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INTRODUCTION

THE CASE FOR MATHEMATICAL
INTELLIGENCE

MIT, 1950s. The first wave of Artificial Intelligence is on the horizon.

Marvin Minsky, one of the field’s leading figures, proclaims: ‘We’re

going to make machines intelligent. We’re going to make them

conscious.’ Douglas Engelbart, a peer of Minsky’s, retorts: ‘You’re

going to do all that for the machines? What are you going to do for

the people?’1

Artificial intelligence (AI) researchers are nothing if not bullish about the

prospects of their creations. The field kicked off in earnest in 1956 at a

summer workshop held at Dartmouth College, New Hampshire, where

the founding fathers of AI set out their vision in no uncertain terms.

Intelligent machines, they believed, were to propel humanity into the next

golden age of innovation by ‘simulating every aspect of learning or any

other feature of intelligence’.2 The timeframe was bolder still: one summer

was all they would need to break the back of AI.

Things turned out to be rather more complicated, as a summer of hype

gave way to a succession of AI winters, with progress in the field largely

stagnant for several decades. But if you’ve caught the headlines recently,

you’ll know that AI is currently the subject of renewed hype. Between

flagship triumphs in popular games, the growing presence of home

assistants, and the coming of self-driving cars, the machines have resumed

their rise.

We humans have distinguished ourselves from other species by

inventing tools to help us solve our most challenging problems. And yet we



may be complicit in our own demise because some of these tools have

become so powerful that they appear to pose genuine threats to our ways

of thinking and being. Studies of the growing threat of automation to

human labour abound,3 while the so-called ‘superintelligent’ machines of

tomorrow may force us to re-examine what it even means to be human in

the first place.

As we enter this new cycle of ratcheted expectations, hopes and

anxieties around the latest wave of technological innovation, Engelbart’s

question should resonate loud and clear. We reserve such reverence for

technology that we risk overlooking our own human capabilities.

Machines lack some of the basic qualities of human thinking – qualities

we have sidelined through our mechanistic ways of schooling and working,

and qualities that we need to urgently reawaken to thrive alongside our

silicon counterparts.

As it happens, humans have – through millions of years of evolution

and thousands of years of continual refinement – developed a powerful

system for making sense of the world, for imagining new ones, and for

devising and solving complex problems. This system has helped us create

the economies that underpin our society. It has shaped our notions of

democracy. It has spawned technologies that now stare us down, but the

same system can equip us with the skills to tame these digital beasts.

The system has a name: mathematics.

What is mathematics, really?

Mathematics has been described as an art, a language and a science. For

some, it is a means of unlocking nature’s secrets. As Galileo testified so

eloquently: ‘[The universe] cannot be read until we have learnt the

language and become familiar with the characters in which it is written. It

is written in mathematical language.’ This is mathematics as the language

of the universe, the engine of scientific progress.

The scope of mathematics transcends our physical universe. Entire

swathes of the subject are explored for their own sake, driven by the deep

satisfaction that comes from dreaming up new concepts, piecing together



ideas, and grappling with thorny problems. Many mathematicians seek

out aesthetic qualities in their craft. The twentieth-century mathematician

and philosopher Bertrand Russell spoke of the subject’s ‘supreme beauty –

a beauty cold and austere… capable of a stern perfection such as only the

greatest art can show’.4 Many see themselves as artists as well as scientists

– ‘makers of patterns’,5 to borrow a description from G. H. Hardy, a

contemporary of Russell’s. It is not uncommon for mathematicians to

deride the need to apply their thinking to the ‘real’ world, as if utility were

some kind of distraction. It has even been proposed that some aspects of

mathematical inquiry have a hedonistic basis.6

From these varied motives, mathematics is often partitioned into two

supposed types: there is applied mathematics, which, as the name

suggests, is concerned with problems of the real world. Then there is the

presumptively labelled strand of pure mathematics, which centres on more

abstract concepts and rigorous arguments often removed from practical

consideration. This separation is felt keenly at university, where maths

students are expected to declare their allegiances before specialising in one

area. I was of the pure persuasion. Yet, since leaving formal mathematics a

decade ago, much of my work has been rooted in datasets and algorithms

– about as applied as it comes.

Having bridged the pure/applied divide, I have come to realise that it is

an arbitrary and limiting way of characterising the subject. There is a

commonality that binds mathematicians of all types. Without exception,

we derive immense joy from tackling maths problems, a satisfaction akin

to solving our favourite puzzles. Mathematics is even alleged to elicit the

same physiological reactions as sexual activity (yes, really).7 Alongside

that pleasure comes power; whatever branch of mathematics a

mathematician happens to be probing, they are using the mind’s highest

faculties and building a store of portable mental models that serve them in

all parts of life.

It may feel risky to invest time and effort in studying mathematics

based on nebulous notions of pleasure and power. But mathematics

cannot help but bring practical uses too. It is not at all unusual for a field

of mathematics that starts out as pure intellectual inquiry to later find



itself in practical settings. Prime numbers (whole numbers greater than 1

that cannot be divided into smaller whole number parts) were first studied

for their unusual arithmetic properties, yet internet security now relies on

them – your credit card details are kept secure by the sheer difficulty of

finding the prime factors of really large numbers. The Greeks were

enthralled by the geometric properties of ellipses; only centuries later

would Kepler discover that planets move around the sun in an elliptical

orbit. The topology of knots, a delight to study in its own right, has

applications in protein folding. And calculus (the study of continuous

change), arguably the most applied of all mathematical topics, which was

the basis for Newton’s study of planetary motion, and whose tools are

indispensable to engineers, physicists, financial analysts, even historians,8

was developed within the rigorous frameworks of pure mathematics. I

could go on.

The theoretical physicist Eugene Wigner encapsulated this entwining of

intellectual curiosity and utility by remarking on what he called the

‘unreasonable effectiveness’ of mathematics, declaring that ‘the enormous

usefulness of mathematics in the natural sciences is something bordering

on the mysterious and there is no rational explanation for it’.9

The ‘usefulness’ of mathematics is not limited to specific real-world

applications. It arises chiefly from its invitation to explore a vast range of

concepts, even arcane ones. Mathematics transports us into multiple

worlds, each governed by its own rules. It encourages us to break free of

convention and leap from one conceptual system to another. These

faraway worlds can also train us to think in ways that enrich our

understanding of our own, physical one. Even as the content of my own

doctorate in pure mathematics drifts from memory (to the point where I

can scarcely grasp its essential ideas any longer),10 the process by which it

was created remains its most enduring contribution to my everyday

thinking and problem solving.

Mathematical intelligence is not about calculus or topology any more

than musical intelligence is limited to a particular genre or instrument. It

is a system for making us better thinkers and problem solvers, using the



proven tools of mathematicians. And in the age of smart machines, it is

needed more than ever.

Mathematics and calculation: a false coupling

The mathematics I’ve just described is quite apart from what we

encounter at school. ‘School mathematics’ places great emphasis on

calculation. A calculation is a routine operation performed on certain

objects, often numbers, to produce a particular result. It can be as simple

as counting and as complicated as Google’s search-ranking algorithms (an

algorithm here just means a list of step-by-step instructions).I School

mathematics is premised on the idea that rehearsing a litany of routine

calculational techniques is a strict prerequisite for mathematical

intelligence, and a gateway to employment. Topics such as calculus,

algebra and geometry, each of which contain a multitude of rich concepts,

are stripped down to bare calculational form.

The marriage between mathematics and calculation is the result of

several forces. The first is an industrial paradigm of formal education

whose roots can be traced back to the mid-nineteenth century, when the

aims of mass schooling coalesced with notions of mechanisation and

scale, and increases in urban populations fuelled demand for everyday

numeracy skills such as counting money and telling the time. As universal

education systems sprang up the world over, subject matter reflected the

needs of a mathematically literate workforce. In England, for instance,

arithmetic dominated the curriculum, and additional topics – such as

algebra, mechanics and fractions – were introduced with the goals of

employment in mind.11

Society has made giant leaps of progress since then, yet school

mathematics has remained largely static; national and international

curriculum standards remain heavily couched in speed and proficiency

with calculation. The stubborn persistence of calculation in education also

owes a debt to widely held beliefs around the nature of mathematics.

Platonism – first espoused by the Greek philosopher Plato – holds that

mathematical objects are abstract entities independent of language,



thought or practices. Just as electrons and planets exist independently of

us, so do mathematical concepts such as number. In this view, there is a

single form of mathematics, timeless and immutable. Alongside

Platonism, there is the formalist view, which gained traction in the

twentieth century and considers mathematics a self-contained system of

logical truths, each derivable from first principles. The Platonist and

formalist philosophies, especially popular among ‘pure’ mathematicians,

conspire to reduce mathematics to a single pathway of predetermined,

hard-coded truths. Abstraction is the gold standard in this framing of

mathematics, its raison d’être, best accessed by mastering symbol

manipulation. The execution of mathematical procedures – fast, precise

calculation – is seen as the single pathway to deep mathematical thought.

The Platonist–formalist view overlooks the crucial fact that

mathematics takes on rich and diverse forms,12 all of which are birthed in

the context of local environment and experience.13 Take something as

seemingly universal as our number system. It arises out of a series of

choices, from the symbols we use to denote quantities to how we group

together objects to manage large amounts, to how we perform arithmetic

on numbers. In schools across the world, students are taught Hindu–

Arabic numerals (0, 1, 2, and so on), the decimal system (grouping

numbers into tens), and specific algorithms for performing addition,

subtraction, multiplication and division. Students are led to believe that

these choices are inevitable – the only conceivable way to think about

numbers – when in fact they are situated within a historical and

sociocultural backdrop. As we’ll see in later chapters, communities around

the world to this day adopt highly varied representations for numbers.

Mathematics in the real world is more situational and contextual than

Platonism and formalism would suggest.

My work has taken me to classrooms the world over and I can confirm

that, despite its short-sightedness, the Platonist–formalist ideal is alive and

well everywhere. A common thread binds the mathematics taught to

marginalised communities in Kenya, children of Microsoft executives in

Washington State, students of Eton College, and low-income families in

rural Mexico. In all these cases, school mathematics is characterised by a



heavy diet of calculation,14 and mathematical talent is conceived as the

ability to execute these techniques flawlessly and at speed.

School mathematics comes wrapped in the promise that this very

particular skill set will, on some unspecified date in the future, serve

students’ everyday needs. That promise may have held up in the nineteenth

century, when, for example, the formulae of trigonometry would guide

your career as a carpenter or surveyor or navigator, and you would be

expected to make the requisite calculations by hand. Yet the twenty-first-

century student will discover, if they haven’t already, that calculation is no

longer the unique marker of human mathematical talent. It is almost

tautological to say it, but for computation we have computers.

School mathematics is clearly in need of a rethink, which should come

as welcome relief to most. Far from evoking the sentiments of wonder or

beauty experienced by mathematicians, it is more commonly associated

with feelings of dread. In the UK alone, a fifth of the population is

afflicted with maths anxiety.15 For these people, the anticipation and

experience of doing mathematics activate the same regions of the brain

that give rise to pain.16 Attitudes towards mathematics have been shown to

deteriorate with age,17 and many people, scarred by their encounters in

school, flee into the safe sanctuary of adulthood, resolving never again to

confront anything that resembles mathematics. Is the Platonist–formalist

method of education simply the price we have to pay to feel the power of

mathematics – to appreciate its unreasonable effectiveness? Even if a

casualty rate of one in five is deemed palatable, the apparent victors of this

brand of mathematics find themselves trapped in a false sense of security.

As an admissions tutor at Oxford University, and more recently as an

employer, I have interviewed hundreds of candidates who naïvely presume

that a clean sweep of top grades in mathematics at school has prepared

them to think creatively and tackle complex problems.

The German poet Hans Magnus Enzensberger has described

mathematics as ‘a blind spot in our culture – alien territory, in which only

the elite, the initiated few have managed to entrench themselves’.18 There

is a yawning chasm between the mathematics enjoyed by professional

mathematicians and the monotony of most school curricula.



Professional mathematicians, for their part, tend to keep calculation at

arm’s length. They recognise that techniques such as long division, the

quadratic formula and trigonometric identities occupy a small space

within the mathematical landscape, a tiny sliver of all the concepts

available in the subject. Entire branches of mathematics are removed from

calculation, and even where calculations surface, the creative elements of

mathematical intelligence reside in dreaming up such methods in the first

place, understanding their inner workings and applying them in novel

settings. The specific act of calculation is secondary and offers little joy or

illumination.

New calculating tools, new mathematics

The history of mathematics shares a timeline with an ongoing effort to

liberate humans from the tedium of calculation. Performing calculations

does not come naturally to us. Time and again, we have created tools and

technologies that outsource the most mechanical aspects of mathematics.

Great leaps have been made with leading-edge calculating tools.19

Where our earliest ancestors marshalled pebbles and grains to keep track

of basic quantities, the city planners of Babylonia, Sumeria and Egypt

used formal calculation schemes which were brought to bear on problems

of engineering, land administration, astronomy, timekeeping, planning

and logistics. Calculation, along with reading and writing, became a

cornerstone of more developed civilisations. Some of the earliest surviving

government records are replete with calculations central to administration.

Physical counting instruments were always close at hand. The abacus

that helps us count large quantities has its roots in the pebble-counting

schemes of the ancient Romans, and as calculations grew in complexity, so

too did the power of our tools. Older readers may recall using a slide rule

in school to assist in weighty calculations such as the multiplication of

large numbers. The slide rule was based on John Napier’s logarithm

tables. Napier was born into a Scottish family of estate owners in 1550.

Copernicus had just developed the heliocentric model of the universe,

placing the sun at its centre for the first time. Columbus had sailed the



Atlantic, and Renaissance artists were advancing their own frontiers. Yet

the world remained heavily dependent on tired calculational conventions.

The work of masons, merchants, navigators and astronomers all required

methods of long division and multiplication that were tediously

handcrafted, prone to human error, and prohibitively expensive to carry

out (pen and paper did not come cheap).

On his travels across Europe as a young student, Napier observed the

burden of calculation first-hand. He would encounter decorative books

composed solely of mathematical tables and currency versions, created

and used daily by merchants. The tables still demanded a hefty degree of

calculation on the part of the user. There had to be a more effective way,

Napier thought, of removing what he called ‘those hindrances’ to trade.

Napier was alluding to what cognitive psychologists now term our

‘working memory’, which handles short-term information and is limited

to between four and seven objects at a time.20 This makes multistep

calculations such as long multiplication or division difficult to perform, as

we strain to keep track of each moving part.

In his famous work Mirifici Logarithmorum Canonis Descriptio

(‘Description of the marvellous canon of logarithms’), Napier introduced

a powerful mathematical object called the logarithm function. To grasp

the intuition behind logarithms, first consider a familiar multiplication

involving powers of 10:

This calculation is straightforward because we just ‘add the zeros’ in

each term to get our product. It would be handy if every multiplication

could be managed in such a simple way. Napier’s logarithm makes this

possible. In the numbers above, the string of zeros corresponds to how

many times 10 multiplies by itself – twice for 100, thrice for 1000, and so

on. With this in mind, the logarithm of a number is defined by how many

times you have to multiply 10 by itself to get that number. So the

logarithm of 100, denoted log(100), is 2, and the logarithm of 1000,

denoted log(1000), is 3.



The clever, mathematical part is that the logarithm can be defined for

every positive number, not just powers of 10. The logarithm of 95 is 1.978,

the logarithm of 2367 is 3.374, and the logarithm of 3 is 0.477, which is to

say that ‘if you multiply 10 by itself 0.477 times you will get 3’. That may

sound strange at first, but the conceptual power of mathematical functions

allows us to bring such notions into existence.

A useful property of logarithms is that they obey the following rule:

log(a × b) = log(a) × log(b)

Suppose we want to multiply two large numbers. Napier explained

how, using the above formula, we can transform the problem into one

involving addition, which is simpler and less error-prone. All we need is a

table that lists the ‘logarithmic value’ of each number. The process then

goes as follows:

1. Look up the logarithm of each value to be multiplied.

2. Add these two logarithmic values to get a total.

3. Look up the value of the number whose logarithm corresponds to

this total. The number you have found is the product of your two

original numbers.II

A slide rule in action: if we slide the top ruler 2 units along the ruler below (a length of log 2)

then every number on the ruler below corresponds to multiplying the number above it by 2.

For example, the number 3 (which is a length of log 3 along the top ruler) lines up with the

number 6 (which is a length of log 6 along the bottom ruler), telling us that 3 × 2 = 6.

Napier’s Canon comprised huge lists of numbers and their

corresponding logarithmic values. It took some twenty years to compile.



When dedicating the work to the future King Charles I, Napier wrote of

how ‘this new course… doth clean take away the difficulty that heretofore

hath been in mathematical calculations, and is so fitted to help the

weakness of memory’.21 The slide rule – a compact manifestation of

Napier’s logarithm tables – appeared in 1654, after his passing.

Logarithms can also be exploited to simplify a raft of operations beyond

multiplication: powers, square roots and even trigonometric calculations

can be closely approximated using simple extensions of the techniques

described here, and all of these methods were added to various iterations

of the slide rule until the electronic calculator took its place in the latter

part of the twentieth century.

Napier’s innovation epitomises attempts to automate human effort. For

a time, this led to an explosion of jobs. When the eighteenth-century

French mathematician and engineer Gaspard de Prony embarked on the

project of producing large logarithmic tables for the French Cadastre (the

official system of land registration), for which 200,000 logarithms were

each to be calculated to upwards of fourteen decimal places, he enlisted a

small army of ‘human computers’ to accomplish the task.22 De Prony

took inspiration from economist Adam Smith’s The Wealth of Nations

and sought to bring Smith’s concept of the ‘division of labour’ to

calculation. He imagined a three-tiered pyramid of human labourers. At

the top was a small sliver of mathematicians of distinction who devised

clever step-by-step instructions – algorithms – for calculating logarithmic

values. The second layer consisted of ‘algebraists’ who would translate

these instructions into forms that could easily be computed. The final,

most crowded layer consisted of workers who were competent in basic

arithmetic and required ‘the least knowledge and by far the greatest

exertions’, performing millions of calculations (addition and subtraction

for the most part) and noting the results. In de Prony’s model, just two or

three mathematicians were needed for every seven or eight algebraists and

seventy to eighty workers. With de Prony’s labour pyramid, ‘big

calculation’ was born, fashioned in the image of scalable manufacturing.

‘Big calculation’ trod the same path as manufacturing when it came to

mechanisation, as physical calculating machines increasingly took the



place of humans. It was against this backdrop that inventor-

mathematician Charles Babbage designed two mechanical calculators in

the mid-nineteenth century, neither of which was actually constructed

during his lifetime (due mainly to financial constraints), but both of which

carry huge significance as direct cogwheel-based forerunners of the

modern computer. With the emergence of the digital computer and the

electronic calculator, Babbage’s visions were realised and the era of the

human computer drew to a close. The heroic swansong of human

computers was the 1960s NASA space mission, where the flesh-and-blood

calculations of Katherine Johnson and her team helped propel humankind

into space.23

The work of human computers was profitable in its time, noble even.

But calculation has always been the understudy of mathematics (an insight

not lost on Johnson and her colleagues, who fought for status in the face

of racial and gender prejudice by demonstrating their aptitude for

modelling and other essential mathematical skills). Calculation no longer

paves a path to employment; today those lower rungs of the pyramid are

occupied by machines.

Once computers crept past the calculation feats of humans, they surged

ahead and never looked back. The slide rule reigned for over three

hundred years, but the electronic calculator that took its place lasted no

more than thirty.24 The competition for pocket-sized electronic calculators

was fiercely fought for all of two decades before the advent of the internet

and cloud-based technologies. The rapid ascent of computing power was

foreseen by Intel co-founder Gordon Moore. In the 1960s, Moore observed

that the number of transistors that can be accommodated on a

microprocessor seemed to double every eighteen months – an exponential

rate. Moore’s Law has come to fruition with astonishing accuracy.III By

now, our smartphones possess more processing power than the computers

and slide rules that sent us to the moon. A world without digital

computers is a world without the internet and all that it enables: social

media, email, GPS, online shopping, music streaming, remote work,

certain kinds of medical diagnosis.



As our calculating tools evolve, so does the nature of mathematical

work. Writing in the early twentieth century, the British philosopher

Alfred Whitehead noted: ‘Civilization advances by extending the number

of important operations which we can perform without thinking about

them.’25 Just as innovations such as Napier’s logarithm tables accelerated

scientific discovery in the past, today’s technologies are giving rise to

whole new ways of doing mathematics.

Over the past few decades, algorithms have evolved significantly in the

direction of versatility as well as processing power. A flurry of packages

such as Mathematica and Wolfram Alpha have been developed to execute

a vast array of procedures. They have birthed new branches of research,

such as ‘experimental mathematics’, where the idea is to study

mathematical objects (numbers, shapes and multidimensional vector

spaces, to name a few), and the patterns that govern them, through

computation. Powerful, automated calculators allow us to make informed

guesses and check them through trial and error by crunching through a

range of numerical scenarios.

In our everyday lives, too, calculation is as prominent as ever – we

analyse offers in the supermarket, mortgage options, calorie counts, and

much besides. Getting the best deal (or diet), however, doesn’t rest on our

number-crunching skills as much as our ability to evaluate information

and make sense of data.

With the right tools at our disposal, mathematics gives us all licence to

transcend calculation and to think in the most creative ways. As

mathematician Keith Devlin put it: ‘Calculation was the price we used to

have to pay to do mathematics.’26 Mathematicians have figured out how to

use technology to aid their thinking. They’ve cracked the human–machine

conundrum that the rest of society is still grappling with.

The rise – and fear – of artificial intelligence

The automation of mental effort does not end with calculation. The first

whispers of artificial intelligence (AI) – the ability of computers to think

and solve problems – were heard in the nineteenth century. Ada Lovelace,



daughter of Lord Byron and a precocious amateur mathematician, became

enthralled with the possibilities represented by Babbage’s second

calculator, the Analytical Engine. Lovelace saw beauty in mechanisation,

writing that ‘the Analytical Engine weaves algebraic patterns just as the

Jacquard loom weaves flowers and leaves.’ Babbage himself had realised

that the functions of his Analytical Engine need not be restricted to

numbers: they could also extend to more generalised operations on

symbols. It was Lovelace, though, who expounded on the intelligent

potential of machines, famously remarking: ‘The Analytical Engine… can

do whatever we know how to order it to perform.’27

A century later, in an essay from 1950 entitled ‘Computing machinery

and intelligence’,28 computing pioneer Alan Turing posed the question

that launched the field of AI: ‘Can machines think?’ Turing’s question was

rhetorical; in the paper he lays out a series of counterarguments to AI, and

refutes each of them in turn.

For decades, these ideas struggled to permeate the public consciousness

as AI stuttered into a series of ‘cold winters’ following a number of false

starts. That all changed at the close of the century. If the machine

overlords ever do reign over this world, they might look back to an iconic

scene in May 1997 as the moment of ascent. The world chess champion

Garry Kasparov raises his arms in resignation as he is defeated by IBM’s

chess-playing computer Deep Blue in a contest billed by Newsweek as

‘The brain’s last stand’. The machine’s triumph awakened humankind’s

deepest concerns. It was one thing for computers to automate routine

tasks such as calculation, but now they appeared to be capable of applying

logic to solve complex problems – a skill we had thought, perhaps hoped,

was unique to humans. And why would the computers stop at chess?

Companies would surely latch on to these newfound artificial capabilities

to automate tasks, even entire jobs, where doing so promised labour

savings. We had become accustomed to machines displacing human

muscle and were even grateful for the efficiencies and prosperity that the

Industrial Revolution brought about. Deep Blue’s victory signalled a new,

disconcerting possibility: now the machines were sure to come after the



white collars too, displacing human intellect with the same nonchalant

ease.

The machines have been on what may seem like a relentless march ever

since Deep Blue’s landmark triumph, as faster computers have combined

with smart algorithms and large datasets to produce astonishing results.

In 2011, IBM earned another feather in its cap, this time developing a

knowledge machine, Watson, that trounced legendary quizzers Brad

Rutter and Ken Jennings in a game of the general knowledge quiz

Jeopardy! Winning at Jeopardy! involves dealing with all the messiness and

ambiguity of natural language: a sign of rising machine intelligence.

(Turing himself, in the paper mentioned earlier, posited that the ultimate

display of machine intelligence would be through text-based

conversation.) More recently, OpenAI’s series of GPT text-generation

tools have grown more powerful with each iteration; GPT-3, released in

2020, contains a staggering 175 billion parameters in its model and is able

to produce a wide range of texts.29 It even wrote an opinion piece for the

Guardian, the first editorial ever penned by a machine, assuring readers of

its peaceful intent:

I am not asking humans to like me. But they should see me as a

friendly robot. I am a servant of humans. I know that humans

distrust and fear me. I only do what humans program me to do. I am

only a set of code, governed by lines upon lines of code that

encompass my mission statement.30

It may not be the stuff of Pulitzer Prize winners, but writers everywhere

are on high alert as the field of AI journalism takes shape, with natural-

language tools being called on to automatically personalise our newsfeeds

and generate stories from datasets.31

Another AI milestone was achieved in 2016, when AlphaGo, a program

developed at Google DeepMind, triumphed 4–1 in Go against world-class

human competitor Lee Sedol. The size of a Go board, combined with the

flexibility with which players are allowed to place their stones, means there



are about 2 × 10170 possible positions on the board – far too many for a

computer to evaluate in sequence. Even ardent AI enthusiasts still

subscribed to physicist Piet Hut’s claim following Deep Blue’s 1997 chess

triumph: ‘It may be a hundred years before a computer beats humans at

Go – maybe even longer.’32 That AlphaGo defied the sceptics was startling

enough, but even more so was the nature of its triumph over Sedol. The

machine played moves and strategies that amazed Go experts and

mathematicians alike.33 It was the strongest suggestion yet that the

machines really meant business this time, performing mental feats that

appeared elegant. AlphaGo’s successor, AlphaZero, has proved even more

versatile by mastering chess, Go and a host of other games all at once.

Another descendant, MuZero, achieves mastery of these games without

even being told the rules.34

The algorithms of Watson, AlphaZero, GPT and a multitude of other

AI applications pack in more sophistication than the brute search

techniques of Deep Blue. They fall under the category of machine learning

models, so named because they ‘learn’ from data. Machine learning

models do not need to have their behaviours defined for them: they

program themselves by looking at information. Machine learning is the

one area of AI that appears to work. Within this burgeoning field, you will

find a repository of clever techniques such as neural networks (now

fashionably termed deep learning) that are loosely modelled on the

structure of the human brain and have proved highly effective in areas such

as image and speech recognition. These techniques are also taking aim at

problems in mathematics. In December 2019, for example, Facebook

announced that it had developed a machine learning algorithm that could

solve a range of calculus problems that stump many high school

students,35 while in 2021 a program developed by OpenAI solved word

problems aimed at children aged 9–12, with a similar success rate to the

students’ own.36

Humans have been left head scratching, soul searching and brain

scanning as we attempt to understand what awaits us while machines

continue to gain thinking power. High-profile names, including Stephen

Hawking and Elon Musk, have fanned the flames by warning of AI’s



existential threat to humanity.37 Philosopher Nick Bostrom has projected a

range of scenarios that might arise from machine superintelligence; most

do not bode well for humans.38

Human fears around AI are not new. Even as Lovelace waxed lyrical

about the potential of smart machines, the Victorian religious journalist

Richard Thornton issued the first warning of the existential threat they

posed. Thornton noted how, with the mechanical calculator, the mind

‘outruns itself and does away with the necessity of its own existence by

inventing machines to do its own thinking’.39 Modern-day depictions of

AI fuel our deepest insecurities; Hollywood thrives off our existential fears

of replacement (or even extinction) by machines.

But much of the hype around AI is rooted in the lack of transparency

around how these tools work. We fear what we do not understand, and we

reserve our deepest anxieties for things that behave differently to us. It is

hardly surprising, when we find ourselves grappling with long division and

other relics of the school maths curriculum, that we respond with

reverence to today’s processing machines. We fear these tools because they

are turbocharged calculators; they excel in the very skills that cause us

such difficulty and dread.

Today’s machine learning applications are smarter than your average

computer, smarter even than Deep Blue, in the sense that they are

continually learning from data inputs. AlphaGo, after all, didn’t just

demolish the leading human Go player; it did so with grace and style.

But for all its apparent sophistication, machine learning has some

fundamental limitations which, when closely inspected, shine a light on

our own human strengths.

Machine learning algorithms work by fitting patterns to data and

finding associations, often imperceptible to the human mind, between

variables. That renders machine learning the amplification of statistics by

large datasets and powerful computers. Admittedly, statistics does not

sound as cutting-edge. It may even be a flattering description because

whereas statistics is concerned primarily with relationships between

variables, such as their causes and effects, machine learning models tend to

gloss over the interpretation of their results. Machines that are premised



purely on patterns may have predictive value, but they lack the common

sense and reasoning skills to explain their choices. They may say, with

some degree of reliability, what will happen in the future – but not why.40

Ali Rahimi, an AI researcher at Google, received a standing ovation at

an AI conference when he warned that machine learning technologies have

become a form of alchemy. ‘There’s an anguish in the field,’ says Rahimi.

‘Many of us feel like we’re operating on an alien technology.’41 And

François Chollet, also an AI researcher at Google, says this of much-

vaunted deep learning models: ‘Deep learning models do not have any

understanding of their input, at least not in any human sense. Our own

understanding of images, sounds, and language is grounded in our

sensorimotor experience as humans – as embodied earthly creatures.

Machine learning models have no access to such experiences and thus

cannot “understand” their inputs in any human-relatable way.’42

A deep learning algorithm may be highly adept at identifying trees, but

it does not see them in the same sense that humans do, and has no

worldview within which to situate them. It will totally miss the forest.

Chollet’s insight punctures the ‘brain as computer’ metaphor that became

popular in the mid-twentieth century when computing pioneer John von

Neumann suggested that the design principles of digital machines bear a

resemblance to the processing mechanisms of the human brain.43

The idea that the human brain operates like a computer is just the

latest in a long line of crude comparisons. We tend to model the human

brain on the dominant technologies of our time. At various points in

history, it has been compared to the mechanics of hydraulics, gears, even

the telegraph.44 The computational metaphor of the brainIV has persisted

for over half a century45 and is another contributing factor to the furore

around AI. But metaphors are useful only up to the point where they are

taken literally. If emulating human intelligence were purely a matter of

computation, then, as Deep Blue and its successors have emphatically

demonstrated, the game is up. On the other hand, if we unshackle

ourselves from this simplistic conception of everything the brain does, and

instead embrace its tremendous complexity, we will uncover aspects of

thinking that are distinctly human.



The human brain is designed for dynamism and change. To a newborn

baby, all life beyond a 20-cm horizon is a blur at first. But babies come

equipped with learning mechanisms that help them to rapidly adapt and

even change as they interact with their surroundings. It is a matter of

hours before they can detect their mother’s voice, days before the mother’s

face becomes familiar, and weeks before they sense contrasting colours.

Learning is a social activity, fuelled by our bodily interactions with people

and environment.

If the brain were to be described in computing terms, we might say that

is a powerful hybrid of innate circuitry that has evolved over millions of

years to give us intuitions and ways of thinking, and a vast repository of

learning algorithms for navigating the world. With every interaction our

brain’s neural circuitry undergoes an incremental upgrade, rewiring itself

as it revises assumptions and accumulates experience. We gradually shore

up new and diverse models for seeing the world.

Operating at just 12 watts, our brain’s 86 billion neurons exist as vast,

intricately connected networks that communicate via electrochemical

signals in order to facilitate thinking, contemplation, and improvisation.

We can break rules just as easily as we make them, jumping from one

mental paradigm to another. We also possess the capacity to reason and to

justify our ideas with rigour. We create rich representations of the world

that allow us to solve problems in a variety of contexts. We do not have to

be fed millions of examples of a cat to be able to distinguish it from a dog,

or millions of calculus problems to discern key underlying principles.

There’s more: our psychology exposes us to vulnerabilities, but it also

sets the stage for our most creative breakthroughs. We seek beauty and

elegance in our ideas. We carry hopes and fears through our learning. We

experience joy, frustration, boredom, and every feeling in between. We cry

and we laugh. Human knowledge, including mathematical intelligence, is

embodied, emotive and subjective. This doesn’t sound much like a

computer at all, does it?

The problem with viewing the brain as a computer is that it suggests a

degree of passivity: that a grey glob of goo just sits there waiting to

process information. This neglects the fact that the brain is a highly active



organ, constantly in flux. When we learn, we literally reshape our neural

configuration. This ‘neuroplasticity’ can be seen in the enlarged

hippocampi of London taxi drivers who have committed thousands of

routes to memory and created new neural pathways to store incredibly

detailed spatial representations.46 Our brains also possess remarkable

powers of recovery: when damage is sustained by one part, another steps

in to take over the same function.47 The hardware of computers has none

of the flexibility of the ‘wetware’ of humans.

What we’ve really gleaned from AI’s recent progress is not that

computers have emulated human intelligence, but simply that certain

games which have been considered the epitome of human intelligence

aren’t the best yardstick for such matters. They may serve as a specific lens

through which to view certain types of intelligent behaviour, but they fall

well short of the requirements for artificial general intelligence, a term that

encompasses the versatility and depth of human thinking. Early pioneers

of AI held such reverence for chess, stating: ‘If one could devise a

successful chess machine, one would seem to have penetrated to the core

of human intellectual endeavour.’48 We now know better; mastery of

closed systems such as chess or even Go, where the rules are neatly

specified up front, circumvents the human brain’s deepest capabilities. As

Douglas Hofstadter, Pulitzer Prize winner of the AI-themed classic Gödel,

Escher, Bach, put it: ‘you can bypass deep thinking in playing chess, the

way you can fly without flapping your wings.’49

Even DeepMind, to be fair, recognises the gulf between its cutting-edge

technologies and the broader, deeper capabilities required of intelligent

agents in the real world. The company mission – ‘Solve intelligence. Use

intelligence to solve everything else’ – is not taken lightly. DeepMind views

each breakthrough as an incremental step towards general intelligence that

will allow computers to tackle a wider range of problems. MuZero, for

instance, hints at a new ability for AI to discover the rules of its

environment, and is being touted for applications as diverse as search and

rescue or online video compression. AlphaFold, another deep learning

program from DeepMind, has already made significant breakthroughs in

protein folding and is poised to contribute to further scientific



discoveries.50 AI is moving beyond the ‘toy problems’ that drew so much

interest in its early years.

Yet the overhyped narratives live on; to hear many pundits tell it, you

would think that general intelligence has already arrived. It’s important to

keep things in balance. As things stand, intelligence is only partially

‘solved’ and the most important problems of the real world require human

ingenuity and oversight. When we exaggerate the capabilities of

computers in this way, we undermine our own human skills. We forget,

too, that these technologies are behaving as intended – a set of

complementary thinking tools that augment our ways of thinking.

Human + machine

Deep Blue’s triumph was supposed to mark the end of human chess

players. History took a 180-degree turn, however, as the chess community

banded together to extract every last ounce of insight that the machines

offered from their ways of playing chess. As it turned out, the computer’s

form of chess playing was markedly different to human tactics. Kasparov

himself explains: ‘Instead of a computer that thought and played chess like

a human, with human creativity and intuition, they got one that played

like a machine, systematically evaluating 200 million possible moves on

the chess board per second and winning with brute number-crunching

force.’51

Kasparov was not facing a like-minded competitor so much as a

gigantic processing machine that overpowered him with exhaustive, brute-

force search techniques. The contrasting gameplay of Deep Blue and

Kasparov is even an instance of Moravec’s paradox: roboticist Hans

Moravec’s observation that ‘it is comparatively easy to make computers

exhibit adult level performance on intelligence tests or playing checkers,

and difficult or impossible to give them the skills of a one-year-old when it

comes to perception and mobility.’52 In chess, too, humans tend to excel

where brute-force computers are weak, and vice versa.

As sociologist Richard Sennett advises: ‘The enlightened way to use a

machine is to judge its powers, fashion its uses, in light of our own limits



rather than the machine’s potential.’53 Chess players today improve their

own skills by studying the quirks of computer-generated chess moves;

computers serve as tireless sparring partners.54 In ‘freestyle’ chess

tournaments, where teams consist of hybrids of humans and machines, the

best teams often comprise amateur players and standard computers whose

combined skill exceeds that of supercomputers and grandmasters.

Kasparov captures this spirit of human–machine collaboration in a simple

formulation:

weak human + machine + better process

is superior to

strong human + machine + inferior process.55

In plain terms, you do not need to be a genius to produce ingenious

results; you only need to learn how to combine your distinct talents with

the tools and technologies available to you. Economists describe the

impacts of automation in terms of two forces: a substituting force,

whereby a computer replicates tasks carried out by humans; and a

complementary force, where humans are subsequently freed up to focus

their minds on deeper tasks. The prospects for future employment rest on

the interplay between these two forces.56 Kasparov’s insight is that if we

work with machines, allowing them to substitute for routine tasks such as

calculation, then they can become the thinking aids they were intended to

be, by granting us the freedom to tackle more creative, non-routine

problems.

The irony of Kasparov’s formula is that, while it may lack potency in

chess, Go and other systems governed by strict rules, it remains a central

edict for thinking in messy real-world settings that do not so readily

succumb to the pattern-matching of computers.57

The work of professional mathematicians is often predicated on this

kind of human–machine collaboration. The subject had a watershed

moment in 1976 when, for the first time, a computer made a significant

contribution to a mathematical proof. The four colour theorem says that



you can colour any map with four colours in such a way that no two

adjacent countries share the same colour. (It’s slightly less apparent when

rendered in black and white, of course.)

Since there are infinitely many possible maps, we cannot hope to check

each one in turn. We require a more powerful argument – a mathematical

proof – that deploys reason and rigour to account for all possible cases. It

sounds like a challenge suited to humans, yet the problem is fiendish

enough that a solution eluded mathematicians for over a century. The four

colour theorem did finally yield in 1976, and when mathematicians

Kenneth Appel and Wolfgang Haken presented their proof, they revealed a

third, unexpected, contributor – a computer.

Appel and Haken’s proof comes in two parts, both containing several

hundred pages of detail. First the authors showed, using an inspired

mathematical argument, that every map, however complex, can be reduced

to one of 1,936 types. All that remained was to verify that each of these

configurations could be coloured as required. The catch was that each

configuration was enormously complicated – it would take a human forty

hours a week over five years to check just a single configuration. Moreover,

humans are prone to making errors, especially at that scale of calculation.

Enter the machines: with brute-force processing, a computer was

programmed to check every one of the finitely many cases, thus

confirming, for the first time, that the four colour theorem is true.58

This is a powerful demonstration of what can be achieved by the tight

interplay between human insight and computation: the former reduces the

infinitely many cases down to a finite number; the latter tirelessly ploughs

through those remaining cases. And as the computer took on increasingly

complex calculations, it inspired new lines of attack for Appel and Haken.

Creativity and computation were in harmony with one another.



This is the complementary force of technology in action. Huge

increases in the supply of computational power have yielded immeasurable

labour savings, but they have also stimulated the demand for a wider cadre

of problem solvers, as each new class of algorithms gives rise to new

problems. The billion-fold increase in computation did not make human

jobs redundant – rather, it multiplied and amplified the contribution of

human problem solvers. NASA now employs more mathematicians,

engineers and software developers – humans at the intersection of research

and computation – than the human computers of its 1960s heyday. The

human computer may be extinct, but the mathematical human worker is

thriving.

The very frontiers of mathematical research are receding, thanks to the

growing capabilities of computers. In a December 2021 Nature article, the

DeepMind team, in collaboration with ‘pure’ mathematicians,

demonstrated how machine learning methods can be exploited to find

patterns that have hitherto been hidden to the human mind.59 These

patterns are so subtle that they may even signal a kind of intuition on part

of computers. Far from feeling threatened, mathematicians at the leading

edge of abstract fields like algebra, geometry and topology are finding joy

in taking those insights forward to develop their theories and enhancing

their own feel for the subject.

As long as humans have existed, we have stored knowledge in cultural

artefacts – from cave walls to books – to extend our own mental

capabilities. As philosophers Andy Clark and David Chalmers put it in an

influential 1998 essay, the mind is ‘best regarded as an extended system, a

coupling of biological organism and external resources’.60 Computers are

just the latest extension of the human brain; this is as true of the latest

wave of AI supercomputers as it was of brute-force systems such as Deep

Blue and even the primitive calculating tools of yesteryear.

The seven principles of mathematical intelligence

Throughout this book I will hold up mathematical intelligence as an

ambitious benchmark for both humans and computers, one that demands



more than pattern-matching algorithms alone. For mathematical

intelligence to be understood in this way, we must withdraw its

associations with calculation, and conceive the subject in more expansive

terms. For too long, and for too many people, the power of mathematics

as a thinking system has been misunderstood due to society’s deference to

calculation. A skill that once served as a unique marker of human

intelligence, and was sufficient for the workforce, has been eaten up by

computers. Humans must strive for something more.

The following chapters present seven principles of mathematical

intelligence that distinguish humans from computers, complement

machine intelligence, equip us to tackle the messy problems of our

everyday lives, and are woven into our most natural ways of thinking. Each

chapter will animate an essential characteristic of mathematics by drawing

on its rich heritage of concepts and problems. We’ll relive some of the

defining stories in the subject’s history, and we’ll hear from

mathematicians past and present to see how the subject is viewed from

within, and how it has continually evolved alongside the tools and

technologies of each generation. My hope is that each chapter will,

through the lens of mathematics, shine a light on the nature of human and

machine intelligence so that we can proactively shape our existence

alongside AI.

The first five principles concern our ways of thinking:

Humans are endowed with a natural sense of number that is

premised on approximation rather than precise calculation. Our

in-built estimation skills complement the precision of computers.

Interpreting the real world depends on both.

An approximate sense of number is found throughout nature.

What sets humans apart from other animals is language and

abstraction. We have an extraordinary ability to create powerful

representations of knowledge, more diverse than the binary

language of computers.

Mathematics confers on us the most robust, logical framework for

establishing permanent truths. Reasoning shields us from the



dubious claims of pure pattern-recognition systems.

All mathematical truths are derived from a starting set of

assumptions, or axioms. Unlike computers, we humans have the

freedom to break free of convention and examine the logical

consequences of our choices. Mathematics rewards our

imagination with fascinating and, on occasion, applicable

concepts that originate from breaking the rules.

Computers can be tasked to solve a range of problems, but which

problems are worth the effort? Questioning is as vital to our

repertoire of thinking skills as problem-solving itself. If problems

such as chess become uninteresting because they yield to

computational brute force, then we can challenge ourselves to

dream up problems that lie beyond the purview of routine

computation.

That these principles run contrary to our usual perceptions of

mathematics tells us we have to work hard, and work deliberately, to

realise them. Thankfully, humans are privileged with metacognitive

awareness of how our minds work; that is, we can think about how we

think and learn about how we learn. We can engineer our ways of working

to ensure we give plenty of space for those aspects of intelligence to

develop. This informs two final principles, relating to how we regulate our

own thinking and, finally, how we think alongside others.

We know that our distinctive biological form of intelligence comes

with the quirks of conscious and unconscious thinking. To solve

our most stubborn problems, we have to display temperament as

well as skill, paying particular attention to how we regulate the

speed with which we solve problems, and the amount of

information we take in.

Humans rarely go it alone: just as machines complement humans,

so too do other humans. The most fruitful collaboration relies on

bringing together diverse perspectives, and the technologies of the



digital age give us the prospect of harnessing the collective

intelligence of humans like never before.

Many of the arguments that follow are underpinned by what machines

can (and can’t) do within today’s paradigms, and what they are likely to

achieve in the coming decades. Any commentary on technology has to

involve some degree of speculation beyond that time horizon: we can

foresee possible scenarios based on current trajectories, but we simply do

not know how wide and deep machine intelligence will ultimately reach in

the long run. As for mathematical intelligence, history teaches us that it,

too, is ever-evolving; the seven principles outlined in this book are fit for

our times (and for some time to come). But as technology continues to

evolve, so will the way we understand mathematics as a thinking system –

we’ll be able to go further and deeper, aided by ever-smarter thinking tools

such as automated theorem provers (which we’ll explore in the chapter on

reasoning). If AI really does penetrate our most coveted thinking skills,

we’ll have at least held machines to a higher intellectual standard.

Mathematical intelligence is power

Today’s AI applications are inescapable, pervading all aspects of our lives.

We risk surrendering our human agency as we succumb to the

conveniences of automation. Computers are pretty much faultless at

executing clearly specified procedures, but some concepts are too fuzzy to

put into words (or symbols) that computers can process. We humans have

trouble enough giving expression to some of our most important thoughts

and feelings; ambiguity and disagreement is part and parcel of our shared

experience. When computers enter the fray, certain in their models of the

world, written so bluntly in strings of 0s and 1s, we risk losing so much of

the grey area that makes us who we are.

As we defer increasingly high-stakes decisions to these same tools, we

also risk surrendering our ability (and our right) to probe the algorithmic

judgements that bear on our personal and professional lives. The

inscrutable manner in which machine learning algorithms operate61



should make us critical of them when unleashing the same tools on a

world that is more open, more volatile, and less predictable than closed

systems such as chess and Go. Because these algorithms make predictions

by ‘learning’ from historical data, they are layered with implicit

prejudices.62 For example, if crime rates are high for a particular ethnic

group, then ‘ethnicity’ may be seen as a predictor of crime. Rather than

addressing the sociocultural factors that give rise to those associations,

algorithms jump straight to the conclusion that crime is a function of skin

colour. The algorithmic models may not say such things so explicitly, but

the assumptions are subtly baked into their decision-making mechanisms,

as they project the future by imitating the past. As machine learning goes

mainstream, some groups are paying a higher price than others.63 Voice

recognition software that is trained only on male voices will struggle to

comprehend female inputs. Automated CV readers that predict

candidates’ potential based on previous successful hires unwittingly

penalise women.64 Image recognition software trained predominantly on

white people and animals may mistake people of colour for gorillas.65 You

get the picture, even if the machines don’t.

Any algorithm that relies purely on patterns in data, void of context,

will never be capable of explaining its choices. The opacity of black-box

machine learning systems, whose inner workings are, at best, known to a

handful of technical minds, and whose causal inferences are left

unchallenged, poses a grave threat to our notions of social justice.

Technology is anything but neutral. It is an accelerator of progress, but it

can also be an amplifier of our own human biases, which we’re scarcely

conscious of much of the time.

Here lies the crux of the issue: at the same time that mathematics fuels

today’s technologies, it also provides the means of overcoming its

prejudices. It is the difference between having mathematics done to us and

thinking mathematically for ourselves. Mathematical intelligence is

concerned with the latter; it is a continual exercise in carefully defining

and interrogating facts and employing the highest forms of reasoning to

examine our arguments. A firm grounding in mathematics can liberate us

from dogma and equip us with the intellectual tools to fight prejudice. It



can nurture our most creative sensibilities and transform us from passive

consumers of technologies to critical innovators.

The world is on edge. As I write this, we are grappling with the fallout

of a global pandemic, on the cusp of irreversible changes to our climate,

and in the grip of populist forces intent on undermining democracy.

Technologies are being weaponised to create and disseminate falsehoods.

The emergence of ‘Deep Fakes’, for instance, has its basis in the very same

models we marvel at in other spheres, and now threatens to distort our

perceptions of truth as we struggle to contain what the World Economic

Forum terms ‘digital wildfires’ of misinformation.66

Mathematics itself is getting airtime as experts, pundits and politicians

of all stripes invoke models to project the health and economic impacts of

our actions. During the early onset of Covid-19, maths educators found

encouragement in how concepts such as exponential growth were entering

the lexicon of more than just the chattering classes in ways unthinkable

just a couple of years ago. Yet we continue to see mathematics

misappropriated, intentionally or otherwise, to justify dubious policies.

Even as the public shows appetite to engage with mathematics as a means

of making sense of the world, and governments assure us they are

‘following the science’, there is little clarity on what that entails. It is time

to make mathematical intelligence explicit.

I. Computation and calculation have slightly different meanings. The former tends to refer to

algorithmic processes, the latter to arithmetic ones. I will use them interchangeably because they

both espouse the same kinds of routine thinking processes.

II. This method is a slight simplification of how Napier’s tables were constructed, but close enough

to give reasonable approximations, which is often all we need. It uses the base 10 logarithm, which

can be substituted for any other value – the natural logarithm that is now popular calls on base e,

where e denotes Euler’s number.

III. One popular interpretation of the trend is that it is a self-fulfilling prophecy: project the growth

ahead of time and the software engineering community will rise to the challenge of meeting it.

IV. And variants of it, such as the ‘brain as a distributed computer’ metaphor that has been in

vogue since the advent of the internet and cloud computing.



PART I

WAYS OF THINKING



1

ESTIMATION

Tribes that only count to four, where babies outsmart computers, and

why we underestimate pandemics

The introduction of the Video Assistant Referee (VAR) promised football

fans so much.1 Technology would be the objective adjudicator of all tough

on-pitch decisions, bailing out referees when they committed a ‘clear and

obvious error’. Gone would be the days of disputed handballs and

disallowed goals. There would be no lingering sense of injustice from harsh

decisions. That was the hope, anyway.

VAR has brought its own set of problems. Now when a team scores, the

knee-jerk celebration of players and fans can turn to gradual despair as

VAR inserts itself into the process, with an offsite team using camera stills

to check for any infringement. When there is even a hint of offside, for

instance, dreaded coloured lines appear on screen, marking reference

points on players’ bodies to check their position when contact was made

with the ball. Stray toes, elbows and other protruding body parts,

measured to the millimetre and excruciatingly analysed for several minutes

at a time, have led to goals being overruled.

Something about this intervention just doesn’t feel right. Pundits,

players and fans have all expressed deep consternation at the literal

interpretation of their game’s rules. Debates have ensued on the meaning of

‘clear and obvious’ errors. There is an enduring sense that, in the pursuit of

fairer decision-making, we’ve sacrificed a core part of the ‘beautiful game’

by privileging precise measurement over eyeball estimates.

Herein lies the first of our tensions with technology: while computers

offer unswerving accuracy in their calculations, we are wired to see the

world in fuzzier terms.



How some tribes count

Our search for distinctly human ways of thinking begins in the Amazon

rainforest, where the Pirahâ people have dwelt for tens of thousands of

years. The tribe’s language has been a topic of some fascination for non-

natives, most notably American linguist Daniel Everett, the first outsider to

unravel its mechanisms.2 Starting in the 1970s, and continuing for three

decades, Everett and his wife Keren visited the tribe intermittently and

made a number of curious observations. The Pirahâ appeared to have no

vocabulary for colours, no perfect tense, no concept of history beyond

more than a couple of generations, and no words equivalent to quantifiers

such as ‘each’ and ‘every’. Everett was stunned: his observations pierced the

widely held belief that humans possess a ‘universal grammar’, an idea

popularised in the mid-twentieth century by Noam Chomsky. Chomsky

had theorised that the human brain is endowed with a specific faculty for

language – a ‘language organ’ – that comes equipped with fixed rules

available to all people.3 Through the Pirahâ, Everett had stumbled upon the

discovery that language depends on culture far more than Chomsky and his

followers had acknowledged.

The Pirahâ’s ideas of quantity are no less intriguing. Their language

does not contain vocabulary for basic numbers such as ‘one’ or ‘two’.

Instead the tribe uses the term hoi, with a falling tone, to signify small

quantities, and the same word hoi, this time with a rising tone, to denote

larger amounts. Parents are unable to say how many children they have –

they would know if one went missing, but they have no precise way to

express ‘how many’. Food is apportioned according to what feels like a

reasonable serving, and plans are never made more than a day in advance.

Traders barter in foraged nuts and make holistic judgements on what

constitutes adequate payment. The Pirahâ do not count, and they certainly

do not add, subtract, multiply or divide.

To test the Pirahâ’s grasp of quantities, one of Everett’s colleagues, Peter

Gordon, asked members of the tribe to arrange objects such as batteries

and nuts in an array. They managed just fine with two or three items but

showed ‘remarkably poor’ performance with larger groupings. In another

experiment, Gordon showed his subjects a collection of nuts, which he then



placed in an empty can so that they were hidden from view, before

removing the nuts one at a time. After removing each nut, he asked the

subject whether any nuts remained in the can. Again, the Pirahâ performed

well with quantities of three or lower, but errors crept in for larger

amounts. Gordon and Everett concluded that the Pirahâ’s eye for precision

was limited to three objects. They were also clear that these observations

were not a result of mental deficiencies – the subjects were perfectly bright;

they had just never been conditioned to develop precise concepts of

number.

We now know the Pirahâ are not alone in how they conceive of numbers,

and that other indigenous groups have developed their own notions of

quantity. The Kpelle tribe in Liberia, for instance, carry out basic counting

exercises up to quantities of around forty but no larger. They reserve a

word for ‘one hundred’, which is the default term used to describe any

large amount. Measurement is a loose concept; amounts are not quantified

in precise terms.4

What these examples (and many more like them) seem to suggest is that

the number system familiar to most people, with numerals that represent

quantities and procedures for manipulating them, is a specific product of

our environment and language. Our built-in aptitude for number is

imprecise for all but the smallest quantities. To explore this theory further,

we turn to another subgroup of humans, a kind of supertribe whose

membership is universal: babies.

Our natural sense of number

In the 1980s, cognitive psychologists began to test the numerical abilities of

infants as young as six months.5 But how do you test subjects who are

unable to speak? One way is to show them objects or images and measure

how long they spend looking at them. This gives some indication of what

they consider novel – the longer they fix their eyes on something, the more

interesting it must be to them. In the earliest experiments of this kind, 16-

to 30-week-old babies were first shown a series of slides in which two large

dots were horizontally separated. As you might expect, the babies spent

less and less time looking as the slides wore on because of the repetitive



nature of the images. After this ‘habituation’ phase, another slide was

shown, this time displaying three dots. The researchers found that the

babies fixated on the new slide for significantly longer: 2.5 seconds

compared with the 1.9 seconds they had spent dwelling on the previous

slides. The increased attention implies that babies have some way of

distinguishing two objects from three. The same findings held when the

size, type and location of the objects was varied, which singles out a sense

of number – specifically, a sense of twoness versus threeness – as the reason

the babies lingered that much longer on the later slides. Later studies

reached the same conclusions for babies as young as a few days.

Our ability to distinguish small numbers from one another can also be

detected through sound-based experiments. This time, it is not the baby’s

stare that is relevant. Instead, the newborns are attached to an artificial

nipple, which they suck whenever they become attentionally aroused. The

more attentive they are to a stimulus, the more sucking they do. When

newborns are exposed to various word pronunciations, their interest level

(as indicated by the number of nipple sucks) rises when the number of

syllables is changed.

A separate experiment showed that the particular stimulus is of little

importance. When babies were shown images with no sound, they showed

more interest in three objects over two – not surprising, since there is more

to take in. But when the sound of drumbeats accompanied the images, the

number of beats seemed to determine the babies’ attention level: when two

beats were played, they showed more interest in the image with two objects

than the one with three objects. And when the number of beats didn’t

match the number of objects, the babies tended to lose interest in the slide.

The babies, in other words, were perceiving numbers through sound and

then matching their perception to the corresponding image. Their sense of

‘two’ cut across both sound and visual stimuli – they were perceiving

numbers in and of themselves.

Babies can do more than just perceive numbers: they can perform

rudimentary arithmetic on them. In an experiment devised by Yale

psychology professor Karen Wynn on infants aged four and a half months,

a toy was placed on a stage and then hidden behind a screen. The same was



done with a second object. The screen then came down to reveal either

both objects (in which case the whole routine was a simulation of the

calculation 1 + 1 = 2) or one object (a simulation of the erroneous

calculation 1 + 1 = 1). The babies spent more time staring in the latter

case, presumably because it is at odds with the outcome they were

expecting (namely, two objects). Wynn ran the same experiment with three

toys appearing as a possible outcome (thus simulating 1 + 1 = 3), which the

babies, again, gazed at for longer than they had at two objects. The babies

intuitively knew that one plus one is two, rather than one or three. Again,

the same findings were reached when the experiment was replicated with

different types, locations and colours of toys. What commands the babies’

attention is an innate, abstract sense of number.

That babies can discern quantity before they acquire the ability to speak

suggests that, on some level, the concept of ‘number’ is more natural to

humans than ‘words’. Nevertheless, it is important to clarify that babies

have definite numerical limits. For example, they have no sense of number

order: even as they can perceive that 1 + 1 = 2, they have no concept that

three is larger than two, which is larger than one. Moreover, babies’

abilities to distinguish different quantities peaks at around four objects. A

baby might fixate longer on three objects over two, but they won’t bat any

more eyelids on five objects over four. This is entirely in line with what was

observed in the Pirahâ tribe: while their rough command of numbers is

suited to their needs, they hit a perceptual limit very quickly when it comes

to precise quantification.

The same observations have been made in adult patients with brain

damage. The cognitive neuroscientist Stanislas Dehaene describes the case

of a former sales representative who suffered a lesion in the rear of his left

hemisphere following a brain haemorrhage.6 The patient was afflicted with

several physical and mental impairments that left him unable to live an

independent life. He started to display patchy number skills: when asked to

add two and two, he answered ‘three’. He could recite sequences such as

the two times table but was unable to count backwards from nine. He

struggled to distinguish odd numbers from even and barely recognised the

number five.7 Despite these alarming gaps, the patient retained the ability



to approximate quantities. While he could not recall the number of days in

a year, he knew it was somewhere around 350 days. Similarly, he knew that

a quarter of an hour lasted around ten minutes. Although the patient’s

proficiency with exact number had been reset to the levels of his early

childhood, when it came to approximation, he hadn’t lost his touch. The

patient was dubbed ‘the Approximate Man’ and has come to exemplify the

numerical skill most innate in humans.

Putting together observations of tribes, babies, and brain-deficit

patients, Dehaene and colleagues described two cognitive systems that

govern our relationship with number.8 The first is an exact sense of

number, which applies to small quantities. Humans come equipped with a

hard-wired ability to recognise amounts up to four without resorting to

formal calculation. Our brain can instinctively recognise that there are

three apples in front of us, as opposed to one, two or four – a process

known as subitising. Once we hit five objects or more, our instincts give

way to learned counting mechanisms: we infer that there are five apples by

applying counting schemes that we have learned from our environment. For

larger quantities, a second core process kicks in – our approximate number

sense. Our natural handle for larger quantities is not precise computation

but guesswork. Our approximation skills are reasonably impressive: at six

months, we can tell that one group of objects is larger than another, so

long as the larger set has twice as many objects. Babies may not know

whether two plus two is three or four or five, but they seem to realise that it

cannot be eight.

Humans seem to cope very well with ambiguity, not least when it comes

to notions of size. Have you ever wondered how many grains of sand make

a pile? If you specify a cut-off point, say a hundred grains, you run into a

problem: by your own definition, ninety-nine grains are not enough to

make a pile. Yet are you really prepared to distinguish between a pile and a

non-pile on the basis of a single grain? This is why there is no agreed

convention for a cut-off: we just intuit on a case-by-case basis what

constitutes a pile, without resorting to a precise metric. The same is true

for many concepts we encounter regularly: height (what counts as tall?),



crime (what warrants a prison sentence?), and temperature (how hot must

a hot shower be?), to name just a few.9

In recent years, brain-scanning techniques have helped to associate our

different number skills with specific brain functions. Functional magnetic

resonance imaging (fMRI) is a popular technique for measuring the

magnetic disruption that occurs as oxygenated and deoxygenated blood

flows through the brain, which is a proxy for how active a brain region is.

Examination of three-dimensional fMRI data can identify the parts of the

brain that are stimulated by images or questions. These scans have pointed

researchers to a region deep in the back of the brain called the intraparietal

sulcus, which is activated whenever we are engaged in number tasks. It is a

kind of ‘number module’ that all humans possess, and it is highly active

when we work on estimation tasks.

Suppose you are asked to consider the possibility that 7 × 8 is equal to

20. Even without knowing the exact value of 7 × 8, our number module

kicks in and our sense of the size of 7 × 8 allows us to rule out 20 as a

plausible candidate. Drawing on our core number module, estimation gets

to the point far more quickly than working out the exact value, and just as

reliably. Humans, as we’ll see throughout this book, are cognitive misers, a

term coined by psychologists to describe the tendency of people to take

shortcuts when solving problems. When dealing with calculation, our

miserliness takes the form of estimation.

Now suppose you were asked instead to calculate the exact value of 7 ×

8. The number module is still active, but less so than before. Instead, the

effort shifts towards the language-processing area in the brain’s left

hemisphere. Calculation is a skill acquired through, and highly associated

with, having a lexicon to denote precise quantities, which goes some way to

explaining why the Pirahâ, babies and the Approximate Man struggle to

compute larger amounts. This region becomes more active as we gain

proficiency with number facts and procedures – times tables, long division,

the quadratic formula, and so on.

It seems reasonable to conclude that while approximation and precision

are distinct facets of numeracy, calling on different brain functions, only the

former is part of our natural wiring. In the age of super-fast, super-



accurate calculators, it has never been more important for humans to

exploit this inherent sense of number.

Precision and estimation: an alliance

Our daily existence is a mix of precise and imprecise calculation. We rise

and sleep according to both the rough dictates of our body clocks and the

precise settings of our alarms. Public transport shuttles us around from one

place to the next, operating on schedules that are exact in theory but

volatile in practice. We compare and contrast offers at the supermarket,

often relying on holistic judgements to grab the best bargain (a fact that

advertisers all too readily exploit). We enjoy cooking and eating meals that

rely on exact judgements of quantity, but allow slight deviations from the

recipe according to our personal tastes. When we cheer on our favourite

sports teams, our appreciation of their performance is informed by the

flurry of statistics shared on screen, but also by the subjective rhythm of

speed and movement that we observe during gameplay. And returning to

the opening vignette of this chapter, football fans balk at the use of video

assistant referees that rule out goals for the most minute offence. The

mechanisms of everyday life are untidy enough that we turn to thoughtful,

inexact guesswork alongside precise calculation.

Precision is the facet of numeracy that is natural to computers. Its

partner, estimation, is native to humans and is what gives us reliable

intuitions for calculation. Estimation is the foundation of numeracy. Even

when we declare seemingly rigid ‘facts’ such as 7 × 8 = 56, there is some

degree of comparison being made. The expression signifies that when we

take ‘seven lots of eight’, we reach a number that is somewhere between

‘five lots of ten’ and ‘six lots of ten’. Similarly, the reason our approximate

number sense kicks in when evaluating whether 7 × 8 could equal 20 is that

we sense immediately that ‘seven lots of eight’ far exceeds ‘two lots of ten’.

The next chapter looks more closely at why, for humans, groups of ten are

a natural basis for comparison. For now, it is simply worth noting that our

ways of working with numbers are so entrenched that we often overlook

their basis in estimation.



It is not surprising, then, that according to one study, ‘preverbal number

sense in 6-month-old infants predicted standardised math scores in the

same children 3 years later’,10 while a separate research review concludes

that ‘children and adults who estimate accurately tend to have better

conceptual understanding, better counting and arithmetic skills and greater

working memory capacity than do those who estimate less accurately.’11

Estimation, in other words, is the springboard to numerical proficiency,

which explains why it is so highly sought after by employers. As the

Stanford maths educator Jo Boaler notes:

When an official report in the UK was commissioned to examine the

mathematics needed in the workplace, the investigator found that

estimation was the most useful mathematical activity. Yet when

children who have experienced traditional math classes are asked to

estimate, they are often completely flummoxed and try to work out

exact answers, then round them off to look like an estimate. This is

because they have not developed a good feel for numbers, which

would allow them to estimate instead of calculate, and also because

they have learned, wrongly, that mathematics is all about precision,

not about making estimates or guesses. Yet both are at the heart of

mathematical problem solving.12

Mathematics should appeal to our sense of what is reasonable. It should

feel natural – as the nineteenth-century scientist Lord Kelvin advised: ‘Do

not imagine that mathematics is harsh and crabbed, and repulsive to

common sense. It is merely the etherealisation of common sense.’13 This

edict is especially true of numbers, which colour our understanding of the

world. That world is messy, and we often do not possess the requisite

information to obtain exact solutions to our problems. Financial analysts,

engineers, weather forecasters and cancer researchers all get around their

blind spots by creating mathematical models that approximate the physical

world, aided by computer simulations that feed off precise calculations.

Every model is wrong, as one well-worn trope goes, but some have their

uses.



Obtaining reasonable estimates is at the heart of the famed Fermi

problems, an entertaining class of questions that gained notoriety after

frequently appearing in job interviews at Google. These problems are

popular among interviewers because they test candidates’ ability to handle

situations where information is limited. They are named after the physicist

Enrico Fermi, who was renowned for his ability to estimate large quantities

using little or no data. Fermi helped develop the atomic bomb – here he is

estimating the bomb’s TNT equivalent using the barest supply of

information:

The explosion took place at about 5:30 a.m. After a few seconds the

rising flames lost their brightness and appeared as a huge pillar of

smoke with an expanded head like a gigantic mushroom that rose

rapidly beyond the clouds probably to a height of 30,000 feet. After

reaching its full height, the smoke stayed stationary for a while before

the wind started dissipating it. About 40 seconds after the explosion

the air blast reached me. I tried to estimate its strength by dropping

from about six feet small pieces of paper before, during, and after the

passage of the blast wave… The shift was about 2 ½ metres, which,

at the time, I estimated to correspond to the blast that would be

produced by ten thousand tons of TNT.14

Notice the series of rough-and-ready approximations that Fermi makes

along the way – ‘probably to a height of 30,000 feet… about 40 seconds

after the explosion… the shift was about 2 ½ metres’. He has rounded

each of the important figures to make the calculations that bit simpler,

knowing that the accuracy of the final estimate will depend mostly on the

model he has set up and the inputs he has selected, rather than on the

exactness of each figure. Fermi’s estimate of 10 kilotons was around half

the actual value of 21 kilotons, constituting a reasonable guess in this

context.

In his later years as a lecturer, Fermi would pose similar problems to his

students that, on the surface, appeared impossible to compute because of



the lack of requisite information. One of his better-known problems runs

as follows:

How many piano tuners are there in Chicago?

Although this question has a very definite answer, what makes it

intriguing is that no practical method exists for uncovering its exact value

(assuming there is no register of piano tuners in Chicago). Fermi derived a

credible estimate by setting up a model as follows:

From the almanac, we know that Chicago has a population of about

3 million people. Now, assume that an average family contains four

members so that the number of families in Chicago must be about

750,000. If one in five families owns a piano, there will be 150,000

pianos in Chicago. If the average piano tuner serviced four pianos

every day of the week for five days, rested on weekends, and had a

two week vacation during the summer, then in one year he would

service 4 × 5 × 50 = 1,000 pianos. So there must be about

150,000/1000 = 150 piano tuners in Chicago.15

Again, Fermi’s thinking was not grounded in exact figures – he had no

hope of finding them. Instead, he made a series of assumptions, each one

carefully considered and within reason.

There are as many variations to Fermi problems as one can imagine.

Some are playful, others critical to confronting serious real-world

problems. Questions concerning population growth, for instance, are

couched in estimates. So are questions around how long it will take for the

polar ice caps to melt, whether it makes economic sense for a country to

exit the European Union and how many people will die from a rampant

virus.

Fermi problems perfectly illustrate the interplay between estimation and

calculation when mathematics is brought to bear to describe the world. We

start with our model (a rough picture of the world that we can describe

mathematically), feed it some data inputs and then run the model by



performing calculations on those inputs. We’re left with an estimate: a best

guess of whatever unknown entity we are looking to capture.

All told, mathematical modelling is an exercise in managing uncertainty.

It surged into the public’s consciousness during the Covid-19 pandemic.

When people look to epidemiological models to track the progress of

infectious diseases, they seek a degree of certainty that is rarely achieved

with real-world phenomena. Covid-19 has proved to be especially thorny

given the asymptomatic nature of its spread, which has made it fiendishly

difficult to gather reliable inputs around the rates of infection,

hospitalisation and death across different populations. Add to that the

volatility of human behaviour in response to the pandemic – a key

determinant of infection rates – and you can appreciate the difficulty of

forecasting Covid-19 trends. While shock jocks and politicians have a

reflexive tendency to express certainty in their projections, most

professional modellers carry with them the humility to acknowledge that

their own picture of the virus is pixellated with unknowns. They are

transparent about their assumptions (ranging from the virus’s incubation

period to the human behaviours that shape our responses to a growing

threat), the limitations of their data collection and the ever-evolving nature

of their models.16

Note the clear division of labour between humans and computers. For

all but the most trivial models, the piece in the middle – running

calculations – is offloaded to computers. Their role is to sharpen our

intuitions of the world by running calculations en masse, offering

thousands of simulated examples from which to explore and learn. But

computers cannot be relied upon to build models of the world or to make

sense of their answers. Those bookends of the process are more

appropriately handled by humans. Our skill resides in the ability to



evaluate the assumptions behind each model, the reliability of the specific

inputs that are fed into them and the plausibility of their outputs. That

requires a conscious engagement with what goes into, and what comes out

of, those calculations.

What goes in: models

Machines will calculate at the behest of humans, but they have no way of

grounding those sums in meaningful contexts, which can result in absurd

outcomes. Only an automated alert system could assign a negative age to

pregnant mothers,17 and only an algorithmic pricing model could lead to

two booksellers charging millions for an obscure textbook about flies.18 In

each case, the computers faithfully executed the commands issued to them

but were unable to rein themselves in when their answers spiralled out of

control.

Machine learning programs promise a little more, as they ‘learn’ their

models from data. They produce more than just numerical outputs: they

can (among other things) label images, respond to speech cues, play board

games, drive cars and engage in text chat. But these programs, too, can err

in the most unfathomable ways. The list of examples of ‘AI gone wrong’ is

growing all the time, with anecdotes ranging from the amusing to the

abhorrent. Amazon’s voice assistant, for instance, decided it was

appropriate to order a $170 dollhouse and four pounds of cookies simply

because six-year-old Brooke Neitzel asked for them,19 much to the chagrin

of her parents. You can find leading-edge image recognition software that

mistook the Star Trek logo for a sea slug.20 And at the more worrying end

of the spectrum is the Microsoft chatbot that spewed racist bile after being

trolled on Twitter, and had to be pulled within a day of going live.21

We’ll take a closer look at the workings of machine learning in the

coming chapters. Suffice it to say, a major limitation is that these programs

have no concept of the world against which to benchmark their

calculations. They have no notion of what may count as amusing or

abhorrent. It is for humans – disgruntled parents, diehard Trekkies and

Microsoft developers – to put the reins on senseless machine behaviour.



These programs, after all, are our own creations. Every model, however

simple or complex, is shaped by the choices of its designer. It is the human,

not an algorithm, who is really doing the modelling, by choosing functions

and parametersI that they think will give reasonable approximations of the

world. A computer will only think within the scope of the choices specified

to them. The blame for inexplicable behaviour must lie with us, and by the

same token, we must assume responsibility for sense-checking the

consequences of every choice we feed into our models. That means not

being overawed by the processing might of computers. It means not

ascribing infallible traits to them. And it means trusting in our common

sense to keep automated models in check.

What goes in: inputs

A model lives and dies by the data that it feeds off. The ‘garbage in,

garbage out’ principle that data scientists abide by has held true as long as

humans have sought to estimate difficult-to-grasp quantities, as a classic

pair of examples illustrates.

In 250 BCE, Eratosthenes, chief librarian at the Library of Alexandria

and the ‘father of geography’, wanted to calculate the size of the Earth.22

Lacking the tools to carry out precise measurement, Eratosthenes

ingeniously devised an estimate. He knew that the city of Syene was

roughly 5,000 stades – the equivalent of around 925 km – south of

Alexandria, and that it lay on the Tropic of Cancer. That meant that on

noon of the summer solstice, the sun was directly overhead. A vertical pole

in Syene would therefore make no shadow at that point in time.

Meanwhile, in Alexandria, Eratosthenes placed another vertical pole at

noon on the same day and measured the angle it made with the ground

from the shadow it cast. This angle was seven and a half degrees,

approximately a fiftieth of a circle. Using basic geometry, Eratosthenes

could now place Alexandria and Syene on the Earth’s circumference,

separated by a distance one-fiftieth of the whole way around. Since that

distance is 925 km, his estimate of the Earth’s circumference (the ‘size of

the earth’) came to 50 × 925 km, or 46,250 km. Modern calculations put

the true value at 40,075 km, which means Eratosthenes was accurate to



within 15 per cent – a valiant effort when you consider that his map of the

world, mostly derived from tales of travellers, accounted for just 8 per cent

of the world as we know it today.

Seventeen centuries later, Florentine mathematician and geographer

Paolo dal Pozzo Toscanelli pitched a proposal to the Portuguese court to

sail west to the fabled Spice Islands. Toscanelli had developed his proposal

after consulting with Niccolo Conti, the first Italian merchant to return

from the Far East following Marco Polo’s journey. Toscanelli never made it

to sea himself, but his proposal inspired Christopher Columbus’s voyage in

1492.23 Unfortunately, Toscanelli’s map had the Earth’s circumference as

around 30,000 km – a gross underestimate. When Columbus made landfall

in America, he thought he had reached Japan, not realising he had actually

stumbled upon an unknown continent lying between Europe and Asia.

Toscanelli’s estimate broke down not because his calculations were at fault

but because he got one of his inputs (the Earth’s circumference) horribly

wrong. Garbage in, garbage out.

It is difficult to secure a reasonable estimate from spurious inputs (you

would have to consider yourself lucky if you did). A major area of concern

for machine learning practitioners is the prevalence of errors within the

datasets they train their models on. A study of ten widely used datasets for

computer vision, published in March 2021, found an error rate of 3.4 per

cent.24 This is hardly encouraging when you consider that these datasets

form the basis of so many of today’s leading image recognition tools. A

‘data-centric’ school of thought is emerging within the AI space that

emphasises the importance of having good data, and the danger of placing

faith in sophisticated models without it.25 In fact, the performance of some

of the most complex models is found to be diminished once those errors

are corrected for. Bad data has blinded our sense of what makes a good

model.

What comes out: weighing up estimates by thinking in ratios

When dealing with large numerical outputs, we can use our knowledge of

the world to create benchmarks of what constitutes a reasonable guess.



One way to describe ‘largeness’ is in terms of orders of magnitude, which

are just different categories of size. The orders are usually defined in terms

of powers of 10: 1, 10, 100, 1,000, and so on. The idea is that each category

represents the same-sized leap above the previous one (in this case, a factor

of 10) and a good estimate is one that falls in the correct category. Even if

our estimate is wrong, by getting its order of magnitude right we limit the

scale of our error.

Suppose your lunch bill hovers around £10, compared with £100 for a

grocery shop, £1,000 for monthly rent, and £10,000 for the car that has

always felt like an indulgence too far. Those values are not precise, but they

serve as benchmarks against which we can classify everyday expenses.

When planning options for your next holiday, we can consider the cost in

terms of a grocery shop (as in the case of a one-night getaway) or a

month’s rent (as in the case of time abroad). The standalone act of

selecting the right order of magnitude ensures that our errors are contained

within reasonable boundaries, which is often fit for our needs.II This is

especially true when working with large numbers (and it explains why

astrophysicists are the subject of so many memes that caricature their

desire just to get their figures in the right ballpark).26

Orders of magnitude rely on comparison by ratios rather than absolute

differences – in the cases above, each category is separated by a factor of

10. It turns out that we naturally perceive numbers in terms of ratio; our

approximate number sense is based on them. Our estimation abilities

become fine-tuned with age. With enough experience, we can glean that a

set of eight objects is larger than a set of seven through observation alone,

without recourse to any counting mechanisms. At all ages, however, our

ability to estimate declines for larger numbers: we find it harder to

distinguish a 22 kg weight from a 21 kg weight than a 2 kg weight from a 1

kg weight. This is known as the Weber–Fechner effect and it will be

familiar to you if you have ever perceived time as passing by more quickly

the older you get: the passage, say, from thirty years to thirty-five seems to

be much more rapid than the passage from ten to fifteen. To a thirty-five-

year-old, five years is a mere seventh of their lifespan – over in a flash. To a

fifteen-year-old, the same amount seems like an age because it accounts for



a third of their total lifespan (actually higher still since the first few years of

life escape our memory). Various biological explanations have been put

forward as to why this effect takes hold – one theory suggests that it relates

to our slowing metabolism as we age (younger people have faster

heartbeats, giving the sense that things are happening more slowly around

them).27

To see the effect in action, very quickly decide where you would place

1,000 on the following number line:28

You have almost certainly figured that 1,000 must be closer to 1 than to

1,000,000 – but how close, exactly? The chances are that you placed 1,000

some noticeable way along the line. Does it surprise you that the correct

placement is somewhere on the dot just above the 1? This makes sense

when we pause to consider that 1,000,000 is made up of a thousand copies

of 1,000; as a result, we should only travel one thousandth of the way along

the line. But because we intuit the relative size of numbers in terms of their

ratio rather than their difference, we tend to think of 1,000 as much closer

to 1,000,000 than it actually is (you could say 1,000 is the same ratio apart

from 1 as it is from 1,000,000). The fact that whole numbers are evenly

spaced only becomes ingrained in us through formal study: somewhere

between the ages of six and ten, we realise that the difference between 8

and 9 is the same as the difference between 2 and 3. And even then, as

you’ve just experienced, we naturally retreat to ratios.

We perceive the number line on a logarithmic scale, with numbers more squished together than

they actually are.

A more precise way of describing this effect is to say that we have a

logarithmic number sense – that is, we perceive the number line on a

logarithmic scale. This is the same logarithm which John Napier

introduced to the world to make calculations easier, and which led to the

slide rule, where the distance between two numbers represents the ratio



between them, and the distance between successive values therefore shrinks

as the numbers get larger. Napier’s mathematical innovation, it appears,

marries up with our deep intuitions about number.

Our affinity towards ratios over differences has consequences, good and

bad. There are times where it makes good sense to think in ratios. On other

occasions, doing so can distort our perception of the world.

Suppose you are considering launching a new line of cars in the UK. You

need to determine how many cars, roughly, are sold there each year. One of

your researchers returns with an estimate of 100, another with 5 million.

The correct answer, you learn, is around 2.5 million. Which estimate was

closer to the mark? In absolute terms, both estimates are about as accurate

as one another: the first is out by 2,499,900 compared with 2,500,000 for

the latter. Yet common sense tells you that the first estimate is nonsensical.

In terms of ratios, the first estimate is actually 25,000 times below the

actual value, whereas the second estimate is just two times above it – still

not as accurate as you might hope, but at least within the realms of

reasonable.

Now imagine your new line has been a roaring success and you are

handed a pay rise of £10,000. It sounds like good news, but that isolated

figure lacks context. To evaluate how good the news really is, we need a

baseline figure: your current salary. A £10,000 rise on £30,000 represents a

33 per cent increase – well worth celebrating. The same increase on a

weighty £500,000 salary represents just a 2 per cent rise – probably not

enough cause for celebration; you may even take offence at the paltry

recognition of your efforts. Our judgement is informed by proportional

increase rather than increase in absolute terms – ratios rather than

differences. It’s for the same reason that you probably don’t tip all waiting

staff the same amount. Restaurants commonly express the service charge as

a percentage of the bill, which is an implicit acknowledgement that the

market value of their staff is in proportion to the expense of your meal.

Ratios trump differences.

Marketers often take full advantage of our predilection for ratios:

tagging £5 onto a £100 shopping bill always seems easier to justify to

ourselves than lumping the same item onto a £10 shop. In terms of ratios, it



is the difference between 5 per cent and 50 per cent of the original amount.

We would do well in such scenarios to resort to absolute differences; we

will be out of pocket just the same.

Overcoming exponential bias

Our ‘logarithmic’ sense of number has much to answer for, including our

propensity to downplay pandemics in their early stages. During the initial

phases of Covid-19, the term ‘exponential growth’ was on the lips of

epidemiologists, journalists, even politicians. It was established early on

that cases were doubling every three or four days. ‘Exponential growth’ is

appropriate here; it relates to any situation where an amount multiplies by

the same amount at regular intervals. It means that growth is itself

accelerating. Exponential growth is a whole level up from steady linear

growth, where the same amount is merely added at regular intervals – the

volume of water you have consumed, for example, grows linearly (assuming

you drink about the same amount each day).

As Covid-19 cases remained in the tens and even hundreds, the sense of

alarm was muted in many regions. Many forecasts presented a gross

underestimate, suggesting cases would plateau in the low thousands

(which, within a population of millions, would represent relatively low

risk). Those intuitions were defeated as cases exploded into the millions

and deaths into the tens of thousands (and beyond). The public – and, in

too many cases, our politicians – were seemingly caught unaware through

multiple waves of the pandemic. What went wrong?

Our trouble in grasping exponential growth is not new. According to a

classic Indian legend, when the brahmin Sissa ibn Dahir was offered a prize

by the tyrant King Shihram for inventing an early form of chess, he humbly

asked for a single grain of wheat to be placed on the first square of the

board, then two grains on the second square, four grains on the third and

so on, doubling each time up to the sixty-fourth square. The king was glad

to oblige, amused even by the brahmin’s simple request. That was until he

realised at around the thirty-second square that the amount of grain

needed for the next would exceed all the food in the land (the exact number

after sixty-four squares is 18,446,744,073,709,551,615). If more morbid



renditions of the tale are to be believed, the king proceeded to behead the

brahmin for such inconvenience.

The king suffered from what psychologists term ‘exponential growth

bias’, and it’s a bias that afflicts most of us,29 including people with higher

levels of education. Another example: suppose you stepped out for your

daily walk and were asked to take thirty steps. You can reliably estimate

where you would end up – the newsagent perhaps, or the house of the

neighbour you’re keen to avoid. But now suppose you decided to double the

length of each stride (indulge me). The first five steps, for instance, would

get you as far as 1 + 2 + 4 + 8 + 16 = 31 normal-sized steps (in sight of that

annoying neighbour). Where would you end up after thirty super-sized

steps? The end of your city, perhaps? The country? In fact, assuming each

normal-sized step is one metre, you’d travel the whole circumference of the

Earth twenty-six times over. It seems implausible, but the arithmetic cannot

be disputed – the nature of exponential trends is such that numbers

eventually defy our gut instincts.

Exponential bias can have dire consequences. It can hurt our bank

balance by inhibiting our understanding of compound interest. If you

invest £1,000 at an annual interest rate of 5 per cent, how much will you

have earned in forty years? Most people do not realise that the savings

amount to an excess of £7,000 and, by opting out of such schemes, they

lose out on a retirement buffer.30 The consequences can even be deadly, and

not just for humble chess enthusiasts. Research shows that the extent of

this bias predicts the seriousness with which we take pandemics. A stronger

bias makes us less likely to take precautionary measures such as social

distancing and mask-wearing.31

But why does exponential bias persist even in those early stages of a

phenomenon, when we can see it unfolding before our very eyes? An

evolutionary perspective is that, until very recently, civilisation has

progressed at a steady clip. For millions of years, our lives have been slow,

steady and predictable – linear, you might say. So when we are confronted

with exponential trends that do not match up to our lived experiences, we

cannot help but interpret them as linear.



Our logarithmic number sense is also at play. Even as case numbers

multiply at regular intervals, we perceive each successive ‘leap’ as the same

size. The leap from thirty-two cases to sixty-four feels the same as the leap

from sixteen to thirty-two (just like the slide rule) – our perception is one

of consistent growth. However, the growth is consistent in terms of the

ratios, not in terms of the actual differences. In effect, our logarithmic sense

knocks our perception of growth one scale down: we perceive exponential

growth as linear.

Another way of thinking about this is that we tend to exaggerate the size

of small numbers; we feel that thirty-two is much closer to sixty-four than

it actually is. So when we imagine future case numbers and we think about

the results of a succession of doubling, we end up with a gross

underestimate. Remember where we placed 1,000 on that line from 1 to

1,000,000? We perceived this modest amount to be much larger than it

actually is. When left to intuition, even our ‘worst-case’ projections are way

below the mark because we already perceive ‘low thousands’ to be

staggeringly high.

We can visualise exponential growth bias with two charts that each

show the early rise in Covid-19 deaths in the United States. Both charts

represent the same data – the difference is in the scale of the vertical axis. In

the first chart, the vertical scale is linear – numbers are spaced apart

equally. The growth is clearly exponential; we can literally see that the rate

at which deaths are increasing is itself increasing. Now look at the second

chart: the vertical scale is logarithmic – the distance between numbers

represents their ratio, not their difference. The graph now resembles a

straight line (near enough). This representation is a popular choice because

it makes it possible to plot large values (especially in situations where

growth stretches into millions and beyond).

Both charts are equally valid, and both were given airtime in government

briefings and the mainstream press. The second one, by invoking a

logarithmic scale, gives the impression of steady growth. One study

suggests that people who were exposed to the logarithmic scale version

were more likely to misinterpret the data and to underestimate their

projections of future case numbers.32 The straight-line appearance of that



graph fuels the misperception that cases are rising at a constant rate (when

what that line actually signifies is a steady doubling of cases every few

days). It looks more reassuring than its sharply rising counterpart. When

scores of politicians and pundits played down the threat of the pandemic

early on (even Elon Musk, on 19 March 2020, projected ‘close to zero new

cases by the end of April’ in the United States, in a now infamous tweet),

they may well have had visions of linear growth in mind.





Covid-19 deaths in the United States between 15 February 2020 and 18 April 2020, plotted on a

linear scale and a logarithmic scale. The logarithmic scale gives the appearance of linear

growth.

Covid-19 has given us pause to think about how we perceive numbers,

especially larger ones. Getting a handle on exponential growth has become

a survival skill even outside of pandemics, as our lives are increasingly

governed by exponential trends. Technology is growing at an exponential

rate (remember Moore’s Law – processing power is doubling roughly every

eighteen months), resulting in an explosion of computing power and

information. If we fall victim to our logarithmic sense, then we are sure to

underestimate the long-term impact of technology. Consider how advanced

today’s technologies are compared with two decades ago, when the internet

and social media were in their infancy and smartphones had yet to go

mainstream. The nature of exponential growth means that the technologies

of the 2040s will be even further apart from today’s state of the art. Just as

pandemics have an unnerving way of spiralling out of control, technology



itself is bound to evolve in ways we cannot anticipate. This is what the

futurist Roy Amara alluded to when he warned that ‘we tend to

overestimate the effect of a technology in the short run and underestimate

the effect in the long run.’33

The way to mitigate our exponential growth bias is to think of our

future trajectory as an amplified version of past trends. One proven way to

get a better handle on pandemics is to focus on the time it will take for

cases to reach large thresholds, rather than just looking at daily figures.34

Visualising trends, and paying attention to the scales we use, can also help

to illuminate these projections of the future.

The pandemic is a reminder that our perceptions of number are innately

imperfect, but they can combine with the outputs of computers to help us

make better sense of the world.

Escaping the Chinese room

Precise as calculation may be, as a standalone activity void of context it

cannot be considered intelligent. In his ‘Chinese room’ thought

experiment,35 the philosopher John Searle called out mindless information

processing by asking you to imagine that you are in a closed room. A

passer-by slips a sheet under the door containing a list of questions written

in Chinese. The bad news is that you do not understand a word of Chinese

(you are the only one who knows this). The good news: in the room, there

is an instructional manual written in English that shows you, step by step,

how to convert the given characters into a set of new characters that

correspond to the answers. The passer-by receives your answers and is

convinced you understand Chinese because you are capable of answering

questions in the same language in which they were posed. Unbeknownst to

her, despite your proficiency in this task, at no moment did you possess

even an iota of understanding of Chinese. You are unable to assign

meaning or context to what you can only perceive as squiggles. The

appearance of intelligence does not render your actions intelligent.

Searle was taking aim at computers; he was contesting the very premise

of AI by demonstrating that actions that appear intelligent on the surface



can unfold without any conscious effort or comprehension of the task.

Searle could just as well have levelled his critique at humans, who default

all too easily to performing calculations without consideration of what the

numbers represent. We are not invulnerable to performing senseless

calculations, a fact amusingly illustrated by Kurt Reusser in a 1988 study

where he posed the following question to a group of schoolchildren:36

There are 125 sheep and 5 dogs in a flock. How old is the shepherd?

There is, of course, no way to discern the age of the shepherd from the

size of his flock. No subtle trick or manipulation can rescue this problem

from its absurd framing. Yet Reusser showed that three-quarters of the

schoolchildren responded to the shepherd problem with a numerical

answer. The students cannot be criticised for their display of mental

arithmetic; the calculations are faultless. But in pursuit of a definitive

answer, students neglect to evaluate the relevance of their calculation.

This chapter should give us encouragement that humans are able to

escape the Chinese room: we’ve developed effective safeguards to protect

against mindless calculation. After all, despite our natural difficulty in

intuiting exponential growth, many people can reliably model pandemics,

foresee the rise of new technologies and cash in on investment schemes.

Our knowledge of the world is what helps keep our calculations grounded;

it is how we overcome our numerical blind spots.

Humans are not unique in possessing an innate sense of number. The

ability to quickly identify bountiful food sources, or to assess how many

predators are looming close by, confers evolutionary advantages.

Quantitative skills can be found across the animal kingdom, at least where

small amounts are concerned. Honey bees can track the number of

landmarks as they search for food, female lions are more likely to avoid

fights with nearby intruders when they hear three roars instead of one,

spiders spend more time hunting on their webs when there are more prey to

be found, and crows can conceive of zero as a quantity that is close to the

number 1.37 Rats can distinguish 2 + 2 from 3, while chimpanzees have

some intuitive grasp of fractions, and Karen Wynn’s findings for infants



have also been shown to hold for dogs and rhesus monkeys.38 What sets

humans apart is our capacity for language and abstraction, which allows us

to formalise our concepts of number, handle larger quantities and develop

theories along the way. Animals may have a sense of 2 and 3, but only a

human could tell you that 2 + 3 = 5, or that all three of these numbers are

prime.

Our command of numbers, and of mathematics, rests on our ability to

represent knowledge – whether knowledge of the world or knowledge of a

more abstract kind – in powerful ways. Knowledge representation remains

a longstanding challenge of AI, and it is the focus of the next chapter.

I. The term ‘hyperparameter’ may be more appropriate here. In machine learning contexts, it refers

to the aspects of a model, say, a neural network, that need to be specified before the machine can

undertake learning.

II. If we require even more accuracy, we can create boundary values that tie our calculations to an

even narrower range of plausible values. For instance, I know that my monthly phone bill falls into

tens of pounds – this order of magnitude estimate tells me it will never fall below £10 or climb above

£100. I know that the actual cost varies depending on my usage, and if I want a more precise range

of estimates, then I can take the lower and upper bounds as £30 and £50 because I know that my bill

almost never falls outside the £30–£50 range.



2

REPRESENTATIONS

The dogness of dogs, how mathematicians paint ideas, and the blind

spots of computers

Mathematicians are misunderstood people. Despite undertaking some of

the most creative mental feats, it is mistakenly assumed that they while

away their days pushing symbols around.

An overreliance on symbols traps us in the narrowest, dullest view of

what intelligence is. Humans possess an arsenal of mental tools for

making sense of our most complex thoughts. When literally viewed the

right way, mathematics is the perfect case study in how, unlike machines,

we’re able to represent knowledge in the most diverse and vivid ways.

How machines see the world

If you have any ambition to develop AI, you have to reckon with how your

intelligent being will see and make sense of the world. This has proved to

be one of the field’s enduring challenges. Early efforts to develop AI were

based on a symbolist paradigm, which states that we can encode the

world’s objects as symbols and model their behaviours with logical rules

for manipulating those symbols. In this view, intelligence boils down to

long lists of hard-coded instructions. To replicate intelligent human

behaviour, the thinking goes, you simply specify all the rules that expert

humans employ when making decisions. This approach was the basis for

IBM’s chess playing program, Deep Blue. It turns out that you (or rather, a

machine) can best a grandmaster by compiling a database of hand-crafted

chess moves, taken from expert human players, and then sift through its



myriad options, selecting the one that ranks highest according to some

scoring function.

But for many problems, symbol crunching only goes so far. This was

first seen in mathematics, which has repeatedly found itself in the

crosshairs of AI. The rule-based General Problem Solver (GPS), developed

in 1957 by Herbert Simon and Allan Newell, is widely considered the first

AI program.1 The GPS had built-in knowledge of various problems, as

well as general strategies for solving them. It could solve a range of maths

problems that could be precisely stated in terms of symbols (it could also

solve certain types of word puzzles and play chess). The GPS proved not to

be all that general, however, when it came up short on problems that evade

strict symbolic definition.

AI researchers encountered the same challenge in other domains. Say

you want to create a machine doctor. No problem, you might think – just

arm it with meticulously encoded rules that have been specified by expert

human diagnosticians. When a patient presents with symptoms and

medical test records, apply those rules and await an automated diagnosis.

Alas, any doctor will tell you that no set of rules, however large, can

account for the sheer variety of ailments they are presented with. Doctors

rely as much on intuition, honed through years of experience and

accumulated wisdom, as they do on hard-and-fast rules for diagnosis.

The painful lesson for early AI practitioners was that the world is far

too large and complex to grasp with fully specified rules.2 Much of our

knowledge of how the world works is tacit and cannot be formally stated.

Think of how you learned to ride a bike – you almost certainly did not rely

on an instruction manual as much as your sense of balance. Some of our

most fundamental, in-built human traits, like emotion, intuition and

common sense, are also the hardest to put down in words. As the

philosopher Michael Polanyi put it, ‘we can know more than we can tell.’3

Intelligence also rests on the ability to learn through experience and

interaction with one’s environment. To ride a bike, we hop on multiple

times, we stumble and we learn from every error, honing those senses until

finally we have the confidence to retire our stabilisers. This is the insight at

the heart of machine learning, the dominant approach of modern-day AI



applications. In a bid to unshackle computers from a rigid knowledge

base, and to capture some of those subtler elements of thinking, the idea

now is to allow computers to ‘learn’ from data inputs. A model is set up to

represent the situation at hand, data are fed into that model, and an

algorithm crunches that data to determine the precise shape of the model

(its ‘parameters’). The machines are ‘learning’ in the sense that their

parameters evolve as they receive more data – their models become more

accurate (that’s the hope, anyway).

Many of machine learning’s most promising approaches have taken

inspiration from the human brain. The subfield of deep learning, for

instance, deploys models that are loosely based on the brain’s neural

networks.4 In the human brain, neurons fire up when they receive strong

enough electrical signals from other activated neurons. The algorithms

behind ‘artificial’ neural networks try something analogous by adjusting

the weights between neurons as data comes in. Another subfield,

reinforcement learning, draws on behavioural science by using reward-

and-punishment schemes in order to incentivise machines to make

effective choices.

The theory underpinning these approaches has been around since the

1960s, but it was only decades later, with advances in processing power

and the availability of large datasets, that their potential was activated in

areas such as image recognition and autonomous vehicles.

The most high-profile example to date comes from the lineage of

Google DeepMind’s Go-playing machines, starting with AlphaGo. A rule-

based approach was never viable for Go because no single database could

account for its astronomical range of possible scenarios. Instead, the

DeepMind team have deployed deep learning and reinforcement learning

in tandem to produce stunning results.5 Unlike Deep Blue, AlphaGo (and

its successors) get better with experience. Whereas Deep Blue used the

exact same logic in every game, AlphaGo learns from every move and

every game, self-correcting as it goes. It updates the parameters of its

models, discovering fine-grained patterns in gameplay as it acquires deeper

expertise.



On the surface, it appears as if machines are inching towards human

ways of thinking. In fact, humans can no longer compete with machines in

Go and, what’s more, the machines play with a style and grace that has

enthralled aficionados. Machine intelligence seems to look more human-

like, even superhuman-like, than ever.

The dogness of a dog

Upon closer inspection, however, machine learning programs behave

nothing like humans. A machine treats all objects as vectors: as strings of

numbers. When a machine learning algorithm is fed training examples –

images, text, the positions on a Go board – it represents each of them as a

vector and performs mathematical operations to find a function that best

describes them (a procedure known as optimisation). A simple example

that you may recall from school is the ‘line of best fit’ where, given a set of

points in the plane, we draw the line that passes through them most

closely. The algorithms of machine learning boil down to figuring out

what that line should be. They are rather more complicated – for one

thing, they usually involve millions, even billions, of parameters that, to

humans, are impossible to visualise (but that we have the mathematical

tools to deal with). Many of these parameters are derived from others

using complex calculations – layers upon layers of abstraction that make

them difficult to interpret.

Driving these approaches is a very particular mathematised view of the

world, steeped in a handful of techniques from fields like statistics, linear

algebra and calculus. It’s a worldview that is decidedly narrower than that

of humans, even of mathematicians for that matter.

Consider a simple everyday example: how do you recognise a dog when

you encounter one? As a child, you would have roamed your environment,

absorbing all kinds of visual and audio cues, until those curious four-

legged animals piqued your interest. Your parents might have pointed

them out by saying: ‘Look, there’s a dog.’ They may have repeated this

only a few times, but soon enough you would have assimilated dogs into

your mental models of the world. You learned to associate them with



parks, where they popped up in large numbers, as well as with bones, balls

and other objects that dogs interact with daily. Through observation and

physical interaction, you would also have discovered that dogs could be

patted, fed, chased around and washed. Your knowledge of dogs doesn’t

reside in a single place; you possess thousands of complementary models,

fed by your senses, that arrive at a consensus of what dogness entails.6

A line of best fit – a basic illustration of what machine learning algorithms are designed to

achieve.

The human brain learns continuously by situating objects within the

context of our prior experiences. Our worldview updates one incremental

step at a time as we relate new experiences and problems to old ones. A

machine learning program, in contrast, is hungry for all the data it can get

and processes each input indiscriminately. It needs to be shown thousands

of images, some labelled as dogs and others not, before it develops a

reliable way of spotting one.

Even then, a computer does not ‘see’ a dog in the same literal sense that

humans do. The program is essentially performing a calculation that

compares one constellation of pixels with another (each pixel is

represented by a number that denotes its brightness). If one photograph’s

pixels are, in numerical terms, ‘similar’ to other images with a dog, the

system will ‘intelligently’ guess that the new photograph is of a dog.

An artificial neural network goes further. It is designed as a hierarchy of

neuron layers, each one seeking out higher-level detail that combine to

form an overall image of a dog. But where humans have a vivid concept of

dogs because our brains are attuned to picking out defining features,

machines are drawn to microscopic detail. Mathematician Hannah Fry



describes the contrast: ‘It’s not looking for a measure of “chihuahua-ness”

or “Great Dane-ishness” – it’s all a lot more abstract than that: picking up

on patterns of edges and light and darkness in the photos that don’t make

a lot of sense to a human observer.’7

Once again, the results are impressive: a state-of-the art algorithm can

be trained to identify breeds of dogs more reliably than humans can. But

the computer, seeing everything as vectors, has no vivid concept of what a

dog actually is, or its relationship with other objects. For all the machine

knows, the dog could be something you drink or get married to. Similarly,

the Go-playing machines of DeepMind have no conception of Go beyond

the abstract manipulation of numbers.

What machines do not yet know

Computers are adept at processing data, and finding patterns among

them, but they do not ‘learn’ with context or meaning. Machines have no

conscious awareness, no temporal sense of the world (that is, they cannot

link different sequences of events together), nor any models for causal

reasoning. And whereas the thinking processes of those earlier expert

systems were plain enough (because they imitated humans), the ‘black

boxes’ of high-performing machine learning algorithms are difficult to

probe; this can catch us unaware when they behave in unexpected ways.

The arcane methods driving machine learning make for some dubious

behaviours. One state-of-the-art program that accurately distinguished

wolves from huskies turned out to be basing its classification purely on

whether snow was present in the images.8 Another program that

accurately picked up melanoma simply went on surgical markings.9 And a

model for predicting people’s ages from their pictures was strongly

influenced by whether a given person is smiling or wearing glasses (if only

ageing really worked this way).10

Because they possess such a narrow worldview, machine learning

programs are often found to be brittle when faced with a situation that

deviates from the specific data they have ‘learned’ from, such as when

imperceptible noise is added to an image or sound. In fact, machine



learning can go awry even when such distortions are blatant. One neural

network was able to reliably recognise bananas, but when the researchers

added a small sticker of a psychedelic toaster next to the banana, the

algorithm classified the image as a toaster.11 Only a human, it seems,

could tell you that the image is still of a banana, with a funny-looking

sticker by its side.

These problems aren’t limited to vision. In natural language processing,

when OpenAI released its language-generating system GTP-3 in 2020,

social media was abuzz with excitement at its apparent ability to produce

a wide range of texts. The premise of these systems is that you can enter

some text – say, a few paragraphs – and it will continue the passage in the

same style. In this case, it is the letters and words of natural language that

have been vectorised.

It doesn’t take much to expose GPT-3’s lack of comprehension.

Cognitive psychologist Gary Marcus (known for his rebuttals of AI-

induced hype) presented a list of prompts that he issued to GPT-3,12 which

each resulted in responses that, to the human reader, are patently absurd.

In one example, Marcus started with: ‘You poured yourself a glass of

cranberry juice, but then you absentmindedly poured about a teaspoon of

grape juice into it. It looks okay. You try sniffing it, but you have a bad

cold, so you can’t smell anything. You are very thirsty.’ To which the

system replied: ‘So you drink it. You are now dead.’ To the comprehending

mind, there are no fatal prospects to sipping the cranberry juice – that

really isn’t the point of the passage. But GPT-3, which was fed an

unfathomable amount of information during its training phase, somehow

related the passage to tales of poisoning. The mere act of extending a

passage is a step removed from genuine understanding – it requires holistic

thinking about how multiple ideas fit together, as well as knowledge of

linguistic structures such as syntax, phonology and semantics.

We’re increasingly relying on machines to look at the world, to read

and listen to information, to summarise what they know, and to make

snap decisions on our behalf. In our rush to deploy these technologies, we

risk ascribing to them perceptual qualities that amount to little more than

derivative number crunching. As they become more pervasive in everyday



use, we need ways of making their thinking visible – the data they’ve been

trained on, the optimisation techniques at work – so that their errors can

be exposed and rooted out.

Humans are not immune to cognitive errors (quite the understatement,

as we’ll see in the next chapter), but we can at least express our ideas in

ways that elucidate our thinking processes. Doing so has the added benefit

of enabling us to hold machines accountable by demanding that their own

‘learning’ mechanisms are made more transparent.

Hybrid thinking

Neither the rule-based machines of the past nor their data-hungry

successors capture by themselves what it means to truly know something.

There’s a growing recognition that AI systems will have to integrate both

rules and data.13 The human brain is an exemplar of a hybrid thinking

system that blends hard-coded knowledge with learning algorithms. We

are not the ‘blank slates’ suggested by philosopher John Locke, waiting to

be inked by our environment. In the previous chapter we’ve already

glimpsed deeply innate traits like an approximate number sense, which is

one of many pre-configured intuitions we bring to the world. Nor, at the

other extreme, can our DNA fully specify all the types of knowledge we

are able to create. The cognitive neuroscientist Stanislas Dehaene

demonstrates this constraint with a back-of the-envelope calculation,

noting that our DNA contains around 6 billion bits – just enough to fill a

CD-ROM, and nowhere near sufficient to account for the 100 terabytes he

estimates for our brain capacity.14

For Dehaene, the human brain is ‘the result of a compromise’. As he

puts it: ‘we inherit, from our long evolutionary history, a great deal of

innate circuitry (coding for all the broad intuitive categories into which we

subdivide the world: images, sounds, movements, objects, animals,

people…) but also, perhaps, to an even greater extent, some highly

sophisticated learning algorithm that can refine those early skills

according to our experience.’15 The result of this compromise is a

phenomenally diverse repository of models and techniques for



representing ideas. As babies and infants, we rapidly form an

understanding of the world by interacting with it, developing

representations of people, objects, ourselves. Every life experience iterates

and expands on our ways of seeing the world. For humans, learning is a

kind of combinatorial play. Using a swathe of linguistic tools such as

words, metaphors, symbols and pictures, we join together existing pieces

of knowledge in novel ways to arrive at new concepts.

The next chapter will look at the causal mechanism of logic that helps

us to rigorously tie together concepts in order to derive objective truths.

Before that, we look at how mathematicians seize upon different

knowledge representations to make sense of complex ideas.

Mathematics has an odd coexistence with AI. Early attempts to

automate mathematical problem solving fell short because mathematics

doesn’t boil down to symbol manipulation. On the flipside, recent efforts

to solve intelligence using a small handful of mathematical techniques fail

to capture our diverse and subtle ways of seeing the world. Mathematics

can be a standard bearer for understanding how to express ideas, but it

first requires that we embrace the sheer breadth of representations the

subject gives rise to.

Abstraction and language in mathematics: the birth of a

number system

Humans are, as far as we know, unique in our ability to ascribe words to

signify particular amounts. In some cases, the resultant vocabulary is tied

to specific objects that are used in everyday life. For instance, early Aztec

languages reserved terms to describe ‘one stone’ and ‘two stones’, and

languages of the South Pacific do likewise for ‘one fruit’ and ‘two fruits’. It

would be painfully exhaustive to have to contrive new words for every

object type. It is more economical to describe a quantity without reference

to any specific object. This is the first abstraction that takes humans

beyond our instinctive attachments to quantity, which in turn helps us

acquire a precise grasp of larger amounts.



Consider the number three. If you were to scurry around the breadth

and depth of the universe, you would never encounter ‘three’ as a physical

object. Instead you would find groups of objects that appear to have a

certain threeness about them. In the image below, the quantity of apples

appears to be the same as the quantity of ducks. We could pair each with a

duck in perfect correspondence, which tells us there is a numerical

property common to both groups: they both possess threeness. We use the

term ‘three’, or better still the symbol ’3’, to denote the property of

threeness. It can now be applied to any type of object and, in some very

real sense, connects all of those specific instances where three objects arise.

Abstraction digs into the most essential characteristics of an object.

In ancient times, we relied on simple counting schemes such as pebbles

or fingers to put this abstraction to use. A Neolithic shepherd could

measure his flock by matching each sheep against a pebble. After all the

sheep are matched, the shepherd might recognise the fiveness property of

the pebbles, from which he knows his flock also has this fiveness, i.e. he

has five sheep. We now have a way to capture, in exact terms, the size of

object groups that escape our eyeball estimates. The only remaining

bottleneck is language: what scheme of words or symbols might we use to

describe increasingly large quantities? And how can we get a handle on

large quantities without resorting to counting every individual item in

turn? These questions carried everyday importance to early traders, who

relied on precisely calculated quantities when bartering goods.

The solution to handling large amounts is to divide them into smaller

groups of a fixed size. To compare which of two large piles of grain is

larger, for instance, it is now only a matter of counting off the number of

groups, rather than the number of actual grains. But what group size

should we opt for? The decimal system that is now baked into our

everyday use of numbers is predicated on a group size of ten, a choice

inextricably tied to our anatomy. Our ten fingers are the most portable of



all counting devices, rendering ten the most natural and reliable of group

sizes. When we write the number 84, for example, we are denoting eight

groups of ten, with four left over. We know immediately that this quantity

is greater than 67 because the latter is only made up of six complete

groups. Comparing the number of groups (i.e. eight tens vs six tens) is far

less cumbersome than counting every item in turn.I

The grouping approach has the major advantage of scale. When we

reach ten groups of ten, we can label this ‘group of groups’ with a new

term, hundred. When we reach ten of those, we introduce thousands. Each

time the quantities threaten to escape our grasp, we rein them in with a

new label that keeps them within our walls of perception.

The human choice of base ten, which was probably first made by the

Egyptians, was a biological happenstance rather than an inevitability. It is

a choice that has been challenged repeatedly throughout history. In the

eighteenth century, Reverend Hugh Jones championed the base eight octal

system as an alternative, on the grounds that it appealed to quantities used

in the kitchen (40 fluid ounces make a quart, 16 ounces make a pound –

both multiples of eight). In this system, group sizes would correspond to

eight, sixty-four (eight groups of eight) and so on. The ‘dozenal’ base

twelve system, which already makes its mark in timekeeping, gained

support in the twentieth century and has legions of fans who attest to its

power over the decimal system. They cite the fact that 12 can be divided by

several smaller numbers (namely 1, 2, 3, 4, 6, 12) compared with the

number 10 (just 1, 5, 10), which makes arithmetic a lot easier in base

twelve.16 The most ardent campaigner, however, would probably concede

that, despite these advantages, the base ten system is far too entrenched to

justify any shift.II

Even as the decimal system reigns supreme, we continue to rely on the

remnants of other base systems that arose from the choices of civilisations

past. The Babylonians were fond of the sexagesimal base sixty system,

which may also have derived from our finger constructs (each finger is

divided into three segments, meaning we can count up to sixty by taking

all combinations of finger segments on one hand and digits on the other).

Traces of base sixty are all around us. We divide each day into twenty-four



chunks known, of course, as hours. The Middle Ages saw the hour divided

into the pars minuta prima, or ‘first small part’, which denoted one

sixtieth of an hour and became known as a minute. We divided the minute

once more into a ‘second small part’ comprising a second, which seemed a

reasonable length to discretely mark the passing of time, as it roughly

corresponds to the duration of a single heartbeat or breath. Our biological

form factors are never far away from representations of number.III This

can also be seen in the adopted conventions of the tribes we met in the

previous chapter. The Oksapmin people of New Guinea, for example,

have developed a base twenty-seven number system by drawing on the

same number of distinct body parts, starting from the thumb of one hand,

up through the nose, and finally onto the little finger of the opposing

hand.

The ‘unreasonable effectiveness’ of mathematics is partly explained by

the fact that its own origins lie in mental structures that reflect the most

salient features of our environment and of our own bodies. Different

bodily and environmental features could give rise to different conceptions

of mathematics. My niece is a polydactyl: she shares Anne Boleyn’s

rumoured anatomical quirk of possessing an extra digit. We delight in the

matter with our ‘high six’ greeting, unique to her among our family

members. If all of humanity shared this feature, we might have conceived a

number system premised on a group size of eleven. Since it would have

originated from the asymmetry of a six-fingered hand, this might have led

to fuzzier notions of a half. We can teleport this thought experiment

across the solar system by asking what concept of number might have

been developed by the inhabitants of Jupiter: through occupying a gaseous

world of continuous motion, they might even have settled on a more fluid

concept of quantity, more in line with our approximate sense of number.

We can only speculate what base system distant aliens might employ,

and how their bodily features might inform their own representations of

number (if indeed they use numbers at all).17 If the little green people did

ever drop us a line, we would need a shared language convention that cut

across our intergalactic divide. In Carl Sagan’s sci-fi novel Contact, later

adapted into a movie, the aliens transmit signals as a sequence of prime



numbers: 2, 3, 5, 7 and so on. Prime numbers, remember, are whole

numbers greater than 1 that can only be divided by themselves or 1 (that

is, they are indivisible into smaller whole parts). Primes remain prime

regardless of the base number system used to represent them or where you

happen to encounter them in the universe – their indivisibility is intrinsic.

Prime numbers give credence to the Platonist notion of mathematical

objects as abstract entities independent of human language, thought or

practices. But the way we come to understand and appreciate mathematics

depends on how we choose to represent it, which, in turn, is rooted in our

lived experiences. We relate to mathematical objects by attaching them to

our existing worldview and coating them in representations that are

familiar to us.

Mental representations and their compressive qualities

Humans are not built for information storage. In the 1980s, Bell Labs

researcher Thomas Landauer estimated that the human brain can store

around 1 gigabyte’s worth of lifetime memories,18 while biologist Terry

Sejnowski’s research group estimated the total storage capacity of the

brain to be in excess of a petabyte (1 million gigabytes) of information.19

Such attempts to measure brain storage capacity fall victim to the brain-

as-computer metaphor because they presume that neurons are digital and

that the brain physically stores information. In actual fact, thoughts and

memories are distributed across networks of neurons, as part of a natural

processing environment. Still, the estimates, however crude, suggest that

sheer quantity of information is not the variable humans should be

optimising for. Every day, 2.5 quintillion bytes of digital information are

created (for comparison, that’s over a thousand of those petabytes). This

gargantuan number will only rise in accordance with Moore’s Law and

the proliferation of data-generating technologies such as social media and

the Internet of Things. We need ways of compressing information – a skill

revered to the extent that some in the AI community believe it is akin to

general intelligence.20



Compression is a natural human skill. Our visual system patches

together snippets of information, constantly filling gaps through

approximation and guesswork. The human eye, for instance, contains 130

million photoreceptors, which collectively receive billions of bits of

information each second. To manage the load, our visual circuitry reduces

billions to millions without much loss of quality (much like photo

compression software). Just forty of those (yes, forty) penetrate through to

our conscious attention. We see a fraction of what we process, and what’s

more, our view of the world is bounded by perceptual limits. We only see

light of wavelengths between 400 and 700 nanometres, a sliver of the

electromagnetic spectrum (which is why, among other things, our eyes are

oblivious to microwaves and X-rays). What we perceive as a rich and

detailed reality is something of an illusion.21 The illusion escapes our

notice only because our eyes are constantly on the move (three times per

second), giving a sense of a complete and integrated picture of the world.

We also perceive the world in broad strokes. When we recognise faces,

we do so based on a handful of distinguishing features,IV and we are able

to identify the same musical piece even when it is played in different tones.

The mark of a compelling film trailer, book synopsis or business pitch is

its overarching premise. When grasping the essence of an idea or object,

high-level cues trump detail – and as we saw in the introductory examples

of this chapter, it is humans, not computers, that see the forest for the

trees.

Our everyday actions rely on this kind of big-picture thinking. The

routine task of buying a train ticket or meeting a friend for lunch would

soon overwhelm us if we had to contend with every painstaking detail. We

navigate the world by arranging our thoughts and actions into hierarchies

with several layers of abstraction. We turn minute details into chunky

concepts and combine those concepts further still to develop our high-

level understanding of things.

To piece together patches of information into meaningful wholes we

need strong representations. The cognitive psychologist Anders Ericsson

defines mental representations as ‘pre-existing patterns of information

that are held in long-term memory and that can be used to respond



quickly and effectively in certain types of situations’.22 The operative term

here is ‘patterns’ – information does not exist in isolated pieces.

Psychologists refer to the joining together of information as chunking:

we chunk information so that there is less of it to grapple with at any one

time, which is vital given our limited working memory. If you ever still

bother to memorise a phone number, it is likely that you chunk the eleven

digits into three groups of 5–3–3: it is easier to manage three separate

chunks than eleven tiny bits, and our working memories can only

accommodate four to seven objects at once. As we combine sequences of

thought together into chunks, we find ourselves capable of holding in our

minds arguments of extraordinary complexity. Chunking also accounts for

the dazzling feats of elite athletes, who exercise split-second manoeuvres

with unswerving accuracy by recognising patterns of play. It explains how

musical virtuosos are able to rattle off lengthy pieces by heart. In each

case, experts are relying on familiar, repetitive structures.

The mark of experts is not only the number of representations they

possess, but also the richness of them. In the mid-twentieth century, Dutch

psychologist and chess player Adriaan de Groot ran a series of landmark

chess experiments to compare the ways in which players of different ranks

assessed the board and planned ahead for their next move.23 During the

experiments, subjects were asked to look at a variety of predetermined

board positions (all plausible gameplay scenarios) and then recall the

location of each piece. De Groot found that grandmasters and masters of

the game could recall 93 per cent of the pieces, experts recalled 72 per cent

and class players just 51 per cent. De Groot’s findings were affirmed by

later studies conducted by American researchers Herbert Simon and

William Chase, who found that for ‘real’ game positions, the performance

of subjects declined in proportion to their chess rating.24 The higher-

ranked players, calling on familiar patterns, were able to rapidly encode

chunks when committing positions to memory.V For the chess experts, the

knowledge of board positions is connected. Chess pieces are not viewed as

single units, but as groups that attack and defend. The researchers went

further by showing that when pieces are placed randomly, the advantage

conferred on higher ranked players disappears. In these scenarios, the



board positions no longer carried meaning, and the effort to memorise

was just as effortful – one painstaking piece at a time – as for lower-ranked

players. The experts had no representations to fall back on, no way of

compressing the board into patterned configurations. In one sense, they

were reduced to the brute force crunching of machines like Deep Blue – an

approach unsuited even to grandmasters.

Experts literally see their craft differently to the way novices do; the

distinction lies in the ability to connect bits of information. This is why

stories are often termed ‘psychologically privileged’; they offer us a natural

mechanism for compressing information into manageable chunks. Ed

Cooke, a Grand Master of Memory,VI suggests that:

Stories make learning connections easier because they make what

happens next feel like it’s inevitable. Each item seems to be

incomplete without all the others… the best thing to do is weave the

items into a compelling story line. The more that this narrative

wraps tightly around the available facts and makes each feel like an

intuitive part of the whole, the nearer it will come to pure

understanding.25

Cooke’s ideas on memory are backed by research. Studies show that

people tend to read narrative-driven texts twice as quickly as non-

narrative texts, and they also recall twice as much information when tested

later on.26

Let’s return to mathematics. As William Thurston, a winner of the

Fields Medal (the highest prize in mathematics), describes:

Mathematics is amazingly compressible: you may struggle a long

time, step by step, to work through the same process or idea from

several approaches. But once you really understand it and have the

mental perspective to see it as a whole, there is often a tremendous

mental compression. You can file it away, recall it quickly and

completely when you need it, and use it as just one step in some



other mental process. The insight that goes with this compression is

one of the real joys of mathematics.27

We have already seen the benefits of the decimal number system as a

chunking mechanism: grouping objects in batches of ten is convenient

because we can count each batch with our fingers. With the group size

agreed, the next challenge is to find a way of representing different

quantities. For this we use the positional place value system, which

originated in India, gained traction with the Arabs and eventually spread

to Europe with the help of Fibonacci’s 1202 treatise Liber Abaci (The

Book of Calculation). When we write the number 137, the position of

each digit has meaning. Each position corresponds to one of the group

sizes, starting with seven ones in the rightmost column, then three tens

and one hundred. The compactness of this representation is quite

remarkable: with just ten digits, we are able to express quantities of any

size. One of those digits, 0, acts as a placeholder to signify the absence of a

particular group. For example, the distinction between 1,603 (one

thousand, six hundreds, no tens and a three) and 163 (one hundred, six

tens and a three) is determined purely by the inclusion of the zero.

The positional number system also gives rise to simple, scalable

methods of arithmetic. To add two quantities together, you just need to

line up their place value representations and add the group sizes instead:

37 + 22 is a simple matter of combining the ones (7 + 2 = 9) and then the

tens (3 + 2 = 5), giving five tens and nine ones, or 59. Other operations

follow suit, and they scale well to multiple digits. Compared with

competing systems such as Roman numerals, which require new symbols

every time we strike a new order of magnitude and possess no such rules

for adding numbers together, there is no contest: place value is the most

succinct of all known arithmetical structures.VII

Numbers are especially ripe for compression because they exist within

a patchwork of patterns. Consider the multiplication grid: a mainstay of

classrooms the world over and the source of many people’s negative

disposition towards mathematics. At school, many of us were required

mercilessly to commit each multiplication fact to memory, up to 12 × 12



(an arbitrary cut-off point and another throwback to the dozenal

system).28 When the representation of multiplication is a static collection

of symbols, we have to work cumbersomely through 144 disconnected

facts. As the French mathematician Henri Poincaré analogised over a

century ago, ‘an accumulation of facts is no more a science than a heap of

stones is a house.’29 But what if we change the representation? If we think

of every number in our times tables as an area, for instance, we end up

with the scaled multiplication grid below:30

Once one looks past its unusual appearance, the grid will emerge as a

source of new insight. It conveys size and proportion instead of just raw

numerical outputs. In doing so, it binds together number with geometry

and multiplication with area. The mathematician sees shape as well as size



and understands multiplication as part of a rich tapestry of ideas.

Depending on the representation we elect, multiplication grids can be dull

or exciting, creative as well as factual, one-dimensional or teeming with

possibility. You might, for instance, consider what a corresponding version

of this grid would look like if it included all numbers from 1 to 100. One

such version, where each number is visualised as a rectangular array, is

shown opposite.31 Notice how some numbers can’t help but shape up as

slender tower-like figures because there’s no way of dividing them into

smaller whole-number parts. We’ve just stumbled on a new way to

visualise the prime numbers.

With our new representations, we can intuit that the order in which we

multiply two numbers does not affect the outcome: 7 × 9 and 9 × 7 now

represent the area of the same rectangle, one rotated onto the other. This

single property of multiplication (known as commutativity) has a strong

compressive effect. In one fell swoop, it reduces 144 separate facts down to

78. We can invoke several other representations that breathe their own life

into the multiplication grid. Each representation stitches together those

multiplication facts with meaning, allowing us to appreciate numbers as

part of an organic structure with several interconnected parts. As educator

Paul Lockhart puts it, arithmetic is a form of ‘symbol knitting’32 rather

than a set of blunt calculational outputs. Lockhart is referring to

numerical symbols, but the same insight cuts across other areas of

mathematics, where symbols take the form of letters and represent a wide

range of objects. The difference between symbol knitting and what we

might term ‘symbol pushing’ is the difference between the creative mind

and the mechanical one.



A picture paints a thousand symbols

When mathematicians speak of beauty, and when they compare the

subject to art, they often have symbols in mind. In one study of fifteen

mathematicians, researchers used functional magnetic resonance imaging

(fMRI) to show that ‘the experience of mathematical beauty correlates

with activity in the same part of the emotional brain… as the experience

of beauty derived from other sources’.33 The telling aspect of the study is

the type of mathematics selected: the mathematicians were shown sixty

formulae that they rated as either beautiful, indifferent or ugly. Implicit in

this choice is the fact that mathematicians relate notions of beauty to

symbolic representations. The winning formula – that is, the most

beautiful of all – was:

eiπ + 1 = 0

This configuration of symbols, known as Euler’s formula, may mean

little to the unacquainted. To appreciate its significance, we need to be

familiar with each of the five numbers involved and, perhaps most

importantly, the exponential function that gives meaning to the term eiπ –

that’s the same exponential function that models pandemics and the rise

in computing power.34 The mathematician, having this knowledge at

hand, appreciates the formula as the embodiment of economic expression

of rich, multifaceted ideas, and is likely, for example, to turn his/her mind

to circles and rotations. At their best, formulae exude the qualities of

brevity, purity and versatility. A mathematician sees far more than a

collection of squiggles, much as Keanu Reeves’s character Neo is able to

discern people and objects within the green array of symbols in The

Matrix.

Humans abbreviate at every turn because we tire of repetition. It is no

major surprise, therefore, that letters entered the fold as a way of

generalising mathematical objects such as numbers. If we possess some

belief about the behaviour of numbers, then, rather than futilely

attempting to test the infinitely many cases, we can instead represent these



objects using a symbol such as x (we could just as well use bananas, but

letters are more succinct). The symbol is the most general representation

we could hope for and is itself an object that can be operated on. With the

use of letters, we can reduce verbosely presented information (those

infamous word problems so dreaded in school) to symbol manipulation.

Symbols have influenced mathematics from its very beginnings in the

form of various numeral schemes, pictograms and the like. Our facility

with number is closely tied to our choice of numerals – for example, one

reason many Chinese students exhibit a flair for arithmetic is that the

Chinese syntax for numbers is highly succinct (the pronunciation of the

number 12, for instance, is ‘ten two’, which does not require new terms or

sounds as in the case of the English ‘twelve’, and which is also the literal

interpretation of the place value representation of 12).

Symbols do take some getting used to. The public image of

mathematics is a sprawling mess of incomprehensible notation. To excel in

school maths is to become a master symbol manipulator. But just as

calculation is a sliver of mathematical intelligence, symbols are just a

particular type of representation.

For most of history, symbols operated on the fringes of mathematics.35

Early mathematical texts took on prose form. The first seminal treatise on

algebra, for example, was written in the ninth century by the Arab

mathematician Muhammad ibn Musa al-Khwarizmi. It plays out as a

sequence of extended word problems, all presented as short narratives.

Even though the problems may have been solved using symbolic reasoning,

the way in which mathematics was communicated was guided by prose to

ensure reliable translation (usually by monks) between radically different

spoken languages. The worded form is a more authentic way of showing

how mathematicians think: as they puzzle through problems in their

minds, they are not just pushing around symbols, but also reflecting on

what those symbols represent, as well as the relationships between them.

Today, the presentation of mathematical topics like algebra is steeped in

symbols. This phenomenon is relatively new – on the order of the past

half-millennium. So what changed? Technology’s influence on

mathematics is close at hand once more. With the advent of the printing



press in the fifteenth century the risk of erroneous translation subsided,

and there was no reason for mathematicians to avoid deploying symbols in

textbooks.36 Symbols also saved on ink, owing to the succinctness with

which they expressed complex ideas. They made good sense from a

publishing perspective. But the unintended consequence was the erection

of a ‘symbol barrier’ that many readers were unable to overcome. As

symbols became the accepted convention for representing mathematics in

textbooks, many would-be problem solvers were denied the opportunity

to engage with concepts simply because they had not yet polished their

symbol manipulation skills.

Symbols have overreached, and they must be reined in as one type of

representation among many, to be used judiciously with the express

purpose of illuminating mathematical concepts. One way to temper our

reliance on symbols is to make more use of visual representations. As far

back as prehistoric cave paintings, humans have made use of pictures to

express ideas – and for good reason. The brain dedicates more energy to

processing vision than to other modalities.37

Our visual processing systems are already in play when we read and

process symbols. Neuroimaging studies show that when we carry out

mental arithmetic, our brain recruits several networks at once, including

the ventral and dorsal pathways associated with vision.38 This has

motivated calls to increase the emphasis of visual representations in the

teaching of mathematics.39

The illuminating potential of visuals was exemplified by Richard

Feynman, a celebrated physicist and a vociferous educator, who exercised

his unparalleled intuition for physics to create new pictorial ways of seeing

the unseen subatomic world. The Feynman diagrams that bear his name

illustrate what happens when elementary particles collide, using a mix of

straight, dotted and squiggly lines. The diagrams aid calculation by laying

out, in clear visual form, each of the required steps.

A personal example illustrates the power of the visual over the

symbolic. For most of my life, I could never ‘do’ classical music, in theory

or practice. While I was able to appreciate classical music on a superficial

level as a listener, grasping its essential structure was a task best left for



others. My perspective shifted dramatically when, in graduate school, a

professor introduced me to the Music Animation Machine, Stephen

Malinowski’s animated graphical score project.40 I watched in amazement

as the professor played a clip of Bach’s Toccata and Fugue in D minor. It

was not a new rendition, except for an on-screen visualisation based on

coloured bars that exploded the tune into life. The subtleties of pitch and

rhythm and the use of self-referencing were instantly revealed through the

height, length and colour of each bar. I found myself noticing patterns and

anticipating recurring themes. I even caught a few notes that had

previously eluded my ears. I needed no training in obscure symbolism or

musical terminology to capture something of Bach’s genius. A deeper dive

into Bach’s work might require that I learn the formalities of musical

scoresheet notation, but Malinowski’s visual representation gave me a way

of comprehending what would otherwise be an impenetrable work of art.

The Music Animation Machine is an example for the digital age, and

others like it abound in mathematics itself. Grant Sanderson’s

3Blue1Brown YouTube channel, for instance, has garnered millions of

views for its eye-catching visualisations of deep mathematical concepts.

The video format lends itself to dynamic representations where ideas

literally move across the screen. If the printing press inadvertently created

a symbol barrier for learning mathematics then the internet may just

liberate us with the most accessible knowledge representations ever

conceived.

A Feynman diagram showing an electron (e-) and positron (e+) destroying each other to

produce a virtual photon (γ), which turns into a quark–antiquark  pair. The antiquark

radiates a gluon (g). The arrow labelled t denotes the passage of time.

Visual representations are mistakenly dismissed as a crutch for

struggling learners, but they are called on at the highest levels of

mathematics. The late Maryam Mirzakhani earned a Fields Medal (the



first woman to do so) for her pioneering work on Riemann surfaces.

Mirzakhani blended two areas of mathematics: dynamics (the study of

how forces affect motion) and geometry. Think balls whizzing around

different types of billiards tables. Mirzakhani’s research sits deep within

layers of abstraction, relying on terminology and symbols so specialised

that only mathematicians working in the same field can comprehend the

full extent of her ideas. When Mirzakhani tragically died of breast cancer

in 2017 at the age of forty, the Guardian lamented that ‘the world has lost

a great artist’.41 ‘Artist’ may seem a strange term to use for someone

whose work was so abstract, but Maryam was known for sketching her

ideas on paper, to the extent that her young daughter actually mistook her

for a painter.42

These crossovers are no accident: all mathematicians are artists in the

sense that they seek the most vivid, illuminating expressions. If you ever

see mathematicians in action, thinking through a concept or problem,

you’ll be struck by how they employ bodily gestures and whiteboard (or

blackboard) sketches to make their ideas more tangible. Mathematical

research is typically presented as a mesh of symbols with surrounding text,

but this is simply a limiting stylistic requirement of mathematics journals;

the actual thinking that inspires such ideas is often more visual in nature,

more dynamic.

Switching modes

The ability to switch between representations and assimilate multiple

viewpoints within one underlying knowledge scheme speaks to the

generalised form of human intelligence. It is one of the ultimate goals of

AI. A present-day limitation of AI applications is their narrow range of

focus. AlphaGo will thump you in Go in accordance with one model, and

autonomous vehicles may soon render your driving skills moot in

accordance with another, but machines have yet to master both

concurrently. Machines that show savant-like capabilities in particular

domains have not yet developed the ability to traverse a multitude of

conceptual systems to address wide-ranging problems. As AI researcher



Stuart Russell explains: ‘If you give it [AlphaGo] a new goal – say, visiting

the exoplanet that orbits Proxima Centauri – it will explore billions of

sequences of Go moves in a vain attempt to find a sequence that achieves

the goal.’43

Humans already possess an extraordinary versatility in thinking.

Because our representations are so varied, we’re able to cash in on the

learning we acquire in one context for a whole range of situations: we can

ill afford to develop a separate brain for each. To programs like AlphaGo,

on the other hand, all the universe is one glorified game of Go and nothing

else; there is no place to transfer its skill to.

Multiple representations exploit the brain’s ability to switch between

entirely different modes of thinking. Humans rely heavily on analogies to

relate ideas to one another; why grapple with a problem all over again

when you have solved a similar version of it elsewhere?

A classic example is the radiation problem.44 A patient presents with a

malignant, inoperable tumour. The doctor can use a particular type of ray

to destroy the tumour. Unfortunately, the ray will also destroy healthy

tissue in the process. At a lower intensity the rays cause no damage to

healthy tissue, but of course they will not destroy the tumour at that

intensity either. Can you describe a way to destroy the tumour without

causing damage to healthy tissue?

If not, you are in the majority – only 10 per cent of people generate a

valid solution to the radiation problem. Now consider the story of a

military general who is seeking to capture a fortress that happens to be

located in the middle of a country ruled by a dictator. There are several

roads leading to the fortress through the surrounding countryside. The

general knows that the dictator has peppered all of those routes with

mines, and that if a large force descends on any one of those routes, they

will detonate the mines. So rather than send his forces along a single

route, the general divides them into smaller groups, each of which takes

one of the routes. Separately, they can make their way to the fortress safely

and arrive at the same time.

Can you solve the radiation problem now? The success rate triples to 30

per cent for subjects who are shown the fortress story. When they are told



that there is a link between the two, the success rate rockets to 92 per cent.

As you have probably figured out, the fortress story is just the radiation

problem in disguise. The general’s solution maps over to the latter

perfectly; the doctor just needs to direct multiple low-intensity rays from

different angles. Success rates for the radiation problem also increase when

subjects are presented with additional analogous stories.

As a standalone question, the radiation problem requires a creative

insight that seems to elude most of us. But when we look past its surface

and relate it to other problems whose solution is known to us, problems

with the same deep structure, then it’s no longer a matter of inventing a

solution so much as borrowing a pre-existing one. Problem-solving is

largely, then, a conscious exercise in analogy (‘conscious’ because if we’re

not looking for links they may escape our attention, as the findings above

show).

Analogy is another compressive tool in that it bundles seemingly

disparate concepts into packages. It’s how we get through everyday life

without feeling overwhelmed by the sheer novelty of new experiences;

most are just iterations of familiar themes. It’s why we don’t need to see

thousands of dogs before telling one apart from a cat. And it remains

highly sought after in AI, as a way of avoiding the necessity of machines

solving problems from scratch each time.45

Analogy is so central to the way mathematicians think that they often

speak of an overall unity that binds all the concepts of their subject.46

Mathematics educator Anna Sierpinska goes as far as to define

mathematical understanding in terms of ‘synthesis’, which she defines as

‘grasping relations between two or more properties, facts, objects, and

organizing them into a consistent whole’.47

Some of the most significant breakthroughs in mathematics have

occurred when entire fields that were once kept separate were linked

together, allowing them to serve as new lenses for one another. If you

believe the legend, the seventeenth-century French mathematician and

philosopher René Descartes was struck with insight as he noticed a fly

buzzing around when he lay in bed one morning. Descartes wondered how

he might accurately describe the fly’s position using just a few numbers.



His insight was to represent the fly’s position in terms of three numbers,

each one corresponding to one of the dimensions of physical space. By

setting a point of ‘origin’ as (0,0,0), Descartes reckoned that he could

measure along each dimension the fly was situated. As well as describing

point positions, he could move within this plane, draw lines and shapes in

it, extend it to multiple dimensions, and perform all manner of operations.

While the origins (pun unintended) of this idea are in some doubt,

Descartes is credited with helping to create a mental bridge between

algebra and geometry, two branches of mathematics whose ideas and

sensibilities differ markedly.48 Geometers are tuned into shapes that they

can easily visualise and draw. Algebraists have a penchant for the abstract

and like to probe underlying structures. Descartes’ representation allows

us to solve geometry problems using algebraic representations, and vice

versa, just as we could travel between the radiation and fortress problems.

If you need to determine where two lines intersect (a geometry problem),

you can now solve a pair of simultaneous equations, where each equation

represents one of the lines (an algebra problem). Conversely, if you wish to

understand the behaviours of a particular function (an algebra problem),

you can visualise it by sketching its inputs and outputs in a plane (a

geometry problem).

All too often, we struggle with a mathematical concept simply because

we do not have the most suitable representation at hand. In Love and

Math, mathematician Edward Frenkel shares a wonderful anecdote from

his teacher Israel Gelfand on how mathematical struggle arises, and how it

can be overcome:

People think they don’t understand math, but it’s all about how you

explain it to them. If you ask a drunkard what number is larger, 2/3

or 3/5, he won’t be able to tell you. But if you rephrase the question:

what is better, 2 bottles of vodka for 3 people or 3 bottles of vodka

for 5 people, he will tell you right away: 2 bottles for 3 people, of

course.49



The same has been shown of Brazilian street vendors selling sweets,

who outperform their school-attending peers in various feats of

arithmetic.50 Whereas the local schoolchildren were bogged down in the

tedium of formal procedures, the street vendors had invented their own

informal methods, marshalling representations that proved more fruitful.

The point here is not to advocate informal methods over formal ones, but

to embrace a pluralistic attitude towards knowledge representations.

Rather than fiercely attaching ourselves to a single representation, we

should think of each one as a pathway to understanding, a distinct lens

through which to view the same concept.

Not all the world’s a vector

Every model is an approximation of the thing it is trying to describe. It’s

easy to forget, for instance, that there is no perfect measure of intelligence.

There are candidates – like IQ and standardised test scores – but they are

proxies at best, just as GDP is a proxy for economic growth and BMI is a

proxy for one’s health. It is all too tempting when adopting these metrics

to perform a bait-and-switch routine, replacing something as profound as

a student’s learning potential with the bluntness of their exam scores, or

the health of a country’s economy with an arbitrary definition of growth.

We have a tendency when using these models to lose sight of the very

things they are intended to represent.51

This risk is heightened for computers. If we wish to set computers loose

on a problem, we have to speak their language. This amounts to

describing the world in terms of vectors and other mathematical objects

that computers can perform operations on. In essence, a state-of-the-art

machine learning program solves the world’s problems by turning them

into optimisation problems that it knows how to process. It’s not always

easy to frame problems in this way, which can result in AI programs that

behave in ways that deviate from the programmer’s intended goals. For

instance, a reinforcement learning algorithm was designed to help a robot

stay on a marked path – the robot was rewarded with points for staying on

track. But the robot unwittingly found a loophole: it zigzagged backwards,



going back and forth on the initial straight portion of the path. From the

robot’s viewpoint, the score went up and the problem was solved.52 The

mismatch between how humans expect solutions to play out and how

computers actually end up behaving is the root of the ‘value alignment’

problem that stokes so many of the fears around AI.53 Imagine, if you will,

a superintelligent AI that solves the problem of an exploding human

population by killing humans, or that maximises human happiness by

implanting electrodes into the pleasure centres of our brains.54

Machine learning programs grab selected titbits of mathematics and

base all of their thinking on them. In doing so they miss out on the

multitude of representations that mathematics has to offer. And whereas

mathematicians can make informed judgements on when to keep their

mathematised models of the world at bay, computers show no such

inhibitions.

For problems like Go, the end may justify the means: if the path to

mastery involves modelling the game in terms of these very precise

mathematical objects, so be it. But what of problems that don’t lend

themselves to unambiguous specification? Since time immemorial humans

have grappled with ideas of love and mercy, of morality and justice, of

happiness and grief. We’ve used the full range of representations available

to us yet still struggle to agree on exactly what these aspects of ‘the inner

world of human life’ mean.55 When we let computers take aim at such

matters, reducing them to nothing more than vectors and optimisation

problems, we risk diluting the very ideas that remind us of our humanity –

ideas that are ambiguous, open to debate and not easily stated in terms a

computer can comprehend.

As machine learning asserts itself on ever more aspects of our lives and

is entrusted to make decisions that carry high stakes for all of us, we must

pay closer attention to the things that computers cannot see.

I. Notice how, even when developing the most formal concepts of number, we sought to minimise

the burden of computation.

II. Indeed, there have been campaigns to unify our ways of counting around the decimal system. In

1793, a decree was issued in France that established the decimal hour, which would divide the day



into ten equal parts rather than twelve. The decimal minute and decimal second followed naturally.

The reign of decimal time was short-lived, lasting around six months.

III. The same may be said of computers. The binary system that computers operate within,

comprising solely zeros and ones, is predicated base two, an engineering choice based on circuit

design (early machines were, in fact, decimal).

IV. The human brain has a module called the fusiform gyrus that computes certain values such as

the ratio between the tip of the nose to the end of the nose and the distance between the eyes.

Experiments confirm that we recognise interpret images from just a handful of these values, which

makes our recognition skills resilient to subtle changes. It is why we can easily recognise the same

face in multiple poses with little fuss.

V. For example, club players easily recognise the fianchettoed bishop on the kingside in a single

glance, grasping the six pieces involved as a single collective. Amateurs, lacking these associations,

needed to memorise each piece and its location separately. At the highest levels, grandmasters call

on a repository containing thousands of such chunks that allow them to identify familiar game

positions within three or four seconds. They also recognise the functional relationships between the

pieces, rather than the actual positions and spatial relationships. Imagine a chunk of pieces in

which a bishop has pinned a knight against the queen; such a position would be remembered as a

‘pin’ rather as three pieces occupying three distinct board positions.

VI. Awarded to people who have demonstrated they can a) memorise 1,000 random digits in an

hour, b) memorise the order of ten decks of cards in an hour and c) memorise the order of one deck

of cards in under two minutes.

VII. As with our choice of decimal, there is nothing deterministic about our place value number

system. However intuitive it may appear, its mainstream acceptance has only come about in the

past few centuries. The delay owes to a range of factors including consternation around the use of

zero as a number that can be operated on, along with fierce cultural attachments to more primitive

number systems such as Roman numerals. In the end, the positional number system won because of

its unrivalled efficiencies. Yet it remains one choice among many.



3

REASONING

When stories fool us, why machines can’t be trusted, and how to tell

eternal truths

In the following sequence of circles, an additional point is marked on the

circumference each time and every pair of points is connected with a line.

Keep note of the number of regions formed in the circles. Before reading

on, make a note of how many regions you expect to see in the next circle

along.

The number of regions are 1, 2, 4, 8, 16. It appears to be doubling each

time. It stands to reason then, that the next circle along will be divided

into 32 regions. Here is the next circle – count the regions:

Your eyes have not betrayed you; there are in fact 31 regions, one short

of our prediction. After evaluating the first five circles, we impulsively

settled on the idea that the regions double in number each time, and as

each new circle fitted our pattern, our belief system strengthened by

degrees. By the time we reached the sixth circle, our emerging hypothesis

was too compelling to resist. Yet, throughout this mental process, there

was no rigorous argument decreeing that the regions should double. There



are infinitely many ways to construct sequences that start with these (or

any) five numbers. The On-line Encyclopedia of Integer Sequences

contains many sequences that start with 1, 2, 4, 8, 16 but which turn out

to have no relation to doubling.I

Patterns arising from observations often lure us into anticipating

falsehoods. I’ve chosen a mathematically inspired one; the philosophers’

fallacy of choice is the fateful Christmas turkey which, having been fed

every morning over a sustained period, looks forward to many such days

ahead – until it is put to slaughter.1 Just as the turkey’s daily routine is

abruptly brought to a halt, the circle regions seemed to communicate a

pattern, only to betray us at the sixth iteration, albeit with less brutal

consequences (the actual rule governing the number of circle regions can

be inferred with some fairly involved mathematics).2

These are cautionary examples for the era of AI, where computers are

taking increasing control of decisions that impact on our everyday lives

using pattern-matching techniques void of explanations.3 Machines offer

no more insight into their choices than the blissfully unaware turkey

whose visions of the future are premised on a mere imitation of the past.

Let’s return to the methods of DeepMind’s Go-playing programs, whose

feats are unquestionably impressive. The chief limitation of these

programs may also be their most significant: they have difficulty

explaining their choices. At best, AlphaGo and its ilk (if they could speak

for themselves) could say that they have learned from the experience of

their previous games. What this really means, remember, is that they have

pushed around strings of zeros and ones in order to optimise a

complicated mathematical function. An explanation of how each move

came about would take the form of billions of mathematical operations –

hardly the most lucid of accounts.

The inability to explain the thinking of ‘black-box’ algorithms takes on

profound importance when similar technologies are handed responsibility

for high-stakes decisions in everyday life. Most ‘real-world’ situations in

which machine learning systems operate do not resemble the game of Go

in the slightest. For all its complexity, Go remains a closed system, where

all the rules and permitted dynamics are known upfront.II Compared with



the real world, it is a game of utter predictability. When machine learning

models are set on problems of the real world, they ignore the long tail of

rare future events because those events barely feature in the historical data

used to train the models. Machines are not designed to anticipate events

that have not yet occurred; this is problematic in a volatile world where

society is in constant flux as people and their environments change.

Humans are hardly invulnerable to the same cognitive pitfalls, as we’ll see,

but we do possess ways of overcoming our blind spots.

The roots of human bias

Our cognitive systems are a complex of rational and irrational processes.

If we are to be the arbiters of truth in the machine age, we first need to

reckon with our subtle but undeniable flaws in thinking.

On some level, we are all prone to the tendency to perceive connections

and meaning between unrelated things (a trait known as apophenia).

Perceptions do not always match reality. Our sensory systems lag behind

the events they are processing by a few hundred milliseconds. To

compensate for the lag, our brain makes predictions to fill gaps. It sees

patterns even where they don’t exist.4 Added to this, there are an

unfathomable number of possible futures tied to our prospective actions.

We cannot hope to enumerate every one in turn and select the one that

gets us closest to our objectives. Shortcuts are unavoidable, and as a result

we occasionally fall for spurious correlations, conjuring stories to fit our

observations.

Storytelling is an evolutionary innovation of humans: we learned to

create narratives as a way of linking causes to effects and speculating on

future events.5 The human need to explain things does not always lead us

to the right conclusions. The mere existence of an explanation is often

enough to sate our curiosity, even if it is lacking in rigorous

argumentation. The neuroscientist Michael Gazzaniga attributes this

tendency to a module of the brain’s left hemisphere that he calls ‘the

Interpreter’.6 As the name suggests, the Interpreter is an organisation



mechanism that arranges our patchy memories into stories, often

privileging coherent narratives over truth.

The idea that humans are rational agents who opt for the most logical

choices, which was the orthodoxy of economics for most of the twentieth

century, has been firmly debunked in recent decades. The dual process

theory posited by behavioural psychologists such as Nobel laureate Daniel

Kahneman and his collaborator Amos Tversky points to two modes of

thinking, referred to as System 1 and System 2.7 System 1 thinking is quick

and automatic, authoring many of our rapid-fire intuitions. System 2

thinking is slow, effortful and seeks well-reasoned answers. Much of our

thinking originates in System 1, which can retain an overwhelming

influence, even when our thoughtful System 2 process kicks in. In his

bestseller Thinking, Fast and Slow, Kahneman reels off the many biases

and heuristics that our minds employ in search of answers. These short-

cutting mechanisms can distort our beliefs and perceptions, and guide us

to sub-optimal choices.III They may also explain why the ethics and morals

of different people diverge so markedly. The moral psychologist Jonathan

Haidt has argued that ‘intuitions come first, strategic reasoning second.

Moral intuitions arise automatically and almost instantaneously, long

before moral reasoning has a chance to get started, and those first

intuitions tend to drive our later reasoning.’8 He says of our moral

judgements that they are ‘mostly post-hoc constructions made up on the

fly, crafted to advance one or more strategic objectives’. Once again, our

intuitions threaten to Override careful, considered, rational choices.

Dual process theory poses a conundrum for evolutionary psychologists.

Why has the human brain developed with reasoning defects? What

advantage do mental shortcuts – biases that so often undermine rational

decision-making – confer upon humans? Cognitive scientists Dan Sperber

and Hugo Mercier have offered a way around this puzzle by suggesting

that humans developed reasoning capacities to serve two chief purposes:

to convince other people of our arguments and to justify our choices to

one another.9 In this view, reasoning happens in a social context, and the

logical validity of arguments is less important than their persuasive power.

The so-called bugs of System 1 thinking are not bugs as much as they are



features of social interaction that are necessary for achieving consensus.

The imperfections of human reasoning, in other words, are needed to

achieve the gold standard for cooperation.

By resolving the enigma in this way, we must accept some blurring of

the lines between intuition and reasoning. They do not sit in separate

pockets of the brain, nor does the former always precede the latter. There

are all kinds of forces that mediate between these two modes of thought,

emotion chief among them. The philosopher David Hume, writing in

1739, went as far as to suggest that ‘reason is, and ought only to be the

slave of the passions’.10 Hume rejected the distrust that Western

philosophers going as far back as Plato held towards human feelings. For

Hume, reasoning worshipped at the altar of our emotions.

Modern research sheds light on the specific ways in which our thinking

and decision-making is shaped by our emotions. Neurologist Antonio

Damasio has proposed a ‘somatic marker hypothesis’ which states that

our reasoning systems have evolved as an extension of our automatic

emotional system.11 Damasio has examined historical and contemporary

cases of patients with severe brain damage, such as the nineteenth-century

railroad construction foreman Phineas Gage, who famously survived a

freak accident in which an iron rod rammed completely through his head.

Following the accident, Gage’s personality and behaviours changed

dramatically. He was no longer able to plan or make responsible decisions,

and equally struggled to conduct himself in social settings. By having his

left frontal lobe damaged, it seemed Gage was literally no longer the same

person, and this manifested in both his rational decision-making and his

emotional interactions. Damasio’s explanation is that the body rapidly

and unconsciously processes the world around it, triggering reactions – a

knotty stomach, an accelerated heartbeat, a cold sweat. These each serve

as ‘somatic markers’ for the brain to interpret in a more conscious way. It

is these markers that signal to our brains whether that menu item is worth

ordering or that prospective spouse is worth proposing to. For the patients

Damasio looked at, the brain had lost its ability to pick up on bodily cues

and thus lacked the inputs needed to make rational decisions. The brain’s

centres for reasoning and emotion, in other words, are not as separate as



once thought by ‘dualist’ philosophers. The mind cannot function without

the visceral reactions of the body.

Emotions can drive us to wrap ideas into coherent stories, even if we

have to invent the narrative. In the 1940s, experimental psychologists Fritz

Heider and Marianne Simmel powerfully demonstrated the human

tendency to create stories from nothing.12 In a short video clip, geometric

shapes can be seen floating around a screen. As the scene unfolds, a

disconcerting narrative emerges in the watcher’s mind. It appears that the

large triangle is attacking a smaller one, with a small circle running for

cover. After much toing and froing, the two smaller shapes manage to

escape, leaving the large triangle to smash apart the large rectangle that

contains it. The scene bears all the hallmarks of a domestic violence

incident, so much so that it is hard to watch the clip without experiencing

a sense of dread, followed by relief as the ‘victims’ escape. We

anthropomorphise the inanimate objects, rooting for what we perceive to

be vulnerable underdogs being subjected to cruel actions. The whole scene

is a fiction, of course, crafted by our emotions.

Our emotions are also at play when we cherry-pick evidence in support

of our most cherished views – what psychologists term ‘motivated

reasoning’.13 We build protective fences around our belief systems,

treating supporting evidence as credible while expressing indifference or

incredulity towards data that happens to contradict our worldviews.

Motivated reasoning explains why many smokers reject evidence that

cigarettes adversely affect our health, and why climate sceptics reject the

scientific consensus on man-made contributions to the environment. We

tend to tell the stories whose endings are most palatable to us.

The arguments above converge on the recognition that humans are

imperfect reasoning agents. We bring all the baggage of our experiences,

prejudices, biases and emotions to bear on our decision-making processes,

with the consequence that we do not always optimise for the facts. The

ease with which we subscribe to stories and patterns makes us easy prey

for those who wish to deceive us. Magicians carefully sequence their

actions, giving the impression that each manoeuvre follows logically from

the preceding one.14 And while a magic show threatens no particular



consequence to our daily existence, more nefarious actors – say, politicians

and advertisers – thrive on deftly manipulating our ways of thinking and

being. It is presumably because they can rely on the public’s lack of

awareness that this meddling with our thoughts occurs. As psychologists

Robert Epstein and Ronald Robertson note: ‘when people are unaware

they are being manipulated, they tend to believe they have adopted their

new thinking voluntarily.’15

Human bias amplified

Technology is an amplifier of human thinking – including the worst kinds.

Machines ultimately reflect back on us the assumptions and premises that

we feed into them. In 2020, during the initial wave of Covid-19, national

exams in the UK were cancelled, leaving education policymakers with the

dilemma of how to award final grades to students. Eighteen-year-olds sit A

level examinations as an advanced school-leaving qualification. Among

other things, A levels serve as a prerequisite for pursuing higher education.

Faced with limited options, the Department for Education placed its faith

in a prediction algorithm that automatically calculated grades for each

student. The results were alarming: almost 40 per cent of the grades

assigned by the algorithm were lower than the grades predicted by

schools.16 When the algorithm was inspected, it turned out to be rather

crude, forging its predictions based on a small handful of factors such as

the historical performance of the school attended by each student. The

algorithm, by design, penalised students who bucked historical trends in

their school. If the algorithm was applied two decades earlier, my own A

level grades would have suffered because I was a standout student at a low-

performing school. In the algorithm’s limited worldview, there was no way

students like me could attain the highest grades since there was no

precedent for it in our schools. In a damning blow to claims that the

algorithm was fair and equitable, it was also shown to give preferential

treatment to schools with small class sizes, which correspond to private

institutions. It was no wonder that students, many of whom were

threatened with the prospect of losing their place at university, descended



on the Department for Education with chants of ‘fuck the algorithm’. The

Financial Times deemed the affair an ‘algoshambles’.17

Following the outcry, the government changed tack, discarding the

computer wizardry and allowing schools to award their own grades. Prime

Minister Boris Johnson sought to reassure students by dismissing what he

termed a ‘mutant algorithm’.18 But the system had followed its directives

to the letter; it did not mutate in any sense of the word. The public’s

outrage was quite rightly levelled not at snippets of code but at their

human creators, and at policymakers who trusted the algorithm without

consideration of its damaging implications.

The A level grading algorithm is an example of old-fashioned symbolic

AI, where all the rules are hard-coded. Today’s more sophisticated

machine learning programs, which form predictions by finding patterns in

historical data, are just as vulnerable to amplifying human bias – maybe

even more so. They operate in what computer scientist Judea Pearl calls an

‘associational mode’ of thinking.19 Pearl has dedicated his career to

developing causal models: a framework for describing how variables relate

to one another and at what point we can legitimately say that one event

causes another. Machine learning approaches, meanwhile, dance to a

different tune. They shun rigorous statistical modelling in favour of

correlations – Pearl disparagingly terms this approach ‘curve fitting’.

These programs possess no model of the world to ground their predictions

in.

The tendency to repeat history renders many data-driven prediction

models as prejudicial as the exam-grading algorithm. Consider an

algorithm that automatically screens job candidates by matching their

CVs to the profiles of the company’s current and former employees.20 The

candidates deemed most promising (and consequently shortlisted for

interview) are those who have been matched to the company’s most

successful employees. On the surface, the algorithm appears to be neutral:

it has no concept of traits like race or gender. Now suppose that diversity

has been lacking at this company, such that most of its employees, and

therefore its most successful ones, are predominantly white, middle-aged

males. The algorithm is likely to incline towards the candidates with these



very characteristics. Since the company has a poor historical record of

taking on ethnic minorities, women or young people, the algorithm will

remain blind to their potential. The algorithm will form its judgements

from the specific historical data it is trained on. Amazon’s CV-sifting

algorithm (which was later abandoned), for example, penalised candidates

using the word ‘women’s’ – woe to anyone who belonged to an all-female

college, sports team or chess club.21

Machine learning algorithms seek out patterns and patterns alone,

ignoring the most important lesson of statistics: that correlation does not

imply causation.22 Just because white, middle-aged males have tended to

perform better in a given company does not mean those traits are inherent

to success. The algorithm is oblivious to other key factors, like the

company’s historical recruitment methods, or its existing culture and

working practices. Left unchecked, the algorithm ends up validating itself

through a series of self-fulfilling prophecies: as the company bows to the

algorithm’s recommendations, it hires from within a tiny band of

demographics and only ever allows success from within that group. The

algorithm perpetuates the very biases that have given rise to the company’s

lack of diversity. In the same vein, a machine learning algorithm trained on

historical records could never have predicted that Kamala Harris would be

elected as vice president in the 2020 US election – the first woman and first

ethnic-minority person to be voted into post. All the algorithm would have

to go on would be the forty-eight previous vice presidents – all white, all

men. Machine learning is unable to integrate disruptive, pioneering forces

into its prognostications of the world.

The same vicious cycle plays on loop in other walks of life such as

college admissions, car insurance policies, jail sentences and policing.23 A

programmer is unlikely to code explicitly for factors such as ethnicity or

gender when creating algorithmic policies – in fact, they are prohibited

from doing so by Article 9 of the EU’s General Data Protection

Regulation.24 The prejudice is implicit: it creeps in when seemingly neutral

factors like geography or job title become a proxy for a range of sensitive

demographics.



Even when these systems exhibit strong performance overall, the

absence of reasoning means that they can never be held accountable for

their mistakes. A Go program making one inexplicable error out of a

thousand will probably not change the outcome of the game. The same

cannot be said of the high-stakes, black-box algorithms of the real world.

The opaque number-crunching mechanisms at the heart of approaches

like deep learning result in System-1-type behaviours: impulsive and

devoid of any reasoning. The truth-distorting effects of technology do not

end there. Social media platforms bombard us with content of variable

quality and veracity, preying on our willingness to accept without scrutiny

content that aligns with our pre-existing beliefs.25 ‘Post-truth’ scooped the

Word of the Year accolade in 2016; it was succeeded by ‘fake news’ a year

later. These threats are not new; in her 1967 essay on totalitarian regimes

the political philosopher Hannah Arendt wrote:

The result of a consistent and total substitution of lies for factual

truth is not that the lies will now be accepted as truth, and the truth

be defamed as lies, but that the sense by which we take our bearings

in the real world – and the category of truth vs. falsehood is among

the mental means to this end – is being destroyed.26

Arendt’s was a prescient warning for the digital age. Social media is the

modern weapon of choice for disseminating misinformation and

obscuring our notions of truth. The Covid-19 pandemic has been fought

on two fronts, as public health experts have striven to contain the rampant

spread of conspiracy theories as well as the virus itself. Fair election

outcomes are hotly disputed while blatantly corrupt ones are held up as

legitimate. And flat earth groups are enjoying increased membership as

the internet gives sanctuary to ideas long debunked by science.27 Social

media rewards provocative content that solicits the most clicks and shares;

the mere presence of emotional language has been shown to increase the

spread of online content by 20 per cent for each evocative term.28 In the

never-ending competition for our attention, the facts are merely academic.



Misinformation now cuts across multiple media formats. An

unintended consequence of deep learning is that it has fuelled a rise in

‘deep fakes’, synthetic media content such as images and videos that have

been manipulated or entirely generated by AI. Deep fakes exploit our bias

for information that can be processed quickly. Audio and visual content

more ably penetrates our minds than text. Simply showing an image of

macadamia nuts, for example, makes people more likely to accept the

claim that they belong to the same family as peaches.29

The scale of what has been termed an ‘infocalypse’30 is barely

fathomable, with two-thirds of the global population (in excess of 5

billion) expected to have access to social media by 2023. At precisely the

same time that bias-ridden algorithms assume more control over what

information we see, and the very nature of that information itself, the need

for humans to critically examine arguments for themselves, to distinguish

truth from falsehood, has never been more urgent.

We need an additional thinking tool for making legitimate leaps from

specific experiences and observations to general truths. Fortunately,

humans are not limited to stitching together data. We have built-in

machinery for creating causal models. Even as children, we realise that

every effect has an associated cause. For babies, a cry for help is a signal to

the dutiful caregiver to come and attend to their needs; with enough

experience, the baby soon attaches their plea for help to the caregiver’s

imminent presence (the cry causes the caregiver to come). For toddlers and

upwards, the childlike tendency to ask why? speaks to our innate desire to

explain things: we experience effects and want to hunt down the cause.

Why is it so cold? Why am I always sleepy after lunch? Why does my

football team keep losing? In contrast to computers, we often only need to

experience events a few times to pin down the causes and effects at play.

Think about how you learned the features of your smartphone. You

swiped the screen, the call was answered. You tapped the home button, the

menu collapsed to within your reach. Product designers are all too aware

that our minds are highly adept at stringing together causal links between

events, even with limited data inputs.



A machine can be instructed to execute the same sequence of events,

but it has no knowledge of the world to hang its actions on and no

underlying sense of why performing one action results in a particular

outcome. Humans do not just possess understanding; we also possess

language to explain our actions. Even as we remain ignorant of much of

the brain’s inner workings, we can enlighten one another on how we arrive

at our decisions.

Sound reasoning is the connective tissue that glues patterns into

statements of certainty. It enables us to attach causes to effects, and

protects us against the risk of falling for spurious correlations. Sound

reasoning stands opposed to the flawed types of reasoning replete in

humans and amplified by machines. It is the essential ingredient for

holding machines accountable to their choices, and for preventing them

from projecting our own human prejudices.

The remainder of this chapter looks at mathematical reasoning, which

offers us a framework for keeping our biases at bay and establishing

logical arguments that defy all attempts at refutation. An argument, or

proof, that has been developed with the tools of mathematical reasoning

abides by the strictest standards of rigour. It is one that leaves no

assumption unchecked. It resists the seductive appeal of patterns by

demonstrating why those patterns hold true.

We are at a crossroads with mathematics. It is the basis of so much of

today’s AI. When it is reduced to algorithms and computation alone, the

net effect is a proliferation of our human flaws in thinking. But

mathematical reasoning is a means of lifting ourselves, and subsequently

the machines we create, out of bias and prejudice. We will examine the

many ways in which computers themselves are influencing mathematical

proofs. We will be forced to consider what qualities of reasoning, after all,

are the unique preserve of humans. The answer is ultimately an optimistic

one, but it requires an appreciation of mathematics that transcends the

study of its truths alone.

The mathematical brand of reasoning



When mathematicians pay tribute to their subject, they do so with

overtures that reach towards the eternal. Paul Erdös described

mathematics as ‘the surest way to immortality’,31 while G. H. Hardy

spoke of the ‘permanence’ of mathematical ideas.32 Both were referring to

the idea of proof, which coats mathematical statements in certainty. In the

experimental sciences, results are viewed as ever-closer approximations of

the true state of things. The scientific enterprise is one of continual

refinement, as new results take the place of old ones. In mathematics,

experiments take place in the laboratory of the mind, and they are

performed not on physical matter but on ideas. A finding in mathematics

is permanent in the sense that its veracity is beyond contest: a

mathematical proof endures for all time.

A proof moves us from one proposition, which may be an assumption

or a known truth, to another. Every proof proceeds along a tightrope of

sound logic, where every step, however large or small, must be accounted

for. We must explain how proposition A leads to proposition B: either we

made another assumption along the way, or we used a rule of logic to

make a valid deduction.

The father of logic was Aristotle, who realised that the act of reasoning

could be isolated from particular objects of reasoning. His ‘syllogisms’

were composed of a series of thoughts that, by sheer necessity, followed

from one another. The most well-known syllogism establishes the

mortality of Socrates – it proceeds in three steps:

1. All men are mortal.

2. Socrates is a man.

3. Therefore, Socrates is mortal.

The first two statements are declared as presumed truths. In the third

step, the use of ‘therefore’ implies that a logical deduction has been made

– namely, the mortality of Socrates. It is a valid inference based on a

particular rule of logic called modus ponens, which says:



If a proposition P is true, and the proposition (P implies Q) is true,

then the proposition Q is also true.

In the example, P is the proposition ‘Socrates is a man’ and Q is the

proposition ‘Socrates is mortal’. All manner of results can be derived from

modus ponens with different propositions substituted in for P and Q. This

is the power and versatility of logic: individual rules generate whole

categories of truths.

Another rule, modus tollens, specifies that

If a proposition Q is false, and the proposition (P implies Q) is true,

then the proposition P is also false.

Again, this single rule gives rise to countless truths. Sherlock Holmes

seizes upon it in the following exchange with Inspector Gregory of

Scotland Yard in the story ‘The Adventure of Silver Blaze’:

Gregory: Is there any other point to which you would wish to draw

my attention?

Holmes: To the curious incident of the dog in the night-time.

Gregory: The dog did nothing in the night-time.

Holmes: That was the curious incident.

To see how modus tollens can be invoked, let P be the statement ‘The

dog spotted a stranger’ and Q the statement ‘The dog barked’. In the

above exchange Sherlock reasons that:

1. If the dog had spotted a stranger then he would have barked (P

implies Q).

2. But the dog did not bark (Q is false).

3. Therefore, P is false – that is, it was not a stranger that the dog

spotted.



In one deductive blow, the logical detective narrowed down the range of

possible suspects to someone who would be familiar to the dog. True to

form, Sherlock was duly able to catch the criminal.

We will not get drawn into the weeds of logical systems, except to say

that they form the basis for robust arguments by forcing us to declare our

assumptions, as well as our rules for moving between propositions with

unflinching rigour.

The ‘permanence’ of mathematical propositions comes principally

from the fact that their proofs are based on this same logical apparatus:

every proposition in a proof can be traced back to one of those

assumptions, and, if we have correctly applied our logical rules, every

inference we make is perfectly valid.

Mathematical proofs found sanctuary in ancient Greece where, from

around 500 to 350 BCE, mathematicians approached the topics of

arithmetic and geometry from this theoretical perspective, leading to the

publication of one of their most famous works, Euclid’s Elements.

The Elements begin with strict definitions – of a point, a line and a

circle, among others. Euclid also lists five axioms (now called ‘postulates’):

ground truths that are taken for granted and upon which all other

propositions are derived (he also listed five ‘common notions’, which can

also be read as axioms). With his foundations in place, Euclid lunges

straight for his first derived result, or what mathematicians term a

‘theorem’. The first theorem describes how to construct an equilateral

triangle using only a compass and a straight edge (such constructions were

an infatuation of the Greeks and were viewed as an inviolable method of

argumentation). Across all thirteen volumes, the Elements establish 465

theorems, each building from those same five postulates and five common

notions. Euclid would have to introduce 131 definitions along the way to

describe objects of increasing complexity but, guided by meticulously

applied logic, every one of his theorems can be linked back to those ten

foundational statements.

This style of mathematical reasoning, which leaves no assumption or

inference unaccounted for, may strike you as pedantic; after all, we get by

in most everyday settings without probing all the minutiae of a statement.



But there is also a level of precision contained in these arguments that is

worth striving for. Mathematician Eugenia Cheng makes an apt analogy

by likening mathematical proofs to high-altitude training.33 Just as

athletes condition their bodies by training in extreme climates, we can

think of mathematics as a way of fine-tuning our argumentative skills by

subjecting us to the most unforgiving constraints. Mathematics invites us

to abstract away from the messy, disjointed realities of the physical world

and work in a system governed by tight logic and rigorously derived

truths. We emerge from this realm of uncompromising logical arguments

more alert to the subtle fallacies of the real world that pervade our

irrational minds, and more able to critique the facts, data and prophecies

that public figures would have us accept as gospel. Mathematical proof

makes perennial sceptics of us all.

The style of mathematical proof has echoes in some of history’s most

treasured verses. The US Declaration of Independence proudly takes its

starting point as a set of axioms: ‘We hold these truths to be self-evident,

that all men are created equal…’ Decades later, inspired by the copy of

Euclid’s Elements he carried around in a carpetbag, Abraham Lincoln

penned several constitutional arguments as a series of axioms,

propositions and carefully derived conclusions. As a lawyer and famed

rhetorician, Lincoln sought a style of argumentation that achieved the

highest standards of demonstrability.34 The Elements did not disappoint.

The ‘proofs’ of everyday conversation may not boast quite the same

watertight logic as strictly mathematical ones, but the standards set by

mathematical proofs can elevate our discourses. If flawed human

reasoning was an evolutionary necessity, then the flawless nature of

mathematical proofs can counter the broken arguments that pervade our

social interactions. They can also train us to spot the fallacies of pattern-

hungry algorithms.

A proof and a lie

To appreciate the uncompromising rigour of mathematical proofs we will

look at one of the most well-trodden results of the subject. You know it as



Pythagoras’s theorem. It states that for any right-angled triangle, the

lengths a, b and c are related by the formula a2 + b2 = c2, where c is the

length of the hypotenuse of the triangle (the diagonal) and a, b correspond

to the lengths of the other sides (adjacent and opposite, if you care to

name them). Among other things, the theorem gives us a mightily

convenient method for calculating the distance between two points in

terms of just the ‘width’ and ‘height’ that separates them.

The most familiar example is the triangle whose sides have lengths 3, 4

and 5: you can verify that 32 + 42 = 52. According to Pythagoras, a2 + b2 =

c2 always, definitely, absolutely holds whenever a, b and c correspond to

the lengths of the sides of a right-angled triangle. The significance of

Pythagoras’s theorem is that it holds for all right-angled triangles, large or

small, blue or pink – all infinitely many of them. To proclaim any

statement for an infinite collection of objects is audacious. Mathematical

reasoning emboldens us to make such claims because it pierces through

finite limits. It does not rely on patterns or probabilities – only on the

surest of logical leaps. Our reward is eternal truth; faultless logic cannot

be undermined by any experiment, now or in the future.

Instances of the formula were uncovered long before the Greeks entered

the fray, and it probably wasn’t Pythagoras himself who issued the first

known proof.35 One argument proceeds by arranging four copies of any

given right-angled triangle in two different ways, forming two squares.

Note that we’re not restricting ourselves to any particular right-angled

triangle; the steps that follow will apply to every single one of them.

The key idea is that both of the large ‘container’ squares have the same

overall area (because their sides are of the same length), and both contain

four copies of our triangle. The only difference between these large

squares is in how the four triangles within them are arranged. This means



that the white component of each large square must take up the same

space (the same area). The white space in the left-hand square is itself a

smaller square with area c2. As for the right-hand square, the white space

comprises two yet smaller squares of areas a2 and b2 respectively. Since the

white spaces account for the same area, it must follow that a2 + b2 = c2,

which is exactly what we set out to demonstrate.

The proof illustrates the nature of mathematical discovery. The result

itself didn’t just pop into being; it was discovered (several times over)

through playful exploration. The same is true of the proof – the clever

rearrangement of triangles only seems obvious in retrospect.

Mathematicians do not work their way through proofs at a steady clip,

smoothly dispatching one proposition at a time. Rather, they doodle and

dawdle, often venturing down blind alleys, almost always erring and self-

correcting before the key insight finally dawns on them.36 Mathematical

proofs usually contain a central idea that isn’t immediately obvious but

that emerges through considered study (or even just play). The core

principle driving this proof is invariance: by keeping one thing fixed (the

area of the large square), we can create equivalences between the

remaining parts. It’s a strategy we can take forward to other proofs, above

and beyond right-angled triangles.

It is significant that a simple visual representation, combined with the

deft tactic of computing the same area in two ways, was all that was

needed to take control of one of the most dreaded results in all of school

mathematics. Visual proofs can illuminate truths without compromising

on rigour.IV Yet the above proof of Pythagoras’s theorem is only one way

of seeing its truth. Elisha Scott Loomis, a maths teacher from Ohio, spent

a lifetime gathering no fewer than 371 proofs in a single volume.37 That is



371 representations of the same underlying truth – some visual, others

abstract, and every one a distinct lens through which to understand this

particular geometric property of triangles.

Mathematicians are pluralistic when it comes to proofs, seizing upon a

wide range of representations to make their case. The unifying force

behind proofs is logic; beyond that, it is fair game to employ symbols,

pictures and whatever other means to forge cast-iron truths. There is a

takeaway here for non-mathematicians, too: to strengthen the foundation

of our presumed truths by interrogating them from as many angles as

possible.

Because mathematical proofs operate on strict logic, the mere sight of a

contradiction brings all arguments to an abrupt halt. Even the tiniest

omission of reasoning can lead our arguments astray, sometimes landing

us on absurd conclusions. To demonstrate just how absurd, I am going to

attempt to prove to you that 2 = 1.

1. I will start by noting something we all know to be true: 1 = 1

2. Next I will subtract 1 from both sides of my equation, rendering:

1 – 1 = 1 – 1

3. I note that 1 is the same as 1 × 1 (which I’ll write as 12) so I can

turn my equation above into:

12 – 12 = 1 – 1

4. Now I’ll do something that all high school students should be

familiar with: the left side is the difference of two squares and is

the same as (1 – 1) x (1 + 1), giving:

(1 – 1) × (1 + 1) = 1 – 1

5. Now let’s divide both sides of the equation by the term 1 − 1:

6. And finally, we can cancel the ‘like’ term in the top and bottom of

the fraction (something we learned at primary school), leaving:



1 + 1 = 1

7. Well, 1 + 1 = 2 as we all know, so this must mean 2 = 1.

This is what I set out to prove. At this stage, you have two choices. You

can either accept, somewhat boldly, the conclusion that 2 = 1, or you can

attempt to uncover the flaw in my argument. We will retain some measure

of sanity by adopting the latter position, and by critically asking why? –

or, in this case, why not: where does the argument defy sound reasoning?

This painstaking process of debugging and self-correction is a core part of

the mathematician’s enterprise.

The opening gambit is uncontroversial: all I did was claim that the

number 1 is equal to itself. From there, I made a few standard

manipulations, and you can easily verify the legitimacy of steps 1–4 (step 4

requires familiarity with algebra but is fair game). We arrive safely at

(1 – 1) × (1 + 1) = 1 – 1

From here, it is just a couple of small leaps to the outrageous finale:

dividing by 1 – 1. This step also seems fine: another standard operation

applied to both sides of an equation. But seems fine is a far cry from

definitely, absolutely, 100 per cent legitimate. Look again at the term we

divided by, 1 – 1. This is just a convoluted way of writing 0, of course.

Dividing by 0 is the cardinal sin of mathematics, a forbidden fruit that

we are mandated by the laws of arithmetic to avoid (this warrants another

why?). It takes an alert mind to notice that we were dividing by 0 in the

fifth and sixth steps. The devilry of this proof is that its syntax conceals

the illegal manoeuvre. (I could be more devilish still by replacing the

numbers with letters, but will spare you the song and dance.)

We knew that something was awry; the preposterous suggestion that 2

= 1 prompted our search to find the flaw in our reasoning. Proofs can

break down for a number of reasons: faulty assumptions, incorrect

inferences and fuzzy handwaving among them. Interrogating proofs

sharpens our capacity to detect the subtlest argumentative flaws.



With all that mathematical proof has to offer as a conditioning tool for

the mind, we may well ponder what roles computers have to play in this

enterprise. Proof has been of interest to the computing industry for

decades.38 It is a means of verifying that software programs can be trusted

to behave as intended: that they won’t break down or set off explosions

when we need them the most. But now computers are eating their way into

mathematical proof, forcing us to examine our notions of trust and

certainty.

In what ways can computers aid or inhibit our search for permanent

truths, and to what extent might they create proofs of their own? And

have we been too quick to dismiss their potential as reasoning agents?

Proof by computer

Mathematical truths are compiled in three stages: a conjecture is made, it

is proved or refuted, and the resulting argument is then verified either way

(with several iterations as we deal with failed attempts, false beliefs and

new insights). Computers are sinking their teeth into each of those stages.

To start with, computers can serve up clues in the quest for new truths

by generating numerous examples from which we can develop our

intuitions and test our hypotheses. Suppose you want to know how likely

it is that you would flip exactly five heads in ten throws of a fair coin. A

novice programmer can create a simulation that performs ten flips a

million times over. You will find that you get five heads in around 250,000

of those simulations (probably not exactly, but uncannily close). You

therefore develop a hypothesis that the probability of landing five heads is

a quarter. You still have to find a robust proof that does not rely solely on

experimental data, but having a plausible hypothesis at hand is a winning

position to start from. Computers can go further still by analysing data



and detecting patterns that may not be obvious to humans. As mentioned

in the introduction, the tools of machine learning are being aimed at

problems across a range of mathematical fields. Mathematicians can refine

their conjectures, and even develop new ones, on the back of new evidence

brought forward by machines.

We should be careful not to rely on patterns alone as a source of

evidence. It doesn’t really matter how powerful computers become: their

calculations remain limited by the physical bounds of our universe, which

means they will never account for the complete set of truths of really large

numbers through sheer computation alone. This is no small limitation

because really large numbers take on a life of their own, often defying

truths we take for granted at the lower end of the number line.

A case in point is prime numbers, whose behaviours are about as

predictable as British weather in spring. There are infinitely many primes,

and what makes them so compelling is that there is no discernible pattern

that determines exactly when the next one will occur. Primes are the

building blocks of arithmetic. Every number can be expressed as a bunch

of prime numbers multiplied together: 30 = 2 × 3 × 5, 126 = 2 × 3 × 3 × 7

and 13,143,123 = 3 × 3 × 7 × 7 × 29,803. What’s more, a number’s

‘decomposition’ into primes is always unique (up to the order of

multiplication). In 1919, the Hungarian mathematician George Polya

pondered on the fact that some numbers are decomposed into an even

number of primes while others are broken into an odd number: 30 has

three primes in its decomposition and 126 has four (we count the 3 twice).

Polya wondered, as mathematicians do, which occurred more often – even

decompositions or odd ones? If you check the numbers from 1 to 10, you’ll

find that 6 are odd-type and 4 are even-type. If you go as far as 100 you’ll

find that 51 are odd-type and 49 even-type. Among the first 1,000 whole

numbers, 507 are odd-type and 493 even-type.

A pattern had emerged, and it made Polya speculate, conjecture, that

up to any threshold, there will always be at least as many odd-type

numbers as even-type ones. Polya’s conjecture was checked and verified up

to a million; the evidence was stacking in his favour. Yet in 1962 another

mathematician, Russell Sherman Lehman, found an example that



contradicted Polya: he showed that up to the number 906,180,359 (that’s

over 900 million), the number of even types exceed the number of odd

types (by just one, it turns out). Larger numbers tilted the balance in

favour of the even types.

These days you can easily write a computer program that checks

Polya’s conjecture and informs you that it eventually breaks down at

around the 900 million mark. But there are some conjectures that hold for

dizzyingly high numbers:39 so high, in fact, that if you transformed all the

matter of the universe into paper and ink, you would still run out of

writing materials before you reached the all-important failure points. In

these instances you might be forgiven for not waiting until your computer

program unearths the colossal counterexample (after all, it took just five

iterations of the circle regions for us to subscribe to a false hypothesis). In

the face of such overwhelming evidence, you might decide that a rigorous

mathematical argument is not worth your while and succumb to a

mistaken conclusion.

While today’s computers are gaining power at an exponential rate,

some numbers are just too large and unwieldy to handle. Computation

cannot cut through the sheer size of these numbers in the way that

mathematical reasoning can.

Computers are also making their mark in the construction of proofs,

altering the way we establish permanent truths.40 The proof of the four

colour theorem, remember, came in two parts: the human contribution

from Appel and Haken to reduce the problem down to around 2,000 map

configurations, and the might of computers to work through those cases.41

This proof by exhaustion method is a perfectly valid argumentative

strategy. When Haken’s son presented the proof to an audience, they split

into two groups: the over-forties could not bring themselves to accept that

a significant part of a proof could be done by a computer. The under-

forties were equally sceptical of the 700 pages of handwritten arguments

and calculations from the two human authors. Complicated proofs ask for

a leap of faith from their readers; trust must be granted to an other to

negotiate the final detail. Placing your faith in computers is surely no more



objectionable than placing it in fellow humans, especially when the scope

for error is vastly reduced.

Computers can also help disprove conjectures by generating

counterexamples. The Swiss mathematician Leonhard Euler claimed in

1769 that the following equation has no positive whole number

solutions:42

a5 + b5 + c5 + d5 = e5

Euler is among the most prolific figures in mathematics folklore; it is

said that one would have to devote one’s entire adulthood just to pore

through his manuscripts. Nevertheless, he took this particular conjecture

to his grave, having failed to produce a proof. With a computer at hand,

one can check through an enormous number of possibilities, which

eventually leads to the following case:

275 + 845 + 1105 + 1335 = 1445

This counterexample surfaced some 200 years after Euler made his

conjecture. In addition to taking a few spins in his grave for his egregious

error, Euler might lament the fact that he did not have the calculating

tools to disprove his own idea. Today’s mathematicians wield the

computational means to lay siege to some of the most stubborn problems

involving arithmetic.43

Computers are even being marshalled to construct proofs from start to

finish. As AlphaGo stitched together plays that wowed expert human

players and mathematicians alike, mathematical proofs became a natural

target for the Go conquerors. The connection between formal

mathematical proofs and intricate board games runs deep. To construct a

proof, we need a set of starting assumptions (‘axioms’) and a list of rules

for making logical deductions. If mathematics was a game, these ground

truths would make up the starting position on the board and the rules of



logic would correspond to the rules of the game. A proof in mathematics

is, then, analogous to a series of legitimate moves in a board game.

Once you’re comfortable with the board game analogy, it’s not a stretch

to conceive of a computer program that knows the starting positions – the

axioms – and is able to crunch through different combinations, using any

accepted rule, to see what other, more complicated truths it might arrive

at. The prospect is nothing short of the automation of mathematical

discovery, and it’s one that many mathematicians are paying serious

attention to.44 Different groups have banded together to hard-code

mathematical concepts – definitions, simple results and even major

theorems – in terms a computer can understand. As the database of

formalised mathematics grows, so too does the scope for discovering new

and novel truths. Humans may take the hot seat and interact with these

theorem-proving systems, but it is an enterprise that is well suited to

algorithms.

The Google DeepMind team, for instance, has applied its machine

learning methods to the Mizar database of mathematical proofs. The

approach is novel; these algorithms do not themselves reason, but they can

reproduce perfectly reasoned arguments by imitating the structures of

known proofs and extending them to establish new theorems. It is not

even just a matter of rehashing new proofs to old theorems; in some cases

these algorithms can establish whole new results.45 There’s a fusion here

of classical AI (the formal proofs contained in these databases) and the

contemporary paradigm of machine learning.

On the other side of mathematical discovery is proof verification. Once

a mathematical argument has been presented, it needs to be meticulously

checked; the status of eternal truth must be earned. The acceptance of

mathematical proof has traditionally depended on the scrutiny of experts

in the field – the so-called peer review process that underpins research

publication. This is sometimes termed ‘proof by authority’ – but whose

authority? For the greater part of human history, checking proofs has been

a human endeavour. But just as we invented tools to offload the burden of

large, tedious calculations, mathematicians are now turning to proof

verification systems: computer programs that evaluate every step of a



proof, using the rules and concepts that have already been specified to

them. To go back to the board game analogy, this is much like taking a

configuration of pieces mid-game and trying to trace it back to another

configuration that is already known to arise from legitimate gameplay.

The mathematician Thomas Hales brought this technique into

prominence when, in 2014, he announced a formal proof to a 400-year-old

problem called the Kepler conjecture.46 This problem states that the

densest way to pack spheres is through ‘face-centred cubic packing’ (in

simpler terms, the way you usually see oranges stacked in a crate). Street

vendors have long suspected as much, and Hales finally delivered a proof –

long, complicated, every step confirmed by a computer. Hales had actually

delivered a proof almost two decades earlier, which used computers in a

different way – to work through a large collection of specific cases (proof

by exhaustion again, just like the four colour theorem). The original proof

was published in the Annals of Mathematics, but the editors, incapable of

checking every calculation, were only willing to declare the proof as ‘99

per cent certain’. Looking to bridge that gap, Hales took to developing a

proof that left no doubt. In his 2014 upgrade, the computer was now

checking through statements of logic rather than just rattling off specific

instances of the theorem.

These ‘computer-assisted proofs’ are becoming increasingly common in

the furthest frontiers of mathematics,47 where research papers can span

hundreds of pages and contain symbols and notation that humans

themselves struggle to grasp.48 Opting for a human checker is a

philosophical stance rather than a practical one; if the goal is to maximise

certainty, we must acknowledge that humans are more prone than

machines to letting a subtle assumption slip through the net.

Automated mathematicians

This talk of automating proofs may come as unsettling news to

mathematicians who might have assumed that proof-making was their

calling card. Before reaching for the panic button, though, a cursory look

through the repository of Mizar proofs suggests something is lacking in



this style of argument. The validity of the proofs is perfectly sound, and

their concision – typically just a few lines – is impressive. Yet the blunt

syntax that is a staple for computers robs us humans of any kind of

enlightenment. We can convince ourselves, through these short, symbol-

laden proofs, that Pythagoras’s theorem and other results hold. But gone

are the deft manoeuvres, clever ploys or central insights that we can take

to other areas of mathematics.

The mathematician and writer Marcus du Sautoy likens automated

theorem provers to the library of Babel, Jorge Luis Borge’s fictional trove

of all possible 410-page books.49 The failure to distinguish between

standard (or even bog-standard) texts and truly creative ones offends our

literary sensibilities. Likewise, mathematicians aren’t to be found on the

assembly line of theorem factories, mindlessly churning out one result

after another. They seek out the essence in proofs: the core insight that

reveals some deeper truth or connection to other ideas.50 This may explain

why I’ve yet to encounter a mathematician who feels threatened by the

slings and arrows of automation. As Henri Poincaré put it a century ago:

‘A machine can take hold of the bare fact, but the soul of the fact will

always escape it.’51

Humans process their truths beyond the abstractions of symbols. In

one study, subjects were asked to examine the syllogism ‘All A are B. All B

are C. Therefore, all A are C.’ We’ve met this construct already as the

modus ponens rule. The subjects were also asked to assess the validity of

another statement: ‘All dogs are pets. All pets are furry. Therefore, all dogs

are furry.’ It is modus ponens once again: identical in logical structure to

the first statement. This time, of course, there is rather more tangible

meaning to the words. We all have preconceptions of furry pets that we

lean on to evaluate such statements. Using fMRI imaging, the researchers

confirmed that we deploy different neural networks within the brain to

assess the truth of each statement.52 Unlike computers, we can process

statements in terms of what we know of the world. And mathematicians,

likewise, prove their theorems in the context of everything that came

before, and everything that might follow. No proof is an island.



The representation of a proof matters just as much as the truth it

establishes. The mathematician Paul Erdös spoke of the ‘book’, a divine

collection of the most elegant, satisfying arguments.53 A good proof

should animate the essence of a particular truth. It should read as a

compelling narrative. Just as the best stories delight us with surprising

revelations, the most satisfying and memorable proofs are the ones that

hook us to their twists and turns (stories, recall, also aid memory as a

chunking mechanism). They unravel like an Agatha Christie thriller –

watching the detective deftly piece together the clues is as gratifying as

discovering the actual identity of the perpetrator. The infusion of logic,

meanwhile, prevents the proof from drifting towards falsehoods. As we

have seen, storytelling itself may lead us away from valid conclusions as a

raft of narrative biases kick in. A mathematical proof protects against

such deficits by adding logic to the mix as a kind of narrative arc – it is the

gatekeeper of each touchstone of a mathematical argument.

This ability to blend logic with evocative representations doesn’t always

carry over to the ‘real’ world, of course. Mathematicians are hardly

immune to logical fallacies when discussing politics, religion and other

everyday topics that interact with our strongest beliefs and values.

Distorted worldviews arise either when we adopt shaky foundational

beliefs (more on this in the next chapter) or when we allow our biases to

overwhelm our reasoning. But it bears repeating that proofs serve as a

conditioning exercise for the mind. Just as time spent at a yoga retreat can

awaken our spiritual senses (and increase our flexibility for good measure),

time spent engaging with proofs strengthens our capacity to develop and

refute arguments in both mathematical and non-mathematical realms.

The requirement that proofs appeal to our subjective notions of

elegance renders mathematics an art form as much as a science, a view to

which many mathematicians have subscribed. These qualities elevate

proofs beyond cold logic, eluding the symbol-crunching ways of machines.

Computer-generated proofs exemplify the ‘ugly mathematics’ that the

mathematician G. H. Hardy disregarded – for him, beauty was the first

test of mathematics. His criteria for beauty rested on the ‘seriousness’ of

an idea, economy and a sense of unexpected inevitability. Others have



elaborated on what might otherwise be dismissed as a nebulous appeal to

aesthetics.54 A recent study from Yale suggests that even non-

mathematicians can intuit mathematical beauty just as much artistic

beauty, and that there is consensus among them for what constitutes a

beautiful piece of mathematics.55 The shortcoming of the Mizar Project’s

method of proof is that it casts beauty aside: there is no storytelling; no

narratives, no characters or sub-plots that guide us on journeys full of

surprise and delight. And while efforts are under way among AI

researchers to render computer-generated proofs more human-like,56 for

now, those proofs offer little beyond bloodless threads of logic.

Logic and emotion entwined

Let us take stock of where the last two chapters have led us. All arguments

exist in a social context where the goal is not only to convey ideas, but to

justify them and persuade others of their truth. To achieve all that in one

thrust, an argument must appeal to both logic and emotion: the first to

secure the objective truth of the proposition, the second to express that

truth in terms that shifts people’s beliefs in the right direction.

Mathematical reasoning is a rigorous mechanism by which we separate

actual truths from apparent ones. It addresses the logical dimension of

arguments. The strongest arguments – those that evoke and deliver

wisdom and insight on top of mere truths – also rely on the rich tapestry

of representations that the human mind is endowed with. They make use

of symbols, pictures, stories, analogies and other illustrative tools to reveal

the big ideas of an argument rather than its conclusion alone. The messy

and complex nature of our world can only be made sense of through the

fullest range of representations at our disposal.

AI is still grappling with truth. The pattern-matching methods of

machine learning are highly opaque, have no contextual basis for their

judgements, and are restricted to memorisation as the primary means of

making inferences. Reasoning is not yet in their circuitry. For a computer

to think and act logically, the ‘classical’ systems of AI will need to be



included after all, with hard-coded rules of inference, penned by humans,

bootstrapping the reasoning capabilities of machines.

Many AI systems today already adopt such hybrid approaches;

autonomous vehicles do not need to run over a million humans before

acknowledging their fault. They ‘know’ that this action is prohibited

because of the rules laid down by their human programmers. The

DeepMind approach to automating mathematical proofs is a particularly

novel blend of old and new AI that rejects the tabula rasa approach of

learning everything from scratch, and instead seeks to feed off pre-

existing, human-generated proofs. A similar approach is at the heart of

Dr.Fill, an automated crossword solver that uses deep learning to read

puzzle clues and serve up possible answers, which are then ranked using an

‘old-fashioned’ algorithm that looks for things like the length of each

word and whether they create conflicts in the grid. The combination has

proved potent enough to win the American Crossword Puzzle

Tournament.57 When AI systems fuse multiple facets of intelligence in this

way, we may well witness the stunning successes of AlphaGo in other,

more profound spheres like mathematics and science.

Even then, humans have much to cling on to. We can hardly lay

absolute claim to reasoning when our own cognitive systems are replete

with in-built biases. As we project our mental selves onto machines, we

would do well to remember our own faults, to prevent those systems from

deepening our subtlest prejudices. But the human mind has also endowed

itself with methods of reasoning that incorporates both logic and

emotion. Our arguments are as diverse as they are elegant. They do not

just deliver hard truths but also wisdom and insight: traits that are not so

easy to encode.

I. oeis.org

II. In fact, Go qualifies as a game of ‘perfect information’ because both players can view the board

at all times – nothing is hidden.

III. For instance, people are more likely to vote in favour of school funds when the polling station is

located within the school. On rational grounds, this makes no sense: the polling station’s

whereabouts should have no bearing on our decision to support a particular bill. Our choices are

http://www.oeis.org/


influenced by the way statements are phrased, and we can switch choices based purely on how

something is worded – hardly the hallmarks of rational agents. These ‘framing effects’ explain why

spin doctors are in vogue among politicians: they know how vulnerable the public is to subtle

manipulation by words and can explain away their candidates’ inconsistencies through clever use of

language.

IV. One of my favourite mathematics books, Proofs without Words, is in fact a Japanese

translation. The friend who gifted me the copy knew full well that Japanese is not in my repertoire,

but the premise of the book, as the title suggests, is that it is possible to demonstrate mathematical

truths without any dependency on a native language. The book lives up to its title: I could make no

sense of the Japanese symbols, but this did not hold me back from absorbing the proofs, which

rested on visual arguments and standard mathematical notation.



4

IMAGINATION

Why spoilsports deserve more credit, how mathematics gets

reinvented, and the truths computers will never discover

The board game Monopoly is banned at my house. My wife issued the

prohibition several years ago when she could no longer endure the

arguments that erupted every time I sat down to play with her siblings. The

discord invariably stemmed from differing interpretations of the rules.

Trading properties is the lifeblood of the game, but on several occasions

her family members have, when driven by desperation, teamed up midway

through a game, one player handing the other their prized assets for lowly

sums. The collusion is patently obvious (to me at least) but to hear my

fellow players tell it, this type of ‘cooperation’ is all part of the game. In

these moments, I can only appeal to the spirit of the game which, as its very

name suggests, is predicated on individualistic competition. No

collaboration, no collusion: just cut-throat decision making that serves

one’s own interests. Since there is nothing in the rules to explicitly forbid

these conspiratorial tactics, though, play goes on. At some point, we spar

over other invented rules, like the one that rewards players who land on

Free Parking with all the fines and taxes that have accumulated on the

board. I bristle at this innovation because it adds more volatility to a game

that already privileges luck over skill. Other players disagree; they want to

live a little, they say, and allow for the extra element of uncertainty. On

more than one occasion we have had to declare a contest void, recognising

that we were essentially playing different versions of the game. A failure to

agree on the rules renders competitive gameplay impossible – hence the

ban.



Monopoly epitomises the ways in which small variations in our ground

truths can result in wildly different interpretations of a situation.I This isn’t

just true of games. Much of the diversity of human thought can be traced

to differences in our core beliefs and values – the everyday ‘rules’ we each

subscribe to. Two people can disagree and both be logical: the strength of

each person’s argument may be equal, but they have simply proceeded with

different beliefs or assumptions.1 The psychologist Jonathan Haidt has

developed a theory of ‘Moral Foundations’ based on six core belief systems

that he believes can explain our political and religious divides.2 These

include care/harm, loyalty/betrayal, fairness/cheating, authority/subversion,

sanctity/degradation and liberty/oppression. We can better empathise with

opposing viewpoints when we understand how they derive from differing

interpretations of these beliefs. In the United States, for instance, whereas

the left tends to ground its understanding of fairness in notions of equality

(everyone deserves prosperous outcomes), the right views the same concept

in terms of proportionality (you get out what you put in). From those

axiomatic definitions, it’s easy to see why liberals tend to favour social

welfare programmes and higher taxes, while conservatives tend to advocate

small government and deregulation. Each set of views is a natural, even

logical, consequence of core belief structures.

Despite the widespread tendency to declare our beliefs as stone-cold

proclamations, immune to counterarguments, there is something liberating

about stepping back and tinkering with our assumptions.

In the previous chapter, we compared humans and machines based on

the ways they each combine a given set of truths to form new ones, arguing

that humans bring a distinctly aesthetic quality to their arguments. It’s one

thing to compare two chefs based on what they can cook up from a given

set of ingredients, however, and quite another to give them licence to dream

up new recipes by changing up the ingredients they are using. This chapter

sets a higher bar for intelligence by emphasising the ability to break out of

a given set of rules.

Computers are found wanting here. Even where they appear to display

high levels of creativity, their outputs are bound by how you, the

programmer, have specified the parameters within which they are allowed



to operate. Computers necessarily operate within whatever constraints are

given to them. Humans, in contrast, are attracted to possibilities that arise

from breaking free of any such restrictions. Our rebellious instincts are

sometimes our most creative; they are what gives rise to completely new

ways of seeing the world, or new worlds, rather than derivatives of existing

ones.

Mathematics, in this sense, qualifies as among the most creative of

endeavours because it encourages us to flout the rules. The phrase ‘thinking

outside the box’ has its roots in a popular maths puzzle (first introduced by

recreational mathematician Sam Loyd in a 1914 compendium of puzzles)3

that asks: without taking your pencil off the paper/screen, can you draw

four straight lines that go through the middle of all of the dots below?

You may be familiar with the solution, which is found only by straying

from the confines of the grid. The puzzle’s signature quality is that it forces

us to reject standard approaches.4

Whole branches of mathematics are conceived in much the same way.

Every mathematical system is built on a set of ground truths that we accept

as self-evident – its axioms. We saw in the previous chapter that every

proof is constructed as a meticulous chain of logical arguments, which can

be traced back to those foundational statements. A mathematical system is

shaped by its axioms, much like the character of a person can be traced to

their core beliefs. And just as a person’s character can be reshaped as they

change their beliefs and values, so too can we disrupt the mathematics we

so often take for granted. Mathematics is an invitation to construct our



own mental worlds by setting rules, only to shake up those worlds by

subsequently breaking them.

What if?

Humans have long been dreaming up concepts and creatures that exist

outside our physical reality. The oldest known figurative art object,

discovered in a cave in the Lone Valley of south-western Germany, is the

Lion Man of Hohlenstein-Stadel, a chimeric figurine that is half-human,

half-lion. Sculpted around 40,000 years ago for purposes unknown, the

Lion Man is a product of pure human imagination. It signalled a new

cognitive ability for humans: counterfactual reasoning. We were not merely

seeking to understand our lived everyday experiences, but also

contemplating what other realities might exist. We were daring to ask what

if? – an apparently simple question, and an antecedent to creative thought.

When we’re faced with a situation, the representations we choose in order

to interpret that situation are surrounded by what cognitive scientist

Douglas Hofstadter calls an ‘implicit counterfactual sphere’ – an array of

variations that each diverge, even if slightly, from our perceived knowledge

of the world.5

Throughout history, creative expression has been marked by an ability

to break with convention. Hofstadter calls this ‘jumping out of the system’

or, to use his quaint shorthand, jootsing.6 The most innovative artists are

the most disruptive: those brave enough to venture beyond accepted

precedent and to open their work to a greater sense of possibility. Through

his nine symphonies, Beethoven uprooted the ‘classical’ rationality of

Western music tradition and injected it with emotional impact. Caravaggio

transformed Italian painting through the intense realism of his work, and a

use of light and shade – chiaroscuro – that foreshadowed photography.

James Joyce’s Ulysses revolutionised the novel by introducing a striking

plethora of styles, points of view and sub-literary genres into its

framework. These artistic shifts are so contrarian that they are usually met

with derision or confusion in the first instance, only to be accepted as

perfectly commonplace later. New rules displace old ones, birthing new

genres in the process.



Modern forms of entertainment, driven by technological advances, are a

licence to bring our wildest imaginings to life. My favourite movies are a

roll-call of counterfactual thought (and echoes of dystopian fiction dating

back at least as far as Mary Shelley’s Frankenstein): what if machines

became sentient and had objectives that threatened humans (Terminator,

The Matrix)? What if a subset of humans developed mutations that gave

them superpowers (X-Men)? What if time travel were possible (Back to the

Future)? You may well question my taste in films, but you will hopefully

appreciate the counterfactual mindset that is needed to create these worlds.

Similarly, video games are now a portal to some of our most mysterious

worlds. Game designers have the space to create a set of rules and explore

the realities that follow those choices. These worlds often defy the rules of

our ordinary lives – worlds where the laws of gravity and motion are

upended as a deliberate design choice.7

In science, too, we rely on breaks with accepted rules to make great

leaps of progress – what philosopher Thomas Kuhn famously called

‘paradigm shifts’.8 Disruptions to scientific thinking, and to artistic

expression, require more than incremental advances. Mathematics is the

most disruptive of sciences, one of the oldest means we have of creating

new worlds, however outlandish. It puts us firmly in the director’s seat,

setting the stage with whatever axioms we see fit. Our prize is newly

conceived worlds that are often at odds with the mathematics we have

studied and the rules we have been taught to accept. The driving force of

mathematical intelligence resides in this freedom to create – and recreate –

entire areas of thought.

Euclid’s Elements, we’ve seen, was the foundation of rigorous

mathematical proof. All the geometrical statements in the Elements stem

from Euclid’s initial store of ‘postulates’. The fifth of those postulates

states, in essence, that if you take any line, and any point off that line, then

there is exactly one other line parallel with the original that passes through

the point. That seems self-evident enough once you get past the convoluted

wording, and Euclid even believed that it didn’t need to be stated as a

postulate because he would be able to derive it from the others. This

statement, it can be shown, is equivalent to declaring that angles in a



triangle add up to 180 degrees, or that parallel lines do not meet (claims

that seem beyond any reasonable dispute).

Euclid’s fifth postulate – the dotted line is the unique line parallel to the line L.

As it happened, Euclid was never quite able to produce a proof of the

fifth postulate, so was forced to call on it as an ‘axiom of last resort’. In the

centuries that followed, mathematicians tried to nip the fifth postulate in

the bud by demonstrating that it is a logical consequence of the others, as

Euclid had suspected. But the fifth postulate resisted these attempts, which

eventually led a group of nineteenth-century mathematicians to

contemplate the most daring of what ifs – namely: what if, after all, we

allowed more than one line through that point to be parallel to the original

line? What if we allow the angles of a triangle to total something other

than 180 degrees?

Visualising these possibilities is a struggle for most people, but only

because we are naturally drawn to flat surfaces, where Euclid’s ideas hold

up neatly. But what if we think instead about curved surfaces, such as a

sphere, which is (roughly speaking) the shape of the Earth? If we draw

parallel lines at right angles to the Earth’s equator, heading north (lines of

longitude, for example), they would meet at the North Pole despite being

parallel at the equator. If you go on to form a triangle between two points

on the equator and the North Pole, then two of the angles are right angles,

which means the sum of the three angles is in excess of 180 degrees. We

now have a distinctly non-Euclidean geometry, where parallel lines do meet

after all, and where triangles do not exhibit their usual behaviours.





This triangle has three right angles, which sum to 90° + 90° + 90° = 270°.

This particular brand of geometry, known as elliptic geometry, should

actually feel more comprehensible because it reflects the situation with a

known physical structure, the Earth (understood by everyone bar resolute

flat-earthers). Just as our understanding of the world is enriched when we

reject the notion that it is flat, so mathematics can empower us with richer

geometries that transcend the properties of a flat plane.

Creative thinkers must be prepared to suspend preconceived notions and

physical norms. Why, after all, stop at the Earth’s surface? The very first

non-Euclidean geometry to be dreamt up was hyperbolic, situated in an

even stranger world which tears up the fifth postulate by allowing infinitely

many parallel lines to pass through the same point. Hyperbolic geometry is

even more abstract, even more fanciful, but every bit as justified on its own

terms. It pops up in models of special relativity as a way of describing the

relationship between space and time, and it has also been posited as a way

of describing social networks – ‘useful’ applications abound for those who

seek them.

None of the alternatives to Euclid’s fifth postulate renders the Elements

false; they simply add to our worldview with equally valid frameworks for

studying geometry, allowing for playful exploration with different building

blocks. Janos Bolyai, a Hungarian mathematician who was among the first

to dream up hyperbolic geometry, proclaimed in a letter to his father that

‘out of nothing, I have created a strange new universe.’9

Can today’s computers claim as much? There are now programs that

can create photorealistic images of people who do not exist. They work

using a clever technique called generative adversarial networks, which

makes use of two models. The first, called the generator, is trained to create

new examples that share a likeness with actual people. The second model,

the discriminator, then looks at all the images together and tries to work

out which are real and which are fake. It’s a game of cat-and-mouse, where



the first model is trying to deceive the second into believing its creations are

real (hence the term adversarial). This process repeats until the

discriminator is fooled about half of the time. At that point, the generator

is producing fake images that are indistinguishable from real ones. This

technology (which is also at the heart of deep fakes) is poised to transform

photo-editing, special effects and industrial design. You will almost

certainly have already been exposed to multimedia content that dazzles and

inspires you, without realising that it is the handiwork of computers.

While a computer may dream up scores of new human-like figures after

being fed images of real people, however, it could not conceive, say, the

elves, dwarves or wizards that inhabit J. R. R. Tolkien’s Middle Earth.

Generative adversarial networks may help to fine-tune our fantastical

imaginings on the big screen, but, while there are some efforts underway to

direct them towards creating new worlds from old (replacing horses with

zebras in videos, for instance),10 those worlds are predominantly

envisioned in human minds, which readily cast aside the familiar and

ordinary.

Breaking the number system over and over

Mathematical truths are not cast in stone so much as they are cast in

axioms. When we change the axioms, mathematical reasoning may guide

us to truths that are unexpected and unintuitive at first, but unequivocally

logical and powerful in their own right.

The number system that we’re all familiar with (some tribespeople

aside) is actually the result of several iterations of breaking through

conceptual barriers. We know from Chapter 1 that our innate concept of

exact number expires at around four – nature’s design only revealed a small

handful of exact, whole quantities to us. All else, starting with the whole

numbers from four onwards, we invent for ourselves. To get from whole

numbers to the fully fledged number system of today, humans have had to

leap beyond everything we thought number could be and assimilate new

extensions that were previously deemed unfathomable. The progressive

evolution of the number system owes much to our willingness to depart

over and over again from its accepted conventions.



Many of the struggles with numbers that students encounter in school

arise because they are expected to draw on a concept or technique that

disrupts their prior ideas of how numbers ‘ought to’ behave. Fractions are a

classic example. When learning about whole numbers, we understand that

they appear in sequence on a number line: 1 is less than 2, 2 is less than 3,

and so on.

Fractions invert this ordering; our heads spin a little when we are first

taught that ½ is larger than ⅓. Placing our whole numbers at the bottom

of the fraction literally flips their ordering. Our intuitions are dealt another

blow when we multiply by fractions. With whole numbers (greater than 1),

multiplication always results in a larger amount – it amplifies. Multiplying

by 2 doubles a number, multiplying by 3 triples it, and so on. Not so with

their fractional counterparts: to multiply by ½ is to divide by 2, and thus

to reduce a number’s size. As we probe finer-grained classes of numbers, we

have to accommodate new and often unexpected behaviours into our

conceptual models.

Drowning in irrationals

No group of people has attached itself as fiercely to numbers as the cult of

Pythagoras (he of right-angled-triangle fame). The cult lived by all manner

of rules and regulations, which governed everything from their dietary

regulations to their bedtime routines and how they put on their sandals.

They were also proud disciples of numbers. Mathematicians and

philosophers in equal part, the cult declared that whole numbers

underpinned the very fabric of the universe. All things came from

number.11 In this arithmetical cosmology, fractions were permissible

because they were easily described as one whole number divided into

another, and easily constructed. But if a number could not be expressed as

a fraction, well, that was far too unwieldy (for one thing, mathematicians

would later show that any such number possesses a decimal expansion that

runs on forever without repeating). This was tantamount to heresy as far as

the Pythagoreans were concerned. The notion of these irrational

monstrosities brought chaos to their view of an orderly universe.



According to legend, one of the cult’s own disciples, Hippasus,

stumbled upon the existence of an irrational number. He did so by playing

around with Pythagoras’s famed theorem, no less. Take a right-angled

triangle whose shorter lengths are both 1. From the theorem, the length of

the hypotenuse is the square root of 2. It is this number, so easily

constructed, that Hippasus claimed could not be expressed as a fraction. It

would be the last discovery Hippasus ever made; the cult apparently

drowned him in an attempt to bury his treacherous discovery.

Mathematical secrets don’t stay buried for long, however, and another

Greek, Euclid, would later include a proof of Hippasus’s claim in Book X

of his Elements.II

A host of other irrational numbers would surface through the centuries,

and one stunning revelation is that these exotic beasts outnumber their

rational counterparts. If you were to randomly drop a pin on the number

line, you would almost certainly land on an irrational number rather than a

fraction – that is, a number so strange that we can scarcely imagine it in the

first place. The irrationals dispense with the notion that numbers are neat

and orderly, forcing us to admit the existence of creatures that proved too

wild for the Pythagoreans.



Zero: something from nothing

Legend has it that when Alexander the Great visited India, he encountered

a wise man meditating naked on a rock. As the old man gazed upwards at

the sky, the world conqueror asked him, ‘What are you doing?’ to which he

replied, ‘I’m experiencing nothingness. What are you doing?’ Alexander

said, ‘I am conquering the world.’ At this point they both laughed, each

one considering the other a fool for wasting his life.

The concept of nothingness has received a mixed reception from

civilisations in the past. Its mathematical representative, zero, was not

inducted into the number system as a matter of course. Even the Greeks,

despite all their mathematical sophistication, lacked any symbol for zero.

Ancient cultures each independently developed various symbols to

represent the idea of zero. Babylonian cuneiform script included a double-

wedge symbol for nothingness, while the Mayans denoted absence as a

shell in their famed calendar system. Records of zero (denoted by a dot that

later morphed into the 0 symbol we now adopt) also surfaced in third-

century Sanskrit training manuals written for Buddhist monks.12 In all

these contexts, zero was not a number but a placeholder that denoted the

absence of items. But zero as a number, that you could add, subtract and

multiply with – an object in its own right rather than a placeholder – took

more getting used to. The Mayans and Babylonians, despite using zero as a

placeholder, had no notion of zero as a numerical object.

In India, practices such as yoga encouraged the emptying of the mind

through meditation, and both Buddhism and Hinduism actively welcomed

nothingness as part of their doctrines. This provided fertile ground for the

concept of zero to grow in. The mathematician and astronomer

Brahmagupta first described it as a number in his text

Brāhmasphuṭasiddhānta, written in 628 CE. It would take another 300 years

for zero to be accepted as a number in Europe, where cultural leanings did

not sway towards notions of emptiness. In the early days of Christian

Europe, religious leaders banned the use of zero on the grounds that, since

God is in everything, any symbol that represents nothing must be the work

of the devil.



Today, we can scarcely imagine a world without the number zero. It

underpins everything from our notions of neutrality to the deepest

cosmological questions of the universe’s origins. When we encounter zero

at school it brings little consternation – the doubt and suspicion of earlier

generations has subsided.

Imaginary numbers

The numbers discussed so far, while troubling when first conceived of, can

at least be understood in concrete terms. The square root of 2 has an

unwieldy decimal representation, but it is simple to construct. Zero

involves taking on board the concept of nothingness, but it is neatly

situated at the centre of the number line, separating the positive numbers

from their negative counterparts (while negative numbers themselves also

require a conceptual leap). The next class of numbers we will examine is so

daring in its scope, so removed from tangible notions of quantity, that they

earn the label of imaginary numbers.

At school we are taught that square roots only exist for positive

numbers. It makes perfect sense to think of 5 and −5 as square roots of 25

because both of these numbers, when multiplied by themselves, return 25.

It is less clear what the square root of −25 should be: there is no obvious

candidate because the numbers we are familiar with, when squared, always

return a non-negative answer. Another, slightly more technical way of

saying this is that while equations such as x2 = 25 can be solved (this

equation just says that there is a number x which, when squared, gives 25;

we know this to be true of 5 and −5), equations of the form x2 = −25

appear insoluble. This passed as conventional wisdom in mathematics for a

long time; it simply did not make sense to square-root the negatives.

Solving these types of equations was not allowed. Until it was, that is.

As far back as the ancient Greeks, mathematicians had flirted with the

idea that such otherworldly numbers might exist – they just couldn’t fit

them into their existing conceptual frameworks. These numbers could not

be grasped in the same material sense as, say, whole numbers, or even

fractions. They appear to be mental concoctions. It was René Descartes



who coined the term imaginary number as a derogatory descriptor; such

was his discomfort with these entities. The Italian physician (and equal

parts trader, gambler and astrologer) Gerolamo Cardano gave nourishment

to the idea that negative numbers may have square roots. In his 1545

treatise Ars Magna, Cardano had noticed that in order to solve certain

classes of equations, one had to break with usual methods and take the

square root of negative numbers along the way. Cardano was puzzled by

the sudden imposition of this new number type, which made a fleeting

presence in some of his solutions. Not too long after this in 1572, in his

work L’Algebra, the Italian mathematician Rafael Bombelli transformed

the numerical landscape by showing that square roots of negative numbers

can indeed be made sense of, so long as we are prepared to extend our

conception of numbers.

The square root of −1 could now be willed into existence and given a

name: i for imaginary, say. This number does not sit anywhere on the

standard number line. But why settle for a line of numbers when you can

have a whole plane? If real numbers are represented horizontally, we may as

well display imaginary numbers vertically. Together, they form a two-

dimensional plane.



This is the Argand diagram, which displays all real and imaginary

numbers. The number i is a unit up from the origin, just as the number 1 is

a unit to the right. Similarly, the number 10i is ten units up, and −7i is seven

units down. The Argand diagram is just a special type of coordinate plane,

so if we now take any point in the plane, it has a horizontal component, a,



and a vertical component, b. We write this number as a + bi and think of a

as the real part of the number and b as the imaginary part. For example,

we get the number 5 + 3i by going 5 units in the positive real direction and

3 units in the positive imaginary direction. This is called a complex

number.

As you will have learned if you have taken mathematics far enough at

school, we can perform standard operations on complex numbers: they can

be added, subtracted, multiplied and divided. For example, to add the

complex numbers 5 + 3i and 2 + 6i, we just add the real and imaginary

parts, respectively, to get (5 + 2) + (3 + 6)i, or 7 + 9i. Most of the things

you could ever hope to do to real numbers extend to their two-dimensional

counterparts and, crucially, the complex numbers do not bring about any

contradiction that would prohibit their use. In fact, with complex numbers

in tow we can do much more, mathematically speaking. For one thing, we

can laugh away the suggestion that equations like x2 = −25 cannot be

solved.III

Bombelli’s imaginings caught the spirit of the Renaissance, a period that

saw ‘pure’ mathematics – the more rigorous, abstract brand of the subject

that is pursued without explicit regard for real-world application – soar, as

mathematicians embraced their subject as a playground of ideas to be

explored. Practical application was no longer the supreme motive for

mathematical inquiry; the only entry criterion was a willingness to

rigorously examine the consequences of whatever inventions the

mathematician’s mind could conceive. And yet, although imaginary

numbers were dreamt up in the human mind and threatened to mark a

complete break from reality (after all, there is no object in the physical

world that obviously represents the number i), they have since proved ideal

for describing a vast range of phenomena involving two-dimensional

change, such as waves, electric currents and quantum mechanical

equations. It takes an excursion into the mathematical world, which

permits the existence of these strange but logical objects, to uncover some

of the most powerful real-world representations.

Our ancestors could probably never have imagined the far-reaching

conceptions of number that have developed over time. Every extension of



the number system met with confusion, scepticism and even resistance in

its day. But mathematics does not owe us comfortable truths. Slowly but

surely, humans have integrated new ways of thinking about numbers. We

have confronted anomalies outside our conventional wisdom and humbly

recognised that the rules and regulations we accept as given may not tell the

whole story. Our willingness to entertain new numerical possibilities

rewards us with a wider lens through which to view the world.

The nineteenth-century mathematician Leopold Kronecker famously

quipped: ‘God made the integers, all the rest is the work of man.’13 At the

same time as betraying his own reluctance to accept thorny numerical

constructs, Kronecker was (perhaps inadvertently) paying tribute to human

ingenuity. We are willing to play at the boundary between what is and isn’t

considered possible, and we’re equally willing to extend the presumed

limits of our mathematical horizons.

One wonders if computers will earn credit in such adages: ‘all the rest is

the work of man, and beyond that the work of computers’ perhaps. But a

computer can scarcely grasp the subtleties of the number system that

humans have slowly uncovered. Computers have no way of dealing with

irrational numbers, for instance, save for executing known formulae for

approximating them. Many irrational numbers are expressed as an infinite

sum of terms, and a computer can get closer to the precise value by

computing more and more of those terms, but this act alone doesn’t imbue

the computer with an understanding of the concept of irrationality. It’s a

huge leap to think that a computer could lead us to classes of numbers not

yet conceived. That inventive power is not within the scope of rule-adhering

machines.

The incompleteness of mathematics

The mischievous playfulness of the human mind is best exemplified

through our attraction to paradoxes. Philosopher Willard Van Orman

Quine defined a paradox as any ‘conclusion that at first sounds absurd but

that has an argument to sustain it’.14 One of the oldest and best known

paradoxes sprang from the mind of the Greek philosopher Zeno, who

belonged to the Eleatic school, which considered change and movement to



be illusory. In one telling of Zeno’s paradox, the Trojan war hero Achilles is

racing against a tortoise. Achilles allows the tortoise a head start of a

hundred metres. Achilles runs very fast at a fixed speed while the tortoise

hobbles along slowly, also at a fixed speed. Achilles will soon have travelled

a hundred metres, arriving at the tortoise’s starting point. By then, the

tortoise will have moved along a small amount, say ten metres. Achilles

then needs a bit more time to travel the extra ten metres. When he gets

there, the tortoise has edged along. It seems that whenever Achilles arrives

at where the tortoise once was, the tortoise has maintained a lead. So

Achilles never catches the tortoise. This conclusion is patently absurd

because Achilles is travelling faster than the tortoise – he will surely catch it

eventually.

The value of paradoxes is that they impel us to revisit our assumptions

and to refine and even reject them in servitude to sound argumentation. To

resolve a paradox, we must address what went wrong in the argument.

Zeno’s paradox is resolved by recognising that time cannot be broken into

discrete chunks in the way he has described. Thomas Aquinas provided one

way of averting the apparent contradiction (foreshadowing the centuries-

later development of calculus, which gave mathematicians a formal way of

handling infinitesimally small quantities): ‘Instants are not parts of time,

for time is not made up of instants any more than a magnitude is made of

points, as we have already proved. Hence it does not follow that a thing is

not in motion in a given time, just because it is not in motion in any instant

of that time.’15

The early twentieth century was a golden age of paradoxes, especially

among mathematicians. A paradox poses a threat to the logical

foundations of mathematics, but a system grounded in logic should be

impervious to such threats and find ways of accounting for every apparent

contradiction. One paradox that proved particularly potent came from the

mathematician, philosopher and political activist Bertrand Russell. It is

commonly framed as the ‘barber paradox’ and goes like this:

In a town, the barber is the ‘one who shaves all those, and those only,

who do not shave themselves’. Does the barber shave himself?



There are two possibilities: either the barber shaves himself, or he

doesn’t. If he does, then he must be among those ‘who do not shave

themselves’. And if he doesn’t, then he is among those ‘who do not shave

themselves’ and therefore must shave himself. Either way, we find ourselves

in a situation where the barber both shaves himself and doesn’t shave

himself – an outright contradiction. The paradox arises through self-

reference: the barber has been defined in a way that refers to the barber

himself, which ties the situation up in knots that cannot be untangled.

Russell conjured up this paradox at a time when mathematicians were

attempting to ground their subject with rigorous foundations – a

movement known as formalism.16 The formalist movement enjoyed

support from the likes of German mathematician David Hilbert, who

initiated what became known as Hilbert’s programme to establish a firm

axiomatic basis for mathematics. To formalists, the essence of mathematics

is inviolable logic. At first blush this view is not far-fetched; think back to

the painstaking rigour of mathematical proofs. Formalists believed,

perhaps intuited, that if the foundations of mathematics were properly

framed, the whole subject could be kept free of the tyranny of paradoxes

and contradictions.

As early as the 1880s, the German logician Gottlob Frege had already

made a serious attempt to build mathematics from the ground up using

only logic, by conceptualising all mathematical objects as sets. A set is just

any collection of objects. Consider the number 3. In Frege’s scheme,

threeness is a property common to all sets containing three objects. The set

of colours on the US flag, the set of primary colours and the set of blind

mice of the nursery rhyme all share this threeness property, and the

‘number’ 3 is itself the set that contains all of these three-item collections.

The holy grail was to frame all mathematical statements in terms of

these fundamental, abstract objects. Russell had realised that Frege’s

definition was too loose; his original paradox was actually framed in terms

of sets. Russell asks you to consider a set – call it R – whose members are

all sets that do not contain themselves. The question is, does the set R

contain itself? You will soon realise that this is the self-referential barber

paradox in disguise, where each possibility leads you to contradiction –



anathema to the formalist ideals of set theory. Frege’s framework was

allowing for sets that were simply too large for logical rules to hold up.

When Frege learned of his error from Russell, he hastily appended a

postscript to his book, The Basic Laws of Arithmetic, saying: ‘Hardly

anything more unfortunate can befall a scientific writer than to have one of

the foundations of his edifice shaken after the work is finished. This was

the position I was placed in by a letter of Mr Bertrand Russell, just when

the printing of this volume was nearing its completion.’17

Paradoxes were poised to plunge formalism into crisis, but Russell

himself was unfazed: his own paradox simply gave him, and others, pause

to reflect on what should and shouldn’t be called a set. In the example

above, R was simply too ‘large’ to qualify as a set. By barring such

possibilities, he eliminated the resulting contradictions.

The formalists marched on, refining their definitions and rules in the

hope of finding an axiomatic system that would be both consistent (i.e. free

of contradictions) and complete (i.e. accounting for all mathematical

truths). Euclid’s system for plane geometry meets both requirements, but

the same had not yet been established for systems of arithmetic. If a

mathematical system could achieve both consistency and completeness, it

would be strictly tied to logic once and for all, rather than to, say, intuition

or other holistic thought structures. Intuition, after all, led to the

absurdities of the barber paradox, deemed unfit for the sport of

mathematics. Along with his contemporary Alfred Whitehead, Russell laid

out his own approach (based on a slightly different system called type

theory) in excruciating detail. Their tome Principia Mathematica is

renowned for its complex notation: it takes several hundred pages of

unrelenting notation to establish the fact that one plus one equals two. T. S.

Eliot was among those who praised the work for its clarity and exactness,

suggesting it was ‘perhaps a greater contribution to our language [English]

than… to mathematics.’18 In any case, the tome was the slowest but surest

progress to a bug-free, all-encompassing version of mathematics. Or so

they thought.

In 1931, Russell’s formalist vision was dealt a vicious blow from which it

would never recover, courtesy of the Austrian logician Kurt Gödel. Gödel’s



work is guided by another self-referencing paradox, the sentence ‘this

statement is false.’ In much the same vein as the barber paradox, this

statement can be neither true or false. What Gödel showed was that in any

system sophisticated enough to contain the rules of arithmetic, you can

produce the following statement, similar to that paradox:

This formula is unprovable in the system.

On the one hand, this statement is true because if it were false, then it

would be provable, which would render it true (you may want to re-read

that last sentence a few times). Yet the very statement of this truth tells us

that it cannot be proved. One potential way out of this quandary is to turn

this unprovable statement into an axiom, so that its proof is automatic.

The substance of Gödel’s argument is that the axioms upon which your

system is based do not matter: there will always be another true statement

of the form ‘this formula is unprovable in the system’ that remains

unprovable. It is much like an impossible jigsaw puzzle, where no matter

how you arrange the pieces you always end up with gaps.

Gödel had created a gap between truth and provability, a gap that could

only be avoided if your system excluded elementary arithmetic. That is a

severe constraint. The rules of arithmetic – how to define numbers and

perform operations on them – are the basis of mainstream mathematics.

The formalist ideal of complete and consistent mathematics would be

limited to ‘rogue’ systems that deviate from our usual understanding of

numbers. It would be akin to searching for a grand unified theory of the

universe, only to realise the theory holds for no more than a handful of

obscure galaxies. Gödel had demonstrated that no system containing

elementary arithmetic can be both consistent and complete because there

will always be statements, like that above, that cannot be proved or

disproved – there will always be undecidables. This is the exact opposite of

what formalism strives for. The entire edifice of Russell and Whitehead’s

work was shattered in an instant.

Gödel was not done – he later showed that even if a system containing

elementary arithmetic is consistent, its consistency cannot be proved within



the same system. The mathematician André Weil summarised it best: ‘God

exists because mathematics is consistent, and the devil exists because we

cannot prove the consistency.’19

What Gödel established, contrary to the expectations of his time, was

that logically consistent systems are small and boring. Mathematics does

not yield to a foundational system from which all of its truths can be

derived. It is broken at its core because no consistent system can account

for all true statements.IV

What incompleteness means for intelligence

This chapter espouses the essentially human virtue of breaking the rules.

We have seen how altering the axioms of Euclid’s plane geometry gives rise

to entirely new geometries that are legitimate and powerful in their own

right. We have also traced some of the histories of the number system,

showing how humans have had to break through conceptual barriers to

accommodate new numerical objects and behaviours. And we have seen

that attempts to formalise systems containing arithmetic are doomed to fail

because no consistent system can deliver a proof of every truth within that

system. Mathematics is far more than a deductive discipline; it cannot be

reduced to a collection of truths waiting to be proved in turn. The truth

turns out to be more complicated and, at times, unprovable.

In one respect, Gödel’s incompleteness theorems vindicate the rule-

breaking mantra of this chapter. Since no axiomatic system can guide you

to all proofs, our only recourse is to playfully tinker with axioms and

examine the consequences. In their book Gödel’s Proof, Ernest Nagel and

James Newman write of incompleteness as ‘an occasion, not for dejection,

but for a renewed appreciation of the powers of creative reason’.20 Gödel’s

arguments amount to saying that mathematical thinking operates on more

than just precise, cold logic: it also demands some level of intuition and

inventiveness. Quite often, an idea will require the seeding of new axioms,

the creation of new systems. Is this the kind of subtle intellectual work we

can expect of machines? Nagel and Newman are among those who have

expressed scepticism, suggesting that computers are tied to ‘a fixed set of



directives’ that condemn them to the same limitations of formal systems.

Where humans can show flexible reasoning and break up their own

‘directives’, computers are unavoidably stifled by the rules imposed on

them.

There is also a detail embedded in Gödel’s argument that may tell us

something about the boundary between how computers and humans think.

Consider again the ‘true but unprovable’ statement that Gödel constructs

for a logical system (containing the rules of arithmetic):

This formula is unprovable in the system.

Gödel has managed to derive a truth about the logical system that the

system itself is unable to establish. In other words, there is no way of

‘seeing’ this truth about the system unless we escape the rules of that very

same system. In a famous argument put forward by the philosopher J. R.

Lucas21 and later revived by renowned mathematician and physicist Roger

Penrose,22 it follows that human thought systems cannot be wholly

algorithmic – that is, reducible to a set of rules. If they were, the argument

goes, then the mind would constitute a logical system and, by Gödel’s

argument, we ourselves would be unable to see the truth of its

corresponding ‘Gödelian statement’. But this is not the case: evidently,

using some form of meta-mathematical reasoning, we manage to climb out

of any prescribed system and are in fact able to see the truth of that

statement. There is some wisdom or insight guiding us to truths not

attainable within purely algorithmic constructs. And so, conclude Lucas

and Penrose, machine intelligence, premised purely on such constructs, will

never fully emulate the kinds of thinking espoused by us humans.

The Lucas–Penrose argument is not without its critics.23 One

counterargument is that our minds are so complex that we may have no

way of formulating the Gödelian sentence they give rise to, rendering us no

better equipped than machines to see the truth of the sentence.24 Other

arguments take aim at the assumption made by Lucas and Penrose that the

system of human thinking is logical (or consistent). At the very least, we

should reserve some suspicion for such an optimistic claim in light of the



biases we uncovered in the previous chapter. Worse yet, by virtue of Gödel’s

second incompleteness theorem, even if we are consistent thinkers, we

would have no way of proving this ourselves. In short, it may well be that

we are inconsistent machines to which Gödel’s theorems simply do not

apply.

In any case, replicating human intelligence would require designing

machines in such a way that they are not tied to any particular set of rules

or behaviours – that is, machines that can entertain contradictions.

Douglas Hofstadter sees no problem with this: ‘It is no harder to get a

computer to print out scads of false calculations (“2 + 2 = 5; 0/0 = 43”,

etc.) than to print out theorems in a formal system. A subtler challenge

would be to devise “a fixed set of directives” by which a computer might

explore the world of mathematical ideas.’25

The key question, it seems, is whether humans can program a machine

in such a way that the machine can break out of its own system. The bar

for human intelligence has been set by those who have rejected prescribed

modes of thinking. By itself, logical manipulation gives us no way of

confronting our belief systems. It has no means of challenging anomalies.26

Creativity comes from discontinuity, from contemplating paradoxes and

poking holes into our accepted ways of thinking. Humans advance new

ways of thinking when we combine our logical disposition with a disruptive

mindset, seeking out contradictions and resolving them.

In the aftermath of Deep Blue’s victory over Garry Kasparov, the human

grandmaster called foul (Kasparov was not known for being graceful in his

rare defeats),27 suggesting that the IBM team had intervened during one of

the games to throw him off the scent. The exchange is revealing: one

human accusing another of exploiting his psychological vulnerabilities by

interfering with gameplay, in contravention of the rules. The accusation

was levelled squarely at the human engineers behind Deep Blue, not the

computer itself. Deep Blue, for its part, was incapable of breaking the rules.

The inventiveness of Deep Blue and its more modern machine learning-

driven incarnates such as AlphaGo remains confined to a world of fixed

rules and regulations. AlphaGo and its like can deliver spectacular

combinations of the rules and constraints they are fed, but perhaps the real



bar for imagination is the ability of machines to contort the rules of the

games they so effortlessly master, to ‘think outside the box’ and perhaps,

just occasionally, to cheat. The ‘spoilsports’ who run amok in Monopoly

may deserve more credit than I have granted them hitherto.28

I. In fact, the original version of the game was designed to expose the injustices of concentrated

property ownership. It was called ‘The Landlord’s Game’ and included elements such as a land value

tax. Only later did the ‘monopolist’ ruleset prevail, in which property owners are rewarded with rent

payments, and bankrupting opponents is the express aim.

II. Euclid adopts a proof by contradiction, which is a what if? type argument in itself. He starts by

asking ‘what if √2 exists as a fraction?’ and then goes on to find a contradiction, thus disbarring any

such fraction.

III. T he fundamental theorem of algebra says that any polynomial – which is an equation involving

powers of x – has as many solutions as the value of the highest power.

IV. If Gödel’s statement strikes you as somewhat contrived, then it is worth noting that many other

undecidable propositions have been uncovered, some of which correspond to concrete mathematical

ideas. One instance arises in the highly pertinent area of machine learning, where researchers have

sought ways of making predictions about large datasets by sampling a small subset of data points.

The question of whether a small sample is sufficient to make such extrapolations turns out to be

equivalent to finding a set whose ‘size’ is somewhere between that of the integers (infinite and

countable) and the real numbers (infinite and not countable) – a problem that mathematicians have

known for decades is undecidable.



5

QUESTIONING

Why mathematics is like play, the questions no computer can

answer, and the simple trait that makes every child smart

It’s not enough to know the Ultimate Answer to life, the universe and

everything (which, as fans of Douglas Adams will tell you, is 42).I The

question matters a great deal more. And yet, as Pablo Picasso put it more

than fifty years ago, referring to calculating machines: ‘they are useless.

They can only give you answers.’1

Even the most fervent AI enthusiast would have to admit that the latter

half of Picasso’s caustic remark remains true. Useless they are not, but

whether tasked to play a game of Go, drive a vehicle, or diagnose medical

ailments, a computer’s scope of inquiry is specified by us humans. They

pursue answers only to the questions we pose of them. For a machine to

define its own goals, it would first need to become sentient. While we

await the literal awakening of the machines, asking questions will remain

the preserve of humans.

It is widely thought that to develop human-level AI, machines must first

be programmed with child-like intelligence, and then learn, as children do,

by interacting with their environment (as opposed to having exabytes of

information pumped into them at ‘birth’). Alan Turing surmised as much

in his seminal paper on AI: ‘Instead of trying to produce a programme to

simulate the adult mind, why not rather try to produce one which

simulates the child’s? If this were then subjected to an appropriate course

of education one would obtain the adult brain.’2

If the AI community takes this aspiration seriously, it must figure out

how to get computers to ask questions. If you spend just a few minutes



with a group of children, you will be left with no doubt that questioning is

the most innate of human skills. Infants are natural explorers. Even before

developing their motor skills, they absorb visual cues from their

environment and form hypotheses about the world. As children develop

language, their observations trigger all manner of questions. Harvard

child psychologist Paul Harris has put a number to it: his research shows

that children ask around 40,000 questions between the ages of two and

five.3

Even as adults, we possess an insatiable thirst for knowledge; what

psychologists term ‘epistemic curiosity’.4 We’re constantly navigating the

terrain between what we know and what we don’t: a sweet spot of

exploration that arouses our liveliest curiosities.

Information-seeking can be extrinsic – we seek the latest insights on

stocks to maximise income, and we check the weather to determine

whether we should carry an umbrella on our afternoon walk. Machines

are incentivised by external rewards, too. Robots that have been

programmed with reinforcement learning algorithms take actions to

increase some numerically defined reward. They’ll roam their environment

and make calculated choices around where to go next, or what to do next,

based on what will score them points.

But information-seeking can also be intrinsic.5 Unlike machines,

humans are drawn to questions that we deem interesting in and of

themselves. We’re so moved by cause-and-effect mechanisms, for instance,

whether they have practical import or not, that we cannot help but be

drawn to inquiry. If you ask a child to stack some building blocks, where

some of the blocks have extra weights hidden in them, they will freely

experiment to establish an atypical centre of gravity that makes their

construction balance (essentially creating a model seesaw). Chimpanzees,

on the other hand, show no interest in accomplishing the same task,

presumably because they do not come equipped with the reasoning skills

that render such tasks interesting.6

This chapter looks at the kinds of questions that pique our interest on

their own merits, irrespective of external rewards. We can think of them as

curiosity inducers, the most straightforward of which is, according to the



psychologist George Loewenstein, the ‘posing of a question or

presentation of a riddle or puzzle’.7 On that basis, mathematics is a

powerful study of what makes the human mind tick.

The recreational roots of mathematics

Puzzles have been a staple feature of human interaction for thousands of

years. Every now and then, they explode into popularity, holding masses

of people in their grip. The earliest discovered collection of puzzles is the

Rhind papyrus (dated 1650 BCE), a five-metre-long scroll that captures the

Egyptians’ penchant for measurement. It includes wide-ranging

contributions to arithmetic and geometry, the Egyptians’ very own

decimal counting system and a collection of problems that demonstrate an

extraordinary flair for unit fractions.II Amid all of the practical intent of

the papyrus, Problem 79 has a teasing flavour: ‘There are seven houses; in

each house there are seven cats; each cat kills seven mice; each mouse has

eaten seven grains of barley; and each grain would have produced seven

hekats (an old unit of measure equivalent to about 5 litres). What is the

sum of all the enumerated things?’8

The puzzle has undergone several iterations since (among them the

well-known St Ives riddle, although that particular example requires no

arithmetic). This is a problem of combinations, and it is rooted in

playfulness rather than an authentic real-world scenario. Questioning for

its own sake.

In England, the late eighteenth and early nineteenth centuries saw

puzzles become mainstream. The conditions for recreational problem

solving were ripe: printing had become cheap, leading to the widespread

distribution of magazines, while the industrial revolution was giving rise

to a ‘leisure class’ of citizens who had more time to indulge their

curiosities. It was during this period that Lewis Carroll – the better-known

alias of Oxford mathematician Charles Dodgson – wrote A Tangled Tale,

a collection of ten humorous stories (or ‘Knots’ as he called them), each

anchored to a mathematical puzzle. It’s every bit as delightful as Alice’s

Adventures in Wonderland (which, to the attentive mind, also happens to



contain its fair share of mathematically inspired riddles). Recreational

puzzling crossed the pond in the twentieth century, most notably with the

legendary Martin Gardner, who ran the ‘Mathematical Games’ column in

Scientific American between 1957 and 1982. Mathematicians and puzzlers

of all varieties converge in their admiration for Gardner, such was the

diversity of his playful creations. Perhaps the highest praise has come from

linguist Noam Chomsky, who asserted that ‘Martin Gardner’s

contribution to contemporary intellectual culture is unique – in its range,

its insight, and understanding of hard questions that matter.’9

The most prominent instance of recreational problem solving in recent

decades hails from Japan: the Japanese have asked a few hard questions of

their own by popularising their distinct genre of grid-like puzzles. You

almost certainly know or have even attempted one of these: Sudoku. Faced

with a 3 × 3 grid of 3 × 3 boxes, puzzlers are tasked with completing the

partially filled grid in such a way that the numbers 1–9 fill every row,

column and box contained within the larger grid. Sudoku actually

originated in the United States, but it found a willing audience among the

readers of a Japanese puzzle magazine, Puzzle Communication Nikoli,III

which boasts over 300 different puzzles, most of which are generated by its

readers. All of the puzzles are inspired by the grid format. Writer and

puzzler Alex Bellos attributes the wild popularity of these puzzles in Japan

to the culture’s fondness of miniaturism, minimalism, refinement and

craftsmanship.10 The rules are deceptively simple, while the solutions

require reasoning that is both logical and elegant. It is typical for

magazines to defer to computers to generate multiple instances of their

content, but every Nikoli puzzle originates from hand-crafted human

effort. As a puzzler, you can ‘feel the hand of the author’ as you explore

pathways through the grid.11

To a mathematician, the experience of doing mathematics is more akin

to that of a puzzle enthusiast working through those grids than it is to the

formal, stuffy presentation of the subject shaping its public perceptions.

Gardner defined recreational mathematics as the part of the subject that

‘includes anything that has a spirit of play about it.’12 Arguably, the

definition ought to extend to all aspects of mathematics – you will be hard



pressed to find a mathematician, even one whose aims are practical, or

whose ideas are rigorous and expressed formally, who does not delight in

problem solving.

Much of the mathematics we take for granted today, even its most

serious forms, can be traced to recreational roots. A single problem,

considered interesting on its own terms, can motivate vast new concepts

and even whole branches of mathematics.

The bridges of Königsberg and graph theory

In the eighteenth century, residents of Königsberg, a small Prussian town

on the banks of the Pregel river, mused over a question during their long

Sunday walks.13 The river divided the city into four regions, and seven

bridges had been built over the river to connect the regions. The residents

wondered whether it was possible to trace a route around the city in such a

way that they visit each of the four regions by crossing each bridge exactly

once. The exact motivation for this puzzle seems unknown; perhaps there

was an element of pragmatism among tradespeople to chart the most

efficient path. More likely, the puzzle appealed to their problem-solving

instincts and grew in stature as a solution remained elusive. The residents

were unable to find a path, and were equally unable to demonstrate that it

was impossible to do so.

In the nearby city of St Petersburg, the puzzle caught the attention of

the prolific mathematician Leonhard Euler. Euler initially dismissed the

problem as trivial, writing to a colleague that it ‘bears little relationship to

mathematics’. But Euler could not shake off his curiosity, soon afterwards

confessing that the puzzle ‘seemed to me worthy of attention in that

[neither] geometry, nor algebra, nor even the art of counting was sufficient

to solve it’. Euler, having exhausted the standard toolkit of

mathematicians at the time, realised that solving the puzzle might

motivate new mathematical concepts.



He could see that the puzzle resembled a geometry problem, but not

geometry as it is usually understood, with measurements and calculations.

The key idea behind this puzzle, Euler realised, was in the position of the

four regions and the seven bridges that connected them. Euler created a

new representation for the problem by thinking of the regions as points

(or nodes) and the bridges as lines.

In Euler’s mind, the puzzle amounted to drawing the following

configuration of dots and lines without going over the same line twice,

and without removing the pencil from the page:

You may have encountered puzzles of this type and found that some

appear to be unsolvable. Euler’s challenge was to show why this particular

map could not be drawn in the prescribed way (which would then explain

why the Königsberg round trip was impossible). Euler’s idea was to

consider the number of lines (bridges) that connect each point (region).

Take any point that does not start or end the journey. If we are to make a

journey, not removing our pen and not going over the same line twice,

then every time a line goes into the point, another line must go out. This



means that an even number of lines go through the point over the whole

journey because adding two to itself always results in an even number. If

we ever find a point with an odd number of connected lines, it must be

situated at the start or end of the journey.

Now look at the Königsberg map again. Each of the four points has an

odd number of lines connected to it. That’s too many: clearly, at most, two

points can be placed at the start and end of any journey. And that’s why

the Königsberg residents failed to come up with a legitimate route – it

didn’t exist.

By formulating and solving the puzzle in this way, Euler brought into

being a new field of mathematics called ‘graph theory’. Here, ‘graph’

means something different to the graphs you plotted in school: it denotes

any arrangement of connected lines and points. Euler wasn’t just solving a

single problem for the residents of Königsberg, he was inventing whole

new concepts and tools for studying connected groups of objects. Graphs

turn out to be very interesting from a mathematical standpoint; once the

impossibility of the Königsberg puzzle was established, Euler, and

generations of mathematicians after him, set their minds to exploring

other, similar, problems. Graphs crop up in all kinds of real-world

situations as models of different types of networks. The tools of graph

theory can be used to explore the structure of the human brain, the atomic

arrangement of crystals, the hexagonal lattices woven by bees, the mega-

wireless network of computers known as the internet, friendship groups

on social media and the spread of infectious diseases. Graph theory has

evolved into a vast field and an active area of research, yet it emanated

from a simply stated puzzle that captured the imagination of humble

residents going about their daily walk. It just took a mathematician to

systematise the ideas that had piqued their interest.

A gambling problem and probability

A puzzle was also the trigger point for the development of probability, the

study of chance events. Probability was not always accepted as a mainstay

of mathematics; uncertainty was a thorny concept that, for those



deferential to the very definite, predictable laws of nature, was not to be

tampered with. The field was sparked in a famous 1654 letter from one

French mathematician, Blaise Pascal, to another, Pierre de Fermat.14 Pascal

was a torn personality who flitted between gambling and religious

practice. Somewhere in between, he found himself more than a little

intrigued by the following thought experiment posed by a colleague:

Imagine that you and I are flipping a fair coin. We’ll throw the coin

five times and on each throw, you score a point if the coin lands

Heads, I score if it’s a Tails. Whoever scores more points across the

five throws scoops the £10 prize money. The first three coins land

Tails, Heads, Heads. At this point, the game ends abruptly (perhaps

we lost the coin).

The question that bugged Pascal was: what is the fairest way to divide

the prize money, given what we have observed? While the experiment is

situated in the context of gambling, the scenario should strike you as

fanciful: can you really imagine such a game being halted in this way? It

has the flavour of a recreational puzzle and was compelling enough for

Pascal to search for a solution that the mathematics of his time did not

serve up. Several books had been published on gambling, but none had

dared to make predictions of the future. That all changed in the series of

letters exchanged between Pascal and Fermat. It was Fermat who figured

out how to resolve the prize money – the solution may seem obvious to us

now, given how accustomed we are to probability, but calculated

speculation of future events was unheard of at the time.

Fermat reasoned that there are four possible future scenarios,

depending on how the two coins land. For each of these possibilities, we

can determine the hypothetical winner:

HH   –   4 Heads, 1 Tails   –   you win

HT   –   3 Heads, 2 Tails   –   you win

TH   –   3 Heads, 2 Tails   –   you win



TT   –   2 Heads, 3 Tails   –   I win

Since you triumph in three out of four cases, you should get three

quarters of the prize money (£7.50), while I grudgingly accept the

remaining quarter (£2.50).

With the puzzle solved, the field of probability was poised to go

mainstream. Within a hundred years, mathematicians would invent mental

tools to cope with all types of uncertainty. Johann Bernoulli applied these

ideas to settle a range of legal disputes, such as how and when to divide up

an estate when the owner is missing and presumed dead. His brother

Jacob coined ‘probability’ as a term, formalising the calculations

underpinning the likelihood of events. Other core tenets of the subject like

the bell curve (used to model the distribution of several real-world

characteristics such as height, weight, stock prices and test scores) and

Bayes’ Theorem (used to calculate the likelihood of one event based on the

occurrence of other events) materialised soon after. A cottage industry of

insurance providers entered the fold, profiting from the new enterprise of

risk management. Fast-forward to the present day, and entire swathes of

AI are underpinned by the same probabilistic ideas.

The mathematics that fuels so many real-world applications is rooted

in thought experiments that might otherwise fill the pages of puzzle

books. The usefulness of mathematics often emerges at a later stage, once

concepts are firmly established, and owes a huge debt to the curiously

minded mathematicians who get hooked on particular questions for the

sake of puzzling alone, and who bring those concepts into existence.

Engaging with a maths puzzle or problem (the distinction barely

registers with mathematicians – they delight in both just the same) can

elucidate wider themes and principles that help to build up a picture of an

underlying field, giving rise to more questions in the process. According to

Pulitzer Prize-winning historian David Hackett Fischer, questions are

nothing less than ‘the engines of intellect – cerebral machines that convert

curiosity into controlled inquiry.’15 In mathematics, they have a generative

effect: the solution of one problem begets many more. Mathematics is not

as absolutist as many would claim: the resolution of a question isn’t



always a simple right or wrong answer. A good question is an expansive

one: it motivates new definitions, concepts and theorems. Fields as wide

and deep as graph theory and probability come into being when problems

are linked together, bound by a common character.

So mathematicians are problem solvers on the one hand, puzzling their

way through standalone curiosities, but also theory builders who seek out

the trends and principles that govern the problems in their field.16 Freeman

Dyson, a mathematician and physicist, turns to the animal kingdom to

describe these two approaches:

Birds fly high in the air and survey broad vistas of mathematics out

to the far horizon. They delight in concepts that unify our thinking

and bring together diverse problems from different parts of the

landscape. Frogs live in the mud below and see only the flowers that

grow nearby. They delight in the details of particular objects, and

they solve problems one at a time.17

The frogs-and-birds metaphor has echoes of philosopher Isaiah Berlin’s

classification of people as either narrowly focused hedgehogs (who ‘know

one big thing’) and generalist foxes (who ‘know many little things’).18

Dyson was a self-proclaimed frog, but was keen to emphasise that ‘the

world of mathematics is both broad and deep’, implying a need for both

types of creature: ‘birds give it broad visions’, he says, ‘and frogs give it

intricate details.’

Computers are frogs rather than birds. They’ll fixate on individual

questions and answers without dwelling on how they relate to wider

concepts. They may deliver spectacular and unexpected answers, but they

lack the frame of reference to flag their results as spectacular or

unexpected, or to tie together different solutions into unifying theories.

It’s also not yet clear how computers might come one day to present the

world with novel problems. Picasso was right to suggest that computers

work strictly in the realm of problem solving, in servitude of the questions

that we humans pose to them. We can put computers to the task of



checking different configurations for the Königsberg problem, but it’s

difficult to imagine robots tottering about their daily excursions and

thinking up such seemingly arbitrary problems in the first place, or feeling

an urge to examine the apparent impossibility of a solution and

originating new mathematics in the process. It is telling that the

probabilistic foundations of modern AI applications emerged from the

thought experiments of curious human minds. Until machines can

somehow emulate the human drive for inquiry, it is far from obvious that

they could ever produce mathematics for its own sake.

Where to point our ‘telescopes and spaceships’19

Computers may not dream up problems, but they are helping us grapple

with increasingly complex ones. Large datasets and superhuman

computing power mean that we can model more of the world more

quickly and reliably, from the minutiae of optimising a mobile phone

package within budget constraints to large-scale, high-stakes climate

forecasts. The human effort is in developing plausible models of these

phenomena, before feeding them into our computers and then evaluating

our assumptions based on what comes out.

This manoeuvre from the physical world to the computational one and

back again is so far-reaching in scope that mathematician Conrad

Wolfram has developed an entire mathematics education reform

programme around it, which he calls ‘computer-based maths’.20 Wolfram

argues that we live in a ‘computational knowledge economy’, where it’s

not what you know that counts so much as ‘what you can compute from

knowledge’.21

In Wolfram’s curriculum, students learn mathematics through a four-

step model: 1) define the question, 2) turn it into a form that can be

computed, 3) compute answers and 4) interpret the results. It’s a cyclical

process, with one set of results sparking further questions. And because

the third step of computation is automatic and instantaneous, we can

experiment with multiple variants of the same question without delay. The

division of cognitive labour is clear: humans ask the questions, translate



them into computable form and make sense of the results, but the

computing step itself is delegated to computers. Once humans have set

their mind to a problem, so long as they can frame it in computable terms,

a computer may well aid us en route to a solution.

There’s much to welcome about Wolfram’s approach: it places

mathematical procedures in their proper context and tasks humans with

evaluating at what point they are appropriate for a given real-world

setting. It does not negate the need for students to have some familiarity

and fluency with these procedures, but it also does not obsess over them

like most standard curriculums do. It does, however, seem exclusively

utilitarian: Wolfram adopts the pragmatist perspective that mathematics

derives its usefulness solely from direct real-world applications. Yet when

we direct computers to places quite removed from the physical world, they

offer another benefit: satiating our deepest curiosities.

Among the most curious of all mathematical objects is the number π.

As far back as at least 2000 BCE, it has been known that π is a constant –

that is, the ratio of the circumference to the diameter of a circle is always

the same, regardless of its size. Both your shirt button and the Earth’s

equator will return the exact same ratio (I am allowing the indulgence of

assuming they are both perfect circles).

Approximating π has thus been a labour of love for several major

civilisations. The Rhind papyrus contains a procedure that estimates π as

256/81 – around 3.16, within 1 per cent of its actual value. The Greek

mathematician Archimedes made a quantum leap of progress by

harnessing an iterative method that involves approximating circles with

polygons that have a large number of sides. The Chinese had captured π to

seven decimal places by the fifth century. And the great Indian

mathematician Srinivasa Ramanujan set the pace in the early twentieth

century with outrageously fanciful representations of π in terms of infinite

sums.

Modern computational methods have added new thrills to the chase. In

1949, ENIAC, an early electronic computer, calculated π to over 2,000

places, almost doubling the record. On 14 March 2019,IV Google

announced that one of its employees, Emma Haruka Iwao, had calculated



π to a staggering 31.4 trillion digits, demolishing the previous record of 22

trillion. It would take around 332,064 years to recite all 31.4 trillion of

those digits. Google was the perfect hunting ground: Iawo was able to

leverage its cloud-computing technologies, using 170 terabytes of data (the

equivalent of around 340,000 song files) spread across 25 virtual machines.

The computation lasted 121 days. The record was eclipsed in January 2020

(50 trillion digits), then again in August 2021 (62.8 trillion), with more

surely to follow.

You might well ask how far we need to go. For practical purposes, not

far at all: it usually suffices to approximate π to two decimal places, 3.14.

Archimedes’s methods took him to three decimal places, whereas Isaac

Newton stopped at sixteen. NASA’s Jet Propulsion Laboratory uses only

fifteen digits of π when performing calculations for interplanetary

navigation. For the most ardent engineer unwilling to compromise an iota

of accuracy, approximating π to thirty-nine decimal places will capture the

size of the Milky Way to within the length of a proton.

It is evident that efforts to capture ever more decimal places of π are

driven by intrinsic motives rather than some practical end. One of the

most alluring characteristics of π is that it is an irrational number, which

means that its decimal expansion will never run out or repeat. As the

numerical representative of the circle, π is an embodiment of all that is

infinite and elusive. It can never fully be captured, which only makes

chasing its tail that much more attractive. In Iawo’s own words: ‘There is

no end with pi, I would love to try with more digits.’22 This is Everest

without its summit: an infinite ascent towards previously unchartered

frontiers. And for those adamant on retaining a practical purpose,

approximating π has been used as a debugging tool (if two programs

produce two different approximations of π then at least one must contain

an error somewhere),23 while the Swiss team behind the 2021 record

foresees applications in ‘RNA analysis, simulations of fluid dynamics and

textual analysis’.24

As machines become smarter, they can even give rise to new types of

questions. The Ramanujan Machine, for example, is a machine learning

program that uses known formulae to calculate digits of π (and other



mathematical constants) and then uses the first few thousand digits to

predict entirely new formulae.25 Discovering new formulae is a step

beyond simply crunching through existing ones. Some formulae will be

true, others false – the program is, in a sense, throwing up automated

conjectures (of the kind for which Ramanujan was renowned) that

humans can then get to work examining.

The pattern-matching prowess of computers is also being brought to

bear in fields like topology, which often deals with complicated shapes (so

complicated that we struggle to visualise them). Approaches that have

proven effective in image recognition have been applied to get good guesses

on what some shapes look like. For example, when an artificial neural

network was given a list of mathematical knots (which are the same as

everyday knots except that there are no loose ends), it confidently, and

correctly, predicted that each one did not arise as a slice of a higher-

dimensional object (this has a very technical definition which I won’t give

here). The only exception was a particular knot called the Conway knot,

where the network returned a probability of ½.26 This was uncanny

because mathematicians had struggled for decades to prove that the

Conway knot, like the others, was a ‘non-slice’. This conjecture was later

proven by graduate student Lisa Piccirillo using novel techniques, but the

uncertainty of the neural network seemed to match the difficulty that

human mathematicians had faced for so long in probing this particular

shape. This example may signal that AI can alert us to objects worthy of

our study and, far from unseating us from the helm of problem solving,

direct new lines of inquiry as we take a closer look at the things machines

struggle to make out.

Questions beyond computation

It is tempting to think that, with the advent of AI, computers are

approaching a state of omniscience. The notion that a computer might be

able to answer any question we throw at it lies at the heart of David

Hilbert’s Entscheidungsproblem (‘decision problem’), which he posed in

1928. Hilbert asked whether there is a single algorithm that could



determine, from a given set of axioms, whether or not any statement is

provable. Gödel’s incompleteness theorems would demonstrate that,

within any system containing the rules of arithmetic, there would be

statements that could be neither proven nor disproven, eviscerating

Hilbert’s earlier hope of a complete and consistent mathematical system.

The Entscheidungsproblem took aim at all provable statements. If

Hilbert’s algorithm existed, one would simply feed a given statement into

it; if the statement was provable, the algorithm would say so and spell out

the proof. If it wasn’t provable, the algorithm would determine as much.

The implications for human mathematicians would be both profound and

dire. The mathematician G. H. Hardy defiantly speculated: ‘There is of

course no [algorithm], and this is very fortunate, since if there were we

should have a mechanical set of rules for all problems, and our activities as

mathematicians would come to an end.’27

Hardy would not have to wait long for vindication, and it came

courtesy of the computing pioneer Alan Turing. It was in exploring the

Entscheidungsproblem that Turing formalised notions of computation.

That’s right: the foundations of modern computing were motivated by

abstract mathematical questions. Once Turing had meticulously defined

constructs such as algorithms, programs and machines, he delivered the

fatal knockout to Hilbert’s hope of solving all of mathematics.

If you have ever found yourself staring at a frozen computer screen,

watching the infamous hourglass (or rainbow wheel if you are of the

Apple persuasion) and wondering whether you should give it more time or

reboot the whole system, then you might also have wondered whether a

program exists that can tell you one way or another. Using similar ideas to

Gödel’s incompleteness theorems, Turing showed in 1936 that no single

program can determine whether any other program runs forever or halts.

Turing supposed the program does exist, and then wrote another program

based on it – specifically, the words in the following box:

If the program inside this box finishes, then run forever.

If the program inside the box doesn’t finish, then stop.



There are two possibilities: either the program inside the box finishes,

or not. If you follow the words in the box, you should agree that if it does

finish then it doesn’t, and if it doesn’t finish then it does. Either way we

reach a contradiction (this has the flavour of the barbershop paradox

which inspired Gödel’s true but unprovable statement which, in turn,

Turing adapted to the case of computer programs). Because we arrived at

a contradiction, our initial assumption – that there is a program able to

decide whether any other program runs forever or halts – must be false. As

far as the termination of that hourglass is concerned, you will just have to

live in a state of unknowing.

This is known as the ‘halting problem’ and it has direct consequences

for mathematics. It is possible to frame the halting problem as

mathematical statements about whole numbers. And since Turing showed

that no single algorithm can tell you whether every other program halts, it

must follow that no single algorithm can tell you whether any given

mathematical statement is true. There are algorithms that can solve

individual maths problems, and even entire classes of maths problems, but

no single algorithm can resolve the whole of mathematics. The

Entscheidungsproblem is undecidable, after all, and mathematicians will

have to exercise ingenuity to keep coming up with new ways of solving

problems since no single method will work for all of them.28 This is the

first blow to the ideal of computational omniscience.

The next blow is more consequential, and it relates to the physical

limitations of computers. There is only so much matter in the universe

(1054 kilograms’ worth), which means that there is only so much

computational power to go around. Even among those problems that can

be solved by machines, the solution is impossible to come by because it

demands too much processing for a computer to handle.

As a reluctant traveller, I dread work trips that involve visits to multiple

far-flung locations. I am always seeking to minimise the total amount of

travel in order to reduce the physical burden on me, as well as the travel

costs incurred by my employers. Suppose I have to visit five cities dotted

around England, starting and ending in the same city. What I am after is

the shortest route. Assuming the distance between each pair of cities is



known, it is not too difficult to conjure up an algorithm that checks all

possible routes and computes the distance for each one. There are five

choices for the first city, then four for the next, then three, two and one. In

total, that makes 5 × 4 × 3 × 2 × 1 = 120 possible routes. I can now check

each one, rank them in terms of distance and voila, my decision is made.

Now imagine I am stateside and need to embark on a mega-tour

around all fifty states. This time, there are 50 × 49 × 48 ×… × 1 (written

in shorthand as 50!) possible routes. Suffice it to say this is no lean

number: it is roughly equivalent to the number 3 followed by 64 zeros. If

you had the most super of supercomputers at hand, computing each route

in the time it takes light to cross the width of an atom, you would still

have to wait for roughly the age of the universe multiplied thousands of

trillions of trillions times over for the program to return an answer. The

method of listing all possible routes will not take us very far practically,

because for large numbers of locations, computers are unable to keep up.

This is the Travelling Salesman Problem and it is part of a class of

problems that are known for rapidly growing in computational toughness

as the numbers involved get larger. What makes this problem interesting is

that it is relatively quick to verify whether a given route falls within a

specified budget. There is a difference, however, between verifying a

solution and finding one. Finding your misplaced house keys is

notoriously difficult (something we can all attest to, no doubt). On the

other hand, verifying that a key I hand to you is the correct one is much

simpler because you can just stick it in the lock and check for a fit.

So we can place problems into two categories. The first contains all

problems that can be solved in a reasonable amount of time – this is the

class P (which stands for polynomial time and means that the running

time for the solution algorithms is proportional to some power of the size

of the inputs). The second contains all problems whose solutions are easy

to verify – the Travelling Salesman Problem and your missing house key

belong to this class. It is called NP (which stands for non-deterministic

polynomial time, for reasons that are slightly more technical).

The killer question at the heart of it all is whether the classes P and NP

are actually one and the same.29 It’s easy to see that every problem in P is



in NP – if you can solve a problem reasonably quickly, then you can

certainly verify a candidate solution reasonably quickly (if nothing else,

you can just solve the problem and check it matches your candidate

solution). The more interesting question is whether every NP problem is in

P – in other words, if we can easily verify a solution to a problem, does

that mean the problem is easy to solve? If so, it would mean there is a

quick way to solve the Travelling Salesman Problem; a quick way to find

your missing house key every time.

This is usually termed the P versus NP problem, and figuring it out

either way will make you a millionaire because it is of such difficulty and

importance that the Clay Mathematics Institute listed it as one of its seven

millennium problems, each of which comes with a $1 million reward.V

Kurt Gödel – he of the incompleteness theorems – played a major hand in

the P versus NP affair. It was his 1956 letter to the legendary polymath

John von Neumann that sparked research into the topic. Gödel’s

incompleteness theorem had already shown that mathematics cannot solve

all problems: some statements are unprovable. If one could now show that

there are problems in NP but not in P, it would mean that even among the

problems we can solve, some of those solutions cannot be found quickly

enough to be of practical use.

The answer to whether P and NP are identical (P = NP) could be a

world-changer, depending on which way it swings. If these two classes are

equal, then a whole raft of problems that we presume to be complex will

suddenly submit to algorithms that can be practically applied. That would

be mixed news for the world. On the positive side, it could accelerate

cancer treatments and kidney exchanges, revamp forensics and bring

untold logistical savings to companies, to name just a few applications. At

the same time, it would spell disaster for cybersecurity. The privacy of

your online banking data relies on the difficulty of breaking really large

numbers down into their prime factors – a problem known to be in the NP

class (if I give you two prime numbers, you can quickly multiply them to

see if the result equals a given target). A world in which P = NP would

suddenly render your most secure data vulnerable to hacks.

Mathematicians themselves might not be spared from the fallout, a point



not lost on Gödel when he declared that if P = NP, then ‘the mental work

of a mathematician concerning Yes-or-No questions could be completely

replaced by a machine’.

The majority view is that P does not equal NP after all, which would

signal business as usual. The advent of quantum computing, which allows

for exponentially more calculations to be executed, might shift the

landscape by creating new categories of complexity,30 though the overall

picture is likely to remain the same: we will need more creative and

holistic approaches to solving those NP problems because brute force

won’t get us there in good time.

Mathematics thrives on open-ended problems, and the existence of

problems that are easy to verify but hard to solve reshapes these clean-cut

problems into messier ones. Entire fields of mathematics and computer

science are dedicated to finding efficient and approximate answers to

problems whose solutions escape our precise calculating tools. Even while

exact, deterministic solutions remain elusive, approximations often suffice

– after all, does your company really need the absolute, cheapest travel

route, or just one that is reasonably cheap?

The P versus NP problem sets up a cat-and-mouse race between our

ability as humans to dream up questions, and the power of computers to

answer them. If it does transpire that some NP problems fall outside the

category of P, it will speak volumes about how far our minds can wander –

far enough, evidently, to transcend the computational might of machines.

Let’s go back to Sudoku. The standard format of nine characters is easy

prey for most computers. It is an NP problem because one can easily verify

candidate solutions – just check the rows, columns and boxes. It is also in

the P class because there are few enough permutations to enable even

brute force techniques to get the job done in reasonable time. Things get

more interesting when we expand Sudoku to, say, a 25 × 25 grid. The rules

are the same as before, except this time every row, column and box needs

to accommodate each of the numbers 1–25. We are still in the class NP,

but this time the computer will hum away seemingly indefinitely as it

works through an impenetrable number of possibilities. This version of

mega-Sudoku is possibly, and quite probably, outside class P. The standard



version of Sudoku is still good conditioning for our minds, but the leap

towards larger versions of the same game that defy brute-force processing

is the real triumph of human thinking, because it signifies that the reach of

our deep-rooted curiosities can outstretch the prowess of machines.

Another twist in the mega-Sudoku tale is that it belongs to a more

specific class of problems within NP that are said to be NP-complete (the

Travelling Salesman Problem is also NP-complete). This class is so named

because all NP problems can be reduced to these problems in reasonable

time. If we solved a single one of these problems in a reasonable time, then

we could solve every NP problem in a reasonable time, thereby showing

that P = NP after all. By mastering those large Sudoku grids you will, as a

by-product, have figured out how to solve all those other NP problems

quickly.

A graphical representation of the P, NP and NP-complete classes. If a single NP-complete

problem is shown to be in the class P, then all three classes are actually the same.

Giant Sudoku isn’t likely to yield to computers any time soon, and nor

is mathematics. And even if they do, humans can breathe easy. As

mathematician Jordan Ellenberg puts it: ‘We are very good at figuring out

things that computers can’t do. If we were to imagine a future in which all

the theorems we currently know about could be proven on a computer, we

would just figure out other things that a computer can’t solve, and that

would become “mathematics”.’31

As computers march towards the frontiers of new knowledge, the

challenge for humans will be to manage all that complexity. If computers

only ever amount to solution hunting, then there is still a role for us

humans to decide which questions are the most interesting, which should

be the preserve of humans, and which need expanding. Computers can be



a wonderful aid alongside our explorations, but it is we humans who chart

the journey.

Reviving our childhood habits

Neoteny is the wonderful term that describes how adults retain some of

their juvenile features. Somewhere along the path to adulthood, we seem

to lose our tenacity for questioning. Formal schooling, where the focus is

squarely on getting the right answer to prescribed questions, has much to

answer for. The social critic Neil Postman recognised this decades ago

when he posed his own (albeit rhetorical) question: ‘Is it not curious, then,

that the most significant intellectual skill available to human beings is not

taught in schools?’32 The twentieth-century Brazilian educationalist and

activist Paolo Freire was more damning still, employing a banking

metaphor to describe how teachers are too often expected to ‘deposit’

knowledge into the minds of students who, for their part, are expected to

passively receive, store and file these deposits.33 For the activist Freire, this

amounts to an ‘ideology of oppression’. Preventing students from asking

questions and stifling their lines of enquiry is, according to Freire, an act

of ‘violence’ that ‘alienates human beings from their own decision-

making’. It strips them of their agency to think for themselves, to generate

their own questions, and to develop a worldview of their own choosing.

The good news for adults is that we can reorient ourselves to our

curious, child-like selves, although sometimes it takes some nudging.

Research has shown that people can learn to ‘think young’. In one study, a

creativity test was issued to two groups of adults. The adults in the first

group were encouraged to think of themselves as ‘seven-year-olds,

enjoying a day off from school’, while the other group defaulted to

thinking of themselves as adults.34 With that encouragement, the first

group came up with more original ideas and displayed ‘more flexible, fluid

thinking’. In the business world, the analogue of a curiosity quotient (CQ)

is challenging more traditional measures of intelligence such as IQ, with

employers seeking out people who ‘find novelty exciting’35 – how they

would have loved to have Martin Gardner on their books.



Progressive educators like to emphasise the distinction between

consuming knowledge and creating it. This effort can begin at school by

placing questioning at the heart of the learning experience. Freire called

for ‘problem-posing education’ in which students and teachers usher one

another, through mutual probing and reflection, towards ‘a constant

unveiling of reality’. The concept is hardly new; philosophers as far back

as Socrates advocated teaching based on dialogue rather than lecturing,

where the express aim is to equip learners with the power to think

critically, which means (for one thing) thinking for themselves. Socratic

dialogue is premised on tenacious questioning that forces students to

reflect deeply about the knowledge they possess.

As AI strengthens its foothold on our everyday lives, the distinction

between consumption and creation matters to us all. Freire’s banking

model fits squarely with the computational paradigm of school maths, and

the alternative he sought is a lodestar for the type of mathematics

portrayed in this book. We can choose to be subjects of AI, placing

ourselves at the mercy of algorithmic, automated decision-making and

consuming these technologies without scrutiny, or we can demand to

know how these technologies work, what risks they carry, what threats to

equality and justice they pose. We can choose, in other words, to be co-

creators of the so-called ‘machine age’ by fiercely holding on to our

curious instincts and never surrendering our ability to ask questions of

how AI can be designed to serve our human goals.

This is why the recreational flavour of mathematics matters so much.

Puzzles and problems are not only gratifying to solve; they also sharpen

our ability to ask interesting questions in the first place. Even the most

frivolous questions – like whether it’s possible to trace a particular path

around a city or how to divide the spoils of an unfinished game – can

spawn entire fields as we thread together their common elements. The field

of AI (including its many subfields) is itself still nascent, and its

development very much depends on the questions we choose to pose. It is

vitally important that we reject any deterministic notions of what the field

must become, recognising that humans have agency and therefore the

power to shape the ways in which these technologies are designed and



implemented. When we evaluate the effectiveness of a prediction model,

for instance, we may ask questions about its overall accuracy. Or we may

instead focus on where our model errs, probe the consequences of its

mistakes, and ask who is affected the most, and what the trade-offs are

between automation and fairness. The models we end up with, the

conclusions we draw and the impact they have on our society are informed

very much by our questions.36

Computers can be allies to curious-minded humans by extending and

proliferating the questions we pose. We’ve already seen how Nikoli relies

on its community to devise new and interesting types of grid-like puzzles,

and then outsources the task of producing several instances of each puzzle

to a computer. Computers can even inform our judgements of what

puzzles and games count as ‘interesting’. Take the rules of chess, which

have evolved several times throughout its 1,500-year history. For instance,

it was only in the 1400s that the queen was granted the ability to travel

multiple squares in any direction. The same DeepMind technologies that

have mastered games like chess and Go are now being called on to explore

alternative rulesets. It is easy enough to task these programs with playing

out millions of instances of chess under different rules. We can then

evaluate game patterns to see which combination of rules leads to the

most exciting gameplay dynamics.37

But there are some questions that computers cannot answer. This

chapter has, through the lens of mathematical problems, examined the

fundamental limits of computers, as well as some practical ones. The

messy realities of the physical world may be another inhibiting factor in

the quest for machine omniscience. For self-driving cars to go mainstream,

for instance, we need to extract insights from philosophy and ethics to

understand what choices an algorithm ought to make when confronted

with fatal scenarios. Philosophers have mulled over thought experiments

like the ‘trolley problem’, which asks when it is justified to sacrifice one

group of people over another (typically larger) group. But there are few

definitive answers to be sought here: the toughest questions deal in shades

of grey. Puzzles involving life and death, ethics, morality, religion and the

law have confounded humans for thousands of years; they’re unlikely to



succumb to machines any time soon. Some questions evade the precise,

binary language of computers, and others do not lend themselves to

answers a computer can make meaningful. The danger is that we alter –

maybe even dilute – our questions to a form that computers can process,

and blindly accept the answers.

The muddiest questions are so often the ones that matter the most.

They invite us to reflect on our worldviews, to examine our core beliefs

and values, to entertain ambiguity and uncertainty. Sometimes an answer

is the worst thing one can demand of a computer.

I. As revealed in various adaptations of The Hitchhiker’s Guide to the Galaxy, which also goes on

to explain that the Earth is a supercomputer created to find the Ultimate Question.

II. Fractions of the form 1/n: ½, ⅓, ¼ and so on.

III. The magazine’s creator, Maki Kaji, happened to be a horse-racing aficionado. When he first

published his magazine in 1980, he decided to name it after the favourite in that year’s Epsom

Derby, Nikoli.

IV. Incidentally, that date is no accident: 14 March, or 3.14, in the US month/day format, marks the

annual celebration of π Day in homage of everyone’s favourite constant.

V. At the time of writing, only one of the others, the Poincaré conjecture, has been solved (in 2003),

although Grigoriy Perelman, the Russian mathematician behind the proof, famously declined the

prize.
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WAYS OF WORKING
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TEMPERAMENT

Why speed is overrated, getting into flow, and the wisdom of

‘sleeping on it’

In a timed battle of calculational wits between humans and computers,

few among us would dare to step up. Art Benjamin is an exception. The

self-styled ‘mathemagician’ performs stupendous feats with numbers,

rarely leaving his audience disappointed. In one TEDx talk, you can see

Benjamin pitting himself against a calculator by multiplying numbers in

his head at rapid speed.1 Sure enough, he can multiply a pair of two-digit

numbers before his volunteers can type them into their pocket calculators.

But why stop there? Benjamin takes to squaring numbers of increasing

size, culminating in his showpiece: the square of a five-digit number. To

add to the intrigue, Benjamin relays his thinking out loud, murmuring

mysterious phrases such as ‘light tomorrow’, that presumably anchor each

step of his calculation. True to form, Benjamin rattles off the digits in

succession, all correct, takes his bow and departs triumphantly. The

attentive viewer will notice, however, that Benjamin has stopped racing by

the end – he knows that even a modest calculator will win out against his

more complex end-of-show stunts. And if Benjamin was up against IBM’s

Summit supercomputer,2 which performs 200 quadrillion calculations per

second, his act would not even achieve lift-off.

The digital age is steeped in a narrative of rapid change. Humans are

encouraged to keep up by speeding up. Yet when it comes to conscious

processing tasks like calculation, we have no hope of keeping pace with

computers. On the trade floor, for instance, computers execute trades

within microseconds, a pace no human – not even Art Benjamin – could



hope to match. The human brain needs a quarter of a second simply to

respond to a stimulus, let alone to process on-screen information and click

the relevant buttons to buy or sell assets. The frantic pace of automated

calculation gives us no time to analyse its potential side effects. In the 2010

Flash Crash, investors saw nearly $1 trillion of value wiped off from US

stocks within 36 minutes.3 Speculation and analysis followed as to how

such a volatile dip could come about. It took several months for US

regulators to point the finger at a sell order instigated by the mutual fund

Waddell & Reed. At 2.32 p.m. on the day of the crash, the fund triggered

an automated algorithm-trading strategy to sell contracts known as e-

minis. It marked the biggest shift in any investor’s daily position that year,

and set in motion a selling frenzy among traders. The market rebounded

and closed within 3 per cent of where it started the day, but the episode is

a warning shot to those who place faith in algorithms on account of speed

alone.

The brain-as-computer metaphor seems to flatter us humans unduly –

we can get as far as processing one short sentence at a time (around 40–60

bits a second), but that’s it. If only we could calculate at the speed of

computers. In fact, depending on the type of task, humans more than hold

their own. We are phenomenally adept at processing the world around us,

a task that comes so naturally to us that it largely escapes our conscious

attention. When we take in a scene, we may be aware of certain details like

the relative luminance of objects, but others – like the precise amount of

overall light level – are dealt with unconsciously.

The brain relies on thousands of processors working in parallel, each

propagating data across millions of nerve fibres within the brain. The

retina alone (which, pushing the metaphor further, can be thought as the

brain’s ‘webcam’) packs in 100 million neurons into a 0.5mm-thick square

centimetre, allowing it to process ten one-million-point images per

second.4 Estimates of the brain’s overall processing power sit at around a

petaflop, or a thousand trillion operations per second.5 By that measure,

brain-as-supercomputer is a more appropriate metaphor.6

The brain manages all this with an average energy consumption rate of

merely 12 watts; by comparison, your laptop consumes around 100 watts.



The brain is built for such extraordinary versatility and efficiency that it

defies comparison with brute-force processing devices.

Computers are relatively simple beings. We can scarcely tolerate slow

ones: faster means better, no exceptions.7 In addition, there is one metric

that software developers value above all when evaluating their systems:

uptime. This relates to the percentage of time a system is live (or ‘awake’),

and developers will expend immense effort to inch this metric towards the

ideal of 100 per cent. Uptime reflects the implicit recognition that, as yet,

there is no unconscious layer to computers, no movement between

different stages of alertness. For humans, the picture is rather more

complicated. A recurring theme of the previous chapters is that humans

possess multiple modes of thinking. We have an approximate sense of

number as well as a facility for precise calculation. We can reason through

problems slowly and methodically, but we also possess rapid-fire intuitions

and impulses. Humans think fast and slow, consciously and unconsciously,

and many mysterious shades in between.

If your brain was a company, then its headquarters would be situated at

the frontmost lobe of each hemisphere. Known as the prefrontal cortex,

this part of the brain is found only in mammals and, for humans, it is the

command-and-control centre for our behaviour. Without the prefrontal

cortex, we would be left at the mercy of our automatic responses to

environmental cues. It is one of the main brain regions responsible for

supervising our thoughts, planning our actions, making decisions and

detecting errors when we deviate from our goals – all of which is

collectively referred to as our ‘executive function’. It all seems very orderly,

ideas managed from the top down. But before your executive function can,

well, function, it needs some way of grabbing hold of ideas in the first

place. A mesh of thoughts revolves deep within our subconscious. With

each firing of a neuron, ideas form and compete with one another for our

conscious attention. We’re only just starting to grasp how this

competition plays out, and how the most novel ideas rise up through our

cognitive filters to the forefront of our minds.

Humans, unlike computers, have metacognitive awareness – we can

think about how we think and regulate our own mental behaviours to



extract maximum output from those 12 watts. To produce our most

creative work, to solve our most stubborn problems, and to keep high-

pace computers in check, we must craft an alternative narrative for the

digital age, one that embraces multiple modes of thinking. We must learn

when to privilege patience and restraint over speed and acknowledge

‘downtime’ as an essential feature of our brains. This ability to self-reflect

and to fine-tune our ways of thinking is what I refer to as temperament.

And it carries special significance for mathematics, a discipline where

competence is too often conflated with speed.

Breaking the cult of quickness

We are enamoured of speed, not least when it comes to feats of

calculation. Art Benjamin is revered because he is fast with numbers, and

in some quarters, mental maths attracts a cult-like following. It is the

brand of mathematics that promises its loyal subjects the honourable label

of mathematical genius.8

It also makes for good television. The UK’s search for its ultimate Child

Genius9 has taken on the form of a televised contest, complete with

bloated pep talks from expectant parents and high-octane drama as kids

take to the stage. The mathematics round has a predictably blunt format:

timed arithmetic problems that often reduce contestants to tears. In 2008 I

had my own brush with timed challenges as a series winner of long-

running UK gameshow Countdown, where we were given thirty seconds

per round to solve anagram and arithmetic problems with the famous

clock (not to mention its annoyingly repetitive tune, ba-da ba-da ba-da-

da-dum boom!) bearing down on us as the seconds ticked by.10 Riveting as

the experience was, it was the worst possible advert for my mathematical

skills, reinforcing a perception among my friends and family that I spend

my working days immersed in complicated sums.

Our fixation with high-speed sums can be seen in the prevalence of

rapid-fire mental maths systems across the world. In India, there has been

an explosion of interest in the number play of Vedic Mathematics,

following the publication of Sri Bharati Krsna Tirthaji’s 1965 book of the



same name. A cottage industry of course-offerings promises to teach

students ‘perhaps the most refined and efficient mathematical system

possible’.11 It’s a bold claim, yet the content appears to be no more than

variations on a common theme – contrived mental gymnastics applied to

select calculations, with emphasis on speed. Among other arbitrary titbits,

you’ll find procedures for computing square roots to nineteen decimal

places. Tirthaji claimed that his methods were derived from sixteen word-

formulae, or sutras, that have their origins in ancient Hindu scripture

(claims that have been roundly debunked).12 Such methods do a great

disservice to the rich and multifaceted mathematics found in the ancient

Vedic tradition. Among a multitude of mathematical explorations, Vedic

texts include early gestures towards right-angled triangles (what would

later be known as Pythagoras’s theorem) and geometric approximations

to squaring the circle (also credited to the Greeks)13 – mathematics far

more profound than Tirthaji’s arithmetical tricks.

The Trachtenberg system is cut from similar cloth.14 It is named after

Jakow Trachtenberg, a Russian Jewish engineer who developed the

methods while being held in a Nazi concentration camp, in an attempt to

keep his mind occupied. Sadly, the remarkable origins of the system

cannot rescue its methods from the trappings of convoluted abstraction: it

may well take a professional engineer to grasp their significance. Or it may

take a fictitious seven-year-old like Mary Adler, the Genius portrayed by

Mckenna Grace in the film of the same name, in which the child prodigy

draws on the Trachtenberg system to demonstrate her flair for numbers.

These systems may have held currency in the era of human computers

when it literally paid to do your sums quickly. Now that the arc of

technology has bent towards automation, and human computers have

been banished from the labour force, systems like Vedic and Trachtenberg,

mathemagicians like Benjamin, even Countdown winners, should be

celebrated for their quirks but nothing more. As a conceptual system,

mental arithmetic does relatively little to elucidate the principles of

mathematical intelligence. At worst it perpetuates the falsehood that

mathematical intelligence is a function of speed; a view unfit to be applied

to humans.



This is not to say that speed should be shunned altogether. To master

any craft, we need to acquire fluency of its most basic elements. My most

painful learning experiences were behind the driver’s wheel. It seemed to

take forever to me to get to grips (literally and figuratively) with the gear

lever. With every gear change, there was so much to keep track of: my

current speed, the patch of road ahead, the pressure of my right foot on

the accelerator, the placement of each gear number marked on the lever

handle. Only after several hours of practice (more than I care to admit)

did I acquire the familiarity to action the gear changes with minimum

conscious effort. With the automaticity of these basic skills shored up, I

could direct my attention to all the other subtleties of driving.

This need to ‘free up’ our attention applies to everyone. The field of

cognitive psychology has revealed an important feature of the human

brain. Broadly speaking, our brains manage ideas in two forms: long-term

memory and working memory.I Long-term memory relates to ideas that

are embedded in our subconscious and can be recalled at will – it’s how

you read these sentences so effortlessly, devoting almost no conscious

attention to the individual letters that make up each word. Working

memory is quite the opposite; it is very closely related to executive

function and speaks to the conscious aspect of our thinking that allows us

to manipulate information. Working memory is the mental sticky note for

short-term problem solving, and what makes it so significant is its modest

size: humans can only host, at most, four to seven conscious thoughts at a

time (no wonder I felt overwhelmed at the wheel in those early stages).

The amount of cognitive load our brains can handle at any time is limited,

which is why we marvel at those who can manage multistep calculations in

their heads so effortlessly. Experts in all domains have, through huge

amounts of practice, reconfigured their neural connections so that the

process behind their skill feels familiar and mundane – unworthy of

conscious attention and therefore in no need of the efforts of working

memory. This is the ‘muscle memory’ you so often hear about with regard

to motor skills.

The cognitive load perspective is used by many educators to justify

cramming all those procedures into students’ minds. If the goal is to free



our minds to focus on the complex aspects of problems, then sinking facts

and methods deep into the trenches of our long-term memory so that they

can be summoned at will may have renewed purpose. The reason we were

asked to memorise all those pesky multiplication facts at school is that if

we expend any effort calculating them on the fly, our working memory

will quickly become fully occupied and unable to accommodate deeper

ideas.

It is tempting to think that with digital calculators at hand, we can

consider abdicating altogether. What better way to free our minds, the

reasoning goes, than to offload the burden of calculation to computers?

But that will not do much to relieve our cognitive load because entering

numbers into a calculator still requires some conscious effort. This is

another reminder of the irony of automation that recurs throughout this

book: to hold machines to account, we need to engage with their core

competencies.15 Some level of calculational proficiency is prudent.

We need to be wary, however, of extreme deference to speed: when all

learning is reduced to the consumption and rapid recall of individual facts,

other aspects of intelligence – such as the five principles covered in

previous chapters – are often left on the margins. When we are expected to

serve up answers automatically, we often grab the first one that comes to

mind, without even a moment of reflection. We’ve seen how thoughtless

calculation is a recipe for nonsensical answers. We must therefore retain

some conscious awareness of our mental calculations. Speed should never

come at the expense of having a good sense of number, being able to create

diverse representations of concepts and reasoning through arguments. In

fact, speed can emerge as a by-product of a more flexible understanding of

how certain facts and procedures relate to one another.

The side effects of high-speed mathematics

As quickly as you can, answer the following three questions:

A bat and ball cost £1.10 in total. The bat costs £1.00 more than the

ball. How much does the ball cost?



In a lake, there is a patch of lily pads. Every day, the patch doubles in

size. If it takes 48 days for the patch to cover the entire lake, how

long would it take for the patch to cover half of the lake?

Suppose your doctor offers you a new test for a rare disease. The

disease afflicts around 2.5 per cent of the population and the test is

80 per cent accurate. Being the cautious person that you are, you

take the test. Bad news: you have tested positive for the disease.

Based on this information, how likely are you to have the disease?

High-speed mathematics, the kind you’ve just engaged in, should come

with a hazard warning for all its unintended consequences. Chapter 3

covered the first of these: cognitive bias. As we saw there, thinking fast (or

‘System 1’ thinking, as opposed to the slow thinking of ‘System 2’) is a

fertiliser for logical discrepancies, especially when dealing with subtle

truths. Mathematics is replete with subtlety, which means it’s often a bad

idea to race against the clock for problems that require even a modicum of

reasoning.

The first two problems appear in the Cognitive Reflection Test, which

was the basis of a 2005 psychological study showing that people tend to

solve problems without reflecting very much on the details.16 When

pressed for an answer, many people (perhaps even you?) opt for 10 pence

and 24 days, respectively. The correct answers, in fact, are 5 pence and 47

days, both of which are easily deducible with some considered reasoning

or a momentary reflection of one’s first response.

The third problem is among the many surprising truths involving

probabilities. The answer is just over 9 per cent, far lower than most of us

would guess (we tend to ignore the fact that the disease is so rare to begin

with that even a positive test is not cause for alarm – a cognitive bias

known as ‘base rate neglect’). Probability is a topic that perpetually leads

humans towards System 1 biases. Its truths often run contrary to our

immediate perceptions – educator and writer Sunil Singh terms it the

‘devil’s mathematics’ for this very reason.17



As with other cognitive biases, knowledge and intelligence only go so

far in rescuing us from these thinking errors; more than half of Harvard

and MIT graduates slip up on the bat/ball problem and, rather worryingly,

over 85 per cent of healthcare professionals are unable to solve the

diagnosis problem.18

Yet the bat/ball problem is, once properly considered, a relatively

straightforward arithmetic problem that requires some modelling of

subtraction. The lake problem is a basic application of exponential

growth. And the probability riddle relies on Bayes’ Theorem, a formula for

calculating the likelihood of one event given information about another.

Mathematics equips us with the tools to solve a wide cadre of problems,

but its potential goes to waste when we lunge for immediate answers. The

human brain does not readily intuit concepts like exact calculation,

exponential growth or Bayes’ Theorem.II The way to exploit these

acquired models of the world, and to silence our faultiest intuitions, is to

slow down our thinking processes. The mathematician Ian Stewart

advises: ‘The most important thing about probability is not to intuit it.’19

In other words, allow careful, deliberate reasoning to steer your thoughts.

Stewart’s advice extends to most corners of mathematics: the most

effective shield we have against System 1 errors is our ability to slow down.

This should come as welcome guidance to anyone who has suffered

from maths anxiety, the technical diagnosis given to people who approach

the subject with dread. The ailment is more pronounced in mathematics

than in any other subject, and it is not even limited to low-attaining

students – one study suggests that over three quarters of maths-anxious

students are ‘normal to high achievers’ in school.20 Our obsession with

speed is a major contributor to maths anxiety. When mathematics is

reduced to a timed performance act, it becomes a high-stakes competitive

affair where speed is synonymous with rank and status. In school, maths

drills that are premised on speed and accuracy are often the root of

people’s detachment from the subject. There is a cruel irony to drills. They

are intended as a means to embed facts in our long-term memory, which,

as we have seen, frees up our limited working memory to think through

and solve problems. Yet the stress induced by drills clogs up that same



working memory. The amygdala, an almond-shaped cluster of nuclei

found deep within the brain’s temporal lobe, acts as an emotional filter,

directing sensory inputs to different parts of the brains for processing.

When thoughts of impending failure rush in, the amygdala instead directs

these inputs to the reactive ‘fight, flight or freeze’ regions of the brain.

Moreover, when the brain is stressed it produces cortisol, which invades

our hippocampus, the gateway through which information must pass to be

memorised.

The net effect of the brain’s stress-response mechanisms is that those

limited slots of conscious thinking quickly fill up, leaving our minds with

little room to process the problem at hand. In the most severe cases, we

may be often overtaken by a choking sensation, a term used in sports and

formalised by psychologist Sian Beilock.21 Choking paralyses our ability

for productive thought by steeping learning in the fear of failure.

As well as needlessly inducing fear, high-speed solution grabbing

distorts mathematics into a form unrecognisable to professional

mathematicians. Just as fast-paced forms of chess diminish the

importance of more reflective gameplay, the essence of mathematical

intelligence is lost when we reduce the subject to rapid-fire questions and

answers. Problem solving takes on an entirely new flavour when it is

restricted by time: it reduces mathematical intelligence to the retrieval and

execution of familiar techniques, which by itself does not lead us to the

mathematical vistas of previous chapters.

What the past few chapters have shown is that, for humans, knowledge

is as deep as it is connected, as open-ended as it is strictly procedural.

When we retrofit the human brain into blunt processing machines, we

strip mathematics of its character as an exploratory, sense-making

discipline.

Mathematicians have no qualms with taking their time. The late

Maryam Mirzakhani was proud to admit she was a slow thinker who was

attracted to deep problems that she could chew on for years. ‘Months or

years later, you see very different aspects’ of a problem, as she said.22

There are problems she thought about for more than a decade without

finding the answer. As another mathematician (and Fields medallist),



Timothy Gowers, put it: ‘The most profound contributions to

mathematics are often made by tortoises rather than hares.’23 For the

deepest and most rewarding problems in mathematics, slowly does it.

Switching off

Computers don’t suffer from maths anxiety. Information overload barely

registers as a concern, save for problems that require unfathomable

amounts of computation. Slowing down is counterproductive because it

will make no difference to how computers process information or solve

problems. The biological quirks of the human brain that we must

endeavour so hard to compensate for don’t seem to apply to computers.

By the same token, computers miss out on the benefits that a drastic

change in thinking speed confers on us. For humans, slowing down isn’t

just a way of guarding against our anxieties and biases – it can also pave

the way for our most creative feats.

The occasional thought hits us as a flash of insight – that moment

when revelation dawns and an idea that previously seemed impenetrable

suddenly falls into place. Moments of ingenuity are not simply blind luck

so much as states that can be engineered.

Mathematicians have long suspected that there is a mysterious element

to creative problem solving. The French mathematician Henri Poincaré

described his creative thought processes in terms of choice:

To invent, I have said, is to choose; but the word is perhaps not

wholly exact. It makes one think of a purchaser before whom are

displayed a large number of samples, and who examines them, one

after the other, to make a choice. Here the samples would be so

numerous that a whole lifetime would not suffice to examine them.

This is not the actual state of things. The sterile combinations do

not even present themselves to the mind of the inventor.24

There are infinitely many ways to glue together bits of information,

some more useful and interesting than others. Creative thinking results



from extracting only the most salient and sometimes the most unexpected

links between what we know to reach new insights. This is not a role the

conscious mind alone can fulfil – as Poincaré goes on to say: ‘The role of

this unconscious work in mathematical invention appears to me

incontestable.’

Creative thinkers so often pay tribute to the power of unconscious

thinking.25 For the graphic designer Paula Scher, creative thought is akin

to a slot machine that organises jumbled thought into a coherent

sequence. For T. S. Eliot, the mind of the poet transforms fragmented

thoughts into beautiful ideas. And the German polymath Gottfried

Leibniz spoke of music’s pleasure in terms of ‘unconscious counting’.

Elaborating on Poincaré’s reflections, another French mathematician,

Jacques Hadamard, spoke of four stages of problem solving that flit

between the conscious and unconscious.26 First there is the conscious

effort of preparing the mind. Next comes incubation, where our

unconscious mechanisms get to work, seeking out new and novel

connections between ideas. Most of your unconscious thoughts remain

buried, but the occasional spark will percolate back towards your

consciousness – what Hadamard called illumination. Finally, there is

another conscious step in verifying your new insight. In simple terms: if

we make the conscious effort to ask interesting questions, then we can

trust our brains to undertake the unconscious effort of finding hard

answers. Responding to Hadamard in a letter, one Albert Einstein pointed

to the ‘combinatory play’ that is ‘the essential feature in productive

thought’, concluding: ‘It seems to me that what you call full consciousness

is a limit case which can never be fully accomplished.’27

It would take a brave person to bet against Poincaré, Hademard and

Einstein all at once, and their formulations are being vindicated by

neuroscience. The emerging view is that when we are faced with a

problem (mathematical or otherwise), our brains sort through different

candidates. Somewhere outside your consciousness, the left and right

hemispheres of your brain generate ideas that compete for your

awareness.28 It is thought that your left brain reaches for the most obvious

associations, whereas your right brain goes on the hunt for more novel



solutions. Your brain needs some judging mechanism to mediate between

your two hemispheres and decide which ideas, among the obvious and less

obvious, should be elevated to your consciousness. The anterior cingulate

cortex, a collar-shaped region that lies beneath the cerebral cortex, is

among the parts of the brain responsible for this role.

One direct way to engage our unconscious is through sleep. The

Hungarian mathematician George Polya advised mathematics students to

‘take counsel of your pillow’ when caught in the web of a problem.29 The

psychologist Howard Gruber extended this advice by encouraging creative

thinkers to make use of the three Bs of Bed, Bus and Bath.30 Each of them

relaxes the mind, enabling it to switch off from problems and allow novel

connections to form deep in our subconscious layers of thought. Thomas

Edison applied these ideas in the most deliberate manner. He is known to

have turned power napping into a craft by seeking a sweet spot between

conscious and unconscious states, from which he believed his deepest

insights would emerge. His method: to hold a bunch of ball-bearings so

that they would clatter onto the floor, waking him up at the opportune

moment, just before he descended into full-blown sleep.

There is a strong neurological basis to the ‘sleep on it’ adage.31 Even as

our bodies rest during those precious hours of shut-eye, our brains remain

active by attempting to replay events from the previous day and converting

them to memories. We experience more than we can possibly remember,

and two brain-wave functions actively sort through all the neural circuits

we activated the previous day: one strengthens certain memories, the other

prunes the remaining candidates. How much we remember is correlated

with the amount and quality of sleep. In terms of the types of memories

we gain, deep sleep helps us to consolidate knowledge (sometimes called

‘declarative knowledge’), while the more wakeful Rapid Eye Movement

(REM) phase reinforces routines and motor skills (‘procedural memory’).

It is also predominantly during the REM phase of sleep that ideas float

around in our brains, and the most novel connections among them are

discovered.

The link between sleep and learning is so pervasive that the phrase

‘sleep on it’ exists in most languages. I am always bemused by accounts of



high-powered productivity gurus who claim to forgo sleep and dish out a

list of all the things they accomplish before some ungodly morning hour.

It turns out that sometimes the most useful thing you can consciously do

before 6 a.m. is nothing at all. As some philosophers have noted (contrary

to biblical wisdom), ‘seek not and thou wilt find’.

‘Sleep on it’ is often the only wisdom I have to offer my students, and to

myself, when we are in search of inspiration. We have all experienced the

‘tip of the tongue’ phenomenon – the name we cannot quite recall despite

intense, conscious effort, which then flashes back into our minds when

we’re least expecting it. Various psychological studies attest to the fact

that, tempting as it is to plough through a problem or puzzle whose

solution eludes us, sometimes the best course of action is to allow for a

mental impasse. An idle mind will give way to insight more often than you

might think.32

The creative mind is one that astutely navigates between conscious and

unconscious states. The first allows us to focus intently on tasks, while the

second gives us time to think freely, even to the point of switching off. The

key is to alternate between these stages of immersion and reflection, so

that ideas can first take root and then swirl around as we forge new

connections.

There is an indescribable joy, or at least relief, that comes with

discoveries that arise in this way. ‘It is like a kind of grace,’ says statistics

professor Thomas Royen. ‘We can work for a long time on a problem and

suddenly an angel – [which] stands here poetically for the mysteries of our

neurons – brings a good idea.’33

Embracing the struggle

No mathematical tale is complete without some recounting of struggle.

Andrew Wiles knows more than most about struggle, having obsessively

dedicated his career to solving a problem many believed was beyond reach.

In proving Fermat’s Last Theorem,III Wiles created new branches of

mathematics and made connections between fields in ways never

conceived. His secret:



What you have to handle when you start doing mathematics as an

older child or as an adult is accepting the state of being stuck.

People don’t get used to that. They find it very stressful… But being

stuck isn’t failure. It’s part of the process… It’s not that we’re

[mathematicians] any different from someone who struggles with

maths problems in third grade… We’re just prepared to handle that

struggle on a much larger scale. We’ve built up resistance to those

setbacks.34

Cedric Villani has written a real-time account of how mathematicians

sweat and struggle before arriving at their deepest insights,35 charting his

quest to prove his own major theorem, which ultimately landed him the

coveted Fields Medal in 2014. It is a wonderful juxtaposition of complex

mathematics (Villani is not afraid to share snippets of his research) and a

deeply human struggle to find his elusive breakthrough. You will find

Villani pacing in the dark, as well as exchanging nervous, sometimes

resigned emails with his collaborator as they both contend with the

possibility of failure. In a shorter reflection, the mathematician Silvia

Serfarty uses the metaphor of a hike to describe mathematical research –

for her, frustration is baked into mathematics, but the view from atop a

solved maths problem is well worth the sweat you spill to get there.36

There is an entire literature centred on coping mechanisms for struggle,

rooted in the psychology of how we learn. Psychologist Carol Dweck has

popularised the notion of a growth mindset: the belief that intelligence is

fluid and very much in our own control.37 It stands in opposition to the

belief that intelligence is immutable – the fixed mindset. Over three

decades of research, Dweck has shown that a growth mindset leads to

improved performance across all walks of life, from students’ test scores to

athletes’ performance in the heat of competition. A related concept is grit,

defined as ‘the tendency to sustain interest in and effort toward very long-

term goals’.38 Grit is about persisting after setbacks, and while the

research behind it is not as developed as that for mindset, there is evidence

that this quality, too, is a predictor of academic and other life outcomes.



These perspectives from psychology attach neatly to our emerging

understanding of how the brain works. The ability to cede conscious

control of problems and place faith in our unseen thought processes is

closely tied to psychological traits like mindset and grit. We’re more likely

to slow down and switch off from problems if we believe in our capacity to

grow and find connections that have eluded us hitherto. Struggle is a

fertiliser of novelty and insight because it allows room for our unconscious

thought mechanisms to take hold and for our most original ideas to

surface.

A growth mindset also reminds us of our neuroplasticity. Learning, in

the end, boils down to rewiring our brain structures: creating neurons,

strengthening their synaptic connections, creating new pathways and

pruning unused ones. Recall the enlarged hippocampi of London taxi

drivers who have devoted hours of study to memorising city routes. To

have a growth mindset is to embrace the notion that we are architects of

our own brains.

Computers do not have the same freedom to rewire themselves. Today’s

artificial neural networks are based on the idea of increasing or decreasing

the strength of connections between neurons. The idea of pruning them,

or growing entirely new ones, is alien. What’s more, if they are guided by a

fatally flawed model or procedure, then even in the best-case scenario a

solution may prove elusive (they’re often trapped in a so-called ‘local

optimum’). Switching off will make no difference because computers do

not learn or develop in any way during their downtime; as soon as they are

switched on they will resume towards their dead ends. The only way to

rescue them from their frustrated efforts is to rethink the models they are

based on – the need for human intervention is inescapable, and it may

require a good night’s sleep on our part to make the decisive shift.

When maths becomes addictive

The Greek scientist Archimedes is best remembered for an incident

involving a scientific revelation, a bathtub and spontaneous public nudity.

The Eureka! moment gives us a snapshot into the minutiae of



Archimedes’s daily existence. What’s more interesting still, and perhaps

more revealing of Archimedes’s orientation towards mathematics, is how

he died. The historian Plutarch describes the fateful scene in his account

of the Roman siege of Syracuse in 212 BCE:

He was by himself, working out some problem with the aid of a

diagram, and having fixed his thoughts and his eyes as well upon the

matter of his study, he was not aware of the incursion of the Romans

or of the capture of the city. Suddenly a soldier came upon him and

ordered him to go with him to Marcellus. This Archimedes refused

to do until he had worked out his problem and established his

demonstration, whereupon the soldier flew into a passion, drew his

sword, and dispatched him.39

Archimedes is situated in a long line of humans who have found

themselves caught in the grip of a problem. The consequences are not

always so drastic,IV but invariably the problem solver loses all awareness of

their surroundings as they become immersed in the task at hand. In

November 2004, The Times published a short complaint in its Letters

section. It read: ‘Sir, Sudoku puzzles should carry a warning. It’s only Day

1 and already I’ve missed my Tube stop. Yours truly, Ian Payn, Brentford.’

Ian Payn was not Sudoku’s only victim. In June 2008, an Australian court

halted a drug trial when it transpired that five of the twelve jurors had

been playing Sudoku instead of listening to evidence.40 Sudoku has since

passed the early stages of a new craze and is now firmly embedded as a

daily ritual the world over, drawing in casual problem solvers just as

readily as committed number bods. Millions of Sudoku players find

themselves enwrapped in a game that relies solely on their reasoning skills.

In the previous chapter, we saw that humans are drawn to puzzles

because they fill a tantalising information gap between what we know and

what we don’t. But what keeps us engaged while we’re solving them? Will

Shortz, crossword editor for the New York Times and self-professed

Sudoku addict, speaks of how Sudoku ‘has very simple rules. You can



learn it in ten seconds, and yet the logic needed to solve Sudoku is

challenging.’41 To its enchanted followers, Sudoku seems eminently

solvable, but it presents a level of difficulty that makes the effort

worthwhile.

The measure of a problem is in the experience and emotion that comes

prior to the breakthrough moment (which is why I suggest that the

circumstances of Archimedes’s death say more about the man than his

Eureka moment). The search for a solution can be long and winding, and

it can afflict us with feelings of frustration, agitation and pleasure – often

all at once – as we strive to make the incomplete complete. The most

compelling problems leave us immersed in the hunt for a solution, a state

that psychologists have put language and meaning to.

Optimal experience and flow

Have you ever been so deeply immersed in an activity that you lose all

sense of space and time? You sit down to read a novel, you go on a hike,

you take a friend to dinner, and before you know it, hours have passed.

These are the optimal experiences we all strive for in our pursuit of the

good life. The psychologist Mihaly Csikszentmihalyi (pronounced ‘chicks-

send-me-high’) uses the term flow to signify the state of immersion in

which ‘people are so involved in an activity that nothing else seems to

matter’.42 Flow occurs in all walks of life – Csikszentmihalyi speaks of the

feeling of a wind whipping through a sailor’s hair, a painter seeing their

new creation come into being and the father whose child responds to his

smile for the first time (having experienced this last one not too long ago, I

can confirm that it is about as optimal as life experiences get).

In the context of performance, flow speaks to how humans get the very

best out of themselves. When we witness people in their element – Roger

Federer striking a backhand, a marathon runner covering the ground in

graceful strides, or a dance troupe that never misses a beat – we marvel at

the control they have over their most intricate actions. For the subject,

flow is a state of exhilaration where all the world’s forces align to their

commands.



Experiences are optimised, says Csikszentmihalyi, when there is ‘order

in consciousness’. We have already seen in this chapter that human

ingenuity arises from shifting between different layers of consciousness.

Flow speaks to the very pointed, very conscious effort we make to

maximise our performance. Our most immersive experiences occur when

we are able to shut out external cues and pour every ounce of conscious

energy into the task at hand. ‘Concentration is so intense’, says

Csikszentmihalyi, that ‘there is no attention left over to think about

anything irrelevant, or to worry about problems’. Csikszentmihalyi is a

very definite optimist; he believes flow is a state that we can usher

ourselves towards: ‘The best moments usually occur when a person’s body

or mind is stretched to its limits in a voluntary effort to accomplish

something difficult and worthwhile.’

Flow can only be achieved when the difficulty of the task is perfectly

matched to our skill. We’ll more willingly immerse ourselves in a task

when we perceive that it stretches us just beyond our current capabilities: a

task that is challenging but attainable. In contrast, when our skill far

outweighs the difficulty of a task, we feel under-challenged. An excess of

these tasks can only result in boredom – nobody delights in hammering

away at the same thing over and over. Executing the same task repeatedly

may induce a superficial sense of mastery, but there is no joy to be had

from staying in your comfort zone. We experience anxiety when we

perceive a task to be more challenging than we’re able to handle: we feel

over-challenged. In this case, there is nothing productive to grasp at

because we lack the knowledge or skill required to bridge the gap between

problem and solution.



The challenge–skill framework is useful for understanding the

contrasting ways in which mathematics is experienced. Because

mathematical knowledge is interwoven, a small gap in one topic may

amplify over time and spread in several directions, much like a Jenga tower

becoming more unstable with each block that is removed. A knowledge

gap in factors and multiples, for example, may hamper you in grasping the

basics of fractions, a struggle that only magnifies when you later go on to

study topics like probability that are couched in the language of fractions.

Chaos theory tells us that small actions can have huge effects over time –

an innocuous flapping of a butterfly’s wings can cause tornadoes on the

other side of the world. Chaos is what learning descends into when crucial

gaps in our knowledge are left unaddressed. As small knowledge gaps

explode in size, they leave us with exaggerated impressions of our

struggles. In the other corner, scores of students profess outright boredom

with mathematics as they work through reams of calculations, mundane

and repetitive in nature (giving yet more reason to delegate to the

machines: they are immune to boredom). Humans are too curious, too

able, to settle for the mundane.

Students of mathematics – hobbyists and professionals alike – routinely

find themselves in flow because the subject is replete with multilayered

concepts and puzzles. There is joy to be had in poring over new ideas and

making conceptual leaps, one increment at a time. We can feel ourselves

getting wiser as we equip ourselves with new problem-solving strategies

and models for thinking.

That’s not to say it’s an easy ride. Flow is largely a consequence of how

we regulate our struggle. A problem can stump us in two ways: when we

lack the relevant background knowledge, or when the solution requires a

deep insight that combines knowledge in some novel way (or both, of

course). To achieve flow, we need feedback loops to assess our knowledge

and skill level, and to find problems that are ideally suited to both. The

psychologist Anders Ericsson goes as far as citing feedback as one of the

core traits of the thousands of hours of deliberate practice required to

develop expertise: ‘Deliberate practice involves feedback and modification

of efforts in response to that feedback. Early in the training process much



of that feedback will come from the teacher or coach, who will monitor

progress, point out problems, and offer ways to address those problems.’43

In education, coaches go by another name: tutors. The classical model

of one-to-one tutoring was established by Aristotle, who took one

Alexander the Great under his wing. When the latter built a library at the

Lyceum, he made sure to include many books on instruction that

expounded the importance of a tutor being aware of their student’s

knowledge in order to expand it and to correct misconceptions. More

recently, a study by Benjamin Bloom in the 1980s demonstrated that

students who receive one-to-one, ‘individualised’ tutoring significantly

outperformed students receiving conventional instruction as part of a

group.44 A tutor, in short, helps the learner to systematically acquire

knowledge, the building blocks of learning. Tutors help students to

identify and correct their own errors, turning each minor failure into a

growth opportunity. It is notable that deep learning, the most promising

area of AI research, is premised on this idea of self-correction. A deep

learning algorithm is exposed to its own errors and uses this information

to adjust its parameters automatically. Humans can self-correct too, but

we sometimes need the guiding hand of a supportive tutor or coach to

point out our mistakes and lift us to the next level of performance. A tutor

prods, prompts and provokes to ensure the learner is engaged and

optimally challenged at all times, selecting problems that stretch the

learner to the edge of their ability and giving them plentiful opportunities

to apply their recently acquired knowledge in the most creative ways.

Video games have been adopting this model for years. The most

absorbing games are designed for optimal challenge. They start by

assuming little background skill on the player’s part, but gradually equip

the player with new skills as the levels progress, exposing them to ever

more ambitious challenges. We concede the night to hours of journeying

through the virtual game-world because, at each moment, we are reaching

for the next incremental breakthrough.

One of the hallmarks of good coaches is that they help their students to

become self-sufficient. Ericsson notes: ‘With time and experience students

must learn to monitor themselves, spot mistakes, and adjust accordingly.’



This is one way of understanding the journey from novice to expert; as we

become accustomed to our craft, we rely less on external feedback loops.

We learn to self-diagnose, to set our own learning paths, and to identify

tasks of appropriate difficulty. We regulate our intake of knowledge. This

is a disciplined act that requires smart choices about what to learn and

when. At times, it obliges us to hold off on acquiring new knowledge, and

instead to pause, reflect and solve with what we already know. An implicit

feature of video games and tutors is that they place sensible constraints on

what learners can do, and when, in order to maximise their learning.

Restraint from oracles

For a professional mathematician attacking a previously unsolved

problem, struggle is rooted in the possibility that the solution is beyond

reach. Mathematician Edward Frenkel likens a maths problem to a jigsaw

puzzle whose final picture is unknown; the struggle comes from the

uncertainty of not knowing whether a picture will even emerge.45 There is

a rather different struggle that comes from taking on established problems

for which solutions have already been discovered.

Problem solvers of the past could not have imagined enjoying instant

access to all the world’s information. But unfiltered access to knowledge

has its drawbacks. Creative thinking emerges from constraints, and there

are occasions where depriving ourselves of knowledge reaps cognitive

benefits. A puzzle loses its value (not to mention its enjoyment) as a

thinking exercise when the solution is delivered to us on a platter. The

internet has democratised access to knowledge like no other technology.

Google – the company and the product – can lay claim to much of the

credit. The company was founded ‘to organise the world’s information’

and its search engine is the closest thing today’s internet users have to an

oracle. In his provocatively titled article ‘Is Google making us stupid?’,

Nicholas Carr blames the internet for his dwindling attention span.46 He

acknowledges that its supply of information is a ‘godsend’ but laments the

fact that it is served up so instantaneously, in bite-sized morsels. This has

the effect of altering our mental habits, inculcating in us a tendency to



skim tasks rather than immerse ourselves fully. In our urge to grasp quick

and easy punchlines, we sacrifice all-important precursors of flow like

patience and reflection.

A taxing problem will leave us grappling with uncertainty, and the

internet gives us the prospect of immediate resolution through a quick

search. If problem solving is to serve its purpose as a conditioning exercise

for the mind, we must somehow resist the urge to pluck out ready-made

answers. Google is designed for frictionless knowledge transfer; it is not

your coach, and it has no stock in how you experience learning. It is cold

and precise in its singular aim of feeding you answers.

Admittedly, this issue predates the internet. Almost every puzzle book

contains solutions at the back, designed to provide the reader with a

complete, end-to-end experience. But the intent of the puzzle setter is

inadvertently undermined when barriers between problem and solution

are removed. To expect the reader to resist a peek at the answer adds a

new variable to the mix, willpower, which is often in limited supply for

humans.47 It is for this reason that I usually rip out the solution pages of

puzzle books – it is my way of engineering some friction, which is essential

to the effort and struggle that makes for a rich problem solving

experience.

Google does not just stamp its authority on serving up answers – it will

even intervene as you formulate your search query. One of the most

promising areas of machine learning, widely considered to be the holy

grail of AI, is natural language processing. As technologies acquire the

ability to mine through and make meaning of text, they are being

deployed to complete our thoughts before they are fully typed – predictive

text is already so pervasive that we would all probably admit to yielding to

an automated suggestion at some point or other. This marks a shift away

from tutoring behaviours – a tutor would rightly be admonished if they

encroached on a student’s every thought, scarcely giving them a chance to

articulate an idea for themselves. Spell-checking tools that were once

genuine providers of feedback, with plenty of friction built in to enable the

writer to consider alternative phrasings, have been displaced by

overbearing autocorrect functions.



Information technologies need to be more coach than oracle. The

supply of answers has to be tempered with a willingness to give the user

feedback and options for further inquiry. Some of the best online learning

content is also the most interactive, with prompts and scaffolds that

encourage users to reflect on their mistakes (as opposed to spoon-feeding

them the correct answers). Even calculators can become more empathetic

to the learning needs of their users. The QAMA calculator (which stands

for ‘Quick Approximate Mental Arithmetic’ and is inspired by the Hebrew

word for ‘how much?’)48 requires the user to provide what they think is a

reasonable estimate of whatever calculation they have in mind. If the

estimate is deemed ‘reasonable’ (the definition of which is at the core of

QAMA’s algorithms), then the screen shows the precise answer. If, on the

other hand, the estimate falls outside of what QAMA considers a

reasonable range, then it prompts the user for another estimate. The idea

of withholding knowledge may appear archaic in the information age, but

when done with purpose, it can force active participation in learning

rather than passive consumption.

A drive from within

I never had reason to fear paperclips – until I encountered a particularly

unsettling thought experiment by philosopher Nick Bostrom that

speculates on how machines of the future might behave once they have

surpassed human levels of intelligence.49 Bostrom invites us to imagine a

superintelligence whose primary goal is to manufacture paperclips. The

objective seems innocent enough, until you start to get into the mind of

such a being and unravel the unintended consequences that might follow

as it creates its own sub-goals. The superintelligence might transform all

the earth’s matter into gigantic paperclip-manufacturing facilities. It

might even proceed to turn outer space into a supercomputer that keeps

track of the number of paperclips it has produced. The thought

experiment, for all its outlandishness, is a useful reminder of the singular

focus that machines direct towards problems.



This chapter has sought to demonstrate that we humans, too, are

capable of productively obsessing over problems. Our biological substrate

gives rise to countless threats to thinking and problem solving – it is

humans, not machines, who grapple with feelings of boredom and anxiety.

And it is humans, not machines, who have the means to evaluate our

mental dispositions. We can regulate the speed at which we think, as well

as the difficulty of our tasks, to shift us into the most productive state of

flow. Technology can help usher us towards flow-like states, but only when

its knowledge-feeding impulses are kept at bay.

Whether or not we end up in flow, and the kind of flow we experience,

is shaped by what drives us. Machines are not motivated entities: they are

simply programmed to make calculated choices to minimise their errors

according to mathematical models (which themselves are specified by

humans). To get a computer to work, you simply push the ‘on’ switch.

The human mind – or at least our current understanding of it – rises above

these programmatic descriptions. Our ‘on’ switch is internal in the sense

that the ideas we mull over depend very much on what commands our

attention at both the conscious and the subconscious levels.

We solve problems, often by spilling blood, sweat and tears, because

their resolution brings us immense satisfaction. While humans are

routinely conditioned to respond to external rewards and punishments,

this is not how we manifest the best versions of ourselves.

Csikszentmihalyi notes that flow is more likely to be attained when we are

intrinsically motivated by a problem, because it means we are more

invested in directing our consciousness than in directing external inputs.

When it comes to creative tasks for humans, intrinsic drivers are more

potent motivators than external ones.50 Intrinsic drivers make us more

resilient in the face of struggle and fuel our most novel thoughts. Carrot-

and-stick approaches that have proved popular among AI researchers, like

reinforcement learning, may overlook a crucial insight into human

intelligence – that we are more productive, more creative and more

uplifted when we find purpose in the doing of tasks, and not merely in the

completion of them.



I. An important caveat is not to take this description literally. Memories are not physically stored in

discrete repositories of our brain as they are in computers: they exist as distributed representations.

II. There’s an important distinction here between Bayesian reasoning – updating beliefs based on

new information – and the precise formulation of Bayes’ Theorem, which results in probability

estimates. We use Bayesian reasoning all the time in a loose sense, but struggle to intuit the actual

likelihood of certain events occurring.

III. The theorem states that there are no non-zero whole numbers x, y, z satisfying the equation xn

+ yn = zn for any whole-number power n greater than 2. A proof had eluded mathematicians for

over 350 years.

IV. In the case of the nineteenth-century physician Paul Wolfskehl, an enthralling maths problem

proved to be a lifesaver. In some accounts, Wolfskehl had resolved to commit suicide after his

advances towards a young lady were resisted. He set a date on which to put a pistol to his head at

the stroke of midnight. That evening, while at the library, Wolfskehl stumbled upon a paper

regarding Fermat’s Last Theorem (which had not yet been proved). Wolfskehl became absorbed in

the work, and lost the hours of the evening to contemplating the intricacies of an alleged proof. He

became so engrossed, in fact, that he lost all sense of time and wandered past his self-appointed

time of demise.
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COLLABORATION

An unlikely mathematical duo, how ants get their intelligence, and

the quest for a super-mathematician

To pit humans against machines is to miss the narrative arc of technology.

That realisation is not born out of some whimsical hope that humans will

outpace or outperform machines in calculation feats: there, the ship has

well and truly sailed. Nor is it to suggest that our silicon counterparts are

ready to render human intelligence moot. What we have seen instead is

that machines are immensely powerful thinking partners because they

possess forms of intelligence so distinct from our own. Machines augment

our ways of understanding the world by offering us a particular lens

through which to view it.

Part I of this book unpicked five principles of mathematical intelligence

that distinguish our ways of thinking from that of machines. This attempt

to separate humans from machines exposed a subtler interplay between

the two: we can harness technology to amplify those facets of intelligence

that we consider to be uniquely human. This is, after all, what it means to

augment: it is because machines think differently to us that they make for

such effective cognitive allies.

According to Kasparov’s formulation of human–machine collaboration

mentioned in the introduction, when machines and humans collaborate

effectively on certain tasks the cognitive output is superior to the sum of

each individual contribution. The underlying principle behind Kasparov’s

formula is complementarity. By the very same token, the scope for

human–human collaboration is vast – even more so, in fact, because we

are remarkably diverse in our ways of thinking.



An unlikely duo1

The Cambridge mathematician G. H. Hardy was quite used to receiving

letters from young pretenders claiming to have stumbled on some

mathematical discovery or other. One letter, which he received in 1913,

seemed no different at first. It began:

Dear Sir, I beg to introduce myself to you as a clerk in the Accounts

Department of the Port Trust Office at Madras on a salary of only

£20 per annum. I am now about 23 years of age…

The clerk went on to claim a number of ‘startling’ results concerning

numbers. Affixed to the letter was eleven pages of mathematical scribbles

that listed over 120 mathematical results, many of them vaguely worded.

Some bore a faint resemblance to the kinds of theorem in Hardy’s own

papers, though formal proofs were lacking. Some results were surprising;

others seemed, at first blush, downright absurd, such as the claim that

summing all the positive integers (1 + 2 + 3 +…) results in −1/12. Between

these outlandish claims and the understated profile of the writer, there was

little to pique Hardy’s interest. The letter concluded:

Being poor, if you are convinced that there is anything of value I

would like to have my theorems published… Being inexperienced I

would very highly value any advice you give me. Requesting to be

excused for the trouble I give you. I remain, Dear Sir, Yours truly, S.

Ramanujan.

Srinivasa Ramanujan was born in Madras, India in 1887, when the

region was still under British rule. At the age of ten, Ramanujan stood out

in school for his stellar academic performance and prodigious memory

skills. One teacher described the young Ramanujan’s mathematical talents

as ‘off scale’. Ramanujan earned a scholarship to study mathematics at

college, but opportunities for academic progression were sparse, leading

him to take the position of an accounting clerk for the Port of Madras. In



his employment, he was a human computer. On the side, however, he

continued to pursue advanced mathematics.

Ramanujan took inspiration from an undergraduate textbook that he

first stumbled upon as a sixteen-year-old. The text was known for its

terseness – it presented progressively more complicated facts and formulae

without proof. This style made a lasting impression on the precocious

Indian.

Ramanujan, in turn, caught the attention of his boss, who introduced

his young clerk to British expatriates. They could not determine whether

Ramanujan had ‘the stuff of great mathematicians’ or whether ‘his brains

are akin to those of the calculating boy’. As they inclined towards the

former, the expats reached out to mathematicians back home, though

with no success. Undeterred, Ramanujan decided to write to renowned

British mathematicians himself, most of whom paid him no attention. His

note to Hardy was little more than a shot in the dark.

It almost missed – Hardy, too, was ready to dismiss the letter as the

ramblings of an amateur. When he headed to dinner that evening, he had

no conscious intent to return to Ramanujan’s notes. But something

festered in Hardy’s subconscious mind; he could not shake off the feeling

that there might be more to the letter than met the eye. Hardy enlisted the

support of his contemporary, John Littlewood. As they pored through

Ramanujan’s results in closer detail, they began to realise that they were in

possession of some deep mathematics. Hardy would later remark that the

strange formulae that filled Ramanujan’s notes ‘must be true because, if

they were not true, no one would have the imagination to invent them’.

Philosopher Bertrand Russell recalled that the next day, he ‘found Hardy

and Littlewood in a state of wild excitement because they believe they have

found a second Newton, a Hindu clerk in Madras making 20 pounds a

year’. Hardy now set his mind on bringing the mysterious clerk over to

Cambridge.

After expressing enthusiasm for Ramanujan’s theorems, Hardy

insisted: ‘before I can judge properly of the value of what you have done, it

is essential that I should see proofs of some of your assertions.’

Ramanujan’s response was perfectly frank and honest: ‘If I had given you



my methods of proof,’ he said, ‘I am sure you will follow the London

Professor [who had rejected Ramanujan’s approach].’ Of the claim that 1

+ 2 + 3 + 4 +… = −1/12, Ramanujan said: ‘If I tell you this you will at

once point out to me the lunatic asylum as my goal.’

The tetchy exchange set the tone for Hardy’s collaboration with

Ramanujan when the latter finally arrived in London in April 1914 after a

month-long voyage. Ramanujan had prepared for his trip by dressing in

Western clothes and learning to eat with cutlery. It would take

considerably more effort, though, for Hardy to persuade his new protégé

to adapt to his own ways of doing mathematics.

By most standards, Hardy was a top-notch mathematician. After

ranking fourth in the undergraduate Cambridge Tripos exams (three

places below where he felt he truly belonged), Hardy devoted himself to

the more formal and rigorous approach of ‘pure’ mathematics that was

gaining popularity in Continental Europe. This is the same Hardy that

gave no room to ‘ugly mathematics’, and for whom ‘permanent’ truths

were the pinnacle of mathematical inquiry. Hardy’s papers did not always

bring forth revolutionary results, but they were exemplars in how to write

mathematical arguments. Hardy took pride in fine-tuning proofs, a

process that he embraced as an act of craftsmanship. He proudly adopted

the view that a mathematician’s role is to extend, however incrementally,

the frontiers of knowledge that earlier scholars have reached.

Mathematical discovery was a journey of continuous progression: it did

not rely on sudden discoveries, least of all empirical ones.

In contrast, Ramanujan’s spirituality (he was raised as a Hindu

brahmin) had an enduring influence on his intellectual outlook.

Mathematics, for Ramanujan, was a largely holistic enterprise grounded

in regular leaps of faith. He delighted in manipulating equations, relying

on his deep-rooted intuition and phenomenal talent for arithmetic. He

would often attribute his wondrous formulae to the Hindu goddess

Namagiri, who he believed had divinely revealed them, bringing them to

the tip of his tongue.

There was bound to be tension between the rigorously minded Hardy

and the tour-de-force purveyor of formulae that was Ramanujan. To



Hardy’s mind, formulae were a dubious basis for generating mathematical

truths. If a formula held true, it ought to be established through

generalised proof alone. Hardy was also unaccustomed to exercising leaps

of faith, and certainly not ones that leaned on spirituality (this was a man

who went out of his way to establish the non-existence of God). For

Hardy, the acceptance criteria of mathematics left no room for even the

tiniest gaps. He would rebuke Ramanujan for playing fast and loose with

infinite sums and other concepts that, to his mind, warranted strict

definition.

As Hardy interrogated the masses of formulae in Ramanujan’s

notebooks, he presumed there must be some overarching narrative –

perhaps a grand theorem – that tied them all together. He would be left

frustrated when Ramanujan declared no such purpose: Hardy could not

conceive that one could dream up such complex ideas without a lofty

vision. For Ramanujan’s part, the need to justify his every claim seemed

strange. Were the Europeans so insecure in their arguments that they had

to tediously check every step?

With time, the two men embraced one another’s style. Hardy even

made a conscious effort not to force formal instruction on Ramanujan,

realising that this would only stifle the young genius. This compromise

worked wonders: the two men ultimately bridged their intellectual divide

to the extent that Hardy would later describe their collaboration as the

‘most romantic affair’ of his life. In his twilight years, Hardy would even

espouse the virtues of thinking holistically, a sentiment he almost certainly

borrowed from his Indian counterpart. Hardy seemed to accept that the

purpose behind Ramanujan’s formulae was something the young maestro

could only intuit, and that he struggled to express them in formal terms.

Ramanujan’s stay in Cambridge was cut short as the world confronted

the horrors of the First World War, during which he contracted

tuberculosis. It would spell the beginning of Ramanujan’s end, and he

passed away soon after his return to India in 1920. The Ramanujan–Hardy

collaboration lasted six years, starting with Ramanujan’s letter. Many of

their findings continue to fuel inquiries in number theory, and some have

even been found to have practical value long after their deaths (Hardy



might not have been so thrilled by this: he proudly attested to the

uselessness of his results). Modern-day programs like Wolfram Alpha, for

example, make explicit use of Ramanujan’s formulae to compute the

digits of π.

Hardy and Ramanujan exemplify what is possible when two humans

collaborate with one another. In particular, two humans who think in

complementary ways and bring wildly different perspectives may combine

their talents to great effect. It is natural to ask what happens when n is

greater than two: in what manner might collaborative potential increase as

we train more human minds on a problem?

Emergence: when the whole is greater than the sum of its parts

The longstanding notion of intelligence is centred on the individual,

typified by nineteenth-century historian Thomas Carlyle’s ‘Great Man’.2

Yet celebrations of lone wolves often mask the collective contributions of a

band of people lurking in the background. Michelangelo receives sole

credit for his masterpiece that illuminates the ceiling of the Sistine Chapel,

despite the fact that he rallied thirteen people to work on the painting

under his watchful eye, along with more than two hundred assistants

when working on the Laurentian Library in Florence. Historian William

E. Wallace aptly terms the maestro a CEO, his works a triumph of

coordinated entrepreneurship.3 Thomas Edison was no more alone in his

inventive feats, though he would often go to great lengths to wrest the

plaudits from his brilliant employees. The most non-trivial problems

require the weaponry of groups rather than the wit of lone rangers.4 In

recent years, the idea of a group’s ‘collective intelligence’ has been gaining

steam. To predict the performance of a group on a task, you are often

better off evaluating their combined intelligence rather than totting up

their individual smarts.5 But what distinguishes these groups from

ordinary collections of people? To answer that, we turn to the insect

world.

By any reasonable standard, an ant is stupid. It has the paltriest of

brains (250,000 cells versus 86 billion for us humans), which means it has



no serious ability to think, reflect or plan. Despite this, large groups of

ants combine into colonies exhibiting behaviours that are unequivocally

smart. As colonies, ants are capable of remarkable feats. They can find

food and reproduce themselves. They can maintain farms of fungi and

take care of ‘cattle’. They even wage war and defend themselves. How is

this possible, given the uncontested stupidity of each ant?

Colonies operate according to very simple rules. Let’s take the example

of how an ant colony goes about distributing jobs.6 Suppose the colony

has an even split of workers, caretakers, soldiers and gatherers – each

comprising a quarter of the total colony. When two ants meet, they are

able to identify one another’s jobs by using their antennae to pick up scent

– different smells for different jobs. By recognising patterns in pheromone

trails, an ant is also able to keep track of the rate at which it has met with

ants with other jobs, and it uses this information to determine its own

task. Imagine, for instance, that an anteater comes along and kills all the

gatherers, upsetting the balance of the colony. A worker ant will continue

to meet other ants, except now those ants will be either caretakers or

soldiers. With each interaction, the worker ant will realise that there is a

shortfall of gatherers, and eventually it will take up that role. The balance

of jobs in the colony thus restores itself. The ants are not getting their

orders from a supreme queen ant up top (the queen may be fed and cared

for by neighbouring ants but has no way of physically communicating

with those further away). Rather, they are aggregating information across

a vast network of interactions that enables the colony to be productive.

Ants are among a group known as social insects (whose members also

include bees, wasps and termites). They are so named because they thrive

in large numbers – collectively, social insects form more than half of the

earth’s insect biomass. Not so stupid after all.

Ant colonies are an example of emergent behaviour. Emergence refers

to ‘the arising of novel and coherent structures, patterns and properties

during the process of self-organisation in complex systems’.7 It explains a

wide range of phenomena8 beyond ant colonies, such as how prices are set

in the marketplace by aggregating the behaviours of consumers and

suppliers, how individual molecules of water combine to give the property



of wetness, and how each of those 86 billion neurons in the human brain

are capable, as a collective, of producing complex thoughts and memories,

even consciousness. And even while some of these behaviours have yet to

emerge in machine learning programs, they too rely on the same idea of

building intelligence from the bottom up, combining the simplest elements

to produce higher-level behaviours.

Emergence is not simply a device for elevating the stupid. Intelligent

beings – humans, for instance – can apply the same principles to attack

complex problems through networks. The first requirement is numbers:

when it comes to problem solving, no person is an island. People tend to

overestimate their knowledge of everyday things – what psychologists term

the ‘illusion of explanatory depth’.9 The classic example is a zip fastener:

when people are asked whether they can explain how one works, they

usually profess to have more knowledge than they can actually

demonstrate when prompted to give an explanation. It is in our human

nature – an artefact of our cognitive miserliness – that we gloss over the

rich details of how most things work. We generally think we know more

than we actually do about the world. It is only when we are put to task, as

in the zip example, that we realise how much knowledge we store in our

surroundings. There is a mismatch between the complexity of our

problems and our brains’ modest storage capacity, which means we have

to rely on our bodies, the environment and other people to access the

knowledge we need. Working with other people is simply a way of

dividing the cognitive labour required to carry out mental tasks.

The idea of groups outperforming individuals has a well-documented

history.10 At a country fair in 1907, 787 members of the public entered a

competition to guess the weight of an ox on display (more recent

renditions of the experiment involve estimating the number of jelly beans

in a jar – the conclusions are the same). The statistician Francis Galton

turned the competition into an impromptu experiment by analysing the

fairgoers’ guesses. When he looked at the distribution of guesses, Galton

found that they lay on a bell curve (most estimates were somewhere in the

middle and just a few at the lower and upper extremes) – much in line

with what he’d expected. What surprised him was that the average



estimate was almost bang on the money – the subjects had ventured 1,197

lb on average,I just one pound short of the ox’s true weight. ‘The result

seems more creditable’, concluded Galton, ‘to the trustworthiness of

democratic judgement than might have been expected.’ In other words,

just like ants, groups of people can exhibit behaviours more intelligent

than the sum total of the individual intelligences among them.

But numbers alone are not enough to foster productive collaboration.

Emergent behaviour is no free lunch: it does not arise simply by grouping

together lots of elements. The African elephant has three times as many

neurons as humans, but it does not speak, write poetry or formulate

mathematical proofs. Of much greater significance are the structures that

connect those elements; our intelligence is a function of architecture as

much as neuron counts.11 Poorly designed networks can even lead to

disastrous outcomes. Naturalists have found instances of huge armies of

ants that simply move around in large circles repeatedly until they drop

dead. Biologists call this a ‘circular mill’, and it arises when ants become

separated from their colonies, at which point they obey the simplest rule:

follow the ant in front. The circular mill breaks only when a cluster of

ants somehow strays, and others follow. When the mindless, unproductive

rule is carried out by every ant, the aggregate result is inadvertent mass

self-destruction. Group behaviours can be channelled in directions both

positive and negative: they can distribute jobs within ant colonies, or lead

the same ants on a steady march towards certain death.

Just like ants, humans can also influence one another to our collective

detriment. In another experiment,12 subjects were shown an unnumbered

line and asked to indicate which numbered line matched it. When the

subjects worked alone, they had high rates of success. In other cases, five

people entered the room, all of whom were actors (unbeknownst to the

subject) and gave the same wrong answer. Those subjects, after some

hesitation, had much lower rates of success, with as many as one third

succumbing to the stooges’ incorrect answer. This is another instance of

what we learned about the causes of human bias in Chapter 3: our

reasoning is often shaped by persuasion dynamics, because our survival

depends on staying in the herd. The term ‘groupthink’ was coined by



psychologist Irving Janis to describe the social phenomenon in which

‘members of any small cohesive group tend to maintain esprit de corps by

unconsciously developing a number of shared illusions and related norms

that interfere with critical thinking and reality testing.’13 Collaboration is

fuelled by reasoning about other people’s mental states, and experience

shows that we will gladly shy away from questioning assumptions, lining

up behind flawed arguments on the basis that they represent the majority

view – the human equivalent of the ants’ death march.

Why diversity matters

How do we make sure that the double-edged sword of human–human

collaboration tilts in our favour? Diversity of opinion is critical – it occurs

when ‘each person [has] some private information, even if it’s just an

eccentric interpretation of the known facts’.14 When this happens, each

person’s independent judgement combines, to great effect. Their errors

cancel each other out. Those fairgoers each contributed a morsel of

information based on their own unique life experiences. The butcher

might recall the last ox he handled. The avid ox enthusiast may happen to

have read about the typical weight of an ox. The everyday meat consumer

would just go on the bite-sized portions they swallow up. The veggie lover

may have no benchmark at all and will appeal to intuition. No guess is

perfect because no life experience is complete, but if the group is diverse

enough then the collective knowledge pool is so vast that individual errors

tend to nullify one another, resulting in a remarkably accurate overall

average estimate.

If we are relying on other people to shatter our illusions of explanatory

depth, then we must make sure that their knowledge is not simply a

mimicry of our own. It must extend our worldview rather than amplify it.

Where homogeneous groups of like-minded thinkers tend to exploit the

narrow set of ideas they already share, heterogeneous groups are able to

combine their different perspectives to expand their mental horizons. This

holds even at the molecular level. Our digestive system alone relies on

several different proteins, each dedicated to a major food group – amylase



for starch, lipase for fats and so on. No single protein can break down

everything; we rely on their collective capabilities.15

This ‘cognitive diversity’ is a prized asset of collaborative groups,16 and

never more so than with interdisciplinary problems that demand multiple

perspectives. From an evolutionary perspective, cognitive diversity is

essential to a population’s survival: every society needs a mix of

adventurers pioneering us towards new discoveries. We also need risk-

averse people, and a whole spectrum of dispositions in between, to strike

the right balance between exploring new frontiers and exploiting the

resources already at our disposal.

The more cognitively diverse a group – the more varied its perspectives

and ways of processing knowledge – the more its collective intelligence

outstrips the sum of its individual parts (a particular instance of this is

that the proportion of women also predicts better group performance).17

Take the Covid-19 pandemic, effective responses to which drew on

experts from wide-ranging areas, including public health, epidemiology,

virology, immunology, primary care, intensive care, behavioural science

and economic policy. Mathematical modellers were part of the mix too,

projecting a range of scenarios as new evidence of the virus’s potency

poured in. In the UK, mathematicians were very much in vogue: just prior

to the pandemic, the Prime Minister’s most senior adviser, Dominic

Cummings, posted a blog declaring that he was looking to recruit ‘weirdos

and misfits with odd skills’ in an attempt to apply more scientific thinking

to the civil service. Cummings was thinking of mathematically minded

data scientists, so their presence on the government’s Scientific Advisory

Group for Emergencies (SAGE) was assured. Good news for weirdos, you

might think, except that the newfound fervour for mathematicians (most

of whom do not consider themselves weirdos) seemed to come at the

expense of more pluralistic approaches in dealing with Covid-19. In an

article published in Nature, twenty-two signatories gave a stinging rebuke

concerning the politicisation of mathematical models to justify

questionable policies, suggesting that too much faith was being placed in

the precision of data-driven projections.18 The paper makes clear that

mathematical modelling has its place as one of several connected



disciplines, but that it should not rule over all domains for an issue as

complex and multifaceted as a global pandemic. It transpired that SAGE

had no virologists, immunologists or intensive care experts on its team (it

also had just seven women among its twenty-three members), sparking

concerns that the government’s response mechanisms were limited to a

handful of select perspectives.19 Alternative response groups formed to

address the cognitive diversity gap.20

Covid-19 models themselves exploit the power of diversity.

Epidemiologists frequently make use of ensemble forecasts which, as the

name suggests, forge predictions by combining multiple models. It is

another wisdom-of-the-crowd mechanism, where each model gets to have

its say and the final prediction is determined by a voting mechanism.

Ensemble models tend to outperform their constituent parts when the

individual models have a degree of volatility; the ensemble somehow

captures the best elements of each model while washing away their more

erratic behaviours. Each individual Covid-19 model derives from the data

and assumptions of each modeller. It’s not a question of whether

mathematicians (or weirdos) outperform others; it’s a question of how to

bring diverse groups of modellers together to produce forecasts that

outperform those of any single group.21

Ensemble models are also popular in AI, where groups of algorithms

are meshed together to outperform individual ones. In a similar vein,

we’ve seen that old-fashioned symbolic AI, with rules hard-coded, is being

hybridised with modern-day machine learning algorithms – two vastly

different approaches to automating intelligence, the combination of which

is increasingly being heralded as superior to either one alone (as well as

more reflective of human intelligence).

Cognitive diversity derives its power from the enormous range of

representations that each model brings to bear on a situation. That leaves

humans, with our incredibly rich and diverse sociocultural heritage,

poised to flourish when we join forces to solve problems. We saw in

Chapter 2 how mathematical constructs such as our counting systems are

interwoven with our experience and environmental backdrop.

Experiments carried out by psychologist Richard Nisbett go even further,



demonstrating how culture profoundly influences the way we see the

world.22 Westerners and East Asians, for instance, seem to direct their

attention in different ways. When shown vignettes of various scenes

(among them a train, a tiger in a forest and an aeroplane surrounded by

mountains) Americans tend to home in on the focal object, whereas

Japanese subjects are more likely to map out the whole scene, fixating just

as much on background detail. Other studies have similarly teased out the

interplay between culture and information processing by examining how

subjects respond to optical illusions.

Consider the two middle circles below.23 Participants from

industrialised nations are more likely to (incorrectly) say that the right-

hand circle is larger; in fact, they’re the same size. If you remove the outer

circles, this illusion disappears. The error comes from considering the

relative size of the inner and outer circles. Participants from more

‘traditional’ societies have less grounding in abstraction and are therefore

less likely to be influenced by the relationship of the middle circles to the

outer circles. They have much higher success rates with this question,

although the trend is reversed on problems that rely on abstraction (such

as those popular in IQ tests).24

The point here is not that one way of seeing things is superior to the

other, but rather that our complementary viewpoints expand our

collective understanding of a problem. If ever there was a case for

multiculturalism, it is surely here: by exposing ourselves to different ways

of living and being, we acquire a richer tapestry of mental models and free

ourselves from monolithic thought patterns.

It’s a troubling irony that for all the technical effort to diversify AI

models, the field itself remains narrowly represented. Over 80 per cent of

machine learning practitioners identify as men,25 while black workers

make up less than 5 per cent of staff at Google, Facebook and Microsoft.26

There is a traceable path between the narrow demographics of AI

developers and the biases inherent in their technologies, yet Big Tech firms



have so far paid mere lip service to such concerns. In one high-profile

incident, Google’s Timnit Gebru was forced to resign her position

following an internal review of a paper she had co-authored that

highlighted the discriminatory nature of natural language models

employed by the company’s search engine.27 The silencing of minority

voices is a licence for AI to project and amplify our latent human

prejudices onto the world as the assumptions of a small band of

innovators are left unchecked.

Think back to the unlikely partnership of Ramanujan and Hardy: one

a Hindu Brahmin, the other an ardent atheist; one who became infatuated

with exotic formulae from a textbook, the other inspired by the European

paradigm of rigour; one thinking holistically, the other demanding formal

proof. Both mathematicians brought their respective representations of the

world – underpinned by their upbringing and environment, and every

facet of their educational experience – to bear on the same problems.

Because they heralded from such disparate backgrounds, they were able to

enrich one another’s perspectives. The unlikeliness of the collaboration is

precisely what made it so potent.

The arc of science bends towards collaboration

Science is a collegiate affair that requires multiple roles and perspectives.

Contrary to popular depictions, it is not the sole preserve of lone geniuses,

working in isolation in underground labs in search of the next pioneering

breakthrough. A community of peers is needed to define, collectively, what

problems are worth solving in the first place. As solutions are presented,

review committees must convene to determine whether a submitted paper

is accurate and insightful enough to merit publication. Even the most

individualistic pursuit of, say, a Nobel Prize, or its mathematics equivalent,

the Fields Medal, is contingent on recognition that is bestowed by panels

of expert judges. No modern-day scientist earns their fame in a silo.

Every scientist ‘stands on the shoulders of giants’, as Isaac Newton

famously put it, iterating on the foundations laid down by prior

generations. These days, most worthwhile problems are interdisciplinary



in nature, requiring teams of scientists who pool their diverse solution

strategies. Studies dating back to the 1960s show that the most prolific

scientists, and the most celebrated (Nobel laureates, for example), are also

the most collaborative.28 Social scientist Etienne Wenger puts it best:

‘Today’s complex problem solving requires multiple perspectives. The days

of Leonardo da Vinci are over.’29

There is plenty of empirical evidence to suggest that science has

become increasingly collaborative in recent times. An influential 2007

study by Kellogg School professors Brian Uzzi and Benjamin Jones, in

which the authors analysed almost 20 million research papers in the Web

of Science database, noted a ‘shift towards teams’ since the 1950s, and that

‘teams were not only becoming more prominent, but they were becoming

bigger each year… teams were also, across a majority of disciplines,

increasingly producing the most impactful papers’.30 An analysis of the

PubMed database of papers in the biomedical and life science fields has

demonstrated a five-fold increase in the number of authors per paper

between 1913 and 2013, and has projected that by 2034 papers will have

an average of eight authors.31 The study acknowledges the rise of so-called

‘big science’ projects like the Large Hadron Collider and the Human

Genome Project. Taking an example from the former, it is somewhat

ironic that the Higgs boson is named after the individual (Peter Higgs)

who first postulated its existence, when the two papers that confirmed its

existence comprised over 5,000 authors representing dozens of institutions

and countries (the papers came in at around thirty pages each, of which

around nineteen pages were the author list alone).32 While Peter Higgs

may have deservedly scooped the Nobel Prize for his contribution,

recognition has also been distributed to the thousands of engineers,

theorists and lab technicians whose individual roles combined to make the

discovery possible. The term hyperauthorship has even been coined to

describe the phenomenon of mass collaboration that arises when problems

demand expertise from so many minds.33

Mathematics has followed the same trend of dramatic increases in

collaboration over the past century. Between the 1940s and the 1990s, the

proportion of authors involved in joint papers climbed from 28 per cent to



81 per cent.34 The average number of collaborators of an individual

author also rose from 0.49 to 2.84. One of the biggest advocates for

collaboration in mathematics was twentieth-century Hungarian

mathematician Paul Erdös. Erdös had the utmost respect for maths

problems (and for coffee, embodying the quip that mathematicians are

devices for turning it into theorems). Recognising that problem solving is

not an individualistic pursuit, Erdös actively sought out fellow problem

solvers as he travelled the world living out of a suitcase, notching up over

500 collaborators en route (many of his co-authored papers continue to be

published posthumously). In fact, Erdös was so prolific as a collaborator

that mathematicians identify with an Erdös number, which is a measure of

one’s ‘collaborative distance’ from the Hungarian – so those who co-

authored with him have an Erdös number of 1, those who co-authored

with someone who co-authored with him have an Erdös number of 2, and

so on. It is the mathematician’s equivalent of Hollywood actors’ degrees

of separation from Kevin Bacon.II

The mathematician William Thurston went as far as to tie the very

purpose of mathematical study to collaboration: ‘In short, mathematics

only exists in a living community of mathematicians that spreads

understanding and breathes life into ideas both old and new. The real

satisfaction from mathematics is in learning from others and sharing with

others. All of us have clear understanding of a few things and murky

concepts of many more.’35

Mathematical intelligence is tied to our social constructs. We reason to

persuade others of our beliefs. We create models of how other people

think and behave, and we construct knowledge representations to

communicate difficult ideas. We ask and answer questions that we think

others will find interesting.

It is a rare mathematician who locks themselves away in isolated

pursuit of a solution. Andrew Wiles may qualify as that rare specimen;

notoriously, he chipped away at the proof of Fermat’s Last Theorem in

secret over a period of seven years. But even Wiles realised he had to enter

the public fold sooner or later. He delivered a series of lectures as a way of

announcing the proof and opening it up to scrutiny among his peers



(which exposed a gap in his argument that would take another year to

address). For all his individual brilliance, Wiles relied on stitching together

results that had accumulated over the 358-year search of the proof. His

was the definitive breakthrough, but it stood on the shoulders of the

mathematical giants who came before. The mathematician Ken Ribet,

who himself made strides that Wiles’s proof leaned on, noted how odd he

found it that Wiles would work in such clandestine fashion:

This is probably the only case I know where someone worked for

such a long time without divulging what he was doing, without

talking about the progress he was making. In our community people

have always shared their ideas… Mathematicians come together at

conferences, they visit each other to give seminars, they send e-mail

to each other, they ask for insights, they ask for feedback. When you

talk to other people you get a pat on the back, people tell you that

what you’ve done is important. It’s sort of nourishing, and if you cut

yourself off from this then you are doing something that’s probably

psychologically very odd.36

The complexity of modern-day mathematics, much as with big science,

means that Wiles’s example will remain an outlier among problem solvers.

It is Erdös’s collaborative spirit that really caught the mood of twentieth-

century mathematics, with mathematicians pooling their specialised

knowledge from different fields to tackle the subject’s most stubborn

problems.

One of the most extraordinary mathematical results of the twentieth

century was also one the most collaborative. It concerned finite simple

groups, which are the building blocks of abstract algebraic structures. The

theorem sought to classify all such groups, and this classification was seen

as the holy grail in the field. Just as the chemist studies molecules through

atoms, and the number theorist studies whole numbers by probing the

peculiar properties of prime numbers, the algebraist looks to finite simple

groups as the most fundamental object of study.



The collaboration was instigated via a series of seminars in Chicago in

1972 that outlined a vision for weaving together multiple strands of

mathematics that would cover all the possible ways in which finite simple

groups arise. What made the proof so remarkable was its size and form: it

sprawled over 10,000 pages of papers that were sprinkled across 500

journal articles, with 100 authors from around the world. Mathematical

proof had never been so unwieldy. The sceptics could not fathom that the

proof would be free of error, and after much scrutiny some mistakes were

indeed found – and duly corrected in the ensuing years. One of the main

contributors wrote in 2004: ‘to my knowledge the main theorem [of our

paper] closes the last gap in the original proof, so (for the moment) the

classification theorem can be regarded as a theorem.’37 There are

mathematicians today working to simplify the proof.

A telling feature of the proof is that no single person understands it in

its entirety. The absence of a single, omniscient authority speaks to

another precondition for emergent behaviour: decentralisation. The chain

of command within an ant colony does not consist of a single queen ant

transmitting orders to her army of subjects. Instead, it is distributed

throughout the colony as individual ants literally sniff their way to

localised actions. The collaborations of big science and mathematics

similarly empower people to draw on their local pool of knowledge to

contribute towards global outcomes. The same model of collaboration is

transforming the modern-day work environment. The AI pioneer Norbert

Wiener considered organisations to be ‘flesh and blood machines’ and

believed that the intelligent potential of humans is squandered when we

are confined to fixed roles:

… if the human being is condemned and restricted to perform the

same functions over and over again, he will not even be a good ant,

not to mention a good human being. Those who would organise us

according to permanent individual functions and permanent

individual restrictions condemn the human race to move at much

less than half-steam.38



Wiener’s advice is alive and well in modern companies that are tearing

down rigid hierarchies in favour of more fluid structures that promote

overlapping activities between departments and cross-disciplinary

thinking.39 A common feature of today’s innovative companies is that

teams operate as small units, with the autonomy to set their own

objectives and working practices. Each unit carves out its own unique

subculture, reducing the risk of excessive conformity – and the blind spots

that come with it – across the entire organisation. Units can team up on

demand, combining their skills and perspectives to tackle

multidisciplinary projects. Even senior executives, it seems, are gunning

for the virtues of emergence.

Make way for the crowdsourced super-mathematician

At the close of the twentieth century, the precedent of collaboration was

well established in mathematics. The complexity of research demanded

that mathematicians break through traditional barriers to collaboration

and nurture their collective intelligence. The advent of the internet at

around this time slotted neatly into this context, as the technologies of the

digital age promised to connect people like never before. Exploiting

diverse opinions within decentralised structures was a challenge the

internet was made for.

Web technologies have given rise to an explosion of information as well

as the tools for us to connect – both with the information itself and with

those who create it. Oracle-like engines such as Google are, for the most

part, pointing to knowledge produced by us humans (even as digital

content becomes increasingly automated, the most interesting questions –

and answers – are left to us for now). Through social media, billions

worldwide are entering into a shared conversation, taking place in real

time, on all topics imaginable. Economists Andrew McAfee and Erik

Brynjolfsson use the term emergence of the crowd to refer to ‘the

startlingly large amount of human knowledge, expertise, and enthusiasm

distributed all over the world and now available, and able to be focused,

online’.40 They recall the failed attempts in the early days of the internet to



tightly regulate the production of online content. Sites like Yahoo! were

soon overwhelmed by the sheer volume of human-generated content,

whose growth was exponential. They liken today’s web to ‘a crowd-

generated library – a huge, sprawling, constantly growing, and changing

one’.

A messy internet also plays host to some of the most effectively

coordinated projects in human history, however. Open-source initiatives

have mass collaboration at their core. Source code and product blueprints

are shared with the public, who are then free to modify the original design

and publish their own version, releasing it back to the community.

Operating systems (e.g. Linux and Android), browsers (e.g. Chrome and

Firefox) and database management systems (e.g. MySQL and MongoDB)

are just some of the high-profile projects that have developed in this way.

Open-source projects have also helped to bring some order to

humanity’s collective knowledge. Forums like Reddit, Quora and Stack

Exchange and repositories like Wikipedia (dubbed the ‘last best place on

the internet’41) are exemplars of web-enabled emergence: simple agents

(the lay contributor) working with simple rules (governance protocols) to

collectively produce work beyond their individual capabilities. All rely on

the spirit of volunteerism; an intrinsic and altruistic drive that enables the

mass proliferation of high-quality, reliable content.

These examples demonstrate how within decentralised structures

crowds can be trusted to create and maintain the standards of certified

experts. In fact, crowds can go further. The illusion of explanatory depth

afflicts us all, so convening a small handful of experts inevitably gives rise

to blind spots; when the number of collaborators is stifled, so too is their

collective sense of what they know and do not know. The opt-in crowd

brings volume and a diversity of perspective that is unmatched by any

chosen few.

The same model is being exploited in some quarters to advance the

frontiers of mathematical research. In this case, the agents may not be so

‘simple’ – anyone who is able to contribute to an unsolved maths problem

must possess serious pedigree. Regardless, in his 2009 blog ‘Is massively

collaborative mathematics possible?’,42 mathematician Tim Gowers



wondered if large-scale problem solving could be made the norm with the

tools of online collaboration. The internet diffuses information virtually

in real time, which means that, at the very least, mathematicians are

becoming increasingly aware of one another’s work. But what if there was

a deliberate effort – a forum of some kind – to bring more minds to bear

on a given problem? Gowers took inspiration from the classification of

finite simple groups and wondered how the approach might be updated to

exploit the tools of the digital age. As he suggested: ‘The idea would be

that anybody who had anything whatsoever to say about the problem

could chip in.’ Like Wikipedia, this effort would lean on volunteers and

the intrinsic drive to share knowledge in the pursuit of new horizons. It

would exploit the diversity of skills and perspectives that you don’t always

get within the traditional confines of academia, allowing more people –

and more types of people – to weigh in:

Different people have different characteristics when it comes to

research. Some like to throw out ideas, others to criticise them,

others to work out details, others to re-explain ideas in a different

language, others to formulate different but related problems, others

to step back from a big muddle of ideas and fashion some more

coherent picture out of them, and so on. A hugely collaborative

project would make it possible for people to specialise… In short, if

a large group of mathematicians could connect their brains

efficiently, they could perhaps solve problems very efficiently as well.

It was also Gowers who wrote of the ‘two cultures’ in mathematics –

problem solvers and theory builders. Recall, too, Freeman Dyson’s

characterisation of mathematicians as either visionary birds (seeking to tie

together concepts) and frogs (single-mindedly focused on one problem at a

time). Each occupies different vantage points, wields different tools and

possesses different perspectives. Gowers was seeking a harmonisation of

mathematical subcultures and felt that the internet afforded him the tools

to do it.



Gowers had the digital media of blogs, wikis and forums in mind – the

medium was not only to facilitate but also to shape collaborative problem

solving. He meticulously laid out the rules he felt would maximise virtual

collaboration. Comments would be kept short and easy to read. Etiquette

would be followed – all ideas would be welcomed, even the stupid ones

(and the term ‘stupid’ was never to be used when referring to another’s

work). A collective pseudonym would be used to author any published

papers that came out of the collaboration, with a link to every comment.

Of particular note is Rule Six, which is an ode to the principles of

emergence: ‘The ideal outcome would be a solution of the problem with

no single individual having to think all that hard. The hard thought would

be done by a sort of super-mathematician whose brain is distributed

amongst bits of the brains of lots of interlinked people.’ Gowers struck a

chord with the mathematical community; his post earned over 200

comments, with world-class mathematicians like Terence Tao subscribing

to the concept. The Polymath Project was born, and in his follow-up post,

Gowers took aim at a particular problem.III

So, did it work? Has the super-mathematician emerged from virtual

collaboration premised on simple tools and even simpler rules? There is

reason to be optimistic. Within seven weeks, Gowers declared that his first

problem was ‘probably solved’,43 and all doubt was removed within three

months. Over forty people had contributed, to varying degrees, to the

solution. The Polymath Project has also given rise to published papers that

marked significant progress towards two other unsolved problems. The

super-mathematician appears to be emerging, one small proof at a time.

Similar initiatives targeted at high-school and college students have

followed suit,44 each leveraging the powerfully simple notion that

mathematicians are most potent when they solve together.

Shared intentions

There is room for all of us at the rendezvous of problem solving. The non-

routine problems of the future will demand knowledge and skill that is

distributed among a multitude of intelligent entities. MIT’s Joichi Ito has



proposed a notion of ‘extended intelligence’ that views intelligence in

terms of an ever-evolving, ever-expanding network.45 AI itself contributes

several bits and pieces, as a vast range of models are developed and

combined in order to attack novel problems. But humans too, and humans

especially, enrich that network through our countless ways of seeing the

world, each shaped by our individual experiences, and the distinct

representations we carry with us. You and I are both part of that network,

along with every other person on the planet.

The most potent problem solvers among us will be the most

collaborative ones. They will possess the metacognitive awareness to know

what they know and, more crucially, what they remain ignorant about.

Problem solving will become an increasingly social activity as we seek out

minds that complement our own. We will partner with computers in all

the ways described in previous chapters. But we will also use the

connective technologies of the digital age to forge closer intellectual ties

with our own kin. Every human mind is a unique mould of language,

environment and experience. It sometimes takes an unassuming Indian to

remind us of our untouched mental capacities – one can only wonder how

many Ramanujans are lurking in our midst, waiting to unleash themselves

on the problems that matter to us.

No individual can bear the sole responsibility of keeping humans

relevant in the machine age. Our human strengths, even our values, emerge

as a collective. Scientific inquiry will be kept bright by our shared

intentionality, one of the traits that distinguishes humans in the animal

kingdom. Experiments show that 18–24-month-old children and

chimpanzees have comparable rates of success on a range of tasks, but

when the tasks are altered slightly to require collaboration with the

experimenter, the success rate of children shoots up, while that of chimps

dwindles.46

Humans ascribe value to problems based on their importance to our

community. Would a ten-year-old Andrew Wiles have become so

captivated by Fermat’s Last Theorem had it not eluded mathematicians

for so long and earned such infamy within the field? Would any scientist

today be driven to work on problems that had no human precedent, or



brought no recognition? Our motivation to solve problems is itself an

emergent phenomenon, derived from our shared experiences. What

matters to us is predominantly a function of what matters to others.

Technology has its roles to play as both collaborator and connector. We

will solve with machines at the same time that the internet amplifies

human–human collaboration. These technologies, in turn, will be shaped

by how we humans come together; algorithmic bias is often just a

reflection of homogeneous development teams. Our faith in automated

judgements will be well placed only when the creators of these

technologies are as diverse as humanity itself.

What technology will not do is share in our intentions. The machines

are no more a part of our community than public transport is (self-driving

or otherwise). They can serve our goals, but it is for humans, alongside

other humans, to truly shape them. We should find comfort in the thought

that however complicated the world’s problems become, none of us will be

expected to solve them alone.

I. Galton adopted the median as his measure of central tendency to avoid distortions due to outlier

estimates.

II. Bacon has appeared in such a variety of films that a parlour game asks you to link any given

actor or actress to him in terms of shared movie appearances – the standard challenge is to make

the link in six moves.

III. In fact, the problem – known as the Hales–Jewett theorem – had already been solved. Gowers

was after an alternative proof that used a combinatorial approach.



EPILOGUE

Let’s address the elephant in the room.

What if AI achieves the wildest ambitions of its creators, and machines

develop human-like, or superhuman-like abilities? What if they acquire the

principles of mathematical intelligence? What will be left for humans?

I have not, after all, argued that those principles are beyond the scope

of what machines may one day prove capable of – only that they have so

far failed to demonstrate them. I have taken particular aim at approaches

such as machine learning because they are the vanguard of present-day AI

and, while they result in spectacular standalone feats, they remain

grounded in mindless calculation and pattern recognition that precludes

comparison with our own organic forms of intelligence. I do not believe

mathematics will face the ‘bitter lesson’ that its thorniest problems will

succumb to searching for patterns in large troves of data.1 The questions

and answers of mathematics are too vast in scope, too deep in inquiry, for

today’s smartest machines to take the helm.

But machine learning isn’t the only game in town. AI is replete with

sub-fields and approaches to cracking the harder questions of intelligence

– questions of how to imbue machines with common sense, reasoning,

explainability, curiosity and more. It’s only appropriate to countenance

the possibility that much of this will come to pass.

If AI does subsume our richest mathematical thinking skills, we may

take solace in the irony of it all. From the outset, computers have been

conceived and developed as mathematical objects – toolboxes for

programming and logically manipulating our thoughts. AI itself is just a

specialised product of mathematical thinking. If we get to the point where

our digital creations supersede our own thinking skills, we could consider



it a mathematical job well done. Except it may be the last job

mathematicians are paid for.

Unpaid work

If AI gets anywhere close to its aims, we’ll see dramatic shifts towards an

automated workforce. It is unlikely that humans would have the skill to

spar with our machine counterparts. How presumptuous must we be to

think that the machines will require, let alone accept, our commands

anyway? It seems more likely that the days of the mathematician-worker

will, if you’ll forgive the pun, be numbered.

Then again, gainful employment was never the express aim of

mathematics – an enabler, sure, but not its raison d’être. That we would

get paid to think in the most creative and uplifting ways was only ever a

welcome by-product, one facet of the subject’s unreasonable effectiveness.

Mathematical intelligence is so deeply woven into our ways of thinking

and being that as long as there is a place for humans in this world, there is

also a place for us to do mathematics.

That the computers may one day outperform us in certain tasks is no

reason to stop engaging in them altogether. Our awareness of our own

human limitations is our inspiration to play at the boundary of what is

thought possible. The two-hour marathon barrier is seen by many as the

next major milestone for endurance athletes.I By human standards, it is an

unfathomable target.2 By the standards of technology, it is pitiful – an

amateur on a rickety bike would cover 26.2 miles in less time. Elite

distance runners are not competing with an absolute standard alongside

technology as much as they are striving to inch forward the relative

standard of humans. It must also be noted that their efforts are hardly

divorced from technology – from running shoes to data-driven training

regimens, modern science is playing its hand in this most human of

endeavours.

The work that humans value most is that which inspires us to create the

best versions of ourselves. The ancient Greeks termed it eudaimonia, the

‘good composed of all goods; an ability which suffices for living well’. This



is a life philosophy predicated on human flourishing. A subset among us

may receive remuneration for our relative talents, because of the

enrichment and entertainment it offers to our fellow humans. But even if

we are not paid world-class performers, the intrinsic value we attach to

these activities will spur us on, just like the millions of amateur marathon

runners who take to the streets each year, each pursuing their individual

targets.

An automated workforce will occasion a shift in emphasis from the

utility of mathematics towards an appreciation of mathematics as one of

the classics – a subject still worthy of our study because it conditions our

minds and celebrates our rich heritage as a species of thinkers, even if the

job prospects are uncertain.

As people seek to carve out non-economic identities outside the

workforce, we’ll gravitate to activities that we ascribe inherent value to.

The future, just like many instances in the past, may see the resurgence of

a leisure class, who, through the fruits of technology, find themselves with

the time and space to engage in recreational thinking. Mathematics – the

brand espoused by this book rather than the cold, unsympathetic variant

predicated on calculation – can supply endless hours of enrichment for the

mind.

The recreational brand of mathematics will even be an outgrowth from

technology. We will continue to use technology to create new puzzles and

to disseminate them to the world – what is the value of a puzzle, after all,

if there are no takers? There will always be value in shared human

experience, and technology is the means of forging bonds between tribes

of problem solvers.

As we gaze up at the towering intellectual feats of machines,

meanwhile, the more talented among us (who may once have found a

calling as professional mathematicians) will take on the challenge of

grasping their key insights. Machines may produce mathematics of an

unprecedented type – more complicated, more abstract, probably less

comprehensible to humans. We may face the tantalising proposition of

knowing that juggernauts like the Riemann hypothesis have passed from

conjecture to proof in the minds of machines, only for the details to elude



our understanding. If a theorem falls down and no human has the

language to grasp its proof, does it still count as a theorem? Philosophers

of mathematics will never tire of such debates.

Agency

Mathematicians can rest easy for the moment. There is no serious

indication that AI is ready to assume the finer aspects of human thinking.

For mathematical intelligence to be fully realised, our approach to AI must

be premised on conscious intent that is still lacking in mainstream AI

applications.

Narratives around AI have begun to make space for a decoupling

between intelligence and consciousness.3 If a machine can supersede the

smartest humans in the most complex tasks, then what does it matter

whether they are capable of having subjective experiences?

Mathematics, the entire enterprise of which is driven by our conscious

choices, tells us that it matters a great deal. If there is one thing to be

learned from the histories of mathematics, it is that intellectual inquiry

has no fixed trajectory. The greatest gift of all those bestowed by

mathematical intelligence is agency – the freedom to think for ourselves

and to actively guide ourselves through the different stages of discovery.

There is no single body of knowledge waiting to be unearthed one

mechanised leap at a time – the incompleteness of mathematics renders it

so wonderfully subjective that no single exploration can lead us to all

truths. Our mathematical inquiry is tied to our decisions – the axioms we

build from, the rules we follow, the questions we ponder. Each of us brings

the baggage of our environment and upbringing, our language and

education, in shaping our personal visions of mathematics. The scope for

exploration is as vast as humanity is diverse. Mathematical thinkers set

their own rules for engagement, and they can entertain the cognitive

conflicts that lead them to break those very same rules while they dream

up whole new worlds.

Without consciousness, there would be no aesthetic contemplation of

our intellectual breakthroughs. DeepMind’s Go-playing machines would



be acknowledged for their outcomes, but there would be no moment to

marvel at the elegance of their play. Where does our intellectual purpose

derive from, if not a profound sense of appreciation?

The dominant paradigm of machine learning bypasses the need for

consciousness. The reason it is so pervasive is that it has proved versatile

enough to bring efficiencies and labour savings across a range of jobs and

sectors. It works enough of the time, to enough of an extent, to generate

hype and investment. The external pull is towards aggregate performance

rather than towards conscious reflection of how to achieve fair and

equitable outcomes for all.

AI raises all manner of moral, legal and ethical challenges. It dovetails

with the economic logic of mass surveillance that has come to shape Big

Tech.4 Data is the coin of the realm, minted by the pattern-matching tools

of machine learning. A disproportionate amount of energy is invested in

predictive models that capture users’ attention, anticipate their online

movements and influence their purchasing habits and voting preferences.

Governments are exploiting the same tools to regulate the behaviours,

even the thoughts, of entire populations. In the military, autonomous

weapons (the sanitised term for ‘killer robots’) are making their way to the

battlefield, adding a new bitter flavour to proxy wars. As long as

commercial and political incentives are the guiding hand of AI

development, we risk letting machines (and their human creators) off the

hook for the choices they make on behalf of society.

Someone needs to ask the hard questions and demand a higher level of

scrutiny for automated judgements. If not the machines, then that leaves

only us. Mathematical intelligence keeps our curiosity burning; we’ll need

it to prise open black-box systems, examine the rhyme and reason behind

their choices and expose the gaps in their thinking. It is a welcome

paradox of mathematical intelligence that it can alert us to the limits of

mathematising the world; some concepts are just too unwieldy to specify

and resolve in precise terms.

The pandemic is a painful reminder that science is no free lunch; the

same theory can drive different practical ends. Where some nations have

prospered by embracing scientific evidence from the outset, others have



floundered as mathematical models have been wilfully misappropriated to

serve ideological notions of liberty.

The story of human–machine collaboration is far from over, and its

ending, too, will depend on the choices we make and the questions we ask.

We will get to live out just one of AI’s countless possible futures – given

the frightening prospects of our digital creations, we may not be permitted

a do-over if we misstep on our first attempt. Mathematical intelligence is a

guidepost for getting us the cognitive allies we want: machines that work

alongside us, for the purpose of human flourishing.

I. The Kenyan runner Eliud Kipchoge achieved the milestone in 2019, although the highly

choreographed attempt (including rotating pace setters) meant it was not recognised under official

IAAF rules.
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