with a lowercase “s,” Student and student are completely different symbols as far

as the compiler is concerned.

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_6

100

 Instantiating Objects: A Closer Look
Different OO languages differ in terms of when an object is actually instantiated

(created). In Java, when we declare a variable to be of a user-defined type, as in

Student y;

we haven’t actually created an object in memory yet. Rather, we’ve simply declared a

reference variable of type Student named y. This reference variable has the potential to

refer to a Student object, but it doesn’t refer to one just yet; rather, as with variables of

the various simple types, y’s value is undefined as far as the compiler is concerned (it is

null) until we explicitly assign it a value.

If we want to instantiate a brand-new Student object for y to refer to, we have to take

the distinct step of using a special Java keyword, new, to allocate a new Student object

within the JVM’s memory at run time. We associate the new object with the reference

variable y via an assignment statement, as follows:

y = new Student();

don’t worry about the parentheses at the end of the preceding statement. I’ll talk
about their significance in Chapter 4, when we discuss the notion of constructors.

Think of the newly created object as a helium balloon, as shown in Figure 3-7, and

a reference variable as the hand that holds a string tied to the balloon so that we may

access the object whenever we’d like.

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_4

101

Figure 3-7. Using a reference variable to keep track of an object in memory

Because a reference variable is sometimes informally said to “hold on to” an object,

we often use the informal term handle, as in the expression “Reference variable y

maintains a handle on a Student object.”

If you’re familiar with the concept of pointers from languages such as C and C++,
a reference is similar to a pointer in that it refers behind the scenes to the memory
location/address where a particular object is stored. java references differ from
pointers, however, in that references can’t be manipulated arithmetically the way
that pointers can.

Chapter 3 ObjeCts and Classes

102

We could also create a new object without immediately assigning it to a reference

variable, as in the following line of code:

 new Student();

But such an object would be like a helium balloon without a string: it would indeed

exist, but we’d never be able to access this object in our program. It would, in essence,

“float away” from us in memory immediately after being “inflated.”

Note that we can combine the two steps—declaring a reference variable and actually

instantiating an object for that variable to refer to—in a single line of code:

 Student y = new Student();

Another way to initialize reference variable y is to use an assignment statement to

“hand” y a reference to an already existing object, that is, an object (“helium balloon”)

that is already being referenced by a different reference variable x. Let’s look at an

example:

 // We declare a reference variable, and instantiate our first

Student object.

 Student x = new Student();

 // We declare a second reference variable, but do *not* instantiate

 // a second Student object.

 Student y;

 // We assign y a reference to the SAME object that x is referring to

 // (x continues to refer to it, too). We now, in essence,

 // have two "strings" tied to the same "balloon."

 y = x;

The conceptual outcome of the preceding assignment statement is illustrated

in Figure 3-8: two “strings,” being held by two different “hands,” tied to the same

“balloon”—that is, two different reference variables referring to the same physical object

in memory.

Chapter 3 ObjeCts and Classes

103

Figure 3-8. Maintaining multiple handles on the same object

We therefore see that multiple reference variables may simultaneously refer to the

same object. However, any one reference variable may only hold on to/refer to one

object at a time. Therefore, if a reference variable is already holding on to an object, it

must let go of that object to reference a different object. If there comes a time when all

of the handles for a particular object have been released, then that object is no longer

accessible to our program, like a helium balloon that has been let loose.

Let’s expand our previous example to illustrate these concepts (note the highlighted

code that has been added):

 // We declare a reference variable, and instantiate our first

Student object.

 Student x = new Student();

 // We declare a second reference variable, but do not instantiate a

 // second object.

 Student y;

Chapter 3 ObjeCts and Classes

104

 // We assign y a reference to the SAME object that x is referring to

 // (x continues to refer to it, too).

 y = x;

 // We declare a THIRD reference variable and instantiate a SECOND

 // Student object.

 Student z = new Student();

At this point in time, we now have two references to the first Student object, x and y,

and one reference, z, to the second Student object, as illustrated in Figure 3-9.

Figure 3-9. A second object comes into existence

Let’s expand our example yet again (note the highlighted code that has been added):

 // We declare a reference variable, and instantiate our first

Student object.

 Student x = new Student();

 // We declare a second reference variable, but do *not* instantiate

 // a second object.

 Student y;

Chapter 3 ObjeCts and Classes

105

 // We assign y a reference to the SAME object that x is referring to

 // (x continues to refer to it, too).

 y = x;

 // We now declare a third reference variable and instantiate a second

 // Student object.

 Student z = new Student();

 // We reassign y to refer to the same object that z is referring to;

 // y therefore lets go of the first Student object and grabs on to

the second.

 y = z;

Because we’ve now asked y to refer to the same object that z is referring to—namely,

the second Student object—y must release its handle on the first Student object. This

is illustrated in Figure 3-10. (Note that x is still holding on to the first Student object,

however.)

Figure 3-10. Transferring object handles

Chapter 3 ObjeCts and Classes

106

We’ll now complete our example with the code that we’ve highlighted:

 // We declare a reference variable, and instantiate our first

 // Student object.

 Student x = new Student();

 // We declare a second reference variable, but do *not* instantiate

 // a second object.

 Student y;

 // We assign y a reference to the SAME object that x is referring to

 // (x continues to refer to it, too).

 y = x;

 // We now declare a third reference variable and instantiate a second

 // Student object.

 Student z = new Student();

 // We reassign y to refer to the same object that z is referring to.

 y = z;

 // We reassign x to refer to the same object that z is referring to.

 // x therefore lets go of the first Student object, and grabs on to

 // the second, as well.

 x = z;

Because we’ve now asked x to refer to the same object that z is referring to—namely,

the second Student object—x must release its handle on the first Student object. Since

we’re no longer maintaining any references to the first Student object whatsoever—x,

y, and z are now all referring to the second—the first Student object is now lost to the

program, as illustrated in Figure 3-11.

Chapter 3 ObjeCts and Classes

107

Figure 3-11. The first Student object is now lost to our program

Another way to get a reference variable to release its handle on an object is to set

the reference variable to the value null, which as we discussed in Chapter 2 is the Java

keyword used to represent a nonexistent object. Continuing with our previous example

• Setting x to null gets x to release its handle on the second Student

object, as illustrated in Figure 3-12:

x = null;

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_2

108

Figure 3-12. Only two handles remain on the second Student object

• Setting y to null gets y to release its handle on the second Student

object, as illustrated in Figure 3-13:

x = null;

y = null;

Chapter 3 ObjeCts and Classes

109

Figure 3-13. Only one handle remains on the second Student object

• Ditto for z, as illustrated in Figure 3-14:

x = null;

y = null;

z = null;

Now, both Student objects have been lost to our program!

Chapter 3 ObjeCts and Classes

110

Figure 3-14. The second Student object is now lost to our program, as well

 Garbage Collection
As it turns out, if all of an object’s handles are released, it might seem as though the

memory that the object occupies within the JVM would be permanently wasted. In a

language like C++, this can indeed happen if programmers don’t explicitly take care

to reclaim the memory of an object that is no longer needed before all of its handles

are dropped. Failure to do so is a chronic source of problems in C++ programs and is

commonly known as a memory leak.

In C++, this is accomplished via the statement

x.delete();

but such a statement is unnecessary in java, for reasons that we are about to
discuss.

Chapter 3 ObjeCts and Classes

111

With Java, on the other hand, the JVM periodically performs garbage collection,

a process that automatically reclaims the memory of “lost” objects for us while an

application is executing. Here’s how the Java garbage collector works:

• If there are no remaining active references to an object, it becomes a

candidate for garbage collection.

• The garbage collector doesn’t immediately recycle the object,

however; rather, garbage collection occurs whenever the JVM

determines that the application is getting low on free memory or

when the JVM is otherwise idle.

• So, for some period of time, the “orphaned” object will still exist in

memory—we simply won’t have any handles/reference variables

with which to access it.

The inclusion of garbage collection in Java has virtually eliminated memory leaks

of the type that arose in C++. Note that it is still possible for the JVM itself to run out of

memory, however, if we maintain handles on too many active objects simultaneously.

Thus, a Java programmer cannot be totally oblivious to memory management; managing

memory is just less error-prone in Java than it is in C/C++.

 Objects As Attributes
When I first discussed the attributes and methods associated with the Student class, I

stated that some of the attributes could be represented by predefined types provided

by the Java language, whereas the types of a few others (advisor, courseLoad, and

transcript) were temporarily left unspecified. Let’s now put what you’ve learned about

user-defined types to good use with respect to one of these attributes: the Student class’s

advisor attribute.

Rather than declaring the advisor attribute as simply a String representing the

advisor’s name, we’ll declare it to be of user-defined type—namely, type Professor,

another class that we’ve invented. This attribute type is reflected in Table 3-2.

Chapter 3 ObjeCts and Classes

112

Table 3-2. Student Class Attributes Revisited

Attribute Type

name String

studentID String

birthDate Date

address String

major String

gpa double

advisor Professor

courseLoad ???

transcript ???

This is reflected as well as in our Student class declaration:

public class Student {

 // Attribute declarations typically appear first ...

 String name;

 String studentId;

 Date birthDate;

 String address;

 String major;

 double gpa;

 // A class is a user-defined type, and so we may declare attributes

 // to be of such a type.

 Professor advisor;

 // type? courseLoad - we'll declare this attribute later.

 // type? transcript – ditto.

 // ... followed by method declarations (details omitted for now).

}

Chapter 3 ObjeCts and Classes

113

By having declared the advisor attribute to be of type Professor—that is, by having

the advisor attribute serve as a reference variable—we’ve just enabled a Student object

to maintain a handle on the actual Professor object that represents the professor who is

advising the student.

The Professor class, in turn, might be defined to have the attributes listed in

Table 3-3.

Table 3-3. Professor Class Attributes

Attribute Type

Name String

employeeID String

birthdate Date

Address String

worksFor String (or Department)

Advisee Student

teachingAssignments ???

Again, by having declared the advisee attribute to be of type Student—that is, by

making the advisee attribute a reference variable—we’ve just given a Professor object

a way to hold on to/refer to the actual Student object that represents the student whom

the professor is advising.

The methods of the Professor class might be as follows:

• transferToDepartment

• adviseStudent

• agreeToTeachCourse

• assignGrades

• And so forth

Chapter 3 ObjeCts and Classes

114

Just as we did for the Student class earlier in the chapter, we’d render this Professor

class design in Java code as follows:

public class Professor {

 // Attributes.

 String name;

 String employeeId;

 Date birthDate;

 String address;

 String worksFor;

 Student advisee;

 double gpa;

 // type? teachingAssignments – we'll declare this attribute later.

 // ... followed by method declarations (details omitted for now).

}

This class definition would reside in a source file named Professor.java and would

be subsequently compiled into bytecode form as a file named Professor.class.

note that, as mentioned earlier for the Student class, we’d need to insert the
declaration

import java.util.Date;

ahead of the declaration

public class Professor { ... }

in order for the code to compile properly.

The following are a few noteworthy points about the Professor class:

• It’s likely that a professor will be advising several students

simultaneously, so having an attribute like studentAdvisee that can

reference only a single Student object is not terribly useful. We’ll

discuss techniques for handling this in Chapter 6, when we discuss

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_6

115

collections, which we’ll also see as being useful for defining the

teachingAssignments attribute of Professor and the courseLoad

and transcript attributes of Student.

• The worksFor attribute represents the department to which a

professor is assigned. We can choose to represent this as either a

simple String representing the department name, for example,

“MATH”, or as a reference variable that maintains a handle on a

Department object—specifically, the Department object representing

the “real-world” Math Department. Of course, to do so would

require us to define the attributes and methods for a new class called

Department.

As we’ll discuss further in Part 2 of this book, the decision of whether or not we need

to invent a new user-defined type/class to represent a particular real-world concept/

abstraction isn’t always clear-cut.

 A Compilation “Trick”: “Stubbing Out” Classes
If we were to want to program the Student and Professor classes in Java as shown

earlier, neither one could be compiled in isolation; that is, if we merely wrote the code for

the Student class

// Student.java

public class Student {

 // Attribute declarations typically appear first ...

 String name;

 String studentId;

 Date birthDate;

 String address;

 String major;

 double gpa;

 Professor advisor;

 // etc.

}

Chapter 3 ObjeCts and Classes

116

without having yet written the code for the Professor class (Professor.java), we’d get a

compilation error on Student as follows

Student.java: cannot find symbol

symbol : class Professor

location : class Student

Professor advisor;

^

because we haven’t yet defined “Professor” as a type to the Java compiler.

We could wait until we’ve programmed both the Student and Professor classes

before attempting to compile either one of them, but what if we were to introduce a third

class into the mix

public class Student {

 String name;

 Professor advisor;

 Department major;

 // etc.

}

public class Professor {

 String name;

 Student advisee;

 Department worksFor;

 // etc.

}

public class Department {

 String name;

 Professor chairman;

 // etc.

}

or a fourth class or a fifth? Must we program all of them before compiling any one

of them?

Chapter 3 ObjeCts and Classes

117

Fortunately, we can use the technique of stubbing out a class to temporarily work

around issues related to compiling a class X that refers to a class Y, which we haven’t yet

programmed. Going back to our Student class as originally written

// Student.java

public class Student {

 // Attribute declarations typically appear first ...

 String name;

 // etc.

 Professor advisor;

 // etc.

}

we can temporarily code a “bare-bones” Professor class as follows:

// Professor.java

// A "stub" class: note that the body consists of a pair of empty braces!

public class Professor { }

Trivial as this Professor class definition may be, it is nonetheless considered to

be a legitimate class definition by the Java compiler that, when compiled, will yield a

Professor.class bytecode file.

When we now attempt to compile our Student.java file, the compiler will indeed

deem “Professor” to be a valid symbol—specifically, the name of a user-defined type—

and Student will compile properly, as well.

recall that we can compile the Student.java and Professor.java (“stub”)
files simultaneously with the single command

javac *.java

that is, Professor.java needn’t be compiled separately first.

Chapter 3 ObjeCts and Classes

118

 Composition
Whenever we create a class, such as Student or Professor, in which one or more of the

attributes are themselves references to other objects, we are employing an OO technique

known as composition. The number of levels to which objects can be conceptually

bundled inside one another is endless, and so composition enables us to model very

sophisticated real-world concepts. As it turns out, most “interesting” classes employ

composition.

With composition, it may conceptually seem as though we’re physically nesting

objects one inside the other, as depicted in Figure 3-15.

Figure 3-15. Conceptual object “nesting”

Actual object nesting (i.e., declaring one class inside of another) is possible in many

OO programming languages, and it does indeed sometimes make sense—namely, if an

object A doesn’t need to have a life of its own from the standpoint of an OO application

and it exists only for the purpose of serving enclosing object B.

• Think of your brain, for example, as an object that exists only within

the context of your body (another object).

• As an example of object nesting relevant to the SRS, let’s consider a

grade book used to track student performance in a particular course.

If we were to define a GradeBook class and then create GradeBook

objects as attributes—one per Course object—then it might be

reasonable for each GradeBook object to exist wholly within the

context of its associated Course object. No other objects would need

Chapter 3 ObjeCts and Classes

119

to communicate with the GradeBook directly; if a Student object

wished to ask a Course object what grade the Student has earned,

the Course object might internally consult its embedded GradeBook

object and simply hand a letter grade back to the Student.

However, we often encounter the situation—as with the sample Student and

Professor classes—in which an object A needs to refer to an object B, object B needs

to refer back to object A, and both objects need to be able to respond to requests

independently of each other as made by the application as a whole. In such a case,

handles come to the rescue!

In reality, we are not storing whole objects as attributes inside of other objects;

rather, we are storing references to objects. When an attribute of an object A is defined

in terms of an object reference B, the two objects exist separately in memory and

simply have a convenient way of finding one another whenever it’s necessary for them

to interact. Think of yourself as an object and your cellular phone number as your

reference. Other people—“objects”—can reach you via your cell phone number to speak

with you whenever they need to, even though they don’t know where you’re physically

located; and conversely, if you have their cell phone numbers, you can call them

whenever you like.

Memory allocation using handles might look something like Figure 3-16

conceptually.

Figure 3-16. Objects exist separately in memory and maintain handles on
one another

Chapter 3 ObjeCts and Classes

120

With this approach, each object is allocated in memory only once:

• The Student object knows how to find and communicate with its

advisor (Professor) object whenever it needs to through its advisor

attribute/handle/reference.

• The Professor object knows how to find and communicate with its

advisee (Student) object whenever it needs to through its advisee

attribute/handle/reference.

You’ll learn how to actually code such object intercommunication in Java in

Chapter 4.

 The Advantages of References As Attributes
What do we gain by defining the Student’s advisor attribute as a reference to a

Professor object, instead of merely storing the name of the advisor as a String attribute

of the Student object? We avoid data redundancy and the associated potential loss of
data integrity. Let’s see how this works.

By encapsulating the name of each professor inside of the corresponding Professor

object, each name will be represented in only one place within an application: namely,

within the object to which the name belongs, which is precisely where it belongs!

(You’ll learn in Chapter 4 how to ask a Professor object for its name whenever you need

to know it.) Then, if a given professor’s name changes for some reason, we have only one

copy of that name to change in our application—the name that is encapsulated inside of

the corresponding Professor object.

If we were to instead design our application such that we redundantly stored the

Professor’s name both as a String attribute of the Professor object and as a String

attribute of every Student object that the professor advises, we’d have a lot more

work to do! We’d have to remember to update the professor’s name not only in the

Professor object but also in potentially many different Student objects. If we were to

forget to update all such objects, then the name of the Professor might wind up being

inconsistent from one Student instance to another.

Just as important, by maintaining a handle on the Professor object via the

advisor attribute of Student, the Student object can also request other services of this

Professor object via whatever methods are defined for the Professor class. In addition

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_4

121

to asking for the advisor’s (Professor’s) name, a Student object may, for example, ask its

advisor (Professor) object where the Professor’s office is located or what courses the

Professor is teaching so that the Student can sign up for one of them.

 Three Distinguishing Features of an Object-Oriented
Programming Language
In order to be considered truly object-oriented, a programming language must provide

support for three key mechanisms:

• User-defined (reference) types

• Inheritance

• Polymorphism

You’ve just learned about the first of these mechanisms; we’ll discuss the other two

in chapters to follow.

 Summary
In this chapter, you’ve learned that

• An object is a software abstraction of a physical or conceptual real-

world object.

• A class serves as a template for creating objects. Specifically, a class

defines (a) the data that an object will encapsulate, known as the

object’s attributes, and (b) the behaviors that an object will be able

to perform, known as an object’s operations/methods.

• An object may be thought of as an instance of a class to which

attribute values have been assigned—in essence, a filled-in

template.

• Just as we can declare variables to be of primitive types such as int,

double, and boolean, we can also declare variables to be of user-
defined types such as Student and Professor. User-defined types are

declared as classes.

Chapter 3 ObjeCts and Classes

122

• When we create a new object at run time (a process known as

instantiation), we typically store a reference to (“handle” on)

that object in a reference variable. We can then use the reference

variable as a symbolic name for accessing and communicating with

the object.

• We can define attributes of a class A to serve as references to objects

belonging to another class B. In doing so, we allow each object to

encapsulate the information that rightfully belongs to that object, but

enable objects to find one another in memory at run time so that they

can contact one another to share information whenever necessary.

EXERCISES

 1. From the perspective of an academic setting (but not necessarily the srs case

study specifically), think about what the appropriate attributes and methods of

the following classes might be:

• Classroom

• Department

• Degree

 2. [Coding] render the Student and Professor classes as presented in this

chapter in java code. In so doing, (a) omit method declarations, and (b) declare

any Date attributes to be of type String instead. Finally, create a third class

called MainClass to serve as a “wrapper” for a main method that instantiates

one Student object and one Professor object.

 3. [Coding] revise the code that you wrote for exercise 2 to include a fourth class,

Department; declare whatever Department attributes seem reasonable but,

once again, omit method declarations for now. then, go back and modify the

major attribute of Student to refer to a Department and the worksFor

attribute of Professor to refer to a Department. Finally, modify the

MainClass’s main method to instantiate a Department object along with a

Student and a Professor.

Chapter 3 ObjeCts and Classes

123

 4. For the problem area whose requirements you defined for exercise 3 in Chapter 1,

list the classes that you might need to create in order to model it properly.

 5. list the classes that you might need to create in order to model the prescription

tracking system (pts) discussed in the appendix.

 6. Would Color be a good candidate for a user-defined type/class? Why or

why not?

Chapter 3 ObjeCts and Classes

https://doi.org/10.1007/978-1-4842-9060-6_1

125

CHAPTER 4

Object Interactions
As you learned in Chapter 3, objects are the building blocks of an object-oriented

software system. In such a system, objects collaborate with one another to accomplish

common system goals, similar to the ants in an anthill or the employees of a corporation

or the cells in your body. Each object has a specific structure and mission; these

respective missions complement one another in accomplishing the overall mission of

the system as a whole.

In this chapter, you’ll learn

• How methods are used to specify an object’s behaviors

• The various code elements that make up a method

• How objects publicize their methods as services to one another

• How objects communicate with one another to request one another’s

services in order to collaborate

• How objects maintain their data and how they guard their data to

ensure its integrity

• The power of an OO language feature known as information hiding

and how information hiding can be used to limit ripple effects on an

application’s code when the private implementation details of a class

inevitably change

• How a special type of function known as a constructor can be used

to initialize the state of an object when it is first instantiated

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_4

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_4#DOI

126

 Events Drive Object Collaboration
At its simplest, the process of object-oriented software development involves the

following four basic steps:

 1. Properly establishing the functional requirements for, and overall

mission of, an application

 2. Designing the appropriate classes—their data structures,

behaviors, and relationships with one another—necessary to fulfill

these requirements and mission

 3. Instantiating these classes to create the appropriate types and

number of object instances

 4. Setting these objects in motion through external triggering events

Think of an anthill: At first glance, you may see no apparent activity taking place. But

if you drop a candy bar nearby, a flurry of activity suddenly begins as ants rush around to

gather up the “goodies,” as well as to repair any damage that may have been caused if you

dropped the candy bar too close to the anthill!

Within an OO application (the “anthill”), the objects (“ants”) may be set in motion by

an external event such as

• The click of a button on the SRS graphical user interface, indicating a

student’s desire to register for a particular course

• The receipt of information from some other automated system, such

as when the SRS receives a list of all students who have paid their

tuition from the university’s Billing System

As soon as such a triggering event has been noted by an OO system, the appropriate

objects react, performing services themselves and/or requesting services of other

objects in chain reaction fashion, until some overall goal of the application has been

accomplished. For example, the request to register for a course as made by a student

user via the SRS application’s GUI may involve the collaboration of many different

objects, as illustrated in Figure 4-1:

• A Student object (an abstraction of the real student user)

• A DegreeProgram object, to ensure that the requested course is truly

required for the student to graduate

Chapter 4 ObjeCt InteraCtIOns

127

• The appropriate Course object, to make sure that there is a seat

available for the student in that course

• A Classroom object, representing the room in which the course will

be meeting, to verify its seating capacity

• A Transcript object—specifically, the Transcript of the Student

of interest—to ensure that the student has met all prerequisites for

the course

Figure 4-1. SRS objects must collaborate to accomplish the overall SRS mission

Meanwhile, a student user of the SRS is blissfully ignorant of all the objects that are

“scurrying around” behind the scenes to accomplish their goal. The student merely

fills in a few fields and clicks a button on the SRS GUI and a few moments later sees a

message that either confirms or rejects their registration request.

Once the ultimate goal of an event chain has been achieved (e.g., registering a

student for a course), an application’s objects effectively become idle and may remain

so until the next such triggering event occurs. An object-oriented application is in some

ways similar to a game of billiards: hit the cue ball with your cue, and it (hopefully!) hits

another ball, which might collide with three other balls, and so on. Eventually, however,

all balls will come to a standstill until the cue ball is hit again.

Chapter 4 ObjeCt InteraCtIOns

128

 Declaring Methods
Let’s talk in a bit more detail about how we formally specify an object’s behaviors as Java

methods. Recall from Chapter 3 that an object’s behaviors may be thought of as services

that the object can perform. In order for an object A to request some service of an object

B, A needs to know the specific language with which to communicate with B. That is,

• Object A needs to be clear as to exactly which of B’s methods/
services A wants B to perform. Think of yourself as object A and a

pet dog as object B. Do you want your dog to sit? Stay? Heel? Fetch?

• Depending on the service request, object A may need to give B some
additional information so that B knows exactly how to proceed.

If you tell your dog to fetch, the dog needs to know what to fetch: a

ball? A stick? The neighbor’s cat?

• Object B in turn needs to know whether object A expects B to report
back the outcome of what it has been asked to do. In the case of

a command to fetch something, your dog will hopefully bring the

requested item to you as an outcome. However, if your dog is in

another room and you call out the command “Sit!” you won’t see the

result of your command; you have to trust that the dog has done what

you have asked it to do.

We take care of specifying/defining these three aspects of each method by declaring

a method header. We must then program the behind-the-scenes logic for how B will

perform the requested service in the method body.

For readers familiar with the C programming language, a java method
declaration is virtually the same syntactically as a C function declaration. the only
philosophical difference between a function in a non-OO language like C and a
method in an OO language like java is the context in which they are executed:
a non-OO function is executed by the programming environment as a whole,
whereas a method in an OO language is executed by a particular object. We’ll
explore this difference in more detail as this chapter unfolds.

Let’s look at method headers first.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_3

129

 Method Headers
A method header is a formal specification (from a programming standpoint) of how that

method is to be invoked. A method header, at minimum, consists of

• A method’s return type—that is, the type of information that is

going to be returned by object B to object A, if any, when B’s method

finishes executing.

• A method’s name.

• An optional list of comma-separated formal parameters (specifying

their types and names) to be passed to the method, enclosed in

parentheses. If no parameters need be passed in, an empty set of

parentheses is used; such methods are said to “take no parameters,”

and we’ll refer to them as parameterless.

As an example, here is a typical method header that we might define for the

Student class:

 boolean registerForCourse(String courseID, int secNo)

 return type method name comma-separated list of formal parameters,

 enclosed in parentheses

 (parentheses may be left empty)

When casually referring to a method such as registerForCourse in narrative
text, some authors attach an empty set of parentheses, (), to the method name,
for example, registerForCourse(). this doesn’t necessarily imply that the
formal header is parameterless, however.

 Method Naming Conventions
Java method names are crafted using the camel casing style; recall from Chapter 2 that

variable names are also crafted using camel casing. By way of review, with camel casing

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_2

130

• The first letter of the method name is in lowercase.

• The first letter of each subsequent concatenated word in the method

name is in uppercase, and the remaining characters are in lowercase.

• We don’t use any “punctuation” characters—dashes, underscores,

etc.—to separate these words.

As an example, chooseAdvisor is an appropriate method name, whereas none of

the following would be appropriate: ChooseAdvisor (uppercase “C”), chooseadvisor

(lowercase “a”), choose_advisor (separating underscore).

 Passing Arguments to Methods
The purpose of passing arguments into a method is twofold:

• To provide it with the (optional) “fuel” necessary to do its job

• To otherwise guide its behavior in some fashion

With the registerForCourse method shown previously, for example, it’s necessary

to tell the specific Student object performing the method which course we want it to

register for; we’ll do so by passing in two arguments, a course ID (e.g., “MATH 101”) and

a section number (e.g., 10, which happens to meet Monday nights from 8:00 to 10:00

p.m.), as illustrated here:

boolean registerForCourse(String courseID, int secNo)

Had we instead declared the registerForCourse method header with an empty

parameter list

boolean registerForCourse()

the request would be ambiguous, because the Student object performing this method

would have no idea as to which course/section it’s expected to register for.

Not all methods require such “fuel,” however; some methods are able to produce

results solely based on the information stored internally within an object as attribute

values, in which case no additional guidance is needed in the form of arguments. For

example, the method

int getAge()

Chapter 4 ObjeCt InteraCtIOns

131

is designed to be parameterless because a Student object can presumably tell us its age

without having to be given any qualifying information, perhaps by comparing the value

of its birthDate attribute with the system date. Let’s say, however, that we wanted a

Student object to be able to report its age expressed either in years or in months; in such

a case, we might wish to declare the getAge method as follows

int getAge(int ageType)

allowing us to pass in an int(eger) argument to serve as a control flag for informing the

Student object of how we want the answer to be returned. That is, we might program the

getAge method so that

• If we pass in a value of 1, it means that we want the answer to be

returned in terms of years.

• If we pass in a value of 2, we want the answer to be returned in terms

of months (e.g., a 21-year-old student would respond that it is 252

months old).

An alternative way of handling the requirement to retrieve the age of a Student

object in two different forms would be to define two separate methods, such as perhaps

the following:

 int getAgeInYears()

 int getAgeInMonths()

But in object-oriented programming, it’s common practice to control a method’s

behavior through the values (and types) of arguments.

 Method Return Types
The registerForCourse method as previously declared is shown to have a return type of

boolean, which implies that this method will return one of the following two values:

• A value of true, to signal “mission accomplished”—namely, that the

Student object has successfully registered for the course that it was

instructed to register for.

• A value of false, to signal that the registration request has been

denied for some reason. Perhaps the desired section was full, or the

student didn’t meet the prerequisites of the course, or the requested

course/section has been canceled, etc.

Chapter 4 ObjeCt InteraCtIOns

132

In Chapter 13, you’ll learn techniques for communicating and determining precisely
why the mission of a method has failed when we discuss exception handling.

Note that a method may be designed so as to not return anything—that is, it may

go about its business silently, without needing to report the outcome of its efforts. If so,

it is declared to have a return type of void (another of Java’s keywords). As an example,

consider the Student method header

void setName(String newName)

This method requires one argument—a String representing the new name that we

want this Student object to assume—and performs “silently” by setting the Student

object’s internal name attribute to whatever value is being passed into the method,

returning no answer in response.

Here’s an additional example of a method header that we might declare for the

Student class with a void return type:

void switchMajor(String newDepartment, Professor newAdvisor)

This method represents a request for a Student object to change its major field of

study, which involves designating both a new academic department (e.g., “BIOLOGY”)

and a reference to the Professor object that is to serve as the student’s advisor in this

new department.

The preceding example demonstrates that we can declare parameters to be of any

type, including user-defined types such as Professor. The same is true for the return

type of a method; for example, a method with the following header

Professor getAdvisor()

could be used to ask a Student object who its advisor is. Rather than merely returning

the name of the advisor, the Student object returns a reference to the Professor

object as a whole (as recorded by the Student’s internal facultyAdvisor attribute;

you’ll learn how to inform a Student object of which Professor object is to serve as its

facultyAdvisor a bit later in the chapter).

Note that a method can return at most one result, which may seem limiting. What

if, for example, we want to ask a Student object for a list of all of the Courses that the

Student has ever taken—must we ask for these one by one through multiple method

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_13

133

calls? Fortunately not. The result handed back by a method can actually be a reference

to an object of arbitrary complexity, including a special type of object called a collection

that can contain references to multiple other objects. We’ll talk about collections in

depth in Chapter 6.

 An Analogy
Let’s use an analogy to help illustrate what we’ve discussed so far about methods. With

respect to household chores, let’s say that a person is capable of

• Taking out the trash

• Mowing the lawn

• Washing the car

Expressing this notion in Java code, we’d perhaps declare three methods for the

Person class, one for each chore (service):

• takeOutTheTrash

• mowTheLawn

• washTheCar

In the case of the takeOutTheTrash method, we needn’t provide any qualifying

details in the form of arguments, nor do we expect the person performing this service

(method) to report back to us, so we declare the method header with a return type of

void and an empty parameter list:

void takeOutTheTrash()

In the case of the mowTheLawn method, we’d like whoever is mowing the lawn to

report back to us as to whether or not they see any crabgrass, but again, we needn’t

provide any qualifying details in the form of arguments, so we declare the method

header with a return type of boolean (where true means the person saw crabgrass and

false means the person did not) and an empty parameter list:

boolean mowTheLawn()

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_6

134

Finally, in the case of the washTheCar method, we might own several different cars,

and so we’d need to specify which car is to be washed by passing in a reference to the

car of interest. We needn’t get any sort of response from the person doing the washing,

however, and so we might craft the following method header:

 void washTheCar(Car c)

We’ll revisit this “chores” analogy to expand upon it later in this chapter.

 Method Bodies
When we design and program a class’s methods, declaring method headers alone is not

enough: we must also program the internal details of how each method should behave

when invoked. These internal programming details, known as the method body, are

enclosed within braces { ... } immediately following the method header, as follows:

public class Student {

 // Attributes.

 String name;

 double gpa;

 // Other Student attribute declarations have been omitted from this

example ...

 // We declare a method header ...

 boolean isHonorsStudent() {

 // ... and program the details of what this method is to do

 // within enclosing braces ... this is the method body.

 // Here, we're accessing the value of "gpa", declared as an

 // attribute of the Student class above.

 if (gpa >= 3.5) {

 // Returning the value "true" indicates "yes, this is

 // an honors student".

 return true;

 }

 else {

 // Returning the value "false" indicates "no, this isn't

 // an honors student".

Chapter 4 ObjeCt InteraCtIOns

135

 return false;

 }

 }

 // Other method declarations for the Student class would follow, e.g.,

 // getName(), setName(), getGpa(), setGpa() ... details omitted.

}

We can thus see that a method is a function—a function that is performed by a
specific object, but a function nonetheless.

 Features May Be Declared in Any Order
Note that the relative order in which features are declared within a Java class doesn’t

matter. That is, we’re permitted to reference a feature A from within method B even

though the declaration of feature A comes after the declaration of method B in the

overall class declaration.

For example, in the following simple class, we declare two methods, foo and bar,

and one attribute, x. The foo method is able to invoke the bar method, despite the fact

that the declaration of bar comes after the declaration of foo in the class:

public class Simple {

 // Attributes.

 int x;

 // Methods.

 void foo() {

 // Invoke bar() from within foo.

 bar();

 }

 // bar() is declared AFTER foo().

 void bar() {

 System.out.println(x);

 }

}

Chapter 4 ObjeCt InteraCtIOns

136

all languages are not created equal in this regard; in C++, for example, you may
only reference a feature if it has been previously declared. hence, invoking bar
from foo would generate a compilation error if the preceding example were a
C++ vs. java example.

Similarly, attribute declarations needn’t precede method declarations for a class; it is

thus permissible (but not common) to rewrite our Student class as follows:

public class Student {

 // Here, we BEGIN with method declarations ...

 void foo() {

 bar();

 }

 void bar() {

 // We are able to reference attribute 'x' despite the fact

 // that its declaration hasn't

 // been 'seen' by the compiler yet.

 System.out.println(x);

 }

 // ... and END with attribute declarations.

 int x;

}

However, it is common practice to consolidate all attribute declarations at the

beginning of a class, prior to declaring any of its methods.

 return Statements
A return statement is a jump statement that is used to exit a method:

void doSomething() {

 // Pseudocode.

Chapter 4 ObjeCt InteraCtIOns

137

 do whatever is required by this method ...

 return;

}

Whenever a return statement is encountered, the method stops executing as of that

line of code, and execution control immediately returns to the code that invoked the

method in the first place.

For methods with a return type of void, the return keyword is used by itself, as a

complete statement:

 return;

However, it turns out that for methods with a return type of void, the use of a

return; statement is optional. If omitted, a return; statement is implied as the last

line of the method. That is, the following two versions of method doSomething are

equivalent:

void doSomething() {

 int x = 3;

 int y = 4;

 int z = x + y;

}

and

void doSomething() {

 int x = 3;

 int y = 4;

 int z = x + y;

 return;

 }

The bodies of methods with a non-void return type, on the other hand, must

include at least one explicit return statement. The return keyword in such a case must

be followed by an expression that evaluates to a value compatible with the method’s

declared return type. For example, if a method is defined to have a return type of int,

then any of the following return statements would be acceptable:

Chapter 4 ObjeCt InteraCtIOns

138

return 0; // returning a constant integer value

return x; // returning the value of x (assuming that x

 // has previously been declared to be an int)

return x + y; // returning the value of the expression "x + y" (here,

 // we're assuming that "x + y" evaluates to an int value)

return (int) z; // casting the value of z (assume z was declared as

a double)

 // to an int value

and so forth. As another example, if a method is defined to have a return type of boolean,

then any of the following return statements would be acceptable:

return false; // returning a boolean constant value

return outcome; // returning the value of variable outcome

 // (assuming that outcome has previously been

 // declared to be of type boolean)

return (x < 3); // returning the boolean value that results when

 // the (numeric) value of x is compared to 3:

 // if x is less than 3, this method returns a

 // value of true; otherwise, it returns false.

A method body is permitted to include more than one return statement. Good

programming practice, however, is to have only one return statement in a method,

at the very end. Let’s look once again at the isHonorsStudent method discussed

previously, which has two return statements:

 boolean isHonorsStudent() {

 if (gpa >= 3.5) {

 return true; // first return statement

 }

 else {

 return false; // second return statement

 }

 }

Chapter 4 ObjeCt InteraCtIOns

139

Let’s rewrite this method to use a locally declared boolean variable, result, to

capture the true/false answer that is to ultimately be returned. We’ll return the value of

result with a single return statement at the very end of the method:

boolean isHonorsStudent() {

 // Declare a local variable to keep track of the outcome; arbitrarily

 // initialize it to false.

 boolean result = false;

 if (gpa >= 3.5) {

 // Instead of returning true, we record the value in our "result"

 // variable:

 result = true;

 }

 else {

 // Instead of returning false, we record the value in our "result"

 // variable:

 result = false;

 }

 // We now have a single return statement at the end of our method to

return the

 // result.

 return result;

}

As it turns out, since we initially assigned the value false to result, setting it to

false explicitly in the else clause is unnecessary; we could therefore simplify the

isHonorsStudent method as follows:

boolean isHonorsStudent() {

 // Declare a local variable to keep track of the outcome; arbitrarily

 // initialize it to false.

 boolean result = false;

 if (gpa >= 3.5) {

 result = true;

 }

Chapter 4 ObjeCt InteraCtIOns

140

 // Note that we've removed the 'else' clause ... if the "if" test

 // fails, variable "result" already has a value of false.

 return result;

}

There is, however, one situation in which multiple return statements are considered

acceptable, and that is when a method needs to perform a series of operations where

failure at any step along the way constitutes failure as a whole. This situation is

illustrated via pseudocode:

// Pseudocode.

boolean someMethod() {

 // Perform a test … if it fails, we wish to abort the method as

 // a whole.

 if (first test fails) {

 return false;

 }

 // If we pass the first test, we do some additional processing ...

 do something interesting ...

 // Then, perhaps we perform a second test, where again failure of the

 // test warrants immediately giving up in our 'quest'.

 if (second test fails) {

 return false;

 }

 // If we pass the second test, we do some additional processing ...

 // details omitted.

 // If we reach this point in our code, we return a value of true

 // to signal that we made it to the finish line!

 return true;

}

Chapter 4 ObjeCt InteraCtIOns

141

Note that the Java compiler will verify that all logical pathways through a method

return an appropriately typed result. For example, the following method will generate

a compiler error because a proper return statement will only be reached if the if test

succeeds; if the if test fails, the return statement is bypassed:

boolean xGreaterThanThree(int x) {

 if (x <= 3) {

 return false;

 }

}

The specific compiler error message in this case would be as follows:

missing return statement:

 boolean xGreaterThanThree(int x) {

 Methods Implement Business Rules
The logic contained within a method body defines the business logic, also known as

business rules, for an abstraction. In the isHonorsStudent method, for example

boolean isHonorsStudent() {

 boolean result = false;

 if (gpa >= 3.5) {

 result = true;

 }

 return result;

}

a single business rule is expressed for determining whether or not a student is an honors

student, namely,

If a student has a grade point average (GPA) of 3.5 or higher, then they are an honors

student.

Chapter 4 ObjeCt InteraCtIOns

142

If the business rules underlying this method were more complex—say, if the rules

were as follows

In order for a student to be considered an honors student, the student must

 (a) Have a grade point average (GPA) of 3.5 or higher

 (b) Have taken at least three courses

 (c) Have received no grade lower than “B” in any of these courses

then our method’s logic would of necessity be more complex:

boolean isHonorsStudent() {

 boolean result = false;

 // Pseudocode.

 if ((gpa >= 3.5) &&

 (number of courses taken >= 3) &&

 (no grades lower than a B have been received)) {

 result = true;

 }

 return result;

}

In a sense, even a method header expresses a simple form of business rule/

requirement—in this particular case, that there is such a notion as an “honors student”

in the first place. But the details of an application’s business rule(s) are encoded in its

various classes’ method bodies.

 Objects As the Context for Method Invocation
As mentioned in passing a bit earlier in the chapter, methods in an OO programming

language (OOPL) differ from functions in a non-OOPL in that

• Functions are executed by the programming environment as a whole.

• Methods are executed by specific objects.

Chapter 4 ObjeCt InteraCtIOns

143

That is, we are able to invoke a C function “in a vacuum” as follows

// A C program.

void main() {

 sqrt(42.0); // invoke the sqrt (square root) function ...

 // etc.

}

whereas in an OOPL like Java, we typically must qualify the method call by prefixing

it with the name of the reference variable representing the object that is to perform

the method, followed by a period (dot). This is illustrated for the registerForCourse

method as follows:

// Instantiate two Student objects.

Student x = new Student();

Student y = new Student();

// Invoke the registerForCourse method on Student object x, asking it to

// register for course MATH 101, section 10; Student y is unaffected.

x.registerForCourse("MATH 101", 10);

We refer to an expression of the form referenceVariable.methodName(args) as a

message—that is, this line of code

x.registerForCourse("MATH 101", 10);

can be interpreted as either “invoking a method on object x” or “sending a message to

object x.” Either way, such code should be viewed as requesting object x to perform a
method as a service, on behalf of the application to which the object belongs.

the terminology “sending a message to an object” originated with the smalltalk
language and is used when speaking of OOpLs generically. When talking about
java specifically, the terminology “invoking a method on an object” is preferred.
similarly, the java-specific alternative for the generic OOpL term “message” is
“method invocation.” throughout the book, I’ll alternate between the generic and
java-specific forms for referring to these notions, but tend to favor the generic
“message” nomenclature.

Chapter 4 ObjeCt InteraCtIOns

144

Because we use a “dot” to append a method call to a particular reference variable, we

informally refer to the notation referenceVariable.methodName(args) as dot notation.

Another informal way to think of the notation x.methodName(args) is that we are

“talking to” object x; specifically, we are “talking to” object x to request it to perform a

particular method/service. Let’s return to the analogy of household chores introduced

earlier in the chapter to illustrate this point.

Recall that a person is capable of the following household chores:

• Taking out the trash

• Mowing the lawn

• Washing the car

Here’s an expression of this abstraction as Java code:

public class Person {

 // Attributes omitted from this snippet ...

 // Methods.

 void takeOutTheTrash() { ... }

 boolean mowTheLawn() { ... }

 void washTheCar(Car c) { ... }

}

We decide that we want our teenaged sons Larry, Moe, and Curly to each do one of

these three chores. How would we ask them to do this? If we were to simply say

• “Please wash the Camry.”

• “Please take out the trash.”

• “Please mow the lawn, and let me know if you see any crabgrass.”

chances are that none of the chores would get done, because we haven’t tasked a

specific son with fulfilling any of these requests! Larry, Moe, and Curly will probably all

stay glued to the TV, because none of them will acknowledge that a request has been

directed toward them specifically.

Chapter 4 ObjeCt InteraCtIOns

145

On the other hand, if we were to instead say

• “Larry, please wash the Camry.”

• “Moe, please take out the trash.”

• “Curly, please mow the lawn, and let me know if you see any

crabgrass.”

we’d be directing each request to a specific son; again, using Java syntax, this might be

expressed as follows:

// We declare and instantiate three Person objects:

Person larry = new Person();

Person moe = new Person();

Person curly = new Person();

// And, while we're at it, a Car object, as well!

Car camry = new Car();

// We send a message to each son, indicating the service that we wish

// each of them to perform:

larry.washTheCar(camry);

moe.takeOutTheTrash();

boolean crabgrassFound = curly.mowTheLawn();

By applying each method call to a specific “son” (Person object reference), there is

no ambiguity as to which object is being asked to perform which service.

Assuming that takeOutTheTrash is a method defined for the Person class as

previously illustrated, the following code won’t compile in Java (or, for that matter, in any

OOPL) because the method call is unqualified—that is, the dot notation is missing:

public class BadCode {

 public static void main(String[] args) {

 // This next line won't compile -- where's the "dot"? That is,

which object

 // are we talking to???

 takeOutTheTrash();

 }

}

Chapter 4 ObjeCt InteraCtIOns

146

The following compilation error would be reported:

cannot find symbol

symbol : method takeOutTheTrash()

location: class BadCode

However, in a non-OOPL like C, there is no notion of objects or classes, and so

functions in such languages are always invoked “in a vacuum” (i.e., in the programming

environment as a whole):

// A C program.

void main() {

 sqrt(42.0);

 // etc.

}

 Java Expressions, Revisited
When we discussed Java expressions in Chapter 2, there was one form of expression

that was omitted from the list—namely, messages—because we hadn’t yet talked about

objects. I’ve repeated the list of what constitutes Java expressions here, adding message

expressions to the mix:

• A constant: 7, false

• A char(acter) literal: 'A', '&'

• A String literal: "foo"

• The name of any variable declared to be of one of the predefined
types that we’ve seen so far: myString, x

• Any one of the preceding that is modified by one of the Java unary
operators: i++

• A method invocation (“message”): z.length()

• Any two of the preceding that are combined with one of the Java
binary operators: z.length() + 2

• Any of the preceding simple expressions enclosed in parentheses:

(z.length() + 2)

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_2

147

The type of a message expression is the type of the result that the method returns.

For example, if length() is a method with a return type of int, then the expression

z.length() is an expression of type int, and, if registerForCourse is a method with a

return type of boolean, then the expression s.registerForCourse(...) is an expression

of type boolean.

 Capturing the Value Returned by a Method
Whenever we invoke a method with a non-void return type, it’s up to us to choose

to either ignore or react to the value that the method returns. In an earlier example,

we declared the Student class’s registerForCourse method to have a return type of

boolean:

boolean registerForCourse(String courseID, int secNo)

But we didn’t pay any attention to what boolean value was returned when we

invoked the method:

x.registerForCourse("MATH 101", 10);

If we wish to react to the value returned by a non-void method, we may choose to

capture the value in a variable declared to be of the appropriate type, as in the following

example:

boolean successfullyRegistered = x.registerForCourse("MATH 101", 10);

if (!successfullyRegistered) { // or: if (successfullyRegistered == false)

 // Pseudocode.

 action to be taken if registration failed ...

}

However, if we only plan on using the returned value from a method once

in our code, then going to the trouble of declaring an explicit variable such as

successfullyRegistered to capture the result is overkill. We can instead react to

the result simply by nesting a message expression within a more complex statement.

For example, we can rewrite the preceding code snippet to eliminate the variable

successfullyRegistered as follows:

Chapter 4 ObjeCt InteraCtIOns

148

// Register for a course and react to the value that is returned by

the method.

if (!(x.registerForCourse("MATH 101", 10))) {

 // Pseudocode.

 action to be taken if registration failed ...

}

Because the registerForCourse method returns a boolean value, the message

x.registerForCourse(...) is a boolean expression and can be used within the if

clause of an if statement. Furthermore, we can apply the ! (“not”) operator to the

expression, as in the preceding example.

We often combine method calls with other types of statements when developing

object-oriented applications—for example, when printing to the command window:

Student s = new Student();

// Details omitted.

System.out.println("The student named " + s.getName() +

 " has a GPA of " + s.getGPA());

 Method Signatures
We’ve already learned that a method header consists at a minimum of the method’s

return type, name, and formal parameter list:

void switchMajor(String newDepartment, Professor newAdvisor)

From the standpoint of the code used to invoke a method on an object, however, the

return type and parameter names aren’t immediately evident upon inspection:

 Student s = new Student();

 Professor p = new Professor();

 // Details omitted ...

 s.chooseMajor("MATH", p);

We can infer from inspecting the last line of code that

Chapter 4 ObjeCt InteraCtIOns

149

• chooseMajor is the name of a method defined for the Student class;

otherwise, the compiler would reject this line.

• The chooseMajor method declares two parameters of types String

and Professor, respectively, because those are the types of the

arguments that we’re passing in: specifically, a String literal and a

reference to a Professor object.

However, what we cannot determine from inspecting this code is (a) how the formal

parameters were named in the corresponding method header or (b) what the return
type of this method is declared to be; it may be void, or the method may be returning a

non-void result that we’ve simply chosen to ignore.

For this reason, we refer to a method’s signature as those aspects of a method

header that are “discoverable” by inspecting the code used to invoke the method, namely

• The method’s name

• The order, types, and number of parameters declared by the method

but excluding

• The parameter names

• The method’s return type

Furthermore, we’ll introduce the informal terminology argument signature to

refer to that subset of a method signature consisting of the order, types, and number of

arguments, but excluding the method name.

“argument signature” isn’t an industry-standard term, but one that is nonetheless
useful. We’ll use it throughout the book.

Some examples of method headers and their corresponding method/argument

signatures are as follows:

• Method header: int getAge(int ageType)

• Method signature: getAge(int)

• Argument signature: (int)

Chapter 4 ObjeCt InteraCtIOns

150

• Method header: void chooseMajor(String newDepartment,

Professor newAdvisor)

• Method signature: chooseMajor(String, Professor)

• Argument signature: (String, Professor)

• Method header: String getName()

• Method signature: getName()

• Argument signature: ()

 Choosing Descriptive Method Names
Assigning intuitive, descriptive names to our methods helps make an application’s code

self-documenting. When combined with carefully crafted variable names such as those

chosen in the following code example, comments are (virtually) unnecessary:

public class IntuitiveNames {

 public static void main(String[] args) {

 Student student;

 Professor professor;

 Course course1;

 Course course2;

 Course course3;

 // Later in the program ...

 // This code is fairly straightforward to understand!

 // A student chooses a professor as its advisor ...

 student.chooseAdvisor(professor);

 // ... and registers for the first of three courses.

 student.registerForCourse(course1);

 // etc.

Now, contrast the preceding code with the much “fuzzier” code that follows:

public class FuzzyNames {

 public static void main(String[] args) {

 Student s;

Chapter 4 ObjeCt InteraCtIOns

151

 Professor p;

 Course c1;

 Course c2;

 Course c3;

 // Later in the program ...

 // Without comments, this next bit of code is not nearly as

intuitive.

 s.choose(p);

 s.reg(c1);

 // etc.

 Method Overloading
Overloading is a language mechanism that allows two or more different methods

belonging to the same class to have the same name as long as they have different

argument signatures. Overloading is supported by numerous non-OO languages like C

as well as by OO languages like Java.

For example, the Student class may legitimately define the following five different

print method headers:

 void print(String fileName) { ... // version #1

 void print(int detailLevel) { ... // version #2

 void print(int detailLevel, String fileName) { ... // version #3

 int print(String reportTitle, int maxPages) { ... // version #4

 boolean print() { ... // version #5

Hence, the print method is said to be overloaded. Note that all five of the methods

differ in terms of their argument signatures:

• The first takes a single String as an argument.

• The second takes a single int.

• The third takes two arguments—an int followed by a String.

Chapter 4 ObjeCt InteraCtIOns

152

• The fourth takes two arguments—a String followed by an int

(although these are the same parameter types as in the previous

header, they are in a different order).

• The fifth takes no arguments at all.

Thus, all five of these headers represent valid, different methods, and all can coexist

happily within the Student class without any complaints from the compiler.

We can then choose which of these five “flavors” of the print method we’d like a

Student object to perform based on what form of message we send to a Student object:

Student s = new Student();

// Invoking the version of print that takes a single String argument.

s.print("output.rpt");

// Invoking the version of print that takes a single int argument.

s.print(2);

// Invoking the version that takes two arguments, an int followed by

a String.

s.print(2, "output.rpt");

// etc.

The compiler is able to unambiguously match up which version of the print method

is being called in each instance based on the argument signatures.

This example illustrates why overloaded methods must have unique argument

signatures: if we were permitted to introduce the following additional print method as a

sixth method of Student

boolean print(int levelOfDetail) { ... // version #6

despite the fact that its argument signature—a single int—duplicates the argument

signature of one of the other five print methods

void print(int detailLevel) { ... // version #2

then the compiler would be unable to determine which version of the print method, #2

or #6, we are trying to invoke with the following line of code:

 s.print(3); // Which version to we want to execute: #2 or #6? HELP!!!

Chapter 4 ObjeCt InteraCtIOns

153

So, to make life simple, the compiler prevents this type of ambiguity from arising in

the first place by preventing classes from declaring like-named methods with identical

argument signatures. The compiler error we’d generate if we were to try to declare

version #6 of the print method along with the other five versions would be as follows:

print(int) is already defined in Student

boolean print(int levelOfDetail) {

 ^

The ability to overload methods allows us to create an entire family of similarly

named methods that do essentially the same job. Think back to Chapter 2 where we

discussed the System.out.println method, which is used to display printed output to

the command window. As it turns out, there is not one but many versions of the System.

out.println method; each overloaded version accepts a different argument type

(println(int), println(String), println(double), etc.). Using an overloaded System.

out.println method is much simpler and neater than having to use separate methods

named printlnString, printlnInt, printlnDouble, and so on.

Note that there is no such thing as attribute overloading; that is, if a class tries to

declare two attributes with the same name

public class Student {

 private String studentId;

 private int studentId;

 // etc.

the compiler will generate an error message on the second declaration:

studentId is already defined in Student

 Message Passing Between Objects
Let’s now look at a message passing example involving two objects. Assume that we have

two classes defined—Student and Course—and that the following methods are defined

for each.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_2

154

• For the Student class:

boolean successfullyCompleted(Course c)

Given a reference c to a particular Course object, we’re asking the

Student object receiving this message to confirm that the student has

indeed taken the course in question and received a passing grade.

• For the Course class:

boolean register(Student s)

Given a reference s to a particular Student object, we’re asking the

Course object receiving this message to do whatever is necessary to

register the student. In this case, we expect a Course to ultimately

respond true or false to indicate success or failure of the

registration request.

Figure 4-2 reflects one possible message interchange between a Course object c

and a Student object s; each numbered step in the diagram is narrated in the text that

follows. Solid-line arrows represent messages being passed/methods being invoked;

dashed-line arrows represent values being returned from methods.

Figure 4-2. Message passing between Student and Course objects

Chapter 4 ObjeCt InteraCtIOns

155

(Please refer back to Figure 4-2 when reading through steps 1–4.)

 1. A Course object c receives the message

c.register(s);

where s represents a particular Student object. (For now, we won’t

worry about the origin of this message; it was most likely triggered

by a user’s interaction with the SRS GUI. We’ll see the complete code

context of how all of these messages are issued later in this chapter, in

the section entitled “Objects As Clients and Suppliers.”)

 2. In order for Course object c to officially determine whether or not

s should be permitted to register, c sends the message

s.successfullyCompleted(c2);

to Student s, where c2 represents a reference to a different Course

object that happens to be a prerequisite of Course c. (Don’t worry

about how Course c knows that c2 is one of its prerequisites; this

involves interacting with c’s internal prerequisites attribute,

which we haven’t talked about yet. Also, Course c2 isn’t depicted

in Figure 4-2 because, strictly speaking, c2 isn’t engaged in this

“discussion” between objects c and s. c2 is being talked about, but

isn’t doing any talking itself!)

 3. Student object s replies to c with the value true, indicating that

s has successfully completed the prerequisite course. (We will for

the time being ignore the details as to how s determines this; it

involves interacting with s’s internal transcript attribute, which

we haven’t covered the structure of just yet.)

 4. Convinced that the student has complied with the prerequisite

requirements for the course, Course object c finishes the job of

registering the student (internal details omitted for now) and

confirms the registration by responding with a value of true to the

originator of the service request.

Chapter 4 ObjeCt InteraCtIOns

156

This example was overly simplistic; in reality, Course c may have had to speak to

numerous other objects as well:

• A Classroom object (the room in which the course is to be held, to

make sure that it has sufficient room for another student)

• A DegreeProgram object (the degree sought by the student, to make

sure that the requested course is indeed required for the degree that

the student is pursuing)

• And so forth—before sending a true response to indicate that the

request to register Student s has been fulfilled

We’ll see a slightly more complex version of this message exchange later in the

chapter.

 Delegation
If a request is made of an object A and, in fulfilling the request, A in turn requests

assistance from another object B, this is known as delegation by A to B. The concept of

delegation among objects is exactly the same as delegation between people in the real

world: if your “significant other” asks you to mow the lawn while they are out running

errands and you in turn hire a neighborhood teenager to mow the lawn, then, as far as

your partner is concerned, the lawn has been mowed. The fact that you delegated the

activity to someone else is (hopefully!) irrelevant.

The fact that delegation has occurred between objects is often transparent to the

initiator of a message, as well. In our previous message passing example, Course c

delegated part of the work of registering Student s back to s when c asked s to verify

having taken a prerequisite course. However, from the perspective of the originator of the

registration request—c.register(s);—this seems like a simple interaction: namely, the

requestor asked c to register a student, and it did so! All of the behind-the-scenes details

of what c had to do to accomplish this are hidden from the requestor (see Figure 4-3).

Chapter 4 ObjeCt InteraCtIOns

157

Figure 4-3. A requestor sees only the external details of a message exchange

 Obtaining Handles on Objects
The only way that an object A can pass a message to an object B is if A has access to a

reference to/handle on B. This can happen in several different ways.

• Object A might maintain a reference to B as one of A’s attributes.

For example, here’s the example from Chapter 3 of a Student object

having a Professor reference as an attribute:

public class Student {

 // Attributes.

 String name;

 Professor facultyAdvisor;

 // etc.

(Again, you’ll learn how to inform a Student object of which Professor object

is to serve as its facultyAdvisor a bit later in the chapter.)

by way of analogy, this is like a person a “permanently” recording the phone
number for person b in their address book so that a can look up and call b
whenever a needs to interact with b.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_3

158

• Object A may be handed a reference to B as an argument of one
of A’s methods. This is how Course object c obtained access to

Student object s in the preceding message passing example, when c’s

register method was called:

 c.register(s);

this is analogous to person a being handed a slip of paper with person b’s phone
number on it, so that a may call b.

• A reference to object B may be made “globally available” to the
entire application, such that all other objects can access it. We’ll

discuss techniques for doing so later in the book and employ such

techniques in building the SRS.

this is analogous to advertising person b’s phone number on a billboard for
anyone to call!

• Object A may have to explicitly request a handle on/reference to B
by calling a method on some third object C. Since this is potentially

the most complex way for A to obtain a handle on B, we’ll illustrate

this with an example.

this is analogous to person a having to call person C to ask C for person b’s
phone number.

Going back to the example interaction between Course object c and Student object s

from a few pages ago, let’s complicate the interaction a bit:

• First, we’ll introduce a third object: a Transcript object t, which

represents a record of all courses taken by Student object s.

Chapter 4 ObjeCt InteraCtIOns

159

• Furthermore, we’ll assume that Student s maintains a handle on

Transcript t as one of s’s attributes (specifically, the transcript

attribute) and, conversely, that Transcript t maintains a handle on

its “owner,” Student s, as one of t’s attributes:

public class Student {

 // Attributes.

 Transcript transcript;

 // etc.

}

public class Transcript {

 // Attributes.

 Student owner;

 // etc.

}

Figure 4-4 reflects this more elaborate message interchange between Course c,

Student s, and Transcript t; each numbered step in the diagram is narrated in the text

that follows. Again, solid-line arrows represent messages being passed/methods being

invoked; dashed-line arrows represent values being returned from methods.

Chapter 4 ObjeCt InteraCtIOns

160

Figure 4-4. A more complex message passing example involving three objects

(Please refer back to Figure 4-4 when reading through steps 1–6.)

 1. In this enhanced object interaction, the first step is exactly

as previously described: namely, a Course object c receives

the message

c.register(s);

where s represents a Student object.

 2. Now, instead of Course c sending the message

s.successfullyCompleted(c2) to Student s as before, where c2

represents a prerequisite Course, Course object c instead sends

the message

s.getTranscript();

Chapter 4 ObjeCt InteraCtIOns

161

to the Student, because c wants to check s’s transcript firsthand.

This message corresponds to a method on the Student class whose

header is declared as follows:

Transcript getTranscript()

Note that this method is defined to return a Transcript object

reference—specifically, a handle on the Transcript object belonging

to this student.

 3. Because Student s maintains a handle on its Transcript object

as an attribute, it’s a snap for s to respond to this message by

passing a handle on t back to Course object c.

 4. Now that Course c has its own temporary handle on

Transcript t, object c can talk directly to t. Object c proceeds

to ask t whether t has any record of c’s prerequisite course c2

having successfully been completed by Student s by passing

the message

t.successfulCompletion(c2);

This implies that there is a method defined for the Transcript class

with the header

boolean successfulCompletion(Course c)

 5. Transcript object t responds with the value true to Course c,

indicating that Student s has indeed successfully completed the

prerequisite course in question. (Note that Student s is unaware

that c is talking to t; s knows that it was asked by c to return a

handle on t in an earlier message, but s has no insights as to why

c asked for the handle.)

this is not unlike the real-world situation in which person a asks person C for
person b’s phone number, without telling C why they want to call b.

Chapter 4 ObjeCt InteraCtIOns

162

 6. Satisfied that Student s has complied with its prerequisite

requirements, Course object c finishes the job of registering

the student (internal details omitted for now) and confirms the

registration by responding with a value of true to the originator

of the registration request that first arose in step 1. Now that c

has finished with this transaction, it discards its (temporary)

handle on t.

Note that, from the perspective of whoever sent the original message

c.register(s);

to Course c, this more complicated interaction appears identical to the earlier, simpler

interaction, as shown in Figure 4-5. All the sender of the original message knows is that

Course c eventually responded with a value of true to the request.

Figure 4-5. The external details of this more complex interaction appear identical
from the requestor’s standpoint

 Objects As Clients and Suppliers
In the preceding example of message passing between a Course object and a Student

object, we can consider Course object c to be a client of Student object s, because c is

requesting that s perform one of its methods—namely, getTranscript—as a service to c.

This is identical to the real-world concept of you, as a client, requesting the services of

an accountant or an attorney or an architect. Similarly, c is a client of Transcript t

when c asks t to perform its successfulCompletion method. We therefore refer to code

that invokes a method on an object X as client code relative to X because such code

benefits from the services performed by X.

Chapter 4 ObjeCt InteraCtIOns

163

Let’s look at a few examples of client code corresponding to the message passing

example involving a Course, Student, and Transcript object from a few pages back.

This first code example, taken from the main method of an application, instantiates two

objects—Course c and Student s—and invokes a method on one of them, which gets

them “talking”:

public class MyApp {

 public static void main(String[] args) {

 Course c = new Course();

 Student s = new Student();

 // details omitted ...

 // Invoke a method on Course object c.

 // (This is labeled as message (1) in the earlier figure; the

returned

 // value, labeled as (6) in that figure, is being captured

in boolean

 // variable "success".)

 boolean success = c.register(s);

 // etc.

 }

}

In this example, the main method body is considered to be client code relative to

Course object c because the main method calls upon c to perform its register method

as a service.

Let’s now look at the code that implements the body of the register method, inside

of the Course class:

 public class Course {

 // Attribute details omitted ...

 public boolean register(Student s) {

 boolean outcome = false;

 // Request a handle on Student s's Transcript object.

 // (This is labeled as message (2) in the earlier figure.)

Chapter 4 ObjeCt InteraCtIOns

164

 Transcript t = s.getTranscript();

 // (The return value from this method is labeled as (3) in

 // the earlier figure.)

 // Now, request a service on that Transcript object.

 // (Assume that c2 is a handle on some prerequisite Course ...)

 // (This is labeled as message (4) in the earlier figure.)

 if (t.successfulCompletion(c2)) {

 // (This next return value is labeled as (5) in the earlier

figure.)

 outcome = true;

 }

 else {

 outcome = false;

 }

 return outcome;

 }

 // etc.

We see that the register method body of the Course class is considered to be

client code relative to both Student object s and Transcript object t because this

code calls upon both s and t to each perform a service: s.getTranscript() and

t.successfulCompletion(c2).

Whenever an object A is a client of object B, object B in turn can be thought of as a

supplier to A. Note that the roles of client and supplier are not absolute between two

objects; such roles are only relevant for the duration of a particular message passing

event. If I ask you to pass me the bread, I am your client, and you are my supplier; and if

a moment later you ask me to pass you the butter, then you are my client, and I am your

supplier.

the notion of objects as clients and suppliers is discussed further in Object-
Oriented Software Construction by bertrand Meyer (prentice hall, 2000).

Chapter 4 ObjeCt InteraCtIOns

165

 Information Hiding/Accessibility
Just as we’ve been using dot notation to formulate messages to objects, we can also

use dot notation to refer to an object’s attributes. For example, if we declare a reference

variable x to be of type Student, we can refer to any of Student x’s attributes from client

code via the following notation

x.attribute_name

where the dot is used to qualify the name of the attribute of interest with the name of

the reference variable representing the object to which it belongs: x.name, x.gpa, and

so forth.

Here are a few additional examples:

 // Instantiate two objects.

 Student x = new Student();

 Student y = new Student();

 // Use dot notation to access attributes as variables.

 // Assign student x's name ...

 x.name = "John Smith";

 // ... and student y's name.

 y.name = "Joe Blow";

 // Compare the ages of the two students.

 if (x.age == y.age) { ... }

However, just because we can access attributes this way doesn’t mean that we

should. There are many reasons we’ll want to restrict access to an object’s data so as

to give the object complete control over when and how its data is altered and several

mechanisms for how we can get the Java compiler’s help in enforcing such restrictions.

In practice, objects often restrict access to some of their features (attributes or

methods). Such restriction is known as information hiding. In a well-designed object-

oriented application, a class typically publicizes what its objects can do—that is,

the services the objects are capable of providing, as declared via the class’s method

headers—but hides the internal details both of how they perform these services and of

the data (attributes) that they maintain internally in order to support these services.

Chapter 4 ObjeCt InteraCtIOns

166

By way of analogy, think of a Yellow Pages advertisement for a dry cleaner. Such

an ad will promote the services that the dry cleaner provides—that is, what they can

do for you: “We clean formal wear,” “We specialize in cleaning area rugs,” and so forth.

However, the ad typically won’t disclose the details of how they do the cleaning—

for example, what specific chemicals or equipment that they use—because you,

the potential customer, needn’t know such details in order to determine whether a

particular dry cleaner can provide the services that you need.

We use the term accessibility to refer to whether or not a particular feature of an

object can be accessed outside of the class in which it is declared—that is, whether it is

accessible from client code via dot notation. The accessibility of a feature is established

by placing an access modifier keyword at the beginning of its declaration:

public class MyClass {

 // Attributes.

 access-modifier int x;

 // etc.

 // Methods.

 access-modifier void foo() { ... }

 // etc.

}

Java defines several different access modifiers. Let’s explore the implications of using

the two primary access modifiers: private and public.

there is a third access modifier, protected, as well as default package- level
access that we’ll defer discussing until later in the book.

 Public Accessibility
When a feature is declared to have public accessibility, it’s freely accessible from client

code using dot notation. For example, if we were to declare the name attribute of the

Student class as being publicly accessible by placing the keyword public just ahead of

the attribute’s type in the declaration

Chapter 4 ObjeCt InteraCtIOns

167

public class Student {

 public String name;

 // etc.

we’ve granted client code permission to directly access the name attribute of a Student

object via dot notation; that is, it would be perfectly acceptable to write client code as

follows:

public class MyProgram {

 public static void main(String[] args) {

 Student x = new Student();

 // Because name is a public attribute of the Student class, we

may access

 // it via dot notation from client code.

 x.name = "Fred Schnurd"; // assign a value to x's name attribute

 // or:

 System.out.println(x.name); // retrieve the value of x's name

attribute

 // etc.

 }

}

Similarly, if we were to declare the isHonorsStudent method of Student as having

public accessibility, which we do by adding the keyword public to the beginning of the

method header declaration

public class Student {

 // Attribute details omitted from this example.

 // Methods.

 public boolean isHonorsStudent() { ... }

 // etc.

}

we’ve granted client code permission to invoke the isHonorsStudent method on a

Student object via dot notation; that is, it would be perfectly acceptable to write client

code as follows:

Chapter 4 ObjeCt InteraCtIOns

168

public class MyProgram {

 public static void main(String[] args) {

 Student x = new Student();

 // Because isHonorsStudent is a public method, we may access it

 // via dot notation from client code.

 if (x.isHonorsStudent()) { ... }

 // etc.

 Private Accessibility
When a feature is declared to have private accessibility, on the other hand, it’s not

accessible outside of the class in which it’s declared—that is, we may not use dot

notation to access such a feature from client code. For example, if we were to declare the

ssn attribute of the Student class to have private accessibility

 public class Student {

 public String name;

 private String ssn;

 // etc.

then we would not be permitted to access ssn directly via dot notation from client code.

In the following code example, a compiler error would arise on the line that is bolded:

 public class MyProgram {

 public static void main(String[] args) {

 Student x = new Student();

 // Not permitted from client code! ssn is private to the

 // Student class, and so this will not compile.

 x.ssn = "123-45-6789";

 // etc.

The resultant error message would be

 ssn has private access in Student

Chapter 4 ObjeCt InteraCtIOns

169

The same is true for methods that are declared to be private—that is, such methods

can’t be invoked from client code. For example, if we were to declare the printInfo

method of Student as being private

public class Student {

 // Attribute details omitted from this example.

 // Methods.

 public boolean isHonorsStudent() { ... }

 private void printInfo() { ... }

 // etc.

}

then it would not be possible to invoke the printInfo method on a Student object from

within client code. In the following code snippet, a compiler error would arise on the line

that is bolded:

public class MyProgram {

 public static void main(String[] args) {

 Student x = new Student();

 // Because printInfo() is a private method, we may not access it

 // via dot notation from client code; this won't compile:

 x.printInfo();

 // etc.

The resultant error message would be

printInfo() has private access in Student

 Publicizing Services
As it turns out, methods of a class are typically declared to be public because an object

(class) needs to publicize its services (as in the Yellow Pages advertisement analogy)

so that client code may request these services. By contrast, most attributes are typically

declared to be private (and effectively “hidden”), so that an object can maintain

Chapter 4 ObjeCt InteraCtIOns

170

ultimate control over its data. We’ll look at several detailed examples later in this chapter

of how an object goes about doing so.

Although it isn’t explicitly declared as such, the internal code that implements each

method (i.e., the method body) is also, in a sense, implicitly private. When a client

object A asks another object B to perform one of its methods, A doesn’t need to know

the behind-the-scenes details of how B is doing what it’s doing; object A needs simply

to trust that object B will perform the “advertised” service. This is depicted conceptually

in Figure 4-6, where those aspects of a class/object deemed to be private are depicted as

being sealed off from client code by an impenetrable brick wall.

Figure 4-6. Public vs. private visibility

Chapter 4 ObjeCt InteraCtIOns

171

 Method Headers, Revisited
Let’s amend the definition of a method header from a bit earlier in the chapter. A method

header actually consists of the following:

• A method’s access modifier

• A method’s return type—that is, the data type of the information that

is going to be passed back by object B to object A, if any, when the

method is finished executing

• A method’s name

• An optional list of comma-separated formal parameters (specifying

their types and names) to be passed to the method, enclosed in

parentheses

As an example, here is a typical method header that we might define for the Student

class, with the access modifier included:

 public boolean registerForCourse (String courseID, int secNo)

 access return type method name comma-separated list of formal

 modifier parameters, enclosed in parentheses

 (parentheses may be left empty)

 Accessing the Features of a Class from Within Its
Own Methods
Note that we can access all of a given class’s features, regardless of their accessibility,

from within any of that class’s own method bodies; that is, public/private designations

only affect access to a feature from outside the class itself (i.e., from client code).

Let’s study the following example to see how one feature of a class may be accessed

from within another:

public class Student {

 // A few private attributes.

 private String name;

 private String ssn;

Chapter 4 ObjeCt InteraCtIOns

172

 private double totalLoans;

 private double tuitionOwed;

 // Get/set methods would be provided for all of these attributes;

 // details omitted ...

 public void printStudentInfo() {

 // Accessing attributes of the Student class.

 System.out.println("Name: " + name);

 System.out.println("Student ID: " + ssn);

 // etc.

 }

 public boolean allBillsPaid() {

 boolean answer = false;

 // Accessing another method of the Student class.

 double amt = moneyOwed();

 if (amt == 0.0) {

 answer = true;

 }

 else {

 answer = false;

 }

 return answer;

 }

 private double moneyOwed() {

 // Accessing attributes of the Student class.

 return totalLoans + tuitionOwed;

 }

}

The first thing we observe is that we needn’t use dot notation to access any of

the features of the Student class from within Student methods. It’s automatically

understood by the compiler that a class is accessing one of its own features when

a simple name—that is, a name without a dot notation prefix, also known as an

unqualified name—is used, for example:

Chapter 4 ObjeCt InteraCtIOns

173

 public void printStudentInfo() {

 // Here, we're accessing the "name" attribute without dot notation.

 System.out.println("Name: " + name);

 // etc.

 }

and

 public boolean allBillsPaid() {

 boolean answer = false;

 // Here, we're accessing the "moneyOwed" method without dot

notation.

 double amt = moneyOwed();

 // etc.

 }

That being said, the Java keyword this can be used in dot notation fashion—this.

featureName—within any of a class’s methods to emphasize the fact that we’re accessing

another feature of this same class. I’ve rewritten the Student example from earlier to

take advantage of the this keyword:

public class Student {

 // A few private attributes.

 private String name;

 private String ssn;

 private double totalLoans;

 private double tuitionOwed;

 // Get/set methods would be provided for all of these attributes;

 // details omitted ...

 public void printStudentInfo() {

 // We've added the prefix "this.".

 System.out.println("Name: " + this.name);

 System.out.println("Student ID: " + this.ssn);

 // etc.

 }

Chapter 4 ObjeCt InteraCtIOns

174

 public boolean allBillsPaid() {

 boolean answer = false;

 // We've added the prefix "this.".

 double amt = this.moneyOwed();

 if (amt == 0.0) {

 answer = true;

 }

 else {

 answer = false;

 }

 return answer;

 }

 private double moneyOwed() {

 // We've added the prefix "this.".

 return this.totalLoans + this.tuitionOwed;

 }

}

Either approach—prefixing internal feature references with this. or omitting such a

qualifying prefix—is acceptable; common practice is to forego the use of the this. prefix

except when necessary to disambiguate a method parameter from a similarly named

attribute. That is, it is permissible to declare a method parameter with the same name as

an attribute, as illustrated by the following code:

public class Student {

 private String major;

 // Other attributes omitted.

 // Note that we've used "major" as the name of a parameter

 // to the following method - this duplicates the name of

 // the "major" attribute above. This is OK, however, if

 // we use "this." within the method body below to disambiguate

 // the two.

 public void updateMajor(String major) {

 // In the next line of code, "this.major" on the left side

Chapter 4 ObjeCt InteraCtIOns

175

 // of the assignment statement refers to the ATTRIBUTE

 // named "major", whereas "major" on the right side of

 // the assignment statement refers to the PARAMETER

 // named "major".

 this.major = major;

 }

 // etc.

}

Of course, we could avoid having to use this. as a prefix simply by choosing an

alternative name for our method parameter:

public class Student {

 private String major;

 // Other attributes omitted.

 public void updateMajor(String m) {

 // No ambiguity!

 major = m;

 }

 // etc.

}

It’s important to avoid accidentally giving parameters/local variables names that

duplicate the names of attributes, as this can lead to bugs that are hard to diagnose. For

example, in the Student class that follows are both an attribute and a local variable

named major. Please refer to the comments in the code example for an explanation of

why this is problematic:

public class Student {

 // Attributes.

 private String major;

 public void updateMajor() {

 // We've inadvertantly declared a local variable, "major", with

 // the SAME name as an attribute of this class. This is a

BAD IDEA!

Chapter 4 ObjeCt InteraCtIOns

176

 // Note that this code will compile WITHOUT ERROR ...

 String major = null;

 // Later in the method:

 // We THINK we're updating the value of ATTRIBUTE "major" below,

 // but we're instead updating LOCAL VARIABLE "major", which will

 // go out of scope as soon as this method ends;

 // meanwhile, the value of ATTRIBUTE "major" is unchanged!

 major = major.toUppercase();

 // etc.

 }

}

We’ll see other uses for the this keyword, involving code reuse and object self-

referencing, later in the book.

 Accessing Private Features from Client Code
If private features can’t be accessed outside of an object’s own methods, how does client

code ever manipulate them? Through public features, of course!

Good OO programming practice calls for providing public accessor methods by

which clients of an object can effectively manipulate selected private attributes to read or

modify their values. Why is this? So that we may empower an object to have the “final
say” in whether or not what client code is trying to do to its attributes is valid. That is,

we want an object to be involved in determining whether or not any of the business rules

defined by its class are being violated. Before looking at specific examples that illustrate

why this is so important, let’s first discuss the mechanics of how we declare accessor

methods.

 Declaring Accessor Methods
The following code, excerpted from the Student class, illustrates the conventional

accessor methods—informally known as “get” and “set” methods—that we might write

for reading/writing the value of two private attributes of the Student class called name

and facultyAdvisor, respectively:

Chapter 4 ObjeCt InteraCtIOns

177

public class Student {

 // Attributes are typically declared to be private.

 private String name;

 private Professor facultyAdvisor;

 // other attributes omitted from this example ...

 // Provide public accessor methods for reading/modifying

 // private attributes from client code.

 // Client code will use this method to read ("get") the value of the

 // "name" attribute of a particular Student object.

 public String getName() {

 return name;

 }

 // Client code will use this method to modify ("set") the value of the

 // "name" attribute of a particular Student object.

 public void setName(String newName) {

 name = newName;

 }

 // Client code will use this method to read ("get") the value of the

 // facultyAdvisor attribute of a particular Student object.

 public Professor getFacultyAdvisor() {

 return facultyAdvisor;

 }

 // Client code will use this method to modify ("set") the value of the

 // facultyAdvisor attribute of a particular Student object.

 public void setFacultyAdvisor(Professor p) {

 facultyAdvisor = p;

 }

 // etc.

}

Chapter 4 ObjeCt InteraCtIOns

178

The nomenclature “get” and “set” is stated from the standpoint of client code: think

of a “set” method as the way that client code stuffs a value into an object’s attribute (see

Figure 4-7)…

Figure 4-7. A “set” method is used to pass data into an object

… and the “get” method as the way that client code retrieves an attribute value from

an object (see Figure 4-8).

Figure 4-8. A “get” method is used to retrieve data from an object

 Recommended “Get”/“Set” Method Headers
For an attribute declaration of the form

Chapter 4 ObjeCt InteraCtIOns

179

accessibility* attribute-type attributeName; * typically private

for example,

private String majorField;

the rules for formulating conventional accessor method headers are as follows.

For a “get” method, the formula is as follows:

public attribute-type getAttributeName()

For example:

public String getMajorField()

• The name of the method is formulated by capitalizing the first letter

of the attribute name in question (e.g., majorField) and sticking “get”

in front (e.g., getMajorField).

• Note that we don’t typically pass any arguments into a “get” method,

because all we want an object to do is to hand us back the value of

one of its attributes; we don’t typically need to tell the object anything

special for it to know how to do this.

• Also, because we’re expecting an object to hand back the value of a

specific attribute, the return type of the “get” method must match

the type of the attribute of interest. If we’re “getting” the value of an

int attribute, then the return type of the corresponding “get” method

must be int; if we’re “getting” the value of a Professor attribute,

then the return type of the corresponding “get” method must be

Professor; and so forth.

• Here’s a typical “get” method in its entirety, shown in the context of

the Student class:

public class Student {

 private String majorField;

 // Other attributes omitted from this example.

 public String getMajorField() {

 // Return the value of the majorField attribute.

Chapter 4 ObjeCt InteraCtIOns

180

 return majorField;

 }

 // etc.

}

For a “set” method, the formula is as follows:

 public void setAttributeName(attributeType parameterName)

For example:

public void setMajorField(String major)

• The name of the method is formulated by capitalizing the first letter

of the attribute name in question (e.g., majorField) and sticking “set”

in front (e.g., setMajorField).

• In the case of a “set” method, we must pass in the value that we want

the object to use when setting its corresponding attribute value, and

the type of the value that we’re passing in must match the type of the

attribute being set. If we’re “setting” the value of an int attribute,

then the argument that is passed into the corresponding “set”

method must be an int; if we’re “setting” the value of a Professor

attribute, then the argument that is passed into the corresponding

“set” method must be a Professor; and so forth.

• Since simple “set” methods are typically expected to perform their

mission silently, without returning a value to the client, we typically

declare “set” methods to have a return type of void.

• Here’s a typical “set” method in its entirety, shown in the context of

the Student class:

public class Student {

 private String majorField;

 // Other attributes omitted from this example.

 public String getMajorField() {

 // Return the value of the majorField attribute.

Chapter 4 ObjeCt InteraCtIOns

181

 return majorField;

 }

 public void setMajorField(String major) {

 // Assign the value passed in as an argument as the new

value of

 // the majorField attribute.

 majorField = major;

 }

}

There is one exception to the “get” method naming convention: when an attribute

is of type boolean, it’s recommended to name the “get” method starting with the verb

is instead of with get. The “set” method for a boolean attribute would still follow the

standard naming convention, however, for example:

public class Student {

 private boolean honorsStudent;

 // other attributes omitted from this example ...

 // Get method. For a boolean, the method name starts with "is" vs. "get".

 public boolean isHonorsStudent() {

 return honorsStudent;

 }

 // Set method.

 public void setHonorsStudent(boolean x) {

 honorsStudent = x;

 }

 // etc.

}

All of the “get”/“set” method bodies that we’ve seen thus far are simple “one-

liners”: we’re either returning the value of the attribute of interest with a simple return

statement in a “get” method or copying the value of the passed-in argument to the

internal attribute in a “set” method so as to store it. This isn’t to imply that all “get”/“set”

methods need be this simple; in fact, there are endless possibilities for what actually gets

Chapter 4 ObjeCt InteraCtIOns

182

coded in accessor methods, because, as we discussed earlier, methods must implement

business rules, not only about how an object behaves but also what valid states its data

can assume.

As a simple example, let’s say that we always want to store a Student’s name such as

“Steve Barker” in the format “S. BARKER,” where we abbreviate the first name to a single

letter and represent the entire name in all uppercase. We might therefore wish to write

the setName method of the Student class as follows:

public void setName(String newName) {

 // First, reformat the newName, as necessary ...

 // Pseudocode.

 if (newName contains full first name) {

 // Amend the value of newName.

 newName = newName with first name converted to a single character

 followed by a period;

 }

 // Next, convert newName to all uppercase.

 // Pseudocode.

 newName = upper case version of newName;

 // Only then do we update the name attribute with the (modified) value.

 name = newName;

}

 IDE-Generated Get/Set Methods
With most IDEs, get and set methods are generated automatically. In such cases, the

name of the parameter being passed into the set method will typically be identical to the

name of the attribute, for example:

public class Student {

 String majorField;

// other details omitted

public void setMajorField(String majorField) {

 this.majorField = majorField;

}

Chapter 4 ObjeCt InteraCtIOns

183

The use of the keyword this followed by a dot (.) in front of majorField in the

preceding code indicates to the compiler that the local variable majorField’s value is to

be transferred to the attribute by the same name.

 The “Persistence” of Attribute Values
Because I haven’t explicitly stated so before, and because it may not be obvious to

everyone, I’d like to call attention now to the fact that an object’s attribute values persist

as long as the object itself persists in memory. That is, once we instantiate a Student

object in our application

Student s = new Student();

then any values that we assign to s’s attributes

s.setName("Mel");

will persist until such time as either the value is explicitly changed

// Renaming Student s.

s.setName("Klemmie");

or the object as a whole is garbage collected by the Java Virtual Machine (JVM), a process

that we discussed in Chapter 3. So, to return to our analogy of objects as helium balloons

from Chapter 3, as long as the “helium balloon” representing Student s stays “inflated,”

whenever we ask s for its name, it will “remember” whatever value we’ve last assigned to

its name attribute.

 Using Accessor Methods from Client Code
We already know how to use dot notation to invoke methods on objects from client code,

and so we’ll do the same when invoking accessor methods on object references:

Student s = new Student();

// Modify ("set") the attribute value.

s.setName("Joe");

// Read ("get") the attribute value.

System.out.println("Name: " + s.getName());

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_3

184

I promised earlier in this chapter to discuss how a given Student can be informed

as to which particular Professor is its facultyAdvisor; now that you know about “set”

methods, doing so is a snap! Assuming that (a) facultyAdvisor is an attribute of the

Student class declared to be of type Professor and (b) we’ve written a “set” method for

this attribute with the “standard” header public void setFacultyAdvisor(Professor p),

here’s the client code for “acquainting” students with their advisors:

Student s1 = new Student();

Student s2 = new Student();

Student s3 = new Student();

Student s4 = new Student();

// etc.

Professor p1 = new Professor();

Professor p2 = new Professor();

// etc.

// Details omitted ...

s1.setFacultyAdvisor(p1);

s2.setfacultyAdvisor(p1);

s3.setFacultyAdvisor(p2);

s4.setFacultyAdvisor(p2);

// etc.

 The Power of Encapsulation Plus Information Hiding
You learned earlier that encapsulation is the mechanism that bundles together the state

(attribute values) and behavior (methods) of an object. Now that you’ve gained some insights

into public/private accessibility, encapsulation warrants a more in-depth discussion.

It’s useful to think of an object as a “fortress” that “guards” its data—namely, the

values of all of its attributes. Rather than trying to march straight through the walls of a

fortress, which typically results in death and destruction (!), we ideally would approach

the guard at the gate to ask permission to enter. Generally speaking, the same is true for

objects: we can’t directly access the values of an object’s privately declared attributes

without an object’s permission and knowledge—that is, without using one of an object’s

publicly accessible methods to access the attribute’s value.

Chapter 4 ObjeCt InteraCtIOns

185

Assume that you’ve just met someone for the first time and wish to know their name.

One way to determine their name would be to reach into their pocket, pull out their

wallet, and look at their driver’s license—essentially, accessing their private attribute

values without their permission! The more socially acceptable way would be to simply

ask them for their name—akin to using their getName method—and to allow them to

respond accordingly. They may respond with their formal name or a nickname or an

alias, or they may say, “It’s none of your business!”—but the important point is that

you’re giving the person (object) control over their response based on how the logic of

the accessor method is coded.

By restricting access to an object’s private attributes through public accessors, we

derive three important benefits:

• Preventing unauthorized access to encapsulated data

• Helping ensure data integrity

• Limiting “ripple effects” that can otherwise occur throughout an

application when the private implementation details of a class

must change

Let’s discuss each of these benefits in detail.

 Preventing Unauthorized Access to Encapsulated Data
Some of the information that a Student object maintains about itself—say, the student’s

identification number—may be highly confidential. A Student object may choose to

selectively pass along this information when necessary—for example, when registering

for a course—but may not wish to hand out this information to any object that happens

to casually ask for it.

Simply by making the attribute private, and intentionally omitting a public “get”

method with which to request the attribute’s value, there’d be no way for another object

to request the Student object’s identification number.

 Helping Ensure Data Integrity
As mentioned previously, one of the arguments against declaring public attributes is that

the object loses control over its data, for as we saw earlier, a public attribute’s value can

be changed by client code without regard to any business rules that the object’s class

Chapter 4 ObjeCt InteraCtIOns

186

may wish to impose. On the other hand, when an accessor method is used to change the

value of a private attribute, value checking can be built into the “set” method to ensure

that the attribute value won’t be set to an “improper” value.

As an example, let’s say that we’ve declared a Student attribute as follows:

private String birthDate;

Our intention is to record birth dates in the format “mm/dd/yyyy”. By requiring that

client code invoke methods to manipulate the birthDate attribute (instead of permitting

direct public access to the attribute), we can provide logic within those methods to

validate the format of any newly proposed birth date and reject those that are invalid.

We’ll illustrate this concept by declaring an updateBirthDate method for the Student

class as shown in the following code:

public class Student {

 private String birthDate;

 // other attributes omitted from this example ...

 public boolean updateBirthDate(String newBirthDate) {

 boolean newDateApproved;

 // Perform appropriate validations.

 // Remember, italics represent pseudocode ...

 if (date is not in the format mm/dd/yyyy) {

 newDateApproved = false;

 }

 else if (mm not in the range 01 to 12) {

 newDateApproved = false;

 }

 else if (the day number isn't valid for the selected month) {

 newDateApproved = false;

 }

 else if (the year is NOT a leap year, but 2/29 was specified) {

 newDateApproved = false;

 }

Chapter 4 ObjeCt InteraCtIOns

187

 // etc. for other validation tests.

 else {

 // If we've gotten this far in the code, all is well with

what was

 // passed in as a value to this method, and so we can go

ahead and

 // update the value of the birthDate attribute with this value.

 birthDate = newBirthDate;

 // Set our flag to indicate success!

 newDateApproved = true;

 }

 return newDateApproved;

 }

 // etc.

}

If an attempt is made to pass an improperly formatted birth date to the method from

client code, as in

s.updateBirthDate("foo");

the change will be rejected and the value of s’s birthDate attribute will be unchanged. In

fact, we’d probably insert the attempt to update the birth date within an “if” statement so

that we could detect and react to such a rejection:

// Somewhere along the line, the newDate variable takes on an

invalid value.

String newDate = "Jan 1 1990";

// Later in the application ...

if (!(s.updateBirthDate(newDate)) {

 // Pseudocode.

 do whatever we need to do if value is rejected ...

}

Chapter 4 ObjeCt InteraCtIOns

188

On the other hand, if birthDate had been declared to be a public attribute of the

Student class, then setting the attribute directly as follows would be permitted by the

compiler:

 s.birthDate = "Jan 1 1990";

Hence, it would be possible to corrupt the attribute’s value by bypassing the error

checking, based on business rules, that a “set” method would normally perform for us.

 Limiting “Ripple Effects” When Private Features Change
Despite our best attempts to avoid such situations, we often have a need to go back and

modify the design of an application after it has been deployed, either when an inevitable

change in requirements occurs or if we unfortunately discover a design flaw that needs

attention. Unfortunately, in a non-OO (or poorly designed OO) application, this can

open us up to “ripple effects,” wherein dozens or hundreds or thousands of lines of code

throughout an application have to be changed, retested, etc.

One of the most dramatic examples of the negative impact of a design change was

the notorious Y2K problem. When the need to change date formats to accommodate a

four-digit year arose as the year 2000 approached, the burden to hunt through billions

of lines of code in millions of applications worldwide to find all such cases—and to fix

them without unintentionally breaking anything else—was mind-boggling. Many folks

were convinced at the time that the world would actually melt down as a result, and in

fact, it’s quite amazing that it didn’t!

Perhaps the most dramatic benefit of encapsulation combined with information

hiding, therefore, is that the hidden implementation details of a class—that is, its

private data structure and/or its (effectively private) accessor code—can change
without affecting how client code interacts with objects belonging to that class. To

illustrate this principle, we’ll craft an example.

Let’s say that an attribute is declared in the Student class as follows

private int age;

and that we declare a corresponding getAge() method as follows:

public int getAge() {

 return age;

}

Chapter 4 ObjeCt InteraCtIOns

189

(We’ve chosen not to declare a setAge method because we’ve decided that we want

age to be a read-only attribute.)

We then proceed to use our Student class in countless applications; so, in literally

thousands of places within the client code of these applications, we write statements

such as the following, relying on the “get” method to provide us with a student’s age as

an int value, for example:

int currentAge = s.getAge();

A few years later, we decide to modify the data structure of the Student class so that,

instead of maintaining an age attribute explicitly, we instead use the student’s birthDate

attribute to compute a student’s age whenever it’s needed. We thus modify our Student

class code as follows:

In the “after” version of Student, we’re computing the student’s age by subtracting

their birth date (stored as an attribute value) from today’s date. This is an example of

what can be informally referred to as a pseudoattribute—to client code, the presence

of a getAge() method implies that there is an attribute by the name of age, when in fact

there may not be.

Table 4-1. Modifying Private Details of the Student Class: A Before vs. After View

The “Before” Code The “After” Code

public class Student {

 // We have an explicit

 // age attribute.

 private int age;

 public int getAge() {

 return age;

 }

 // etc.

}

import java.util.Date;

public class Student {

 // We replace age with

 // birthDate.

 private Date birthDate;

 public int getAge() {

 // Compute the age on demand

 // (pseudocode).

 return system date - birthDate;

 }

 // etc.

}

Chapter 4 ObjeCt InteraCtIOns

190

The beauty is that we don’t care that the private details of the Student class design

have changed! In all of the thousands of places within the client code of countless

applications where we’ve used code such as

int currentAge = s.getAge();

to retrieve a student’s age as an int value, this code will continue to work as is, without

any changes to client code being necessary, because the expression

s.getAge()

still evaluates to an int value representing Student s’s age. Hence, we’ve avoided

“dreaded” ripple effects and have dramatically reduced the amount of effort necessary

to accommodate a design change. Such changes are said to be encapsulated, or limited

to the internal code of the Student class only.

Of course, all bets are off if the developer of a class changes one of its public

features—most often, a public method header—because then all of the client code that

passes messages to objects of this type using this method will potentially have to change.

For example, if we were to change the Student class design so that the getAge() method

is now declared to return a double value, as follows

public class Student {

 // We've changed the type of the age attribute from int to double ...

 private double age;

 // ... and the return type of the getAge() method accordingly.

 public double getAge() {

 return age;

 }

 // etc.

then much of our client code would indeed potentially “break,” as in the following

example:

// This will no longer compile!

int currentAge = s.getAge();

Chapter 4 ObjeCt InteraCtIOns

191

This particular client code will “break” because we now have a type mismatch. We

are getting back a double value, but are trying to assign it to an int variable, which as we

learned in Chapter 2 will generate a compiler error as follows:

possible loss of precision

found : double

required : int

We’d have to hunt for all of the countless instances throughout potentially many

applications where we are calling the getAge() method on a Student reference and

modify each such line of code to either do an explicit cast from double to int, as follows:

// We're now using a cast.

int currentAge = (int) s.getAge();

Thus, we’d potentially incur a significant ripple effect. But again, this ripple effect is

due to the fact that we changed a public feature of our class—a public method header, to

be precise.

As long as we restrict our changes to the private features of a class, ripple effects

aren’t an issue; any client code that was previously written to use public Student

methods will continue to work as intended.

 Using Accessor Methods from Within a Class’s
Own Methods
Earlier in the chapter, we discussed the fact that a class is permitted to directly access its

own attributes by name, as in the following printStudentInfo method:

public class Student {

 private String name;

 private String ssn;

 // etc.

 // Details omitted.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_2

192

 public void printStudentInfo() {

 // We're accessing our own attributes directly.

 System.out.println("Name: " + this.name);

 System.out.println("Student ID: " + this.ssn);

 // etc.

 }

 // etc.

However, it’s considered to be a best practice for a class to use its own “get”/“set”
methods whenever it needs to access one of its own attribute values. Let’s revise the

printStudentInfo method to illustrate this best practice:

public class Student {

 private String name;

 private String ssn;

 // etc.

 // "Garden variety" accessor methods.

 public String getName() {

 return name;

 }

 public void setName(String n) {

 name = n;

 }

 public String getSsn() {

 return ssn;

 }

 public void setSsn(String s) {

 ssn = s;

 }

 public void printStudentInfo() {

 // We're now using our own "get" methods to access our own

 // attribute values.

 System.out.println("Name: " + this.getName());

Chapter 4 ObjeCt InteraCtIOns

193

 System.out.println("Student ID: " + this.getSsn());

 // etc.

 }

 // etc.

Why is it important to use a class’s own “get”/“set” methods rather than accessing

attributes directly? Let’s say that, at some future date, the getName and getSsn methods

of the Student class are modified as follows:

 public String getName() {

 // Business rules have changed! We now want to reformat the name

 // as stored within a Student object before returning it to

 // client code.

 // (Pseudocode.)

 String reformattedName = name reformatted in the form

 "LastName, FirstName";

 return reformattedName;

 }

 public String getSsn() {

 // Business rules have changed! We now want to reformat the

 // ssn as stored within a Student object to insert dashes

 // before returning it to client code.

 // (Pseudocode.)

 String reformattedSsn = ssn reformatted in the form "xxx-xx-xxxx";

 return reformattedSsn;

 }

Because we’ve redesigned the printStudentInfo method to invoke this.getName()

and this.getSsn(), we’ll automatically benefit from the changes in business logic

within the getName and getSsn methods:

// Client code.

Student s = new Student();

s.setName("Susan Yamate");

s.setSsn("123456789");

s.printStudentInfo();

Chapter 4 ObjeCt InteraCtIOns

194

Here’s the output:

Name: Yamate, Susan

Student ID: 123-45-6789

On the other hand, if we had accessed the name and ssn attributes directly from

within the printStudentInfo method

 public void printStudentInfo() {

 // We're accessing private attributes directly by name rather than

 // using the corresponding get methods.

 System.out.println("Name: " + name);

 System.out.println("Student ID: " + ssn);

 // etc.

 }

we would not benefit from changes in business logic:

// Client code.

Student s = new Student();

s.setName("Susan Yamate");

s.setSsn("123456789");

s.printAllAttributes();

Here’s the output (incorrectly formatted):

Name: Susan Yamate

Student ID: 123456789

The same holds true for using a class’s own “set” methods when updating the

value of an attribute from within another method—for example, this version of the

assignMajor method of Student

public class Student {

 private String name;

 private String ssn;

 private String major;

Chapter 4 ObjeCt InteraCtIOns

195

 private Professor advisor;

 // etc.

 // Set/get methods provided; details omitted.

 public void assignMajor(String m, Professor p) {

 // Preferred.

 this.setMajor(m);

 this.setAdvisor(p);

 }

 // etc.

is preferred over this version

public class Student {

 private String name;

 private String ssn;

 private String major;

 private Professor advisor;

 // etc.

 // Set/get methods provided; details omitted.

 public void assignMajor(String m, Professor p) {

 // Not as desirable.

 this.major = m;

 this.advisor = p;

 }

 // etc.

because the Student class’s “set” methods may be simple “one-liners” today

public void setMajor(String m) {

 major = m;

}

but may be enhanced to reflect more sophisticated business logic at some point in

the future:

Chapter 4 ObjeCt InteraCtIOns

196

public void setMajor(String m) {

 // Pseudocode.

 look up m in a database to verify that it is an "approved" major

designation

 before updating the major attribute

 if (m is valid) {

 major = m;

 }

}

Of course, the one place where we cannot invoke a class’s “get”/“set” methods

is within the “get”/“set” methods themselves. To do so would result in an infinitely

recursive method

// This method is recursive!

public void setName(String n) {

 this.setName(n);

}

which will compile properly, but will produce a run-time error when invoked, as follows:

// Client code.

Student s = new Student();

s.setName("Fred Schnurd");

Here’s the error:

Exception in thread "main" java.lang.StackOverflowError

 at Student.setName(Student.java:8)

 at Student.setName(Student.java:8)

 at Student.setName(Student.java:8)

 at Student.setName(Student.java:8)

 at Student.setName(Student.java:8)

 (repeated 1024 times!)

Chapter 4 ObjeCt InteraCtIOns

197

 Exceptions to the Public/Private Rule
Even though it’s often the case that

• Attributes are declared to be private

• Methods are declared to be public

• Private attributes are accessed through public methods

there are numerous exceptions to this rule.

Exception #1—Internal housekeeping attributes: An attribute may be used by a class

strictly for internal housekeeping purposes. (Like the dishwashing detergent you keep

under the sink, guests needn’t know about it!) For such attributes, we needn’t bother to

provide public accessors.

One example for the Student class might be an int attribute countOfDsAndFs, used

to keep track of how many poor grades a student has received in order to determine

whether or not the student is on academic probation. We may in turn provide a Student

class method onAcademicProbation as follows:

public class Student {

 // Private housekeeping attribute.

 private int countOfDsAndFs;

 // other attributes omitted from this example ...

 public boolean onAcademicProbation() {

 boolean onProbation = false;

 // If the student received more than three substandard grades,

 // he or she will be put on academic probation.

 if (countOfDsAndFs > 3) {

 onProbation = true;

 }

 return onProbation;

 }

 // other methods omitted from this example ...

}

Chapter 4 ObjeCt InteraCtIOns

198

The onAcademicProbation method uses the value of private attribute

countOfDsAndFs to determine whether a student is on academic probation, but no

client code need ever know that there is such an attribute as countOfDsAndFs, and so

no explicit public accessor methods are provided for this attribute. Such attributes

are instead set as a side effect of performing some other method, as in the following

example, also taken from the Student class:

public void completeCourse(String courseName, int creditHours, char

grade) {

 // Updating this private attribute is considered to be a

 // "side effect" of completing a course.

 if (grade == 'D' || grade == 'F') countOfDsAndFs++;

 // Other processing details omitted from this example ...

}

Exception #2—Internal housekeeping methods: Some methods may be used strictly

for internal housekeeping purposes, as well, in which case these may also be declared

private rather than public. (A neighbor needn’t know that we have a maid who comes to

clean every other week!)

An example of such a Student method might be updateGpa, which recomputes the

value of the gpa attribute each time a student completes another course and receives a

grade. The only time that this method may ever need to be called is perhaps from within

another method of Student—for example, the public completeCourse method—as

follows:

public class Student {

 private double gpa;

 private int totalCoursesTaken;

 private int totalQualityPointsEarned;

 private int countOfDsAndFs;

 // other details omitted ...

 public void completeCourse(String courseName,

 int creditHours, char grade) {

 if (grade == 'D' || grade == 'F') {

 countOfDsAndFs++;

 }

Chapter 4 ObjeCt InteraCtIOns

199

 // Record grade in transcript.

 // details omitted ...

 // Update an attribute ...

 totalCoursesTaken = totalCoursesTaken + 1;

 // ... and call a PRIVATE housekeeping method from within this

 // public method to adjust the student's GPA accordingly.

 updateGpa(creditHours, grade);

 }

 // The details of HOW the GPA gets updated are a deep, dark

 // secret! Even the EXISTENCE of this next method is hidden from

 // the "outside world" (i.e., inaccessible from client code) by

 // virtue of its having been declared to be PRIVATE.

 private void updateGpa(int creditHours, char grade) {

 int letterGradeValue = 0;

 if (grade == 'A') letterGradeValue = 4;

 if (grade == 'B') letterGradeValue = 3;

 if (grade == 'C') letterGradeValue = 2;

 if (grade == 'D') letterGradeValue = 1;

 // For an 'F', it remains 0.

 int qualityPoints = creditHours * letterGradeValue;

 // Update two attributes.

 totalQualityPointsEarned =

 totalQualityPointsEarned + qualityPoints;

 gpa = totalQualityPointsEarned/totalCoursesTaken;

 }

}

Client code shouldn’t be able to directly cause a Student object’s gpa to be updated;

this should only occur as a side effect of completing a course. By making the updateGpa

method private, we’ve prevented any client code from explicitly invoking this method to

manipulate this attribute’s value out of context.

Chapter 4 ObjeCt InteraCtIOns

200

Exception #3—“Read-only” attributes: If we provide only a “get” method for an

attribute, but no “set” method, then that attribute is rendered effectively read-only from

the perspective of client code. We might do so, for example, with a student’s ID number

that, once set by the system at the time of Student object creation, should remain

unchanged:

public class Student {

 private String studentId;

 // details omitted

 // We render studentId as a read-only attribute by only writing a

get method

 // for it.

 public String getStudentId() {

 return studentId;

 }

 // The set method is intentionally omitted from the class.

}

How do we ever set such an attribute’s value initially? We’ve already seen that some

attributes’ values get modified as a side effect of performing a method (as with the

countOfDsAndFs attribute that we discussed earlier). We’ll also see how to explicitly

initialize such a read-only attribute a bit later in this chapter, when we talk about

constructors.

Exception #4—Public attributes: On rare occasions, a class may declare selected

attributes as public for ease of access; this is only done when there is no business logic
governing the attributes per se.

One such example is the predefined Java Point class, which is used to define an (x, y)

coordinate in two-dimensional space; its attributes are declared simply as

public class Point {

 // Both attributes are public:

 public double x;

 public double y;

 // etc.

}

Chapter 4 ObjeCt InteraCtIOns

201

so that, in client code, we may easily assign values as follows:

Point p = new Point();

p.x = 3.7;

p.y = -4.8;

That being said, when creating your own classes, resist the urge to declare attributes

with public accessibility simply as a lazy way of avoiding having to write “get”/“set”

methods! We’ve seen the many benefits that “get”/“set” methods provide in terms of

enforcing business logic when appropriate. As it turns out, the vast majority of attributes

will need to be governed by such business logic.

 Constructors
When we talked about instantiating objects in the previous chapter, you might have been

curious about the interesting syntax involved with the new keyword:

Student x = new Student();

In particular, you might have wondered why there were parentheses tacked onto the

end of the statement.

It turns out that when we instantiate an object via the new keyword, we’re actually

invoking a special type of function affiliated with a class called a constructor. Invoking a

constructor serves as a request to the JVM to construct (instantiate) a brand-new object

at run time by allocating enough program memory to house the object’s attributes.

Returning to our “object as a helium balloon” analogy, we’re asking the JVM to inflate a

new helium balloon of a particular type.

 Default Constructors
If we don’t explicitly declare any constructors for a class, Java automatically provides a

default constructor for that class. The default constructor is parameterless—that is, it

takes no arguments—and does the “bare minimum” required to initialize a new object:

namely, setting all attributes to their zero-equivalent default values.

Chapter 4 ObjeCt InteraCtIOns

202

Thus, even though we may have designed a class with no explicit constructors

whatsoever, as with the following Student class

public class Student {

 // Attributes.

 private String name;

 // other details omitted ...

 // We've declared methods, but NO EXPLICIT CONSTRUCTORS.

 public String getName() {

 return name;

 }

 public void setName(String newName) {

 name = newName;

 }

 // etc.

}

we are still able to write client code to instantiate a “bare-bones” Student object

as follows

Student s1 = new Student();

because the JVM uses the default constructor for the Student class.

 Writing Our Own Explicit Constructors
We needn’t rely on Java to provide a default constructor for each of our classes; we

can instead write constructors of our own design for a particular class if we wish to do

something more interesting/complex to initialize an object when it is first instantiated.

Note that the header syntax for a constructor is a bit different from that of a method:

 public _____________ Student()

 access NO return type! constructor name must match

 modifier class name, followed by

 comma-separated list of formal

 parameters enclosed in ()

Chapter 4 ObjeCt InteraCtIOns

203

• A constructor’s name must be exactly the same as the name of the

class for which we’re writing the constructor—we have no choice in

the matter.

• A parameter list, enclosed in parentheses, is provided for a

constructor header as with method headers. And, as with method

headers, the parameter list may be left empty if appropriate.

• We cannot specify a return type for a constructor; by definition, a

constructor returns a reference to a newly created object of the type

represented by the class to which the constructor belongs. That is, a

constructor of the form

// Note: no return type!

public Student() { ... }

returns a newly instantiated Student object reference. A

constructor of the form

// Note: no return type!

public Professor() { ... }

returns a newly instantiated Professor object reference. And

so forth.

Another disparity with respect to constructor syntax as compared with that of

methods is that invoking a constructor does not involve dot notation:

 Professor p = new Professor();

This is because we aren’t requesting a service of a particular object; rather, we’re

requesting that a brand-new object be crafted by the JVM.

 Passing Arguments to Constructors
One of the most common motivations for declaring an explicit constructor for a class is

to provide a convenient way to pass in initial values for an object’s attributes at the time

of instantiation.

If we use a default constructor to instantiate a bare-bones object, we then must

invoke the object’s “set” methods one by one to initialize its attribute values, as

illustrated by this next snippet:

Chapter 4 ObjeCt InteraCtIOns

204

 // Create a bare bones Student object.

 Student s = new Student();

 // Initialize the attributes one by one.

 s.setName("Fred Schnurd");

 s.setSsn("123-45-6789");

 s.setMajor("MATH");

 // etc.

This can be rather tedious if there are a lot of attributes to initialize.

Alternatively, if we design a constructor that accepts arguments, we can

simultaneously instantiate an object and provide meaningful initial attribute values in a

single line of code, for example:

// This single line of code replaces the previous four lines.

Student s = new Student("Fred Schnurd", "123-45-6789", "MATH");

In order to accomplish this, we’d of course have to declare a Student class

constructor with an appropriate header, as shown here:

public class Student {

 // Attributes.

 private String name;

 private String ssn;

 private String major;

 // etc.

 // We've declared a constructor that accepts three arguments, to

accommodate

 // passing in three attribute values.

 public Student(String s, String n, String m) {

 this.setName(n);

 this.setSsn(s);

 this.setMajor(m);

 }

 // etc.

Chapter 4 ObjeCt InteraCtIOns

205

Constructor arguments can also be used as control flags for influencing how a

constructor behaves, as illustrated in the next example constructor:

public Student(String name, boolean assignDefaults) {

 setName(n);

 if (assignDefaults) {

 this.setSsn("?");

 this.setMajor("UNDECLARED");

 }

}

Client code for the preceding might look as follows:

// We DO want to assign default values to other attributes.

Student s = new Student("Cynthia Coleman", true);

 Replacing the Default Parameterless Constructor
If we wish, we can explicitly program a parameterless constructor for our classes to

do something more interesting than merely instantiating a bare-bones object, thereby

replacing the default parameterless constructor with one of our own design. This is

illustrated by the following class:

public class Student {

 // Attributes.

 private String name;

 private String major;

 // etc.

 // We've explicitly programmed a parameterless constructor, thus

replacing

 // the default version.

 public Student() {

 // Perhaps we wish to initialize attribute values to something

other than

 // their zero equivalents.

 this.setName("?");

 this.setMajor(“UNDECLARED”);

Chapter 4 ObjeCt InteraCtIOns

206

 // etc.

 }

 // Other methods omitted from this example.

}

 More Elaborate Constructors
We can program a constructor to do whatever makes sense in constructing a new

Student:

• We may wish to instantiate additional objects related to the

Student object:

public class Student() {

 // Every Student maintains a handle on his/her own

individual Transcript

 // object.

 private Transcript transcript;

 public Student() {

 // Create a new Transcript object for this new

Student.

 transcript = new Transcript();

 // etc.

 }

 // etc.

}

• We may wish to access a relational database to read in the data

needed to initialize the Student’s attributes:

public class Student {

 // Attributes.

 String studentId;

 String name;

 double gpa;

 // etc.

Chapter 4 ObjeCt InteraCtIOns

207

 // Constructor.

 public Student(String id) {

 studentId = id;

 // Pseudocode.

 use studentId as a primary key to retrieve data from

the Student table of a

 relational database;

 if (studentId found in Student table) {

 retrieve all data in the Student record;

 name = name retrieved from database;

 gpa = value retrieved from database;

 // etc.

 }

 }

 // etc.

}

• We may wish to communicate with other already existing objects to

announce a new Student’s existence:

public class Student {

 // Details omitted.

 // Constructor.

 public Student(String major) {

 // Alert the student's designated major department that a new

student has

 // joined the university.

 // Pseudocode.

 majorDept.notify(about this student ...);

 // etc.

 }

 // etc.

}

Chapter 4 ObjeCt InteraCtIOns

208

• And so forth—whatever is required of our application.

We’ll see examples of such constructors later in the book, when we craft the SRS.

 Overloading Constructors
Just as we are permitted to overload methods in Java, we are permitted to overload

constructors. That is, we may write as many different constructors for a given class as we

wish, as long as they have different argument signatures.

Here is an example of a Student class that declares three different constructors:

public class Student {

 private String name;

 private String ssn;

 private int age;

 // etc.

 // Constructor #1: takes no arguments; supercedes the default

constructor.

 public Student() {

 // Assign default values to selected attributes, if desired.

 this.setSsn("?");

 // Those that aren't explicitly initialized in the constructor will

 // automatically assume the zero-equivalent value for their

respective type.

 }

 // Constructor #2: takes a single String argument.

 public Student(String s) {

 this.setSsn(s);

 }

 // Constructor #3: takes two Strings and an int as arguments.

 public Student(String s, String n, int i) {

 this.setSsn(s);

 this.setName(n);

 this.setAge(i);

 }

Chapter 4 ObjeCt InteraCtIOns

209

 // Other methods omitted from this example.

}

By overloading the constructor for a class, we make the class more versatile by giving

client code a variety of constructors to choose from, depending on the circumstances.

Here is an example of client code illustrating the use of all three forms of Student

constructor:

// We don't know ANYTHING about our first student, so we use the

// parameterless constructor to instantiate s1.

Student s1 = new Student();

// We know the ssn (only) for our second student, and so we use the second

// form of constructor to instantiate s2.

Student s2 = new Student("123-45-6789");

// We know the ssn, name, and age of our third student, and so we use

// the third form of constructor to instantiate s3.

Student s3 = new Student("987-65-4321", "John Smith", 21);

As with overloaded methods, the compiler is able to unambiguously match up which

version of constructor is being invoked in each case based on the argument signatures:

• (): No arguments tell the compiler that we are invoking

constructor #1.

• ("123-45-6789"): One String argument tells the compiler that we

are invoking constructor #2.

• ("987-65-4321", "John Smith", 21): Two Strings and an int as

arguments tell the compiler that we are invoking constructor #3.

This example also reinforces why no two constructors may have the same argument

signature. If we were permitted to introduce a fourth constructor whose argument

signature duplicated that of constructor #2, for example

// Constructor #4: takes a single String argument, thereby duplicating the

// argument signature of constructor #2.

public Student(String n) { // THIS WON'T COMPILE!!!

 this.setName(n);

}

Chapter 4 ObjeCt InteraCtIOns

210

then the compiler would not know which constructor—#2 or #4—we’re trying to invoke

in the following client code:

// Pseudocode.

Student x = new Student(aStringExpression);

So, to avoid such an ambiguous situation, the compiler generates an error message

on the preceding declaration of constructor #4, as follows:

Student(java.lang.String) is already defined in Student

 public Student(String n) { }

 ^

 An Important Caveat Regarding the Default Constructor
There is one very important caveat about default constructors in Java: if we declare

any of our own constructors for a class, with any argument signature, then the default

parameterless constructor is not automatically provided. This is by design, because it is

assumed that if we’ve gone to the trouble to program any constructors whatsoever for a

class, then we must have some special initialization requirements for that class that the

default constructor could not possibly anticipate.

The implication of this language feature is as follows: if we want or need a constructor

that accepts no arguments for a particular class along with other versions of constructors

that do take arguments, we must explicitly program a parameterless constructor. To

illustrate this point, let’s consider a Student class that only declares one explicit constructor:

public class Student {

 // Details omitted.

 // Only one constructor is explicitly declared, and which takes a

 // single String argument.

 public Student(String s) {

 this.setSsn(s);

 }

 // etc.

}

Chapter 4 ObjeCt InteraCtIOns

211

In client code, we may instantiate a Student based on this class as follows:

Student s = new Student("123-45-6789");

But if we try to use the (what is now nonexistent) default constructor

Student s = new Student();

we’ll get the following compilation error:

cannot find symbol

symbol : constructor Student()

location: class Student

 Student s = new Student();

 ^

Generally speaking, it is considered a best practice to always explicitly provide

a parameterless constructor (to replace the lost default) if we are providing any

constructors for a class at all. We’ll revisit the importance of this practice when we

discuss inheritance in Chapter 5.

One common mistake made by beginning Java programmers is to accidentally

declare a return type in a constructor header, for example:

public void Student() { ... }

This is a particularly difficult bug to track down, because while such header

declarations will compile, they are viewed by the compiler as methods and not as

constructors and cannot be used as such. What’s worse, developers will think that

they’ve programmed a parameterless constructor when in fact they haven’t; any attempt

to use such a constructor in their application will meet with the following seemingly

cryptic compilation error message:

Student s = new Student();

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_5

212

This is the compiler error:

cannot find symbol

symbol: constructor Student()

location: class Student

Student s = new Student();

 ^

 Using the “this” Keyword to Facilitate Constructor Reuse
Earlier in this chapter, we covered the this keyword and illustrated how it can be used

to optionally qualify features of a class when accessed from within methods of the same

class, as in

public class Student {

 // Details omitted.

 public void printAllAttributes() {

 System.out.println("Name: " + this.getName());

 System.out.println("Student ID: " + this.getSsn());

 // etc.

 }

}

We’re now going to explore a second alternative use of the this keyword, related to

reusing code from one constructor by another within the same class.

It’s conceivable that if we’ve overloaded the constructor for a class, there will be

some common initialization steps required of all versions. For example, let’s say that, for

all new students, we must

• Alert the registrar’s office of this student’s existence.

• Create a transcript for this student.

If we were to declare three constructors for the Student class, it would be tedious to

duplicate the same logic across all three (see the bolded lines of code):

Chapter 4 ObjeCt InteraCtIOns

213

public class Student {

 // Attribute details omitted.

 // Constructor #1.

 public Student() {

 // Assign default values to selected attributes ... details

omitted.

 // Pseudocode.

 alert the registrar's office of this student's existence

 // Create a transcript for this student.

 transcript = new Transcript();

 }

 // Constructor #2.

 public Student(String s) {

 this.setSsn(s);

 // This code is duplicated from above!

 // Pseudocode.

 alert the registrar's office of this student's existence

 // Create a transcript for this student.

 transcript = new Transcript();

 // end of code duplication

 }

 // Constructor #3.

 public Student(String s, String n, int i) {

 this.setSsn(s);

 this.setName(n);

 this.setAge(i);

 // DUPLICATION YET AGAIN!!!

 // Pseudocode.

 alert the registrar's office of this student's existence

Chapter 4 ObjeCt InteraCtIOns

214

 // Create a transcript for this student.

 transcript = new Transcript();

 // end of code duplication

 }

 // etc.

}

Worse yet, if the logic needed to change, we’d have to change it in all three

constructors. Fortunately, the this keyword comes to our rescue. From within any

constructor of a class X, we can invoke any other constructor of the same class X via the

following syntax:

this(argument signature);

Let’s rewrite our previous three Student constructors so that constructor #2 takes

advantage of the logic of #1 and #3 takes advantage of #2:

public class Student {

 // Attribute details omitted.

 // Constructor #1.

 public Student() {

 // Assign default values to selected attributes ... details

omitted.

 // Do the things common to all three constructors in this first

 // constructor.

 // Pseudocode.

 alert the registrar's office of this student's existence

 // Create a transcript for this student.

 transcript = new Transcript();

 }

 // Constructor #2.

 public Student(String s) {

 // REUSE the code of the first constructor within the second!

 this(); // invoking the parameterless constructor

Chapter 4 ObjeCt InteraCtIOns

215

 // Then, do whatever else extra is necessary for constructor #2.

 this.setSsn(s);

 }

 // Constructor #3.

 public Student(String s, String n, int i) {

 // REUSE the code of the second constructor within the third!

 this(s); // Invoking the constructor with one String argument

 // Then, do whatever else extra is necessary for constructor #3.

 this.setName(n);

 this.setAge(i);

 }

 // etc.

}

By invoking this(); from within constructor #2 and this(s); from within constructor

#3, we were able to eliminate all duplication of code.

When using the this(...); syntax to reuse code from one constructor to another,

note that the statement must be the first statement in the constructor; that is, the

following code will not compile:

 // Constructor #3.

 public Student(String s, String n, int i) {

 // Do whatever extra is necessary for constructor #3;

 // details omitted.

 ...

 // Then, attempt to reuse the code of constructor #2;

 // THIS NEXT LINE WON'T COMPILE!

 this(s);

 }

Here’s the error:

call to this must be first statement in constructor

 this(s);

 ^

Chapter 4 ObjeCt InteraCtIOns

216

We’ll revisit the this keyword yet again in Chapter 13, to discuss a third context
in which it can be used.

 Software at Its Simplest, Revisited
As we discussed in Chapter 3, software at its simplest consists of two primary

components: data and functions that operate on that data (see Figure 4-9).

Figure 4-9. At it simplest, software consists of data and functions that operate on
that data

We also compared the functional decomposition approach of designing software

with the object-oriented approach. By way of review

With the functional decomposition approach to software development, our primary

focus was on the functions that an application was to perform; data was an afterthought.

That is,

• Data was passed around from one function to the next.

• Data structure thus had to be understood in many places—that is, by

many functions—throughout an application.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_3

217

• If an application’s data structure had to change after the application

was deployed, nontrivial ripple effects often arose throughout the

application.

• If data integrity errors arose as a result of faulty logic after an

application had been fully integrated, it was often very difficult to

pinpoint precisely where—that is, in which specific function(s)—the

error might have occurred.

We now know that by taking advantage of the mechanisms of

encapsulation plus information hiding, the object-oriented approach to

software development remedies the vast majority of these shortcomings:

• Data is encapsulated inside of objects as attributes, and, if we

declare these attributes as having private accessibility, then the data

structure has to be understood only by the object/class to which the

data belongs.

• If the (private) attribute declarations of a class have to change after an

application has been deployed—as was the case when we modified

the data structure of the Student class, replacing an int age attribute

with a Date birthDate attribute—there are virtually no ripple effects:

only the internal logic of the affected class’s methods must change.

(Recall that we modified the internal workings of the getAge

method in one of our Student class examples, but that none of the

client code that called getAge had to change, because we hadn’t

altered the public method signature of the method.)

• Each class is responsible for ensuring the integrity of its object’s
data. Thus, if data integrity errors arise within a given object’s data,

we can pretty much assume that it is the class to which the object

belongs whose method logic is faulty.

(Recall the updateBirthdate method from an earlier Student

class example. This method contained all sorts of validity checks

to ensure that the String being passed in as an argument

represented a valid birth date. Had an invalid birth date somehow

crept in, we’d know that there was something faulty about the

validation logic of the updateBirthdate method in particular.)

Chapter 4 ObjeCt InteraCtIOns

218

If every software application consists of data and functions that operate on that

data, then an object can be thought of as a sort of “mini application” whose methods

(functions) operate on its attributes (data), as shown in Figure 4-10. You’ll learn in

Chapter 5 how such objects “join forces” to collaborate on accomplishing the overall

mission of an application.

Figure 4-10. An object is a “mini application” that encapsulates data and
functions

 Summary
In this chapter, you’ve learned

• How to formally specify method headers, the “language” with

which services may be requested of an object, and how to formulate

messages—using dot notation—to actually request an object to

perform such services

• That multiple objects often have to collaborate in carrying out a

particular system function, such as registering a student for a course

• That an object A can only communicate with another object B if A

has a handle on B and the various ways that such a handle/reference

can be obtained

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_5

219

• How classes designate the public/private accessibility of their

features (attributes, methods) through a mechanism known as

information hiding

• How powerful a language feature information hiding is, both in terms

of protecting the integrity of an object’s data and preventing ripple

effects in client code when private implementation details of an

application inevitably change

• How to declare and use accessor (“get”/“set”) methods to gracefully

access the private attributes of an object from client code

• How a special type of function called a constructor is specified and

used to control what is to occur when we instantiate new objects

• How overloading enables a class to have multiple methods with the

same name and/or multiple constructors as long as their argument

signatures are different

EXERCISES

 1. Given a class Book defined as having the following attributes

Author author;

String title;

int noOfPages;

boolean fiction;

write standard “get”/“set” method headers for each of these attributes.

 2. [Coding] actually code and compile the Book class based on the attributes and

“get”/“set” methods called for in exercise 1.

 3. It’s often possible to discern something about a class’s design based on the

messages that are getting passed to objects in client code. Consider the

following client code snippet:

Student s;

Professor p;

boolean b;

String x = "Math";

Chapter 4 ObjeCt InteraCtIOns

220

s.setMajor(x);

if (!s.hasAdvisor()) {

 b = s.designateAdvisor(p);

}

What features—attributes, methods—are implied for the Student and

Professor classes by virtue of how this client code is structured? be as

specific as possible with respect to

• the accessibility of each feature

• how each feature would be declared (e.g., the details, to the extent that you

can “discover” them, of each method header)

 4. [Coding] expand the Student and Professor classes that you developed

for exercise 2 of Chapter 3 (and, optionally, the Department class that you

developed for exercise 3 of Chapter 3) as follows:

• Include accessor methods for every attribute.

• reflect the appropriate accessibility on all features.

• Include one or more constructors per class.

• Write a method with the header public void printAllAttributes()

that can be used to display the values of all attributes to the command

prompt, for example:

Student Name: John Smith

Student ID: 123-45-6789

etc.

then, modify the accompanying MainClass’s main method to take advantage of your

new constructors to instantiate one of each of the object types.

Chapter 4 ObjeCt InteraCtIOns

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_3

221

 5. What’s wrong with the following code? point out things that go against OO

convention or best practices based on what you’ve learned in this chapter,

regardless of whether or not the java compiler would “complain” about them.

public class Building {

 private String address;

 public int numberOfFloors;

 void GetnumberOfFloors() {

 return numberOfFloors;

 }

 private void SetNoOfFloors(float n) {

 NumberOfFloors = n;

 }

 public void display() {

 System.out.println("Address: " + address);

 System.out.println("No. of Floors: " + numberOfFloors);

 }

Chapter 4 ObjeCt InteraCtIOns

223

CHAPTER 5

Relationships Between
Objects
You learned in Chapter 4 that any two objects can have a “fleeting” relationship based on

the fact that they exchange messages, in the same way that two strangers passing on the

street might say “Hello!” to one another. We informally call such relationships between

objects behavioral relationships, because they arise out of the behaviors, or actions,

taken by one object X relative to another object Y.

With behavioral relationships, object X either is temporarily handed a reference

to object Y as an argument in a method call or temporarily requests a handle on Y

from another object Z. However, the emphasis is on temporary: when X is finished

communicating with Y, object X often discards the reference to Y.

In the same way that you have significant and more lasting relationships with

some people (family members, friends, colleagues), there is also the notion of a more

permanent relationship between objects. We informally refer to such relationships as

structural relationships because, in order to keep track of such relationships, an object

actually maintains long-term references to its related objects in the form of attributes, a

technique that we discussed in Chapter 3.

In this chapter, you’ll learn

• The various kinds of structural relationships that can be defined

between classes, which in turn govern how individual objects may be

linked together at run time

• How a powerful OOPL mechanism called inheritance enables

us to derive new classes by describing only how they differ from

existing classes

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_5

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_5#DOI

224

• The rules for what we can and can’t do when deriving classes through

inheritance

• How we must refine our understanding of (a) constructors and (b)

accessibility of features when inheritance is at work

 Associations and Links
The formal name for a structural relationship that exists between classes is an

association. With respect to the Student Registration System, some sample associations

might be as follows:

• A Student is enrolled in a Course.

• A Professor teaches a Course.

• A DegreeProgram requires a Course.

Whereas an association refers to a relationship between classes, the term link

is used to refer to a structural relationship that exists between two specific objects

(instances). Given the association “a Student is enrolled in a Course,” we might have the

following links:

• Chloe Shylow (a particular Student object) is enrolled in Math 101 (a

particular Course object).

• Fred Schnurd (a particular Student object) is enrolled in

Basketweaving 972 (a particular Course object).

• Mary Smith (a particular Student object) is enrolled in

Basketweaving 972 (a particular Course object—as it turns out, the

same Course object that Fred Schnurd is linked to).

In the same way that an object is a specific instance of a class with its attribute values

filled in, a link may be conceptually thought of as a specific instance of an association

with its participating objects filled in, as illustrated in Figure 5-1.

Chapter 5 relationships Between oBjeCts

225

Figure 5-1. An association is a template for creating links

Yet another way to think of the difference between an association and a link is that

• An association is a potential relationship between objects of a

certain type/class.

• A link is an actual relationship between objects of those

particular types.

For example, given any Student object X and any Course object Y, there is the

potential for a link of type is enrolled in to exist between those two objects precisely
because there is an is enrolled in association defined between the two classes that those

objects belong to. In other words, associations enable links.

Most associations arise between two different classes; such associations are

known as binary associations. The is enrolled in association, for example, is a binary

association, because it interrelates two different classes—Student and Course. A unary,

or reflexive, association, on the other hand, is between two instances of the same class,

for example:

• A Course is a prerequisite for (another) Course(s).

• A Professor supervises (other) Professor(s).

Even though the two classes specified at either end of a reflexive association are the

same, the objects are typically different instances of that class:

• Math 101 (a Course object) is a prerequisite for Math 202 (a different

Course object).

• Professor Smith (a Professor object) supervises Professors Jones and

Green (other Professor objects).

Chapter 5 relationships Between oBjeCts

226

although somewhat rare, there can be situations in which the same object can serve
in both roles of a reflexive relationship. For example, with regard to the association
“a professor is the chairman who represents other professors,” the actual
professor who is the chair of a given department would be their own representative.

Higher-order associations are also possible. A ternary association involves three

classes—for example, “a Student takes a Course from a particular Professor,” as

illustrated in Figure 5-2.

Figure 5-2. A ternary association

We typically decompose higher-order associations into the appropriate number of

binary associations. We can, for example, represent the preceding three-way association

as three binary associations instead (see Figure 5-3):

• A Student attends a Course.

• A Professor teaches a Course.

• A Professor instructs a Student.

Figure 5-3. An equivalent representation using three binary associations

Chapter 5 relationships Between oBjeCts

227

Within a given association, each participant class is said to have a role. In the

advises association (a Professor advises a Student), the role of the Professor might be

said to be “advisor,” and the role of the Student might be said to be “advisee.”

We only bother to assign names to the roles for the objects participating in an

association if it helps clarify the abstraction. In the “is enrolled in” association (a Student

is enrolled in a Course), there is no need to invent role names for the Student and

Course ends of the association, because such role names wouldn’t add significantly to

the clarity of the abstraction.

 Multiplicity
For a given association type X between classes A and B, the term multiplicity refers

to the number of objects of type A that may be associated with a given instance of

type B. For example, a Student attends multiple Courses, but a Student has only one

Professor in the role of advisor.

There are three basic “flavors” of multiplicity: one-to-one, one-to-many, and

many- to-many.

 One-to-One (1:1)

With a one-to-one (1:1) association, exactly one instance of class A is related to exactly

one instance of class B—no fewer, no more, and vice versa. For example:

• A Student has exactly one Transcript, and a Transcript belongs to

exactly one Student.

• A Professor chairs exactly one Department, and a Department has

exactly one Professor in the role of chairperson.

We can further constrain an association by stating whether the participation of the

class at either end is optional or mandatory. For example, we can change the preceding

association to read as follows:

• A Professor optionally chairs exactly one Department, but it is

mandatory that a Department has exactly one Professor in the role

of chairperson.

Chapter 5 relationships Between oBjeCts

228

This revised version of the association is a more realistic portrayal of real-world

circumstances than the previous version. While every department in a university

typically does indeed have a chairperson, not every professor is a chairperson of a

department—there aren’t enough departments to go around! However, it’s true that,

if a professor happens to be a chairperson of a department, then that professor is the

chairperson of only one department.

 One-to-Many (1:m)

In a one-to-many (1:m) association, there can be many instances of class B related to a

single instance of class A in a particular fashion; but, from the perspective of an instance

of class B, there can only be one instance of class A that is so related. For example:

• A Department employs many Professors, but a Professor works for

exactly one Department.

• A Professor advises many Students, but a given Student has exactly
one Professor as an advisor.

Note that “many” in this case can be interpreted as either “zero or more (optional)”

or as “one or more (mandatory).” To be a bit more specific, we can refine the previous

one-to-many associations as follows:

• A Department employs one or more (“many,” mandatory)

Professors, but a Professor works for exactly one Department.

• A Professor advises zero or more (“many,” optional) Students, but a

given Student has exactly one Professor as an advisor.

In addition, as with one-to-one relationships, the “one” end of a one-to-many

association may also be designated as mandatory or as optional. If we’re modeling a

university setting in which students aren’t required to select an advisor, for example,

we’d refine the previous association as follows:

• A Professor advises zero or more (“many,” optional) Students, but

a given Student may optionally have at most one (i.e., zero or one)

Professor as an advisor.

Chapter 5 relationships Between oBjeCts

229

 Many-to-Many (m:m)

With a many-to-many (m:m) association, a given single instance of class A can have

many instances of class B related to it and vice versa. For example:

• A Student enrolls in many Courses, and a Course has many Students

enrolled in it.

• A given Course can have many prerequisite Courses, and a given

Course can in turn be a prerequisite for many other Courses. (This is

an example of a many-to-many reflexive association.)

As with one-to-many associations, “many” can be interpreted as zero or more

(optional) or as one or more (mandatory) at either end of an (m:m) association, for

example:

• A Student enrolls in zero or more (“many,” optional) Courses,

and a Course has one or more (“many,” mandatory) Students

enrolled in it.

Of course, the validity of a particular association—the classes that are involved, its

multiplicity, and the optional or mandatory nature of participation in the association

on the part of both participating classes—is wholly dependent on the real-world

circumstances being modeled. If you were modeling a university in which departments

could have more than one chairperson or where students could have more than one

advisor, your choice of multiplicities would differ from those used in the preceding

examples.

 Multiplicity and Links
Note that the concept of multiplicity pertains to associations, but not to links. Links
always exist in pairwise fashion between two objects (or, as mentioned earlier, in

rare cases between an object and itself). Therefore, multiplicity in essence defines how

many links of a certain association type can originate from a given object. This is best

illustrated with an example.

Consider once again the many-to-many “is enrolled in” association:

• A Student enrolls in zero or more Courses, and a Course has one or

more Students enrolled in it.

Chapter 5 relationships Between oBjeCts

230

A specific Student object can have zero, one, or more links to Course objects, but any

one of those links is between exactly two objects: a single Student object and a single

Course object. In Figure 5-4, for example

• Student X has one link (to Course A).

• Student Y has four links (to Courses A, B, C, and D).

• Student Z has no links to any Course objects whatsoever. (Z is taking

the semester off!)

Figure 5-4. Illustrating a many-to-many association between classes with
pairwise links between objects

Chapter 5 relationships Between oBjeCts

231

Conversely, a specific Course object must have one or more links to Student objects

to satisfy the mandatory nature and multiplicity of the “is enrolled in” association, but

again, any one of those links is between exactly two objects: a single Course object and a

single Student object. In Figure 5-4, for example

• Course A has two links (to Students X and Y).

• Courses B, C, and D each have one link (to the same Student, Y).

This example scenario does indeed uphold the many-to-many “is enrolled in”

association between the Student and Course classes; it’s but one of an infinite number of

possible scenarios that may exist between the classes in question.

Just to make sure that this concept is clear, let’s look at another example, this time

using the one-to-one association:

• A Professor optionally chairs exactly one Department, and it is

mandatory that a Department has exactly one Professor in the role

of chairperson.

In Figure 5-5, we see that

• Professor objects 1 and 4 each have one link, to Department objects

A and B, respectively.

• Professor objects 2 and 3 have no such links.

Chapter 5 relationships Between oBjeCts

232

Figure 5-5. Illustrating a one-to-one association between classes with binary
links between objects

Moreover, from the Department objects’ perspective, each Department does indeed

have exactly one link to a Professor. Therefore, this example upholds the one-to-one

“chairs” association between Professor and Department while further illustrating the

optional nature of the Professor class’s participation in such links. Again, it’s but one of

an infinite number of possible scenarios that may exist between the classes in question.

 Aggregation and Composition
Aggregation is a special form of association, alternatively referred to as the “consists of,”

“is composed of,” or “has a” relationship. Like an association, an aggregation is used to

represent a relationship between two classes, A and B. But, with an aggregation, we’re

Chapter 5 relationships Between oBjeCts

233

representing more than mere relationship: we’re stating that an object belonging to class

A, known as an aggregate, is composed of, or contains, component objects belonging to

class B.

For example, a car is composed of an engine, a transmission, four wheels, etc., so if

Car, Engine, Transmission, and Wheel were all classes, then we could form the following

aggregations:

• A Car contains an Engine.

• A Car contains a Transmission.

• A Car contains many (in this case, four) Wheels.

Or, as an example related to the SRS, we can say that

• A University is composed of many Schools (the School of

Engineering, the School of Law, etc.).

• A School is composed of many Departments.

• And so forth.

We wouldn’t typically say, however, that a Department is composed of many

Professors; instead, we’d probably state that a Department employs many Professors.

Note that these aggregation statements appear very similar to associations, where

the name of the association just so happens to be “is composed of” or “contains.” That’s

because an aggregation is an association in the broad sense of the term.

Why the fuss over trying to differentiate between aggregation and association? If an

aggregation is really an association, must we even acknowledge aggregation as a distinct

type of relationship between classes? Strictly speaking, the answer is no.

• There are indeed distinct representations in UML for the notions of

aggregation vs. association, which we’ll discuss in Chapter 10.

• However, as it turns out, both of these abstractions are ultimately

rendered in code in precisely the same way.

Thus, it can be argued that it isn’t really absolutely necessary to differentiate the

notion of aggregation from association. Nonetheless, it behooves anyone who aspires to

become proficient with object modeling and UML to be aware of this subtle distinction,

if for no other reason than to be able to communicate effectively with other UML

practitioners who are using such notation.

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_10

234

Composition is a strong form of aggregation, in which the “parts” cannot exist

without the “whole.” As an example, given the relationship “a Book is composed of many

Chapters,” we could argue that a chapter cannot exist if the book to which it belongs

ceases to exist; whereas given the relationship “a Car is composed of many Wheels,” we

know that a wheel can be removed from a car and still serve a useful purpose. Thus,

we’d categorize the Book-Chapter relationship as composition and the Car-Wheel

relationship as aggregation.

 Inheritance
Whereas many of the OO techniques that you’ve learned for achieving a high degree

of code flexibility and maintainability—for example, encapsulation and information

hiding—are arguably achievable with non-OO languages in some form or another,

the inheritance mechanism is what truly sets OO languages apart from their non-OO

counterparts.

Before we dive into an in-depth discussion of how inheritance works, let’s establish a

compelling case for inheritance by looking at the problems that arise in its absence.

 Responding to Shifting Requirements
with a New Abstraction
Let’s assume that we’ve accurately and thoroughly modeled all of the essential features

of students via our Student class and that we’ve programmed the class in Java. A

simplified version of the Student class is as follows:

public class Student {

 private String name;

 private String studentId;

 // etc.

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = n;

 }

Chapter 5 relationships Between oBjeCts

235

 public String getStudentId() {

 return studentId;

 }

 public void setStudentId (String studentId) {

 this.studentId = studentId;

 }

 // etc.

}

Let’s further assume that our Student class has been rigorously tested, has been

found to be bug-free, and is actually being used in a number of applications: our Student

Registration System, for example, as well as perhaps a Student Billing System and an

Alumni Relations System for the same university.

A new requirement has just arisen for modeling graduate students as a special type

of student. As it turns out, the only information about a graduate student that we need to

track above and beyond that which we’ve already modeled for a “generic” student is

• What undergraduate degree the student previously received before

entering their graduate program of study

• What institution the student received the undergraduate degree from

All of the other features necessary to describe a graduate student—the attributes

name, studentId, and so forth, along with the corresponding accessor methods—are the

same as those that we’ve already programmed for the Student class, because a graduate

student is a student, after all.

How might we approach this new requirement for a GraduateStudent class? If

we weren’t well versed in object-oriented concepts, we might try one of the following

approaches.

 (Inappropriate) Approach #1: Modify the Student Class
We could add attributes to our existing Student class to reflect undergraduate degree

information, along with “get”/“set” methods for these new attributes, as follows:

public class Student {

 private String name;

 private String studentId;

Chapter 5 relationships Between oBjeCts

236

 // We've added two attributes to Student to handle the new

requirements for

 // graduate students.

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // etc.

 // We've also added four accessor methods.

 public String getName(...

 public void setName(...

 public String getStudentId(...

 public void setStudentId(...

 public String getUndergraduateDegree(...

 public void setUndergraduateDegree(...

 public String getUndergraduateInstitution(...

 public void setUndergraduateInstitution(...

 // etc.

}

Because these new features are not relevant to all students—only to graduate

students—we’d perhaps simply allow these attributes to remain uninitialized for

students who haven’t yet received an undergraduate degree. However, to keep track

of whether or not these attributes are supposed to contain values for a given Student

object, we’d probably also want to add a boolean attribute to serve as a flag, along with

accessor methods for this attribute:

public class Student {

 private String name;

 private String studentId;

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // We'll set this next attribute to true if this is a

 // graduate student, false otherwise.

 private boolean graduateStudent;

 // etc.

Chapter 5 relationships Between oBjeCts

237

 public String getName(...

 public void setName(...

 public String getStudentId(...

 public void setStudentId(...

 public String getUndergraduateDegree(...

 public void setUndergraduateDegree(...

 public String getUndergraduateInstitution(...

 public void setUndergraduateInstitution(...

 public boolean isGraduateStudent(...

 public void setGraduateStudent(...

 // etc.

}

Finally, in any methods that we’ve written for this class—or those that we write for

this class in the future—we’d have to take the value of this boolean attribute into account:

 public void display() {

 System.out.println(getName());

 System.out.println(getStudentId());

 // If a particular student is NOT a graduate student, then the values

 // of the attributes "undergraduateDegree" and

"undergraduateInstitution"

 // would be undefined/irrelevant, and so we only want to print them

 // if we are dealing with a GRADUATE student.

 if (this.isGraduateStudent()) {

 System.out.println(getUndergraduateDegree());

 System.out.println(getUndergraduateInstitution());

 }

 // etc.

 }

Having to sort out whether or not a given student is a graduate student in each and

every Student method (the display method being but one) results in convoluted code

that is difficult to debug and maintain. Where this really gets messy, however, is if we have

to add a third or a fourth or a fifth type of “specialized” Student to the mix. For example,

Chapter 5 relationships Between oBjeCts

238

consider how complicated the display method would become if we wanted to use it to

represent a third type of student: namely, continuing education students, who don’t seek

a degree, but rather are just taking courses for continuing professional enrichment.

• Perhaps for such students, we’d like to track their current place of

employment as an attribute.

• We’d most likely need to add yet another boolean flag as an attribute,

as well, to keep track of whether or not a particular Student is a

continuing education student.

We’d perhaps extend our Student class once more, as highlighted in bold in the

following code, to reflect the newly added attributes and accessor methods:

public class Student {

 private String name;

 private String studentId;

 private String undergraduateDegree;

 private String undergraduateInstitution;

 private String placeOfEmployment;

 private boolean graduateStudent;

 private boolean continuingEdStudent;

 // etc.

 public String getName(...

 public void setName(...

 public String getStudentId(...

 public void setStudentId(...

 public String getUndergraduateDegree(...

 public void setUndergraduateDegree(...

 public String getUndergraduateInstitution(...

 public void setUndergraduateInstitution(...

 public boolean isGraduateStudent(...

 public void setGraduateStudent(...

 public boolean isContinuingEdStudent(...

 public void setContinuingEdStudent(...

 // etc.

}

Chapter 5 relationships Between oBjeCts

239

We also now must take the value of the boolean isContinuingEdStudent attribute

into account in all of the Student methods involving the notion of placeOfEmployment.

Take a look at how this impacts the logic of the display method:

 public void display() {

 System.out.println(getName());

 System.out.println(getStudentId());

 // etc.

 if (this.isGraduateStudent()) {

 System.out.println(getUndergraduateDegree());

 System.out.println(getUndergraduateInstitution());

 }

 if (this.isContinuingEdStudent()) {

 System.out.println(getPlaceOfEmployment());

 }

 // etc.

 }

Now, imagine how much more “spaghetti-like” our code might become if we had

dozens of different student types to accommodate. Approach #1 is clearly not the
answer! The underlying flaw with this approach is that we’re trying too hard to force

a single abstraction, Student, to represent multiple real-world object types. While

graduate students, continuing education students, and “generic” students certainly have

some features in common, they are nonetheless different types of object.

 (Inappropriate) Approach #2: “Clone” the Student Class
to Create a GraduateStudent Class
We could instead create a new GraduateStudent class by copying the code of Student.

java to create GraduateStudent.java, renaming the latter class GraduateStudent, and

then adding the extra features required of a graduate student to the copy.

Chapter 5 relationships Between oBjeCts

240

Here’s the resultant GraduateStudent class:

// GraduateStudent.java

public class GraduateStudent {

 // Student attributes DUPLICATED!

 private String name;

 private String birthDate;

 // etc.

 // Add the two new attributes required of a GraduateStudent.

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // Student methods DUPLICATED!

 public String getName(...

 public void setName(...

 public String getBirthDate(...

 public void setBirthDate(...

 // etc.

 // Add the new accessor methods required of a GraduateStudent.

 public String getUndergraduateDegree(...

 public void setUndergraduateDegree(...

 public String getUndergraduateInstitution(...

 public void setUndergraduateInstitution(...

}

This would be a very poor design, since we’d have much of the same code in two

places: Student.java and GraduateStudent.java. If we wanted to change how a

particular method worked or how an attribute was defined later on—say, a change of the

type of the birthDate attribute from String to Date, with a corresponding change to the

accessor methods for that attribute—then we’d have to make the same changes in both

classes. Again, this problem quickly gets compounded if we’ve defined three or four or a

dozen different types of Student, all created as “clones” of the original Student class; the

code maintenance burden would quickly become excessive. Approach #2 is clearly not
the answer, either!

Chapter 5 relationships Between oBjeCts

241

Strictly speaking, either of the preceding two approaches would work, but the

inherent redundancy/complexity of the resultant code would make the application

prohibitively difficult to maintain. Unfortunately, with non-OO languages, such

convoluted approaches would typically be our only options for handling the

requirement for a new type of object. It’s no wonder that applications become so

complicated and expensive to maintain as requirements inevitably evolve over time.

Fortunately, we do have yet another very powerful approach that we can take specific to

OO programming languages: we can take advantage of the mechanism of inheritance.

 The Proper Approach (#3): Taking Advantage
of Inheritance
With an object-oriented programming language, we can solve the problem of

specializing the Student class by harnessing the power of inheritance, a mechanism for

defining a new class by stating only the differences (in terms of features) between the

new class and another class that we’ve already established.

Using inheritance, we can declare a new class named GraduateStudent that inherits

all of the features of the Student class “as is.” The GraduateStudent class would then

only have to specify the two extra attributes associated with a graduate student—

undergraduateDegree and undergraduateInstitution—plus their accessor methods,

as shown in the following GraduateStudent class. Note that inheritance is triggered in

a Java class declaration using the extends keyword: public class NewClass extends

ExistingClass {

public class GraduateStudent extends Student {

 // Declare two new attributes above and beyond

 // what the Student class has already declared ...

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // ... and accessor methods for each of these new attributes.

 public String getUndergraduateDegree {

 return undergraduateDegree;

 }

Chapter 5 relationships Between oBjeCts

242

 public void setUndergraduateDegree(String s) {

 undergraduateDegree = s;

 }

 public String getUndergraduateInstitution {

 return undergraduateInstitution;

 }

 public void setUndergraduateInstitution(String s) {

 undergraduateInstitution = s;

 }

 // That's the ENTIRE GraduateStudent class declaration!

 // Short and sweet!

}

That’s all we need to declare in establishing our new GraduateStudent class: two

attributes plus the associated four accessor methods. There is no need to duplicate any

of the features of the Student class within the code of GraduateStudent, because we’re

automatically inheriting these. It’s as if we had “plagiarized” the code for the attributes

and methods of the Student class, copying this code from Student and pasting it into

GraduateStudent, but without the fuss of actually having done so. The GraduateStudent

class thus has n + 6 features: the six features that are explicitly declared within the

GraduateStudent.java file plus n more that are inherited from Student.

When we take advantage of inheritance, the original class that we’re starting

from—Student, in this case—is called the (direct) superclass. The new class—

GraduateStudent—is called a (direct) subclass. A subclass is said to extend its direct

superclass.

 The “is a” Nature of Inheritance
Inheritance is often referred to as the “is a” relationship between two classes, because if

a class B (GraduateStudent) is derived from a class A (Student), then B truly is a special

case of A. Anything that we can say about a superclass must therefore also be true about

all of its subclasses; that is

Chapter 5 relationships Between oBjeCts

243

• A Student attends classes, and so a GraduateStudent attends classes.

• A Student has an advisor, and so a GraduateStudent has an advisor.

• A Student pursues a degree, and so a GraduateStudent pursues

a degree.

In fact, an “acid test” for legitimate use of inheritance is as follows: if there is
something that can be said about a class A that can’t be said about a proposed
subclass B, then B isn’t a valid subclass of A.

Because subclasses are special cases of their superclasses, the term specialization

is used to refer to the process of deriving one class from another. Generalization, on

the other hand, is a term used to refer to the opposite process: namely, recognizing the

common features of several existing classes and creating a new, common superclass for

them all.

Let’s say we now wish to declare a Professor class to complement our Student class.

Students and Professors have some features in common: attributes name, birthDate,

etc. and the methods that manipulate these attributes. Yet, they each have unique

features, as well:

• The Professor class might require the attributes title (a String)

and worksFor (a reference to a Department).

• Conversely, the Student class’s studentID, degreeSought, and

majorField attributes are irrelevant for a Professor.

Because each class has attributes that the other would find useless, neither class

can be derived from the other. Nonetheless, to duplicate their common attribute

declarations and method code in two places would be very inefficient. In such a

circumstance, we’d want to invent a new superclass called Person, consolidate the

features common to both Students and Professors in the Person class, and then have

Student and Professor inherit these common features by extending Person. The

resultant code in this situation follows.

First, we’ll define the Person superclass in a file named Person.java:

// Person.java

public class Person {

 // Attributes common to Students and Professors.

 private String name;

Chapter 5 relationships Between oBjeCts

244

 private String address;

 private String birthDate;

 // Common accessor methods.

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 // etc. for the other two attributes

 // Other general-purpose Person methods, if any, would go here - details

omitted.

}

Next, we’ll streamline our Student class as previously presented to remove those

features that it will now inherit from Person:

// Student.java

public class Student extends Person {

 // Attributes specific only to a Student; redundant attributes -

i.e., those

 // that are shared with Professor, and hence are now declared by

Person - have

 // been REMOVED from Student.

 private String studentId;

 private String majorField;

 private String degreeSought;

 // Student-specific accessor methods - redundant methods have been

removed.

 public String getStudentId() {

 return studentId;

 }

Chapter 5 relationships Between oBjeCts

245

 public void setStudentId(String studentId) {

 this.studentId = studentId;

 }

 // etc. for the other two explicitly declared Student attributes.

 // Other Student-specific methods go here, if any; details omitted.

}

Finally, we’ll define the second new (sub)class, Professor. This class would go into a

separate Professor.java file:

// Professor.java

public class Professor extends Person {

 // Attributes specific only to a Professor; redundant attributes -

i.e., those

 // that are shared with Student, and hence are now declared by Person - are

 // not included here.

 private String title;

 private Department worksFor;

 // Professor-specific accessor methods go here.

 public String getTitle() {

 return title;

 }

 public void setTitle(String title) {

 this.title = title;

 }

 public Department getWorksFor() {

 return worksFor;

}

public void setWorksFor(Department worksFor) {

 this.worksFor = worksFor;

}

 // Other Professor-specific methods go here, if any; details omitted.

}

Chapter 5 relationships Between oBjeCts

246

By generalizing the shared features of Students and Professors into a common

superclass called Person, we’ll easily be able to introduce a third type of Person or a

fourth or a fifth, if needed in the future, and they’ll all share in these same features

through the mechanism of inheritance. Furthermore, if we wish to introduce new

subtypes of these subclasses—perhaps AdjunctProfessor and TenuredProfessor as

subclasses of the Professor class—they’ll all derive a common set of features as a result

of their shared Person “ancestry.”

 The Benefits of Inheritance
Inheritance is perhaps one of the most powerful and unique aspects of an OO

programming language for the following reasons:

• We dramatically reduce code redundancy, thus lessening the

burden of code maintenance when requirements change or logic

flaws are detected.

• Subclasses are much more succinct than they would be without
inheritance. A subclass contains only the essence of what

differentiates it from its direct superclass. We know from looking at

the GraduateStudent class definition, for example, that a graduate

student is “a student who already holds an undergraduate degree

from an educational institution.” As a result, the total body of code
for a given OO application is significantly reduced as compared

with the traditional/non-OO version of the same application.

• Through inheritance, we can reuse and extend code that has
already been thoroughly tested without modifying it. As you saw,

we were able to invent a new class—GraduateStudent—without

disturbing the Student class code in any way. We can therefore

rest assured that any client code that relies on instantiating generic

Student objects and passing messages to them will be unaffected by

the creation of subclass GraduateStudent, and thus we avoid having

to retest huge portions of our existing application(s). (Had we used a

non-OO approach of “tinkering” with the Student class code to try to

accommodate graduate student requirements, on the other hand, we

would have had to retest our entire existing application to make sure

that nothing had “broken”!)

Chapter 5 relationships Between oBjeCts

247

• Best of all, we can derive a new class from an existing class even if
we don’t own the source code for the latter! As long as we have the

compiled bytecode version of a class, the inheritance mechanism

works just fine; we don’t need the original source code of a class in

order to extend it. This is one of the most dramatic ways to achieve
productivity with an object-oriented language: find a class (either

one written by someone else or one that is built into the language)

that does much of what you need, and create a subclass of that class,

adding just those features that you need for your own purposes.

we’ll look at a specific example of extending one of the predefined java collection
classes in Chapter 6.

• Finally, as we discussed in Chapter 1, classification is the natural
way that humans organize information; so it only makes sense

that we’d organize software along the same lines, making it much

more intuitive and hence easier to develop, maintain, extend, and

communicate with users about.

 Class Hierarchies
Over time, we build up an inverted tree of classes that are interrelated through

inheritance; such a tree is called a class hierarchy. One such class hierarchy example is

shown in Figure 5-6. Note that arrows are used to point upward from each subclass to its

direct superclass.

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_6
https://doi.org/10.1007/978-1-4842-9060-6_1

248

Figure 5-6. A sample class hierarchy

A bit of nomenclature follows:

• We may refer to each class as a node in the hierarchy.

• Any given node in the hierarchy is said to be (directly or indirectly)

derived from all of the nodes above it in the hierarchy, known

collectively as its ancestors.

• The ancestor that is immediately above a given node in the hierarchy

is considered to be that node’s direct superclass.

• Conversely, all nodes below a given node in the hierarchy are said to

be its descendants.

• The node that sits at the top of the hierarchy is referred to as the

root node.

• A terminal, or leaf, node is one that has no descendants.

• Two nodes that are derived from the same direct superclass are

known as siblings.

Applying this terminology to the example hierarchy in Figure 5-6

• Class A (Person) is the root node of the entire hierarchy.

• Classes B, C, D, E, and F are all said to be derived from class A and thus

are all descendants of A.

Chapter 5 relationships Between oBjeCts

249

• Classes D, E, and F can be said to be derived from class B.

• Classes D, E, and F are siblings; so are classes B and C.

• Class D has two ancestors, B (its direct superclass) and A.

• Classes C, D, E, and F are terminal nodes in that they don’t have any

classes derived from them (as of yet, at any rate).

As with any hierarchy, this one may evolve over time:

• It may widen with the addition of new siblings/branches in the tree.

• It may expand downward as a result of future specialization.

• It may expand upward as a result of future generalization.

Such changes to the hierarchy are made as new requirements emerge or as

our understanding of the existing requirements improves. For example, we may

determine the need for MastersStudent and PhDStudent classes as specializations of

GraduateStudent or of an Administrator class as a sibling to Student and Professor.

This would yield the revised hierarchy shown in Figure 5-7.

Figure 5-7. Class hierarchies inevitably expand over time

Chapter 5 relationships Between oBjeCts

250

 The Object Class
In the Java language, the built-in Object class serves as the ultimate superclass for all

other reference types, both user-defined and those built into the language. Even when a

class is not explicitly declared to extend Object, such extension is implied. That is, when

we declare a class as follows

public class Person { ... }

it is as if we’ve written

public class Person extends Object { ... }

without having to explicitly do so. And, when we write

public class Student extends Person { ... }

then, because the Person class is derived from Object, Student is derived from Object as

well. Thus, the true root of the hierarchy illustrated in Figure 5-7—and of all (Java) class

hierarchies—is the Object class.

We’ll talk in depth about the significance of the Object class, and the fact that all Java

objects are ultimately descended from Object, in Chapter 13.

 Is Inheritance Really a Relationship?
Association, aggregation, and inheritance are all said to be relationships between

classes. Where inheritance differs from association and aggregation is at the object level.

As you saw earlier in this chapter, association (and aggregation, as a special form

of association) can be said to relate individual objects, in the sense that two different

objects are linked to one another by virtue of the existence of an association between

their respective classes. Inheritance, on the other hand, does not involve linking distinct

objects; rather, inheritance is a way of describing the collective features of a single
object. With inheritance, an object is simultaneously an instance of a subclass and all

of its superclasses: a GraduateStudent is a Student that is a Person that is an Object, all

wrapped into one!

So, in looking once again at the hierarchy of Figure 5-7, we see that

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_13

251

• All classes in the hierarchy—class A (Person) as well as all of its

descendants B through I—may be thought of as yielding Person

objects.

• Class B (Student), along with its descendants D through H, may all

be thought of as yielding Student objects.

This notion of an object having “multiple identities” is a significant one that we’ll

revisit several times throughout the book.

So, getting back to the question posed as the title of this section, inheritance is

indeed a relationship between classes, but not between distinct objects.

 Avoiding “Ripple Effects” in a Class Hierarchy
Once a class hierarchy is established and an application has been coded, changes

to non-leaf classes (i.e., those classes that have descendants) have the potential to

introduce undesired ripple effects further down the hierarchy. For example, if after we’ve

established the GraduateStudent class, we go back and add a minorField attribute

to the Student class, then the GraduateStudent class will automatically inherit this

new attribute. Perhaps this is what we want; on the other hand, we might not have

anticipated the derivation of a GraduateStudent class when we first conceived of

Student, and so this may not be what we want!

As the developers of the Student superclass, it would be ideal if we could speak

with the developers of all derived classes—GraduateStudent, MastersStudent, and

PhDStudent—to obtain their approval for any proposed changes to Student. But this is

typically not practical; in fact, we often don’t even know that our class has been extended

if, for example, our code is being distributed and reused on other projects. This evokes a

general rule of thumb:

Whenever possible, avoid adding features to non-leaf classes once they have been

deployed in code form in an application, to avoid ripple effects throughout an inheritance

hierarchy.

This is easier said than done! However, it reinforces the importance of spending as

much time as possible on the requirements analysis and object modeling stages of an

OO application development project before diving into the coding stage. This won’t

prevent new requirements from emerging over time, but we should at least do everything

possible to avoid oversights regarding the current requirements.

Chapter 5 relationships Between oBjeCts

252

 Rules for Deriving Classes: The “Do’s”
When deriving a new class, we can do several things to specialize the superclass that we

are starting out with:

• We may extend the superclass by adding features. In our

GraduateStudent example, we added six features: two attributes—

undergraduateDegree and undergraduateInstitution—and four

accessor methods, getUndergraduateDegree/setUndergraduateD

egree and getUndergraduateInstitution/setUndergraduateIns

titution.

• We also may specialize the way that a subclass performs one or more

of the services inherited from its superclass.

For example, when a “generic” student enrolls for a course, the business rules for the

SRS may require us to ensure that

• The student has taken the necessary prerequisite courses.

• The course is required for the degree that the student is seeking.

When a graduate student enrolls for a course, on the other hand, the business rules

may involve doing both of these things as well as ensuring that the student’s graduate

committee feels that the course is appropriate.

Specializing the way that a subclass performs a service—that is, how it responds to

a given message as compared with the way that its superclass would have responded to

the same message—is accomplished via a technique known as overriding.

 Overriding
Overriding involves “rewiring” how a method works internally, without changing the

client code interface to/signature of that method. For example, let’s say that we’ve

defined a print method for the Student class to print out the values of all of a Student’s

attributes:

public class Student {

 // Attributes.

 private String name;

 private String studentId;

Chapter 5 relationships Between oBjeCts

253

 private String majorField;

 private double gpa;

 // etc.

 // Accessor methods for each attribute would also be provided; details

omitted.

 public void print() {

 // Print the values of all of the attributes that the Student class

 // knows about. (Remember: "\n" is a newline.)

 System.out.println("Student Name: " + getName() + "\n" +

 "Student No.: " + getStudentId() + "\n" +

 "Major Field: " + getMajorField() + "\n" +

 "GPA: " + getGpa());

 }

}

By virtue of inheritance, all of the subclasses of Student will inherit this method.

We go on to derive the GraduateStudent subclass from Student, adding two

attributes to GraduateStudent—undergraduateDegree and undergraduateInstitution.

If we take the “lazy” approach of just letting GraduateStudent inherit the print method

of Student as is, then whenever we invoke the print method for a GraduateStudent, all

that will be printed are the values of the four attributes inherited from Student—name,

studentId, major, and gpa—because these are the only attributes that the print method

has been explicitly programmed to print the values of. Ideally, we would like the print

method, when invoked for a GraduateStudent, to print these same four attributes plus

the two additional attributes of undergraduateDegree and undergraduateInstitution.

With an object-oriented language, we are able to override, or supersede, the

superclass’s version of a method with a subclass-specific version. To override a

superclass’s method in Java rather than merely inheriting the method as is, the header of

the method as declared in the superclass must be repeated in the subclass; we are then

free to reprogram the body of that method in the subclass to specialize its behavior.

Let’s look at how the GraduateStudent class would go about overriding the print

method of the Student class. For your convenience, I’ve repeated the code of the

Student class here:

Chapter 5 relationships Between oBjeCts

254

public class Student {

 // Attributes.

 private String name;

 private String studentId;

 private String majorField;

 private double gpa;

 // etc.

 // Accessor methods for each attribute would also be provided; details

omitted.

 public void print() {

 // Print the values of all the attributes that the Student class

 // knows about; again, note the use of accessor methods.

 System.out.println("Student Name: " + getName() + "\n" +

 "Student No.: " + getStudentId() + "\n" +

 "Major Field: " + getMajorField() + "\n" +

 "GPA: " + getGpa());

 }

}

//--

public class GraduateStudent extends Student {

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // Accessor methods for each newly added attribute would also be

provided;

 // details omitted.

 // We are overriding the Student class's print method; note that

 // we've repeated the print method header verbatim from the

 // Student class, which triggers overriding.

 public void print() {

 // We print the values of all of the attributes that the

 // GraduateStudent class knows about: namely, those that it

 // inherited from Student plus those that it explicitly declares above.

Chapter 5 relationships Between oBjeCts

255

 System.out.println("Student Name: " + this.getName() + "\n" +

 "Student No.: " + this.getStudentId() + "\n" +

 "Major Field: " + this.getMajorField() + "\n" +

 "GPA: " + this.getGpa() + "\n" +

 "Undergrad. Deg.: " + this.

getUndergraduateDegree() +

 "\n" + "Undergrad. Inst.: " +

 this.getUndergraduateInstitution());

 }

}

The GraduateStudent class’s version of print thus overrides, or supersedes, the

version that would otherwise have been inherited from the Student class.

In a complex inheritance hierarchy, we often have occasion to override a given

method multiple times. In the hierarchy shown in Figure 5-8

• Root class A (Person) declares a method with the header public

void print() that prints out all of the attributes declared for the

Person class.

• Subclass B (Student) overrides this method, changing the internal

logic of the method body to print not only the attributes inherited

from Person but also those that were added by the Student

class itself.

• Subclass E (GraduateStudent) overrides this method again, to

print not only the attributes inherited from Student (which include

those inherited from Person) but also those that were added by the

GraduateStudent class itself.

Note that, in all cases, the method signature must remain the same—print()—for

overriding to take place.

Chapter 5 relationships Between oBjeCts

256

Figure 5-8. A method may be overridden multiple times within a class hierarchy

Under such circumstances, any class not specifically overriding a given method itself

will inherit the definition of that method used by its most immediate ancestor. Thus,

• Classes C and D in Figure 5-8 inherit the versions of print() that are

defined by A and B, respectively.

• B, E, and F are all overriding the print() method of their parent classes.

 Reusing Superclass Behaviors: The “super” Keyword
The preceding example of overriding is less than ideal because the first four lines of the

print method of GraduateStudent duplicated the code from the Student class’s version

of print. Here’s the Student version of the method once again:

public void print() {

 // Print the values of all the attributes that the Student class

 // knows about; again, note the use of accessor methods.

 System.out.println("Student Name: " + getName() + "\n" +

 "Student No.: " + getStudentId() + "\n" +

 "Major Field: " + getMajorField() + "\n" +

 "GPA: " + getGpa());

 }

Chapter 5 relationships Between oBjeCts

257

And here’s the GraduateStudent version:

 public void print() {

 // This code is repeated from the Student version!

 System.out.println("Student Name: " + getName() + "\n" +

 "Student No.: " + getStudentId() + "\n" +

 "Major Field: " + getMajorField() + "\n" +

 "GPA: " + getGpa() + "\n" +

 "Undergrad. Deg.: " + getUndergraduateDegree()

+ "\n" +

 "Undergrad. Inst.: " +

getUndergraduateInstitution());

 }

Redundancy in an application is to be avoided whenever possible, because

redundant code represents a maintenance headache. When we have to change code in

one place in an application, we don’t want to have to remember to change it in countless

other places or, worse yet, forget to do so and wind up with inconsistency in our logic.

Fortunately, Java provides a way for us to have our cake and eat it, too—that is, a way

for us to override the print method while simultaneously reusing its code. We’d code

the print method for the GraduateStudent class as follows:

public class GraduateStudent extends Student {

 // Details omitted.

 public void print() {

 // Reuse code by calling the print method as defined by the Student

 // superclass ...

 super.print();

 // ... and then go on to do something extra - namely, print

this derived

 // class's specific attributes.

 System.out.println("Undergrad. Deg.: " + getUndergraduateDegree()

+ "\n" +

 "Undergrad. Inst.: " + getUndergraduateInstitution());

 }

}

Chapter 5 relationships Between oBjeCts

258

We use the Java keyword super as the qualifier for a method call

super.methodName(arguments);

whenever we wish to invoke the version of method methodName that was defined by our

superclass. That is, in the preceding example, we’re essentially saying to the compiler,

“First, execute the print method the way that the superclass, Student, would have

executed it, and then do something extra—namely, print out the values of the new

GraduateStudent attributes.”

Note that the syntax

super.methodName(arguments);

involves invoking one method from within another. Let’s look at a slightly more involved

example to emphasize this syntax.

We’ll start with this superclass declaration

public class Superclass {

 public void foo(int x, int y) { ... }

}

and derive this subclass from it:

public class Subclass extends Superclass {

 // We're overriding the foo method.

 // (Note that we're using a and b as parameter names here to override

 // parameters x and y in the superclass; this is perfectly fine as long

 // as their types are identical.)

 public void foo(int a, int b) {

 // Details to follow ...

 }

}

We have numerous options as to how we might use the super keyword within

the overridden foo method of a subclass, as illustrated by the bolded passages (and

corresponding comments) in the examples that follow:

public class Subclass extends Superclass {

 // We're overriding the foo method.

 public void foo(int a, int b) {

Chapter 5 relationships Between oBjeCts

259

 // We can pass the argument values a and b through to our

superclass's

 // version of foo ...

 super.foo(a, b);

 }

}

or

public class Subclass extends Superclass {

 // We're overriding the foo method.

 public void foo(int a, int b) {

 int x = 2; // a local variable

 // We can pass selected argument values through to our superclass's

 // version of foo ...

 super.foo(a, x);

 }

}

or even

public class Subclass extends Superclass {

 // We're overriding the foo method.

 public void foo(int a, int b) {

 int x = 2; // a local variable

 // Here, we're using neither a nor b as arguments.

 super.foo(x, 3);

 }

}

Note that our invocation of super.foo(...) can occur anywhere within the method:

public class Subclass extends Superclass {

 // We're overriding the foo method.

 public void foo(int a, int b) {

 // Pseudocode.

 do some stuff;

 super.foo(a, b);

Chapter 5 relationships Between oBjeCts

260

 // Pseudocode.

 do more stuff;

 }

}

And, if foo were declared to have a non-void return type in Superclass—say, int—

we could even return the result of calling super.foo(...):

public class Subclass extends Superclass {

 // We're overriding the foo method (here, we

 // assume that foo was declared with an int return

 // type in the superclass).

 public int foo(int a, int b) {

 int x = 3 * a;

 int y = 17 * b;

 return super.foo(x, y);

 }

}

The bottom line is we can use super.methodName(...) in whatever way makes sense

in carrying out a subclass’s version of a method that is being overridden.

Another important use of the super keyword has to do with reusing constructor

code; we’ll learn about this alternative use of super later in this chapter.

 Rules for Deriving Classes: The “Don’ts”
When deriving a new class, there are some things that we should not attempt to do.

(And, as it turns out, OO language compilers will actually prevent us from successfully

compiling programs that attempt to do most of these things.)

We shouldn’t change the semantics—that is, the intention or meaning—of a
feature. For example:

• If the print method of a superclass such as Student is intended

to display the values of all of an object’s attributes in the

command window, then the print method of a subclass such as

GraduateStudent shouldn’t, for example, be overridden so that it

directs all of its output to a file instead.

Chapter 5 relationships Between oBjeCts

261

• If the name attribute of a superclass such as Person is intended to

store a person’s name in “last name, first name” order, then the name

attribute of a subclass such as Student should be used in the same

fashion.

We can’t physically eliminate features, nor should we effectively eliminate them
by ignoring them. To attempt to do so would break the spirit of the “is a” hierarchy. By

definition, inheritance requires that all features of all ancestors of a class A must also

apply to class A itself in order for A to truly be a proper subclass. If a GraduateStudent

could eliminate the degreeSought attribute that it inherits from Student, for example, is

a GraduateStudent really a Student after all? Strictly speaking, the answer is no.

Furthermore, from a practical standpoint, if we effectively disable a method

by overriding it with a “do nothing” version, as illustrated in the following

BadStudent example

public class Student {

 // Details omitted.

 public void printStudentInfo() {

 // Pseudocode.

 print all attribute values ...

 }

}

public class BadStudent extends Student {

 // Details omitted.

 // We're overriding the printStudentInfo method of Student by

 // "stubbing it out" - that is, by providing it with an EMPTY method

 // body, so that it effectively does NOTHING.

 // (Note that this WILL compile!)

 public void printStudentInfo() { }

}

someone else might wish to derive a subclass from our subclass later on

public class NaiveStudent extends BadStudent { ...

assuming that they’ll inherit a meaningful version of printStudentInfo from our

BadStudent superclass. This is a reasonable thing for them to assume, given the “all or

nothing” nature of inheritance, especially if this other developer doesn’t have access

Chapter 5 relationships Between oBjeCts

262

to the source code of BadStudent to look at. Unfortunately, because we’ve broken the

spirit of the “is a” relationship in the way that we’ve compromised the printStudentInfo

method, we’ve burdened them—and anyone else who might choose to derive a class

from BadStudent—with a “defective” method. The bottom line is never do this!

Finally, we shouldn’t attempt to change a method’s signature when we override
it. For example, if the print method inherited by the Student class from Person has the

signature print(), then the Student class can’t change this method’s header to accept

an argument, say, print(int noOfCopies). To do so is to create a different method

entirely, due to another language feature known as overloading, a concept that we

discussed in Chapter 4. That is, in the following example

public class Person {

 // Details omitted.

 public void print() { ... }

}

public class Student extends Person {

 // Details omitted.

 // We're naively trying to modify the print method signature here.

 public void print(int noOfCopies) { ... }

}

the Student class will wind up with two overloaded versions of the print method: the

version that it has explicitly declared to take one int argument plus the parameterless

version that it has inherited from the Person class.

 Private Features and Inheritance
As mentioned earlier, inheritance is an “all or nothing” proposition. That is, if class Y is

declared to be a subclass of class X

public class Y extends X { ... }

then Y cannot pick and choose which features of X it will inherit. In particular, while

all of the attributes declared by X will become an inherent part of the “bone structure”

of all objects of type Y, some of the attributes of superclass X may not be directly
referenceable by name within subclass Y, depending on what accessibility the attributes

were assigned in the superclass.

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

263

Consider the following code:

public class Person {

 accessibility modifier int age;

 // Other details omitted.

}

You learned about two types of accessibility in Chapter 4: public and private. As

it turns out, there are actually three different explicit accessibility modifier keywords in

Java. That is, <accessibility modifier> can be one of the following:

• private

• public

• protected (an accessibility modifier that is only relevant within a

superclass/subclass relationship, as you’ll see shortly)

if the accessibility modifier is omitted entirely, a feature has what is known as
package visibility by default. we’ll discuss this notion in Chapter 13.

Suppose that we were to derive the Student class from Person as follows:

public class Student extends Person {

 // Details omitted.

 // We declare a method that manipulates the age attribute.

 public boolean isOver65() {

 if (age > 65) { // age was declared as an attribute in Person and is

inherited by Student

 return true;

 } else {

 return false;

 }

 // Other details omitted.

}

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_13

264

What will happen when we try to compile this Student class? The answer to this

question depends on what accessibility was granted to the age attribute when it was

declared in the Person class.

If age is declared to be private in Person, as most attributes typically are

public class Person {

 private int age;

 // etc.

}

then we’ll encounter a compilation error on the line of code highlighted in the following

code for the Student class:

public class Student extends Person {

 // Details omitted.

 public boolean isOver65() {

 if (age > 65) { // this won't compile!

 return true;

 } else {

 return false;

 }

 // Other details omitted.

}

The error message will be

cannot find symbol

symbol: variable age

location: class Student

if (age > 65) {

 ^

Why is this? Since the age attribute is declared to be private in Person, the symbol

age is not inherited, so it is not in scope within the Student class. Yet, the memory

allocated for a Student object when it is instantiated does indeed allow for storage of a

student’s age, because as mentioned earlier, it is part of the “bone structure” of a Person,

and a Student is a Person by virtue of inheritance.

Chapter 5 relationships Between oBjeCts

265

What can we do to get around this roadblock? It turns out that we have three choices

in Java.

Option #1: We can change the accessibility of age to be public in Person

public class Person {

 public int age;

 // etc.

}

thus making it inherited and directly accessible by name in the Student subclass. The line

of code that previously generated a compiler error in our Student subclass, namely

if (age > 65) {

would now compile without error. The downside of this approach, however, is that by

making the age attribute public in Person, we’d thus be allowing client code to freely

access the age attribute, as well:

public class Example {

 public static void main(String[] args) {

 Student s = new Student();

 // Details omitted.

 s.age = 23; // This would compile, but is undesirable.

 }

}

This is, generally speaking, a bad practice, for the reasons discussed at length in

Chapter 4.

Option #2: We could modify the accessibility of age to be protected in Person:

public class Person {

 protected int age;

 // etc.

}

protected accessibility is a sort of “middle ground” between private and public

accessibility in that protected features are inherited by/in scope as symbols within

subclasses; that is, age would now be recognized as a symbol in the Student class,

such that

if (age > 65) {

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

266

would compile in Student. However, protected features are not accessible by classes that

aren’t derived from the superclass. For example, the following would not compile:

public class Example {

 public static void main(String[] args) {

 Student s = new Student();

 // Details omitted.

 s.age = 23; // This would NOT compile if age were declared to be

 // protected in Person.

 }

}

This would be a step in the right direction, but unfortunately requires us to

modify the source code of the Person class, which we’d like to avoid if at all possible.

Furthermore, we may not even have the Person source code at our disposal.

Option #3: The best approach is to allow age to remain a private attribute of

Person, but to use the publicly accessible getAge/setAge methods that we inherit from

the Person class to manipulate the value of a Student’s age:

public class Person {

 // Let's allow age to REMAIN private!

 private int age;

 // etc.

 // We assume that Person declares public

 // get/set methods for age ... details omitted.

}

public class Student extends Person {

 public boolean isOver65() {

 // All is well! We're using our publicly inherited getAge

 // method to access our Student's age.

 if (getAge() > 65) {

 return true;

 } else {

 return false;

 }

}

Chapter 5 relationships Between oBjeCts

267

As we first learned in Chapter 4, it is considered a best practice to always use a class’s

own “get” and “set” methods to access its attribute values from within its own methods.

By doing so, we take advantage of any special processing that the “get”/“set” method

might provide relative to that attribute. You’ve just learned yet another reason doing so is

a best practice, when inheritance is involved.

and, if we don’t inherit a public “get”/“set” method with which to access a
private attribute declared by a superclass, then we can argue that we ought not
to be “tinkering” with such an attribute in the first place!

 Inheritance and Constructors
You learned about constructors as special procedures used to instantiate objects

in Chapter 4. Now that you’ve learned about inheritance, there are a number of

complexities with regard to constructors in the context of inheritance hierarchies that I’d

like to alert you to.

 Constructors Are Not Inherited

Constructors are not inherited. This raises some interesting challenges that are best

illustrated via an example.

Let’s start by declaring a constructor for the Person class that takes two arguments:

public class Person {

 private String name;

 private String ssn;

 // Other details omitted.

 public Person(String n, String s) {

 // Initialize our attributes.

 setName(n);

 setSsn(s);

 // Pseudocode.

 do other complex things related to instantiating a Person

 }

}

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_4

268

We know from our discussion of constructors in Chapter 4 that the Person class now

only recognizes one constructor signature—that which takes two arguments—because

the default parameterless constructor has been eliminated. (We’ll return to discuss the

implications of this with regard to inheritance in a moment.)

Next, let’s derive the Student class from Person, declaring two constructors—one

that takes two arguments and one that takes three arguments:

public class Student extends Person {

 private String major;

 // Other details omitted.

 // Constructor with two arguments.

 public Student(String n, String s) {

 // Note the redundancy of logic between this constructor and

 // the Person constructor - we'll come back and fix this in a

 // moment.

 // Initialize our attributes.

 setName(n);

 setSsn(s);

 setMajor(“UNDECLARED”);

 // Pseudocode.

 do other complex things related to instantiating a Person ...

 ... and still more complex things related to instantiating a Student

 specifically.

 }

 // Constructor with three arguments.

 public Student(String n, String s, String m) {

 // More redundancy!

 // Initialize our attributes.

 setName(n);

 setSsn(s);

 setMajor(m);

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

269

 // Pseudocode.

 do other complex things related to instantiating a Person ...

 ... and still more complex things related to instantiating a Student

 specifically.

 }

}

As a result of having declared explicit constructors, the Student class has also lost its

default parameterless constructor.

The first thing that we notice is that we’ve duplicated code that was provided by the

Person constructor in both of the constructors for the Student class:

 // Initialize our attributes.

 setName(n);

 setSsn(s);

 // Pseudocode.

 do other complex things related to instantiating a Person ...

As I’ve said numerous times before, code redundancy is to be avoided in an

application whenever possible; fortunately, Java provides us with a mechanism for

reusing a superclass’s constructor code from within a subclass’s constructor.

 super(...) for Constructor Reuse

We accomplish code reuse of a superclass constructor via the same super keyword

we discussed earlier in the chapter for the reuse of standard methods of a superclass.

However, the syntax for reusing constructor code is a bit different. If we wish to explicitly

reuse a particular parent class’s constructor, we refer to it as follows in the subclass

constructor body:

super(arguments); // note that there is no "dot" involved

 // when reusing CONSTRUCTOR code

Using super(arguments); to invoke a superclass constructor is similar to using

this(arguments); to invoke one constructor from within another in the same class, a

technique that you learned about in Chapter 4.

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

270

We select whichever of a superclass’s constructors we wish to reuse, if more than one

exists, by virtue of the arguments that we pass into super(...); because constructors, if

overloaded for a given class, all have unique argument signatures, the compiler has no

difficulty in sorting out which superclass constructor we’re invoking. This is illustrated in

the following revised version of the Student class (note the bolded code):

public class Student extends Person {

 // name and ssn are inherited from Person ...

 private String major;

 // Constructor with two arguments.

 public Student(String n, String s) {

 // We're explicitly invoking the Person constructor that accepts two

 // String arguments by passing in two String arguments - namely, the

 // values of n and s.

 super(n, s);

 // Then, go on to do only those things that need to be done uniquely

 // for a Student.

 setMajor("UNDECLARED");

 // Pseudocode.

 do complex things related to instantiating a Student specifically.

 }

 // Constructor with three arguments.

 public Student(String n, String s, String m) {

 // See comments above.

 super(n, s);

 setMajor(m);

 // Pseudocode.

 do complex things related to instantiating a Student specifically.

 }

}

One important thing to note is that if we explicitly call a superclass constructor from

a subclass constructor using the super(...) syntax, the call must be the first statement

in the subclass constructor—that is, the following constructor would fail to compile:

Chapter 5 relationships Between oBjeCts

271

public Student(String n, String s, String m) {

 setMajor(m);

 // This won't compile, because the call to the superclass's

 // constructor must come first in the subclass's constructor.

 super(n, s);

}

The following error message would arise:

call to super(n, s) must be first statement in constructor

The requirement to put a call to super(...) as the first line of code in a constructor

arises by virtue of the “is a” nature of inheritance. When we create a Student object, we

are in reality simultaneously creating an Object, a Person, and a Student, all rolled into

one. So, whether we explicitly call a superclass constructor from a subclass constructor

using super(...) or not, the fact is that Java will always attempt to execute constructors

for all of the ancestor classes for a given class, from most general to most specific in the

class hierarchy, before launching into that given class’s constructor code. For example, if

we are instantiating a Student

Student s = new Student("Fred", "123-45-6789");

then, behind the scenes, an Object constructor will automatically be executed first,

followed by a Person constructor, followed by whichever Student constructor we’ve

explicitly invoked—in this example, the one that takes two String arguments. The

question is, which superclass constructors get called if there’s more than one defined
for a given superclass? Unless we explicitly invoke a particular constructor as we did in

our Student constructors, for example

 public Student(String n, String s) {

 super(n, s);

 // etc.

then the parameterless constructor for the superclass is called automatically. That is, if

we write a constructor without an explicit call to super(args), as follows

Chapter 5 relationships Between oBjeCts

272

 public Student(String n, String s) {

 // NO EXPLICIT CALL TO super(...)

 setName(n);

 setSsn(s);

 setMajor("UNDECLARED");

 // etc.

 }

it is as if we’ve written

 public Student(String n, String s) {

 super(); // implied

 setName(n);

 setSsn(s);

 setMajor("UNDECLARED");

 // etc.

 }

instead. Herein arises a potential problem, which is described in the next section.

 Replacing the Default Parameterless Constructor

If we don’t bother to define any explicit constructors for a particular class, then as

discussed in Chapter 4, Java will attempt to provide us with a default parameterless

constructor for that class. What we’ve just seen is that when we invoke the default

parameterless constructor for a derived class such as Student, the compiler will

automatically try to invoke a parameterless constructor for each of the ancestor classes

in the inheritance hierarchy in top-down fashion. So in writing code as follows

// Person.java

public class Person {

 // Attributes ... details omitted.

 // NO EXPLICIT CONSTRUCTORS PROVIDED!!!

 // We're going to be "lazy," and let Java provide us with

 // a default parameterless constructor for the Person class.

 // Methods ... details omitted.

}

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

273

//---------------------------------------

// Student.java

public class Student extends Person {

 // Attributes ... details omitted.

 // NO EXPLICIT CONSTRUCTORS PROVIDED!!!

 // We're going to be "lazy," and let Java provide us with

 // a default parameterless constructor for the Student class.

 // Methods ... details omitted.

}

it is as if we’ve designed our classes as follows:

// Person.java

public class Person {

 // Attributes ... details omitted.

 // The default parameterless Person constructor essentially would

 // look like this if we were to code it explicitly:

 public Person() {

 // Calling the default constructor for the Object class.

 super();

 }

 // Methods ... details omitted.

}

//--

// Student.java

public class Student extends Person {

 // Attributes ... details omitted.

 // The default parameterless Student constructor essentially would

 // look like this if we were to code it explicitly:

Chapter 5 relationships Between oBjeCts

274

 public Student() {

 // Calling the default constructor for the Person class.

 super();

 }

 // Methods ... details omitted.

}

The implication is that if we derive a class B from class A and write no explicit

constructors for B, then the (default) parameterless constructor of B will
automatically look for a parameterless constructor of A. Thus, code such as the

following example won’t compile:

// Person.java

public class Person {

 private String name;

 // We've written an explicit constructor with one argument for

 // this (super)class; by having done so, we've LOST the

 // Person class's default parameterless constructor.

 public Person(String n) {

 name = n;

 }

 // Note that we haven't bothered to REPLACE the parameterless

 // constructor with one of our own design. This is going to

 // cause us problems, as we'll see in a moment.

 // Methods ... details omitted.

}

//------------------------------------

// Student.java

public class Student extends Person {

 // Attributes ... details omitted.

 // NO EXPLICIT CONSTRUCTORS PROVIDED!!!

 // We're going to be "lazy," and let Java provide us with

Chapter 5 relationships Between oBjeCts

275

 // a default parameterless constructor for the Student class.

 // Methods ... details omitted.

}

When we try to compile this code, we’ll get the seemingly very cryptic compiler error

message regarding the following Student class:

Student.java: cannot find symbol

symbol: constructor Person()

location: class Person

public class Student extends Person {

 ^

This is because the Java compiler is trying to create a default parameterless

constructor with no arguments for the Student class. In order to do so, the compiler

knows that it is going to need to be able to invoke a parameterless constructor for

Person from within the Student default constructor—however, no such constructor for

Person exists!

The best way to avoid such a dilemma is to remember to always explicitly program
a parameterless constructor for a class X any time you program any explicit
constructor for class X, to replace the “lost” default constructor.

 A Few Words About Multiple Inheritance
All of the inheritance hierarchies that we’ve looked at in this chapter are known

informally as single-inheritance hierarchies, because any particular class in the

hierarchy may only have a single direct superclass/immediate ancestor. In the hierarchy

shown in Figure 5-9, for example

• Classes B, C, and I all have the single direct superclass A.

• Classes D, E, and F have the single direct superclass B.

• Classes G and H have the single direct superclass E.

Chapter 5 relationships Between oBjeCts

276

Figure 5-9. A sample single-inheritance hierarchy

If we for some reason find ourselves needing to meld together the characteristics

of two different superclasses to create a hybrid third class, multiple inheritance may

seem to be the answer. With multiple (as opposed to single) inheritance, any given class

in a class hierarchy is permitted to have two or more classes as immediate ancestors.

For example, we have a Professor class representing people who teach classes and

a Student class representing people who take classes. What might we do if we have

a professor who wants to enroll in a class via the SRS? Or a student—most likely a

graduate student—who has been asked to teach an undergraduate-level course? In

order to accurately represent either of these two people as objects, we would need to be

able to combine the features of the Professor class with those of the Student class—a

hybrid ProfessorStudent. This might be portrayed in our class hierarchy as shown in

Figure 5-10.

Chapter 5 relationships Between oBjeCts

277

Figure 5-10. Multiple inheritance permits a subclass to have multiple direct
superclasses

On the surface, this seems quite handy. However, there are many complications

inherent in multiple inheritance—so many, in fact, that the Java language designers

chose not to support multiple inheritance. Instead, they’ve provided an alternative

mechanism for handling the requirement of creating an object with a “split personality”:

that is, one that can behave like two or more different real-world entities. This

mechanism involves the notion of interfaces and will be explored in detail in Chapter 7.

Therefore, if you’re primarily interested in object concepts only as they pertain to the

Java language, you may wish to skip the rest of this section. If, on the other hand, you’re

curious as to why multiple inheritance is so tricky, then please read on.

Here’s the problem with what we’ve done in the preceding example. We discussed

previously that, with inheritance, a subclass automatically inherits the attributes and

methods of its superclass. What about when we have two or more direct superclasses?

If these superclasses have no overlaps in terms of their features, then we are fine. But

what if the direct superclasses in question were, as an example, to have conflicting

features—perhaps public methods with the same signature, but with different code

body implementations, as illustrated in the following simple example?

We’ll start with a trivially simple Person class that declares one attribute and

one method:

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_7

278

public class Person {

 private String name;

 // Accessor method details omitted.

 public String printDescription() {

 System.out.println(getName());

 // e.g., "John Doe"

 }

}

Later on, we decide to specialize Person by creating two subclasses—Professor and

Student—which each add a few attributes along with overriding the printDescription

method to take advantage of their newly added attributes, as follows:

public class Student extends Person {

 // We add two attributes.

 private String major;

 private String studentId;

 // Accessor method details omitted.

 // Override this method as inherited from Person.

 public String printDescription() {

 return getName() + " [" + getMajor() + "; " +

 getStudentId() + "]";

 // e.g., "Mary Smith [Math; 10273]"

 }

}

//------------------------------------

public class Professor extends Person {

 // We add two attributes.

 private String title;

 private String employeeId;

 // Accessor method details omitted.

 // Override this method as inherited from Person.

Chapter 5 relationships Between oBjeCts

279

 public String printDescription() {

 return getName() + " [" + getTitle() + "; "

 + getEmployeeId() + "]";

 // e.g., "Harry Henderson [Chairman; A723]"

 }

}

Note that both subclasses have overridden the printDescription method

differently, to take advantage of each class’s own unique attributes.

At some future point in the evolution of this system, we determine the need to

represent a single object as both a Student and a Professor simultaneously, and so we

create the hybrid class StudentProfessor as a subclass of both Student and Professor.

We don’t particularly want to add any attributes or methods—we simply want to meld

together the characteristics of both superclasses—and so we’d ideally like to declare

StudentProfessor as follows:

// * * * Important Note: this is not permitted in Java!!! * * *

public class StudentProfessor extends Professor and Student { }

 // It's OK to leave a class body empty; the class itself is not

 // REALLY "empty," because it inherits the features of all of its

 // ancestors.However, we encounter a roadblock to doing so:

• StudentProfessor cannot inherit both the Professor and Student

versions of the printDescription method, because we’d then wind

up with two (overloaded) methods with identical signatures in

ProfessorStudent, which is not permitted by the Java compiler.

• Chances are that we’ll want to inherit neither, because neither one

takes full advantage of the other superclass’s attributes. That is, the

Professor version of printDescription knows nothing about the

getMajor and getStudentId methods inherited from Student, nor

does the Student version of printDescription know about the

getTitle or getEmployeeId method inherited from Professor.

• If we did wish to use one of the superclass’s versions of the method

vs. the other, we’d have to invent some way of informing the compiler

of which one we wanted to inherit.

Chapter 5 relationships Between oBjeCts

280

This is just a simple example, but it nonetheless illustrates why multiple inheritance

can be so problematic. (In a later chapter, we’ll introduce the notion of interfaces to

illustrate how we can work around the lack of multiple inheritance in Java.)

 Three Distinguishing Features of an OOPL, Revisited
In Chapter 3, we called out three key features that are required of a programming

language in order to be considered truly object-oriented. We’ve now discussed the first

two of these three features at length:

• (Programmer creation of) User-defined types, as discussed in

Chapter 3

• Inheritance, as discussed in this chapter

• Polymorphism

All that remains is to discuss polymorphism, one of the subjects of an upcoming

chapter (Chapter 7, to be precise). We’re going to take a bit of a detour first, however, to

discuss what we can do to gather up and organize groups of objects as we create them

through the use of a special type of object called a collection.

 Summary
In this chapter, you’ve learned

• That an association describes a relationship between classes—that

is, a potential relationship between objects of two particular types/

classes—whereas a link describes an actual relationship between two

objects belonging to these classes.

• That we define the multiplicity of an association between classes X

and Y in terms of how many objects of type X can be linked to a given

object of type Y and vice versa. Possible multiplicities are one-to-one

(1:1), one-to-many (1:m), and many-to-many (m:m). In all of these

cases, the involvement of the objects at either end of the relationship

may be optional or mandatory.

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_7

281

• That an aggregation is a special type of association that implies

containment.

• How to derive new classes based on existing classes through

inheritance and what the do’s and don’ts are when deriving these

new classes—specifically, how we can extend a superclass and

specialize it by adding features or overriding methods.

• How class hierarchies develop over time and what we can do to try to

avoid ripple effects to our application as the class hierarchy changes

with evolving requirements.

• Some of the complexities of constructors with respect to inheritance.

• Why multiple inheritance can be so troublesome to implement in an

OO language.

EXERCISES

 1. Given the following pairs of classes, what associations might exist between

them from the perspective of the pts case study described in the appendix? Be

sure to specify multiplicity as well as option/mandatory qualities.

• Pharmacist-Prescription

• Prescription-Medication

• Patient-Prescription

• Patient-Medication

 2. Go back to your solution for exercise 3 at the end of Chapter 4 For all of the

classes you suggested, list the pairwise associations that you might envision

occurring between them.

 3. if the class FeatureFilm were defined to have the following methods

public void update(Actor a, String title)

public void update(Actor a, Actor b, String title)

public void update(String topic, String title)

which of the following additional method headers would be allowed by the compiler?

Chapter 5 relationships Between oBjeCts

https://doi.org/10.1007/978-1-4842-9060-6_4

282

public boolean update(String category, String theater)

public boolean update(String title, Actor a)

public void update(Actor a, Actor b, String title)

public void update(Actor a, Actor b)

 4. [Coding] try coding the FeatureFilm class discussed in exercise 3 to verify

your answer for exercise 3. (recall that you can “stub out” the Actor class by

creating a file named Actor.java that contains the single line

public class Actor { }

this satisfies the compiler that Actor is a legitimate type.)

 5. Given the following simplistic code, which illustrates overloading, overriding,

and straight inheritance of methods across four classes—Vehicle,

Automobile, Truck, and SportsCar

public class Vehicle {

 String name;

 public void fuel(String fuelType) {

 // details omitted ...

 }

 public boolean fuel(String fuelType, int amount) {

 // details omitted ...

 }

}

public class Automobile extends Vehicle {

 public void fuel(String fuelType, String timeFueled) {

 // details omitted ...

 }

 public boolean fuel(String fuelType, int amount) {

 // ...

 }

}

public class Truck extends Vehicle {

Chapter 5 relationships Between oBjeCts

283

 public void fuel(String fuelType) {

 // ...

 }

}

public class SportsCar extends Automobile {

 public void fuel(String fuelType) {

 // ...

 }

 public void fuel(String fuelType, String timeFueled) {

 // ...

 }

}

how many different Fuel argument signatures would each of the four classes

recognize? list these.

 6. reflecting on all that you’ve learned about java and oopls in general thus

far, recount all of the language mechanisms that (a) facilitate code reuse and

(b) minimize ripple effects due to requirements changes after code has been

deployed.

 7. Given the following simplistic classes, FarmAnimal, Horse, and Cow

public class FarmAnimal {

 private String name;

 public String getName() {

 return name;

 }

 public void setName(String n) {

 name = n;

 }

 public void makeSound() {

 System.out.println(getName() + " makes a sound ...");

 }

}

public class Cow extends FarmAnimal {

Chapter 5 relationships Between oBjeCts

284

 public void makeSound() {

 System.out.println(getName() + " goes Moooooo ...");

 }

}

public class Horse extends FarmAnimal {

 public void setName(String n) {

 super.setName(n + " [a Horse]");

 }

}

what would be printed by the following client code?

Cow c = new Cow();

Horse h = new Horse();

c.setName("Elsie");

h.setName("Mr. Ed");

c.makeSound();

h.makeSound();

Chapter 5 relationships Between oBjeCts

285

CHAPTER 6

Collections of Objects
You learned about the process of creating objects based on class definitions, a process

known as instantiation, in Chapter 3. When we’re only creating a few objects, we

can afford to declare individualized reference variables for these objects: Students

s1, s2, and s3, perhaps, or Professors profA, profB, and profC. But, at other times,

individualized reference variables are impractical:

• Sometimes, there will be too many objects, as when creating Course

objects to represent the hundreds of courses in a university’s course

catalog.

• Worse yet, we may not even know how many objects of a particular

type we’ll need to instantiate at run time and so cannot declare a

predefined number of reference variables at compile time.

Fortunately, OOPLs solve this problem by providing a special category of object

called a collection that is used to hold and organize references to other objects.

In this chapter, you’ll learn about

• The properties of three generic collection types: ordered lists, sets,

and dictionaries

• The specifics of several different predefined Java collection types/

classes, along with how we represent and manipulate classic

arrays in Java

• How logically related classes like collections are bundled together in

Java into packages and how we must import packages if we wish to

make use of the classes that they contain

• How collections enable us to model very sophisticated real-world

concepts or situations

• Design techniques for inventing our own collection types

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_6

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_6#DOI

286

 What Are Collections?
We’d like a way to gather up objects as they are created so that we can manage them as a

group and operate on them collectively, along with referring to them individually when

necessary, for example:

• A professor may wish to step through all Student objects registered

for a particular course that the professor is teaching in order to assign

their final semester grades.

• The Student Registration System (SRS) application as a whole may

need to iterate through all of the Course objects in the current

schedule of classes to determine if any of them should be canceled

due to insufficient enrollment.

We use a special type of object called a collection to organize other objects. Think of

a collection like an egg carton and the objects it holds like the eggs: both the egg carton

and the eggs are objects, but with decidedly different properties.

 Collections Are Defined by Classes and Must
Be Instantiated
The Java language predefines a number of different collection classes. As with any class,

a collection object must be instantiated before it can be put to work. That is, if we merely

declare a reference variable to be of a collection type

CollectionType<elementType> x;

for example

ArrayList<Student> x; // ArrayList is one of Java's predefined

collection types.

then until we “hand” x a specific collection object to refer to, x is said to be undefined.

.Note the use of less-than greater-than symbols to surround/specify the type of
object the collection is to manage: ArrayList<Student>. We will discuss the concept
of generics a bit later in this chapter.

ChApter 6 CoLLeCtioNS of objeCtS

287

We must take the distinct step of using the new operator to invoke a specific

constructor for the type of collection that we wish to create:

x = new CollectionType<elementType>();

For example:

x = new ArrayList<Student>();

Think of the newly created collection object as an empty egg carton and the

reference variable referring to the collection as the handle that allows us to locate and

access—reference—this “egg carton” in the JVM’s memory whenever we’d like.

If we leave the element type off the instantiation statement, as in

x = new ArrayList<>();

then the element type is implied by the declaration of x to be Student. I prefer to

explicitly list the element type.

 Collections Organize References to Other Objects
Actually, the “collection-as-egg-carton” analogy is a bit of an oversimplification, because

rather than physically storing objects (“eggs”) in a collection (“egg carton”), we store

references to such objects in the collection. That is, the objects being organized by

a collection live physically outside of the collection in the JVM’s memory; only their

handles reside inside of the collection. This notion is illustrated in Figure 6-1.

ChApter 6 CoLLeCtioNS of objeCtS

288

Figure 6-1. A collection organizes references to objects that live in memory outside
of the collection

Thus, perhaps a better analogy than that of “collection-as-egg-carton” would be that

of a collection as an address book: we record an entry in an address book (collection)

for each of the people (objects) whom we wish to be able to contact, but the people

themselves are physically remote (see Figure 6-2).

ChApter 6 CoLLeCtioNS of objeCtS

289

Figure 6-2. A collection is analogous to an address book, with the people it
references as the objects

 Collections Are Encapsulated
We don’t need to know the private details of how object references are stored internally

to a specific type of collection in order to use the collection properly; we only need

to know a collection’s public features—in particular, its public method headers—in

order to choose an appropriate collection type for a particular situation and to use it

effectively.

Virtually all collections, regardless of type and regardless of the programming

language in which they are implemented, provide, at a minimum, methods for

• Adding objects

• Removing objects

• Retrieving specific individual objects

• Iterating through the objects in some predetermined order

ChApter 6 CoLLeCtioNS of objeCtS

290

• Getting a count of the number of objects presently referenced by the

collection

• Answering a true/false question as to whether a particular object’s

reference is in the collection or not

throughout this chapter, we’ll talk casually about manipulating objects in
collections, but please remember that, with java, what we really mean is that
we’re manipulating object references.

 Three Generic Types of Collection
Before diving into the specifics of some of Java’s predefined collection classes, let’s talk

first about the general properties of three basic collection types implemented by most

OO languages:

• Ordered lists

• Dictionaries

• Sets

 Ordered Lists
An ordered list is a type of collection that allows us to insert items in a particular order

and later retrieve them in that same order. Specific objects can also be retrieved based

on their position in the list (e.g., we can retrieve the first or last or nth item).

The vast majority of collection types—ordered lists included—needn’t be assigned

an explicit capacity (in terms of “egg-carton compartments”) at the time that they are

instantiated; collections automatically expand as new items are added. Conversely,

when an item is removed from most collection types—including ordered lists—the

“hole” that would have been left behind is automatically closed up, as shown in

Figure 6-3.

ChApter 6 CoLLeCtioNS of objeCtS

291

Figure 6-3. Most collections automatically shrink in size as items are removed

When we talk about classic arrays as a particular type of ordered list later in this
chapter, we’ll see that they alone have some limitations in this regard.

By default, items are added at the end of an ordered list, unless explicit instructions

are given to insert an item at a different position.

An example of where we might use an ordered list in building our SRS would be

to manage a waitlist for a course that has become full. Because the order with which

Student objects are added to such a list is preserved, we can be fair about selecting

students from the waitlist in first-come, first-served fashion should seats later become

available in the course.

Several predefined Java classes implement the notion of ordered list collections:

ArrayList, LinkedList, Stack, Vector, etc. We’ll use the ArrayList class in building the

SRS, and so we’ll discuss the details of working with ArrayLists a bit later in this chapter.

ChApter 6 CoLLeCtioNS of objeCtS

292

 Dictionaries
A dictionary—also known as a map—provides a means for storing each object reference

along with a unique lookup key that can later be used to quickly retrieve the object (see

Figure 6-4).

The key is often contrived based on a unique combination of one or more of the

object’s attribute values. For example, a Student object’s student ID number would

make an excellent key, because its value is inherently unique for each Student.

Items in a dictionary can typically also be iterated through one by one, typically in

ascending key (or some other predetermined) order.

The SRS might use a dictionary, indexed on course number, to manage its course

catalog. With so many course offerings to keep track of, being able to “pluck” the

appropriate Course object from a collection directly (instead of having to step through an

ordered list one by one to find it) adds greatly to the efficiency of the application.

Several examples of predefined Java classes that implement the notion of a

dictionary are HashMap, Hashtable, and TreeMap. We’ll discuss the details of working

with these specific collection types a bit later in this chapter.

Figure 6-4. Dictionary collections accommodate direct access by key

ChApter 6 CoLLeCtioNS of objeCtS

293

 Sets
A set is an unordered collection, which means that there is no way to ask for a particular

item by number/position once it has been inserted into the set. Using a set is analogous

to tossing an assortment of differently colored marbles into a sack (see Figure 6-5): we

can reach into the sack (set) to pull out the marbles (objects) one by one, but there is no

predictability as to the order with which we’ll pull them out as compared with the order

in which we put them in.

Figure 6-5. A set is an unordered collection

We can also perform tests on a set to determine whether or not a given specific

object has been previously added to the set, just as we can answer the question “Is the

blue marble in the bag?”

Note that duplicate entries aren’t allowed in a set. That is, if we were to create a set

of Student object references and a reference to a particular Student object had already

been placed in that set, then a second reference to the same Student object couldn’t

be subsequently added to the same set; the set would simply ignore our request. This

isn’t true of collections in general. If warranted by the requirements of our application,

we can add several references to the same Student object to a given ordered list or

dictionary instance, as illustrated in Figure 6-6.

ChApter 6 CoLLeCtioNS of objeCtS

294

Figure 6-6. Collections other than sets accommodate multiple references to the
same object

An example of where we might use sets in building our SRS would be to group

students according to the academic departments that they are majoring in. Then, if a

particular course—say, Biology 216—requires that a student be a biology major in order

to register, it would be a trivial matter to determine whether or not a particular Student

is a member of the “Biology Department Majors” set.

Two predefined Java classes that implement the notion of a set are HashSet and

TreeSet; we do not use sets in building the SRS and so will not be discussing them

further.

Note Declaring a treeSet that will contain custom object types like Students
requires that we declare the class as implementing the Comparable interface.
We will be discussing interfaces in Chapter 7, but will not be using sets in building
the SrS.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_7

295

 Arrays As Simple Collections
One simple type of collection that you may already be familiar with from your work with

other programming languages—OO or otherwise—is an array.

As mentioned in passing earlier in the chapter, an array is a simple type of ordered

list. We can think of an array as a series of compartments, with each compartment sized

appropriately for whatever type of data the array as a whole is intended to hold. Arrays

typically hold items of like type—for example, int(eger)s or char(acter)s or, in an OO

language, object references (references to Student objects, Course objects, Professor

objects, etc.).

 Declaring and Instantiating Arrays
Because many newcomers to the Java language are used to programming with arrays

in non-OO languages like C, the Java language supports syntax for declaring and

manipulating arrays that is borrowed from C and hence is decidedly “un-objectlike”!

The official Java syntax for declaring that a variable x will serve as a reference to an

array containing items of a particular data type is as follows:

 datatype[] x;

For example:

 int[] x;

which is to be read “int(eger) array x” (or, alternatively, “x refers to an array of ints”).

Because Java arrays are objects, they must be instantiated using the new operator.

However, unlike any of the Java predefined collection classes we’ll be talking about later

in this chapter, we must specify how many items an array is capable of holding (i.e., its

capacity in terms of its number of elements) when we first instantiate the array; the size

is then fixed and cannot be changed.

Here is a code snippet that illustrates the somewhat unusual syntax for constructing

an array. In this particular example, we’re declaring and instantiating an array designed

to hold Student object references, as depicted in Figure 6-7:

// We declare variable x as a reference to an array object

// that will be used to store 20 Student object references.

Student[] x = new Student[20];

ChApter 6 CoLLeCtioNS of objeCtS

296

Figure 6-7. Array x is designed to hold up to 20 Student references

This application of the new operator with arrays is unusual in that we don’t see a

typical constructor call ending in parentheses (...) following the new keyword, the

way we do when we’re instantiating other types of objects. Instead, we use square
brackets [...] to enclose the desired capacity of the array. Despite its unconventional

appearance, however, the line of code

Student[] x = new Student[20];

is indeed instantiating an array object behind the scenes.

it turns out that there is another way to create an array in java that looks more
“objectlike,” but the code isn’t “pretty”:

// Declare an array "x" of 20 Student references.

Object x = Array.newInstance(Class.forName("Student"), 20);

to fully appreciate what this code is doing is beyond the scope of what you’ve
learned about objects thus far; suffice it to say that virtually all java programmers
use the shorthand form instead:

Student[] x = new Student[20];

ChApter 6 CoLLeCtioNS of objeCtS

297

 Accessing Individual Array Elements
Individual array elements are accessed by appending square brackets to the end of

the array name, enclosing an int(eger) expression representing the index, or position

relative to the beginning of the array, of the element to be accessed (e.g., x[3]). This

syntax is known as an array access expression and takes the place of using classic

“get”/“set” methods to access array contents.

Note that when we refer to individual items in an array based on their index, we

start counting at 0. As it turns out, the vast majority of collection types in Java, as well as

in other languages, are zero-based. So the items stored in Student[] x in our previous

example would be referenced as x[0], x[1], … , x[19], as was illustrated in Figure 6-7.

In the following code example, we declare and instantiate a double array of size 3. We

then assign the double value 4.7 to the “zeroeth” (first) element of the array. Finally,

we retrieve the value of the last element of the array, which is referred to as data[2],

because the size of the array is 3:

// Declare an array capable of holding three double values.

double[] data = new double[3];

// Set the FIRST (zeroeth) element to 4.7.

data[0] = 4.7;

// Details omitted ...

// Access the LAST element's value.

double temp = data[2];

In the next code example, we populate an array named squareRoot of type

double to serve as a lookup table of square root values, where the value stored in cell

squareRoot[n] represents the square root of n. We declare the array to be one element

larger than we need it to be so that we may ignore the zeroeth cell—that is, for ease of

lookup, we want the square root of 1 to be contained in cell 1 of the array, not in cell 0:

double[] squareRoot = new double[11]; // we'll ignore cell 0

// Note that we're skipping cell 0.

for (int n = 1; n <= 10; n++) {

 squareRoot[n] = Math.sqrt(n);

ChApter 6 CoLLeCtioNS of objeCtS

298

 System.out.println("The square root of " + n + " = " +

 squareRoot[n]);

}

Here’s the output:

The square root of 1 = 1.0

The square root of 2 = 1.4142135623730951

The square root of 3 = 1.7320508075688772

The square root of 4 = 2.0

The square root of 5 = 2.23606797749979

The square root of 6 = 2.449489742783178

The square root of 7 = 2.6457513110645907

The square root of 8 = 2.8284271247461903

The square root of 9 = 3.0

The square root of 10 = 3.1622776601683795

the Math.sqrt() method computes the square root of a double argument
passed to the method. We’re passing in an int in the preceding example,
which automatically gets cast to a double. We’ll revisit the Math class again in
Chapter 7.

 Initializing Array Contents
Values can be assigned to individual elements of an array using indexes as shown

earlier; alternatively, we can initialize an array with a complete set of values with a single

Java statement when the array is first instantiated. In the latter case, initial values are

provided as a comma-separated list enclosed in braces. For example, the following code

instantiates and initializes a five-element String array:

String[] names = { "Steve", "Jacquie", "Chloe", "Shylow", "Baby Grode" };

Java automatically counts the number of initial values that we’re providing and

sizes the array appropriately. The preceding approach is much more concise than the

equivalent alternative shown here:

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_7

299

String[] names = new String[5];

names[0] = "Steve";

names[1] = "Jacquie";

names[2] = "Chloe";

names[3] = "Shylow";

names[4] = "Baby Grode";

However, the result in both cases is the same: an array object of capacity 5 is

instantiated, the zeroeth (first) element of the array will reference the String "Steve",

the next element will reference "Jacquie", and so on.

Note that it isn’t possible to bulk load an array in this fashion after the array has been

instantiated, as a separate line of code. That is, the following won’t compile:

String[] names = new String[4];

// This next line won't compile.

names = {"Mike", "Cheryl", "Mickey", "Will" };

If a set of comma-separated initial values aren’t provided when an array is first

instantiated, the elements of the array are automatically initialized to their zero-

equivalent values:

• An int array would be initialized to contain integer zeroes (0s).

• A double array would be initialized to contain floating-point

zeroes (0.0s).

• A boolean array would be initialized to contain the value false in

each cell.

• And so on.

And, if we declare and instantiate an array intended to hold references to

objects, as in

Student[] studentBody = new Student[100];

then we’d wind up with an array object filled with null values.

ChApter 6 CoLLeCtioNS of objeCtS

300

 Manipulating Arrays of Objects
To fill our Student array with values other than null, we’d have to individually store

Student object references in each cell of the array. If we wanted to create brand- new

Student objects to store in our array, we could write code as follows:

studentBody[0] = new Student("Fred");

studentBody[1] = new Student("Mary");

// etc.

or

Student s = new Student("Fred");

studentBody[0] = s;

// Reuse s!

s = new Student("Mary");

studentBody[1] = s;

// etc.

In the latter example, note that we’re “recycling” the same reference variable, s, to

create many different Student objects. This works because, after each instantiation, we

store a second handle on each newly created object in an array element, thus allowing

s to let go of its handle on that same object, as depicted in Figure 6-8. This technique is

used frequently, with all collection types, in virtually all OO programming languages.

ChApter 6 CoLLeCtioNS of objeCtS

301

Figure 6-8. Handing new objects one by one into a collection, using a single
reference variable as a temporary handle

ChApter 6 CoLLeCtioNS of objeCtS

302

If we’re simply using the default (parameterless) constructor to instantiate “bare-

bones” Student objects, however, we’d probably populate our array using a looping

construct and eliminate the need for reference variable s entirely:

for (int i = 0; i < 20; i++) {

 // We're using the default constructor.

 studentBody[i] = new Student();

}

Assuming that we’ve fully populated all elements of the studentBody array, an

indexed reference to any particular populated element in the array—for example,

studentBody[i]—represents a Student object and can be used accordingly. In the

following line of code, for example, we’re invoking the getName method on such a

Student:

studentBody[i].getName(); // We're using dot notation to call a method on

 // studentBody[i], the ith Student object

referenced by

 // the array.

Being able to reference individual objects within a collection in this fashion enables

us to step through a collection using a looping construct to process its objects one by

one. As an example, let’s use a for loop to iterate through all of the Students in our

studentBody array to print their names—in essence, we’re printing a student roster:

// Step through all elements of the array.

for (int i = 0; i < studentBody.length; i++) {

 System.out.println(studentBody[i].getName());

}

Note the stopping condition on the for loop:

i < studentBody.length

It turns out that arrays have a public attribute named length whose value

represents the capacity of the array in terms of the number of elements that it may

accommodate. Since we count starting with 0 for the first element, we must stop one

short of the value of length to avoid stepping past the end of the array.

ChApter 6 CoLLeCtioNS of objeCtS

303

If ever we accidentally try to step beyond the end of an array at run time, as in the

following example

// Array x contains 3 elements, indexed as 0, 1, and 2.

int[] x = new int[3];

// However, rather than stopping at element 2, we accidentally try to step

// to (nonexistent) element 3 in our loop:

for (int i = 0; i <= 3; i++) {

 System.out.println(x[i]);

}

we’ll get the following run-time error message:

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException: 3

We’ll discuss in Chapter 13 how these types of run-time failures—known as
exceptions—can be programmatically anticipated and handled through a
mechanism known as exception handling.

Note that the length attribute is a read-only attribute—that is, we cannot assign a

value to it explicitly, perhaps in an attempt to enlarge an array at run time (recall that

this isn’t possible: an array, once sized, cannot be expanded). If we try to do so, as in the

following snippet

int[] x = new int[3];

// Let's naively try to enlarge array x!

x.length = 10;

we’d get the following compilation error:

cannot assign a value to final variable length

We’ll revisit final variables in Chapter 7.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_7

304

We also have to take care when stepping through an array of object references to

avoid “land mines” due to empty/null elements. That is, if we’re iterating through an

array, but the array isn’t completely filled with Student object references, then our

invocation of the getName method will fail as soon as we reach the first empty/null

element, because in essence we’d be trying to talk to a nonexistent object. Let’s look at an

example:

// When we first instantiate an array of object references, all cells

contain the

// value null.

Student[] students = new Student[3];

// Store a Student object reference in cells 0 and 1, but leave

// cell 2 empty (i.e., it retains its default value of null).

students[0] = new Student("Elmer");

students[1] = new Student("Klemmie");

// Try to step through the array, printing each Student's name.

// There's a "land mine" lurking at element 2!!!

for (int i = 0; i < studentBody.length; i++) {

 System.out.println(studentBody[i].getName());

}

If this code were executed, we’d get the following run-time error message as soon as

the value of i reached the value 2

Exception in thread "main" java.lang.NullPointerException

because the value of studentBody[2] is null; we cannot invoke a method on (i.e., “talk

to”) a nonexistent object.

Again, we’ll cover how to handle run-time exceptions in Chapter 13.

There’s a simple way to avoid such “land mines” in an array—simply test the value

of a given array element to see if it’s null before attempting to address the object at that

location:

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13

305

// Step through all elements of the array.

for (int i = 0; i < studentBody.length; i++) {

 // Check for the presence of a valid object reference before trying to

 // "talk to" it via dot notation.

 if (studentBody[i] != null) {

 System.out.println(studentBody[i].getName());

 }

}

 A More Sophisticated Type of Collection:
The ArrayList Class
Arrays are ideal for organizing a fixed number of like-typed elements—for example, a

String array containing the abbreviated names of the days of the week:

String[] daysOfWeek = { "Mon.", "Tue.", "Wed.", "Thu.", "Fri.", "Sat.",

"Sun." };

However, as mentioned earlier, it’s often difficult—if not impossible—for us to

predict in advance the number of objects that a collection will need to hold (e.g., how

many courses a given student is going to register for when they are logged on to the

SRS). When using an Array as a collection type, however, we’re required to make such

a determination when we first instantiate the array, and, once sized, an array can’t be

expanded. To use an array under such unpredictable circumstances, we’d therefore

have to ensure that it was big enough to handle the worst-case scenario, which isn’t very

efficient.

Fortunately, OO languages provide a wide variety of collection types besides arrays

for us to choose from; each has its own unique properties and advantages. As mentioned

earlier in the chapter, one important differentiating feature of all Java collection types

besides arrays is that they needn’t be sized in advance: when we add items to a non-

array collection, it automatically grows in size, and as we remove items, the collection

will shrink accordingly (recall Figure 6-3).

Let’s now take a look at one of the most commonly used predefined Java collection

classes, ArrayList, to see how it implements the notion of an ordered list collection.

ChApter 6 CoLLeCtioNS of objeCtS

306

 Using the ArrayList Class: An Example
Here is a simple program that illustrates the use of an ArrayList collection to hold on to

references to Student objects. We’ll look at the program in its entirety first, and we’ll then

step through it to examine key points one by one:

import java.util.*;

public class ArrayListExample {

 public static void main(String[] args) {

 // Instantiate a collection.

 ArrayList<Student> students = new ArrayList<Student>(); // or

simply new ArrayList<>();

 // Create a few Student objects.

 Student a = new Student("Herbie");

 Student b = new Student("Klem");

 Student c = new Student("James");

 // Store references to all three Students in the collection.

 students.add(a);

 students.add(b);

 students.add(c);

 // ... and then iterate through them one by one,

 // printing each student's name.

 for (Student s : students) {

 System.out.println(s.getName());

 }

 }

}

 Import Directives and Packages
Our example program starts out with an import directive, which precedes the

ArrayListExample class declaration:

import java.util.*;

public class ArrayListExample { ... }

ChApter 6 CoLLeCtioNS of objeCtS

307

When we originally discussed Java program anatomy in Chapter 2, we skipped this

optional yet key element. I’ve revised the anatomy figure from Chapter 2 to include

import directives, as shown in Figure 6-9.

Figure 6-9. Anatomy of a Java program including import directives

To appreciate import directives, you first must understand the notion of Java

packages. Because the Java language is so extensive, its various predefined classes are

organized into logical groupings called packages. For example, we have

• java.io: This package contains classes related to file input/output.

• java.util: This package contains a number of utility classes, such as

the Java collection classes that you’re learning about in this chapter.

• java.sql: This package contains classes related to communicating

with relational databases.

• And so forth.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_2

308

Most built-in Java package names start with “java”, but there are some that start

with other prefixes, like “javax”. And, if we acquire Java classes from a third party,

they typically come in a package that starts with the organization’s (unique) domain

name, reversed. For example, an organization with a domain name of xyz.com would

typically name their packages com.xyz.packagename, where packagename describes

the logical purpose of the classes included in the package (e.g., com.xyz.accounting).

By using unique domain names as the basis for package names, we ensure that no

two organizations’ package names will ever duplicate one another; this is important

whenever we incorporate packages from more than one organization in the same

application.

The built-in package named java.lang contains the absolute core of the Java

language, and the classes contained within that package—for example, Math, System,

and String—are always available to both the Java compiler and the JVM whenever we

compile/run Java programs, so we needn’t worry about importing java.lang. However,

if we wish to reference the name of any other predefined class that isn’t contained within

the java.lang package—ArrayList, for example—then we must import the package to

which the class belongs, as we did with the java.util package in our example program:

// Our code needs to refer to the predefined ArrayList class as a type,

and since

// the ArrayList class isn't included in the "core" java.lang

package, we must

// import the package that defines what an ArrayList is.

import java.util.*;

public class ArrayListExample { ... }

The asterisk (*) at the end of the import directive informs the Java compiler that

we wish to import all of the classes contained within the java.util package. As an

alternative, we can import individual classes from within a package, as follows:

// We can import individual classes by name, to better document where

each class

// that we are using originates.

import java.util.ArrayList;

import java.util.Date;

ChApter 6 CoLLeCtioNS of objeCtS

309

import java.io.PrintWriter;

// etc.

public class SomeClass { ... }

This approach, of course, requires more typing, but provides better traceability of

where each class that we are using in our program originates. Either approach—listing

individual classes to be imported one by one or using wildcards to import all classes in a

package as a whole—is equally acceptable.

As you’ll learn when we discuss the mechanics of the jVM in more detail in
Chapter 13, neither approach is less efficient than the other at run time.

If we were to accidentally omit the import directive of our ArrayListExample

program, we’d get the following compilation error once for every occurrence of the

symbol ArrayList in our code:

cannot find symbol

symbol: class ArrayList

That is, our output from compiling the following code

// WHOOPS! We've forgotten our import directive.

public class ArrayListExample {

 public static void main(String[] args) {

 // Instantiate a collection.

 ArrayList<Student> students = new ArrayList<>();

 // Create a few Student objects.

 Student a = new Student("Herbie");

 Student b = new Student("Klem");

 Student c = new Student("James");

 // etc.

 }

}

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13

310

would be as follows:

ArrayListExample.java:6: cannot find symbol

symbol : class ArrayList

location: class ArrayListExample

 ArrayList<Student> students = new ArrayList<>();

 ^

ArrayListExample.java:6: cannot find symbol

symbol : class ArrayList

location: class ArrayListExample

 ArrayList<Student> students = new ArrayList<>();

 ^

2 errors

This is because the symbol ArrayList is not automatically in the namespace of

the class that we’re compiling—that is, it’s not one of the names/symbols that the Java

compiler recognizes in the context of that class.

 The Namespace of a Class
Generally speaking, the namespace for a given class contains the following categories of

names, among others:

 1. The name of the class itself (e.g., Student)

 2. The names of all of the features (attributes, methods, etc.)

declared by the class

 3. The names of any local variables declared within any methods of

the class (including parameters being passed in)

 4. The names of all classes belonging to the same package that the

class we’re compiling belongs to (we’ll talk more about packaging

classes later in this chapter and then again in Chapter 13)

 5. The names of all public classes in the java.lang package: String,

Math, System, etc.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13

311

You’ll learn what constitutes a public (vs. a nonpublic) class in Chapter 13.

 6. The names of all public classes in any other package that has

been imported by the class that we’re compiling

 7. The names of all public features (attributes, methods) of the

classes listed in points 5 and 6

 8. And so forth

As a simple example, when compiling the following class

// Simple.java

public class Simple {

 private int foo;

 public void bar(double x) {

 boolean maybe;

 if (x < 0) maybe = true;

 else maybe = false;

 }

}

the compiler would recognize the following names/symbols:

 1. Simple (the class name)

 2. foo, bar (names of features of the Simple class)

 3. x, maybe (local variables of Simple’s methods)

 4. The names of all classes belonging to the default (unnamed)

package, since Simple is in the default package

 5. The names of all public classes in the java.lang package: String,

Math, System, etc.

 6. The names of all public classes in any other package that has been

imported. Since Simple contains no import directives, there are

no symbols in this category in Simple’s namespace

 7. The names of all public features (attributes, methods) of the

classes listed in points 4 and 5

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13

312

The Java compiler compiles classes one by one and “resets” its notion of what is

within scope for each new class that it compiles. Therefore, importing a package is only

effective for the particular .java source code file in which the import directive resides.

If, for example, you have three separate classes, each stored in its own .java file, that all

need to manipulate ArrayLists, then all three .java files must include an appropriate

import directive, either

import java.util.*;

or

import java.util.ArrayList;

We could avoid importing a package/class by fully qualifying the names of any

classes, methods, etc. that we use from such a package. That is, we can prefix the name

of the class or method with the name of the package from which it originates every time

that we use it in our code, as shown in the next example:

// Note: NO import directive!

public class Simple {

 public static void main(String[] args) {

 java.util.ArrayList<Student> x = new java.util.ArrayList<>();

 java.util.ArrayList<Professor> y = new java.util.ArrayList<>();

 // etc.

This, of course, requires a lot more typing and impairs the readability of our code.

By importing a package, on the other hand, we’re telling the compiler how to resolve

simple/unqualified names—the real (qualified) name of the ArrayList class is java.

util.ArrayList, but we’re able to refer to it by the simple name ArrayList because of

the import directive.

Although most built-in Java packages have names that consist of two terms separated

by a period (dot)—for example, java.awt—some built-in Java package names consist of

three or more dot-separated terms—for example, java.awt.event. There’s really no limit

to the number of terms that can be concatenated to form a package name.

When one package name is a subset of another package name—as in the case of

java.awt and java.awt.event—both must be imported separately if both are needed in

the same class scope. That is, an asterisk at the end of an import directive

import nameA.nameB.*;

ChApter 6 CoLLeCtioNS of objeCtS

313

only serves to import members of the specified package, not to extend the package

name per se:

// This first import directive is not sufficient to import java.awt.event

members;

// it only imports members of the java.awt package.

import java.awt.*;

// We'd need to include this second import directive, as well.

import java.awt.event.*;

 User-Defined Packages and the Default Package
Java also provides programmers with the ability to logically group their own classes

into packages. For example, we could invent a package such as com.objectstart.

srs to house all classes related to our SRS application. Then, anyone else wishing to

incorporate our SRS classes within an application that they are going to write could

include the directive

import com.objectstart.srs;

in their code.

We will revisit this notion later in the book, but, as it turns out, if we do nothing in

particular to take advantage of programmer-defined packages, then as long as all of the

compiled .class files for an application reside in the same directory on our computer

system, they are automatically considered to be in the same package, known as the

default package. This is what enables us to write code such as the following

public class SRS {

 public static void main(String[] args) {

 Student s = new Student();

 Professor p = new Professor();

 // etc.

without using import directives, because the class definitions for all of the classes

that we’ve written and compiled—Student, Professor, and SRS—all coexist within the

same (default unnamed) package.

ChApter 6 CoLLeCtioNS of objeCtS

314

The bottom line is that import directives as a building block of a .java source code

file are only needed if we are using classes that either are not found in package java.

lang or do not coexist in our own (default) package.

 Generics
Let’s return to our examination of the ArrayListExample program from earlier in the

chapter, which is repeated in its entirety here for your convenience:

import java.util.*;

public class ArrayListExample {

 public static void main(String[] args) {

 // Instantiate a collection.

 ArrayList<Student> students = new ArrayList<>();

 // Create a few Student objects.

 Student a = new Student();

 Student b = new Student();

 Student c = new Student();

 // Store references to all three Students in the collection.

 students.add(a);

 students.add(b);

 students.add(c);

 // ... and then iterate through them one by one,

 // printing each student’s name.

 for (Student s : students) {

 System.out.println(s.getName());

 }

 }

}

The next bit of “unusual” syntax occurs on the line of code that declares and

instantiates our ArrayList:

ArrayList<Student> students = new ArrayList<>();

ChApter 6 CoLLeCtioNS of objeCtS

315

The predefined Java collection classes are designed to operate generically on object

references of any type, but then provided a syntactic means of constraining the type of

element that a particular collection is to manage. Now, whenever we want to instantiate

a collection such as an ArrayList, we can indicate the type of element that the collection

is intended to hold by enclosing the type name in angle brackets <...> immediately after

the class name:

ArrayList<Professor> faculty = new ArrayList<>();

ArrayList<String> names = new ArrayList<>();

and so forth. In essence, ArrayList<xxx> becomes the type of the collection that we’re

instantiating.

Note that there is a trick to inserting primitive types (int, double, boolean, etc.)
into a collection. We’ll discuss this when the notion of autoboxing is introduced a
bit later in the chapter.

 ArrayList Features
In our ArrayListExample program, we use the add method to insert Student references

into the collection:

// Store references to all three Students in the collection.

students.add(a);

students.add(b);

students.add(c);

The ArrayList class supports a total of 38 public methods—many of which are

common to all collection types—and three overloaded public constructors. Some of the

more commonly used ArrayList methods, which we’ll use in building the SRS, are as

follows:

• boolean add(E element): Appends the specified element to the

end of the list. E refers to whatever type was specified inside of angle

brackets <...> when the ArrayList was first declared/instantiated—

for example, Student in the following declaration:

ChApter 6 CoLLeCtioNS of objeCtS

316

ArrayList<Student> students = new ArrayList<>();

Student s = new Student();

students.add(s);

// or:

students.add(new Student());

With this (and any other) method, we are permitted to pass in an

argument of type E or of any subtype thereof:

ArrayList<Student> students = new ArrayList<>();

// As long as GraduateStudent is derived from Student, all

is well!

students.add(new GraduateStudent());

• void add(int n, E element): Inserts the specified element at the

nth position in the list, shifting all subsequent items over to make

room for the newly added element, for example:

Student s = new Student();

students.add(0, s);

// As of the preceding line of code, whatever reference was previously

// in the first (0th) position will now be in the SECOND

position (i.e.,

// in position #1), because we've inserted a NEW Student reference

// in the first (0th) position.

• void clear(): Removes all elements from the collection, rendering

it empty.

Whether or not these elements subsequently get garbage collected as a result of
eliminating their handles from the collection will depend on whether any other handles
are being maintained on these objects. We’ll revisit this topic later in this chapter.

• boolean contains(Object element): Returns true if the specific

object referenced by the argument is also referenced by the

ArrayList and false otherwise:

ChApter 6 CoLLeCtioNS of objeCtS

317

// Create a collection.

ArrayList<Student> x = new ArrayList<>();

// Instantiate two Students, but only add the FIRST of them

// to ArrayList x.

Student s1 = new Student();

Student s2 = new Student();

x.add(s1);

// Declare a third reference variable of type Student, and

have it refer to

// the SAME student as s1: that is, a Student whose

reference has already been

// added to collection x.

Student s3 = s1;

The situation with regard to objects x, s1, s2, and s3 can be thought of

conceptually as illustrated in Figure 6-10.

Figure 6-10. Student s1 was placed into collection x, and because s1 and s3
reference the same Student, x contains s3

Continuing with our example, the following first if test will return a

value of false, while the second will return true, because s3 refers to

the same Student object that s1 refers to:

// Tests for containment: the first test will return false ...

if (x.contains(s2)) { ... }

ChApter 6 CoLLeCtioNS of objeCtS

318

// ... while the second will return true.

if (x.contains(s3)) { ... }

• int size(): Returns a count of the number of elements currently

referenced by the ArrayList. An empty ArrayList will report a size of 0.

• boolean isEmpty(): Returns true if the ArrayList in question

contains no elements and false otherwise.

• boolean remove(Object element): Locates and removes a single

instance of the specific object referred to by the argument from the

ArrayList, closing up the hole that would otherwise be left behind. It

returns true if such an object was found and removed or false if the

object wasn’t found:

// Create a collection.

ArrayList<Student> x = new ArrayList<>();

// Instantiate two Students, and add both to x.

Student s1 = new Student();

Student s2 = new Student();

x.add(s1);

x.add(s2);

// Remove s1.

x.remove(s1);

// x now only contains one reference, to s2.

• And so forth.

 Iterating Through ArrayLists
The for loop syntax that we use for iterating through an ArrayList (such as the

students ArrayList in our ArrayListExample program) is as follows:

for (type referenceVariable : collectionName) {

 // Pseudocode.

 manipulate the referenceVariable as desired

}

ChApter 6 CoLLeCtioNS of objeCtS

319

For example:

for (Student s : students) {

 System.out.println(s.getName());

}

This for statement is to be interpreted as follows: “for every Student object (which

we’ll temporarily refer to as s) in the students collection, perform whatever logic is

specified within the body of the loop.” We are then able to refer to s within the body of

the for loop to manipulate it as desired, thus processing the items in the ArrayList

one by one.

 Copying the Contents of an ArrayList into an Array
From time to time, we’ll have a need to copy the contents of a collection into an array.

We’ll use a method declared by the ArrayList class with the following header:

type[] toArray(type[] arrayRef)

That is, we’ll invoke the toArray method on an ArrayList object, passing in an array

of the desired type as an argument, and the method will in turn hand us back an array

that contains a copy of the contents of the ArrayList, as follows:

• If the array that we pass in is of sufficient capacity to hold the

contents of the ArrayList, that same array object is filled and

returned.

• Otherwise, a brand-new array of the appropriate type and size

is created, filled, and returned, and the one that we pass in as an

argument is ignored.

Since it’s easy to create an array whose size matches that of an existing ArrayList—

we’ll see how to do so in just a moment—we’ll do so whenever we have occasion to

invoke the toArray method on an ArrayList within the SRS application.

Let’s look at an example. First, we’ll create an ArrayList named students, “stuffing”

it with three Student references:

ArrayList<Student> students = new ArrayList<>();

students.add(new Student("Herbie"));

students.add(new Student("Klemmie"));

students.add(new Student("James"));

ChApter 6 CoLLeCtioNS of objeCtS

320

Next, we’ll declare and instantiate an array named copyOfStudents that’s designed

to be just the right size to hold the contents of the students ArrayList—note the use of

a nested call to students.size() to accomplish this:

Student[] copyOfStudents = new Student[students.size()];

Then, to copy the contents of the ArrayList into the copyOfStudents array, we

simply have to invoke the toArray method on students, passing in copyOfStudents as

an argument:

students.toArray(copyOfStudents);

Let’s verify that the copy works by iterating first through the ArrayList and then

through the array, printing the names of the Student objects referenced by each:

System.out.println("The ArrayList contains the following students:");

for (Student s : students) {

 System.out.println(s.getName());

}

System.out.println();

System.out.println("The array contains the following students:");

for (int i = 0; i < copyOfStudents.length; i++) {

 System.out.println(copyOfStudents[i].getName());

 }

Here’s the output:

The ArrayList contains the following students:

Herbie

Klemmie

James

The array contains the following students:

Herbie

Klemmie

James

ChApter 6 CoLLeCtioNS of objeCtS

321

Success! Both the array and the ArrayList now refer to the same three Students, as

depicted conceptually in Figure 6-11.

Figure 6-11. Using the toArray method of the ArrayList class, we copy the
contents of an ArrayList to an array

 The HashMap Collection Class
As mentioned earlier in the chapter, a Java HashMap is a dictionary-type collection—that

is, a HashMap gives us direct access to a given object based on a unique key value. Both

the key and the object itself can be declared to be of any type.

Let’s look at a simple example program called HashMapExample that illustrates the

basics of manipulating HashMaps. This program involves

• Creating and populating a HashMap with Student object references,

using the value of their idNo attribute (a String) as the key

• Attempting to retrieve several individual Students based on specific

idNo values

• Iterating through the entire collection of Students

ChApter 6 CoLLeCtioNS of objeCtS

322

For purposes of this example, we’ll use the following simplified Student class

declaration:

public class Student {

 private String idNo;

 private String name;

 // Constructor.

 public Student(String i, String n) {

 idNo = i;

 name = n;

 }

 public String getName() {

 return name;

 }

 public String getIdNo() {

 return idNo;

 }

}

And we’ll use the value of each Student’s idNo attribute as the key.

Let’s look at the program in its entirety first, and we’ll walk through selected passages

afterward:

import java.util.HashMap;

public class HashMapExample {

 public static void main(String[] args) {

 // Instantiate a HashMap with String as the key type and Student as

 // the value type.

 HashMap<String, Student> students = new HashMap<String, Student>();

 // Instantiate three Students; the constructor arguments are

 // used to initialize Student attributes idNo and name,

 // respectively, which are both declared to be Strings.

 Student s1 = new Student("12345-12", "Fred");

 Student s2 = new Student("98765-00", "Barney");

 Student s3 = new Student("71024-91", "Wilma");

ChApter 6 CoLLeCtioNS of objeCtS

323

 // Insert all three Students into the HashMap, using their idNo

 // as a key.

 students.put(s1.getIdNo(), s1);

 students.put(s2.getIdNo(), s2);

 students.put(s3.getIdNo(), s3);

 // Retrieve a Student based on a particular (valid) ID.

 String id = "98765-00";

 System.out.println("Let's try to retrieve a Student with ID =

" + id);

 Student x = students.get(id);

 // If the value returned by the get method is non-null, then

 // we indeed found a matching Student ...

 if (x != null) {

 System.out.println("Found! Name = " + x.getName());

 }

 // ... whereas if the value returned was null, then we didn't find

 // a match on the id that was passed in as an argument to get().

 else {

 System.out.println("Invalid ID: " + id);

 }

 System.out.println();

 // Try an invalid ID.

 id = "00000-00";

 System.out.println("Let's try to retrieve a Student with ID =

" + id);

 x = students.get(id);

 if (x != null) {

 System.out.println("Found! Name = " + x.getName());

 }

 else {

 System.out.println("Invalid ID: " + id);

 }

ChApter 6 CoLLeCtioNS of objeCtS

324

 System.out.println();

 System.out.println("Here are all of the students:");

 System.out.println();

 // Iterate through the HashMap to process all Students.

 for (Student s : students.values()) {

 System.out.println("ID: " + s.getIdNo());

 System.out.println("Name: " + s.getName());

 System.out.println();

 }

 }

}

Here’s the output:

Let's try to retrieve a Student with ID = 98765-00

Found! Name = Barney

Let's try to retrieve a Student with ID = 00000-00

Invalid ID: 00000-00

Here are all of the students:

ID: 12345-12

Name: Fred

ID: 98765-00

Name: Barney

ID: 71024-91

Name: Wilma

The first point of interest is that when we declare and instantiate a HashMap, we must

specify types for two elements: the key, which is of type String in our example, and the

value that this key represents—the value being looked up—which is of type Student in our

example:

HashMap<String, Student> students = new HashMap<String, Student>();

ChApter 6 CoLLeCtioNS of objeCtS

325

We use the put method to insert an object into a HashMap:

students.put(s1.getIdNo(), s1);

This method inserts the object represented by the second argument (s1, in the

preceding example) into the collection with a retrieval key value represented by the first

argument (the idNo of s1, retrieved by calling the getIdNo method, in the preceding

example).

If we attempt to insert a second object into a HashMap with a key value that duplicates

the key of an object that is already referenced by the HashMap, the put method will

silently replace the original object reference with the new reference. If we want to avoid

such inadvertent object replacement in a HashMap, we can use the containsKey method,

which returns a value of true if a particular key already exists in the HashMap and false

otherwise. Here’s an example of this method’s use:

// If it is NOT the case that the students HashMap already contains

// a key value matching the idNo of student s1 ...

if (!(students.containsKey(s1.getIdNo()))) {

 // ... then it is safe to add such a reference.

 students.put(s1.getIdNo(), s1);

}

else {

 // Another Student reference with the same idNo value is already in the

HashMap.

 System.out.println("ERROR: Duplicate student ID found in HashMap: " +

 s1.getIdNo());

}

The get method is used to retrieve an object reference from the HashMap whose key

value matches the value passed in as an argument to the method:

Student x = students.get(id);

If no match is found, a value of null is returned.

ChApter 6 CoLLeCtioNS of objeCtS

326

The syntax that we’ve used for iterating through the students HashMap in our

HashMapExample program is very similar to the code that we used to iterate through

ArrayLists earlier in the chapter:

// Iterate through the HashMap to process all Students.

for (Student s : students.values()) {

 ...

}

The only subtle difference is that we are invoking the values method on the

students collection to access the (Student) objects contained within the HashMap,

bypassing their keys, as illustrated in Figure 6-12.

Figure 6-12. The values method returns a collection of values (only) from
a HashMap

ChApter 6 CoLLeCtioNS of objeCtS

327

Some of the other commonly used methods declared by the HashMap class are as

follows:

• Object remove(Object key): Removes the reference to the object

represented by the given key from the HashMap.

• boolean contains(Object value): Returns true if the specific

object passed in as an argument to the method is already referenced

by the HashMap, regardless of what its key value might be; otherwise,

returns false. Here’s an example:

// Instantiate a new HashMap and two Students.

HashMap<String, Student> x = new HashMap<String, Student>();

Student s1 = new Student("12345-12", "Fred");

Student s2 = new Student("98765-00", "Barney");

// Insert only the first Student into the HashMap.

x.put(s1.getIdNo(), s1);

// Maintain a second handle on each of the two Students.

Student s3 = s1; // s1, and hence s3, is in the HashMap.

Student s4 = s2; // s2, and hence s4, are NOT in the HashMap.

The situation with regard to objects x, s1, s2, s3, and s4 can be

thought of conceptually as illustrated in Figure 6-13.

ChApter 6 CoLLeCtioNS of objeCtS

328

Figure 6-13. Two Student objects, only one of which is referenced by HashMap x

The results of calling x.contains(...) with respect to s3, then s4,

are as follows:

// This first test will evaluate to true ...

if (x.contains(s3)) { ...

// ... while this second test will evaluate to false.

if (x.contains(s4)) { ...

ChApter 6 CoLLeCtioNS of objeCtS

329

• int size(): Returns a count of the number of key/object pairs

currently stored in the HashMap.

• void clear(): Empties out the HashMap of all key/object pairs, as if it

had just been newly instantiated.

• boolean isEmpty(): Returns true if the HashMap contains no entries;

otherwise, returns false.

 The TreeMap Class
The Java TreeMap class is another dictionary-type collection. TreeMaps are very similar to

HashMaps, with one notable difference:

• When we iterate through a TreeMap, objects are automatically

retrieved from the collection in ascending key (sorted) order.

• When we iterate through a HashMap, on the other hand, there’s no

guarantee as to the order in which items will be retrieved.

Let’s write a program to demonstrate this difference between HashMaps and

TreeMaps. In our program, we’ll instantiate one of each of these two types of collection.

This time, we’ll insert Strings into the collections rather than Students; we’ll let the

same String serve as both the key and the value:

import java.util.*;

public class TreeHash {

 public static void main(String[] args) {

 // Instantiate two collections -- a HashMap and a TreeMap -- with

 // String as both the key type and the object type.

 HashMap<String, String> h = new HashMap<String, String>();

 TreeMap<String, String> t = new TreeMap<String, String>();

 // Insert several Strings into the HashMap, where the String serves

 // as both the key and the value.

 h.put("FISH", "FISH");

 h.put("DOG", "DOG");

 h.put("CAT", "CAT");

ChApter 6 CoLLeCtioNS of objeCtS

330

 h.put("ZEBRA", "ZEBRA");

 h.put("RAT", "RAT");

 // Insert the same Strings, in the same order, into the TreeMap.

 t.put("FISH", "FISH");

 t.put("DOG", "DOG");

 t.put("CAT", "CAT");

 t.put("ZEBRA", "ZEBRA");

 t.put("RAT", "RAT");

 // Iterate through the HashMap to retrieve all Strings ...

 System.out.println("Retrieving from the HashMap:");

 for (String s : h.values()) {

 System.out.println(s);

 }

 System.out.println();

 // ... and then through the TreeMap.

 System.out.println("Retrieving from the TreeMap:");

 for (String s : t.values()) {

 System.out.println(s);

 }

 }

}

Here’s the output:

Retrieving from the HashMap:

ZEBRA

CAT

FISH

DOG

RAT

Retrieving from the TreeMap:

CAT

DOG

ChApter 6 CoLLeCtioNS of objeCtS

331

FISH

RAT

ZEBRA

Note that the TreeMap did indeed sort the Strings, whereas the Strings were

retrieved in an arbitrary order—neither in the order in which they were inserted nor in

sorted order—from the HashMap.

All of the other methods that we discussed for the HashMap class work in the same

fashion for TreeMaps.

if TreeMaps are effectively identical to HashMaps with the added benefit of sorted
iteration, why don’t we simply ignore the HashMap class and always use the
TreeMap class to create dictionary collections instead? the answer lies in the fact
that dictionaries can use any object type as a key.

if we use Strings as keys, as we’ve done in all of our examples thus far, a
TreeMap has no trouble determining how to sort them, because the String
class defines a compareTo method that the TreeMap class takes advantage
of. however, if we use a user-defined type as a key, the burden is on us to
programmatically define what it means to sort that object type.

Let’s say, for example, that we create a dictionary collection where a Department
object serves as the key and the Professor who chairs the department is the
value referenced by a given key. if we declare the collection to be a TreeMap,
we must define what it means for one Department to “come before” another in
sorted fashion if we plan on iterating through the collection. the code required
to do so is rather advanced—certainly beyond the scope of what we’ve learned
about java thus far. Suffice it to say that if we don’t truly need to iterate through
a dictionary in sorted key order, it’s not worth the extra trouble of using TreeMap
when HashMap will do quite nicely.

ChApter 6 CoLLeCtioNS of objeCtS

332

 The Same Object Can Be Simultaneously
Referenced by Multiple Collections
As mentioned earlier, when we talk about inserting an object into a collection, what we

really mean is that we’re inserting a reference to the object, not the object itself. This

implies that the same object can be referenced by multiple collections simultaneously.

Think of a person as an object and their telephone number as a reference for

reaching that person. Now, as I proposed earlier in this chapter, think of an address book

as a collection: it’s easy to see that the same person’s phone number (reference) can be

recorded in many different address books (collections) simultaneously.

Let’s consider an example relevant to the SRS. Given the students who are registered

to attend a particular course, we may simultaneously maintain the following:

• An ordered list of these students for purposes of knowing who

registered first on the waitlist for a follow-on course

• A dictionary that allows us to retrieve a given Student object based

on the student’s name

• Perhaps even a second SRS-wide dictionary that organizes all

students at the university based on their student ID numbers

This is depicted conceptually in Figure 6-14.

ChApter 6 CoLLeCtioNS of objeCtS

333

Figure 6-14. A given object may be referenced by multiple collections
simultaneously

One common mistake made by beginning OO programmers is to assume that if a

given collection is emptied (perhaps via an explicit call to its clear method), then the

objects that the collection was previously referencing will be garbage collected. Recall

our discussion of garbage collection from Chapter 3: only when there are no longer any

handles on a given object will its memory will be recycled by the JVM. Given that objects

are often referenced by multiple collections simultaneously, we cannot assume that

clearing a single collection will free up the objects that it is referencing. For example, if

we were to clear the contents of the “Students attending attend Math 101” collection of

Figure 6-14, the “John,” “Fred,” and “Sam” Student objects would still be referenced by

two other collections. Unless these Student objects were subsequently removed from

those other collections, as well, they would not be garbage collected.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_3

334

 Inventing Our Own Collection Types
As mentioned earlier, different types of collections have different properties and

behaviors. You must therefore familiarize yourself with the various predefined collection

types available for your OO language of choice and choose the one that is the most

appropriate for what you need in a given situation. Or, if none of them suits you, invent

your own! This is where we start to get a real sense of the power of an OO language. Since

we have the ability to invent our own user-defined types, it of course follows that we have

free rein to define our own collection types.

We have several ways to create our own collection types:

• Approach #1: We can design a brand-new collection class from

scratch.

• Approach #2: We can use the techniques that we learned in Chapter 5

to extend a predefined collection class.

• Approach #3: We can create a “wrapper” class that encapsulates one

of the built-in collection types, to “abstract away” some of the details

involved with manipulating the collection.

Let’s discuss each of these three approaches in turn.

 Approach #1: Designing a New Collection Class from
Scratch
Creating a brand-new collection class from scratch is typically quite a bit of work. Since

most OO languages provide such a wide range of predefined collection types, it’s almost

always possible to find a preexisting collection type to use as a starting point, in which

case one of the other two approaches would almost always be preferred.

if we were to want to create a new collection class from scratch, however,
we’d almost certainly want such a class to take advantage of the predefined
Collection interface. We’ll discuss the notion of interfaces in general, and of
the Collection interface specifically, in Chapter 7.

Note that, despite the fact that an array serves as a simple sort of ordered list
collection, it is not formally a java Collection in the “capital C” sense of the word.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_7

335

 Approach #2: Extending a Predefined Collection
Class (MyIntCollection)
To illustrate this approach, let’s extend the ArrayList class to create a collection

class called MyIntCollection. An object of type MyIntCollection will be able to, at a

minimum, respond to all of the same service requests that an ArrayList can respond

to, because by virtue of inheritance, MyIntCollection is an ArrayList. However, we

want our MyIntCollection class to do some extra work: we want it to keep track of the

smallest and largest int values stored within a given MyIntCollection instance. To

accomplish this, we’ll add a few new features, along with overriding the add method that

we’d otherwise inherit as is from ArrayList.

We’ll look at the code for the MyIntCollection class in its entirety first, and then

we’ll walk through it step by step afterward:

import java.util.ArrayList;

public class MyIntCollection extends ArrayList<Integer> {

 // We inherit all of the attributes and methods of a standard ArrayList

 // as is, then define a few extra attributes and methods of our own:

 // two ints to keep track of the smallest and largest values

 // added to the collection, plus another int to keep a running

 // total of all values added to the collection.

 private int smallestInt;

 private int largestInt;

 private int total;

 // Replace the default constructor.

 public MyIntCollection() {

 // Do everything defined by the constructor of the ArrayList

 // base class first - we needn't know what those things are, simply

 // that we ought to do them!

 super();

 // Initialize the total.

 total = 0;

 }

 // Override the add() method as inherited from ArrayList.

ChApter 6 CoLLeCtioNS of objeCtS

336

 public boolean add(int i) {

 // Remember this int as the largest/smallest, if appropriate.

 // (The FIRST time we add a value, that value will, by definition,

 // be BOTH the smallest AND the largest that we've seen so far!)

 if (this.isEmpty()) {

 smallestInt = i;

 largestInt = i;

 }

 else {

 if (i < smallestInt) {

 smallestInt = i;

 }

 if (i > largestInt) {

 largestInt = i;

 }

 }

 // Include this value in the running total.

 total = total + i;

 // Insert the int into the collection using the add method as

implemented

 // by the ArrayList base class. Again, we needn't understand

 // the inner workings of HOW this method does so ...

 return super.add(i);

 }

 // Several new methods.

 public int getSmallestInt() {

 return smallestInt;

 }

 public int getLargestInt() {

 return largestInt;

 }

 public double getAverage() {

 // Note that we must cast ints to doubles to avoid

ChApter 6 CoLLeCtioNS of objeCtS

337

 // truncation when dividing.

 return ((double) total) / ((double) this.size());

 }

}

Now, let’s walk through selected portions of the MyIntCollection code.

 Wrapper Classes for Primitive Types

The first unusual bit of syntax that we notice is with regard to the class that we’re extending:

public class MyIntCollection extends ArrayList<Integer> {

If we are going to be placing int values in our collection, why are we designating

Integer as the type of element to be inserted?

Unlike arrays, whose elements may be either primitive or reference types, Java

collections are designed to hold only reference types. An int is not an object, and so if

we wish to store primitive values in collections, we must “box” them inside of objects, as

illustrated conceptually in Figure 6-15.

Figure 6-15. We must “box” primitive values in objects in order to insert them into
a collection

ChApter 6 CoLLeCtioNS of objeCtS

338

The Java language provides a different “wrapper” class to serve as a “box” for each

of the eight distinct primitive types: Integer, Float, Double, Byte, Short, Long, Boolean,

and Character. All of these classes are included in the core java.lang package.

Prior to Java 5.0, programmers were responsible for writing the explicit code

necessary to “wrap” primitive values inside of corresponding wrapper objects before

inserting them into a collection, as well as the code to “unwrap” them when retrieving

them from a collection; as of Java version 5.0, the autoboxing feature was introduced

to save us the trouble of having to do this explicitly. Simply by declaring a collection as

containing the appropriate wrapper type, we are free to insert and retrieve primitive

values as is:

ArrayList<Integer> x = new ArrayList<Integer>();

// Directly add a primitive (int) value to the ArrayList;

// it automatically gets "boxed" inside of an Integer object.

x.add(17);

// Details omitted ...

// Directly retrieve a primitive (int) value from the

// ArrayList; it automatically gets "unboxed" from its

// enclosing Integer object.

int y = x.elementAt(0); // y now has the value 17

We’ll revisit the wrapper classes for primitive types several more times in the book,

as they serve many useful purposes.

 Reusing a Base Class Constructor

The constructor that we’ve provided for the MyIntCollection class takes advantage

of the super keyword to reuse the constructor code of the base ArrayList class, a

technique that we discussed in Chapter 5:

 public MyIntCollection() {

 // Do everything defined by the constructor of the ArrayList

 // base class first - we needn't know what those things are, simply

 // that we ought to do them!

 super();

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_5

339

It isn’t necessary for us to know the behind-the-scenes details that take place when

an instance of an ArrayList is created. Simply by including

super();

as the first line of code in our constructor, we ensure that such details are taken care

of for us.

Strictly speaking, you could omit the preceding line of code, for as you learned in
Chapter 5, a call to super() is implied as the first line of code of a derived class’s
constructor. however, inserting this line of code explicitly doesn’t hurt and in fact
clarifies what is actually happening when this constructor is executed.

 Overriding the add Method

We override the add method of the MyIntCollection class as inherited from ArrayList

so that we may continuously monitor values as we add them to our custom collection to

keep track of what the smallest and largest values have been:

 public boolean add(int i) {

 // Remember this int as the largest and/or the smallest,

 // as appropriate. (The FIRST time we add a value, it by default

 // will be BOTH the smallest AND the largest!)

 if (this.isEmpty()) {

 smallestInt = i;

 largestInt = i;

 }

 else {

 if (i < smallestInt) smallestInt = i;

 if (i > largestInt) largestInt = i;

 }

 // Include this value in the running total.

 total = total + i;

Finally, by invoking super.add(i) from our overridden add method, we’re ensuring

that we do everything that the ArrayList base class does when adding an item to its

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_5

340

internal collection—again without having to know the details of what is happening

behind the scenes. And, because we must return a boolean value from our add method

per the (overridden) method header, we can accomplish this by simply returning the

value that results from this base class method call:

 // Insert the int into the collection using the add method as

implemented

 // by the ArrayList base class. Again, we needn't understand

 // the inner workings of HOW this method does so ...

 return super.add(i);

 }

The remainder of the code for the MyIntCollection class as shown earlier in this

section is self-explanatory, except perhaps for the final method:

 public double getAverage() {

 return ((double) total) / ((double) this.size());

 }

Since both total and this.size() are int(eger) expressions, we must explicitly cast

at least one of them to be a double value before performing the division. If we were to

simply return the result of total/this.size(), we’d be dividing an int by an int, which

would cause the fractional part of the answer to be truncated.

 Putting MyIntCollection to Work

Here’s sample client code to demonstrate how our new MyIntCollection collection type

can be put to good use:

public class MyIntCollectionExample {

 public static void main(String[] args) {

 // Instantiate one of our newly designed collections.

 MyIntCollection mic = new MyIntCollection();

 // Add four random integers to our "special" collection.

 mic.add(3);

 mic.add(6);

 mic.add(1);

 mic.add(9);

ChApter 6 CoLLeCtioNS of objeCtS

341

 // Take advantage of the size method as inherited from

ArrayList ...

 System.out.println("The collection contains " + mic.size() +

 " int values");

 // ... and then ask mic "specialized" questions about its

contents that a

 // garden-variety ArrayList couldn't easily answer.

 System.out.println("The smallest value is: " + mic.

getSmallestInt());

 System.out.println("The largest value is: " + mic.

getLargestInt());

 System.out.println("The average is: " + mic.getAverage());

 }

}

Here’s the output:

The collection contains 4 int values

The smallest value is: 1

The largest value is: 9

The average is: 4.75

 Approach #3: Encapsulating a Standard
Collection (MyIntCollection2)
Let’s now take a look at an alternative way of inventing a custom collection class

such as MyIntCollection. Instead of extending the ArrayList class as we did with

MyIntCollection, we’ll design a custom class to encapsulate an instance of an

ArrayList collection.

We’ll design a class called MyIntCollection2 to illustrate this approach, using the

code for MyIntCollection as a starting point; as you’ll see, the differences between the

two approaches are rather subtle:

• The first change would, of course, be to eliminate the extends

ArrayList clause from the class declaration:

ChApter 6 CoLLeCtioNS of objeCtS

342

// We're no longer extending the ArrayList class.

public class MyIntCollection2 {

• Instead, we’ll encapsulate an ArrayList as an attribute

 ArrayList<Integer> numbers;

along with retaining the other attributes that we declared for

MyIntCollection: smallestInt, largestInt, and total.

• In the constructor for our new class, we’ll instantiate the embedded

numbers ArrayList whenever we instantiate MyIntCollection2 as

a whole:

 public MyIntCollection2() {

 // Instantiate the embedded ArrayList.

 numbers = new ArrayList<Integer>();

 // Initialize the total.

 total = 0;

 }

• Since we aren’t extending the ArrayList class any longer, we won’t

inherit a size method automatically, and so we’ll declare one of our

own. Our size method will simply delegate the task of determining

collection size to the embedded numbers ArrayList:

 // Since we don't INHERIT a size() method any longer, let's

add one!

 public int size() {

 // DELEGATION!

 return numbers.size();

 }

• Recall that we overrode the add method in our MyIntCollection class

to specialize its behavior as compared with the generic ArrayList

version that we’d otherwise have inherited. Since we aren’t extending

the ArrayList class in designing MyIntCollection2, we won’t inherit

an add method, and so we’ll declare one of our own. The code for

this add method is virtually identical to that of the MyIntCollection

class’s version of add, except for two minor syntactical changes

ChApter 6 CoLLeCtioNS of objeCtS

343

that are necessary to delegate work to the encapsulated numbers

collection—these changes are bolded in the following code:

 // Since we don't INHERIT an add() method any longer, let's

add one!

 public boolean add(int i) {

 // Remember this int as the largest/smallest,

 // if appropriate. (The FIRST time we add a value, it

by default

 // will be BOTH the smallest AND the largest!)

 // DELEGATE to the embedded collection.

 if (numbers.isEmpty()) {

 smallestInt = i;

 largestInt = i;

 }

 else {

 if (i < smallestInt) smallestInt = i;

 if (i > largestInt) largestInt = i;

 }

 // Increase the total.

 total = total + i;

 // Add the int to the numbers collection.

 // DELEGATE to the embedded collection.

 return numbers.add(i);

 }

• All remaining methods as declared for MyIntCollection—

getSmallestInt, getLargestInt, and getAverage—remain

unchanged for MyIntCollection2.

Here is the code for MyIntCollection2 in its entirety—changes as compared with

MyIntCollection are bolded:

import java.util.ArrayList;

// We're no longer extending the ArrayList class.

public class MyIntCollection2 {

ChApter 6 CoLLeCtioNS of objeCtS

344

 // Instead, we're encapsulating a ArrayList inside of this class.

 ArrayList<Integer> numbers;

 // We define a few extra attributes and methods beyond those that the

 // encapsulated ArrayList will provide -- the SAME attributes and methods

 // that we declared for the MyIntCollection class:

 private int smallestInt;

 private int largestInt;

 private int total;

 public MyIntCollection2() {

 // Instantiate the embedded ArrayList.

 numbers = new ArrayList<Integer>();

 // Initialize the total.

 total = 0;

 }

 // Since we don't INHERIT a size() method any longer, let's add one!

 public int size() {

 // DELEGATION!

 return numbers.size();

 }

 // Since we don't INHERIT an add() method any longer, we can't

override it;

 // so, let's add one instead!

 public boolean add(int i) {

 // Remember this int as the largest/smallest,

 // if appropriate. (The FIRST time we add a value, it by default

 // will be BOTH the smallest AND the largest!)

 // DELEGATE to the encapsulated collection.

 if (numbers.isEmpty()) {

 smallestInt = i;

 largestInt = i;

 }

 else {

 if (i < smallestInt) smallestInt = i;

ChApter 6 CoLLeCtioNS of objeCtS

345

 if (i > largestInt) largestInt = i;

 }

 // Increase the total.

 total = total + i;

 // Add the int to the numbers collection.

 // DELEGATE to the encapsulated collection.

 return numbers.add(i);

 }

 // All remaining methods are identical to those of MyIntCollection.

 public int getSmallestInt() {

 return smallestInt;

 }

 public int getLargestInt() {

 return largestInt;

 }

 public double getAverage() {

 return ((double) total)/this.size();

 }

}

 Putting MyIntCollection2 to Work

The client code needed to manipulate this “flavor” of custom int collection is identical

to the client code that we used to manipulate the first version of MyIntCollection—a
testimonial to the power of encapsulation! The client code is repeated here,

substituting all references to MyIntCollection with references to MyIntCollection2—

but that’s all that had to change!

public class MyIntCollection2Example {

 public static void main(String[] args) {

 // Instantiate one of our newly designed collections!

 MyIntCollection2 mic = new MyIntCollection2();

ChApter 6 CoLLeCtioNS of objeCtS

346

 // Add four random integers to our "special" collection.

 mic.add(3);

 mic.add(6);

 mic.add(1);

 mic.add(9);

 // Take advantage of the size method ...

 System.out.println("The collection contains " + mic.size() +

 " int values");

 // ... and then ask mic "specialized" questions about its contents.

 System.out.println("The smallest value is: " + mic.getSmallestInt());

 System.out.println("The largest value is: " + mic.getLargestInt());

 System.out.println("The average is: " + mic.getAverage());

 }

}

The output would be the same as before.

 Trade-Offs of Approach #2 vs. Approach #3
As illustrated with the MyIntCollection and MyIntCollection2 examples, the coding

effort required with either of the two approaches to creating a custom collection—

extending a predefined collection class vs. encapsulating an instance of such a

collection—is comparable. What are the advantages, then, of one approach vs. the other?

One advantage of extending a predefined collection class (approach #2) is that

when we instantiate such a class at run time, we create only one object in memory—

an instance of MyIntCollection, which is simultaneously an ArrayList by virtue of

inheritance. By comparison, when we create an instance of MyIntCollection2, we wind

up creating two objects, as illustrated in Figure 6-16. Thus, approach #2 is a bit more

economical in terms of memory usage.

ChApter 6 CoLLeCtioNS of objeCtS

347

Figure 6-16. Instantiating one vs. two objects at run time

Alternatively, an advantage of encapsulating a predefined collection class instance

(approach #3) is that we can choose to expose as few of the encapsulated collection’s

public behaviors as we wish to our client code.

• MyIntCollection, as an ArrayList, inherits all 30 public behaviors

of the ArrayList class. Even if we see relevance only in the size and

add methods of MyIntCollection, the other 28 methods are exposed

to/accessible by client code, as well.

• In contrast, MyIntCollection2 does not define those 28 methods.

• Based on the way that we designed the MyIntCollection2 class, on

the other hand, it exposes only two of these public behaviors—size

and add—thus simplifying the task of using our class from the

perspective of client code. Furthermore, if we wanted to, we could

disguise these methods by giving them entirely different names in

MyIntCollection2, as follows:

ChApter 6 CoLLeCtioNS of objeCtS

348

public class MyIntCollection2 {

 // details omitted ...

 // This was formerly the size() method ...

 public int getIntCount() {

 // DELEGATION!

 return numbers.size();

 }

 // This was formerly the add() method ...

 public boolean insertAnInt(int i) {

 // Remember this int as the largest/smallest,

 // if appropriate. (The FIRST time we add a value, it

by default

 // will be BOTH the smallest AND the largest!)

 // DELEGATE to the encapsulated collection.

 if (numbers.isEmpty()) { ...

 // etc.

This is thus taking full advantage of the power of encapsulation

and information hiding.

One significant advantage to approach #2 is that as a true ArrayList by virtue of

inheritance, your custom collection type may be used anywhere within the Java language

that a conventional ArrayList is permitted to be used.

The bottom line is that either approach #2 or approach #3 has both advantages and

disadvantages. By understanding the subtle differences between the two, you’ll be able

to choose between them on a case-by-case basis.

 Collections As Method Return Types
Collections provide a way to overcome the limitation noted in Chapter 4 about methods

being able to return only a single result. If we define a method as having a return type

that is a collection type, we can return an arbitrarily sized collection of object references

to client code.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_4

349

In the following code snippet for the Course class, a getRegisteredStudents method

is provided to enable client code to request a reference to the entire collection of Student

objects that are registered for a particular course:

public class Course {

 private ArrayList<Student> enrolledStudents;

 // Details omitted ...

 // The following method returns a reference to an entire collection

 // containing however many Students are registered for the Course in

question.

 public ArrayList<Student> getRegisteredStudents() {

 return enrolledStudents;

 }

 // etc.

Here’s an example of how client code might then use such a method:

// Instantiate a course and several students.

Course c = new Course();

Student s1 = new Student();

Student s2 = new Student();

Student s3 = new Student();

// Enroll the students in the course.

c.enroll(s1);

c.enroll(s2);

c.enroll(s3);

// Now, ask the course to give us a handle on the collection of

// all of its registered students and iterate through the collection,

// printing out a grade report for each student.

for (Student s : c.getRegisteredStudents()) {

 s.printGradeReport();

}

ChApter 6 CoLLeCtioNS of objeCtS

350

Note the use of a nested method call in the for statement; since

c.getRegisteredStudents() is an expression of type ArrayList, this expression can be

used in the for statement to designate the collection that we wish to iterate through.

in Chapter 7, when we discuss interfaces in general and the Collection
interface in particular, we’ll look at an alternative way of returning a collection from
a method that makes our code more versatile.

 Collections of Derived Types
As mentioned previously, arrays, as simple collections, contain items (either primitive

values or object references) that are all of the same type: all int(egers), for example, or all

(references to) Student objects. As it turns out, regardless of what type of collection we’re

using, we’ll typically want to constrain it to contain similarly typed objects, for reasons

that we’ll explore in Chapter 7 when we discuss polymorphism. However, the power of

inheritance steps in to make collections quite flexible in terms of what they contain.

It turns out that if we declare a collection to hold objects of a given superclass—for

example, Person—then we’re free to insert objects explicitly declared to be of type

Person or of any type derived from Person—for example, UndergraduateStudent,

GraduateStudent, and Professor. This is due to the “is a” nature of inheritance;

UndergraduateStudent, GraduateStudent, and Professor objects, as subclasses of

Person, are simply special cases of Person objects. The Java compiler would therefore be

perfectly happy to see code such as the following

Person[] people = new Person[100];

Professor p = new Professor();

UndergraduateStudent s1 = new UndergraduateStudent();

GraduateStudent s2 = new GraduateStudent();

// Add a mixture of professors and students in random order to the array.

people[0] = s1;

people[1] = p;

people[2] = s2;

// etc.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_7
https://doi.org/10.1007/978-1-4842-9060-6_7

351

or for an ArrayList

ArrayList<Person> people = new ArrayList<>();

Professor p = new Professor();

UndergraduateStudent s1 = new UndergraduateStudent();

GraduateStudent s2 = new GraduateStudent();

// Add a mixture of professors and students in random order to the

ArrayList.

people.add(s1);

people.add(p);

people.add(s2);

// etc.

 Revisiting Our Student Class Design
You may recall that when we talked about the attributes of the Student class back in

Chapter 3, we held off on assigning types to the courseLoad and transcript attributes,

as shown in Table 6-1.

Table 6-1. Proposed Data Structure for the Student Class

Attribute Name Data Type

name String

studentID String

birthDate Date

address String

major String

gpa double

advisor Professor

courseLoad ???

transcript ???

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_3

352

Armed with what we now know about collections, we can now complete our Student

class design.

 The courseLoad Attribute of Student
The courseLoad attribute is meant to represent a list of all Course objects that the

Student is presently enrolled in. So it makes perfect sense that this attribute be declared

as simply a standard collection of Course object references—an ArrayList, perhaps:

import java.util.ArrayList;

public class Student {

 private String name;

 private String studentId;

 private ArrayList<Course> courseLoad;

 // etc.

 The transcript Attribute of Student
The transcript attribute is a bit more challenging. What is a transcript, in real-world

terms? It’s a report of all of the courses that a student has taken since they were first

admitted to this university, along with the semester in which each course was taken, the

number of credit hours that each course was worth, and the letter grade that the student

received for the course. A typical transcript entry, when printed, might look as follows:

CS101 Beginning Objects 3.0 A

If we think of each line item on a printed transcript as an object, we can declare a

TranscriptEntry class to describe them, as follows:

public class TranscriptEntry {

 // One TranscriptEntry object represents a single line item on

a printed

 // transcript.

 private Course courseTaken;

 private String semesterTaken; // e.g., "Fall 2006"

 private String gradeReceived; // e.g., "B+"

ChApter 6 CoLLeCtioNS of objeCtS

353

 // Constructor.

 public TranscriptEntry(Course c, String semester, String grade) {

 // Details omitted ...

 }

 // Accessor method details omitted ...

 public void printTranscriptEntry() {

 // We "talk to" the courseTaken object/attribute to obtain the

 // majority of the required information (an example of

 // delegation). Reminder: \t is a tab character.

 System.out.println(

 this.getCourseTaken().getCourseNo() + "\t" +

 this.getCourseTaken().getTitle() + "\t" +

 this.getCourseTaken().getCreditHours() + "\t" +

 this.getGradeReceived());

 }

 // Other methods TBD ...

}

Since each TranscriptEntry object maintains a handle on a Course object, the

TranscriptEntry object can avail itself of the Course object’s course number, title, or

credit hour value (needed for computing the GPA)—all privately encapsulated in the

Course object as attributes—by calling the appropriate accessor methods on that Course

object as needed.

Back in the Student class, we can now define the Student’s transcript attribute to

be a collection of TranscriptEntry objects:

import java.util.*;

public class Student {

 private String name;

 private String studentId;

 private ArrayList<TranscriptEntry> transcript;

 // etc.

We can then equip the Student class with an addTranscriptEntry method for use in

inserting a new TranscriptEntry into the transcript collection

ChApter 6 CoLLeCtioNS of objeCtS

354

 public void addTranscriptEntry(TranscriptEntry te) {

 // Store the TranscriptEntry in our ArrayList.

 transcript.add(te);

 }

along with a printTranscript method for iterating through this collection:

 // This method merely iterates through the collection,

 // delegating the work of printing to the individual

 // TranscriptEntry objects.

 public void printTranscript() {

 // Print header information on the transcript:

 // Student’s name, name of the university, date

 // printed, etc.

 System.out.println("Academic transcript for " +

 this.getName());

 // Other transcript header details omitted ...

 // Print individual transcript line items.

 for (TranscriptEntry t : transcript) {

 t.printTranscriptEntry();

 }

 }

 // etc.

}

Figure 6-17 illustrates how Student, ArrayList, TranscriptEntry, and Course

objects would thus be “wired together” in memory at run time.

ChApter 6 CoLLeCtioNS of objeCtS

355

Figure 6-17. As “wired together” in memory, a Student references an ArrayList,
which in turn references TranscriptEntry objects. These in turn each reference a
Course object

Finally, let’s look at the client code that might be involved in putting these classes

to work:

Student s = new Student("1234567", "James Huddleston");

Course c = new Course("LANG 800", "Advanced Language Studies");

s.registerForCourse(c);

// Time passes ... details omitted.

// Semester is finished! Assign a grade to this student (he's brilliant!).

TranscriptEntry te = new TranscriptEntry(c, "Spring 2006", "A+");

s.addTranscriptEntry(te);

// Additional grades assigned for other courses ... details omitted.

s.printTranscript();

ChApter 6 CoLLeCtioNS of objeCtS

356

The manner in which we’re assigning a grade to a student for a course that they have

completed (namely, by instantiating a TranscriptEntry object and then calling the

Student’s addTranscriptEntry method)

TranscriptEntry te = new TranscriptEntry(c, "Spring 2006", "A+");

s.addTranscriptEntry(te);

is not as intuitive as it could be to someone reading this client code. Let’s see if we

can improve upon our design with a goal of rendering client code that is a bit more

straightforward.

 The transcript Attribute, Take 2
We’ll add a bit more sophistication to our abstraction by declaring a class called

Transcript to encapsulate a standard type of collection, the technique that we

employed when creating the MyIntCollection2 class earlier in this chapter:

public class Transcript {

 // The Transcript class ENCAPSULATES a garden variety ArrayList

 // of TranscriptEntry references.

 private ArrayList<TranscriptEntry> transcriptEntries;

 // Maintain a handle on the Student to whom this

 // transcript belongs.

 Student owner;

 // Constructor/accessor details omitted.

 // Rather than having client code manufacture a TranscriptEntry object

 // to pass in as an argument, we'll "disguise" what we are doing a bit.

 public void courseCompleted(Course c, String semester, String grade) {

 // Instantiate and insert a brand-new TranscriptEntry object

into the

 // ArrayList - details hidden away!

 transcriptEntries.add(new TranscriptEntry(c, semester, grade));

 }

 // We've transferred the logic of the Student class's printTranscript

 // method into the Transcript class's print method.

ChApter 6 CoLLeCtioNS of objeCtS

357

 public void print() {

 for (TranscriptEntry te : transcript) {

 te.printTranscriptEntry();

 }

 }

 // etc.

 }

Of particular note is the fact that we’ve effectively hidden our use of

TranscriptEntry objects from client code by providing a courseCompleted method.

This method accepts the “raw materials” necessary to create a TranscriptEntry

object—namely, a Course reference plus Strings representing the semester in which

the course was completed and the grade received—and invokes the TranscriptEntry

constructor from within the privacy of the courseCompleted method body. As you’ll

see shortly, this relieves client code from having to deal with the TranscriptEntry class;

TranscriptEntry is now strictly a “helper” class that exists to serve the Transcript class

behind the scenes.

Chapter 13 introduces the notion of inner classes, a construct used to “bury”
the declaration of one class, such as TranscriptEntry, wholly within another
so that it truly is a private type.

We’ll now go back to the Student class and change our declaration of the transcript

attribute from an ArrayList to a Transcript:

public class Student {

 private String name;

 private String studentId;

 // This used to be declared as an ArrayList.

 private Transcript transcript;

 // etc.

We can in turn simplify the printTranscript method of the Student class, to take

advantage of delegation—it’s now a one-liner!

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_13

358

 public void printTranscript() {

 // We now DELEGATE the work of printing all entries to

 // the Transcript itself!

 transcript.print();

 }

 // etc.

Finally, let’s look at the client code that might be involved in putting these new and
improved classes to work. I’ve repeated the client code example used before, bolding

the subset of client code that has changed as a result of our improved design:

Student s = new Student("1234567", "James Huddleston");

Course c = new Course("LANG 800", "Advanced Language Studies");

s.registerForCourse(c);

// Time passes ... details omitted.

// Semester is finished! Assign a grade to this student (he's brilliant!).

// It's now accomplished as a single line of arguably more intuitive code.

s.courseCompleted(c, "Spring 2006", "A+");

// Additional grades assigned for other courses ... details omitted.

s.printTranscript();

The manner in which we’re assigning a grade to a student for a course that they have

completed—namely, by calling the courseCompleted method of Student—is arguably

much clearer and more self-documenting to anyone reading this client code than the

previous version of client code. Here’s the code before:

TranscriptEntry te = new TranscriptEntry(c, "Fall 2006", "B+");

s.addTranscriptEntry(te);

And here’s the code after:

s.courseCompleted(c, "Spring 2006", "A+");

This “Take 2” approach of introducing two new classes/abstractions—

TranscriptEntry and Transcript—is a bit more sophisticated than the first approach,

where we only introduced TranscriptEntry as an abstraction.

ChApter 6 CoLLeCtioNS of objeCtS

359

• We’ve simplified the Student class considerably. Student code

needn’t be complicated by the details of how transcripts are

represented or managed internally or even that there is such a thing

as a TranscriptEntry object—those details are hidden inside of the

Transcript class, as they should be.

• More significantly, we’ve simplified our client code. The Student

class need be designed and coded only once, but client code written

to manipulate Student objects will potentially occur in countless

places across numerous applications.

Whenever possible, it’s desirable to bury implementation details inside of a class
rather than exposing client code to such details; this lessens the burden on developers/

maintainers of client code by lessening the likelihood of logic errors in such code.

Figure 6-18 illustrates how Student, Transcript, ArrayList, TranscriptEntry, and

Course objects would be “wired together” at run time, and Table 6-2 provides a side-

by-side comparison of the code used in our two “takes” on representing the notion of

student transcripts.

Figure 6-18. Introducing another level of abstraction in the form of a Transcript
class ultimately simplifies client code, which is an important design goal

ChApter 6 CoLLeCtioNS of objeCtS

360

Table 6-2. Comparing the “Take 1” and “Take 2” Code Versions

Code for “Take 1” Code for “Take 2”

The TranscriptEntry Class

public class TranscriptEntry {

 private Course courseTaken;

 private String semesterTaken;

 private String gradeReceived;

 // Details omitted ...

 // Constructor.

 public TranscriptEntry(Course c,

 String semester, String grade) {

 // Details omitted ...

 }

 public void printTranscriptEntry()

{

 System.out.println((

 courseTaken.getCourseNo() +

 "\t" +

 courseTaken.getTitle() +

 "\t" +

 courseTaken.getCreditHours() +

 "\t" +

 getGradeReceived());

 }

 // etc.

}

(The TranscriptEntry class code for
“Take 2” is the same as for “Take 1.”)

(continued)

ChApter 6 CoLLeCtioNS of objeCtS

361

Table 6-2. (continued)

Code for “Take 1” Code for “Take 2”

The Transcript Class

(“Take 1” did not involve the Transcript

class.)
public class Transcript {

 private ArrayList<TranscriptEntry>

 transcriptEntries;

 // Details omitted ...

 public void courseCompleted(Course c,

 String semester, String grade) {

 transcriptEntries.add(

 new TranscriptEntry(c,

 semester, grade);

 }

 public void print() {

 print header info. ...

 for (TranscriptEntry te :

 transcript) {

 te.printTranscriptEntry();

 }

 }

 // etc.

 }

(continued)

ChApter 6 CoLLeCtioNS of objeCtS

362

Table 6-2. (continued)

Code for “Take 1” Code for “Take 2”

The Student Class

import java.util.ArrayList;

public class Student {

 private String name;

 private String studentId;

Here, we use an ArrayList.

 private ArrayList<TranscriptEntry>

 transcript;

 // etc.

Client code has to be aware of the notion of
a TranscriptEntry.

 public void addTranscriptEntry(

 TranscriptEntry te) {

 transcript.add(te);

 }

 public void printTranscript() {

 print header information ...

 for (TranscriptEntry t :

transcript) {

 t.printTranscriptEntry();

 }

 }

 // etc.

}

public class Student {

 private String name;

 private String studentId;

Here, we use a Transcript.

private Transcript transcript;

// etc.

This method hides more “gory details”
and is hence easier for client code to use.
But it serves the same purpose as the

addTranscriptEntry method in “Take 1.”

 public void courseCompleted(Course c,

 String semester, String grade) {

 Transcript.courseCompleted(

 c, semester, grade);

 }

 public void printTranscript() {

 // Delegation !

 transcript.print();

 }

 // etc.

}

(continued)

ChApter 6 CoLLeCtioNS of objeCtS

363

Code for “Take 1” Code for “Take 2”

Sample Client Code

Student s = new Student(...);

Course c = new Course(...);

s.registerForCourse(c);

// etc.

Client code is somewhat “ugly.”

TranscriptEntry te =

 new TranscriptEntry(c,

 "Fall 2006", "B+");

s.addTranscriptEntry(te);

s.printTranscript();

Student s = new Student(...);

Course c = new Course(...);

s.registerForCourse(c);

// etc.

Client code is more streamlined and intuitive!

s.courseCompleted(c, "Fall 2006",

"B+");

s.printTranscript();

Table 6-2. (continued)

 Our Completed Student Data Structure
Table 6-3 illustrates how we’ve taken full advantage of collections to round out our

Student class definition.

Table 6-3. Rounding Out the Student Class’s Data Structure with Collections

Attribute Name Data Type

name String

studentID String

birthDate Date

address String

major String

gpa Double

advisor Professor

courseLoad ArrayList<Course>

transcript Transcript

ChApter 6 CoLLeCtioNS of objeCtS

364

 Summary
In this chapter, you’ve learned

• Collections are special types of objects used to gather up and manage

references to other objects.

• Most OO languages support three generic types of collection:

• Ordered lists

• Sets

• Dictionaries (a.k.a. maps)

• Arrays are a simple type of collection that have some limitations, but

we also have other more powerful collection types to draw upon with

OO languages, such as Java’s ArrayLists, TreeMaps, etc.

• It’s important to familiarize yourself with the unique characteristics

of whatever collection types are available for a particular OO

language, so as to make the most informed selection of which

collection type to use for a particular circumstance.

• You can invent your own collection types by either extending

predefined collection classes or creating “wrapper classes” to

encapsulate an instance of a predefined collection class, as well as

the subtle differences between the two approaches.

• You can work around the limitation that a method can return only

one result by having that result be a collection.

• You can create very sophisticated composite classes through the use

of collections as attributes.

• “Burying” increasing levels of detail within layers of abstraction

serves to simplify client code.

There’s a bit more to appreciate about collections, but we must first cover some

additional Java topics. We’ll revisit collections in Chapter 7.

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_7

365

EXERCISES

 1. Given the following abstraction

A book is a collection of chapters, each of which is a collection of pages.

sketch out the code for the Book, Chapter, and Page classes.

• invent whatever attributes you think would be relevant, taking advantage of

collections as attributes where appropriate.

• include methods in the Chapter class for adding pages and for

determining how many pages a chapter contains.

• include methods in the Book class for adding chapters, for determining

how many chapters the book contains, for determining how many pages

the book contains (hint: use delegation!), and for printing out a book’s table

of contents.

 2. [Coding] Code the Book, Chapter, and Page classes that you specified in

exercise 1, and write a simple driver program to put them through their paces.

 3. What generic type(s) of collection(s)—ordered list, sorted ordered list, set,

dictionary—might you use to represent each of the following abstractions?

explain your choices.

• A computer parts catalog

• A poker hand

• trouble calls logged by a technical help desk

 4. What collections do you think would be important to maintain for the SrS,

based on the requirements presented in the introduction to this book?

 5. What collections do you think would be important to maintain for the

prescription tracking System (ptS) described in the Appendix?

 6. What collections do you think would be important to maintain for the problem

area that you described for exercise 3 in Chapter 1?

ChApter 6 CoLLeCtioNS of objeCtS

https://doi.org/10.1007/978-1-4842-9060-6_1

366

 7. [Coding] Modify the MyIntCollection class as presented in this chapter to

add a method called printSortedContents that, when invoked, prints the

contents of the collection in sorted order. You may make whatever changes you

wish to the private details of the class in accommodating this new behavior.

then, modify the MyIntCollection2 version of the class to accommodate a

printSortedContents method, as well.

Was accommodating this new requirement significantly easier with one version of the custom

collection than with the other?

ChApter 6 CoLLeCtioNS of objeCtS

367

CHAPTER 7

Some Final Object
Concepts
By now, you’ve hopefully gained a solid appreciation for how powerful object-oriented

languages are for modeling complex real-world situations. By way of review

• We can create our own user-defined types, also known as classes, to

model objects of arbitrary complexity, as we discussed in Chapter 3.

• We can arrange these types into class hierarchies to take advantage

of the inheritance mechanism of OO languages, as we discussed in

Chapter 5.

• Through encapsulation and information hiding, we can shield client

code from changes that we make to the private implementation

details of our classes, making objects responsible for ensuring the

integrity of their own data, as we discussed in Chapter 4.

• We can design relationships between classes into their very “bone

structure” so that collaborating objects can be linked together in

memory at run time, as we discussed in Chapter 5.

• Classes can model the most complex of real-world concepts,

particularly when we take advantage of collections, as we did when

modeling the transcript attribute of the Student class in Chapter 6.

You might wonder how there could possibly be anything left in our OO bag of tricks!

However, as powerful as all of the preceding OO language features are, there are still a

few more important features of objects to be discussed.

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_7

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_6
https://doi.org/10.1007/978-1-4842-9060-6_7#DOI

368

In this chapter, you’ll learn

• How a single line of code, representing a message—for example,

x.foo();—can exhibit a variety of behaviors at run time

• How we can specify what an object’s mission should be without

going to the trouble of specifying the details of how the object is to

carry out that mission and also under what circumstances we’d want

to be able to do so

• How an object can have a “split personality” by exhibiting the

behaviors of two or more different types of object

• Creative ways for an entire class of objects to easily and efficiently

share data without breaking the spirit of encapsulation

• How features can be defined that are associated with a class as a

whole rather than with an instance of a class and how we can take

advantage of this capability to design utility classes

• How we may declare variables whose values, once assigned, remain

constant while an application is executing

 Polymorphism
The term polymorphism refers to the ability of two or more objects belonging to

different classes to respond to exactly the same message (method call) in different class-

specific ways.

As an example, if we were to instruct three different people—a surgeon, a hair stylist,

and an actor—to “Cut!” then

• The surgeon would begin to make an incision.

• The hair stylist would begin to cut someone’s hair.

• The actor would abruptly stop acting out the current scene, awaiting

directorial guidance.

These three different professionals may be thought of as Person objects belonging to

different professional subclasses: Surgeon, HairStylist, and Actor. Each was given the

same message—“Cut!”—but carried out the operation differently as prescribed by the

subclass that each belongs to.

Chapter 7 Some Final objeCt ConCeptS

369

Let’s now turn to a software example relevant to the SRS. Assume that we’ve defined

a Student superclass and two subclasses, GraduateStudent and UndergraduateStudent.

In Chapter 5, we discussed the fact that a print method designed to print the values of

all of a Student’s attributes wouldn’t necessarily suffice for printing the attribute values

for a GraduateStudent, because the code as written for the Student superclass wouldn’t

know about any attributes that may have been added to the GraduateStudent subclass.

We then looked at how to override the print method of Student to create specialized

versions of the method for all of its subclasses. The syntax for doing so, which was first

introduced in Chapter 5 with the GraduateStudent class, is repeated again here for your

review. I’ve added the UndergraduateStudent class code, as well:

//-------------

// Student.java

//-------------

public class Student {

 private String name;

 private String studentId;

 private String major;

 private double gpa;

 // Public get/set methods would also be provided (details omitted) ...

 public void print() {

 // We can print only the attributes that the Student class

 // knows about.

 System.out.println("Student Name: " + getName() + "\n" +

 "Student No.: " + getStudentId() + "\n" +

 "Major Field: " + getMajor() + "\n" +

 "GPA: " + getGpa());

 }

}

//---------------------

// GraduateStudent.java

//---------------------

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_5

370

public class GraduateStudent extends Student {

 // Adding several attributes.

 private String undergraduateDegree;

 private String undergraduateInstitution;

 // Public get/set methods would also be provided (details omitted) ...

 // Overriding the print method.

 public void print() {

 // Reuse code from the Student superclass ...

 super.print();

 // ... and then go on to print this subclass's specific attributes.

 System.out.println("Undergrad. Deg.: " + getUndergraduateDegree() +

 "\n" + "Undergrad. Inst.: " +

 getUndergraduateInstitution() + "\n" +

 "THIS IS A GRADUATE STUDENT ...");

 }

}

//--------------------------

// UndergraduateStudent.java

//--------------------------

public class UndergraduateStudent extends Student {

 // Adding an attribute.

 private String highSchool;

 // Public get/set methods would also be provided (details omitted) ...

 // Overriding the print method.

 public void print() {

 // Reuse code from the Student superclass ...

 super.print();

 // ... and then go on to print this subclass's specific attributes.

 System.out.println("High School Attended: " + getHighSchool() +

 "\n" + "THIS IS AN UNDERGRADUATE STUDENT ...");

 }

}

Chapter 7 Some Final objeCt ConCeptS

371

In our main SRS application, we’ll declare an ArrayList called studentBody to hold

references to Student objects. We’ll then populate the ArrayList with Student object

references—some GraduateStudents and some UndergraduateStudents, randomly

mixed—as shown here:

 // Declare and instantiate an ArrayList of Students.

 ArrayList<Student> studentBody = new ArrayList<>();

 // Instantiate various types of Student object.

 UndergraduateStudent u1 = new UndergraduateStudent();

 UndergraduateStudent u2 = new UndergraduateStudent();

 GraduateStudent g1 = new GraduateStudent();

 GraduateStudent g2 = new GraduateStudent();

 // etc.

 // Insert them into the ArrayList in random order.

 studentBody.add(u1);

 studentBody.add(g1);

 studentBody.add(g2);

 studentBody.add(u2);

 // etc.

Since we’re storing both GraduateStudent and UndergraduateStudent objects in

this ArrayList, we’ve declared the ArrayList to be of a base type common to all objects

that the collection is intended to contain, namely, Student. By virtue of the “is a” nature

of inheritance, an UndergraduateStudent object is a Student, and a GraduateStudent

object is a Student, and so the compiler won’t complain when we insert either type of

object into this ArrayList.

Note that the compiler would object, however, if we tried to insert a Professor

object into the same ArrayList, because a Professor isn’t a Student, at least not in

terms of the class hierarchy that we’ve defined for the SRS. If we wanted to include

Professors in our ArrayList along with various types of Students, we’d have to declare

the ArrayList as holding a base type common to both the Student and Professor

classes, namely, Person (or Object, which as we discussed in Chapter 5 is the implied

superclass for all inheritance hierarchies in Java).

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_5

372

Perhaps we’d like to print the attribute values of all of the Students in

our studentBody collection. We’d want each Student object—whether it’s a

GraduateStudent or an UndergraduateStudent instance—to use the version of the print

method appropriate for its (sub)class. The following code will accomplish this nicely:

 // Step through the ArrayList (collection) ...

 for (Student s : studentBody) {

 // ... invoking the print method of each Student object.

 s.print();

 }

Variable s is declared in the for statement to be a reference to a generic Student

object, because that’s the type of reference that we declared studentBody to hold.

As we step through this collection of Student objects at run time, however, each

object will automatically know which version of the print method it should execute,

based on its own internal knowledge of the specific type/(sub)class that it belongs to

(GraduateStudent vs. UndergraduateStudent, in this example). We’d wind up with

a report similar to the following, where the bolded lines emphasize the differences

in output between the GraduateStudent and UndergraduateStudent versions of the

print method:

Student Name: John Smith

Student No.: 12345

Major Field: Biology

GPA: 2.7

High School Attended: Rocky Mountain High

THIS IS AN UNDERGRADUATE STUDENT ...

Student Name: Paula Green

Student No.: 34567

Major Field: Education

GPA: 3.6

Undergrad. Deg.: B.A. English

Undergrad. Inst.: UCLA

THIS IS A GRADUATE STUDENT ...

Student Name: Dinesh Prabhu

Student No.: 98765

Chapter 7 Some Final objeCt ConCeptS

373

Major Field: Computer Science

GPA: 4.0

Undergrad. Deg.: B.S. Computer Engineering

Undergrad. Inst.: Case Western Reserve University

THIS IS A GRADUATE STUDENT ...

Student Name: Jose Rodriguez

Student No.: 82640

Major Field: Math

GPA: 3.1

High School Attended: James Ford Rhodes High

THIS IS AN UNDERGRADUATE STUDENT ...

The term polymorphism is defined in Merriam-Webster’s Dictionary as “the quality

or state of being able to assume different forms.” The line of code

 s.print();

in the preceding example is said to be polymorphic because the logic performed in

response to the message can take many different forms, depending on the class identity

of the object at run time.

Of course, this approach of iterating through a collection to ask each object, one by

one, to do something in its own class-specific way won’t work unless all objects in the

collection understand the message being sent. That is, all objects in the studentBody

collection must have defined a method with the signature print(). However, we’ve

guaranteed that every object in the studentBody collection at run time will have such a

method, as follows:

• First of all, we declared the studentBody ArrayList to hold

objects of type Student (or subclasses thereof), so the compiler will

therefore not allow us to put non-Student object references into the

ArrayList. That is, any attempt to add a non-Student reference to

the studentBody collection will be rejected at compile time:

ArrayList<Student> studentBody = new ArrayList<>();

Professor p = new Professor();

// This next line won't compile.

studentBody.add(p);

Chapter 7 Some Final objeCt ConCeptS

374

Here’s the compilation error:

cannot find symbol

symbol: method add(Professor)

location: class java.util.ArrayList<Student>

• Second, we provided the Student superclass with a parameterless

print method. Had we not done so, then the Java compiler would

have objected to the line of code contained within the for loop:

// Step through the ArrayList (collection) ...

for (Student s : studentBody) {

 // This next line won't compile if the Student class doesn't

define a

 // method with the signature "print()".

 s.print();

}

Here’s the compilation error:

cannot find symbol

symbol: method print()

location: class Student

This error arises because the compiler checks the Student class (of which

s is declared to be a member) for the presence of a parameterless print

method. At run time, s might actually be referring to a generic Student or to a

GraduateStudent or to an UndergraduateStudent or to any other type derived

from the Student class; however, the compiler has no way of predicting at

compile time what the true run-time type of the object referred to by s will be

(the compiler doesn’t have a crystal ball at its disposal), and so it will make a

go–no go decision based on how a generic Student is defined.

Finally, by virtue of inheritance, any subclass of Student is guaranteed to

either inherit the Student’s version of the parameterless print method or to

optionally override it with one of its own. Either way, all classes derived from

Student will have such a method.

Chapter 7 Some Final objeCt ConCeptS

375

The bottom line is that all objects inserted into the studentBody ArrayList are

guaranteed to be “print savvy” at run time.

Reflecting for a moment, you can now see that you had previously learned about

everything that’s needed to facilitate polymorphism in a programming language before

this discussion of polymorphism even began. Inheritance combined with overriding
facilitates polymorphism.

 Polymorphism Simplifies Code Maintenance
To appreciate the power of polymorphism, let’s look at how we might have to approach

this same challenge—handling different objects in different type-specific ways—with a

programming language that doesn’t support polymorphism.

In the absence of polymorphism, we’d typically handle scenarios having to do with a

variety of kinds of students using a series of if tests:

for (Student s : studentBody) {

 // Process the next student.

 // Pseudocode.

 if (s is an undergraduate student)

 s.printAsUndergraduateStudent();

 else if (s is a graduate student)

 s.printAsGraduateStudent();

 else if ...

}

As the number of cases grows, so too does the “spaghetti” nature of the resultant

code. And keep in mind that this sort of if test would arise in countless places

throughout an application, namely, wherever we are iterating through a collection

declared to hold Students of various types.

Let’s now contrast this with our polymorphic iteration through the studentBody

collection:

 // Step through the ArrayList (collection) ...

 for (Student s : studentBody) {

 // ... invoking the print method of the next Student object.

 s.print(); // polymorphism at work!

}

Chapter 7 Some Final objeCt ConCeptS

376

Thanks to polymorphism, a single line of code—s.print();—can handle all types

of Students, thus making our code much more concise. Better still, polymorphic client

code is robust to change. For example, let’s say that, long after our SRS application

has been coded, tested, and deployed, we derive classes called PhDStudent and

MastersStudent from GraduateStudent, each of which in turn overrides the print

method of GraduateStudent to provide its own “flavor” of print functionality. We’re

now free to randomly insert MastersStudents and PhDStudents into our studentBody

collection, along with GraduateStudents and UndergraduateStudents, and our

polymorphic code for iterating through the collection doesn’t have to change! The

following code illustrates this:

// Declare and instantiate an ArrayList.

ArrayList<Student> studentBody = new ArrayList<>;

// Instantiate various types of Student object. We're now dealing

with FOUR

// different derived types!

UndergraduateStudent u1 = new UndergraduateStudent();

PhDStudent p1 = new PhDStudent();

GraduateStudent g1 = new GraduateStudent();

MastersStudent m1 = new MastersStudent();

// etc.

// Insert them into the ArrayList in random order.

studentBody.add(u1);

studentBody.add(p1);

studentBody.add(g1);

studentBody.add(m1);

// etc.

// Then, later in our application ...

// This is the EXACT SAME CODE that we've seen before!

// Step through the ArrayList (collection) ...

for (Student s : studentBody) {

 // ... and invoke the print method of the next Student object.

 // Because of the polymorphic nature of Java, this next line

didn't require

Chapter 7 Some Final objeCt ConCeptS

377

 // any changes!

 s.print();

}

The for loop in our client code didn’t have to change to accommodate the new

subclasses—MastersStudent and PhDStudent—because, as subclasses of Student, these

new types of object are once again guaranteed to understand the same print message

by virtue of inheritance plus (optional) overriding.

The story is quite different, however, with the nonpolymorphic example that we

crafted earlier. That version of client code would indeed have to change to accommodate

these new student types; specifically, we’d have to hunt through our application to find

every situation where we were trying to differentiate among the various subclasses of

Student and complicate our if tests even further by adding additional cases as follows

for (Student s : studentBody) {

 // Process each student.

 // Pseudocode.

 if (s is an undergraduate student)

 s.printAsUndergraduateStudent();

 else if (s is a Masters student)

 s.printAsMastersStudent();

 else if (s is a PhD student)

 s.printAsPhDStudent();

 else if (s is a generic graduate student)

 s.printAsGraduateStudent();

 else if ...

}

causing the “spaghetti piles” to grow ever taller. Maintenance of nonpolymorphic

applications quickly becomes a nightmare!

As we saw with encapsulation and information hiding earlier, polymorphism is

another extremely effective mechanism for minimizing ripple effects on an application

if requirements change after the application has been deployed. We’re able to introduce

new subclasses to an application’s class hierarchy in order to meet such requirements,

and our existing client code won’t “break.”

Chapter 7 Some Final objeCt ConCeptS

378

 Three Distinguishing Features of an Object-Oriented
Programming Language
We’ve now defined all three of the features required to make a language truly object

oriented:

• (Programmer creation of) User-defined types

• Inheritance

• Polymorphism

By way of review, let’s look at the benefits of each of these language features.

 The Benefits of User-Defined Types
The following are among the benefits of user-defined types:

• User-defined types provide an intuitive way to represent real-world

objects, resulting in easier-to-verify requirements.

• Classes are convenient units of reusable code, which means less code
to write from scratch when building an application.

• Through encapsulation, we minimize data redundancy—each

item of data is stored once, in the object to which it belongs—

thereby lessening the likelihood of data integrity errors across an

application.

• Through information hiding, we insulate our application
against ripple effects if private details of a class must change after

deployment, thereby dramatically reducing maintenance costs.

• Objects are responsible for ensuring the integrity of their own data,

making it easier to isolate errors in an application’s (business)
logic; we know to inspect the method(s) of the class to which a

corrupted object belongs.

• Once defined, a user-defined type (class) can be reused again and

again across applications and even across organizations.

Chapter 7 Some Final objeCt ConCeptS

379

 The Benefits of Inheritance
The following are among the benefits of inheritance:

• We can extend already deployed code without having to change and

then retest it, resulting in dramatically reduced maintenance costs.

• Subclasses are much more succinct, which means less code overall
to write/maintain.

 The Benefits of Polymorphism
The following is one of the benefits of polymorphism:

• It minimizes “ripple effects” on client code when new subclasses are

added to the class hierarchy of an existing application, resulting in

dramatically reduced maintenance costs.

ONE VERY IMPORTANT CAVEAT

a common misconception is that switching to object technology will dramatically reduce

the time required to develop a given application. anecdotes abound of managers who have

expected that a team using an object-oriented approach should be able to craft an application

in a fraction of the time that it would take them to build its non-oo counterpart—despite
the fact that team in question might be using OO techniques for the first time ever!
Unfortunately, due to the learning curve involved in switching to the oo paradigm—

particularly for software developers who’ve been entrenched in non-oo techniques for many

years—it will typically take longer for a team inexperienced with objects to develop their first

oo application.

Where economies of scale do come into play for a properly designed oo application, however,

is during the maintenance phase of the application’s life cycle. the maintenance phase of

an application—oo or otherwise—is typically much longer, and hence more costly, than

the development phase. a general rule of thumb is that most application lifetimes are split

between 20 percent development and 80 percent maintenance. by dramatically reducing

ripple effects through the thoughtful application of (a) encapsulation/information hiding and

(b) inheritance/polymorphism, we stand to reduce maintenance costs—and hence overall

software life cycle costs—significantly.

Chapter 7 Some Final objeCt ConCeptS

380

and, once we become adept in the oo paradigm, we should indeed be able to shorten

application development time, as well. by virtue of the fact that classes can readily be

reused and optionally extended/specialized via inheritance—including the vast number of
predefined classes that are provided as an integral part of an OOPL framework—we’ll

have less code to write overall for a given application. if we in turn we embrace the philosophy

of code sharing and reuse across projects, we can gain significant productivity in terms of

development as well as maintenance across the life cycles of multiple applications.

 Abstract Classes
We discussed in Chapter 5 how beneficial it is to consolidate common features of two

or more classes into a common superclass, a process known as generalization. For

example, we noticed similarities between the Student and Professor classes (e.g.,

both declared a name attribute and methods to get/set its value), and so we created the

Person class after the fact to serve as a generalization of both Students and Professors.

Let’s now assume that we know at the very outset of an application development

effort that we’re going to want to take advantage of specialization. For example, with

regard to the SRS, perhaps we’re going to want to model various types of Course objects:

lecture courses, lab courses, independent study courses, etc. We therefore want to

start out on the right foot by designing a Course superclass first, to handle all of the

common features of these various types of courses before we set out to derive specialized

subclasses.

We might determine up front that all Courses, regardless of type, are going to need

the following common attributes

• String courseName

• String courseNumber

• int creditValue

• CollectionType enrolledStudents

• Professor instructor

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_5

381

as well as the following common behaviors:

• enrollStudent

• assignInstructor

• establishCourseSchedule

Some of these behaviors may be generic enough so that we can afford to program

them in detail for the Course class, knowing that it’s a pretty safe bet that any subclasses

of Course will be able to inherit these methods as is, without needing to override them.

For example, the enrollStudent and assignInstructor methods could be written

generically as follows:

import java.util.ArrayList;

public class Course {

 private String courseName;

 private String courseNumber;

 private int creditValue;

 private ArrayList<Student> enrolledStudents;

 private Professor instructor;

 // Accessor methods would also be provided; details omitted ...

 public void enrollStudent(Student s) {

 enrolledStudents.add(s);

 }

 public void assignInstructor(Professor p) {

 setInstructor(p);

 }

 // etc.

When we attempt to program a generic version of the establishCourseSchedule

method, however, we realize that the business rules governing how to establish a course

schedule differ significantly for different types of courses:

• A lecture course may meet only once a week for three hours at a time.

• A lab course may meet twice a week for two hours each time.

Chapter 7 Some Final objeCt ConCeptS

382

• An independent study course may meet on a custom schedule that

has been jointly negotiated by a given student and professor.

It would be a waste of time for us to bother trying to program a generic, “one-size-

fits-all” version of the establishCourseSchedule method within the Course class,

because no matter what generic logic we’d attempt to provide, all three subclasses—

LectureCourse, LabCourse, and IndependentStudyCourse—would wind up having to

replace such logic by overriding the method to make it meaningful for them.

What other options do we have, then? Can we afford to simply omit the

establishCourseSchedule method from the Course class entirely, adding such a

method to each of the subclasses of Course as a new feature instead? Not if we want to

take advantage of polymorphism with respect to this method. Consider the following

example:

ArrayList<Course> courses = new ArrayList<>();

// Add a variety of different Course types to the collection.

courses.add(new LectureCourse());

courses.add(new LabCourse());

courses.add(new IndependentStudyCourse());

// etc.

for (Course c : courses) {

 // This next line of code is polymorphic.

 c.establishCourseSchedule("1/24/2005", "5/10/2005");

}

As we discussed earlier in the chapter, the polymorphic expression c.establishCo

urseSchedule(...) will be deemed valid by the Java compiler only if the Course class

has defined such a method signature. Well, then, is it possible to “trick” the compiler by

adding a “dummy” establishCourseSchedule method to the Course class that has the

required method header, but that does nothing meaningful? If we program the method

with an empty body

 // This method does NOTHING! Its method body is empty.

 public void establishCourseSchedule(String startDate, String endDate) { }

Chapter 7 Some Final objeCt ConCeptS

383

it would indeed compile, and we could then allow each subclass to override the “do

nothing” version of this method with a meaningful version. While it’s possible to do so,

it’s not considered good programming practice to do so, for the following reasons:

• By providing the Course class with an establishCourseSchedule

method, we’re declaring that Course objects will be able to provide

such a service on behalf of an application.

• However, if client code were to ever call upon a generic Course object

to perform this service

Course c = new Course();

// We believe that we're calling upon c to perform the indicated

service,

// but behind the scenes, nothing is happening.

c.establishCourseSchedule("1/24/2005", "5/10/2005");

the method as implemented would do what its name implies that it will do; for

that matter, it doesn’t do anything at all!

Furthermore, there’s no guarantee that any classes derived from Course will

override this method to do something meaningful, either, so we could wind up

with an entire hierarchy of Course types that are incapable of performing the

establishCourseSchedule service in a meaningful way.

This is seemingly a dilemma! We know we’ll need a type-specific

establishCourseSchedule method to be programmed for all subclasses of Course. We

don’t want to go to the trouble of programming a meaningless version of this method

in the superclass, but we must nonetheless equip the Course class to recognize such

a method header in order to facilitate polymorphism. How do we communicate the

requirement for an establishCourseSchedule method in all subclasses of Course and,

more important, enforce its future implementation?

OO languages such as Java come to the rescue with the concept of abstract classes.

An abstract class is used to define what behaviors a class is required to perform

without having to provide an explicit implementation of how each and every such

behavior will be carried out. We program an abstract class in much the same way that

we program a nonabstract class (a.k.a. a concrete class), with one exception: for those

behaviors for which we can’t (or care not to) program a generic implementation (e.g.,

the establishCourseSchedule method in the preceding example), we’re permitted to

Chapter 7 Some Final objeCt ConCeptS

384

specify method headers without having to program the corresponding method bodies.

We refer to a “bodiless,” or header-only, method declaration as an abstract method.

And, to differentiate such methods from methods with bodies, we’ll refer to the latter as

implemented methods.

Let’s go back to our Course class definition to add an abstract

establishCourseSchedule method:

// Note the use of the "abstract" keyword in the class declaration.

public abstract class Course {

 private String courseName;

 private String courseNumber;

 private int creditValue;

 private ArrayList<Student> enrolledStudents;

 private Professor instructor;

 // Other details omitted.

 public void enrollStudent(Student s) {

 enrolledStudents.add(s);

 }

 public void assignInstructor(Professor p) {

 setInstructor(p);

 }

 // Note the use of the "abstract" keyword and the terminating

 // semicolon.

 public abstract void establishCourseSchedule(String startDate,

 String endDate);

}

The establishCourseSchedule method is declared to be abstract by adding the

abstract keyword to its header, just before the return type. Note that the header of an

abstract method has no braces following the closing parenthesis of the parameter list.

Instead, the header is followed by a semicolon (;)—that is, it’s missing its code body,

which normally contains the detailed logic of how the method is to be performed. The

method must therefore be explicitly labeled as abstract to inform the compiler that we

Chapter 7 Some Final objeCt ConCeptS

385

didn’t accidentally forget to program this method; rather, we knew what we were doing

when we intentionally omitted the body.

Whenever a class contains one or more abstract methods, then we must declare the

class abstract as a whole as well, by inserting the abstract keyword ahead of the class

keyword in the class declaration:

public abstract class Course { ... }

If we forget to designate as abstract a class that contains one or more abstract

methods, a compilation error such as the following will arise:

Course should be declared abstract; it does not define

establishCourseSchedule(String, String)

Note that it isn’t necessary for all of the methods in an abstract class to be abstract;

an abstract class can also declare implemented methods. For example, in our

abstract Course class, both the enrollStudent and assignInstructor methods are

implemented.

By providing an abstract establishCourseSchedule method in the Course class,

we’ve specified a service that all types of Course objects must be able to perform, but

without pinning down the private details of how the service should be performed by a

given subclass. We’re instead leaving it up to each of the subclasses—LectureCourse,

LabCourse, and IndependentStudyCourse—to specify its own class-appropriate way

of performing the service. This is accomplished by requiring each of the subclasses to

override the abstract method with an implemented version.

 Implementing Abstract Methods
When we derive a class from an abstract superclass, the subclass will inherit all of the

superclass’s features, including all of its abstract methods. To replace an inherited

abstract method with a concrete version, the subclass need merely override it; in

so doing, we drop the abstract keyword from the method header and replace the

terminating semicolon with a method body (i.e., code enclosed in braces).

Let’s illustrate this approach by deriving a class called LectureCourse from the

Course class:

// Deriving a concrete subclass from an abstract superclass.

public class LectureCourse extends Course {

Chapter 7 Some Final objeCt ConCeptS

386

 // Details omitted.

 // Override the abstract establishCourseSchedule method with a concrete

 // version by (a) removing the abstract keyword from the method header

 // and (b) providing a method body.

 public void establishCourseSchedule(String startDate,

 String endDate) {

 // Logic specific to the business rules for a LectureCourse

 // would be provided here ... pseudocode.

 determine what day of the week the startDate falls on;

 determine how many weeks there are between startDate and endDate;

 schedule one three-hour class meeting per week on the appropriate

 day of the week;

 }

}

Note that in overriding the establishCourseSchedule method, we’ve dropped the

abstract keyword from the method header because the method is no longer abstract;

we’ve implemented it by providing it with a method body. In so doing, we’re also able to

drop the abstract keyword from the LectureCourse class declaration

// No need for the "abstract" keyword here!

public class LectureCourse extends Course { ... }

because LectureCourse no longer contains any abstract methods; it is now a

concrete class.

Unless a class derived from an abstract class implements all of the abstract methods

that it inherits, the subclass must still be declared to be abstract. For example, say that

in deriving a class named IndependentStudyCourse from our abstract Course class, we

neglect to implement the abstract establishCourseSchedule method. If we were to try

to compile IndependentStudyCourse, we’d get the following compilation error:

IndependentStudyCourse should be declared abstract; it does not define

establishCourseSchedule(String, String) in Course

To get our IndependentStudyCourse class to compile properly, we have two options

for how to amend it:

Chapter 7 Some Final objeCt ConCeptS

387

• We have to implement the abstract establishCourseSchedule

method inherited from Course, as we did for the LectureCourse

subclass.

• We have to declare the IndependentStudyCourse class as a whole to

be abstract:

public abstract class IndependentStudyCourse extends

Course { ... }

Note that allowing a subclass to remain abstract isn’t necessarily a mistake, as we’ll

discuss a bit later in this chapter.

 Abstract Classes and Instantiation
Abstract classes cannot be instantiated. That is, if the Course class is declared to be

abstract, then we can’t ever instantiate generic Course objects in our application—an

attempt to do so will result in a compilation error:

Course c = new Course(); // Impossible!

Here’s the error message:

Course is abstract; cannot be instantiated

Why does the compiler prevent us from creating Course objects? The answer lies in

the fact that the Course class declares an establishCourseSchedule method header,

thus implying that Courses are able to perform this service, but providing no body to

explain how the method is to be performed. If we were able to instantiate a Course

object, it would therefore be expected to know how to respond to a service request such

as the following:

c.establishCourseSchedule("01/24/2005", "05/10/2005"); // Behavior

undefined!

But because there is no executable method body associated with the abstract

establishCourseSchedule method, the Course object in question wouldn’t know how to

behave in response to such a message at run time. So the compiler is actually doing us a

favor by preventing us from creating this impossible run-time situation to begin with.

Chapter 7 Some Final objeCt ConCeptS

388

We’ve just hit upon the mechanism for how abstract methods serve to enforce
implementation requirements! Declaring an abstract method in a superclass ultimately

forces all subclasses to provide implementations of all inherited abstract methods;

otherwise, the subclasses themselves will also be abstract, and we won’t be able to

instantiate them either. Therefore, somewhere along the line in a derivation hierarchy, a

class derived from an abstract class must provide concrete implementations for all of its

inherited abstract methods if we wish to “break the spell of abstractness”—that is, if we

wish to instantiate objects of that particular derived type. Referring to Figure 7-1

• Class A is abstract because it declares an abstract method foo; objects

of type A therefore cannot be instantiated.

• Class X is derived from A and is a concrete class because it concretely

implements the abstract method foo as inherited from A. Thus, we

can instantiate objects of type X.

• Class B is abstract because it inherits the abstract method foo from

A without implementing it. Note that B also introduces a second

abstract method, bar, of its own. Objects of type B therefore cannot

be instantiated.

• Class Y is concrete because it implements all of the abstract methods

that it has inherited from its various ancestors—foo from A and bar

from B. Thus, we can instantiate objects of type Y.

Chapter 7 Some Final objeCt ConCeptS

389

Figure 7-1. “Breaking the spell of abstractness” by implementing abstract methods

As mentioned earlier, allowing a subclass (e.g., IndependentStudyCourse from the

earlier example) to remain an abstract class isn’t necessarily a mistake. It’s perfectly

acceptable to have multiple layers of abstract classes in an inheritance hierarchy; we

simply need a terminal/leaf class to be concrete in order for it to be useful in creating

objects.

 Declaring Reference Variables of Abstract Types
Despite the fact that we’re prevented from instantiating an abstract class, we’re

nonetheless permitted to declare reference variables to be of an abstract type; this is

necessary to facilitate polymorphism, as in the following code:

Chapter 7 Some Final objeCt ConCeptS

390

for (Course c : courses) {

 c.establishCourseSchedule(...);

}

Here, we’re declaring c to be of (abstract) type Course at compile time, knowing

that, at run time, c will actually be referring to an object belonging to a specific concrete
subclass of Course, for reasons that we discussed earlier.

 An Interesting Twist on Polymorphism
Let’s now explore an interesting polymorphic phenomenon specific to abstract

classes: it’s possible for a concrete method in an abstract class to invoke an abstract

method in the same class. This is illustrated in the following code, where the concrete

initializeCourse method invokes the abstract establishCourseSchedule method:

public abstract class Course {

 // Details omitted.

 // An abstract method ...

 public abstract void establishCourseSchedule(String startDate,

 String endDate);

 // ... and a concretely implemented method that INVOKES the

 // abstract method.

 public void initializeCourse(Professor p, String s, String e) {

 // We assume that both assignInstructor and reserveClassroom are

 // implemented methods of the Course class ... details omitted.

 assignInstructor(p);

 reserveClassroom();

 // Here, we're invoking an abstract method -- HOW IS THIS

POSSIBLE???

 establishCourseSchedule(s, e);

 }

}

Chapter 7 Some Final objeCt ConCeptS

391

How can this be possible? That is, how will we ever be able to invoke the

initializeCourse method if there is no body defined for the establishCourseSchedule

method upon which initializeCourse depends? The fact of the matter is that the

compiler will never let us get into this predicament, for the following reasons:

• First of all, recall that it’s impossible to invoke initializeCourse on

a Course object specifically because we cannot instantiate a Course

object in the first place—Course is abstract!

• Then, for any class derived from Course (e.g., LectureCourse), one of

two sets of circumstances will be true:

• LectureCourse will provide implementations of all abstract

methods that it has inherited—establishCourseSchedule

included—such that, at run time, there will be no ambiguity as to

what the initializeCourse method is to do behind the scenes:

LectureCourse l = new LectureCourse();

// This next line of code is perfectly fine, because behind the

// scenes, initializeCourse will invoke the

establishCourseSchedule

// method that LectureCourse has implemented.

l.initializeCourse(p, s, e);

• Alternatively, if LectureCourse doesn’t implement

establishCourseSchedule, then LectureCourse will by

definition be an abstract class, such that we won’t be able to

instantiate a LectureCourse object in the first place:

// Now THIS line of code won't compile, because LectureCourse

is abstract ...

LectureCourse l = new LectureCourse();

// ... and so we'll never reach this ambiguous situation at

run time!

l.initializeCourse(p, s, e);

Chapter 7 Some Final objeCt ConCeptS

392

We thus see that implementing a method X that in turn relies on an abstract method

Y is a “safe” thing to do, because by the time we’re ever able to invoke method X on an

object, the fact that the object exists means that all of its methods (including Y) have

been implemented. Thus, in writing X, we can count on the future availability of a

method Y that hasn’t been implemented yet.

 Interfaces
Recall that a class is an abstraction of a real-world object from which some of the

unessential details have been omitted. We can therefore see that an abstract class is

more abstract than a concrete class, because with an abstract class we’ve omitted the

details for how one or more particular services are to be performed.

Now, let’s take the notion of abstractness one step further. With an abstract class,

we are able to avoid programming the bodies of methods that are declared to be

abstract. But what about the data structure of such a class? In our abstract Course class

example, we went ahead and prescribed the attributes that we thought would be needed

generically by all types of courses, so that a common data structure would be inherited

by all subclasses:

private String courseName;

private String courseNumber;

private int creditValue;

private ArrayList<Student> enrolledStudents;

private Professor instructor;

Suppose we only wanted to specify common behaviors of Courses and not even

bother with declaring attributes. Attributes are, after all, typically declared to be private;

we may not wish to mandate the private data structure that a subclass must use in order

to achieve the desired public behaviors, instead leaving it up to the designer of the

subclass to ultimately make this determination.

As an example, say that we wanted to define what it means to teach at a university.

Perhaps, in order to teach, an object would need to be able to perform the following

services:

• Agree to teach a particular course.

• Designate a textbook to be used for the course.

Chapter 7 Some Final objeCt ConCeptS

393

• Define a syllabus for the course.

• Approve the enrollment of a particular student in the course.

Each of these behaviors could be formalized by specifying a method header,

representing how an object that is capable of teaching would be asked to perform each

behavior:

public boolean agreeToTeach(Course c)

public void designateTextbook(TextBook b, Course c)

public Syllabus defineSyllabus(Course c)

public boolean approveEnrollment(Student s, Course c)

We could then declare an abstract class called Teacher that prescribes no data

structure and only abstract methods:

public abstract class Teacher {

 // We omit attribute declarations entirely, allowing subclasses to

establish

 // their own class-specific data structures.

 // We declare only abstract methods.

 public abstract boolean agreeToTeach(Course c);

 public abstract void designateTextbook(TextBook b, Course c);

 public abstract Syllabus defineSyllabus(Course c);

 public abstract boolean approveEnrollment(Student s, Course c);

}

We then proceed to create Professor as a concrete derivation of Teacher:

public Professor extends Teacher {

 // Declare relevant attributes.

 private String name;

 private String employeeID;

 private ArrayList<Section> teachingAssignments; // of Section objects

 // etc.

 // Provide concrete implementations of all inherited abstract methods.

 public boolean agreeToTeach(Course c) { ... }

 public void designateTextbook(TextBook b, Course c) { ... }

Chapter 7 Some Final objeCt ConCeptS

394

 public Syllabus defineSyllabus(Course c) { ... }

 public boolean approveEnrollment(Student s, Course c) { ... }

 // Additional methods can also be declared - details omitted.

}

However, if our intention is to declare a set of abstract method headers to define

what it means to assume a certain role within an application (such as teaching) without

imposing either data structure or concrete behavior on the subclasses, then the preferred

way to do so in Java is with an interface.

Here’s how we’d render the abstract Teacher class with an equivalent interface:

// Note use of "interface" vs. "abstract class" keywords.

public interface Teacher {

 boolean agreeToTeach(Course c);

 void designateTextbook(TextBook b, Course c);

 Syllabus defineSyllabus(Course c);

 boolean approveEnrollment(Student s, Course c);

}

Here are some observations about interface syntax:

• We use the keyword interface rather than class when

declaring them:

public interface Teacher { ... }

• Because all of an interface’s methods are implicitly public and

abstract, we needn’t specify either of those two keywords when

declaring them (although doing so will not generate a compiler error).

We will get an error, however, if we attempt to assign something other

than public accessibility to a method within an interface:

public interface teacher {

 // This won't compile - interface methods must all be public.

 private void takeSabbatical();

 // etc.

Chapter 7 Some Final objeCt ConCeptS

395

Here’s the compiler error:

modifier private not allowed here

private void takeSabbatical();

^

Because all of the methods prescribed by an interface are abstract, none of them

have bodies.

As with classes, the source code for each interface typically goes into its own .java

file, whose external name matches the name of the interface contained within (e.g., the

Teacher interface would go into a file named Teacher.java). Interfaces are then compiled

into bytecode in the same way that classes are compiled. For example, the command

javac Teacher.java

will produce a bytecode file named Teacher.class.

Note that interfaces may not declare variables (with one exception that we’ll

discuss later in the chapter) and they may not declare any implemented methods. They

are, simply put, a collection of abstract method headers. Therefore, in terms of the

“abstractness spectrum,” an interface is more abstract than an abstract class (which

is in turn more abstract than a concrete class) because an interface leaves even more

details to the imagination.

Reformat as editorial note as of java 8, the notion of a functional interface
was introduced; such interfaces differ a bit in terms of the rules for declaring and
using them beyond the scope of this chapter to discuss.

 Implementing Interfaces
Once we’ve defined an interface such as Teacher, we can set about designating various

classes of objects as being teachers—for example, Professors or Students or generic

Person objects—simply by declaring that the class of interest implements the Teacher

interface, using the following syntax:

// Implementing an interface ...

public class Professor implements Teacher { ... }

Chapter 7 Some Final objeCt ConCeptS

396

That is, rather than using the extends keyword, as we do when one class is derived

from another, we use the implements keyword.

recall our discussion of packages from Chapter 6. if we wish to implement a
predefined java interface type (the java language provides many of these), we
must remember to use an import directive to make that interface type known to
the compiler, for example:

import packagename.PredefinedInterfaceType;

public class MyClass implements
PredefinedInterfaceType { ... }

Once a class declares that it’s implementing an interface, the implementing class

must implement all of the (implicitly abstract) methods declared by the interface in

question in order to satisfy the compiler. As an example, let’s say that we were to code

the Professor class as follows, implementing three of the four methods called for by the

Teacher interface but neglecting to code the approveEnrollment method:

public class Professor implements Teacher {

 private String name;

 private String employeeId;

 // etc.

 // We implement three of the four methods called for by the

 // Teacher interface, to provide method bodies.

 public boolean agreeToTeach(Course c) {

 logic for the method body goes here; details omitted ...

 }

 public void designateTextbook(TextBook b, Course c) {

 logic for the method body goes here; details omitted ...

 }

 public Syllabus defineSyllabus(Course c) {

 logic for the method body goes here; details omitted ...

 }

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

397

 // However, we FAIL to provide an implementation of the

 // approveEnrollment method.

 // Other miscellaneous methods of Professor unrelated to the Teacher

 // interface could also be declared ... details omitted.

}

If we were to try to compile the Professor class as just shown, we’d get the following

compiler error:

Professor should be declared abstract; it does not implement

approveEnrollment(Student, Course) in Teacher

Recall that this is the exact same type of compiler error message that is generated

if we are deriving a class from an abstract class and fail to override one of the inherited

abstract methods. Here’s the result from an earlier example, involving the abstract

superclass Course and the subclass IndependentStudyCourse:

IndependentStudyCourse should be declared abstract; it does not implement

establishCourseSchedule(String, String) in Course

Thus, implementing an interface is conceptually similar to extending an abstract

class in that both interfaces and abstract classes are alternative constructs for prescribing

abstract behaviors that implementing subclasses must be able to carry out.

When should we use one vs. the other?

• If we wish to impart a particular data structure to go along with

these prescribed behaviors or if we need to provide some concrete

behaviors along with abstract behaviors, we’ll create an abstract class.

• Otherwise, we’ll create an interface.

Tables 7-1 and 7-2 summarize the syntactical differences between interfaces and

abstract classes.

Chapter 7 Some Final objeCt ConCeptS

398

Table 7-1. Syntactical Differences for Declaring Abstract Classes vs. Interfaces

Example Using an Abstract Class Example Using an Interface

Declaring the Teacher Type As an Abstract
Class:

Declaring the Teacher Type As an
Interface:

public abstract class Teacher {

 // Abstract classes may prescribe

 // data structure.

 private String name;

 private String employeeId;

 // etc.

 // We declare abstract methods

using

 // the "abstract" keyword; these

 // must also be declared "public".

 public abstract void agreeToTeach(

 Course c);

 // etc.

 // Abstract classes may also

declare

 // concrete methods.

 public void print() {

 System.out.println(name);

 }

 // etc.

}

public interface Teacher {

 // Interfaces may NOT

prescribe

 // data structure.

 // We needn't use the "public"

or

 // "abstract" keywords - all

methods

 // declared by an interface

are

 // automatically public and

 // abstract by default.

 void agreeToTeach(Course c);

 // etc.

 // Interfaces may NOT declare

 // concrete methods.

}

Chapter 7 Some Final objeCt ConCeptS

399

Table 7-2. Syntactical Differences for Extending Abstract Classes vs. Implementing

Interfaces

Example Using an Abstract Class Example Using an Interface

Professor Extends Teacher: Professor Implements Teacher:

public class Professor extends

Teacher {

 // Professor inherits attributes,

if

 // any, from the abstract

 // superclass, and optionally

 // adds additional attributes.

 private Department worksFor;

 // etc.

 // We override abstract methods

 // inherited from the Teacher

class

 // to provide a concrete

 // implementation.

 public void agreeToTeach(Course c)

{

 logic for the method body goes

 here; details omitted ...

 }

 // etc. for other abstract methods.

 // Additional methods may be added;

 // details omitted.

}

public class Professor implements

Teacher {

 // Professor must provide ALL

of

 // its own data structure, as

an

 // interface cannot provide

this.

 private String name;

 private String employeeId;

 private Department worksFor;

 // etc.

 // We implement methods

required by

 // the Teacher interface.

 public void agreeToTeach(Course

c) {

 logic for the method body goes

 here; details omitted ...

 }

 // etc. for other abstract

methods.

 // Additional methods may be

added;

 // details omitted.

}

Chapter 7 Some Final objeCt ConCeptS

400

 Another Form of the “Is A” Relationship
You learned in Chapter 5 that inheritance is often referred to as the “is a” relationship. As

it turns out, implementing an interface is another form of “is a” relationship; that is

• If the Professor class extends the Person class, then a Professor is
a Person.

• If the Professor class implements the Teacher interface, then a

Professor is a Teacher.

When a class A implements an interface X, all of the classes that are subsequently

derived from A may also be said to implement that same interface X. For example,

if we derive a class called AdjunctProfessor from Professor, then since Professor

implements the Teacher interface, an AdjunctProfessor is a Teacher, as well:

public class Professor implements Teacher {

 // Attribute details omitted.

 // The Professor class must implement all four of the methods

called for by

 // the Teacher interface.

 public boolean agreeToTeach(Course c) { ... }

 public void designateTextbook(TextBook b, Course c) { ... }

 public Syllabus defineSyllabus(Course c) { ... }

 public boolean approveEnrollment(Student s, Course c) { ... }

 // Other details omitted.

}

// Even though AdjunctProfessor isn't explicitly declared to implement

Teacher,

// it does so IMPLICITLY, because it inherits all of a Teacher's

behaviors from

// the Professor class.

public class AdjunctProfessor extends Professor { ... }

Chapter 7 Some Final objeCt ConCeptS

401

This makes intuitive sense, because AdjunctProfessor will either inherit all of the

methods called for by the Teacher interface from Professor as is or optionally override

one or more of them. Either way, an AdjunctProfessor will be “equipped” to perform all

of the services required to serve in the role of a Teacher on behalf of an application:

• Agree to teach a particular course.

• Designate a textbook to be used for the course.

• Define a syllabus for the course.

• Approve the enrollment of a particular student in the course.

Recall that this is the precise purpose for having declared the Teacher interface

in the first place: to define a behavioral role in an application. So, even though

AdjunctProfessor isn’t explicitly declared to implement Teacher, it does so implicitly.

 Interfaces and Casting
Note that the compiler is perfectly happy for us to assign a Professor object to a Teacher

reference variable

Teacher t = new Professor();

because the compiler generally allows assignments to occur if the type of the expression

to the right of the equal sign (=) is a type that is compatible with the variable to the left of

the equal sign. Since Professor implements Teacher, a Professor is a Teacher, and so

this assignment is permitted.

The opposite is not permitted, however: we cannot directly assign a Teacher

reference to a Professor reference variable, because not all Teachers are necessarily

Professors—many different classes can implement the same interface. For example,

assuming that both the Student and Professor classes implement the Teacher interface,

the last line of the following code will generate a compiler error:

Professor p = new Professor();

Student s = new Student();

Teacher t;

// Details omitted.

// The compiler won't allow this.

p = t;

Chapter 7 Some Final objeCt ConCeptS

402

Here’s the compiler error:

incompatible types

found: Teacher

required: Professor

p = t;

 ^

However, if we know that t will be referring to an object of an appropriate type at

run time, we may force such an assignment to occur through use of a cast. Recall from

Chapter 2 that we use casting to convince the compiler that an assignment should occur

even though precision is lost in doing so (e.g., when assigning a double value to an int

variable):

int x;

double y;

// Cast the double value into an int before assigning it to x.

x = (int) y;

Recall that this was referred to as a narrowing conversion. In a sense, attempting

to assign a Teacher reference to a Professor reference variable is also a narrowing

conversion: we’re trying to narrow down all of the possible types of object that a Teacher

variable could possibly be referencing at run time to a single type, Professor. In the

preceding example, since both the Professor and Student classes implement the

Teacher interface, t could, at run time, be referring to a Student object or a Professor

object, as illustrated in Figure 7-2.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_2

403

Figure 7-2. A Teacher reference variable can refer to multiple types of object at
run time

However, if we know that, based on the way we’ve written our code, t will be

referring to a Professor object at run time, we may force the assignment through the use

of a cast as follows:

Professor p1 = new Professor();

Teacher t;

// We assign a Professor reference to t.

t = p1;

// Details omitted.

// Later in our application, we are confident that t is still referring

// to the same Professor, and so we assign t to p2 by using a cast.

Professor p2 = (Professor) t;

Chapter 7 Some Final objeCt ConCeptS

404

The resultant situation in memory is depicted in Figure 7-3. Our use of a cast on the

last line of code

Professor p2 = (Professor) t;

is effectively telling the compiler “Trust me, I know that t will be referring to a Professor

object at run time, so doing this assignment makes sense.”

If we force a cast, but we’re wrong—that is, if the run-time type of t is not compatible

with the Professor type—then we’ll get a ClassCastException type of error at run

time. (We’ll talk about how to deal with such an error, a technique known as exception
handling, in Chapter 13.) Returning to our previous example, let’s change the code a bit

so that a cast would be inappropriate:

// We instantiate both a Professor and a Student object; recall that

// in this example, both classes implement the Teacher interface.

Professor p = new Professor();

Student s = new Student();

Teacher t;

// We assign a Student reference to t. This is permitted, because

a Student

// is a Teacher.

t = s;

Figure 7-3. Because t refers to a Professor object at run time, we force an
assignment of t to p2 via a cast

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_13

405

// Details omitted ...

// Later on, we mistakenly try to cast t as a Professor, but t is really

// referring to a Student.

p = (Professor) t;

The last line of code will compile, because the compiler trusts that we know what

we are doing, but since the actual situation at run time is as depicted in Figure 7-4, such

a cast is invalid—there’s no way to transform a Student into a Professor object at run

time—and so we get the following error message when executing this code:

Exception in thread "main" java.lang.ClassCastException: Student

at classname.main(classname.java:line#)

Figure 7-4. A ClassCastException arises at run time when trying to refer to a
Student object as a Professor

We’ll revisit the use of casts with object references later in this chapter and again in

Chapter 13.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_13

406

 Implementing Multiple Interfaces
Another important distinction between extending an abstract class and implementing

an interface is that whereas a given class may only be derived from one direct superclass,

a class may implement as many interfaces as desired. If a class is to implement multiple

interfaces, we must name all such interfaces as a comma-separated list after the

implements keyword in the class declaration:

public class ClassName implements Interface1, Interface2, ...,

InterfaceN { ... }

In so doing, the implementing class would then need to implement all of the

methods prescribed by all of these interfaces collectively.

As an example, if we were to invent a second interface called Administrator, which

in turn specified the following method headers

public interface Administrator {

 boolean approveNewCourse(Course c);

 boolean hireProfessor(Professor p);

 void cancelCourse(Course c);

}

we could then declare that the Professor class implements both the Teacher and

Administrator interfaces as follows:

// The Professor class implements two interfaces.

public class Professor implements Teacher, Administrator {

 // Details omitted.

 // The Professor class must implement all four of the methods

called for by

 // the Teacher interface ...

 public boolean agreeToTeach(Course c) { ... }

 public void designateTextbook(TextBook b, Course c) { ... }

 public Syllabus defineSyllabus(Course c) { ... }

 public boolean approveEnrollment(Student s, Course c) { ... }

 // ... as well as all three of the methods called for by

 // the Administrator interface.

Chapter 7 Some Final objeCt ConCeptS

407

 public boolean approveNewCourse(Course c) { ... }

 public boolean hireProfessor(Professor p) { ... }

 public void cancelCourse(Course c) { ... }

 // Details omitted.

}

If a class implements two or more interfaces that call for methods with identical

signatures, we need only implement one such method in the implementing class—

that method will do “double duty” in satisfying both interfaces’ implementation

requirements as far as the compiler is concerned.

When a class implements more than one interface, its objects are capable of

assuming multiple identities or roles in an application; such objects can therefore be

“handled” by various types of reference variables. Based on the preceding definition of a

Professor as both a Teacher and an Administrator, the following client code would be

possible:

// Instantiate a Professor object, and maintain a handle on it via

// a reference variable of type Professor.

Professor p = new Professor();

// We then declare reference variables of the two types of interfaces

that the

// Professor class implements.

Teacher t;

Administrator a;

t = p; // We store a second handle on the same Professor in a reference

variable of

 // type Teacher; this is possible because a Professor IS A Teacher!

a = p; // We store a third handle on the same Professor in a reference

variable of

 // type Administrator; this is possible because a Professor IS AN

 // Administrator!

Chapter 7 Some Final objeCt ConCeptS

408

This code is illustrated conceptually in Figure 7-5.

Figure 7-5. A Professor object has three different identities/roles in our
application

this is conceptually the same thing as you, as a person, being viewed as having
different roles by different people: you’re viewed as an employee by your manager,
as a son or daughter by your parents, perhaps as a partner by your significant
other, as a parent by your children, etc.

We may then command the same object at run time as either a Professor

// setDepartment is a method defined by the Professor class ...

p.setDepartment("Computer Science");

or as a Teacher

// agreeToTeach is a method defined by the Teacher interface ...

t.agreeToTeach(c);

Chapter 7 Some Final objeCt ConCeptS

409

or as an Administrator

// approveNewCourse is a method defined by the Administrator interface ...

a.approveNewCourse(c);

because it’s all three, rolled into one.

A class may simultaneously extend a single superclass and implement one or more

interfaces, as follows:

public class Professor extends Person implements Teacher,

Administrator { ... }

Under such circumstances, extends className should always precede implements

interfaceNameList in the declaration.

 Interfaces and Casting, Revisited
Continuing with the previous example, note that, despite the fact that t would, at run
time, be referring to a Professor object, we cannot ask t to perform a method declared

by the Professor class:

Professor p = new Professor();

Teacher t = p;

// setDepartment is a method defined for the Professor class, but t is

// declared to be of type Teacher ... this won't compile!

t.setDepartment("Computer Science");

The compiler will check the type of t, determining that t is declared to be of

type Teacher, and since the Teacher interface doesn’t declare a setDepartment

method, the compiler will reject the last line of the preceding code with the following

compilation error:

cannot find symbol

symbol: method setDepartment(String)

location: interface Teacher

Chapter 7 Some Final objeCt ConCeptS

410

Thus, even if the code that we’ve written guarantees that t would be referring to a

Professor at run time, we may only command t at compile time as a Teacher, because

not all Teachers are necessarily Professors as far as the compiler is concerned.

Once again, casting comes to our rescue: if we are certain that t will indeed be

referring to a Professor object at run time, we may invoke the setDepartment method

on that object by casting the reference to t as follows:

Professor p = new Professor();

Teacher t = p;

// setDepartment is a method defined for the Professor class; since we know

// that t will refer to a Professor at run time, we use a cast so that

// this will compile.

((Professor) t).setDepartment("Computer Science");

Note the use of nested parentheses: ((Professor) t).setDepartment(...).

We use nested parentheses to force the cast to occur before we attempt to invoke

the setDepartment method on t. If we were to write the line of code without nested

parentheses, as follows

(Professor) t.setDepartment("Computer Science");

then the compiler would interpret this as saying, “First, invoke the setDepartment

method on t, and then cast the result that is returned from this method invocation to be

a Professor,” which is not what we want. (And, in fact, since a set method typically is

declared to have a return type of void, the preceding line won’t even compile.)

 Interfaces and Instantiation
As with abstract classes, interfaces cannot be instantiated. That is, if we define Teacher

to be an interface, we may not instantiate it directly

Teacher t = new Teacher(); // Impossible!

because interfaces don’t have constructors—only classes do, as templates for

instantiating objects—and so we’d encounter the following compilation error:

Teacher is abstract; cannot be instantiated

Chapter 7 Some Final objeCt ConCeptS

411

Recall that this is the exact same type of compiler error message that is generated if

we attempt to instantiate an abstract class. Here’s the result from an earlier example:

Course is abstract; cannot be instantiated

While we’re indeed prevented from instantiating an interface, we’re nonetheless

permitted to declare reference variables to be of an interface type, as we were able to do

with abstract classes:

Teacher t; // This is OK.

This is necessary to facilitate polymorphism, as discussed in the next section.

 Interfaces and Polymorphism
Let’s look at an example of polymorphism as it applies to interfaces. We’ll assume that

• The Professor and Student classes are both derived from the

Person class.

• Professor and Student are sibling classes—neither derives from

the other.

• Person implements the Teacher interface, and thus by virtue of

inheritance, both Professor and Student implicitly implement the

Teacher interface.

We may declare a collection to hold Teacher references and then populate it with a

mixture of Student and Professor object references as follows:

ArrayList<Teacher> teachers = new ArrayList<Teacher>();

teachers.add(new Student("Becky Elkins"));

teachers.add(new Professor("Bobby Cranston"));

// etc.

Chapter 7 Some Final objeCt ConCeptS

412

We may then iterate through the teachers collection in polymorphic fashion,

referring to all of its elements as Teachers

for (Teacher t : teachers) {

 // This line of code is polymorphic.

 t.agreeToTeach(c);

}

because we constrained the collection to contain only Teacher-type object references

when we first declared it.

 The Importance of Interfaces
Interfaces are one of the most poorly understood, and hence underused, features of the

OO programming languages that support them. This is quite unfortunate, as interfaces

are extremely powerful if used properly.

Whenever possible/feasible in developing an application, if we use interface types

rather than specific class types in declaring

• (Private) Attributes

• Formal parameters to methods

• Method return types

our classes will be more flexible in terms of how client code can use them. Let’s explore

two different examples to see why this is so.

 Example #1

In this example, let’s assume that

• The Professor and Student classes are both immediate subclasses of

Person, along with a third subclass, Janitor.

• In this example, Person does not implement the Teacher interface,

because we don’t wish to designate either Janitors or Students

as Teachers; instead, we have the Professor class (only) explicitly

implement the Teacher interface.

Chapter 7 Some Final objeCt ConCeptS

413

The four class declarations are as follows:

public class Person { ... }

// Only Professors are Teachers in this example.

public class Professor extends Person implements Teacher { ... }

public class Student extends Person { ... }

public class Janitor extends Person { ... }

Next, we’ll design a class called Course with a private attribute of type Professor

called instructor, along with accessor methods for this attribute:

public class Course {

 private Professor instructor;

 // Other attributes omitted from this example ...

 public Professor getInstructor() {

 return instructor;

 }

 public void setInstructor(Professor p) {

 instructor = p;

 }

 // Other methods omitted from this example ...

}

We’d then perhaps use this class from client code as follows to assign a specific

Professor to teach a specific Course:

// Client code.

Course c = new Course("Math 101");

Professor p = new Professor("John Smith");

c.setInstructor(p);

Let’s say that at some future date the university decides to permit selected students

to teach courses. To implement this new business rule, we derive a new subclass of

Student called StudentInstructor and have it implement the Teacher interface. Our

classes are thus as follows:

Chapter 7 Some Final objeCt ConCeptS

414

public class Person { ... }

// Professors are Teachers ...

public class Professor extends Person implements Teacher { ... }

public class Student extends Person { ... }

// ... and now selected Students are Teachers, as well!

public class StudentInstructor extends Student implements Teacher { ... }

public class Janitor extends Person { ... }

We would not be able to assign a StudentInstructor to teach a Course given the current

design of our Course class, however, because a StudentInstructor is not a Professor in

terms of our class hierarchy; that is, the following client code would not compile:

Course c = new Course("Math 101");

StudentInstructor si = new StudentInstructor("Mary Jones");

// An attempt to assign a student as an instructor won't compile.

c.setInstructor(si);

We’d get the following compilation error:

setInstructor(Professor) in Course cannot be applied to StudentInstructor

Now, let’s look at an improvement to our original Course class design. Instead of

declaring the instructor attribute of Course to be of type Professor (a specific class

type), let’s declare it to be of type Teacher (an interface type) instead. We’ll also adjust

the return type of the “get” method and the parameter type of the “set” method for this

attribute accordingly:

public class Course {

 // We've changed our declaration of the instructor attribute to take

 // advantage of an interface type.

 private Teacher instructor;

 // Other attributes omitted from this example ...

 // We make a corresponding change to the return type of our get

method ...

Chapter 7 Some Final objeCt ConCeptS

415

 public Teacher getInstructor() {

 return instructor;

 }

 // ... and to the type of the parameter that we pass into the

set method.

 public void setInstructor(Teacher t) {

 instructor = t;

 }

 // Other methods omitted from this example ...

}

We’re thus opening up more possibilities for client code. Using our improved Course

class design, we can assign a Professor as an instructor for a Course

// Client code.

Course c = new Course("Math 101");

Professor p = new Professor("John Smith");

c.setInstructor(p);

or a StudentInstructor as an instructor for a Course

// Client code.

Course c = new Course("Math 101");

StudentInstructor si = new StudentInstructor("George Jones");

c.setInstructor(si);

or a reference x to any other future type of object as yet to be invented

c.setInstructor(x);

as long as x is an instance of a class that implements the Teacher interface.

We can therefore see that using an interface type when declaring

• The (private) instructor attribute of Course

• The parameter passed into the setInstructor method of Course

• The return types of the getInstructor method

results in a much more flexible design for our application overall.

Chapter 7 Some Final objeCt ConCeptS

416

 Example #2

The Java language provides many predefined interfaces. One such example is the

Collection interface of the java.util package. The Collection interface enforces

implementation of 14 methods, many of which—add, addAll, clear, contains, isEmpty,

remove, size, etc.—we discussed when talking about various collection classes in

Chapter 6. These 14 methods collectively define the services that an object has to be able

to provide in order to perform in the role of a proper Collection in a Java application.

The Collection interface is implemented by numerous predefined Java Collection

classes, including the ArrayList class. In fact, the collections framework is based on a

total of 12 interfaces, including Map, SortedMap, Collection, Set, List, and SortedSet.

The relationships between these interfaces and the various collection classes that we

have discussed are illustrated in Figure 7-6.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

417

Figure 7-6. The “family tree” of the predefined collection classes that we’ve
discussed

Chapter 7 Some Final objeCt ConCeptS

418

ALL JAVA COLLECTIONS ARE NOT CREATED EQUAL!

Figure 7-6 points out an interesting phenomenon regarding the TreeMap and HashMap

classes, two of the predefined collection types that we discussed in Chapter 6. While

TreeMaps and HashMaps are indeed collections in the generic sense in that they organize

references to other objects, these classes do not implement the Collection interface.

hence, client code such as the following will not compile

Collection c = new TreeMap<String, String>();

because a TreeMap, while being a collection (in the lowercase “c” sense of the word), is not

truly a Collection (in the formal, uppercase “C” sense). the following compilation error

message would be generated:

incompatible types:
found: java.util.TreeMap<java.lang.String, java.lang.String>

required: java.util.Collection

Similarly, an array is not truly a Collection in the uppercase “C” sense of the term either,

and so the following won’t compile either:

Collection c = new Student[20];

here’s the compilation error:

incompatible types:
found: Student[]

required: java.util.Collection

on the other hand, the following client code will compile

Collection c = new ArrayList<String>;

because the ArrayList class is derived from the AbstractCollection class, which

implements the Collection interface; hence, an ArrayList is a Collection (uppercase

“C”) in the true uppercase “C” sense.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

419

If we design methods that are to operate on collections of objects to accept a generic

Collection reference as an argument (rather than requiring that a specific type of

 collection be passed in), such methods will be much more versatile; client code will be

free to pass in whatever Collection type it wishes.

By way of example, let’s say that we wish to design an enrollStudents method for

the Course class so that client code can pass in a collection of Students to enroll them all

at once. If we were to specify a particular collection type as a parameter to the method—

say, an ArrayList

import java.util.ArrayList;

public class Course {

 // Details omitted ...

 // Accept a specific collection type as an argument.

 public void enrollStudents(ArrayList x) {

 for (Student s : x) {

 this.enroll(s);

 }

 }

 // etc.

}

then client code would be forced to pass in an ArrayList as an argument. However, if we

design the method to accept a generic Collection as an argument instead

import java.util.Collection;

public class Course {

 // details omitted ...

 // Accept a generic Collection reference as an argument.

 public void enrollStudents(Collection c) {

 for (Student s : x) {

 this.enroll(s);

 }

 }

}

Chapter 7 Some Final objeCt ConCeptS

420

then client code using this method will be able to pass in an ArrayList of Student

references

Course c = new Course();

ArrayList al = new ArrayList();

// Populate al with Students ... details omitted.

// Pass in an ArrayList ...

c.enrollStudents(al);

or a Vector of Student references (another built-in type)

// Client code.

Course c = new Course();

Vector v = new Vector<Student>();

// Populate v with Students ... details omitted.

// Pass in a Vector ...

c.enrollStudents(v);

or any other type of Collection desired.

The same is true for methods that return collections of objects: if we design them

to return generic Collections instead of specific collection types, then we are free to

change the internal details of what type of collection we’re crafting. Recall our discussion

from Chapter 6 of the getRegisteredStudents method of the Course class. I’ve repeated

that code here for your convenience:

import java.util.ArrayList;

public class Course {

 private ArrayList<Student> enrolledStudents;

 // Details omitted ...

 // The following method returns a reference to an entire collection –

 // specifically, an ArrayList - containing however many Students are

 // registered for the course in question.

 public ArrayList getRegisteredStudents() {

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

421

 return enrolledStudents;

 }

 // etc.

}

Because we declared getRegisteredStudents to have a return type of ArrayList (a

specific collection type), we’re going to run into problems later on if we decide to change

the type of the encapsulated enrolledStudents collection from ArrayList to some other

collection type. In essence, we’ve exposed client code to what should be a private detail

of the Course class: namely, the type of collection that we’re using internally to manage

Student references.

If we instead declare getRegisteredStudents to return a generic Collection

as follows

import java.util.ArrayList;

import java.util.Collection;

public class Course {

 // We're still maintaining an ArrayList internally.

 private ArrayList<Student> enrolledStudents;

 // Details omitted ...

 // However, we've now "hidden" the fact that we're using an ArrayList

 // internally by returning it as a generic Collection instead.

 public Collection<Student> getRegisteredStudents() {

 // We're allowed to do this, because enrolledStudents is an ArrayList,

 // and an ArrayList IS A Collection.

 return enrolledStudents;

 }

 // etc.

}

we’re now free to change the type of internal collection that we’re using (a private

detail) without impacting the signature of the getRegisteredStudents method (a public

detail). For example, we may wish to switch from an ArrayList to a TreeSet to take

 advantage of a set’s inherent elimination of duplicate entries (recall our discussion of

this aspect of set-type collections from Chapter 6):

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

422

import java.util.TreeSet;

import java.util.Collection;

public class Course {

 // We've switched to a different Collection type internally.

 private TreeSet enrolledStudents;

 // Details omitted ...

 // This method signature needn't change!!!

 public Collection<Student> getRegisteredStudents() {

 // We're allowed to do this, because enrolledStudents is a TreeSet,

 // and a TreeSet IS A Collection.

 return enrolledStudents;

 }

 // etc.

}

Be certain to master the notion of interfaces—both predefined and user-defined—to

harness their power in your code!

in Chapter 6, our discussion of creating custom collections started out by
mentioning that we could, if desired, invent a custom collection type from scratch,
but that the java language provides so many predefined collection types that
doing so is not usually necessary. however, should you ever find yourself wanting
to invent a brand-new collection type without extending one of the predefined
collection types, be certain that your collection type implements the predefined
Collection interface, at a minimum

import java.util.Collection;

public class MyBrandNewCollectionType implements
Collection { ... }

so that your collection type will be usable in any context where a generic
Collection is required.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

423

 Static Features
Up until this point, all of the attributes that we’ve discussed have been associated with

an individual instance of a class. Every Student object has its own copy of the String

name attribute, for example, and can manipulate its value independently of what other

Student objects are doing with their copies of the same attribute (see Figure 7-7).

Figure 7-7. Objects manage their individual attribute values

Circumstances can arise in an application where we’ll want all objects belonging to

a particular class to share a single value of a particular variable instead of having each

object maintain its own copy of that variable as an attribute. The Java language satisfies

this need through static variables that are associated with classes as a whole rather than

with individual objects.

 Static Variables
Suppose there was some piece of general information—say, the count of the total

number of students enrolled at the university—that we wanted all Student objects to

have shared knowledge of. We could implement this as a simple attribute of the Student

class, int totalStudents, along with code for manipulating the attribute as shown here:

Chapter 7 Some Final objeCt ConCeptS

424

public class Student {

 private int totalStudents;

 // Other attribute details omitted.

 // Accessor methods.

 public int getTotalStudents() {

 return totalStudents;

 }

 public void setTotalStudents(int x) {

 totalStudents = x;

 }

 // Other miscellaneous methods.

 public int reportTotalEnrollment() {

 System.out.println("Total Enrollment: " + getTotalStudents());

 }

 public void incrementEnrollment() {

 setTotalStudents(getTotalStudents() + 1);

 }

 // etc.

}

This would be a less-than-desirable design approach, however, because client code

would have to invoke the incrementEnrollment method on every Student object in the

system any time a new Student was instantiated, to ensure that all Students were in

agreement on the total student count:

// Client code.

// Create a Student ...

Student s1 = new Student();

// ... and increment the enrollment count.

s1.incrementEnrollment();

// Details omitted ...

Chapter 7 Some Final objeCt ConCeptS

425

// Later, we create another Student ...

Student s2 = new Student();

// ... and have to remember to increment the enrollment count for BOTH.

s1.incrementEnrollment();

s2.incrementEnrollment();

// More details omitted ...

// Still later, we create yet another Student ...

Student s3 = new Student();

// ... and have to remember to increment the enrollment count for

ALL THREE!

s1.incrementEnrollment();

s2.incrementEnrollment();

s3.incrementEnrollment();

// Phew!

Fortunately, there is a simple solution: we can designate totalStudents to be what is

known as a static variable of the Student class through use of the static keyword:

public class Student {

 // totalStudents is now declared to be a static attribute.

 private static int totalStudents;

 // Other attribute details omitted.

 // The next three methods are unchanged from the previous version of

Student.

 public int getTotalStudents() {

 return totalStudents;

 }

 public void setTotalStudents(int x) {

 totalStudents = x;

 }

 public int reportTotalEnrollment() {

 System.out.println("Total Enrollment: " + getTotalStudents());

 }

Chapter 7 Some Final objeCt ConCeptS

426

 // This method has been declared to be static.

 public static void incrementEnrollment() {

 setTotalStudents(getTotalStudents() + 1);

 }

}

Static variables are also casually referred to as “static attributes,” but since i prefer
the notion of an “attribute” as “a data item belonging to an individual object,” i
generally favor the nomenclature of “static variables” instead.

This causes the totalStudents variable to be associated with the Student class as a

whole, as represented conceptually in Figure 7-8.

Figure 7-8. Static variables are associated with a class as a whole

This enables us to simplify our client code as follows:

// Client code.

// Create three Students, incrementing the enrollment each time

Chapter 7 Some Final objeCt ConCeptS

427

// FOR THAT STUDENT ONLY.

Student s1 = new Student();

s1.incrementEnrollment();

// Later ...

Student s2 = new Student();

s2.incrementEnrollment();

// Still later ...

Student s3 = new Student();

s3.incrementEnrollment();

Each time we invoke incrementEnrollment for one Student, the others will benefit,

because they all share the same totalStudents value. To demonstrate this, let’s ask each

Student object to report on total enrollment:

s1.reportTotalEnrollment();

s2.reportTotalEnrollment();

s3.reportTotalEnrollment();

Here’s the output (all Students agree!):

Total Enrollment: 3

Total Enrollment: 3

Total Enrollment: 3

In fact, since this variable is effectively associated with the Student class as a

whole, we can even ask the Student class to reportTotalEnrollment, and we’ll get the

same output:

Student.reportTotalEnrollment();

Here’s the output:

Total Enrollment: 3

Chapter 7 Some Final objeCt ConCeptS

428

Note that we’re using dot notation to talk to a class as a whole vs. talking to individual

objects. This is only possible, however, if the method in question—in this case,

reportTotalEnrollment—is declared to be a static method. Before we discuss static

methods, however, let’s look at one final improvement to the design of our Student class.

 A Design Improvement: Burying Implementation Details
Since we want to increment totalStudentCount whenever we create a new Student, we

can insert such logic into the Student class’s constructor(s) to do so automatically

public class Student {

 private static int totalStudents;

 // Other details omitted.

 // Constructor.

 public Student(...) {

 // Details omitted.

 // Automatically increment the student count every time we

 // instantiate a new Student.

 totalStudents++;

 }

 // etc.

}

thereby eliminating the need for an incrementEnrollment method. This makes our

client code much more concise:

// Client code.

// Create three Students, AUTOMATICALLY incrementing the

totalStudents value

// each time.

Student s1 = new Student();

Student s2 = new Student();

Student s3 = new Student();

s1.reportTotalEnrollment();

s2.reportTotalEnrollment();

Chapter 7 Some Final objeCt ConCeptS

429

s3.reportTotalEnrollment();

Student.reportTotalEnrollment();

Here’s the output:

Total Enrollment: 3

Total Enrollment: 3

Total Enrollment: 3

Total Enrollment: 3

It also makes our client code foolproof: we no longer run the risk of forgetting to

invoke incrementEnrollment explicitly after creating each Student. As mentioned

before, whenever possible, it’s desirable to bury such implementation details inside
of a class, to lessen the burden on—and hence to lessen the likelihood for logic errors
in—client code.

 Static Methods
Just as static variables are associated with a class as a whole vs. with a specific individual

object, static methods are in turn methods that may be invoked on a class as a whole.

Let’s declare all of the methods related to the totalStudents variable—namely,

getTotalStudents, setTotalStudents, and reportTotalEnrollment—to be static:

public class Student {

 private static int totalStudents;

 // Other details omitted.

 // Constructor.

 public Student(...) {

 // Details omitted.

 // Automatically increment the student count every time we

 // instantiate a new Student.

 totalStudents++;

 }

Chapter 7 Some Final objeCt ConCeptS

430

 // The following three methods are now static methods; note,

however, that

 // the method BODIES are UNCHANGED from when these were nonstatic

methods.

 public static int getTotalStudents() {

 return totalStudents;

 }

 public static void setTotalStudents(int x) {

 totalStudents = x;

 }

 public static int reportTotalEnrollment() {

 System.out.println("Total Enrollment: " + getTotalStudents());

 }

 // etc.

}

Static methods can either be invoked on a class as a whole

Student.reportTotalEnrollment();

or on an object belonging to the class for which it is defined

s.reportTotalEnrollment();

and the effect will be the same.

 Restrictions on Static Methods
Note that there is an important restriction on static methods: such methods are not

permitted to access nonstatic features of the class to which the methods belong. Before

we discuss the rationale for this, let’s consider a specific example.

If we were to attempt to write a static print method for our Student class that in turn

accessed the nonstatic getName method of Student, the compiler would prevent us from

doing so. Here’s the proposed code:

Chapter 7 Some Final objeCt ConCeptS

431

public class Student {

 // Two variables -- one nonstatic, one static.

 private String name;

 private static int totalStudents;

 // etc.

 // We declare accessor methods for both variables:

 // STATIC get/set methods for STATIC variable "totalStudents" ...

 public static int getTotalStudents() { … }

 public static void setTotalStudents(int x) { … }

 // ... and NONstatic get/set methods for NONstatic attribute "name".

 public String getName() { … }

 public void setName(String n) { … }

 // Another static method.

 public static void print() {

 // A static method may NOT access NONstatic features

 // such as "getName()" -- the following line won't compile.

 System.out.println(getName() + " is one of " + getTotalStudents() +

 "students.");

 }

}

The compiler would generate the following error message regarding the println

statement in the static print method:

non-static method getName() cannot be referenced from a static context

Why is this? As we discussed in Chapter 3, classes are empty templates as far as

attributes are concerned; it’s not until we instantiate an object that its attribute values

get filled in. If a static method is invoked on a class as a whole and that method is in turn

to try to access the value of an attribute, the value of that attribute would be undefined

for the class, as illustrated conceptually in Figure 7-9. Since our static print method

invokes the nonstatic getName method, which in turn accesses the (nonstatic) variable

name, we’re precluded from calling the getName method from print.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_3

432

Figure 7-9. Nonstatic attribute values are undefined in the context of a class

Another restriction on static methods is that they may not be declared to be

abstract:

public class Student {

 // This won't compile.

 public abstract static void incrementEnrollment();

}

The following compiler error would result:

illegal combination of modifiers: abstract and static

 Utility Classes
We can take advantage of static features to design utility classes, which are classes that

provide convenient ways of performing frequently used behaviors without having to

instantiate an object to perform such behaviors. Such classes are often comprised wholly

of static methods and public static variables.

The Java language includes several predefined utility classes. One example of such a

class is the Math class of the java.lang package. The Math class declares a variety of static

methods to compute trigonometric, exponential, logarithmic, and power functions; to

Chapter 7 Some Final objeCt ConCeptS

433

round numeric values; and to generate random numbers. We saw the use of one such

static method—Math.sqrt()—in an example in Chapter 6:

 squareRoot[i] = Math.sqrt(i);

The mathematical constant π is declared as a public static attribute of the Math

class named Math.PI and can be accessed from client code as follows:

// Compute the area of a circle.

double area = Math.PI * radius * radius;

In order to prevent client code from modifying the values of such “constants”

Math.PI = 0.0; // Whoops! This isn't good!

utility classes make use of final variables, as discussed in the following section.

Chapter 6 mentioned that the java language provides a different class to serve
as a “wrapper” for each of the eight distinct primitive types: Integer, Float,
Double, Byte, Short, Long, Boolean, and Character. We’ll talk about their
roles as utility classes in Chapter 13.

 The final Keyword
The Java final keyword can be applied to variables, methods, and classes as a whole. A

final variable is a variable that can be assigned a value only once in a program; after that

first assignment, the variable’s value cannot be changed. We declare such a variable by

placing the final keyword just before the type of the variable, as follows:

public class Example {

 // A static variable can be declared to be final ...

 public static final Student x;

 // ... as can a (nonstatic) attribute.

 private final int y;

 public void someMethod() {

 // Even a local variable may be declared to be final.

 final int z;

 // etc.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6
https://doi.org/10.1007/978-1-4842-9060-6_6
https://doi.org/10.1007/978-1-4842-9060-6_13

434

Whereas a local final variable can be assigned a value separately from its

declaration, we cannot do so for other final variables; that is, in the following expanded

example, we’ll get compilation errors on the lines so marked:

public class Example {

 // A static variable can be declared to be final ...

 public static final Student x;

 // ... as can a (nonstatic) attribute.

 private final int y;

 public void someMethod() {

 // Even a local variable may be declared to be final.

 final int z;

 // However, whereas we ARE permitted to assign a local

 // final variable a value in a method separately from its

 // declaration ...

 z = 3;

 // .. we CANNOT do so for final static variables or for attributes.

 x = new Student(); // Compilation error!

 y = 2; // Compilation error!

 }

 // etc.

The compiler will generate the following error messages:

cannot assign a value to final variable x

x = 1;

^

cannot assign a value to final variable y

y = 2;

^

Chapter 7 Some Final objeCt ConCeptS

435

To avoid such a problem, we must assign values to class and instance final variables

at the time that we declare them:

public class Example {

 // Assign values to static final variables/final attributes at the

 // same time that we declare them.

 public static final int x = 1;

 private final int y = 2;

 // etc.

Going back to our Math class example, we can now see that if Math.PI is declared

to be a final static variable, client code will be prohibited from modifying its value, as it

should be.

As another example, recall from our discussion of arrays in Chapter 6 that arrays

have a public length attribute whose value represents the capacity of the array:

int[] x = new int[9];

for (int i = 0; i < x.length; i++) { … }

As it turns out, the length attribute is declared to be final so that we are prevented

from changing its value programmatically. Continuing the preceding example, the

following won’t compile:

// Let's try to enlarge the array!

x.length = 12; // this won't compile

The compilation error that is produced is as follows:

cannot assign value to final variable length

x.length = 12;

 ^

 Public Static Final Variables and Interfaces

As stated earlier in the chapter, interfaces are not permitted to declare variables, but for

one exception: as it turns out, interfaces are allowed to declare public static final

variables to serve as global constants—that is, constant values that are in scope and

hence accessible throughout an entire application.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_6

436

Let’s say, for example, that when a university administrator hires a new professor,

they must designate whether the professor is going to be working full-time or part-

time. If we wish, we can declare public static final variables of the Administrator

interface to symbolically represent these two values, as shown in the following code, to

be passed in as argument values to the hireProfessor method:

public interface Administrator {

 // Defining symbolic values to use as argument values for the second

parameter of

 // the hireProfessor method.

 public static final int FULL_TIME = 1;

 public static final int PART_TIME = 2;

 // Valid values for workStatus are FULL_TIME (1) or PART_TIME (2).

 public boolean hireProfessor(Professor p, int workStatus);

 // Other method headers declared; details omitted.

}

This enables client code to take advantage of such values when invoking the

hireProfessor method, as follows:

// Client code.

Administrator pAdmin = new Professor();

Professor p = new Professor();

// Hire p as a full-time faculty member.

pAdmin.hireProfessor(p, Administrator.FULL_TIME);

The naming convention for a public static final variable of either a class or

an interface is rather unusual: we traditionally use all uppercase characters to name

them and hence use underscore characters (_) to visually separate words in multiword

names—for example, FULL_TIME and PART_TIME. This explains why the Math class’s

public static final PI attribute is written in all uppercase—Math.PI vs. Math.pi, for

example.

in Chapter 13, you’ll learn about enum(eration)s, a language feature that provides
a more elegant way to accomplish the same purpose.

Chapter 7 Some Final objeCt ConCeptS

https://doi.org/10.1007/978-1-4842-9060-6_13

437

As mentioned earlier, the final keyword may also be applied to methods and to

classes as a whole:

• A method declared to be final cannot be overridden in a subclass:

public class Person {

 // Details omitted.

 public final int computeAge() { ... }

 // etc.

}

• A class declared to be final cannot be subclassed:

// No subclasses may be derived from this class.

public final class PhDStudent extends GraduateStudent { ... }

numerous predefined java classes are declared to be final. one such example is
the java.lang.String class.

 Custom Utility Classes
We can take advantage of the same techniques used to create predefined Java utility

classes like the Math class to create our own custom utility classes. For example, suppose

that we are going to have a frequent need to do temperature conversions from degrees

Fahrenheit to degrees Centigrade and vice versa. We could invent a utility class called

Temperature as follows:

// A utility class to provide F=>C and C=>F conversions.

public class Temperature {

 public static double FahrenheitToCentigrade(double tempF) {

 return (tempF - 32.0) * (5.0/9.0);

 }

 public static double CentigradeToFahrenheit(double tempC) {

 return tempC * (9.0/5.0) + 32.0;

 }

}

Chapter 7 Some Final objeCt ConCeptS

438

Then, to use this class, we’d simply write client code as follows:

double degreesF = 212.0;

double degreesC = Temperature.FahrenheitToCentigrade(degreesF);

System.out.println("A temperature of " + degreesF + " degrees F = " +

 degreesC + "degrees C");

This would give us the following output:

A temperature of 212.0 degrees F = 100.0 degrees C

We might even wish to include some commonly used constants—say, the boiling

and freezing points of water in both F and C terms—as public static final variables

in our utility class:

// A utility class to provide F=>C and C=>F conversions.

public class Temperature {

 // We've added some public static final variables.

 public static final double FAHRENHEIT_FREEZING = 32.0;

 public static final double CENTIGRADE_FREEZING = 0.0;

 public static final double FAHRENHEIT_BOILING = 212.0;

 public static final double CENTIGRADE_BOILING = 100.0;

 public static double FahrenheitToCentigrade(double tempF) {

 // We can utilize our new attributes in our method code.

 return (tempF - FAHRENHEIT_FREEZING) * (5.0/9.0);

 }

 public static double CentigradeToFahrenheit(double tempC) {

 // Ditto.

 return tempC * (9.0/5.0) + FAHRENHEIT_FREEZING;

 }

}

Chapter 7 Some Final objeCt ConCeptS

439

We could then take advantage of these constants in our client code, as well:

Soup s = new Soup("chicken noodle");

// Bring the soup to a boil.

if (s.getTemperature() < Temperature.FAHRENHEIT_BOILING) {

 s.cook();

}

Because all of the features of the Temperature class are static, we need never

instantiate a Temperature object in our application.

 Summary
Congratulations! You’ve made it through all of the major object technology concepts that

you’ll need to know for the rest of the book, and you’ve learned a great deal of Java syntax

in the process. Please make sure that you’re comfortable with these concepts before

proceeding, as they form the foundation for the rest of your object learning experience:

• These same concepts will be reinforced when you learn how to model

a problem in Part 2.

• They will be reinforced yet again when you learn how to render a

model as Java code in Part 3.

In this chapter, you’ve learned that

• Different objects can respond to the same exact message in different

class-specific ways, thanks to an OO language feature known as

polymorphism.

• Abstract classes are useful if you want to prescribe common

behaviors among a group of (derived) classes without having to go

into details about how those behaviors should be performed. That

is, you specify what services an object must be able to perform—the

messages that an object must be able to respond to, as defined by

method headers—without programming method bodies.

Chapter 7 Some Final objeCt ConCeptS

440

• Interfaces are an even more abstract way to prescribe behaviors in

that they may only declare abstract methods (and constants).

• By implementing multiple interfaces, a class of objects may take on

multiple roles in an application.

• Using interface types when declaring attributes, method return types,

and parameters to methods makes user-defined classes much more

versatile and robust to requirements changes.

• Static variables may be used to enable an entire class of objects to

share data and can be manipulated on a class vs. on specific objects/

instances of that class via static methods.

• We can take advantage of static methods along with public static final

variables to create custom utility classes.

Reflecting back on the home construction example from the Introduction to this

book, you now know all about the unique properties of “blue stars” (objects) and why

they are superior construction materials. But you still need to learn how to lay out a

blueprint for how to use them effectively in building an application—you’ll learn how to

do so in Part 2.

EXERCISES

 1. test yourself. run through the following list of oo terms—some formal, some

informal—and see if you can define each in your own words without referring

back to the text:

Chapter 7 Some Final objeCt ConCeptS

441

abstract class

abstract method

abstraction

accessor method

aggregation

ancestor class

attribute signature

association

attribute

behavioral relationship

binary association

Class

Class hierarchy

Classification

Client code

Collection

Collections framework

Composite class

Concrete class

Constructor

Delegation

Dictionary (type of collection)

encapsulation

Final variable

Generalization

“Get” method

handle

implemented method

information hiding

inheritance

instance

instantiation

interface

local variable

link

message

method

method header

method signature

modeling

multiple inheritance

multiplicity

object (in the software sense)

operation

ordered list

overloading

overriding

polymorphism

predefined type

primitive type

private accessibility

protected accessibility

public accessibility

reference type

reference variable

root (of a class hierarchy)

Service

Set (type of collection)

“Set” method

Sibling class

Specialization

State (of an object)

Static attribute

Static method

Static variable

Subclass

Superclass

User-defined type

 2. Which attributes, belonging to which SrS classes, might be well suited to being

declared as static?

 3. Which attributes, belonging to which prescription tracking System classes (as

described in the appendix), might be well suited to being declared as static?

 4. it has been argued that the ability to implement multiple interfaces in the java

language eliminates the need for multiple inheritance support. Do you agree or

disagree? Why or why not? Can you think of any ways in which implementing

multiple interfaces “falls short” as compared with true multiple inheritance?

Chapter 7 Some Final objeCt ConCeptS

442

 5. the following client code scenarios would cause compilation errors. Can you

explain why this is so in each case? try answering this question without
compiling the code. be as precise as possible as to the reasons—they may not

be as obvious as first meets the eye!

assume that Professor and Student are both classes that implement the Teacher

interface.

Scenario #1:

Professor p;

Student s = new Student();

Teacher t;

t = s;

p = t;

Scenario #2:

Professor p = new Professor();

Student s;

Teacher t = new Student();

s = t;

 6. [Coding] test your answers to exercise 5 by coding simple versions of the

Professor, Student, and Teacher types plus a main class/method to house

your client code.

Chapter 7 Some Final objeCt ConCeptS

445

CHAPTER 8

The Object Modeling
Process in a Nutshell
Let’s look in on the home builder whom we met in the Introduction to this book. They’ve

just returned from a seminar entitled “Blue Stars: A Builder’s Dream Come True.” They

now know about the unique properties of blue stars, and they appreciate why they are

superior construction materials—just as you’ve learned about the unique properties of

software objects as application “construction materials.” But they are still inexperienced

with actually using blue stars in a construction project; in particular, they don’t yet

know how to develop a blueprint suitable for a home that is to be built from blue stars.

And we still need to see how to develop a “blueprint” for a software system that is to be

constructed from objects. This is the focus of Part 2 of this book.

In this chapter, you’ll learn

• The goals and philosophy behind object modeling

• How much flexibility we have in terms of selecting or devising a

modeling methodology

• The pros and cons of object modeling software tools

 The “Big Picture” Goal of Object Modeling
Our goal in object modeling is to render a precise, concise, understandable object-

oriented model, or “blueprint,” of the system to be automated. This model will serve as

an important tool for communication:

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_8

https://doi.org/10.1007/978-1-4842-9060-6_8#DOI

446

• To the future users of the system that we are about to build, an
object model communicates our understanding of the system
requirements. Having the users review and approve the model

will ensure that we get off on the right foot with a project, for a

mistake in judgment at the requirements analysis stage can prove

much more costly to fix—by orders of magnitude—than if such a

misunderstanding is found and corrected when the system is still just

a “gleam in the user’s eye.”

• To the software development team, an object model communicates
the structure and function of the software that needs to be built
in order to satisfy those requirements. This benefits not only the

software engineers themselves but also the folks who are responsible

for quality assurance, testing, and documentation.

• Long after the application is operational, an object model lives on

as a “schematic diagram” to help the myriad folks responsible for
supporting and maintaining an application to understand its
structure and function.

Of course, this last point is true only if the object model accurately reflects the
system as it was actually built, not just as it was originally conceived. The design
of complex systems invariably changes during their construction, so care should be
taken to keep the object model up to date as the system is built.

 Modeling Methodology = Process + Notation + Tool
According to Webster’s Dictionary, a methodology is

A set of systematic procedures used by a discipline [to achieve a particular desired

outcome].

A modeling methodology, OO or otherwise, ideally involves three components:

• A process: The “how to” steps for gathering the requirements and

determining the abstraction to be modeled

• A notation: A graphical “language” for communicating the model

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

447

• A tool: An automated way of rendering the notation, typically in

“drag-and-drop” fashion

Although these constitute the ideal components of a modeling methodology, they

are not all of equal importance:

• Adhering to a sound process is certainly critical.

• However, we can sometimes get by with a narrative text description

of an abstraction without having to resort to portraying it with formal

graphical notation.

• And, when we do choose to depict an abstraction formally via a

graphical notation, it isn’t mandatory that we use a specialized tool

for doing so.

In other words, following an organized process is the most critical aspect of object

modeling; using a particular notation is important, but less so; and our choice of a

particular tool for rendering the model is the least important aspect of the three (see

Figure 8-1).

Figure 8-1. Of the three aspects of a methodology, a sound process is by far the
most important

Many important contributions in the form of new processes, notations, and tools

have been made in the OO methodology arena over the years by numerous well-known

methodologists. In some sense, if you’re just getting into objects for the first time now,

you’re fortunate, because you managed to avoid the “methodology wars” that raged for

many years as methodologists and their followers argued about what were in some cases

esoteric details.

Here is a partial list of contributions made in the object methodology arena over the

past few decades; the list is in no particular order:

• James Rumbaugh et al.: The Object Modeling Technique (OMT)

• Grady Booch: The Booch Method

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

448

• Sally Shlaer and Stephen Mellor: Emphasis on state diagrams

• Rebecca Wirfs-Brock et al.: Responsibility-driven design, Class-

Responsibilities- Collaborators (CRC) cards

• Bertrand Meyer: The Eiffel programming language, the notion of

programming by contract

• James Martin and James Odell: Retooling of their functional

decomposition methodologies for use with OO systems

• Peter Coad and Edward Yourdon: As in the preceding entry

• Ivar Jacobson: Use cases as a means of formalizing requirements

• Derek Coleman et al. (HP): The Fusion Method

• Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(the “Gang of Four”): Design pattern reuse

In recent years, there was a major push in the industry to meld the best ideas of

competing methodologies into a single approach, with particular emphasis placed on

coming up with a universal modeling notation. The resultant notation, known as the

Unified Modeling Language (UML), represents the collaborative efforts of three of

the leaders in the OO methodology field—James Rumbaugh, Grady Booch, and Ivar

Jacobson—and has become the industry-standard object modeling notation. (You’ll

learn the basics of UML in Chapters 10 and 11.)

Along with UML, these three gentlemen—known affectionately in the industry

as the “Three Amigos”—have also contributed heavily to the evolution of an overall

methodology known as the Rational Unified Process (RUP), a full-blown software

development methodology encompassing modeling, project management, and

configuration management workflows. But I’m not going to dwell on the details of this

particular methodology in this book, because it isn’t my intention to teach you any one

specific methodology in great detail. By learning a sound, generic process for object

modeling, you’ll be armed with the knowledge you need to read about, evaluate, and

select a specific methodology such as RUP or to craft your own hybrid approach by

mixing and matching the processes, notations, and tool(s) from various methodologies

that make the most sense for your organization.

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11

449

As for modeling tools, you don’t need one, strictly speaking, to appreciate the

material presented in this book. But I’ve anticipated that you’ll likely want to get your

“hands dirty” with a modeling tool. Because of this, I include a general discussion of

modeling tool pros and cons a bit later in this chapter.

It’s important to keep in mind that a methodology is but a means to an end, and it’s

the end—a usable, flexible, maintainable, reliable, and functionally correct software

system, along with thorough, clear supporting documentation—that we care most about

when all is said and done.

To help illustrate this point, let’s use a simple analogy. Say that our goal is to cheer

people up. We decide to hand-draw (process) a smiley face (an abstraction of the

desired behavior, rendered with a graphical notation) with a pencil (tool), as shown in

Figure 8-2.

Figure 8-2. A methodology encompasses process, notation, and tools

After we’re done, we put our paintbrush away, hang our smiley face picture on the

wall, and go about our business. A few days go by, and we note that people are indeed

cheered up by our picture, and so our original goal has been achieved. In hindsight, we

could have accomplished this same goal using

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

450

• A variety of “processes”—hand drawing, rubber stamping, cutting

pictures from a magazine

• A variety of “notations”—the graphical notation of a smiley face or a

cartoon or the narrative text of a joke or sign

• A variety of “tools”—a pen, a pencil, a paintbrush, a crayon

Now, back to our homebuilding analogy. Long after the architect and construction

crew have left a building site, taking their equipment and tools with them, the house that

they have built will remain standing as a testimonial to the quality of the materials they

used, how sound a construction approach they employed, and how elegant a blueprint

they had to start with. The blueprint will come in handy later on when the time comes to

remodel or maintain the home, so we certainly won’t throw it away; but the “livability”

and ease/affordability of maintaining the home will be the primary measure of success.

The same is true for software development: the real legacy of a software development

project is the resultant software system, which is, after all, the reason for using a methodology

to produce a model in the first place. We must take care to avoid getting so caught up in

debating the relative merits of one methodology vs. another that we fail to produce useful

software. As you can see in Figure 8-3, there are many paths to the same destination.

Figure 8-3. Many different approaches can serve us well when building software

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

451

 My Recommended Object Modeling Process,
in a Nutshell
I present here a basic preview of the modeling process that I advocate and that I’m going

to illustrate in depth throughout the remainder of Part 2 of the book:

• Begin by obtaining or writing a narrative problem statement,

similar to the Student Registration System (SRS) problem statement

presented at the beginning of the book or the alternative case study

problem statements included as the Appendix. Think about the

different categories of users that will be interacting with the system,

and the various situations in which they’ll each use it, to make sure

that you uncover any not-so-obvious requirements that may have

been missed. (I’ll discuss a formal technique for doing this—known

as use case modeling—in Chapter 9.)

• Handle the data side of the application by identifying the different

classes of “real-world” objects that your application will need to be

concerned with, and determine how these interrelate. (I’ll illustrate

the process of creating a formal class diagram in Chapter 10.)

• Handle the functional side of the application by studying how objects

need to collaborate to accomplish the system’s mission, determining

what behaviors/responsibilities will be required of each class. (I’ll

illustrate the process of modeling the behavioral aspects of an OO

system in Chapter 11.)

• Test the model to ensure that it does indeed meet all of the original

requirements. (I’ll discuss testing models in Chapter 12.)

You’ll see plenty of examples of each of these techniques in the chapters to follow,

and you’ll get an opportunity to practice these techniques based on the exercises

suggested at the end of each chapter. Armed with a solid model of the SRS, you’ll then be

ready to render the model into Java code, which is the subject of Part 3 of the book.

Note that these process steps need not be performed in strictly sequential fashion.

In fact, as you become comfortable with each of the steps, you may find yourself

carrying some of them out in parallel or in shuffled order. For example, contemplating

the behavioral aspects of a model may bring to light new data requirements. In fact, for

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

https://doi.org/10.1007/978-1-4842-9060-6_9
https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11
https://doi.org/10.1007/978-1-4842-9060-6_12

452

all but the most trivial models, it’s commonplace to cycle through these steps multiple

times, “dialing in” increased levels of understanding, hence more detail in the model

and supporting documentation, with each iteration.

It’s also important to note that the formality of the process should be adjusted to the

size of the project team and the complexity of the requirements. If we separate the form

of using a methodology from the substance of what that methodology produces in the

way of artifacts—models, documentation, code, and so on—then a good rule of thumb

is that a project team should spend no more than 10–20 percent of its time on form and

80–90 percent on substance. If the team finds itself spending so much time on form that

little or no progress is being made on substance, it’s time to re-evaluate the methodology

and its various components, to see where simplifying adjustments or improvements to

efficiency may be made.

 Thoughts Regarding Object Modeling Software Tools
It’s worthwhile to spend a little bit of time talking about the pros and cons of using

an object modeling software tool. For purposes of learning how to produce models, a

generic drawing tool such as PowerPoint may be good enough; for that matter, you may

simply want to sketch your models using paper and pencil. But getting some hands-on

experience with using a tool specifically designed for object modeling will better prepare

you for your first “industrial-strength” project, so you may wish to acquire one before

embarking upon the next chapter.

You can find information about various object modeling software tools, including

links to free or evaluation copies of software, by conducting an Internet search for “object

modeling tools” or “UML tools.”

i make it a practice not to mention specific tools, vendors, versions, etc. in this
book, as they change much too rapidly. as soon as a software product is mentioned
in print, it’s virtually guaranteed that it will either change names, change vendors
who market it, or disappear completely.

Object modeling tools fall under the general heading of Computer-Aided Software
Engineering, or CASE, tools. CASE tools afford us many advantages, but aren’t without

their drawbacks.

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

453

 Advantages of Using CASE Tools

There are many arguments in favor of using CASE tools; several of the more compelling

are as follows.

Ease of Use

CASE tools provide a quick drag-and-drop way to create visual models. Rather than

trying to render a given notation with a generic drawing tool, where your basic drawing

components are simple lines, arrows, text, boxes, and other geometric shapes, CASE

tools provide one or more palettes of prefabricated graphical components specific to the

supported notation. For example, you can drag and drop the graphical representation

for a class rather than having to painstakingly fabricate it from simpler drawing

components.

Added Information Content

CASE tools produce “intelligent” drawings that enforce the syntax rules of a particular

notation. This is in contrast to a generic drawing package, which will pretty much let you

draw whatever you like, whether it adheres to the notational syntax or not.

The controls imposed by a CASE tool can be a mixed blessing: on the plus side, they

will prevent you from making syntactic errors, but as I discuss a little later, they may also

prevent you from making desired adjustments to the notation.

Also, information about the classes reflected in a diagram—their names, attributes,

methods, and relationships—is typically stored in a repository that underlies the

diagram. Most CASE tools provide documentation generation features based upon this

repository, enabling you to automatically generate project documentation such as a data

dictionary report, a type of report that I’ll discuss in Chapter 10. Some tools even allow

you to tap into this repository programmatically, should you find a need to do so.

Automated Code Generation

Most CASE tools provide code generation capabilities, enabling you to transition from a

diagram to skeletal Java (or other language) code with the push of a button. You may or

may not wish to avail yourself of this feature, however, for the following reasons:

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

https://doi.org/10.1007/978-1-4842-9060-6_10

454

• Depending on how much control the CASE tool gives you as to the

structure that the generated code takes, the code that is generated

will potentially not meet team/corporate standards.

• With most tools, you’re unable to edit the generated code externally

to the tool, because the tool will then be “unaware” of the changes

that you’ve made, meaning that the next time the code is generated,

your changes will be overwritten and obliterated.

• This has implications for reusing code from other projects, as well:

make sure that your tool of choice allows you to import and introduce

software components that didn’t originate within the tool.

It’s sometimes better in the end to write your code from scratch, for even though

it may take a bit longer at the outset, it often is much easier to manage such code over

the lifetime of the project, and you avoid become “enslaved” to a particular modeling

tool for ongoing code maintenance. In the worst-case scenario, the tool vendor goes out

of business, and you’re left with an unsupported product and perhaps unsupportable

project.

Project Management Aids

Many CASE tools provide some sort of version control, enabling you to maintain

different generations of the same model. If you make a change to your model, but then

after reviewing the change with your users decide that you’d prefer to return to the way

things were previously, it’s trivial to do if version control is in place.

CASE tools also often provide configuration management/team collaboration

capabilities, to enable a group of modelers to easily share in the creation of a

single model.

 Some Drawbacks of Using CASE Tools

CASE tools aren’t without their drawbacks, however:

• CASE tools can be expensive. It’s not unusual for a high-end CASE

tool to cost hundreds or even thousands of dollars per “seat.” The

good news is that, in recent years, many shareware/free UML

modeling tools have become available, as mentioned earlier in this

chapter.

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

455

• CASE tools can sometimes be inflexible. I talk about adapting

processes, notations, and tools to suit your own needs throughout

Part 2 of the book, but tools don’t always cooperate. I’ll point out in

upcoming chapters some specific examples of situations where you

might want to bend the notation a little bit, if your CASE tool will

accommodate it.

• You run the risk of getting “locked into” a particular vendor’s
product if the CASE tool in question can’t export your model in a

vendor-neutral fashion (e.g., as XML).

• It’s easy to get caught up with form over substance! This is true of

any automated tool—even a word processor tends to lure people

into spending more time on the cosmetics of a document than is

warranted, long after the substantive content is rock solid.

Generally speaking, however, the pros of using an OO CASE tool significantly

outweigh the cons—consider the cons as “words to the wise” on how to successfully

apply such a tool to your modeling efforts.

 A Reminder
Although I’ve said it several times already in this book, it’s important to remind you

that the process of object modeling is language neutral. I presented Java syntax in Part

1 of the book because the ultimate goal is to make you comfortable with both object

modeling and Java programming. In Part 2 of the book, however, we’re going to drift

away from Java, because we truly are at a point where the concepts you’ll be learning

are just as applicable to Java as they are to Python or C# any other OO programming

language. But never fear—we’ll return to Java “big time” in Part 3.

 Summary
By far, the most important lesson to take away from this chapter is the following:

Don’t get caught up in form over substance!
The model that you produce is only a means to an end… and the process, notation,

and tools that you use to produce the model are but a means to the means to this end.

If you get too hung up on which notation to use or which process to use or which tool

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

456

to use, you may wind up spinning your wheels in “analysis paralysis.” Don’t lose sight

of your ultimate goal: to build usable, flexible, maintainable, reliable, functionally
correct software systems.

EXERCISES

 1. briefly describe the methodology—process, notation, and tool(s)—that

you used on a recent software development project. What aspects of this

methodology worked well for you and your teammates, and what, in hindsight,

do you think could have been approached more effectively?

 2. research one of the object modeling technologies/techniques mentioned in

the “Modeling Methodology = process + notation + Tool” section earlier in this

chapter, and report briefly on the process, notation, and tools involved.

ChapTer 8 The ObjeCT MOdeling prOCess in a nuTshell

457

CHAPTER 9

Formalizing Requirements
Through Use Cases
When you get ready to leave on a vacation, you may run through a mental or written

checklist to make sure that you’ve properly prepared for your departure. Did you pack

everything you need to take? Did you pack too much? Did you arrange to have the

appropriate services (newspaper, mail delivery, etc.) stopped? Did you arrange for

someone to water the plants and feed your pet rat? Once you depart on your trip, you

want to enjoy yourself and know that when you arrive home again, you won’t find any

disasters waiting for you.

This isn’t unlike a software development project: we need to organize a checklist of

the things that must be provided for by the system before we embark on its development,

so that the project runs smoothly and so that we don’t create a disaster (in the form of

unmet requirements and dissatisfied customers/users) when the system is delivered.

The art and science of requirements analysis—for it truly is both!—is so extensive a

topic that an entire book could be devoted to this subject alone. There is one technique in

particular for discovering and rounding out requirements known as use case modeling,

which is a cornerstone of the Rational Unified Process (RUP) and which warrants your

consideration. Use cases aren’t strictly an artifact of OO methodologies; they can be

prepared for any software system, regardless of the development methodology to be used.

However, they made their debut within the software development community in the

context of object systems and have gained widespread popularity in that context.

In this chapter, you’ll learn

• How we must anticipate all of the different roles that users will play

when interacting with our future system

• That we must assume each of the users’ viewpoints in describing the

services that a software application as a whole is to provide

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_9

https://doi.org/10.1007/978-1-4842-9060-6_9#DOI

458

• How to prepare use cases as a means of documenting all of the users’

collective requirements

I’ll also give you enough general background about requirements analysis to provide

an appropriate context for use case modeling.

 What Are Use Cases?
In determining what the desired functionality of a system is to be, we must seek answers

to the following questions:

• Who (in terms of categories of user) will want to use our system?

• What services will the system need to provide in order to be of value

to each category of user?

• When users interact with the system for a particular purpose, what is

their expectation as to the desired outcome?

Use cases are a natural way to express the answers to these questions. Each use case

is a simple statement, narrative or graphical in fashion, that describes a particular goal

or outcome of the system and who expects that outcome. For example, one goal of the

SRS is to “enable a student user to register for a course,” and thus we’ve just expressed

our first use case! (Yes, use cases really are that straightforward. In fact, we need for them

to be that straightforward, so that they are understandable by the users/sponsors of the

system, as we’ll discuss further in a moment.)

 Functional vs. Technical Requirements
The purpose of thinking through all of the use cases for a system is to explore the

system’s functional requirements thoroughly, so as to make sure that a particular

category of user, or potential purpose for the system, isn’t overlooked. We differentiate

between functional requirements and technical requirements as follows.

Functional requirements are those aspects of a system that have to do with how it

is to operate or function from the perspective of someone using the system. Functional

requirements may in turn be subdivided into

Chapter 9 Formalizing requirements through use Cases

459

• “Goal-oriented” functional requirements: These provide

a statement of a system’s purpose without regard to how the

requirement will “play out” from the user’s vantage point—for

example, “The system must be able to produce tailorable reports.”

Avoid discussing implementation details when specifying goal-

oriented requirements.

• “Look and feel” requirements: These requirements get a bit more

specific in terms of what the user expects the system to look like

externally (e.g., how the GUI will be presented) and how the user

expects it to behave, again from the user’s perspective. For example,

we might have as a requirement “The user will click a button on

the main GUI, and a confirmation message will appear… ” A good

practice is to write a concept of operations document to serve as a

“paper prototype” describing how you envision the future system will

look and behave, to stimulate discussion with intended users of the

as-yet-to-be-built system before you even begin modeling.

We emphasize goal-oriented functional requirements when preparing use cases.
Technical requirements, on the other hand, have more to do with how a system

is to be built internally in order to meet the functional requirements; for instance,

“The system will use the TCP/IP protocol… ” or “We will use a dictionary collection

as the means for tracking students… ” We can think of these as requirements for how

programmers should tackle the solution, in contrast to functional requirements, which

are a statement of what the problem to be tackled actually is.

Technical requirements such as these don’t play a role in use case analysis.

Although it’s certainly conceivable that the users of our system may be technically

sophisticated, it’s best to express functional requirements in such a way that even a user

who knows nothing about the inner workings of a computer will understand them. This

helps ensure that technical requirements don’t creep into the functional requirements

statement, a common mistake made by many inexperienced software developers. When

we allow technical requirements to color the functional requirements, they artificially

constrain the solution to a problem too early in the development life cycle.

Chapter 9 Formalizing requirements through use Cases

460

 Involving the Users
Because the intended users of a system are the ultimate experts in what they need the

system to do, it’s essential that they be involved in the use case definition process. If the

intended users haven’t (as individuals) been specifically defined or recruited (as with a

software product that is to be sold commercially), their anticipated needs nonetheless

need to be taken into account by identifying people with comparable experience to serve

as “user surrogates.” Ideally, the users or user surrogates will write some or all of the use

cases themselves; at a minimum, you’ll interview such people, write the use cases on

their behalf, and then get their confirmation that what you’ve written is indeed accurate.

Use cases are one of the first deliverables/artifacts to emerge in a software

development project’s life cycle, but also one of the last things to be put to good use in

making sure that the system is a success.

They turn out to be quite useful as a basis for writing testing scripts, to ensure that all

functional threads are exercised during system and user acceptance testing.

They also lend themselves to the preparation of a requirements traceability
matrix—that is, a final checklist against which the users can verify that all of their initial

requirements have indeed been met when the system is delivered.

Returning to the questions posed at the outset of this section, let’s answer the first

question—namely, “Who (what categories of user) will want to use our system?”—which

in use case nomenclature is known as identifying actors.

 Actors
Actors represent anybody or anything that will interact with the system after it’s built;

actors drive use cases. Actors generally fall into two broad categories:

• Human users

• Other computer systems

“Interaction” is generally defined to mean using the system to achieve some result,

but can also be thought of as simply (a) providing/contributing information to the

system and/or (b) receiving/consuming information from the system.

By providing information, I mean whether or not the actor inputs substantive

information that adds to the collective data stored by the system—for example, a

department chairperson defining a new course offering or a student registering their

Chapter 9 Formalizing requirements through use Cases

461

plan of study. This doesn’t include the relatively trivial information that users have to

provide to look things up—for example, typing in a student ID to request their transcript.

By consuming information, I mean whether or not the actor uses the system to

obtain information—for example, a faculty user printing out a student roster for a course

that they will be teaching or a student viewing their course schedule online.

 Identifying Actors and Determining Their Roles
We must create an actor for every different role that will be assumed by various

categories of user relative to the system. To identify such roles, we typically turn first

to the narrative requirements specification, if one exists—that is, a statement of the

functional requirements, such as the Student Registration System specification. The only

category of user explicitly mentioned by that specification is a student user. So we would

definitely consider Student to be one of the actor types for the SRS.

If we think beyond the specification, however, it isn’t difficult to come up with other

potential categories of user who might also benefit from using the SRS:

• Faculty may wish to get a headcount of how many students are

registered for one of the upcoming classes that they are going to be

teaching, or they may use the system to post final grades, which in

turn are reflected by a student’s transcript.

• Department chairs may wish to see how popular various courses are

or, conversely, whether or not a course ought to be canceled due to

lack of interest on the part of the student body.

• Personnel in the registrar’s office may wish to use the SRS to verify

that a particular student is projected to have met the requirements to

graduate in a given semester.

• Alumni may wish to use the SRS to request copies of their transcripts.

• Prospective students—that is, those who are thinking about applying

for admission but who haven’t yet done so—may wish to browse the

courses that are going to be offered in an upcoming semester to help

them determine whether or not the university has a curriculum that

meets their interests.

• And so on.

Chapter 9 Formalizing requirements through use Cases

462

Similarly, since I said that other computer systems can be actors, we might have

to build interfaces between the SRS and other existing automated systems at the

university, such as

• The Billing System, so that students can be billed accurately based on

their current course load

• The Classroom Scheduling System, to ensure that classes to be taught

are assigned to rooms of adequate capacity based on the student

headcount

• The Admissions System, so that the SRS can be notified when a new

student has been admitted and is eligible to register for courses

Of course, we have to make a decision early on as to what the scope of the system

we’re going to build should be, to avoid “requirements inflation” or “scope creep.” To

try and accommodate all of the actors hypothesized earlier would result in a massive

undertaking that may simply be too costly for the sponsors of the system. For example,

does it make sense to provide for potential students to use the SRS to preview what the

university offers in the way of courses, or is there a different system—say, an online course

catalog of some sort—that is better suited to this purpose? Through in- depth interviews

with all of the intended user groups, the scope of the system can be appropriately

bounded, and some of the actors that we conceived of may be eliminated as a result.

In our particular case, we’ll assume that the sponsors of the SRS have decided that

we needn’t accommodate the needs of alumni or prospective students in building the

system—that is, that we needn’t recognize alumni or prospective students as actors.

A key point here is that the sponsors decide such things, not the programmers! One

responsibility of a software engineer is indeed to identify requirements, and certainly

part of that responsibility may include suggesting functional enhancements that the

software engineer feels will be of benefit to the user. But the sponsors of the system

rightfully have the final say in what actually gets built.

many software engineers get into trouble because they assume that they “know
better” than their clients as to what the users really need. You may indeed have
a brilliant idea to suggest, but think of it simply as that—a suggestion—and
consider your task as one of either convincing the sponsors/users of its merit or
graciously accepting their decision to decline your suggestion.

Chapter 9 Formalizing requirements through use Cases

463

Note that the same user may interact with the system on different occasions in different

roles. That is, a professor who chairs a department may assume the role of a Department

Chair actor when they are trying to determine whether or not a course should be cancelled.

Alternatively, the same professor may assume the role of a Faculty user when they wish to

query the SRS for the student headcount for a particular course that they are teaching.

 Diagramming a System and Its Actors
Once we’ve settled on the actors for our system, we may wish to optionally diagram

them. UML notation calls for representing all actors—whether a human user or a

computer system—as stick figures and then connecting these via straight lines to a

rectangle representing the system, as you see in Figure 9-1.

Figure 9-1. A “proper” UML use case diagram

Chapter 9 Formalizing requirements through use Cases

464

This figure appears rather simplistic, and yet, this is a legitimate diagram that might

be produced for a project such as the SRS development effort.

I prefer to use a slightly modified version of UML notation, as follows:

• I’ve extended the use of a rectangle to represent not only the core

system but also all actors that are external systems, rather than

representing the latter as human stick figures.

• I find that using arrowheads to reflect a directional flow of

information—that is, whether an actor provides or consumes

information—is a bit more communicative. For example, in the

amended version of the notation as follows, I represent a student as

both providing and consuming information, whereas a registrar only

consumes information.

note that the registrar does indeed provide information, but not to the srs directly.
they provide information to the admissions system as to which students are
registered at the university; this information then gets fed into the srs by the
admissions system. so the admissions system is shown as providing information
as an actor to the srs; but, from the standpoint of the srs, the registrar is simply
a consumer.

With these slight changes in notation, as reflected in Figure 9-2, the use case diagram

becomes a much more communicative instrument.

Chapter 9 Formalizing requirements through use Cases

465

Figure 9-2. A customized version of use case notation

Of course, if you do decide to deviate from a widely understood notational standard

such as UML, you’ll need to follow these steps:

 1. Reach consensus among your fellow software developers, to

ensure that the team as a whole is speaking the same language.

 2. Document and communicate such deviations (along with the

notation as a whole) to your customers/users, so that they, too,

understand your particular “dialect.”

Chapter 9 Formalizing requirements through use Cases

466

 3. Make sure that such documentation is incorporated into the full

documentation set for the project, so that future reviewers of the

documentation will immediately understand your notational

“embellishments.”

If you make these enhancements intuitive enough, however, they may just speak for

themselves.

Of course, as pointed out in Chapter 8, you’ll also need to consider whether the CASE

tool you’re using, if any, will support such alterations.

Time and again throughout Part 2 of this book, I’ll remind you that it’s perfectly

acceptable to adapt or extend any process, notation, or tool that you care to adopt to best

suit your company’s or project’s purposes; none of these methodology components is

“sacred.”

 Specifying Use Cases
Having made a first cut at what the SRS actors are, we’ll next enumerate in what ways the

system will be used by these actors—in other words, the use cases themselves.

A use case represents a logical “thread,” or a series of cause-and-effect events,

beginning with an actor’s first contact with the system and ending with the achievement

of that actor’s goal for using the system in the first place. Note that an actor always

initiates a use case; actions initiated by a system on its own behalf don’t warrant the

development of a use case (although they do warrant expression as either a functional or

technical requirement, as defined earlier in the chapter).

Use cases emphasize “what” the system is to do—functional requirements—without

concern for “how” such things will be accomplished internally, and they aren’t unlike

method signatures in this regard. In fact, you can think of a use case as a “behavioral

signature” for the system as a whole.

Some example high-level use cases for the SRS might be

• Register for a course.

• Drop a course.

• Determine a student’s course load.

• Choose a faculty advisor.

• Establish a plan of study.

Chapter 9 Formalizing requirements through use Cases

https://doi.org/10.1007/978-1-4842-9060-6_8

467

• View the schedule of classes.

• Request a student roster for a given course.

• Request a transcript for a given student.

• Maintain course information (e.g., change the course description,

reflect a different instructor for the course, etc.).

• Determine a student’s eligibility for graduation.

• Post final semester grades for a given course.

Remember that a use case is initiated by an actor, which is why I didn’t list other

functionality called out by the SRS requirements specification, such as “Notify student by

email,” as use cases.

We may decompose any one of the use cases into steps, with each step representing

a more detailed use case. For example, “Register for a course” may be decomposed into

these steps:

 1. Verify that a student has met the prerequisites.

 2. Check student’s plan of study to ensure that this course is

required.

 3. Check for availability of a seat in the course.

 4. (Optionally) Place student on a waitlist.

 5. And so forth.

Use cases may be interrelated in parent-child fashion, with more detailed use cases

being shared by more than one general use case. For example, the “Request a student

roster” and “Post final semester grades” general use cases may both involve the more

detailed “Verify that professor is teaching the course in question” use case.

Unfortunately, as is true of all requirements analysis, there is no magical formula

to apply in order to determine whether or not you’ve identified all of the important

use cases or all of the actors and/or whether you’ve gone into sufficient depth in terms

of sub–use cases. The process of use case development is iterative; when subsequent

iterations fail to yield substantial changes, you’re probably finished! Copious interviews

and reviews with users, along with periodic team walk-throughs of the use case set as a

whole, go a long way in ensuring that nothing important has been missed.

Chapter 9 Formalizing requirements through use Cases

468

 Matching Up Use Cases with Actors
The next important step is to match up use cases with actors. The relationship between

actors and use cases is potentially many-to-many in that the same actor may initiate

many different use cases and a single use case may be relevant to many different actors.

By cross-referencing actors with use cases, we ensure that

• We didn’t identify an actor who, in the final analysis, really has no use

for the system after all.

• Conversely, we didn’t specify a use case that nobody really cares

about after all.

For each use case–actor combination, it’s useful to determine whether the actor

consumes information and/or provides information. Another way to view this aspect

of a system is whether actors need write access (providing) to the system’s information

resources vs. having read-only access (consuming).

If the number of actors and/or use cases isn’t prohibitive, a simple table such as

Table 9-1 can be used to summarize all of the preceding.

Table 9-1. A Simple Actor/Use Case Cross-Referencing Technique

Initiating Actor ==> Student Faculty Billing System Etc.

use case:

Register for a course provides info n/a n/a

Post final grades Consumes info provides info n/a

Request a transcript Consumes info Consumes info n/a

etc.

 To Diagram or Not to Diagram?
The use case concept is fairly straightforward, and hence simple narrative text as we’ve

seen thus far in the chapter is often sufficient for expressing use cases. UML does,

however, provide a formal means for diagramming use cases and their interactions with

actors. As mentioned earlier, actors (whether people or systems) are represented as

Chapter 9 Formalizing requirements through use Cases

469

stick figures; use cases are represented as ovals labeled underneath with a brief phrase

describing the use case; and the box surrounding the oval(s) represents the system

boundaries.

Figure 9-3 shows a sample UML use case diagram. Here, we depict three actors—

Student, Faculty, and Registrar—as having occasion to participate individually in the

Request Transcript use case.

Figure 9-3. A sample UML use case diagram

When deciding whether or not to go to the trouble of diagramming your use

cases rather than merely expressing them in narrative form, think back to the

rationale for producing use cases in the first place: namely, to think through the

software development team’s understanding of the system requirements and to then

communicate to the users/sponsors in order to obtain consensus. It’s up to you, your

Chapter 9 Formalizing requirements through use Cases

470

project team, and your users/sponsors to determine whether diagrams enhance

this process or not. If they do, use them; if they don’t, go with narrative use case

documentation instead.

Once you’ve documented a system’s actors and use cases, whether in text alone or

with accompanying diagrams, these become part of the core documentation set defining

the problem to be automated. In the next chapter, we’ll examine how to use such

documentation as a starting point for determining what classes we’ll need to create and

instantiate as our system “building blocks.”

 Summary
In this chapter, you’ve seen that

• Use case analysis is a simple yet powerful technique for specifying

the requirements for a system more precisely and completely.

• Use cases are based upon the goal-oriented functional requirements

for a system.

• Use cases are used to describe

• The desired behavior/functionality of the system to be built

• The external users or systems (known as actors) who avail

themselves of these services

• The interactions between the two

EXERCISES

 1. Determine the actors that might be appropriate for the prescription tracking

system (pts) case study discussed in the appendix.

 2. For the problem area whose requirements you defined for exercise 3 in Chapter 1,

determine who the appropriate actors might be.

 3. Based on the pts specification in the appendix, list (a) the use cases that are

explicitly called for by the specification and (b) any additional use cases that

you suspect might be worth exploring with the future users of the system.

Chapter 9 Formalizing requirements through use Cases

https://doi.org/10.1007/978-1-4842-9060-6_1

471

 4. repeat exercise 3, but in the context of the problem area whose requirements

you defined for exercise 3 in Chapter 1.

 5. Create a table mapping the actors you identified for the pts in exercise 1 to the

use cases you listed for the pts in exercise 3, indicating whether a particular

actor’s participation in a use case is as an information provider or a consumer.

 6. Create a table mapping the actors you identified in exercise 2 to the use cases

you listed in exercise 4, indicating whether a particular actor’s participation in a

use case is as an information provider or an information consumer.

Chapter 9 Formalizing requirements through use Cases

https://doi.org/10.1007/978-1-4842-9060-6_1

473

CHAPTER 10

Modeling the Static/Data
Aspects of the System
Having employed use case analysis techniques in Chapter 9 to round out the Student

Registration System (SRS) requirements specification, we’re ready to tackle the next

stage of modeling, which is determining how we’re going to meet those requirements in

an OO fashion.

We saw in Part 1 of the book that objects form the building blocks of an OO system

and that classes are the templates used to define and instantiate objects. An OO model,

then, must specify the following:

• What types of objects we’re going to need to create and instantiate
in order to represent the proper abstraction: In particular, their

attributes, methods, and structural relationships with one another.

Because these elements of an OO system, once established, are fairly

static—in the same way that a house, once built, has a specific layout,

a given number of rooms, a particular roofline, and so forth—we

often refer to this process as preparing the static model.

We can certainly change the static structure of a house over time by

undertaking remodeling projects, just as we can change the static

structure of an OO software system as new requirements emerge by

deriving new subclasses, inventing new methods for existing classes,

and so forth. However, if a structure—whether a home or a software

system—is properly designed from the outset, then the need for such

changes should arise relatively infrequently over its lifetime and

shouldn’t be overly difficult to accommodate.

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_10

https://doi.org/10.1007/978-1-4842-9060-6_9
https://doi.org/10.1007/978-1-4842-9060-6_10#DOI

474

• How these objects will need to collaborate in carrying out the overall
requirements, or “mission,” of the system: The ways in which objects

interact can change literally from one moment to the next based upon

the circumstances that are in effect. One moment, a Course object may

be registering a Student object, and the next, it might be responding

to a query by a Professor object as to the current student headcount.

We refer to the process of detailing object collaborations as preparing

the dynamic model. Think of this as all of the different day-to-day

activities that go on in a home: same structure, different functions.

The static and dynamic models are simply two different sides of the same coin: they

jointly comprise the OO “blueprint” that we’ll work from in implementing the model layer

for an object-oriented Student Registration System application in Part 3 of the book.

In this chapter, we’ll focus on building the static model for the SRS, leaving a

discussion of the dynamic model for Chapter 11. You’ll learn

• A technique for identifying the appropriate classes and their attributes

• How to determine the structural relationships that exist among

these classes

• How to graphically portray this information as a class diagram using

UML notation

 Identifying Appropriate Classes
Our first challenge in object modeling is to determine what classes we’re going to need

as our system building blocks. Unfortunately, the process of class identification is rather

“fuzzy”; it relies heavily on intuition, prior modeling experience, and familiarity with the

subject area, or domain, of the system to be developed. So how does an object modeling

novice ever get started? One tried and true (but somewhat tedious) procedure for

identifying candidate classes is to use the “hunt and gather” method: that is, to hunt for

and gather a list of all nouns/noun phrases from the project documentation set and to then

use a process of elimination to whittle this list down into a set of appropriate classes.

In the case of the SRS, our documentation set thus far consists of the following:

• The requirements specification

• The use case model that we prepared in Chapter 9

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11
https://doi.org/10.1007/978-1-4842-9060-6_9

475

 Noun Phrase Analysis
Let’s perform noun phrase analysis on the SRS requirements specification first, which

was originally presented in the Introduction to the book, a copy of which is provided in

the following sidebar. All noun phrases are highlighted in bold.

HIGHLIGHTING NOUN PHRASES IN THE SRS SPECIFICATION

We have been asked to develop an automated Student Registration System (SRS) for the

university. this system will enable students to register online for courses each semester,
as well as track their progress toward completion of their degree.

When a student first enrolls at the university, they use the SRS to set forth a plan of study

as to which courses they plan on taking to satisfy a particular degree program and choose a

faculty advisor. the SRS will verify whether or not the proposed plan of study satisfies the

requirements of the degree that the student is seeking.

once a plan of study has been established, then, during the registration period preceding

each semester, students are able to view the schedule of classes online and choose

whichever classes they wish to attend, indicating the preferred section (day of the week

and time of day) if the class is offered by more than one professor. the SRS will verify

whether or not the student has satisfied the necessary prerequisites for each requested
course by referring to the student’s online transcript of courses completed and grades
received (the student may review their transcript online at any time).

assuming that (a) the prerequisites for the requested course(s) are satisfied, (b) the

course(s) meet(s) one of the student’s plan of study requirements, and (c) there is room

available in each of the class(es), the student is enrolled in the class(es).

if (a) and (b) are satisfied, but (c) is not, the student is placed on a first-come, first-served
waitlist. if a class/section that they were previously waitlisted for becomes available

(either because some other student has dropped the class or because the seating capacity

for the class has been increased), the student is automatically enrolled in the waitlisted
class, and an email message to that effect is sent to the student. it is the student’s

responsibility to drop the class if it is no longer desired; otherwise, the student will be billed

for the course.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

476

Students may drop a class up to the end of the first week of the semester in which the
class is being taught.

A simple spreadsheet serves as an ideal tool for recording our initial findings; we enter

noun phrases as a single-column list in the order in which they occur in the specification.

Don’t worry about trying to eliminate duplicates or consolidating synonyms just yet; we’ll

do that in a moment. The resultant spreadsheet is shown in part in Figure 10-1.

Figure 10-1. Noun phrases found in the SRS specification

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

477

We’re working with a very concise requirements specification (approximately 350

words in length), and yet this process is already proving to be very tedious! It would be

impossible to carry out an exhaustive noun phrase analysis for anything but a trivially

simple specification. If you’re faced with a voluminous requirements specification,

start by writing an “executive summary” of no more than a few pages to paraphrase the

system’s mission, and then use your summary version of the specification as the starting

point for your noun survey. Paraphrasing a specification in this fashion provides the

added benefit of ensuring that you have read through the system requirements and

understand the “big picture.” Of course, you’ll need to review your summary narrative

with your customers/users to ensure that you’ve accurately captured all key points.

After we’ve typed all of the nouns/noun phrases into the spreadsheet, we sort the

spreadsheet and eliminate duplicates; this includes eliminating plural forms of singular

terms (e.g., eliminate “students” in favor of “student”). We want all of our class names to

be singular in the final analysis, so if any plural forms remain in the list after eliminating

duplicates (e.g., “prerequisites”), we make these singular, as well. In so doing, our SRS list

shrinks to 38 items in length, as shown in Figure 10-2.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

478

Figure 10-2. Removing duplicates streamlines the noun phrase list

Remember, we’re trying to identify both physical and conceptual objects: as stated in

Chapter 3, “something mental or physical toward which thought, feeling, or action is
directed.” Let’s now make another pass to eliminate the following:

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_3

479

• References to the system itself (“automated Student Registration

System,” “SRS,” “system”).

• References to the university. Because we’re building the SRS within

the context of a single university, the university in some senses “sits

outside” and “surrounds” the SRS; we don’t need to manipulate

information about the university within the SRS, and so we may

eliminate the term “university” from our candidate class list.

Note, however, that if we were building a system that needed to

span multiple universities—say, a system that compared graduate

programs of study in information technology across the top 100

universities in the country—then we would indeed need to model

each university as a separate object, in which case we’d keep

“university” on our candidate class list.

• Other miscellaneous terms that don’t seem to fit the definition

of an object are “completion,” “end,” ”progress,” “responsibility,”

“registration period,” and “requirements of the degree.” Admittedly,

some of these are debatable, particularly the last two; to play it safe,

you may wish to create a list of rejected terms to be revisited later on

in the modeling life cycle.

The list shrinks to 27 items as a result, as shown in Figure 10-3—it’s starting to get

manageable now!

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

480

Figure 10-3. Further streamlining the SRS noun phrase list

The next pass is a bit trickier. We need to group apparent synonyms, to choose the

one designation from among each group of synonyms that is best suited to serve as a

class name. Having a subject matter expert on your modeling team is important for this

step, because determining the subtle shades of meaning of some of these terms so as to

group them properly isn’t always easy.

We group together terms that seem to be synonyms, as shown in Figure 10-4,

bolding the term in each synonym group that we’re inclined to choose above the rest.

Italicized words represent those terms for which no synonyms have been identified.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

481

Figure 10-4. Grouping synonyms

Let’s now review the rationale for our choices.

We choose the shorter form of equivalent expressions whenever possible—

“degree” instead of “degree program” and “plan of study” instead of “plan of study

requirements”—to make our model more concise.

Although they aren’t synonyms as such, the notion of a “transcript” implies a record

of “courses completed” and “grades received,” so we’ll drop the latter two noun phrases

for now.

When choosing candidate class names, we should avoid choosing nouns that imply

roles between objects. As you learned in Chapter 5, a role is something that an object

belonging to class A possesses by virtue of its relationship to/association with an object

belonging to class B. For example, a professor holds the role of “faculty advisor” when

that professor is associated with a student via an advises association. Even if a professor

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5

482

were to lose all of their advisees, thus losing the role of faculty advisor, their would still

be a professor by virtue of being employed by the university—it’s inherent in the person’s

nature relative to the SRS.

if a professor were to lose their job with the university, one might argue that they
are no longer a professor; but then, this person would have no dealings with the
SrS, either, so it’s a moot point.

For this reason, we prefer “Professor” to “Faculty Advisor” as a candidate class name,

but make a mental note to ourselves that faculty advisor would make a good potential

association when we get to considering such things later on.

Regarding the notion of a course, we see that we’ve collected numerous noun

phrases that all refer to a course in one form or another: “class,” “course,” “preferred

section,” “requested course,” “section,” “prerequisite,” “waitlisted class,” “class that they

were previously waitlisted for,” “section that they were previously waitlisted for.” Within

this grouping, several roles are implied:

• “Waitlisted class” in its several different forms implies a role in an

association between a Student and a Course.

• “Prerequisite” implies a role in an association between two Courses.

• “Requested course” implies a role in an association between a

Student and a Course.

• “Preferred section” implies a role in an association between a

Student and a Course.

Eliminating all of these role designations, we’re left with only three terms: “class,”

“course,” and “section.” Before we hastily eliminate all but one of these as synonyms, let’s

think carefully about what real-world concepts we’re trying to represent.

• The notion that we typically associate with the term “course” is that

of a semester-long series of lectures, assignments, exams, etc. that

all relate to a particular subject area and that are a unit of education

toward earning a degree. For example, Beginning Math is a course.

• The terms “class” and “section,” on the other hand, generally refer to

the offering of a particular course in a given semester on a given day

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

483

of the week and at a given time of day. For example, the course Math

101 is being offered this coming Spring semester as three classes/

sections:

• Section 1, which meets Tuesdays from 4:00 to 6:00 p.m.

• Section 2, which meets Wednesdays from 6:00 to 8:00 p.m.

• Section 3, which meets Thursdays from 3:00 to 5:00 p.m.

There is thus a one-to-many association between Course and Class/Section.

The same course is offered potentially many times in a given semester and over many

semesters during the “lifetime” of the course.

Therefore, “course” and “class/section” truly represent different abstractions, and

we’ll keep both concepts in our candidate class list. Since “class” and “section” appear

to be synonyms, however, we need to choose one term and discard the other. Our

initial inclination would be to keep “class” and discard “section,” but in order to avoid

confusion when referring to a class named Class (!), we’ll opt for “section” instead.

 Refining the Candidate Class List
A list of candidate classes has begun to emerge. Here is our remaining “short list” (please

disregard the trailing symbols [*, +] for the moment—I’ll explain their significance

shortly):

• Course

• Day of week*

• Degree*

• Email message+

• Plan of study

• Professor

• Room*

• Schedule of classes+

• Seating capacity*

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

484

• Section

• Semester*

• Student

• Time of day*

• Transcript

• (First-come, first-served) Waitlist

Not all of these will necessarily survive to the final model, however, as we’re going to

scrutinize each one very closely before deeming it worthy of implementation as a class.

One classic test for determining whether or not an item can stand on its own as a class is

to ask these questions:

• Can we think of any attributes for this class?

• Can we think of any services that would be expected of objects

belonging to this class?

One example is the term “room.” We could invent a Room class as follows:

public class Room {

 // Attributes.

 int roomNo;

 String building;

 int seatingCapacity;

 // etc.

}

Or we could simply represent a room location as a String attribute of the

Section class:

public class Section {

 // Attributes.

 Course offeringOf;

 String semester;

 char dayOfWeek; // 'M', 'T', 'W', 'R', 'F'

 String timeOfDay;

 String classroomLocation; // building name and room name: e.g.,

 // "Innovation Hall Room 333"

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

485

 // etc.

}

Which approach to representing a room is preferred? It all depends on whether or

not a room needs to be a focal point of our application. If the SRS were meant to also

serve as a Classroom Scheduling System, then we might indeed wish to instantiate Room

objects so as to be able to ask them to perform such services as printing out their weekly

usage schedules or telling us their seating capacities. However, since these services

weren’t mentioned as requirements in the SRS specification, we’ll opt for eliminating

Room as a candidate class and instead making a room designation a simple String

attribute of the Section class. We reserve the right, however, to change our minds about

this later on; it’s not unusual for some items to “flip-flop” over the life cycle of a modeling

exercise between being classes on their own vs. being represented as simple attributes of

other classes.

Following a similar train of thought for all of the items marked with an asterisk (*)

in the preceding candidate class list, we’ll opt to treat them all as attributes rather than

making them classes of their own:

• “Day of week” will be incorporated as either a String or char

attribute of the Section class.

• “Degree” will be incorporated as a String attribute of the

Student class.

• “Seating capacity” will be incorporated as an int attribute of the

Section class.

• “Semester” will be incorporated as a String attribute of the

Section class.

• “Time of day” will be incorporated as a String attribute of the

Section class.

When we’re first modeling an application, we want to focus exclusively on functional

requirements to the exclusion of technical requirements, as defined in Chapter 9; this

means that we need to avoid getting into the technical details of how the system is going

to function behind the scenes. Ideally, we want to focus solely on what are known as

domain classes—that is, abstractions that an end user will recognize and that represent

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_9

486

“real-world” entities—and to avoid introducing any extra classes that are used solely as

behind-the-scenes “scaffolding” to hold the application together, known alternatively

as implementation classes or solution space classes. Examples of the latter would

be the creation of a collection object to organize and maintain references to all of the

Professor objects in the system or the use of a dictionary to provide a way to quickly

find a particular Student object based on the associated student ID number. We’ll talk

more about solution space objects in Part 3 of the book; for the time being, the items

flagged with a plus sign (+) in the candidate class list earlier—“email message,” “schedule

of classes”—seem arguably more like implementation classes than domain classes:

• An email message is typically a transient piece of data, not unlike

a pop-up message that appears on the screen while using an

application. An email message gets sent out of the SRS, and after

it’s read by the recipient, we have no control over whether the email

is retained or deleted. It’s unlikely that the SRS is going to archive

copies of all email messages that have been sent—there certainly was

no requirement to do so—so we won’t worry about modeling them as

objects at this stage in our analysis.

• Email messages will resurface in Chapter 11, when we talk about the

behaviors of the SRS application, because sending an email message

is definitely an important behavior; but emails don’t constitute an

important structural piece of the application, so we don’t want to

introduce a class for them at this stage in the modeling process.

When we actually get to programming the system, we might indeed

create an EmailMessage class in Java, but it needn’t be modeled as

a domain class. (If, on the other hand, we were modeling an email

messaging system in anticipation of building one, then EmailMessage

could indeed be a key domain class in our model.)

• We could go either way with the schedule of classes—include it as a

candidate class, or drop it from our list. The schedule of classes, as

a single object, may not be something that the user will manipulate

directly, but there will be some notion behind the scenes of a schedule

of classes collection controlling which Section objects should be

presented to the user as a GUI pick list when they register in a given

semester. We’ll omit ScheduleOfClasses from our candidate class list

for now, but we can certainly revisit our decision as the model evolves.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11

487

Determining whether or not a candidate class constitutes a domain class instead of

an implementation class is admittedly a gray area, and either of the preceding candidate

class “rejects” could be successfully argued into or out of the list of core domain classes

for the SRS. In fact, this entire exercise of identifying classes hopefully illustrates a

concept that was first introduced in Chapter 2; because of its importance, it is repeated

again in the following sidebar.

THE CHALLENGES OF OBJECT MODELING

developing an appropriate model for a software system is perhaps the most difficult aspect of

software engineering, because

There are an unlimited number of possibilities. abstraction is to a certain extent in the eye

of the beholder: several different observers working independently are almost guaranteed to

arrive at different models. Whose is the best? passionate arguments have ensued!

to further complicate matters, there is virtually never only one “best” or “correct” model,
only “better” or “worse” models (including incorrect models) relative to the problem to be

solved. the same situation can be modeled in a variety of equally valid ways.

finally, there is no “acid test” to determine if a model has adequately captured all of a
user’s requirements.

As we continue along with our SRS modeling exercise, and particularly as we move

from modeling to implementation in Part 3 of the book, we’ll have many opportunities

to rethink the decisions that we’ve made here. The key point to remember is that the

model isn’t “cast in stone” until we actually begin programming, and even then, if we’ve

used objects wisely, the model can be fairly painlessly modified to handle most new

requirements. Think of a model as being formed out of modeling clay: we’ll continue

to reshape it in Agile fashion over the course of the analysis and design phases of our

project until we’re satisfied with the result.

Meanwhile, back to the task of coming up with a list of candidate classes for the

SRS. The terms that have survived our latest round of scrutiny are as follows:

• Course

• PlanOfStudy

• Professor

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_2

488

• Section

• Student

• Transcript

• WaitList

Let’s examine WaitList one last time. There is indeed a requirement for the SRS

to maintain a student’s position on a first-come, first-served waitlist. But it turns out

that this requirement can actually be handled through a combination of an association

between the Student and Section classes, plus something known as an association
class, which you’ll learn about later in this chapter. This would not be immediately

obvious to a beginning modeler, and so we’d fully expect that the WaitList class might

make the final cut as a suggested SRS class. But we’re going to assume that we have an

experienced object modeler on the team, who convinces us to eliminate the class; we’ll

see that this is a suitable move when we complete the SRS class diagram at the end of the

chapter.

So we’ll settle on the following list of classes, based on our noun phrase analysis of

the SRS specification:

• Course

• PlanOfStudy

• Professor

• Section

• Student

• Transcript

 Revisiting the Use Cases
One more thing that we need to do before we deem our class list good to go is to revisit

our use cases—in particular, the actors—to see if any of these ought to be added as

classes. You may recall that we identified seven potential actors for the SRS in Chapter 9:

• Student

• Faculty

• Department Chair

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_9

489

• Registrar

• Billing System

• Admissions System

• Classroom Scheduling System

Do any of these deserve to be modeled as classes in the SRS? Here’s how to make

that determination: if any user associated with any actor type A is going to need to

manipulate (access or modify) information concerning an actor type B when A is logged

on to the SRS, then B needs to be included as a class in our model. This is best illustrated

with a few examples:

• When a student logs on to the SRS, might they need to manipulate

information about faculty? Yes, when a student selects an advisor,

for example, they might need to view information about a variety of

faculty members in order to choose an appropriate advisor. So the
Faculty actor role must be represented as a class in the SRS; indeed,

we have already designated a Professor class, so we’re covered there.

But student users are not concerned with department chairs per se.

• Following the same logic, we’d need to represent the Student actor
role as a class because when professors log on to the SRS, they will

be manipulating Student objects when printing out a course roster

or assigning grades to students, for example. Since Student already

appears in our candidate class list, we’re covered there, as well.

• When any of the actors—Faculty, Students, the Registrar, the Billing

System, the Admissions System, or the Classroom Scheduling

System—access the SRS, will there be a need for any of them

to manipulate information about the registrar? No, at least not

according to the SRS requirements that we’ve seen so far. Therefore,

we needn’t model the Registrar actor role as a class.

• The same holds true for the Billing, Admissions, and Classroom
Scheduling Systems: they require “behind-the-scenes” access to

information managed by the SRS, but nobody logging on to the SRS

expects to be able to manipulate any of these three systems directly,

so they needn’t be represented by domain classes in the SRS.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

490

again, when we get to implementing the SrS in code, we may indeed find it
appropriate to create “solution space” Java classes to represent interfaces to these
other automated systems; but such classes don’t belong in a domain model of
the SrS.

Therefore, our proposed candidate class list remains unchanged after revisiting all

actor roles:

• Course

• PlanOfStudy

• Professor

• Section

• Student

• Transcript

Is this a “perfect” list? No, there is no such thing. In fact, before all is said and done,

the list may—and in fact probably will—evolve in the following ways:

• We may add classes later on: terms we eliminated from the

specification or terms that don’t even appear in the specification, but

which we’ll unearth through continued investigation.

• We may see an opportunity to generalize—that is, we may see enough

commonality between two or more classes’ respective attributes,

methods, or relationships with other classes to warrant the creation

of a common base class.

• In addition, as mentioned earlier, we may rethink our decisions

regarding representing some concepts as simple attributes (semester,

room, etc.) instead of as full-blown classes and vice versa.

The development of a candidate class list is, as illustrated in this chapter thus far,

fraught with uncertainty. For this reason, it’s important to have someone experienced

with object modeling available to your team when embarking on your first object

modeling effort. Most experienced modelers don’t use the rote method of noun phrase

analysis to derive a candidate class list; such folks can pretty much review a specification

and directly pick out significant classes, in the same way that a professional jeweler can

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

491

easily choose a genuine diamond from among a pile of fake gemstones. Nevertheless,

what does “significant” really mean? That’s where the “fuzziness” comes in. It’s

impossible to define precisely what makes one concept significant and another less so.

I’ve tried to illustrate some rules of thumb by working through the SRS example, but you

ultimately need a qualified mentor to guide you until you develop—and trust—your own

intuitive sense for such things.

The bottom line, however, is that even expert modelers can’t really confirm the

appropriateness of a given candidate class until they see its proposed use in the full

context of a class diagram that also reflects associations, attributes, and methods, which

we’ll explore later in this chapter as well as in Chapter 11.

 Producing a Data Dictionary
Early on in our analysis efforts, it’s important that we clarify and begin to document

our use of terminology. A data dictionary is ideal for this purpose. For each candidate

class, the data dictionary should include a simple definition of what this item means in

the context of the model/system as a whole; include an example if it helps illustrate the

definition.

The following sidebar shows our complete SRS data dictionary so far.

THE SRS DATA DICTIONARY, TAKE 1: CLASS DEFINITIONS

• Course: a semester-long series of lectures, assignments, exams, etc. that

all relate to a particular subject area and that are typically associated with a

particular number of credit hours, a unit of study toward a degree. for example,

Beginning objects is a required course for the Master of Science degree in

information systems technology.

• PlanOfStudy: a list of the courses that a student intends to take to fulfill the

course requirements for a particular degree.

• Professor: a member of the faculty who teaches sections or advises students.

• Section: the offering of a particular course during a particular semester

on a particular day of the week and at a particular time of day (e.g., course

Beginning objects as taught in the Spring 2025 semester on Mondays from

1:00 to 3:00 p.m.).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11

492

• Student: a person who is currently enrolled at the university and who is eligible

to register for one or more sections.

• Transcript: a record of all of the courses taken to date by a particular student
at this university, including which semester each course was taken in, the

grade received, and the credits granted for the course, as well as a reflection

of an overall total number of credits earned and the student’s grade point

average (gpa).

Note that it’s permissible, and in fact encouraged, for the definition of one term

to include one or more of the other terms; when we do so, we highlight the latter in

bold text.

The data dictionary joins the set of other SRS narrative documents as a subsequent

source of information about the model. As our model evolves, we’ll expand the

dictionary to include definitions of attributes, associations, and methods.

it’s a good idea to also include the dictionary definition of a class as a header
comment in the Java code representing that class. Make sure to keep this inline
documentation in sync with the external dictionary definition, however.

 Determining Associations Between Classes
Once we’ve settled on an initial candidate class list, the next step is to determine how

these classes are interrelated. To do this, we go back to our narrative documentation set

(which has grown to consist of the SRS requirements specification, use cases, and data

dictionary) and study verb phrases this time. Our goal in looking at verb phrases is to

choose those that suggest structural relationships, as we’ve defined in Chapter 5—

associations, aggregations, and inheritance—but to eliminate or ignore those that

represent (transient) actions or behaviors. (We’ll focus on behaviors, but from the

standpoint of use cases, in Chapter 11.)

For example, the specification states that a student “chooses a faculty advisor.” This is

indeed an action, but the result of this action is a lasting structural relationship between

a professor and a student, which can be modeled via the association “a Professor

advises a Student.”

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_11

493

As a student’s advisor, a professor also meets with the student, answers the student’s

questions, recommends courses for the student to take, approves the student’s plan of

study, etc.—these are behaviors on the part of a professor acting in the role of an advisor,

but don’t directly result in any new relationships being formed between objects.

Let’s try the verb phrase analysis approach on the requirements specification. All

relevant verb phrases are highlighted in the sidebar that follows (note that I omitted

such obviously irrelevant verb phrases as “We’ve been asked to develop an automated

SRS… ”).

HIGHLIGHTING VERB PHRASES IN THE SRS SPECIFICATION

We have been asked to develop an automated Student registration System (SrS) for the

university. this system will enable students to register online for courses each semester, as

well as track their progress toward completion of their degree.

When a student first enrolls at the university, they use the SrS to set forth a plan of study

as to which courses they plan on taking to satisfy a particular degree program and

choose a faculty advisor. the SrS will verify whether or not the proposed plan of study
satisfies the requirements of the degree that the student is seeking.

once a plan of study has been established, then, during the registration period preceding

each semester, a student is able to view the schedule of classes online and choose
whichever classes they wish to attend, indicating the preferred section (day of the week

and time of day) if the class is offered by more than one professor. the SrS will verify
whether or not the student has satisfied the necessary prerequisites for each requested

course by referring to the student’s online transcript of courses completed and grades

received (the student may review their transcript online at any time).

assuming that (a) the prerequisites for the requested course(s) are satisfied, (b) the

course(s) meet(s) one of the student’s plan of study requirements, and (c) there is room
available in each of the class(es), the student is enrolled in the class(es).

if (a) and (b) are satisfied, but (c) is not, the student is placed on a first-come, first-served
waitlist. if a class/section that they were previously waitlisted for becomes available

(either because some other student has dropped the class or because the seating capacity
for the class has been increased), the student is automatically enrolled in the waitlisted

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

494

class, and an email message to that effect is sent to the student. it is the student’s

responsibility to drop the class if it is no longer desired; otherwise, they will be billed for
the course.

Students may drop a class up to the end of the first week of the semester in which the class
is being taught.

Let’s scrutinize a few of these:

• “Students [...] register [...] for courses”: Although the act of

registering is a behavior, the end result is that a static relationship

is created between a Student and a Section, as represented by

the association “a Student registers for a Section.” Note that the

specification mentions registering for “courses,” not “sections,” but

as we stated in our data dictionary, a Student registers for concrete

Sections as embodiments of Courses. Keep in mind when reviewing

a specification that natural language is often imprecise and that

as a result we have to read between the lines as to what the author

really meant in every case. (If we’re going to be the ones to write the

specification, here is an incentive to keep the language as clear and

concise as possible.)

• “[Students track] their progress toward completion of their
degree”: Again, this is a behavior, but it nonetheless implies a

structural relationship between a Student and a Degree. However,

recall that we didn’t elect to represent Degree as a class—we opted

to reflect it as a simple String attribute of the Student class—and

so this suggested relationship is immaterial with respect to the

candidate class list that we’ve developed.

• “Student first enrolls at the university”: This is a behavior

that results in a static relationship between a Student and the

University; but we deemed the notion of “university” to be external

to the system and so chose not to create a University class in our

model. So we disregard this verb phrase, as well.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

495

• “[Student] sets forth a plan of study”: This is a behavior that

results in the static relationship “a Student pursues/observes a Plan

of Study.”

• “Students are able to view the schedule of classes online”: This is

strictly a transient behavior of the SRS; no lasting relationship results

from this action, so we disregard this verb phrase.

• And so on.

 Association Matrices
Another complementary technique for both determining and recording what the

relationships between classes should be is to create an n × n association matrix, where

n represents the number of candidate classes that we’ve identified. Label the rows and

the columns with the names of the classes, as shown for the empty matrix represented by

Table 10-1.

Table 10-1. An “Empty” Association Matrix for the SRS

Section Course PlanOfStudy Professor Student Transcript

Section

Course

PlanOfStudy

Professor

Student

Transcript

Then, complete the matrix as follows.

In each cell of the matrix, list all of the associations that you can identify between the

class named at the head of the row and the class named at the head of the column. For

example, in the cell highlighted in Table 10-2 at the intersection of the Student “row”

and the Section “column,” we have listed three potential associations:

• A Student is waitlisted for a Section.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

496

• A Student is registered for a Section. (This could be alternatively

phrased as “a Student is currently attending a Section.”)

• A Student has previously taken a Section. This third association is

important if we plan on maintaining a history of all of the classes that

a student has ever taken in their career as a student, which we must

do if we are to prepare a student’s transcript online. (As it turns out,

we’ll be able to get by with a single association that does “double

duty” for the latter two of these, as you’ll see later on in this chapter.)

Mark a cell with an × if there are no known relationships between the classes in

question or if the potential relationships between the classes are irrelevant. For example,

in Table 10-2 the cells representing the intersection between Professor and Course

are marked with an ×, even though there is an association possible—“a Professor is

qualified to teach a Course”—because it isn’t relevant to the mission of the SRS.

As mentioned in Chapter 4, all associations are inherently bidirectional. This

implies that if a cell in row j, column k indicates one or more associations, then the cell

in row k, column j should reflect the reciprocal of these relationships. For example,

since the intersection of the PlanOfStudy “row” and the Course “column” indicates that

“a PlanOfStudy calls for a Course,” then the intersection of the Course “row” and the

PlanOfStudy “column” must indicate that “a Course is called for by a PlanOfStudy.”

It’s not always practical to state the reciprocal of an association; for example, our

association matrix shows that “a Student plans to take a Course,” but trying to state its

reciprocal—“a Course is planned to be taken by a Student”—is quite awkward. In such

cases where a reciprocal association would be awkward to phrase, simply indicate its

presence with the symbol ✓.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_4

497

Table 10-2. Our Completed Association Matrix

Section Course PlanOfStudy Professor Student Transcript

Section × instance of × is taught by ✓ included in

Course ✓ prerequisite
for

is called for by × ✓ ×

PlanOf

Study

× calls for × × observed
by

×

Professor teaches × × × advises,
teaches

×

Student registered
for, waitlisted
for, has
previously
taken

plans to
take

observes is advised
by, studies
under

× owns

Trans

cript

includes × × × belongs to ×

We’ll be portraying these associations in graphical form shortly. For now, let’s go

back and extend our data dictionary to explain what each of these associations means.

The following sidebar shows one such example.

ADDITIONS TO THE SRS DATA DICTIONARY

Calls for (a plan of Study calls for a Course): in order to demonstrate that a student will

satisfy the requirements for their chosen degree program, the student must formulate a plan
of study. this plan of study lays out all of the courses that a student intends to take and

possibly specifies in which semester the student hopes to complete each course.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

498

 Identifying Attributes
To determine what the attributes for each of our domain classes should be, we make

yet another pass through the requirements specification looking for clues. We already

stumbled upon a few attributes earlier, when we weeded out some nouns/noun phrases

from our candidate class list:

• For the Section class, we identified “day of week,” “room,” “seating

capacity,” “semester,” and “time of day” as attributes.

• For the Student class, we identified “degree” as an attribute.

We can also bring any prior knowledge that we have about the domain into play

when assigning attributes to classes. Our knowledge of the way that universities operate,

for example, suggests that all students will need some sort of student ID number as an

attribute, even though this isn’t mentioned anywhere in the SRS specification. This is a

detail that we’d have to go back to our end users for clarification on.

Finally, we can also look at how similar information has been represented in existing

legacy systems for clues as to what a class’s attributes should be. For example, if a

Student Billing System already exists at the university based on a relational database

design, we might wish to study the structure of the relational database table housing

student information. The columns that have been provided in that table—name,

address, birthDate, etc.—are potential attribute choices.

 UML Notation: Modeling the Static Aspects
of an Abstraction
Now that we have a much better understanding about the static aspects of our

model, we’re ready to portray these in graphical fashion to complement the narrative

documentation that we’ve developed for the SRS. We’ll be using the UML to produce

a class diagram. Here are the rules for how various aspects of the model are to be

portrayed.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

499

 Classes, Attributes, and Operations
We represent classes as rectangles. When we first conceive of a class—before we know

what any of its attributes or methods are going to be—we simply place the class name in

the rectangle, as illustrated in Figure 10-5.

Figure 10-5. UML depiction of the Student class

An abstract class is denoted by presenting the class name in italics, as shown in

Figure 10-6.

Figure 10-6. UML depiction of an abstract class

When we’re ready to reflect the attributes and behaviors of a class, we divide the

class rectangle into three compartments—the class name compartment, the attributes

compartment, and the operations compartment—as shown in Figure 10-7. Note that

UML favors the nomenclature of “operations” vs. “methods” to reinforce the notion that

the diagram is intended to be programming language independent.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

500

Figure 10-7. Class rectangles are divided into three compartments

Some CaSe tools automatically portray all three (empty) compartments when a
class is first created, even if we haven’t specified any attributes or operations yet,
as shown in figure 10-8.

Figure 10-8. Alternative UML class depiction as rendered by some CASE tools

As we begin to identify what the attributes and/or operations need to be for a

particular class, we can add these to the diagram in as much or as little detail as we

care to.

We may choose simply to list attribute names (see Figure 10-9), or we may specify

their names along with their types (see Figure 10-10).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

501

Figure 10-9. Sometimes just attribute names are presented

Figure 10-10. Sometimes both attribute names and types are shown

We may even wish to specify an initial starting value for an attribute, as in gpa :

double = 0.0, although this is less common.

Static attributes are identified as such by underlining their names (see Figure 10-11).

Figure 10-11. Identifying static attributes by underlining

We may choose simply to list operation names in the operations compartment

of a class rectangle, as shown in Figure 10-12, or we may optionally choose to use an

expanded form of operation definition, as we have for the registerForCourse operation

in Figure 10-13.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

502

Figure 10-12. Sometimes just method names are presented

Figure 10-13. Sometimes argument signatures and return types are also reflected

Note that the formal syntax for operation specifications in a UML class diagram

[visibility] name [(parameter list)] [: return type]

for example

registerForCourse(Course x) : boolean

differs from the syntax that we’re used to seeing for Java method headers:

returnType methodName(parameter list)

For example:

boolean registerForCourse(Course x)

Note in particular that the UML refers to the combination of operation name,

parameters, and return type as the operation signature, but that in Java the return type

is part of the method header but not part of the method signature.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

503

the rationale for making these operation signatures generic vs. language
specific is so that the same model may be rendered in any of a variety of target
programming languages. it can be argued, however, that there is nothing inherently
better or clearer about the first form vs. the second. therefore, if you know that
you’re going to be programming in Java, it might make sense to reflect standard
Java method headers in your class diagram, if your object modeling tool will
accommodate this.

It’s often impractical to show all of the attributes and operations of every class in a

class diagram, because the diagram will get so cluttered that it will lose its power as a

communications tool. Consider the data dictionary to be the official, complete source

of information concerning the model, and reflect in the diagram only those attributes

and operations that are particularly important in describing the mission of each class.

In particular, “get” and “set” operations are implied for all attributes and shouldn’t be

explicitly shown.

Also, just because the attribute or operation compartment of a class is empty, don’t

assume that there are no features of that type associated with a class; it may simply mean

that the model is still evolving.

 Relationships Between Classes
Chapter 4 defined several different types of structural relationship that may exist

between classes: associations, aggregations (a specific type of association), and

inheritance. Let’s explore how each of these relationship types is represented

graphically.

 Associations

Binary associations—in other words, relationships between two different classes—are

indicated by drawing a line between the rectangles representing the participating classes

and labeling the line with the name of the association. Role names can be reflected at

either end of the association line if they add value to the model, but should otherwise be

omitted.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_4

504

We also mark each end of the line with the appropriate multiplicity designator,

to reflect whether the relationship is one-to-one, one-to-many, or many-to-many (see

Figure 10-14); we’ll look at how to do this a bit later in the chapter.

Figure 10-14. Representing associations between classes

All associations are assumed to be bidirectional at this stage in the modeling effort,

and it doesn’t matter in which order the participating classes are arranged in a class

diagram. So, to depict the association “a Professor advises a Student,” the graphical

notations in Figure 10-15 are all considered equivalent.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

505

Figure 10-15. Equivalent depictions of the advises association between the
Professor and Student classes

Achieving an optimal placement of classes for purposes of simplifying all of the

association names in a diagram is often not possible in an elaborate diagram. Therefore,

UML has introduced the simple convention of using a small arrowhead (◄) to reflect

the direction in which the association name is to be interpreted, giving us a lot more

freedom in how we place our class rectangles in a diagram, as shown in Figure 10-16.

Figure 10-16. Using an arrowhead to indicate the direction of an association label

With UML, no matter how the preceding two rectangles are situated, we can still

always label the association “advises.”

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

506

it’s easy to get caught up in the trap of trying to make diagrams “perfect” in terms
of how classes are positioned, to minimize crossed lines, etc. try to resist the urge
to do so early on, because the diagram will inevitably get changed many times
before the modeling effort is finished.

Unary (reflexive) associations—that is, relationships between two different objects

belonging to the same class—are drawn with an association line that loops back to the

same class rectangle from which it originates. For example, to depict the association

“a Course is a prerequisite for a (different) Course,” we’d use the notation shown in

Figure 10-17.

Figure 10-17. A reflexive association involving the Course class

 Aggregation

Aggregation, which as you learned in Chapter 5 is a specialized form of association

that happens to imply containment, is differentiated from a “normal” association by

placing a diamond at the end of the association line that touches the “containing” class.

For example, to portray the fact that a university is comprised of schools—School of

Engineering, School of Law, School of Medicine, etc.—we’d use the notation shown in

Figure 10-18.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5

507

Figure 10-18. Indicating aggregation with a diamond

An aggregation relationship can actually be oriented in any direction, as long as the

diamond is properly anchored on the “containing” class as shown in Figure 10-19.

Figure 10-19. Aggregations can be oriented in any direction

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

508

An aggregation line needn’t be labeled, as it is understood that an aggregation

implies the “part”-“whole” relationship.

As mentioned in Chapter 5, however, we can get by without ever using aggregation!

To represent the preceding concept, we could have just created a simple association

between the University and School classes and labeled it “is composed of” as shown in

Figure 10-20.

Figure 10-20. A simple association as an alternative to an aggregation

The decision of whether to use aggregation vs. plain association is subtle, because it

turns out that both can be rendered in code in essentially the same way, as you’ll see in

Part 3 of the book.

Unlike association lines, which should always be labeled with the name of the

association that they represent, aggregation lines are typically not labeled, since an

aggregation by definition implies containment.

When two or more different classes represent “parts” of some other “whole,” each

“part” is involved in a separate aggregation with the “whole,” as shown in Figure 10-21.

Figure 10-21. Two aggregations, drawn using two diamonds

However, we often join such aggregation lines into a single structure that looks

something like an organization chart, as shown in Figure 10-22.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5

509

Figure 10-22. Two aggregations involving the same “whole” class, drawn using a
single diamond

Doing so is not meant to imply anything about the relationship of Part A to Part B; it’s

simply a way to clean up the diagram.

Composition, which as you learned in Chapter 5 is a strong form of aggregation in

which the “parts” cannot exist without the “whole,” uses a “filled-in”/“black” diamond

rather than an “open”/“white” diamond, as illustrated in Figure 10-23.

Figure 10-23. A filled diamond signals composition, a strong form of aggregation

 Inheritance

Inheritance (generalization/specialization) is illustrated by connecting a derived class to

its base class with a line and then marking the line with a triangle that touches the base

class (see Figure 10-24).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5

510

Figure 10-24. Inheritance is designated with a triangle

As with aggregation, the classes involved in an inheritance relationship can be

portrayed in any orientation, as long as the triangle points to/touches the base class.

Inheritance lines should not be labeled, as they unambiguously represent the “is a”

relationship.

As with aggregation, when two or more different classes represent derived classes

of the same parent class, each derived class is involved in a separate inheritance

relationship with the parent, as shown in Figure 10-25, but we often join the inheritance

lines into a single structure, as illustrated in Figure 10-26.

Figure 10-25. Depicting two derived classes with two different triangles

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

511

Figure 10-26. Depicting two derived classes with a single triangle

Doing so isn’t meant to imply anything different about the relationship of derived

class A to derived class B as compared with the previous depiction—these classes are

considered to be sibling classes with a common parent class in both cases. It’s simply a

way to clean up the diagram.

 Reflecting Multiplicity
You learned in Chapter 5 that for a given association type X between classes A and B,

the term “multiplicity” refers to the number of instances of objects of type A that must/

may be associated with a given instance of type B and vice versa. When preparing a class

diagram, we mark each end of an association line to indicate what its multiplicity should

be from the perspective of an object belonging to the class at the other end of the line. In

other words

• We mark the number of instances of B that can relate to a single

instance of A at B’s end of the line.

• We mark the number of instances of A that can relate to a single

instance of B at A’s end of the line.

This is depicted in Figure 10-27.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_5

512

Figure 10-27. Indicating multiplicity between classes

By way of review, given a single object belonging to class A, there are four different

scenarios for how object(s) of type B may be related to it:

• The A-type object may be related to exactly one instance of a B-type

object, as in the situation “a Student (A) has a Transcript (B).” Here,

the existence of an instance of B for every instance of A is mandatory.

• The A-type object may be related to at most one instance of a B-

type object, as in the situation “a Professor (A) chairs a Department

(B).” Here, the existence of an instance of B for every instance of A is

optional.

• The A-type object may be related to one or more instances of a

B-type object, as in the situation “a Department (A) employs many

Professors (B).” Here, the existence of at least one instance of B for

every instance of A is mandatory.

• The A-type object may be related to zero or more instances of a

“B” type object, as in the situation “a Student (A) is attending many

Sections (B).” (At our hypothetical university, a student is permitted

to take a semester off.) Here, the existence of at least one instance of B

for every instance of A is optional.

In UML notation, multiplicity symbols are as follows:

• “Exactly one” is represented by the notation “1”.

• “At most one” is represented by the notation “0..1”, which is

alternatively read as “zero or one.”

• “One or more” is represented by the notation “1..*”.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

513

• “Zero or more” is represented by the notation “0..*”.

• We use the notation “*” when we know that the multiplicity should be

“many” but we aren’t certain (or we don’t care to specify) whether it

should be “zero or more” or “one or more.”

• It’s even possible to represent an arbitrary range of explicit numerical

values x..y, such as using “3..7” to indicate, for example, that “a

Department employs no fewer than three, and no more than seven,

Professors.”

Here are some UML examples:

“A Student has exactly one Transcript, and a Transcript belongs to exactly one

Student.” (See Figure 10-28.)

Figure 10-28. An example of mandatory one-to-one multiplicity

“A Professor works for exactly one Department, but a Department has many (one or

more) Professors as employees.” (See Figure 10-29.)

Figure 10-29. An example of mandatory one-to-many multiplicity

“A Professor optionally chairs at most one Department, while a Department has

exactly one Professor in the role of chairman.” (See Figure 10-30.)

Figure 10-30. An example of optional one-to-many multiplicity

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

514

“A Student attends many (zero or more) Sections, and a Section is attended by

many (zero or more) Students.” (See Figure 10-31.)

Figure 10-31. An example of optional many-to-many multiplicity

a Section that continues to have zero Students signed up to attend will most
likely be canceled; nonetheless, there is a period of time after a Section is first
made available for enrollment via the SrS that it will have zero Students enrolled.

“A Course is a prerequisite for many (zero or more) Courses, and a Course can have

many (zero or more) prerequisite Courses.” (See Figure 10-32.)

Figure 10-32. An example of optional many-to-many multiplicity on a reflexive
association

We reflect multiplicity on aggregations as well as on simple associations. For

example, the UML notation shown in Figure 10-33 would be interpreted as follows:

“A (Student’s) Plan of Study is composed of many Courses; any given Course can be

included in many different (Students’) Plans of Study.”

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

515

Figure 10-33. Reflecting multiplicity on an aggregation

It makes no sense to reflect multiplicity on inheritance relationships, however,

because as discussed in Chapter 4, inheritance implies a relationship between classes,

but not between objects. That is, the notation shown in Figure 10-34 implies that any

object belonging to Subclass B is also simultaneously an instance of Superclass A by

virtue of the “is a” relationship.

Figure 10-34. Multiplicity adornments are inappropriate for inheritance
relationships

If we wanted to illustrate some sort of relationship between different objects of

types A and B, for example, “a Manager supervises an Employee,” we’d need to introduce

a separate association between these classes independent of their inheritance

relationship, as shown in Figure 10-35.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_4

516

Figure 10-35. Indicating both inheritance and an association between the
Manager and Employee classes

 Object/Instance Diagrams
When describing how objects can interact, we sometimes find it helpful to sketch out a

scenario of specific objects and their linkages, and for that we create an object diagram,

a.k.a. instance diagram. An instance, or object, looks much the same as a class in UML

notation, the main differences being that

• We typically provide both the name of the object and its type,

separated by a colon. We underline the text to emphasize that this is

an object, not a class (see Figure 10-36).

Figure 10-36. Representing an object

• The object’s type may be omitted if it’s obvious from the object’s

name; for example, the name “student x” implies that the object in

question belongs to the Student class (see Figure 10-37).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

517

Figure 10-37. We omit the class name if it’s otherwise obvious

• Alternatively, the object’s name may be omitted if we want to refer

to a “generic” object of a given type; such an object is known as an

anonymous object. Note that we must precede the class name with a

colon (:) in such a situation (see Figure 10-38).

Figure 10-38. Representing an anonymous object

Therefore, if we wanted to indicate that Dr. Brown, a Professor, is the advisor for

three Students, we could create the object diagram shown in Figure 10-39.

Figure 10-39. Dr. Brown advises three students

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

518

To reflect that a Student by the name of Joe Blow is attending two Sections this

semester, one of which is also attended by a Student named Mary Green, we could

create the diagram in Figure 10-40.

Figure 10-40. An instance diagram involving numerous objects

 Associations As Attributes
Given Figure 10-41, which shows the association “a Course is offered as a Section,” we

see that a Course object can be related to many different Section objects, but that any

one Section object can be related to a single Course object.

Figure 10-41. A one-to-many association between the Course and Section classes

By way of review, what does it mean for two objects to be related? It means that

they maintain “handles” on one another so that they can easily find one another to

communicate and collaborate, a concept that we covered in detail in Chapter 4. If we were

to sketch out the attributes of the Course and Section classes based solely on the diagram

in Figure 10-41, we’d need to allow for these handles as reference variables, as follows:

public class Section {

 // Attributes.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_4

519

 private Course represents; // A "handle" on a single related Course

 // object.

 // etc.

}

public class Course {

 // Attributes.

 private Collection<Section offeredAs; // A collection of

related Section

 // object "handles."

 // etc.

}

So we see that the presence of an association between two classes A and B in a class

diagram implies that class A potentially has an attribute declared to be either

• A reference to a single instance/object of type B

• A collection of references to many objects of type B

depending on the multiplicity involved and vice versa. I say “potentially” because, when

we get to the point of actually programming this application, we may or may not wish to

code this relationship bidirectionally, even though at the analysis stage all associations

are presumed to be bidirectional. We’ll look at the pros and cons of coding bidirectional

relationships in Chapter 14.

Because the presence of an association line implies attributes as object references in

both related classes, it’s inappropriate to additionally list such attributes in the attributes

compartment of the respective classes (see Figure 10-42).

Figure 10-42. Redundantly reflecting references as attributes is inappropriate; the
presence of an association implies these

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_14

520

this is a mistake commonly made by beginners. the biggest resultant problem
with doing so arises when using the code generation capability of a CaSe tool:
if the attribute is listed explicitly in a class’s attributes compartment and is also
implied by an association, it may appear in the generated code twice, as shown
in the following snippet representing code that might be generated from the
erroneous UMl diagram shown in figure 10-42:

public class Course {

// Redundant attributes are generated in the code.

Collection<Section> offeredAs; // by virtue of an
explicit attribute

Collection<Section> offered_as; // by virtue of the
association

// etc.

}

 Information “Flows” Along
an Association “Pipeline”
Beginning modelers also tend to make the mistake of introducing undesired redundancy

when it comes to attributes in general. In the association portrayed in Figure 10-43, we

see that the name attribute of the Professor class is inappropriately mirrored by the

chairmanName attribute of the Department class.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

521

Figure 10-43. The name and chairmanName attributes are redundant

While it’s true that a Department object needs to know the name of the Professor

object that chairs that Department, it’s inappropriate to explicitly create a chairmanName

attribute to reflect this information. Because the Department object maintains a

reference to its associated Professor object as an attribute, the Department has ready

access to this information any time it needs it, simply by invoking the Professor object’s

getName method. This piece of information is rightfully encapsulated in the Professor

class, where it belongs, and shouldn’t be duplicated anywhere else. A corrected version

of the preceding diagram is shown in Figure 10-44, with the redundancy eliminated.

Figure 10-44. The redundancy of Figure 10-43 has been eliminated

In essence, whenever you see an association/aggregation line in a diagram, you can

think of this as a conceptual “pipeline” across which information can “flow” between

related objects as needed.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

522

at the analysis stage, we don’t typically worry about the accessibility (public,
private) of attributes or about the directionality of associations—we usually
assume that the values of all of the attributes reflected in a diagram are obtainable
by calling the appropriate “get” methods on an object.

Sometimes, this “pipeline” extends across multiple objects, as illustrated by the next

example.

In Figure 10-45, we have a diagram involving three classes.

Figure 10-45. An association “pipeline” between the Course, Section, and
Professor classes

Let’s say that someone wishes to obtain a list of all of the Professors who have ever

taught the Course entitled “Beginning Objects.” Because each Course object maintains

a handle on all of its Section objects, past and present, the Course object representing

Beginning Objects can ask each of its Section objects the name of the Professor who

previously taught, or is currently teaching, that Section. The Section objects, in turn,

each maintain a handle on the Professor object who taught/teaches the Section and

can use the Professor object’s getName method to retrieve the name. So information

flows along the association “pipeline” from the Professor objects to their associated

Section objects and from there back to the Course object that we started with (see

Figure 10-46).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

523

Figure 10-46. Association “pipelines” can be quite elaborate!

you’ll learn a formal, UMl-appropriate way to analyze and depict such “object
conversations” in Chapter 11.

These three classes’ attributes are modeled in the code that follows, highlighting all

of the association-driven attributes:

public class Course {

 // Attributes.

 // Pseudocode.

 private Collection<Section> offeredAs; // a collection of

Section object

// "handles"

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11

524

 private String courseName;

 private int courseNumber;

 private double creditHourValue;

 // etc.

}

public class Section {

 // Attributes.

 private Course represents; // a "handle" on the related Course

 // object

 private int sectionNo;

 private String dayOfWeek;

 private String timeOfDay;

 private String semester;

 private Professor taughtBy; // a "handle" on the related Prof. object

 // etc.

}

public class Professor {

 // Pseudocode.

 private Collection<Section> sectionsTaught; // a collection of

Section obj.

// "handles"

 private String name;

 private String ssn;

 // etc.

}

If we knew that the Course class was going to regularly need to know who all the

Professors were that had ever taught the Course, we might decide to introduce the

redundant association “a Professor has taught a Course” into our diagram, as illustrated

in Figure 10-47.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

525

Figure 10-47. We add redundant associations when objects frequently need a
more direct “pipeline” for communication

This has the advantage of improving the speed with which a Course object can

determine who has ever taught it: with the addition of the redundant association in

Figure 10-47, Course objects can now talk directly to Professor objects without using

Section objects as “go-betweens”—but the cost of this performance improvement is

that we’ve just introduced additional complexity to our application, reflected by the

highlighted additions to the following code:

public class Course {

 // Attributes.

 // Pseudocode.

 private Collection<Section> offeredAs; // a collection of

Section object

// "handles"

 private String courseName;

 private int courseNumber;

 private float creditHourValue;

 // Pseudocode.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

526

 private Collection<Professor> professors; // a collection of

Professor obj.

// "handles"

 // etc.

}

public class Section {

 // Attributes.

 private Course represents; // a "handle" on the related Course

 // object

 private int sectionNo;

 private String dayOfWeek;

 private String timeOfDay;

 private String semester;

 private Professor taughtBy; // a "handle" on the related Prof. object

 // etc.

}

public class Professor {

 // Pseudocode.

 private Collection<Course> coursesTaught; // a collection of

Course obj.

// "handles"

 private Collection<Section> sectionsTaught; // a collection of

Section obj.

// "handles"

 private String name;

 private String ssn;

 // etc.

}

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

527

By adding the redundant association, we now have extra work to do in terms of

maintaining referential integrity. That is, if a different Professor is assigned to teach a

particular Section, we have two links to update rather than one: the link between the

Professor and the Section and the link between the Professor and the related Course.

The bottom line is that deciding which associations to include, and which to

eliminate as derivable from others, is similar to the decision of which web pages you

might wish to create a bookmark for in your web browser: you bookmark those that you

visit frequently, and type out the URL longhand, or alternatively traverse a chain of links,

for those that you only occasionally need to access. The same is true for object linkages:

the decision of which to implement in code depends on which “communication

pathways” through the application you’re going to want to use most frequently. You’ll

get a much better sense of what these communication patterns are when we move on to

modeling object behaviors in Chapter 11.

 “Mixing and Matching” Relationship Notations
It’s possible to intertwine the various relationship types in some rather sophisticated

ways. To appreciate this fact, let’s study the model in Figure 10-48 to see what it’s

telling us.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11

528

Figure 10-48. A sample UML model

First of all, we see some familiar uses of aggregation and inheritance:

• The use of aggregation in the upper-left corner of the diagram—a

two-tier aggregation—communicates the facts that a University is

comprised of one or more Schools and that a School is comprised of

one or more Departments, but that any one Department is associated

with only a single School and any one School is associated with only

a single University.

• The use of inheritance in the lower-right corner of the diagram

indicates that Person is the common base class for both Student

and Professor. Stated another way, a Student is a Person, and a

Professor is a Person.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

529

The first “interesting” use of the notation that we observe is that an association

can be used to relate classes at differing levels in an aggregation, as in the use of the

funds R&D (research and development) association used to relate the University and

Department classes. This indicates that the University funds one or more Departments

for research and development purposes, but that a given Department may or may not be

funded for R&D.

Next, we note the use of the employs association to relate the Department and

Person classes, indicating that a Department employs one or more Persons, but that a

given Person may work for only one Department, if indeed that Person works for any

Department at all.

Because Person is the superclass of both the Student and Professor subclasses,

then by virtue of the “is a” relationship, anything we can say about a Person must also be

true of its derived classes. Therefore

• Associations/aggregations that a base class participates in are
inherited by its derived classes. (This makes sense, because we now

know that associations are rendered as reference variable attributes.)

Thus, a given Student may optionally work for one Department,

perhaps as a teaching assistant, and a given Professor may

optionally work for one Department, because Student and Professor

are derived from Person.

• Also, because we can deduce (via the aggregation relationship) which

School and University a given Department belongs to, the fact that a

Person works for a given Department also implies which School and

University the Person works for.

Finally, we note that an association can be used to relate classes at differing levels

in an inheritance hierarchy, as in the use of the mentors association to relate the Person

and Professor classes. Here, we’re stating that a Professor optionally mentors many

Persons—Students and/or Professors—and conversely that a Person—either a Student

or a Professor—is mentored by optionally many Professors specifically. We label

the end of the association line closest to the Professor class with the role designation

“mentor” to emphasize that Professors are mentors at the University, but that Persons

in general (i.e., Students) are not.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

530

What if we instead wanted to reflect the fact that both Students and Professors

may serve in the capacity of a mentor? We could substitute a reflexive association on the

Person class, as shown in Figure 10-49, which, by virtue of inheritance, actually implies

four relationship possibilities:

• A Professor mentoring a Student

• A Professor mentoring another Professor

• A Student mentoring another Student

• A Student mentoring a Professor (which is not very likely)

Figure 10-49. Various possible “mentorship” associations are implied

If we wanted to reflect that only the first three of these are possible, we’d have to

resort to the rather more complex version shown in Figure 10-50, where the three

relationships of interest are all reflected as separate association lines (two reflexive, one

binary).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

531

Figure 10-50. Specific mentor associations made explicit

As cumbersome as it is to change the diagram to reflect these refinements in our

understanding, it would be orders of magnitude more painful to change the software

once the application has been coded.

 Association Classes
We sometimes find ourselves in a situation where we identify an attribute that is critical

to our model, but which doesn’t seem to fit nicely into any one class. As an example,

let’s revisit the (many-to-many) association “a Student attends a Section,” as shown in

Figure 10-51. (Note that we’re using the “generic” many multiplicity symbol this time, a

single asterisk (*), at each end of the association line.)

Figure 10-51. A many-to-many association between Student and Section

At the end of every semester, a student receives a letter grade for every section that

they attended during that semester. We decide that the grade should be represented as a

String attribute (e.g., “A-”, “C+”). However, where does the “grade” attribute belong?

• It’s not an attribute of the Student class, because a student doesn’t

get a single overall grade for all of their coursework, but rather an

individual grade for each section attended.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

532

• It’s not an attribute of the Section class, either, because not all

students attending a section typically receive the same letter grade.

If we think about this situation for a moment, we realize that the grade is actually

an attribute of the pairing of a given Student object with a given Section; that is, it’s an

attribute of the link that exists between these two objects.

With UML, we create a separate class, known as an association class, to house

attribute(s) belonging to the link between objects and attach it with a dashed line to the

association line, as shown in Figure 10-52.

Because association classes represent attributes of a link between two objects,
these are sometimes informally referred to as “link attributes.”

Any time you see an association class in a class diagram, realize that there is

an alternative equivalent way to represent the same situation without using an

association class:

• In the case of a many-to-many association involving an association

class, we can split the many-to-many association into two one-to-

many associations, inserting what was formerly the association class

as a “standard” class between the other two classes. Doing this for

the preceding attends association, we wind up with the alternative

equivalent representation in Figure 10-53.

One important point to note is that the “many” ends of these two new

associations reside with the newly inserted class, because a Student

receives many Grades and a Section issues many Grades.

Figure 10-52. Placing an association class on a many-to-many association

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

533

Figure 10-53. An alternative representation for Figure 10-52

• If we happen to have an association class for a one-to-many
association, as in the works for association between Professor and

Department in Figure 10-54, then the association class’s attribute(s)

can, in theory, be “folded into” the class at the “many” end of the

association instead, and we can do away with the association class

completely as shown in Figure 10-55.

Figure 10-54. Placing an association class on a one-to-many association

Figure 10-55. An alternative representation for Figure 10-54

• With a one-to-one association, we can fold the association class’s

attributes into either of the two classes.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

534

That being said, this practice of folding association class attributes into one end of

a one-to-many or one-to-one association is discouraged, however, because it reduces

the amount of information communicated by the model. In the preceding example,

the only reason that a Professor has a salary attribute is because he or she works for a

Department; knowledge of this “cause-and-effect” connection between employment and

salary is lost if the association class is eliminated as such from the model.

Note that association classes may themselves participate in relationships with other

classes. The diagram in Figure 10-56, for example, shows the association class Role

participating in a one-to-many association with the class USPresident; an example

illustrating this model would be “Film Star Anthony Hopkins starred in the movie Nixon

in the role of Richard M. Nixon, thus portraying the real former U.S. President Richard

M. Nixon.”

Figure 10-56. Association classes themselves can participate in associations with
other classes

 Our “Completed” Student Registration System
Class Diagram
By applying all that we’ve covered in this chapter about static modeling, we can produce

the UML class diagram for the SRS shown in Figure 10-57. Of course, as I’ve said

repeatedly, this isn’t the only correct way to model the requirements, nor is it necessarily

the “best” model that we could have produced; but it is an accurate, concise, and correct

model of the static aspects of the problem to be automated.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

535

Figure 10-57. Our “completed” SRS class diagram

There are a few things worth noting.

We opted to use the “generic” many notation (* for the UML) rather than specifying

0..* or 1..*; this is often adequate during the initial modeling stages of a project.

Note that we’ve reflected two separate many-to-many associations between the

Student and Section classes: waitlisted for and attends. A given Student may be

waitlisted for many different Sections, and they may be registered for/attending

many other Sections. What this model doesn’t reflect is the fact that a Student is

not permitted to simultaneously be attending and waitlisted for the same Section.

Constraints such as these can be reflected as textual notes on the diagram, enclosed in

curly braces, or omitted from the diagram but spelled out in the data dictionary.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

536

In the diagram excerpt in Figure 10-58, we use the annotation { xor } to represent an

“exclusive or” situation between the two associations: a Student can either be waitlisted

for or attending a given Section, but not both.

As mentioned earlier in this chapter, we’re able to get by with a single attends

association to handle both the Sections that a Student is currently attending and those

that they have attended in the past. The date of attendance—past or present—is reflected

by the “semester” attribute of the Section class; also, for any courses that are currently

in progress, the value of the “grade” attribute of the TranscriptEntry association class

would be as of yet undetermined.

We could have also reflected an association class on the waitlisted for association

representing a given Student’s position in the waitlist for a particular Section, and

then we could have gone on to model the notion of a WaitList as an aggregation of

WaitListEntry objects (see Figure 10-58).

Since we’re going to want to use the object model to gain user confirmation that

we understand their primary requirements, we needn’t clutter the diagram with such

behind-the-scenes implementation details just yet, however.

We renamed the association class for the attends relationship; it was introduced

earlier in this chapter as GradeReceived, but is now called TranscriptEntry. We’ve also

introduced an aggregation relationship between the TranscriptEntry class and another

new class called Transcript (see Figure 10-59).

Figure 10-58. A WaitList can be modeled as an aggregation of
WaitListEntry objects

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

537

Figure 10-59. A Transcript is an aggregation of TranscriptEntry objects

Let’s explore how all of this evolved.

When the attends association was first introduced earlier in this chapter, we

portrayed it as shown in Figure 10-60.

Figure 10-60. Initial portrayal of the attends association

We then realized that it could equivalently be represented as a pair of one-to-many

associations issues and receives (see Figure 10-61).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

538

Figure 10-61. The attends association may be portrayed alternatively as issues
and receives

In this alternative form, it’s clear that any individual GradeReceived object maintains

one handle on a Student object and another handle on a Section object and can

ask either of them for information whenever necessary. The Section object, in turn,

maintains a handle on the Course object that it represents by virtue of the offered as

association. It’s a trivial matter, therefore, for the GradeReceived object to request the

values of attributes semester, courseNo, courseName, and credits from the Section

object (which would in turn have to ask its associated Course object for the last three of

these four values); this is illustrated conceptually in Figure 10-62.

Figure 10-62. GradeReceived has access to all of the makings of a
TranscriptEntry

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

539

If the GradeReceived object pulls these values together, we have everything that we

need for a line item entry on a student’s transcript, as shown in Figure 10-63.

Figure 10-63. A sample transcript report

Therefore, we see that renaming the association class from GradeReceived to

TranscriptEntry makes good sense. It was then a natural step to aggregate these into a

Transcript class.

Our SRS diagram is a little “light” in terms of attributes; we’ve reflected only those

that we’ll minimally need when we code the model layer of the SRS in Part 3.

Of course, we now need to go back to the data dictionary to capture definitions of all

of the new attributes, relationships, and classes that we’ve identified in putting together

this model. The following sidebar shows our revised SRS data dictionary.

THE REVISED SRS DATA DICTIONARY

Classes

• Course: a semester-long series of lectures, assignments, exams, etc. that

all relate to a particular subject area and that are typically associated with a

particular number of credit hours, a unit of study toward a degree. for example,

Beginning objects is a required course for the Master of Science degree in

information systems technology.

• Person: a human being associated with the university.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

540

• PlanOfStudy: a list of the courses that a student intends to take to fulfill the

course requirements for a particular degree.

• Professor: a member of the faculty who teaches sections or advises students.

• Section: the offering of a particular course during a particular semester on a

particular day of the week and at a particular time of day. (for example, course

Beginning objects is taught in the Spring 2025 semester on Mondays from 1:00

to 3:00 p.m.)

• Student: a person who is currently enrolled at the university and who is eligible

to register for one or more sections.

• Transcript: a record of all of the courses taken to date by a particular student
at this university, including which semester each course was taken in, the

grade received, and the credits granted for the course, as well as reflecting

an overall total number of credits earned and the student’s grade point

average (gpa).

• TranscriptEntry: a single line item from a transcript, reflecting the course

number and name, semester taken, value in credit hours, and grade received.

Relationships

• Advises—a professor advises a student: a professor is assigned to oversee

a student’s academic pursuits for the student’s entire academic career, leading

up to their attainment of a degree. an advisor counsels their advisees regarding

course selection, professional opportunities, and any academic problems the

student might be having.

• Attends—a student attends a section: a student registers for a section,

attends class meetings for a semester, and participates in all assignments

and examinations, culminating in the award of a letter grade representing the

student’s mastery of the subject matter.

• Calls for—a plan of study calls for a course: a student may take a course

only if it’s called out by their plan of study. the plan of study may be amended,

with a student’s advisor’s approval.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

541

• Maintains—a student maintains a transcript: each time a student

completes a course, a record of the course and the grade received is added to

the student’s transcript.

• Observes—a student observes a plan of study: See notes for the calls for
association.

• Offered as—a course is offered as a section: the same course can be

taught numerous times in a given semester and of course over numerous

semesters for the “lifetime” of a course—that is, until such time as the subject

matter is no longer considered to be of value to the student body or there is no

qualified faculty to teach the course.

• Prerequisite—a course is a prerequisite for another course: if it’s

determined that the subject matter of a course a is necessary background to

understanding the subject matter of a course B, then course a is said to be a

prerequisite of course B. a student typically may not take course B unless they

have either successfully completed course a or can otherwise demonstrate

mastery of the subject matter of course a.

• Teaches—a professor teaches a section: a professor is responsible for

delivering lectures, assigning thoughtful homework assignments, examining

students, and otherwise ensuring that a quality treatment of the subject matter

of a course is made available to students.

• Waitlisted for—a student is waitlisted for a section: if a section is “full”—

for example, the maximum number of students signed up for the course based

on either the classroom capacity or the student group size deemed effective

for teaching—then interested students may be placed on a waitlist, to be given

consideration should seats in the course subsequently become available.

(aggregation between transcript and transcriptentry)

(specialization of person as professor)

(specialization of person as Student)

Attributes

• Person.ssn: the unique Social Security number (SSn) assigned to an individual.

• Person.name: the person’s name, in “last name, first name” order.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

http://person.name

542

• Professor.title: the rank attained by the professor (e.g., “adjunct professor”).

• Student.major: a reflection of the department in which a student’s primary

studies lie (e.g., Mathematics). (We assume that a student may designate only a

single major.)

• Student.degree: the degree that a student is pursuing (e.g., Master of Science

degree).

• TranscriptEntry.grade: a letter grade of a, B, C, d, or f, with an optional +/–

suffix, such as a+ or C–.

• Course.courseNo: a unique id assigned to a course, consisting of the

department designation plus a unique numeric id within the department (e.g.,

Math 101).

• Course.courseName: a full name describing the subject matter of a course

(e.g., Beginning objects).

• Course.credits: the number of units or credit hours a course is worth, roughly

equating to the number of hours spent in the classroom in a single week

(typically, three credits for a full-semester lecture course).

• Section.sectionNo: a unique number assigned to distinguish one section/

offering of a particular course from another offering of the same course in the

same semester (e.g., Math 101, section no. 1).

• Section.dayOfWeek: the day of the week on which the lecture course meets.

• Section.timeOfDay: the time (range) during which the course meets (e.g., 2:00

to 4:00 p.m.).

• Section.semester: an indication of the scholastic semester in which a section

is offered (e.g., Spring 2025).

• Section.room: the building and room number where the section will be

meeting (e.g., innovation hall, room 333).

• Section.seatingCapacity: the maximum number of students permitted to

register for a section.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

543

 Metadata
One question that is often raised by beginning modelers is why we don’t use an

inheritance relationship to relate the Course and Section classes, rather than using a

simple association as we’ve chosen to do. On the surface, it does indeed seem tempting

to want Section to be a derived class of Course, because all of the attributes listed for a

Course—courseNo, courseName, and creditValue—also pertain to a Section; so why

wouldn’t we want Section to inherit these, in the same way that Student and Professor

inherit all of the attributes of Person? A simple example should quickly illustrate why

inheritance isn’t appropriate.

Let’s say that because “Beginning Object Concepts” is such a popular course, the

university is offering three sections of the course for the Spring 2025 semester. We

therefore instantiate one Course object and three Section objects. If Section were a

derived class of Course, then all four objects would carry courseNo, courseName, and

creditValue attributes. Filling in the attribute values for these four objects, as shown in

Table 10-3, we see that there is quite a bit of repetition in the attribute values across these

four objects: we’ve repeated the same courseNo, courseName, and creditValue attribute

values four times. That’s because the information contained within a Course object is

common to, and hence describes, numerous Section objects.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

544

Table 10-3. Duplication of Data Across Four Object Instances

Attribute Name Attribute Values for the Course Object

courseName Beginning object Concepts

courseNo oBJeCtS 101

creditValue 3

Attribute Name Attr. Values for
Section Object #1

Attr. Values for
Section Object #2

Attr. Values for
Section Object #3

courseName Beginning object

Concepts

Beginning object

Concepts

Beginning object

Concepts

courseNo oBJeCtS 101 oBJeCtS 101 oBJeCtS 101

creditValue 3 3 3

studentsRegistered (to be determined) (to be determined) (to be determined)

instructor reference to

professor X

reference to

professor y

reference to

professor Z

semesterOffered Spring 2025 Spring 2025 Spring 2025

dayOfWeek Monday tuesday thursday

timeOfDay 7:00 p.m. 4:00 p.m. 6:00 p.m.

classroom hall a, room 123 hall B, room 234 hall a, room 345

To reduce redundancy and to promote encapsulation, we should eliminate

inheritance of these attributes and instead create only one instance of a Course object

for n instances of its related Section objects. We can then have each Section object

maintain a handle on the common Course object so as to retrieve these shared values

whenever necessary. This is precisely what we’ve modeled via the one-to-many offered

as association.

Whenever an instance of some class A encapsulates information that describes

numerous instances of some other class B (such as Course does for Section), we refer to

the information contained by the A object (Course) as metadata relative to the B objects

(Sections).

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

545

 Summary
Our object model has started to take shape! We have a good idea of what the static

structure needs to be for the SRS—the classes, their attributes, and their relationships

with one another—and are able to communicate this knowledge in a concise, graphical

form. There are many more embellishments to the UML notation that we haven’t

covered in this chapter, but we’ve examined the core concepts that will suffice for most

“industrial-strength” modeling projects.

There is an obvious “hole” in our class diagram, however: all of our classes have

empty operations compartments. We’ll address this deficiency by learning some

complementary modeling techniques for determining the dynamic behavior of our

objects in Chapter 11.

In this chapter, you learned

• The noun phrase analysis technique for identifying candidate

domain classes

• The verb phrase analysis technique for determining potential

relationships among these classes

• That coming up with candidate classes is a bit subjective and hence

that we must remain flexible, revisiting our model numerous times

until we—and our users—are satisfied with the outcome

• The importance of producing a data dictionary as part of a project’s

documentation set

• How to graphically portray the static structure of a model as a class

diagram using UML notation

• The importance of having an experienced object modeling mentor

available to a project team

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_11

546

EXERCISES

 1. Come up with a list of candidate classes for the prescription tracking System

(ptS) case study presented in the appendix, as well as an association matrix.

 2. develop a class diagram for the ptS case study, using UMl notation. reflect all

significant attributes and relationships among classes, including the appropriate

multiplicity. ideally, you should use an object modeling software tool if you have

one available to you.

 3. prepare a data dictionary for the ptS, to include definitions of all classes,

attributes, and associations.

 4. devise a list of candidate classes for the problem area whose requirements you

defined for exercise 3 in Chapter 1, as well as an association matrix.

 5. develop a class diagram for the problem area whose requirements you defined

for exercise 3 in Chapter 1, using UMl notation. reflect all significant attributes

and relationships among classes, including the appropriate multiplicity.

ideally, you should use an object modeling software tool if you have one

available to you.

 6. prepare a data dictionary for the problem area whose requirements you defined

for exercise 3 in Chapter 1 to include definitions of all classes, attributes, and

associations.

Chapter 10 Modeling the StatiC/data aSpeCtS of the SySteM

https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_1

547

CHAPTER 11

Modeling the Dynamic/
Behavioral Aspects
of the System
Thus far, we’ve been focused on the static structure of the problem being modeled—

the floor plan for our custom home, as it were. As you learned in Chapter 10, this static

structure is communicated via a class diagram plus supporting documentation. The

building blocks of a class diagram are

• Classes.

• Associations/aggregations.

• Attributes.

• Generalization/specialization hierarchies (also known as inheritance

relationships).

• Operations/methods. These are conspicuously absent from our
class diagram. Why? Because they aren’t part of the static structure,

so we haven’t discussed how to determine these yet; this topic is the

focus of this chapter.

As I’ve said many times already, an OO software system is a set of collaborating

objects, each with a “life” of its own. If each object went about its own business without

regard to what any other object needed it to do, however, utter chaos would reign!

The only way that objects can collaborate to perform some overall system mission,

such as registering a student for a course, is if each class defines the appropriate

methods—services—that will enable its instances to fulfill their respective roles in the

collaboration.

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_11

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11#DOI

548

In order to determine what these methods/services must be, we must complement

our knowledge of the static structure of the system to be built by also modeling the

dynamic aspects of the situation: that is, the ways in which concurrently active objects

interact over time and how these interactions affect each object’s state. Producing a

dynamic model to complement the static model will not only enable us to determine the

methods required for each class but also give us new insights into ways to improve upon

the static structure.

In this chapter, you’ll learn about the building blocks of a dynamic model

• Events

• Scenarios

• Sequence diagrams

• Communication diagrams

and how to use the knowledge gleaned from these modeling artifacts to identify the

operations/methods that are needed to complete our class diagram.

 How Behavior Affects State
Back in Chapter 3, we defined the state of an object as the collective set of all of the

object’s attribute values at a given point in time, including

• The values of all of the “simple” attributes for that object—in other

words, attributes that don’t represent other domain objects

• The values of all of the reference variable attributes representing links

to other domain objects

Table 11-1 repeats our list of Student attributes from Chapter 6, with an additional

column to indicate which category each attribute falls into.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_6

549

Table 11-1. Student Class Attributes

Attribute
Name

Data Type Represents Link(s) to an SRS Domain
Object?

Name String no

studentID String no

birthDate Date no

Address String no

Major String no

Gpa double no

Advisor Professor yes

courseLoad Collection of Course objects yes

Transcript Collection of TranscriptEntry objects,

or Transcript

yes

In Chapter 10, you learned about UML object diagrams as a way of portraying a

“snapshot” of the links between specific individual objects. Let’s use an object diagram

to reflect the state of a few hypothetical objects within the SRS domain.

Figure 11-1 shows that Dr. Smith (a Professor) works for the Math Department; Dr.

Green (another Professor) works for the Science Department; and Bill and Mary, both

Students, are majoring in Math and Science, respectively.

Figure 11-1. The state of an object includes the links it maintains with other
objects

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

550

Bill is dissatisfied with his choice of major and calls Dr. Green, a professor whom he

admires, to make an appointment. Bill wants to discuss the possibility of transferring to

the Science Department. After meeting with Dr. Green and discussing his situation, Bill

indeed decides to switch majors. I’ve informally reflected these object interactions using

arrows on the object diagram, shown in Figure 11-2; as this chapter progresses, you’ll

learn the official way to portray object interactions in UML notation.

Figure 11-2. Objects’ interactions can affect their state

When the dust settles from all of this activity, we see that the resultant state of

the system has changed, as reflected in the revised object diagram in Figure 11-3. In

particular

• Bill’s state has changed, because his link to the Math

Department object has been replaced with a link to the Science

Department object.

• The Math Department object’s state has changed, because it no

longer has a link to Bill.

• The Science Department’s state has changed, because it now has an

additional link (to Bill) that wasn’t previously there.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

551

Note, however, that although Dr. Green collaborated with Bill in helping him make

his decision to switch majors, the state of the “Dr. Green” (Professor) object has not
changed as a result of the collaboration.

So we see that

• Objects’ dynamic activities can result in changes to the static
structure of a system—that is, the states of all of its objects taken

collectively.

• However, such activities needn’t affect the state of all objects

involved in a collaboration.

 Events
You saw in Chapter 4 that object collaborations are triggered by events. By way of review,

an event is an external stimulus to an object, signaled to the object in the form of a

message (method call). An event can be

• User initiated (e.g., the result of clicking a button or link on a GUI)

• Initiated by another computer system (e.g., the arrival of

information being transferred from the Student Billing System to the

Student Registration System)

• Initiated by another object within the same system (e.g., a Course

object requesting some service of a Transcript object)

Figure 11-3. Some interacting objects don’t experience a change of state

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_4

552

When an object receives notification of an event via a message, it may react in one or

more of the following ways:

• An object may change its state.

• An object may direct an event (message) toward another object.

• An object may return a value.

• An object may react with the external boundaries of its system.

• An object may seemingly ignore an event.

Let’s discuss these five types of reaction in detail, one by one.

 An Object May Change Its State

An object may change its state (the values of its “simple” attributes and/or links to

other objects), as in the case of a Professor object receiving a message to take on a new

Student advisee, illustrated by the following code snippet:

Professor p = new Professor();

Student s = new Student();

// Details omitted.

p.addAdvisee(s);

Let’s look at the code for the Professor class’s addAdvisee method to see how the

Professor will respond to this message. We see that the Professor object is inserting the

reference to Student object s that it is being handed as an argument into a Collection of

Student object references called advisees:

public class Professor {

 // Attributes.

 Collection<Student> advisees; // Holds Student object references.

 // Other details omitted.

 public void addAdvisee(Student s) {

 // Insert s into the advisees collection.

 advisees.add(s);

 }

}

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

553

In so doing, Professor object p will have formed a new link of type advises with

Student object s (see Figure 11-4).

Figure 11-4. Revisiting the UML diagram for the advises association

Typical “set” methods fall into this category of event response.

 An Object May Direct an Event (Message) Toward Another Object

An object may direct an event (message) toward another object (including, perhaps, the

sender of the original message), as in the case of a Section object receiving a message to

register a Student, illustrated by the following code snippet:

Section x = new Section();

Student s = new Student();

// Details omitted.

x.register(s);

If we next look at the method code for the Section class’s register method to

see how it will respond to this message, we see that the Section object in turn sends

a message to the Student to be enrolled, to verify that the Student has completed a

necessary prerequisite course:

public class Section {

 // Details omitted.

 public boolean register(Student s) {

 // Verify that the student has completed a necessary

 // prerequisite course. (We are delegating part

 // of the work to another object, Student s.)

 // Pseudocode.

 boolean completed = s.successfullyCompleted(some prerequisite);

 if (completed) {

 // Pseudocode.

 register the student and return a value of true;

 }

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

554

 else {

 // Pseudocode.

 return a value of false to signal that the registration

 request has been rejected;

 }

 }

}

This happens to be an example of delegation, which we discussed in Chapter 4:

namely, another object (a Student, in this case) helping to fulfill a service request

originally made of the Section object.

 An Object May Return a Value

An object may return a value. The returned value may be one of the following:

• The value of one of the object’s attributes

• Some computed value (i.e., a “pseudoattribute,” as we discussed in

Chapter 4)

• A value that was obtained from some other object through delegation

• A status code (as in true/false responses, signaling success or

failure of boolean methods)

Typical “get” methods fall into this category of event response.

 An Object May Interact with the External Boundaries
of Its System

An object may interact with the external boundaries of its system; that is, it may display

some information on a GUI or cause information to be passed to another application.

As you’ll learn in Chapters 15 and 16, however, what appears to be an external system

boundary is often implemented in Java as yet another object.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_15
https://doi.org/10.1007/978-1-4842-9060-6_16

555

 An Object May Seemingly Ignore an Event

Finally, an object may seemingly ignore an event, as would be the case if a Professor

object received the message to add an advisee, but determined that the Student whom it

was being asked to take on as an advisee was already an advisee:

Student s = new Student();

Professor p = new Professor();

// Details omitted.

// Professor p will seemingly "ignore" this next message.

p.addAdvisee(s);

Let’s look a slightly different version of the addAdvisee method than we saw

previously:

public class Professor {

 Collection<Student> advisees; // Holds Student object references.

 // Details omitted.

 public void addAdvisee(Student s) {

 // ONLY insert s into the 'advisees' collection IF IT

 // ISN'T ALREADY IN THERE.

 // Pseudocode.

 if (s is already in collection) return; // do nothing

 else advisees.add(s);

 }

}

Actually, to say that the Professor object is doing nothing is an oversimplification: at

a minimum, the object is executing the appropriate method code, which is performing

some internal state checks (“Is this student already one of my advisees?”). It’s just that,

when the dust settles, the Professor object has neither changed state nor fired off any

messages to other objects, so it appears as if nothing has happened.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

556

 Scenarios
Events originating externally to an application occur randomly: we can’t predict, for

example, when a user is going to click a button on a GUI. In order for an application

to perform useful functions, however, the internal events that arise in response to

these external events—in other words, the messages that objects exchange in carrying

out some system function—can’t be left to occur randomly. Rather, they must be

orchestrated in such a way as to lead, in cause-and-effect fashion, to some desired

result. In the same way that a musical score indicates which notes must be played

by various instruments to produce a melody, a scenario prescribes the sequence of

internal messages (events) that must occur in carrying out some system function from

beginning to end.

I introduced use cases in Chapter 9 as a way to specify all of the goals for an

application from the standpoint of external actors—users or other computer systems.

Merriam-Webster’s Collegiate Dictionary, Eleventh Edition, defines the term scenario as

A sequence of events esp. when imagined; esp : an account or synopsis of a possible

course of action or events.

which is precisely how the term is used in the object modeling sense.

A scenario is one hypothetical instance of how a particular use case might play out.

Just as an object is an instance of a class and a link is an instance of an association, a
scenario may be thought of as an instance of a use case. Or, stated another way, just

as a class is a template for creating objects and an association is a template for creating

links, a use case is a template for creating scenarios. A single use case thus inspires

many different scenarios, in the same way that planning a driving trip from one city to

another can involve many different routes.

We describe scenarios in narrative fashion, as a series of steps observed from the

standpoint of a hypothetical observer who is able to see not only what is happening

outwardly as the system carries out a particular request but also what is going

on behind the scenes, internally to the system. (Note, however, that even though

we’re now concerned with internal system processes, we’re still only interested in

functional requirements as defined in Chapter 9, not in the “bits and bytes” of how the

computer works.)

The following is a sample scenario representing the “Register for a course” use case,

one of several use cases that we identified for the SRS in Chapter 9.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_9
https://doi.org/10.1007/978-1-4842-9060-6_9
https://doi.org/10.1007/978-1-4842-9060-6_9

557

 Scenario #1 for the “Register for a Course” Use Case
In this first scenario, a student by the name of Fred successfully registers for a course.

The specific sequence of events is as follows:

 1. Fred, a student, logs on to the SRS.

 2. He views the schedule of classes for the current semester to

determine which section(s) he wishes to register for.

 3. Fred requests a seat in a particular section of a course entitled

“Beginning Object Concepts,” course number OBJ101, section 1.

 4. Fred’s plan of study is checked to ensure that the requested

course is appropriate for his overall degree goals. (We assume that

students are not permitted to take courses outside of their plans

of study.)

 5. His transcript is checked to ensure that he has satisfied all of the

prerequisites for the requested course, if there are any.

 6. Seating availability in the section is confirmed.

 7. The section is added to Fred’s current course load.

From Fred’s vantage point (sitting in front of a computer screen!), here’s what he

perceives to be occurring: after logging on to the SRS, he indicates that he wishes to

register for OBJ101, section 1, by choosing it from the available course list and then clicks

the Add button (see Figure 11-5).

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

558

Figure 11-5. Fred’s view of things, part 1

A few moments later, Fred receives a confirmation message, as shown in Figure 11-6.

Figure 11-6. Fred’s view of things, part 2

Fred is unaware (for the most part) of all of the “behind-the-scenes” processing steps

that are taking place on his behalf.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

559

The preceding scenario represents a “best-case” scenario, where everything goes

smoothly and Fred ends up being successfully registered for the requested course. But,

as we know all too well, things don’t always work out this smoothly, as evidenced by the

following alternative scenario for the same use case. Everything is the same between

Scenario #1 and Scenario #2 except for the steps that are shown in bold.

 Scenario #2 for the “Register for a Course” Use Case
In this scenario, Fred once again attempts to register for a course. While he meets all of

the requirements, the requested section is unfortunately full. The SRS offers Fred the

option of putting his name on a waitlist. The specific sequence of events is as follows:

 1. Fred, a student, logs on to the SRS.

 2. Fred views the schedule of classes for the current semester to

determine which section(s) he wishes to register for.

 3. Fred requests a seat in a particular section of a course entitled

“Beginning Object Concepts,” course number OBJ101, section 1.

 4. Fred’s plan of study is checked to ensure that the requested course

is appropriate for his overall degree goals.

 5. His transcript is checked to ensure that he has satisfied all of the

prerequisites for the requested course, if any.

 6. Seating availability in the section is checked, but the section is
found to be full.

 7. Fred is asked if he wishes to be put on a first-come, first-served
waitlist.

 8. Fred elects to be placed on the waitlist.

With a little imagination, you can undoubtedly think of numerous other scenarios for

this use case, involving such circumstances as Fred having requested a course that isn’t

called for by his plan of study or a course for which he hasn’t met the prerequisites. And

there are many other use cases to be considered, as well, as were discussed in Chapter 9.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_9

560

are there practical limits to the number of alternative scenarios that we should
consider for a given use case? as with all requirements analysis, the criteria for
when to stop are somewhat subjective. We stop when it appears that we can
no longer generate significantly different scenarios; trivial variations are to be
avoided.

When devising scenarios, it’s often helpful to observe the future users of the system

that we’re modeling as they go about performing the same business functions today.

In the case of student registration, for example, what manual or automated steps does

a student have to go through presently to register for a course? What steps does the

university take before deeming a student eligible to register? Whether the registration

process is 100 percent manual at present or is based on an automated system that

you’re going to be replacing or augmenting, observing the steps that are involved today

in carrying out a particular business goal can serve as the basis for one or more useful

scenarios.

Scenarios, once written, should be added to our project’s use case documentation;

generally, we pair all scenarios with their associated use cases in that document.

Why are scenarios so important? Because they’re the means by which we start to

gain insight into the behaviors that will be required of our objects. We’ll need a way

to formalize these scenarios so that the actual methods needed for each of our classes

become apparent; UML sequence diagrams are the means by which we do so, so let’s

now discuss how to prepare these.

 Sequence Diagrams
Sequence diagrams are one of two types of UML interaction diagrams (we’ll explore the

second type, communication diagrams, a bit later in this chapter). Sequence diagrams

are a way of graphically portraying how messages should flow from one object to another

in carrying out a given scenario.

We’ll illustrate the process of creating a sequence diagram by creating one for

Scenario #1 of the “Register for a course” use case.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

561

 Determining Objects and External Actors for Scenario #1
To prepare a sequence diagram, we must first determine

• Which classes of objects (from among those that we specified in our

static model [class diagram] in Chapter 10) are involved in carrying

out a particular scenario

• Which external actors are involved

Looking back at Scenario #1 for the “Register for a course” use case, we determine

that the following objects are involved:

• One Student object (representing Fred)

• One Section object (representing the course entitled “Beginning

Object Concepts,” course number OBJ101, section number 1)

• One PlanOfStudy object, belonging to Fred

• One Transcript object, also belonging to Fred

The scenario also mentions that the student “views the schedule of classes for the

current semester to determine which section(s) he wishes to register for.” You may recall

that when we were determining what our candidate classes should be back in Chapter 10,

we debated whether or not to add ScheduleOfClasses as a candidate class to our

model, and we elected to leave it out at that time. In order to fully represent the details of

Scenario #1, we’re going to reverse that decision and retrofit ScheduleOfClasses into our

UML class diagram now as follows:

• We’ll show ScheduleOfClasses participating in a one-to-many

aggregation with the Section class because one ScheduleOfClasses

object will be instantiated per semester to represent all of the

sections that are being taught that semester. (It’s an abstraction of the

paper booklet or online schedule that students look at in choosing

which classes they wish to register for in a given semester.)

• We’ll also transfer the semester attribute from the Section class

to ScheduleOfClasses. Since each Section object will now be

maintaining a handle on its associated ScheduleOfClasses object by

virtue of the aggregation relationship between them, a Section object

will be able to request semester information whenever it is needed.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_10

562

The results of these changes to our class diagram are highlighted in Figure 11-7.

Figure 11-7. Fine-tuning the UML diagram

Acknowledging ScheduleOfClasses as a class in our model allows us to now

reference a ScheduleOfClasses object in our sequence diagram, as we’ll see in a

moment. Scenarios often unearth new classes, attributes, and relationships, thus

contributing to our structural “picture” of the system; this is a common occurrence and

is a desirable side effect of dynamic modeling.

Of course, we must also remember to add a definition of ScheduleOfClasses to our

data dictionary.

ScheduleOfClasses a list of all classes/sections that are being offered for a
particular semester; students review the schedule of classes to determine which
sections they wish to register for.

Finally, since the scenario explicitly mentions interactions between the student user

and the system, we’ll reflect Fred the actor separately from Fred the object. Doing so will

allow us to represent the SRS interacting externally with the user, as well as showing the

system’s internal object-to-object interactions. We refer to an object that represents an

abstraction of an actor as an instance of a boundary class.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

563

Our adjusted list of object/actor participants is now as follows:

• One Student object (representing Fred)

• One Section object (representing the course entitled “Beginning

Objects,” course number OBJ101, section number 1)

• One PlanOfStudy object, belonging to Fred

• One Transcript object, also belonging to Fred

• One ScheduleOfClasses object

• One Student actor (Fred again!)

 Preparing the Sequence Diagram
To prepare a sequence diagram for Scenario #1, we do the following:

• We draw vertical dashed lines, one per object or actor that

participates in the scenario; these are referred to as the objects’

lifelines. Note that the objects/actors can be listed in any order from

left to right in a diagram, although it’s common practice to place the

external user/actor at the far left.

• At the top of each lifeline, as appropriate, we place either an instance
icon—that is, a box containing the (optional) name and class of an

object participant—or a stick figure symbol to designate an actor. (For

rules governing how an instance icon is to be formed, please refer

back to the section on creating object diagrams in Chapter 10.)

• Then, for each event called out by our scenario, we reflect its

corresponding message as a horizontal solid-line arrow drawn from

the lifeline of the sender to the lifeline of the receiver.

• Responses back from messages (in other words, return values from

methods or simple return; statements in the case of methods

declared to have a void return type) are shown as horizontal dashed-
line arrows drawn from the lifeline of the receiver of the original

message back to the lifeline for the sender of the message.

• Message arrows appear in chronological order from top to bottom in

the diagram.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_10

564

The completed sequence diagram for Scenario #1 is shown in Figure 11-8.

Figure 11-8. Sequence diagram for Scenario #1

Let’s step through the diagram to make sure you understand all of the activities that

are reflected in the diagram:

 1. When Fred logs on to the system, his “alter ego” as an object is

activated (see Figure 11-9).

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

565

Figure 11-9. When Fred logs on, a Student object is instantiated..

presumably, information representing each Student—in other words, the
Student object’s attribute values—is maintained offline in persistent storage,
such as a dBMs or file, until such time as the student logs on, at which time the
information is used to instantiate a Student object in memory, mirroring the user
who has just logged on. We’ll talk about reconstituting objects from persistent
storage in Chapter 15.

 2. When Fred the user/actor requests that the semester class

schedule be displayed, we reflect the message “request display

of schedule” being sent to an anonymous ScheduleOfClasses

object. The dashed-line-arrow response from the

ScheduleOfClasses object indicates that the schedule is

being displayed to the user, strictly speaking, via a GUI (see

Figure 11-10).

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_15

566

Figure 11-10. As requested, a schedule of classes is displayed

i’ve chosen to label the response arrows with italic instead of regular font, a slight
departure from official UMl notation.

 3. The next message shown in our diagram is a message from the

user to the Section object, requesting a seat in the class.

this message is shown originating from the user. in reality, it originates from
a gUi component object of the srs gUi, but we aren’t worrying about such
implementation details at this stage in the analysis effort.

Note that there is no immediate reply to this message; that’s because

the Section object has a few other objects that it needs to consult

with before it can grant a seat to this student, namely

• The Section sends a message to the object representing Fred’s

plan of study, asking that object to confirm that the course that

Fred has requested is one of the courses required of Fred in

completing his degree program.

• The Section next sends a message to the object representing

Fred’s transcript, asking that object to confirm that a prerequisite

course—say COMP 001—has been satisfactorily completed by

this student.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

567

 4. Assuming that both of these other objects respond favorably, as

they are expected to do by virtue of how this scenario was written,

the Section object then performs some internal processing

to verify that there is indeed room for Fred in this section. We

reflect internal processing within a single object as an arrow that

loops back to the same lifeline that it starts with, as shown in

Figure 11-11.

Figure 11-11. Availability of the requested section is confirmed

Of course, if we were to reflect all of the internal processing that is

performed by every one of the objects in our sequence diagram, it

would be flooded with such loops! The only reason that we’ve chosen

to show this particular loop is because it’s explicitly called out as a

step in Scenario #1; if we had omitted it from our diagram, it might

appear that we had accidentally overlooked this step.

 5. Finally, with all checks having been satisfied, the Section object

has two remaining responsibilities:

• First, it sends a new message to the “Fred” Student object,

requesting that the Student object add this Section to Fred’s

course load.

• Next, the Section object sends a response back to Fred the user/

actor (via the GUI) confirming his seat in the section. This is the

response to the original “request seat” message that was sent by

the user toward the beginning of the scenario! All of the extra

“behind- the- scenes” processing necessary to fulfill the request—

involving a Section object collaborating with a PlanOfStudy

object, a Transcript object, and a Student object—is transparent

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

568

to the user. As we saw earlier in the chapter, Fred merely selected

a section from the schedule of classes that was displayed on the

SRS GUI, clicked the Add button, and, a few moments later, saw a

confirmation message appear on his screen.

Of course, as with all modeling, this particular sequence diagram isn’t necessarily

the best, or only, way to portray the selected scenario. And, for that matter, we can argue

the relative merits of one scenario as compared with another. It’s important to keep in

mind that preparing sequence diagrams is but a means to an end: namely, discovering

the dynamic aspects of the system to be built—that is, the methods—to complement

our static/structural knowledge of the system. Recall that our ultimate goal for Part 2

of the book is to produce an OO blueprint that we can use as the basis for coding the

SRS model layer in Part 3. But, as already pointed out, the class diagram that we created

in Chapter 10 had a noticeable deficiency: all of its classes’ operations compartments

were empty. Fortunately, sequence diagrams provide us with the missing pieces of

information, as we’ll next discuss.

 Using Sequence Diagrams to Determine Methods
Now that we’ve prepared a sequence diagram, how do we put the information that

it contains to good use? In particular, how do we “harvest” information from such

diagrams concerning the methods that the various classes need to implement?

The process is actually quite simple. We step through the diagram, one lifeline at a

time, and study all arrows pointing to that line:

• Arrows representing a new request being made of an object—solid-

line arrows—signal methods that the receiving object must be able

to perform. For example, we see a solid-line arrow labeled “check

prerequisite” pointing to the lifeline representing a Transcript

object. This tells us that the Transcript class needs to define a

method that will allow some client object to pass in a particular

course object reference and receive back a response indicating

whether or not the Transcript contains evidence that the course was

successfully completed.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_10

569

• We’re free to name our methods in whatever intuitive way makes

the most sense, consistent with the method naming conventions

discussed in Chapter 4. We’re using the method in this particular

scenario to check completion of a prerequisite course, so we could

declare the method as follows:

boolean checkPrerequisite(Course c)

But this name is unnecessarily restrictive; what we’re really doing

with this method is checking the successful completion of some

Course c. The fact that it happens to be a prerequisite of some other

course is immaterial to how this method will perform. So by naming

the method

boolean verifyCompletion(Course c)

instead, we’ll be able to use it anywhere in our application that

we need to verify successful completion of a course—for example,

when we check whether a student has met all of the course

requirements necessary to graduate. (Of course, we could have

still used the method in this fashion even if it had been named

checkPrerequisite, but then our code would be less accurately self-

documenting.)

• Arrows representing responses from an operation that some other

object has performed—dashed-line arrows—don’t get modeled as

methods/operations. These do, however, hint at the return type of the

method from which this response is being issued. For example, since

the response to the “verify plan of study” message is “plan of study

verified,” this would imply that the method is returning a boolean

result; hence, we’d declare a method header as follows:

boolean verifyPlan(Course c)

• Loops also represent method calls, performed by an object on itself;

these may either represent private “housekeeping” methods or

public methods that other client objects may avail themselves of.

Table 11-2 summarizes all of the arrows reflected by the sequence diagram for

Scenario #1 from a few pages back.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_4

570

Table 11-2. Determining the Methods Implied by Scenario #1

Arrow Labeled Drawn Pointing to
Class X

A New Request
or a Response
to a Previous
Request?

Method to be Added to Class X

log on Student request (a method to reconstitute this object

from persistent storage, such as a

file or database; perhaps a special

form of constructor—we’ll discuss

this in part 3 of the book)

request display of

schedule

ScheduleOfClasses request void Display()

schedule displayed Student Response N/A

request seat Section request boolean enroll(Student s)

verify plan of study PlanOfStudy request boolean verifyPlan (Course

c)

plan of study
verified

Section Response N/A

check prerequisite Transcript request boolean

verifyCompletion(Course c)

prerequisite
confirmed

Section Response N/A

confirm seat

availability

Section request boolean

confirmSeatAvailability()

(perhaps a private housekeeping

method)

add to course load Student request void addSection(Section s)

display message
confirming seat

(actor/user) Response N/A (will eventually involve calling
upon some method of a user
interface object—we’ll worry about
this in Part 3 of the book)

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

571

Thus we have identified six new “standard” methods plus one constructor that will

need to be added to our class diagram, which we’ll do shortly.

Repeating this process of sequence diagram production and analysis for various

other use case/scenario combinations will flush out most of the methods that we’ll need

to implement for the SRS. Despite our best efforts, however, a few methods may not

surface until we’ve begun to program our classes—this is to be expected.

 Communication Diagrams
The UML notation introduced a second type of interaction diagram, called a

communication diagram, as an alternative to sequence diagrams. Both types of

diagram present essentially the same information, but portray it in a different manner.

In a communication diagram, we eliminate the lifelines used to portray objects

and actors. Rather, we lay out instance icons representing objects and stick figures

representing actors in whatever configuration is most visually appealing. We then

use lines and arrows to represent the flow of messages and responses back and forth

between these objects/actors. Because we lose the top-to-bottom chronological sense

of message flow that we had with the sequence diagrams, we compensate by numbering

the arrows in the order that they would occur during execution of a particular scenario.

The communication diagram in Figure 11-12 is equivalent to the sequence diagram

that we produced for Scenario #1.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

572

Figure 11-12. Communication diagram for Scenario #1

Again, from Fred’s vantage point, he observes only a few of these actions, as shown in

Figure 11-13.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

573

Figure 11-13. Fred sees only a small subset of the SRS collaborations

Because sequence and communication diagrams reflect essentially the same
information, many object modeling software tools automatically enable us to
produce one diagram from the other with the push of a button.

 Revised SRS Class Diagram
Going back to the SRS class diagram that we produced in Chapter 10, let’s reflect all of

the new insights—some behavioral, some structural—that we’ve gained from analyzing

one scenario/sequence diagram (see Figure 11-14).

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_10

574

Figure 11-14. Revised SRS class diagram

Note that we’ve decided not to reflect the confirmSeatAvailability

“housekeeping” method at this time, as we suspect that it will be a private method and

don’t wish to clutter our diagram. The decision of whether to reflect private methods on

a class diagram—or, for that matter, to reflect any feature of a class—is up to the modeler,

because again, the purpose of the diagram is to communicate, and too much detail can

actually lessen a diagram’s effectiveness in this regard.

We must remember to update the SRS data dictionary any time we add classes,

attributes, relationships, or methods to our model. Here’s a suggested format for how we

might wish to describe a method in the dictionary:

Method: enroll

Defined for class: Section

Header: boolean enroll(Student s)

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

575

Description: This method enrolls the designated person in the

section, unless (a) the section is already full, (b) the student’s plan

of study doesn’t call for this course, or (c) the student hasn’t met

the prerequisites. It returns a boolean value to indicate success

(true) or failure (false) of the enrollment.

 Summary
In this chapter, you’ve seen how the process of dynamic modeling is a complementary

technique to the static modeling that enriches our overall understanding of the problem

to be automated, hence enabling us to improve our object “blueprint,” also known as a

class diagram. In particular, you’ve seen

• How events trigger state changes

• How to develop scenarios, based on use cases

• How to represent these as UML interaction diagrams: sequence

diagrams or, alternatively, communication diagrams

• How to glean information from sequence diagrams concerning the

behaviors expected of objects—that is, the methods that our classes

will need to implement—so as to round out our class diagram

• How sequence diagrams can also yield additional knowledge about

the structural aspects of a system

EXERCISES

 1. prepare a sequence diagram for scenario #2 as presented earlier in this

chapter.

 2. prepare a sequence diagram to represent the following scenario for the srs

case study:

a. Mary, a student, logs on to the srs.

b. she indicates that she wishes to drop art 222, section 1.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

576

c. art 222, section 1, is removed from Mary’s course load.

d. the system determines that Joe, another student, is waitlisted for this

section.

e. the section is added to Joe’s current course load.

f. an email is sent to Joe notifying him that art 222 has been added to his

course load.

 3. provide a list of all of the method headers that you would add to each of your

classes based on the sequence diagram that you prepared for exercise 2. also,

note any new classes, attributes, or relationships that would be needed.

 4. prepare a second sequence diagram for the srs case study, representing a

scenario of your own choosing based upon any of the srs use cases identified

in Chapter 9. this scenario should be significantly different from those

presented in this chapter and from the scenario in exercise 2. you must also

narrate the scenario as was done for exercise 2.

 5. provide a list of all of the method headers that you would add to each of your

classes based on the sequence diagram that you prepared for exercise 4. also,

note any new classes, attributes, or relationships that would be needed.

 6. prepare a sequence diagram to represent the following scenario for the

prescription tracking system (pts) case study presented in the appendix:

a. Mary Jones, an existing customer of the pharmacy, brings in a prescription

for eye drops to have it filled.

b. the pharmacist checks to see if Ms. Jones has previously had a

prescription filled for this item.

c. the pharmacist discovers that she has and furthermore that the last time it

was refilled was less than a month ago.

d. Knowing that her insurance won’t authorize payment for this same

prescription so soon, the pharmacist informs Ms. Jones, and she decides to

wait to have it filled at a later date.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_9

577

 7. devise an “interesting” scenario, and prepare the corresponding sequence

diagram, for the problem area whose requirements you defined for exercise

3 in Chapter 2.

 8. provide a list of all of the method headers that you would add to each of your

classes based on the sequence diagram that you prepared for exercise 7. also,

note any new classes, attributes, or relationships that would be needed.

Chapter 11 Modeling the dynaMiC/Behavioral aspeCts of the systeM

https://doi.org/10.1007/978-1-4842-9060-6_2

579

CHAPTER 12

Wrapping Up Our
Modeling Efforts
Having used the techniques for static and dynamic modeling presented in Chapters 10

and 11, respectively, we’ve arrived at a fairly thorough object model of the SRS—or

so it seems! Before we embark upon implementing our class diagram as Java code in

Part 3 of the book, however, we need to make sure that our model is as accurate and

representative of the goal system as possible.

In this chapter, we’ll

• Explore some simple techniques for testing our model.

• Talk about the notion of reusing models.

 Testing the Model
Testing a model doesn’t involve “rocket science”; rather, it calls for some commonsense

measures designed to identify errors and/or omissions.

• First of all, revisit all requirements-related project documentation—

the original problem statement and the supporting use cases—to

ensure that no requirements were overlooked. We’ll do so for our SRS

model in a moment.

• Conduct a minimum of two separate formal walk-throughs of the

model: one with the development team members and the other with

the future users of the system. Prior to each walk-through, make sure

to distribute copies of the following documentation to each of the

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_12

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11
https://doi.org/10.1007/978-1-4842-9060-6_12#DOI

580

participants far enough in advance to allow them adequate time to

review these, if they so desire (but be prepared to discuss significant

aspects of these at the meeting in case the participants haven’t

reviewed them):

• Executive summary version of the problem statement narrative

• Class diagram

• Data dictionary

• Use case documentation

• Significant scenarios and corresponding message trace diagrams

By this stage in the project, you’ll have hopefully already educated your users on

how to read UML diagrams, and they’ll have informally seen numerous iterations of the

evolving models. If any of the participants in the upcoming walk-throughs aren’t familiar

with any of the notation, however, take time in advance to tutor them in this regard. (The

information contained in Chapters 10 and 11 of this book should be more than adequate

as the basis for such a tutorial.)

When conducting the walk-through, designate someone to be the narrator and

discussion leader and a different person to be responsible for recording significant

discussion content, particularly changes that need to be made. Having one person

trying to do both is too distracting, and important notes may be missed as a result. If

appropriate, you may even arrange to tape-record the discussion.

Remain open-minded throughout the review process. It’s human nature to want to

defend something that we’ve worked hard on putting together, but remember that it’s far

better to find and correct shortcomings now, when the SRS is still a paper skeleton, than

after it has been rendered into code.

 Revisiting Requirements
In revisiting the SRS case study problem statement, we find that we’ve indeed missed

one requirement, namely

The SRS will verify whether or not the proposed plan of study satisfies the requirements

of the degree that the student is seeking.

Chapter 12 Wrapping Up OUr MOdeling effOrts

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_11

581

We didn’t model Degree as a class—recall that we debated whether or not to do so

back in Chapter 10 and ultimately decided against it. Nor, for that matter, do we reflect

the requirements of a particular degree program in our model. Let’s look at what it would

take to do so properly at this time.

Researching the way in which our university specifies degree program requirements,

we learn the following:

• Every degree program specifies five “core” courses—that is, courses

that a student must take. For example, for the degree of Master of

Science in information technology (MSIT), students are required to

complete the following five core courses:

• Analysis of Algorithms

• Application Programming Design

• Computer Systems Architecture

• Data Structures

• Information Systems Project Management

• Students are expected to select an area of specialization, known as a

concentration, within their degree program. For the MSIT degree,

our university offers three different concentrations:

• Object Technology

• Database Management Systems

• Networking and Communications

• Each concentration in turn specifies three mandatory, concentration-

specific courses. For the MSIT degree with a concentration in Object

Technology, the required concentration-specific courses are

• Object Methods for Software Development

• Advanced Java Programming

• Object Database Management Systems

• Finally, the student must take two additional electives to bring their

course total to ten.

Chapter 12 Wrapping Up OUr MOdeling effOrts

https://doi.org/10.1007/978-1-4842-9060-6_10

582

Phew! To model all of these interdependencies would require a fairly complex class

diagram structure, as shown in Figure 12-1.

Figure 12-1. Modeling degree program requirements proves to be rather
complicated

We go back to our project sponsors—the future users of the SRS—and break

the news to them that we’ve just uncovered a previously missed requirement that is

going to significantly increase the complexity and cost of our automation effort. The

sponsors decide that having the SRS verify the correctness of a student’s plan of study

is too ambitious a goal; they instead decide that a student will use the SRS to submit a

proposed plan of study, but that their advisor will then be responsible for subsequently

verifying and approving it. So all we wind up having to do to correct our SRS class

Chapter 12 Wrapping Up OUr MOdeling effOrts

583

diagram as last presented is to add one attribute to the PlanOfStudy class, reflecting

the date on which it was approved, and a new approves association connecting the

Professor class to the PlanOfStudy class, and we’re good to go!

Note that we don’t need to add an approvePlan method to the PlanOfStudy class,

because as discussed in Chapter 10 we may assume the presence of “set” methods for all

attributes; the setDateApproved method would suffice for marking a plan as approved.

And the approves association between the PlanOfStudy and Professor classes (see the

diagram excerpt in Figure 12-2) ensures us that each PlanOfStudy object will maintain a

handle on the Professor object who actually approved the plan on the date indicated.

Figure 12-2. Making minor adjustments to the SRS class diagram

Chapter 12 Wrapping Up OUr MOdeling effOrts

https://doi.org/10.1007/978-1-4842-9060-6_10

584

 Reusing Models: A Word About Design Patterns
As we discussed in Chapter 2, when learning about something new, we automatically

search our “mental archive” for other abstractions/models that we’ve previously

built and mastered, to look for similarities that we can build upon. This technique of

comparing features to find an abstraction that is similar enough to be reused effectively

is known as pattern reuse. As it turns out, pattern reuse is an important technique for

object-oriented software development.

Let’s say that after we finish up our SRS class diagram, we’re called upon to model a

system for a small travel agency, Wild Blue Yonder (WBY). As a brand-new travel agency,

WBY wishes to offer a level of customer service above and beyond their well-established

competitors, and so they decide to enable their customers to make travel reservations

online via the Web (most of WBY’s competitors take such requests over the phone).

For any given travel package—let’s say a ten-day trip to Ireland—WBY offers

numerous trips throughout the year. Each trip has a maximum client capacity, so if a

client can’t get a confirmed seat for one of the trips, they may request a position on a

first-come, first-served waitlist.

In order to keep track of each client’s overall experience with WBY, the travel agency

plans on following up with each client after a trip to conduct a satisfaction survey and

will ask the client to rate their experience for that trip on a scale of 1 to 10, with 10 being

outstanding. By doing so, WBY can determine which trips are the most successful, so

as to offer them more frequently in the future, as well as perhaps eliminating those that

are less popular. WBY will also be able to make more informed recommendations for

future trips that a given client is likely to enjoy by studying that client’s travel satisfaction

history.

In reflecting on the requirements for this system, we experience déjà vu! We

recognize that many aspects of the WBY system requirements are similar to those of the

SRS. In fact, we’re able to reuse the overall structure, or pattern, of the SRS object model

by making the following class substitutions:

• Substitute TravelPackage for Course.

• Substitute Trip for Section.

• Substitute Client for Student.

• Substitute TripRecord for TranscriptEntry.

• Substitute TravelHistory for Transcript.

Chapter 12 Wrapping Up OUr MOdeling effOrts

https://doi.org/10.1007/978-1-4842-9060-6_2

585

Note that all of the relationships among these classes—their names, types, and even

their multiplicities—remain unchanged from the SRS class diagram (see Figure 12-3).

Figure 12-3. Reusing the SRS design pattern for WBY

such an exact match is exceptionally rare when reusing design patterns; don’t
be afraid to change some things (eliminate classes or associations, change
multiplicities, etc.) in order to facilitate reuse of a similar, but not identical, pattern.

Chapter 12 Wrapping Up OUr MOdeling effOrts

586

Having recognized the similarities between these two designs, we’re poised to take

advantage of quite a bit of reuse with regard to the code of these two systems, as well. In

fact, had we anticipated the need for developing these two systems prior to developing

either one, we could have taken steps up front to develop a generic pattern that could

have been used as the basis for both systems, as well as any future reservation systems

we might be called upon to model, as illustrated in Figure 12-4.

Figure 12-4. A general-purpose class diagram for reservation systems

Many useful, reusable patterns have been studied and documented; before

embarking on a new object modeling project, it’s worth exploring whether any of these

may be a suitable starting point.

Chapter 12 Wrapping Up OUr MOdeling effOrts

587

 Summary
Learning to model a problem from the perspective of objects is a bit like learning to ride

a bicycle. You can read all the books ever published on the subject of successful bicycle

riding, but until you actually sit on the seat, grab the handlebars, and start pedaling, you

won’t get a real sense of what it means to ride. You’ll probably wobble at first, but with

a bit of a boost from training wheels or a friendly hand to steady you, you’ll be riding off

on your own with time. The same is true of object modeling: with practice, you’ll get an

intuitive feel for what makes a good candidate class, a useful scenario, and so on.

In this chapter, we

• Discussed techniques for verifying the accuracy and completeness of

a class diagram

• Looked at how object models can be reused/adapted to other

problems with similar requirements

EXERCISES

 1. Conduct a walk-through of one of the class diagrams that you prepared as an

exercise for Chapter 10—either the prescription tracking system (pts) case

study presented in the appendix or the problem area whose requirements you

defined for exercise 3 in Chapter 1—with a classmate or coworker. report on

any insights that you gained as a result of doing so.

 2. think of two other problem areas where the reservation pattern that we

identified for the Wild Blue Yonder travel agency might also apply. What

adjustments, if any, would you need to make to the reservation pattern in order

to use it in those situations?

Chapter 12 Wrapping Up OUr MOdeling effOrts

https://doi.org/10.1007/978-1-4842-9060-6_10
https://doi.org/10.1007/978-1-4842-9060-6_1

591

CHAPTER 13

A Few More Java Details
You received a solid introduction to Java syntax in Part 1 of this book, particularly as it

pertains to illustrating fundamental object concepts. Before we dive into the specifics of

coding the model layer of the Student Registration System (SRS), however, we’d like to

introduce you to a few more details about the Java language that we’ll subsequently take

advantage of when coding the SRS model layer.

In this chapter, you’ll learn about

• The nature and purpose of Java archive (“jar”) files

• The mechanics of Java documentation comments

• The object nature of Strings

• A special type of class called an enum that can be used to enumerate

the explicit values that a particular variable is allowed to assume

• How we can form highly complex expressions by chaining messages

• How objects refer to themselves from within their own methods

• The nature of Java run-time exceptions and how to gracefully handle

them, including defining and using our own custom exception types

• Several approaches for providing input to command-line-driven

“GUI-less” programs

• Some important features of the Java Object class

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_13

https://doi.org/10.1007/978-1-4842-9060-6_13#DOI

592

 Java-Specific Terminology
As mentioned previously, the purpose of this book is to educate you on object

principles that are, for the most part, language neutral, and so I’ve favored generic

(and sometimes informal) OO terminology over Java-specific terminology as used by

Oracle. That being said, I’d now like to expose you to Java-specific terminology for a

number of basic object concepts as used in the formal Java Language Specification (JLS)

maintained by Oracle Corporation.

To round out this terminology, the term local variable refers to a variable that

is declared inside of a method and hence is locally scoped relative to that method.

(Method parameters are also local to the method, but Java distinguishes them from

“local variables”). Local variables are neither static nor instance variables.

Table 13-1. Comparing Generic OO vs. Java Terminology

Generic OO
Terminology Used
in This Book

Formal Java-Specific
Terminology as Used by
Sun Microsystems

Used to Describe the Following Notion

Attribute field, instance variable A variable that is created once per object, that is,

per each instance of a class. Each object has its

own separate set of instance variables.

static variable

(informal: static

attribute)

static field, class variable A variable that exists only once per class.

Method instance method A function that is invoked on an object.

static method class method A function that can be called on a class as a

whole, without reference to a specific object.

Class methods can neither call instance methods

nor access instance variables.

Feature member Those components of a class that can potentially

be inherited: for example, instance/class

variables and instance/class methods, but not
constructors.

ChApTEr 13 A FEw MorE JAvA DETAils

593

Here is a code snippet that illustrates all three types of variable:

public class Student {

 // Attributes.

 private String name; // <== name is an instance variable

 private static int totalStudents; // <== totalStudents is a

 // class variable

 // Methods.

 public void foo(int y) { // <== parameter y is local to the method

 int x; // <== x is a local variable

 // etc.

 }

 // etc.

}

 Java Archive (jar) Files
The Java bytecode comprising an application is commonly bundled and delivered in

the form of a Java archive (“jar”) file. Let’s use a simple application as an example,

consisting of

• Three user-defined types—classes Person, Student, and Professor

• A main method wrapper class called MyApp

to illustrate the use of jar files. The code for our simple example is shown in the following

public class Person {

 private String name;

 public void setName(String n) {

 name = n;

 }

}

public class Student extends Person {

 private Professor advisor;

ChApTEr 13 A FEw MorE JAvA DETAils

594

 public void setAdvisor(Professor p) {

 advisor = p;

 }

}

public class Professor extends Person {

 private String title;

 public void setTitle(String t) {

 title = t;

 }

}

to support the following program:

public class MyApp {

 public static void main(String[] args) {

 Professor p = new Professor();

 Student s = new Student();

 s.setAdvisor(p);

 }

}

 Creating Jar Files
We start by compiling our code:

javac *.java

Then, to create a jar file, we type

jar cvf jarfilename.jar list_of_files_to_be_included_in_jar_file

where the command-line argument cvf indicates that

• We wish to create a jar file.

• We wish the command to be verbose—that is, we want the command

to display everything that is going on as the jar file is created.

• We are designating the (file)name of the jar file that is to be created.

ChApTEr 13 A FEw MorE JAvA DETAils

595

For example, to place our simple application’s bytecode into a jar file named MyJar.

jar, we’d type

jar cvf MyJar.jar Person.class Student.class Professor.class MyApp.class

(Note that the bytecode files can be listed in any order). Alternatively, we could use a

wildcard character to include multiple files at once:

jar cvf MyJar.jar *.class

Because of our use of the v(erbose) command option, the following output would be

displayed by the jar utility:

added manifest

adding: Person.class(in = 222) (out= 178)(deflated 19%)

adding: Student.class(in = 419) (out= 287)(deflated 31%)

adding: Professor.class(in = 219) (out= 176)(deflated 19%)

adding: MyApp.class(in = 1751) (out= 1021)(deflated 41%)

Note that we can include any type of file that we wish in a jar file, not only bytecode

files. For example, if we want to archive our source code along with our bytecode, we can

type the command

jar cvf MyJar.jar *.class *.java

A jar file is a Zip file in disguise. while we’ll create, inspect, and (occasionally)
extract individual bytecode files from a jar file via the command-line jar utility that
comes with the Java Development Kit (JDK), many standard ZIP utilities are also
able to read/extract files from jar files. Thus, as with Zip files, we can store literally
any file type within a jar: source code, bytecode, image files, even other jar files.

 Inspecting the Contents of a Jar File
To inspect/list the contents of a jar file without “unjarring” (extracting) files, we use

the command

jar tvf jarfilename.jar

ChApTEr 13 A FEw MorE JAvA DETAils

596

where the t command-line argument indicates that we wish to see a table of contents

for the named jar file, for example:

jar tvf MyJar.jar

Output:

 0 Sun Feb 20 13:55:34 EST 2005 META-INF/

 71 Sun Feb 20 13:55:34 EST 2005 META-INF/MANIFEST.MF

 222 Mon Feb 07 16:07:16 EST 2005 Person.class

 419 Fri Feb 18 10:06:02 EST 2005 Student.class

 219 Mon Feb 07 16:07:16 EST 2005 Professor.class

 1751 Wed Feb 06 07:36:44 EST 2002 MyApp.class

Once our jar file is created, it is a simple matter to share that file with a user or

another developer, perhaps by sending it to them as an email attachment or by storing it

in a shared location on a network file system.

 Using the Bytecode Contained Within a Jar File
To inform the JVM that we want to use the bytecode within a jar file, we use a command-

line option to set an environment variable called the classpath as follows:

java –cp path_to_jar_file class_containing_main_method

For example, if we store our MyJar.jar file in a shared directory by the name of S:\

applications, then to execute the MyApp program that is stored within that jar file, we

would type

java –cp S:\applications\MyJar.jar MyApp

If more than one jar file is to be referenced at the same time, the references are

separated by semicolons under DOS and colons under UNIX, for example, under DOS:

java –cp S:\applications\MyJar.jar;T:\stuff\AnotherJar.jar SomeApp

ChApTEr 13 A FEw MorE JAvA DETAils

597

 Extracting Contents from Jar Files
Note that we need not extract bytecode from a jar file in order to use it; the JVM is able

to retrieve individual bytecode files from within jar files as needed. However, should we

ever wish to extract selected files from a jar file—say that Java source files were included

and we’d like to work with individual source files—we’d type the command

jar xvf jarfilename.jar space_separated_list_of_files_to_be_extracted

For example:

jar xvf MyApp.jar Student.java Professor.java

where the x command option indicates that we wish to extract files; to extract all source

code in a jar file, we’d type

jar xvf MyApp.jar *.java

And to extract everything from a jar file, we’d type

jar xvf MyApp.jar

Note that if you extract the contents of a jar file into a directory that contains
files by the same names as those you are extracting, the extracted files will
automatically overwrite similarly named files; you will not be warned beforehand!
so it’s a good idea to make a backup copy of the files in a directory before
“unjarring” a jar file there or, alternatively, to always “unjar” a file in a separate
empty directory.

 “Jarring” Entire Directory Hierarchies
It’s possible to incorporate the contents of an entire directory hierarchy (all subfolders)

into a single jar file via the command:

ChApTEr 13 A FEw MorE JAvA DETAils

598

jar cvf jarFileName topLevelDirectoryName

For example, the SRS code examples that accompany this book are stored within

a hierarchy of directories on my computer under a parent directory named C:\My

Documents\BJO Second Edition\Code. To create a jar file containing all of the code, I’d

type the command

jar cvf BJOcode.jar "C:\My Documents\BJO Second Edition\Code"

(note that we use double quotes to surround a path if it contains blank spaces) or,

alternatively,

cd "C:\My Documents\BJO Second Edition"

jar cvf BJOcode.jar Code

The resultant output, excerpted in the following, illustrates how all of the

subdirectories are traversed so as to include their contents in the jar file:

added manifest

adding: Code/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch14/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch14/SRS/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch14/SRS/Course.java(in = 2784) (out= 953)(deflated 65%)

adding: Code/Ch14/SRS/EnrollmentStatus.java(in = 872) (out= 438)

(deflated 49%)

adding: Code/Ch14/SRS/Person.java(in = 1223) (out= 513)(deflated 58%)

adding: Code/Ch14/SRS/Professor.java(in = 2967) (out= 1122)(deflated 62%)

etc.

adding: Code/Ch15/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch15/SRS/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch15/SRS/Course.java(in = 2784) (out= 953)(deflated 65%)

adding: Code/Ch15/SRS/CourseCatalog.java(in = 1640) (out= 713)

(deflated 56%)

etc.

adding: Code/Ch16/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch16/BeanExample.java(in = 668) (out= 378)(deflated 43%)

adding: Code/Ch16/BorderLayoutLayout.java(in = 1272) (out= 470)

(deflated 63%)

ChApTEr 13 A FEw MorE JAvA DETAils

599

adding: Code/Ch16/BorderLayoutLayout2.java(in = 1279) (out= 476)

(deflated 62%)

adding: Code/Ch16/Calculator1.java(in = 2449) (out= 966)(deflated 60%)

adding: Code/Ch16/Calculator2.java(in = 2462) (out= 921)(deflated 62%)

adding: Code/Ch16/Calculator3.java(in = 3514) (out= 1229)(deflated 65%)

etc.

adding: Code/Ch16/SRS/(in = 0) (out= 0)(stored 0%)

adding: Code/Ch16/SRS/Course.java(in = 2784) (out= 953)(deflated 65%)

adding: Code/Ch16/SRS/CourseCatalog.java(in = 1640) (out= 713)

(deflated 56%)

etc.

 Javadoc Comments
In Chapter 2, we briefly mentioned the notion of Java documentation comments (a.k.a.

“javadoc” comments), a special type of comment from which we can automatically

generate HTML documentation for an application. Let’s explore how this is

accomplished.

Java documentation comments, like traditional comments, can span multiple lines

of code. However, javadoc comments start with a slash followed by two asterisks /** and

end with an asterisk slash */. Within the body of a javadoc comment, we are able to use

a number of predefined javadoc tags (whose names start with “@”) to control how the

resultant HTML will look.

Here’s a simple Person class that incorporates javadoc comments (bolded):

// Person.java

/**

 * A person is a human being. We might use a Person to represent a student

 * or a professor in an academic setting.

 */

public class Person {

 //------------

 // Attributes.

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2

600

 //------------

 /**

 * A person's legal name. Typically represented as

 * "FirstName I. LastName".

 */

 public String name;

 /**

 * A person's age in years. No matter how imminent a person’s next

birthday

 * is, their age will always reflect how old they were at their most

 * recent birthday.

 */

 private int age;

 //-------------

 // Constructor.

 //-------------

 /**

 * This constructor initializes attributes name and age.

 * @param n the Person's name, in first name - middle initial –

 * last name order.

 * @param a the Person's age.

 */

 public Person(String n, int a) {

 name = n;

 age = a;

 }

 /**

 * This method is used to determine a person's age in dog years.

 */

 public double dogYears() {

 return age/7.0;

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

601

Here are some observations about the preceding example:

• public features automatically appear in javadoc-generated

documentation; private features, by default, do not. Thus, despite

the fact that we’ve documented the private age attribute in javadoc

style, age will not be reflected in the resultant HTML documentation,

as we’ll see in a moment.

• @param is a javadoc-specific tag used to define the purpose of a

particular parameter to a method; the general syntax for its use is

@param parameterName description.

• Intervening blank lines and/or non-javadoc comments, if present,

are ignored by the javadoc utility:

 /**

 * A person's legal name. Typically represented as "FirstName

I. LastName".

 */

 // Having a non-Javadoc comment here won’t hurt, nor will intervening

 // blank lines.

 public String name;

To generate HTML documentation for this class, we use the command-line javadoc

utility that comes standard with the Java Development Kit (JDK). We can either type

the command

javadoc Person.java

to generate documentation for a single class, or we may type

javadoc *.java

if documentation is to be generated for more than one .java file at the same time.

A number of files are automatically generated as a result of typing a javadoc

command, as illustrated by the output shown in the following:

C:\> javadoc Person.java

Loading source file Person.java...

Constructing Javadoc information...

ChApTEr 13 A FEw MorE JAvA DETAils

602

Standard Doclet version 1.5.0-beta2

Building tree for all the packages and classes...

Generating Person.html...

Generating package-frame.html...

Generating package-summary.html...

Generating package-tree.html...

Generating constant-values.html...

Building index for all the packages and classes...

Generating overview-tree.html...

Generating index-all.html...

Generating deprecated-list.html...

Building index for all classes...

Generating allclasses-frame.html...

Generating allclasses-noframe.html...

Generating index.html...

Generating help-doc.html...

Generating stylesheet.css...

To view the resultant documentation, we use a web browser to load the index.

html file, which will bring up the “home page” for our documentation, as shown in

Figure 13-1. (Note that the exact layout of this page may change from one Java version to

another.)

ChApTEr 13 A FEw MorE JAvA DETAils

603

Figure 13-1. Viewing the index.html page for our Person class

Let’s explore this page:

• At the top of the page, we see the inheritance hierarchy to which the

Person class belongs (in our case, Person is shown as being directly

derived from the Object class of the java.lang package).

• Next, we see the narrative description of our class from the

javadoc comment that preceded the public class Person { ...

declaration.

Scrolling down a bit further on the page as illustrated in Figure 13-2, we see lists of all

public attributes, constructors, and methods belonging to this class under the headings

Field Summary, Constructor Summary, and Method Summary, respectively. Recall

ChApTEr 13 A FEw MorE JAvA DETAils

604

that since age was declared to be a private attribute, it is omitted by default. To include

all features in the generated documentation whether public or not, simply include the

–private flag on the javadoc command, for example:

javadoc –private Person.java

Figure 13-2. Viewing the Field, Constructor, and Method Summaries for the
Person class

ChApTEr 13 A FEw MorE JAvA DETAils

605

Scrolling down a bit further yet on the page as illustrated in Figures 13-3 and 13-4, we

see additional details about the fields (attributes), constructors, and methods. Note in

Figure 13-3 that our use of the @param tag in our constructor documentation has paid off:

we see an explanation of each parameter under the Parameters: heading.

Figure 13-3. Additional details concerning the Person class

ChApTEr 13 A FEw MorE JAvA DETAils

606

Figure 13-4. Additional details concerning the Person class, continued

Clicking the Index link at the top of the page, as illustrated in Figure 13-5, brings

up an alternative view of our documentation as shown in Figure 13-6. Here, we are able

to navigate through an alphabetical list of all class, attribute, constructor, and method

names. Had we generated javadoc documentation for multiple classes—say, for all of

the classes comprising the SRS—then all of these classes’ combined features would be

navigable via this consolidated index view.

Figure 13-5. Clicking the Index link…

ChApTEr 13 A FEw MorE JAvA DETAils

607

Figure 13-6. … displays an alphabetical listing of all symbols

ChApTEr 13 A FEw MorE JAvA DETAils

608

 The Object Nature of Strings
In Chapter 2, we introduced the String type along with eight other primitive Java types:

int, double, char, boolean, float, byte, short, and long. At that time, we emphasized

the fact that the symbol “String” must be capitalized, whereas the other eight type

names are expressed in all lowercase. What we didn’t make clear at the time is that

String is a reference type—that is, variables declared to be of type String refer to

objects. (Recall from our discussion in Chapter 3 that variables declared to be one of the

primitive types in Java do not refer to objects.)

// s refers to an OBJECT of type String.

String s = "Java";

Thus, String is said to be a reference type whose structural and behavioral

characteristics are defined by the String class, one of the classes defined within the core

java.lang package.

 Operations on Strings
As we learned in Chapter 2, the plus sign (+) operator is used to concatenate

String values:

String x = "foo";

String y = "bar";

String z = x + y + "!"; // z assumes the value "foobar!"

But now that we appreciate the object nature of Strings, we can also take advantage

of the numerous methods that are declared by the String class for manipulating

Strings:

• int length(): This method, when applied to a String reference,

returns the length of the String as an integer:

// Continuing the previous example, where z equals "foobar!":

int len = z.length(); // len now equals 7

• boolean startsWith(String s): Returns true if the String to

which this method is applied starts with the String provided as an

argument to the method and false otherwise:

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_3
https://doi.org/10.1007/978-1-4842-9060-6_2

609

String s = "foobar";

// This will evaluate to true.

if (s.startsWith("foo")) ...

• boolean endsWith(String s): Returns true if the String to which

this method is applied ends with the String provided as an argument

to the method and false otherwise:

String s = "foobar";

// This will evaluate to true.

if (s.endsWith("bar")) ...

• boolean contains(String s): Returns true if the String to which

this method is applied contains the String provided as an argument

to the method and false otherwise:

String s = "foobar";

// This will evaluate to true.

if (s.contains("oo")) ...

• int indexOf(String s): Returns a non-negative integer value

indicating the starting character position (counting from 0) at which

the String provided as an argument is found within the String to

which this method is applied or a negative value (typically –1) if the

String argument is not found:

String s = "foobar";

int i = s.indexOf("bar"); // i will equal 3

int j = s.indexOf("cat"); // j will equal -1

int k = s.indexOf("f"); // k will equal 0

• String replace(char old, char new): Creates a brand-new

String object in which all instances of the old character are replaced

with the new character—the original String’s value is unaffected:

String s = "o1o2o3o4";

// Note use of single quotes around characters

ChApTEr 13 A FEw MorE JAvA DETAils

610

// vs. double quotes around Strings.

String p = s.replace('o', 'x'); // p assumes the value

"x1x2x3x4", while

 // s retains the value

"o1o2o3o4"

• String substring(int i): Creates a brand-new String object by

copying a substring of an existing String object starting at the ith

position through the end of the existing String:

String s = "foobar";

String p = s.substring(3); // p assumes the value "bar"

• String substring(int i, int j): Creates a brand-new String

object by copying a substring of an existing String object starting at

the ith and stopping just before the jth position:

String s = "foobar";

String p = s.substring(1, 5); // p assumes the value "ooba";

• char charAt(int index): Returns the char(acter) value located at

the ith position within the String:

String s = "foobar";

// Iterate through a String character by character.

for (int i = 0; i < s.length(); i++) {

 System.out.println(s.charAt(i));

}

Output:

f

o

o

b

a

r

ChApTEr 13 A FEw MorE JAvA DETAils

611

• boolean equals(String): Compares the value of the String object

to which this method is applied with the value of the String object

whose reference is passed in as an argument; returns true if the

values are the same and false if they are not:

String s = "dog";

String t = "cat";

String u = "dog";

// This will evaluate to true ...

if (s.equals(u)) { ...

// ... and this, to false.

if (s.equals(t)) { ...

Note that we generally should avoid using the double equal sign (==) operator to

test the equality of two String objects’ values; that is, the following can yield seemingly

inconsistent results, depending on how we’ve instantiated String objects s1 and s2:

// We generally want to AVOID doing this ...

if (s1 == s2) { ...

This is because the == operator, when used to compare reference types such as

Strings or Persons or generic Objects, is actually comparing their addresses in
memory to see if the two variables are referring to the same exact object, as illustrated in

Figure 13-7.

ChApTEr 13 A FEw MorE JAvA DETAils

612

Figure 13-7. The result of evaluating x == y can vary depending on how many
String instances are involved

We’ll revisit this notion for objects in general, and for Strings specifically, a bit later

in the chapter.

 Strings Are Immutable
Strings are said to be immutable: that is, the value of a particular String object cannot

be changed once it has first been assigned at the time of instantiation. When we seem

to be programmatically modifying an existing String object’s value, we are actually

creating a new String object with the desired value.

ChApTEr 13 A FEw MorE JAvA DETAils

613

Let’s look at an example of how this works. The following line of code would result in

a String object with the value "Foo" being created somewhere in memory, as illustrated

in Figure 13-8:

String x = "Foo";

Figure 13-8. A String object has been instantiated with the literal value "Foo"

Continuing our example, this next line of code would result in a second String

object with the value “Foobar!” being created somewhere else in memory:

// We're not really CHANGING the value of the specific String object

// originally referenced by x; rather, we're creating a new String

// object with the desired value for x to reference.

x = x + "bar!";

The original “Foo” String would still exist for some period of time, but is no longer

directly accessible to us by reference and will soon be garbage collected—see Figure 13-9.

ChApTEr 13 A FEw MorE JAvA DETAils

614

Figure 13-9. When we assign a new value to String reference x, we’re actually
instantiating a new String object

While the net result is the same from the programmer’s perspective—namely, that the

value of x will now be “Foobar!” as far as we’re concerned

System.out.println(x);

Output:

Foobar!

the implication of this behind-the-scenes phenomenon is that building up long String

values through iterative String concatenation can be quite inefficient. As an example,

consider the following code:

// Initialize s to an empty String.

String s = "";

for (int x = 0; x < 10; x++) {

 // Append another digit to s.

 s = s + x;

}

System.out.println(s);

ChApTEr 13 A FEw MorE JAvA DETAils

615

Output:

0123456789

With each successive iteration of the preceding for loop, we “change” the value of

s by creating yet another String object: "0" in the first iteration, "01" in the second

iteration, and so forth. By the time the loop is finished, we’ll have created ten separate

String objects, nine of which are waiting around to be garbage collected! This is

illustrated in Figure 13-10.

Figure 13-10. Using String concatenation iteratively can be inefficient

For this reason, the java.util package provides a special-purpose class for

iteratively building up the value of a single String instance: the StringBuffer class.

ChApTEr 13 A FEw MorE JAvA DETAils

616

 The StringBuffer Class
Let’s rewrite our previous example of concatenating digits using the StringBuffer class

instead; remember that we’d have to include the import directive

import java.util.StringBuffer;

in whatever class this code is found:

// Instantiate an empty StringBuffer.

StringBuffer sb = new StringBuffer();

for (int x = 0; x < 10; x++) {

 // Append another digit to sb.

 sb.append(x);

}

// Extract the new String value from the StringBuffer.

String result = sb.toString();

// Let's see what we got!

System.out.println(result);

Our output will be the same as with the previous example:

0123456789

However, by switching to the StringBuffer approach of incremental String

concatenation, we’ve instantiated only one object—a single StringBuffer—rather

than creating ten String objects, nine of which are effectively wasted, as was the

case with the previous version of this code (recall Figure 13-10). When the number of

iterations increases—say, from 10 to 10,000—the performance improvement in using a

StringBuffer can be dramatic.

Note that once we’ve finished “assembling” the String value of interest in a

StringBuffer, we use the toString method of the StringBuffer class to extract the

value as a String object:

String result = sb.toString();

ChApTEr 13 A FEw MorE JAvA DETAils

617

We may use the add method of the StringBuffer class to append expressions of

literally any type to a StringBuffer instance, because the add method is overloaded:

there’s a version that accepts a String expression as an argument, a version that accepts

an int expression, and so forth.

 The StringTokenizer Class
Another handy String-related class provided by the java.util package is the

StringTokenizer class. With this class, we’re able to parse (break apart) a String into

tokens (segments/substrings) based on arbitrary delimiters.

The easiest way to learn how to use this class is with an example; again, we’d need to

include the directive

import java.util.StringTokenizer;

in whatever class this code is found. We’ll present the example in its entirety first and

then will narrate it step by step:

String s = "This is a test.";

StringTokenizer st = new StringTokenizer(s);

while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

}

Output:

This

is

a

test.

Let’s narrate the preceding example:

• The default StringTokenizer constructor takes one argument,

the String value to be parsed, and parses along white space

boundaries—blank spaces, tab characters, and the like:

String s = "This is a test.";

StringTokenizer st = new StringTokenizer(s);

ChApTEr 13 A FEw MorE JAvA DETAils

618

• We use the boolean hasMoreTokens method of the StringTokenizer

class to ascertain whether or not we’ve reached the end of the

particular String instance being parsed; this method returns true if

there are more tokens remaining or false if the String being parsed

has been exhausted:

while (st.hasMoreTokens()) {

• The String nextToken method is used to pluck out the next token/

segment of the String:

 System.out.println(st.nextToken());

}

A second overloaded form of constructor, StringTokenizer(String s, String

delimiter), can be used if we want to specify a specific delimiter to be used when

parsing a String. For example, to parse along slash (/) boundaries, as when perhaps

parsing a date, we’d write code as follows (observe that we enclose the delimiter, which

can be one or more characters long, within double quote marks):

String date = "11/17/1985";

// Note use of double quote marks below.

StringTokenizer st = new StringTokenizer(date, "/");

while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

}

Output:

11

17

1985

Note that the delimiter—“/”, in this example—is stripped off each token.

ChApTEr 13 A FEw MorE JAvA DETAils

619

As another example, to parse on the three-character delimiter “-#-”, we’d write

String fruit = "apple-#-banana-#-cherry";

StringTokenizer st = new StringTokenizer(fruit, "-#-");

while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

}

Output:

apple

banana

cherry

As our final example, let’s assume that we’re reading records one by one from a

file and want to parse on tab characters only vs. on all white space; we’d write code as

follows:

// Pseudocode.

String record = read a record from a file;

// Parse on tabs only, not on all white space.

StringTokenizer st = new StringTokenizer(record, "\t");

while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

}

Assuming that record contains the following text (where <tab> indicates the

presence of an invisible tab character)

Bill Jost<tab>123-45-6789<tab>Cleveland, Ohio

we’d observe the following output:

Bill Jost

123-45-6789

Cleveland, Ohio

ChApTEr 13 A FEw MorE JAvA DETAils

620

Note that the blank spaces between words have been left intact; had we instead

parsed this record with the default StringTokenizer, which parses on all white space

// Pseudocode.

String record = read a record from a file;

// Parse on any/all white space.

StringTokenizer st = new StringTokenizer(record);

while (st.hasMoreTokens()) {

 System.out.println(st.nextToken());

}

we’d have gotten the following as output instead:

Bill

Jost

123-45-6789

Cleveland,

Ohio

StringTokenizers are particularly useful when reading and parsing structured

records from data files; we’ll use this technique in building our SRS application, in

Chapter 15.

 Instantiating Strings and the String Literal Pool
There are two ways to instantiate String objects in Java. The first, which we’ve seen in

use many times before, allows us to simply assign a literal value to a String variable:

String s = "I am a String!";

But, because Strings are objects, we may also use the new keyword to formally

invoke an explicit String constructor, as follows:

String t = new String("I am a String, too!");

We’ll refer to the first way of instantiating Strings—the way that doesn’t use the new

operator—as the “shortcut” method of String instantiation and the second way as the

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_15

621

formal method. There is a subtle difference in terms of what happens behind the scenes

with these two methods of String instantiation, as follows.

When we use the shortcut method of String instantiation

String x = "Foo"; // shortcut method

the JVM checks its String literal pool—a special place in the JVM’s memory that enables

automatic shared access to String objects—to see if there is already a String object in

the literal pool with that exact same value:

• If so, the JVM reuses that existing instance without creating a second.

• Conversely, if a matching instance is not found in the literal pool, the

JVM creates one and places it in the literal pool. This is illustrated

conceptually in Figure 13-11.

Figure 13-11. Using the shortcut method of String instantiation inserts a newly
created String object into the String literal pool

ChApTEr 13 A FEw MorE JAvA DETAils

622

Let’s now use the shortcut method a second time in the same program, in an attempt

to instantiate another String object y with the same value as x:

String x = "Foo";

String y = "Foo"; // shortcut method again

This time, since the JVM finds an instance of a String with the value "Foo" in the

literal pool from when we instantiated x, the JVM assigns y as a second handle to the

same String object. This is illustrated conceptually in Figure 13-12.

Figure 13-12. Two shortcut instantiations of Strings with the same value wind
up sharing the same String object within the String literal pool

Now, let’s declare and instantiate a third String variable z in the same program,

giving it the same value as x and y. However, rather than using the shortcut method

for String instantiation with z, we’ll use the new keyword to explicitly invoke a String

constructor:

String x = "Foo";

String y = "Foo";

String z = new String("Foo"); // formal method this time

ChApTEr 13 A FEw MorE JAvA DETAils

623

Our use of new instructs the JVM to bypass the literal pool: that is, a brand-new

instance of a String object with the value "Foo" will be created outside of the literal

pool, as illustrated in Figure 13-13.

Figure 13-13. Use of the new keyword to instantiate a String, on the other hand,
explicitly creates a new String instance every time

Figure 13-14 completes our example, wherein we create a fourth similarly valued

String, w, again using the formal method:

String x = "Foo";

String y = "Foo";

String z = new String("Foo");

String w = new String("Foo"); // formal method again

As expected, our use of new once again circumvents the literal pool, and another

distinct String object is created.

ChApTEr 13 A FEw MorE JAvA DETAils

624

Figure 13-14. Another distinct String object is created

Because we used a combination of formal and shortcut String instantiation in our

example, we wound up with three different String objects in memory—one in the literal

pool and two in the general memory of the JVM, all with the same value "Foo". Had we

consistently used the shortcut approach when instantiating all four String objects, we’d

have only created one such instance, and hence our JVM’s memory would have been

less cluttered. For this reason, the shortcut form of String instantiation is the preferred

String construction technique in most situations.

 Testing the Equality of Strings
We mentioned earlier that testing the equality of Strings using the == operator

String s1;

String s2;

// Instantiation details omitted ...

if (s1 == s2) { ...

ChApTEr 13 A FEw MorE JAvA DETAils

625

rather than using the String class’s equals method

String s1;

String s2;

// Instantiation details omitted ...

if (s1.equals(s2)) { ...

can yield seemingly puzzling results, if one doesn’t understand the difference between

the formal and shortcut methods for instantiating Strings. Using the four String

references w, x, y, and z as represented in Figure 13-14, we’d get the following results

from various tests of equality:

• Both of these first two tests, comparing x and y, evaluate to true

// Are the VALUES of x and y the same?

if (x.equals(y)) { ... // true

// Are x and y referring to the SAME OBJECT?

if (x == y) { ... // true

because x and y not only have the same value "Foo" but they also refer

to the same specific String object.

• Where we see a difference is when we attempt to compare w and z in

similar fashion:

// Are the VALUES of w and z the same?

if (w.equals(z)) { ... // true

// Are w and z referring to the SAME OBJECT?

if (w == z) { ... // FALSE!!!

The first test evaluates to true, because the values of w and z are

equivalent, but the second test evaluates to false, because w and z refer

to two different objects.

In the vast majority of cases, when we say we wish to compare two Strings, we

typically mean that we want to compare their values, not their unique identities as

objects. Thus, we virtually always compare Strings for equality using the equals method

rather than the == operator.

ChApTEr 13 A FEw MorE JAvA DETAils

626

We’ll revisit this distinction between the == operator and the equals method once

more, when we talk about generic Objects later in this chapter.

 Message Chains
When we talked about Java expressions in Part 1 of the book, there was one form of

expression that we omitted: namely, message chains. We’ve repeated our list of what

constitutes Java expressions from Chapter 4 in the following, highlighting this latest

addition:

• A constant: 7, false

• A char(acter) literal: 'A', '&'

• A String literal: "foo", ""

• The name of any variable declared to be of one of the predefined
types that we’ve seen so far: myString, x

• Any one of the preceding that is modified by one of the Java unary
operators: i++

• A message/method invocation on an object reference: z.length()

• Any two of the preceding that are combined with one of the Java
binary operators: z.length() + 2

• A “chain” of two or more messages concatenated by periods
(“dots”): p.getName().length()

• Any of the preceding types of expression enclosed in parentheses:

(p.getName().length() + 2)

With Java (and other OOPLs), it is quite commonplace to form complex expressions

by concatenating (and sometimes nesting) method calls. As with all expressions, we

evaluate complex method expressions from innermost to outermost parentheses, left to

right. So, based on the following code example

// Instantiate three objects.

Student s = new Student();

Professor p = new Professor();

Department d = new Department();

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_4

627

// Set selected attribute values.

d.setName("MATH");

p.setDepartment(d);

s.setAdvisor(p);

let’s evaluate the following line of code:

s.setMajor(s.getAdvisor().getDepartment().getName());

• There are two levels of parenthesis nesting in this example, but the

inner sets of parentheses represent the argument signatures of the

various methods being invoked, and so we’ll focus on evaluating the

expression within the outer set of parentheses:

s.getAdvisor().getDepartment().getName()

• Evaluating this expression from left to right, the first subexpression,

s.getAdvisor(), returns a reference to a Professor object; it’s as if

we’ve simplified our original line of code as follows:

// From:

s.setMajor(s.getAdvisor().getDepartment().getName());

// To:

s.setMajor(p.getDepartment().getName());

• Next, we apply the getDepartment method to this Professor, which

returns a reference to a Department; it’s as if we’ve simplified the

original line of code even further, as follows:

// From:

s.setMajor(p.getDepartment().getName());

// To:

s.setMajor(d.getName());

• Next, we apply the getName method to this Department, which returns

a reference to a String object whose value is "Math"; it’s as if we’ve

simplified the original expression further still, as follows:

ChApTEr 13 A FEw MorE JAvA DETAils

628

// From:

s.setMajor(d.getName());

// To:

s.setMajor("Math");

• Finally, we evaluate the statement as a whole, which assigns the

String value "Math" as the major field for Student s.

We’ll see many such concatenated method calls in the SRS code.

The type of a chained message expression is the type of the result that the last

method in the chain returns. For example, if

• s is a Student reference

• getAdvisor is a Student method that returns a Professor reference

• getName is a Professor method that returns a String reference

• length is a String method that returns an int value

then s.getAdvisor().getName().length() is an int(eger) expression.

 Object Self-Referencing with “this”
We’ve previously seen the this keyword used in two different ways:

• In Chapter 4, we learned that the syntax this.featureName can be

used within any (non-static) method to emphasize the fact that we’re

accessing another feature of this same object:

public class SomeClass {

 // Details omitted.

 public void foo() {

 // Call method bar (declared below) from within foo.

 this.bar();

 // etc.

 }

 public void bar() {

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_4

629

 // ...

 }

}

• In that same chapter, we also learned that, from within any

constructor of a class X, we can invoke any other constructor of the

same class X via the syntax

this(optional arguments);

so as to reuse code from one constructor to another.

We’ll now explore a third context in which the this keyword may be used.

In client code, such as the main method of a program, we declare reference variables

so as to assign symbolic names to objects:

Student s = new Student(); // s is a reference variable of type Student.

We can then conveniently manipulate the objects that these reference variables refer

to by manipulating the reference variables themselves:

s.setName("Fred");

When we are executing the code that comprises the body of one of an object’s own

methods, we sometimes need the object to be able to refer to itself—that is, to self-
reference, as in this next bit of code (please read inline comments carefully):

public class Student {

 Professor facultyAdvisor;

 // Other details omitted.

 public void selectAdvisor(Professor p) {

 // We're down in the "bowels" of the selectAdvisor method,

 // executing this method for a particular Student object/instance.

 // We save the handle on our new advisor as one of our attributes ...

 this.setFacultyAdvisor(p);

 // ... and now we want to turn around and tell this Professor object to

 // reflect us as its student advisee. The Professor class has a

 // method with the header: public void addAdvisee(Student s)

ChApTEr 13 A FEw MorE JAvA DETAils

630

 // and so all we need to do is invoke this method on our

advisor object,

 // passing in a reference to ourself as a Student; but, who the heck

 // are we? That is, how do we refer to ourself?

 facultyAdvisor.addAdvisee(???);

 }

}

Within the body of a method, when we need a way to refer to the object whose

method we are executing, we use the reserved word this to “self-reference.” So, with

respect to our preceding example, the line of code highlighted in the following would do

the trick nicely:

public class Student {

 Professor facultyAdvisor;

 // Other details omitted.

 public void selectAdvisor(Professor p) {

 this.setFacultyAdvisor(p);

 p.addAdvisee(this); // passing a reference to THIS Student

 }

}

Specifically, it would pass a reference to this Student—the Student object whose

selectAdvisor method we are executing—as an argument to the addAdvisee method as

invoked on Professor facultyAdvisor.

 Java Exception Handling
Unexpected problems can arise as the JVM interprets/executes a Java program;

for example

• A program may be unable to open a data file due to inappropriate

permissions.

• A program may have trouble establishing a connection to a database

management system because a user has supplied an invalid

password.

ChApTEr 13 A FEw MorE JAvA DETAils

631

• A user may supply inappropriate data via an application’s user

interface—for example, a non-numeric value where a numeric value is

expected.

• The problem may be something as simple as a logic error that the

compiler wasn’t able to detect.

Suppose we were to write the following simple program:

public class Problem {

 public static void main(String[] args) {

 // Declare two Student object references and initialize them

 // to the value null, which is the "zero-equivalent" value

 // for object references; that is, null indicates that the variable

 // does not currently reference an object.

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to,

but forget

 // to do so for s2.

 s1 = new Student();

 // More details omitted ...

 // Still later in our program, we attempt to assign names to both

Students.

 // This line of code is fine ...

 s1.setName("Fred");

 // ... but this next line of code causes a run-time problem,

because we

 // are trying to invoke a method on -- i.e., "talk to" -- a

 // non-existent object.

 s2.setName("Mary");

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

632

The preceding code would compile without error, but if we were to execute this

program, the JVM would report the following run-time error:

Exception in thread "main" java.lang.NullPointerException

 at Problem.main(Problem.java:22)

We refer to (recoverable) Java run-time errors as exceptions and refer to the process

whereby the JVM reports that a run-time error has arisen as throwing an exception.

With respect to this example specifically, the JVM threw a NullPointerException on line

22 of the Problem class:

s2.setName("Mary"); // this is line 22

A NullPointerException arises whenever we try to invoke a method on an object

reference (s2, in this example) whose value is null or, in plain English, whenever we try

to “talk to” a nonexistent object.

When the JVM throws an exception, it’s as if the JVM is shooting off a signal flare to

notify an application that something has gone wrong, in order to give the application a

chance to recover from the problem if we’ve equipped it to do so. Through a technique

known as exception handling, we can design our applications so that they may

anticipate and gracefully recover from such exceptions at run time.

Figure 13-15. When the JVM throws an exception, it is effectively shooting off a
signal flare to notify an application of a problem that has arisen

ChApTEr 13 A FEw MorE JAvA DETAils

633

 The Mechanics of Exception Handling
The basics of the exception handling mechanism are as follows.

 The try Block

We enclose code that is likely to throw an exception inside of a pair of braces to form

a code block and precede the opening brace with the keyword try. This indicates our

intention to catch—that is, to detect and respond to—any exceptions that might by thrown

by the JVM while executing the code within that try block.

Going back to our previous example, we might amend our code as highlighted in the

following:

public class Problem2 {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to, but

 // forget to do so for s2.

 s1 = new Student();

 // More details omitted ...

 // We've added a try statement to enclose the code likely to

 // generate an exception.

 try {

 s1.setName("Fred");

 s2.setName("Mary");

 }

 // There's more to follow ... stay tuned!

In order for the preceding code to compile, the try block must be immediately

followed by at least one catch or finally block.

ChApTEr 13 A FEw MorE JAvA DETAils

634

 The catch Block

Each catch block begins with a declaration of the form

catch (ExceptionType variableName) { ...

where the keyword catch is followed by parentheses enclosing a specific type of

exception that is to be caught; the braces that follow the closing parenthesis enclose the

code to be used in recovering from the exception:

catch (ExceptionType variableName) {

 // Pseudocode.

 recovery code for an ExceptionType exception goes here ...

}

(For now, don’t worry about the variableName that is also declared within these

parentheses—we’ll discuss its purpose shortly.)

One or more catch blocks can be associated with the same try block, as illustrated

in the following:

try {

 code liable to throw exception(s) goes here ...

}

catch (ExceptionType1 variableName1) {

 recovery code for ExceptionType1 goes here ...

}

catch (ExceptionType2 variableName2) {

 recovery code for ExceptionType2 goes here ...

}

// etc.

There are many different exception types built into the Java language, each one

defined by a different predefined Java class derived from a common ancestor class called

Exception. Before we discuss some of the more important Java exception types, however,

let’s finish amending our previous example involving Student references by adding

several catch clauses (bolded in the following) to the try statement. (Depending on

what type of exceptions we’re catching, we may need import directives; we do not need

to import NullPointerException, however, as it is within the core java.lang package.)

ChApTEr 13 A FEw MorE JAvA DETAils

635

public class Problem3 {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to, but

 // forget to do so for s2.

 s1 = new Student();

 // More details omitted ...

 // We've added a try block to enclose the code likely to

 // generate an exception.

 try {

 s1.setName("Fred");

 s2.setName("Mary");

 } // end of try block

 // Here are our catch clauses (three in total).

 catch (ArithmeticException e) {

 // Pseudocode.

 recovery code for an ArithmeticException goes here ...

 }

 catch (NullPointerException e2) {

 // Here's where we write the code for what the program

should do if

 // a NullPointerException occurred.

 System.out.println("Darn! We forgot to initialize " +

 "all of the students!");

 // etc.

 }

 catch (ArrayIndexOutOfBoundsException e3) {

 // Pseudocode.

 recovery code for an ArrayIndexOutOfBoundsException goes

here ...

ChApTEr 13 A FEw MorE JAvA DETAils

636

 }

 // etc. ...

 }

}

Note that the code within the try block of the preceding example doesn’t throw
either ArithmeticExceptions or ArrayIndexOutOfBoundsExceptions;
these are merely included for purposes of illustration.

With regard to exception handling, there are two possible paths through this main

method’s logic. As long as the code in the try block executes without error, all of the

catch blocks are bypassed, and execution of our program continues after the end of the

last catch block, as illustrated in Figure 13-16.

ChApTEr 13 A FEw MorE JAvA DETAils

637

Figure 13-16. If no exceptions are thrown in the try block, all catch blocks are
bypassed

If, on the other hand, an exception is thrown by the JVM while executing the

try block, execution of the try block abruptly terminates as of the line on which the

exception occurred. The JVM then examines the catch clauses in order from top to

bottom, looking for a catch clause whose declared exception type addresses the type of

exception that was thrown:

• If a match is found, the JVM executes the associated catch block; in

the case of multiple matches, only the first such match is executed.

Then, execution resumes after the end of the last catch block. This is

illustrated in Figure 13-17.

ChApTEr 13 A FEw MorE JAvA DETAils

638

Figure 13-17. If an exception arises, the first matching catch block, if any, is
executed, and the rest are skipped

• If no matching catch clause is found, the exception is said to be

uncaught and, in the case of our preceding example, would be

reported to the command window as we saw earlier:

Exception in thread "main" java.lang.NullPointerException

 at Problem.main(Problem.java: ...)

To help illustrate this flow of control, let’s insert print statements into our previous

Problemx example to produce a trace of our program’s execution:

public class Problem4 {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

ChApTEr 13 A FEw MorE JAvA DETAils

639

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to, but

 // forget to do so for s2.

 s1 = new Student();

 // More details omitted ...

 System.out.println("We're about to enter the try block ...");

 try {

 System.out.println("We're about to call s1.setName(...)");

 s1.setName("Fred");

 System.out.println("We're about to call s2.setName(...)");

 s2.setName("Mary");

 System.out.println("We've reached the end of the try

block ...");

 }

 // Here are our catch blocks (three in total).

 catch (ArithmeticException e) {

 System.out.println("Executing the first catch block ...");

 }

 catch (NullPointerException e2) {

 System.out.println("Executing the second catch block ...");

 }

 catch (ArrayIndexOutOfBoundsException e3) {

 System.out.println("Executing the third catch block ...");

 }

 System.out.println("We're past the last catch block ...");

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

640

When executed, the following messages would be printed:

We're about to enter the try block ...

We're about to call s1.setName(...)

We're about to call s2.setName(...)

Executing the second catch block ...

We're past the last catch block ...

 The finally Block

A try block may optionally have a finally block associated with it; if provided, a

finally block follows any catch blocks associated with that same try block.

The code within a finally block is guaranteed to execute no matter what happens

in the try/catch code that precedes it, that is, whether

• The try block executes to completion without throwing any

exceptions whatsoever.

• The try block throws an exception that is handled by one of the

catch blocks.

• The try block throws an exception that is not handled by any of the

catch blocks (a situation that we’ll explore a bit later in this chapter).

Let’s add a finally block to our evolving Problemx program example; we’ll use the

version that included print statements, so that we may once again trace our code’s execution:

public class Problem5 {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to, but

 // forget to do so for s2.

 s1 = new Student();

 // More details omitted ...

ChApTEr 13 A FEw MorE JAvA DETAils

641

 System.out.println("We're about to enter the try block ...");

 try {

 System.out.println("We're about to call s1.setName(...)");

 s1.setName("Fred");

 System.out.println("We're about to call s2.setName(...)");

 s2.setName("Mary");

 System.out.println("We've reached the end of the try

block ...");

 }

 // Here are our catch blocks (three in total).

 catch (ArithmeticException e) {

 System.out.println("Executing the first catch block ...");

 }

 catch (NullPointerException e2) {

 System.out.println("Executing the second catch block ...");

 }

 catch (ArrayIndexOutOfBoundsException e3) {

 System.out.println("Executing the third catch block ...");

 }

 finally {

 System.out.println("Executing the finally block ...");

 }

 System.out.println("We're past the last catch block ...");

 }

}

When executed, this version of the program would produce the following output:

We're about to enter the try block ...

We're about to call s1.setName(...)

We're about to call s2.setName(...)

Executing the second catch block ...

Executing the finally block ...

We're past the last catch block ...

ChApTEr 13 A FEw MorE JAvA DETAils

642

Let’s now repair the code in our try block so that it doesn’t throw any exceptions, to

see what output our program will produce:

public class NoProblemo {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate objects for both s1 and s2

 // to refer to, thus alleviating the NullPointerException

 // in the try block below.

 s1 = new Student();

 s2 = new Student();

 // More details omitted ...

 System.out.println("We're about to enter the try block ...");

 try {

 System.out.println("We're about to call s1.setName(...)");

 s1.setName("Fred");

 System.out.println("We're about to call s2.setName(...)");

 s2.setName("Mary");

 System.out.println("We've reached the end of the try

block ...");

 }

 // Here are our catch blocks (three in total).

 catch (ArithmeticException e) {

 System.out.println("Executing first catch block ...");

 }

 catch (NullPointerException e2) {

 System.out.println("Executing second catch block ...");

 }

 catch (ArrayIndexOutOfBoundsException e3) {

 System.out.println("Executing third catch block ...");

 }

ChApTEr 13 A FEw MorE JAvA DETAils

643

 finally {

 System.out.println("Executing finally block ...");

 }

 System.out.println("We're past the last catch block ...");

 }

}

When executed, this version of the program would produce the following output—

note that all catch blocks are bypassed:

We're about to enter the try block ...

We're about to call s1.setName(...)

We're about to call s2.setName(...)

We’ve reached the end of the try block ...

Executing the finally block ...

We're past the last catch block ...

A final variation on our Problemx program once again throws a

NullPointerException, but does not catch the appropriate type of exception in any of

the catch blocks:

public class Problem6 {

 public static void main(String[] args) {

 Student s1 = null;

 Student s2 = null;

 // Details omitted ...

 // Later on, we instantiate an object for s1 to refer to, but

 // forget to do so for s2.

 s1 = new Student();

 // More details omitted ...

 System.out.println("We're about to enter the try block ...");

 try {

 System.out.println("We're about to call s1.setName(...)");

 s1.setName("Fred");

ChApTEr 13 A FEw MorE JAvA DETAils

644

 System.out.println("We're about to call s2.setName(...)");

 s2.setName("Mary");

 System.out.println("We've reached the end of the try

block ...");

 }

 // Here are our catch blocks (two in total) – note that we

 // are *not* catching NullPointerException this time.

 catch (ArithmeticException e) {

 System.out.println("Executing first catch block ...");

 }

 catch (ArrayIndexOutOfBoundsException e2) {

 System.out.println("Executing second catch block ...");

 }

 finally {

 System.out.println("Executing finally block ...");

 }

 System.out.println("We're past the last catch block ...");

 }

}

When executed, this version of the program would produce the following output:

We're about to enter the try block ...

We're about to call s1.setName(...)

We're about to call s2.setName(...)

Executing the finally block ...

Note that we never make it to the final print statement

 System.out.println("We're past the last catch block ...");

because an uncaught exception causes the overall code block in which it occurs—in our

example, the main method—to terminate abnormally.

We thus see that no matter what happens in the try/catch code, a finally block, if

present, is always executed.

Note that we may omit catch clauses for a try block if a finally block is present:

ChApTEr 13 A FEw MorE JAvA DETAils

645

// Catch blocks are unnecessary if a finally block is present.

try { ... }

finally { ... }

 Catching Exceptions
If the method in which an exception arises does not catch the exception, then the client

code that called that method is given a chance to catch it.

Consider the following three-class example:

• In our main method, we invoke methodX on a Student object:

public class MainProgram {

 public static void main(String[] args) {

 Student s = new Student();

 s.methodX();

 }

}

• In the Student’s methodX code, we in turn invoke methodY on a

Professor object:

public class Student {

 // Details omitted.

 public void methodX() {

 Professor p = new Professor();

 p.methodY();

 }

}

• Finally, here’s the Professor class:

public class Professor {

 // Details omitted.

 public void methodY() {

 // Details omitted ...

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

646

When the JVM executes our MainProgram, its main method is invoked, which in turn

invokes s.methodX(), which in turn invokes p.methodY(); this produces what is known

as a call stack at run time, illustrated in Figure 13-18.

Figure 13-18. The JVM keeps track of the order in which methods are called one
from another by creating a call stack

A stack is a last in, first out (LIFO) data structure; the most recent method call is pushed

onto the top of the call stack, and when that method exits, it is removed from (popped off)

the call stack. So, as an example, when methodY finishes executing and execution control is

returned to methodX, methodY is popped off as illustrated conceptually in Figure 13-19.

Figure 13-19. When a method exits, it is removed from the call stack

Let’s now assume that a NullPointerException is thrown while executing

methodY. If the appropriate try/catch logic is incorporated within the body of methodY

to handle/resolve such a NullPointerException, as shown in the following

public class Professor {

 // Details omitted.

ChApTEr 13 A FEw MorE JAvA DETAils

647

 public void methodY() {

 try { ... }

 catch (NullPointerException e) { ... }

 }

}

then neither the Student nor MainProgram class will be aware that such an exception

was ever thrown. From the perspective of the call stack, awareness of the exception is

contained within the current level of the stack, as illustrated in Figure 13-20.

Figure 13-20. The try/catch logic within methodY limits awareness of the
exception to the current level in the call stack

Let’s assume instead that methodY does not catch/handle NullPointerExceptions:

public class Professor {

 // Details omitted.

 public void methodY() {

 // A NullPointerException is thrown here, but

 // is NOT caught/handled.

 // (Details omitted.)

 }

}

If a NullPointerException is thrown while executing this version of methodY, it will

travel down the call stack one level to the Student class’s methodX, which is where the

call to p.methodY() originated. If the Student class’s methodX code happens to include

the necessary exception handling code, as shown in the following

public class Student {

 // Details omitted.

ChApTEr 13 A FEw MorE JAvA DETAils

648

 public void methodX() {

 Professor p = new Professor();

 // Exception handling is performed here.

 try {

 p.methodY();

 }

 catch (NullPointerException e) { ... }

 }

}

then the exception is contained by methodX in the Student class, and the MainProgram

will thus be unaware that such an exception was ever thrown. This is illustrated in terms

of the call stack in Figure 13-21.

Figure 13-21. The exception “escapes” the methodY level of the call stack, but is
contained/handled by methodX

Now, let’s assume that neither methodY of Professor nor methodX of Student

handles NullPointerExceptions, but that our main method is written to do so, as shown

in the following:

public class Professor {

 // Details omitted.

 public void methodY() {

 // A NullPointerException is thrown here, but

 // is NOT caught/handled.

 // (Details omitted.)

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

649

//-----------------------------

public class Student {

 // Details omitted.

 public void methodX() {

 Professor p = new Professor();

 // We’re not doing any exception handling

 // here, either.

 p.methodY();

 }

}

//-----------------------------

public class MainProgram {

 public static void main(String[] args) {

 Student s = new Student();

 // Exception handling introduced here.

 try {

 s.methodX();

 }

 catch (NullPointerException e) { ... }

 }

}

In this case, a NullPointerException thrown in methodY would make its way

through the call stack to the main method, where it would be contained as shown in

Figure 13-22. In this case, the user of this application is unaware that an exception has

occurred.

ChApTEr 13 A FEw MorE JAvA DETAils

650

Figure 13-22. The NullPointerException makes its way to the main method

As a final variation, let’s assume that even the main method omits explicit exception

handling. If a NullPointerException were to arise in methodY, we’d see the following

stack trace appear in the command window:

java PSExample

Exception in thread "main" java.lang.NullPointerException

 at Professor.methodY(Professor.java: ...)

 at Student.methodX(Student.java: ...)

 at MainProgram.main(MainProgram.java: ...)

From the perspective of the call stack, the situation is as shown in Figure 13-23.

ChApTEr 13 A FEw MorE JAvA DETAils

651

Figure 13-23. If our application as a whole omits exception handling, the JVM
terminates the application and reports the exception to the command window for
the user to observe

we’ll learn a bit later in the chapter that the Java compiler will force us to catch
selected types of exception, but not NullPointerExceptions in particular.

 Interpreting Exception Stack Traces
As we saw previously, when an exception arises that we haven’t properly handled, a

stack trace—that is, a report by the JVM of where things went wrong and how we got

there—is displayed in the command window. Interpreting an exception stack trace is

quite easy; let’s use a code example that would generate such a trace to illustrate how

this is done.

Please read the inline comments carefully in the following three-class example to see

where a potential NullPointerException problem is lurking!

public class Professor {

 // Our simplistic Professor class has only one attribute.

 private Student advisee;

 public void setAdvisee(Student s) {

 advisee = s;

ChApTEr 13 A FEw MorE JAvA DETAils

652

 }

 public void printAdviseeInfo() {

 // A bit of delegation.

 advisee.print();

 }

}

// ---------------------------------

public class Student {

 // Our Student class has only one attribute, and no way to set

its value.

 // Thus, the name attribute of a Student will be initialized to

the value

 // null, and will REMAIN null.

 private String name;

 public void print() {

 // Since the name attribute is guaranteed to be null here,

 // this line will generate a NullPointerException at run time.

 if (name.length() > 5) System.out.println(name);

 }

}

// ---------------------------------

public class PSExample {

 public static void main(String[] args) {

 Student s = new Student();

 Professor p = new Professor();

 // Link the objects together.

 p.setAdvisee(s);

 // This next line of code will in turn invoke the print

 // method of p's Student advisee, which as we saw above is

 // going to generate a NullPointerException at run time.

ChApTEr 13 A FEw MorE JAvA DETAils

653

 p.printAdviseeInfo();

 }

}

When we run this program, we’d see the following stack trace:

java PSExample

Exception in thread "main" java.lang.NullPointerException

 at Student.print(Student.java:10)

 at Professor.printAdviseeInfo(Professor.java:11)

 at PSExample.main(PSExample.java:12)

Reading the stack trace from top to bottom

• The actual NullPointerException arose on line 10 of the

Student class:

if (name.length() > 5) System.out.println(name); // line 10

of Student

• That line of code is within the body of the print method of the

Student class, which was invoked from line 11 of the Professor class:

advisee.print(); // line 11 of Professor

• And that line of code is within the body of the printAdviseeInfo

method of the Professor class, which was in turn invoked from the

PSExample class’s main method on line 12:

p.printAdviseeInfo(); // line 12 of PSExample

Whenever a stack trace arises from an exception, the first place we should look to

diagnose and repair the problem is the line of code that is reported as the first item in

the stack trace: line 10 of the Student class, in this particular example. If in inspecting

this line we cannot understand why the exception arises, we look to the second item

in the stack trace, then the third, etc., until we have looked far enough back in the call

history to determine why things went awry.

ChApTEr 13 A FEw MorE JAvA DETAils

654

 The Exception Class Hierarchy
As mentioned in passing earlier in the chapter, the generic Exception class, included

in the java.lang package, is the superclass of all exception types in Java. As illustrated

in Figure 13-24 (taken from Oracle’s online Java documentation), there are many direct

subclasses of the Exception class, and these continue to change with new versions of the

Java language.

Figure 13-24. The java.lang.Exception class has many “offspring”!

ChApTEr 13 A FEw MorE JAvA DETAils

655

A catch clause for a given exception type X will catch that specific type of exception

or any of its subtypes, by virtue of the “is a” nature of inheritance. For this reason, it’s

important to list catch clauses in most specific to least specific order after a try block;

that is, from lowest-level subclass to superclass. Let’s use a specific example to illustrate

why this is so.

For our example, we’ll perform a database access operation (as pseudocode);

operations against databases, including possible exceptions that result from such

operations, are governed by classes belonging to the java.sql package. We’ll deal in this

example with three types of successively more general exceptions:

• DataTruncation is the most specific type of exception that we’ll

concern ourselves with in this example. As its name implies, a

DataTruncation exception occurs if data that is being written to

a database happens to get truncated, as, for example, when a

particularly long String value is written to a database field that can

only accommodate 255 characters.

• DataTruncation exceptions are a special case/subtype of the

more general SQLWarning exception type. SQLWarning exceptions

are thrown whenever any sort of database access problem occurs

that, while not fatal, is significant enough to warrant alerting an

application about.

• SQLWarning exceptions, in turn, are a special case/subclass of the

more general SQLException class of exceptions. SQLExceptions

are thrown when anything at all of concern arises in the course

of interacting with a database, ranging from attempting to log on

using an invalid password to trying to access a nonexistent table to

attempting to submit a poorly formed SQL query.

• Finally, SQLException is a direct subclass of the generic

Exception class.

This inheritance “lineage” is illustrated in Figure 13-25.

ChApTEr 13 A FEw MorE JAvA DETAils

656

Figure 13-25. The inheritance “lineage” of the java.sql.DataTruncation
exception type

The following code snippet presents one way for us to write the try/catch code for

handling DataTruncation (and other sorts of database-related) exceptions; note that

we’d need to include the appropriate import directive(s) to either import all of the java.

sql classes or just those that we’re referencing in our code:

try {

 // Pseudocode.

 attempt to write data to a database

}

catch (DataTruncation e1) {

 // Catch the most specific exception type first;

 // details omitted ...

}

catch (SQLWarning e2) {

 // ... then, the next most specific ...

 // Details omitted.

}

catch (SQLException e3) {

 // ... working our way up to the most general.

 // Details omitted.

}

Since a DataTruncation exception is a type of SQLException by virtue of inheritance,

we could alternatively choose to write this code with a single catch clause, as follows:

ChApTEr 13 A FEw MorE JAvA DETAils

657

try {

 // Pseudocode.

 database access operation ...

}

catch (SQLException e) {

 // This will catch DataTruncation exceptions along with

 // all other (sub)types of SQLException.

 // Details omitted.

}

Why would we ever bother to use three catch clauses when one will suffice? Because

the more specific an exception we catch, the more specific our recovery code can be:

try {

 // Pseudocode.

 database access operations that are liable to throw, among other

 types of exceptions, DataTruncation exceptions ...

}

catch (DataTruncation e1) {

 // Pseudocode.

 respond SPECIFICALLY to data truncation issues ...

}

catch (SQLWarning e2) { ... }

catch (SQLException e3) { ... }

The following alternative version would not be appropriate because the three catch

clauses are listed in least specific to most specific order; thus, the first catch clause

would always catch all forms of SQLException, and the latter two catch clauses would

never be reached:

try {

 // Pseudocode.

 database access operation ...

}

catch (SQLException e1) {

 // This catch clause will catch any/all SQLExceptions, including

 // SQLWarnings and DataTruncations ... details omitted.

ChApTEr 13 A FEw MorE JAvA DETAils

658

}

catch (SQLWarning e2) {

 // This catch clause is wasted – it can never be reached!

}

catch (DataTruncation e3) {

 // This catch clause is also wasted – it can never be reached!

 }

 Catching the Generic Exception Type
Some programmers use the “lazy” approach of catching the most generic Exception

type and then doing nothing to recover, just to silence the compiler:

try {

 // Pseudocode.

 do anything!!!

}

catch (Exception e) { } // Empty braces => do NOTHING to recover!!!

This is not a good practice! By doing so, we’re masking the fact that an exception

has occurred: our program may be in a serious state of dysfunction, perhaps coming to

a screeching halt (!), but will remain silent as to why because the catch clause shown

previously suppresses the typical stack trace that would otherwise typically be displayed.

This is not to say that we should never catch generic Exceptions; one legitimate

case where we might wish to do so is if we are writing a special-purpose error handling

subsystem for an application, as suggested by the following pseudocode:

public class Example {

 public static void main(String[] args) {

 try {

 // Pseudocode.

 all of our main application logic is here ...

 }

 catch (Exception e) {

 // Invoke a static method on a custom

 // MyExceptionHandler class that we've written.

 MyExceptionHandler.handleException(e);

ChApTEr 13 A FEw MorE JAvA DETAils

659

 }

 }

}

Here we assume that the static handleException method of a custom MyExceptionHandler

class that we’ve developed encapsulates logic for handling all exceptions generated

throughout our application in a central, consistent fashion (perhaps by recording them

in an application log file or alerting a system administrator to the issue in real time).

 Compiler Enforcement of Exception Handling
Generally speaking, the Java compiler will force us to enclose code that is liable to throw

an exception in a try block with an appropriate catch block(s). For example, if we were

attempting to read data from a file, as we’ll do in earnest in Chapter 15

public class FileIOExample {

 public static void main(String[] args) {

 // Pseudocode.

 open the file of interest;

 while (end of file not yet reached) {

 read next line from file;

 // etc.

 }

 }

}

we’d get compiler errors complaining that our attempts to open a file, read from a file,

etc. must be handled:

Unreported exception java.io.FileNotFoundException; must be caught or

declared to be thrown

In such a situation, we have two choices:

• Ideally, we’d enclose the code in question in a try block with an

appropriate catch block(s):

import java.io.FileNotFoundException;

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_15

660

public class FileIOExample {

 public static void main(String[] args) {

 try {

 // Pseudocode.

 open the file of interest;

 while (end of file not yet reached) {

 read next line from file;

 // etc.

 }

 }

 catch (FileNotFoundException e) { ... }

 // etc.

• Alternatively, we may add a throws clause to the header of the method

in which the uncaught exception might arise, as illustrated in the

following:

import java.io.FileNotFoundException;

public class FileIOExample {

 // By adding the throws clause to the main method declaration,

we avoid

 // having to worry about catching FileNotFoundExceptions.

 public static void main(String[] args) throws

FileNotFoundException {

 // Pseudocode.

 open the file of interest;

 while (end of file not yet reached) {

 read next line from file;

 // etc.

 }

 }

}

The only types of exception that the compiler doesn’t mandate catching are those derived

from the RuntimeException class, which is a direct subclass of the Exception class. Several

of the more commonly encountered RuntimeException types are NullPointerException,

ChApTEr 13 A FEw MorE JAvA DETAils

661

ArithmeticException (which arises when we attempt an illegal arithmetic operation, such as

dividing by zero), and ClassCastException (which, as we discussed in Chapter 7, arises if we

try to incorrectly cast an object reference to an inappropriate type). Typically, these types of

exception represent design flaws that we should “bulletproof” our application against as we are

building it, before it ever goes into production.

 Taking Advantage of the Exception That We’ve Caught
Note that the declaration of a catch clause looks somewhat like a method header

declaration in that we declare a parameter of type Exception (or one of its subtypes) to

be passed in as an argument to the catch block:

catch (SomeExceptionType variableName) { ... }

However, we don’t explicitly invoke a catch block from our program the way we

directly invoke a method. Instead, as mentioned earlier, the JVM automatically transfers

control to a catch block if an exception arises at run time; as it does so, the JVM also

passes the catch block a reference to an object representing the type of exception that

has occurred. We can therefore invoke methods on the exception object to help in

diagnosing the problem, for example:

• We can invoke the String getMessage() method on the exception

object to obtain a text message describing the problem that

has arisen:

try {

 // Pseudocode.

 try to open a non-existent file named Foo.dat ...

}

catch (FileNotFoundException e) {

 System.out.println("Error opening file " + e.getMessage());

}

Output:

Error opening file Foo.dat (The system cannot find the file specified)

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_7

662

• We can invoke the void printStackTrace() method to display a

traditional stack trace in the command window (recall that stack

traces only occur automatically if we don’t handle an exception):

try {

 // Pseudocode.

 try to open a non-existent file named Foo.dat ...

}

catch (FileNotFoundException e) {

 e.printStackTrace();

}

 Nesting of Try/Catch Blocks
A try statement may be nested inside either the try or catch block of another try

statement. We frequently have a need to nest an inner try within an outer catch block,

in particular, because the recovery code that we write within a catch block may pose a

risk of throwing additional exceptions of its own.

As an example, consider the following code snippet. We are attempting to open a

user-specified file and so must stand ready to catch FileNotFoundExceptions:

try {

 // Pseudocode.

 open a user specified file

}

catch (FileNotFoundException e) {

 // Pseudocode.

 recovery code goes here ...

}

Our recovery plan, should a FileNotFoundException arise, is to open a default

file instead; but, since the attempt to open a default file can also potentially throw a

FileNotFoundException of its own, we must wrap the recovery code in its own nested

try block, as illustrated in the following:

try {

 // Pseudocode.

ChApTEr 13 A FEw MorE JAvA DETAils

663

 open a user specified file

}

catch (FileNotFoundException e) {

 // If we were unable to find the user-specified file, perhaps

our way of

 // recovering will be to open a DEFAULT file ... but, what if

the DEFAULT

 // file cannot be found, either?

 try {

 // Pseudocode.

 open a DEFAULT file instead ...

 }

 catch (FileNotFoundException e2) {

 // Pseudocode.

 attempt to recover ...

 }

}

 User-Defined Exception Types
If we think of exceptions as signal flares that are thrown by the JVM to report issues, it’s

natural to want to extend this notion so as to allow our application to do the same: that

is, to perhaps define our own custom exception types to signal various application-

specific types of errors and to then programmatically throw them as needed when

something goes awry. This is indeed possible in Java; let’s explore the basics of declaring

and using user-defined exception types.

To invent a custom exception type called MissingValueException, we harness the

power of inheritance to extend one of the predefined Java exception classes; frequently,

we’ll extend the generic Exception class directly:

public class MissingValueException extends Exception { ... }

Of course, we’d store this class definition in a .java file—MissingValueException.

java in this particular case—and compile it into a bytecode file named

MissingValueException.class.

ChApTEr 13 A FEw MorE JAvA DETAils

664

As to what we program in the body of our custom exception, we have several options.

The simplest of all user-defined exceptions is a class with an empty body:

public class MissingValueException extends Exception { }

As trivial as this class is, we’ve nonetheless accomplished an important goal: namely,

we’ve defined a new exception type, MissingValueException, which can be explicitly

thrown and caught by our application. We’ll illustrate how this is done shortly, but before

we do so, let’s improve upon our custom exception class design a bit by introducing a

constructor as shown in the following:

public class MissingValueException extends Exception {

 // We've added a constructor ...

 public MissingValueException(String message) {

 // ... which simply invokes the base class constructor.

 super(message);

 }

}

Why might we want to do this?

• Recall that the generic Exception class declares a method with

the header String getMessage() that can be used to extract an

informative message from an exception when we catch it.

• The text of this message is originally fed into an Exception instance

as an argument via the constructor public Exception(String

message).

The getMessage method will of course be inherited by the MissingValueException

class. However, as we discussed previously, constructors are not inherited, and so if

we want to initialize the message of a MissingValueException instance in a similar

fashion, we must explicitly declare such a constructor for our MissingValueException

class; we may then reuse the code of the Exception superclass constructor via the syntax

super(message);

Let’s make one final enhancement to our MissingValueException class. As a

subclass, we are free to add whatever features make sense above and beyond those that

are inherited from the superclass; so we’ll add one attribute, Student student, plus a

get method for this attribute. The purpose for doing so will become clear in a moment.

ChApTEr 13 A FEw MorE JAvA DETAils

665

We’ll also modify the constructor header to accommodate two parameters—a String

message and a Student—as shown in the following:

public class MissingValueException extends Exception {

 // We've added an attribute ...

 private Student student;

 // ... modified our constructor to take two arguments so

 // that we can pass in a value for both the Student attribute

 // and the message that this exception will carry with it ...

 public MissingValueException(Student s, String message) {

 super(message);

 student = s;

 }

 // ... and added a get method for our Student attribute.

 public Student getStudent() {

 return student;

 }

}

This is about as elaborate as a custom exception needs to be in order to give us

maximum versatility.

Let’s now look at how we’d go about using our new exception type to signal an error

condition back to client code. First, let’s put this exception type to work in the Student

class. We’ll present the code for the Student class in its entirety first and then narrate it in

detail afterward:

public class Student {

 private String name;

 private String ssn;

 // Other details omitted.

 // Accessor methods.

 public String getSsn() { ... }

 public void setSsn() { ... }

 public String getName() { ... }

ChApTEr 13 A FEw MorE JAvA DETAils

666

 public void setName(String n) throws MissingValueException {

 // We want to report an error if the String that has been

 // passed in is blank.

 if (n.equals("")) {

 throw new MissingValueException(this,

 "A student's name cannot be blank");

 }

 else {

 name = n;

 }

 }

 // etc.

}

The first bit of unusual syntax that we notice in the preceding code is in the method

header declaration for the setName method:

 public void setName(String n) throws MissingValueException {

Since we have the potential to throw a MissingValueException from within this

method, we must declare that the setName method throws MissingValueException.

Then, inside the body of the setName method, we wish to throw a

MissingValueException if we detect that client code has passed in an empty String ("")

as the proposed name for this Student. We do so via the syntax

throw new MissingValueException(this, "A student's name cannot be blank");

That is, the keyword throw is followed by the new keyword, which in turn is followed

by a call to our MissingValueException constructor. Thus, we’ve just “shot off a signal

flare,” carrying both a reference to the Student object in question and an informative

message as to why we’ve shot off the flare: namely, because “A student’s name cannot

be blank.”

Now, let’s see how client code reacts to this “signal flare.” If we were to attempt to

write client code as follows

public class Example {

 public static void main(String[] args) {

 // Pseudocode.

ChApTEr 13 A FEw MorE JAvA DETAils

667

 String name = read value from GUI;

 Student s = new Student();

 s.setName(name);

 // etc.

the following compiler error would arise on the line that attempts to invoke the setName

method of Student s:

Unreported exception MissingValueException; must be caught or declared to

be thrown

 s.setName(name);

Because we included the throws MissingValueException clause on our setName

method declaration in the Student class, we are forced by the Java compiler to catch

this type of exception in our client code! That is, we must place our attempt to invoke the

setName method on s in a try block and follow it with an appropriate catch block, as

shown in the following:

public class Example {

 public static void main(String[] args) {

 // Pseudocode.

 String name = read value from GUI;

 Student s = new Student();

 try {

 s.setName(name);

 }

 catch (MissingValueException e) {

 System.out.println(e.getMessage());

 System.out.println("ID of affected student: " +

 e.getStudent().getSsn());

 }

 // etc.

In our catch block, we’ve taken advantage of both the inherited getMessage method

and the custom getStudent method of the MissingValueException class to produce

output as follows:

ChApTEr 13 A FEw MorE JAvA DETAils

668

A student's name cannot be blank

ID of affected student: 123-45-6789

 Throwing Multiple Types of Exception
Note that we can throw more than one type of exception from the same

method. In the following example, it’s assumed that we’ve declared a custom

InvalidCharacterException in addition to MissingValueException:

public class Student {

 // Details omitted.

 public void setName(String s) throws MissingValueException,

 InvalidCharacterException {

 if (s.equals("")) {

 throw new MissingValueException(this,

 "A student's name cannot be blank");

 }

 // Pseudocode.

 else if (s contains an invalid character) {

 throw new InvalidCharacterException(this, s +

 " contains a non-alphabetic character");

 }

 else name = s;

 }

 // etc.

}

 Enum(eration)s
Situations often arise in an application where we wish to constrain the value that a

variable can assume to a finite set of valid choices. For example, let’s say that SRS

University offers degrees in the following five major fields:

• Mathematics

ChApTEr 13 A FEw MorE JAvA DETAils

669

• Biology

• Chemistry

• Computer Science

• Physical Education

We design our Student class so that one of its attributes, String major, reflects the

discipline that a given student is majoring in. Then, to ensure that client code doesn’t

pass in an inappropriate value for the student’s major field of study, we invent a custom

exception called InvalidMajorException and use it to signal issues in this regard, as

illustrated in the following:

public class Student {

 private String name;

 private String major;

 // etc.

 // Constructor.

 public Student(String name, String major) throws

InvalidMajorException {

 this.setName(name);

 // Pseudocode.

 if (major not one of the five approved majors) {

 throw new InvalidMajorException();

 }

 else {

 this.setMajor(major);

 }

 }

 // Accessor methods.

 public void setName(String n) {

 name = n;

 }

 public void setMajor(String m) {

 major = m;

ChApTEr 13 A FEw MorE JAvA DETAils

670

 }

 // etc.

}

In so doing, we cannot prevent or detect errors in client code at compile time

// Client code.

// The compiler forces us to place Student constructor calls in

// an appropriate try block ...

try {

 // ... but we nonetheless have WRITTEN code that is

 // guaranteed to throw a runtime exception, because the

 // COMPILER has no way to determine the error.

 Student s = new Student("Dorothy Jost", "Culinary Arts");

}

catch (InvalidMajorException e) { ... }

because the InvalidMajorException doesn’t arise until this code is executed.

However, we know that there are five, and only five, valid String values for a student’s

major… Is there perhaps a way to constrain the major attribute so that we can prevent

misassignment at compile time? The answer is yes! We use a construct called an enum—

short for “enumeration”—to define/enumerate a finite set of values that a given variable

may assume.

Along with classes and interfaces, an enum is another form of user-defined type in

Java that lives in its own .java source code file and is compiled into bytecode:

// EnumName.java

public enum EnumName { ... }

More specifically, an enum is a very simplistic sort of class, consisting of only

• A single attribute, named value, declared to be of whatever (primitive

or reference) type we wish for it to be:

 // A single attribute.

 // (Pseudocode.)

 private final type value;

ChApTEr 13 A FEw MorE JAvA DETAils

671

Note that value is declared to be both private and final; as we

learned in Chapter 7, the keyword final indicates that an enum

instance’s value attribute may only be assigned a value once in its

“lifetime,” after which the value cannot be changed.

• A list (enumeration) of values that the value attribute is permitted to

assume, represented as a comma-separated list of symbolic name–
value pairs:

 // Comma separated list of name-value pairs.

 // (Pseudocode.)

 symbolicName1(value1),

 symbolicName2(value2),

 <...>

 symbolicNameN(valueN);

• A simple constructor, used to initialize the value attribute:

 // Constructor.

 // (Pseudocode.)

 EnumName(type v) {

 value = v;

 }

Note that an enum’s constructor isn’t declared to be public, because it

is not invoked from client code; rather, it is used internally to the enum

(in declaring the preceding list of symbolic name–value pairs).

• A single accessor method, value(), used by client code to retrieve the

value of the enum’s lone attribute.

Putting this all together, the general template for declaring an enum is as follows,

where the italicized items are those that we can customize:

public enum EnumName {

 // Comma separated list of name-value pairs, with last one ending with

a semicolon (;).

 // (Pseudocode.)

 symbolicName1(value1),

 symbolicName2(value2),

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_7

672

 <...>

 symbolicNameN(valueN);

 // A single attribute.

 // (Pseudocode.)

 private final type value;

 // A (non-public) constructor.

 // (Pseudocode.)

 EnumName(type v) {

 value = v;

 }

 // Accessor method.

 // (Pseudocode.)

 public type value() {

 return value;

 }

}

Let’s go back to our example involving students’ majors and retrofit an enum called

Major to control the assignment of valid major fields at compile time.

• Behind the scenes, the five values that Major can assume will be

declared as Strings:

// Major.java

public enum Major {

 // Comma separated list of symbolic name-value pairs,

where the

 // values (enclosed in parentheses) are all String literals.

 Math("Mathematics"),

 Bio("Biology"),

 Chem("Chemistry"),

 CS("Computer Science"),

 PhysEd("Physical Education");

ChApTEr 13 A FEw MorE JAvA DETAils

673

• Hence, the type of the value attribute, the type of the parameter

passed to the Major constructor, and the return type of the value()

method are all declared to be String to match:

 // We declare the value attribute to be of type String.

 private final String value;

 // The constructor takes a String argument.

 Major(String v) {

 value = v;

 }

 // The accessor method has a return type of String.

 public String value() {

 return value;

 }

}

Now, let’s re-engineer our Student class to take advantage of the new Major enum/

type. In particular, we’ll

• Change the declaration of the Student class’s major attribute to be of

type Major instead of String.

• Change the type of the second parameter that we’re passing into our

Student constructor accordingly.

• Eliminate our use of the InvalidMajorException.

• Change the setMajor method to accept an argument of type Major

vs. String.

And, while we’re at it, let’s add a display method for use in testing our

improvements to the Student class. The “new and improved” Student class code is thus

as follows (changes are highlighted):

public class Student {

 private String name;

 // We've changed the type of this attribute from String to Major.

 private Major major;

 // Other details omitted.

ChApTEr 13 A FEw MorE JAvA DETAils

674

 // Constructor.

 // We've changed the type of the second constructor parameter from

 // String to Major, and have eliminated the “throws

 // InvalidMajorException” clause.

 public Student(String name, Major major) {

 this.setName(name);

 this.setMajor(major);

 }

 // Accessor methods.

 public void setName(String n) {

 name = n;

 }

 // We’ve changed the type of the parameter on this method

 // from String to Major.

 public void setMajor(Major m) {

 major = m;

 }

 // etc.

 // We've added a display method.

 public void display() {

 // Note that we are taking advantage of the enum’s value()

 // method in the print statement below.

 System.out.println(name + " is a " + major.value() + " major.");

 }

}

Let’s now demonstrate how our newly designed Student class might be utilized from

client code:

public class EnumExample {

 public static void main(String[] args) {

 // Instantiate a Student, using our newly-created Major enum to

 // assign one of the five valid values for a student's major

ChApTEr 13 A FEw MorE JAvA DETAils

675

 // (note the syntax -- Major.CS -– for referring to such a value).

 Student s = new Student("Fred Schnurd", Major.CS);

 s.display();

 }

}

When executed, this program would produce the following output

Fred Schnurd is a Computer Science major.

where the symbolic name Major.CS has been translated to its behind-the-scenes String

equivalent, "Computer Science", courtesy of our call to the value() method from within the

Student’s display method. Had we instead written the display method as follows

 public void display() {

 // We’ve dropped the call to major.value(), and are printing

 // major directly instead.

 System.out.println(name + " is a " + major + " major.");

 }

then the symbolic name of the enum would be printed instead:

Fred Schnurd is a CS major.

It is now physically impossible to assign any value as a Student’s major other than

one of the five enum-approved values Major.Math, Major.Bio, Major.Chem, Major.CS,

and Major.PhysEd; anything else simply won’t compile.

• The following line of code won’t compile—a String is not a Major:

Student s = new Student("Fred Schnurd", "Basketweaving");

Compiler error:

Student.java: cannot find symbol

symbol : constructor Student(java.lang.String,java.lang.String)

location: class Student

 Student s = new Student("Fred Schnurd", "Basketweaving");

ChApTEr 13 A FEw MorE JAvA DETAils

676

• This next line won’t compile either—our Major enum doesn’t define

Basketweaving as a valid value:

Student s = new Student("Fred Schnurd", Major.Basketweaving);

Compiler error:

Student.java: cannot find symbol

symbol : variable Basketweaving

location: class Major

 Student s = new Student("Fred Schnurd", Major.Basketweaving);

 ^

Here’s another example of an enum called Grade that renders a double value:

public enum Grade {

 // Enumerate the values that a Grade can assume.

 // The values are all double constants in this case.

 A(4.0),

 B(3.0),

 C(2.0),

 D(1.0),

 F(0.0);

 // Our value attribute is declared to be of type double.

 private final double value;

 Grade(double v) { // double parameter type

 value = v;

 }

 public double value() { // double return type

 return value;

 }

}

Here’s a bit of client code to illustrate its use:

public class GradeDemo {

ChApTEr 13 A FEw MorE JAvA DETAils

677

 public static void main(String[] args) {

 // Declare a variable of type Grade.

 Grade grade;

 // We only may assign one of the "approved" values.

 grade = Grade.A;

 // Display it symbolically ...

 System.out.println(grade);

 //... and display its equivalent value as a double.

 System.out.println(grade.value());

 }

}

Output:

A

4.0

Here’s a final example of an enum called StudentBody that uses a reference type,

Student, as the encapsulated enum type:

public enum StudentBody {

 // Assign symbolic names to actual Student instances.

 fred(new Student("Fred")),

 mary(new Student("Mary"));

 private final Student value;

 StudentBody(Student value) {

 this.value = value;

 }

 public Student value() {

 return value;

 }

}

ChApTEr 13 A FEw MorE JAvA DETAils

678

Here’s a bit of client code to illustrate its use:

public class EnumExample {

 public static void main(String[] args) {

 Student x = StudentBody.fred;

 // etc.

 }

}

Enumerations are a powerful feature of the Java language; be certain to take

advantage of them in designing your applications, as we will in building the SRS.

 Providing Input to Command-Line-Driven Programs
Virtually all applications require input of some sort, in the form of either

• Data to be processed by the application

• Configuration information to control the manner in which the

application operates

With a classic information system like the SRS, such input is typically acquired in one

of two ways:

• From users, through their interactions with an application’s graphical

user interface

• By retrieving information from persistent storage—a file or database

On occasion, we also have a need to write command-line-driven utility programs

in Java; it’s handy to know how to guide such programs’ behavior in one of two

additional ways:

• Through the use of command-line arguments when the program is

first launched

• By prompting the user for textual inputs via the command window

Let’s explore both of these latter techniques.

ChApTEr 13 A FEw MorE JAvA DETAils

679

 Accepting Command-Line Arguments: The args Array
We learned in Chapter 2 that to invoke a Java program from the command line, we type

the command java (to launch the JVM) followed by the name of the class/bytecode file

containing the official main method, for example:

 java Simple

We’ve also learned that it’s possible to control certain aspects of the JVM’s behavior

through the use of command-line options; such flags go between the java command

and the class name. For example, we learned earlier in this chapter that we can establish

the classpath of a program—that is, inform the JVM of where to search for bytecode

files—by using the –cp option, as in

java -cp C:\Foo\A.jar;D:\Bar\B.jar Simple

We can also initialize our own programs by passing in command-line information of

our own design when we invoke them. Such data comes after the name of the program

on the command line:

java ClassFileName arg1 arg2 […] argN

For example:

java ComputeTotal 123 456 789

or

java AnalyzeWords –sort DOG GUPPY GIRAFFE HIPPOPOTAMUS CAT

Such so-called command-line arguments get passed to the main method of the Java

program as a String array called args (or whatever else we wish to name it), as declared

by the main method header:

public static void main(String[] args) { ...

Inside the main method, we can do with args whatever we’d do with any other array;

for example, determine its length, access individual String items within the array, and

so forth, as we discussed in Chapter 6.

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_6

680

Let’s look at a few example programs that take advantage of command-line

arguments. This first example is quite simple; it simply prints out information about the

arguments that it has received:

public class FruitExample {

 public static void main(String[] args) {

 System.out.println("The args array contains " + args.length + "

entries.");

 for (int i = 0; i < args.length; i++) {

 System.out.println("Argument #" + i + " = |" + args[i] + "|");

 }

 }

}

If we run the program as follows

java FruitExample apple banana cherry

we’d get the following output:

The args array contains 3 entries.

Argument #0 = |apple|

Argument #1 = |banana|

Argument #2 = |cherry|

If we want to provide arguments that contain spaces, we’d enclose them in double

quotes, as follows:

java FruitExample "green apple" "yellow banana" "black cherry"

Output:

The args array contains 3 entries.

Argument #0 = |green apple|

Argument #1 = |yellow banana|

Argument #2 = |black cherry|

And if we were to run our program with no command-line arguments whatsoever

ChApTEr 13 A FEw MorE JAvA DETAils

681

java FruitExample

it would report the following:

The args array contains 0 entries.

 Introducing Custom Command-Line Flags to Control
a Program’s Behavior
Let’s look at a second example that is a bit more elaborate; in this program, called

AnalyzeWords, we introduce a custom command-line option of our own invention,

-sort, to control the program’s behavior.

• At a minimum, AnalyzeWords will inspect however many command-

line arguments are provided by the user to determine the length of

the shortest and longest of them.

• Optionally, based on the presence of the –sort option as a

command-line argument, the program will also print out a list of the

words in sorted order, eliminating duplicates.

We’ll present the code in its entirety first, discussing it afterward:

import java.util.TreeSet;

public class AnalyzeWords {

 public static void main(String[] args) {

 // Let's start with a bit of error checking.

 // If the user forgot to provide command line input, let's

 // report this as an error.

 if (args.length == 0) {

 System.out.println("Usage: java AnalyzeWords [-sort]

list_of_words");

 System.out.println("e.g.: java AnalyzeWords -sort ZEBRA " +

 "ELEPHANT RAT MONKEY");

 System.exit(0);

 }

ChApTEr 13 A FEw MorE JAvA DETAils

682

 // Initialize a few items.

 boolean sort = false;

 TreeSet<String> sortedWords = new TreeSet<>();

 String shortest = null;

 String longest = null;

 for (int i = 0; i < args.length; i++) {

 // Watch for the presence of the -sort option.

 if (args[i].equals("-sort")) {

 sort = true;

 continue;

 }

 // If we haven't yet recorded a shortest or longest

word, then by

 // definition this is the first, and hence both the shortest

 // and longest, word!

 if (shortest == null) {

 shortest = args[0];

 longest = args[0];

 }

 // Otherwise, compare this word to the shortest/longest

seen so far.

 else {

 if (args[i].length() > longest.length()) longest = args[i];

 if (args[i].length() < shortest.length()) shortest =

args[i];

 }

 // Add the word to the TreeSet so as to sort them

automatically,

 // whether the user asked for them to be sorted or not; if the

 // user didn't ask for them to be sorted, we'll simply suppress

 // displaying this information.

 sortedWords.add(args[i]);

 }

ChApTEr 13 A FEw MorE JAvA DETAils

683

 if (sort) {

 System.out.println("Sorted words:");

 for (String s : sortedWords) {

 System.out.println("\t" + s);

 }

 }

 System.out.println("The shortest word was " + shortest.length() +

 " characters long.");

 System.out.println("The longest word was " + longest.length() +

 " characters long.");

 }

}

Let’s now review noteworthy sections of the program in detail.

Because this program requires command-line input in order for it to do anything

meaningful, we’re going to check the length of (number of command-line arguments

found within) the args array. If the length is 0, we’re going to inform the user of how the

program is to be used:

 // If the user forgot to provide command line input, let's

 // report this as an error.

 if (args.length == 0) {

 System.out.println("Usage: java AnalyzeWords [-sort] list_of_

words");

 System.out.println("e.g.: java AnalyzeWords -sort ZEBRA " +

 "ELEPHANT RAT MONKEY");

Then we’re going to terminate the program—there’s no need to go any further if

there’s no input to process:

 System.exit(0);

 }

Next, we declare a few variables:

• A boolean flag, sort, that we’ll set later in the program if we detect

that the user has provided the optional –sort command-line

argument:

ChApTEr 13 A FEw MorE JAvA DETAils

684

 // Keep track of whether the user wants to optionally sort

the words,

 // in addition to analyzing them.

 boolean sort = false;

• A TreeSet collection—recall from our discussion of collections in

Chapter 6 that sets have the property of eliminating duplicates.

TreeSets, in particular, automatically sort their contents:

 TreeSet<String> sortedWords = new TreeSet<>();

• Two Strings that will maintain handles on the shortest and longest

words that we’ve seen as of every new argument that we process:

 // We'll keep track of the shortest and longest words as we go.

 String shortest = null;

 String longest = null;

We then iterate through the args array. If we discover the –sort option in the

command-line input, we set our boolean sort flag to true and then use the continue

statement to jump to the next word in the args array—we don’t want to process the –sort

option as a true “word” with respect to our analysis:

 for (int i = 0; i < args.length; i++) {

 // Watch for the presence of the -sort flag.

 if (args[i].equals("-sort")) {

 sort = true;

 continue;

 }

If we haven’t yet recorded any words as being either the shortest or longest, we’ll

record this (first) word as both the shortest and the longest that we’ve seen thus far:

 // If we haven't yet recorded a shortest or longest

word, then by

 // definition this is the first, and hence both the shortest

 // and longest, word!

 if (shortest == null) {

 shortest = args[0];

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_6

685

 longest = args[0];

 }

Otherwise, if we have already assigned values to the shortest and longest Strings,

we compare this word to each of them, to see if it is either longer than the longest or

shorter than the shortest:

 else {

 // If the current word that we're processing is longer

 // than the longest that we've seen so far, remember IT

 // as the longest.

 if (args[i].length() > longest.length()) longest = args[i];

 // If the current word that we're processing is shorter

 // than the shortest that we've seen so far, remember IT

 // as the shortest.

 if (args[i].length() < shortest.length()) shortest =

args[i];

 }

Then, whether or not the user has asked for us to sort the words, we’ll add this

word to the sortedWords TreeSet. We do so for two primary reasons: (a) The –sort flag

may appear later in the argument list—for example, java AnalyzeWords DOG MONKEY

ELEPHANT –sort—and we want to be prepared to respond if it does. (b) It’s so easy to sort

the words, simply by adding them to a TreeSet, that there’s no point in having to iterate

through the args array a second time later on.

 // Add the word to the TreeSet so as to sort them

automatically.

 // whether the user asked for them to be sorted or not; if the

 // user didn't ask for them to be sorted, we'll simply suppress

 // displaying this information.

 sortedWords.add(args[i]);

 }

We optionally display the sorted contents of the TreeSet:

 if (sort) {

 System.out.println("Sorted words:");

ChApTEr 13 A FEw MorE JAvA DETAils

686

 for (String s : sortedWords) {

 System.out.println("\t" + s);

 }

 }

Finally, we display the results of our “shortest/longest” analysis:

 System.out.println("The shortest word was " + shortest.length() +

 " characters long.");

 System.out.println("The longest word was " + longest.length() +

 " characters long.");

 }

}

Let’s look at a few different ways to invoke this program and the output that each

would produce. First, we’ll omit the –sort option:

java AnalyzeWords ZEBRA ELEPHANT RAT MONKEY

Output:

The shortest word was 3 characters long.

The longest word was 8 characters long.

Next, we’ll include the –sort option:

java AnalyzeWords -sort ZEBRA ELEPHANT RAT MONKEY

Output:

Sorted words:

 ELEPHANT

 MONKEY

 RAT

 ZEBRA

The shortest word was 3 characters long.

The longest word was 8 characters long.

ChApTEr 13 A FEw MorE JAvA DETAils

687

The same output results if the -sort option is at the end of the argument list:

java AnalyzeWords ZEBRA ELEPHANT RAT MONKEY -sort

Output:

Sorted words:

 ELEPHANT

 MONKEY

 RAT

 ZEBRA

The shortest word was 3 characters long.

The longest word was 8 characters long.

As we learned earlier, we must enclose multiword arguments in double quotes:

java AnalyzeWords -sort "LITTLE BO PEEP" RUMPELSTILTSKIN "EENY MEENY

MINEY MOE"

Output:

Sorted words:

 EENY MEENY MINEY MOE

 LITTLE BO PEEP

 RUMPELSTILTSKIN

The shortest word was 14 characters long.

The longest word was 20 characters long.

 Accepting Keyboard Input: The Scanner Class
You learned in Part 1 of this book that Java provides a special OutputStream object called

System.out, which in turn provides both println and print methods for displaying

messages to the command-line window. Java also provides a special InputStream object

ChApTEr 13 A FEw MorE JAvA DETAils

688

called System.in to read input from the command line as typed by a user. The java.

util.Scanner class provides a convenient means of reading formatted data from input

streams, such as System.in.

The Scanner class provides numerous overloaded constructors; the one that we’ll

utilize in our examples takes an InputStream as an argument, for example:

Scanner sc = new Scanner(System.in); // reading from the keyboard

We then invoke various forms of nextType() method on the Scanner instance—

nextBoolean(), nextInt(), nextDouble(), etc.—to read the next (white space–delimited)

token from the input stream and automatically convert it to the type specified. The

method next() reads and returns the token as a String.

In the example program that follows, we prompt the user to enter three values—a

String, an int(eger), and a double, respectively. We provide exception handling logic

for java.util.InputMismatchException, in case the user types the wrong sort of data

for a given prompt:

import java.util.Scanner;

import java.util.InputMismatchException;

public class ScannerExample {

 public static void main(String[] args) {

 Scanner sc = new Scanner(System.in);

 try {

 // Prompt the user for his/her first name.

 System.out.print("Please enter your FIRST name (only): ");

 // Because we want to read the name as a String, we can use

 // the simple next() method.

 String name = sc.next();

 System.out.print("Please enter your age as an integer: ");

 int age = sc.nextInt();

 System.out.print("Please enter your GPA as a double: ");

 double gpa = sc.nextDouble();

 System.out.println();

 System.out.println(name + " is " + age + " years old.");

ChApTEr 13 A FEw MorE JAvA DETAils

689

 System.out.println(name + "'s GPA is " + gpa + ".");

 }

 catch (InputMismatchException e) {

 System.out.println();

 System.out.println("Whoops! You didn't follow the

instructions " + "properly; please try again.");

 }

 }

}

Output:

Please enter your first name: Herbie

Please enter your age as an integer: 32

Please enter your GPA as a double: 3.75

Herbie is 32 years old.

Herbie's GPA is 3.75.

 Using Wrapper Classes for Input Conversion
Recall our introduction in Chapter 6 to Java’s predefined wrapper classes for each of the

eight distinct primitive Java types—Integer, Float, Double, Byte, Short, Long, Boolean,

and Character—all within the core java.lang package. Our previous discussion of these

classes centered on their use in “wrapping” primitive types for purposes of storing them

in a Java collection. We’re now going to explore an alternative use of these classes, as

utility classes, for performing data conversions.

One such example of when we might need to perform a data conversion operation

is when obtaining data via a user interface. Whether we use a GUI to acquire user input

or a command-line interface as we’re exploring in this chapter, data is always acquired

from a user in String format. We often need to convert this data into one of the Java

numeric types (int, double, etc.) in order to be able to manipulate it mathematically.

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_6

690

Each of the wrapper classes declares a number of static methods that are useful

when we need to perform data conversions. For example, the Integer class defines a

static method with the header

static int parseInt(String s)

Pass in a String as an argument to this method, and the Integer class will

convert it to an int(eger) for us if it represents a valid integer or will throw a

NumberFormatException if it does not. Similarly, the Double class declares a static

parseDouble method, the Float class declares a static parseFloat method, and

so forth.

Here’s a simple example to illustrate how the Integer.parseInt method might

be used:

public class IntegerTest {

 public static void main(String[] args) {

 String[] ints = { "123", "foobar", "456", "789" };

 int i = 0;

 for (i = 0; i < ints.length; i++) {

 try {

 int test = Integer.parseInt(ints[i]);

 System.out.println(test + " converted just fine!");

 }

 catch (NumberFormatException e) {

 System.out.println("Whoops! " + ints[i] +

 " is an invalid integer.");

 }

 }

 }

}

This program, when run, produces the following output:

123 converted just fine!

Whoops! foobar is an invalid integer.

456 converted just fine!

789 converted just fine!

ChApTEr 13 A FEw MorE JAvA DETAils

691

Note that we inserted the try statement inside of the for loop, so that it would take

effect once per loop iteration; if we had instead inserted the whole for loop into the try

block, as illustrated in the following

public class IntegerTest {

 public static void main(String[] args) {

 String[] ints = { "123", "foobar", "456", "789" };

 int i = 0;

 try {

 // Now, the entire for loop is within the try block.

 for (i = 0; i < ints.length; i++) {

 int test = Integer.parseInt(ints[i]);

 System.out.println(test + " converted just fine!");

 }

 }

 catch (NumberFormatException e) {

 System.out.println("Whoops! " + ints[i] + " is an invalid

integer.");

 }

 }

}

then the first occurrence of a NumberFormatException would have terminated the for

loop, producing the following alternate output:

123 converted just fine!

Whoops! foobar is an invalid integer.

Another static method defined by the Integer class (and the other wrapper classes,

as well) is used to do the reverse:

static String toString(int)

This method accepts an int(eger) value as an argument, converting it into a proper

String, as the following example illustrates:

int i = 56;

ChApTEr 13 A FEw MorE JAvA DETAils

692

String s = Integer.toString(i); // s now has a String value of "56"

There is a shortcut way for doing the same thing, however: we simply need to

concatenate the value of i to an empty String ("") as follows:

int i = 56;

String s = "" + i; // s now has a String value of "56"

 Features of the Object Class
We learned in Chapter 5 that the Object class, provided in the core java.lang package,

is the ultimate superclass for all classes in Java, user-defined or otherwise. Thus, all Java

objects, regardless of type, inherit a common set of interesting features from the Object

class, which we’ll explore in this section.

 Determining the Class That an Object Belongs To
Every Java object inherits a method from the Object class with the header

Class getClass()

This method, when invoked on an object reference—for example, x.getClass();—

returns a reference to an object of type Class representing an abstraction of the class that

object x belongs to.

The Class class, in turn, defines a method with the header

String getName()

This method, when invoked on a Class reference, returns the fully qualified name

of the class for classes that belong to a named package (packagename.Classname—for

example, java.util.ArrayList) or a simple class name—for example, Professor—for

classes that belong to the default (unnamed) package (as will be the case for our SRS

classes).

Chaining these two methods together, we can ask any object reference to identify

which class the object it references belongs to, as follows:

reference.getClass().getName();

For example:

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_5

693

Professor pr = new Professor();

System.out.println(pr.getClass().getName());

Output:

Professor

or

// Test to see if x is referring to a Professor object.

// Note that if x were null, we'd get a NullPointerException, so we've

// inserted a test for "nullness" before calling the getClass method on x.

if (x != null && x.getClass().getName().equals("Professor")) { ...

Returning to our discussion of exception handling from earlier in this chapter, we

can also use the getClass().getName() approach within a catch block to determine

what sort of exception has occurred:

try { ... }

catch (SomeExceptionType e) {

 System.out.println("Drat! An exception of type " +

 e.getClass().getName() + " has occurred.");

}

Sample output:

Drat! An exception of type java.lang.NullPointerException has occurred.

Another way to test whether a given object reference belongs to a particular class

is via the instanceof operator. This is a boolean operator that allows us to determine if

some reference variable x is referring to an object of class/type Y. Here’s a simple code

example to illustrate the use of this operator; in this example, we assume that Person

is an abstract class and that both Student and Professor are concrete classes derived

from Person:

Person x;

// Later in the program ...

x = new Professor();

ChApTEr 13 A FEw MorE JAvA DETAils

694

// Still later in the program ...

// Determine the precise runtime identity of x.

if (x instanceof Student) {

 System.out.println("x is a Student");

}

if (x instanceof Professor) {

 System.out.println("x is a Professor");

}

if (x instanceof Person) {

 System.out.println("x is a Person");

}

Output:

x is a Professor

x is a Person

 Testing the Equality of Objects
What does it mean to say that two objects are “equal”? When speaking of generic

Objects, we say that two objects (or, more precisely, two object references) are equal if

they both refer to precisely the same object in memory (i.e., if the references both point

to the same exact memory location in the JVM). Java provides two ways for determining

the equality of two Object references x and y:

• The double equal sign operator (==), which we’ve seen used several

times previously in this book, first to compare the values of simple

data types in Chapter 2

int x = 3;

int y = 3;

if (x == y) { ...

and then to compare the identities of String references earlier in

Chapter 13:

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_13

695

String x = "foo";

String y = "foo";

// Do x and y refer to the same String object?

if (x == y) { ...

• The boolean equals method, which is inherited by all objects from

the Object class; we used this method with the String class earlier in

this chapter.

As defined for Objects generically, the == operator and the equals method can be

used interchangeably to test whether two references refer to exactly the same Object.

Here’s some example code to illustrate these two alternative approaches:

public class EqualsTest1 {

 public static void main(String[] args) {

 // We'll create one generic Object...

 Object o1 = new Object();

 // ... and maintain two handles on it (o1 and o2).

 Object o2 = o1;

 // We'll create a second different Object object, and will

 // use variable o3 to maintain a handle on it.

 Object o3 = new Object();

This is illustrated conceptually in Figure 13-26.

ChApTEr 13 A FEw MorE JAvA DETAils

696

Figure 13-26. We’ve created two generic Objects

Then, if we execute the following code (note our use of nested boolean expressions

within the println statements)

 // Are o1 and o2 "equal"?

 System.out.println("The expression o1 == o2 evaluates to: " +

(o1 == o2));

 System.out.println("The expression o1.equals(o2) evaluates to: " +

 (o1.equals(o2)));

 // Are o1 and o3 "equal"?

 System.out.println("The expression o1 == o3 evaluates to: " +

(o1 == o3));

 System.out.println("The expression o1.equals(o3) evaluates to: " +

 (o1.equals(o3)));

the following output results:

The expression o1 == o2 evaluates to: true

The expression o1.equals(o2) evaluates to: true

The expression o1 == o3 evaluates to: false

The expression o1.equals(o3) evaluates to: false

ChApTEr 13 A FEw MorE JAvA DETAils

697

This is because o1 and o2 are truly referring to exactly the same Object, whereas o3 is

referring to a different Object.

Let’s repeat the example, this time using Person objects:

public class EqualsTest2 {

 public static void main(String[] args) {

 // We'll create one Person object ...

 Person p1 = new Person("222-22-2222", "Fred");

 // ... and maintain two handles on it (p1 and p2).

 Person p2 = p1;

 // We'll create a second different Person object with exactly the same

 // attribute values as the first Person object that we created,

and will

 // use variable p3 to maintain a handle on this second object.

 Person p3 = new Person("222-22-2222", "Fred");

When we execute the following code

 // Are p1 and p2 "equal"?

 System.out.println("The expression p1 == p2 evaluates to: " +

(p1 == p2));

 System.out.println("The expression p1.equals(p2) evaluates to: " +

 (p1.equals(p2)));

 // Are p1 and p3 "equal"?

 System.out.println("The expression p1 == p3 evaluates to: " +

(p1 == p3));

 System.out.println("The expression p1.equals(p3) evaluates to: " +

 (p1.equals(p3)));

we get the same sort of result as we did for generic Objects:

The expression p1 == p2 evaluates to: true

The expression p1.equals(p2) evaluates to: true

The expression p1 == p3 evaluates to: false

The expression p1.equals(p3) evaluates to: false

ChApTEr 13 A FEw MorE JAvA DETAils

698

Even though p1 and p3 are referring to Person objects with identical attribute
values, they are nonetheless physically distinct Person instances, and so p1 is not

considered to be “equal to” p3.

Let’s repeat this example one final time, this time using Strings. We’ll formally

instantiate the Strings to avoid the String literal pool, ensuring that we truly do create

physically separate instances of String objects:

public class EqualsTest3 {

 public static void main(String[] args) {

 // We'll create one String object, using the formal method of

 // String instantiation ...

 String s1 = new String("hello");

 // ... and maintain two handles on it (s1 and s2).

 String s2 = s1;

 // We'll explicitly instantiate a second String object,

 // with EXACTLY THE SAME VALUE as the first String object –

 // "hello" – and will use variable s3 to maintain a handle

 // on this second String.

 String s3 = new String("hello");

This is illustrated conceptually in Figure 13-27.

ChApTEr 13 A FEw MorE JAvA DETAils

699

Figure 13-27. We’ve created two physically distinct String instances with the
same value, “hello”

When we execute the following client code

// Are s1 and s2 "equal"?

System.out.println("The expression s1 == s2 evaluates to: " + (s1 == s2));

System.out.println("The expression s1.equals(s2) evaluates to: " + (s1.

equals(s2)));

// Are s1 and s3 "equal"?

System.out.println("The expression s1 == s3 evaluates to: " + (s1 == s3));

System.out.println("The expression s1.equals(s3) evaluates to: " + (s1.

equals(s3)));

the following output results:

The expression s1 == s2 evaluates to: true

The expression s1.equals(s2) evaluates to: true

The expression s1 == s3 evaluates to: false

The expression s1.equals(s3) evaluates to: true

ChApTEr 13 A FEw MorE JAvA DETAils

700

Note that when comparing Strings with the equals method, the equals method

behaves differently than it did for generic Objects and for Person objects: that is, s1

and s3 are deemed to be “equal” despite the fact that they refer to physically different

String instances! Compare the preceding last line of output

The expression s1.equals(s3) evaluates to: true

with the corresponding lines of output from our Object and Person examples:

The expression o1.equals(o3) evaluates to: false

and:

The expression p1.equals(p3) evaluates to: false

How is it that the equals method behaves differently for Strings than it does for

other object types? As it turns out, the String class overrides the equals method as

defined by the Object class so that it compares String values rather than String

identities. In fact, many of the predefined Java classes have overridden the equals

method as inherited from Object to perform a relevant, class-specific comparison,

for example, the wrapper classes (Boolean, Integer, Double, etc.), the Date class, and

others. And, of course, we can override the equals method for our own classes, as well;

let’s see how this is accomplished.

 Overriding the equals Method
Let’s say we want the equals method, when used to compare two Person instances,

to deem them “equal” if they have the same value for their Social Security number

(ssn) attribute. To accomplish this, we’d override the equals method as shown in the

following; we’ll present the code in its entirety first and then explain some of the details

afterward:

public class Person {

 private String ssn;

 private String name;

 // etc.

ChApTEr 13 A FEw MorE JAvA DETAils

701

 // Constructor.

 public Person(String s, String n) {

 this.setSsn(s);

 this.setName(n);

 }

 // Accessor methods.

 public String getSsn() {

 return ssn;

 }

 // etc.

 // Overriding the equals method that we inherited from the

Object class.

 public boolean equals(Object o) {

 boolean isEqual;

 // Try to cast the Object reference into a Person reference.

 // If this fails, we'll get a ClassCastException.

 try {

 Person p = (Person) o;

 // If we make it to this point in the code, we know we're

 // dealing with a Person object; next, we'll compare ssn's.

 if (this.getSsn().equals(p.getSsn())) {

 // We'll deem p equal to THIS person.

 isEqual = true;

 }

 else {

 isEqual = false;

 }

 }

 catch (ClassCastException e) {

 // They're not equal – o isn't even a Person!

 isEqual = false;

ChApTEr 13 A FEw MorE JAvA DETAils

702

 }

 return isEqual;

 }

}

Let’s explore the equals method in detail:

• The equals method header as declared by the Object class accepts

a generic Object as an argument. When overriding this method

for Person, we may not change this signature to accept a Person

reference explicitly. Rather, we’ll attempt to cast o to be a reference to

a Person to determine if, at run time, o really is referring to a Person;

if the cast attempt succeeds, then we’ll wind up with two handles on

the same object—Object o and Person p:

 // Overriding the equals method that we inherited from the

Object class.

 public boolean equals(Object o) {

 boolean isEqual;

 // Try to cast the Object reference into a Person reference.

 // If this fails, we'll get a ClassCastException.

 try {

 Person p = (Person) o;

• If a ClassCastException is not thrown by the previous line of code,

then we know that o is indeed referring to a Person. Our next step

is to then compare the ssn attribute value of p (a.k.a. o) to the ssn

attribute value of this Person—that is, the Person whose equals

method we’ve invoked to begin with:

 // If we make it to this point in the code, we know we're

 // dealing with a Person object; next, we'll compare ssn's.

 if (this.getSsn().equals(p.getSsn())) {

• If the ssn values are equal, then the Person referred to by p (and o) is

deemed “equal to” this Person; otherwise, they are not equal:

ChApTEr 13 A FEw MorE JAvA DETAils

703

 // We'll deem p equal to THIS person.

 isEqual = true;

 }

 else {

 isEqual = false;

 }

 }

• Conversely, if a ClassCastException arose when we tried to cast o as

a Person, then we know that o doesn’t “equal” this Person to whom

we’re comparing—after all, o isn’t even a Person!

 catch (ClassCastException e) {

 // They're not equal – o isn't even a Person!

 isEqual = false;

 }

Now that we’ve overridden the equals method for the Person class, let’s return to

our earlier example program where we were testing the equality of Person objects. We’ll

rerun the code exactly as it was written before (code repeated in the following for your

convenience):

public class EqualsTest2 {

 public static void main(String[] args) {

 // We'll create one Person object ...

 Person p1 = new Person("222-22-2222", "Fred");

 // ... and maintain two handles on it (p1 and p2).

 Person p2 = p1;

 // We'll create a second different Person object with exactly the same

 // attribute values as the first Person object that we created,

and will

 // use variable p3 to maintain a handle on this second object.

 Person p3 = new Person("222-22-2222", "Fred");

 // Are p1 and p2 "equal"?

 System.out.println("The expression p1 == p2 evaluates to: " +

(p1 == p2));

ChApTEr 13 A FEw MorE JAvA DETAils

704

 System.out.println("The expression p1.equals(p2) evaluates to: " +

 (p1.equals(p2)));

 // Are p1 and p3 "equal"?

 System.out.println("The expression p1 == p3 evaluates to: " +

(p1 == p3));

 System.out.println("The expression p1.equals(p3) evaluates to: " +

 (p1.equals(p3)));

However, because we’ve overridden the equals method for the Person class, we’ll

now get a different result when we execute the code; the output is as follows:

The expression p1 == p2 evaluates to: true

The expression p1.equals(p2) evaluates to: true

The expression p1 == p3 evaluates to: false

The expression p1.equals(p3) evaluates to: true

Note that even though p1 and p3 are referring to two physically distinct Person

objects, these objects have identical values for their ssn attribute, and so they are now

deemed to be “equal.”

Consider overriding the equals method of any class for which you have a frequent

need to test the equivalence of objects.

 Overriding the toString Method
Recall that the (overloaded) print and println methods do their best to render

whatever expression is passed in as an argument into an equivalent String

representation. This is relatively straightforward for simple data types

int x = 7;

double y = 3.8;

boolean z = false;

System.out.println(x);

System.out.println(y);

System.out.println(z);

ChApTEr 13 A FEw MorE JAvA DETAils

705

Output:

7

3.8

false

or for expressions that resolve to one of these types:

int x = 7;

double y = 3.8;

boolean z = false;

System.out.println(x + y);

System.out.println(x == y);

Output:

10.8

false

If we were to try to print the value of an expression that resolves to an object
reference, on the other hand

Student s = new Student("Harvey", "123-45-6789");

// Try to print the object reference directly.

System.out.println(s);

we’d most likely get a rather cryptic-looking result, similar to the following:

Student@71f71130

where “Student@71f71130” represents an internal object ID relevant only to the

JVM. Why is this?
It just so happens that all objects inherit a method from the Object class with

the header

String toString();

ChApTEr 13 A FEw MorE JAvA DETAils

706

As inherited from the Object class, the toString method is defined to print the

name of the class to which an object belongs, followed by an “at” sign (@), followed by

an internal object ID— Classname@internalID—as we saw with the preceding Student

example.

Note that for expressions that resolve to an object reference, the println and print

methods automatically invoke that object’s toString method; that is, the following two

lines of code are equivalent:

System.out.println(s.toString());

and

System.out.println(s);

What we probably meant to do was to print one or more of the Student object’s

attributes as a representation of the object, for example, perhaps the student’s name,

followed by their ssn in parentheses:

John Smith (123-45-6789)

We can accomplish this by overriding the toString method for the Student class

to define what it is that we wish to have printed as a representation of a Student. For

example, the Student class may override the toString method as follows:

public String toString() {

 return this.getName() + " (" + this.getSsn() + ")");

}

As a result, the following code

Student s = new Student("Harvey", "123-45-6789");

System.out.println(s);

would now produce the alternative output

Harvey (123-45-6789)

as desired.

It’s generally a good idea to routinely override the toString method for all user-

defined classes.

ChApTEr 13 A FEw MorE JAvA DETAils

707

 Static Initializers
We learned in Chapter 5 that constructors are used to initialize an object’s state when it

is first instantiated:

public class Student {

 private String name;

 private String major;

 // etc.

 // Constructor.

 public Student(String n) {

 setName(n);

 setMajor("TBD"); // default value

 // etc.

 }

 // etc.

}

The initialization code contained within a constructor is executed each time a new

object of a given type is instantiated; thus, we wouldn’t want to include code to initialize

a static variable in such a constructor:

public class Student {

 private String name;

 private String major;

 private int studentIDNo;

 private static int nextAvailableStudentIDNo;

 // etc.

 // Constructor.

 public Student(String n) {

 setName(n);

 setMajor("TBD"); // default value

 // etc.

 // This would be a problem – we’d be resetting

 // the value of nextAvailableStudentIdNo

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_5

708

 // to 10000 with eachnew Student object that we create.

 nextAvailableStudentIdNo = 10000;

 setStudentIDNo(nextAvailableStudentIdNo++);

 // etc.

 }

 // etc.

}

It’s possible to define initialization code that will get performed only once in a given

application invocation—specifically, when the class’s bytecode of which it is a part is

first loaded into the JVM—by enclosing it in what is known as a static code block, thus

creating a static initializer. The general syntax for doing so is shown in the following:

public class Student {

 private String name;

 private String major;

 private int studentIDNo;

 private static int nextAvailableStudentIDNo;

 // etc.

 // A static initializer.

 static {

 // Whatever code is enclosed within this block

 // will be executed once, when the enclosing

 // class (Student, in this case) is loaded into

 // the JVM’s memory.

 nextAvailableStudentIDNo = 10000;

 }

 // Constructor.

 public Student(String n) {

 setName(n);

 setMajor("TBD"); // default value

 // etc.

 setStudentIDNo(nextAvailableStudentIdNo++);

 // etc.

ChApTEr 13 A FEw MorE JAvA DETAils

709

 }

 // etc.

}

We can of course do anything that makes good sense within a static initializer: in

addition to initializing static variables, we can establish resources for an application,

such as a file or database connection, that need only be performed once per application

session.

 Variable Initialization, Revisited
Recall our discussion of variable initialization in Chapter 2:

In Java, most variables aren’t automatically assigned an initial value when
they are declared; we must explicitly assign a value to a variable before the
variable’s name is referenced in a subsequent Java expression in order to
avoid compilation errors.

For example, this next bit of code

1 public class Problem {

2 public static void main(String[] args) {

3 // Declare several local variables within the main() method.

4 int i; // not automatically initialized

5 int j; // ditto

6 j = i; // compilation error!

7 }

8 }

was shown to produce the following compilation error on line 6:

Variable i may not have been initialized

We thus learned that it’s best to explicitly initialize such variables, for example:

public class NotAProblem {

 public static void main(String[] args) {

 // Declare several local variables within the main method and

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2

710

 // explicitly initialize them all.

 int i = 0;

 double x = 0.0;

 boolean test = false;

 Student student = null;

 // etc.

 }

}

Out of necessity, we oversimplified the explanation of variable initialization

when we first discussed this topic in Chapter 2 because we hadn’t yet introduced the

notion of objects and attributes. To properly discuss initialization in Java, we must

distinguish among

• Local variables—that is, variables declared within a method and

whose scope is therefore only the extent of the enclosing method

• Attributes of a class, a.k.a. instance variables in Java (because

they are variables whose values are associated with an object/class

instance as we discussed in Chapter 7)

• Static variables (informally referred to as “static attributes”)

of a class

As it turns out

• All local variables, whether declared to be of one of the eight

primitive Java types or of a reference type, are considered by

the compiler to be uninitialized until they have been explicitly

initialized within a program.

• All instance/static variables, on the other hand, whether declared

to be of a simple Java type or of a reference type, are automatically
initialized to the default zero-equivalent value for the type in
question.

Thus, in the following code example

public class Student {

 // Attributes/instance variables.

 private int age;

ChApTEr 13 A FEw MorE JAvA DETAils

https://doi.org/10.1007/978-1-4842-9060-6_2
https://doi.org/10.1007/978-1-4842-9060-6_7

711

 private boolean isHonorsStudent;

 private double gpa;

 private Professor advisor;

 // A static/class variable.

 private static int totalStudents;

 void someMethod() {

 // Local variables.

 int x;

 boolean flag;

 double y;

 Professor p;

 // etc.

 // Details of method body omitted.

 }

 // etc.

variables would be initialized as shown in Table 13-2.

Table 13-2. The State of Automatic

Initialization of the Features of Class Student

Variable Initialized?

age yes; to 0

isHonorsStudent yes; to false

gpa yes; to 0.0

advisor yes; to null

totalStudents yes; to 0

x no

flag No

 y No

p No

ChApTEr 13 A FEw MorE JAvA DETAils

712

Therefore, when first instantiated, an object has the appropriate data structure

as prescribed by its class, but all of its attributes will be initialized to their zero-

equivalent values.

 Variable Arguments (varargs)
The varargs, or variable arguments, feature of Java introduced with version 5.0 allows us

to declare methods that can accept a variable number of similarly typed arguments. To

declare a method as accepting a variable number of arguments, the syntax is as follows:

accessibility returnType methodName(argType ... args) {

 // Iterate through the args array; details omitted.

}

where args is the name of a parameter representing an array of type argType and the
explicit inclusion of an ellipsis “...” between argType and args signals that args is

actually to be treated as an array of zero or more elements of type argType.

Within a so-called varargs method, we iterate through the args array in similar

fashion to the way that we learned to iterate through the args array of the main method

earlier in this chapter to read command-line arguments. Whereas the main method of an

application can only accept an array of String values as arg(ument)s, however

public static void main(String[] args) { // etc.

a varargs method in general may declare its args parameter to be of any type:

• A predefined reference type, such as String: public void

foo(String ... args) {

• A primitive type, such as int: public void foo(int ... args) {

• A user-defined type, such as Person: public void foo(Person

... args) {

(Note that square brackets [] are not needed for args to serve as an array; this

happens automatically by virtue of our inclusion of an ellipsis “...”.)

The following example illustrates the use of varargs methods to accept String, int,

Person, and Object arguments, respectively; for purposes of this example, we assume that

Student and Professor are subclasses of the Person (super)class and that Pineapple,

Bicycle, and Cloud are three unrelated classes all derived directly from Object:

ChApTEr 13 A FEw MorE JAvA DETAils

713

import java.util.ArrayList;

public class VarargsExample {

 public static void main(String[] args) {

 // Invoking methods that define variable argument

 // signatures, where the type of argument(s)

 // to be passed in is designated by the name

 // of the method.

 stringExample("foo", "bar");

 stringExample("eeny", "meeny", "miney", "mo");

 intExample(1, 3, 9, 27);

 intExample();

 Student student = new Student("Fred");

 Professor professor = new Professor("Dr. Carson");

 personExample(student, professor);

 ArrayList<String> arrayList = new ArrayList<>();

 arrayList.add("Hello!");

 arrayList.add("How are you?");

 arrayList.add("Goodbye ...");

 objectExample(student, arrayList);

 objectExample2(new Pineapple(), new Bicycle(), new Cloud());

 }

 //------------------------------

 // Here are our varargs methods.

 //------------------------------

 private static void stringExample(String ... args) {

 System.out.println("In stringExample, there were " +

 args.length + " arguments.");

 for (int i = 0; i < args.length; i++) {

 System.out.println(" " + args[i] + " is a " +

 args[i].getClass().getName());

 }

ChApTEr 13 A FEw MorE JAvA DETAils

714

 System.out.println();

 }

 private static void intExample(int ... args) {

 System.out.println("In intExample, there were " +

 args.length + " arguments.");

 for (int i = 0; i < args.length; i++) {

 System.out.println(" " + args[i] +

 " is an int");

 }

 System.out.println();

 }

 private static void personExample(Person ... args) {

 System.out.println("In personExample, there were " +

 args.length + " arguments.");

 for (int i = 0; i < args.length; i++) {

 System.out.println(" " + args[i] + " is a " +

 args[i].getClass().getName());

 }

 System.out.println();

 }

 private static void objectExample(Object ... args) {

 System.out.println("In objectExample, there were " +

 args.length + " arguments.");

 for (int i = 0; i < args.length; i++) {

 System.out.println(" " + args[i] + " is a " +

 args[i].getClass().getName());

 }

 System.out.println();

 }

ChApTEr 13 A FEw MorE JAvA DETAils

715

 private static void objectExample2(Object ... args) {

 // Here, we assume that we know that the args array will contain

 // an assortment of Pineapples, Bicycles, and Clouds.

 for (int i = 0; i < args.length; i++) {

 // Note casts.

 if (args[i] instanceof Pineapple) {

 ((Pineapple) args[i]).eat();

 }

 else if (args[i] instanceof Bicycle) {

 ((Bicycle) args[i]).ride();

 }

 else if (args[i] instanceof Cloud) {

 ((Cloud) args[i]).paint();

 }

 }

 System.out.println();

 }

}

Output:

In stringExample, there were 2 arguments.

 foo is a java.lang.String

 bar is a java.lang.String

In stringExample, there were 4 arguments.

 eeny is a java.lang.String

 meeny is a java.lang.String

 miney is a java.lang.String

 mo is a java.lang.String

In intExample, there were 4 arguments.

 1 is an int

 3 is an int

 9 is an int

 27 is an int

ChApTEr 13 A FEw MorE JAvA DETAils

716

In intExample, there were 0 arguments.

In personExample, there were 2 arguments.

 Fred is a Student

 Dr. Carson is a Professor

In objectExample, there were 2 arguments.

 Fred is a Student

 [Hello!, How are you?, Goodbye ...] is a java.util.ArrayList

Eating a pineapple ...

Riding a bicycle ...

Painting a cloud ...

 Summary
In this chapter, we discussed

• How formal Java-specific terminology differs from the informal

terminology commonly used to describe object concepts

• The object nature of Strings and some of the methods provided to

manipulate them

• How we can form highly complex expressions by chaining messages

• How Java exceptions arise and how to gracefully handle them,

including the ability to define our own custom exception types

• How to read input from the command line when a Java application

is invoked, as well as how to prompt the user for keyboard inputs,

useful techniques when running a command-line-driven application

• Using the this keyword to self-reference an object from within one of

its methods

• The utility features of the wrapper classes—Integer, Double, etc.—to

convert String data to numeric values and vice versa

ChApTEr 13 A FEw MorE JAvA DETAils

717

• The nature of object identities in Java, how to discover the true

class that an object belongs to, and how to test the equality of two

Java objects

• The importance of overriding the toString method for all user-

defined classes and how the equals method may similarly be

overridden

With all of the Java knowledge at our fingertips, we are now ready to proceed to

building the SRS application.

EXERCISES

 1. [Coding] write a Java program that will accept a series of individual characters,

separated by one or more spaces, as command-line input and will then “glue”

them together to form a word. For example, if we were to invoke the program

as follows

java Glue B A N A N A

then the program should output:

BANANA

with no spaces.

 2. [Coding] write a Java program that accepts a sentence as command-line input

and outputs statistics about this sentence. For example, if we were to invoke

the program as follows

java SentenceStatistics this is my sample sentence

then the program should output the following results:

number of words: 5

longest word(s): sentence

length of longest word(s): 8

shortest word(s): is my

length of shortest word(s): 2

(To keep things simple, do not use any punctuation in your sentence.)

ChApTEr 13 A FEw MorE JAvA DETAils

718

 3. [Coding] practice declaring enums by declaring

An enum called Weekday that represents the seven days of the week as

Strings.

An enum called SolarSystem that represents the nine planets in our solar

system as Planet objects: Mercury, venus, Earth, Mars, Jupiter, saturn, Uranus,

Neptune, pluto. in support of this enum, declare a simple Planet class that has

the following features: (a) a single String attribute representing the planet’s

name, (b) a constructor that takes the planet’s name as an argument, (c) a

toString method that returns the phrase "Planet: planetName".

 4. [Coding] practice with javadoc comments by retrofitting such comments into

any Java code that you’ve previously written.

 5. [Coding: Advanced] Use the Scanner class presented in this chapter as the

basis of a simple program called GuessIt that asks a user to guess a number

between 1 and 10 (program the “answer” to be guessed as a local int variable

in the GuessIt main method).

A sample interactive scenario using the GuessIt program follows; for this example, assume

that the right answer is 6:

C:\programs> java Guessit

please type a number between 1 and 10, and press Enter: 3

Too low; please try again: 7

Too high; please try again: 6

ChApTEr 13 A FEw MorE JAvA DETAils

719

CHAPTER 14

Transforming the Model
into Java Code
It’s now time to turn our attention back to the UML class diagram that we produced in

Part 2 of the book in order to render that object-oriented “blueprint” into Java code,

focusing solely on what it takes to accurately model the SRS domain information in

an OO programming language. In this chapter, you’ll learn how to represent all of the

following object-oriented constructs in Java code

• Associations of varying multiplicities (one-to-one, one-to-many, and

many-to-many), including aggregations

• Inheritance relationships

• Association classes

• Reflexive associations

• Abstract classes

• Metadata

• Static attributes and methods

along with practical guidelines as to when to use these various constructs. We’ll also

cover a technique for testing your core classes via a command-line–driven application.

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_14

https://doi.org/10.1007/978-1-4842-9060-6_14#DOI

720

 Suggestions for Getting the Maximum Value
from This Chapter
One of the best ways to master a language is to start with code that works and to

experiment with it. A good approach is to get some hands-on experience with Java by

actually compiling and running the SRS application; studying it, so as to familiarize

yourself with the techniques that we’ve used; and, finally, modifying it yourself. As

you know, exercises provided at the end of each chapter provide specific suggestions

for experiments that you may wish to try. Therefore, before you dive into this chapter,

I encourage you to download the Java source code for Chapter 14 from the book’s
GitHub repository (github.com/apress/beginning-java-objects-3e) if you haven’t
already done so.

The code that I’ve written for the SRS application is sizeable; to have included the

complete code listing for each and every Java class intact in every chapter would have

been prohibitive. So, to make this as effective a learning experience as possible for you,

I’ve chosen to feature just those portions of code that are particularly critical to your

understanding of object concepts as they translate into the Java language.

I realize that you will, of course, need access to the complete source code to round

out your understanding of the SRS application as it’s been implemented, which is

another compelling reason for you to download the SRS source code at this time. I

recommend printing a copy of the SRS source code and putting it into a loose-leaf

binder, so that you can jot down notes on the printouts as you read through this chapter.

 The SRS Class Diagram Revisited
Let’s turn our attention back to the SRS class diagram that we produced in Part 2 of the

book. In speaking with our sponsors for the SRS, we learn that they’ve decided to cut

back on a few features in the interest of reducing development costs:

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_14
http://github.com/apress/beginning-java-objects-3e

721

• First of all, they have decided not to automate students’ plans of

study via the SRS. Instead, it will be up to each student to make sure

that the courses that they register for are appropriate for the degree

that they are seeking.

• Since automated plans of study are being eliminated, there will no

longer be a need to track who a student’s faculty advisor is. The only

reason for modeling the advises relationship between the Professor

and Student classes in the first place was so that a student’s advisor

could be called upon to approve a tentative plan of study when a

student had first posted it via the SRS.

• Finally, our sponsors have decided that maintaining a waitlist for a

section once it becomes full is a luxury that they can live without,

since most students, upon learning that a section is full, immediately

choose an alternative course anyway.

We’ve thus pared down the SRS class diagram accordingly, to eliminate these

unnecessary features. Also, to keep the diagram from getting too cluttered, we’ve chosen

not to reflect attribute types or full method signatures in the UML. The resultant diagram

is shown in Figure 14-1.

Chapter 14 transforming the model into Java Code

722

Figure 14-1. Our new UML “blueprint” for Chapter 14

Fortunately for us, the resultant model still provides examples of all of the key object-

oriented elements that we need to learn how to program, as listed in Table 14-1.

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_14

723

Table 14-1. OO Features as Reflected in Figure 14-1

OO Feature Embodied in the SRS Class Diagram As Follows

inheritance the Person class serves as the base class for the Student and Professor

subclasses.

aggregation We have two examples of this: the Transcript class represents an aggregation

of TranscriptEntry objects, and the ScheduleOfClasses class represents

an aggregation of Section objects.

one-to-one

association

the maintains association between the Student and Transcript classes.

one-to-many

association

the teaches association between Professor and Section, the offered as

association between Course and Section.

many-to-many

association

the attends association between Student and Section, the prerequisite

(reflexive) association between instances of the Course class.

association class the TranscriptEntry class is affiliated with the attends association.

reflexive

association

the prerequisite association between instances of the Course class.

abstract class the Person class will be implemented as an abstract class.

metadata each Course object embodies information that is relevant to multiple Section

objects.

static attributes although not specifically illustrated in the class diagram, we’ll take advantage of

static attributes when we code the Section class.

static methods although not specifically illustrated in the class diagram, we’ll take advantage of

static methods when we code the TranscriptEntry class.

In this chapter, we’re going to code the eight model classes called for by the SRS

class diagram

Course.java

Person.java

Professor.java

ScheduleOfClasses.java

Section.java

Chapter 14 transforming the model into Java Code

724

Student.java

Transcript.java

TranscriptEntry.java

along with a “wrapper” class, SRS, that will encapsulate the main method of our

application and a supporting enum(eration), EnrollmentStatus, the purpose for which

will be explained in due time.

 The Person Class (Specifying Abstract Classes)
Let’s start with writing the code for the Person class (see Figure 14-2).

Figure 14-2. The Person class

The first thing that we notice in the UML diagram is that the name of the class is

italicized, which as you learned in Chapter 10 means that Person is to be implemented

as an abstract class. By including the keyword abstract in the class declaration, we

prevent client code from ever being able to instantiate a Person object directly:

public abstract class Person {

 Attributes of Person

The Person class icon specifies two simple attributes. We’ll make all of our attributes

private throughout the SRS application unless otherwise stated:

 //------------

 // Attributes.

 //------------

 private String name;

 private String ssn;

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_10

725

 Person Constructors

We’ll provide a constructor for the Person class that accepts two arguments, so as to

initialize our two attributes:

 //----------------

 // Constructor(s).

 //----------------

 public Person(String name, String ssn) {

 this.setName(name);

 this.setSsn(ssn);

 }

Note that we use the Person class’s own set methods to set the values of the name

and ssn attributes, a best practice that was recommended in Chapter 4.

And, because the creation of any constructor for a class eliminates that class’s

default constructor as we discussed in Chapter 4, we’ll program a replacement for the

default constructor, as well, to avoid some of the issues related with constructors and

inheritance that we discussed in Chapter 5:

 public Person() {

 this.setName("?");

 this.setSsn("???-??-????");

 }

 Person Accessor Methods

Next, we provide accessor methods for all of the attributes, observing proper accessor

method signature syntax as recommended in Chapter 4. All of our accessor methods, in

all classes, will be declared with public accessibility:

 //------------------

 // Accessor methods.

 //------------------

 public void setName(String n) {

 name = n;

 }

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_4
https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_4

726

 public String getName() {

 return name;

 }

 public void setSsn(String s) {

 ssn = s;

 }

 public String getSsn() {

 return ssn;

 }

 toString()

We’d like for all subclasses of the Person class to override the version of the toString

method that would normally be inherited from the Object class, a practice that we

discussed in Chapter 13. However, we don’t want to bother coding the details of such

a method for Person; we’d prefer to let each subclass handle the details of how the

toString method will work in its own class-appropriate way.

The best way to enforce this requirement for a toString method is to declare an

abstract method for this method in Person, as we discussed in Chapter 7:

 //-----------------------------

 // Miscellaneous other methods.

 //-----------------------------

 // We'll let each subclass determine how it wishes to be

 // represented as a String value.

 public abstract String toString();

This will ensure that all classes derived from Person override this abstract method

with a concrete version of their own. (This is not mandatory in all cases; we simply wish

for all of the SRS-derived classes to do so.)

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_7

727

note that since the Person class itself would normally have inherited a generic
version of toString from the Object class, we’re in essence overriding the
concrete toString of Object with an abstract version in Person—this is a
perfectly fine thing to do.

 display()

We also want all subclasses of Person to implement a display method, to be used for

printing the values of a Person object’s attributes to the command window. We’ll use

the display method solely for testing our application, to verify that an object’s attributes

have been properly initialized. But, rather than making this method abstract, as well,

we’ll go ahead and actually program the body of this method, since we know how we’d

like the attributes of Person to be displayed when these are inherited, at a minimum:

 public void display() {

 System.out.println("Person Information:");

 System.out.println("\tName: " + this.getName());

 System.out.println("\tSoc. Security No.: " + this.getSsn());

 }

By doing so, we are facilitating code reuse: subclasses of Person (Student,

Professor) will be able to use the super keyword to incorporate this logic in their own

display methods without having to duplicate it, as we discussed in Chapter 5. As an

example, here is a preview excerpt from the Student class’s display method:

public void display() {

 // First, let's display the generic Person info.

 super.display();

 // etc.

Again, note that we are invoking the Person class’s get methods from within the

println calls vs. accessing attributes directly. Also observe that we are inserting a tab

character (\t) in the second and third println calls so that those two lines of printed

output will be indented by one tab stop.

That’s all there is to programming the Person class—it’s pretty straightforward. We’ll

tackle the Student and Professor subclasses of Person next.

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_5

728

 The Student Class (Reuse Through Inheritance, Extending
Abstract Classes, Delegation)
Figure 14-3 shows the UML representation of the Student class.

Figure 14-3. The Student class

We indicate that Student is a subclass of Person by using the extends keyword:

public class Student extends Person {

 Attributes of Student

There are two attributes explicitly called out for the Student class in our UML diagram:

major and degree. However, we learned in Chapter 10 that we must also encode

associations as attributes. Student participates in two associations:

• attends, a many-to-many association with the Section class

• maintains, a one-to-one association with the Transcript class

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_10

729

So we must allow for each Student to maintain handles on a single Transcript

object and on many Section objects.

Of the various types of Java collection covered in Chapter 6, an ArrayList seems like

the best choice for managing multiple Section handles:

• An Array is a bit too rigid; we’d have to size the Array in advance to

be large enough to accommodate references to all of the Sections

that a Student will ever attend over the course of their studies at the

university. An ArrayList, on the other hand, can start out small and

automatically grow in size as needed.

• The decision of using an ArrayList vs. a dictionary type of collection

comes down to whether or not we’ll need to retrieve an object

reference from the collection based on some key value. We don’t

anticipate the need for such a lookup capability as it pertains to the

Sections that a Student has attended; we will need the ability to

verify if a Student has taken a particular Section or not, but this can

be accomplished by using the ArrayList class’s contains method.

That is, if attends is declared to be of type ArrayList, then we can

use the statement

if (attends.contains(someSection)) { ...

to verify whether or not a Student has taken a particular Section.

For most other uses of the attends collection, we’ll need to step

through the entire collection anyway, as when printing out a

Student’s course schedule. So an ArrayList should serve our

purposes quite nicely.

The attributes for the Student class thus turn out as follows:

 //------------

 // Attributes.

 //------------

 private String major;

 private String degree;

 private Transcript transcript;

 private ArrayList<Section> attends;

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_6

730

Of course, by virtue of inheritance, Student also inherits the attributes declared by

Person—namely, name and ssn—but with private accessibility. Hence, as we discussed

in Chapter 5, these attributes do indeed become part of the “bone structure” of a

Student object, but the symbols name and ssn are not within the namespace of the

Student class. Thus, we’ll use the associated public accessor (“get”/“set”) methods, also

inherited from Person, to access them as needed.

Since we are using the ArrayList class, we’ll need to remember to include the

following import directive at the beginning of the Student class, ahead of the class

declaration:

import java.util.ArrayList;

 Student Constructors

We’ll provide two constructors for convenience of initializing attributes:

 //----------------

 // Constructor(s).

 //----------------

 public Student(String name, String ssn, String major, String degree) {

In the first Student constructor, we use the construct super(arguments) to reuse the code

of one of the Person class constructors from within our Student constructor, to establish the

“Personness” of a Student. Recall from our discussion of the super keyword in Chapter 5

that any invocation of super(...) must be the first such line in a subclass’s constructor:

 // Reuse the code of the parent's constructor.

 super(name, ssn);

After setting the values of the major and degree attributes based on arguments

passed into the constructor

 this.setMajor(major);

 this.setDegree(degree);

we set about to instantiate the transcript attribute as follows:

 // Create a brand new Transcript to serve as this Student's

 // transcript.

 this.setTranscript(new Transcript(this));

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_5
https://doi.org/10.1007/978-1-4842-9060-6_5

731

Let’s evaluate the preceding line of code from the inside out:

• First, we instantiate a brand-new unnamed Transcript object,

passing a reference to this Student in as the lone argument to the

Transcript constructor:

 new Transcript(this)

(Since we haven’t discussed the structure of the Transcript class

yet, the signature of its constructor may seem a bit puzzling, but

it will make sense once we get a chance to review the Transcript

class in its entirety later in this chapter.)

• We then nest this instantiation request inside of a call to

setTranscript:

 this.setTranscript(new Transcript(this));

• Note that we could have accomplished this with two lines of code

instead of one:

 Transcript t = new Transcript();

 this.setTranscript(t);

But there is no point in going to the trouble of declaring a variable

t to serve as a reference to a Transcript object if we’re only going

to reference the variable one time and then discard it when it goes

out of scope as soon as the constructor exits. As we discussed in

Chapter 13, it is commonplace to chain together/nest method

calls in a single Java statement.

Finally, as we discussed in Chapter 6, we routinely instantiate collection attributes

such as the attends ArrayList in a constructor to guarantee that we have an empty “egg

carton” ready for us when it is time to add “eggs”:

 // Note that we're instantiating empty support Collection(s).

 attends = new ArrayList<>();

 }

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_6

732

We choose to overload the Student constructor by providing a second constructor,

shown in the following code, to be used if we wish to create a Student object for which

we don’t yet know the name, major field of study, or degree sought. As discussed in

Chapter 4, we use the syntax this(arguments) to reuse the code from the first Student

constructor within the second, passing in the String value "TBD" to serve as a temporary

value for the name, major, and degree attributes:

 // A second simpler form of constructor.

 public Student(String ssn) {

 // Reuse the code of the first Student constructor.

 this("TBD", ssn, "TBD", "TBD");

 }

 Student Accessor Methods

We provide accessor methods for all of the simple (non-collection) attributes:

 //------------------

 // Accessor methods.

 //------------------

 public void setMajor(String major) {

 this.major = major;

 }

 public String getMajor() {

 return major;

 }

 public void setDegree(String degree) {

 this.degree = degree;

 }

 public String getDegree() {

 return degree;

 }

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_4

733

 public void setTranscript(Transcript t) {

 transcript = t;

 }

 public Transcript getTranscript() {

 return transcript;

 }

And, as mentioned previously, Student inherits the accessor methods of the Person

class, as well.

For the attends collection attribute, we will provide the methods addSection

and dropSection in lieu of traditional accessor methods, to be used for adding and

removing Section objects to and from the ArrayList; we’ll talk about these methods

momentarily.

 display()

As we did for Person, we choose to provide a display method for Student for use in

testing our command-line version of the SRS. Because a Student is a Person and because

we’ve already gone to the trouble of programming a display method for the attributes

inherited from Person, we’ll reuse that method code by making use of the super keyword

before going on to additionally display attribute values specific to a Student object:

 public void display() {

 // First, let's display the generic Person info.

 super.display();

 // Then, display Student-specific info.

 System.out.println("Student-Specific Information:");

 System.out.println("\tMajor: " + this.getMajor());

 System.out.println("\tDegree: " + this.getDegree());

 this.displayCourseSchedule();

 this.printTranscript();

 // Finish with a blank line.

 System.out.println();

 }

Chapter 14 transforming the model into Java Code

734

Note that we are calling two of the Student class’s other methods,

displayCourseSchedule and printTranscript, from within the Student’s display

method. We chose to program these as separate methods vs. incorporating their code

into the body of the display method to keep the display method from getting too

cluttered.

 toString()

By extending an abstract class, as we are in deriving the Student subclass from Person,

we implicitly agree to override any abstract method(s) specified by the parent class with

concrete methods. In the case of the Person class, we have one such method, toString:

 // We are forced to program this method because it is specified

 // as an abstract method in our parent class (Person); failing to

 // do so would render the Student class abstract, as well.

 //

 // For a Student, we wish to return a String as follows:

 //

 // Joe Blow (123-45-6789) [Master of Science - Math]

 public String toString() {

 return this.getName() + " (" + this.getSsn() + ") [" + this.

getDegree() +

 " - " + this.getMajor() + "]";

 }

 displayCourseSchedule()

The displayCourseSchedule method is a more complex example of delegation; we’ll

defer a discussion of this method until we’ve discussed a few more of the SRS classes.

 addSection()

When a Student enrolls in a Section, this method will be used to pass a reference to

that Section to the Student object so that the Section reference may be stored in the

attends ArrayList:

Chapter 14 transforming the model into Java Code

735

 public void addSection(Section s) {

 attends.add(s);

 }

This is yet another example of delegation: the Student object is delegating the work

of organizing Section references to its encapsulated collection.

 dropSection()

When a Student withdraws from a Section, this method will be used to pass a reference

to the “dropped” Section to the Student object. The Student object in turn delegates

the work of removing the Section from the attends ArrayList by invoking its

remove method:

 public void dropSection(Section s) {

 attends.remove(s);

 }

 isEnrolledIn()

This method is used to determine whether a given Student is already enrolled in

a particular Section—that is, whether that Student’s attends collection is already

referring to the Section in question—by taking advantage of the ArrayList class’s

contains method:

 // Determine whether the Student is already enrolled in THIS

 // EXACT Section.

 public boolean isEnrolledIn(Section s) {

 if (attends.contains(s)) return true;

 else return false;

 }

As you can see, there is a lot of delegation going on within the Student class’s

methods. The ArrayList that we’ve encapsulated as an attribute of Student does a lot of

behind-the-scenes work for the Student object to which it belongs.

Chapter 14 transforming the model into Java Code

736

 isCurrentlyEnrolledInSimilar()

Although not specified by our model, I’ve added another version of the isEnrolledIn

method called isCurrentlyEnrolledInSimilar, because I found a need for such a

method when coding the Section class (coming up later in this chapter). No matter how

much thought you put into the object modeling stage of an OO software development

project, you will inevitably determine the need for additional attributes and methods for

your classes once coding is under way, because coding causes you to think at a very fine-

grained level of detail about the “mechanics” of your application.

Because this method is somewhat complex, the method code is shown in its entirety

first, followed by an in-depth explanation:

 // Determine whether the Student is already enrolled in ANY

 // Section of this SAME Course.

 public boolean isCurrentlyEnrolledInSimilar(Section s1) {

 boolean foundMatch = false;

 Course c1 = s1.getRepresentedCourse();

 for (Section s2 : attends) {

 Course c2 = s2.getRepresentedCourse();

 if (c1 == c2) {

 // There is indeed a Section in the attends()

 // ArrayList representing the same Course.

 // Check to see if the Student is CURRENTLY

 // ENROLLED (i.e., whether or not he or she has

 // yet received a grade). If there is no

 // grade, he/she is currently enrolled; if

 // there is a grade, then he/she completed

 // the course sometime in the past.

 if (s2.getGrade(this) == null) {

 // No grade was assigned! This means

 // that the Student is currently

 // enrolled in a Section of this

 // same Course.

 foundMatch = true;

 break;

Chapter 14 transforming the model into Java Code

737

 }

 }

 }

 return foundMatch;

 }

The details of this method are as follows.

In coding the enroll method of the Section class (to be discussed later in this

chapter), I realized that we needed a way to determine whether a particular Student is

enrolled in any Section of a given Course. That is, if a Student is attempting to enroll for

Math 101, section 1, we want to reject this request if that student is already enrolled in

Math 101, section 2:

 // Determine whether the Student is already enrolled in ANY

 // Section of this SAME Course.

 public boolean isCurrentlyEnrolledInSimilar(Section s1) {

We initialize a local boolean variable to false, with the intention of resetting it to

true later on if we do indeed discover that the Student is currently enrolled in a Section

of the same Course:

 boolean foundMatch = false;

Next, we obtain a handle on the Course object that the Section of interest represents,

assigning it to reference variable c1:

 Course c1 = s1.getRepresentedCourse();

We then use the technique discussed in Chapter 6 for iterating through a collection

via a for loop, using the variable s2 to maintain a temporary handle on each Section in

the attends collection, one by one:

 for (Section s2 : attends) {

Within the for loop, we obtain a handle on a second Course object, c2—the Course

object that Section s2 is a Section of—and test the equality of the two Course objects:

 Course c2 = s2.getRepresentedCourse();

 if (c1 == c2) {

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_6

738

Note that we use the == test for equality, because as we discussed in Chapter 13, we

do indeed wish to know if the two Course references c1 and c2 are indeed referring to the

exact same object.

If we find a match, we’re not quite done yet, however, because the attends

ArrayList for a Student holds on to all Sections that the Student has ever taken. To

determine if Section s2 is truly a Section that the Student is currently enrolled in, we

must check to see if a grade has been issued for this Section. A missing grade—that is, a

grade value of null—indicates that the Section is currently in progress:

 if (s2.getGrade(this) == null) {

 // No grade was assigned! This means

 // that the Student is currently

 // enrolled in a Section of this

 // same Course.

As soon as we have found the first such match, we can set our boolean flag

accordingly, break out of the enclosing while loop, and return a value of true to

the caller:

 foundMatch = true;

 break;

 }

 }

 }

 return foundMatch;

 }

 getEnrolledSections()

The getEnrolledSections method used previously is a simple one-liner:

 public Collection<Section> getEnrolledSections() {

 return attends;

 }

Note the return type of the method: we’re returning what is actually an ArrayList

reference as a generic Collection reference instead. As you learned in Chapter 7,

Collection is a predefined interface within the java.util package, and since the

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_7

739

ArrayList class implements the Collection interface, an ArrayList is a Collection.

By returning an interface type—Collection—rather than an explicit class type—

ArrayList—from this method, we reserve the right to change the type of collection that

we use internally to the Student in the future without subjecting client code to a ripple

effect, a benefit of interfaces that we discussed at length in Chapter 7.

We must also remember to include the following import directive at the beginning of

our Student class declaration:

import java.util.Collection;

 printTranscript()

The printTranscript method is a straightforward example of delegation. We use the

Student’s getTranscript method to retrieve a handle on the Transcript object that

belongs to this Student and then invoke the display method for that Transcript object

(you’ll see the details of this later in the chapter, when we discuss the Transcript class):

 public void printTranscript() {

 this.getTranscript().display();

 }

Note that, once again, we could have accomplished this with two lines of code

instead of one:

 public void printTranscript() {

 Transcript t = this.getTranscript();

 t.display();

 }

But the “chained” version is more concise.

Next, we’ll turn our attention to the Professor class.

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_7

740

 The Professor Class (Bidirectionality of Relationships)
Figure 14-4 shows the UML representation of the Professor class.

Figure 14-4. The Professor class

Because the code that is necessary to implement the Professor class of Person is

so similar to that of Student, I’ll comment only on those features of Professor that are

particularly noteworthy. I encourage you to look at the full code of the Professor class,

however, to reinforce your ability to read and interpret Java syntax.

 Professor Attributes

The Professor class is involved in one association—the one-to-many teaches association

with the Section class—and so we must provide a means for a Professor object to

maintain multiple Section handles, which we do by creating a teaches attribute of type

ArrayList:

Chapter 14 transforming the model into Java Code

741

 //------------

 // Attributes.

 //------------

 private String title;

 private String department;

 private ArrayList<Section> teaches;

 agreeToTeach()

Our class diagram calls for us to implement an agreeToTeach method. This method

accepts a Section object reference as an argument and begins by storing this reference

in the teaches ArrayList:

 public void agreeToTeach(Section s) {

 teaches.add(s);

Associations, as modeled in a UML class diagram, are assumed to be bidirectional.

When implementing associations in code, however, we must think about whether or not

bidirectionality is important on a case-by-case basis for each association.

• Can we think of any situations in which a Professor object would

need to know which Sections it is responsible for teaching? Yes—for

example, when we ask a Professor object to print out its teaching

assignments.

• How about the reverse? That is, can we think of any situations in

which a Section object would need to know who is teaching it? Yes—

for example, when we print out a Student’s course schedule.

So not only must we store a reference to the Section object in the Professor’s

teaches ArrayList, but also we must make sure that the Section object is somehow

notified that this Professor is going to be its instructor. We accomplish this by invoking

the Section object’s setInstructor method, passing in a handle on the Professor

object whose method we are in the midst of executing via the this keyword, a technique

for object self-referencing that we discussed in Chapter 13:

 // We want to link these objects bidirectionally.

 s.setInstructor(this);

 }

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_13

742

 displayTeachingAssignments()

The displayTeachingAssignments method is very similar in concept to the

displayCourseSchedule method of Student. We’ll hold off on discussing the latter

until later in this chapter, but once we’ve discussed displayCourseSchedule in detail,

you’ll be in a position to revisit the displayTeachingAssignments method of Professor,

as well.

We’ll turn our attention next to the Course class.

 The Course Class (Reflexive Relationships,
Unidirectional Relationships)
Figure 14-5 shows the UML representation of the Course class. The sections that follow

provide more detail about this class.

Figure 14-5. The Course class

Chapter 14 transforming the model into Java Code

743

 Course Attributes

Referring back to the SRS class diagram, we see that Course has three simple attributes

and participates in two associations

• offered as, a one-to-many association with the Section class

• prerequisite, a many-to-many reflexive association

for a total of five attributes:

 //------------

 // Attributes.

 //------------

 private String courseNo;

 private String courseName;

 private double credits;

 private ArrayList<Section> offeredAsSection;

 private ArrayList<Course> prerequisites;

Note that a reflexive association is handled in exactly the same way that any other

association is handled—that is, we’ve provided the Course class with an ArrayList

attribute called prerequisites that enables a given Course object to maintain handles

on other Course objects.

We have chosen not to encode this reflexive association bidirectionally. That is, a

given Course object X will know which other Course objects A, B, C, etc. serve as its

prerequisites, but it will not know which Course objects L, M, N, etc. consider X to be

one of their prerequisites, as illustrated in Figure 14-6.

Chapter 14 transforming the model into Java Code

744

Figure 14-6. The reflexive prerequisite association is not implemented
bidirectionally

Our rationale for implementing this association unidirectionally is as follows. A

given Course X has reason to know which courses are its prerequisites, so that when a

Student S attempts to enroll in X, X can inquire of S whether S has completed all such

prerequisites. X doesn’t need to know about courses that require X as a prerequisite—it’s

up to those courses to worry about X!

Had we wanted this association to be bidirectional, we would have had to include

a second ArrayList of Course references as an attribute in the Course class, as

shown in bold

 //------------

 // Attributes.

 //------------

Chapter 14 transforming the model into Java Code

745

 private String courseNo;

 private String courseName;

 private double credits;

 private ArrayList<Section> offeredAsSection;

 private ArrayList<Course> prerequisites;

 private ArrayList<Course> prerequisiteOf;

so that Course object X could hold on to this latter group of Course objects

separately.

 Course Methods

Most of the Course methods use techniques that should already be familiar to you, based

on our discussions of the Person, Professor, and Student classes. I’ll highlight a few of

the more interesting Course methods here and leave it for you as an exercise to review

the rest.

 hasPrerequisites()

This method inspects the size of the prerequisites ArrayList to determine whether or

not a given Course has any prerequisite Courses:

 public boolean hasPrerequisites() {

 if (prerequisites.size() > 0) return true;

 else return false;

 }

 getPrerequisites()

This method returns a reference to the prerequisites ArrayList as a generic

Collection reference, hiding the true identity of the type of collection that we’ve

encapsulated:

 public Collection<Course> getPrerequisites() {

 return prerequisites;

 }

We see this method in use within the Course display method, and we’ll also see it

in use by the Section class a bit later on.

Chapter 14 transforming the model into Java Code

746

 scheduleSection()

This method illustrates several interesting techniques:

 public Section scheduleSection(char day, String time, String room,

 int capacity) {

 // Create a new Section (note the creative way in

 // which we are assigning a section number) ...

 Section s = new Section(offeredAsSection.size() + 1,

 day, time, this, room, capacity);

 // ... and then remember it!

 this.addSection(s);

 return s;

 }

First, note that this method invokes the Section class constructor to instantiate a new

Section object, s, storing one handle on this Section object in the offeredAsSection

ArrayList before returning a second handle on the object to client code.

Second, we are generating the first argument to the Section constructor—

representing the section number—as a “one-up” number by adding 1 to the size of the

offeredAsSection ArrayList. The first time that we invoke the scheduleSection

method for a given Course object, the ArrayList will be empty, and so the expression

offeredAsSection.size() + 1

will evaluate to 1, and hence we’ll be creating Section number 1. The second time that

this method is invoked for the same Course object, the ArrayList will already contain a

handle on the first Section object that was created, so the expression

offeredAsSection.size() + 1

will evaluate to 2, and hence we’ll be creating Section number 2, and so forth.

there is, however, a flaw with this approach: if we were to create, and then delete,
Section objects, the size of the ArrayList would expand and contract, and we
could wind up with duplicate Section numbers.

Now, let’s turn our attention to the Section class.

Chapter 14 transforming the model into Java Code

747

 The Section Class (Representing Association Classes,
Public Static Final Attributes, Enums)
Figure 14-7 shows the UML representation of the Section class. The sections that follow

provide more detail about this class.

Figure 14-7. The Section class

 Section Attributes

In addition to the following handful of relatively simple attributes

 //------------

 // Attributes.

 //------------

 private int sectionNo;

 private char dayOfWeek;

 private String timeOfDay;

Chapter 14 transforming the model into Java Code

748

 private String room;

 private int seatingCapacity;

the Section class participates in numerous relationships with other classes:

• offered as, a one-to-many association with Course

• An unnamed, one-to-many aggregation with ScheduleOfClasses

• teaches, a one-to-many association with Professor

• attends, a many-to-many association with Student

The attends association is in turn affiliated with an association class,

TranscriptEntry. You learned in Chapter 10 that an association class can alternatively

be depicted in a class diagram as having direct relationships with the classes at either

end of the association, as shown in Figure 14-8.

Figure 14-8. An alternative UML representation of the TranscriptEntry
association class

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_10

749

And so we’ll encode a fifth relationship for the Section class, namely

• assigns grade, a one-to-many association with the

TranscriptEntry class

(You may be wondering whether we should now go back and

adjust the Student class to reflect the earns grade association

with the TranscriptEntry class as a Student class attribute. The

decision of whether or not to implement a particular relationship

in code depends in part on what we anticipate our usage patterns

to be, as discussed in Chapter 10. We’ll defer the decision of what

to do with earns grade until we talk about the TranscriptEntry

class in a bit more depth later in this chapter.)

We’ll represent these five relationships in terms of Section attributes as follows:

• A Section object need only maintain a handle on one other object

for those one-to-many relationships in which Section occupies the

“many” end, namely:

 private Course representedCourse;

 private ScheduleOfClasses offeredIn;

 private Professor instructor;

• For the two situations in which Section needs to maintain handles

on collections of objects—Students and TranscriptEntrys—we

are going to employ HashMaps instead of ArrayLists this time. We

do so because it is conceivable that we’ll have a frequent need to

“pluck” a given item from the collection directly, and a HashMap—as a

dictionary-type collection—provides a key-based lookup mechanism

that is ideal for this purpose.

• For the HashMap of Student object references, we’ll use a String

representing the Student’s Social Security number (ssn) as a key for

looking up a Student:

 // The enrolledStudents HashMap stores Student object references,

 // using each Student's ssn as a String key.

 private HashMap<String, Student> enrolledStudents;

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_10

750

• For the HashMap of TranscriptEntry object references, on the other

hand, we’ll use a Student object as a whole as a key for looking up

that particular Student’s TranscriptEntry as issued by this Section:

 // The assignedGrades HashMap stores TranscriptEntry object

 // references, using a reference to the Student to whom it belongs

 // as the key.

 private HashMap<Student, TranscriptEntry> assignedGrades;

 The Use of an Enum(eration) Type

In the Section class, we encounter our first use of an enum(eration), which as you learned

in Chapter 13 is an excellent means of defining a finite list of symbolic values. In this

particular situation, we want to define some status codes that the Section class can use

when signaling the outcome of an enrollment attempt.

We discussed the syntax of an enum type in detail in Chapter 13. The following code

defines four symbolic values to represent four different outcomes of an enrollment

attempt—success, secFull, prereq, and prevEnroll—each of which correlates to a

String value as indicated:

public enum EnrollmentStatus {

 // Enumerate the values that the enum can assume.

 success("enrollment successful! :o)"),

 secFull("enrollment failed: section was full. :op"),

 prereq("enrollment failed; prerequisites not satisfied. :op"),

 prevEnroll("enrollment failed; previously enrolled. :op");

 // This represents the value of an enum instance.

 private final String value;

 // A "constructor" of sorts (used above).

 EnrollmentStatus(String value) {

 this.value = value;

 }

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_13
https://doi.org/10.1007/978-1-4842-9060-6_13

751

 // Accessor for the value of an enum instance.

 public String value() {

 return value;

 }

}

Let’s look at how these values are put to use by studying the enroll method of Section.

 enroll()

This is a very complex method. I’ll list the code in its entirety first without discussing it,

and then I’ll explain it in detail:

 public EnrollmentStatus enroll(Student s) {

 // First, make sure that this Student is not already

 // enrolled for this Section, and that he/she has

 // NEVER taken and passed the course before.

 Transcript transcript = s.getTranscript();

 if (s.isCurrentlyEnrolledInSimilar(this) ||

 transcript.verifyCompletion(this.getRepresentedCourse())) {

 return EnrollmentStatus.prevEnroll;

 }

 // If there are any prerequisites for this course,

 // check to ensure that the Student has completed them.

 Course c = this.getRepresentedCourse();

 if (c.hasPrerequisites()) {

 for (Course pre : c.getPrerequisites()) {

 // See if the Student's Transcript reflects

 // successful completion of the prerequisite.

 if (!transcript.verifyCompletion(pre)) {

 return EnrollmentStatus.prereq;

 }

 }

 }

Chapter 14 transforming the model into Java Code

752

 // If the total enrollment is already at the

 // the capacity for this Section, we reject this

 // enrollment request.

 if (!this.confirmSeatAvailability()) {

 return EnrollmentStatus.secFull;

 }

 // If we made it to here in the code, we're ready to

 // officially enroll the Student.

 // Note bidirectionality: this Section holds

 // on to the Student via the HashMap, and then

 // the Student is given a handle on this Section.

 enrolledStudents.put(s.getSsn(), s);

 s.addSection(this);

 return EnrollmentStatus.success;

 }

Note that the return type of this method is declared to be EnrollmentStatus—that

is, we are going to return an instance of the EnrollmentStatus enum as a symbolic value

representing the outcome of this enrollment attempt.

We begin by verifying that the Student seeking enrollment (represented by arguments)

hasn’t already enrolled for this Section and furthermore that the student has never

taken and successfully completed this Course (any Sections) in the past. We obtain a

handle on the Student’s transcript and store it in a locally declared reference variable

called transcript, because we are going to need to consult with the Transcript object

twice in this method:

 public EnrollmentStatus enroll(Student s) {

 // First, make sure that this Student is not already

 // enrolled for this Section, and that he/she has

 // NEVER taken and passed the course before.

 Transcript transcript = s.getTranscript();

Chapter 14 transforming the model into Java Code

753

We then use an if statement to test for either of two conditions: (a) is the Student

currently enrolled in this Section or another Section of the same Course, and/or (b)

does the Student’s Transcript indicate successful prior completion of the Course that is

represented by this Section?

 if (s.isCurrentlyEnrolledInSimilar(this) ||

 transcript.verifyCompletion(this.getRepresentedCourse())) {

Because we have need to use this Course object only once in this method, we don’t

bother to save the handle returned to us by the getRepresentedCourse method in a

variable; we just nest the invocation of this method within the call to verifyCompletion,

so that the Course object can be retrieved by the former and immediately passed along

as an argument to the latter.

Whenever we encounter a return statement midway through a method as we have

here, the method’s execution will immediately terminate without running to completion:

 return EnrollmentStatus.prevEnroll;

 }

Note our use of EnrollmentStatus.prevEnroll, one of the symbolic values

defined by the EnrollmentStatus enum, as a return value. Declaring and using such

standardized values is a great way to communicate status back to client code.

Next, we check to see if the Student has satisfied the prerequisites for this Section,

if there are any. We use the Section’s getRepresentedCourse method to obtain a handle

on the Course object that this Section represents and then invoke the hasPrerequisites

method on that Course object. If the result returned is true, then we know that there are

prerequisites to be checked:

 // If there are any prerequisites for this course,

 // check to ensure that the Student has completed them.

 Course c = this.getRepresentedCourse();

 if (c.hasPrerequisites()) {

If there are indeed prerequisites for this Course, we use the getPrerequisites

method defined by the Course class to obtain a collection of all prerequisite Courses and

iterate through this collection via a for loop:

 for (Course pre : c.getPrerequisites()) {

Chapter 14 transforming the model into Java Code

754

For each Course object reference pre that we extract from the collection, we invoke

the verifyCompletion method on the Student’s Transcript object, passing in the

prerequisite Course object reference pre. We haven’t taken a look at the inner workings

of the Transcript class yet, so for now, all we need to know about verifyCompletion

is that it will return a value of true if the Student has indeed successfully taken and

passed the Course in question; otherwise, it will return a value of false. We want to take

action in situations where a prerequisite was not satisfied, so we use the unary negation

operator (!) in front of the expression to indicate that we want the if test to succeed if

the method call returns a value of false:

 // See if the Student's Transcript reflects

 // successful completion of the prerequisite.

 if (!transcript.verifyCompletion(pre)) {

 return EnrollmentStatus.prereq;

 }

 }

If the student is found to have not satisfied any one of the prerequisites, the return

statement is triggered, and we return the status value EnrollmentStatus.prereq. If, on

the other hand, we make it through the prerequisite check without triggering the return

statement, the next step in this method is to verify that there is still available seating in

the Section. We return the status value EnrollmentStatus.secFull value if there is not:

 // If the total enrollment is already at the

 // the capacity for this Section, we reject this

 // enrollment request.

 if (!this.confirmSeatAvailability()) {

 return EnrollmentStatus.secFull;

 }

Finally, if we’ve made it through both of the tests unscathed, we’re ready to

officially enroll the Student. We use the HashMap class’s put method to insert the

Student reference into the enrolledStudents HashMap, invoking the getSsn method

on the Student to retrieve the String value of its ssn attribute, which we pass in as the

key value:

 enrolledStudents.put(s.getSsn(), s);

Chapter 14 transforming the model into Java Code

755

To achieve bidirectionality of the link between a Student and a Section, we then

turn around and invoke the addSection method on the Student object reference,

 passing it a handle on this Section. We then return the value EnrollmentStatus.

success to signal successful enrollment:

 s.addSection(this);

 return EnrollmentStatus.success;

 }

 drop()

The drop method of Section performs the reverse operation of enroll. We start by

verifying that the Student in question is indeed enrolled in this Section, since we can’t

drop a Student who isn’t enrolled in the first place:

 public boolean drop(Student s) {

 // We may only drop a student if he/she is enrolled.

 if (!s.isEnrolledIn(this)) return false;

If the student truly is enrolled, we use the HashMap class’s remove method to locate

and delete the Student reference, again via its ssn attribute value:

 else {

 // Find the student in our HashMap, and remove it.

 enrolledStudents.remove(s.getSsn());

In the interest of bidirectionality, we invoke the dropSection method on the

Student, as well, to get rid of the handles at both ends of the link:

 // Note bidirectionality.

 s.dropSection(this);

 return true;

 }

 }

Chapter 14 transforming the model into Java Code

756

 postGrade()

The postGrade method is used to assign a grade to a Student by creating a

TranscriptEntry object to link this Section to the Student being assigned a grade.

We begin by validating that the proposed grade to be assigned to Student s (both s

and grade are passed in as arguments to the postGrade method) is properly formed by

calling a static utility method, validateGrade, that is defined by the TranscriptEntry

class. The business rules that govern what constitutes a “valid” grade representation

are encoded within that method; these business rules will be revealed when we explore

the TranscriptEntry class later in this chapter. For the time being, all we need know

is that, if the validateGrade method rejects the proposed grade by returning a value of

false, we in turn exit the postGrade method, returning a value of false to client code to

indicate that the request to post a grade for Student s has been rejected:

 public boolean postGrade(Student s, String grade) {

 // First, validate that the grade is properly formed by calling

 // a utility method provided by the TranscriptEntry class.

 if (!TranscriptEntry.validateGrade(grade)) return false;

Next, to ensure that we aren’t inadvertently trying to assign a grade to a particular

Student more than once, we first check the assignedGrades HashMap to see if it already

contains an entry for this Student. If the get method call on the HashMap returns

anything but null, then we know a grade has already been posted for this Student, and

we terminate execution of the method, once again returning a value of false:

 // Make sure that we haven't previously assigned a

 // grade to this Student by looking in the HashMap

 // for an entry using this Student as the key. If

 // we discover that a grade has already been assigned,

 // we return a value of false to indicate that

 // we are at risk of overwriting an existing grade.

 // (A different method, eraseGrade(), can then be written

 // to allow a Professor to change his/her mind.)

 if (assignedGrades.get(s) != null) return false;

Chapter 14 transforming the model into Java Code

757

Assuming that a grade was not previously assigned, we invoke the appropriate

constructor to create a new TranscriptEntry object. As you will see when we study the

inner workings of the TranscriptEntry class, this object will maintain handles on both

the Student to whom a grade has been assigned and the Section for which the grade

was assigned:

 // First, we create a new TranscriptEntry object. Note

 // that we are passing in a reference to THIS Section,

 // because we want the TranscriptEntry object,

 // as an association class ..., to maintain

 // "handles" on the Section as well as on the Student.

 // (We'll let the TranscriptEntry constructor take care of

 // linking this T.E. to the correct Transcript.)

 TranscriptEntry te = new TranscriptEntry(s, grade, this);

To enable this latter link to be bidirectional, we also store a handle on the

TranscriptEntry object in the Section’s assignedGrades HashMap for this purpose:

 // Then, we "remember" this grade because we wish for

 // the connection between a T.E. and a Section to be

 // bidirectional.

 assignedGrades.put(s, te);

 return true;

 }

 getGrade()

The getGrade method uses the Student reference passed in as an argument to

this method as a lookup key for the assignedGrades HashMap, to retrieve the

TranscriptEntry stored therein for this Student:

public String getGrade(Student s) {

 String grade = null;

 // Retrieve the associated TranscriptEntry object for this specific

 // student from the assignedGrades HashMap, if one exists, and in turn

 // retrieve its assigned grade.

 TranscriptEntry te = assignedGrades.get(s);

Chapter 14 transforming the model into Java Code

758

If a TranscriptEntry is found, we use its getGrade method to retrieve the actual

grade (as a String value) so that it may be returned by this method:

 if (te != null) {

 grade = te.getGrade();

 }

Otherwise, we return a value of null to signal that no grade has yet been assigned for

the Student of interest:

 // If we found no TranscriptEntry for this Student, a null value

 // will be returned to signal this.

 return grade;

 }

 confirmSeatAvailability()

The confirmSeatAvailability method called from within enroll is an internal

“housekeeping” method. By declaring it to have private vs. public visibility, we restrict

its use so that only other methods of the Section class may invoke it:

 private boolean confirmSeatAvailability() {

 if (enrolledStudents.size() < this.getSeatingCapacity()) return true;

 else return false;

 }

 Delegation Revisited
In discussing the Student class, I briefly mentioned the displayCourseSchedule method

as a complex example of delegation and promised to come back and discuss it further.

What are the “raw materials”—data—available for an object to use when it is

responding to a service request by executing one of its methods? By way of review, an

object has at its disposal the following data sources:

• Simple data and/or object references (handles) that have been

encapsulated as attributes within the object itself

• Simple data and/or object references that are passed in as
arguments in the method signature

Chapter 14 transforming the model into Java Code

759

• Data that is made available globally to the application as public

static attributes of some other class

• Data that can be requested from any of the objects that this object

has a handle on

It is this last source of data—data available by collaborating with other
objects—that is going to play a particularly significant role in implementing the

displayCourseSchedule method for the Student class.

Let’s say we want the displayCourseSchedule method to display the following

information for each Section that a Student is currently enrolled in:

 Course No.:

 Section No.:

 Course Name:

 Meeting Day and Time Held:

 Room Location:

 Professor's Name:

For example:

Course Schedule for Fred Schnurd

 Course No.: CMP101

 Section No.: 2

 Course Name: Beginning Computer Technology

 Meeting Day and Time Held: W - 6:10 - 8:00 PM

 Room Location: GOVT202

 Professor's Name: Claudio Cioffi

 Course No.: ART101

 Section No.: 1

 Course Name: Beginning Basketweaving

 Meeting Day and Time Held: M - 4:10 - 6:00 PM

 Room Location: ARTS25

 Professor's Name: Snidely Whiplash

Chapter 14 transforming the model into Java Code

760

Let’s start by looking at the attributes of the Student class, to see which of this

information is readily available to us. Student inherits from Person

private String name;

private String ssn;

and adds

private String major;

private String degree;

private Transcript transcript;

private ArrayList<Section> attends;

Let’s begin to write the method. By stepping through the attends ArrayList, we can

gain access to Section objects one by one:

 public void displayCourseSchedule() {

 // Display a title first.

 System.out.println("Course Schedule for " + this.getName());

 // Step through the ArrayList of Section objects,

 // processing these one by one.

 for (Section s : attends) {

 // Now what goes here????

 // We must create the rest of the method ...

 }

 }

Now that we have the beginnings of the method, let’s determine how to fill in the gap

in the preceding code.

Looking at all of the method headers declared for the Section class as evidence

of the services that a Section object can perform, we see that several of these can

immediately provide us with useful pieces of information relative to our mission of

displaying a Student’s course schedule—namely, those that are flagged (***) in the

following code:

 public void setSectionNo(int no)

 public int getSectionNo() ***

 public void setDayOfWeek(char day)

 public char getDayOfWeek() ***

Chapter 14 transforming the model into Java Code

761

 public void setTimeOfDay(String time)

 public String getTimeOfDay() ***

 public void setInstructor(Professor prof)

 public Professor getInstructor()

 public void setRepresentedCourse(Course c)

 public Course getRepresentedCourse()

 public void setRoom(String r)

 public String getRoom() ***

 public void setSeatingCapacity(int c)

 public int getSeatingCapacity()

 public void setOfferedIn(ScheduleOfClasses soc)

 public ScheduleOfClasses getOfferedIn()

 public String toString()

 public int enroll(Student s)

 public boolean drop(Student s)

 public int getTotalEnrollment()

 public void display()

 public void displayStudentRoster()

 public String getGrade(Student s)

 public boolean postGrade(Student s, String grade)

 public boolean successfulCompletion(Student s)

 public boolean isSectionOf(Course c)

Let’s put the four designated methods to use, and where we can’t yet fill the gap

completely, we’ll insert “???” as a placeholder:

public void displayCourseSchedule() {

 // Display a title first.

 System.out.println("Course Schedule for " + this.getName());

 // Step through the ArrayList of Section objects,

 // processing these one by one.

 for (Section s : attends) {

 // Since the attends ArrayList contains Sections that the

 // Student took in the past as well as those for which

 // the Student is currently enrolled, we only want to

Chapter 14 transforming the model into Java Code

762

 // report on those for which a grade has not yet been

 // assigned.

 if (s.getGrade(this) == null) {

 System.out.println("\tCourse No.: " + ???

 System.out.println("\tSection No.: " + s.getSectionNo());

 System.out.println("\tCourse Name: " + ???

 System.out.println("\tMeeting Day and Time Held: " +

 s.getDayOfWeek() + " - " + s.getTimeOfDay());

 System.out.println("\tRoom Location: " + s.getRoom());

 System.out.println("\tProfessor's Name: " + ???

 System.out.println("\t-----");

 }

 }

}

Now, what about the remaining “holes”? Two of the Section methods

public Professor getInstructor()

public Course getRepresentedCourse()

will each hand us yet another object that we can “talk to”—namely, the Professor who

teaches this Section and the Course that this Section represents. Let’s now look at what

these objects can perform in the way of services:

• A Professor object can perform the following services (the first four

are inherited from Person). Again, those that seem relevant to the

mission we’re trying to accomplish with the displayCourseSchedule

method of the Student class are flagged (***):

 public void setName(String n)

 public String getName() ***

 public void setSsn(String ssn)

 public String getSsn()

 public void display()

 public void setTitle(String title)

 public String getTitle()

 public void setDepartment(String dept)

 public String getDepartment()

Chapter 14 transforming the model into Java Code

763

 public void display()

 public String toString()

 public void displayTeachingAssignments()

 public void agreeToTeach(Section s)

• A Course object can perform these services (the relevant methods are

flagged [***]):

 public void setCourseNo(String cNo)

 public String getCourseNo() ***

 public void setCourseName(String cName)

 public String getCourseName() ***

 public void setCredits(double c)

 public double getCredits()

 public void display()

 public String toString()

 public void addPrerequisite(Course c)

 public boolean hasPrerequisites()

 public Collection<Course> getPrerequisites()

 public Section scheduleSection(char day, String time, String room,

 int capacity)

If we bring all of the flagged (***) methods to bear, we can wrap up the

displayCourseSchedule method of the Student class as follows:

 public void displayCourseSchedule() {

 // Display a title first.

 System.out.println("Course Schedule for " + getName());

 // Step through the ArrayList of Section objects,

 // processing these one by one.

 for (Section s : attends) {

 // Since the attends ArrayList contains Sections that the

 // Student took in the past as well as those for which

 // the Student is currently enrolled, we only want to

 // report on those for which a grade has not yet been

 // assigned.

Chapter 14 transforming the model into Java Code

764

 if (s.getGrade(this) == null) {

 System.out.println("\tCourse No.: " +

 s.getRepresentedCourse().getCourseNo());

 System.out.println("\tSection No.: " + s.getSectionNo());

 System.out.println("\tCourse Name: " +

 s.getRepresentedCourse().getCourseName());

 System.out.println("\tMeeting Day and Time Held: " +

 s.getDayOfWeek() + " - " + s.getTimeOfDay());

 System.out.println("\tRoom Location: " +

 s.getRoom());

 System.out.println("\tProfessor's Name: " +

 s.getInstructor().getName());

 System.out.println("\t-----");

 }

 }

 }

This method is a classic example of delegation:

• We start out asking a Student object to do something for us—namely,

to display the Student’s course schedule.

• The Student object in turn has to talk to the Section objects

representing sections that the student is enrolled in, asking each of

them to perform some of their services (methods).

• The Student object also has to ask those Section objects to hand

over references to the Professor and Course objects that the Section

objects know about, in turn asking them to perform some of their

services.

This multitiered collaboration is depicted conceptually in Figure 14-9.

Chapter 14 transforming the model into Java Code

765

Figure 14-9. A multitiered collaboration among objects

 The ScheduleOfClasses Class
Figure 14-10 shows the UML representation of the ScheduleOfClasses class. The

sections that follow provide more detail about this class.

Figure 14-10. The ScheduleOfClasses class

Chapter 14 transforming the model into Java Code

766

 ScheduleOfClasses Attributes

The ScheduleOfClasses class is a fairly simple class that serves as an example of how we

might wish to encapsulate a collection object within some other class. It consists of only

two attributes: a simple String representing the semester for which the schedule is valid

(e.g., “SP2005” for the Spring 2005 semester) and a HashMap used to maintain handles on

all of the Sections that are being offered that semester:

 private String semester;

 // This HashMap stores Section object references, using

 // a String concatenation of course no. and section no. as the

 // key, for example, "MATH101 - 1".

 private HashMap<String, Section> sectionsOffered;

Aside from a simple constructor, a display method, and accessor methods for the

attributes, the ScheduleOfClasses class declares three relatively simple methods, as

follows.

 addSection()

This method is used to add a Section object to the HashMap and then to bidirectionally

link this ScheduleOfClasses object back to the Section:

 public void addSection(Section s) {

 // We formulate a key by concatenating the course no.

 // and section no., separated by a hyphen.

 String key = s.getRepresentedCourse().getCourseNo() +

 " - " + s.getSectionNo();

 sectionsOffered.put(key, s);

 // Bidirectionally link the ScheduleOfClasses back to the Section.

 s.setOfferedIn(this);

 }

Chapter 14 transforming the model into Java Code

767

 findSection()

This is a convenience method that is used to look up a Section in the encapsulated

collection using the full section number that is passed in as the lookup key:

 // The full section number is a concatenation of the

 // course no. and section no., separated by a hyphen;

 // e.g., "ART101 - 1".

 public Section findSection(String fullSectionNo) {

 return sectionsOffered.get(fullSectionNo);

 }

 isEmpty()

This is another convenience method that is used to determine whether the encapsulated

collection is empty. Internally, it delegates the work of making such a determination to

the sectionsOffered collection:

 public boolean isEmpty() {

 if (sectionsOffered.size() == 0) return true;

 else return false;

 }

 The TranscriptEntry Association Class (Static Methods)
Figure 14-11 shows the UML representation of the TranscriptEntry class. The sections

that follow provide more detail about this class.

Figure 14-11. The TranscriptEntry class

Chapter 14 transforming the model into Java Code

768

 TranscriptEntry Attributes

As you saw earlier in this chapter, the TranscriptEntry class has one simple attribute,

grade, and maintains associations with three other classes (see Figure 14-12):

• earns grade, a one-to-many association with Student

• assigns grade, a one-to-many association with Section

• An unnamed, one-to-many aggregation with the Transcript class

Figure 14-12. TranscriptEntry maintains numerous relationships with other
SRS classes

TranscriptEntry is at the “many” end of all of these associations, and so it only

needs to maintain a single handle on each type of object—no collection attributes are

required:

 private String grade;

 private Student student;

 private Section section;

 private Transcript transcript;

Chapter 14 transforming the model into Java Code

769

 TranscriptEntry Constructor

The constructor for this class does most of the work of maintaining all of these

relationships.

Via a call to setStudent, it stores the associated Student object’s handle in the

appropriate attribute:

 //----------------

 // Constructor(s).

 //----------------

 public TranscriptEntry(Student s, String grade, Section se) {

 this.setStudent(s);

Note that we have chosen not to maintain the earns grade association

bidirectionally; that is, we have provided no code in either this or the Student class to

provide the Student object with a handle on this TranscriptEntry object. This decision

was based upon the fact that we don’t expect a Student to ever have to manipulate

TranscriptEntry objects directly. Every Student object has an indirect means of

reaching all of its TranscriptEntry objects, via the handle that a Student object

maintains on its Transcript object as a whole and the handles that the Transcript

object in turn maintains on its TranscriptEntry objects. You might think that giving

a Student object the ability to directly pull a given TranscriptEntry might be useful

when we want to determine the grade that the Student earned for a particular

Section, but we have provided an alternative means of doing so, via the Section class’s

getGrade method.

Even though it may not appear so, we are maintaining the assigns grade

association with Section bidirectionally. We see only half of the “handshake” in the

TranscriptEntry constructor:

 this.setSection(se);

But recall that when we looked at the postGrade method of the Section class, we

discussed the fact that Section was responsible for maintaining the bidirectionality of

this association. When the Section’s postGrade method invokes the TranscriptEntry

constructor, the Section object is returned a handle on this TranscriptEntry object,

which it stores in the appropriate attribute. So we only need to worry about the second

half of this “handshake” here in TranscriptEntry.

Chapter 14 transforming the model into Java Code

770

On the other hand, the TranscriptEntry object has full responsibility

for maintaining the bidirectionality of the association between itself and the

Transcript object:

 // Obtain the Student's transcript ...

 Transcript t = s.getTranscript();

 // ... and then link the Transcript and the TranscriptEntry

 // together bidirectionally.

 this.setTranscript(t);

 t.addTranscriptEntry(this);

 }

 validateGrade(), passingGrade()

The TranscriptEntry class provides our first SRS example of public static methods. It

declares two methods, validateGrade and passingGrade, that may be invoked as utility

methods on the TranscriptEntry class from anywhere in the SRS application:

• The first is used to validate whether or not a particular string—say,

“B+”—is a valid grade. Here we see the business rules disclosed for

what constitutes such a grade:

 public static boolean validateGrade(String grade) {

 boolean outcome = false;

 if (grade.equals("F") ||

 grade.equals("I")) {

 outcome = true;

 }

 if (grade.startsWith("A") ||

 grade.startsWith("B") ||

 grade.startsWith("C") ||

 grade.startsWith("D")) {

 if (grade.length() == 1) outcome = true;

 else if (grade.length() == 2) {

 if (grade.endsWith("+") ||

 grade.endsWith("-")) {

Chapter 14 transforming the model into Java Code

771

 outcome = true;

 }

 }

 }

 return outcome;

 }

• The second is used to determine whether or not a particular string—

say “D+”—is a passing grade. A slightly different set of business rules

is applied in this case:

 public static boolean passingGrade(String grade) {

 boolean outcome = false;

 // First, make sure it is a valid grade.

 if (validateGrade(grade)) {

 // Next, make sure that the grade is a D or better.

 if (grade.startsWith("A") ||

 grade.startsWith("B") ||

 grade.startsWith("C") ||

 grade.startsWith("D")) {

 outcome = true;

 }

 }

 return outcome;

 }

As we discussed in Chapter 7, public static methods can be invoked on the

hosting class as a whole—in other words, an object needn’t be instantiated in order to

use these methods.

Chapter 14 transforming the model into Java Code

https://doi.org/10.1007/978-1-4842-9060-6_7

772

 The Transcript Class
Figure 14-13 shows the UML representation of the Transcript class. The sections that

follow provide more detail about this class.

Figure 14-13. The Transcript class

 Transcript Attributes

The Transcript class participates in two relationships:

• maintains, a one-to-one association with Student

• An unnamed, one-to-many aggregation with TranscriptEntry

The SRS class diagram does not call out any other attributes for the Transcript class,

so we only encode these two:

 private ArrayList<TranscriptEntry> transcriptEntries;

 private Student studentOwner;

 verifyCompletion()

The Transcript class has one particularly interesting method, verifyCompletion, which

is used to determine whether or not the Transcript contains evidence that a particular

Course requirement has been satisfied. This method steps through the ArrayList of

TranscriptEntries maintained by the Transcript object:

 public boolean verifyCompletion(Course c) {

 boolean outcome = false;

 // Step through all TranscriptEntries, looking for one

 // that reflects a Section of the Course of interest.

 for (TranscriptEntry te : transcriptEntries) {

Chapter 14 transforming the model into Java Code

773

For each entry, it obtains a handle on the Section object represented by this entry

and then invokes the isSectionOf method on that object to determine whether or not

that Section represents the Course of interest:

 Section s = te.getSection();

 if (s.isSectionOf(c)) {

Assuming that the Section is indeed relevant, the method next uses the static

passingGrade method of the TranscriptEntry class to determine whether or not the

grade earned in this Section was a passing grade. If it was a passing grade, we can

terminate the loop immediately, since we need to find only one example of a passing

grade for the Course of interest in order to return a true outcome from this method:

 // Ensure that the grade was high enough.

 if (TranscriptEntry.passingGrade(te.getGrade())) {

 outcome = true;

 // We've found one, so we can afford to

 // terminate the loop now.

 break;

 }

 }

 }

 return outcome;

 }

}

 The SRS Driver Program
Now that we’ve coded all of the classes called for by our model of the SRS, we need a

way to test these. We could wait to put our application through its paces until we’ve built

a GUI front end; however, it would be nice to know sooner rather than later that our

core classes are working properly. One very helpful technique for doing so is to write a

command-line–driven program to instantiate objects of varying types and to invoke their

critical methods, displaying the results to the command-line window for us to inspect.

We’ll develop just such a program by creating a class called SRS with a main method

that will serve as our test “driver.”

Chapter 14 transforming the model into Java Code

774

 Public Static Attributes

We are going to instantiate some Professor, Student, Course, and Section objects

in this program, so we need a way to organize references to these objects. We’ll

create collection objects as attributes of the SRS class to hold each of these different

object types. While we’re at it, we’ll declare them to be public static attributes,

which means that we’re making these main object collections globally available to

the entire application; these can then be accessed throughout the SRS application as

SRS.collectionName (e.g., SRS.faculty):

 // We can effectively create "global" data by declaring

 // collections of objects as public static attributes in

 // the main class;

 public static ArrayList<Professor> faculty;

 public static ArrayList<Student> studentBody;

 public static ArrayList<Course> courseCatalog;

 // The next collection -- of Section object references -- is

encapsulated

 // within a special-purpose class by virtue of how we modeled the

SRS in UML;

 // note that we could have encapsulated the preceding three

collections in

 // similar fashion.

 public static ScheduleOfClasses scheduleOfClasses =

 new ScheduleOfClasses("SP2005");

The SRS ScheduleOfClasses class serves as a collection point for Section objects;

for the other types of objects, we use simple ArrayLists, although we could go ahead

and design classes comparable to ScheduleOfClasses to serve as encapsulated

collections, perhaps named Faculty, StudentBody, and CourseCatalog, respectively. We

don’t need a collection for Transcript objects—we’ll get to these via the handles that

Student objects maintain—or for TranscriptEntry objects (we’ll get to these via the

Transcript objects themselves).

Chapter 14 transforming the model into Java Code

775

 The main Method

We’ll now dive into the main method for the SRS driver class. We’ll start by declaring

reference variables for each of the four main object types:

 public static void main(String[] args) {

 Professor p1, p2, p3;

 Student s1, s2, s3;

 Course c1, c2, c3, c4, c5;

 Section sec1, sec2, sec3, sec4, sec5, sec6, sec7;

We’ll then use their various constructors to fabricate object instances, storing

handles in the appropriate collections:

 // Create various objects by calling the appropriate

 // constructors. (We'd normally be reading in such data

 // from a database or file ...)

 // -----------

 // Professors.

 // -----------

 p1 = new Professor("Jacquie Barker", "123-45-6789",

 "Adjunct Professor", "Information Technology");

 p2 = new Professor("Claudio Cioffi", "567-81-2345",

 "Full Professor", "Computational Social Sciences");

 p3 = new Professor("Snidely Whiplash", "987-65-4321",

 "Full Professor", "Physical Education");

 // Add these to the appropriate ArrayList.

 faculty = new ArrayList<Professor>();

 faculty.add(p1);

 faculty.add(p2);

 faculty.add(p3);

 // ---------

 // Students.

 // ---------

Chapter 14 transforming the model into Java Code

776

 s1 = new Student("Joe Blow", "111-11-1111", "Math", "M.S.");

 s2 = new Student("Fred Schnurd", "222-22-2222",

 "Information Technology", "Ph. D.");

 s3 = new Student("Mary Smith", "333-33-3333", "Physics", "B.S.");

 // Add these to the appropriate ArrayList.

 studentBody = new ArrayList<Student>();

 studentBody.add(s1);

 studentBody.add(s2);

 studentBody.add(s3);

 // --------

 // Courses.

 // --------

 c1 = new Course("CMP101",

 "Beginning Computer Technology", 3.0);

 c2 = new Course("OBJ101",

 "Object Methods for Software Development", 3.0);

 c3 = new Course("CMP283",

 "Higher Level Languages (Java)", 3.0);

 c4 = new Course("CMP999",

 "Living Brain Computers", 3.0);

 c5 = new Course("ART101",

 "Beginning Basketweaving", 3.0);

 // Add these to the appropriate ArrayList.

 courseCatalog = new ArrayList<Course>();

 courseCatalog.add(c1);

 courseCatalog.add(c2);

 courseCatalog.add(c3);

 courseCatalog.add(c4);

 courseCatalog.add(c5);

Chapter 14 transforming the model into Java Code

777

We use the addPrerequisite method of the Course class to interrelate some of the

Courses, so that c1 is a prerequisite for c2, c2 for c3, and c3 for c4. The only Courses that

do not specify prerequisites in our test case are c1 and c5:

 // Establish some prerequisites (c1 => c2 => c3 => c4).

 c2.addPrerequisite(c1);

 c3.addPrerequisite(c2);

 c4.addPrerequisite(c3);

To create Section objects, we take advantage of the Course class’s scheduleSection

method, which, as you may recall, contains an embedded call to a Section class

constructor. Each invocation of scheduleSection returns a handle to a newly created

Section object, which we store in the appropriate collection:

 // ---------

 // Sections.

 // ---------

 // Schedule sections of each Course by calling the

 // scheduleSection method of Course (which internally

 // invokes the Section constructor).

 sec1 = c1.scheduleSection('M', "8:10 - 10:00 PM", "GOVT101", 30);

 sec2 = c1.scheduleSection('W', "6:10 - 8:00 PM", "GOVT202", 30);

 sec3 = c2.scheduleSection('R', "4:10 - 6:00 PM", "GOVT105", 25);

 sec4 = c2.scheduleSection('T', "6:10 - 8:00 PM", "SCI330", 25);

 sec5 = c3.scheduleSection('M', "6:10 - 8:00 PM", "GOVT101", 20);

 sec6 = c4.scheduleSection('R', "4:10 - 6:00 PM", "SCI241", 15);

 sec7 = c5.scheduleSection('M', "4:10 - 6:00 PM", "ARTS25", 40);

 // Add these to the Schedule of Classes.

 scheduleOfClasses.addSection(sec1);

 scheduleOfClasses.addSection(sec2);

 scheduleOfClasses.addSection(sec3);

 scheduleOfClasses.addSection(sec4);

Chapter 14 transforming the model into Java Code

778

 scheduleOfClasses.addSection(sec5);

 scheduleOfClasses.addSection(sec6);

 scheduleOfClasses.addSection(sec7);

Next, we use the agreeToTeach method declared for the Professor class to assign

Professors to Sections:

 // Recruit a professor to teach each of the sections.

 p3.agreeToTeach(sec1);

 p2.agreeToTeach(sec2);

 p1.agreeToTeach(sec3);

 p3.agreeToTeach(sec4);

 p1.agreeToTeach(sec5);

 p2.agreeToTeach(sec6);

 p3.agreeToTeach(sec7);

We then simulate student registration by having Students enroll in the various

Sections using the enroll method. Recall that this method returns one of a set of

predefined status values as defined by our EnrollmentStatus enum(eration), and so

in order to display which status is returned in each case, we created a “housekeeping”

reportStatus method solely for the purpose of formatting an informational message:

 System.out.println("===============================");

 System.out.println("Student registration has begun!");

 System.out.println("===============================");

 System.out.println();

 // Simulate students attempting to enroll in sections of

 // various courses.

 System.out.println("Student " + s1.getName() +

 " is attempting to enroll in " +

 sec1.toString());

 EnrollmentStatus status = sec1.enroll(s1);

 this.reportStatus(status);

Chapter 14 transforming the model into Java Code

779

Since the preceding three lines of code—the println, enroll, and reportStatus

method calls—are going to be repeated multiple times, we have written a

“housekeeping” method called attemptToEnroll that does these three things and will

use the more concise attemptToEnroll(...) syntax for the remainder of this program.

(The attemptToEnroll method is discussed separately shortly.)

 // Try concurrently enrolling the same Student in a

different Section

 // of the SAME Course! This should fail.

 attemptToEnroll(s1, sec2);

 // This enrollment request should be fine ...

 attemptToEnroll(s2, sec2);

 // ... but here, the student in question hasn't satisfied the

 // prerequisities, so the enrollment request should be rejected.

 attemptToEnroll(s2, sec3);

 // These requests should both be fine.

 attemptToEnroll(s2, sec7);

 attemptToEnroll(s3, sec1);

 // When the dust settles, here's what folks wound up

 // being SUCCESSFULLY registered for:

 //

 // sec1: s1, s3

 // sec2: s2

 // sec7: s2

Next, we simulate the assignment of grades at the end of the semester by invoking

the postGrade method for each Student-Section combination:

 // Semester is finished (boy, that was quick!). Professors

 // assign grades for specific students.

 sec1.postGrade(s1, "C+");

 sec1.postGrade(s3, "A");

 sec2.postGrade(s2, "B+");

 sec7.postGrade(s2, "A-");

Chapter 14 transforming the model into Java Code

780

Finally, we put our various display methods to good use by displaying the internal

state of the various objects that we created—in essence, an “object dump”:

 // Let's see if everything got set up properly

 // by calling various display() methods.

 System.out.println("====================");

 System.out.println("Schedule of Classes:");

 System.out.println("====================");

 System.out.println();

 scheduleOfClasses.display();

 System.out.println("======================");

 System.out.println("Professor Information:");

 System.out.println("======================");

 System.out.println();

 p1.display();

 p2.display();

 p3.display();

 System.out.println("====================");

 System.out.println("Student Information:");

 System.out.println("====================");

 System.out.println();

 s1.display();

 s2.display();

 s3.display();

 }

Here is the attemptToEnroll housekeeping method mentioned earlier, along with

the reportStatus method that it in turn uses:

 private static void reportStatus(EnrollmentStatus s) {

 System.out.println("Status: " + s.value());

 System.out.println();

 }

Chapter 14 transforming the model into Java Code

781

 private static void attemptToEnroll(Student s, Section sec) {

 System.out.println("Student " + s.getName() +

 " is attempting to enroll in " +

 sec.toString());

 // Utilize one housekeeping method from within another!

 reportStatus(sec.enroll(s));

 }

}

When compiled and run, the SRS program produces the following command

prompt output:

===============================

Student registration has begun!

===============================

Student Joe Blow is attempting to enroll in CMP101 - 1 - M - 8:10 - 10:00 PM

Status: enrollment successful! :o)

Student Joe Blow is attempting to enroll in CMP101 - 2 - W - 6:10 - 8:00 PM

Status: enrollment failed; previously enrolled. :op

Student Fred Schnurd is attempting to enroll in CMP101 - 2 - W -

6:10 - 8:00 PM

Status: enrollment successful! :o)

Student Fred Schnurd is attempting to enroll in OBJ101 - 1 - R -

4:10 - 6:00 PM

Status: enrollment failed; prerequisites not satisfied. :op

Student Fred Schnurd is attempting to enroll in ART101 - 1 - M -

4:10 - 6:00 PM

Status: enrollment successful! :o)

Student Mary Smith is attempting to enroll in CMP101 - 1 - M - 8:10 - 10:00 PM

Status: enrollment successful! :o)

Chapter 14 transforming the model into Java Code

782

====================

Schedule of Classes:

====================

Schedule of Classes for SP2005

Section Information:

 Semester: SP2005

 Course No.: ART101

 Section No: 1

 Offered: M at 4:10 - 6:00 PM

 In Room: ARTS25

 Professor: Snidely Whiplash

 Total of 1 students enrolled, as follows:

 Fred Schnurd

Section Information:

 Semester: SP2005

 Course No.: CMP283

 Section No: 1

 Offered: M at 6:10 - 8:00 PM

 In Room: GOVT101

 Professor: Jacquie Barker

 Total of 0 students enrolled.

Section Information:

 Semester: SP2005

 Course No.: OBJ101

 Section No: 1

 Offered: R at 4:10 - 6:00 PM

 In Room: GOVT105

 Professor: Jacquie Barker

 Total of 0 students enrolled.

Section Information:

 Semester: SP2005

 Course No.: CMP101

Chapter 14 transforming the model into Java Code

783

 Section No: 2

 Offered: W at 6:10 - 8:00 PM

 In Room: GOVT202

 Professor: Claudio Cioffi

 Total of 1 students enrolled, as follows:

 Fred Schnurd

Section Information:

 Semester: SP2005

 Course No.: CMP999

 Section No: 1

 Offered: R at 4:10 - 6:00 PM

 In Room: SCI241

 Professor: Claudio Cioffi

 Total of 0 students enrolled.

Section Information:

 Semester: SP2005

 Course No.: CMP101

 Section No: 1

 Offered: M at 8:10 - 10:00 PM

 In Room: GOVT101

 Professor: Snidely Whiplash

 Total of 2 students enrolled, as follows:

 Joe Blow

 Mary Smith

Section Information:

 Semester: SP2005

 Course No.: OBJ101

 Section No: 2

 Offered: T at 6:10 - 8:00 PM

 In Room: SCI330

 Professor: Snidely Whiplash

 Total of 0 students enrolled.

Chapter 14 transforming the model into Java Code

784

======================

Professor Information:

======================

Person Information:

 Name: Jacquie Barker

 Soc. Security No.: 123-45-6789

Professor-Specific Information:

 Title: Adjunct Professor

 Teaches for Dept.: Information Technology

Teaching Assignments for Jacquie Barker:

 Course No.: OBJ101

 Section No.: 1

 Course Name: Object Methods for Software Development

 Day and Time: R - 4:10 - 6:00 PM

 Course No.: CMP283

 Section No.: 1

 Course Name: Higher Level Languages (Java)

 Day and Time: M - 6:10 - 8:00 PM

Person Information:

 Name: Claudio Cioffi

 Soc. Security No.: 567-81-2345

Professor-Specific Information:

 Title: Full Professor

 Teaches for Dept.: Computational Social Sciences

Teaching Assignments for Claudio Cioffi:

 Course No.: CMP101

 Section No.: 2

 Course Name: Beginning Computer Technology

 Day and Time: W - 6:10 - 8:00 PM

 Course No.: CMP999

 Section No.: 1

Chapter 14 transforming the model into Java Code

785

 Course Name: Living Brain Computers

 Day and Time: R - 4:10 - 6:00 PM

Person Information:

 Name: Snidely Whiplash

 Soc. Security No.: 987-65-4321

Professor-Specific Information:

 Title: Full Professor

 Teaches for Dept.: Physical Education

Teaching Assignments for Snidely Whiplash:

 Course No.: CMP101

 Section No.: 1

 Course Name: Beginning Computer Technology

 Day and Time: M - 8:10 - 10:00 PM

 Course No.: OBJ101

 Section No.: 2

 Course Name: Object Methods for Software Development

 Day and Time: T - 6:10 - 8:00 PM

 Course No.: ART101

 Section No.: 1

 Course Name: Beginning Basketweaving

 Day and Time: M - 4:10 - 6:00 PM

====================

Student Information:

====================

Person Information:

 Name: Joe Blow

 Soc. Security No.: 111-11-1111

Student-Specific Information:

 Major: Math

 Degree: M.S.

Chapter 14 transforming the model into Java Code

786

Course Schedule for Joe Blow

Transcript for: Joe Blow (111-11-1111) [M.S. - Math]

 Semester: SP2005

 Course No.: CMP101

 Credits: 3.0

 Grade Received: C+

Person Information:

 Name: Fred Schnurd

 Soc. Security No.: 222-22-2222

Student-Specific Information:

 Major: Information Technology

 Degree: Ph. D.

Course Schedule for Fred Schnurd

Transcript for: Fred Schnurd (222-22-2222) [Ph.D. - Information

Technology]

 Semester: SP2005

 Course No.: CMP101

 Credits: 3.0

 Grade Received: B+

 Semester: SP2005

 Course No.: ART101

 Credits: 3.0

 Grade Received: A-

Person Information:

 Name: Mary Smith

 Soc. Security No.: 333-33-3333

Student-Specific Information:

 Major: Physics

 Degree: B.S.

Course Schedule for Mary Smith

Transcript for: Mary Smith (333-33-3333) [B.S. - Physics]

Chapter 14 transforming the model into Java Code

787

 Semester: SP2005

 Course No.: CMP101

 Credits: 3.0

 Grade Received: A

We’ve thus demonstrated a successful test of our model! Of course, the SRS driver

program could be extended to test various other scenarios; some of the exercises at the

end of this chapter suggest ways that you might wish to try doing so.

 Summary
You’ve now seen some serious Java in action! We’ve built a command-line–driven

version of the SRS application. Although this is not typically how most applications are

invoked—most “industrial-strength” applications have GUI front ends—developing such

a version is a crucial step in testing our core model classes to ensure that all methods are

working properly.

EXERCISES

all of the following exercises involve making modifications/extensions to the srs code

presented in this chapter. if you have not already done so, please download the code from the

book’s github repository.

 1. [Coding] expand the SRS class’s main method to represent a second

semester’s worth of course registrations. (hint: this will require a second

instantiation of the ScheduleOfClasses class.)

• Change the grades received by some Students in the first semester to

failing grades, and then attempt to register the Student for a course in

the second semester requiring successful completion of one of these failed

courses in a previous semester.

• try registering a Student for a course in the second semester that the

Student has already successfully completed in the first semester.

Chapter 14 transforming the model into Java Code

788

 2. [Coding] improve the logic of the addPrerequisite method of the Course

class to ensure that a Course cannot accidentally be assigned as its own

prerequisite.

 3. [Coding] improve the logic of the agreeToTeach method of the Professor

class so that a Professor cannot accidentally agree to teach two different

Sections that meet on the same day/at the same time.

 4. [Coding] implement a cancelSection method for the Course class, and

then correct the erroneous logic of the scheduleSection method having to

do with the manner in which Section numbers are assigned. (hint: Consider

introducing a static attribute to the Course class for this purpose.)

 5. [Coding] the enroll method of the Section class does not take into account

the fact that a Student may simultaneously be registered for a course and its

prerequisite. modify this method to allow for this possibility.

 6. [Coding] the postGrade method of the Section class makes mention of the

need for an eraseGrade method, in the event that a Professor wishes to

change their mind about the grade that has been issued to a Student. Create

the eraseGrade method.

 7. [Coding] modify the scheduleSection method of the Course class to

prevent two Sections from being scheduled for the same classroom on the

same day/at the same time.

Chapter 14 transforming the model into Java Code

789

CHAPTER 15

Building a Three-Tier
User Driven Application
Congratulations! After completing Chapters 1–14, you now know what many Java

developers unfortunately don’t get a solid jump-start on, namely:

• How to take full advantage of Java as an object-oriented language

• How to develop the model layer of an application to properly address

the requirements of an application at the outset of development

You’ve also now learned enough Java to be able to build a command-line-driven

program. Is this knowledge useful? Absolutely! Command-line-driven (Java) programs

are often used to automate “back-end” (server-side) processes as part of a larger

enterprise application or system.

That being said, you may ultimately wish to learn how to develop full-blown user-

driven applications like the SRS, including

• A graphical user interface, by which users will be able to “drive” the

model—most likely a browser-based UI

• A means of persisting the state of our objects from one invocation of

the application to the next by storing information about their states

(attribute values) in a database

The technologies involved with these aspects of building a user-driven, browser-

based application are constantly evolving. Each of these alternative technologies

warrants an entire book (or more) to do justice to it and is outside of the scope of this

book to address in detail. However, we want you to understand conceptually what’s

involved with accomplishing both of these tasks.

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6_15

https://doi.org/10.1007/978-1-4842-9060-6_1
https://doi.org/10.1007/978-1-4842-9060-6_14
https://doi.org/10.1007/978-1-4842-9060-6_15#DOI

790

In this chapter, you will learn

• The typical architecture for a three-tier user-driven application

• An approach to building the persistence tier

• An approach to building the presentation tier

• The role of the controller in the application tier

• The importance of achieving independence among these three tiers

A bit of nomenclature: The terms “tier” and “layer” are often used interchangeably.

The terms “data” and “persistence” are often used interchangeably.

The terms “view” and “presentation” are often used interchangeably.

 A Three-Tier Architecture
Figure 15-1 illustrates a typical three-tier architecture for a browser-based application.

Figure 15-1. Three tiers of a browser-based application

ChApTer 15 Building A Three-Tier user driven AppliCATion

791

• The presentation tier consists of a collection of web pages

comprising the user interface, residing on a (hardware) web server

under control of a (software) web server (e.g., Apache Tomcat).

• The application tier consists of the model classes/objects plus

controller software (more about this in a moment).

• The persistence tier consists of one or more classes resident on the

web server responsible for communicating with the database that

stores (persists) objects’ states, which typically resides on a separate

hardware server.

 What Does the Controller Do?
The controller software is at the heart of the application in that it is responsible for

• Monitoring what the user is doing in the presentation layer—

specifically, what actions they are taking in the browser: clicking a

button to view their course load, selecting a new section to add to the

course load, dropping a course, and so forth

• Communicating with the persistence layer to retrieve the data

necessary to reconstitute objects as needed: students, the courses

they are registered for, the semester schedule of classes, etc.

• Determining which of the web pages is to be displayed next

• Dynamically generating content for that web page based on the

reconstituted objects

• Dispatching the dynamically updated page back to the user’s browser

At this point the controller cycle begins anew.

We’ll illustrate all of these in pseudocode fashion later in this chapter, but first, let’s

take a closer conceptual look at how to build the persistence tier.

ChApTer 15 Building A Three-Tier user driven AppliCATion

792

 Building a Persistence/Data Tier
In order for the SRS application to be useful, it needs a way to store the results of

objects’ interactions—the objects’ states—in some sort of permanent (persistent) storage.

Depending on what storage technology is chosen for the application—that is, a

traditional SQL database, a NoSQL database, etc.—the code for accessing the database

to retrieve or store information will vary widely. Our goal is to totally encapsulate this
logic in a separate new class (or set of classes) without modifying the model layer
classes that we’ve perfected in Chapter 14.

Let’s start by defining an interface that lays out all of the operations necessary to

interact with the database; because this is an interface of our own design, we are free to

name it as we wish:

public interface PersistenceLayerInterface {

 // This method is used to establish a connection with the underlying

 // database when a student logs on; if the log on fails (unknown

 // student or incorrect password, we throw a custom exception of

 // our own design.

 void initialize(String studentid, String password) throws

 InitializationFailureException;

 // This method retrieves all of the data (attribute values)

related to

 // the designated student, including his/her registered course list,

 // calls our model layer Student constructor to fabricate a Student

 // object, and returns it to the controller.

 Student retrieveStudent(String studentid);

 // This method does the opposite of storeStudent(): passed in a

 // Student object as an argument by the controller, it uses the get

 // methods of the Student to extract attribute values from the object

 // so as to store them back in the database.

 void storeStudent(Student student);

 // This method retrieves all of the information about sections being

 // offered this semester from the database, formulating a Collection

ChApTer 15 Building A Three-Tier user driven AppliCATion

https://doi.org/10.1007/978-1-4842-9060-6_14

793

 // of Section objects to return to the controller.

 Collection<Section> getSemesterScheduleOfAvailableCourses();

 // etc.

}

Next, we create a class that implements the interface, coding each method with

vendor-specific database logic to accomplish the task at hand:

public class SRSPersistenceLayer implements PersistenceLayerInterface { ...

 // This method is used to establish a connection with the underlying

 // database when a student logs on; if the log on fails (unknown

 // student or incorrect password, we throw a custom exception of

 // our own design.

 void initialize(String studentid, String password) throws

 InitializationFailureException {

 Attempt to establish a connection to the database with this

 username/password combination

 if (connection fails) {

 throw new InitializationFailureException();

 } else {

 Store connection in session for subsequent reuse

 }

 return;

 // This method retrieves all of the data (attribute values)

related to

 // the designated student, including his/her registered course list,

 // calls our model layer Student constructor to fabricate a Student

 // object, and returns it to the controller.

 Student retrieveStudent(String studentid) {

 Select student with indicated ID from database and fully

populate

 a new Student object, including student’s registered courses

 Student s = new Student(...);

ChApTer 15 Building A Three-Tier user driven AppliCATion

794

 for (all registered courses found in database for this

student) {

 Reconstitute section object

 Section sec = new Section(...);

 s.registerForCourse(sec);

 }

 return s;

}

 // This method does the opposite of storeStudent(): passed in a

 // Student object as an argument by the controller, it uses the get

 // methods of the Student to extract attribute values from the object

 // so as to store them back in the database.

 void storeStudent(Student student)

 Details omitted

 // This method retrieves all of the information about sections being

 // offered this semester from the database, formulating a Collection

 // of Section objects to return to the controller.

 Collection<Section> getSemesterScheduleOfAvailableCourses() {

 Collection<Section> semesterSchedule = new ArrayList(section);

 Reconstitute courses retrieved from the database as Section

 Objects and add them to semesterSchedule collection.

 return semesterSchedule;

 // etc.

}

We’ll put this SRSPersistenceLayer class to work shortly when we talk about the job

of the controller, but first let’s take a look at building the presentation layer.

ChApTer 15 Building A Three-Tier user driven AppliCATion

795

 Building a Web-Based Presentation Layer
In order to build a web-based presentation layer, we must first determine all of the

different web pages that will be necessary to provide the user with the functionality

called for by the original requirements. For the SRS, a minimum collection of pages

might include those illustrated in Figure 15-2:

• A: An initial logon page

• B: A page that displays the logged-on student’s current course load,

with buttons to add a course, drop a course, or log off

• C: A page that lists all available sections sorted by department so

that the student may search for and select courses of interest, with

a button to register for a section or to return to their current course

load page view without taking action

Figure 15-2. Minimal set of web pages required to build a simple SRS user
interface

Each page is comprised of static HTML content along with optional embedded

executable code necessary to customize the page content for that user.

For example, the initial logon page (A) would be all static HTML: a simple form with

two input fields to collect the student’s unique ID number and password plus a submit

button as sketched out in the following (note that this is incomplete HTML):

<FORM>

<INPUT TYPE=TEXT NAME=STUDENTID></INPUT>

ChApTer 15 Building A Three-Tier user driven AppliCATion

796

<INPUT TYPE=TEXT NAME=PASSWORD></INPUT>

<INPUT TYPE=SUBMIT NAME=LOGON>

</FORM>

The format of the logon page will never change and hence is wholly static HTML.

By contrast, the page that displays the student’s list of registered courses needs to be

dynamically generated to display the correct student’s current list of enrolled courses

and thus might contain Java logic (underlined in the following) as follows (note that this

is incomplete HTML):

<FORM>

STUDENT NAME: student.getName()

CURRENTLY ENROLLED IN:

Collection<Section> enrolledIn = student.getEnrolledSections();

for (Section section : enrolledIn) {

 out.println(section.getSectionNo() + " " section.getDayOfWeek()

 + " " + section.getTimeOfDay() + " " + section.getRoom());

<INPUT TYPE=SUBMIT NAME=DROP></INPUT>

<INPUT TYPE=SUBMIT NAME=ADD></INPUT>

<INPUT TYPE=SUBMIT NAME=LOGOFF></INPUT>

</FORM>

}

The manner in which the student object referenced previously gets populated so that

this code can be executed is illustrated in the section to follow.

Note that each web page contains one or more FORMs, which in turn contain one

or more SUBMIT buttons; clicking a SUBMIT button on a web page is what sends the

completed form to the controller to start processing/reacting to the user’s actions.

ChApTer 15 Building A Three-Tier user driven AppliCATion

797

 Example Controller Logic
In some respects, you can think of the controller as a master “if-then-else” construct,

determining which web page to display next based on the results of the user’s interaction

with the previous web page displayed. This flow is illustrated with numbered arrows

in Figure 15-3; each arrow involves processing by the controller before the next page is

displayed.

Figure 15-3. The Controller monitors actions taken by the user (button presses)
to determine which actions are to be performed behind the scenes. (Numbers in
circles correspond with entries in the numbered event list below.)

 1. If the student types in their student ID and password on web

page A and clicks the Logon button, the controller will use the

information provided by the student in the STUDENTID and

PASSWORD input fields, calling the initialize() method of the

SRSPersistenceLayer to query the database for a student with

these credentials; if logon is successful, the controller will display

web page B after executing the embedded code in that page to

display the student’s current list of courses.

 2. If the student clicks the Add button on web page B, the controller

will use the SRSPersistenceLayer to query the database for a list

of all available courses; the controller will then display web page

C after executing code in web page C to display all of the courses

as a list.

ChApTer 15 Building A Three-Tier user driven AppliCATion

798

 3. If the student selects a course on web page C and clicks the

Register button, the controller will update the student object’s

course load, use the SRSPersistenceLayer to store the newly

updated student’s data in the database, and return to web page B

after rerunning the code to display all of the students’ registered

courses so that the newly added course will appear.

 4. The Return to Course Load button on web page C effectively

performs in similar fashion to the Register button on web page C.

 5. If the student is viewing page B and wants to drop a section,

they select the section from the list and click the Drop button.

The controller will update the student object’s course load, use

the data layer to store the newly updated student’s data in the

database, and refresh page B by rerunning the code to display all

of the student’s registered courses with the dropped course having

been removed.

 6. Clicking the Logoff button on screen B will disconnect the session

from the database, logging the student off, and will redisplay

logon page A.

Let’s look at a pseudocode snippet from the controller:

// Pseudocode

// Case 1

If (user pressed the Logon button on the logon page A) {

 String studentid = obtain the studentid from the user’s response in

the Student ID field

 String password = obtain the password from the user’s response in the

Password field

 try {

 SRSPersistenceLayer.initializeConnection(studentid, password);

 } catch (InitializationException e) {

 Dispatch an error message to user’s browser

 }

ChApTer 15 Building A Three-Tier user driven AppliCATion

799

 // Reconstitute student object by calling the appropriate

method on the

 // SRSPersistenceLayer class.

 Student student = SRSPersistenceLayer.retrieveStudent(studentid);

 Dispatch list of registered courses web page B to user’s browser

after executing the embedded Java code so that the student’s full

list of sections will be displayed

// Case 2

} else if (user pressed the Add button on page B) {

 Collection<Section> scheduleOfClasses =

 SRSPersistenceLayer.getScheduleOfClasses();

 Dispatch list of courses page C to user’s browser after executing the

 embedded Java code so that all available sections are displayed

// Case 3

} else if (Register button on register for a course page C is pressed) {

 Use student object that was already created in this session

 String sectionNo = Obtain section number of the course that was

 selected by the user

 // Reconstitute section object.

 Section section = SRSPersistenceLayer.retrieveSection(sectionNo);

 // Register the student for the selection course.

 student.registerForCourse(section);

 // Because the student’s state has changed with the addition

of another

 // registered course, we persist the modified student ...

 SRSPersistenceLayer.storeStudent(student);

 Dispatch list of registered courses web page B to user's

browser after

 executing the embedded Java code so that the student's full list of

 sections including the one that we just added will be displayed

ChApTer 15 Building A Three-Tier user driven AppliCATion

800

// Case 4

} else if (user presses Return button on page C) { ...

// Case 5

} else if (user presses Drop button on page B) { ...

// Case 6

} else if (user presses Logoff button on page B) { ... }

There will typically be one if/else-if clause in the controller logic for every possible

button click in the user interface (fewer if the same clause can handle multiple similar

situations), and in each such clause, the controller will

• Retrieve whatever data the user provided on the currently

displayed page.

• Optionally reconstitute objects using the persistence layer as

necessary.

• Optionally modify the objects’ states based on the user’s actions.

• Optionally store the objects back in the database using the

persistence layer.

• Determine which page is to be dispatched back to the user’s browser,

running optional embedded code in that page to refresh the contents

as viewed by the user.

This controller loop will continue running until the user exits the session by closing

the browser page.

The terminology model-view-controller is alternatively used to refer to this

controller loop—in essence, the controller serves to keep the view in sync with the model

based on user interactions with the application.

 The Importance of Model–Data Layer–
View Separation
In building both the presentation and persistence layers of our three-tier SRS

application, note that the model layer as developed in Chapter 14 remained untouched.

Why is this so important? For two reasons:

ChApTer 15 Building A Three-Tier user driven AppliCATion

https://doi.org/10.1007/978-1-4842-9060-6_14

801

• By keeping the model pure/uncomplicated by presentation or

persistence logic, the model can be reused as is to build other

applications for the same client/organization.

• Another very important benefit: By keeping all three layers separate,

our application becomes much more adaptable to future changes.

• If we were to want to switch persistence technologies in the

future, all we would need to change would be the internal logic

of the PersistenceLayer class—the rest of the application would

remain unchanged!

• If we were to want to replace the presentation layer, there might

be impacts on the controller logic, but the model and persistence

layers would remain unchanged!

Developers who set out to build a three-tier application without understanding this

concept often get persistence logic mixed into the controller or presentation tier logic,

which makes it next to impossible to swap out technologies.

By developing our SRS model classes first and using a command-line program to put

them through their paces, we’ve virtually guaranteed loose coupling—that is, ease of

interchangeability—between tiers if we build the persistence and presentation tiers as

suggested in this chapter.

The model layer of an application is typically the layer that changes the least often

over an application’s lifetime, because the fundamentals of real-world objects (i.e., the

business rules for how they operate) are fairly stable, once properly modeled. This is in

contrast with both the presentation and data layers of an application, which undergo

fairly frequent change due to technology shifts:

• It isn’t unusual for the same application to transition from one

database back end to another, or even from one type of persistent

storage to another, over its lifetime.

• It isn’t unusual for the same application to periodically get a “face-

lift” in terms of how information is presented to a user.

Unfortunately, many developers dive into Java development by acquiring and using

a graphics-oriented Java integrated development environment (IDE). As a result, they

wind up using the drag-and-drop features of such a tool to build a GUI front end that

ChApTer 15 Building A Three-Tier user driven AppliCATion

802

directly connects to a file system or database back end, with no model layer whatsoever

in the middle! Hence, while such applications are, strictly speaking, Java applications,

they aren’t truly object-oriented applications.

If we instead approach OO application development properly, by doing the following

 1. Building the model layer first, as a true OO abstraction of the real-

world problem that we are trying to automate

 2. Architecting the data and presentation layers separately from

the model layer so as to be easily upgradeable when necessary

without impacting the model

the resultant applications will be much more resilient to change and will enjoy

much longer life cycles, thereby reducing overall software development costs for an

organization.

 Summary
In this chapter, you’ve learned

• The typical architecture for a three-tier user-driven application,

consisting of a presentation tier, application tier, and persistence tier

• The role of the controller in the application tier

• An approach to building the persistence tier

• An approach to building the presentation tier

• The importance of achieving independence among these three tiers

for purposes of flexibility and longevity of the application you are

building

 Further Reading
Within the Apress library, the following books would be excellent next steps in your Java

journey:

• Beginning Jakarta EE by Peter Späth

• Java 17 Recipes by Josh Juneau and Luciano Manelli

ChApTer 15 Building A Three-Tier user driven AppliCATion

https://www.amazon.com/Java-17-Recipes-Problem-Solution-Approach-ebook/dp/B09TDND6XG/ref=sr_1_1?crid=5EN4BIRSV4XS&keywords=Java+17+Recipes&qid=1673292893&sprefix=java+17+recipes,aps,56&sr=8-1

803

• Java Challenges by Michael Inden

• Java EE to Jakarta EE 10 Recipes by Josh Juneau and Tarun Telang

• Beginning Java 17 Fundamentals: Object-Oriented Programming in

Java 17 by Kishori Sharan and Adam L. Davis

ChApTer 15 Building A Three-Tier user driven AppliCATion

https://www.amazon.com/Java-Challenges-Proven-Prepare-Anything/dp/148427394X/ref=sr_1_1?crid=2V08SS0G7DE7Z&keywords=Java+Challenges+inden&qid=1673292966&sprefix=java+challenges+inden,aps,53&sr=8-1
https://www.amazon.com/Java-Jakarta-Recipes-Problem-Solution-Enterprise/dp/1484280784/ref=sr_1_1?crid=1OIF43US4MJLT&keywords=Java+EE+to+Jakarta+EE+10+Recipes&qid=1673293014&sprefix=java+ee+to+jakarta+ee+10+recipes,aps,47&sr=8-1
https://smile.amazon.com/Beginning-Java-Fundamentals-Object-Oriented-Programming/dp/1484273060/ref=sr_1_13?crid=29TM802O4DX8U&keywords=apress+java&qid=1672085971&sprefix=apress+java,aps,60&sr=8-13
https://smile.amazon.com/Beginning-Java-Fundamentals-Object-Oriented-Programming/dp/1484273060/ref=sr_1_13?crid=29TM802O4DX8U&keywords=apress+java&qid=1672085971&sprefix=apress+java,aps,60&sr=8-13
https://smile.amazon.com/Kishori-Sharan/e/B006Z81X7K?ref=sr_ntt_srch_lnk_13&qid=1672085971&sr=8-13

805

 APPENDIX A

Alternative Case Studies
This appendix proposes some alternative case studies that can be used as the basis

of formal coursework or personal study applications. It is also intended to serve as a

supplement to many of the end-of-chapter exercises found throughout the book.

 Case Study #1: Prescription Tracking System
This case study is relatively straightforward and hence can be tackled by most beginning

modelers fairly effortlessly.

 Background
Drugs For You pharmacy wishes for us to design and develop an automated Prescription

Tracking System (PTS). The requirements are as follows:

• The system is to keep track of the following information for each

customer:

• Customer’s name

• Telephone number

• Date of birth

• Insurance provider

• Insurance policy number

• A prescription history, detailed next

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6

https://doi.org/10.1007/978-1-4842-9060-6#DOI

806

• Each customer’s prescription history will record the following

information about each prescription:

• A unique prescription ID number assigned by the pharmacy

• The medication being prescribed

• The prescribing physician’s name and telephone number

• The date of issue

• Expiration date

• Number of refills authorized

• Number of “units” per prescription refill, where a “unit” might

be a pill, a teaspoon, a milliliter (ml), etc. (see the discussion of

medications next)

• Whether or not it’s okay to provide the customer with a generic

substitute, if one exists

• For each medication stocked by the pharmacy, the system will track

• Its name

• The “unit” by which the medication is prescribed (pills,

teaspoons, ml, etc.)

• Which medications can serve as “generic” equivalents of which

other medication(s)

• Any common side effects associated with taking the medication

• The system is required to support the following queries (some will

be printed as hard-copy reports, whereas others will be viewed

online only):

• A prescription history—that is, a report of all prescriptions ever

issued to a given customer—as requested by a given customer

• A report of all side effects of a given medication, to be enclosed

with each prescription dispensed

Appendix A AlternAtive CAse studies

807

• A list of all generic substitutes available for a given medication

• Whether a given prescription is refillable—that is, whether any

refills remain and whether the prescription has yet to expire

All of the preceding will be accessible via a secure website to individual customers as

well as to the in-store pharmacist.

 Simplifying Assumptions
A real-life Prescription Tracking System would be quite complicated. I suggest the

following simplifications to make the PTS problem a bit more tractable for beginning-

level object modelers:

• The system isn’t to be concerned with billing matters in any way;

that is, we aren’t going to worry about computing the price to be

paid for a prescription, and we won’t be concerned with trying to

get a customer’s insurance company to reimburse the pharmacy in

any way.

• We’ll assume that there is only one Drugs For You pharmacy location;

that is, it isn’t part of a chain of multiple stores.

• The system isn’t responsible for inventory control; that is, we’ll

assume that “infinite” quantities of all medications are in stock or,

conversely, that medications are immediately available on demand

from a warehouse.

• Assume that the prescription is always refilled with the same

medication as was issued for that prescription the first time around;

that is, we’ll never initially fill the prescription with a generic

medication and then refill it with a nongeneric equivalent or

vice versa.

Appendix A AlternAtive CAse studies

808

 Case Study #2: Conference Room
Reservation System
This is an advanced case study that involves scheduling complexities and other

elaborate requirements, representative of a real-world modeling challenge. It’s best

suited to an instructor-led group modeling exercise rather than as an individual exercise

for a beginning-level modeler.

 Background
We’ve been asked to develop an automated Conference Room Reservation System

(CRRS) for our organization:

• A total of a dozen conference rooms are scattered across the four

different buildings that comprise our facility. These rooms differ in

terms of their seating capacities as well as what audio-visual (A/V)

equipment is permanently installed in each room.

• Each of these rooms is overseen by a different administrative staff

member, known as a conference room coordinator.

• Reservations are presently being recorded manually by the various

conference room coordinators. The name of the person reserving

the room, as well as their telephone number, is jotted by hand in

an appointment book; the start and stop times of the meeting are

also noted.

• A separate, central organization called the A/V equipment group

provides “loaner” A/V equipment to supplement any equipment

that may be permanently installed in a given conference room.

Equipment that is available for temporary use through this group

includes conventional overhead projectors, televisions, VCRs,

LCD projectors for use with PCs, electronic whiteboards, laptop

computers, tape recorders, and slide projectors. Personnel from this

group deliver equipment directly to the locale where it’s needed and

pick it up after the meeting is concluded.

Appendix A AlternAtive CAse studies

809

The following problems have been noted regarding the present manual system:

• Currently, no supplemental information regarding the number of

attendees or planned A/V equipment usage is being noted by the

conference room coordinators for a given meeting.

• If someone planning a meeting involving only 4 people schedules

a room with the capacity for 20, the excess capacity in that room

will be wasted. Meanwhile, someone truly needing a room for 20

people will be left short.

• Meeting planners must also be responsible for separately

coordinating with the A/V equipment group; if they forget to do

so, panic often ensues as folks scramble to arrange necessary

equipment at the last minute.

• Whenever a given room’s coordinator is away from their desk,

information about that room’s availability is inaccessible, unless the

inquirer wishes to walk to the coordinator’s office and inspect the

appointment book directly. However, due to the size of the office

complex, this isn’t practical, so inquirers typically leave a voicemail

message or send an email to the coordinator, who gets back to them

at a later point in time.

• People are lax about canceling reservations when a room is no

longer needed, so rooms often sit vacant that could otherwise be put

to good use. Similarly, they often forget to cancel A/V equipment

reservations.

• Pertinent information about the rooms (e.g., their seating capacity,

whether or not they have a whiteboard, whether or not they have

built-in A/V facilities, whether or not they are “wired” into the

company’s LAN) isn’t presently published anywhere. Someone

unfamiliar with the amenities of the various rooms often winds up

having to call all 12 of the conference room coordinators in search of

an appropriate meeting location.

Appendix A AlternAtive CAse studies

810

 Goals for the System
We’ve been asked by management to design a system for providing online, automated

conference room and equipment scheduling to remedy the problems of the current

manual approach. The goals of this project are to provide the ability for any employee to

directly connect to the system to perform the following tasks:

• If the user is interested in scheduling a room for a meeting, they

will be required to complete an online questionnaire regarding the

parameters of the meeting, to include

• The scheduler’s name, title, department, and telephone number

• The number of attendees anticipated

• A date range, indicating the earliest and latest acceptable dates

for the meeting

• The length of time that the room will be required, in half-hour

increments

• An earliest acceptable start time and latest acceptable stop time

• A list of all A/V equipment required

• As soon as this questionnaire is completed, the system will present

the user with a list of all available suitable room alternatives. The user

will be able to select from these options to reserve a room or change

their criteria and repeat the search.

note that the system need not “remember” the conference room criteria after the
user logs off.

• When confirming a reservation, the user must designate a subject or

purpose for the meeting, such as “Demo of CRRS Prototype.”

• After a room has been selected, the system will then determine

what “loaner” A/V equipment will be needed to supplement the

equipment that is permanently installed in that room and will

automatically arrange for its delivery.

Appendix A AlternAtive CAse studies

811

For purposes of this case study, we won’t worry about running out of equipment—
we’ll assume an infinite supply of everything—although in real life this would also
have to be a consideration.

• If no rooms meeting the user’s requirements are available, the user

will be presented with a list of suitable rooms with the number of

people waitlisted for each. The user will be able to optionally place

their name at the end of the waiting list for one of these rooms.

• When such a request is posted, the system is to send a courtesy

email to the person holding that room’s reservation, asking that

person to rethink their need for the room.

• Should the room become available, it will automatically be

temporarily reserved for the first person on the waiting list. An

email message is to be sent automatically to the requestor, giving

that person 72 hours to confirm their selection before the room

either (a) is reassigned (again, temporarily) to the next person on

the waiting list or (b) becomes generally available if the waiting

list has been exhausted.

• A user should be permitted to query the system as to who has a

particular room reserved at a given date and time or to perform a

search for a given meeting that the user is to attend based on (a)

scheduler or (b) subject.

• The user must be able to cancel a room reservation at any time,

whether confirmed or waitlisted.

• The A/V equipment group wishes to periodically run a report, sorted

by equipment type, indicating how many times a given piece of

equipment was used over a 12-month period.

Appendix A AlternAtive CAse studies

812

 Case Study #3: Blue Skies Airline
Reservation System
This is the most complex case study of all. Please see the introductory comments for case

study #2.

 Background
Blue Skies Airline, a new airline, offers services between any two of the following US

cities: Denver; Washington, D.C.; Los Angeles; New York City; Atlanta; and Cleveland.

When a customer calls Blue Skies to make a flight reservation, the reservation agent

first asks them for

• The desired travel dates

• The departure and destination cities

• The seat grade desired (first class, business class, or economy)

The reservation agent then informs the customer of all available flights that meet

their criteria. For each flight, the flight number, departure date and time, arrival date

and time, and round-trip price are communicated to the customer. If the customer finds

any of the available flights acceptable, they may either pay for the ticket via credit card

or request that the seat be held for 24 hours. (A specific seat assignment—row and seat

number—isn’t issued until the seat is paid for.)

A limited number of seats on each flight are earmarked as frequent flyer seats. A

customer who is a frequent flyer member may reserve and “pay for” one of these seats

by giving the agent their frequent flyer membership number. The agent then verifies that

the appropriate balance is available in the customer’s account before the seat can be

confirmed, at which point those miles are deducted from the account.

The customer has two ticketing options: they may request that a conventional

“paper” ticket be issued and mailed to their home address, or an electronic ticket

(e-ticket) may instead be assigned, in which case the customer is simply informed of the

e-ticket serial number by telephone. (With an e-ticket, the customer simply reports to

the airport at the time of their departure and presents suitable ID to a ticket agent at the

gate. No paperwork is exchanged.) In both cases, the reservation agent records the serial

number of the (conventional or electronic) ticket issued to this customer.

Appendix A AlternAtive CAse studies

813

The number of seats available for a given flight in each of the seat grade categories is

dependent on the type of aircraft assigned to a given flight.

 Other Simplifying Assumptions
As with the PTS case study, there are several simplifying assumptions that can be made

as compared with a real-life Airline Reservation System to make this case study more

tractable:

• Assume that all flights are round-trip between two cities (no

itineraries of three or more legs are permitted).

• Disregard the complication that airlines sometimes have to switch

aircraft at the last minute due to mechanical difficulties, thus

disrupting the seating assignments.

Appendix A AlternAtive CAse studies

815

Index

A
Abstract classes, 439

attributes, 380
compile, 383
courses types, 381–382
generalization, 380
instantiation, 387, 388
vs. interfaces, 398, 399
method bodies or headers, 384
method implementation, 385–387
polymorphism, 390, 392
reference variable, declaring, 389
specialization, 380

Abstraction
classification, 17
components, 3
definition, 3
generalization

classification, 5–10
human body, 5
software development, 10, 11

hierarchy, 6
landscape, 4
reuse, 12
road map, 4
software engineering, 13
SRS requirement specification, 16, 18

Access modifier, 166
Accessor methods, 186, 236, 238, 413, 725
Actors

categories, 460
diagramming system, 463–466

identifying/determining roles, 461–463
interaction, 460

Addition operator, 68
addPrerequisite method, 777, 788
addSection method, 755
Advises association, 227
Aggregation, 232, 233, 281
agreeToTeach method, 778, 788
Anonymous object, 517
Argument signature, 149
Array

access expression, 297
declaring/instantiating, 295, 296
definition, 295
individual array elements,

accessing, 297
manipulating objects, 300–304
values, 298, 299

ArrayList, 729, 743
assignMajor method, 194
Association, 280
Association/links

binary, 226
classes, 224
multiplicity, 227–232
template, 225

attemptToEnroll method, 779, 780

B
“Best” or “correct” model, 13
Billing System, 489

© Jacquie Barker 2023
J. Barker, Beginning Java Objects, https://doi.org/10.1007/978-1-4842-9060-6

https://doi.org/10.1007/978-1-4842-9060-6#DOI

816

Binary associations, 225
Binary code/machine code, 22
Block-structured

language, 65
Blue Skies airline reservation system,

812, 813
boolean hasMoreTokens method, 618
Browser-based application, 789
Business logic/rules, 141–142
Bytecode, 23

C
cancelSection method, 788
CASE tools

added information content, 453
automated code generation, 453
drawbacks, 454, 455
project management, 454
visual models, 453

cd command, 32
chairmanName attribute, 521
Class

declare Java style, 93, 94
definition, 91
encapsulation, 96, 97
example, 91, 92
instantiation, 95, 96
naming conventions, 92
reference variables, names, 99
user-defined types, 97, 98

Class diagram, 575
Class hierarchy, 247
Classification, 5
Class-Responsibilities-Collaborators

(CRC), 448
Classroom Scheduling

System, 462

Collections
ArrayList class

copy contents, 319–321
default package, 313
example, 306
features, 315–318
generics, 314
import directive/packages, 306–309
iterating, 318, 319
namespace, 310–312
OO languages, 305

classes, 286, 287
create own types (see Predefined

collection types)
derived types, 350
generic types, 290

dictionary, 292
ordered list, 290, 291
set, 293, 294

HashMap class, 321–329
MyIntCollection vs.

MyIntCollection2, 346–348
packages, 285
properties, 285
public features, 289
references to objects, 288, 289
return type methods, 348, 350
same object, references multiple

collections, 332, 333
Student class design

courseLoad attribute, 352
data structure, 351, 363
generic types, 364
transcript attribute, 352–362, 364
wrapper classes, 364

TreeMap class, 329, 331
Command-line arguments, 679
Command-line–driven application, 719

INDEX

817

Command-line-driven
programs, 789

arguments, 679, 680
classic information system, 678
control program’s behavior, 681–687
scanner class, 688, 689
wrapper classes, input

conversion, 689–691
Communication diagram, 571
Composition, 118, 234
Compound assignment operators, 43
Concatenation operator, 68
Concentration, 581
Concrete method, 390
Conference Room Reservation System

(CRRS), 808–811
confirmSeatAvailability (), 758
Constructors, 125, 219

default, 201, 202, 210–212
default parameterless constructor,

replacing, 205
definition, 201
overloading, 208–210
passing arguments, 203, 204
this keyword, 212, 214–216
writing own explicit constructor,

202, 203
containsKey method, 325
Conventional accessor methods, 176
countOfDsAndFs attribute, 200
Course class

attributes, 743, 744
methods, 745, 746
UML representation, 742

courseCompleted method, 358
-cp flag, 34
Custom utility

classes, 437, 439, 440

D
Data dictionary, 491
DataTruncation, 655, 656
Declaring methods

analogy, 133, 134
features, 135, 136
method body, 134
method header, 129
naming conventions, 129
object’s behaviors, 128
passing arguments, 130, 131
return statement, 136–141
return types, 131–133

“Defective” method, 262
Delegation, 156
display (), 733
displayCourseSchedule (), 734, 758, 759,

762, 763
drop (), 755
Dynamic model, 474

building blocks, 548
communication diagram, 571–573
events

external boundaries, system, 554
ignore an event, 555
message, 551, 552
object may change its state, 552, 553
object may direct an event, 553
return value, 554

object’s attribute values, 548
scenarios

functional requirements, 556
internal messages, 556
register for a course, 557–560

sequence diagrams, 560
SRS class diagram, 573–575
state of object, 549–551
student class attributes, 548

INDEX

818

E
“E-information”, 3
Email messaging system, 486
Encapsulation, 96, 97, 99, 367

accessor method, 185
class own methods, 191–194, 196
data integrity, 186–188
public accessors, 185
public/private accessibility, 184
ripple effects, 188–191
unauthorized access, 185

End-of-line comment, 29
Enum(eration)s

bytecode, 670, 671
client code, 674
compile time, 672, 673
display method, 675
enum-approved values, 675
example, 668
Grade, 676
InvalidMajorException, 669, 670
StudentBody, 677
template, 671

eraseGrade method, 788
establishCourseSchedule method, 381,

382, 384, 385, 387
Exception handling

advantage, 661, 662
catch block, 634–639
catch exceptions, 645–650
class hierarchy, 654–658
compiler, 659, 661
generic exception type, 658, 659
finally block, 640–644
JVM interprets, 630, 632
nesting try/catch blocks, 662
stack trace, 651–653
try block, 633

type of exception, 668
user-defined exception types, 663–667

Exceptions, public/private rule, 197–201
Expressions

arithmetic operators, 43–45
operator precedence, 46–48
relational operators, 45–46
type of an expression, 48

F
Final variable

class/instance, 435
definition, 433
local, 434
public static, 436

Fuel argument signatures, 283
Functional decomposition, 82, 216
Functional interface, 395

G
Generalization, 243, 380
Generic OO vs. Java terminology, 592
getAge(), 190, 191, 217
getClass().getName() approach, 693
getDepartment method, 627
getEnrolledSections(), 738
getGrade(), 757
getIdNo method, 325
getMessage(), 661, 664, 667
get method, 176, 178, 179, 181, 325, 414, 554
getName and getSsn methods, 193
getName method, 185, 304, 521, 627
getRegisteredStudents method, 349
getRepresentedCourse method, 753
getStudent method, 667
getTitle/getEmployeeId method, 279

INDEX

819

getTranscript method, 739
Goal-oriented functional requirements,

459, 470
Graphical user interface (GUI), 22

H
handleException method, 659
HashMap, 749, 766

definition, 321
methods, 327, 329
program, 321
Student class declaration, 322–324

HashMapExample, 321
hasPrerequisites method, 753
hireProfessor method, 436
Housekeeping method, 574
Housekeeping reportStatus method, 778
Hunt and gather method, 474

I
Implementation classes or solution space

classes, 486
incrementEnrollment method, 424, 428
Industrial-strength applications, 787
Industrial-strength modeling, 545
Information hiding, 125, 165, 367
Information hiding/accessibility

class’s features, 171–176
method header, 171
object’s attributes, 165
private, 168, 169
public, 166–168
publicize services, 169, 170

Inheritance, 379, 509
advantages, 246, 247
class hierarchies, 247–249

constructors, 267
default parameterless, 268,

269, 272–275
super keyword, 269–271

deriving classes, rules, 252, 260–262
GraduateStudent class, inappropriate

approach, 239–241
“is a” relationship, 242–246
modify Student class, inappropriate

approach, 235–239
multiple inheritance, 276–279
object class, 250
overriding, 252–256
private features, 262–266
proper approach, 241–242
relationships between classes, 250
ripple effects, class hierarchy, 251
shifting requirements,

abstraction, 234–235
single-inheritance hierarchies, 275, 276
super keyword, 256–260

Inheritance relationships, 547
initialize(), 797
instanceof operator, 693
Instantiation, 95, 96
Instructor, 413
Integer.parseInt method, 690
Integrated development environment

(IDE), 801
Interfaces

behaviors, 393
casting, 401–405, 409, 410
class types, example, 412–422
data structure, 392
implementation, 395–397
implementing multiple

interfaces, 406–409
instantiation, 410

INDEX

820

“is a” relationship, 400, 401
polymorphism, 411, 412
syntax, 394

InvalidMajorException, 669
isCurrentlyEnrolledInSimilar(), 736
isEnrolledIn method, 736
isHonorsStudent method, 138, 139
isSectionOf method, 773

J, K
Java

expressions (see Expressions)
string type, 40, 41

Java
architecture-neutral nature, 22–26, 78
automatic type conversion, 48
case-sensitive language, 41
comments

documentation, 30
end-of-line, 29–30
traditional, 28–29

console window, printing
escape sequences, 71
examples, 67, 68
graphical user interface, 67
print vs. println, 69–70

executing bytecode, 33, 34
explicit cast, 49–51
java source code to bytecode,

compiling, 32
platform-dependent executable

programs, 23
platform-independent bytecode, 24
pseudocode vs. real code, 27
setting up environment, 32
simple programs, 27, 28

class declaration, 30
comments, 28
main method, 31, 32

varargs, 712–716
variable initialization, 709–711

Java archive (“jar”) file
creating file, 594, 595
directory hierarchy, 597–599
example, 593, 594
extract contents, 597
inspect/list contents, 595, 596
use bytecode, 596

Java code
object-oriented constructs, 719
SRS class diagram, 720

Java Development Kit (JDK), 30, 601
Javadoc comments, 599–608
Java Language Specification (JLS), 592
Java-specific terminology, 592
Java style elements

braces, 77
descriptive variable name, 78
indentation, 72–76
meaningful comments, 76

java.util package, 615
Java Virtual Machine (JVM), 23

bytecode independent bytecode, 25
bytecode language, 24
interpret, 24
platforms, 26

Jump statements, 63

L
Local variable, 592
“Look and feel” requirements, 459
Loops/flow control structures

conditional, 51

Interfaces (cont.)

INDEX

821

statements types
for, 58–60
if, 52–55
jump, 63–64
switch, 55–57
while, 61–63

M
Many-to-many (m:m) association,

229, 532
Memory leak, 110
Method body, 134
Method invocation

argument signatures, 149, 150
descriptive names, choosing, 150
dot notation, 144
message expressions, 146
method signatures, 148, 149
non-OOPL, 146
non-void return type, 147, 148

MissingValueException, 663
Model-view-controller, 800
mowTheLawn method, 133
Multiple inheritance, 276
Multiplicity, 280, 511
Multiplicity designator, 504
MyIntCollection

code, 335, 336
definition, 335
override add method, 339, 340
primitive types, 337, 338
reuse constructor code, 338
sample client code, 340, 341

MyIntCollection2
client code, 345
code, 343, 344
encapsulation, 341, 342

N
Narrowing conversion, 49
nextType() method, 688
Noun phrase analysis, 475

O
Object class

determining class, 692
methods, 692
operator, 693
override equals method, 700–704
static initialiazers, 707–709
testing equality, 694–700
toString method,

override, 704–706
Object modeling

artifacts—models, 452
methodologies, 447–449, 456
notations, 446, 447, 450
process, 446, 447, 450
software development, 450
software tools, 445

CASE, 453
Powerpoint, 452
UML, 452

tool, 449
use case modeling, 451

Object Modeling
Technique (OMT), 447

Object-oriented (OO) approach, 81,
216, 217

Object-oriented (OO) languages, 21
features, 367, 368
polymorphism, 368

Object-oriented programming languages
(OOPLs), 92, 142, 378, 379

INDEX

822

Object-oriented software development
external event, 126
functional decomposition, 216, 218
process steps, 126
student user via SRS application’s GUI,

126, 127
Object-oriented software system, 125
Objects

attributes
composition, 118, 119
OO programming language,

features, 121
predefined types, 111
Professor class, 113–117
reference, 120
reference variable, 113
Student class, 112

behavior/operations/methods, 89, 90
clients/suppliers, 162–164
conceptual, 86
individual attribute values, 423
instantiate

example, 103, 104
garbage collection, 110, 111
multiple reference variable, 103
nonexistent object, 107, 109, 110
reference variable, 100, 102
Student object, 100
transferring object, 105, 106

message passing, 153–156
obtain handles, 157, 158, 160–162
physical, 86
state and behavior, 87
state/data/attributes, 87, 88

onAcademicProbation method, 198
One-to-many (1:m) association, 228
One-to-one (1:1) association, 227–228, 533
Ordered list, 290

Overloading, 151–153, 219
Overriding, 252

P, Q
Pascal casing, 92
Pattern reuse, 584
Person, 243, 246
Plus sign (+) operator, 41
Polymorphism, 379, 439

ArrayList, 371
code maintenance, 375–377
definition, 368, 373
example, 368
GraduateStudent class, 369, 370
GraduateStudent/

UndergraduateStudent versions,
372, 373

studentBody collection, 373, 374
postGrade(), 756–757, 779, 788
Predefined collection types, 422

brand-new collection class,
scratch, 334

create collection, 334
MyIntCollection, 335
MyIntCollection2, 341

Prescription Tracking System (PTS), 19, 123,
365, 470, 471, 546, 576, 587, 805–807

Primitive types, 34, 35
printDescription method, 278, 279
printSortedContents method, 366
printStackTrace(), 662
printStudentInfo method, 191–194
printTranscript method, 354, 357, 739
Private attributes, objects client code

accessor methods
client code, 183–184
declaring, 176–178

INDEX

823

get/set method headers, 178–182
IDEs, get/set methods, 182
persist attribute values, 183

Programmer-defined packages, 313
Public accessor methods, 176

R
Rational Unified Process (RUP), 448, 457
Reference variable, 98, 122
registerForCourse method, 130, 131,

143, 148
registerForCourse operation, 501
Relationships

behavioral, 223
structural, 223

reportStatus method, 780
Ripple effects, 84, 188

S
scheduleSection method, 746, 777, 788
ScopeExample, 66, 67
Section class

attributes, 747–750
confirmSeatAvailability(), 758
delegation, 758–765
drop(), 755
enroll(), 751–755
enum(eration) type, 750, 751
getGrade(), 757–758
postGrade(), 756–757
UML representation, 747

Sequence diagrams
determine methods, 568–571
objects/external actors, 561–563
preparing, 563, 565–568
UML interaction diagrams, 560

setDepartment method, 410
“Set” method, 176, 180, 181, 184, 193–196,

201, 203, 219, 414
setName method, 182, 666, 667
“shortcut” method, 620
Software application, 81

components, 81
functional decomposition, 82–85
OO approach, 85

Software system model, 14
Specialization, 243
SRS class diagram

driver program
main method, 775–779, 782–787
public static attributes, 774

eight model classes, 723
features, 720
object-oriented elements, 723
Person class, 724–727, 740–742
ScheduleOfClasses class, 765–767
Transcrip class, 772, 773
TranscriptEntry, 767

attribute, 768
constructor, 769
validateGrade()/

passingGrade(), 770–771
Social Security number (ssn)

attribute, 700
Static and dynamic modeling

pattern reuse, 584–586
requirements, 581–583
testing model, 579, 580

Static/data modeling
appropriate classes

candidate classes, 483–488
data dictionary, 491, 492
noun phrase analysis, 475–483
use cases, 488–491

INDEX

824

association
as attributes, 518, 519
between classes, 492, 494
classes, 531–534
matrix, 495–497

completed SRS class diagram, 534–539
identifying attributes, 498
information flows, association

pipeline, 520–527
metadata, 543, 544
mixing/matching relationship

notations, 527–531
object/instance

diagram, 516–518
OO system, 473
SRS data dictionary, 539–542
UML notation, 498

Static methods
restriction, 430–432
totalStudents, 429–430

static parseFloat method, 690
Static variables, 440

class, 425, 426
client code, 426
definition, 426
design improvement, 428, 429
reportTotalEnrollment, 428
all Student objects, 423

StringBuffer approach, 616
Strings

immutable, 612–615
literal pool, 621–624
message chains, 626–628
operations, 608–612
StringBuffer class, 616–617
StringTokenizer class, 617–620
testing equality, 624–626

this keyword, self-referencing, 628–630
types, 608

Student class
accessor methods, 732, 733
addSection(), 734
attributes, 728–730
constructors, 730–732
display methods, 733, 734
displayCourseSchedule(), 734
dropped section, 735
enrolled, 735
getEnrolledSections(), 738–739
isCurrentlyEnrolledInSimilar(), 736–738
printTranscript(), 739
toString(), 734
UML representation, 728

Student Registration System (SRS), 13, 14,
16, 86, 224, 286, 451, 473, 493, 591

Subtree, 7
System.out, 687
System.out.println method, 67, 69, 79
System.out.print method, 79

T
takeOutTheTrash(), 133, 145
teachingAssignments attribute, 115
Ternary association, 226
this keyword, 212, 216, 629
Three-tier user-driven application

controller logic, example, 797–800
controller software, 791
model data layer view, 800, 801
persistent storage, 792–794
presentation tier, 802
SRS, 789
typical architecture, 790, 802
web-based presentation layer, 795, 796

Static/data modeling (cont.)

INDEX

825

toArray method, 319, 321
toString method, 616, 706, 717, 718, 726
Traditional comments, 28
Traditional information systems, 25
TranscriptEntry, 748
TreeMaps, 329

U
UML notation

attributes, 501
classes, 499, 500
operations, 502
relationship between classes

aggregation, 506–509
associations, 503, 505, 506
inheritance, 509–511
multiplicity, 511–516

Unary/reflexive, association, 225
Unified Modeling

Language (UML), 448
Unqualified name, 172
updateBirthdate method, 186, 217
updateGpa method, 199
Use case modeling, 451

actors, 460
behavioral signature, 466
functional requirements, 458
intended users, 460

logical thread, 466
match up use cases, actors, 468
requirements analysis, 467
RUP, 457
software development community, 457
SRS requirements specification, 467
system functionality, 458
technical requirements, 459
UML use case, 469, 470

User-defined types, 121, 280, 378
Utility classes, 432, 433

V
value(), 673
Variable

assignment statement, 36, 37
initialization, 39
naming conventions, 37, 38

Verb phrase analysis, 493
verifyCompletion(), 754, 772

W, X, Y, Z
washTheCar method, 134
Web-based presentation layer, 795
Widening conversion, 50
Within Student methods, 172
worksFor attribute, 115

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Preface
	Introduction
	Student Registration System (SRS) Case Study
	Chapter 1: Abstraction and Modeling
	Simplification Through Abstraction
	Generalization Through Abstraction
	Organizing Abstractions into Classification Hierarchies
	Abstraction as the Basis for Software Development

	Reuse of Abstractions
	Inherent Challenges
	What Does It Take to Be a Successful Object Modeler?

	Summary

	Chapter 2: Some Java Basics
	Java Is Architecture Neutral
	Anatomy of a Simple Java Program
	Comments
	Traditional Comments
	End-of-Line Comments
	Java Documentation Comments

	The Class Declaration
	The main Method

	Setting Up a Simple Java Development Environment
	The Mechanics of Java
	Compiling Java Source Code into Bytecode
	Executing Bytecode

	Primitive Types
	Variables
	Variable Naming Conventions

	Variable Initialization
	The String Type
	Case Sensitivity
	Java Expressions
	Arithmetic Operators
	Relational and Logical Operators
	Evaluating Expressions and Operator Precedence
	The Type of an Expression

	Automatic Type Conversions and Explicit Casting
	Loops and Other Flow Control Structures
	if Statements
	switch Statements
	for Statements
	while Statements
	Jump Statements

	Block-Structured Languages and the Scope of a Variable
	Printing to the Console Window
	print vs. println
	Escape Sequences

	Elements of Java Style
	Proper Use of Indentation
	Use Comments Wisely
	Placement of Braces
	Descriptive Variable Names

	Summary

	Chapter 3: Objects and Classes
	Software at Its Simplest
	Functional Decomposition
	The Object-Oriented Approach

	What Is an Object?
	State/Data/Attributes
	Behavior/Operations/Methods

	What Is a Class?
	A Note Regarding Naming Conventions
	Declaring a Class, Java Style

	Instantiation
	Encapsulation
	User-Defined Types and Reference Variables
	Naming Conventions for Reference Variables

	Instantiating Objects: A Closer Look
	Garbage Collection

	Objects As Attributes
	A Compilation “Trick”: “Stubbing Out” Classes
	Composition
	The Advantages of References As Attributes

	Three Distinguishing Features of an Object-Oriented Programming Language
	Summary

	Chapter 4: Object Interactions
	Events Drive Object Collaboration
	Declaring Methods
	Method Headers
	Method Naming Conventions
	Passing Arguments to Methods
	Method Return Types
	An Analogy
	Method Bodies
	Features May Be Declared in Any Order
	return Statements

	Methods Implement Business Rules
	Objects As the Context for Method Invocation
	Java Expressions, Revisited
	Capturing the Value Returned by a Method
	Method Signatures
	Choosing Descriptive Method Names

	Method Overloading
	Message Passing Between Objects
	Delegation
	Obtaining Handles on Objects
	Objects As Clients and Suppliers
	Information Hiding/Accessibility
	Public Accessibility
	Private Accessibility
	Publicizing Services
	Method Headers, Revisited
	Accessing the Features of a Class from Within Its Own Methods

	Accessing Private Features from Client Code
	Declaring Accessor Methods
	Recommended “Get”/“Set” Method Headers
	IDE-Generated Get/Set Methods
	The “Persistence” of Attribute Values
	Using Accessor Methods from Client Code

	The Power of Encapsulation Plus Information Hiding
	Preventing Unauthorized Access to Encapsulated Data
	Helping Ensure Data Integrity
	Limiting “Ripple Effects” When Private Features Change
	Using Accessor Methods from Within a Class’s Own Methods

	Exceptions to the Public/Private Rule
	Constructors
	Default Constructors
	Writing Our Own Explicit Constructors
	Passing Arguments to Constructors
	Replacing the Default Parameterless Constructor
	More Elaborate Constructors
	Overloading Constructors
	An Important Caveat Regarding the Default Constructor
	Using the “this” Keyword to Facilitate Constructor Reuse

	Software at Its Simplest, Revisited
	Summary

	Chapter 5: Relationships Between Objects
	Associations and Links
	Multiplicity
	One-to-One (1:1)
	One-to-Many (1:m)
	Many-to-Many (m:m)

	Multiplicity and Links

	Aggregation and Composition
	Inheritance
	Responding to Shifting Requirements with a New Abstraction
	(Inappropriate) Approach #1: Modify the Student Class
	(Inappropriate) Approach #2: “Clone” the Student Class to Create a GraduateStudent Class
	The Proper Approach (#3): Taking Advantage of Inheritance
	The “is a” Nature of Inheritance
	The Benefits of Inheritance
	Class Hierarchies
	The Object Class
	Is Inheritance Really a Relationship?
	Avoiding “Ripple Effects” in a Class Hierarchy
	Rules for Deriving Classes: The “Do’s”
	Overriding
	Reusing Superclass Behaviors: The “super” Keyword
	Rules for Deriving Classes: The “Don’ts”
	Private Features and Inheritance
	Inheritance and Constructors
	Constructors Are Not Inherited
	super(...) for Constructor Reuse
	Replacing the Default Parameterless Constructor

	A Few Words About Multiple Inheritance

	Three Distinguishing Features of an OOPL, Revisited
	Summary

	Chapter 6: Collections of Objects
	What Are Collections?
	Collections Are Defined by Classes and Must Be Instantiated
	Collections Organize References to Other Objects
	Collections Are Encapsulated

	Three Generic Types of Collection
	Ordered Lists
	Dictionaries
	Sets

	Arrays As Simple Collections
	Declaring and Instantiating Arrays
	Accessing Individual Array Elements
	Initializing Array Contents
	Manipulating Arrays of Objects

	A More Sophisticated Type of Collection: The ArrayList Class
	Using the ArrayList Class: An Example
	Import Directives and Packages
	The Namespace of a Class
	User-Defined Packages and the Default Package
	Generics
	ArrayList Features
	Iterating Through ArrayLists
	Copying the Contents of an ArrayList into an Array

	The HashMap Collection Class
	The TreeMap Class
	The Same Object Can Be Simultaneously Referenced by Multiple Collections
	Inventing Our Own Collection Types
	Approach #1: Designing a New Collection Class from Scratch
	Approach #2: Extending a Predefined Collection Class (MyIntCollection)
	Wrapper Classes for Primitive Types
	Reusing a Base Class Constructor
	Overriding the add Method
	Putting MyIntCollection to Work

	Approach #3: Encapsulating a Standard Collection (MyIntCollection2)
	Putting MyIntCollection2 to Work

	Trade-Offs of Approach #2 vs. Approach #3

	Collections As Method Return Types
	Collections of Derived Types
	Revisiting Our Student Class Design
	The courseLoad Attribute of Student
	The transcript Attribute of Student
	The transcript Attribute, Take 2
	Our Completed Student Data Structure

	Summary

	Chapter 7: Some Final Object Concepts
	Polymorphism
	Polymorphism Simplifies Code Maintenance

	Three Distinguishing Features of an Object-Oriented Programming Language
	The Benefits of User-Defined Types
	The Benefits of Inheritance
	The Benefits of Polymorphism

	Abstract Classes
	Implementing Abstract Methods
	Abstract Classes and Instantiation
	Declaring Reference Variables of Abstract Types
	An Interesting Twist on Polymorphism

	Interfaces
	Implementing Interfaces
	Another Form of the “Is A” Relationship
	Interfaces and Casting
	Implementing Multiple Interfaces
	Interfaces and Casting, Revisited
	Interfaces and Instantiation
	Interfaces and Polymorphism
	The Importance of Interfaces
	Example #1
	Example #2

	Static Features
	Static Variables
	A Design Improvement: Burying Implementation Details
	Static Methods
	Restrictions on Static Methods
	Utility Classes
	The final Keyword
	Public Static Final Variables and Interfaces

	Custom Utility Classes

	Summary

	Chapter 8: The Object Modeling Process in a Nutshell
	The “Big Picture” Goal of Object Modeling
	Modeling Methodology = Process + Notation + Tool

	My Recommended Object Modeling Process, in a Nutshell
	Thoughts Regarding Object Modeling Software Tools
	Advantages of Using CASE Tools
	Ease of Use
	Added Information Content
	Automated Code Generation
	Project Management Aids

	Some Drawbacks of Using CASE Tools

	A Reminder

	Summary

	Chapter 9: Formalizing Requirements Through Use Cases
	What Are Use Cases?
	Functional vs. Technical Requirements
	Involving the Users

	Actors
	Identifying Actors and Determining Their Roles
	Diagramming a System and Its Actors

	Specifying Use Cases
	Matching Up Use Cases with Actors
	To Diagram or Not to Diagram?
	Summary

	Chapter 10: Modeling the Static/Data Aspects of the System
	Identifying Appropriate Classes
	Noun Phrase Analysis
	Refining the Candidate Class List
	Revisiting the Use Cases

	Producing a Data Dictionary
	Determining Associations Between Classes
	Association Matrices

	Identifying Attributes
	UML Notation: Modeling the Static Aspects of an Abstraction
	Classes, Attributes, and Operations
	Relationships Between Classes
	Associations
	Aggregation
	Inheritance

	Reflecting Multiplicity

	Object/Instance Diagrams
	Associations As Attributes
	Information “Flows” Along an Association “Pipeline”
	“Mixing and Matching” Relationship Notations
	Association Classes
	Our “Completed” Student Registration System Class Diagram
	Metadata
	Summary

	Chapter 11: Modeling the Dynamic/Behavioral Aspects of the System
	How Behavior Affects State
	Events
	An Object May Change Its State
	An Object May Direct an Event (Message) Toward Another Object
	An Object May Return a Value
	An Object May Interact with the External Boundaries of Its System
	An Object May Seemingly Ignore an Event

	Scenarios
	Scenario #1 for the “Register for a Course” Use Case
	Scenario #2 for the “Register for a Course” Use Case

	Sequence Diagrams
	Determining Objects and External Actors for Scenario #1
	Preparing the Sequence Diagram

	Using Sequence Diagrams to Determine Methods
	Communication Diagrams
	Revised SRS Class Diagram
	Summary

	Chapter 12: Wrapping Up Our Modeling Efforts
	Testing the Model
	Revisiting Requirements
	Reusing Models: A Word About Design Patterns
	Summary

	Chapter 13: A Few More Java Details
	Java-Specific Terminology
	Java Archive (jar) Files
	Creating Jar Files
	Inspecting the Contents of a Jar File
	Using the Bytecode Contained Within a Jar File
	Extracting Contents from Jar Files
	“Jarring” Entire Directory Hierarchies

	Javadoc Comments
	The Object Nature of Strings
	Operations on Strings
	Strings Are Immutable
	The StringBuffer Class
	The StringTokenizer Class
	Instantiating Strings and the String Literal Pool
	Testing the Equality of Strings

	Message Chains
	Object Self-Referencing with “this”
	Java Exception Handling
	The Mechanics of Exception Handling
	The try Block
	The catch Block
	The finally Block

	Catching Exceptions
	Interpreting Exception Stack Traces
	The Exception Class Hierarchy
	Catching the Generic Exception Type
	Compiler Enforcement of Exception Handling
	Taking Advantage of the Exception That We’ve Caught
	Nesting of Try/Catch Blocks
	User-Defined Exception Types
	Throwing Multiple Types of Exception

	Enum(eration)s
	Providing Input to Command-Line-Driven Programs
	Accepting Command-Line Arguments: The args Array
	Introducing Custom Command-Line Flags to Control a Program’s Behavior
	Accepting Keyboard Input: The Scanner Class
	Using Wrapper Classes for Input Conversion

	Features of the Object Class
	Determining the Class That an Object Belongs To
	Testing the Equality of Objects
	Overriding the equals Method
	Overriding the toString Method
	Static Initializers

	Variable Initialization, Revisited
	Variable Arguments (varargs)

	Summary

	Chapter 14: Transforming the Model into Java Code
	Suggestions for Getting the Maximum Value from This Chapter
	The SRS Class Diagram Revisited
	The Person Class (Specifying Abstract Classes)
	Attributes of Person
	Person Constructors
	Person Accessor Methods
	toString()
	display()

	The Student Class (Reuse Through Inheritance, Extending Abstract Classes, Delegation)
	Attributes of Student
	Student Constructors
	Student Accessor Methods
	display()
	toString()
	displayCourseSchedule()
	addSection()
	dropSection()
	isEnrolledIn()
	isCurrentlyEnrolledInSimilar()
	getEnrolledSections()
	printTranscript()

	The Professor Class (Bidirectionality of Relationships)
	Professor Attributes
	agreeToTeach()
	displayTeachingAssignments()

	The Course Class (Reflexive Relationships, Unidirectional Relationships)
	Course Attributes
	Course Methods
	hasPrerequisites()
	getPrerequisites()
	scheduleSection()

	The Section Class (Representing Association Classes, Public Static Final Attributes, Enums)
	Section Attributes
	The Use of an Enum(eration) Type
	enroll()
	drop()
	postGrade()
	getGrade()
	confirmSeatAvailability()

	Delegation Revisited
	The ScheduleOfClasses Class
	ScheduleOfClasses Attributes
	addSection()
	findSection()
	isEmpty()

	The TranscriptEntry Association Class (Static Methods)
	TranscriptEntry Attributes
	TranscriptEntry Constructor
	validateGrade(), passingGrade()

	The Transcript Class
	Transcript Attributes
	verifyCompletion()

	The SRS Driver Program
	Public Static Attributes
	The main Method

	Summary

	Chapter 15: Building a Three-Tier User Driven Application
	A Three-Tier Architecture
	What Does the Controller Do?

	Building a Persistence/Data Tier
	Building a Web-Based Presentation Layer
	Example Controller Logic
	The Importance of Model–Data Layer–View Separation
	Summary
	Further Reading

	Appendix A: Alternative Case Studies
	Case Study #1: Prescription Tracking System
	Background
	Simplifying Assumptions

	Case Study #2: Conference Room Reservation System
	Background
	Goals for the System

	Case Study #3: Blue Skies Airline Reservation System
	Background
	Other Simplifying Assumptions

	Index

