Raban Iten

I "Artificial
Intelligence
for Scientific

Discoveries

Extracting Physical Concepts
from Experimental Data Using Deep
Learning

N Springer

Artificial Intelligence for Scientific Discoveries

Raban Iten

Artificial Intelligence
for Scientific Discoveries

Extracting Physical Concepts from
Experimental Data Using Deep Learning

@ Springer

Raban Iten
ETH Ziirich
Ziirich, Switzerland

ISBN 978-3-031-27018-5 ISBN 978-3-031-27019-2 (eBook)
https://doi.org/10.1007/978-3-031-27019-2

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2023

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-031-27019-2

Dedicated to Theres and Aschi Iten

Preface

This book is written for scientists interested in using machine learning to discover
physical concepts. No prior knowledge of machine learning is required, but a first
degree in a science subject is assumed.

The motivation to write this book is rooted in my Ph.D. research, which focused
on the long-term goal of using machine learning to make progress on fundamental
questions in modern physics. At the beginning of the Ph.D., I had only a very basic
knowledge of machine learning, so I started reading a lot of papers in the field of
machine learning as well as papers that used machine learning for physics. Most of
the work using machine learning for physics focuses on finding model parameters for
specific physical systems, and I could only find a few papers that use machine learning
in a way to gain insights about the model itself rather than just its parameters. These
papers come from a variety of research communities, and it took me some effort to
get an overview of the relevant machine learning methods for automating parts of a
physicist’s discovery process. Therefore, I thought that providing an overview over
this field could be helpful to other physicists who are interested in learning about how
to use machines to get insights from experimental data. I would be very interested in
any feedback on the book or suggestions for work to be covered in a second version.
If you have any comments, please just email me at itenr @ethz.ch.

Zurich, Switzerland Raban Iten
January 2023

vii

mailto:itenr@ethz.ch

Acknowledgements

This book is based on my Ph.D. and would not exist in this form without the close
collaboration with Tony Metger and Hendrik P. Nautrup. I would like to warmly
thank these brilliant friends for the fruitful and very enjoyable collaboration and for
reviewing parts of this book.

In addition, I would like to thank Angela Lahee, Ashok Arumairaj and their team
from Springer for their enthusiasm for the topic covered in this book and their great
support while writing it.

I would also like to sincerely thank my Ph.D. supervisor Renato Renner for inter-
esting discussions and for supporting me in writing this book. His precision in scien-
tific thinking is highly inspiring and clearly sharpened my mind. Renato gave me a
lot of freedom to work on topics of my interest and was always open to discuss any
questions.

Furthermore, I would like to thank Giuseppe Carleo and Matthias Troyer for
reviewing my work as co-examiners for my doctoral thesis.

I am also very grateful to Manfred Sigrist for interesting discussions and the
occasional chats in the office or during a jogging round, and last but not least for
creating a very friendly atmosphere on the K floor in the HIT building of ETH Zurich.

During the last couple of years, I was extremely lucky to collaborate with various
brilliant people including Mario Berta, Hans J. Briegel, Matthias Christandl, Roger
Colbeck, Emanuel Malvetti, Hendrik P. Nautrup, Tony Metger, Romain Moyard,
Navneeth Ramakrishnan, Joseph M. Renes, Renato Renner, Henrik Wilming and
Stefan Woerner. I would like to thank all of them for the interesting collaborations.

Hans J. Briegel, Mario Krenn, Alexey Melnikov, Tony Metger, Hendrik P.
Nautrup, Henrik Wilming and Monika Zimmermann helped me to improve this
book, and I thank them very much. I would also like to thank Mario Krenn for very
interesting and extremely motivating discussions about how to use machine learning
to discover conceptual information.

In addition, I would like to thank all the former and current members of the
quantum information theory group at ETH Zurich for many interesting and stimu-
lating discussions. In particular, I would like to thank my office mates Rotem Arnon-
Friedman and Mischa Woods for many interesting discussions and their scientific

X Acknowledgements

advice. Further, I would like to thank Christa Zoufal for helping me to organize an
internship at IBM Research in Ziirich with Stefan Woerner during my Ph.D., which
was a very enriching experience and a truly wonderful time, not only because of the
delicious food at the IBM canteen.

Furthermore, I have to thank my girlfriends along the Ph.D. for setting me chal-
lenges outside of the physics world and thus contributing to my personal learning
experience. They taught me complex lessons (sometimes painful to learn) and
provided me with various experiences, each of them in their unique way. This
contributed greatly to making my Ph.D. time an instructive period of my life. In
particular, I would like to thank Monika for creating a steady, supportive and stim-
ulating social environment which led to a productive time towards the end of my
Ph.D.

Finally and most importantly, I would like to thank my two sisters and my parents
for their constant support and encouragement.

Zurich, Switzerland Raban Iten
January 2023

Contents

1 Imtroduction 1
LT MOtvationoiuiiiiiiiii i 2
1.2 Physicist’s Discovery Process 3
1.3 Extracting Relevant Parameters from Experimental Data 4
14 Outhine 6
PartI Machine Learning Background
2 Machine Learning ina Nutshell 11
2.1 Supervised Learning i il 11
2.2 Unsupervised Learning 12
2.3 Reinforcement Learning 13
24 Bias-Variance Tradeoff L. 14
3 Artificial Neural Networks 17
3.1 Single Artificial Neuron 17
3.2 Activation Functions L. 18
33 Neural Networks 19
3.4 Universality Theoremccoiiiiiiiinneeninnn... 20
3.5 Training of Neural Networksoo.... 21
3.5.1 Stochastic Gradient Descent 22
3.5.2 Convergence and Choice of Hyperparameters 23
353 Generalizationeiiiiiiii 24
36 Deeplearningot 25
4 Autoencodersiiii 27
Part I Overview of Using Machine Learning for Scientific Discoveries
5 Creating Experimental Setups 33
5.1 Problem Setting from Quantum Optics 34
5.1.1 Entanglement of Bipartite Systems 34
5.1.2 Entanglement of Multipartite Systems 36

xi

Xii

Contents

5.1.3 Preparation of Photon States 36
5.2 Creating Experimental Setups Using Projective Simulation 37
5.2.1 Architecture for PSAgent 39
5.2.2 Trainingofthe PSAgent, 40
523 Results ... 44
5.3 Conceptual Insights from Action Composition 45
Model Creationttt 47
6.1 Optimizing Model Parameters 47
6.2 Discovering Physical Laws 48
6.2.1 Symbolic Regressionccoiiiiiiina.. 49
6.2.2 Extracting Physical Laws from Data 52
Model Testingo o e 57
7.1 Statistical Setting 58
7.2 Approximation of Probability Density Functions 60
7.2.1 Parametric Modelling 61
7.2.2 Non-parametric Modelling 62
7.3 Statistical Hypothesis Testing 63
7.4 Identifying the Discrepant Regions 64
7.5 Application for Model Testing 65

Part III Representation Learning for Physical Discoveries

8

Theory: Formalizing the Process of Human Model Building 69
8.1 MOtIVALION ...\t 69
8.2 Physicist’s Reasoning Process, 70
8.3 Experimental Setting and Data Creation 70
8.4 Criteria for Operationally Meaningful Representations 72
8.4.1 Minimal Representation 72
8.4.2 Separation of Physical Parameters 73
8.4.3 Simple Update Rules 81
8.5 Criteria for Mathematically Meaningful Representations 82
8.5.1 Koopman Operator Theory 83
8.5.2 Representation of Koopman Eigenfunctions 84
8.6 Criteria for Physically Meaningful Representations 85
8.6.1 ImteractionGraph 86
8.6.2 Representation of Interaction Graph 86
Methods: Using Neural Networks to Find Simple Representations . 89
9.1 Motivation 89
9.2 General Network Structure to Learn Representations 90
9.3 Network Structures for Separating Parameters 92
9.3.1 Statistically Independent 92
9.3.2 Operationally Meaningful 93

9.4 Network Structure to Find Representations with Simple
Update Rules 97

Contents xiii

9.5 Optimality Guarantees on the Representation 99
9.6 Network Structure to Find Koopman Eigenfunctions 99
9.7 Network Structure to Find Interaction Graphs 100
9.7.1 Graph Neural Networks 101

9.7.2 Network Structure to Learn Interaction Graphs 102

10 Applications: Physical Toy Examples 107
10.1 MOtivationii it 108
10.2 Damped Pendulum o iiiiiiiiiL. 109
10.3 Dynamics of the Nonlinear Pendulum 111
10.4 Conservation of Angular Momentum 112
10.5 Representation of Qubits ..., 114
10.5.1 Minimal Representations for Pure Quantum States 116

10.5.2 Local Representation of Two-Qubit States 119

10.6 Charged Particles i i 121
10.6.1 Single Encodero, 123

10.6.2 Multiple Encoders 125

10.7 Heliocentric Solar Systemcoiiiiiiieiinnnn... 126
10.8 Several Particles Connected by Springs 128
11 Future Research Directions and Further Reading 131
11.1 Finding Measurement Strategies and Representations 131
11.2 Interpretability and Generalization of SciNet 133

Part IV Future Prospects

12 Future Prospectscoiiiiiiiiiiiiii i 137
12.1 AT PhySICISt ..ottt e 137
12.2 Learning Procedures Instead of Simple Functions 139
12.3 Al for Foundations of Physics 141
Appendix A: Interpretation of the Number of Latent Variables 143
Appendix B: Variational Autoencoders 147
Appendix C: Implementation Details 151
Appendix D: Representations of Cyclic Parameters 155
Appendix E: Classical Mechanics Derivation for Charged Masse 157

References i e 161

Chapter 1 ®)
Introduction Check for

There has been amazing progress in the field of artificial intelligence (AI) and
machine learning in recent years. Not long ago, robots could not walk, now they
can even dance (as for example demonstrated by robots from Boston Dynamics in
2020). Computer vision and natural language processing have reached a level of
performance that make them indispensable in many areas today, such as face recog-
nition, speech interpretation and self-driving cars. While most Al is developed based
on domain knowledge, i.e., specific knowledge about the data under consideration
or the environment of interest, there are also impressive results where Al learns
from scratch. A breakthrough in this direction was achieved with MuZero by Deep-
Mind [1]. MuZero is a machine learning system that learns to play Go, chess and
shogi from scratch without knowing anything about the rules of the games or what
it would take to win. You may wonder how it is possible to learn a game without
watching a human play the game and learning from him or her. The strategy used by
DeepMind is to let machines play against each other and tell them when they have
won a game. Surprisingly, this information (together with the information about
which moves are allowed) is sufficient for the machine to build a model of the game
and its rules and develop a winning strategy without learning from a human player.
Impressively, the trained machine has been able to beat the best human players in
the world in all three games, Go, chess and shogi. Having algorithms that can learn
models of different games without any prior knowledge about the games, nothing
prevents us from applying such algorithms to scientific problems. Indeed, the meth-
ods used for MuZero have already been successfully applied to a range of complex
problems in chemistry [2] and quantum physics [3]. However, in science, we are not
only interested in the prediction, but also in how we make the prediction. The main
goal of physicists is to find the simplest models that describe nature. Having such
a model at hand makes it possible to predict the behavior of previously unobserved
systems. Unfortunately, understanding the model learned by MuZero remains very
challenging and hence we do not get much insight into how MuZero makes its pre-
dictions. This is a fundamental problem often faced when applying machine learning
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 1

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_1&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_1

2 1 Introduction

to scientific problems. As scientists, we are particularly interested in understanding
how the machine learning system makes its predictions and hence what the under-
lying model looks like. In this book we focus on this question, i.e., on how we can
extract conceptual information from physical systems using machine learning. This
question is of interest for several reasons. On one hand, it is an important step for
the long term goal of building Al physicists [4], on the other hand, it may help us to
gain insight into fundamental problems in modern physics. The latter is explained in
more detail in the following section.

1.1 Motivation

History has shown that physical theories often only provide accurate predictions
under certain restrictions of the environment under consideration. For example, New-
tonian physics works extremely well for describing the behavior of objects we know
from our daily life like a table or a football. However, the theory does not apply to
extremely small objects like molecules. Rather, physical phenomena on the length
scale of atoms are described more precisely by quantum theory. New physical theo-
ries usually contain certain elements of previously known theories. This is expected
since the new theory should be more fundamental than the previous one and hence,
we expect to find the previous theory as a limit case of the new theory. In the men-
tioned case, we recover Newtonian physics from quantum physics by considering
the limit of vanishing Planck constant. However, transferring too many elements
from the previous theory to a new theory may not lead to the simplest model to
explain experimental data, but rather to the one that most naturally followed from
the previous theory.

For example, before the discovery of special relativity, the constant speed of light
that appears in Maxwell’s equations of electromagnetism was explained by a medium
called “aether” in which light can propagate. The aether served as an absolute and
unique frame in which Maxwell’s equations hold. The idea of aether goes back to
the seventeenth century. Robert Boyle considered two sort of aethers, one serving
as a medium that explains mechanical interactions between separated bodies, and
another one explaining phenomenas like magnetism [5]. Therefore, the idea of the
aether was already strongly based on prior knowledge of physics at the time of its
introduction, namely the idea that objects can only interact with each other through
other particles. Although the idea of the aether became more magical over time
and the theory came into conflict with several experiments, the idea survived until
the twentieth century, when Einstein came up with the special theory of relativity.
The essential idea of special relativity is that light propagates with the same speed
with respect to every inertial system. A conclusion of this statement is that time and
space cannot be considered separately: two events that occur at the same time for
one observer, may occur at different times for another observer. Special relativity
required a complete rethink of our physical intuition and we had to abandon the
idea of absolute time and an aether as a medium for the propagation of light. This

1.2 Physicist’s Discovery Process 3

historical example shows that prior knowledge of physics can prevent us from finding
the simplest explanations to describe observational data.

Nowadays, it could be that we are in a similar situation: although we can use
quantum theory—which is built on classical mechanics—to predict measurement
outcomes with very high accuracy in the realm of the very small, we still face sev-
eral conceptual problems. One such problem, related to the measurement problem
of quantum physics, is the question if an observer of a quantum system can itself be
described by quantum mechanics. This problem was raised by Wigner in [6], deep-
ened in [7] and recently sharpened in [8, 9]. Experimentally, it is investigated whether
we can imitate observers with autonomous agents [10, 11]. A serious problem in
modern physics, which may be related to the conceptual problems encountered in
quantum physics, is that general relativity—impressively successful in the restricted
regime of the very large—is fundamentally incompatible with quantum mechanics,
as evidenced by paradoxes such as the black hole information loss [12, 13]. This
raises an interesting question: are the laws of quantum physics (or other physical
theories) the most natural ones to explain data from experiments if we assume no
prior knowledge of physics? While this question is unlikely to be answered in the near
future, the recent advances described in this book make a first step in this direction.

1.2 Physicist’s Discovery Process

Building machines that can autonomously learn physical principles by interacting
with an environment is an extremely challenging task. Roughly, the cyclic process a
physicist goes through to find laws in nature can be divided into the following parts.

e Choose a physical subsystem: As humans, we collect alot of data with our sensory
organs every second. A physicist focuses on a particular part of this data. Usually,
the data on which is focused is related to one or several physical subsystems, such
as the data of a pendulum together with the air in its environment.

e Create an experimental setup: Create devices that are able to collect relevant
data from physical processes.

e Observations: The physicist collects data about the chosen physical systems by
using devices of an experimental setup.

e Create a model: Analyze observed data to build a (or expand an already existing)
model describing the behavior of the underlying physical system. A useful model
should make predictions that are experimentally falsifiable.

e Test the model: Test predictions made by a model. If the model is falsified, the
physicist should create another model (or at least analyze the restricted scope of
validity of the model). If it is not falsified, the model can be further tested and used
for applications.

Each of these parts can be very challenging, and there are different approaches
from machine learning trying to automize them. We provide an overview over such
approaches in Part II. In Part III of this book we focus on one particular step of the

4 1 Introduction

model building process, namely the determination of the relevant degrees of freedom
of a physical system from experimental data. Recent advances in this field have
made it possible to discover compact representations of physical systems without
requiring any prior knowledge of the considered physical system other than the
given experimental data. Minimizing the prior knowledge is not only interesting for
the long-term goal of finding an alternative description of quantum mechanics, but
also an essential requirement for building an Al physicist [4]. Indeed, otherwise it
could not be claimed that the Al physicist discovered the found laws completely by
itself. The basic idea of the approach presented in Part III is explained in Sect. 1.3.

1.3 Extracting Relevant Parameters from Experimental
Data

The goal of using machines to discover physical laws underlying experimental data
has been pursued in several contexts (see Part II for a detailed discussion and [14—17]
for recent reviews). A lot of early work focused on finding mathematical expressions
describing a given dataset (see e.g. [18-20] and Sect. 6.2 for a detailed discussion
of these works). For example, in [19] an algorithm recovers the laws of motion of
mechanical systems, like a double pendulum, by searching over a space of mathemat-
ical expressions on given input variables (searching the form as well as the parame-
ters of mathematical expressions is known under the term symbolic regression [21]).
However, such approaches require prior knowledge in the form of knowing what the
relevant variables are. In certain situations one might not have such prior knowledge
or does not want to impose it to allow the machine to find entirely different repre-
sentations of the physical system. Defining properties of such representations and
describing how they can be found using machine learning is the main focus of this
book (Part III) and is regarded as a first step towards discovering physical concepts
with machine learning without using prior knowledge about physics and maths. In
fact, in order to write down a physical law, we must first know which parameters
occur in the law and thus which degrees of freedom the physical system has. In the
following, the basic idea for finding the relevant degrees of freedom is presented.
Finding a minimal set of parameters that is sufficient to describe a given data set
(without using any prior knowledge about the system that created the data set) is a
complex task, but essential for the process of building physical models. Let us con-
sider a very simple toy example, where we are given time series data (f;, x(;));e(1, ...,
of a particle moving along the x-direction with constant speed (forsome 3 < N € N).
The goal of a physicist could be to build a model that allows to predict the x-coordinate
of the position of the particle for any time ¢’. The standard approach is to extract the
speed v = (x(#1) — x(2y))/(t1 — to) and the start position xg = x () — vty from the
data and then calculate x(¢') = x¢ + vt’. Hence, the models that a physicist builds
do not deal with the observations directly, but rather with a representation of the
underlying physical state of the observed system, e.g., the two parameters initial

1.3 Extracting Relevant Parameters from Experimental Data 5

question

x(t) = X,V t'

decoding answer

encoding

representation

observations

Fig. 1.1 Human learning of physical representations. (Figure reproduced from Iten and Metger
et al., Physical Review Letters, 2020 [22]). A physicist compresses experimental observations into
a simple representation (encoding). When later asked any question about the physical setting, the
physicist should be able to produce a correct answer using only the representation and not the
original data. We call the process of producing the answer from the representation decoding. For
example, the observations may be the first few seconds of the trajectory of a particle moving with
constant speed; the representation could be the parameters “speed v”” and “initial position x¢” and
the question could be “where will the particle be at a later time ¢'?”

position and speed, (xg, v). Which parameters are used is an important part of the
model. In Part IIT of this book we follow the ideas presented in [22, 23] and formalize
what we understand by a “natural” representation and describe a machine learning
system that finds such representations without using any prior knowledge about the
specific physical system that is considered. One natural criteria for the representation
is that it is sufficient, hence that it contains all relevant information to predict the
system’s (future) behavior. To know which parameters are required for a sufficient
representation, we also have to model the prediction process of a physicist.

‘We hence split the human modeling process into two interdependent tasks. Firstly,
finding the relevant parameters in experimental data (e.g., the initial position and
speed, (xg, v)). And, secondly, building a physical model that specifies how to make
predictions (i.e., answer questions) based on the knowledge of the relevant param-
eters of the system (e.g. “where is the particle at time #'?””). Since our goal is to
build a machine that solves these tasks, it is helpful to formalize them. Formally,
the physical modelling process can be regarded as an “encoder” E : O — R map-
ping the set of possible observations O to representations R, followed by a “decoder”
D : R x Q — A mapping the sets of all possible representations R and questions Q
to answers A (Fig. 1.1). Throughout this book, we refer to this structure as SciNet for
simplicity. From a machine learning perspective, the structure of SciNet is closely
related to autoencoders, a method from representation learning for finding com-
pressed representations of high dimensional data (see Chap. 4 for a non-technical
introduction to autoencoders). We would like to allow for arbitrary encoder and
decoder functions, and let a computer learn these by itself from a given data set
containing triples of the form [o, g, a* (0, q)], where a* (o, g) describes the correct
answer to question g given observation o. Similar to [19], one could try to approach
this task by using symbolic regression (discussed in Sect. 6.2.1) to find functions
from input-output pairs for the encoder and the decoder synchronously. Thereby,

6 1 Introduction

one uses a certain kind of search algorithm based on evolutionary computation [24,
25], to search through the space of mathematical expressions fitting the input-output
pairs. However, such an approach faces several challenges:

1. The outputs of the encoder are not given. Hence, one has to fix a mathematical
expression describing the encoder (note that different expressions are allowed
to have different output-dimensions) and then search trough the space of mathe-
matical expressions representing the decoder to see if there exists a suitable one
that provides the correct answers. Such a search is computationally extremely
costly.

2. For common physical problems, the decoder function that calculates the pre-
dictions from the (small number of) relevant physical parameters is usually
quite simple (in the example considered above, it has to implement the function
x(t") = xo + vt’ with input (xg, v, t')). However, the encoder function might be
of a more complex form, and hence difficult to find with symbolic regression.

3. The input to the encoder can be very high dimensional, and a lot of the input
parameters might not be relevant for answering the questions. Finding the rele-
vant inputs by looping trough all possible subsets of input parameters is compu-
tationally extremely costly.

4. The search over functions is biased towards simple mathematical expressions.
However, such a bias might not be desirable.

Artificial neural networks, introduced in Chap. 3, on the other hand can approximate
any (continuous) function (Sect. 3.4), are unbiased towards simple mathematical
expressions, perform very well in selecting only the relevant features from input
data, and, probably most importantly, implementing the encoder and decoder with
neural networks allows to learn both functions simultaneously. Crucially, having no
restrictions on the encoder and decoder functions E and D, the proposed scheme
does not use any prior knowledge about a specific physical system or mathematics.
These are the main reasons why the methods discussed in Part III for finding the
relevant parameters of physical systems are based on neural networks. A difficulty
that arises due to approximating functions with neural networks is that it can be
difficult for humans to interpret the found encoding mapping. We discuss some
methods to overcome this difficulty, but a general solution is not yet known and is
being actively researched in the field of machine learning.

1.4 Outline

The book is structured as follows. First, we provide a brief introduction into machine
learning in Part I, which contains the computer science background for a scientist that
is necessary to understand the following parts of the book. Readers who are familiar
with the concepts of machine learning and artificial neural networks can safely skip
this part.

1.4 Outline 7

The following two parts, Parts II and III, are self-contained and the reader is
encouraged to directly focus on the part he is mostly interested in.

In Part II, we describe a selection of work that uses machine learning for autom-
atizing different steps of a physicist’s discovery process. Often, machine learning is
applied for specific physical systems and prior knowledge about the system at hand
is built into the machine learning structure. In contrast, the chapters in Part II focus
on work that is applicable to a broad range of systems and uses a minimal amount of
prior knowledge. The chapters in Part II are self-contained and the reader may pick
the ones he or she is particularly interested in. In Chap. 5, we discuss how experi-
mental setups can be created using reinforcement learning. In Chap. 6, we discuss
model creation and optimization under the assumption that the relevant parameters
of the considered systems are known. And finally, in Chap. 7, we investigate how
to test a model that makes probabilistic predictions and how to find clusters in the
experimental data that deviates the most from the model predictions.

Part III focuses on a particular part of model creation, namely extracting the
relevant degrees of freedom from experimental data using minimal prior knowledge
about physics or maths. The main idea to achieve this is to map a simplified version
of the physicist’s reasoning process (Fig. 1.1) to an artificial neural network structure.
First, in Chap. 8, we formalize the setting and provide a mathematical formulation
of the simplified physical reasoning process as well as of the properties of “natural”
representations. In Chap. 9, we then describe machine learning methods that allow
to find such representations. In Chap. 10, we apply these methods to various toy
examples from classical and quantum physics, demonstrate that they allow to find
the same variables that are used by physics textbooks and explain how conceptual
insights can be extracted from the found representations. Finally, we conclude with
some open questions and directions for future work on representation learning for
physics in Chap. 11.

In the last part of the book (Part IV), we discuss future perspectives for automating
the discovery process of physicists and the use of machine learning for the foundation
of physics.

Part I
Machine Learning Background

In this part, we give a rough overview of machine learning whose aim is to create
software that can learn by itself from given data or by interacting with an envi-
ronment. We discuss the three important subfields of supervised, unsupervised and
reinforcement learning. While the first two subfields consider systems that learn from
given data sets, in reinforcement learning an agent interacts with an environment and
hence, the input data is created continuously and may depend on the actions chosen
by the artificial agent. While the data for supervised learning has to be labeled with
the expected outputs, in unsupervised learning no such labels are provided.

After discussing the basics of machine learning, we introduce the reader to arti-
ficial neural networks, the (currently) most important tool for machine learning and
essential for Part III of this book. Roughly, neural networks can represent and imple-
ment functions on real input data. We discuss the basic structure of neural networks,
which kind of functions they can approximate and how to train them to learn a
function from input—output pairs.

Finally, we introduce the reader to autoencoders, a tool for unsupervised learning
or more concretely for representation learning. Representation learning aims to find
“natural” and low-dimensional representations of high-dimensional data and builds
the basis for Part III of this book.

Chapter 2 ®)
Machine Learning in a Nutshell e

Machine learning (ML) has started to gain traction over the past years and found a lot
of applications in science and industry. The main idea is to create algorithms that can
learn from data themselves. Traditionally, we can divide ML into supervised, unsu-
pervised and reinforcement learning. The idea behind machine learning is simplest
explained with supervised learning, which is covered in the following section.

2.1 Supervised Learning

One celebrated application of ML is the recognition of objects on images. Let us
assume that you are asked to write a program that takes images of cats and dogs
as an input, and the program should output which of these animals is shown on the
image. Writing an algorithm for this task would be extremely complex, since there
are all sorts of cats and dogs, they might not be fully visible on the image, the image
might be of bad quality and so on. Instead we could let us inspire from the human
learning process. How do we train a child to distinguish cats and dogs? We show
him or her a lot of examples of cats and dogs and the child will learn to distinguish
them by him- or herself. But it would be pretty impossible to teach the child a recipe
(which could be translated into an algorithm) of how to distinguish cats and dogs.
This leads us to the main idea behind ML: we provide a lot of examples of labeled
images (where we have the two labels “cat” and “dog”), the so called training data,
to a computer algorithm, whose task is to output a (probably extremely complex)
function F' that takes an image as an input and provides the correct label as an
output (see Fig.2.1). The difficult task of writing directly a program implementing
the function F is now shifted to designing an algorithm that is able to learn a good
approximation of the function F' from labeled images. This is exactly the goal of
supervised machine learning. Clearly, this is a very difficult task, since the algorithm
has to create a function that recognizes the relevant features that distinguish cats
from dogs from a set of images. Otherwise, if the algorithm just created a function
that memorizes the correct labels for the provided images in the training set, it could
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 11

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_2&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_2

12 2 Machine Learning in a Nutshell

Labeled training Learning algorithm

data
CW—P ' m==P Dog

Test-sample

Fig. 2.1 Image classification. An common example for supervised machine learning is image
classification. A learning algorithm is provided with a data set of labeled images (the so called
training data set). For example, this could be a set of images of cats and dogs together with the
correct label “cat” or “dog”. The task of the learning algorithm is to infer a function F' (which might
be given as a blackbox), which is able to correctly label images. If the learning algorithm performs
well, the inferred function F should also generalize, i.e., it should also label images correctly that
were not seen during the training

not generalize to images not seen during the training. One option to create such an
algorithm is to use artificial neural networks. For the present purpose, one may just
think of a neural network as a parametrized family of functions { F }4 from the space
of images to the output labels (see Chap. 3 for the details). A training algorithm is
then used to optimize over the choice of the parameters 6 (determinig the function
Fy) using the labeled images with the goal that Fy. gets close to the function F for
some parameters 6*. Interestingly, neural networks perform very well for this task
and can generalize to images never seen during the training and without hardcoding
specific information about cats and dogs into the network structure or the learning
algorithm (see for example [26]).

2.2 Unsupervised Learning

Whereas in supervised learning one is given data samples together with the desired
output for all the given samples, in unsupervised learning, one tries to learn some
features about the given data without knowing the correct outputs for the training
data. For example, given again images of cats and dogs, one might want to compress
the images, i.e., to reduce the dimensionality of the original image, still maintaining
all essential information about the image. Here, we may not know how such a repre-
sentation should look like and we would like the algorithm to find the optimal one.
The probably most widely known method for dimensionality reduction is Principal
Component Analysis (PCA). Again, the goal of PCA is to reduce the dimension of

2.3 Reinforcement Learning 13

Recon-
struction

Fig. 2.2 Principal Component Analysis (PCA). A well known method for unsupervised learning
is PCA, which exploits linear correlations in a data set to lower its dimension without loosing much
information. The figure shows some data points in two dimensions (x, y) with a positive correlation
of the x- and the y-coordinates. PCA transforms the coordinate system to (x’, y’), such that the
data points approximately lie on the x’-axis. In other words, the distribution of the y’-coordinate is
approximately independent of the x’-coordinate. The y’-coordinate can be ignored without loosing
too much information. Hence, PCA (approximately) reduced a two-dimensional data set to a one-
dimensional one. The original distribution of the data can then be approximately recovered from
the one-dimensional representation

the input data, but one restricts the allowed transformations from the input data to
the new representation to be linear (Fig.2.2). Finding compressed representations
of data is the focus of representation learning, a subfield of unsupervised learning
(see [27] for a recent review).

2.3 Reinforcement Learning

In reinforcement learning, the training data is not given, butis collected by an artificial
agent from an environment. Hence, reinforcement learning is closely related to the
objective of artificial intelligence (AI) of creating an agent that can perform actions
in an environment to achieve a certain goal. The “environment” is considered to be
everything of interest that is not part of the agent itself. For example, the environment
of an agent playing chess against another agent could be the chess board and the other
agent. The basic model for reinforcement learning is shown in Fig.2.3. At a (time)
step ¢, an agent gets the state s of an environment (encoding some information of the
environment like positions of objects) and a reward r*) quantifying its performance
in achieving the desired goal as an input. Based on the input, the agent chooses
an action a® of a set of possible actions. The action transforms the environment
from a state s*) to a state s“*1. In the example of plying chess, the action could for
example be the movement of a game figure, and the new state s “* could correspond
to an encoding of all the positions of the game figures after the movement. Further
areward r*1 is returned to the agent, providing information about how useful the
action a) was in getting closer to achieving the agent’s goal. Typical examples for
reinforcement learning environments are games like chess or Go, where the goal of
the agent is simply to win the game. The actions of the agent are restricted to the
ones allowed by the rules of the game and the reward could be zero as long as the
game is not finished, and —1 or 1 if the agent looses or wins the game, respectively.

14 2 Machine Learning in a Nutshell

state s and
reward r(®

Action a®

= Environment l

Fig. 2.3 Basic setting for reinforcement learning. An agent has to achieve a given goal in an
environment. In the ¢-th interaction step, the agent gets an encoding s*) of the current state of the
environment and a reward r*) quantifying its current performance as an input. Based on this input,
the agent decides which action ¢*) to perform next. The action transforms the environment from a
state s to a state s+, and returns the reward r+1_ This cycle is then repeated until the agent
achieves its goal

State s(**1 and
reward r(t+1)

2.4 Bias-Variance Tradeoff

The main goal of machine learning is to learn a model from a training data set (or
a training environment) that generalizes well to new data samples (or new envi-
ronments) not seen during training. The difficulty thereby is to handle the tradeoff
between two kind of errors, the so called bias and variance of a machine learning
algorithm. Roughly, bias is the tendency of an algorithm to consistently learn the
same wrong thing, where variance is the tendency to learn random things not related
to the real data.

Let us explain this with a simple example that should be familiar to most read-
ers: fitting a polynomial trough 5 given data points (x;, y;) withi € {1, ..., 5} (see
Fig.2.4). The points are generated by a linear model with some Gaussian noise, i.e.,
y; = cx; + &z; for constants ¢ € R, ¢ > 0 and z; ~ N (0, 1) sampled from the nor-
mal distribution. Assume now that we do not know exactly the underlying model for
the data creation, but our guess is that it is a polynomial model (with some noise).
One may for example try a linear fit to the data and one with a polynomial of degree
four. A linear model is more restrictive and is described with less parameters (just a
constant shift in the y-direction and the slope of the line). From a machine learning
perspective, we expect such a model to lead to a larger error due to the low expres-
sivity of the model, i.e., a such a model has a higher bias than a polynomial of degree
four (for a mathematical discussion of the bias and variance we refer to [28]). In the
example demonstrated in Fig. 2.4, we find that the linear model can not predict the
data point perfectly, but actually quite well for such a simple model. On the other
hand, fitting a polynomial of degree four clearly can fit the data point perfectly and
has no error due to the simplicity of the model. Unfortunately, this comes in tradeoff

2.4 Bias-Variance Tradeoff 15

6 4
51 2
44
o ° 0
3
-2
> 5 >
-4
14
0 -6
1 -8
=2 -1 0 1 2 3 4 5 6 =2 -1 0 1 2 3 4 5 6
X X
(a) (b)

Fig. 2.4 Bias-variance tradeoff for polynomial regression. The data points are given by (x;, y;) with
x;i =i —1and y; = x; + 0.5z; with randomly sampled z; ~ N (0, 1) and i € {1, ..., 5}. a Linear
least squares fit of the data. b Polynomial least squares fit of the data with a polynomial of degree
four. Although this polynomial perfectly fits the data points, it does not reflect the underlying linear
model. Sampling a new data point (x, y) with x = 6, the prediction of this model would be around
-8, which is far away of the expected value of y = 6. This demonstrated the tradeoff between fitting
the training data and generalizing well to the test data. The tradeoff between making prediction
errors due to too simplistic models and overfitting the training set with too expressive models is
called the bias-variance tradeoff in machine learning

with a higher variance, meaning that the fit depends strongly on the samples in the
training set, i.e., in particular on the random samples z; ~ N(0, 1). The problem
with models that are too expressiv do not directly manifest itself on the training data
(we have zero prediction error there!), but will lead to bad generalization behavior.
Indeed, in the example in Fig. 2.4, predicting the value of y for a test sample with
x = 6 would be close to y = —8, where the expected value is y = 6. We say that we
overfitted the training data by choosing a model with a too high variance.

In the example above we knew the underlying model, and hence, it was clear
that the linear fit will have better generalization power. However, in general, the
underlying model is not known. It could be that the data samples are indeed created
by a four dimensional polynomial with zero noise. In this case, choosing a model
with high bias such as a liner fit, would fit and generalize badly. This demonstrates
a fundamental problem of machine learning, the so called bias-variance tradeoff
stating that we can not lower both errors, the variance and the bias, at the same time.
The goal of most machine learning strategies is to find the optimal tradeoff of the
variance and the bias to achieve good generalization properties.

Remark 2.1 (Cross-validation) In the example discussed above, it remains unclear
how to systematically test the generalization power of a machine learning model. One
option is cross-validation, which partitions the training set into two complementary
subsets and trains the model on one of the subsets. The other subset is then used
to test the generalization power of the trained model. This is done with different
partitions of the training data. If the model performs well on the training subsets,

16 2 Machine Learning in a Nutshell

but badly generalizes to the complementary subset, this points towards the fact that
we have a high variance and hence that our model has too high expressivity (or is
not regularized properly). On the other hand, if our model has high prediction error
on the training subsets as well as on the complementary subsets, this points towards
a model with too high bias, and hence we may want to replace the model with one
with higher expressivity.

Chapter 3 ®)
Artificial Neural Networks G

Artificial neural networks have become the state of the art for tackling machine learn-
ing problems and to build Al-agents. Furthermore, they are considered for gaining
insights into how the human brain develops physical intuition from observations
[29-35]. For example, in [36] neural network were shown to be able to predict
whether a tower consisting of wooden blocks is stable or will fall. Such experiments
suggest that the processing of neural networks may have similarities to the intuitive
reasoning of humans. In this section, we provide a short overview of the basics of
neural networks. We still do not have a deep understanding of the training process
of such networks and why they often generalize well to data not seen during the
training. Hence, training neural networks requires some experience and knowledge
about several tricks, and can not be taught easily. The book by Michael Nielsen on
neural networks and deep learning [37] provides an overview of several such tricks.
Understanding how to train neural networks is a subject of current research. For
example, an information theoretic approach was suggested in [38]. Here we focus
on a basic understanding of what neural networks are and how the training method
works in principle.

3.1 Single Artificial Neuron

The building blocks of neural networks are single neurons (Fig.3.1a). We can think
of a neuron as a map that takes several real inputs xi, . . ., x, and provides an output
O’(Zi w;x; + b), according to an activation function o : R — R, where the weights
w; € R and the bias b € R are tunable parameters. The output of the neuron is itself
sometimes denoted by activation, and there are different possible choices for the
activation function.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 17
R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_3&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_3

18 3 Artificial Neural Networks

-
=)

°
@

& ~N Sos
Activation £
xz bﬁ 0.4
0.2
X3
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0
V4
(a) (b)

Fig. 3.1 Sigmoid neuron. a Single artificial neuron with weights w;, bias b and activation function
o . The inputs to the neuron are denoted by x1, x5 and x3. The output of the neuron is called activation
and is given by o(3_; wix; + b) € R. b Sigmoid activation function given in (3.2). The sigmoid
activation function can be seen as a smooth approximation of the step function given in (3.1). Hence,
the neuron provides an output that is approximately equal to one if the input is significantly bigger
than zero, and it provides an output close to zero if the input is significantly smaller than zero

For example, consider a step function
0(z) =) . 3.1

Such a neuron is called perceptron and was developed in the 1950s and 1960s by
Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter Pitts.
The choice of such an activation function is (loosely) motivated by the functioning
of a biological neuron, which only “fires” (i.e., produces an output) if the sum of the
weighted input signals is higher than a given threshold. One can consider a perceptron
as a simple model for decision making by weighting up evidence. For example, your
decision to go surfing may mainly depend on two factors, the strength of the wind
(corresponding to input x;) and how sunny it is (corresponding to input x;). The
weights represent your personal weighting between the two factors; choosing the
weight w; > w, means that it is more important to have strong wind than to have
sunshine. The bias b then sets your decision boundary and the outcome 1 corresponds
to the decision to go surfing, whereas the outcome zero means that you will not go
surfing. Clearly, this is a very simple decision model, but we will show in Sect.3.3
that building networks of many neurons allows to represent complex models.

3.2 Activation Functions

The artificial neural networks currently used in practice use different activation func-
tions for their neurons. Unfortunately, there is no theory that tells us which activation
function works best for a certain machine learning task. However, as we will see in

3.3 Neural Networks 19

Sect. 3.5, to be able to train the neural network, it is important that we choose a
(piecewise) smooth activation function. Further, choosing a smooth activation func-
tion also allows a network to output real numbers instead of discrete ones, which is
required for regression tasks in machine learning. Instead of using the discontinuous
step function of a perceptron, we may use a smooth approximation of it, which is
given by the sigmoid activation function (Fig.3.1b), defined by

0(z) = 3.2)

l+e2’

In practice, activation functions that do not saturate, i.e., that do not converge to a
constant value for large inputs, usually perform better. Two commonly used activation
functions are the Rectified Linear Unit (ReLU) [39, 40] and the Exponential Linear
Unit (ELU) activation function [41], given by

z forz >0,
. = 3.3
OReLU(2) io forz <0, (3.3)
and, for some o > 0
z forz >0,
0 = 3.4
ELu(2) {a(eZ—l) forz < 0. ©h

The two functions are plotted in Fig. 3.2. For the implementation of the examples
discussed in Part III of this book, we use the ELU activation function, apart from the
example discussed in Sect.10.3, which uses the ReLLU activation function.

3.3 Neural Networks

A (feed-forward) neural network is created by arranging neurons in layers and for-
warding the outcomes of the neurons in the ith layer to neurons in the (i + 1)th
layer (see Fig.3.3). The network as a whole can represent a class of functions {Fy},
parametrized by 6, which contains the weights and biases of all the neurons in the
network. The inputs x1, ..., x, of a function Fy : R" — R" in this class correspond
to the activations of the neurons in the first layer (which is called the input layer). The
activations of the input layer form the input for the second layer, which is a hidden
layer (since it is neither an input nor an output layer). In the case of a fully connected
network, each neuron in the (i 4+ 1)th layer receives the activations of all neurons
in the ith layer as input. The activations of the m neurons in the last layer, which is
called output layer, are then interpreted as the output of the function Fy. Clearly, such

20 3 Artificial Neural Networks

10 104

ORretu(2)
oeu(2)

-100 -7.5 -5.0 -25 0.0 25 50 75 100 -10.0 =75 =50 -25 00 25 50 7.5 10.0
zZ z

(a) (b)

Fig. 3.2 ReLU and ELU activation functions. a Rectified Linear Unit (ReLU) [39, 40] given
in (3.3). The ReLU activation function is linear for an input z > 0 and constantly zero otherwise. b
Exponential Linear Unit (ELU) [41] given in (3.4) for « = 1. The ELU activation function can be
seen as a smooth version of the ReLU activation function (vertically shifted by —1)

Fig. 3.3 Feedforward neural
network. (Figure reproduced
from Iten and Metger et al.,
Physical Review Letters, X X
2020 [22]). Fully connected ! !
(feed-forward) neural

network with 3 layers. The X X
network as a whole can be

thought of as a function

feed forward Fo(X o X)= (Y0))
—} n m

mapping the inputs X, X L Im
(x1, ..., xp) to the output

(Y1, .-+ ym). The layers input output

consists of a series of layer layer

artificial neurons (see hidden

Fig.3.1)

layer

networks can represent much more complex models than a single neuron. In fact, as
discussed in the next section, for certain classes of activation functions, neural net-
works are universal in the sense that any continuous function can be approximated
arbitrarily well by a sufficiently large feedforward network for a certain choice of
the the weights and biases of the neurons in the network.

3.4 Universality Theorem

In this section, we investigate the expressiveness of neural networks, i.e., we investi-
gate the class of functions that can be represented by neural networks of variable size.
There are two classes of universality theorems. The first class considers the expres-
sivity of neural networks for a fixed depth, i.e., a fixed number of hidden layers.

3.5 Training of Neural Networks 21

The second class considers the expressivity for fixed width, i.e. for a fixed number
of neurons in each hidden layer. For this book, only the first class of universality
theorems is relevant, and we refer to [42] for the second class.

A general result for the expressivity of neural networks with only one hidden
layer was developed in [43, 44]. A version of the general universality theorem given
in [44], which is particularly relevant for this book, is stated in the following theorem.

Theorem 3.1 For any continuous, bounded and non-constant activation function,
let us denote the class of functions that can be represented by a feed-forward neural
network with one hidden layer and p hidden neurons by {F) : R" — R™}. Then,
for any continuous function G : R" — R™ and compact subset X C R" and € > 0,
there exists p € N and a function Fé’ such that sup,.. x |F0p(x) — G(x)| <e.

Hence, since the sigmoid activation function is continuous, bounded and non-
constant, any continuous function can be approximates arbitrary well by a feed-
forward network with a sufficiently large hidden layer containing sigmoid neurons.
We refer to [44] for a proof of the statement and to [37] for an intuitive proof
using visualization. The theorem does not apply to networks using the ReL.U or ELU
activation function, since they are not bounded. Nonetheless, a result established
in 2017 [45] shows that neural networks with non-bounded and non-polynomial
activation functions are also universal.

3.5 Training of Neural Networks

Even if we would know the target function that a neural network should implement,
tuning the weights and the biases of all the neurons in the network by hand, such
that the network well approximates the target function, would be a tedious task.
Furthermore, using neural networks as a tool for machine learning, we would like
them to learn a function themselves from training samples, i.e., known input-output
pairs (x, y) with x € R” and y € R™. Hence, the goal is to find a training algorithm
that takes a training set S consisting of input-output pairs as an input and adapts the
biases and weights, summarized in a variable 6, of the neural network such that the
function Fy implemented by the network satisfies:

1. Fitting: Fy(x) =~ y for all training input-output-pairs (x, y),
2. Generalization: Fy(x") ~ y’ for all test input-output-pairs (x’, y’) that has not
been observed during training.

You may recall the example discussed in Sect. 2.1, where the machine learning
task is to classify images of dogs and cats. The learning algorithm is thereby fed
with input-output-pairs (x, y) consisting of images of cats and dogs (corresponding
to x) and the correct label “cat” or “dog” (corresponding to y). More concretely, the
input x to the neural network could be the values of the pixels of the images, and
the output Fy(x) € [0, 1] could be the activation of a sigmoid neuron, which can be

22 3 Artificial Neural Networks

interpreted as the probability of having a dog on the image.! For example, if we get
an outcome of 0.9 from the network, it is pretty sure that there is a dog on the image.
The classification can then be done by classifying the image as “dog” if Fy(x) > 0.5
and as a cat otherwise. The optimal output would be Fy(x) = y, where we set y = 1
if the label is “dog” and y = O if the label is “cat”. The test data then checks how
well images that have not been seen during training are classified.

Let us first focus on a training algorithm to achieve goal 1. To train a neural
network, we need some performance measure of the network that smoothly depends
on the network parameters 6 (i.e., the biases and weights of the network). In the
example above, such a measure could be chosen as C ((x, y), 8) = (Fy(x) — y)? for
a training sample (x, y). We call C ((x, y), 0) > 0 the cost function. The name is
motivated by the fact that we would like to minimize the cost, i.e., we would like to
have C ((x, y), 8) = 0 for all training examples (x, y), which corresponds to goal 1.
The performance of the network over the whole training set is then measured by the
average cost defined by

- 1
c@O,S =— Z C((x,y).0), (3.5)

1 (x.y)eS

where |S| denotes the number of samples (x, y) in the training set. Note that the
averaged cost function is a sum of smooth functions in 6, and hence, depends itself
smoothly on 6.

3.5.1 Stochastic Gradient Descent

The goal of the training algorithm for neural networks is to find a choice for the
weights and biases in the network, such that the average cost given in (3.5) is mini-
mized. The basic idea is to start from randomly chosen weights and biases and then
stepwise adapt them to lower the average cost. In every step, we change each of the
weights and biases a little bit, i.e., w; — w; 4+ dw; and b; — b; + 8b; for some small
Sdw; > 0and 8b; > 0, and observe the effect of the change on the average cost. Then,
we update the weights and biases for which the cost decreases by w; — w; + dw;
and b; — b; + 6b;, and the ones for which the cost increases by w; — w; — dw;
and b; — b; — 6b;. For small enough dw; and §b;, the average cost is decreased by
these updates.

In practice, instead of working with small changes, one calculates the gradient of
the cost function with respect to all weights and biases, which indicates the direction

'The hidden structure of the networks that are commonly used for image classification are not
fully connected, but are so called convolutional neural networks (see for example [37] for an
introduction), which are optimized for processing visual data. However, this is irrelevant for the
conceptual discussion here.

3.5 Training of Neural Networks 23

in which the cost function maximally increases (in an infinitesimal neighborhood).
Moreover, it is usually computationally too expensive to calculate the change of the
average cost function, since one has to calculate the change separately for all training
samples and usually, the training set is quite large. Hence, instead one estimates the
change of the cost function by averaging only over a part of the training set, called
a mini-batch. More concretely, the training algorithm works as follows (using again
the vector 8 containing all weights and biases of the network as elements to simplify
the notation):

1. Initialize the weights and biases randomly.

2. Fort € {1,2,..., T}, where T denotes the number of training steps, repeat the
steps 3 and 4.

3. Randomly choose a subset (called mini-batch) M; C S consisting of kK € N
samples.

4. Update the network parameters by

0 — 41 =06, —nV,yC (6, M,) , (3.6)

for some learning rate > 0.

This learning algorithm is called stochastic gradient descent. The name comes
from the fact that the mini-batch is chosen randomly leading to a stochastic estimate
of the gradient. The gradients can be efficiently calculated by the backpropagation
algorithm that essentially calculates the gradients of the parameters of the neurons
at the output layer, and then subsequently applies the chain rule for derivatives to
calculate the gradients for earlier layers until ending up with the input layer (the
interested reader can find more details in [37]). The mini-batch size k and the learning
rate 7 are so called hyperparameters. Hence, they are not adapted by the algorithm,
but have to be chosen by hand before running the algorithm. The bigger we choose
the mini-batch size, the better the estimate of the gradient gets in average in tradeoff
with larger computation time for each update step. The learning rate determines the
size of 66, i.e., how much we update the network parameters in each step.

3.5.2 Convergence and Choice of Hyperparameters

Generally, given an optimization problem and some hyperparameters, the goal is
to choose the hyperparameters in a way that maximizes the convergence speed.
However, for cost functions that are non-convex in 6, which is commonly the case
for neural networks, we have no guarantee that stochastic gradient descent converges
to the global minimum of the cost function. Indeed, usually it will get stuck in a local
minima, and it depends on the random initialization of the network parameters,
in which local minima we get stuck. Nonetheless, in practice, training a network

24 3 Artificial Neural Networks

several times with random initialized parameters 6 and then choosing the network
with the best performance works well for a lot of problems. Unfortunately, it is not
well understood yet why this is the case and it is an active field of research to better
understand the training of neural networks. Furthermore, we do also not have a theory
that tells us the optimal choice of the hyperparameters to optimize the convergence
speed or alternatively to optimize the probability to end up in a local minima that
achieve prediction accuracy close to the optimal minima.

Therefore, choosing good hyperparameters and random initialization strategies
are currently based on experience and some intuition and tricks. A comprehensible
overview of the current state of the art is given in [37], but it is beyond the scope of
this introduction into neural networks to provide an extensive overview here. In the
following, we just describe the essential difficulty in choosing good hyperparameters.
A priori, one may think that choosing a large mini-batch size and a small learning rate
will improve the performance of the trained network in tradeoff with computational
time. Unfortunately, things are more complicated with neural networks. Basically,
the learning rate and the mini-batch size should be chosen in a way to achieve a good
tradeoff between (i) converging fast to a local minima, and (ii) missing out local
minima with bad performance. Indeed, choosing a small mini-batch size introduces
some stochasticity in the updates of the network parameters, which may at first hand
seem like something one would like to avoid since it temporarily may increase the
average cost if the mini-batch is too small to be representative. However, it turns
out that a certain amount of such stochasticity can help to jump out of local minima
with bad performance, and hence to converge to another local minima with better
performance. Similarly, choosing a small learning rate ensures that we converge to
the closest local minima. On the other hand, choosing a large learning rate may lead
to an “overshooting” of a local minima, i.e., the average cost over the full training
set may actually increase in such a training step. Again, this could help to avoid bad
local minima. On the other hand, choosing a too small mini-batch size and a too
large learning rate will essentially lead to a random walk in the cost landscape and
the network may not be able to improve its performance at all. To conclude, training
neural networks and choosing the optimal hyperparameters is currently more based
on experience than rigorous insights and requires some patience in trying out different
choices of hyperparameters until a good choice is found.

3.5.3 Generalization

A neural network of moderate size consists of a large amount of parameters. For
example, a fully connected network with 10 input- and output-neurons, and a hidden
layer consisting of 100 neurons, contains 120 biases and 2 - 10 - 100 weights, which
are over 2000 parameters in total. According to the bias-variance tradeoff discussed
in Sect. 2.4, we would expect such a complex model to overfit and generalize badly
due to high variance. In other words, we would expect that the training data can
be fitted well, but that the generalization power of a neural network is very bad.

3.6 Deep Learning 25

Surprisingly, using some tricks for regularization, neural networks show amazing
generalization power for tasks like image classifications.> However, to achieve good
generalization power, the choice of the regularization technique is essential and,
again, we do not have a deep understanding yet of which regularization methods
should be used for a given setting. One regularization method is for example to add a
term ||€]|; to the cost function to motivate the network keeping parameters small and
setting unnecessary parameters equal to zero. Intuitively, motivating the network to
reduce the model complexity by setting unnecessary parameters to zero lowers the
variance of the model and hence may increase the generalization power. For a further
discussion on state of the art techniques for regularizing neural networks we again
refer to [37].

3.6 Deep Learning

Very likely, you have already heard about deep learning. So what is it exactly? Essen-
tially, training any neural network with at least one hidden layer can be considered
to be deep learning. In practice, the term is often used for networks containing many
hidden layers (quite common are numbers of around five to ten hidden layers). Recall-
ing from Sect. 3.4 that a neural network with one hidden layer can approximate any
continuous function with sufficiently many hidden neurons, one may wonder why
we should even consider networks with more than one hidden layer. Just because
something is possible does not mean it is efficient, in the sense that with multiple
layers, fewer neurons may be needed overall to achieve the same expressiveness as
a network with one hidden layer (see e.g. [46] for a mathematical comparison of
the expressiveness of shallow and deep ReLU networks). Furthermore, in principle,
it could be the case that deep neural networks have better generalization properties
than shallow ones.

Intuitively, there is a compositional argument why deep learning works well in
praxis. Recall again the task of classifying images of cats and dogs considered in
Sect. 2.1. As demonstrated in [47, 48], neural networks that are trained to classify
images store gradually more complex features in later layers. While the first few
layers may represent simple features like edges of different orientation, later layers
can build on these features to form more complex part-of-object shapes like typical
eyes of dogs or cats. The part-of-object shapes can then be combined further to make
a decision on the classification task and output the label “cat” or “dog”.

In praxis, deep neural networks often outperform shallow networks for tasks like
image recognition. But unfortunately, deep networks tend to be difficult to train
in praxis. While deep networks are also trained using gradient descent (and the

2 For image classifications, one does not use fully connected neural networks, but so called convolu-
tional neural networks. These networks use some prior knowledge about “locality” of information
in images and translation invariance of visual features. Nonetheless, the number of parameters in
such networks is still significantly larger compared to more conventional machine learning models.

26 3 Artificial Neural Networks

backpropagation algorithm is used for efficiently calculating the gradients), the size
of the gradients turn out to behave unstable in such networks. Hence, the gradients in
the earlier layers of such networks tend to explode (exploding gradient problem) or
to nearly vanish (vanishing gradient problem). We refer again to [37] for a discussion
why this problem appears and how it is handled in praxis.

Sometimes one may not only be interested in the classification of pictures of
dogs and cats, but also in extracting relevant features of cats and dogs from images.
Finding a compact representation of data by extracting high level features is exactly
the goal of representation learning discussed on the basis of autoencoders in Chap. 4.
Deep neural networks are a powerful tool for representation learning, since they quite
naturally learn high level features in deeper layers.

Chapter 4 ®)
Autoencoders Check for

Autoencoders are a tool for representation learning, which is a subfield of unsuper-
vised machine learning and deals with feature detection in raw data. A well known
example for representation learning is PCA, discussed in Sect. 2.2. The most meth-
ods that are currently used for representation learning are based on artificial neural
networks. While, in principle, all deep neural network architectures learn some repre-
sentation within their hidden layers (see also Sect. 3.6), most work in representation
learning is dedicated to defining and finding good representations [27]. The main
focus of Part I1I of this book is the formalization of what a good representation is for
physical systems and designing neural network structures that are able to find such
representations. While there are a variety of tools for representation learning [27],
the one most relevant for this book is the autoencoder.

In the following, we provide a non-technical introduction to autoencoders. A
mathematical discussion of a specific kind of autoencoders (so called variational
autoencoders) is given in Appendix B. An autoencoder is a tool to find a compact
representation of samples in a data set. For concreteness, think about a data set
containing images of circles of different radius and centered at different points in the
s-t-plane (see Fig.4.1). As discussed in Sect. 3.6, deep neural networks are able to
extract abstract features from data. However, so far, we have only considered neural
networks for supervised learning. Here, we only have given images of circles, but we
do not have any labels, so what should the output of the neural network be? As we
search the hidden layers of the network for representations that still contain enough
information to reconstruct the image, we should ask the network to reproduce the
input image again as the output of the network, i.e., for an image x and a network
Fy we want Fy(x) ~ x. But this is just the identity function, so what is the point of
training a network to learn the identity function? The network becomes interesting by
introducing a dimension “bottleneck” in a hidden layer, i.e., by introducing a hidden
layer with a small number of neurons (called latent layer). This forces the network
to compress the input to a few relevant parameters and does not allow it to just
successively pass the original image from one layer to the next. More concretely, we
can split the network into two parts, the encoder function E (x) = r mapping an input
x to a latent representation r € R” with p latent neurons and where the elements
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 27

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_4&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_4

28 4 Autoencoders

Input x Outputy =~ x

:j::
t XX 7N (MLl t’j’ t
Y SR CANNY 3

t t
I O Encoder Representation Decoder O

Fig. 4.1 Autoencoder. The figure shows an autoencoder used to compress images of circles. Three
possible input images are shown. The position as well as the radius of the circle varies over the
training data. An encoder mapping is used to compress the image data to a small dimensional latent
representation. The high dimensional input to the encoder may corresponds to the values of the pixels
of the image, and the output of the encoder is given by the activations of the neurons in the latent
layer. Note that the number of neurons depicted for the encoder (and decoder) is not representative.
An efficient encoder recognizes that it is sufficient to “store” the coordinates m = (my, m;) of the
center of the circle together with its radius d. We would like to stress that these values are not
parameters of the latent neurons, but correspond to the real valued output of theses neurons (given
an image as an input to the encoder). A decoder is then used to reconstruct the image using only
the information from the latent representation

of r correspond to the activation of the latent neurons for the given input x. The
latent representation r is then mapped by the second half of the network, the decoder
function D(r) = y, to the output y of the network (which should be approximately
equal to the input image, i.e., x & y). In the considered example (Fig.4.1), knowing
the centre (m;, m,) of the circle and its radius d is sufficient to reconstruct the image.
Hence, the input image, which might be quite high dimensional, e.g., a vector with
10,000 entries if the image dimension is 100 x 100 pixels, can be compressed to a
three-dimensional latent representation storing m;, m, and d. Note that features that
stay the same over all images, such as the shape (in this case a circle), are “stored”
in the decoder. The latent representation only has to store the information that may
change from one image to another.

Where it seems most natural as a human to store my, m, and d in a latent rep-
resentation consisting of three neurons, there is no a priori reason for the neural
network not to store e.g. a = my + m,, b = my; — m, and ¢ = d, since the decoding
function can easily recover my = (a + b)/2, m; = (a — b)/2 and d = ¢ from this
representation. Therefore, in resulting representations, different parameters stored
in the latent neurons are often highly correlated and do not have a straightforward
interpretation. A lot of work in representation learning has recently been devoted to
disentangling such representations, i.e., to seperate the parameters in the represen-
tation in a meaningful way (see e.g. [49-53]). In particular, these works introduce
criteria, also referred to as priors in representation learning, by which we can disen-

4 Autoencoders 29

tangle representations. Where several work focusses on a prior of having statistically
independent latent neurons, a recently proposed prior is the so called consciousness
prior [54]. It suggests to disentangle the latent representation via an attention mech-
anism by assuming that, at any given time, only a small fraction of the features or
concepts stored in the representation are sufficient to make a useful statement about
reality. In Part III of this book, we discuss criteria to disentangle representations of
physical system in a natural way.

Part 11
Overview of Using Machine Learning
for Scientific Discoveries

In this part, we give an overview of different directions in which machine learning
can be applied to automate different aspects of the scientific discovery process. In
recent years, machine learning has become a common tool for science, and it is
beyond the scope of this part of the book to discuss all related results. Rather, we
focus on a selection of results with the following characteristics: (i) they are based on
machine learning methods that can be applied to a wide range of physical systems,
i.e., the methods are not specialized to a particular class of systems; (ii) they are
representative of a research direction (and hence, they provide the reader with the
necessary machine learning background to read the latest results in the corresponding
research field); and (iii) they allow the extraction of conceptual information from the
physical system. Each chapter in this part of the book is self-contained, and hence,
the reader is free to pick any chapters he or she is particularly interested in, and skip
others if they are less relevant to his or her field of study.

The most methods discussed in this part require the knowledge about which
physical parameters are relevant to describe the system at hand. For example, it may
be assumed that the relevant parameters to describe the time evolution of a charged
particle in a homogeneous electric field are the charge and the mass of the particle,
as well as the field strength. Recent advances in deep learning and representation
learning allow to get rid of this prior knowledge and to let the machine discover the
relevant parameters itself. This is discussed in Part III of this book.

Chapter 5 ®)
Creating Experimental Setups oo

As discussed in Sect. 1.2, creating experimental setups is a fundamental step in a
physicist’s discovery process. Creating experimental setups for quantum systems is
particularly challenging, since the behavior of such systems is often unintuitive. In
the last view years, automated search techniques and reinforcement-learning based
schemes have been used to generate new experimental setups for quantum optics [55,
56] (see [57] for a review of computer inspired experiments). This research has
lead to the solution of several previously unsolved questions [55, 58], experimental
implementation of computer inspired experiments [59-64] and last but not least, to
the discovery of new scientific ideas and concepts [65—67]. Recently, a new design
algorithm named THESEUS was introduced in [68] specifically aiming at conceptual
insights. THESEUS uses graph representations fo quantum experiments [66], which
significantly speeds up the runtime compared to the automated search algorithm
MELVIN [55]. Instead of completely automatizing the generation of experiments,
one may alternatively also use machine learning to generate hypotheses which can
help to improve a human expert’s intuition about the system [69].

In this chapter, we focus on the results described in [56], which are based on a phys-
ically motivated kind of reinforcement learning, called projective simulation [70].
Projective simulation is particularly well suited for reinforcement learning problems
where one wants to gain some insight into the thinking process of the agent. Indeed,
projective simulation allows to discover combinations (or gadgets) of experimental
tools that turn out to be useful outside of the given task of the agent. Hence, the
following discussion can be considered in a broader context as providing an example
of how to gain conceptual insights into the interaction of an artificial physicist with
its environment using reinforcement learning.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 33
R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_5&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_5

34 5 Creating Experimental Setups

5.1 Problem Setting from Quantum Optics

In this section, we provide the background required to understand the quantum optics
setup discussed in the following sections (and based on [56]). It is not necessary
to have an understanding of quantum mechanics to follow this section. Enough
background knowledge is provided so that the considered goal of generating high-
dimensional entangled quantum states can be regarded as a purely mathematical
optimisation problem.

A (pure) state of a d-dimensional quantum system can be represented as a complex
vector |y) € C¢ that is normalized, i.e., with unit Euclidean norm |||/) I, =1, and
where two states |v/) and |1/') are identified if and only if they differ by a global phase
factor, i.e., if there exists ¢ € R such that |y) = ¢'?|1/’). We work with the standard
inner product on the complex vector space, which s given by (v|w) = Zle v;w;, for
two d-dimensional vectors v;, w; € C? and where the *-symbol denotes the complex
conjugate. The vector space C? together with the standard inner product is then called
a Hilbert space."

In the quantum optics setup used in [56], the position and the orbital angular
momentum (OAM) of photons are used as the degrees of freedom to store and
manipulate quantum states. We work with four different paths, labeled by a, b, c
and d where the photons can travel, and with 2M + 1 angular momentum states
of each photon, labeled with —M, ..., 0, ..., M, and where M € N is some finite
upper bound on the angular momentum number m of a photon. Hence, the state of a
photon lives in a d-dimensional complex Hilbert space withd =4 x (2M + 1) and
orthogonal basis vectors |m), withm € {-M,...,0,...,M}and p € {a, b, c, d}.

The goal considered in [56] is to create a special kind of photon states, so called
entangled states. Before we (mathematically) describe the experimental tools that are
available to achieve this goal, let us discuss the definition of entanglement. Entangle-
ment plays a fundamental role in various fields of research that are based on quantum
mechanics. It describes an intrinsic property of quantum systems that forms the basis
for the conceptually challenging behavior of such systems [71] and finds many appli-
cations in quantum information theory (see [72] for an overview) and in condensed
matter theory, where a strong connection between phase transitions in complex sys-
tems and entanglement was discovered [73]. Let us first define entanglement for
bipartite states, and consider the more evolved case of many parties afterwards.

5.1.1 Entanglement of Bipartite Systems

Consider two quantum systems A and B whose states live in Hilbert spaces H4
and Hp of dimensions d4 and dg, respectively. The state of the composite system

I A Hilbert space is a real or complex inner product space that is a complete metric space with
respect to the distance function induced by the inner product. The distance function, induced by an
inner product (-|-), between two vectors x and y is defined by (x — y|x — y).

5.1 Problem Setting from Quantum Optics 35

then lives in the tensor product of the Hilbert spaces Hap = Ha @ Hp (see [72]
for a detailed introduction to tensor products in the context of quantum mechanics).
For example, if the system A and B are in states |/4) and |¢p), respectively, the
composite state is given by |¥4) ® |¢p). States that can be written in tensor product
form are called separable or product states. Maybe surprisingly if one is not already
familiar with quantum mechanics, not all states in H 4p are product states, hence,
there are states that can not be described by two local states of each of the systems.
Rather, if the system is in a non-separable state (also called entangled state), the two
systems form an inseparable whole. An example for a state of two photons at path a
and b that is (maximally) entangled in the OAM basis is give by

1 1
Was) = > Im)al = m)y . (5.1)

m=-—1

Note that the factor 1/ V3 is required, such that (Y4p|¥ap) =1 is normalized.?
Such states can be experimentally generated by a double spontaneous parametric
down-conversion process in two nonlinear crystals [55, 59]. A way to characterize
entanglement is based on the Schmidt decomposition.

Theorem 1 (Schmidt decomposition [72]) Let | ap) be a composite state of two
systems A and B. Then, there exists orthonormal states |;)a for system A, and
orthonormal states |p;) g for system B, such that

[Wag) =Y hilVi)aldi)s, (5.2)

where X; are non-negative real numbers satisfying _;)»12 =1 and known as the
Schmidt co-efficients.

The proof of the decomposition is based on the singular value decomposition and
is given in [72]. Apart from many other applications of the Schmidt decomposition in
quantum information theory, the minimal number of Schmidt coefficients, called the
Schmidt rank, can be used to characterize the entanglement by the minimal number of
required degrees of freedom of the local systems that are entangled with each other.
A product state requires only one Schmidt coefficient and hence has a Schmidt rank
equal to one. This corresponds to the interpretation that the system is “entangled”
over one degree of freedom, which is equivalent to say that each local system is
independent of the other one and hence the state is separable. On the other hand,
any state with Schmidt rank bigger than one is entangled. For example, one can
show that the state given in (5.1) has Schmidt rank three, hence it is entangled in

2 The notation (Y 4p|W4p) abbreviates the expression (|¥ap)||¥ap)) and is actually one of the
underlying reasons why it is common to bracket a quantum state by |-), which is called the “ket”-
notation. Together with the “bra”-notation (4|, denoting the complex conjugate row vector of
the column vector ¥4 g, the “braket”-notation ({4 p|¥4p) can be read as the matrix multiplication

of (Yap| with [{4p).

36 5 Creating Experimental Setups

all three OAM dimensions. Note that this characterization does not depend on the
size of the Schmidt coefficients, and hence is not robust against noise: an arbitrary
small disturbance of the state may change the Schmidt rank e.g. from one to two
and hence the characterization from “separable” to “entangled”. Nevertheless, this
characterization works well in the context considered in the following sections, in
particular since the quantum systems used in [56] are simulated on a computer with
arbitrary accuracy.

5.1.2 Entanglement of Multipartite Systems

Characterizing the entanglement of multipartite systems becomes much more involved
than for bipartite systems. To demonstrate this, let us consider a tripartite system
ABC. We can characterize the entanglement between the system A — BC, B — AC,
and C — A B separately by the Schmidt rank. However, in general, the three Schmidt
ranks are not equal, and hence we have not a single number characterizing the entan-
glement, but three numbers (which are not fully independent, but also not determined
by each other [74]). Hence, we may define the Schmidt rank vector (SRV) of a tri-
partite system as a three dimensional vector with integer entries corresponding to
the Schmidt ranks of the different bipartite splittings of the system. The entries of
the SRV can be considered as the entanglement dimensions between the different
splittings of the system. The goal considered in [56] is to create high-dimensional
entangled tripartite photon states with SRV (3, 3, 2) and (3, 3, 3). Such states are not
only of fundamental interest, but also because of the many applications in quantum
communication and computation [75-80].

5.1.3 Preparation of Photon States

Initially, two photon pairs are created that are maximally entangled in the OAM basis,
i.e., we start from a state of four photons given by

1 1 1
) =3 (3 Imal - m>b> ® (3 im)l —m>d> . (5.3)
m=—1 m=—1

Then, we can apply different transformation to this state corresponding to well known
tools from quantum optics with the goal of creating high-dimensional entanglement
between three of the photons. The available tools together with their mathematical
description are listed below.

1. BS, »: Nonpolarizing symmetric 50/50 beamsplitter for photons on path a and
b:

5.2 Creating Experimental Setups Using Projective Simulation 37

lm)a — % (il =m)a +lm)p) , (54
lm), — % (Im)a + il —m)p) . (5.5)
2. Holo, x: Hologram in path a with a OAM shift k € {£1, £2}:
m)y — |m+k),. (5.6)
3. DP,: Dove prism on path a:
|m)q — ™| = m)q. (5.7)
4. Refl,: Mirror on path a:
lm)a = [—m)q. (5.8)

The goal is, starting from the state i) given in (5.3), to apply a sequence of
the transformations listed in 1 to 4, such that we end up with a high-dimensional
entangled state on three photons. After applying all transformations, the photon in
path a is post-selected in the OAM basis meaning that it is measured in the OAM basis
and that for all possible measurement outcomes, the states of the remaining three
photons are investigated. For example, if we would not apply any transformation on
the initial state |1), postselecting in the OAM basis would lead to three non-trivial
state corresponding to postselection on |m), with mg € {—1, 0, 1}. Dependent on
the measurement result m of the orbital angular momentum of the photon in path
a, we would obtain the following state on the remaining three photons

1 1
ok ® (> Imel - m>d> : (5.9)

m=—1

This state has a SRV of (1, 3, 3), hence, the photon in path b is not entangled at all.
The goal is to find a sequence of transformations to end up with a three photon state
with SRV (3, 3, 2) or (3, 3, 3). This is a quite challenging task and it is discussed in
the next section how reinforcement learning can be used to tackle it.

5.2 Creating Experimental Setups Using Projective
Simulation

Projective simulation (PS) is a specific method for reinforcement learning introduced
in 2012 in [70]. PS has shown to perform well for standard reinforcement learn-
ing problems [81-84], advanced robotics problems [85, 86], quantum error correc-

38 5 Creating Experimental Setups

tion [87, 88], quantum communication [89], setting up experimental Bell tests [90],
modelling collective behavior based on the principle of agency [91-93], and even
turned out to allow for quantum enhancements for reinforcement learning [94—100].
Furthermore, some interesting philosophical challenges of agency were considered
in the context of projective simulation [101-103]. Recall from Sect. 2.3 that the goal
of an agent in reinforcement learning is to process an input encoding the state of
the environment to decide which action it should perform next to achieve a goal.
One of the fundamental ideas behind PS is that the agent does the processing of an
input by projecting itself, based on previous experiences and variations thereof, to
potential future situations. Based on the associated situations (and the current state
of the environment given as input), the agent chooses the next action to perform on
the environment. This idea is related to episodic memory whose role for planning
and prediction was already discussed in psychology in the 1970s [104, 105].

Let us informally explain the idea on the basis of a simple example (discussed
formally in [70]). Consider an agent that can decide to choose actions a, or a; in
each time step, meaning that he moves to the right or left, respectively. The input to
the agent is a red arrow pointing to the left s/ or to the right s™¢, and the correct
movement of the agent should be according to the shown arrow. The PS agent learns to
associate the shown arrow with the correct actions, i.e., it associate the action a, with
s, and aq; with s;. Now, let’s assume that the arrow shown to the agent is sometimes
colored blue (and the other times it is still colored red), hence there are two additional
potential inputs to the agent denoted by s/ and s”'"® corresponding to the blue arrow
pointing left and right, respectively. Instead of learning to associate the blue errors
again with the correct actions, the PS agent could also learn to associate the blue
and red arrow pointing in the same direction with each other, hence recognizing that
the “meaning” of the arrow stays the same independent of the color. The memory
episode would then look like this, for example given an input slbl“e, this input would
activate s/, which in turn would lead to choosing the correct action a;. The reflection
is hence not realized as a sophisticated computational process, but it can be seen
as a structural-dynamical feature of the memory itself. In particular, this allow to
generalize the idea of PS to the quantum world as discussed in [70]. The elementary
excitations of the episodic memory are called clips, which are given by s, s/d,
sPle sred g, and a, in the considered example.

The discussed example is very simplistic and ignores several aspect of the general
framework of PS [70]. In the general framework the associations between different
clips are probabilistic. PS allows to reason about various potential situations by
performing a random walk in the clip network without applying any action that is
exited during this process to the environment. Hence, it is only reasoned about the
actions in the first place, but they are not directly implemented in “reality”. Finally,
dependent on the whole reasoning process, a “real” action is chosen to perform on
the environment. Importantly, clips can not only consist of one state or action, but
also of a composition. PS is able to learn such compositions on its own, which is
a key feature helping to extract conceptual information from the trained PS agent.
This idea will be explained in detail in the concrete example from quantum optics
(Sect.5.1) in the following.

5.2 Creating Experimental Setups Using Projective Simulation 39

State st*Dand sate s and

reward r(+1) i reward r®
/ Simulated quantum optics : _1 &
" Ps-Agent
a — BSqp, o My 8 aD
' QA0 O
A Entanglement
b — — Analyzer PRI
% 0000 |
¢ > SRV = (1,3,3) b =
J : J

k Refl,: / Action a®

Fig. 5.1 Environment for projective simulation agent [56]. A PS agent places in each step # (depen-
dent on the current optical setup s) additional optical tools at some position on a (virtual) optical
table. The action @) determines the number of tools and which tools are added at what place on the
optical table. For example, the action a1 could have been set to a beam splitter BS,, , on path a
and b (which is shown in current state s*) in the image). The evolution of four photons propagating
on four paths a, b, ¢ and d is simulated by a computer and the output state on path b, ¢, d (posts-
elected in the OAM basis of the photon on path a) is calculated. Then, the Schmidt-Rank vector
(SRV) of the output state is determined as an entanglement measure. The agent obtains a positive
reward D if the SRV of the three photon state is (3, 3, 2) or (3, 3, 3). If the reward is positive
or if the maximal number L of optical elements is achieved, the experiment ends. Otherwise, the
agent choses the next elements to place on the optical table dependent on state s ¢+ 1

5.2.1 Architecture for PS Agent

The PS agent used in [56] has a simple architecture, where each remembered state
of the optical setup and each action corresponds to a single clip. The PS agent builds
up the optical setup stepwise, where in each step it places a new optical element
on the optical table (Fig.5.1). Hence, the set of K € N possible actions {a;}ic(1,... k)
correspond to the possible transformations listed in 1-4. We have 6 possible ways
to place a beam splitter (choosing two paths out of four), 16 different variants of
Holograms, and 4 choices for Dove prisms as well as for reflections summing up to
K = 30 possible actions in total. The clips corresponding to the optical setups are
added to the architecture on the go, i.e., starting from an architecture with state
clips {s;}ieq1,...,n}, €ach created setup that is not already contained as a clip s; in the
architecture is added as as an additional clip sy .

We are interested in finite experiments, so the maximal number of optical elements
in one experiment is limited to L € N. This is not solely a theoretical restriction,
but rather of practical interest: since each optical element adds some noise to the
quantum state, e.g. through misalignment and interferometric instability, we expect
a decreasing fidelity of the resulting state for longer experiments. The number of
possible states of the optical setup with a fixed number / of optical elements is
given by K !, And hence, the set of all possible states {s;}ie(1,....n,,,} consists of
Nmax = Z/L:o K' elements. Note that thereby, s; represents the empty optical table.

40 5 Creating Experimental Setups

State clip @

Weights hi(_)j)

Action clips

BS,, BS.q DP, DP; Refl, Refl; Holo, » Holo, »

Fig.5.2 Initial architecture for the PS agent [56]. The figure shows a simple model for the simulation
of the episodic memory of the PS agent at initialization. The goal of the agent is to create experimental
setups that create entangled photon states (see Fig. 5.1 for the setting). The states of the environment
and the actions that the agent can choose correspond to single clips. The clip s; corresponds to the
empty optical table. (Further clips corresponding to states of the agent are memorized on the go
during the training of the agent.) The action clips ay, ..., a3p correspond to placing one of the
possible tools listed in 1 to 4 on the optical table. The state 5| is connected to all actions a; via

weighted edges (1, j). The weights hﬁ)} = 1 are all initialized with one, and hence, the first action
is chosen uniformly at random

Working with at most L = 6 optical elements, this already corresponds to a maximal
number of clips of more than half a billion.

The initial architecture (which may be changed during training) for the PS agent
then just consists of the clip s; corresponding to the empty optical table and of clips
ai, ..., ag corresponding to actions placing a single optical tool listed in 1 to 4 on the
table (Fig.5.2). The state s, is connected to every action a; via a weighted edge (1, j)
with weight h&oj, where the superscript denotes the number of passed training steps.
An edge (i, j) represents the possibility of taking an action a; in a situation s;. More
concretely, the probability pfg.) of choosing action a; given state s; is proportional to

the weight hfoj) i.e. we have

n©@
(0) i
pi,j = K—(O) . (5.10)
D=t hik

Initially, all weights are set equal to one [56], and hence, the probability of per-
forming action a; starting from the empty optical table s is uniform, i.e., p; ; = 1/K
forevery j € {1, ..., K}. Similarly, if an additional state clip s; is memorized during
the training process, the weights for the edges (i, j) are initialized with one.

5.2.2 Training of the PS Agent

Starting from randomly generating optical setups by letting the PS agent choose
which optical element to place next, we would like to train the PS agent to learn
producing setups that lead to high-dimensional entangled states with high probability.
In contrast to supervised learning, we have no knowledge about which actions the PS

5.2 Creating Experimental Setups Using Projective Simulation 41

agent should choose to achieve this goal. The only feedback on its performance that
the PS agent gets is a positive reward in the case he created an optical setup leading to
a high-dimensional entangled state, or no reward if the maximal number of elements
on the optical table is reached. In both cases, we reset the optical table afterwards to
the empty state and start a new experiment where the PS agent again places optical
tools on the table. From such rewards, the agent has to learn which elements to place
next, given an optical table with some elements already placed. Three different kind
of adaptions during the training allow the agent to adapt his behavior [56]:

1. Adapting the weights of the PS architecture, and hence, the probabilities to
choose an action a; given a state s; of the optical table.

2. Action composition, i.e. adding compositions of several actions that have proven
useful in achieving the goal as an action clip to the architecture.

3. Clip deletion, i.e., deleting states and actions that are likely not required to
achieve the goal.

We discuss all three learning techniques separately in the following (readers not
interested in the details how the learning works may safely skip Sects.5.2.2.1 and
5.2.2.3). Action composition (Sect.5.2.2.2) is in particularly interesting since it can
help to get some conceptual insights into which gadgets, i.e., combination of exper-
imental tools, are especially useful in combination.

5.2.2.1 Training of the Weights

The goal is to update the weights during the training of the PS agent to optimize the
(average) probability of success, i.e., the chances of receiving a positive reward. The
basic idea to achieve this is the following: each time the PS agent receives a reward,
all the weights of the edges that correspond to the choices of actions made during
building up the optical setup are increased. For example, assume that, starting from
the empty optical table state s, the PS agent first performs an action a4, leading
to a state s3 corresponding to an optical table with a single mirror placed in path
d (Fig.5.3). The state s3 in turn samples an action a3y and the resulting optical
state leads to a reward. Then, the weights of the edges (1, 14) and (3, 30) should be
increased, to raise the probability to choose action a4 or a3y when the agent observes
the states s; or s3, respectively.

Let us formalize this idea and mathematically describe how the weights are
updated. We denote the number of interaction circles (see Fig.5.1) passed during
training by 7, and the weights after ¢ cycles by hf’; The reward r® € {0, A} after ¢
cycles is equal to A > 0 if and only if the agent produced a state with desired SVR
of (3,3,2) or (3, 3, 3). Then, the update rule for the weights used in [56] is

RUFTD = @ 4 p O g+ (5.11)

42 5 Creating Experimental Setups

where 2 is the weight matrix with entries /") ; and the glow matrix g"*! allows to
redistribute rewards such that decisions that were made in the past are rewarded less
than the more recent decisions. The glow matrix g® = Q is initialized with the zero
matrix and is updated in each step ¢ by setting the entry g; ; = 1 if the edge (i, j)
was traversed in the last decision process in the PS architecture. Furthermore, the g
matrix is updated after each interaction with the environment to lower the extent to
which actions far in the past are rewarded by

gl = -mg". (5.12)
where n € [0, 1] is the glow parameter of the PS model. The hyperparameter n
can be chosen heuristically, or also learned by PS itself [106]. From (5.11) together
with (5.12) one can then see that a positive reward) increases the weights corre-

sponding to recent transactions from states to actions.

5.2.2.2 Action Composition

Action composition [70] enables the PS agent with some primitive kind of creativ-
ity [102] by coming up with its own actions. In [56], a concrete version of this idea
is implemented to learn actions that lead to a positive reward. Each time the PS
agent achieves a positive reward, the sequence of actions that lead to this reward is
added as an additional action clip to the PS model (Fig.5.3). This allows the agent

State clips

Weights hg’tj)

Action clips

BS,, BS.4 DP, DP, Refl, Refl; Holo, > Hologz> (DP., BS,)

Fig. 5.3 Trained architecture for the PS agent [56]. The figure demonstrates how the architecture
for the PS agent shown in Fig. 5.2 may have changed after ¢ steps of training. State clips s2, ..., Sy
that were explored during a rewarded experiment have been added during training. The probability
that action a; is chosen for an input state s; is related to the weight h(t) by (5.13). The weight is
increased if choosing action a; in situation s; leads to a positive reward in a situation experienced
during training (high weights are depicted with solid lines in the figure). Hence, the probability
to choose actions that will lead to rewarded experiments is increased during the training process.
Furthermore, action composition changes the structure of the PS architecture. For example, the PS
agent may realize during training that the combination of a Dove prism on path ¢ together with a
beam splitter on path a and c is particularly useful to achieve its goal. Hence, the composite action
clip (DP., BS,) is added, which allows the agent to place both elements in one training step

5.2 Creating Experimental Setups Using Projective Simulation 43

to directly place several optical tools that turned out to be useful in past experiences
together in one step. Hence, the number of available actions varies over the number of
training steps, and we denote this number after ¢ training steps by K©. The weights
connecting the new action to all the state clips are initialized with value one and the
probability to choose action a; given state s; is then given by

"
() i
Yk hilk

Rescaling of the tool box size K leads to a smaller change of the probability
p,(tj) with respect to a change of a weight. To compensate for this, we also rescale the

reward r® € {0, A} by rescaling A dependent on ¢ proportionally to the size of the
toolbox as

K®
0 _ 5
A=A X0 (5.14)

where 1) corresponds to the initial reward A, and where a positive reward r €
{0, A} after ¢ steps is rewarded with A,

5.2.2.3 Clip Deletion

The number of all possible states of the optical setup grows with O (K L), where
k is the number of actions and L the maximal number of elements placed on the
optical setup. Hence, adding all states that are built by the PS agent as a clip to the
PS model may lead to a huge number of state clips, and hence, to a huge number of
weights that must be trained. To avoid this, we delete state clips that are only used
infrequently. More concretely, if, after placing a maximal number L of elements on
the optical table, no positive reward was obtained, all state clips and edges that were
created (and added to the PS architecture) are deleted.

Similarly, we also use a deletion mechanism to keep the total number of actions
K ® reasonable small. The idea is to only keep composite actions if they turn out to
be useful in many situations. Technically, we check if after some training steps, the
sum of the weights of the incoming edges to the added action clip is large enough
to justify its existence. If this is not the case, we remove the action again. (For a
full description of a method that implements this idea we refer to the Supplemental
material of [56].)

44 5 Creating Experimental Setups

(3,3,2) states (3,3,3) states

length of ex

0 10 20 30 40 50 60
number of experiments x10°
(a)

Fig. 5.4 Results for creating optical setups using PS (Figures taken from Melnikov and Nautrup et
al., Proceedings of the National Academy of Sciences 2018 [56]). a The plot shows the evolution
of the success probability as well as the average length (i.e., the number of optical elements) of the
experiments during the training process. The PS agent is trained for 5 x 10* experiments with the
goal of creating states with SRV (3, 3, 2), and subsequently for 10* experiments to create states
with SRV (3, 3, 3). The trained agent successfully creates states with SRV (3, 3, 3) with probability
of around 50%. The dashed lines corresponds to an agent that is trained with the goal of creating
states with SRV (3, 3, 3) from the beginning. Such an agent does essentially not make any learning
progress. This suggest that the techniques to create states with SRV (3, 3, 2) are also useful for the
creation of states with SRV (3, 3, 3). b Experimental setups frequently used by the PS agent. (A)
Local parity sorter. (B) Nonlocal parity sorter. (C) Nonlocal parity sorter in the Klyshko wave front
picture [107], in which the paths a and d are identical to the paths b and c, respectively. (D) Setup
to increase the dimensionality of the entanglement of photons

5.2.3 Results

The PS agent is trained for 5 x 10* experiments with the goal of learning photon
states with SRV (3, 3, 2). The glow parameter is n = 1/16, the maximal number of
optical elements is L = 8 and the initial size of the reward is A’ = 1. The PS agent
learns to create experimental setups that prepare photon states with SRV (3, 3, 2)
with high probability and with a decreasing number of optical elements in the train-
ing process [56] (Fig.5.4a). Then, the same PS agent is trained further with 10*
experiments to learn creating photon states with SRV (3, 3, 3). Within this short
additional period of training, the PS learns quickly to create such states with 50%
success probability. This suggests that either knowing how to create states with SRV
(3, 3, 2) helps the agent to construct states with SRV (3, 3, 3), or alternatively, that
constructing states with SRV (3, 3, 3) is simpler than constructing states with SRV
(3,3,2). To check this, a newly initialized PS agent is trained for 6 x 10* experi-
ments with the goal of creating states with SRV (3, 3, 3), but the success probability
stays near zero (Fig. 5.4a). This demonstrates that the agent trained to produce states
with SRV (3, 3, 2) discovered some structures that also help in producing states with
SRV (3, 3, 3). Some insight into how the PS agent builds the setups that lead to the
desired states is discussed in Sect.5.3.

5.3 Conceptual Insights from Action Composition 45

5.3 Conceptual Insights from Action Composition

In Sect.5.2, we discussed how PS can be used to create experimental setups for a
specific task of preparing entangled states. As scientists, however, we are not only
interested in knowing experimental setups that produce such states, but we also seek
some understanding of the principles used to build the setups. Indeed, the connection
between experimental setups and the entanglement structure of the created state is not
well understood [55]. Action decomposition, which allows a PS agent to compose
new actions during the training process that turned out to be particularly useful,
can help to get some insight into this relation. Identifying gadgets often appearing in
successful experimental setups can help to get some understanding of which building
blocks are particularly useful for creating highly entangled states.

The added composed actions of the PS agent that was trained as described in
Sect. 5.2 are analyzed in [56]. The importance of an action a; is estimated according
to the sum), hy ; of the weights of all incoming edges (which is related to the
probability that the action a; is chosen). One finds that the PS agent extensively
uses a combination of actions corresponding to an optical interferometer (shown in
Fig.5.4b A). Usually, such interferometers are used to sort OAM modes with different
parities [108], hence, the PS agent essentially (re-)discovered an optical setup that is
well known and useful for various tasks.

To discover other relevant gadgets, one may train the PS agent in a way such
that only novel experimental setups are rewarded. Hence, if the PS agent finds a
setup that achieves an SRV (3, 3, 2) (or (3, 3, 3)), a reward is only given if this setup
was not already found earlier in the training process. Analyzing again the composed
actions found by such an agent, leads to several new interesting gadgets [56] (see
Fig.5.4b B,C, and D). The gadget shown in Fig.5.4b B, a nonlocal interferometer,
has recently been analyzed and motivated the work in [65]. Further, it can be shown
that the gadget shown in Fig.5.4b D allows to create high-dimensional entangled
states beyond the initial state dimension of three in the OAM basis.

Chapter 6 ®)
Model Creation Geda

In this chapter, we discuss how to optimize and build physical models using machine
learning. There is an extensive literature on the use of machine learning to solve
scientific (optimization) problems. Work in this direction has many success stories
and could be used to solve many challenging problems in science. Often, a model for
the physical system is assumed and the aim of the machine is mainly to optimize the
parameters of the models. Therefore, despite the great practical usefulness of such
approaches, they do not usually lead to new scientific knowledge beyond the specific
solution to the given problem. In Sect.6.1, we briefly review some recent work in
this area. However, since the focus of this book is on discovering new models with
machine learning, we keep this section short and provide several references for further
reading. In Sect. 6.2, we discuss how to find mathematical formulas describing the
time evolution of physical systems. Finding mathematical formulas is an essential
partof a physicist’s discovery process. The bias that the underlying model is described
by “simple” mathematical formulas has led to models with great generalization power
in history.

6.1 Optimizing Model Parameters

A lot of literature considers building machine learning systems modeling specific
physical systems. Then, the parameters of the model are optimized to solve a specific
problem. Such methods have proven very successful in solving challenging scientific
problems, e.g. in the design of materials and molecules through accelerated simula-
tions of quantum systems (see [109] for an extensive review using machine learning
for quantum physics). Neural networks have become the most important machine
learning tool for solving scientific problems in recent years. For example, in con-
densed matter physics and generally in many-body settings, neural networks have
proven particularly useful to characterize phase transitions (see [14] and references
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 47

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_6&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_6

48 6 Model Creation

therein) and to learn local symmetries [110]. In quantum chemistry, neural networks
and graph based networks show impressive results for synthesis of molecules and
predicting their properties [111-113] (see [114, 115] for recent reviews and further
references). A more extensive review on the applications of machine learning in
physics can be found in [17].

The incorporation of prior knowledge about a particular physical model into
machine learning systems fundamentally limits what can be “discovered” by the
machine. In fact, we cannot claim a machine to discover a physical model itself if
some knowledge about the model is already hardcoded in the machine learning sys-
tem. Another approach, discussed in full detail in Part III of this book, is to model the
physicist’s reasoning process with the machine learning system. This approach has
the potential to discover physical models on its own in tradeoff with the performance
of solving specific physical problems. The tradeoff between the generality of a model
and its performance is fundamental, in the sense that discovering something from
scratch is always harder than starting from some prior knowledge about the system.

6.2 Discovering Physical Laws

Discovering the physical laws underlying experimental data is one of the main goals
of a physicist. Automatizing this process was considered in an early study in [18]
in 1987. In 2007 an algorithm was introduced in [116] that searches a space of
mathematical expressions on given input variables to recover the differential equa-
tions underlying time-series data. Two years later, it was demonstrated in [19] that
searching for conserved quantities in time-series data can be used to find the laws
of motion of various mechanical systems, such as a double pendulum. In 2011, the
same algorithm was applied to infer analytical models for metabolic networks [20].
In the last few years, significant progress was made in extracting dynamical equa-
tions from experimental data (see e.g. [117-120]), which is known to be an NP-
hard problem [121]. The methods in [118], for example, have been successfully
applied to complex physical systems such as water flowing through a pipe (defined
by the Navier-Stokes equations). Recently, physical prior knowledge was incorpo-
rated into deep neural networks leading to so called physics-imformed deep neural
networks [122]. Physics-informed neural networks have been used for the data-driven
discovery of partial differential equations by exploiting the a priori knowledge that
physical dynamics should belong to a class of partial differential equations [122—
125]. Last but not least, tensor networks were used in [126] to learn non-linear
dynamical laws. Building physical principles, such as the locality of interactions,
into the tensor network naturally ensures scalability of the approach.

In the following sections, we will focus on the methods introduced in [19], because
of three reasons: (i) the methods described in [19] cover the basic ideas for extracting
mathematical laws from data, (ii) a minimal amount of prior knowledge on the
expected form of the formulas is required, and (iii) the work in [19] provides a basis
to understand more recent papers in this field. For readers interested in using the

6.2 Discovering Physical Laws 49

method that achieves the best performance in discovering physical laws from a given
data set, please refer to the more recent references above.

All the work on extracting physical laws mentioned above assumes prior knowl-
edge in the form of knowledge of the relevant variables describing the physical
system. In Part III of this book we explain how to train a neural network to learn the
relevant parameters and the differential equation describing the time evolution of the
physical system in parallel (see Sects. 8.5, 9.6 and 10.3).

6.2.1 Symbolic Regression

Symbolic regression [21] is a form of regression in which the goal is to find a mathe-
matical expression (the form as well as the parameters) that accurately describes the
data. The accuracy and simplicity of the solution are equally essential. In the history
of physics, the bias towards preferring “simple” mathematical models over com-
plex formulas (which can be seen as a special case of Occam’s razor, i.e., preferring
simple explanations over complex ones) often lead to models with great generaliza-
tion power. More concretely, given data samples (x, y) with x € R” for some n € N
and, without loss of generality, y € R, symbolic regression searches for a simple
mathematical expression f : R" — R such that f(x) ~ y for all samples (x, y). For
example, given data points (0, 0), (1, 1), (2, 4), we may expect to find formulas like
f(x) = x2. Of course, we could also fit the data with a third-degree polynomial,
but we consider higher-degree polynomials to be more “complex” than lower-degree
ones and therefore prefer expressions of low-degree polynomials. In praxis, the data
samples are usually noisy and there is a tradeoff between accuracy and simplicity of
the solutions.

The space of mathematical equations is infinitely large and it is a hard task to
efficiently search for the simplest expression describing the samples in this space.
Furthermore, to automatize the search of simple expressions, we have to define the
“complexity” of an expression. Mostly, genetic algorithms [127] are used as a search
method. Genetic programming is a machine learning technique that is often used
for searching an element in a discrete space. In principle, it can also be applied to
continuous spaces, however, often we have more efficient methods at hand in this
case. The idea of genetic algorithms is based on evolutionary theory that attempts to
solve a given task by developing potential solutions over generations, discarding the
least fit contestants and mutating the fittest ones. This algorithm can theoretically be
used to solve a wide range of problems, as long as a way to determine the fitness and to
genetically modify a potential solution exists. In the following, we describe how to use
genetic algorithms for symbolic regressions, hence where the genotype corresponds
to encodings of symbolic expressions. The aim of the following discussion is to
introduce the reader to the basic concepts, and not to provide all details required for
an efficient implementation. For readers interested in implementing or using symbolic
regression, we refer to [19] and to [128] for a discussion of symbolic regression with
a focus for applications in physics.

50 6 Model Creation

Let us consider a set of samples S = {(x’, y')};, and represent mathematical
expression with graphs where each node corresponds to a mathematical building
block and each leave to a system variable or parameter (examples are shown in
Fig.6.1). Crucially, the choice of the set from which the mathematical building blocks
are chosen, introduces a bias into the search over expressions. The genetic algorithm
starts by randomly choosing a set Py, called population, of mathematical expressions
using the system variables (x, . .., x,) corresponding to the coordinates of a sample
x* € R". The fitness F(f, S) of an expression f may then be defined by the negative
averaged mean square prediction error, i.e.,

1 . .
FU8) = 2 lreh=y13. ©6.1)

Hence, the fitness is a measure of how well an expression approximates the given
data samples. The complexity C(f) of the expression f can be measured, for exam-
ple, by the number of terms in the expression. To include the simplicity of the
expression into the fitness, one may define

1 .)
F(f8)==CH =g ¥ [feh =y s 6.2)
i€fl,..., |S1}

where the hyperparameter A regulates the tradeoff between finding accurate and
simple expressions.

Inspired by evolutionary theory, we calculate the fitness of each expression in the
population Py and further consider the expressions with the highest fitness. The fittest
individuals are then “slightly” modified to generate a new population P; (see Fig. 6.1
for an overview). Again motivated by evolutionary theory, the fittest expressions in
the population are modified by mutations and crossovers. A biological mutation is a
random change in the genes of an individual, and corresponds to replacing a small
part of the graph representing the expression with a random graph in the considered
case here (Fig.6.1). On the other hand, crossover operations are analogous to the
crossover that happens during sexual reproduction in biology. Here, they may be
represented as cutting out a subgraph of a representation of an expression (with high
fitness) and insert it into another expression (Fig.6.1). The process of choosing the
fittest individuals and generating a new population is then repeated m € N times until
a satisfying expression is found in the mth population P,,.

Based on evolutionary theory, genetic search algorithms are expected to be more
efficient than brute-force search provided that parts of fit candidates can be combined
and mutated in a reasonable way, i.e., in a way such that combining two parts of fit
individuals likely leads to another fit or maybe even fitter individual. Nontheless,
the runtime of such algorithms often prohibits searching for complex expressions in
many variables. Indeed, in [19], an exponential scaling in the complexity of the target

6.2 Discovering Physical Laws 51

Random initial Population after Population after Solution after
population 1 evolution step m-1 evolution steps m evolution steps
) Q@ ©
Crossover
o @ and mutation @ @ @ 9
5x; of the fittest @ @ a °
— X1 COS X, - ... » X1 + cosx; — e @
() X 5 ® o
& ® & O S
@ @ a @ X1+ 2cosx;,
® ®
2.4 cos x, 2 cosx; 1.3 x; + 2 cosx,

Fig. 6.1 Symbolic regression. The goal of symbolic regression is to find a simple mathematical
expression f fitting with a given set S = {(x’, y')}; of input-output pairs, i.e., we search for a
simple symbolic expression with f(x’) ~ y' for alli € 1,...,|S| with x’ = (x’ll, coxh eR
and y € R. For concreteness, here we consider n = 2 and a data set with yi ~ x’i + 2cos xé, ie.,
the target expression we would like to find is f(x) = x; + 2 cos x,. Often, genetic algorithms are
used to find the fittest expression, i.e., the simplest expression that fits the data well. The genetic
algorithm starts from a random initial set of several symbolic expressions represented as graphs in the
system variables x| and x; (the number of expressions depicted in the figure is not representative).
Then, the fittest expressions are selected and changed by mutations and crossover operations. The
upper graph in the initial population in the figure is combined with the lower graph by a cross over
operation, corresponding to combining genes during sexual reproduction in biology. The lower
graph is changed by a mutation of the leaf storing the parameter 2.4 by replacing it with a random
number. We repeat this procedure m € N times, until we end up with a simple expression fitting the
data

expression was observed. A promising approach to lower the runtime by creating
symbolic expressions in a step-wise fashion was proposed in [129] (see Remark 6.1).

Remark 6.1 (Stepwise symbolic regression) In [129], an approach is suggested to
find symbolic expressions by step-wise adding system variables. The approach has
similarities to the one in [19] and has not been fully automatized yet, but its idea
is pretty simple and explained on the basis of an example in the following. Let
us consider a sample set with pairs ((x, y, z), f(x, y, z)) with an expression f =
z sin(xe”). The goal is to find the symbolic expression from the sample set. Assuming
that we have numerical access to partial derivatives, we may numerically create
samples for the following quotient

_0f/ox _ zcos(xe?)e 1 63)
Tey = af/dy zcos(xe¥)xed x '

We may use (standard) symbolic regression to obtain an expression f, , for the
samples ((x,), g,y (x, y)) such that the quotient g];)?g;c approximates the numerical
values of g, , (x, y). A simple expression that symbolic regression may findis f , =
xe”, hence we recovered the relation between two of the system variables in the
target expression. The form of the target expression is then expected to be given as

f = g(xe”, z) for some function g : R — R.

52 6 Model Creation

In a second step, we may consider the relation between x and z by investigating
(for a fixed y with e = c € R)

_ af/ox oz cos(cx)
T af/az sin(ex)

qx.z (6.4)

Again, we calculate the partial derivatives numerically to create samples of the quo-
tient and apply symbolic regression to find an expression f, ; = z sin(cx). Then, the
target function is expected to be of the form f = g’(zsin(c(y)x), y) for some g’ :
R? — Rand ¢ : R — R. From the requirement f = g(xe”, z), we see that setting
g(a, z) = zsin(a) provides the same expression as given by f = g'(z sin(c(y)x), y)
setting g'(a, y) = a and c(y) = ¢”. Hence, we discovered the target expression
f = z sin(xe”) by applying twice symbolic regression to find simpler expressions in
only two system variables, which can be done more efficiently than directly search-
ing for the full expression. However, combining the expression may not always be
easy and has not been automatized so far. It would be interesting to consider this for
future work.

6.2.2 Extracting Physical Laws from Data

In this section, we describe the ideas used in [19] to discover physical laws from
time-series data. The approach in [19] was successfully applied to find the equation
of motion of various physical systems including the chaotic double-pendula without
using any prior knowledge about physics, apart from the knowledge of the system
variables (discovering the system variables with deep neural networks is discussed
in Part III of this book). The conceptual basis of the approach in [19] is that nearly all
physical laws in nature are based on mathematical symmetries and invariants [130],
implying that the search for many natural laws is inextricably linked to the search
for conserved quantities and invariant equations [131, 132]. The main difficulty in
searching for conserved quantities using symbolic regression is to avoid finding
trivial invariants, such as cos?(x) + sinz(x) for a system variable x € R, which is
constantly equal to one but does not contain any physical insights. In the following,
we explain the approach taken in [19] to avoid such trivial invariants on the basis of
an example.

Letus consider a pendulum, i.e. a non-linear oscillator whose position is described
by an angle 6. The sample set S = {(t', 6(t'), w(t"))}; consists of triples contain-
ing the time ¢/, as well as the corresponding position #(¢') and angular velocity
(t"). Note that we have no values provided for the conserved quantities we are
searching for, hence, they must be learned in an unsupervised way. The secret to
computationally detecting nontrivial conservation laws is that the candidate equa-
tions should predict relations between the dynamics of the system’s subcomponents.
More specifically, the conservation equation should be able to predict relationships
between derivatives of groups of variables over time. Such relations can be cap-

6.2 Discovering Physical Laws 53

tured by the quotient of partial derivatives (in a similar spirit as we discussed in
Remark 6.1). In other words, the expression f (8, w) for a conserved quantity is
considered to be non-trivial if it satisfies

90/8r 36 3f/dw

= =) (6.5)
dw/dt dw 3f/06
We can numerically estimating the left hand side of (6.5) as
90/9t A6
o2, (©.6)
dw/dt Aw

where A6 and Aw denote the changes of the parameters 6 and @ within a small time
interval Atz. The fitness of an expression f can then be estimated by the mean-log-
error [19]

1

151 (1+ ' ABG) df/dw

1
F(18==15 D log Aoy 9f/00

) , 6.7)

where A@(t') and Aw(t?) estimate the time derivative of the variables 6 and at
time ' (using the set S) and where the partial derivative is calculated symbolically
using the analytical expression for the candidate function f.

We can then use symbolic regression (as described in Sect.6.2.1) to search for
candidate functions f with the highest fitness (see Fig. 6.2 for an overview).! In [19],
it was demonstrated, that this method recovers the invariant expression f (0, w) =
c10? + ¢ cos(0) for two parameters cy, ¢ > 0 depending on the mass m and the
length [of the pendulum.

The invariant expression corresponds to the Lagrangian of the pendulum, however
we have left to find the dependence of the parameters c¢; and c; on the mass and
length of the pendulum. Since the invariant f is scale invariant, we may divide it by
¢; leading to f (0, w) = c1/cow® + cos(8) and search for a symbolic expression of
c1/cy inthe system variables m and /. The expression ¢ /¢, = k(m, [) can forexample
be found as follows: One creates time-series data for pendulums with different masses
m; and of different length /;. For each pendulum j, we determine the value of k;
such that the expression kw? + cos(8) optimally fits the time-series data, in the sense
that it stays approximately constant. Then, we can again run symbolic regression
with the system variables m and ! and the sample set {([m, [;], k;)};, i.e., we are

i=1

! For simplicity, we do not go into the technical details here of how to manage the tradeoff between
high fitness and low model complexity. One way to solve this problem is presented in [19]. An
alternative method, presented in [133], uses a corpus of closed-form mathematical models from
Wikipedia to obtain the posterior probability of each expression from basic probabilistic arguments
and explicit approximations. The posterior probability leads to a prior over expressions that accounts
for model complexity.

54 6 Model Creation

Evaluate fitness Mutate and crossover
v 1l v
Experimental data Fitness Candidates Candidates
& —4sin 6(t) G e
o) w(t) 3 (0=) OWBO:! () ()
/ 6 ! - ICompare @ e e @ @ 0°° @
2 @ © & @
(m) | A6(t:) (6, ©)=1.3 w? + 4 cos § B @
Aw(t;) Q
| 4

Select fittest candidates

Fig. 6.2 Extracting invariant expressions from time-series data [19]. We consider experimental data
collected from a pendulum whose position at a time ¢ is described by an angle 6 (¢) and we denote the
angular velocity by (¢) := 6(¢). Symbolic regression is used to extract time-invariant expressions,
i.e., conserved quantities, in 0 and w from adatasetS = HGRCIGARCIG)) consisting of time series
of the angle and velocity of the pendulum. Starting from randomly generated symbolic expressions
(represented as graphs), we evaluate their fitness according to (6.7). The chosen expression (6.7)
for the fitness is a measure of how well a candidate expression is able to predict relations between
the dynamics of the system’s subcomponents. Hence, a high fitness points towards an invariant
expression that contains non-trivial physical information. Then, the fittest candidate expressions
are chosen, and modified by mutations and crossover operations with the aim of creating even fitter
individuals. This process is repeated until an invariant expression with fitness approximately equal
to zero is found, which corresponds to an expression that can approximately recover the relation
between the dynamics of the angle 6(¢) and the velocity w(¢). In the considered example, the
found expression is the Lagrangian of the pendulum given by f (6, w) = c| ®? + ¢; cos(6) for two
parameters c1, ¢ > 0 depending on the mass m and the length / of the pendulum

searching symbolic expressions k(m, [) with k(m;, ;) ~ k; for all j. Finally, we
find the form of the Lagrangian to be independent of the mass given by L(0, w) =
1/(2g) w* + cos(9) with g = 9.81m/s* being the gravitational acceleration on the
surface of Earth.

The equation of motion is then recovered by the Euler-Lagrange equation

d(aL) AL _ 150 Gno—o0 (6.8)
—=)-==- sinf =0, .
dr \dw d g

and hence § = —g/1 sin(0). Alternatively, we could search for invariant expressions

in the system variables 6, w and «, where @ := @ denotes the acceleration of the
pendulum. Doing so, we would directly recover the equation of motion [19]. This
demonstrates on one hand the dependence of the approach on the chosen system
variables, and on the other hand also that we discover useful invariants in settings
using different system variables.

The runtime of the genetic search algorithm for finding invariant expressions takes
from some minutes up to 30h for the double pendulum parallelizing the search by

2 Here we use the knowledge that the pendulum is fully described by its mass and length. Recovering
these parameters automatically is discussed in Part III of this book.

6.2 Discovering Physical Laws 55

using 32 cores [19]. On the other hand, finding the expressions for the parameters
usually takes significantly less time. We conclude that when considering systems
with only a few known system variables, the described approach provides a powerful
method to find symbolic expressions for invariant quantities. The symbolic nature
of the result can help a physicist to gain new conceptual insights into the system
under consideration. On the other hand, the prior assumption that simple analytic
expressions exist may prohibit us from recovering invariants that cannot be described
as simple analytic formulas in the chosen system variables. For systems containing of
many (probably unknown) system variables one way consider more recent methods
in this field (see the introduction of Sect. 6.2 for relevant references) together with
the methods introduced in Part III of this book.

Chapter 7 ®)
Model Testing e

Testing physical models is an essential part of a physicist’s discovery process (dis-
cussed in Sect. 1.2). Falsifying a model in a certain physical domain (such as in a high
energy range) helps to understand the limits of a model and guides future research
towards improved models with a broader application range. Testing new models is
of particular interest in high-energy physics. Although the Standard Model (SM) of
particle physics very successfully describes a large number of elementary particle
processes with high accuracy, unexplained phenomena such as the neutrino masses
or the appearance of dark matter in the universe point to the need to extend or adapt
the SM. Searching for new phenomena in high-energy physics often relies on testing
suggestions of new models by running experiments (e.g. with the Large Hadron Col-
lider) and then comparing the collected data with predictions of a reference model
(e.g. the SM of particle physics). Often, the considered models make probabilistic
predictions, which makes testing particularly challenging. In several papers, a refer-
ence model was tested against another hypothetical model by constructing hypothesis
tests using standard techniques (see [134] for a review for model testing in particle
physics). Such an approach requires to come up with an alternative model and has
the disadvantage that a statistical test designed for a particular alternative hypothesis
is typically insensitive to data deviations of other kinds from the reference model.
How can we discover the limitations of a model from test data without having
an alternative model at hand? The basic idea is to test the reference model against a
model constructed by a machine based on the (experimental) test data. If the class of
models is not restricted to a specific class of physical models, we call this a model-
independent strategy (in a physical sense). If the machine constructs a model that
deviates significantly from the reference model, one can conclude that the refer-
ence model does not fit the test data well. Furthermore, we can analyze the regions
where the two models diverge the most, which can lead to conceptual insights into
what problems the reference model has. Such model-independent searches for new
physics are less commonly considered in the literature [135-139, 139-142] than
model-dependent searches. The methods described in [141, 142] follow similar ideas

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 57
R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_7&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_7

58 7 Model Testing

Test
b
@ oS
Reference Approximate PDF Observed test statistic
Explore nature
o0 d — parametric = Tgobs of discrepancy
'....." Reject null)
hypothesis ? HIEVW
Z-score
Permutation Test - —
Test Distribution for test statistic o o>
(1] Y Non-parametric assuming null hypothesis
: N IR O
e bk ° 0llo
Reference —
° e
Q0 o o
0°%e % 0000008

Fig. 7.1 Overview of checking model compatibility [141, 142]. The figure shows how to test the
compatibility of a set 7 of test samples with a set of reference samples R in a model-independent
way. The samples depicted in the figure live in a d = 2 dimensional feature space. The null hypoth-
esis is that both data sets 7 and R are generated by the same model, i.e., the same probability
density function (PDF). First, the test and the reference samples are provided as an input to a
machine learning system whose goal is to estimate the PDFs underlying the test and the reference
set and to provide the observed test statistic TSP as an output (scenario marked in blue in the
figure). The PDFs can be estimated with a parametrized model (such as neural networks [141])
or a non-parametrized method (such as the k-nearest neighbor estimation [142]). Here we use the
test statistic given in (7.5), which approximates the KL-divergence between the true underlying
test and reference PDFE. To interpret the observed value TSP, we compare it with the probability
distribution of the test statistic assuming that the null hypothesis is true. The distribution is obtained
by the permutation test, i.e., by shuffling samples between the test and reference set and evaluating
the test statistic for the obtained test and reference sets (scenario marked in green). Then, we can
estimate the p-value, i.e., the probability that we observe TSP or more extreme values of the test
statistic assuming the null hypothesis. If the p value is lower than the desired significance level
a € [0, 1] of the test, the null hypothesis is rejected. Finally, we use the Z-score given in (7.16) to
locate regions of high incompatibility in the feature space

for model-independent testing of a reference model. These ideas are described in the
following (and summarized by Fig.7.1) and can in principle be applied to test any
physical model and to find regions where the collected data deviates significantly
from the reference model. However, applying such techniques is praxis is still chal-
lenging due to reasons discussed in Sect.7.5.

7.1 Statistical Setting

In this section, we describe the formal statistical setting for model-independent testing
(following the lines in [142]). The setting considers a basic scenario of comparing

7.1 Statistical Setting 59

two data sets with each other and can be applied to statistical problems beyond model
testing. We consider two data sets with d-dimensional real data points

={x;:x; eR? 1 <i<nr} withx; ~ P; and (7.1)
={xi/:xi/eRd,1§i§nR} with x; ~ Pg, (7.2)

where the observations x; € R? and x; € R? are sampledi.i.d. from a test and a refer-
ence probability density function (PDF) Pr and Pg, respectively. The d-dimensional
space in which the samples live is called the feature space. For the following con-
siderations, neither Py nor Pg have to be known analytically. In a typical practical
scenario, the reference set R is created by running a simulation on a computer based
on the reference model, while the test set 7 is obtained experimentally.

The goal is to determine wether the two data sets are (in)compatible, i.e., in a
language of hypothesis testing, we would like to find out up to which significance
level the null hypothesis {Hy : Pr = Pg} is rejected. A well-defined statistical test
scenario requires an alternative hypothesis, which we define as follows {H; : Pr =
Pr}, where the PDF Py depends on the test data set 7 and is chosen to approximate
the true PDF Py as accurately as possible. The choice of approximation method leads
to different alternative hypotheses, whose choice is crucial for the sensitivity of the
test. The goal considered here is to find approximation methods that lead to tests
that are sensitive to a broad range of data deviations from the reference model. This
is a subtle problem since every unjustified assumption on the class of PDFs used to
approximate Pr may cause insensitivity to the data deviations occurring in the test
sample.

As ameasure of compatibility, we may consider the ratio A of probability densities
to observe the test data 7 under the PDF Pr (numerator) and under the PDF Pg
(denominator) [142]

-1 Pr () (7.3)

xeT PR(-xt

A value of A > 1 means that the data in the test sample 7 is much more likely to
be sampled from the PDF P than from Pg. Since the PDFs are not known, we have
to approximate them by Pr ~ P and Pg ~ Py (see Sect.7.2 for approximation
strategies) to find an estimate on A as

A= R (1.4)

As a test statistic TS(7', R), we may use [142]

60 7 Model Testing

TR (s Pr(x;
TS(T,R) = logh = — 3 log Prx) (1.5)
nr i=1 PR(X,)

The test statistic is used as a distance measure between the two PDFs 137 and 1373
(Remark 7.1). A value of TS close to zero means that the two PDFs are essentially
the same and hence, we may not reject the null hypothesis. On the other hand, a
large value of TS suggests that the PDF Pr underlying the test set is significantly
different from the PDF Py underlying the reference set, and hence that we should
reject the null hypothesis. How to determine the threshold value of TS above which
we reject the null hypothesis for a desired test significance « € [0, 1] is discussed
in Sect. 7.3. First, we discuss how we can approximate the PDF with methods from
machine learning in Sect.7.2.

Remark 7.1 (Test statistic as an approximation of the Kullback-Leibler diver-
gence [142]) The Kullback-Leibler (KL) divergence (see also Definition 8.4) of
the PDFs Py and Pp is defined as

P
Dy1 (Pr|P) = / Pr(x)log (%) dx, (7.6)

where we integrate over the full feature space. The KL divergence is a fundamental
measure in information theory that can be seen as a distance measure between two
PDFs. Indeed, it is non negative and it equals zero if and only if Pr = Py (however,
it is not a metric, since it is not symmetric). Replacing the integral with an empirical
average over the samples in the test set, and Py and Pg with the approximations Pr
and I3R, respectively, we see that the expression of the test statistic given in (7.5)
approximates Dgr. (Pr|| Pg).

7.2 Approximation of Probability Density Functions

In this section, we discuss how to obtain an estimate f’R (or ﬁT) for the PDF P
(or Pr) underlying a sample set R (or 7). More specifically, since we are ultimately
interested in calculating the test statistic given in (7.5), we only need to estimate the
quotient of the PDFs Pr and Py at any point in the test set (a comprehensive review
on density ratio estimators can be found in [143]). One can distinguish two types of
approaches [141, 142]:

1. Parametric modelling: We consider a parametrized class of PDFs Co =
{f’g}@E@ from which 1373 is chosen from.

2. Non-parametric modelling: We do not restrict the class of PDFs and construct
Pr directly from R.

The following sections present the general ideas behind both approaches on the
basis of a specific machine learning strategy for leaning PDFs. Which method should

7.2 Approximation of Probability Density Functions 61

be chosen to achieve the highest sensitive to new physics signals depends on the
specific setting including the reference model and what kind of new signals are
expected. For most methods, we have no exact understanding about the class of
signals that can be detected with it with high significance. Hence, the choice of the
model also depends on some experience of the user with various methods. The goal
of the following sections is not to discuss many examples to gain such experience,
but rather to introduce the reader to the general idea of how to approximate PDFs to
search for unknown physical signals in data.

7.2.1 Parametric Modelling

In the parametric approach, first one has to choose the class of PDFs Cg. Instead of
choosing a parametrized class of physical models, here we are interested in choos-
ing an expressiv class that can approximate a wide range of PDFs. One option is to
parametrize the class of PDFs by neural network [141], which are low-biased and
universal function approximators (see Sect. 3.4). Furthermore, neural networks rep-
resent smooth functions, which is usually a reasonable bias for PDFs coming from
physical models. Indeed, we would not expect a reasonable physical model to predict
a discontinuous PDF. Last but not least, there is evidence that neural networks can
break the curse of dimensionality. The number of events to approximate a PDF with a
histogram grows exponentially with the dimension d of the feature space. While there
is still no proof, the work in [144—-146] suggests that neural network require fewer
events to approximate PDFs on high-dimensional feature spaces. Since in practical
applications, the dimension d is usually quite large, this is an extremely desirable
property.

Having chosen a class of PDFs Cgy = {ﬁ@}@g@ (were the parameter 6 contains all
the weights and biases of the neural network), we can use the maximum likelihood
method to approximate the PDFs Py and Py, i.e.,

f’T = 1397 with 67 = arg max 1_[}39 (x;) and (7.7)
0e® el

Pr = Py, with 6 = arg max]_[Py(x)). (7.8)
€0 x/eR

i

From these approximations, we can calculate the test statistic TS(7, R) given
in (7.5). Instead of using two neural networks, and solving both optimization prob-
lems given in (7.7) and (7.8), one can also directly represent the (logarithm of the)
quotient of the PDFs with a neural network and minimize the test statistic. This
method is described in full detail in [141] and is demonstrated to have high sensitiv-
ity to various data deviations.

62 7 Model Testing

7.2.2 Non-parametric Modelling

In the non-parametric approach, the PDFs are approximated without restricting
to a parametrized model class. Here, we discuss the nearest neighbors (NN)
approach [147-153], described in the context of model-independent testing in [142].
The basic idea is to estimate a PDF at a point x in the feature space by calculating
the volume of the sphere that contains the k£ € N nearest neighbors of x. The density
estimate is then proportional to the number of points k divided by the volume of the
sphere. Let us formalize this on the basis of estimating the probability density Pr
on the test set 7. Consider a sample x; € 7 and calculate the euclidean distance to
all other samples in 7 \ {x;}. Then, the k-nearest neighbors (i.e., the k samples in
T \ {x;} with the smallest distances to x;) are determined, and the radius 7; 7 is set
equal to the radius of the kth nearest neighbor. Hence, the k nearest neighbors of x;
are contained in a sphere of volume a)dri‘fT with centre at x;, where w,; denotes the
volume of the d-dimensional unit sphere, i.e.,

: (7.9)

where I" denotes the Gamma function, which is given by I'(n) = (n — 1)! for positive
integers n. Hence, normalizing with the total number of samples (ny — 1) in7 \ {x;},
the NN-estimation of the PDF Py is given by

k 1

(nT_])wdri[{T’

Pr(x;) = (7.10)

for any x; € 7. To estimate the reference PDF Pg on samples x; € 7 in the test set,
we calculate the distances from x; to the k nearest neighbors in R. The distance to
the kth nearest neighbors is denoted by r; ¢, and the NN-estimation of the reference
PDF Py, is then given by

N k 1
Pr(xi) = ———, (7.11)
ng wy ri,R

for any x; € 7. The test statistic TS(7", R) given in (7.5) then simply becomes

nr

d i
TS(T,R) = log —+— + =3 log 2. (7.12)
nr — 1 nr i1

7.3 Statistical Hypothesis Testing 63

It can be shown that the expression in (7.12) is a consistent and asymptotically
unbiased estimator of the KL-divergence [154-156], i.e., the test statistic (7.12)
converges almost surely to the KL-divergence Dy (Pr, Pg) between the true PDFs
Pr and Py in the large sample limit ng, ny — oo.

7.3 Statistical Hypothesis Testing

The ultimative goal of the statistical setting described in Sect. 7.1 is to decide wether
the null hypothesis {H, : Pr = Pg} can be rejected with a significance level « €
[0, 1]. For example, rejecting the null hypothesis with significance « = 0.05 means
that the probability to observe the test data assuming the null hypothesis is below 5%.
To interpret the observed value of the test statistic TS(7', R) given in (7.5), we have
to derive a probability distribution Prs, g, over the values of TS under the assumption
that the null hypothesis is true, i.e., assuming that P = Pg. Then, we can compute
the two-sided p value of the null hypothesis, i.e., the probability that the value of the
test statistic is at least as far away from the expected value under the null hypothesis
as the observed test statistic TS,

As suggested in [142], we us a resampling method known as the permutation
test [157, 158] to compute the distribution Prgg,. The basic idea is that we resample
various test and reference sets under the null hypothesis that both sets are generated by
the same PDF (see also Fig. 7.1). Then, we evaluate the test statistic for the resampled
sets and finally, we derive a distribution over the test statistic from the various data
points that we obtained.

More formally, first we merge the test and reference set into a pool of samples
U =T UTR. Then we randomly choose ny samples from U/ and assign them to a
set 7.! The remaining elements are assigned to a resampled reference set R. Then,
the test statistic for the set 7" and R is calculated. Repeating this procedure 7perm
times, leads to a set {TS;, ...,TSnperm} of npem data points for the test statistic.
Dependent on the size of 7npem, Wwe may choose an interval size ATS and discretize
the distribution Prsg, with a histogram by assigning the data points TS; to the bins
[mATS, (m + 1) ATS] for m € Z. To decide wether the null hypothesis should be
rejected with significance level o, we calculate the p-value defined by

n—38 00

p= f Prsjg, (1)dt + / Prsig, (1)dt , (7.13)

—00 a+6

1 Alternatively, one may think of the elements in 2/ to have a fixed order and then applying a random
permutation on the list of elements (which is the reason for the name “permutation test”). Assigning
the first n elements to 7 leads to the same result as randomly sampling these elements from the
setU.

64 7 Model Testing

where /1 denotes the estimated mean value of the test statistic, § = |[TS°® — /1| and
where the integration is actually implemented as a summation over the histogram that
approximates the distribution Prs,g,. Finally, the null hypothesis is rejected if the p
value is smaller than the significance level «, since in such a case, the probability
that we observe a value of the test statistic that deviates at least by 6 of the expected
value [is smaller than o assuming the null hypothesis.

Summarizing, the statistical procedure is as follows:

1. Approximate the distributions P and Pg with 137 and 1373 (atdatapointsx; € 7).

2. Calculate the observed test statistic TS (7, R) using (7.5).

3. Estimate the distribution Prg) g, over the test statistic under the assumption that
the null hypothesis is true using the permutation test.

4. Compute the two-sided p value of the null hypothesis.

5. If the two-sided p value is smaller than «, we reject the null hypothesis.

7.4 Identifying the Discrepant Regions

Let us assume that the statistical test described in Sect.7.3 leads to a rejection of
the null hypothesis. This means that the observed test statistic TS°® obtains a value
that is far away from the expected value under the null hypothesis. To get some
conceptual insight into why the reference model can not accurately explain the test
data, we investigate the region in the feature space that contributes significantly to
the deviation of the test statistic from the expected value. To find such regions, we
follow the approaches in [141, 142] and assign a density field U (x;) to each sample
x; € T, given by

U(x;) =log IjT(xi) .
= (X;)

(7.14)

The observed test statistic (7.5) can then be considered as the empirical average
over the density field representing the expectation value

TS = E[U]. (7.13)

Furthermore, we normalize the density field to obtain a Z-score

U(x;) —E7[U]

7.5 Application for Model Testing 65

where V7 [U] denotes the variance of the density field U. To simplify the following
discussion, let us assume that TS°® > /i, where f& is the expected value for the test
distribution under the null hypothesis. The Z-score can be used to identify samples
in 7 with a significantly larger density filed than the average E,[U]. These samples
contribute particularly strong to the high value of TS®®, and hence to the deviation of
the test data in relation to the reference model. We may therefore characterize samples
with a Z-score higher than some threshold, e.g., samples x; € 7 with Z(x;) > 3, as
the samples that contribute most to the deviation of the test PDF from the reference
PDF (see also Fig.7.1). To get a better understanding in which regions of the feature
space the reference model is not compatible with the test data, we may further use
a clustering algorithm to identify regions in the feature space with a high density of
samples x; with Z(x;) > 3 [142]. Investigating the high-discrepancy regions can lead
to a better understanding of the causes of the deviation from the reference model.

7.5 Application for Model Testing

The statistical setting described in the previous sections is very general and can
be used to check the compatibility of any two data sets with each other. Hence, the
described testing strategy has a wide range of scientific and engineering applications.
Here, we are interested in its application for model testing and the discovery of
discrepant regions.

Both, the parametric method using neural networks and the non-parametric
method based on k nearest neighbor estimations, have been applied to some sim-
ulated toy models [141, 142]. In particular, the non-parametric approach has been
applied to detect a (simulated) black matter signal embedded in reference data gen-
erated according to the SM of particle physics [142]. The data set R contains the
background events according to the SM, and the data set 7 contains also background
events but with added black matter signals. It is then demonstrated in [142] that the
test statistic based on nearest neighbor estimations is enough sensitive to detect the
black matter signals. Furthermore, the same scenario together with added noise to
the background simulation is considered in [142]. As expected, such noise lowers the
sensitivity to the black matter signals and hence, dependent on the magnitude of the
noise, the test may not be sensitive enough to reject the null hypothesis (which is in
this case that the SM fully describes the test set). Nonetheless, the method to identify
discrepant regions may still be applied and point towards regions in the feature space
where the test data deviates the most from the reference data. These are likely the
regions where the black matter signal occurs.

We conclude that the work in [141, 142] provides a proof-of-concept for model-
independent tests. It demonstrates that the tests have a good sensitivity to various
hypothetical new physics signals. Even if the test and the reference model do not
deviate in large regions of the feature space (which is common for applications in
particle physics), deviations in a small region of the feature space may still be detected
by the model-independent tests. We should however keep in mind that real-world data

66 7 Model Testing

is unlikely as clean as the simulated data and that the suggested methods may require
some further improvements to be successfully applied to real data. Furthermore,
parametrized test with neural networks tend to overfit for high-dimensional feature
spaces with sparse data points, and regularization methods might be needed to avoid
this problem [141].

Part 111
Representation Learning for Physical
Discoveries

In this part, we focus on an essential sub-process of model creation, namely extracting
compact representations describing a physical system from experimental data using
minimal prior knowledge about physics or maths. To achieve this, we map a simplified
version of the physicist’s reasoning process, which we refer to as SciNet, to an artifi-
cial neural network structure and train the network to learn “natural” representations
for the given data.

In Chap. 8, we provide a mathematical formulation of the simplified physical
reasoning process and introduce several mathematical criteria that a “natural” repre-
sentation of physical data should satisfy (Sect. 8.4). These criteria are not tailored
to a specific physical system, but apply to any physical system in principle. Further-
more, we discuss how building some mathematical or physical prior knowledge into
SciNet’s structure can help to interpret the found representation in a mathematical
framework (Sect. 8.5) or as a classification of physical properties (Sect. 8.6).

In Chap. 9, we describe the artificial neural network structures that allow to find
representations of data with the desired mathematical properties. The structures used
for this purpose resemble the simplified model we are using to describe a physicist’s
reasoning process, and we refer to all of these network structures as SciNet for
simplicity.

We then describe applications of SciNet to different physical toy examples from
classical as well as quantum mechanics in Chap. 10. The results show that SciNet
finds the same parameters in its representation that are used by physics textbooks in
the considered examples (Sects. 10.2 and 10.6). Furthermore, it is demonstrated that
conceptual information can be extracted from the found representations. In Sect. 10.4,
itis demonstrated for a collision experiment of two bodies how conservation laws are
related to the parameters found in SciNet’s representation. In Sect. 10.5.1, it is shown
how to use SciNet to decide if a set of measurements is sufficient to fully specify
the state of a quantum system, and finally, in Sect. 10.7, SciNet points towards a
heliocentric solar system by switching from angular data of planet orbits collected
on Earth to a representation of heliocentric angles. In addition, Sect. 10.3 shows that
SciNet can linearize the dynamics of the nonlinear pendulum using mathematical
prior knowledge about Koopman operator theory. Finally, in Sect. 10.8, SciNet is

https://doi.org/10.1007/978-3-031-27019-2_8
https://doi.org/10.1007/978-3-031-27019-2_8
https://doi.org/10.1007/978-3-031-27019-2_8
https://doi.org/10.1007/978-3-031-27019-2_8
https://doi.org/10.1007/978-3-031-27019-2_9
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10
https://doi.org/10.1007/978-3-031-27019-2_10

68 Part ITI: Representation Learning for Physical Discoveries

applied to a physical system consisting of several objects to classify the interaction
type between particles.

We conclude with some open questions and directions for future work on
representation learning for physics in Chap. 11.

https://doi.org/10.1007/978-3-031-27019-2_11

Chapter 8 ®
Theory: Formalizing the Process i
of Human Model Building

In this chapter, the process of physical model creation is formalised. Physical models
rely on representations of physical systems. Crucially, we would like to find “nat-
ural” representations, since this simplifies the process of building physical models
based on the parameters of the representation. We start with introducing a very broad
formalization of what we consider to be an experimental setting and observations.
Then, we define minimal representations (with respect to a set of questions), which
incorporate the natural requirement that a representation should be as compressed as
possible but still contain the information about the considered physical system that is
relevant to answer all questions that might be asked. Further, we introduce two criteria
for separating the parameters in a minimal representation in a natural way, leading
to the definition of statistically independent and operationally meaningful repre-
sentations. The criteria for operationally meaningful representations derive from an
operational requirement on minimizing the communication between different physi-
cists to achieve their tasks. In addition, in physics we often prefer representations
that evolve in time according to a simple update rule. For example, a linear time
evolution of the position x of a particle moving with constant velocity v is described
by a simple update rule x > x + vAr for a time difference At (where e.g. storing
x2 in each time step would require a more complex update rule). We formalize this
requirement on a representation and also consider a special form of update rules
motivated by Koopman operator theory in more detail. Finally, we describe how to
find representations of systems consisting of several interacting objects.

8.1 Motivation

As discussed in the introduction, we group the research process of a physicist into
five processes: (1) Choosing a physical subsystem; (2) Creating experimental setups
and (3) performing measurements; (4) Creating models and (5) testing them. In this
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 69

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_8&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_8

70 8 Theory: Formalizing the Process of Human Model Building

work, we focus on one part of the creation of models from experimental data, namely,
finding “natural” representations of physical systems. This step is crucial to make
progress towards an interpretable artificial intelligence agent, because compact and
“natural” representations of data build the basis to find the mathematical equations
that describe the behavior of the system, and hence to make progress in understanding
the laws of our physical environment.

8.2 Physicist’s Reasoning Process

Modeling the complete reasoning process of a physicist is an extremely complex
task and way beyond the scope of this book. However, one may split the process of
generating models based on experimental data into three parts:

1. Finding the relevant physical parameters necessary to predict the behavior of a
system,

2. finding the equations describing the system’s behavior (using the relevant param-
eters) and

3. generalizing the equations and unify them with already known equations.

Here we focus on finding the relevant physical parameters. As discussed in Sect. 1, we
again consider the simplified model SciNet for the physical reasoning process given
in Fig. 1.1. Recall that an encoder E : O — R maps observations to representations
R, followed by a decoder D : R x Q@ — A that maps the representation together
with a question to an answer. Crucially, we have left to formalize what we exactly
understand to be a “natural” representation. We discuss this in the following sections.

8.3 Experimental Setting and Data Creation

Before we formalize what we understand under a “natural” representation of a phys-
ical system, let us explain what we consider to be an “experimental setting” and how
it can be used to generate experimental data (following the definition given in [23]).
We take a very general view, and represent a state of Nature by a set of hidden param-
eters! H C R” for some n € N. Note that any kind of information can be encoded
into a set of real numbers. Then, we define:

e An experiment is a mapping S from a space of input parameters X (think of the
setting described by the positions of the dials and buttons in an experiment) to a
subset of the hidden parameters H' C H. An experimental setting is an instance of
an experiment with specified parameters, i.e., the map S together with an x € X.

! The expression “hidden parameters” is not to be confused with the “hidden variables” appearing
in Bell’s theorem [159].

8.3 Experimental Setting and Data Creation 71

e An observation is a stochastic mapping G : ‘H +— O, where O C R” is the set of
possible measurement outputs.

We assume that the value of the hidden parameters that do not lie in 7’ are constant
for different experimental settings. Hence, for different experimental settings, we can
consider an observation to be an stochastic mapping (which we again denote by G)
from H' to O. Further, since the hidden parameters H are not directly observable, it is
more operational to consider the concatenated stochasticmapV = Go §: X — 0.
Nonetheless, for illustrative reasons, we will sometimes use the concept of the hidden
parameters in the following sections.

Example Let us again consider a particle moving with constant speed along the
x-axis. In an experiment, a physicist has access to three dials that regulate the mass
m, the the kinetic energy E and the initial position x(of the particle. Crucially, the
physicist does not have to know which parameters are regulated by the dials. The
hidden parameters would contain the information about all properties of the particle,
like the mass, color, shape, and so on. An observer then measures the position x (¢;)
of the particle at N different times 7;. Hence, the map V for the considered example
would be V(m, E, xo) = ((tg, x(t9)), ..., (ty, x(ty))) with x(t;) = xo + vt; where
v = 4/2E/m. One could then generate different data samples by choosing different
experimental settings, i.e., different settings of the dials regulating m, E and x,, and
observe time series of the position of the particle for each setting.

Since we allow for a stochastic map V, this model also works for theories with
probabilistic observations such as quantum mechanics. There, the hidden parameters
contain the information of the wave function of a physical system, and the predictions
are sampled according to the distribution predicted by the Born rule (see Sect. 10.5
for a detailed discussion). In such cases, one may want to perform a measurement
several times for a fixed experimental setting x, since one observation may not provide
enough information about the underlying distribution Py (0 € O|x) that corresponds
to the stochastic map V. Hence, an observation corresponding to an experiment
with parameters x may be described by a parametrization of the distribution Py (0 €
O|x). For example, the distribution Py of a stochastic map V with two possible
outcomes O = {0, 1} and Py (0|x) = px), Py(l]x) =1 — p(x) for any function
p : X — [0, 1] can be described by the single parameter p(x). This parameter can
be estimated by choosing the experimental setting x and performing the measurement
n times. For large n, we then have p(x) ~ ng/n, where n is the number of times
the output 0 occurred. We refer to the value set of such parametrizations by O (and
denote it simply by the “set of observations”). In the case of a deterministic mapping
V, the distribution Py (0 € (5|x) ist fully described by its output o with Py (o|x) = 1.
Hence, in this case we can set O = 0.

72 8 Theory: Formalizing the Process of Human Model Building

8.4 Criteria for Operationally Meaningful Representations

Have you ever wondered why physicists work with variables like the mass of a particle
or the frequency of a pendulum? Sure, we have mathematical formulas using these
parameters to predict the systems behavior. But assuming no background in maths,
are there more fundamental reasons why we work with these quantities?

In this section we formalize different desirable criteria for “natural” representa-
tions of physical systems, based on the ideas introduced in [22, 23]. Later, in Sect. 10,
we will demonstrate with several toy examples that these criteria lead to representa-
tions commonly used in physical textbooks. Hence, we gain some more fundamental
understanding why physicists work with certain variables.

8.4.1 Minimal Representation

One requirement for a representation of experimental data is that it contains sufficient
information for answering all questions that are asked about the underlying physical
system. Naturally, one would like to have just the necessary amount of information
in the representation and remove redundandy. Apart from saving memory, removing
redundancy often also simplifies the interpretation of the representation. In the picture
described in Sect. 8.3, we would like to find the minimal amount of hidden parameters
that are required to correctly reply to the asked questions. In this section, we formalize
these criteria for the case of real valued data and parameters that are stored in the
representation.

We consider real-valued data (O, Q, a*), with a set of observations © C R”, a
set of questions @ C R* and as set of answers A C R/, for some r, s, t € N. Note
that the questions are encoded into a sequence of real parameters before being fed
to the neural network. Thereby, the actual representation of a single question is
irrelevant as long as it enables the network to distinguish questions that require
different answers. We recall that the function a* : O x Q@ — A maps an observation
0 € O and a question ¢ € Q to the correct answer a € A. Here, we assume that the
observations contain enough information to correctly reply to all questions g € Q.
If this would not be the case, the function a* would not exist, and hence there could
also not be a representation of the observations that contains sufficient information.?

2 If the observations would not contain enough information to reply to all questions, the prediction
accuracy of SciNet would be theoretically bounded. Hence, even for optimal encoder and decoder
mappings E and D, SciNet could not always reply correctly to all the questions. Therefore, observ-
ing low prediction accuracy after training SciNet, one can conclude that the observational data is
incomplete (see Sect. 10.5.1 for an example).

8.4 Criteria for Operationally Meaningful Representations 73

Definition 8.1 Sufficient representation (with smooth decoder) [22] A representa-
tion® R (defined by an encoder mapping E : O — R C RP) for the data described
by the triple (O, Q, a*) is called a sufficient representation if there exists a smooth
map D : R x Q +— A, such that D(E(0), q) = a*(o, q) for all observations 0 € O
and questions g € Q.

This definition asserts that the encoder map E encodes all information of the
observation o € O that is necessary to reply to all questions ¢ € Q.

Definition 8.2 Minimal representation [22] We call a sufficient representation R C
R? a minimal representation if there is no other sufficient representation R’ C R”’
with p’ < p.

This formalizes what we consider to be a “maximally compressed” representation,
i.e., a representation requiring the minimal number of real parameters, but that still
encodes all relevant information. Without the assumption that the decoder is smooth,
it would, in principle, always be sufficient to have a single latent variable, since
a real number can store an infinite amount of information. Hence, methods from
standard information theory, like the information bottleneck [38, 160, 161], are not
the right tool to give the number of variables a formal meaning. In Appendix A, we
use methods from differential geometry to show that the number of variables p in a
minimal representation corresponds to the number of degrees of freedom (hence, the
hidden parameters in the setting given in Sect. 8.3) in the observation data required
to answer all possible questions.

8.4.2 Separation of Physical Parameters

The notion of a minimal representation introduced in Sect. 8.4.1 does only consider
the number of parameters and the information contained in a representation, however,
itremains unclear by which criterion the different parameters should be separated. For
example, feeding the decoder time series (#;, X (#;))ie(1,.... vy Of particles moving with
constant velocity, a minimal representation would encode the velocity v and the start
position x(to be able to predict the future time evolution of the particle’s position.
A priori, we could store any two parameters a, b from which one can recover the
parameters v and x,. For example, we could store a = xy + v and b = xy — v in the
representation (considering x(and v as real numbers with no physical units assigned).
It is easy to see that such a representation would still be a minimal representation,
since it still contains the full information in two parameters: we recover xg as xo =
(a+b)/2and v asv = (a — b)/2. However, for a physicist, it would be much more
natural to store xy and v as separate parameters. Why do we consider xy and v as a
“good” choice of variables?

3 For simplicity, we abuse notation and use the symbol R to refer to the set of possible values for
the representation, as well as to the representation of observations O that is defined by an encoder
mapping £ : O — R.

74 8 Theory: Formalizing the Process of Human Model Building

Hidden
parameters

Representation

State of phys-

ical system
Independently ‘ .’ i N Observation
sampled —

— () —

=
o
=
=
h=l
15
=
a

Analyzer >f@

Answer
a

Observer < oL
r = 9
&
3
L Stochastic map G I Encoder £ E Decoder D
Challenger

Fig. 8.1 Setting for disentangling statistically independent parameters. We assume that there is a
small set of hidden parameters which are sampled independently and fully determine the state of a
physical system. Note that the number of parameters (depicted as filled circles) in the figure is not
representative. The map G from the hidden parameters to the measurement outputs of an observing
agent is allowed to be stochastic. The observing agent then gives the observation o further to an
analyzing agent (described by an encoding map E), whose task is to recover the relevant hidden
parameters r that are necessary to reply to the questions asked by a challenging agent. The predicting
agent that answers a question g based on the representation r is described by a decoder mapping
D. Finally, a testing agent compares the answer a of the predicting agent with the correct answer
obtained from performing measurements on the environment. Note that in practice, e.g. the analyzer,
predictor and challenger could be represented by a single physicist

In the following sections, we introduce different requirements for a “natural”
separation of the parameters in the representation. In the context of machine learning,
one usually refers to the task of separating variables as disentangling latent variables,
and to the requirements as priors. Later, in Sect. 10, we will then apply these criteria
to different examples and demonstrate that they lead to the separations commonly
used by physicists.

8.4.2.1 Statistical Independence

A natural requirement on the parameters in the representation is statistical indepen-
dence, which is also a common prior in representation learning.

Different explanatory factors of the data tend to change independently of each other in the
input distribution, (...) [27].

Although this criterium usually discovers quite “natural” features in various data
structures (see for example [22, 50]), it has the disadvantage that it depends on
the sampling method of the training data. Indeed, statistical independence over the
training data ensures that knowing one parameter in the representation does not tell
us anything about the others. But it remains unclear if this is only true under the
specific method that was used to sample the training data or if the found parameters
are more fundamentally “independent” features of Nature.

Here we notice that the process of an experimenter collecting data and the process
of analyzing the data are mutually dependent on each other. The setting considered

8.4 Criteria for Operationally Meaningful Representations 75

in this section is shown in Fig. 8.1, where one assumes that the hidden parameters
are sampled independently when creating the observation data. We will consider an
operational setting in conjunction with an alternative criterium for disentangling in
Sect.8.4.2.2. This alternative disentangles features based on an operational mean-
ingful criterium that is independent of the sampling strategy used to generate the
training data.

Let us now formalize the criterium of independent parameters. We consider real-
valued data, which we think of being sampled from an unknown probability dis-
tribution. In other words, we assign random variables to the observations O, the
questions Q, the latent representation R, and the answers A. We use the convention
that a random variable X = (X1, ..., X|x|) takes samples in X C RI*I, where |X|
denotes the dimension of the ambient space of X.

Definition 8.3 (Statistically independent representations [22]) A representation R
(defined by an encoder mapping E : O — R) for the data described by the triple
(0, Q, a*) is called a statistically independent representation if the random variables
{Ri1, Ry, ..., Rg|} are mutually independent.4

In praxis, we will never find perfectly independent parameters in the representa-
tion. Hence, to quantify the independence of the parameters in the representation,
we would like to use a correlation measure C(R;, R, ..., Rjg) with the following
properties:

1. C(Ri, Ry, ..., Rig) =0if and only if Ry, Ry, ..., Rg are statistically inde-

pendent,
2. C(Ry, Ry, ..., Rig)) = O for arbitrary distributions pg, g,..... > and
3. C(Ry, Ry, ..., Rjg)) is continuous in the distribution pgr, r,... Rz -

A measure satisfying all of these properties is the total correlation. To define it,
we first define the Kullback-Leibler divergence, which can be seen as a distance
measure between the distributions of random variables (however, it is not a metric
since it does not satisfy the triangular inequality).

Definition 8.4 (Kullback-Leibler divergence) For the distributions Py and Py of
two continuous random variables X and Y, where Py is absolute continuous with
respect to Py, the Kullback-Leibler divergence Dy, (Px|| Py) is defined as

[P
Dxw (Px|| Py) = f Px(x)10g< Pjgi)dx. (8.1)

—00

Note that we use the convention that 0log 0 = 0, which ensures continuity of the
Kullback-Leiler divergence because lim,_, o4+ x logx = 0.

4 The distribution for the random variables R; is induced by the distribution over the observations
and the encoder mapping E.

76 8 Theory: Formalizing the Process of Human Model Building

Definition 8.5 (7otal Correlation) For a given set of random variables {R;, R;, ...,
R|g|}, the total correlation C(Ry, Ro, ..., Rjg)) is defined as

,,,,,

C(R\, Rz, ..., Rig) = DxL (Pr,.Ro....k i I PRy Py - - - Prpyy) - (8.2)

Intuitively, the total correlation quantifies the dependency or redundancy among
a set of several random variables. It measures the “distance” from the joint distribu-
tion of the random variables to the independently distributed random variables with
marginal distributions.

The total correlation allows us to summarize the desired and practically applicable
properties on a statistically disentangled representation in the following definition.

Definition 8.6 (Minimally correlated representation) A representation R for the
data described by the triple (O, Q, a*) is called aminimally correlated representation
if and only if:

1. the representation R is minimal and
2. there is no other representation R’ with

C(R/, R;, ceey Rl/RI) < C(Rl, Rz, ey R‘R|).

Remark 8.1 (Relation to Principal Component Analysis) One of the most prominent
methods to extract uncorrelated features from given data is Principal Component
Analysis (PCA). The method performs a linear transformation on the data to extract
uncorrelated features (see Chap. 2 and Fig. 2.2). Hence, we could understand PCA as
an autoencoder whose encoder (and decoder) perform linear operations. For normal
distributed input data, PCA is optimal, in a sense that it recovers the underlying
statistically independent features. However, linearly uncorrelated features might still
be statistically dependent in general. In such cases, non-linear transformations are
required to find the statistically independent features. Since neural networks can
in principle approximate any continuous function arbitrarily well (for large enough
network sizes) [43, 44], implementing the encoder and decoder with neural networks
allows for more complex transformations than PCA.

8.4.2.2 Efficient Communicable

In this section, we present an operational method to disentangle the parameters of
a representation that is not biased by the sampling strategy of the data collection
process [23]. To illustrate the idea, let us consider the following physical setting:
There are two charged particles with masses m |, m, and charges g, g, respectively.
Agent B can perform measurements on the first charge, and agent B, on the second
charge. The task of agent B; is to predict the trajectory of the mass m, which
depends on m, g; and g, but not on the mass m, (and vice versa for agent B;).

8.4 Criteria for Operationally Meaningful Representations 77

Collection of agents

Induced structure Model reflecting
on Nature induced structure

Nature

Fig. 8.2 Induced structure on Nature trough communicating agents (Figure taken from Nautrup,
Metger and Iten et al., 2020 [23, 237]). Various agents interact with different aspects of Nature
through experiments. Different agents may observe or interact with different subsystems, but might
not have access to other parts of the environment. To solve certain tasks, agents may require infor-
mation that can only be accessed by other agents. Therefore, the agents have to communicate. To
this end, they encode their information into a representation that can be communicated efficiently
to other agents, i.e., they have to find an efficient “language” to share relevant information.This
induces structure on the description of Nature by the agents. When the agents build a model of
Nature, i.e., learn to parameterize their experimental settings, we want this model to reflect the
structure enforced by the requirement that agents compress and communicate parameters in the
most efficient way

The agents have to communicate with each other and share information. Instead of
sharing all the measurement data, we would like the agents to only share the relevant
information. To do so, the agents first create a representation of their data and then
share the relevant subset of their parameters that are stored in the representation. This
is motivated by human interaction by communicating in an “abstract” language. To
minimize the number of parameters the agent B, has to communicate to Bj, the
charge ¢, should be stored separately from m,. Indeed, if for example p; = g, + m;
and p, = g» — m, would be stored in two parameters (in some fixed units) instead,
the agent B, would have to communicate both parameters p; and p, to agent By,
such that agent B; has enough information to predict the trajectory of the first charge.
We conclude that motivating efficient communication in the context of given tasks
for different agents poses operationally meaningful structure on the separation of
physical parameters, as shown in Fig.8.2.

We stress that the separation of the parameters depends on the chosen task. If
agent B, would have to predict g, + m3, then it would be optimal for agent B, to
store the parameters p; = g, + m, and p, = g» — m,. However, from a physical
perspective, this task seems not be particularly useful. We define an “operationally
meaningful parameter” as one that is useful in various tasks of interest. That is, while
the parameters are biased by the tasks we would like to solve, they are not biased by
how the measurement data was collected.

Let us formalize this approach. We consider several agents that interact with
Nature (by performing experiments and collecting observations) and communicate
with each other. The process of how agents could analyze a physical system together

78 8 Theory: Formalizing the Process of Human Model Building

i’ Challenger

Hidden ' Analyzers 1 Predictors \
parameters Observations q —

X) Stateof phys- / i’ of i Representations _ ‘z‘ Answers
B ical system E|=p > %

A) " By o*

X

Experi-
menter

y

: %
4 % 03 »@-’rg @ D, a? %

Testers.

o2eBe g e
)

—

Observers = —J
7 L T Encoders Questions e o gers j
Map § Stochastic maps G;, G, and G;

% Challenger

Fig. 8.3 Setting for disentangling operational meaningful parameters. One (or several) experi-
menters interact with the environment and choose an experimental setting (e.g. by choosing values
for dials and buttons). A function S maps such a setting to a set of parameters describing the state of
a physical system (the number of parameters depicted is not representative). Three observers have
access to different parts of the physical system and based on the stochastic maps G, G and G3, the
observations o', 0% and o3 are sampled. Then, analyzers (given by the encoding maps E, E», and
E3) produce compressed representations !, 2 and > of observations o', 0% and 0, respectively.
The parameters in the representations are communicated to two predictors (described by the decod-
ing maps D; and Dy), whose task is to reply to the questions ¢! and ¢2, respectively. In general,
some parameters of the representation may be shared with several decoders. The separation of the
parameters in the representations is optimized in a way, such that a minimal amount of parameters
is required by each of the agents. This criteria for separating parameters is motivated by minimizing
the communication between different agents

is shown in Fig.8.3. A first agent, the experimenter, has chosen an experiment
described by themap S : X > H.> A number of m different observers G; : H +— O'
then collect observations o’ of the physical system for an experimental settings x
(and hence, hidden variables S(x) € H), and we denote the concatenated observa-
tions by 0 = (o', ..., 0™). The set of all concatenated observation is denoted by
O C O' x --- x O™, Note that in general O is a proper subset of O! x --- x O™,
since the measurement results of different observers may be related to each other.
Analyzing agents E; : O' — R then encode the given experimental data o' to com-
pressed representations r'. The analyzing agents then decide which parameters to
communicate with whom of the predicting agents. We formalize the selection pro-
cess as follows: For m analyzing agents, we concatenate all the representations ' as
r=@' ..., rm)eRC R x R? x...R™. Then, for each predicting agent D;,
we define a filter function¢; : R R/ C RY that selects a subset of ; components
from the vector r € R. The predicting agents D; : R/ x Q) + A/ then get chal-
lenged with questions g/ chosen by challengers from sets Q/ and output answers
a’ € A/, Testing agents then perform experiments to provide the correct replies

5 One could also consider several experimenters, however, this setting could be reduced again to
the one having only one experimenter without changing the analysis in this work.

8.4 Criteria for Operationally Meaningful Representations 79

(a’)" (S(x), g) for hidden variables S(x) and a question ¢/ . Intuitively, each filter
should only chooses the part of the representation found by the analyzing agents that
is required to reply to the questions asked by the challenging agents.

In the example considered at the start of this section, the agent B; and B, take
the role of the observing, analyzing and predicting agents. Concretely, we have two
observing agents G| and G, corresponding to the agents B; and B,, that encode their
observations (as analyzing agents E; and E») into the masses and charges m, q;
and m;, q», respectively. The analyzing agents then communicate m, q;, g» and
ma, g2, q1 to the predicting agents D and D,, which again correspond to the agents
B; and B, respectively.® In other words, defining the concatenated representation
r = (ry, r, 3, r4) = (my, q1, M2, q2), the two filters ¢; and ¢, map r to (ry, 2, r4)
and (r, 3, r4), respectively. The predicting agents, again corresponding to the agents
By and B, are then asked by challenging agents (which are different agents than B,
and B,) to predict the trajectory of the particles.

Remark 8.2 (Attention mechanisms) The formalization of the communication
between agents given above could also be interpreted as an attention mechanism.
Indeed, considering the extreme case where all the agents appearing in the commu-
nication scenario are the same, i.e., represent one agent only, the filters could be
considered as an attention mechanism that focuses on the information required to
answer a specific question. Such mechanisms have been investigated in depth for nat-
ural language processing [162—164]. In [162], an attention mechanism is introduced
for machine translation. An encoder produces a sequence of annotations representing
the information about an arbitrary input sentence. Then, an attention mechanism is
used to filter (or weight) the annotations in accordance with their current relevance.
The resulting context vector can be used by a decoder to produce a translation.
This attention mechanism has been extended to multiple encoder-decoder models
for multilingual neural machine translation [163] and summarization [164]. While
the methods in these works have a strong focus on improving the outputs of the
decoders, in this book, we are mainly interested in how such methods can bring
further structure into the latent representation.

To define a operationally meaningful representation, we define the concatenation
of n questions by ¢ = (¢',...,¢") € Q C Q' x --- x Q", and the concatenation
ofnanswerbya = (a',...,a") e A C A' x ... x A" Further, we note that under
the assumption that there exists a sufficient representation (i.e., that the data collected
by the observing agents is sufficient to reply to all questions), we can consider the
function a* : O x Q — A providing the (concatenated) correct answers a for the
(concatenated) questions ¢ as a function of the (concatenated) observations instead

6 The parameters m, g» and my, gy are sent from agent B; and B,, respectively, to themselves.
Therefore, on the high-level picture considered at the start of this section, we do not only minimize
the communication between B; and Bj, but also the “communication” between the agents them-
selves, i.e., we motivate to minimize the number of parameter that are used to solve the agent’s
tasks. In this specific case, where the analyzing agents are the same as the predicting agents, min-
imizing “communication” thus also corresponds to the motivation of the agents to concentrate on
the relevant part of their representations (see Remark 8.2).

80 8 Theory: Formalizing the Process of Human Model Building

of the hidden variables. We denote the list (¢, .. ., ¢,) of filter functions ¢; : R >
R/ C R% by ¢, and the output dimension of ¢; by dim(¢;). Before we define
an operationally meaningful representation, we need to extend the definition of a
minimal representation (Definition 8.2) to multiple encoders. The generalization is
straightforward, but it is required because using multiple encoders may increase the
number of parameters in a minimal representation compared to the case where one
uses one encoder (see Sect. 10.6.2 for an example).

Definition 8.7 (Minimal representation with multiple encoders) A representation
R C R? (defined by encoders Ey, ..., E,) for the data described by (O, O, a*)
with O € O! x --- x O™ is called a minimal representation (with m encoders) if
and only if

1. itissufficient, i.e., there exists asmoothdecoder D with D(r = (r!, ..., r™), q) =
a*(o=(o',..., 0", q) for all possible observations o € O, questions g € Q,
and where we defined ' = E;(0') € R, and

2. there is no other sufficient representation R’ C R”" with p’ < p.

Definition 8.8 (Operationally meaningful representation [23]) A representation R
(defined by encoders Ey, ..., E,) for the data and filters described by the quadruple
(O, Q, a*, ¢) is called a operationally meaningful representation if and only if:

1. the representation R is minimal and
2. there is no other minimal representation R’ with a selection function ¢’, such

that)~ dim((¢")/) < }_; dim(¢;).

The first requirement ensures that the complete concatenated representation con-
sists of a minimal number of parameters such that it still contains enough information
to reply to all questions ¢ € Q that might be asked. The second requirement moti-
vates a separation of the parameters in the representation in a way that minimizes
the number of parameters sent to each of the decoders.

Remark 8.3 (SciNet in the context of reinforcement learning) In this book, we ask
SciNet to predict different physical quantities based on given observation data col-
lected from a physical environment. From a machine learning perspective, this task is
categorized as representation learning. In general, there are tasks that require several
interactions with the environment to be solved. For example, the task of moving a
ball into a hole by hitting it with a stick (which may be a familiar task for readers
paying golf), may require several steps. Further, if we do not hit the hole with the
first stroke, it might be unclear how to quantify how “useful” the stroke was. In other
words, we may not have a cost function that can be evaluated after each stroke, but we
only get a reward if we finally hit the hole. This is a typical setting for reinforcement
learning (see Chap. 2). Considering a reinforcement leaning environment and several
agents with different tasks, we can combine SciNet with techniques from reinforce-
ment learning to construct minimal representation of the state of the environment
that is disentangled according to the agent’s tasks: Each decoder of SciNet can be

8.4 Criteria for Operationally Meaningful Representations 81

considered as a separate reinforcement learning agent that has to solve a certain task
in its environment with help of additional information received from the represen-
tation found by encoders. Instead of learning the representation and the strategy in
parallel, it might however be technically simpler to first learn the optimal strategy,
and then train SciNet with a data set generated by letting a trained agent interact with
the environment (see [23] for an example and further details). In other words, the
trained agent provides the correct predictions for SciNet, and hence a cost function
that can be evaluated for each input to SciNet.

8.4.2.3 Statistical Independence Versus Operationally Meaningful

In the previous sections, we have described two different methods for disentangling
parameters in representation learning. Depending on the situation one approach may
be preferable over the other. In operationally meaningful representations, the disen-
tangling is operationally motivated by minimizing the number of parameters com-
municated between agents. However, to fully disentangle a representation consisting
of k parameters, we would need at least k different “natural” questions about the
physical system. If we are not aware of sufficiently many such questions, we may
instead search for statistically independent parameters, which are biased by the data
collection process. Alternatively, one may combine the methods by first disentangling
according to questions, and then, disentangle further the resulting sub-representations
by motivating statistical independence.

8.4.3 Simple Update Rules

Besides minimality and being disentangled, it is often desirable for physical repre-
sentations that there are simple rules to obtain predictions from them. For example, it
is often desirable that given a representation, there is a simple mathematical formula
that evolves the representation in time. To formalize this, let us think about a set I/ of
(simple) update rules u : R — R acting on a representation R. Further, we consider
a specific form of questions ¢ = (¢, ¢), where t € Ny denotes the number of times the
update rule should be applied and the question § € Q can be any question referring
to the system after applying the updating rule ¢ times.

Definition 8.9 (Representation with simple update rule [22]) A representation R
for the data described by the triple (O, Q = Ny x Q a*) (generated by an encoder
E : O R)is called a simple representation with respect to a set of update rules
U if and only if:

1. the representation R is minimal and
2. there is an update rule # € U/ and a decoder mapping D : R +— A, such that

82 8 Theory: Formalizing the Process of Human Model Building

Pa’-li’;dnl::'?ers 'i’ Challlenger
_ State of phys- Representation Question lf G
. ical system - B ~ i'
" > Dbservation = ~ L T = Answer

—d ° g >O=) == ()= | & - i,

. = - - - g
Observer g]) (g Tedter

- r u(r) uo-ou(r)
L Stochastic map G 7 Encoder £ —&m— Decoder D

Fig. 8.4 Setting for searching parameters that evolve according to a simple update rule. A small
set of hidden parameters fully determine the state of a physical system (the number of parameters
depicted in the figure is not representative). The state of the system depends on a parameter ¢ € Ny
(e.g., the time could correspond to (et 4 #p)s for some € > 0 and initial time 7). We want to find
a representation of the physical system that allows for a simple evolution u : R + R mapping the
representation of the system for a parameter ¢ to the representation corresponding to a parameter
t + 1. Hence, we consider questions of the form ¢ = (¢, ¢), i.e., we ask a question g about the state
of the system corresponding to the parameter ¢. To do so, an analyzer encodes an observation o into
a representation r, that is then evolved ¢ times by the simple update function u. Then, a decoding
agent is asked the question ¢ and his answer a is checked by a testing agent

D(uo---oucE(0),q) =a*(o,q)

t times

for all observations 0 € O and questions ¢ = (¢, g) € Q.

8.5 Ciriteria for Mathematically Meaningful
Representations

In Sect. 8.4, we focused on “natural” requirements on representation of physical
systems that do not use any mathematical or physical prior knowledge. However,
in certain scenarios, we may want to use some mathematical prior knowledge to
search for representations that can be interpreted within a mathematical framework.
In this section we describe how to use deep learning together with Koopman operator
theory [165, 166] to find mathematical descriptions of the dynamical behavior of non-
linear dynamics [167-172]. This investigation serves as an example to demonstrate
how mathematical knowledge can be used to describe mathematically meaningful
representations.’

7 An alternative method for discovering a representation of a system together with the equations
describing its nonlinear dynamics is presented in [173]. The models used in [173] have the fewest
terms necessary to describe the dynamics, balancing model complexity with descriptive ability,
and thus promoting interpretability and generalizability. Furthermore, they also fit in the frame-
work considered here, i.e., they can be considered as a method to find mathematically meaningful
representations.

8.5 Criteria for Mathematically Meaningful Representations 83

8.5.1 Koopman Operator Theory

Koopman operator theory was introduced in 1931 in [165, 166]. It is a leading can-
didate for a systematic approach to linearize nonlinear dynamics [174, 175]. There
have been several recent advances in this field, in theory [174-178] as well as in
related numerical methods such as dynamic mode decomposition [179-181]. Fur-
thermore, an increasing amount of available measurement data supports applications
of the data driven Koopman theory. In the following, we provide a short introduction
into Koopman operator theory. For a more detailed recent review on this topic we
refer to [182].

We consider a dynamical system whose state is described by a variable o(¢) €
O c R" attime ¢ and its dynamics by the vector field f : O + R" together with the
differential equation

o(t) = f(o@)). (8.3)

The discrete time evolution for time At can be described by a function F : O — O,
given by

Or+1 = F(or), (8.4)

where o = o(kAt) is the state of the system at time kAr with k € Ny. We are
interested in finding the function F that describes the discrete-time dynamics of
the considered system from given experimental data. A lot of physical systems of
interest allow for a compact representation as differential equations in o(¢). However,
in most cases apart from linear dynamics, the differential equations are analytically
not trackable.

Koopman operator theory does not consider the evolution of the state o(¢) of the
system, but rather the evolution of observables derived from o(¢) and hence described
by real valued maps g : O — R on the state space. Let us consider a box containing
some ideal gas as an example. The state o(¢) of the system is fully described by all
the positions and velocities of the particles in the gas. An example for an observable
would be the pressure of the gas, which can be seen as a function of the sate o(¢).
The Koopman operator, K, is then the linear and infinite dimensional operator that
advances measurement functions for a discrete time step Az

Kg=goF = Kg(ox) = g(ors1). (8.5)

The linearity of the Koopman operator is a direct consequence of the linearity of the
composition operation because for observables g1, g : O — R, we have

Kgi+g)=@+tg)oF=gioF+goF=Kg +Kg. (8.6)

84 8 Theory: Formalizing the Process of Human Model Building

So, the good news are that we replaced non linear dynamics with a linear operator
IC; the bad news are that the operator /C acts on a infinite dimensional space. To
understand the dynamics described by K, it can help to restrict the operator to finite
dimensional subspaces that are invariant under the action of K. Any subspace L (over
the complex numbers) that is spanned by eigenfunctions of X is an invariant subspace,

because for an n-dimensional subspace spanned by eigenfunctions ¢y, ..., ¢; : O —
C with eigenvalue 11, ..., A; € C we have

Klaigy + - +ady) =ohipy + - +ahdy € L, (8.7)
for any complex coefficients oy, . .., oy € C.Hence, the Koopman operator restricted

to a subspace spanned by eigenvectors allows for a linear finite dimensional repre-
sentation of the dynamics on this subspace. Since we have a comprehensive theory
for linear systems, such a restriction has the potential to enable advanced prediction
and control of nonlinear systems.

8.5.2 Representation of Koopman Eigenfunctions

Obtaining eigenfunctions of the Koopman operator in practical applications has
proven challenging. In this section we describe (based on [183]) how neural net-
works can be used to find these eigenfunctions. Searching for Koopman eigenfunc-
tions can be considered as searching for transformations ¢y, ..., ¢; : O +— C of
observations o € O, such that r = (¢1(0), ..., ¢;(0)) evolves in time At as r >
(K1(0), ..., K¢i(0)) = (A191(0), ..., M1 (0)) =: K(X)(¢1(0), ..., ¢i(0)), for
some complex eigenvalues A; and where we defined IC(1) : C' — C'by (M) (a1, ...,
o) = (AMay, ..., Moy) for complex numbers ¢y, . . ., o;. Defining the (complex val-
ued) encoder E : 0 — r = (¢1(0), ..., ¢;(0)), we can consider this setting as a spe-
cial case of the one considered in Sect.8.4.3, where we described representations
that allow for a simple update rule u (see Fig.8.4). Indeed, if we set u = KC(A) and
choose the questions to be of the form ¢ = (k, ¢), where ¢ is the (fixed) question
“What is the state o, at time kAt of the system?”, Definition 8.9 (generalized for
complex valued encoders) ensures that the encoder of the corresponding represen-

tation implements a minimal number of Koopman eigenfunctions ¢, . .., ¢;, such
that the resulting representation » = (¢;(0), ..., ¢;(0)) is sufficient to recover the
state o.

A wide range of physical systems requires a Koopman operator with continuous
spectrum for its accurate description [166]. For example the frequency of a (non
linearized) pendulum, whose angular displacement 6 satisfies the differential equa-
tion § = —} sin(0) for some wy € R, continuously decreases as the energy of the
pendulum is increased. In such cases, approximations by a finite sum of a few eigen-
functions might not be accurate enough to be useful for a better understanding of
the underlying system. One method that helps to handle continuous spectra and that
is described in [183] is to allow the eigenvalues to depend on the representation r,

8.6 Ceriteria for Physically Meaningful Representations 85

Q Interaction Graph

—— Elastic collision
,,,,,,,,,,,,,,,, No interaction

Fig. 8.5 Interaction graph for a toy model of moving balls. Five balls move within a box with
different velocities (and collide elastically with the wall of the box). We consider the toy model of
balls colliding with the same color elastically, whereas balls of different colors do not interact. From
observing the time evolution of the system of the five balls, one can create an interaction graph that
represents the information on how the five objects interact with each other. The vertices vy, . .., vs
of the graph represent the balls and the edges between the balls describe their interactions

i.e. we consider a Koopman operator /C(A) with A = A(r). In [183], this method is
successfully applied to linearize the dynamics of the nonlinear pendulum (Sect. 10.3)
and high dimensional nonlinear fluid flow.

8.6 Ciriteria for Physically Meaningful Representations

To simplify the interpretation of SciNet’s representation and to improve its gener-
alization power, we may sometimes want to build some physical prior knowledge
into the machine learning setup. There are a lot of options for the choice of prior
knowledge like symmetries or pairwise interactions of subsystems, and also ways
of implementation. We focus on an example that should serve as a demonstration of
how such prior knowledge can be built into SciNet and how it can help to interpret
the found representation. In this section we consider systems consisting of several
objects (or more generally “parts”) that interact with each other. We assume that our
observation data is structured in a way that we know how it relates to the objects,
in other words, we assume that an observation o € O of k objects is of the form
o= (0y, ..., o) for real valued vectors o;. Different approaches have been consid-
ered to describe the behavior of such systems [184—188]. Here, we focus on the
approach described in [184], which does require minimal prior knowledge about
how objects interact with each other and on the form of the observation data o;.
Furthermore, it allows to find a description of the interaction structure given as an
interaction graph. In the following sections, we describe what an interaction graph
is and then how to extract a representation of it for dynamical systems.

86 8 Theory: Formalizing the Process of Human Model Building

8.6.1 Interaction Graph

Mathematically, a graph is defined as a tuple (V, £) of a set of vertices v € V and
edges e = (v, v') € & that can be thought as connections between two vertices v € V
and v’ € V (see Fig. 8.5 for an example). Such a structure can naturally describe a
set of interacting objects by assigning vertices vy, ..., v, € V to the objects and
edges e; ; = (v;, v;) to the action of the object assigned to v; on the one assigned to
v;. However, to also describe the properties of the objects and kind of interactions,
we work with embeddings of real vectors h; and h; ; of the vertices and edges,
respectively. For example, let us consider a toy model with n balls with positions x;,
velocities w; and colors ¢;. Hence, the embeddings of the vertices could simply be
h; = (x;, w;, ¢;). Let us assume that there are only two types of interactions between
the balls: two balls with the same color collide fully elastically, whereas balls with
different colors do not interact at all. Hence, the embedding of the edges could be
hij=h;;=1,if¢; =c;and h; ; = h;; = 01if ¢; # c¢;. The interaction graph for
such a system is shown in Fig. 8.5.

8.6.2 Representation of Interaction Graph

The goal of this section is to formalize the process of extracting the type of inter-
actions, i.e., the embeddings £, ; of the edges of the interaction graph, from obser-
vation data of a dynamic system (following the approach in [184]). The number
of objects may thereby vary between different observations. Let us consider time
sequences o; = [x;(t;)]li<r = x;(#;), ..., x;(tr) of length T of the d-dimensional
states x; (#;) € RY of the object with label i at fixed times ¢, ..., fr.

We would like to infer the structure of the interaction graph corresponding
to the interactions between the objects described by the observations [x;(#)];<7.
This process can be considered to have the basic structure of SciNet as shown in
Fig. 1.1. However, usually we consider real valued observations of fixed dimen-
sion, whereas here the set of observations O is the set of sequences of time
sequences [x; (t)];<r € RY x RT ,hence O C {[si]i< : s; € R x RT, k € N}.Now,
an encoder should be able to map observation data of any number of objects to a rep-
resentation that describes the interactions of the objects, and hence whose size scales
quadratically in the number of objects k. More formally, the encoder should map an
observation o € O for k objects to arepresentation r that encodes all embeddings £; ;
with i, j € {1,...,k} and i # j. Assuming that the interactions can be fully char-
acterized by an e-dimensional real vector h; ; € R¢, we then have r € RFGC=D 5 Re,
For simplicity, we use double indices for the representation such that r; ; = h; ;.
Note that such an encoder with variable input and output size can not trivially be
implemented using a feedforward neural network. Instead, one can use graph neural
networks (GNNs) to handle these difficulties, as described in Sect. 9.7.

8.6 Ceriteria for Physically Meaningful Representations 87

We then ask SciNet to predict the future time evolution of all the objects, given
an initial state o(ty) = 01(ty), ..., 0x(tp) at some time #y and based on the found
representation encoding the kind of interactions between all the objects. To be able
to predict the time evolution with high accuracy far into the future (such that all
the objects will interact once), SciNet must have inferred all the necessary informa-
tion about the interactions and stored this information in the latent representation
r. Hence, such a structure can be used to learn conceptual information about which
objects interact with each other and which parameters describe these interactions.
We describe in Sect. 9.7 how such representations can be found with GNNs [184].

Chapter 9 ®)
Methods: Using Neural Networks to Find | o
Simple Representations

In the previous chapter, we have formalized what we consider to be a “simple”
representation of physical data by introducing the notion of minimal statistically
independent and operpationally meaningful representations, as well as representa-
tions allowing for a simple update rule and representation of systems consisting of
several interacting objects. In this chapter, we discuss how neural networks can be
used to find these kind of representations directly from a given data set (following the
ideas described in [22, 23]). Apart from the given data and the theoretical require-
ments on representations found in the previous chapter, we focus on minimizing any
further prior knowledge built into the machine learning system. Hence, the network
architectures introduced in this chapter can be applied to a wide range of data.

9.1 Motivation

We would like to build software that is able to learn the different kinds of repre-
sentations described in Sect. 8.4 directly from given data. To achieve this, the main
difficulty is to find a function that encodes the observations into a representation that
satisfies the properties formalized in Sects. 8.4, 8.5 and 8.6. One crucial property
we require for any representation is that it is sufficient, i.e., that it contains enough
information to reply to a set of questions. To check if a representation is sufficient,
in general one has to search over decoding functions that map the representation and
a question to an answer (Fig. 1.1). If one finds a decoder that outputs the correct
answers for all questions, one can be sure that the found representation contains
all necessary information. We conclude that we have to search for an encoder and
decoder in parallel. This can be efficiently done by using artificial neural networks,
which are a powerful tool to learn functions directly from data. Note that for many
applications of neural networks, it is crucial that they can generalize to input samples
that significantly differ from the samples seen during the training. However, for this
work, neural networks are mainly used as a function-approximating tool.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 89
R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_9&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_9

90 9 Methods: Using Neural Networks to Find Simple Representations

question g

observation

0 —
.//‘k\\'{//\ % W< \answer
X 72\ V7, 0 o P
B AR & ORS
NN

encoderE , decoderD
latent representation

Fig. 9.1 Network structure for SciNet motivated by the human physical reasoning process (Figure
taken from Iten and Metger et al., Physical Review Letters, 2020 [22]). Observations are encoded as
real parameters fed to an encoder (a feed-forward neural network), which compresses the data into a
representation (latent representation). The question is also encoded in a number of real parameters,
which, together with the representation, are fed to the decoder network to produce an answer (The
number of neurons depicted is not representative.)

9.2 General Network Structure to Learn Representations

The modelling process described in Sect. 8.2 can be translated directly into a neural
network architecture (Fig.9.1), which we refer to as SciNet in the following [22].
The encoder and decoder are both implemented as feed-forward neural networks.
The resulting architecture, except for the question input, resembles an autoencoder
in representation learning [27, 189], and more specifically the architecture in [190].
Note that if there is a finite set of questions, one could in principle replace the question
input by asking the decoder to reply to all the questions in each run. However, when
working with continuous variables describing the questions, such a strategy would
not work.

During the training, we provide triples of the form (o, ¢, a* (0, ¢)) to the network,
where a*(o, g) € A is the correct reply to question g € Q given the observation
o € O. With this we train the encoder Eg and the decoder D4, where ® and ® denote
the collection of weights and biases of the encoder and the decoder, respectively. The
training process of SciNet to learn minimal representations is summarized in Box 1.
To find (an estimate of) the minimal number of parameters in the representation, one
simply raises the number of parameters until the answer quality of SciNet does no
longer increase significantly.! In this way, a representation consisting of a minimal

! One may want to use more efficient search algorithms over the number of parameters, in particular
in the case where an initial estimate on the minimal number is given.

9.2 General Network Structure to Learn Representations 91

number of parameters can be found. As discussed later, there are more efficient
methods to achieve this (see Remark 9.2). The learned parameterization (defined
through the encoder Eg) is typically called latent representation [27, 189]. It is
crucial that the encoder is completely free to choose a latent representation itself,
instead of us imposing a specific one. Because neural networks with at least one
hidden layer composed of sufficiently many neurons can approximate any continuous
function arbitrarily well [191], the fact that the functions E and D are implemented
as neural networks does not significantly restrict their generality. In other words, we
consider significantly large networks Eg and Dg, so that there is always a choice of
parameters ® and @, such that Eg and Dy are close to the optimal functions for the
encoder and the decoder. However, unlike in an autoencoder, the latent representation
need not describe the observations completely; instead, it only needs to contain the
information necessary to answer the questions posed.

Box 1: Train SciNet to learn minimal representations (Section 9.2)

Goal: Find a minimal representation for a given data set D consisting of triples of the
form (o, g, a* (o, q)), where a*(o, q) € A s the correct reply to question g € Q given
the observation o € O.

Network Structure: ~ Shown in Figure 9.1. We denote the parametrized encoder mapping
by Eg : O — R, and the decoder mapping by D¢ : R x Q > A.

Cost Function: For a triple (o,q,a*(0o,q)), the cost is given by
d [D¢(E(.) (0),q),a*(o, q)], for some (smooth) distance measure d [, -].

Splitting of the data set: ~ We split the data set D into a training, validation and a test set.

Training process: To find a minimal representation, we start with zero latent neurons and
successively increase the number of latent neurons. For each number of latent neurons,
we train the network with the training data and validate the precision of the predictions
with the validation data. When the accuracy no longer increases significantly, the
increase in the number of latent neurons is stopped. [A more efficient method to find
the minimal number of required parameters is presented in Box 2.]

Testing: ~ We test the performance of the trained SciNet using the test set.

Remark 9.1 In some cases, the neural network Eg implementing the encoder may
have difficulty finding the perfect encoding. Either because it is limited in expressing
the optimal encoding function (because the number of hidden neurons is not large
enough or the encoding function is not continuous as demonstrated in Sect. 10.5.1)
or because the training process does not converge to a solution that is close to the
optimal encoding. In such cases, an alternative way to estimate the minimum number
of parameters is to apply the Levina-Bickel algorithm [192].

Extracting information from the network. The architecture in Fig.9.1 allows
us to extract knowledge from the neural network: the relevant information is stored
in the representation, and the size of this representation is small compared to the total
number of degrees of freedom of the network. This helps to interpret the learnt rep-

92 9 Methods: Using Neural Networks to Find Simple Representations

resentation. Specifically, we can compare SciNet s latent representation to a hypoth-
esized parameterization to obtain a simple map from one to the other. If we do not
even have any hypotheses about the system at hand, we may still gain some insights
solely from the number of required parameters or from studying the change in the
representation when manually changing the input, and the change in output when
manually changing the representation (as in e.g. [49]).

9.3 Network Structures for Separating Parameters

A lot of work in representation learning focuses on methods to disentangle repre-
sentations, i.e., to store “natural” features in separate neurons in the latent space
(see e.g. [49, 193]). Usually, these works focus on the construction of a represen-
tation of the full observation input. In contrast, SciNet focuses on a representa-
tion that is sufficient to reply to all the questions that might be asked. Nonethe-
less, it is straightforward to use the methods introduced in the machine learn-
ing literature to separate parameters in SciNet’s representation. However, most of
these methods depend on the distribution over the training data, and new methods
were developed in [23] for operational disentangling, i.e., methods to disentangle
parameters relevant for solving different physical tasks (see Sect. 8.4.2.2 for the
details).

9.3.1 Statistically Independent

As described in Sect. 8.4.2.1, one may define a representation to be disentangled if
the parameters in the representation are statistically independent over the given data
set. To motivate SciNet to find minimal statistically independent representations, we
could in principle use the same technique as described in Box 1 and add the total
correlation C(Ry, ..., R|g|) between the latent neurons as an additive term to the
cost function. However, this training technique would be computationally extremely
expensive. There are two reasons for this: Firstly, retraining SciNet for different num-
ber of latent neurons is costly. Secondly, and more importantly, estimating the total
correlation during the training is computationally extremely expensive, since this
measure depends on the distribution over the latent neurons, which in turn requires
a lot of samples to be well approximated.

9.3 Network Structures for Separating Parameters 93

Box 2: Train SciNet to learn statistically independent representations

(Section 9.3.1)

Goal: Find a statistically independent representation for a given data set D consisting of
triples of the form (o, ¢, a* (0, q)), where a* (0, ¢) € A s the correct reply to question
q € Q given the observation 0 € O.

Network Structure: ~ Essentially the one shown in Figure 9.1 (see Figure B.1 in
Appendix B for details). We denote the parametrized encoder mapping by Eg : O —
R, and the decoder mapping by D¢ : R x Q > A.

Desired Cost Function (computational infeasible): ~ For x = (0,q,a*(0,q)),
the desired cost function would be L(x)=d [D¢(E®(o), q),a*(o, q)] +
a C(Ry, ..., Rg)), for some (smooth) distance measure d[-, -], a hyperparam-
eter o, and where Ry, ..., Rjg| are the random variables for the latent neurons
(determined by the encoder Eg and the distribution over the observations used as
training data).

Computational Feasible Cost Function: B-VAE cost function given in (B.1) in
Appendix B.

Splitting of the data set: ~ We split the given data set D into a training, validation and test
set.

Training process: To find a statistically independent representation, we choose a number
of latent neurons that is expected to be larger or equal than the number requires for
a minimal representation. We train SciNet with the B-VAE cost function, where we
have to optimize the hyperparameter §. If we still have a high prediction error for the
validation data, we may have chosen too few latent neurons in the beginning, and we
repeat the process with a higher number of latent neurons.

Testing: ~ We evaluate the prediction loss of the trained SciNet using the test set. Further,
we would like to evaluate the total correlation of the latent neurons over the test set.
This is computational feasible, because we only have to calculate it once after training.
If the total correlation is still high, we could train SciNet again with a higher value of
B to motivate the disentangling of the latent neurons more strongly.

Because of these difficulties, we follow the approach taken in [22] here: We use the
techniques of beta-VAESs [49], i.e. of variational autoencoders (see Appendix B) with
an adapted cost function that is meant to help disentangle the latent representation. In
practice, beta-VAEs often find representations with statistically independent latent
neurons. Further, if there are unnecessarily many latent neurons, superfluous neurons
tend to be set to a constant zero-activation. However, since there is no guarantee
that beta-VAEs always find statistically independent parameters, we verify this a
posteriori by calculating the total correlation of the latent variables after finishing
the training of SciNet. Since the details of how beta-VAEs work will not be relevant
to understand this thesis, we explain them in Appendix B. The training process is
summarized in Box 2.

9.3.2 Operationally Meaningful

In this section, we describe the approach introduced in [23] to find operationally
meaningful representations (see Definition 8.8). Recalling the process given in

94 9 Methods: Using Neural Networks to Find Simple Representations

Samples from
standard normal

distribution el —)

Representations

with added noise Decoders

Encoder Representation

e

Fig. 9.2 Network architecture to learn operationally meaningful representations. An encoder gets
an observation o and outputs a representation r. (In principle, one could consider several encoders,
but for simplicity we only use one here). Then, for each decoder D;, a filter ¢; is applied to the

representation that adds Gaussian noise to the latent neurons r; with a standard derivation O’kj . The
sampling is done using the reparameterization trick [193], i.e., in each run of the network we sample

ek’ ~ N(0, 1) and provide these samples as an input to the filters. Then, the values F,f =rr+ a,'{’ ek’
are given to the decoder D, whose task is to output the response to the question q’. The number
of parameters and decoders in the figure is not representative. Technically, the filters are described

by the trainable parameters {log akj }k. If a filter ¢; adds a lot of noise to a latent neuron k, there

is essentially no information about the value 7, transmitted to the decoder D; by F,{ . Hence, such
neurons (marked in grey in the figure) are considered to be filtered out by ¢;, i.e., the information

contained in r,{ is not accessible by the decoder D

Fig. 8.3, it is straightforward to replace the encoders and decoders with neural net-
works. The challenging part of the implementation are the filter functions. Indeed,
these functions have to select which values of the latent neurons are sent to which
of the decoders. Hence, they are of a binary nature, where for each latent neuron the
filter can be “on” or “off” for a certain decoder D;, meaning that the value of this
latent neuron is or is not sent to the decoder D). To train such filters, we would like
to “smooth” them, so that we can propagate gradients trough them while running
the back-propagation training algorithm. We can smooth the filters based on the
reparametrization trick [193], as described in the following. For simplicity, let us
assume that we work with a single encoder. The implementation described below is
summarized in Fig.9.2.

9.3 Network Structures for Separating Parameters 95

Box 3: Train SciNet to learn operationally meaningful representations

with a single encoder (Section 9.3.2)

Goal: Find operationally meaningful representations for a given data set D consisting of
triples of the form (o, (q', 4%q"M, (a7 (o, g, a; (o, g%, ..., ay(o,q")), where
a*(o, q/) € A isthe correct response to question g/ € Q given the observationo € O.

Network Structure: ~ Shown in Figure 9.2. We denote the parametrized encoder mapping
by Eg : O = R, the filters by ¢, : [0, 1]" x R — R, where n denotes the number
of latent neurons dim(7R), and the decoder mappings by Dq; : R x Q) A,

Cost Function Foratriplex = (o, q',....q"M, (a7 (o, b, ..., ay (o, q")),noise sam-

ples el = (e{, . e,{) with e,{ ~ N (0, 1), and outputs al = (a{, e aéim(,Af)) for a
decoder Dg;, i.e., al = Dgq;j [¢a.j (ej, E(_)(o)) N qj], the cost is given by
e () = Y d[al af0.q1)] - B tog(a)). 9.1)
j k

for some (smooth) distance measure d [, -] and a hyper parameter § that regulates
the tradeoff between good accuracy for the predictions and minimizing the number of
latent neurons required by each decoder.

Splitting of the data set: ~ We split the given data set D into a training, validation and test
set.

Training process: To find a minimal representation, we start with zero latent neurons
and successively increase the number of latent neurons. For each number of latent
neurons, we train the network with the training data and the cost function given above,
where we have to optimize the hyperparameter S, and validate the precision of the
predictions with the validation data. If we achieve nearly perfect precision, we stop
the process of increasing the number of latent neurons. (A more efficient method is
described in Remark 9.2).

Testing: ~ We evaluate the prediction loss of the trained SciNet using the test set.

Implementation of filters [23]. To train a filter in a smooth way, we need to be
able to make a smooth transition from the “on” to the “off” state of a filter. Clearly, if
the filter is “on” for a latent neuron, all its information is transferred to the decoder,
where in the “off” state, no information about the parameter stored in the latent
neuron is given to the decoder. If we add noise to the latent neuron, we can smoothly
regulate how much information about the latent parameter is given to the decoder.
Indeed, let us formally consider the latent neuron k to be sampled from a Gaussian
distribution N (ry, okj), where ry is the value of the k-th latent neuron (output from
the encoder) and o} determines the amount of noise added to the latent parameter
that is subsequently given to the decoder D;. For the decoder D;, the value of o}
has the following meaning:

1. A large value of akj (relative to the variation of the k-th latent neuron over the
observation data) means that we add a lot of noise to the value r; of the k-th
latent neuron. Hence, the decoder D; gets essentially no information about ry
and we consider this case to be a filter that does not select the k-th latent neuron.

2. A value of o} that is close to zero means that essentially all information about
1y, is transferred to the decoder D;, so the filter selects this latent neuron.

96 9 Methods: Using Neural Networks to Find Simple Representations

Although we can smoothly regulate the noise, we have to sample from the Gaussian
distribution in each run of the network. Sampling is a non-differentiable process in
the parameters in the set ®, describing the weights and biases of the encoder. We can
use the reparameterization trick introduced in [193] (for variational auto encoders)
to solve this problem: we replace the sampling operations by using auxiliary ran-
dom numbers 6,{ ~ N(0, 1) as inputs to the neural network. Then, the k-th latent
variable with the filter applied for a decoder D; and distributed with N (ry, ok]) can
be generated by r; + o/ €] . Using vector notation, we get the complete filter output
for decoder D; asavectorr + o/ © €/, wherer = (r, ..., rm), 0/ = (o], ..., 00)
and €/ = (¢{, ..., &) for m latent variables, and where we use the symbol “®” for
component-wise multiplication. Sampling e,{ does not interfere with the gradient
descent because e;f is independent of the trainable parameters ©.

Note that in our implementation (Fig.9.2), we use log(akj) as trainable parameters
of the filters instead of akj , because log(akj) can take on positive or negative real
values, whereas Ukj must always be positive. Hence, this replacement simplifies the
training, because we do not have to ensure positivity of these values in each training
step. In addition, the values of o}/ can get very large during training and the logarithm
maps these values into a reasonable range.

Cost function for minimizing the information transmitted by filters. As stated
in Item 2 of Definition 8.8, we would like to minimize the number of “on”-states for
the filters to minimize the information communicated between agents (see Sect. 8.4
for a detailed explanation of the motivation). With the implementation above, this
translates into minimizing — 3, log(a}). Indeed, this cost term motivates the net-
work to increase the noise added to the latent neurons and competes with the cost
term motivating the decoders to output correct predictions. The full cost function
and a description of the training process is given in Box 3.

Remark 9.2 (Minimizing the total number of latent neurons) If for a certain k, the
value of o} is large forall j, the information of the k-th latent neuron is not transmitted
to any of the decoders and hence could be ignored. Since we would like to find a
minimal representation, we would like to maximize the number of latent neurons
that are not used by any decoder under the condition that all the decoders are still
able to output accurate predictions. The cost function term —) k. log(ay) does not
necessarily motivate SciNet to minimize the total number of latent neurons. Indeed,
assume that the representation has two latent neuron 7; and r,, that store the same
information, and that two decoders D; and D; require this information. Then, the
cost is the same wether the value of r; (or r,,) is transferred to both decoders or
rm is transferred to D; and r; to D; (or vice versa). To minimize the number of
latent neurons, we could train SciNet with an increasing number of latent neurons
(as described in Box 3), but this method is computationally expensive. Alternatively
we could add a global filter parametrized by o£°™ that selects a number of latent

neurons before they are sent to all of the decoder specific filters ¢;. The cost term
=3 logle) —y 3, log(o2*™) for some hyperparameter y then motivates to

minimize the total number of latent neurons (by motivating the global filter to select

9.4 Network Structure to Find Representations with Simple Update Rules 97

a minimal number of neurons that are sent further to the decoders). Although this
method is quite efficient, it turns out to be less reliable than increasing the number of
latent neurons one by one in numerical experiments, in the sense that the network gets
harder to train and gets stuck more often in sub-optimal local minima. Nonetheless,
the method is useful to get an estimate on the required number of latent neurons.
Starting from this estimate, one can successively lower the number of latent neurons
until the prediction accuracy of SciNet significantly decreases. When this happens,
the current number of latent neurons plus one is likely the minimal number required.

9.4 Network Structure to Find Representations
with Simple Update Rules

In this section, we describe how to find representations that evolve according to a sim-
ple update rule (see Definition 8.9), based on the ideas described in [22]. Recall that
a decoder D is asked to reply to a question g € Q after evolving the representation
found by an encoder E for ¢ € Ny steps according to a simple update rule u chosen
from a set U/ (Fig. 8.4). Again, it is straightforward to implement the encoder and the
decoder appearing in this setting with neural networks. To speed up the training pro-
cess, we ask the network to reply to a question g after each application of the update
rule. Hence, we ask the questions (0, g), ..., (¢, g) in each training step (Fig.9.3).
This provides more feedback to the network and helps it to learn more quickly.

It remains to investigate how to implement the update rule. Let us assume that the
functions # € U are smooth. There are two technical cases that we have to distinguish:

uo-ou(r)
-

Representation -
Encoder ttimes

Fig. 9.3 Network architecture to learn representations that evolve according to a simple update
rule. An encoder maps an observation o to a representation r that allows for a simple update rule u
(think of evolving a representation of a physical system for a fixed time interval). A decoder should
correctly respond to a question g in each step. The set of questions is therefore described by the
tuples (0,), ..., (¢,), where the first element of the tuple determines the step at wich question
§ is asked. The answers given by the decoder are labeled with the step number as a°, ..., a’.
Crucially, the same decoder is used in each step. In the case where u evolves the system in time, and
where g asks to predict a physical quantity at a given time, using only one decoder means that the
physical laws determining how to predict physical quantities do not change with time. The network
architecture shown in the figure is similar to the one of recurrent neural networks [194]

98 9 Methods: Using Neural Networks to Find Simple Representations

1. The set of updates rules I/ can be smoothly parametrized by a set of parameters
', i.e., there is an open connected set of parameters I C R! for some ! € N, such
thatu, (r) € U depends smoothly on y € I' for any r € R and such that the sets
{u, },er and U are in one-to-one correspondence.

2. The set of update rules cannot be smoothly parametrized.

In case 1, we can propagate gradients trough the update rule during the training
of the neural network. Hence, the parametrized update rule u,, can be considered as
a part of the neural network, where the parameters y are the trainable parameters
analogous to the weights and biases of artificial neurons.

The training in case 2 is usually more costly and there are a lot of tricks in
the machine learning literature to map it back to case 1. If, however, no such trick
works for a given case, a brute-force strategy to tackle case 2 for a finite set I/
would be the following: For each u € U, train an encoder and a decoder to optimize
SciNet’s prediction accuracy. If one finds a u, such that SciNet can predict nearly
perfectly, one is done. However, if there are a lot of elements in I/, such a strategy
gets computationally intractable. In the case where the set / can be partitioned into
a small number of smoothly parametrizable subsets, one could handle these subsets
separately by the strategy applied in case 1.

Box 4: Train SciNet to learn representations with simple update rules

that can be smoothly parametrized (Section 9.4)

Goal: Find a representation for a given data set D consisting of triples of the form
(0,100,4q),...,(t,q)], [a* (o, (0,q)),...,a*(o, (t,4))]), where a*(o, (s, q)) is the
correct reply to question g € Q in step s € Ny given the observation o € O.

Network Structure: ~ Shown in Figure 9.3. We denote the parametrized encoder map-
ping by Eg : O — R, the parametrized update rule by u,, : R — R, and the decoder
mapping by Dg : R x 9 — A.

Cost Function Foratriplex = (o, [(0, §), ..., (¢,)], [a*(0, (0, q)), ...,a*(o, (t,g))])
and answers provided by the decoder Dg given as

a® = Da(uy o+~ ou, 0Ee(0).).
~———
s times

the cost is given by
L) =Y d[a’,a*(0, (s, 9))]
s

for some (smooth) distance measure d [, -].

Splitting of the data set: ~ We split the given D into a training and test set.

Training process: To find a minimal representation, we start with zero latent neurons
and successively increase the number of latent neurons. For each number of latent
neurons, we train the network (including the update rule u,) with the training data
and the cost function given above. If we achieve nearly perfect precision, we stop the
process of increasing the number of latent neurons. Alternatively, one could try a more
efficient method to find the minimal number of parameters, such as the ones used for
beta-VAE [49] (see Appendix B).

Testing: ~ We evaluate the prediction loss of the trained SciNet using the test set.

9.6 Network Structure to Find Koopman Eigenfunctions 99

The resulting network structure shown in Fig. 8.4 is similar to standard recurrent
neural networks [194] which are used to process sequential data in machine learning
and have a wide range of applications such as machine translation [195-197].

9.5 Optimality Guarantees on the Representation

In the previous sections we introduced different methods to find “natural” represen-
tations. However, as common for methods based on neural networks, in general we
do not have a guarantee that the suggested methods find the optimal representation.
Nonetheless, some properties of a representation can be checked a posteriori:

e Sufficiency of the representation (by checking the prediction accuracy on the test
data?).

e Statistical independence of the latent parameters (by calculating the total correla-
tion of the latent parameters).

e The representation allows for a simple update rule (by checking the prediction
accuracy after evolving the representation for several steps).

On the other hand, it is more challenging to test the following properties:

e Minimality of the representation.

e Optimality of the filters, i.e., minimality of the number of parameters that are
communicated to the decoders in the setting for searching operationally meaningful
representations (see Sect.9.3.2).

These properties are defined trough the absence of any other sufficient representation
that requires less parameters. Hence, to check minimality in a straightforward way,
one would have to compare the found representation with all possible representations,
which are infinitely many. Instead, one may for example reduce the number of latent
neurons and train SciNet several times. If the prediction accuracy stays low, this
points towards the fact that the number of latent neurons we started with is minimal.
On the other hand, investigating the correlation between the latent neurons as well
as the effect of varying their value on the predictions may help to better understand
the found representation.

9.6 Network Structure to Find Koopman Eigenfunctions

As an example for mathematically meaningful representations, we considered rep-
resentations that allow for linear dynamics in Sect. 8.5. In the case of a discrete
spectrum of the Koopman operator, the setting considered there can be seen as a

2 If the observations are very noisy, it might be more complex to check sufficiency of a representation.

100 9 Methods: Using Neural Networks to Find Simple Representations

special case of searching for representation with simple update rules. Hence, we can
use the same methods as introduced in Sect.9.4, which correspond to the methods
used in [183] in this case. The only difference to Sect.9.4 is that we are searching
for complex valued representations. Since we can only represent real values with
(standard) artificial neurons, we represent the complex valued latent variables 7; € C
by two real variables r5;_; € R and r,; € R corresponding to the real and imaginary
part of r;. Recall from Sect. 8.5 that each such pair corresponds to the output ¢; (o)
of an eigenfunction ¢; of the Koopman operator for an observation input o. Further,
we may write the eigenvalue for the eigenfunction ¢; as A; = exp [(i; + w;i) At]
for coefficients u;, w; € R and a discrete (fixed) time step Ar > 0, and denote the

stacked coefficientsas u = (41, ..., Uy)andw = (wy, . .., @,), respectively. Then,
the Koopman operator (1) = (i, @) acting on the (real) latent representation
r = (r1, ..., ray) consists of Jordan blocks B(u;, w;) of the form

9.2)

Blui. o) eMiA,[cosa)iAt—sinw[At]
i) =

sinw; At cosw; At

Hence, we have found a smooth parametrization of the set of update rules
{uy }yer = {K(, @)} uerm welo 27y~ Instead of considering 1 and w as coefficients,
one may allow them to depend on the state of the representation r before it gets
updated. As discussed in Sect. 8.5.2, this dependence is investigated in [183] to
describe the dynamics of nonlinear system with a continuous spectrum of the corre-
sponding Koopman operator. The dependence of 1 (r) and w(r) on r can be simply
integrated into the network structure shown in Fig.9.3 by adding a neural network
that gets the representation r as an input and provides p and @ as an output. To
enforce circular symmetry in the eigenfunction coordinates, one may provide ||r ||§
as an input to the additional network instead of r itself [183].

9.7 Network Structure to Find Interaction Graphs

In Sect. 8.6, we described interaction graphs of dynamical systems. Here, we inves-
tigate how to find such graphs with neural networks following the approach in [184].
As noted in Sect. 8.6, we have to implement an encoder with a variable input and
output size. Such an encoder has to respect the object structure of the considered
system, otherwise it could not generalize from a system consisting of k objects to
one consisting of k 4 1 objects. One class of networks that are well adapted to inputs
of a graph structure, are graph neural networks (GNNs) [111, 198, 199], which will
be introduced in the next section.

9.7 Network Structure to Find Interaction Graphs 101

9.7.1 Graph Neural Networks

Graph neural networks (GNNs) [111, 198, 199] allow to handle graph structures as
an input and have found a wide range of applications, e.g. for predicting chemical
properties [111], for control and inference for physical systems [184-186, 200-
205] and for investigating social networks [206, 207]. Their expressive power was
investigated in [208, 209]. In this section, we give a brief introduction to graph neural
networks. There is a lot of flexibility in the structural details of graph neural networks,
and here we focus on the structure used in [184]. The described structure can be used
to infer the interaction structure of dynamical systems consisting of several objects
under the assumption that there is a finite set of e interactions, i.e., working with
discrete embeddings #; ; of the interactions between the objects with label i and j.

We consider a graph with embeddings %; of its vertices. The basic idea for graph
neural networks is to update these embeddings several times according to rules that
depend on the graph structure, i.e., the update rule for the embedding /; depends on
how the corresponding vertex is connected to other vertices within the graph. Such
update rules can be considered as message passing: the neighboring vertices of i; send
their information to %;, which updates its values according to some rule dependent
on the received information. Importantly, such a rule should be commutative, in
the sense that the updated value does not depend on the order of how messages
are proccessed. After L such updating steps, the updated embeddings 2> do not
only contain information about the vertices, but also about the graph structure. If
we would for example want to predict a binary property of the graph (such as ful
connectedness), the embeddings hlL can be fed to a neural network, which is asked
to classify the graph. Importantly, the neural network can only successfully classify
if the update rule applied to the embeddings 4; are of a form, such that the resulting
embeddings 2> will contain the necessary information about the graph. For a more
thorough introduction to graph neural networks, we refer to [210].

Here, we are interested in inferring the type of interactions between objects from
observation data of their time evolution. Hence, we also consider embeddings #; ;
of the edges between vertices with labels i and j. The update rules are then split
into two steps: i) v > e: updating the embeddings A; ; of the edges according to
the values of the neighboring vertices, and ii) e + v: updating the embeddings #;
of the vertices according to the incoming edges N; = {h;;};. More concretely, we
consider the update rules [210]

vie e ki = fl(h hY gD, 9.3)

er>v: At = fvl([z hyiD) 94
JeN;:

102 9 Methods: Using Neural Networks to Find Simple Representations

)

|

=1 1=2

Fig.9.4 Graph neural network. The figure shows a fully connected graph consisting of three vertices
with embeddings h]l, h% and h% The symbol “<«” labels two directed edges pointing in opposite
direction. The update rule given in (9.3) is applied on the first graph to get the embeddings h}, j
of the edges with i, j € {1,2,3} and i # j. Note that we only show the edges hﬁyj withi < j for
simplicity. The update rule (9.3) takes the vertices h% and h% and auxiliary vertex features (which are
not shown in the figure) as an input. Then, it applies a neural network representing the function f!
to the inputs to obtain the edge embedding h}A 3- The other edge embeddings are found analogously
(not shown in the figure). Then, the update rule (9.4) is implemented by applying a neural network
fv1 to the vertex-embeddings hé,.? and h%ﬁ as well as to some auxiliary edge features to obtain the

updated vertex embedding h_%. Again, the other vertices are updated analogously. This process is
then repeated for L € N times

where hf ; and hf“ are the embeddings of the edges and vertices after / update
steps and where y; ; and y; encode initial or auxiliary edge and vertex features as
for example node inputs and edge type. A GNN for these update rules is illustrated
in Fig.9.4. In the next section we describe how such GNNSs can be used to learn the

interaction types between objects from time series data.

9.7.2 Network Structure to Learn Interaction Graphs

In this section, we describe how to implement a network structure to learn the inter-
action types between objects as described in Sect. 8.6 and based on [184]. We start by
constructing an encoder using GNNs that maps an observation o = [0y, ..., 0;] of
k objects with o; = [x; (f;)];<r to discrete variables r; ; representing the interaction
type. For any labels i and j, the variable r; ; is a one-hot encoding of one of the e
distinct interaction types.

Encoder: We use a GNN with the updates rule given in (9.3) and (9.4) for the
encoder, where we start from a fully connected graph (see Fig.9.5). A feedforward
neural network f.np is used to map the observations o; to the vertex embeddings, i.e.,
hll = femb(0;). Then, we use the update rules (9.3) and (9.4) (with trivial auxiliary
features y; ; and y;) to evolve the GNN for L steps and obtain hlL ; as an output.

9.7 Network Structure to Find Interaction Graphs 103

Samples from

0; = [xi (tl)' - X (tT)] the Gumbel(0,1) :[Xl (t’) vy xk (t,), M]

dlstrlbutlon

\O *E w E
Ti,j

Representation
of interaction types

Encoder Edge embeddlngs

Decoder

Fig. 9.5 Network structure to find interaction types. The encoder is a GNN with update rules given
in (9.3) and (9.4). It takes time sequences of k objects as an input, where & may vary between
different samples o, and provides edge embeddings hL as an output. The edge embeddings can
be considered to parametrize a distribution, from Wthh we sample continuous approximations of
one-hot embedding r;, ; of the interaction types. The stochastic input for this reparametrization trick
is thereby provided by i.i.d. samples from the Gumbel(0,1) distribution. A decoder is then asked
to evolve the state of all the objects starting from initial states x; () and based on the interaction
types encoded in the representation r. The decoder is thereby implemented as a GNN with update
rules given in (9.7) and (9.8)

Let us denote all parameters describing the GNN, and hence the encoding map,
by ©. To interpret the continuous output variables hlL ; as discrete variables, we

use a common trick in machine learning, namely considering softmax(hé ;) asa
distribution gg (r;, j|0) over the discrete variable r; ;, where the i-th component of the
vector valued function softmax(a) of an n-dimensional real vector a is defined as

et

> e .

softmax(a); = 9.5)

Since Z;’zl softmax(a); = 1, we can indeed consider the output of softmax(a)
as a distribution over a discrete variable with n distinct values.

Sampling: Since we obtain a distribution over the representation as an output of the
encoder, we have to sample from it to provide an input to the decoder. Unfortunately,
sampling is a non-differentiable process in the parameters of the set ®, and hence
disallows the training of the GNNs with stochastic gradient descent. In Sect. 9.3.2, we
encountered the same problem and solved it with the reparameterization trick [193].
The essence of this trick is to replace the sampling process by using a differentiable
function of the output variables of the encoder and a random variable with fixed
distribution. The samples for the random variable with fixed distribution are then
provided as an input to the network. However, such a refactoring does not work
for discrete random variables due to the discontinuous nature of discrete states. A
recent approach to solve this problem was considered in [211], where it is suggested

104 9 Methods: Using Neural Networks to Find Simple Representations

to approximate the discrete distribution with a continuous one and then use the
reparameterization trick. More concretely, we draw samples from the distribution

hi; +g
ri,j = softmax [——] , (9.6)
T

where g € R¢ is a vector of i.i.d. samples drawn from a Gumbel(0,1) distribu-
tion and the softmax temperature t controls the strength of the smoothening. The
Gambel(0,1) distribution is defined by the probability density function f(x) =
exp(—x — exp(—x)). Note that, for T — 0, the distribution converges to one-hot
samples of our categorial distribution.

Decoder: The decoder takes the representation r; ; of the interactions as an input and
a question ¢ = [x(¢"), M] where x(t') = (x1(¢'), ..., x;(¢')) describes the states of
all objects at a time ¢’ and where M is the number of time steps for which the decoder
should make the state evolve for a fixed time difference Ar. Let us denote the future
states predicted by the decoder for times ¢/, ' + At, ..., + M At by x?, o xiM for
the i-th object, and let us initialize xio = x; (") for all objects. We use again a GNN
for the decoder with a different neural network for each type of interaction. Hence,
we slightly adapt the update rules [210]:

vis e hi = rijsfi (x50, 9.7)
i,j,s
er>v: xt =xf 4 fv(Zfl;,i) , 9.8)
i#]j

where r; ; ; denotes the s-th element of r; ;. The first update rule determines the
interaction between the two objects with states x{ and xj.. In the case where the
representation 7; ; is a one-hot encoding whose a-th entry is equal to one (i.e., 77 j,, =
1), only one decoder is applied to the input states and we have h; ; = f'([x{, x{]).
Hence, there is indeed one decoder for each interaction type. The second update rule
takes in a description of the interaction k¢ ; between the objects with labels i and j
at the c-th time step and should provide the states xi“rl of the system as an output.
Hence, applying these update rules M times should approximate the time evolution

of the objects for time M At.

Training: The complete network shown in Fig.9.5 can be trained with stochastic
gradient descent. The loss function consists of two terms. A prediction loss given by

k T
SN I +ean —xg|? 9.9)

9.7 Network Structure to Find Interaction Graphs 105

and a loss term motivated by the KL term appearing in the cost function of variational
autoencoders (Appendix B) given by a sum of entropies [184]

> " H(go(rijl0)) (9.10)
i#]

Chapter 10 ®)
Applications: Physical Toy Examples oo

In this chapter, we apply the network structures of Chap.9 (to which we refer as
SciNet for simplicity) to find representations of (simulated) observation data of six
physical toy systems. The results demonstrate that SciNet can help to recover concepts
in physics by providing the relevant physical parameters, both in quantum- and
classical-mechanical settings. We also show that the results are robust against noise
in the experimental data.

In summary, without providing any prior knowledge about the considered physical
systems to SciNet (apart from the observational data), we find: (i) given a time series
of the positions of a damped pendulum, SciNet can predict future positions with
high accuracy and it uses the relevant parameters, namely frequency and damping
factor (which are sampled independently to generate the training data), separately
in two of the latent neurons (and sets the activation of unnecessary latent neurons
to zero); (ii) given a time series of the angular displacement and velocity of a non-
linear pendulum, SciNet switches to a representation that evolves linearly in time.
(iii) SciNet finds and exploits conservation laws: it uses the total angular momentum
to predict the motion of two colliding particles; (iv) given measurement data from a
simple quantum experiment, SciNet can be used to determine the dimension of the
underlying unknown quantum system and to decide whether a set of measurements is
tomographically complete, i.e., whether it provides full information about the quan-
tum state. Furthermore, operationally meaningful representations of mixed quantum
states can separate local degrees of freedom in the representation from non-local
ones; (v) considering observations coming from different experiments with charged
particles, SciNet separates the charges and masses of the particles in its operationally
meaningful representation; (vi) given a time series of the positions of the Sun and
Mars as observed from Earth, SciNet switches to a heliocentric representation—that
is, it encodes the data into the mean anomalies of the two planets with respect to the
Sun; (vii) given time series of the positions and velocities of several particles in a
box, where some of them are connected by a spring, SciNet classifies the interaction
between the particles, i.e., SciNet’s representation encodes wether two particles are
connected by a spring or not. The runtime to train the networks for all examples takes
at most a few hours on a standard laptop.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 107
R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_10&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_10

108 10 Applications: Physical Toy Examples

10.1 Motivation

In Chap. 8, we have formalized what we consider to be a “simple” representation
of a physical system and in Chap.9, we described how to find such representations
with neural networks. In this chapter, we apply these methods to several examples
and analyze the extracted representations. The results show that SciNet finds, with-
out having been given any prior information about the specific physical systems,
the same quantities that we use in physics textbooks to describe the different set-
tings. Hence, our formalization of “simple” representations corresponds well to what
representations physicists prefer to describe data.

In all the examples, the training data we use is operational and could be gener-
ated from experiments, i.e., the correct answer is the one observed experimentally.'
Here, we use simulations instead because we only deal with classical and quantum
mechanics, theories whose predictions are experimentally well tested in the relevant
regimes. One might think that using simulated data would restrict SciNet to redis-
covering the theory used for data generation. However, in particular for quantum
mechanics, we are interested in finding conceptually different formulations of the
theory with the same predictions.

The specific examples considered in this chapter were chosen according to the
following criteria:

e The total number of parameters that needs to be stored in the representation is
small (i.e., around 5 real parameters).

e The examples should demonstrate the “usefulness® of the different criteria for
representations defined in Sect. 8.4.

e Since our longterm goal is to apply the methods from Chap. 9 to better understand
quantum mechanics, we also consider examples including quantum systems.

e We focus on examples where the representation contains conceptually interesting
information.

The first criterium is purely technical and ensures that the interpretation of the
representation does not get too cumbersome and that the training of the neural net-
works does not take too long on a standard laptop. Further examples, e.g. using video
recordings of fire flames as observations, can be found in [192].

From a machine learning perspective, all the considered examples are similarly
challenging. The Tensorflow library [212] makes setting up the network structures
very simple. Usually, we work with encoders and decoders consisting of two hidden
layers with around 200 neurons per layer (see Table C.1 for the details). Networks
of this size were able to approximate the encoding and decoding mappings well for
all the following examples.” The remaining difficulty was to find a “good” choice

! For example, one could consider a temporal sequence of positions as non-operational data, but
use video recordings instead, since such observations are similar to those that humans perceive with
their eyes. Although this is a valid argument, using video data as observations conceptually adds
nothing to the examples considered in this chapter, but would complicate neural network training.

2 A simple method to choose the network size is the following: Start with a small network size for
SciNet (with enough latent neurons) and train it with the only target of minimizing the prediction

10.2 Damped Pendulum 109

for the hyperparameters such as the parameter 8 appearing in the cost function 9.1
to learn operationally meaningful representations. Importantly, one does not have
to know a minimal representation of the considered physical system to choose the
hyperparameters (see Boxes 2 and 3). Although, as discussed in Sect. 9.5, the methods
introduced in Chap.9 are not guaranteed to find the “optimal” representation, they
always find them in the following examples (without post-selecting examples, i.e.,
we did not post-select examples based on whether SciNet worked or not).

10.2 Damped Pendulum

Following the work in [22], we consider a simple example from classical physics,
the damped pendulum, described in Box 5. The time evolution of the system is given
by the differential equation —xx — bx =mX, where « is the spring constant, which
determines the frequency of the oscillation, and b is the damping factor. We keep the
mass m constant (it is a scaling factor that could be absorbed by defining ¥’ = x /m and
b’ =b/m), such that x and b are the only variable parameters. We consider the case
of weak damping here, where the solution to the equation of motion is given in Box 5.

We generate the training data by uniformly sample the spring constant « and the
damping factor b. Hence, we would expect that a statistically independent represen-
tation (Definition 8.3) recovers these parameters. We choose a network structure for
SciNet with 3 latent neurons. As an input, we provide a time series of positions of the
pendulum and we ask SciNet to predict the position at a future time (see Box 5 for
details). The training process is described in Box 1 and based on beta-VAE [49]. The
accuracy of the predictions given by SciNet after training is illustrated in Fig. 10.1a.

Without being given any physical concepts, SciNet learns to extract the two rel-
evant physical parameters from (simulated) time series data for the x-coordinate of
the pendulum and to store them in the latent representation. As shown in Fig. 10.1b,
the first latent neuron depends nearly linearly on b and is almost independent of «,
and the second latent neuron depends only on «, again almost linearly. Indeed, more
quantitatively, using the methods introduced in [213-215] and implemented in [216]
to estimate the total correlation C (R, Ry) (which corresponds to the mutual infor-
mation in this case) between the two latent neurons, we find C(R;, R;) = 0.107,
where in comparison we have C(R;, R;) = 10.95 for fully correlated latent neu-
rons. We conclude that SciNet has recovered the same time-independent parameters
b and « that are used by physicists. The third latent neuron is nearly constant and
does not provide any additional information—in other words, SciNet recognized that
two parameters suffice to encode this situation.

loss. If the prediction accuracy stays low, increase the size of the network. Successively go on like
this until good prediction accuracy can be achieved. (If the prediction accuracy stays low even for
large networks, the input data might not contain sufficient information).

110 10 Applications: Physical Toy Examples

Latent activation 1
Latent activation 2

4,075 75 oy
%os; 050 10.0 (W9®

—— True time evolution
—-—- Predicted time evolution

1.0
n
_ o5 £
£ g
< 0.0 g
]
-0.5 :
3

T T T T i
00 25 50 75 100 1'00075 7.5 .
6,9 A
tls] %on; 050100 (9
(a) (b)

Fig. 10.1 Damped pendulum (Figures taken from Iten and Metger et al., Physical Review Letters,
2020 [22]). SciNet is fed a time series of the trajectory of a damped pendulum. It learns to store the
two relevant physical parameters, frequency and damping, in the representation, and makes correct
predictions about the pendulum’s future position. a Trajectory prediction of SciNet. Here, the spring
constant is k = 5 kg/s*> and the damping factor is b = 0.5 kg/s. SciNet’s prediction is in excellent
agreement with the true time evolution. b Representation learned by SciNet. The plots show the
activations of the three latent neurons of SciNet as a function of the spring constant « and the
damping factor b. The first two neurons store the damping factor and spring constant, respectively.
The activation of the third neuron is close to zero, suggesting that only two physical variables are
required. On an abstract level, learning that one activation can be set to a constant is encouraged
by searching for unctorrelated latent variables, i.e., by minimizing the common information of the

latent neurons during training

Box 5: Time evolution of a damped pendulum [22] (Sect. 10.2)

Problem: Predict the position of a one-dimensional damped pendulum at different times.
Physical model: ~ Equation of motion: m¥ = —«xx — bx .
Solution: x(t) = Aoe_%’ cos(wt + 8¢), with w = \/g 1-— % .

Observation: ~ Time series of positions: 0 = [x (ti)]i l..50 € R, with equally spaced
t; €0, 5]s. Mass m = 1kg, amplitude Ap = Im and phase 8o = 0 are fixed; spring
constant k € [5, 10] kg/s? and damping factor b € [0.5, 1] kg/s are independently and
uniformly sampled during data creation.

Question: Prediction times: ¢ = fyreq € [0, 10]s.

Correct answer: Position at time fpred: @* = X (fpred) € R.

Network structure: Essentially, the network depicted in Fig. 9.1 with three latent neu-
rons (see Appendix B for the detailed description of the network structure). The network
size can be found in Table C.1.

Training: Described in Box 2 with parameters given in Table C.2.

Key findings:

e SciNet predicts the positions x (fpreq) With a root mean square error below 2% (with
respect to the amplitude Ag = 1m) (Fig. 10.1a).

e SciNet stores k and b in two of the latent neurons, and does not store any information
in the third latent neuron (Fig. 10.1b). Hence, it finds a statistically independent

representation.

10.3 Dynamics of the Nonlinear Pendulum 111

10.3 Dynamics of the Nonlinear Pendulum

In this section we demonstrate how mathematical prior knowledge integrated into
SciNet’s network structure can help to investigate the dynamical behaviour of a
nonlinear pendulum. The angular displacement 8 of a nonlinear pendulum satisfies
the differential equation 0= —a)(z) sin(#) with wy = +/8/1, where g is the acceleration
due to gravity and / denotes the length of the pendulum. This differential equation has
complex analytic solutions that were described in terms of Jacobi elliptic functions
in 2007 [217]. Koopman operator theory takes a different approach by searching for
a coordinate transformation of (0, é), such that the transformed coordinates allow
for a linear time evolution (see Sect. 8.5). Here, we describe the results from [183],
demonstrating how SciNet can be used to find such coordinate transformations.

The training data for SciNet is generated by sampling 6 and 6 from the interval
[—0.5, 0.5]. The network structure for SciNet with 2 latent neurons is described in
Sect.9.6. As an input to SciNet, we provide the angle and the angular velocity at
a starting time and ask SciNet to predict the time evolution of these quantities (see
Box 6 for the details). The training process is similar as described in Box 4 and we
refer to [183] for the details.

Box 6: Time evolution of a nonlinear pendulum [183] (Sect. 10.3)

Problem: Predict the angle and angular velocity of a one-dimensional nonlinear pen-
dulum at different times.

Physical model: Equation of motion: § = —a)g sin(f) with wy = %
Solution: An analytic solution can be derived in terms of Jacobi elliptic functions [217].
The data set used for training and evaluation of the neural network is created by solving
the equation of motion in MATLAB using the ode45 solver [183].

Observation: o = [6p, o] with 6o, 6o € [—0.5, 0.5].

Question: Implicit.

Correct answer: ~ Time series [ao, . .., a,| = [(0(t0). 6(10)), ..., O(t), é(t,,))] ofn =
50 observations, with fixed time steps Ar = t;;1 — t; of 0.02 seconds.

Network structure: Essentially, the network structure depicted in Fig. 9.3 with two latent
neurons and parametrized update rules of the form

Uy,) = e“A’([cos(a)At)r] — sin(wAt)r], sin(wAt)r; + cos(wAt)r]),

where 11 and w are given as an output of an additional neural network A : R — R?
that takes rl2 + r22 as an input (to enforce circular symmetry in the eigenfunction coor-
dinates). The network sizes can be found in [183].
Training: Similar as described in Box 4. (see [183] for the details).
Key findings:
e SciNet finds coordinates that linearize the dynamics of the nonlinear pendulum (see
Fig. 10.2).
e The frequency w decreases continuously in rl2 + r22 as the energy of the pendulum
is increased (see Fig. 10.2).

112 10 Applications: Physical Toy Examples

a) c)

e+ tan~'ry /1y
CII— | ——————
0 00044 0.0088 - 0 "

b)

—085 0.4 -0.0002 0.0002

Fig. 10.2 Nonlinear pendulum (Figure reproduced from Lusch et al. Nature Communications
2018, [218]). The figure shows the results from [183], where SciNet is applied to observation
data from a nonlinear pendulum (see Box 6 for the details). SciNet learns to accurately predict
the time evolution of the nonlinear pendulum (Fig. 10.2a) and finds a coordinate transformation
given by anencoder E : (6, 8) — (r1, r2) thatimplements Koopman eigenfunctions (represented in
Fig. 10.2c) and maps the angular displacement and velocity to coordinates (ry,) that are evolved
in time At according to update rules of the form uy—(, v (r1, 72) = exp(nAr)([cos(wAt)r —
sin(wAt)ry], sin(wAt)r; + cos(wAt)rp]). Figure 10.2b shows SciNet’s prediction for 0 and 6 and
the corresponding values for r; and r, for ten initial conditions that are evolved in time until the
relative prediction error reaches 10%. The dependence of the parameters ; and w determining the
update rule on r| and r; is shown in Fig. 10.2d. Note that the (absolute value of the) frequency w
decreases if the amplitude of the pendulum increases and that the damping factor p stays approxi-
mately constant

The results are presented in Fig. 10.2 and taken from [183]. SciNet is able to predict
the time evolution of the nonlinear pendulum with high accuracy. Furthermore, it finds
a coordinate transformation from (6, 6) to (r1, r»), such that the representation (ry, ;)
evolves according to linear dynamics. More concretely, the encoder implements
Koopman eigenfunctions with eigenvalues that are allowed to continuously depend
on rl2 + r22. The variation in the eigenvalues allows to handle the continuous spectrum
of the nonlinear pendulum in an elegant and interpretable way. As shown in Fig. 10.2,
SciNet correctly identifies the dependence of the frequency w on the energy of the
pendulum.

10.4 Conservation of Angular Momentum

One of the most important concepts in physics is that of conservation laws, such
as conservation of energy and angular momentum. While their relation to symme-
tries makes them interesting to physicists in their own right, conservation laws are

10.4 Conservation of Angular Momentum 113

also of practical importance. If two systems interact in a complex way, we can use
conservation laws to predict the behaviour of one system from the behaviour of the
other, without studying the details of their interaction. For certain types of questions,
conserved quantities therefore act as a compressed representation of joint properties
of several systems.

We consider the scattering experiment discussed in [22], shown in Fig. 10.3 and
described in Box 7, where two point-like particles collide. Given the initial angular
momentum of the two particles and the final trajectory of one of them, a physicist
can predict the trajectory of the other using conservation of total angular momentum.

To see whether SciNet makes use of angular momentum conservation in the same
way as a physicist would do, we train it with (simulated) experimental data as
described in Box 7 with one latent neuron, and add Gaussian noise to show that
the encoding and decoding are robust. Indeed, SciNet does exactly what a physi-
cist would do and stores the total angular momentum in the latent representation
(Fig. 10.3b). This example shows that SciNet can recover conservation laws, and
suggests that they emerge naturally from compressing data and asking questions
about joint properties of several systems.

Before collision After collision
(©,8,0,m,) .
S
. (@ g (1), my,) g 109
g
r = ol
r 3
N - > T T T T
-1 0 1 2
Total angular momentum [kg m?/s]
(a) (b)

Fig. 10.3 Collision under conservation of angular momentum (Figure reproduced from Iten and
Metger et al., Physical Review Letters, 2020 [22]). In a classical mechanics scenario where the
total angular momentum is conserved, the neural network learns to store this quantity in the latent
representation. a Physical setting. A body of mass m;q is fixed on a rod of length r (and of
negligible mass) and rotates around the origin with angular velocity w. A free particle with velocity
Viree and mass myee collides with the rotating body at position q = (0,). After the collision, the
angular velocity of the rotating particle is @’ and the free particle is deflected with velocity V/free.
b Representation learned by SciNet. Activation of the latent neuron as a function of the total angular
momentum. SciNet learns to store the total angular momentum, a conserved quantity of the system

114 10 Applications: Physical Toy Examples

Box 7: Two-body collision with angular momentum conservation [22]

(Sect. 10.4)

Problem: Predict the position of a particle fixed on a rod of radius r (rotating about the
origin) after a collision at the point (0, r) with a free particle (in two dimensions, see
Fig. 10.3a).

Physical model: Given the total angular momentum before the collision and the veloc-
ity of the free particle after the collision, the position of the rotating particle at time
tlgml (after the collision) can be calculated from angular momentum conservation:
J = mmtrza) — rMiree (Viree)x = mrotrzw/_ I'Mfree (Vi'ree)x =J.

Observation:

Time series of both particles before the collision: 0=
[(£7°, groc (1Y) (lifree, Qfree (llfree))]is(lyw 5;, with times ' and lifree randomly
chosen for each training sample. Masses m ot = mgee = lkg and the orbital radius
r = 1m are fixed; initial angular velocity w, initial velocity Ve, the first component
of qfrec (0) and final velocity vj,., are varied between training samples. Gaussian noise
(u = 0,0 = 0.01m) is added to all position inputs.

Question: Prediction time and position of free particle after collision: g =
(o 1/ Qe @)1 5)) -

Correct answer: Position of rotating particle at time #, _;: a* = q}ol(tl’)red) .

Network structure: ~ Network depicted in Fig. 9.1 with one latent neuron and specifica-
tions given in Table C.1.

Training: Described in Box 1 with parameters given in Table C.2.

Key findings:

e SciNet predicts the position of the rotating particle with root mean square prediction
error below 4% (with respect to the radius r = 1m).

e SciNet is resistant to noise.

e SciNet stores the total angular momentum in the latent neuron.

10.5 Representation of Qubits

Quantum state tomography is an active area of research [219]. Ideally, we look for
a faithful representation of the state of a quantum system, such as the wave func-
tion: a representation that stores all information necessary to predict the probabilities
of the outcomes for arbitrary measurements on that system. However, to specify a
faithful representation of a quantum system it is not necessary to perform all theo-
retically possible measurements on the system. If a set of measurements is sufficient
to reconstruct the full quantum state, such a set is called romographically complete.

Here we discuss the results from [22, 23] showing that, based only on (simulated)
experimental data and without being given any assumptions about quantum theory,
SciNet recovers a faithful representation of the state of small quantum systems and
can make accurate predictions. In particular, this allows us to infer the dimension
of the system and distinguish tomographically complete from incomplete measure-
ment sets. Further, SciNet can separate parameters in the representation according
to locality conditions (using the network structure to find operationally meaningful

10.5 Representation of Qubits 115

representations shown in Fig.9.2) and end up with a similar representation of two
qubits as given in [220]. Boxes 8 and 9 summarize the setting and the results.

A pure state on n qubits can be represented by a normalized complex vector
ly) € C*', where two states |1/) and |') are identified if and only if they differ by
a global phase factor, i.e., if there exists ¢ € R such that |[) = /¢ |1/f’). The nor-
malization condition and irrelevance of the global phase factor decrease the number
of free parameters of a quantum state by two. Since a complex number has two real
parameters, a single-qubit state is described by 2 x 2! — 2 = 2 real parameters, and
a state of two qubits is described by 2 x 22 — 2 = 6 real parameters.

Box 8: Representation of pure one- and two-qubit states [22]

(Sect. 10.5.1)

Problem: Predict the measurement probabilities for any binary projective measurement
|w) (@] € C%" on a pure n-qubit state |{) € C* forn =1,2.

Physical model: The probability to measure 0 on the state |) € C" performing the
measurement |) (o] € C2" x C?" is given by p(w, ¥) = | (w) wlz .

Observation: Operational parameterization of a state |Y): o = [p(&i, V)licq1,...n))
for a fixed set of random binary projective measurements M =
{lal) (1], ..., ocnl)(otm |} (n1 = 10 for one qubit, n; = 30 for two qubits).

Question: Operational parameterization (see Remark 10.1) of a measurement |w) (w|:
q = [p(Bi, ®)]ie(1,....ny) bY its outcome probabilities on a fixed set of random states
S:={IB1),....|Bn,)} (n2 = 10 for one qubit, n, = 30 for two qubits).

Correct answer: a*(w, ¥) = p(w, ¥) = | (w) V|2

Network structure: ~ Network depicted in Fig. 9.1 with varying numbers of latent neurons
and specifications given in Table C.1.

Training: Described in Box 1 with parameters given in Table C.2.

Key findings:

e SciNet can be used to determine the minimal number of parameters necessary
to describe the state |y) (see Fig. 10.4) without being provided with any prior
knowledge about quantum physics.

e SciNet distinguishes tomographically complete and incomplete sets of measure-
ments (see Fig. 10.4).

More generally, one may also consider mixed quantum states, which can be con-
sidered as a (classical) probabilistic mixture of pure quantum states. Formally, we
describe mixed quantum states on n qubits by positive semi-definite matrixes p €
C?" x C?" with unit trace. Since there exists an eigendecomposition with real eigen-
values for any positive semi-definite matrix p, we can write p = 212;1 pilvi i)
Since p has unit trace, we have), p; = 1 and we can consider p as a probabilistic
mixture of the pure states [v;). A pure state [/) can then be considered as a special
case of a density matrix p = |)| with a single eigenvalue that is equal to one.
For further details and a more in depth introduction into the formalism for quantum
states we refer to [72].

3 The notation |-) and (-] is common in quantum mechanics and is called the “bra-ket” notation.
The reader may consider the ket-vectors |-) as a row vector, where a bra-vector (| is considered as
a column vector. Further, the entries from (| are the conjugate transposed entries of |/).

116 10 Applications: Physical Toy Examples

Here, we consider binary projective measurements on n qubits. These measure-
ments are operators of the form |w) (w|, which are fully described by a vector
|w) € C*, with measurement outcomes labeled by 0 for the projection on |w) and
1 otherwise. The probability to get outcome 0 when measuring |®) (w| on a quan-
tum system in a pure state |v/) is then given by p(w, ¥) = | (@) ¥|*, where (-) -
denotes the standard scalar product on C?*. More generally, the probability to get
outcome 0 when measuring @ on a quantum system in a mixed state p is given by
p(w, p) = tr |w)w|p. Note that this is consistent with the probability stated for pure
states setting p = [)].

To generate the training data for SciNet, we assume that an agent B has access to
a preparation experiment consisting of two devices. The first device creates (many
copies of) a quantum system in a state p, which depends on the setting of the dials
and buttons of the device. The second device can perform any binary projective
measurements in the set M := {|a1) (a1l ..., |an, > (otn1 |} which we would like to
use to determine the state of the quantum system. Agent B performs all measurements
in M several times on the same quantum state p to estimate the probabilities p(«;, o)
of measuring O for the i-th measurement. These probabilities form the observation
given to SciNet.

Based on a representation for the collected data by agent B, agents C; are asked
to predict the measurement outcomes of measurements Ia) j> (a) j| chosen from a set
Q/. To parameterize the measurement |;)(w;| we choose sets of states

'{2)} :
The probabilities p(w;, ﬂ{), ..., plwj, B1,) are provided to the agent C; as the

question input. The agent C; then has to predict the probability p(w;, p) for mea-
suring the outcome O on the state p when performing the measurement |a) j> (w I |

=)

Remark 10.1 We could parameterize the set of possible measurements by any param-
eterization that is natural for the experimental setup, for example the settings of the
dials and buttons on an experimental apparatus. Such a natural parameterization is
assumed to fully specify the measurement, in the sense that the same settings on the
experimental apparatus will always result in the same measurement being performed.
Because S/ only represents our choice for parameterizing the measurement setup,
it is natural to assume that S/ contains enough states to fully characterize all the
measurements in Q7.

10.5.1 Minimal Representations for Pure Quantum States

As described in [22], we use SciNet in the quantum setting given above to find
the required number of real parameters to describe pure quantum states on one and
two qubits. Further, we then demonstrate how to use SciNet to determine if a set

10.5 Representation of Qubits 117

B 2-dim. subspace
HEl 3-dim. subspace
I Tom. complete

@ © 0.2
o HEE Tom. complete o
=1
ks I Tom. incomplete L
kel kel
(9] (9]
s 5 0.1
Y Y
] (]
S s
] g0
0 1 2 3 4 5 012 34567829
Number of latent neurons Number of latent neurons
(a) One qubit. (b) Two qubits.

Fig. 10.4 Quantum tomography (Figure taken from Iten and Metger et al., Physical Review Letters,
2020 [22]). SciNet is given tomographic data for one or two qubits and an operational description of
a measurement as a question input and has to predict the probabilities of outcomes for this measure-
ment. We train SciNet with both tomographically complete and incomplete sets of measurements,
and find that, given tomographically complete data, SciNet can be used to find the minimal number
of parameters needed to describe a quantum state (two parameters for one qubit and six parameters
for two qubits). Tomographically incomplete data can be recognized, since SciNet cannot achieve
perfect prediction accuracy in this case, and the prediction accuracy can serve as an estimate for the
amount of information provided by the tomographically incomplete set. The plots show the root
mean square error of SciNet’s measurement predictions for test data as a function of the number of
latent neurons

of measurements is tomographically complete or not. More concretely, we use the
network structure for SciNet shown in Fig.9.1 and the training process described in
Box 1 to find the minimal number of required parameters to represent quantum states.
If the prediction accuracy stays low for any number of latent neurons, we can conclude
that the provided observation data does not contain sufficient information, which
means in the considered case that the set of measurements M is tomographically
incomplete. How to operationally separate the parameters in the representation is
then considered in Sect. 10.5.2.

We consider an agent B performing measurements on pure quantum states |y)
and one agent C := C; who is asked to predict the measurement probability p(w, ¥)
of measuring zero when performing the measurement |w) (w| on |¢). We train SciNet
with different pairs (|w) (@], |¥)) for one and two qubits, keeping the measurement
sets M and S := S fixed for each choice of the qubit number. We choose n; = np, =
10 for the single-qubit case and n; = n, = 30 for the two-qubit case. The setting is
summarized in Box 8.

The results are shown in Fig. 10.4. Varying the number of latent neurons, we can
observe how the quality of the predictions improves as we allow for more parameters
in the representation of |1/). To minimize statistical fluctuations due to the random-
ized initialization of the network, each network specification is trained three times
and the run with the lowest mean square prediction error on the test data is used.

118 10 Applications: Physical Toy Examples

For the cases where M is tomographically complete, the plots in Fig. 10.4 show
a drop in prediction error when the number of latent neurons is increased up to two
or six for the cases of one and two qubits, respectively.* This is in accordance with
the number of parameters required to describe a one- or a two-qubit state. Thus,
SciNet allows us to extract the dimension of the underlying quantum system from
tomographically complete measurement data, without any prior information about
quantum mechanics.

SciNet can also be used to determine whether the measurement set M is tomo-
graphically complete or not. To generate tomographically incomplete data, we choose
the measurements in M randomly from a subset of all binary projective measure-
ments. Specifically, the quantum states corresponding to measurements in M are
restricted to random real linear superpositions of k orthogonal states, i.e., to a (real)
k-dimensional subspace. For a single qubit, we use a two-dimensional subspace; for
two quibts, we consider both two- and three-dimensional subspaces.

Given tomographically incomplete data about a state |), it is not possible for
SciNet to predict the outcome of the final measurement perfectly regardless of the
number of latent neurons, in contrast to the tomographically complete case (see
Fig.10.4). Hence, we can deduce from SciNet’s output that M is an incomplete set
of measurements. Furthermore, this analysis provides a qualitative measure for the
amount of information provided by the tomographically incomplete measurements:
in the two-qubit case, increasing the subspace dimension from two to three leads to
higher prediction accuracy and the required number of latent neurons increases.

Remark 10.2 (Efficient representation of states of many body systems) Quantum
many body systems are challenging to describe because of the exponential complexity
of the many-body wave function encoding the non-trivial correlations between the
particles. In [222-236] neural networks are used to efficiently represent states of
quantum many body systems, to find their ground states and even to simulate their
unitary time evolution. In particular, in [223], variational autoencoders are used to
approximate the distribution of the measurement outcomes of a specific quantum
state for a fixed measurement basis and the size of the neural network can provide
an estimate for the complexity of the state. In contrast, the approach presented in
this section does not focus on an efficient representation of a given quantum state
and it is not specifically designed for learning representations of quantum systems.
Nevertheless, SciNet can be used to produce representations of arbitrary states of
simple quantum systems without retraining.

4 In the case of a single qubit, there is an additional small improvement in going from two to three
latent neurons: this is a technical issue caused by the fact that any two-parameter representation
of a single qubit, for example the Bloch sphere representation, includes a cyclic parameter, which
cannot be exactly represented by a continuous encoder (see Appendix D). The same likely applies
in the case of two qubits, going from 6 to 7 latent neurons. This restriction also makes it difficult
to interpret the details of the learned representation. Recent work [221] tackles this problem by
using theory of manifolds and splitting manifolds into parts for which there is continuous encoding.
Although this work is technically very useful, it is not discussed in detail here because it does not
contribute a lot to the discussion at the conceptual level.

10.5 Representation of Qubits 119

10.5.2 Local Representation of Two-Qubit States

In the last section, we investigated the number of parameters required to describe
(pure) quantum states. Let us now follow the approach in [23, 237] to separate the
parameters for a representation of a (mixed) two-qubit state o in an operationally
meaningful way, in the sense as described in Sect. 8.4.2.2. More concretely, we use
the network structure for SciNet shown in Fig. 9.2 and the training process described
in Box 3.

Box 9: Local representation of two-qubit states [23] (Sect. 10.5.2)

Problem: Three agents Cy, C, and C3 have to predict the measurement probabilities
for binary projective measurements on two qubits. Thereby, agent C; and C» are asked
questions about measurement output probabilities on the first and second qubit, and
gent C3 is asked to predict joint measurement output probabilities on both qubits.

Physical model: The probability to measure O on the state p performing the measure-
ment o) (w| is given by p(w, p) =tr |w) (| p .

Observation: Operational parameterization of a state p: 0 = [p(d;, p)lie(1,... ;) fOr a
fixed set of random binary projective measurements M := {|a) (o], ..., |@75) (@75}

Questions: ~ Operational parameterization (see Remark 10.1) of measurements | o i) {w; E
g/ = [p(ﬂ;’, wj)]

states

) by their outcome probabilities for fixed sets of random

= o)

ief{l,...,7

Al)e0), |87) = 10)®

‘ ,5[2> for random one-qubit states ‘ ,gl.l> and) /§l2> and where | ﬂf) are random two-

where {

,,,,,

qubit states. The measurements are chosen to be of the following form: |w;) (w1| =
Y1) (Y1l ®id, lw2) (w2 =1d @ [¥2) (2| and |w3) (w3] = |¥3) (3], where [y} and
[2) are one-qubit states, and |/3) is a two-qubit state.

Correct answers: The decoder D; should output a*(wj,p) = p(w;,p)=
trfwj){w;] o

Network structure: ~ Network depicted in Fig. 9.2 with 15 latent neurons® and three
decoders and network sizes given in Table C.1.

Training: Described in Box 3 with parameters given in Table C.2.

Key finding: SciNet finds a representation for two-qubit states that separates parameters
storing local degrees of freedom of each of the qubits. The found representation is
similar to the one presented in [220].

¢ For simplicity, we have choosen the minimal number of required latent neurons here.
This number could be found by successively increasing the number of latent neurons until
SciNet achieves hight prediction accuracy.

120 10 Applications: Physical Toy Examples

For the preparation experiments, an agent B fixes 75 randomly chosen binary
measurements M := {|a) (o], ..., |a7s) (75|} that are performed on two-qubit
states p that are varied during the training. Three agents C;, C; and C3 are now
required to answer different questions about the two-qubit system:

e Agent Cy and C; are asked questions about measurement output probabilities on
the first and second qubit, respectively.
e Agent C3 is asked to predict joint measurement output probabilities on both qubits.

The question inputs consisting of a binary measurement |a) j)(a) j| (on one or
two qubits, respectively) are parametrised by 75 randomly chosen states S/ :=

l ‘,3{> ey ‘,87]5>} The details about the setting are summarized in Box 9.

Latentneuron 1 Latentneuron 2 Latent neuron3 Latent neuron 9 Latent neuron 11 Latent neuron 14

Qubit 1 as
function of z,x /
1 | 1 N
Qubit 1 as o] ot o) of
function of z,y -1 / -1 ' 1 ‘ | m
1 1

o il 3 o [
1 ¥ 1 ¥ T ¥ g ¥

1) ; ' X 1} -
Qubit 2 as of al ol o
function of z,x s 1 1 -af

.|.‘ =y

3t 17
Qubit 2 as o s _—
function of z,y -1 * -t . “ lu \
\ ! \

f_-‘ ¥ :)"I: ¥ I).1.;. nr "| ’v "1 ¥ "u %

Fig. 10.5 Results for the local representation of two-qubit states (Figure taken from Nautrup,
Metger and Iten et al., 2020 [23]). We consider a quantum-mechanical system of two qubits. An
encoder maps tomographic data of a two-qubit state to a representation of the state. Three agents
C1, C; and C3 are asked questions about the measurement output probabilities on the two-qubit
system, where a question is given as the parameterisation of a measurement. Agents C| and C, are
asked to predict measurement outcome probabilities on the first and second qubit, respectively. The
third agent C3 is tasked to predict measurement probabilities for arbitrary measurements on the
full two-qubit system. In total, 15 latent neurons are required to answer the questions of all agents
C1, C; and C3. Agent C3 requires access to all parameters, while agents Cy and C; need only access
to two disjoint sets of three parameters, encoded in latent neurons 1,9,11 and 2,3,14 respectively.
The plots show the activation values for these latent neurons in response to changes in the local
degrees of freedom of each qubit, with the bottom axes of the plots denoting the components of the
reduced one-qubit state p = 1/2(id + x ox + y 0y + z 0;) on either qubit 1 or 2

10.6 Charged Particles 121

We find that three latent neurons are used for each of the local qubit representations
as required by agents C; and C,. These local representations store combinations of
the x-,y- and z-component of the Bloch sphere representation p = 1/2(id + xo, +
yoy, + zo) of asinge qubit (see Fig. 10.5), where oy, oy, o, denote the Pauli matrices.
In general, a two-qubit mixed state p is described by 15 parameters, since a Hermitian
4 x 4 matrix is described by 16 parameters, and one parameter is determined by the
others due to the unit trace condition. Indeed, we find that the agent who has to predict
the outcomes of the joint measurements accesses all 15 latent neurons, including the
ones storing the two local representations. These numbers correspond to the numbers
found in the analytical approach in [220].

10.6 Charged Particles

In this section, we investigate a toy example from classical mechanics that is con-
sidered in [23, 237] to demonstrate that the criterium for a operationally meaningful
separation of parameters (Sect.8.4.2.2) leads to a discovery of the same parame-
ters that we know from physical text books. In contract to the example discussed in
Sect. 10.2, the methods used in this section are not biased by the distribution over
the training data. We use the network structure for SciNet shown in Fig.9.2 and the
training process described in Box 3. Further, we demonstrate how to use several
encoding agents instead of one by means of the same example.

We consider the setup shown in Fig. 10.6 consisting of two particles p; = (my, q;)
and p, = (my, q») with masses m |, m, and charges q;, g>. Experimenters (agents
B;) can perform the following reference experiments to gain information about the
properties of the particles:

1. The experimenter can elastically collide each of the particles p;, initially at rest,
with an uncharged reference mass m s moving at a fixed reference velocity vyey.
Then, the agent observes a time series of positions of the particle p; after the
collision.

2. We place a particle p; at the origin of a coordinate system at rest, and place
a reference particle pres = (Myef, gret) With fixed mass and charge at a fixed
distance d to the origin. Both particles are free to move. We observe a time
series of positions of the particle p; as it moves due to the Coulomb interaction
between itself and the reference particle.

We choose natural questions asked to different decoding agents C; (see Fig.8.3).
In the physical setting about which we ask the questions, the initial positions of the
particles p; and the positions of two target holes #; are fixed.

122 10 Applications: Physical Toy Examples

[

omz q;

Fig. 10.6 Toy example with charged masses (Figure taken from Nautrup, Metger and Iten et al.,
2020 [23, 237]). a There are two separated decoding agents C| and C», so there is no interaction
between their individual experimental setups. Each agent is required to shoot a particle p; (of mass
m; and charge ¢;) into a hole h; in the presence of a fixed gravitational field. They do this by
elastically colliding a projectile of fixed mass mgy with the particle p;. The distance to the hole is
fixed. Challenging agents choose the velocity v; with which the projectile is shot, and provide this
information to the decoding agents as a question input. The correct answer is the angle «; out of
the plane of the ground, such that if the projectile is fired with the given velocity at this angle, the
particle p; lands directly in the hole. b Now we consider two decoding agents C3 and C4 in a setting
where the two particles are subject to the Coulomb interaction between each other. The agents C3
and Cy are again required to shoot a projectile at the particles p; and p», respectively. The charged
particle will move in the Coulomb field of the other agent’s particle. Similar to the situation in a),
the agents are given velocities v3 or v4 as a questions and they have to predict the angles ¢ or ¢; in
the plane of the ground, respectively, such that if the mass is fired at this angle, it will “roll” on the
frictionless ground into the hole while the position of the other charge stays fixed. (The experiment
is then repeated with the roles of the agents reversed, i.e., the agent that first fired his mass now
fixes it at its starting position, and vice versa)

e Each decoding agent C; and C, are given projectiles with a fixed mass mgy, and
a challenging agent chooses a velocity v; with which the projectile will hit the
particle p;. The decoding agent C; (described by a decoder D)) is then asked to
predict the correct angle «; in the yz-plane with which the agent shoots his pro-
jectile against the particle p;, such that the particle p; lands directly, i.e., without
bouncing, in its target hole /; (under the influence of a constant homogeneous
gravitational field).

e Similarly, agents C3 and C,4 are also given projectiles, whose chosen velocities
v3 and vy are given as a question input to decoders D3 and D4. The goal of the
decoders is to predict the angle ¢; and ¢, in the xy-plane so that the particle p,
and p, will fly into its target hole, under the influence of the Coulomb field of the
other particle, which stays fixed.

Inboth cases, we restrict the possible velocities of the projectiles such that there exists
a (unique) angle that makes the particle land in the hole. Further, the prediction loss
is given by the squared difference between the angle chosen by the agent and the
correct angle that would have landed the mass directly into the hole; this correct
angle can be determined by experiments on the system.

10.6 Charged Particles 123

Box 10: Charged particles [23] (Sect. 10.6)

Problem: There are two physical challenges shown in Fig. 10.6 involving two charged
particles p; = (m;, g;) with masses m; and charges ¢;. In challenge a), two decoding
agents C1 and C, have to predict the shooting-angles o1 and « in yz-plane for a given
schooting-velocity, such that the particle p; or ps, respectively, land in a target hole
under the influence of a gravitational field. Similarly, in challenge b), two decoding
agents C3 and Cy4 have to predict the shooting-angles ¢; and ¢; in the xy-plane for a
given shooting-velocity, such that the particles p; or pa, respectively, lands in a target
hole.

Physical model: a) A particle with mass m; moves in a constant gravitational field
with strength g in negative z-direction. b) A charged particle p; moves according to
the action of the Coulomb force of the other particle. For a distance r between the
particles, the Coulomb force is proportional to g1g2/r>.

Observations: ~ See the experiments 1 and 2, described at the start of Sect. 10.6. In the
case of two encoding agents E;, each of them has only access to the experiments related
to particle p;.

Questions: In a) and b) the questions are given by the velocity with which the projectile
will hit the particle, i.e., g/ = v; for j € {1,2,3, 4}.

Correct answers: a) Assuming that the target is placed at x = dp, we find that o; =
% arcsin %. b) The answers in this setting are discussed in Appendix E.

Network structure: Single encoder: Network depicted in Fig. 9.2 with one encoder, 3
latent neurons® and four decoders. Multiple encoders: Network depicted in Fig. 9.2
with two encoders, 4 latent neurons? and four decoders. For both cases, the network
sizes are given in Table C.1.

Training: Described in Box 3 with parameters given in Table C.2.

Key finding: The key findings for a single and for multiple encoders are:

e Single encoder: SciNet stores the masses m; and my in separate latent neurons
(Fig. 10.7). The third latent neuron stores the product of the charges g1 g2, necessary
to quantify the strength of the Coulomb interaction. Crucially, the separation is not
biased by the distribution over the training data.

e Multiple encoders: There is no way for the encoding agents to directly encode
the product of the charges g; - ¢2. Instead, the representation produced by each
encoding agent stores ¢; individually.

¢ For simplicity, we have choosen the minimal number of required latent neurons here.
This number could be found by successively increasing the number of latent neurons until
SciNet achieves hight prediction accuracy.

10.6.1 Single Encoder

Let us first consider a single encoding agent B, and four decoding agents described
by decoders D;, D,, D3, D4. The setting and the results are summarized in Box 10.

We use the training process described in Box 3 to train SciNet. To analyse the learnt
representation, we plot the activation of the latent neurons for different examples

124 10 Applications: Physical Toy Examples

Latent neuron 1 Latent neuron 2 Latent neuron 3

Latent neuron
activation for fixed
G:=0,=0.5

Latent neuron
activation for fixed
m;=m,=5

10

—— Decoder 1
—— Decoder 2
—— Decoder 3

=51 ’ 1 l 1 —— Decoder 4
-10 |

Training epoch le3 Training epoch le3 Training epoch le3

Selection
neuron 0+ 1 R
activation

Fig.10.7 Results for the example with charged masses (single encoder) (Figure taken from Nautrup,
Metger and Iten et al., 2020 [23]). The used network (Fig.9.2) has 3 latent neurons and each
column of plots corresponds to one latent neuron. For the first row we generated input data with
fixed charges g = g2 = 0.5 (ignoring the units) and variable masses m, my in order to plot the
activation of latent neurons as a function of the masses. We observe that latent neuron 1 and 2 store
the masses m |, my respectively while latent neuron 3 remains constant. In the second row, we plot
the neurons’ activation in response to g1, g» with fixed masses m, mp = 5. Here, the third latent
neuron approximately stores gi - g, which is the relevant quantity for the Coulomb interaction
while the other neurons are independent of the charges.The third row shows which decoder receives
information from the respective latent neuron. The y-axis corresponds to log(oi]) for the i-th
latent neuron and decoder j. Hence, the y-axis quantifies how much information of the latent
neuron is transmitted by the 4 filters to the associated decoder as a function of the training epoch.
Positive values mean that the filter does not transmit any information. Decoders 1 and 2 perform
non-interacting experiments with particles (m1, q1) and (m2, g2), respectively. Decoders 3 and 4
perform the corresponding interaction experiments. As expected, we observe that the information
about m (latent neuron 1) is received by decoders 1 and 3 and the information about m, (latent
neuron 2) is used by decoders 2 and 4. Since decoders 3 and 4 answer questions about interaction
experiments, the product of charges (latent neuron 3) is received only by them (the green line of
decoder 3 in the last plot is hidden below the red one)

with different (known) values of the masses m, m, and the charges ¢q;, ¢, against
those known values. This corresponds to comparing the learnt representation to
a hypothesised representation that we might already have. The plots are shown in
Fig. 10.7. The first and second latent neurons are linear in | and m,, respectively, and
independent of the charges; the third latent neuron has an activation that resembles
the function g, - g» and is independent of the masses. This means that the first and
third latent neurons store the masses individually, as would be expected since the

10.6 Charged Particles 125

setup in Fig. 10.6a only requires individual masses and no charges. The third neuron
roughly stores the product of the charges, i.e., the quantity relevant for the strength
of the Coulomb interaction between the charges. This is used by the agents dealing
with the setup in Fig. 10.6b, where the particle’s trajectory depends on the Coulomb
interaction with the other particle.

10.6.2 Multiple Encoders

One can easily generalize the above example to one where one uses several encoding
agents. Instead of having a single agent B, we use two agents B; and B,, where
each of the agents has only access to one of the charged particles p; and p», i.e.,
agent B; only observes the results of the experiment 10.6 associated with particle p;.
The two encoding agents then have to separately construct a representation of their
observations. Then, the two representations are concatenated and treated like in the
single-encoder setup; that is, for each decoder, a filter is applied to the concatenated

Latent neuron 1 Latent neuron 2 Latent neuron 3 Latent neuron 4

Latent neuron
activation for fixed
0:=0,70.5

Latent neuron
activation for fixed
m;=my=5

Selection
neuron
activation 10 [PESEEEE o 4 4 ——

5 f 1 1 —— Decoder 1

0 ‘]] Decoder 2

| —— Decoder 3

-5 J 1 1 —— Decoder 4
i

0 2 4 0 2 4 0 2 4 0 2 4
Training epoch 1e3 Training epoch 1e3 Training epoch 1e3 Training epoch 1e3

Fig. 10.8 Results for the example with charged masses (two encoders) (Figure taken from Nautrup,
Metger and Iten et al., 2020 [23]). The used network (Fig.9.2) has 4 latent neurons and each column
of plots corresponds to one latent neuron. For an explanation of how these plots are generated, see
the caption of Fig.10.7. We observe that latent neurons 2 and 3 store the masses m and m2,
respectively, while latent neurons 1 and 4 are independent of the mass. Latent neurons 1 and 4 store
(a monotonic function of) the charges ¢; and g2, respectively, and are indepependent of m| and m;.
The third row shows that the charges ¢; and g; are only transmitted to decoders 3 and 4, which are
asked to make predictions about interaction experiments (the blue line of decoder 1 and the green
line of decoder 3 are hidden under the orange and red lines, respectively, in both of these plots).
The mass m1, stored in the latent neuron 2, is transmitted to decoders 1 and 3, which are the two
decoders that make predictions about particle p;. Analogously, m is transmitted to decoders 2 and
4, which make predictions about particle p;

126 10 Applications: Physical Toy Examples

representation and the filtered representation is used as input for the decoder. The
resulting network structure has similarity to the one in [238] used for summarizing
text documents.

The results for this case are shown in Fig. 10.8 and summarized in Box 10. Com-
paring this result with the single-encoder case, we observe that here, the charges ¢,
and ¢, are stored individually in the latent representation, whereas the single encoder
stored the product g; - g». This is because, even though the decoders still only require
the product ¢, - ¢, no single encoder has sufficient information to output this prod-
uct: the inputs of encoders E; and E, only contain information about the individual
charges g; and g, respectively, but not their product. Hence, the additional structure
imposed by splitting the input among two encoders yields a representation with more
structure, i.e., with the two charges stored separately. However the concatenated rep-
resentation consists of four instead of three latent neurons as in the singe-encoder
case, it is still minimal according to Definition 8.8. Indeed, one can see that the cho-
sen structure with two encoders does not allow for a representation with only three
latent neurons: If such a representation would exist, one encoder could only output
one parameter (and the other encoder outputs two parameters), which is not enough
to store the information about the mass and the charge.

10.7 Heliocentric Solar System

In the 16th century, Copernicus used observations of the positions of different planets
on the night sky (Fig. 10.9a) to hypothesize that the Sun, and not the Earth, is in the
centre of our solar system. This heliocentric view was confirmed by Kepler at the
start of the 17th century based on astronomic data collected by Brahe, showing
that the planets move around the Sun in elliptical orbits. Here, based on the work
in [22], we show that SciNet similarly uses heliocentric angles (more exactly, the

Mars

o
-

1 UONEBAIIE JUAET
L & ©

& B2 f

I -
G (

Z uoneAnIe Juae
Lo

PO)

&
I
3
I
=
o
&
a
3
o

YAy ™,

b /ﬁ:\:‘

Sun

=
o
1

a

=
E

(a) (b)

Fig. 10.9 Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars
as seen from Earth at an initial time 7o and has to predict these angles for later times. a Physical
setting. The angles 65 and 6, of the Sun and Mars are observed from Earth (relative to the fixed star
background). The areas Ag and A are swept out by a line segment joining Earth or Mars and the
Sun, respectively. These areas are proportional to the mean anomalies Mg o< Ag and My, o« Ay of
Earth and Mars, respectively (see (10.1)). b Representation learned by SciNet. The activations r; 2
of the two latent neurons at time 7 (see Fig.9.3) are plotted as a function of the mean anomalies Mg
and M ;. The plots show that the network stores and evolves parameters that are linear combinations
of these heliocentric angles.

10.7 Heliocentric Solar System 127

mean anomalies) when forced to find a representation for which the time evolution
of the variables takes a very simple form, a typical requirement for time-dependent
variables in physics.

The observations given to SciNet (with the network structure shown in Fig. 9.3
with two latent neurons) are angles 6,,(#y) of Mars and 05(#y) of the Sun as seen
from Earth at a starting time 7o (which is varied during training). The time evolution
network u : R? — R? is restricted to addition of a constant (the value of which is
learned during training). Hence, we can smoothly parametrize the set of update rules
by two parameters y = (y1, y2) asu,, (r1, r2) = (r1 + y1, 72 + y»). Ateach time step
i, SciNet is asked to predict the angles as seen from Earth at the time t; = #o + i Az
based only on its representation at step i. The time step At is fixed and is chosen to
be 25d in our implementation. Because the question ¢ is the same at each time step,
we do not need to feed it to the decoder explicitly.

Restricting to linear time evolution (by only allowing to add constants y; in the
update rule) may look like a limitation that does only apply to very particular physical
systems. However, such a restriction is actually equivalent to the assumption that the
energy of the considered system is conserved. In such a case, there is a variable
transformation such that the new canonical coordinates (called action angles) evolve
linearly in time (see for example [239]).

We simulate the elliptical orbits of Mars and Earth around the sun (note that
circular orbits were used in the original work [22]) and train SciNet with randomly
chosen sequences of observations for around 50 steps of 25 d. Figure 10.9b shows the
learned representation and confirms that SciNet indeed stores heliocentric angles.
Indeed, SciNet stores a linear combination® of the mean anomalies Mg € [0, 27)
and My, € [0, 2r) of Earth and Mars, i.e., 27 times the fractions of the elliptical
orbits’ periods that have elapsed since the planets passed their periapsis, the points
in the orbits of the planets at which they are nearest to the Sun. The mean anomalies
are chosen to lie in the interval [0, 2r) because they can be interpreted geometrically
as the angles that would be observed from the Sun in the case where Earth and Mars
would follow circular orbits (with the same period) around the Sun. An alternative
geometrical relation is that the areas A g and A, swept out by a line segment joining
Earth or Mars and the Sun are proportional to the mean anomalies of Earth and Mars,
respectively (see Fig. 10.9). More concretely, we have

Mg My
Ap = — A% and Ay = —AY/, 10.1
E= g UF M= ong 7'M (10.1)
where A" and A} denote the full area enclosed by the orbit of Earth and Mars,
respectively. Hence, an alternative (and physically equivalent) interpretation is that

3 If desired, one could disentangle the mean anomalies of Earth and Mars by using the methods
described in Sect.9.3.2. Indeed, we could introduce two decoding agents. The first should predict
the angle 65 of the Sun, and the second the angle of the Mars 6y, (as seen from Earth). To solve
the tasks perfectly, the first agent requires the information about the mean anomaly of Earth and
the second agent requires both, the mean anomaly of Earth and the Mars. Hence, the corresponding
operationally meaningful representation would naturally separate the two mean anomalies.

128 10 Applications: Physical Toy Examples

SciNet stores linear combination of the areas swept out by the two planets in its latent
neurons. The fact that the swept out areas grow linearly in time is stated in Kepler’s
second law of planet motion. We stress that the training data only contains angles
observed from Earth, but SciNet nonetheless switches to a heliocentric representation.
The details are given in Box 11.

Box 11: Heliocentric model of the solar system (Sect. 10.7)

Problem: Predict the angles 6)/(¢) and 65(¢) of Mars and the Sun as seen from Earth,
given initial states 67 (f9) and Os(tp).

Physical model: Earth and Mars orbit the Sun on elliptical orbits according to Kepler’s
laws of planet motion. The orbit of Earth is approximately a circle (eccentricity: 0.017)
and the orbital velocity is approximately constant. The elliptical orbit of Mars has an
eccentricity of 0.093 and the orbital velocity varies up to £10% with respect to the
mean orbital velocity.

Observation: Randomly chosen initial angles of Mars and the Sun as seen from Earth:
0 = (Om (o), O5(10)).

Question: Implicit.

Correct answer: Time series [ao, e, an] = [(GM (t0), Os(t0)), ..., Om(tn), 95(tn))]
of n = 20 (later in training: n = 50) observations, with fixed time steps At = ;4] — t;
of 25 days.

Network structure: ~ Network depicted in Fig. 9.3 with two latent neurons and allowing
for time updates of the form u, (r1,r2) = (r1 + y1, 72 + ¥2). The network sizes are
given in Table C.1.

Training: As described in Box 4 with parameters given in Table C.2.

Key findings:

e SciNet predicts the angles of Mars and the Sun with a root mean square error below
0.5% (with respect to 27).

e SciNet stores the mean anomalies Mg and M, of the Earth and Mars with respect
to the Sun in the two latent neurons (see Fig. 10.9b).

10.8 Several Particles Connected by Springs

In this section, we consider a physical systems consisting of many interacting objects
as an example to demonstrate how physical prior knowledge about the object-
structure can help to interpret SciNet’s representation (Sect. 8.6).

More concretely, we consider k € {5, 10} particles in a 2-dimensional box with
no external forces, apart from the elastic collisions with the walls of the box [184].
Some particles are connected by a string with a fixed spring constant &, and hence, a
force F; j =k || Di — Dj ||2 acts between two particles i and j with positions p; € R?
and p; € IR? that are connected by such a spring. The details and the sample strategy
are described in Box 12. The observation input to SciNet (with the structure given
in Fig.9.5 using GNNGs) is given as time sequences of the 2-dimensional positions
and velocities of the particles. The one-hot embeddings h; ; € R? of the edges of
the GNN used for the encoder can encode two different types of interactions. The

10.8 Several Particles Connected by Springs 129

GNN is then evolved for L = 2 steps and representations r; ; for the interaction types
between any objects i and j are sampled.

The decoder again consists of a GNN and takes the representation r as an input
together with a question ¢ that is described by an initial state of the positions and
velocities of the particles at time 7" as well as anumber M € N describing the number
of time steps that the state of the particles should be evolved by for a time difference
At. The decoder then has to predict the future states of the particles at a time ¢’ 4
MAt.

SciNet learns to predict the paths of the particles and the type of interactions
between the particles with high accuracy [184]. It finds that there are two types of
interactions between two particles, namely “no interaction” and “connected by a
spring”. This information can be extracted from the one-hot encodings that SciNet
stores in its representation r.

Box 12: Several particles connected by springs [184] (Sect. 10.8)

Problem: Predict the time evolution of the positions and velocities of k € {5, 10} par-
ticles in a 2-dimensional box.

Physical model: The force on particle i at position p; is given by the sum of the spring-
forces F; j =k || Di — Pj ||2 of the particles j at position p; that are connected by a
spring with particle i. Further, the particles collide elastically with the walls of the box.
The trajectories of the particles are then simulated by solving Newton’s equation with
leapfrog integration [184].

Observation: ~ Time sequences of position and velocities of all particles starting from
a randomly chosen initial state: Randomly chosen initial positions p;, where both
components of p; are samples from a Gaussian distribution A'(0, 0.5) with mean
equal to 0 and standard derivation of 0.5. The velocities of the particle are sampled
uniformly from the set of 2-dimensional vectors with norm 0.5. A spring is placed
between two particles i and j # i with probability 50%.

Question: g = [x1('), ..., xx(t"), M] with k € {5,10}, M € N and states x;(t') =
[pi(t), qi ()], where p;(¢") and g;(¢') are the position and velocity of the particle
i at time ¢/, respectively.

Correct answer: State a = [x1(t' + M A1), ..., x(t' + M At)] for some time differ-
ence At and where x; (¢) is the state of particle i given by its position and velocity at
time .

Network structure: ~ Network depicted in Fig. 9.5 with two evolution steps of the GNN
implementing the encoder and two-dimensional edge embeddings & lL ;€ R2. The
details are given in [184].

Training: As described in Sect. 9.7.2. Further details are given in [184].

Key findings: SciNet recovers with high accuracy how the particles interact with each
other by classifying their interactions as “no interaction” or “connected by a spring”.

Chapter 11
Future Research Directions and Further Geda
Reading

In the following, we point out two directions for future research on representation
learning for physics. The first direction considers the automatization of searching
for strategies to collect relevant observation data. The second points out that it can
be challenging to interpret SciNet’s representation for data where we do not have a
hypothesized representation. We suggest that searching for mathematical expressions
for the encoding and decoding mappings may help to tackle this challenge. In addi-
tion, such an approach could increase SciNet’s ability to generalize to observations
that are substantially different than the ones seen during training.

11.1 Finding Measurement Strategies and Representations

As mentioned in the introduction (Chap. 1), deciding how to collect observations
given some experimental devices can be challenging. In our examples considered in
Chap. 10, observing a time series of a particle or performing random measurements
on quantum systems provides sufficient information about the physical systems to
response to the asked questions. However, in general, more advanced observation
strategies might be required. For example, to determine a position of a particle in a
box, one may first use a measurement device that scans the whole box and returns the
position of the particle with low accuracy. Then, one may use a second, more precise
measurement device that can only scan a small part of the box. This device might
target the approximate position of the particle found by the first measurement device
to determine the position of the particle with high accuracy. Hence, the optimal
setting of the second measurement device depends on the output of the first one.
Choosing a random part of the box that is scanned by the second measurement
device would mostly lead to not finding the particle and hence, the accuracy for the
position measurement would stay low.

To find such advanced measurement strategies, one may train a reinforcement
learning agent who gets a reward if he predicts the position of the particle in the box
with high accuracy. However, to train such an agent in a supervised way, we must
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 131

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_11&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_11

132 11 Future Research Directions and Further Reading

know what variables we are interested in (in the example above, it is the position of
the particle). In the setting considered in this part of the book, we only know that
the observed information should be sufficient to response to the questions that we
ask SciNet. Hence, following this spirit, the measurement strategy must be learned
in parallel with how to respond to the questions with the collected information. A
simple example of a question for the example given above would be to ask SciNet
to predict the electrical field at a fixed point in the box. Assuming the particle is
charged, the electrical field might be a function f(x) of the position of the particle.
In [240], it is demonstrated on the basis of some toy examples, that current machine
learning tools can be adapted to learn the measurement strategy and the function
f in parallel. It would be interesting to further investigate this research direction
and to see if one can learn observation strategies and representations in parallel for
more complex systems. State representation learning, discussed in Remark 11.1, is
a direction in machine learning which is closely related to this goal.

Remark 11.1 (State representation learning) In contrast to representation learning,
where relevant features are extracted from a (fixed) data set, in state representation
learning one considers interactive settings [241]. Thereby, a reinforcement learn-
ing agent can interact with an environment and influence the state of the system
by its actions. The goal of state representation learning is then to construct a low
dimensional representation of the system that evolves in time accordingly to the cho-
sen actions of the agent. In particular, such a setting provides new possible priors
for disentangling the representation because the agent can experiment with different
actions and observe their effects [242]. For instance, in [52], the representation is dis-
entangled by an independence prior, which encourages the storage of independently
controllable features of the environment in separate parameters (see also [243] for a
similar approach). As demonstrated in [53, 243], such requirements can lead to nat-
ural representations in some scenarios such as creating an abstract representation of
a labyrinth for navigational tasks. However, in contrast to an operational meaningful
representation that depends on the agents’ aims (Sect. 8.4.2.2), such representations
depend on which actions (and policies) the agent can perform. In physics, these
actions depend on the experimental devices and may be considered less fundamental
than the agents’ aims. Closer to the approach of disentangling a representation with
respect to different questions (Sect. 8.4.2.2), in [244] several reinforcement learning
agents with different goals share a common representation which is optimzed during
training. Interestingly, they find that learning auxiliary tasks can improve the per-
formance of the agent in learning of the overall objective. A further step was taken
in [245], where the auxiliary tasks do not have to be specified by humans, but are
learned during the training process. In a similar spirit, it would be interesting to learn
the relevant questions for SciNet instead of choosing them by hand in future work.

11.2 Interpretability and Generalization of SciNet 133

11.2 Interpretability and Generalization of SciNet

A lot of effort in machine learning is currently invested in improving the interpretabil-
ity of artificial neural networks (see e.g. [246] for a recent review). For example,
inceptionism techniques [247, 248] can be used to gain some insight into what a
neural network has learned. Such techniques were used in [249] to extract some rel-
evant properties from thermodynamic systems. Building prior knowledge about the
training data into the network structure often improves interpretability. Usually, the
interpretability is related to the generalization power of the neural network, and an
improvement in interpretability also increases the generalization power. For example,
building in information about the object structure of physical systems, as described
in Sect. 8.6 and Sect. 9.7, allows the network to generalize to systems with different
numbers and configurations of objects and relations. At the same time, the additional
structure in the network helps to extract some information about what the network
has learned. Indeed, it is demonstrated in Sect. 10.8, how one can extract information
about the interaction types between particles from SciNet’s representation. On the
other hand, building some mathematical prior knowledge into SciNet (see Sect.9.6
for an example) can help to interpret the found representation as demonstrated for
the nonlinear pendulum in [183] (and discussed in Sect. 10.3).

For the long term goal of applying the methods discussed in this book for the
foundations of physics, one must be very careful building in prior knowledge into
SciNet’s network structure. In particular, by assuming an object structure of the
observation data as considered in Sect. 8.6, it could be that we separate objects in a
way that is not “natural” and that there is a more elegant description of the system
with a different partitioning of the system into subsystems. Hence, in this part of
the book, we focussed on extracting physical concepts from observation data with
minimal prior knowledge about physics and mathematics. Such an approach has the
advantage that we do not restrict the set of models that can be learned by the neural
network. On the other hand, this is a tradeoff with the generalization power of SciNet
as well as with its interpretability. To interpret the compressed representation found
by SciNet without using mathematical or physical prior knowledge, we have to plot
it against a hypothesized representation. The challenge for future work is hence to
find other methods that use a minimal amount of prior knowledge, and still allow to
extract some conceptual information from the machine learning system without any
known hypothesis.

One possibility to improve the interpretability as well as the generalization power
of SciNet would for example be to include a bias that is very common in physics:
given the relevant variables and parameters of a physical system, we assume that there
is a “simple” mathematical expression that predicts the (future) physical properties
of the system (at least for small time steps). Hence, more concretely, we may assume
that the decoders of SciNet can be described by simple mathematical expressions. A
step in this direction was recently done in [250]. The authors in [250] use Equation
Learner (EQL) networks, similar to the work in [251, 252], which use activation
functions that represent simple mathematical operations such as multiplication or

134 11 Future Research Directions and Further Reading

taking the sine or cosine. Further, to find “simple” mathematical expressions, they
enforce sparsity for the weights in the network. The more weights are set to zero,
the shorter the mathematical expression represented by the EQL network becomes.
In [250], EQL networks are then applied to different problems, including a dynami-
cal system analysis of a simple kinematic problem and a harmonic oscillator. They
use a similar network structure as the one used in Sect.9.4 to find representations
with simple update rules (Fig.9.3) with a trivial decoder and where the update rules
are parametrized by an EQL network. In both examples, the EQL network is able to
find simple mathematical expressions for the time evolution of the physical systems.
It would be interesting to replace the decoders in SciNet with EQL networks and
try to extract simple mathematical expressions from them. Such expressions corre-
spond to applications of physical laws in our setting and hence may help to discover
the underlying laws themselves. Further, finding mathematical expressions for the
encoder could also help to interpret the representation found by SciNet. However, for
physical examples, the mapping from observation data to the representation is typi-
cally more complex than the one from the representation to the predictions. Hence, it
could be challenging to find such expressions with EQL networks. Alternatively, one
may use feed-forward neural networks for the encoder and try to extract the equa-
tion describing its mapping from the trained network using methods from symbolic
regression [24] (see Sect. 6.2.1). A step in this direction was considered in [129] (see
Remark 6.1 for the method introduced in [129]). Recently, the additional structure
of graph neural networks was exploited to extract equations from different parts of
the network [205, 253]. The authors of [205] apply their techniques to a cosmology
example and discover a new analytic formula which can predict the concentration
of dark matter from the mass distribution of nearby cosmic structures. In [253] a
graph neural network is trained to simulate the dynamics of our solar system’s Sun,
planets, and large moons from thirty years of trajectory data. Then, symbolic regres-
sion is used to extract an analytical expression for the force law implicitly learned
by the graph neural network, which turns out to be equivalent to Newton’s law of
gravitation.

Part IV
Future Prospects

In the last part of this book, we discuss future prospects for the automatization of a
physicist’s discovery process as well as for using machine learning for the foundation
of physics. As it is extremely difficult to make time-related predictions about the
future development of Al, we will instead focus on pointing out challenging problems
that must be solved to fully automatize the physical discovery process. Furthermore,
we point out recent steps towards this long-term goal and particularly promising
methods that must be further improved in the future to be applicable to real-world
problems.

Chapter 12 ®)
Future Prospects e

In this book, we considered the automatization of several steps in a physicist’s dis-
covery process. However, we are still far away from building an Al scientist that
is able to replace human scientists. In fact, developing an Al physicist is probably
almost as difficult as developing general artificial intelligence, which, according to
most Al researchers, will still be decades away [254, 255]. On the one hand, there are
many open questions in automatizing each single step of a physicist’s discovery pro-
cess, and on the other hand, combining all steps is also a highly nontrivial challenge.
In the following sections, we discuss recent progress in automatizing several steps
of a physicist’s discovery process together and future challenges in this direction
(Sect. 12.1), how learning procedures instead of simple functions may help to build
general artificial intelligence (Sect. 12.2) and last but not least, how Al may help to
solve fundamental problems in physics in the future.

12.1 AI Physicist

The ultimate long-term goal would be to build Al physicists, i.e., systems that act and
learn autonomously from a physical environment. There is no “exact” definition of an
Al physicist and finally, one could also end up building Al systems that are specialized
for certain domains and can communicate with each other to share information. This
would be similar to human physicists, who are also experts in certain fields, but could
not perform all the tasks that other physicists can do. For example, my performance
in building up an experiment with devices in a laboratory would probably be close to
the performance of an agent trying out random actions. However, at the current time
we are so far away from creating an Al physicist who could fully replace any human
physicist that we may ignore the fact that the goal is not completely specified. For
concreteness, one may think of the following goal: building an agent that can interact
with the real world and for example finds the law of gravitation. To test if the agent
really found the law of gravitation, one could let it predict the movement of bodies
that move according to the gravitational force in a completely new situation that the
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 137

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-27019-2_12&domain=pdf
https://doi.org/10.1007/978-3-031-27019-2_12

138 12 Future Prospects

agent has never seen before. Furthermore, the agent should be able to memorize the
found insights, and combine them with future insights to unify different theories. In
the following, we first describe some recent progress in building Al physicists, and
then discuss some essential challenges that are left for future work on building Al
physicists.

The first machine in history able to discover new scientific knowledge indepen-
dently of its human creators was the robot “Adam” [256]. Adam can autonomously
perform the scientific cycles of setting up an hypothesis, physically run experiments
using a laboratory robot to test the hypothesis and finally, interpret the results. If
Adam falsifies the hypothesis, he repeats the cycle. A more recent step towards an
artificial intelligence physicist was taken in [4] by also considering several steps
of a physicist’s discovery process together. In contrast to most other work, where a
machine learning system is used to fit all the given data at once, in [4] the environment
is separated into several subdomains using unsupervised learning. The subdomains
are chosen in a way, such that a physical law is assigned with each subdomain
and performs well in predicting the future evolution of the physical system in this
domain. This is a typical strategy of physicists; choosing and isolating a physical
system that is then investigated further. As a toy example, we may consider two
regions in the xy-plane, where we have a harmonic potential or a homogeneous
gravitational field in region one or two, respectively. Hence, the equations of motion
for a particle of mass m are given by ¥ = —k/m(x — xp) and y = —k/m(y — yo)
with spring constant k£ and equilibrium position (xg, yo) in the first region, and by
X = gy and y = g, for a gravitational field g = (g, g,) in the second region. The
machine learning method suggested in [4] is then able to recognize the two domains
and uses two neural networks to predict the time evolution of the particle in each
region separately. To improve generalization power and interpretability, symbolic
expressions are extracted for the two neural networks and added to a theory hub [4].
In the example above, the following expressions might be found for the region with
a homogeneous gravitational field ¥ = 2 and ¥ = 3 m/s?, where we assume that
g =2 and g, = 3 m/s? for concreteness. The theory is kept in the memory of the
Al physicist and is used to investigate new environments. Furthermore, some basic
unification of theories is considered in [4], where parametrized master theories are
found. In the example considered above, this unification algorithm would recognize
that the two formulas ¥ = 2 and j = 3 m/s? are of the same form and can be con-
sidered as instances of the master theory ii = g, m/s?, for any coordinate u and a
parameter g,.

The approach to build an AI physicist described in [4] goes beyond finding a
model for one given physical system and also points towards several challenging
problems that have to be solved to build a general Al physicist and which we dis-
cuss in the following. First, it becomes clear that one of the main difficulties for
a physicist is to decompose the environment into subsystems in such a way that a
“simple” description of the subsystems is possible. Furthermore, one may want to
choose subsystems whose investigation likely leads to the discovery of new physical
concepts. In fact, a modern physicist may not want to consider a standard pendulum,
but preferably colliding particles with high energy, because such scenarios are less

12.2 Learning Procedures Instead of Simple Functions 139

well understood and can possible lead to new physical insights. Thinking about all the
information a human obtains through the sensory organs every second, recognizing
subsystems and choosing and isolating them for experiments that may lead to new
physical insights is an extremely hard task. A first step towards this goal might be to
find compact representations of parts of the environment, since this simplifies inves-
tigations. Furthermore, finding representations that are not sufficient to predict the
future evolution of a subsystem, points towards incomplete understanding of these
systems. Steps towards extracting representations directly from video data were done
in [34, 192]. For example, in [34] the position of an object is extracted from raw
visual data. Such methods may turn out useful for building future AI physicists.

Another difficulty in building a fully fledged Al physicist which is often ignored,
but considered in [4], lies in building on existing theories and unifying observed laws
from different systems. Fully automatizing the unification of theories and searching
for underlying physical principles might be extremely hard and can be equally dif-
ficult to achieve as general Al. The ultimate goal of unification is to improve the
generalization power of a physicist. Hence, one may estimate the generalization per-
formance of an Al physicist by testing its prediction power in a completely new
environment not seen during training, but with the same underlying laws as the train-
ing environment. An active direction of research in machine learning called transfer
learning considers reusing learned concepts in an environment to a new environ-
ment (see [257] for a comprehensive survey). Progress in this area may also lead to
progress in generalizing physical theories that work well in certain environments to
a theory that applies to all considered environments.

12.2 Learning Procedures Instead of Simple Functions

Currently, neural networks are the most important tool for Al In this book, we mostly
used feedforward neural networks for fitting functions. However, a general Al agent
cannot be built using feedforward neural networks, since general Al should be able
to perform any algorithm that could be run on a Turing machine. For example,
consider an Al physicist for the task of calculating the electrical field at a given
point in space, given an arbitrary number n of charged particles creating the field.
For any fixed number n, a feedforward neural network could be constructed that
takes the positions and charges of the n particles as an input and calculates the
electrical field at the given point. However, if the number of particles n is a priori
unknown, given any feedforward neural network with m input neurons, we can always
choose n > m /4 particles (note that for each particle we have four inputs, the three-
dimensional position and the charge) making the Al physicist fail in predicting the
electrical field, since it can not handle this input size. In addition, even if the input
size could be handled by the feedforward neural network, it fully ignores the fact
that the field created by each particle can be calculated in the same way. Applying
the same rule to sequential inputs is naturally handled by recurrent neural networks
(as for example used in Sect.9.4). It was even shown that recurrent neural networks

140 12 Future Prospects

are computationally universal (also called Turing-complete) if properly wired, i.e.,
they can be used to simulate any Turing machine and hence any procedure [258].
However, if something is possible in principle, this does not necessarily mean that it
will work in practice. In [259], the capacity of recurrent neural networks is enriched
to simplify the solution of algorithmic tasks by adding a large addressable memory.
This is analog to Turing’s enrichment of finite-state machines by an infinite memory
tape, and the authors of [259] call this structure a Neural Turing Machine (NTM).
In contract to a (standard) Turing machine, an NTM is not programmed by a human
but does learn programs from data by its own. By ensuring that the outputs depend
smoothly on the parameters describing the program, one can use stochastic gradient
descent to efficiently train an NTM. Preliminary results show that an NTM can infer
simple algorithms such as copying and sorting [259], but it remains as a challenging
task for future work to learn programs for more complex tasks from data.

As mentioned above, apart from the additional computational power of NTMs
compared to feedforward neural networks, they may learn much simpler descrip-
tions of a procedure. In the example where one wants to calculate the electrical field
created by n particles, an NTM would essentially need to learn that it can sequen-
tially consider the particles, calculate the distance to the position of interest, estimate
the field according to Coulomb’s law and adding up the estimated field strengths on
the go. Increasing the number of particles would not make this program any more
complex, but would just make it run longer. This is a much more elegant approach
than fitting a function on the full input at once, and hence, learning Coulomb’s law
for each pair of particles separately. To motivate an Al agent to learn simple algo-
rithms instead of complex once, we need some measure of complexity. One option
is to use the Kolmogorov complexity, which is defined as the minimal description
length of a program that produces the desired outputs for given inputs. Note that
the minimal description length depends on the available commands that the given
Turing machine can execute, and hence, the choice of these commands introduces
some bias. Unfortunately, there is no way to efficiently calculate the Kolmogorov
complexity for given input-output pairs. Nonetheless, we could motivate an NTM to
choose the resulting program that has the smallest description length it can produce.
Although this complexity measure is coming from computational theory, it might
be the fundamental reason why physicists work and think as they do.! Furthermore,
searching for programs with short description length also improves the interpretabil-
ity of NTMs. I would expect that approaches in direction of building trainable Turing
machines and searching for simple programs will be essential for the long term goal
of building general Al, however, the methods used to implement such approaches
may change a lot in the next few decades.

1 A similar complexity measure was used in [4] to find the simplest formulas describing experimental
data.

12.3 Al for Foundations of Physics 141

12.3 Al for Foundations of Physics

Let us finally come back to one of the main motivations behind this book, namely
to use Al to help solving fundamental problems in modern physics. The content of
this book is focussed on methods that use a minimal amount of prior knowledge
about the physical system at hand. For example, extracting representations of quan-
tum systems in Sect. 10.5, we ensure that the agent performing the measurements
acts operationally, i.e., does not make use of any prior knowledge about quantum
mechanics. Moreover, the network structure, SciNet, used to extract the representa-
tion is not specifically adapted to quantum systems and is demonstrated to work as
well for classical systems such as the damped pendulum (Sect. 10.2). Furthermore,
we found that searching for operationally meaningful representations, one finds the
representations of the systems commonly used in physical textbooks. This suggests
that the required properties of operationally meaningful representations (Sect. 8.4)
are also required by human physicists, however, physicists may actually not be aware
of this fundamental reason why they are working with parameters like the mass or
the charge of a particle.

Therefore, following the spirit of this approach in future work may lead to a better
understanding of “hidden” assumptions made by physicists. If, in the far future, one
could build an Al agent that discovers the formalism of quantum mechanics by
interacting with quantum systems and only assuming a few “natural” requirements
on the working of the Al agent (such as searching for operationally meaningful
representations), one could stepwise remove the assumed principles and retrain the
Al agent. This could lead to the discovery of alternative formulations of quantum
mechanics, and hence could ultimately help to overcome the conceptual problems
we are currently facing with quantum theory and which may be caused by a “hidden”
assumption that we should better give up.

Appendix A
Interpretation of the Number of Latent
Variables

Abstract In Sect. 8.4.1 we defined minimal representations and required that they
should contain a minimal number parameters. In this appendix [taken from (Iten
et al. in Phys Rev Lett 124:010508, 2020 [22])] we use techniques from differential
geometry to state a formal relation between the number of parameters in a minimal
representation and the degrees of freedom in the considered physical data. This
relation gives the minimal number of latent neurons required for SciNet (consisting
of only one encoder and probably several decoders) to make accurate prediction the
expected physical meaning, namely that it corresponds to the degrees of freedom in
the physical data that are required to reply to all questions that we may ask SciNet.

We describe the given data with triples (O, Q, a*), where O and Q are the sets
containing the observation data and the questions respectively, and the function a* :
(0, q) + a sends an observation o € O and a question ¢ € Q to the correct reply
a € A. Note that the case where SciNet consists of several decoders can be cast into
this setting by stacking all the questions and answers together and by considering the
resulting tuples as one question or answer, respectively. The following results only
take one encoder into account.

Intuitively, we say that the triple (O, Q, a*) has dimension at least n if there exist
questions in Q that are able to capture n degrees of freedom from the observation data
O. Smoothness of this “oracle” is a natural requirement, in the sense that we expect
the dependence of the answers on the input to be robust under small perturbations.
The formal definition follows.

Definition A.1 (Dimension of a data set) Consider a data set described by the triple
(0, Q,a*),wherea* : O x Q@ — A,andallsetsarereal, O CR", Q C R*, 4 C R,
We say that this triple has dimension at least n if there exists an n-dimensional
submanifold O, € O and questions gy, . .., gx € Q and a function.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 143
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://doi.org/10.1007/978-3-031-27019-2

144 Appendix A: Interpretation of the Number of Latent Variables

k
—
f: O, A =AxAx---xA

o — [a*(O, ql)v] a*(oa CIk)]
such that f : O, — f(O,) is a diffeomorphism.

Proposition A.1 (Minimal representation for SciNet) A (sufficient) latent repre-
sentation for data described by a triple(O CR", Q CR*,a* : O x Q@ > ACR)
of dimension at leastn requires at least n latent variables.

Proof By assumption, there is an n-dimensional submanifold O, C O and k ques-
tions ¢y, ..., g such that f : O, — Z, := f(O,) is a diffeomorphism. We prove
the statement by contradiction: assume that there exists a (sufficient) representa-
tion described by an encoder E : O — R, C R™ with m < n latent variables. By
sufficiency of the representation, there exists a smooth decoder D : R,, x Q@ — A
such that D(E(0), q) = a*(0, q) for all observations 0 € O and questions g € Q.
We define the smooth map

D:R, — A*
r= [D(r, q1),..., D, q0)l,

and denote the pre-image of Z,, by R = D™ N(T,). o
_ By sufficiency of the representation, the restriction of the map D to R,, denoted by
Dlp, : Rm — 1, 1s a smooth and surjective map. However, by Sard’s theorem (see

for example [26~O]), the image D(ﬁm) is of measure zero in 7, since the dimension
of the domain R,, C R™ is at most m, which i§ smaller than the dimension n of the
image Z,,. This contradicts the surjectivity of D|z and finishes the proof.

We can consider an autoencoder as a special case of SciNet, where we ask always
the same question and expect the network to reproduce the observation input. Hence,
an autoencoder can be described by a triple (O, Q = {0}, a* : (0,0) — 0). As a
corollary of Proposition A.1, we show that in the case of an autoencoder, the required
number of latent variables corresponds to the “relevant” number of degrees of free-
dom that describe the observation input. The relevant degrees of freedom, which
are called (hidden) generative factors in this context in representation learning (see
for example [49]), may be described by the dimension of the domain of a smooth
nondegenerate data generating function H, defined as follows.

Definition A.2 We say that a smooth function H : G C R? — R’ is nondegenerate
if there exists an open subset Ay C G such that the restriction H |, : Ny — H(N)
of H on Nj is a diffeomorphism.

One may think of H as sending a small dimensional representation of the data
onto a manifold in a high dimensional space of observations.

Appendix A: Interpretation of the Number of Latent Variables 145

Corollary A.1 (Minimal representation for an autoencoder) Let H : G C R? —
O C R’ be a smooth, nondegenerate and surjective (data generating) function, and
let us assume that G is bounded. Then the minimal representation for data described
by a triple (O, Q@ = {0}, a* : (0, 0) > 0) contains d latent variables.

Proof First, we show the existence of a (sufficient) representation with d latent
variables. We define the encoder mapping (and hence the representation) by E : o
argmin[H ' ({0})] € G, where the minimum takes into account only the first vector
entry.! We set the decoder equal to the smooth map H. By noting that D(E (0), 0) = o
for all o € O, this shows that d latent variables are sufficient.

Let us now show that there cannot exist a representation with less than d variables.
By definition of a nondegenerate function H, there exists an open subset Ny C G
in RY such that H |, : Ny — H(N) is a diffeomorphism. We define the function
f:0e HWNy) — a*(0,0) € Z,whereZT = H(Ny). Since f is the identity map and
hence a diffeomorphism, the data described by the triple (O, Q = {0}, a* : (0, 0) —
0) has dimension at least d. By Proposition A.1, we conclude that at least d latent
variables are required.

! Note that any element in H ~1({o}) could be chosen.

Appendix B
Variational Autoencoders

Abstract In this appendix [taken from (Iten et al. in Phys Rev Lett 124:010508,
2020 [22])], we describe variational autoencoders (VAEs) (Higgins et al. in ICLR,
2017 [49], Kingma and Welling in 2013 [193]), a tool from machine learning that
can be used to find compact representations of data sets. In particular, we consider
beta-VAE (Higgins et al. in ICLR, 2017 [49], an extension of VAEs that is meant
to disentangle the parameters in the latent representation. We use beta-VAEs in this
thesis as a tool to find statistically independent representations (Sect. 8.4.2.1).

The implementation of SciNet uses a modified version of so-called variational autoen-
coders (VAEs) [49, 193]. The standard VAE architecture does not include the ques-
tion input used by SciNet and tries to reconstruct the input from the representation
instead of answering a question. VAEs are one particular architecture used in the
field of representation learning [27]. Here, we give a short overview over the goals
of representation learning and the details of VAEs.

Representation learning.

The goal in representation learning is to map a high-dimensional input vector x to a
lower-dimensional representation z = (z1, 22, . . . , Z¢), commonly called the latent
vector.” The representation z should still contain all the relevant information about x.
In the case of an autoencoder, z is used to reconstruct the input x. This is motivated
by the idea that the better the (low-dimensional) representation is, the better the
original data can be recovered from it. Specifically, an autoencoder uses a neural
network (encoder) to map the input x to a small number of latent neurons z. Then,
another neural network (decoder) is used to reconstruct an estimate of the input, that
is z > X. During training, the encoder and decoder are optimized to maximize the
reconstruction accuracy and reach X & x.

2 The variables x and z correspond to the observation o and the representation » used in the main
text.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 147
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://doi.org/10.1007/978-3-031-27019-2

148 Appendix B: Variational Autoencoders

Fig. B.1 Network structure for a variational autoencoder [22]. The encoder and decoder are
described by conditional probability distributions p(z|x) and p(x|z) respectively. The output dis-
tribution of the encoder are the parameters p; and log(o;) for independent Gaussian distributions
zi ~ N (u;, o7) of the latent variables. The reparameterization trick is used to sample from the latent
distribution

Probabilistic encoder and decoder.

Instead of considering deterministic maps x — z and z — X, we generalize to con-
ditional probability distributions p(z|x) for the encoder and p(x|z) for the decoder.
This is motivated by the Bayesian view that the most informative statement the
encoder can output a description of a probability distribution over all latent vectors,
instead of outputting a single estimate. The same reasoning holds for the decoder.
We use the notation z ~ p(z) to indicate that z is picked at random according to the
distribution p.

We cannot treat the general case analytically, so we make restricting assumptions
to simplify the setting. First we assume that the input can be perfectly compressed
and reconstructed by an encoder and decoder which are both neural networks, that
is we assume that the ideal distributions p(z|x) and p(x|z) that reach x = X are
members of parametric families {pg(z|x)}4 and { po (X|2)}o, respectively. We further
assume that it is possible to achieve this with a latent representation where each
neuron is independent of the others, py(z|x) =]_[i Dy (zi|x). If these distributions
turn out hard to find for a given dimension d of the latent representation, we can try
to increase the number of neurons of the representation to disentangle them. Finally,
we make one more simplifying assumption, which is justified a posteriori by good
results: that we can reach a good approximation of p(z|x) by using only independent
normal distributions for each latent neuron, py(z;|x) = N (w;, 0;), where p; is the
mean and o; the variance. We can think of the encoder as mapping x to the vectors
w= Wy, ..., ug) and o = (oq, ..., ay).

The optimal settings for ¢ and 6 are then learned as follows, see Fig.B.1:

1. The encoder with parameters (weights and biases) ¢ maps an input x to
Po(zlx) = NT(1, ..., pa), (o1, ..., 0]

2. A latent vector z is sampled from pg(z|x).

3. The decoder with parameters (weights and biases) 6 maps the latent vector z to
Ppo(X[2).

4. The parameters ¢ and 6 are updated to maximize the likelihood of the original
input x under the decoder distribution py(¥|z).

Appendix B: Variational Autoencoders 149

Reparameterization trick.

The operation that samples a latent vector z from py(z|x) is not differentiable with
respect to the parameters ¢ and 6 of the network. However, differentiability is neces-
sary to train the network using stochastic gradient descent. This issue is solved by the
reparameterization trick introduced in [193]: if py(z;|x) is a Gaussian with mean u;
and standard deviation o;, we can replace the sampling operation using an auxiliary
random number €; ~ N'(0, 1). Then, a sample of the latent variable z; ~ N'(u;, 0;)
can be generated by z; = u; + o;¢;. Sampling ¢; does not interfere with the gradient
descent because ¢; is independent of the trainable parameters ¢ and 6. Alternatively,
one can view this way of sampling as injecting noise into the latent layer [261].

B-VAE cost function.

A computationally tractable cost function for optimizing the parameters ¢ and 6 was
derived in [193]. This cost function was extended in [49] to encourage independency
of the latent variables zy, ..., z4 (or to encourage “disentangled” representations, in
the language of representation learning). The cost function in [49] is known as the
B-VAE cost function,

Cp(x) = = [ecpyin log po(xl2) | + B D [po (0],

where the distribution /(z) is a prior over the latent variables, typically chosen as the
unit Gaussian?, B > Oisaconstant, and Dy is the Kullback-Leibler (KL) divergence,
which is a quasi-distance* measure between probability distributions,

i 18]
Diw [p(D)llg ()] = Z p(2)log (q(z)) '

Let us give an intuition for the motivation behind the 8-VAE cost function. The
first term is a log-likelihood factor, which encourages the network to recover the
input data with high accuracy. It asks “for each z , how likely are we to recover the
original x after the decoding?” and takes the expectation of the logarithm of this
likelihood py(x|z) (other figures of merit could be used here in an alternative to
the logarithm) over z sampled from pg(z|x), in order to simulate the encoding. In
practice, this expectation is often estimated with a single sample, which works well
enough if the mini-batches are chosen sufficiently large [193].

The second term encourages disentangled representations, and we can motivate it
using standard properties of the KL divergence. Our goal is to minimize the amount of
correlations between the latent variables z;: we can do this by minimizing the distance
Dy, [P(Z) ITT P(zi)] between p(z) and the product of its marginals. For any other
distribution with independent z;, h(z) = []; h(z;), the KL divergence satisfies

3 The interpretation of /(z) as a prior is clear only when deriving VAEs as generative networks. For
details, see [193].

4 The KL divergence satisfies all axioms of a metric apart from symmetry.

150 Appendix B: Variational Autoencoders

Dy [p(z)ll I1 p(zi)} < Dx[p(@)1h(2)].

The KL divergence is furthermore jointly convex in its arguments, which implies

Dy [Z px) Pa(Z|x)||h(Z):|

<> px) Dxw[pozIn) ()]

Combining this with the previous inequality, we obtain

Dy [p(z) T p(z,-)}
=< exwp(x) DKL [P(Z|X)||h(2)] .

The term on the right hand side corresponds exactly to the second term in the cost
function, since in the training we try to minimize e~ ,y)Cg(x). Choosing a large
parameter S also penalizes the size of latent representation z, motivating the network
to learn an efficient representation. For an empirical test of the effect of large 8
see [49], and for another theoretical justification using the information bottleneck
approach see [261].

To derive an explicit form of Cg for a simple case, we again assume that
Py(zlx) = N(u, o). In addition, we assume that the decoder output py(X|z) is a
multivariate Gaussian with mean % and fixed covariance matrix 6 = —-id. With

2
these assumptions, the B-VAE cost function can be explicitly written as

Cp(x) = £ — x|} — g (Z log(o}) — u? — 0i2> +C. (B.1)

The constant terms C do not contribute to the gradients used for training and can
therefore be ignored.

Appendix C
Implementation Details

Abstract In this appendix [which is based on (Iten et al. in Phys Rev Lett 124:010508,
2020 [22])] we provide some details about the implementations used for the examples
discussed in Chap.10. We specify the sizes of the neural networks that were used and
provide the most relevant parameters used to train the networks. The full details can
be found in the open source code.

The following implementation details refer to Sects. 10.2, 10.4, 10.5, 10.6 and 10.7.
For the implementation details for the examples given in Sects. 10.3 and 10.8, we
refer to [183, 184], respectively, and their open source code given here:
https://github.com/Bethanyl/DeepKoopman and https://github.com/ethanfetaya/
nri.
The neural networks used in this work are specified by the input sizes for question
and observation inputs, the output sizes, the number of latent neurons, and the sizes
of encoders and decoders. The number of neurons in the encoders and decoders are
not expected to be important for the results, provided the encoders and decoders are
large enough to not constrain the expressivity of the network (and small enough to be
efficiently trainable). The training is specified by the number of training examples,
the batch size, the number of epochs, the learning rate and the value of the parameter
B, which regulates the tradeoff between disentangling and accurate predictions. Note
that dependent on the considered example, B corresponds to the parameter in the cost
function of the beta-VAE given in (B.1) or the one appearing in the cost function to
find operationally meaningful representations given in (9.1), respectively. To test the
networks, we use a number of previously unseen test samples. We give the values of
these parameters for the examples presented in Chap. 10 in TablesC.1 and C.2.
The source code, all details about the network structure and training process, and
pre-trained SciNets are available at
https://github.com/eth-nn-physics/nn_physical_concepts and https://github.com/
tonymetger/communicating_scinet.
The networks were implemented using the Tensorflow library [212]. For all examples,
the training process only takes a few hours on a standard laptop.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 151
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://github.com/BethanyL/DeepKoopman
https://github.com/ethanfetaya/nri
https://github.com/ethanfetaya/nri
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/tonymetger/communicating_scinet
https://github.com/tonymetger/communicating_scinet
https://doi.org/10.1007/978-3-031-27019-2

Appendix C: Implementation Details

152

SUOINAU ()7 JO SUNSISUOD SIOAR] UIPPIY 0M] JO SISISUOD WAY) JO YLD 2I3YM ‘pasn
QIoM SIOPOOUD OM] JBY) SuedW , Jopooud,, uwnjod 3y ut [[00z ‘002] ‘00T ‘00]] Anua oy "S- S| & ur pajsi] a1e A3y} ‘pasn aIe 109[qo U JO SIOUL)SUI [BIIARS J]
*K10AT}02dSa1 “(SIOPOOIP 2} J0) SIOPOIUD Y} JO JOAR] USPPIY PUOIIS) PUE ISIY Y} UL Tu pue [SUOINAU JO JOQUINU A} GLIOSIP 0] Pasnh ST [Cu ‘1] uonejou ay

[ooT1 ‘0011 (00T ‘0011 C C 0 4 wass Ie[og
(I9pooud
[loot 0011 ‘[00T “00T] odnnur)
‘loor ‘0011 “[00T ‘00111 [Tooz “002] “[ooz ‘00zl (reriral [c2l (1111l [0z ‘0Tl | seponred pasiey)
[foot ‘00t1 “[o0T ‘0011 (19pooua or3urs)
‘loor ‘0011 ‘[00T ‘00111 [0sT ‘00§] [rrerl € [Trereal Ot | seronred pasrey)
[looT ‘0051 (9118 paxIur)
‘[oo1 ‘00<]1 “[00T ‘00511 [0sZ ‘00s] (1111 0¢ [SL*sL SL] SL s1qnb oM,
(@13
[ooT ‘0011 (00T ‘00¢] I 60 0¢ 0¢ | 2md) syqnb om,
(@13
(00T ‘00T] (00T ‘00T] I §—0 ol 01| omd)qnbsuQ
[osT ‘0011 (001 ‘0ST] C [91 0¢ UoIsIIoD
(00T ‘0011 (00T ‘00S] I € I 0S wnnpuag

oz18 az18
19p023Q I9poouy 9zis IndinQ | SUOINAU JUART # jndur uonsan() |Indur uonearasqO ordwrexyg

01 "dey) ur sojdwrexe 2y} 10§ aInjoni)s yIomiau Y} Surkyroads s1ojowered [+ qeL

153

[#97 ‘€97] ul punoj oq Ued Inq ‘dIdY Pa)SI| Jou 2Ie Fururen Ay SuLInp uonezLre[NSAI 0] pasn s1e)owered JUBAI[AI SSO] QWS *[797] Ul [1eIop Ul payroads
soseyd Sururen oAy sosn opdwrexa jse[oy, ‘A[eanoadsar ‘oseyd puoosas pue 3s1y oy ur s1ojowered o) 03 s10ja1 (¢d ‘ Id) uonejou ay) ‘soseyd om] YIrm SUTUTRT) JO]

Appendix C: Implementation Details

000S 000°S6 000S z-01 - (I-5°0) ¢-0I - (€-5°0) ¥201-95¢C w)IsKs re[og
(19pooua opdnnur)

000§ 000°S6 000S 01 ¢-0I 96¢ soponed pagrey)
(19pooua 9[3urs)

0008 000°S6 0008 01 01 TIS| sepnred pasiey)
(@13

000§ 000°S6 0001 ¢-0I-¢ =016 TIS| poxru) syqnb omy,
(qress

000°01 000°06¥ (05 057) =01 (50T “¢_0T) (48 amd) syqnb omg,
(qre38

000S 000°S6 (05 052) y—01 (40T *¢—01) (48 amd) yiqnb auQ
000°01 000°06¥ (0s ‘001) 0 (401 *4—0T - ©) 008 UOISIIOD
000§ 000°S6 0001 01 ¢-0I (459 wnnpusd
sordwes 3591, # | sodwres Sururery, # syoody # d 9res Sururea| az1s yojeg ordwrexyg

01 "deyD ur sojdwrexa oy 103 ssoooid Jururen oy Surkjroads sioowered 7)) dqEL

Appendix D
Representations of Cyclic Parameters

Abstract In this appendix [which is taken from (Iten et al. in Phys Rev Lett
124:010508, 2020 [22])] We explain the difficulty of a neural network to learn rep-
resentations of cyclic parameters, which was alluded to in the context of the qubit
example [Sect. 10.5, see (Pitelis et al. in IEEE Conference on Computer Vision and
Pattern Recognition, 2013 [265], Korman in 2018 [266]) for a detailed discussion
relevant to computer vision]. In general, this problem occurs if the data O that we
would like to represent forms a closed manifold (i.e., a compact manifold without
boundary), such as a circle, a sphere or a Klein bottle. In that case, several coordinate
charts are required to describe this manifold.

Let us start with an example: We consider data points lying on the unit sphere
O ={(x,y,2): x>+ y*> + 7> = 1}, which we would like to encode into a simple rep-
resentation. The data can be (globally) parameterized with spherical coordinates ¢ €
[0, 27) and 6 € [0,] where (x, v, z) = (0, ¢) := (sin6 cos ¢, sin @ sin ¢, cos 6).’
We would like the encoder to perform the mapping f~!, where we define f~!((0, 0,
1)) = (0,0)and £~'((0, 0, —1)) = (7, 0) for convenience. This mapping is not con-
tinuous at points on the sphere with ¢ = 0 for 8 € (0, 7). Therefore, using a neural
network as an encoder leads to problems, as neural networks, as introduced here, can
only implement continuous functions. In practice, the network is forced to approx-
imate the discontinuity in the encoder by a very steep continuous function, which
leads to a high error for points close to the discontinuity.

In the qubit example, the same problem appears. To parameterize a qubit state
with two parameters, the Bloch sphere with parameters 6 € [0, =] and ¢ € [0, 27)
is used: the state v can be written as (8, ¢) = (cos(8/2), ¢'? sin(8/2)) (see for
example [72] for more details). Ideally, the encoder would perform the map E :
oW 6, ¢)) = (I {ealy (@,) 1>, ... l{aw ¥ (0,) *) = (0, ¢) for some fixed

binary projective measurements «; € C2. However, such an encoder is not con-

3 The function £ is not a chart, since it is not injective and its domain is not open.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 155
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://doi.org/10.1007/978-3-031-27019-2

156 Appendix D: Representations of Cyclic Parameters

tinuous. Indeed, assuming that the encoder is continuous, leads to the following
contradiction:

(6.0) = E(y(6. ¢ = 0)))
= E(o(lim (0. 4))

= lim E(o(y(®.4))
= ¢12121n(9,¢) =(0,2m),
where we have used the periodicity of ¢ in the second equality and the fact that the

Bloch sphere representation and the scalar product (and hence o(¥ (6, ¢))) as well
as the encoder (by assumption) are continuous in ¢ in the third equality.

Appendix E
Classical Mechanics Derivation for Charged
Masse

Abstract In Sect. 10.6 we consider a physical setting with two charged particles,
where an agent chooses the angle of a projectile that hits one of the particles. The
aim of the agent is to choose the angle such that the particle lands in a hole, which
is at a fixed position. In this appendix [which is taken from (Nautrup et al. in Mach
Learn Sci Technol 3(4):045025, 2022 [23], Nautrup et al. in Mach Learn Sci Technol,
3:045025 2022 [237])], we derive the analytical solution for this setting, which is
then used for supervised training of SciNet’s predictions.

In this section, we provide the analytic solution to the charged masses example in
Sect. 10.6 that we use to evaluate the cost function for training the neural networks.
This is a fairly direct application of the generic Kepler problem, but we include the
derivation for the sake of completeness. We use the notation of [267].

The setup we consider is shown in Fig. E.1. Our goal is to derive a function vy (¢)
that, for fixed ¢, Q, dy and given ¢, outputs an initial velocity for the left mass such

Fig. E.1 Setup and variable names for a charged mass being shot into a holes [23, 237]. A charged
particle with mass m and charge ¢ moves in the electrostatic field generated by another charge Q
at a fixed position. The initial conditions are given by the velocity vy and the angle ¢. We want to
determine the value for ¢ that will result in the particle landing in the target hole, given a velocity vg

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 157
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://doi.org/10.1007/978-3-031-27019-2

158 Appendix E: Classical Mechanics Derivation for Charged Masse

that the mass will reach the hole. Introducing the inverse radial coordinate u = 1

r

the orbit r(6) of the left mass obeys the following differential equation (see for
example [267, Sect. 4.3]):

U =k E.1)
— tu=—, .
do? 2
with the constant
k= —99 (E.2)
dmwegm
and the mass-normalised angular momentum
l 249 (E.3)
=r —. .
dt

This is a conserved quantity and we can determine it from the initial condition of the
problem
1 = dyvycos¢. (E4)

The general solution to Eq. (E.1) is given by
k
u = Acos(d — 6y + 7 (E.5)

where A and 6, are constants to be determined from the initial conditions. The initial
conditions are

1
r@=0=——=d, E.6
=0 = s M. 0
d —Asinf
al - R B COSP _ o sing. (E.7)
do |y (Acos6y + l%) do
Combining these yields
Acostp = — — K (E.8)
cosly = — — —, .
T dy 2
1
Asinfy = ——tan¢. (E.9)
dy

The condition that the mass reaches the hole is expressed in terms of (0) as follows:

T 1
lo=T) = = /2d,. E.10
(4) Acos(Z —) + % ° (=10

Appendix E: Classical Mechanics Derivation for Charged Masse 159

Using cos(r/4 — 6) = cos(6)/~/2 + sin(fy)/~/2 and the definition of [as well as
Egs. (E.8) and (E.9), we can solve this for vp:

, (V2-Dk 1

h — .
dy cos ¢ sin ¢

(E.11)

Restricting ¢ to a suitably small interval, this function is injective and has a
well-defined inverse ¢ (vg). The neural network has to compute this inverse from
operational input data. To generate valid question-answer pairs, we evaluate vg(¢)
on a large number of randomly chosen ¢ (inside the interval where the function is
injective).

References

11.
12.
13.
14.
15.
16.
17.

18.

. Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,

Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., & Silver, D. (2020). Nature, 588(7839),
604.

. Segler, M. H. S., Preuss, M., & Waller, M. P. (2018). Nature, 555(7698), 604.
. Dalgaard, M., Motzoi, F.,, Sgrensen, J. J., & Sherson, J. (2020). NPJ Quantum Information,

6(1), 6. https://doi.org/10.1038/s41534-019-0241-0

. Wu, T., & Tegmark, M. (2018). http://arxiv.org/abs/1810.10525
. Boyle, R. (1772). The works of the honourable Robert Boyle (2nd ed, Vol. 6).
. Wigner, E. P. (1995). The collected works of Eugene Paul Wigner. In J. Mehra (Ed.), Philo-

sophical reflections and syntheses (pp. 247-260). Springer. https://doi.org/10.1007/978-3-
642-78374-6_20

. Deutsch, D., & Penrose, R. (1985). Proceedings of the Royal Society of London. A. Mathe-

matical and Physical Sciences, 400(1818), 97.

. Brukner, C. (2017). The frontiers collection. In R. Bertlmann & A. Zeilinger (Eds.), Quantum

[Un]speakables 11: Half a Century of Bell’s Theorem (pp. 95-117). Springer International
Publishing. https://doi.org/10.1007/978-3-319-38987-5_5

. Frauchiger, D., & Renner, R. (2018). Nature Communications, 9(1), 3711.
. Proietti, M., Pickston, A., Graffitti, F., Barrow, P., Kundys, D., Branciard, C., Ringbauer, M.,

& Fedrizzi, A. (2019). Science Advances, 5(9). https://advances.sciencemag.org/content/5/
9/eaaw9832

Bong, K. W., Utreras-Alarcén, A., Ghafari, F.,, Liang, Y. C., Tischler, N., Cavalcanti, E. G.,
Pryde, G. J., & Wiseman, H. M. (2020). Nature Physics. https://www.nature.com/articles/
s41567-020-0990-x. Publisher: Nature Publishing Group.

Hawking, S. W. (1976). Physics Review D, 14, 2460.

Preskill, J. (1993). International Symposium on Black Holes. Membranes: Wormbholes, and
Superstrings.

Dunjko, V., & Briegel, H. J. (2017). http://arxiv.org/abs/1709.02779

Roscher, R., Bohn, B., Duarte, M. F., & Garcke, J. (2019). http://arxiv.org/abs/1905.08883
Alhousseini, I., Chemissany, W., Kleit, F., & Nasrallah, A. (2019). http://arxiv.org/abs/1905.
01023

Carleo, G., Cirac, 1., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., &
Zdeborovad, L. (2019). http://arxiv.org/abs/1903.10563

Crutchfield, J. P.,, & McNamara, B. S. (1987). Complex Systems, 1(3), 417.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer 161
Nature Switzerland AG 2023

R. Iten, Artificial Intelligence for Scientific Discoveries,
https://doi.org/10.1007/978-3-031-27019-2

https://doi.org/10.1038/s41534-019-0241-0
http://arxiv.org/abs/1810.10525
https://doi.org/10.1007/978-3-642-78374-6_20
https://doi.org/10.1007/978-3-642-78374-6_20
https://doi.org/10.1007/978-3-319-38987-5_5
https://advances.sciencemag.org/content/5/9/eaaw9832
https://advances.sciencemag.org/content/5/9/eaaw9832
https://www.nature.com/articles/s41567-020-0990-x
https://www.nature.com/articles/s41567-020-0990-x
http://arxiv.org/abs/1709.02779
http://arxiv.org/abs/1905.08883
http://arxiv.org/abs/1905.01023
http://arxiv.org/abs/1905.01023
http://arxiv.org/abs/1903.10563
https://doi.org/10.1007/978-3-031-27019-2

162

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.
33.
34.
35.
36.
37.
38.
39.
40.

41.
42.

43.
44.
45.
46.

47.

References

Schmidt, M., & Lipson, H. (2009). Science, 324, 81. https://doi.org/10.1126/science.1165893
Schmidt, M., Vallabhajosyula, R. R., Jenkins, J. W., Hood, J. E., Soni, A. S., Wikswo, J. P.,
& Lipson, H. (2011). Physical Biology, 8(5), 055011. https://doi.org/10.1088/1478-3975/8/
5/055011

Koza, J. R. (1994). Statistics and Computing, 4(2), 87.

Iten, R., Metger, T., Wilming, H., del Rio, L., & Renner, R. (2020). Physics Review Letter
124, 010508. https://doi.org/10.1103/PhysRevLett.124.010508

Nautrup, H. P., Metger, T., Iten, R., Jerbi, S., Trenkwalder, L. M., Wilming, H., Briegel, H.
J., & Renner, R. (2022). Machine Learning: Science and Technology, 3(4), 045025.

Koza, J. R. (1994). Statistics and Computing, 4(2), 87.

Forrest, S. (1993). Science, 261(5123), 872.

Krizhevsky, A., Sutskever, L., & Hinton, G. E. (2012). In F. Pereira, C. J. C. Burges, L. Bottou,
& K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 25, (pp.
1097-1105). Curran Associates, Inc.

Bengio, Y., Courville, A., & Vincent, P. (2012). IEEE Transactions on Pattern Analysis and
Machine Intelligence 35. https://arxiv.org/abs/1206.5538?context=cs

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural Computation. https://doi.org/10.
1162/neco.1992.4.1.1

Bates, C., Yildirim, 1., Tenenbaum, J. B., & Battaglia, P. W. (2015). Proceedings of the 37th
Annual Conference of the Cognitive Science Society (pp. 172-77). Pasadena, CA.

Wu, J., Yildirim, 1., Lim, J. J., Freeman, B., & Tenenbaum, J. (2015). In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, & R. Garnett (Eds.), Advances in Neural Information
Processing Systems 28 (pp. 127-135). Curran Associates, Inc.

Bramley, N. R., Gerstenberg, T., Tenenbaum, J. B., & Gureckis, T. M. (2018). Cognitive
Psychology, 105, 9.

Rempe, D., Sridhar, S., Wang, H., & Guibas, L. J. (2019). http://arxiv.org/abs/1901.00466
Kissner, M., & Mayer, H. (2019). http://arxiv.org/abs/1905.09891

Ehrhardt, S., Monszpart, A., Mitra, N. & Vedaldi, A. (2018). http://arxiv.org/abs/1805.05086
Ye, T., Wang, X., Davidson, J., & Gupta, A. (2018). http://arxiv.org/abs/1808.10002

Lerer, A., Gross, S., & Fergus, R. (2016). http://arxiv.org/abs/1603.01312

Nielsen, M. A. (2018). Neural Networks and Deep Learning. http://
neuralnetworksanddeeplearning.com/

Tishby, N., & Zaslavsky, N. (2015). IEEE Information Theory Workshop (ITW) 1-5. https://
doi.org/10.1109/1TW.2015.7133169

Nair, V., & Hinton, G. (2010). Proceedings of the 27th International Conference on Machine
Learning, Haifa (pp. 807-814).

Glorot, X., Bordes, A. & Bengio, Y. (2010). International Conference on Artificial Intelligence
and Statistics, 15.

Clevert, D. A., Unterthiner, T. & Hochreiter, S. (2015). http://arxiv.org/abs/1511.07289

Lu, Z., Pu, H., Wang, F.,, Hu, Z., & Wang, L. (2017) In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Advances in neural information
processing systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf

Cybenko, G. (1989). Mathematics of control. Signals and Systems, 2(4), 303.

Hornik, K., Stinchcombe, M., & White, H. (1989). Neural Networks, 2(5), 359.

Sonoda, S., & Murata, N. (2017). Applied and Computational Harmonic Analysis 43(2),
233. https://doi.org/10.1016/j.acha.2015.12.005. http://arxiv.org/abs/1505.03654. ArXiv:
1505.03654

Pascanu, R., Montufar, G., & Bengio, Y. (2014). arXiv:1312.6098. http://arxiv.org/abs/1312.
6098

Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009). Proceedings of the 26th Annual Inter-
national Conference on Machine Learning - ICML 09 (pp. 1-8). Montreal, Quebec, Canada:
ACM Press. https://doi.org/10.1145/1553374.1553453. http://portal.acm.org/citation.cfm?
doid=1553374.1553453

https://doi.org/10.1126/science.1165893
https://doi.org/10.1088/1478-3975/8/5/055011
https://doi.org/10.1088/1478-3975/8/5/055011
https://doi.org/10.1103/PhysRevLett.124.010508
https://arxiv.org/abs/1206.5538?context=cs
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
http://arxiv.org/abs/1901.00466
http://arxiv.org/abs/1905.09891
http://arxiv.org/abs/1805.05086
http://arxiv.org/abs/1808.10002
http://arxiv.org/abs/1603.01312
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1109/ITW.2015.7133169
https://doi.org/10.1109/ITW.2015.7133169
http://arxiv.org/abs/1511.07289
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://doi.org/10.1016/j.acha.2015.12.005
http://arxiv.org/abs/1505.03654
http://arxiv.org/abs/1505.03654
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
http://arxiv.org/abs/1312.6098
https://doi.org/10.1145/1553374.1553453
http://portal.acm.org/citation.cfm?doid=1553374.1553453
http://portal.acm.org/citation.cfm?doid=1553374.1553453

References 163

48

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.
67.

68.

69.

70.

71.

72.

73.

74.

. Zeiler, M .D., & Fergus, R. (2014). Lecture notes in computer science. In D. Fleet, T. Pajdla,
B. Schiele, & T. Tuytelaars (Eds.), Computer Vision—ECCV 2014 (pp. 818-833). Cham:
Springer International Publishing. https://doi.org/10.1007/978-3-319-10590-1_53

Higgins, 1., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., &
Lerchner, A. (2017). ICLR. https://openreview.net/references/pdf?id=Sy2fzU9gl|

Chen, T. Q., Li, X., Grosse, R. B., & Duvenaud, D. (2018). http://arxiv.org/abs/1802.04942
Kim, H. & Mnih, A. (2018). https://arxiv.org/abs/1802.05983

Thomas, V., Bengio, E., Fedus, W., Pondard, J., Beaudoin, P., Larochelle, H., Pineau, J.,
Precup, D., & Bengio, Y., (2018). http://arxiv.org/abs/1802.09484

Francois-Lavet, V., Bengio, Y., Precup, D., & Pineau, J. (2019). The Thirty-Third AAAI Con-
ference on Artificial Intelligence, AAAI 2019 (pp. 3582-3589). https://doi.org/10.1609/aaai.
v33i01.33013582

Bengio, Y. (2017). http://arxiv.org/abs/1709.08568

Krenn, M., Malik, M., Fickler, R., Lapkiewicz, R., & Zeilinger, A. (2016). Physics Review
Letter, 116, 090405.

Melnikov, A. A., Nautrup, H. P., Krenn, M., Dunjko, V., Tiersch, M., Zeilinger, A., & Briegel,
H. J. (2018). Proceedings of the National Academy of Sciences, 115(6), 1221.

Krenn, M., Erhard, M., & Zeilinger, A. (2020). Nature Reviews Physics, 2(11), 649-661.
https://doi.org/10.1038/s42254-020-0230-4

Gao, X., Krenn, M., Kysela, J., & Zeilinger, A. (2019). Physical Review A, 99(2), 023825.
https://doi.org/10.1103/PhysRevA.99.023825

Malik, M., Erhard, M., Huber, M., Krenn, M., Fickler, R., & Zeilinger, A. (2016). Nature
Photonics, 10(4), 248. https://doi.org/10.1038/nphoton.2016.12

Schlederer, F., Krenn, M., Fickler, R., Malik, M., & Zeilinger, A. (2016). New Journal of
Physics, 18(4), 043019. https://doi.org/10.1088/1367-2630/18/4/043019

Wang, F., Erhard, M., Babazadeh, A., Malik, M., Krenn, M., & Zeilinger, A. (2017). Optica,
4(12), 1462. https://doi.org/10.1364/OPTICA.4.001462

Babazadeh, A., Erhard, M., Wang, F., Malik, M., Nouroozi, R., Krenn, M., & Zeilinger,
A. (2017). Physical Reviews, 119(18), 180510. https://doi.org/10.1103/PhysRevLett.119.
180510

Erhard, M., Malik, M., Krenn, M., & Zeilinger, A. (2018). Nature Photonics, 12(12), 759.
https://doi.org/10.1038/s41566-018-0257-6

Kysela, J., Erhard, M., Hochrainer, A., Krenn, M., & Zeilinger, A. (2020). Proceedings of the
National Academy of Sciences, 117(42), 26118.

Krenn, M., Hochrainer, A., Lahiri, M., & Zeilinger, A. (2017). Physical Reviews, 118(8),
080401. https://doi.org/10.1103/PhysRevLett.118.080401

Krenn, M., Gu, X., & Zeilinger, A. (2017). Physics Review Letter, 119, 240403.

Gao, X., Erhard, M., Zeilinger, A., & Krenn, M. (2020). Physical Reviews, 125(5), 050501.
https://doi.org/10.1103/PhysRevLett.125.050501

Krenn, M., Kottmann, J., Tischler, N., & Aspuru-Guzik, A. (2020). arXiv:2005.06443
[physics, physics:quant-ph] http://arxiv.org/abs/2005.06443. ArXiv: 2005.06443
Friederich, P., Krenn, M., Tamblyn, I. & Aspuru-Guzik, A. (2020). Scientific intuition inspired
by machine learning generated hypotheses.

Briegel, H. J., & Cuevas, G. D. 1. (2012). Scientific Reports, 2, 400. https://doi.org/10.1038/
srep00400, https://www.nature.com/articles/srep00400

Bell, J. S. (1964). Physics Physique Fizika, 1, 195.

Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Infor-
mation: 10th Anniversary Edition. Cambridge University Press. https://doi.org/10.1017/
CB09780511976667

Sachdev, S. (2000). Quantum Phase Transitions. Cambridge University Press. https://doi.org/
10.1017/CB0O9780511622540

Huber, M., & de Vicente, J. 1. (2013). Physical Reviews 110(3), 030501. https://doi.org/10.
1103/PhysRevLett.110.030501. http://arxiv.org/abs/1210.6876. ArXiv: 1210.6876

https://doi.org/10.1007/978-3-319-10590-1_53
https://openreview.net/references/pdf?id=Sy2fzU9gl
http://arxiv.org/abs/1802.04942
https://arxiv.org/abs/1802.05983
http://arxiv.org/abs/1802.09484
https://doi.org/10.1609/aaai.v33i01.33013582
https://doi.org/10.1609/aaai.v33i01.33013582
http://arxiv.org/abs/1709.08568
https://doi.org/10.1038/s42254-020-0230-4
https://doi.org/10.1103/PhysRevA.99.023825
https://doi.org/10.1038/nphoton.2016.12
https://doi.org/10.1088/1367-2630/18/4/043019
https://doi.org/10.1364/OPTICA.4.001462
https://doi.org/10.1103/PhysRevLett.119.180510
https://doi.org/10.1103/PhysRevLett.119.180510
https://doi.org/10.1038/s41566-018-0257-6
https://doi.org/10.1103/PhysRevLett.118.080401
https://doi.org/10.1103/PhysRevLett.125.050501
http://arxiv.org/abs/2005.06443
http://arxiv.org/abs/2005.06443
http://arxiv.org/abs/2005.06443
https://doi.org/10.1038/srep00400
https://doi.org/10.1038/srep00400
https://www.nature.com/articles/srep00400
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511622540
https://doi.org/10.1017/CBO9780511622540
https://doi.org/10.1103/PhysRevLett.110.030501
https://doi.org/10.1103/PhysRevLett.110.030501
http://arxiv.org/abs/1210.6876
http://arxiv.org/abs/1210.6876

164

75.

76.
71.

78.
79.
80.
81.
82.
83.
84.

85.

86.

87.

88.
89.
90.
91.
92.
93.

94.

95.
96.

97.

98.

99.

100.

101.
102.
103.
104.
105.
106.

References

Horodecki, R., Horodecki, P., Horodecki, M., & Horodecki, K. (2009). Review Model Physics,
81, 865.

Amico, L., Fazio, R., Osterloh, A., & Vedral, V. (2008). Review Model Physics 80, 517.
Pan, J. W., Chen, Z. B., Lu, C. Y., Weinfurter, H., Zeilinger, A., & Zukowski, M. (2012).
Review Model Physics, 84, 777.

Hein, M., Eisert, J., & Briegel, H. J. (2004). Physics Review A, 69, 062311.

Scarani, V., & Gisin, N. (2001). Physics Review Letter; 87, 117901.

Scarani, V., Bechmann-Pasquinucci, H., Cerf, N. J., Dusek, M., Liitkenhaus, N., & Peev, M.
(2009). Review Model Physics, 81, 1301.

Mautner, J., Makmal, A., Manzano, D., Tiersch, M., & Briegel, H. J. (2015). New Generation
Computing, 33(1), 69.

Melnikov, A. A., Makmal, A., & Briegel, H. J. (2014). arXiv:1405.5459 [cs]. http://arxiv.org/
abs/1405.5459. ArXiv: 1405.5459

Melnikov, A. A., Makmal, A., Dunjko, V., & Briegel, H. J. (2017). Scientific Reports, 7(1),
14430.

Melnikov, A. A., Makmal, A., & Briegel, H. J. (2018). IEEE Access, 6, 64639. https://doi.
org/10.1109/ACCESS.2018.2876494

Hangl, S., Ugur, E., Szedmak, S., & Piater, J. (2016). 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) (pp. 2799-2804). https://doi.org/10.1109/IROS.
2016.7759434

Hangl, S., Dunjko, V., Briegel, H. J., & Piater, J. (2020). Frontiers in Robotics and Al, 7, 42.
https://doi.org/10.3389/frobt.2020.00042, https://www.frontiersin.org/article/10.3389/frobt.
2020.00042

Nautrup, H. P, Delfosse, N., Dunjko, V., Briegel, H. J. & Friis, N. (2019). Quantum, 3, 215.
https://doi.org/10.22331/q-2019-12-16-215

Tiersch, M., Ganahl, E. J., & Briegel, H. J. (2015). Scientific Reports, 5(1), 12874.
Wallnéfer, J., Melnikov, A. A., Diir, W., & Briegel, H. J. (2020). PRX Quantum, 1, 010301.
Melnikov, A. A., Sekatski, P., & Sangouard, N. (2020). Physics Review Letter 125, 160401.
Ried, K., Miiller, T., & Briegel, H. J. (2019). PLOS ONE, 14(2), €¢0212044.

Lépez-Incera, A., Ried, K., Miiller, T., & Briegel, H. (2020). PloS one, 15(12), €0243628.
Lopez-Incera, A., Nouvian, M., Ried, K., Miiller, T., & Briegel, H. J. (2020). Collective
defense of honeybee colonies: Experimental results and theoretical modeling.

Paparo, G. D., Dunjko, V., Makmal, A., Martin-Delgado, M. A., & Briegel, H. J. (2014).
Physics Review X, 4, 031002.

Dunjko, V., Friis, N., & Briegel, H. J. (2015). New Journal of Physics, 17(2), 023006.

Friis, N., Melnikov, A. A., Kirchmair, G., & Briegel, H. J. (2015). Scientific Reports, 5(1),
18036.

Dunjko, V., Taylor, J. M., & Briegel, H. J. (2016). Physics Review Letter 117, 130501.
https://link.aps.org/doi/10.1103/PhysRevLett.117.130501

Dunjko, V., Taylor, J. M., & Briegel, H. J. (2017). 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC) (pp. 282-287). https://doi.org/10.1109/SMC.2017.
8122616

Sriarunothai, T., Wolk, S., Giri, G. S., Friis, N., Dunjko, V., Briegel, H. J., & Wunderlich, C.
(2018). Quantum Science and Technology, 4(1), 015014.

Jerbi, S., Trenkwalder, L. M., Poulsen Nautrup, H., Briegel, H. J., & Dunjko, V. (2021).
PRX Quantum, 2, 010328. https://doi.org/10.1103/PRXQuantum.2.010328, https://link.aps.
org/doi/10.1103/PRXQuantum.2.010328

Briegel, H. J., & Miiller, T. (2015). Minds and Machines, 25(3), 261.

Briegel, H. J. (2012). Scientific Reports, 2(1), 522.

Miiller, T., & Briegel, H. J. (2018). Dialectica, 72(2), 219.

Tulving, E. (1972). Organization of Memory (pp. xiii, 423—xiii, 423). Academic Press.
Ingvar, D. H. (1985). Human Neurobiology, 4(3), 127.

Makmal, A., Melnikov, A. A., Dunjko, V., & Briegel, H. J. (2016). IEEE Access, 4, 2110.
https://doi.org/10.1109/ACCESS.2016.2556579

http://arxiv.org/abs/1405.5459
http://arxiv.org/abs/1405.5459
http://arxiv.org/abs/1405.5459
http://arxiv.org/abs/1405.5459
https://doi.org/10.1109/ACCESS.2018.2876494
https://doi.org/10.1109/ACCESS.2018.2876494
https://doi.org/10.1109/IROS.2016.7759434
https://doi.org/10.1109/IROS.2016.7759434
https://doi.org/10.3389/frobt.2020.00042
https://www.frontiersin.org/article/10.3389/frobt.2020.00042
https://www.frontiersin.org/article/10.3389/frobt.2020.00042
https://doi.org/10.22331/q-2019-12-16-215
https://doi.org/10.1109/SMC.2017.8122616
https://doi.org/10.1109/SMC.2017.8122616
https://doi.org/10.1103/PRXQuantum.2.010328
https://link.aps.org/doi/10.1103/PRXQuantum.2.010328
https://link.aps.org/doi/10.1103/PRXQuantum.2.010328
https://doi.org/10.1109/ACCESS.2016.2556579

References 165

107.
108.

109.

110.

111.

112.
113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.
124.

125.
126.
127.
128.
129.
130.
131.
132.

133.

Klyshko, D. N. (1988). Physics-Uspekhi 31(1), 74. https://ufn.ru/en/articles/1988/1/f/
Leach, J., Padgett, M. J., Barnett, S. M., Franke-Arnold, S., & Courtial, J. (2002). Physics
Review Letter, 88, 257901.

Schiitt, K. T., Chmiela, S., von Lilienfeld, O. A., Tkatchenko, A., Tsuda, K. & Miiller, K. R.
Machine Learning Meets Quantum Physics. https://link.springer.com/book/10.1007/978-3-
030-40245-T#toc

Decelle, A., Martin-Mayor, V., & Seoane, B. (2019). http://arxiv.org/abs/1904.07637
Gilmer, J., Schoenholz, S. S., Riley, P. F,, Vinyals, O., & Dahl, G. E. (2017). arXiv:1704.01212,
http://arxiv.org/abs/1704.01212

De Cao, N., & Kipf, T. (2018). arXiv:1805.11973, http://arxiv.org/abs/1805.11973

Krenn, M., Hise, F., Nigam, A., Friederich, P., & Aspuru-Guzik, A. (2020). Machine Learning:
Science and Technology, 1(4), 045024.

Sanchez-Lengeling, B., & Aspuru-Guzik, A. (2018). Science, 361(6400), 360. https://doi.org/
10.1126/science.aat2663. https://science.sciencemag.org/content/361/6400/360. Publisher:
American Association for the Advancement of Science Section: Review.

Gromski, P. S., Henson, A. B., Granda, J. M., & Cronin, L. (2019). Nature Reviews
Chemistry, 3(2), 119. https://doi.org/10.1038/s41570-018-0066-y. https://www.nature.com/
articles/s41570-018-0066-y. Number: 2 Publisher: Nature Publishing Group.

Bongard, J., & Lipson, H. (2007). Proceedings of the National Academy of Sciences, 104(24),
9943. https://doi.org/10.1073/pnas.0609476104, https://www.pnas.org/content/104/24/9943
Daniels, B. C., & Nemenman, 1. (2015). Nature Communications, 6, 8133. https://doi.org/10.
1038/ncomms9133

Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Proceedings of the National Academy of
Sciences, 113(15), 3932.

Reinbold, P. A. K., Kageorge, L. M., Schatz, M. F.,, & Grigoriev, R. O. (2021). Nature Com-
munications, 12(1), 3219.

Lu, P. Y., Arifio, J. B., & Soljacié, M. (2022). Communications Physics, 5(1), 1.

Cubitt, T. S., Eisert, J., & Wolf, M. M. (2012). Physical Reviews, 108(12),
120503. https://doi.org/10.1103/PhysRevLett.108.120503, https://link.aps.org/doi/10.1103/
PhysRevLett.108.120503

Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Journal of Computational Physics
378, 686. https://doi.org/10.1016/j.jcp.2018.10.045, http://www.sciencedirect.com/science/
article/pii/S0021999118307125

Raissi, M. (2018). http://arxiv.org/abs/1801.06637

Raissi, M., & Karniadakis, G. E. (2018). Journal of Computational Physics, 357, 125.
https://doi.org/10.1016/j.jcp.2017.11.039. http://www.sciencedirect.com/science/article/pii/
S0021999117309014

Zhang, D., Guo, L., & Karniadakis, G. E. (2019). http://arxiv.org/abs/1905.01205
GoeBmann, A., Gotte, M., Roth, 1., Sweke, R., Kutyniok, G., & Eisert, J. (2020). Tensor
network approaches for learning non-linear dynamical laws.

Forrest, S. (1993). Science 261(5123). https://doi.org/10.1126/science.8346439, https://
science.sciencemag.org/content/261/5123/872

Udrescu, S. M., & Tegmark, M. (2020). Science Advances, 6(16). https://doi.org/10.1126/
sciadv.aay2631, https://advances.sciencemag.org/content/6/16/eaay2631

Neuweiler, P. (2019). Semester thesis, ETH.

Anderson, P. W. (1972). Science, 177(4047), 393.

Noether, E., Konig Gesellsch, N. D., & Goéttingen, D. W. Z. (1918). Math-Physics Klasse,
235

Hanc, J., Tuleja, S., & Hancova, M. (2004). American Journal of Physics, 72(4), 428. https://
doi.org/10.1119/1.1591764

Guimera, R., Reichardt, 1., Aguilar-Mogas, A., Massucci, F.A., Miranda, M., Pallares, J.,
& Sales-Pardo, M., Science Advances, 6(5), 6971. https://doi.org/10.1126/sciadv.aav6971,
https://www.science.org/doi/abs/10.1126/sciadv.aav6971

https://ufn.ru/en/articles/1988/1/f/
https://link.springer.com/book/10.1007/978-3-030-40245-7#toc
https://link.springer.com/book/10.1007/978-3-030-40245-7#toc
http://arxiv.org/abs/1904.07637
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1704.01212
http://arxiv.org/abs/1805.11973
http://arxiv.org/abs/1805.11973
https://doi.org/10.1126/science.aat2663
https://doi.org/10.1126/science.aat2663
https://science.sciencemag.org/content/361/6400/360
https://doi.org/10.1038/s41570-018-0066-y
https://www.nature.com/articles/s41570-018-0066-y
https://www.nature.com/articles/s41570-018-0066-y
https://doi.org/10.1073/pnas.0609476104
https://www.pnas.org/content/104/24/9943
https://doi.org/10.1038/ncomms9133
https://doi.org/10.1038/ncomms9133
https://doi.org/10.1103/PhysRevLett.108.120503
https://link.aps.org/doi/10.1103/PhysRevLett.108.120503
https://link.aps.org/doi/10.1103/PhysRevLett.108.120503
https://doi.org/10.1016/j.jcp.2018.10.045
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://www.sciencedirect.com/science/article/pii/S0021999118307125
http://arxiv.org/abs/1801.06637
https://doi.org/10.1016/j.jcp.2017.11.039
http://www.sciencedirect.com/science/article/pii/S0021999117309014
http://www.sciencedirect.com/science/article/pii/S0021999117309014
http://arxiv.org/abs/1905.01205
https://doi.org/10.1126/science.8346439
https://science.sciencemag.org/content/261/5123/872
https://science.sciencemag.org/content/261/5123/872
https://doi.org/10.1126/sciadv.aay2631
https://doi.org/10.1126/sciadv.aay2631
https://advances.sciencemag.org/content/6/16/eaay2631
https://doi.org/10.1119/1.1591764
https://doi.org/10.1119/1.1591764
https://doi.org/10.1126/sciadv.aav6971
https://www.science.org/doi/abs/10.1126/sciadv.aav6971

166

134.

135.
136.
137.
138.

139.

140.
141.
142.
143.
144.
145.

146.
147.

148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.
161.
162.

References

Patrignani, C. (2016). Chinese Physics C, 40(10), 100001. https://doi.org/10.1088/1674-
1137/40/10/100001. https://iopscience.iop.org/article/10.1088/1674-1137/40/10/100001/
meta. Publisher: IOP Publishing.

Aaltonen, T., et al. (2008). Physics Review D, 78, 012002.

Aaltonen, T., et al. (2009). Physical Review D, 79(1), 011101.

Meyer, A. (2010). AIP Conference Proceedings, 1200, 293.

Choudalakis, G. (2011). PHYSTAT 2011, Workshop on Statistical Issues Related to Discovery
Claims in Search Experiments and Unfolding. CERN.

Aaboud, M., Aad, G., Abbott, B., Abdinov, O., Abeloos, B., Abidi, S. H., AbouZeid, O. S.,
Abraham, N. L., Abramowicz, H., et al. (2019). The European Physical Journal C, 79(2).
https://doi.org/10.1140/epjc/s10052-019-6540-y

Asadi, P, Buckley, M. R., DiFranzo, A., Monteux, A., & Shih, D. (2017). Journal of High
Energy Physics, 2017(11), 194. https://doi.org/10.1007/JHEP11(2017)194

D’Agnolo, R. T., & Wulzer, A. (2019). Physical Review D, 99(1), 015014.

De Simone, A., & Jacques, T. (2019). The European Physical Journal C, 79(4), 289.
Sugiyama, M., Suzuki, T., & Kanamori, T. (2012). Density Ratio Estimation in Machine
Learning. Cambridge University Press. https://doi.org/10.1017/CB09781139035613
Poggio, T., Mhaskar, H., Rosasco, L., Miranda, B., & Liao, Q. (2017). International Journal
of Automation and Computing, 14, 1. https://doi.org/10.1007/s11633-017-1054-2

Bach, F. (2017). Journal Machine Learning Resources, 18(1), 629.

Montanelli, H., & Du, Q. (2017). https://arxiv.org/abs/1712.08688

Schilling, M. F. (1986). Journal of the American Statistical Association 81(395), 799. https://
doi.org/10.1080/01621459.1986.10478337, https://www.tandfonline.com/doi/abs/10.1080/
01621459.1986.10478337

Henze, N. (1988). The Annals of Statistics, 16(2), 772.

Wang, Q., Kulkarni, S. R., & Verdu, S. (2005). IEEE Transactions on Information Theory,
51(9), 3064. https://doi.org/10.1109/TIT.2005.853314

Wang, Q., Kulkarni, S. R., & Verdu, S. (2006). 2006 IEEE International Symposium on
Information Theory (pp. 242-246). https://doi.org/10.1109/ISIT.2006.261842

Dasu, T., Krishnan, S., Venkatasubramanian, S., & Yi, K. (2006). Proceeding Symposium on
the Interface of Statistics, Computing Science, and Applications.

Pérez-cruz, F. (2008). Proceedings of IEEE International Symposium on Information Theory
(pp- 1666-1670).

Kremer, J., Gieseke, F., Steenstrup Pedersen, K., & Igel, C. (2015). Astronomy and Computing,
12, 67. https://doi.org/10.1016/j.ascom.2015.06.005

Qing Wang, S. R. Kulkarni, & Verdu, S. (2005). IEEE Transactions on Information Theory,
51(9), 3064. https://doi.org/10.1109/TIT.2005.853314

Wang, Q., Kulkarni, S. R., & Verdu, S. (2006). 2006 IEEE International Symposium on
Information Theory (pp. 242-246). https://doi.org/10.1109/ISIT.2006.261842

Pérez-cruz, F. (2008). Proceedings of IEEE International Symposium on Information Theory
(pp- 1666-1670).

Manly, B. F. J. (2007). International Statistical Review, 75(2), 269. https://doi.org/10.1111/j.
1751-5823.2007.00015_21.x, https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.
2007.00015_21.x._eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.
2007.00015_21.x

Vaart, A. W. V. D. (1998). Cambridge series in statistical and probabilistic math-
ematics. InAsymptotic Statistics. Cambridge University Press. https://doi.org/10.1017/
CB09780511802256

Bell, J. S. (1964). Physics Physique Fizika, 1(3), 195. https://doi.org/10.1103/
PhysicsPhysiqueFizika.1.195, https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.
195. Publisher: American Physical Society

Tishby, N., Pereira, F. C. & Bialek W. (2000). http://arxiv.org/abs/physics/0004057
Shwartz-Ziv, R., & Tishby, N. (2017). http://arxiv.org/abs/1703.00810

Bahdanau, D., Cho, K., & Bengio, Y. (2015). https://arxiv.org/abs/1409.0473

https://doi.org/10.1088/1674-1137/40/10/100001
https://doi.org/10.1088/1674-1137/40/10/100001
https://iopscience.iop.org/article/10.1088/1674-1137/40/10/100001/meta
https://iopscience.iop.org/article/10.1088/1674-1137/40/10/100001/meta
https://doi.org/10.1140/epjc/s10052-019-6540-y
https://doi.org/10.1007/JHEP11(2017)194
https://doi.org/10.1017/CBO9781139035613
https://doi.org/10.1007/s11633-017-1054-2
https://arxiv.org/abs/1712.08688
https://doi.org/10.1080/01621459.1986.10478337
https://doi.org/10.1080/01621459.1986.10478337
https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478337
https://www.tandfonline.com/doi/abs/10.1080/01621459.1986.10478337
https://doi.org/10.1109/TIT.2005.853314
https://doi.org/10.1109/ISIT.2006.261842
https://doi.org/10.1016/j.ascom.2015.06.005
https://doi.org/10.1109/TIT.2005.853314
https://doi.org/10.1109/ISIT.2006.261842
https://doi.org/10.1111/j.1751-5823.2007.00015_21.x
https://doi.org/10.1111/j.1751-5823.2007.00015_21.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2007.00015_21.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-5823.2007.00015_21.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2007.00015_21.x
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1751-5823.2007.00015_21.x
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1017/CBO9780511802256
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1409.0473

References 167

163.

164.

165.

166.

167.
168.
169.
170.
171.
172.
173.
174.
175.

176.
177.

178.

179.

180.

181.

182.

183.
184.

185.

Firat, O., Cho, K., Sankaran, B., Yarman Vural, F. T., & Bengio, Y. (2017). Computer
Speech Languge, 45(C), 236-252. https://doi.org/10.1016/j.cs1.2016.10.006, https://doi.org/
10.1016/j.¢s1.2016.10.006

Celikyilmaz, A., Bosselut, A., He, X. & Choi, Y. (2018). Proceedings of the 2018 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers) (pp. 1662-1675). Association for Compu-
tational Linguistics, New Orleans, Louisiana. https://doi.org/10.18653/v1/N18-1150. https://
www.aclweb.org/anthology/N18-1150

Koopman, B. O. (1931). Proceedings of the National Academy of Sciences, 17(5), 315.
Koopman, B. O., & Neumann, J. V. (1932) Proceedings of the National Academy of Sciences,
18(3), 255. https://doi.org/10.1073/pnas.18.3.255, https://www.pnas.org/content/18/3/255.
Publisher: National Academy of Sciences Section: Mathematics

Yeung, E., Kundu, S., & Hodas, N. (2017). http://arxiv.org/abs/1708.06850

Wehmeyer, C., & Noé, F. (2018). The Journal of Chemical Physics, 148(24), 241703.
Mardt, A., Pasquali, L., Wu, H., & Noé, F. (2018). Nature Communications, 9(1), 5.
Takeishi, N., Kawahara, Y., & Yairi, T. (2017) Learning Koopman invariant subspaces for
dynamic mode decomposition. http://arxiv.org/abs/1710.04340

Otto, S. E., & Rowley, C. W. (2017). http://arxiv.org/abs/1712.01378

Li, Q., Dietrich, F.,, Bollt, E. M., & Kevrekidis, I. G. (2017) Chaos: An Interdisciplinary
Journal of Nonlinear Science, 27(10). https://doi.org/10.1063/1.4993854, http://arxiv.org/
abs/1707.00225

Champion, K., Lusch, B., Kutz, J. N., & Brunton, S. L. (2019). Proceedings of the National
Academy of Sciences, 116(45), 22445.

Mezi¢, 1., & Banaszuk, A. (2004). Physica D: Nonlinear Phenomena, 197(1-2),
101. https://doi.org/10.1016/j.physd.2004.06.015, https://linkinghub.elsevier.com/retrieve/
pii/S0167278904002507

Mezié, L. (2005). Nonlinear Dynamics, 41(1), 309.

Mezic, 1. (2019). arXiv:1702.07597. http://arxiv.org/abs/1702.07597

Budisi¢, M., Mohr, R., & Mezi¢, 1. (2012). Chaos: An Interdisciplinary Journal of Nonlinear
Science, 22(4), 047510. https://doi.org/10.1063/1.4772195, https://aip.scitation.org/doi/10.
1063/1.4772195. Publisher: American Institute of Physics.

Mezié, 1. (2013). Annual Review of Fluid Mechanics, 45(1), 357. https://doi.org/10.
1146/annurev-fluid-011212-140652, http://www.annualreviews.org/doi/10.1146/annurev-
fluid-011212-140652

Schmid, P. J. (2010). Journal of Fluid Mechanics, 656, 5. https://doi.org/10.
1017/S0022112010001217, https://www.cambridge.org/core/journals/journal-of-fluid-
mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/
AA4CT763B525515AD4521 A6CC5E10DBDA4. Publisher: Cambridge University Press.
Rowley, C. W., Mezié, 1., Bagheri, S., Schlatter, P, & Henningson, D. S. (2009). Journal
of Fluid Mechanics, 641, 115. https://doi.org/10.1017/S0022112009992059, https://www.
cambridge.org/core/product/identifier/S0022112009992059/type/journal_article

Brunton, S. L., Proctor,J. L., Tu, J. H., & Kutz, J. N. (2015). Journal of Computational Dynam-
ics, 2(2), 165. https://doi.org/10.3934/jcd.2015002, https://www.aimsciences.org/article/doi/
10.3934/jcd.2015002. Company: Journal of Computational Dynamics Distributor: Journal of
Computational Dynamics Institution: Journal of Computational Dynamics Label: Journal of
Computational Dynamics Publisher: American Institute of Mathematical Sciences.

Arbabi, H. (2018).

Lusch, B., Kutz, J. N., & Brunton, S. L. (2018). Nature Communications, 9, 4950.

Kipf, T., Fetaya, E., Wang, K. C., Welling, M., & Zemel, R., (PMLR, 2018). Proceedings
of Machine Learning Research (Vol. 80, pp. 2688-2697). http://proceedings.mlr.press/v80/
kipf18a.html

Battaglia, P., Pascanu, R., Lai, M., Rezende, D. J., & Kavukcuoglu, K. (2016). Proceedings
of the 30th International Conference on Neural Information Processing Systems (pp. 4509—
4517). http://dl.acm.org/citation.cfm?id=3157382.3157601

https://doi.org/10.1016/j.csl.2016.10.006
https://doi.org/10.1016/j.csl.2016.10.006
https://doi.org/10.1016/j.csl.2016.10.006
https://doi.org/10.18653/v1/N18-1150
https://www.aclweb.org/anthology/N18-1150
https://www.aclweb.org/anthology/N18-1150
https://doi.org/10.1073/pnas.18.3.255
https://www.pnas.org/content/18/3/255
http://arxiv.org/abs/1708.06850
http://arxiv.org/abs/1710.04340
http://arxiv.org/abs/1712.01378
https://doi.org/10.1063/1.4993854
http://arxiv.org/abs/1707.00225
http://arxiv.org/abs/1707.00225
https://doi.org/10.1016/j.physd.2004.06.015
https://linkinghub.elsevier.com/retrieve/pii/S0167278904002507
https://linkinghub.elsevier.com/retrieve/pii/S0167278904002507
http://arxiv.org/abs/1702.07597
http://arxiv.org/abs/1702.07597
https://doi.org/10.1063/1.4772195
https://aip.scitation.org/doi/10.1063/1.4772195
https://aip.scitation.org/doi/10.1063/1.4772195
https://doi.org/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1146/annurev-fluid-011212-140652
http://www.annualreviews.org/doi/10.1146/annurev-fluid-011212-140652
http://www.annualreviews.org/doi/10.1146/annurev-fluid-011212-140652
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112010001217
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/article/dynamic-mode-decomposition-of-numerical-and-experimental-data/AA4C763B525515AD4521A6CC5E10DBD4
https://doi.org/10.1017/S0022112009992059
https://www.cambridge.org/core/product/identifier/S0022112009992059/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022112009992059/type/journal_article
https://doi.org/10.3934/jcd.2015002
https://www.aimsciences.org/article/doi/10.3934/jcd.2015002
https://www.aimsciences.org/article/doi/10.3934/jcd.2015002
http://proceedings.mlr.press/v80/kipf18a.html
http://proceedings.mlr.press/v80/kipf18a.html
http://dl.acm.org/citation.cfm?id=3157382.3157601

168

186.
187.

188.

189.

190.

191.
192.

193.

194.
195.

196.

197.

198.

199.

200.

201.
202.

203.

204.

205.

206.

207.
208.

209.

References

Zheng, D., Luo, V., Wu, J., & Tenenbaum, J. B. (2018). http://arxiv.org/abs/1807.09244
Chang, M. B., Ullman, T., Torralba, A., & Tenenbaum, J. B. (2016). http://arxiv.org/abs/1612.
00341

Raposo, D., Santoro, A., Barrett, D., Pascanu, R., Lillicrap, T., & Battaglia, P. (2017). http://
arxiv.org/abs/1702.05068

Hinton, G. E., & Salakhutdinov, R. R. (2006). Science, 313(5786), 504. https://doi.org/10.
1126/science.1127647

Eslami, S. M. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M., Ruderman,
A., Rusu, A. A, Danihelka, I., Gregor, K., Reichert, D. P., Buesing, L., Weber, T., Vinyals,
0., Rosenbaum, D., Rabinowitz, N., King, H., Hillier, C., Botvinick, M., D. Wierstra, K.
Kavukcuoglu, & Hassabis, D. (2018). Science, 360(6394), 1204.

Hornik, K. (1991). Neural Networks, 4(2), 251.

Chen, B., Huang, K., Raghupathi, S., Chandratreya, 1., Du, Q., & Lipson, H. (2022). Nature
Computational Science, 2(7), 433.

Kingma, D. P, & Welling, M. (2013). https://arxiv.org/abs/1312.6114

Elman, J. L. (1990). Cognitive Science, 14(2), 179.

Liu, S., Yang, N., Li, M., & Zhou, M. (2014). Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 1491-1500).
Baltimore, Maryland: Association for Computational Linguistics. https://doi.org/10.3115/v1/
P14-1140. https://www.aclweb.org/anthology/P14-1140

Auli, M., Galley, M., Quirk, C., & Zweig, G. (2013). Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing (pp. 1044—1054). Seattle, Washington,
USA: Association for Computational Linguistics. https://www.aclweb.org/anthology/D13-
1106

Sutskever, 1., Vinyals, O., & Le, Q. V. (2014). In Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, & K. Q. Weinberger Advances in Neural Information Processing Systems
27 (pp.- 3104-3112). Curran Associates, Inc. http://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.pdf

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2009). IEEE Trans-
actions on Neural Networks, 20(1), 61.

Li, Y., Tarlow, D., Brockschmidt, M., & Zemel, R. (2017). arXiv:1511.05493. http://arxiv.
org/abs/1511.05493

Sanchez-Gonzalez, A., Heess, N., Springenberg, J .T., Merel, J., Riedmiller, M., Hadsell, R.,
& Battaglia, P. (2018). arXiv:1806.01242. http://arxiv.org/abs/1806.01242

Li, Y., Wu, J., Tedrake, R., Tenenbaum, J. B., & Torralba, A. (2019). ICLR.

Mrowca, D., Zhuang, C., Wang, E., Haber, N., Fei-Fei, L., Tenenbaum, J. B., & Yamins, D.
L. K. (2018). arXiv:1806.08047. http://arxiv.org/abs/1806.08047

Bapst, V., Keck, T., Grabska-Barwiriska, A., Donner, C., Cubuk, E. D., Schoenholz, S. S.,
Obika, A., Nelson, A. W. R., Back, T., Hassabis, D., & Kohli, P. (2020). Nature Physics,
16(4), 448.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., & Battaglia, P. W. (2020).
Learning to simulate complex physics with graph networks. https://arxiv.org/abs/2002.09405
Cranmer, M., Sanchez-Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., & Ho,
S. (2020) arXiv:2006.11287, http://arxiv.org/abs/2006.11287

Hamilton, W. L., Ying, R., & Leskovec, J. (2018). arXiv:1706.02216, http://arxiv.org/abs/
1706.02216

Kipf, T. N., & Welling, M. (2017) arXiv:1609.02907. http://arxiv.org/abs/1609.02907
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R., & Smola, A. J.
(2017). In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, &
R. Garnett (Eds.), Advances in Neural Information Processing Systems 30 (pp. 3391-3401).
Curran Associates, Inc. http://papers.nips.cc/paper/6931-deep-sets.pdf

Herzig, R., Raboh, M., Chechik, G., Berant, J., & Globerson, A. (2018). arXiv:1802.05451,
http://arxiv.org/abs/1802.05451

http://arxiv.org/abs/1807.09244
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1612.00341
http://arxiv.org/abs/1702.05068
http://arxiv.org/abs/1702.05068
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://arxiv.org/abs/1312.6114
https://doi.org/10.3115/v1/P14-1140
https://doi.org/10.3115/v1/P14-1140
https://www.aclweb.org/anthology/P14-1140
https://www.aclweb.org/anthology/D13-1106
https://www.aclweb.org/anthology/D13-1106
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1511.05493
http://arxiv.org/abs/1806.01242
http://arxiv.org/abs/1806.01242
http://arxiv.org/abs/1806.08047
http://arxiv.org/abs/1806.08047
https://arxiv.org/abs/2002.09405
http://arxiv.org/abs/2006.11287
http://arxiv.org/abs/2006.11287
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1706.02216
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://papers.nips.cc/paper/6931-deep-sets.pdf
http://arxiv.org/abs/1802.05451
http://arxiv.org/abs/1802.05451

References 169

210.

211.

212.

213.
214.
215.
216.
217.

218.

219.

220.
221.
222.
223.
224,

225.
226.

2217.
228.

229.

230.

231.

232.

233.

234,

Liu, Z., & Zhou, J. (2020). Synthesis lectures on artificial intelligence and machine. Learning,
14(2), 1.

Maddison, C.J., Mnih, A., & Teh, Y. W. (2017). arXiv:1611.00712, http://arxiv.org/abs/1611.
00712

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, 1., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., & Zheng, X. (2015) TensorFlow: Large-scale machine learning on heterogeneous
systems. https://www.tensorflow.org/

Ross, B. C. (2014). PLOS ONE, 9(2), e87357.

Kraskov, A., Stoegbauer, H., & Grassberger, P. (2004). Physical Review E, 69(6), 066138.
Kozachenko, L. F., & Leonenko, N. N. (1987). Problems Inform. Transmission, 23, 95.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Journal of Machine Learning Research, 12, 2825.
Beléndez, A., Pascual, C., Méndez, D. 1., Beléndez, T., & Neipp, C. (2007). Revista Brasileira
de Ensino de Fisica, 29(4), 645.

This figure is composed of figures in “B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for
universal linear embeddings of nonlinear dynamics, Nat. Commun. 9, 4950, https://doi.org/
10.1038/s41467-018-07210-0, 2018”. The work is published under the terms of the Creative
Commons Attribution 4.0 license (https://creativecommons.org/licenses/by/4.0/). The labels
in the image are modified to fit the context of this book.

Paris, M., & Rehécek, J. (eds.), (2004). Lecture notes in physics. In Quantum state estima-
tion. Berlin, Heidelberg: Springer. https://doi.org/10.1007/b98673. http://link.springer.com/
10.1007/b98673

Gamel, O. (2016). Physical Review A, 93(6). https://doi.org/10.1103/physreva.93.062320,
http://dx.doi.org/10.1103/PhysRevA.93.062320

Floryan, D., & Graham, M. D. (2022). Nature Machine Intelligence, 4(12), 1113.

Carleo, G., & Troyer, M. (2017). Science, 355(6325), 602.

Rocchetto, A., Grant, E., Strelchuk, S., Carleo, G., & Severini, S. (2018). NPJ Quantum
Information, 4(1), 28. https://doi.org/10.1038/s41534-018-0077-z, https://www.nature.com/
articles/s41534-018-0077-z

Glasser, 1., Pancotti, N., August, M., Rodriguez, I. D., & Cirac, J. I. (2018). Physical Review
X, 8(1), 011006.

Carleo, G., Nomura, Y., & Imada, M. (2018). Nature Communications, 9(1), 5322.

Cai, Z., & Liu, J. (2018). Physical Review B 97(3). https://doi.org/10.1103/PhysRevB.97.
035116, http://arxiv.org/abs/1704.05148

Huang, Y., & Moore, J. E., (2017). http://arxiv.org/abs/1701.06246

Deng, D. L., Li, X., & Sarma, S. D. (2017). Physical Review B, 96(19). https://doi.org/10.
1103/PhysRevB.96.195145. http://arxiv.org/abs/1609.09060

Schmitt, M., & Heyl, M. (2018). SciPost Physics, 4(2). https://doi.org/10.21468/SciPostPhys.
4.2.013, http://arxiv.org/abs/1707.06656

Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., & Carleo, G. (2018). Nature
Physics, 14(5), 447.

Nomura, Y., Darmawan, A. S., Yamaji, Y., & Imada, M. (2017). Physical Review B, 96(20).
https://doi.org/10.1103/PhysRevB.96.205152. http://arxiv.org/abs/1709.06475

Deng, D. L., Li, X., & Sarma, S. D. (2017). Physical Review X, 7(2). https://doi.org/10.1103/
PhysRevX.7.021021. http://arxiv.org/abs/1701.04844

Gao, X., & Duan, L. M. (2017). Nature Communications, 8(1).https://doi.org/10.1038/
s41467-017-00705-2, http://arxiv.org/abs/1701.05039

Carrasquilla, J., Torlai, G., Melko, R. G., & Aolita, L. (2019). Nature Machine Intelligence,
1(3), 155.

http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
http://arxiv.org/abs/1611.00712
https://www.tensorflow.org/
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1038/s41467-018-07210-0
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/b98673
http://link.springer.com/10.1007/b98673
http://link.springer.com/10.1007/b98673
https://doi.org/10.1103/physreva.93.062320
http://dx.doi.org/10.1103/PhysRevA.93.062320
https://doi.org/10.1038/s41534-018-0077-z
https://www.nature.com/articles/s41534-018-0077-z
https://www.nature.com/articles/s41534-018-0077-z
https://doi.org/10.1103/PhysRevB.97.035116
https://doi.org/10.1103/PhysRevB.97.035116
http://arxiv.org/abs/1704.05148
http://arxiv.org/abs/1701.06246
https://doi.org/10.1103/PhysRevB.96.195145
https://doi.org/10.1103/PhysRevB.96.195145
http://arxiv.org/abs/1609.09060
https://doi.org/10.21468/SciPostPhys.4.2.013
https://doi.org/10.21468/SciPostPhys.4.2.013
http://arxiv.org/abs/1707.06656
https://doi.org/10.1103/PhysRevB.96.205152
http://arxiv.org/abs/1709.06475
https://doi.org/10.1103/PhysRevX.7.021021
https://doi.org/10.1103/PhysRevX.7.021021
http://arxiv.org/abs/1701.04844
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
http://arxiv.org/abs/1701.05039

170

235.

236.
237.

238.
239.
240.
241.
242.

243,
244.

245.

246.
247.

248.

249.

250.

251.
252.

253.

254.
255.

256.

257.

258.

259.

References

Beach, M. J. S, De Vlugt, L., Golubeva, A., Huembeli, P., Kulchytskyy, B., Luo, X., Melko,
R.G., Merali, E., & Torlai, G. (2019). SciPost Physics, 7(1), 009. https://doi.org/10.21468/
SciPostPhys.7.1.009, http://arxiv.org/abs/1812.09329

Torlai, G., & Melko, R. G. (2019). http://arxiv.org/abs/1905.04312

We use material from “Hendrik Poulsen Nautrup, Tony Metger, Raban Iten, Sofiene Jerbi, Lea
M. Trenkwalder, Henrik Wilming, Hans J. Briegel, and Renato Renner, Operationally mean-
ingful representations of physical systems in neural networks, Mach. Learn.: Sci. Technol.
3 045025, https://doi.org/10.1088/2632-2153/ac9ae8, 2022”. The work is published under
the terms of the Creative Commons Attribution 4.0 license (https://creativecommons.org/
licenses/by/4.0/). The material was modified to fit the context of this book (but no essential
changes were made to the content).

Celikyilmaz, A., Bosselut, A., He, X., & Choi, Y. (2018). arXiv:1803.10357. http://arxiv.org/
abs/1803.10357

Goldstein, H., Poole, C., & Safko, J. (2002). Classical mechanics (3rd edn). Addison-Wesley.
Gonzilez, E. (2020). Master thesis, ETH.

Lesort, T., Diaz-Rodriguez, N., Goudou, J. F.,, & Filliat, D. (2018). Neural Networks, 108,
379.

Bengio, E., Thomas, V., Pineau, J., Precup, D., & Bengio, Y. (2017). http://arxiv.org/abs/
1703.07718

Jonschkowski, R., & Brock, O. (2015). Autonomous Robots, 39(3), 407.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., & Kavukcuoglu,
K. (2017). 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. https://openreview.net/forum?
id=SJ6yPD5xg

Veeriah, V., Hessel, M., Xu, Z., Lewis, R., Rajendran, J., Oh, J., van Hasselt, H., Silver, D.,
& Singh, S. (2019). arXiv:1909.04607, http://arxiv.org/abs/1909.04607

Fan, F., Xiong, J., & Wang, G. (2020). arXiv:2001.02522, http://arxiv.org/abs/2001.02522
Inceptionism: Going Deeper into Neural Networks. http://ai.googleblog.com/2015/06/
inceptionism- going-deeper-into-neural.html

Schindler, F., Regnault, N., & Neupert, T. (2017). Physical Review B, 95(24), 245134.

Seif, A., Hafezi, M., & Jarzynski, C. (2020). Nature Physics, 1-9 (2020). https://doi.org/10.
1038/541567-020-1018-2. https://www.nature.com/articles/s41567-020-1018-2. Publisher:
Nature Publishing Group.

Kim, S., Lu, P. Y., Mukherjee, S., Gilbert, M., Jing, L., Ceperié, V., & Soljaci¢, M. (2019).
https://arxiv.org/abs/1912.04825

Martius, G., & Lampert, C. H. (2016). arXiv:1610.02995, http://arxiv.org/abs/1610.02995
Sahoo, S. S., Lampert, C. H., & Martius, G. (2018). arXiv:1806.07259, http://arxiv.org/abs/
1806.07259

Lemos, P, Jeffrey, N., Cranmer, M., Ho, S., & Battaglia, P. (2022). Rediscovering orbital
mechanics with machine learning. https://doi.org/10.48550/ARXIV.2202.02306. https://
arxiv.org/abs/2202.02306

Miiller, V. C. (2016). Fundamental issues of artificial intelligence. Springer.

Grace, K., Salvatier, J., Dafoe, A., Zhang, B., & Evans, O. (2018). Journal of Artificial Intel-
ligence Research, 62, 729. https://doi.org/10.1613/jair.1.11222, https://www.jair.org/index.
php/jair/article/view/11222

King, R. D., Whelan, K. E., Jones, F. M., Reiser, P. G. K., Bryant, C. H., Muggleton, S. H.,
Kell, D. B., & Oliver, S. G. (2004). Nature, 427(6971), 247.

Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., & He, Q. (2021). Proceedings
of the IEEE, 109(1), 43. https://doi.org/10.1109/JPROC.2020.3004555

Siegelmann, H., & Sontag, E. (1995). Journal of Computer and System Sciences, 50(1),
132. https://doi.org/10.1006/jcss.1995.1013, https://www.sciencedirect.com/science/article/
pii/S0022000085710136

Graves, A., Wayne, G., & Danihelka, 1. (2014). Neural turing machines.

https://doi.org/10.21468/SciPostPhys.7.1.009
https://doi.org/10.21468/SciPostPhys.7.1.009
http://arxiv.org/abs/1812.09329
http://arxiv.org/abs/1905.04312
https://doi.org/10.1088/2632-2153/ac9ae8
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1803.10357
http://arxiv.org/abs/1803.10357
http://arxiv.org/abs/1803.10357
http://arxiv.org/abs/1703.07718
http://arxiv.org/abs/1703.07718
https://openreview.net/forum?id=SJ6yPD5xg
https://openreview.net/forum?id=SJ6yPD5xg
http://arxiv.org/abs/1909.04607
http://arxiv.org/abs/1909.04607
http://arxiv.org/abs/2001.02522
http://arxiv.org/abs/2001.02522
http://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
http://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://doi.org/10.1038/s41567-020-1018-2
https://doi.org/10.1038/s41567-020-1018-2
https://www.nature.com/articles/s41567-020-1018-2
https://arxiv.org/abs/1912.04825
http://arxiv.org/abs/1610.02995
http://arxiv.org/abs/1610.02995
http://arxiv.org/abs/1806.07259
http://arxiv.org/abs/1806.07259
http://arxiv.org/abs/1806.07259
https://doi.org/10.48550/ARXIV.2202.02306
https://arxiv.org/abs/2202.02306
https://arxiv.org/abs/2202.02306
https://doi.org/10.1613/jair.1.11222
https://www.jair.org/index.php/jair/article/view/11222
https://www.jair.org/index.php/jair/article/view/11222
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1006/jcss.1995.1013
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://www.sciencedirect.com/science/article/pii/S0022000085710136

References 171

260.

261.
262.
263.
264.
265.

266.
267.

Lee, J. (2012). Graduate texts in mathematics . In Introduction to smooth manifolds (2nd
edn). Springer-Verlag. https://doi.org/10.1007/978-1-4419-9982-5, www.springer.com/de/
book/9781441999818

Achille, A., & Soatto, S. (2018). IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 8828, 1. https://doi.org/10.1109/TPAMI.2017.2784440
https://github.com/eth-nn-physics/nn_physical_concepts/blob/copernicus/analysis/
copernicus_analysis_elliptic.ipynb
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/tonymetger/communicating_scinet

Pitelis, N., Russell, C., & Agapito, L. (2013). IEEE Conference on Computer Vision and
Pattern Recognition, (pp. 1642—1649). https://doi.org/10.1109/CVPR.2013.215

Korman, E. O. (2018). http://arxiv.org/abs/1803.00156

Tong, D. http://www.damtp.cam.ac.uk/user/tong/relativity.html

https://doi.org/10.1007/978-1-4419-9982-5
www.springer.com/de/book/9781441999818
www.springer.com/de/book/9781441999818
https://doi.org/10.1109/TPAMI.2017.2784440
https://github.com/eth-nn-physics/nn_physical_concepts/blob/copernicus/analysis/copernicus_analysis_elliptic.ipynb
https://github.com/eth-nn-physics/nn_physical_concepts/blob/copernicus/analysis/copernicus_analysis_elliptic.ipynb
https://github.com/eth-nn-physics/nn_physical_concepts
https://github.com/tonymetger/communicating_scinet
https://doi.org/10.1109/CVPR.2013.215
http://arxiv.org/abs/1803.00156
http://www.damtp.cam.ac.uk/user/tong/relativity.html

	Preface
	Acknowledgements
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Physicist's Discovery Process
	1.3 Extracting Relevant Parameters from Experimental Data
	1.4 Outline

	Part I Machine Learning Background
	2 Machine Learning in a Nutshell
	2.1 Supervised Learning
	2.2 Unsupervised Learning
	2.3 Reinforcement Learning
	2.4 Bias-Variance Tradeoff

	3 Artificial Neural Networks
	3.1 Single Artificial Neuron
	3.2 Activation Functions
	3.3 Neural Networks
	3.4 Universality Theorem
	3.5 Training of Neural Networks
	3.5.1 Stochastic Gradient Descent
	3.5.2 Convergence and Choice of Hyperparameters
	3.5.3 Generalization

	3.6 Deep Learning

	4 Autoencoders
	Part II Overview of Using Machine Learning for Scientific Discoveries
	5 Creating Experimental Setups
	5.1 Problem Setting from Quantum Optics
	5.1.1 Entanglement of Bipartite Systems
	5.1.2 Entanglement of Multipartite Systems
	5.1.3 Preparation of Photon States

	5.2 Creating Experimental Setups Using Projective Simulation
	5.2.1 Architecture for PS Agent
	5.2.2 Training of the PS Agent
	5.2.3 Results

	5.3 Conceptual Insights from Action Composition

	6 Model Creation
	6.1 Optimizing Model Parameters
	6.2 Discovering Physical Laws
	6.2.1 Symbolic Regression
	6.2.2 Extracting Physical Laws from Data

	7 Model Testing
	7.1 Statistical Setting
	7.2 Approximation of Probability Density Functions
	7.2.1 Parametric Modelling
	7.2.2 Non-parametric Modelling

	7.3 Statistical Hypothesis Testing
	7.4 Identifying the Discrepant Regions
	7.5 Application for Model Testing

	Part III Representation Learning for Physical Discoveries
	8 Theory: Formalizing the Process of Human Model Building
	8.1 Motivation
	8.2 Physicist's Reasoning Process
	8.3 Experimental Setting and Data Creation
	8.4 Criteria for Operationally Meaningful Representations
	8.4.1 Minimal Representation
	8.4.2 Separation of Physical Parameters
	8.4.3 Simple Update Rules

	8.5 Criteria for Mathematically Meaningful Representations
	8.5.1 Koopman Operator Theory
	8.5.2 Representation of Koopman Eigenfunctions

	8.6 Criteria for Physically Meaningful Representations
	8.6.1 Interaction Graph
	8.6.2 Representation of Interaction Graph

	9 Methods: Using Neural Networks to Find Simple Representations
	9.1 Motivation
	9.2 General Network Structure to Learn Representations
	9.3 Network Structures for Separating Parameters
	9.3.1 Statistically Independent
	9.3.2 Operationally Meaningful

	9.4 Network Structure to Find Representations with Simple Update Rules
	9.5 Optimality Guarantees on the Representation
	9.6 Network Structure to Find Koopman Eigenfunctions
	9.7 Network Structure to Find Interaction Graphs
	9.7.1 Graph Neural Networks
	9.7.2 Network Structure to Learn Interaction Graphs

	10 Applications: Physical Toy Examples
	10.1 Motivation
	10.2 Damped Pendulum
	10.3 Dynamics of the Nonlinear Pendulum
	10.4 Conservation of Angular Momentum
	10.5 Representation of Qubits
	10.5.1 Minimal Representations for Pure Quantum States
	10.5.2 Local Representation of Two-Qubit States

	10.6 Charged Particles
	10.6.1 Single Encoder
	10.6.2 Multiple Encoders

	10.7 Heliocentric Solar System
	10.8 Several Particles Connected by Springs

	11 Future Research Directions and Further Reading
	11.1 Finding Measurement Strategies and Representations
	11.2 Interpretability and Generalization of SciNet

	Part IV Future Prospects
	12 Future Prospects
	12.1 AI Physicist
	12.2 Learning Procedures Instead of Simple Functions
	12.3 AI for Foundations of Physics

	Appendix A Interpretation of the Number of Latent Variables
	Appendix B Variational Autoencoders
	Appendix C Implementation Details
	Appendix D Representations of Cyclic Parameters
	Appendix E Classical Mechanics Derivation for Charged Masse
	Appendix References
	

