ki b i E"'-' ¥
-I o ! s . t
/ - I
A [} & s f
i s

’_ DOMAIN-DRIVEN

- DESIGN

FOREWORD BY ERIC EVANS 198

Implementing Domain-Driven Design

Vaughn Vernon

vvAddison-Wesley

Upper Saddle River, NJ ¢ Boston ¢ Indianapolis ¢ San Francisco
New York ¢ Toronto * Montreal « London * Munich ¢ Paris « Madrid
Capetown ¢ Sydney * Tokyo ¢ Singapore * Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419

corpsales(@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2012954071
Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission mus
be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddl
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-83457-7
ISBN-10: 0-321-83457-7

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, January 2013

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

Praise for Implementing Domain-Driven Design

“With Implementing Domain-Driven Design Vaughn has made an important contribution not only to the literature of the
Domain-Driven Design community, but also to the literature of the broader enterprise application architecture field. In key
chapters on Architecture and Repositories, for example, Vaughn shows how DDD fits with the expanding array of architecture
styles and persistence technologies for enterprise applications—including SOA and REST, NoSQL and data grids—that ha
emerged in the decade since Eric Evans’ seminal book was first published. And, fittingly, Vaughn illuminates the blocking and
tackling of DDD—the implementation of entities, value objects, aggregates, services, events, factories, and repositories—witl
plentiful examples and valuable insights drawn from decades of practical experience. In a word, I would describe this book as
thorough. For software developers of all experience levels looking to improve their results, and design and implement
domain-driven enterprise applications consistently with the best current state of professional practice, Implementing Domain-
Driven Design will impart a treasure trove of knowledge hard won within the DDD and enterprise application architecture
communities over the last couple decades.”

—Randy Stafford, Architect At-Large, Oracle Coherence Product Development

“Domain-Driven Design is a powerful set of thinking tools that can have a profound impact on how effective a team can be
at building software-intensive systems. The thing is that many developers got lost at times when applying these thinking tools
and really needed more concrete guidance. In this book, Vaughn provides the missing links between theory and practice. In
addition to shedding light on many of the misunderstood elements of DDD, Vaughn also connects new concepts like
Command/Query Responsibility Segregation and Event Sourcing that many advanced DDD practitioners have used with gree
success. This book is a must-read for anybody looking to put DDD into practice.”

—Udi Dahan, Founder of NServiceBus

“For years, developers struggling to practice Domain-Driven Design have been wishing for more practical help in actually
implementing DDD. Vaughn did an excellent job in closing the gap between theory and practice with a complete
implementation reference. He paints a vivid picture of what it is like to do DDD in a contemporary project, and provides
plenty of practical advice on how to approach and solve typical challenges occurring in a project life cycle.”

—Alberto Brandolini, DDD Instructor, Certified by Eric Evans and Domain Language, Inc.

“Implementing Domain-Driven Designdoes a remarkable thing: it takes a sophisticated and substantial topic area in DDD
and presents it clearly, with nuance, fun and finesse. This book is written in an engaging and friendly style, like a trusted
advisor giving you expert counsel on how to accomplish what is most important. By the time you finish the book you will be
able to begin applying all the important concepts of DDD, and then some. As I read, I found myself highlighting many sections
.. I'will be referring back to it, and recommending it, often.”

—Paul Rayner, Principal Consultant & Owner, Virtual Genius, LLC., DDD Instructor, Certified by Eric Evans and Doma
Language, Inc., DDD Denver Founder and Co-leader

“One important part of the DDD classes I teach is discussing how to put all the ideas and pieces together into a full blow1
working implementation. With this book, the DDD community now has a comprehensive reference that addresses this in detail.
Implementing Domain-Driven Design deals with all aspects of building a system using DDD, from getting the small details
right to keeping track of the big picture. This is a great reference and an excellent companion to Eric Evans seminal DDL
book.”

—Patrik Fredriksson, DDD Instructor, Certified by Eric Evans and Domain Language, Inc.

“If you care about software craftsmanship—and you should—then Domain-Driven Design is a crucial skill set to master anc
Implementing Domain-Driven Designis the fast path to success. IDDD offers a highly readable yet rigorous discussion of
DDD’s strategic and tactical patterns that enables developers to move immediately from understanding to action. Tomorrow’s
business software will benefit from the clear guidance provided by this book.”

—Dave Muirhead, Principal Consultant, Blue River Systems Group

“There’s theory and practice around DDD that every developer needs to know, and this is the missing piece of the puzzle
that puts it all together. Highly recommended!”

—Rickard Oberg, Java Champion and Developer at Neo Technology

“In IDDD, Vaughn takes a top-down approach to DDD, bringing strategic patterns such as bounded context and context maps
to the fore, with the building block patterns of entities, values and services tackled later. His book uses a case study throughout,
and to get the most out of it you’ll need to spend time grokking that case study. But if you do you’ll be able to see the value of
applying DDD to a complex domain; the frequent sidenotes, diagrams, tables, and code all help illustrate the main points. So 1
you want to build a solid DDD system employing the architectural styles most commonly in use today, Vaughn’s book comes
recommended.”

—Dan Haywood, author of Domain-Driven Design with Naked Objects

“This book employs a top-down approach to understanding DDD in a way that fluently connects strategic patterns to lower
level tactical constraints. Theory is coupled with guided approaches to implementation within modern architectural styles.
Throughout the book, Vaughn highlights the importance and value of focusing on the business domain all while balancing
technical considerations. As a result, the role of DDD, as well as what it does and perhaps more importantly doesn’t imply,
become ostensibly clear. Many a time, my team and I would be at odds with the friction encountered in applying DDD. Witt
Implementing Domain-Driven Designas our luminous guide we were able to overcome those challenges and translate our
efforts into immediate business value.”

—Lev Gorodinski, Principal Architect, DrillSpot.com

This book is dedicated to my dearest Nicole and Tristan.
Thanks for your love, your support, and your patience.

Contents

Foreword

Preface

Acknowledgments
About the Author

Guide to This Book

Chapter 1 Getting Started with DDD
Can I DDD?

Why You Should Do DDD
How to Do DDD
The Business Value of Using DDD
1. The Organization Gains a Useful Model of Its Domain
2. A Refined, Precise Definition and Understanding of the Business Is Developed
3. Domain Experts Contribute to Software Design
4. A Better User Experience Is Gained
5. Clean Boundaries Are Placed around Pure Models
6. Enterprise Architecture Is Better Organized
7. Agile, Iterative, Continuous Modeling Is Used
8. New Tools, Both Strategic and Tactical, Are Employed
The Challenges of Applying DDD
Fiction, with Bucketfuls of Reality
Wrap-Up

Chapter 2 Domains, Subdomains, and Bounded Contexts
Big Picture
Subdomains and Bounded Contexts at Work
Focus on the Core Domain

Why Strategic Design Is So Incredibly Essential
Real-World Domains and Subdomains

Making Sense of Bounded Contexts
Room for More than the Model
Size of Bounded Contexts

Aligning with Technical Components
Sample Contexts

Collaboration Context

Identity and Access Context

Agile Project Management Context
Wrap-Up

Chapter 3 Context Maps
Why Context Maps Are So Essential
Drawing Context Maps
Projects and Organizational Relationships
Mapping the Three Contexts

Wrap-Up

Chapter 4 Architecture
Interviewing the Successful CIO
Layers
Dependency Inversion Principle
Hexagonal or Ports and Adapters
Service-Oriented
Representational State Transfer—REST
REST as an Architectural Style
Key Aspects of a RESTful HTTP Server
Key Aspects of a RESTful HTTP Client
REST and DDD
Why REST?
Command-Query Responsibility Segregation, or CQRS
Examining Areas of CQRS
Dealing with an Eventually Consistent Query Model
Event-Driven Architecture
Pipes and Filters
Long-Running Processes, aka Sagas
Event Sourcing
Data Fabric and Grid-Based Distributed Computing
Data Replication
Event-Driven Fabrics and Domain Events
Continuous Queries
Distributed Processing
Wrap-Up

Chapter S Entities

Why We Use Entities

Unique Identity
User Provides Identity
Application Generates Identity
Persistence Mechanism Generates Identity
Another Bounded Context Assigns Identity
When the Timing of Identity Generation Matters
Surrogate Identity

Discovering Entities and Their Intrinsic Characteristics
Uncovering Entities and Properties
Digging for Essential Behavior

Roles and Responsibilities
Construction

Validation

Change Tracking
Wrap-Up

Chapter 6 Value Objects

Value Characteristics

Measures, Quantifies, or Describes
Immutable
Conceptual Whole
Replaceability
Value Equality
Side-Effect-Free Behavior

Integrate with Minimalism

Standard Types Expressed as Values

Testing Value Objects

Implementation

Persisting Value Objects
Reject Undue Influence of Data Model Leakage
ORM and Single Value Objects
ORM and Many Values Serialized into a Single Column
ORM and Many Values Backed by a Database Entity
ORM and Many Values Backed by a Join Table
ORM and Enum-as-State Objects

Wrap-Up

Chapter 7 Services
What a Domain Service Is (but First, What It Is Not)
Make Sure You Need a Service
Modeling a Service in the Domain
Is Separated Interface a Necessity?

A Calculation Process

Transformation Services

Using a Mini-Layer of Domain Services
Testing Services
Wrap-Up

Chapter 8 Domain Events
The When and Why of Domain Events
Modeling Events
With Aggregate Characteristics
Identity

Publishing Events from the Domain Model
Publisher

Subscribers

Spreading the News to Remote Bounded Contexts
Messaging Infrastructure Consistency
Autonomous Services and Systems
Latency Tolerances

Event Store

Architectural Styles for Forwarding Stored Events
Publishing Notifications as RESTful Resources
Publishing Notifications through Messaging Middleware

Implementation
Publishing the NotificationLog
Publishing Message-Based Notifications
Wrap-Up

Chapter 9 Modules
Designing with Modules
Basic Module Naming Conventions
Module Naming Conventions for the Model
Modules of the Agile Project Management Context
Modules in Other Layers
Module before Bounded Context
Wrap-Up

Chapter 10 Aggregates
Using Aggregates in the Scrum Core Domain
First Attempt: Large-Cluster Aggregate
Second Attempt: Multiple Aggregates
Rule: Model True Invariants in Consistency Boundaries
Rule: Design Small Aggregates
Don’t Trust Every Use Case
Rule: Reference Other Aggregates by Identity
Making Aggregates Work Together through Identity References
Model Navigation
Scalability and Distribution

Rule: Use Eventual Consistency Outside the Boundary
Ask Whose Job It Is

Reasons to Break the Rules
Reason One: User Interface Convenience
Reason Two: Lack of Technical Mechanisms
Reason Three: Global Transactions

Reason Four: Query Performance
Adhering to the Rules

Gaining Insight through Discovery
Rethinking the Design, Again
Estimating Aggregate Cost
Common Usage Scenarios
Memory Consumption
Exploring Another Alternative Design

[mplementing Eventual Consistency
Is It the Team Member’s Job?

Time for Decisions

Implementation
Create a Root Entity with Unique Identity
Favor Value Object Parts
Using Law of Demeter and Tell, Don’t Ask
Optimistic Concurrency

Avoid Dependency Injection

Wrap-Up

Chapter 11 Factories

Factories in the Domain Model

Factory Method on Aggregate Root
Creating calendarEntry Instances
Creating Discussion Instances

Factory on Service

Wrap-Up

Chapter 12 Repositories
Collection-Oriented Repositories
Hibernate Implementation
Considerations for a TopLink Implementation
Persistence-Oriented Repositories
Coherence Implementation
MongoDB Implementation
Additional Behavior
Managing Transactions
A Warning
Type Hierarchies
Repository versus Data Access Object
Testing Repositories
Testing with In-Memory Implementations
Wrap-Up

Chapter 13 Integrating Bounded Contexts
Integration Basics
Distributed Systems Are Fundamentally Different
Exchanging Information across System Boundaries
Integration Using RESTful Resources
Implementing the RESTful Resource
Implementing the REST Client Using an Anticorruption Layer
Integration Using Messaging
Staying Informed about Product Owners and Team Members
Can You Handle the Responsibility?
Long-Running Processes, and Avoiding Responsibility
Process State Machines and Time-out Trackers
Designing a More Sophisticated Process
When Messaging or Your System Is Unavailable
Wrap-Up
Chapter 14 Application
User Interface
Rendering Domain Objects
Render Data Transfer Object from Aggregate Instances
Use a Mediator to Publish Aggregate Internal State

Render Aggregate Instances from a Domain Payload Object
State Representations of Aggregate Instances
Use Case Optimal Repository Queries
Dealing with Multiple, Disparate Clients
Rendition Adapters and Handling User Edits
Application Services
Sample Application Service
Decoupled Service Output
Composing Multiple Bounded Contexts

Infrastructure
Enterprise Component Containers
Wrap-Up

Appendix A Aggregates and Event Sourcing: A+ES
Inside an Application Service
Command Handlers
Lambda Syntax

Concurrency Control
Structural Freedom with A+ES

Performance

Implementing an Event Store

Relational Persistence

BLOB Persistence

Focused Aggregates

Read Model Projections

Use with Aggregate Design

Events Enrichment

Supporting Tools and Patterns
Event Serializers

Event Immutability

Value Objects
Contract Generation

Unit Testing and Specifications
Event Sourcing in Functional Languages

Bibliography

Index

Foreword

In this new book, Vaughn Vernon presents the whole of Domain-Driven Design (DDD) in a distinctive way, with new
explanations of the concepts, new examples, and an original organization of topics. I believe this fresh, alternative approach
will help people grasp the subtleties of DDD, particularly the more abstract ones such as Aggregates and Bounded Contexts
Not only do different people prefer different styles—subtle abstractions are hard to absorb without multiple explanations.

Also, the book conveys some of the insights of the past nine years that have been described in papers and presentations but
have not appeared in a book before now. It places Domain Events alongside Entities and Value Objects as the building blocks
of a model. It discusses the Big Ball of Mud and places it into the Context Map. It explains the hexagonal architecture, whic!
has emerged as a better description of what we do than the layered architecture.

My first exposure to the material in this book came almost two years ago (although Vaughn had been working on his book for
some time by then). At the first DDD Summit, several of us committed to writing about certain topics about which we felt there
were fresh things to say or there was a particular need in the community for more specific advice. Vaughn took up the challenge
of writing about Aggregates, and he followed through with a series of excellent articles about Aggregates (which became a
chapter in this book).

There was also a consensus at the summit that many practitioners would benefit from a more prescriptive treatment of some
of the DDD patterns. The honest answer to almost any question in software development is, “It depends.” That is not ver
useful to people who want to learn to apply a technique, however. A person who is assimilating a new subject needs concrete
guidance. Rules of thumb don’t have to be right in all cases. They are what usually works well or the thing to try first. Througt
their decisiveness, they convey the philosophy of the approach to solving the problem. Vaughn’s book has a good mix of
straightforward advice balanced with a discussion of trade-offs that keep it from being simplistic.

Not only have additional patterns, such as Domain Events, become a mainstream part of DDD—people in the field have
progressed in learning how to apply those patterns, not to mention adapting them to newer architectures and technologies. Nine
years after my book, Domain-Driven Design: Tackling Complexity in the Heart of Software was published, there’s actually
a lot to say about DDD that is new, and there are new ways to talk about the fundamentals. Vaughn’s book is the most complete
explanation yet of those new insights into practicing DDD.

—FEric Evans
Domain Language, Inc.

Preface

All the calculations show it can’t work. There’s only one thing to do: make it work.

—Pierre-Georges Latécoere, early French aviation entrepreneur

And make it work we shall. The Domain-Driven Design approach to software development is far too important to leave any
capable developer without clear directions for how to implement it successfully.

Getting Grounded, Getting Airborne

When [was a kid, my father learned to pilot small airplanes. Often the whole family would go up flying. Sometimes we flew
to another airport for lunch, then returned. When Dad had less time but longed to be in the air, we’d go out, just the two of us,
and circle the airport doing “touch-and-goes.”

We also took some long trips. For those, we always had a map of the route that Dad had earlier charted. Our job as kids was
to help navigate by looking out for landmarks below so we could be certain to stay on course. This was great fun for us
because it was a challenge to spot objects so far below that exhibited little in the way of identifying details. Actually, I’'m sure
that Dad always knew where we were. He had all the instruments on the dashboard, and he was licensed for instrument flight.

The view from the air really changed my perspective. Now and then Dad and I would fly over our house in the countryside
At a few hundred feet up, this gave me a context for home that I didn’t have before. As Dad would cruise over our house, Mon
and my sisters would run out into the yard to wave at us. I knew it was them, although I couldn’t look into their eyes. We
couldn’t converse. If I had shouted out the airplane window, they would never have heard me. I could see the split-rail fence ir
the front dividing our property from the road. When on the ground I’d walk across it as if on a balance beam. From the air, it
looked like carefully woven twigs. And there was the huge yard that I circled row by row on our riding lawn mower every
summer. From the air, [saw only a sea of green, not the blades of grass.

I loved those moments in the air. They are etched in my memory as if Dad and I were just taxiing in after landing to tie dowr
for the evening. As much as I loved those flights, they sure were no substitute for being on the ground. And as cool as they
were, the touch-and-goes were just too brief to make me feel grounded.

Landing with Domain-Driven Design

Getting in touch with Domain-Driven Design (DDD) can be like flight to a kid. The view from the air is stunning, bt
sometimes things look unfamiliar enough to prevent us from knowing exactly where we are. Getting from point A to point B
appears far from realistic. The DDD grownups always seem to know where they are. They’ve long ago plotted a course, anc
they are completely in tune with their navigational instruments. A great number of others don’t feel grounded. What is needed is
the ability to “land and tie down.” Next, a map is needed to guide the way from where we are to where we need to be.

In the book Domain-Driven Design: Tackling Complexity in the Heart of Software[Evans], Eric Evans brought about what
is a timeless work. It is my firm belief that Eric’s work will guide developers in practical ways for decades to come. Like
other pattern works, it establishes flight far enough above the surface to give a broad vision. Yet, there may be a bit more of a
challenge when we need to understand the groundwork involved in implementing DDD, and we usually desire more detailec
examples. If only we could land and stay on the surface a bit longer, and even drive home or to some other familiar place.

Part of my goal is to take you in for a soft landing, secure the aircraft, and help you get home by way of a well-known
surface route. That will help you make sense of implementing DDD, giving you examples that use familiar tools anc
technologies. And since none of us can stay home all the time, I will also help you venture out onto other paths to explore new
terrain, taking you to places that perhaps you’ve never been before. Sometimes the path will be steep, but given the right
tactics, a challenging yet safe ascent is possible. On this trip you’ll learn about alternative architectures and patterns for
integrating multiple domain models. This may expose you to some previously unexplored territory. You will find detailed
coverage of strategic modeling with multiple integrations, and you’ll even learn how to develop autonomous services.

My goal is to provide a map to help you take both short jaunts and long, complicated treks, enjoying the surrounding detail,
without getting lost or injured along the way.

Mapping the Terrain and Charting for Flight

It seems that in software development we are always mapping from one thing to another. We map our objects to databases.
We map our objects to the user interface and then back again. We map our objects to and from various application
representations, including those that can be consumed by other systems and applications. With all this mapping, it’s natural to
want a map from the higher-level patterns of Evans to implementation.

Even if you have already landed a few times with DDD, there is probably more to benefit from. Sometimes DDD is firs
embraced as a technical tool set. Some refer to this approach to DDD asDDD-Lite. We may have homed in on Entities,
Services, possibly made a brave attempt at designing Aggregates, and tried to manage their persistence using Repositories.
Those patterns felt a bit like familiar ground, so we put them to use. We may even have found some use for Value Objects
along the way. All of these fall within the catalog of tactical design patterns, which are more technical. They help us take on a
serious software problem with the skill of a surgeon with a scalpel. Still, there is much to learn about these and other places to
go with tactical design as well. I map them to implementation.

Have you traveled beyond tactical modeling? Have you visited and even lingered with what some call the “other half” of
DDD, thestrategic design patterns? If you’ve left out the use of Bounded Context and Context Maps, you have probably alsc
missed out on the use of the Ubiquitous Language.

If there is a single “invention” Evans delivers to the software development community, it is the Ubiquitous Language. At e
minimum he brought the Ubiquitous Language out of the dusty archives of design wisdom. It is a team pattern used to capture
the concepts and terms of a specific core business domain in the software model itself. The software model incorporates the
nouns, adjectives, verbs, and richer expressions formally spoken by the development team, a team that includes one or more
business domain experts. It would be a mistake, however, to conclude that the Language is limited to mere words. Just as any
human language reflects the minds of those who speak it, the Ubiquitous Language reflects the mental model of the experts of
the business domain you are working in. Thus, the software and the tests that verify the model’s adherence to the tenets of the
domain both capture and adhere to this Language, the same conceived and spoken by the team. The Language is equally as
valuable as the various strategic and tactical modeling patterns and in some cases has a more enduring quality.

Simply stated, practicing DDD-Lite leads to the construction of inferior domain models. That’s because the Ubiquitou
Language, Bounded Context, and Context Mapping have so much to offer. You get more than a team lingo. The Language of ¢
team in an explicit Bounded Context expressed as a domain model adds true business value and gives us certainty that we are
implementing the correct software. Even from a technical standpoint, it helps us create better models, ones with more potent
behaviors, that are pure and less error prone. Thus, I map the strategic design patterns to understandable example
implementations.

This book maps the terrain of DDD in a way that allows you to experience the benefits of both strategic and tactical design
It puts you in touch with its business value and technical strengths by peering closely at the details.

It would be a disappointment if all we ever did with DDD is stay on the ground. Getting stuck in the details, we’d forget tha
the view from flight teaches us a lot, too. Don’t limit yourself to rugged ground travel. Brave the challenge of getting in the
pilot’s seat and see from a height that is telling. With training flights on strategic design, with its Bounded Contexts and Context
Maps, you will be prepared to gain a grander perspective on its full realization. When you reward yourself with DDD flight,
will have reached my goal.

Summary of Chapters
The following highlights the chapters of this book and how you can benefit from each one.

Chapter 1: Getting Started with DDD

This chapter introduces you to the benefits of using DDD and how to achieve the most from it. You will learn what DDD ca1
do for your projects and your teams as you grapple with complexity. You’ll find out how to score your project to see if it
deserves the DDD investment. You will consider the common alternatives to DDD and why they often lead to problems. The
chapter lays the foundations of DDD as you learn how to take the first steps on your project,and it even gives you some ways
to sell DDD to your management, domain experts, and technical team members. That will enable you to face the challenges o
using DDD armed with the knowledge of how to succeed.

You are introduced to a project case study that involves a fictitious company and team, yet one with real-world DDD
challenges. The company, with the charter to create innovative SaaS-based products in a multitenant environment, experiences
many of the mistakes common to DDD adoption but makes vital discoveries that help the teams solve their issues and keep the
project on track. The project is one that most developers can relate to, as it involves developing a Scrum-based project
management application. This case study introduction sets the stage for subsequent chapters. Each strategic and tactical patterr
is taught through the eyes of the team, both as they err and as they make strides toward maturity in implementing DDD
successfully.

Chapter 2: Domains, Subdomains, and Bounded Contexts

What is a Domain, a Subdomain, and a Core Domain? What are Bounded Contexts, and why and how should you use them
These questions are answered in the light of mistakes made by the project team in our case study. Early on in their first DDLC
project they failed to understand the Subdomain they were working within, its Bounded Context, and a concise Ubiquitous

Language. In fact, they were completely unfamiliar with strategic design, only leveraging the tactical patterns for their technical
benefits. This led to problems in their initial domain model design. Fortunately, they recognized what had happened before it
became a hopeless morass.

A vital message is conveyed, that of applying Bounded Contexts to distinguish and segregate models properly. Addressed
are common misapplications of the pattern along with effective implementation advice. The text then leads you through the
corrective steps the team took and how that resulted in the creation of two distinct Bounded Contexts. This led to the prope1
separation of modeling concepts in their third Bounded Context, the new Core Domain, and the main sample used in the book.

This chapter will strongly resonate with readers who have felt the pain of applying DDD only in a technical way. If you are
uninitiated in strategic design, you are pointed in the right direction to start out on a successful journey.

Chapter 3: Context Maps

Context Maps are a powerful tool to help a team understand their business domain, the boundaries between distinct models,
and how they are currently, or can be, integrated. This technique is not limited to drawing a diagram of your system
architecture. It’s about understanding the relationships between the various Bounded Contexts in an enterprise and the patterns
used to map objects cleanly from one model to another. Use of this tool is important to succeeding with Bounded Contexts in a
complex business enterprise. This chapter takes you through the process used by the project team as they applied Context
Mapping to understand the problems they created with their first Bounded Context (Chapter 2). It then shows how the two
resulting clean Bounded Contexts were leveraged by the team responsible for designing and implementing the new Core
Domain.

Chapter 4: Architecture

Just about everyone knows the Layers Architecture. Are Layers the only way to house a DDD application, or can othe
diverse architectures be used? Here we consider how to use DDD within such architectures as Hexagonal (Ports anc
Adapters), Service-Oriented, REST, CQRS, Event-Driven (Pipes and Filters, Long-Running Processes or Sagas, Eve¢
Sourcing), and Data Fabric/Grid-Based. Several of these architectural styles were put to use by the project team.

Chapter 5: Entities

The first of the DDD tactical patterns treated is Entities. The project team first leaned too heavily on these, overlooking th
importance of designing with Value Objects when appropriate. This led to a discussion of how to avoid widespread overuse of
Entities because of the undue influence of databases and persistence frameworks.

Once you are familiar with ways to distinguish their proper use, you see lots of examples of how to design Entities well.
How do we express the Ubiquitous Language with an Entity? How are Entities tested, implemented, and persisted? You ar¢
stepped through how-to guidance for each of these.

Chapter 6: Value Objects

Early on the project team missed out on important modeling opportunities with Value Objects. They focused too intensely or
the individual attributes of Entities when they should have been giving careful consideration to how multiple related attributes
are properly gathered as an immutable whole. This chapter looks at Value Object design from several angles, discussing how
to identify the special characteristics in the model as a means to determine when to use a Value rather than an Entity. Other
important topics are covered, such as the role of Values in integration and modeling Standard Types. The chapter then shows
how to design domain-centric tests, how to implement Value types, and how to avoid the bad influence persistence mechanisms
can have on our need to store them as part of an Aggregate.

Chapter 7: Services

This chapter shows how to determine when to model a concept as a fine-grained, stateless Service that lives in the domair
model. You are shown when you should design a Service instead of an Entity or Value Object, and how Domain Services car
be implemented to handle business domain logic as well as for technical integration purposes. The decisions of the project
team are used to exemplify when to use Services and how they are designed.

Chapter 8: Domain Events

Domain Events were not formally introduced by Eric Evans as part of DDD until after his book was published. You’ll leart
why Domain Events published by the model are so powerful, and the diverse ways that they can be used, even in supporting
integration and autonomous business services. Although various kinds of technical events are sent and processed by
applications, the distinguishing characteristics of Domain Events are spotlighted. Design and implementation guidance is
provided, instructing you on available options and trade-offs. The chapter then teaches how to create a Publish-Subscribe
mechanism, how Domain Events are published to integrated subscribers across the enterprise, ways to create and manage ar

Event Store, and how to properly deal with common messaging challenges faced. Each of these areas is discussed in light of
the project team’s efforts to use them correctly and to their best advantage.

Chapter 9: Modules

How do we organize model objects into right-sized containers with limited coupling to objects that are in different
containers? How do we name these containers so they reflect the Ubiquitous Language? Beyond packages and namespaces
how can we use the more modern modularization facilities, such as OSGi and Jigsaw, provided by languages and frameworks?
Here you will see how Modules were put to use by the project team across a few of their projects.

Chapter 10: Aggregates

Aggregates are probably the least well understood among DDD’s tactical tools. Yet, if we apply some rules of thumb,
Aggregates can be made simpler and quicker to implement. You will learn how to cut through the complexity barrier to use
Aggregates that create consistency boundaries around small object clusters. Because of putting too much emphasis on the less
important aspects of Aggregates, the project team in our case study stumbled in a few different ways. We step through the
team’s iterations with a few modeling challenges and analyze what went wrong and what they did about it. The result of their
efforts led to a deeper understanding of their Core Domain. We look in on how the team corrected their mistakes through the
proper application of transactional and eventual consistency, and how that led them to design a more scalable and high-
performing model within a distributed processing environment.

Chapter 11: Factories

[Gamma et al.] has plenty to say about Factories, so why bother with treating them in this book? This is a simple chapter that
does not attempt to reinvent the wheel. Rather, its focus is on understanding where Factories should exist. There are, of course,
a few good tips to share about designing a worthy Factory in a DDD setting. See how the project team created Factories i1
their Core Domain as a way to simplify the client interface and protect the model’s consumers from introducing disastrous bugs
into their multitenant environment.

Chapter 12: Repositories

Isn’t a Repository just a simple Data Access Object (DAO)? If not, what’s the difference? Why should we conside
designing Repositories to mimic collections rather than databases? Learn how to design a Repository that is used with ar
ORM, one that supports the Coherence grid-based distributed cache, and one that uses a NoSQL key-value store. Each of thes
optional persistence mechanisms was at the disposal of the project team because of the power and versatility behind the
Repository building block pattern.

Chapter 13: Integrating Bounded Contexts

Now that you understand the higher-level techniques of Context Mapping and have the tactical patterns on your side, what is
involved in actually implementing the integrations between models? What integration options are afforded by DDD? Thi:
chapter uncovers a few different ways to implement model integrations using Context Mapping. Instruction is given based or
how the project team integrated the Core Domain with other supporting Bounded Contexts introduced in early chapters.

Chapter 14: Application

You have designed a model per your Core Domain’s Ubiquitous Language. You’ve developed ample tests around its usage
and correctness, and it works. But how do other members of your team design the areas of the application that surround the
model? Should they use DTOs to transfer data between the model and the user interface? Or are there other options for
conveying model state up to the presentation components? How do the Application Services and infrastructure work? This
chapter addresses those concerns using the now familiar project to convey available options.

Appendix A: Aggregates and Event Sourcing: A+ES

Event Sourcing is an important technical approach to persisting Aggregates that also provides the basis for developing ar
Event-Driven Architecture. Event Sourcing can be used to represent the entire state of an Aggregate as a sequence of Event:
that have occurred since it was created. The Events are used to rebuild the state of the Aggregate by replaying them in the same
order in which they occurred. The premise is that this approach simplifies persistence and allows capturing concepts with
complex behavioral properties, besides the far-reaching influence the Events themselves can have on your own and external
systems.

Java and Development Tools

The majority of the examples in this book use the Java Programming Language. I could have provided the examples in C#
but I made a conscious decision to use Java instead.

First of all, and sad to say, I think there has been a general abandonment of good design and development practices in the
Java community. These days it may be difficult to find a clean, explicit domain model in most Java-based projects. It seems tc
me that Scrum and other agile techniques are being used as substitutes for careful modeling, where a product backlog is thrust
at developers as if it serves as a set of designs. Most agile practitioners will leave their daily stand-up without giving a second
thought to how their backlog tasks will affect the underlying model of the business. Although I assume this is needless to say, I
must assert that Scrum, for example, was never meant to stand in place of design. No matter how many project and product
managers would like to keep you marching on a relentless path of continuous delivery, Scrum was not meant only as a means to
keep Gantt chart enthusiasts happy. Yet, it has become that in so many cases.

I consider this a big problem, and a major theme I have is to inspire the Java community to return to domain modeling by
giving a reasonable amount of thought to how sound, yet agile and rapid, design techniques can benefit their work.

Further, there are already some good resources for using DDD in a .NET environment, one beingdpplying Domain-Driver
Design and Patterns: With Examples in C# and .NETby Jimmy Nilsson[Nilsson]. Due to Jimmy’s good work and that of
others promoting the AIt NET mindset, there is a high tide of good design and development practices going on in the .NE']
community. Java developers need to take notice.

Second, I am well aware that the C#NET community will have no problem whatsoever understanding Java code. Due to th
fact that much of the DDD community uses C#.NET, most of my early book reviewers are C# developers, and I never onc:
received a complaint about their having to read Java code. So, I have no concern that my use of Java in any way alienates C#
developers.

I need to add that at the time of this writing there was a significant shift toward interest in using document-based and key-
value storage over relational databases. This is for good reason, for even Martin Fowler has aptly nicknamed these “aggregate-
oriented storage.” It’s a fitting name and well describes the advantages of using NoSQL storage in a DDD setting.

Yet, in my consulting work I find that many are still quite married to relational databases and object-relational mapping.
Therefore, I think that in practical terms there has been no disservice to the community of NoSQL enthusiasts by my including
guidance on using object-relational mapping techniques for domain models. I do acknowledge, however, that this may earn me
some scorn from those who think that the object-relational impedance mismatch makes it unworthy of consideration. That’s
fine, and I accept the flames, because there is a vast majority who must still live with the drudgeries of this impedance
mismatch on a day-to-day basis, however unenlightened they may seem to the minority.

Of course, I also provide guidance inChapter 12, “Repositories,” on the use of document-based, key-value, and Data
Fabric/Grid-Based stores. As well, in several places I discuss where the use of a NoSQL store would tend to influence as
alternative design of Aggregates and their contained parts. It’s quite likely that the trend toward NoSQL stores will continue tc
spur growth in that sector, so in this case object-relational developers need to take notice. As you can see, I understand both
sides of the argument, and I agree with both. It’s all part of the ongoing friction created by technology trends, and the friction
needs to happen in order for positive change to happen.

Acknowledgments

I am grateful to the fine staff at Addison-Wesley for giving me the opportunity to publish under their highly respected label.
As I have stated before in my classes and presentations, I see Addison-Wesley as a publisher that understands the value of
DDD. Both Christopher Guzikowski and Chris Zahn (Dr. Z) have supported my efforts throughout the editorial process. I wi
not forget the day that Christopher Guzikowski called to share the news that he wanted to sign me as one of his authors. I will
remember how he encouraged me to persevere through the doubts that most authors must experience, until publication was in
sight. Of course, it was Dr. Z who made sure the text was put into a publishable state. Thanks to my production editor,
Elizabeth Ryan, for coordinating the book’s publication details. And thanks to my intrepid copyeditor, Barbara Wood.

Going back a ways, it was Eric Evans who devoted a major portion of five years of his career to write the first definitive
work on DDD. Without his efforts, the wisdom that grew out of the Smalltalk and patterns communities, and that Eric himsel
refined, many more developers would just be hacking their way to delivering bad software. Sadly, this problem is more
common than it should be. As Eric says, the poor quality of software development, and the uncreative joylessness of the teams
that produce the software, nearly drove him to exit the software industry for good. We owe Eric hearty thanks for concentrating
his energy into educating rather than into a career change.

At the end of the first DDD Summit in 2011, which Eric invited me to attend, it was determined that the leadership shoulc
produce a set of guidelines by which more developers could succeed with DDD. I was already far along with this book anc
was in a good position to understand what developers were missing. I offered to write an essay to provide the “rules of thumb”
for Aggregates. I determined that this three-part series entitled “Effective Aggregate Design” would form the foundation for
Chapter 10 of this book. Once released on dddcommunity.org, it became quite clear how such sound guidance was greatly
needed. Thanks to others among the DDD leadership who reviewed that essay and thus provided valuable feedback for this
book. Eric Evans and Paul Rayner did several detailed reviews of the essay. I also received feedback from Udi Dahan, Gre:
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard Oberg.

Special thanks go to Randy Stafford, a longtime member of the DDD community. After attending a DDD talk I gave severe
years ago in Denver, Randy urged me to become more involved in the larger DDD community. Sometime later, Randy
introduced me to Eric Evans so I could pitch my ideas about drawing the DDD community together. While my ideas were a bi
grander and possibly less achievable, Eric convinced us that forming a smaller contingent composed of clear DDD leadershiy
would have more near-term value. From these discussions the DDD Summit 2011 was formed. Needless to say, withou
Randy’s coaxing me to push forward with my views of DDD, this book would not exist, and perhaps not even a DDD Summit
Although Randy was too busy with Oracle Coherence work to contribute to this book, perhaps we will get the chance to write
something in the future in a combined effort.

A huge thank-you goes to Rinat Abdullin, Stefan Tilkov, and Wes Williams for contributing sections about specialized
topics to the text. It’s nearly impossible to know everything about everything related to DDD, and absolutely impossible to be
an expert in all areas of software development. That’s why I turned to experts in specific areas to write a few sections of
Chapter 4 and Appendix A. Thanks go to Stefan Tilkov for his uncommon knowledge of REST, to Wes Williams for his
GemFire experience, and to Rinat Abdullin for sharing his continually expanding experience with Event Sourcing fo
Aggregate implementation.

One of my earliest reviewers was Leo Gorodinsk, and he stuck with the project. I first met Leo at our DDD Denver meetur
He provided a lot of great feedback on this book based on his own struggles while implementing DDD with his team ir
Boulder, Colorado. I hope my book helped Leo as much as his critical reviews helped me. I see Leo as part of DDD’s future.

Many others provided feedback on at least one chapter of my book, and some on several chapters. Some of the more critical
feedback was provided by Gojko Adzic, Alberto Brandolini, Udi Dahan, Dan Haywood, Dave Muirhead, and Stefan Tilkoy
Specifically, Dan Haywood and Gojko Adzic delivered much of the early feedback, which was based on the most-painful-to-
read content I produced. I am glad they endured and corrected me. Alberto Brandolini’s insights into strategic design ir
general, and Context Mapping specifically, helped me focus on the essence of that vital material. Dave Muirhead, with ar
abundance of experience in object-oriented design, domain modeling, as well as object persistence and in-memory data grids
—including GemFire and Coherence—influenced my text regarding some of the history and finer details of object persistence.
Besides his REST contribution, Stefan Tilkov supplied additional insights into architecture in general, and SOA and Pipes an
Filters specifically. Finally, Udi Dahan validated and helped me clarify some of the concepts of CQRS, Long-Runnin
Processes (aka Sagas), and messaging with NServiceBus. Other reviewers who provided valuable feedback were Rina
Abdullin, Svein Arne Ackenhausen, Javier Ruiz Aranguren, William Doman, Chuck Durfee, Craig Hoff, Aeden Jameson, Jiw¢
Wu, Josh Maletz, Tom Marrs, Michael McCarthy, Rob Meidal, Jon Slenk, Aaron Stockton, Tom Stockton, Chris Sutton, an
Wes Williams.

Scorpio Steele produced the fantastic illustrations for the book. Scorpio made everyone on the IDDD team the superheroe

that they truly are. At the other end of the spectrum was the nontechnical editorial review by my good friend Kerry Gilbert.
While everyone else made sure I was technically correct, Kerry put me “under the grammar hammer.”

My father and mother have provided great inspiration and support throughout my life. My father—AlJ in the “Cowboy Logic’
humor throughout this book—is not just a cowboy. Don’t get me wrong. Being a great cowboy would be enough. Besides
loving flight and piloting airplanes, my father was an accomplished civil engineer and land surveyor, and a talented negotiator.
He still loves math and studying the galaxies. Among many other things he taught me, my Dad imparted to me how to solve a
right triangle when I was around ten years old. Thanks, Dad, for giving me a technical bent at a young age. Thanks also go tc
my mom, one of the nicest people you could ever know. She has always encouraged and supported me through my personal
challenges. Besides, what stamina I have comes from her. I could go on, but I could never say enough good things about her.

Although this book is dedicated to my loving wife, Nicole, and our marvelous son, Tristan, my thanks would not be complete
without a special mention here. They are the ones who allowed me to work on and complete the book. Without their support
and encouragement my task would not have been possible. Thanks so much, my dearest loved ones.

About the Author

Vaughn Vernon is a veteran software craftsman with more than twenty-five years of experience in software design,
development, and architecture. He is a thought leader in simplifying software design and implementation using innovative
methods. He has been programming with object-oriented languages since the 1980s and applying the tenets of Domain-Driver
Design since his Smalltalk domain modeling days in the early 1990s. His experience spans a wide range of business domains,
including aerospace, environmental, geospatial, insurance, medical and health care, and telecommunications. He has also
succeeded in technical endeavors, creating reusable frameworks, libraries, and implementation acceleration tools. He consults
and speaks internationally and has taught his Implementing Domain-Driven Design classes on multiple continents. You can read
more about his latest efforts at www.VaughnVernon.co and follow him on Twitter here: @VaughnVernon.

http://www.VaughnVernon.co
mailto:@VaughnVernon

Guide to This Book

The book Domain-Driven Designby Eric Evans presents what is essentially a large pattern language. A pattern language
is a set of software patterns that are intertwined because they are dependent on each other. Any one pattern references one or
more other patterns that it depends on, or that depend on it. What does this mean for you?

It means that as you read any given chapter of this book, you could run into a DDD pattern that isn’t discussed in that chapte:
and that you don’t already know. Don’t panic, and please don’t stop reading out of frustration. The referenced pattern is very
likely explained in detail in another chapter of the book.

In order to help unravel the pattern language, I used the syntax found in Table G.1 in the text.

Table G.1. The Syntax Used in This Book

When You See This . .. It Means This . ..

Pattern Name (#) 1. It is the first time the pattern is referenced in the
chapter that you are reading, or
2. It is an important additional reference to a pattern
that was already mentioned in the chapter, but it’s
essential to know where to locate more information
abour it ar that poinr in the text.

Bounded Context (2) The chaprer vou are reading is referencing Chapter
2 for you to find our deep details about Bounded
Contexts.

Bounded Context It is the way I reference a pattern already mentioned

in the same chapter. I don’t want to irritate you by
making every reference to a given pattern bold, with a
chaprer number,

[REFERENCE] It is a bibliographic reference to another work.

[Evans] or [Evans, Ref] [don’t cover the specific referenced DDD partern
extensively, and if you want ro know more, you need
to read these works by Eric Evans. (They're always
recommended reading!)

[Evans] means his classic book, Domain-Driven
Design.,

[Evans, Ref] means a second publication thar 1s a
separate, condensed reference to the parterns in [Evans]
that have been updated and extended.

[Gamma et al.] and [Gamma et al.] means the classic book Design

[Fowler, P of EAA] Patterns.
[Fowler, P of EAA] means Marrin Fowler’s Patterns of
Enterprise Application Architecture.
I reference these works frequently. Although [reference
several other works as well, you will tend to see these
a bit more than others. Examine the full bibliography
for details.

If you start reading in the middle of a chapter and you see a reference such as Bounded Context, remember that you’ll
probably find a chapter in this book that covers the pattern. Just glance at the index for a richer set of references.

If you have already read [Evans] and you know its patterns to some degree, you’ll probably tend to use this book as a way to
clarify your understanding of DDD and to get ideas for how to improve your existing model designs. In that case you may no
need a big-picture view right now. But if you are relatively new to DDD, the following section will help you see how the
patterns fit together, and how this book can be used to get you up and running quickly. So, read on.

Big-Picture View of DDD

Early on I take you through one of the pillars of DDD, theUbiquitous Language (1). A Ubiquitous Language is applicable
within a single Bounded Context (2). Straightaway, you need to familiarize yourself with that critical domain modeling
mindset. Just remember that whichever way your software models are designed factically, strategically you’ll want them to
reflect the following: a clean Ubiquitous Language modeled in an explicitly Bounded Context.

Strategic Modeling
A Bounded Context is a conceptual boundary where a domain model is applicable. It provides a context for the Ubiquitous
Language that is spoken by the team and expressed in its carefully designed software model, as shown in Figure G.1.

Ubiquitous Language (1)
modeled inside

Equities domain model with a
single, clean Ubiquitous Language

Equities Context
Bounded Context (2)
Explicit boundary around model

Figure G.1. A diagram illustrating a Bounded Context and relevant Ubiquitous Language

As you practice strategic design, you’ll find that the Context Mapping (3) patterns seen in Figure G.2 work in harmony.
Your team will use Context Maps to understand their project terrain.

Bounded Context (2) —P| Accounts Domain Model

Accounts Context

Equities Domain Model : D

Equities Context
Context Mappings (3) with integration
relationships:

Open Host Service, Published Language,
Anticorruption Layer, Customer-Supplier,
Partnership, Conformist, Shared Kernel

Figure G.2. Context Maps show the relationships among Bounded Contexts.

We’ve just considered the big picture of DDD’s strategic design. Understanding it is imperative.

Architecture

Sometimes a new Bounded Context or existing ones that interact through Context Mapping will need to take on a new style of
Architecture (4). It’s important to keep in mind that your strategically and tactically designed domain models should be
architecturally neutral. Still, there will need to be some architecture around and between each model. A powerful architectural
style for hosting a Bounded Context is Hexagonal, which can be used to facilitate other styles such as Service-Oriented,
REST and Event-Driven, and others. Figure G.3 depicts a Hexagonal Architecture, and while it may look a little busy, it’s a

fairly simplistic style to employ.

Architecture (4) such as
the Hexagonal style

Tactical domain model at the
heart of the Bounded Context

Adapter

\/L; | Adapter |

Application

Adapter

Adapter [H—3

Adapter :I

2 10

Pomain Model

QU

Figure G.3. The Hexagonal Architecture with the domain model at the heart of the software

Sometimes we may be tempted to place too much emphasis on architecture rather than focusing on the importance of
carefully crafting a DDD-based model. Architecture is important, but architectural influences come and go. Remember tc
prioritize correctly, placing more emphasis on the domain model, which has greater business value and will be more enduring.

Tactical Modeling

We model tactically inside a Bounded Context using DDD’s building block patterns. One of the most important patterns of
tactical design is Aggregate (10), as illustrated in Figure G.4.

Aggregate (10) with transactional
/ consistency boundary ‘\

hAgaregate Type 1

hggregate Type 2

<cvalue object>>

Value Type 1

<<aggreqate roct>>
Root Entity 1

<<aggregate root>>

<<value object>>

Root Entity 2 “| Value Type 3

L A A
cevalue object>> ceantity>> <<value object>>
Value Type 2 Entity Type 3 Value Type 4
f b8 I

State inside reflecting true business rules
<<repository>> must remain completely consistent

R it 1 <<repository>>
eposito . . A

P ry Use a Repository (12} to persist - Repository 2

a specific Aggregate type

Figure G.4. Two Aggregate types with their own transactional consistency boundaries

An Aggregate is composed of either a single Entity (5) or a cluster of Entities and Value Objects (6) that must remain
transactionally consistent throughout the Aggregate’s lifetime. Understanding how to effectively model Aggregates is quite
important and one of the least well understood techniques among DDD’s building blocks. If they are so important, you may be
wondering why Aggregates are placed later in the book. First of all, the placement of tactical patterns in this book follows the
same order as is found in [Evans]. Also, since Aggregates are based on other tactical patterns, we cover the basic building
blocks—such as Entities and Value Objects—before the more complex Aggregate pattern.

An instance of an Aggregate is persisted using its Repository (12) and later searched for within and retrieved from it. You
can see an indication of that in Figure G.4.

Use stateless Services (7), such as seen in Figure G.5, inside the domain model to perform business operations that don’t fit
naturally as an operation on an Entity or a Value Object.

Use a Service (7) to perform an operation
that cuts across Aggregatas, for example

Cluery <<aggregate root>>

"—‘PEW Root Entity 1

Domain Service 1

<<servicer>»

/

<<aggregate roots>

LOmmAnG Root Entity 2

operation
Figure G.5. Domain Services carry out domain-specific operations, which may involve multiple domain objects.

Use Domain Events (8) to indicate the occurrence of significant happenings in the domain. Domain Events can be modeled
a few different ways. When they capture occurrences that are a result of some Aggregate command operation, the Aggregate
itself publishes the Event as depicted in Figure G.6.

Event
::VV / Subscriber

Aggregate

handle
\ /_,—_P Subscriber
Event Fublisher

Event

publish

Subscriber

Figure G.6. Domain Events can be published by Aggregates.

Although often given little thought, it’s really important to design Modules (9) correctly. In its simplest form, think of a
Module as a package in Java or a namespace in C#. Remember that if you design your Modules mechanically rather thar
according to the Ubiquitous Language, they will probably do more harm than good. Figure G.7 illustrates how Modules should
contain a limited set of cohesive domain objects.

com.companyname.context.domain.model.concept
<<agaregate root>> -:(-EI"INT-:-{:\ >
: —> ,
Entity 1 Entity 2
<<value object>> <<value object>>
Identity Value Type

Figure G.7. A Module contains and organizes cohesive domain objects.

Of course, there’s much more to implementing DDD, and I won’t try to cover it all here. There’s a whole book ahead of you
that does just that. I think this Guide gets you off on the right foot for your journey through implementing DDD. So, enjoy th
journey!

Oh, and just to get you familiarized with Cowboy Logic, here’s one for the trail:

Cowboy Logic
Al: “Don’t worry about bitin’ off more than you can chew. Your mouth is probably a whole lot bigger than you
think.” ;-)
LB: “You meant to say ‘mind,” J. Your mind is bigger than you think!”

Chapter 1. Getting Started with DDD

Design is not just what it looks like and feels like. Design is how it works.

—Steve Jobs

We strive to produce quality in the software we develop. We achieve some quality by using tests to help us avoid delivering
software with a fatal number of bugs. Yet, even if we could produce completely bug-free software, that in itself does not
necessarily mean that a quality software model is designed. The software model—the way the software expresses the solution
to the business goal being sought—could still suffer greatly. Delivering software with few defects is obviously good. Still, we
can reach higher for a well-designed software model that explicitly reflects the intended business objective, and our work may
even reach the level of great.

The software development approach called Domain-Driven Design, or DDD, exists to help us more readily succeed at
achieving high-quality software model designs. When implemented correctly, DDD helps us reach the point where our design
is exactly how the software works. This book is about helping you correctly implement DDD.

You may be completely new to DDD, you may have tried it and struggled, or you may have already succeeded with it before.
Regardless, you no doubt are reading this book because you want to improve your ability to implement DDD, and you can. The
chapter road map helps you target your specific needs.

Road Map to This Chapter
* Discover what DDD can do for your projects and your teams as you grapple with complexity.
* Find out how to score your project to see if it deserves the DDD investment.
* Consider the common alternatives to DDD and why they often lead to problems.
* Grasp the foundations of DDD as you learn how to take the first steps on your project.
* Learn how to sell DDD to your management, domain experts, and technical team members.
* Face the challenges of using DDD armed with knowledge of how to succeed.
* Look in on a team that is learning how to implement DDD.

What should you expect from DDD? Not a heavy, dense, ceremonial process that blocks your way to progress. Rather
expect to use the agile development techniques you probably already have come to trust. Beyond agile, anticipate the
acquisition of methods that help you gain deep insight into your business domain, with the prospect of producing testable,
malleable, organized, carefully crafted, high-quality software models.

DDD gives you both thestrategic and tactical modeling tools necessary to design high-quality software that meets core
business objectives.

Can 1 DDD?

You can implement DDD if you have
* A passion for creating excellent software every day, and the tenacity to achieve that goal
* The eagerness to learn and improve, and the fortitude to admit you need to
* The aptitude to understand software patterns and how to properly apply them
* The skill and patience to explore design alternatives using proven agile methods
* The courage to challenge the status quo
* The desire and ability to pay attention to details, to experiment and discover
* A drive to seek ways to code smarter and better

I’m not going to tell you that there isn’t a learning curve. To put it bluntly, the learning curve can be steep. Yet, this book has
been put together to help flatten the curve as much as possible. My goal is to help you and your team implement DDD with the
greatest potential for success.

DDD isn’t first and foremost about technology. In its most central principles, DDD is about discussion, listening
understanding, discovery, and business value, all in an effort to centralize knowledge. If you are capable of understanding the
business in which your company works, you can at a minimum participate in the software model discovery process to produce
a Ubiquitous Language. Sure, you’re going to have to learn more about the business, lots more. Still, you are on your way to

succeeding with DDD already because you can comprehend the concepts of your business, you revel in developing greas
software, and that gives you the proper footing to take DDD all the way.

Won’t having years, even a decade or two, of software development experience help? It might. Nevertheless, software
development experience doesn’t give you the ability to listen and learn from domain experts, the people who know the most
about some high-priority area of the business. You are at a greater advantage if you can engage with those who seldom, if ever,
express themselves using technical lingo. You’re going to have to listen and listen carefully. You’re going to have to respect
their viewpoint and trust that they know a lot more than you do.

There Are Big Advantages to Engaging with Domain Experts

You are at a greater advantage if you can engage with those who seldom, if ever, express themselves using technical
lingo. Just as you are going to learn from them, there is a high probability that they are also going to learn from you.

What you may like best about DDD is that the domain experts are also going tohave fto listen to you. You are on the team
just as they are. As strange as it may seem, the domain experts don’t know everything about their business, and they are also
going to learn more about it. Just as you are going to learn from them, there is a high probability that they are also going to learn
from you. Your questions about what they know will most likely also uncover what they don’t know. You’ll be directly
involved in helping everyone on the team discover a deeper understanding of the business, even shaping the business.

It’s great when a team learns and grows together. If you give it a chance, DDD makes that possible.

But We Don’t Have Domain Experts

A domain expert is not one by job title. These are the people who know the line of business you are working in really
well. They probably have a lot of background in the business domain, and they might be product designers or even your
salespeople.

Look past the job title. The people you are looking for know more about what you are working on than anyone else, and
for sure way more than you know. Find them. Listen. Learn. Design in code.

So far we’re off to a pretty reassuring start. Still, I am also not going to tell you that technical ability isn’t important, tha:
somehow you can get by without it. You will have to grasp some advanced software domain modeling concepts. Even so, it
doesn’t necessarily mean you are going to be in over your head. If you have abilities somewhere between grasping Head First
Design Patterns [Freeman et al.] and grokking the original Design Patterns [Gamma et al.] text, or even more advanced
patterns, you stand a really good chance of succeeding with DDD. You can bank on this: I’'m going to do everything I can tc
make that happen by lowering the bar, no matter what your level of experience.

What’s a Domain Model?

It’s a software model of the very specific business domain you are working in. Often it’s implemented as an object model,
where those objects have both data and behavior with literal and accurate business meaning.

Creating a unique, carefully crafted domain model at the heart of a core, strategic application or subsystem is essential
to practicing DDD. With DDD your domain models will tend to be smallish, very focused. Using DDD, you never try t
model the whole business enterprise with a single, large domain model. Phew, that’s good!

Consider the following perspectives of the people who can benefit from DDD. I know you fit in here somewhere:

» Newbie, junior developer: “I’m young, with fresh ideas, I’ve got pent-up energy to code, and I’m going to have ar
impact. What’s got me miffed is one of the projects I sprint on. I didn’t expect that my first gig off campus would
mean shoveling data back and forth using lots of almost identical yet redundant ‘objects.” Why is this architecture so
complex if that’s all that’s happening? What’s up with that? The code breaks a lot when I try to change it. Does
anyone actually understand what it’s supposed to do? Now there are some complex new features I have to add. I
regularly slap an adapter around legacy classes to shield me from the goo. No joy. I’m sure there’s something I can
do besides code and debug all day and night just to finish iterations. Whatever that is, I’'m going to track it down and
own it. [heard some of the others talking about DDD. /¢ sounds like Gang of Four, but tuned for the domain model.
Nice.”

Gotcha covered.
» Midlevel developer: “Over the past few months I’ve been included on the new system. It’s my turn to make a

difference. 1 get it, but what I’'m missing are profound insights when I’'m meeting with the senior developers.
Sometimes things seem whacked, but I’'m not sure why. I’'m going to help change the way things are done around
here. I know that throwing technology at a problem only takes you so far, and that’s basically not far enough. What I
need is a sound software development technique that’s going to help me become a wise and experienced software
practitioner. One of the senior architects, the new guy, made a pitch for something called DDD. I’m listening.”

You’re sounding senior already. Read on. Your forward-thinking attitude will be rewarded.

* Senior developer, architect: “I’ve used DDD on a few projects, but not since landing this new position. I like the
power of the tactical patterns, but there’s a lot more I could apply, with strategic design being one. What I found
most insightful when reading [Evans] was the Ubiquitous Language. That’s powerful stuff. I’ve had discussions with
a number of my teammates and management, trying to influence DDD’s adoption here. One of the new kids and a few
of the midlevel and senior members are jazzed about the prospects. Management isn’t so excited. I recently joined
this company, and although I was brought in to lead, it seems that the organization is less interested in disruptive
advancements than I thought. Whatever. I’'m not giving up. With other developers psyched about it, I know we can
make it happen. The payoffs are going to be much greater than anticipated. We’ll draw the pure business people—
the domain experts—closer to our technical teams, and we "Il actually invest in our solutions, not just grunt them out
iteration after iteration.”

Now that’s what a leader does. This book has lots of guidance that shows how to succeed withstrategic
design.

* Domain expert: “I’ve been involved in specifying the IT solutions to our business challenges for a long time now.
Maybe it’s too much to expect, but I wish the developers understood better what we do here. They’re always talking
down to us like we’re stupid. What they don’t understand is, if it wasn’t for us there wouldn’t be jobs here for them
to mess around with computers. The developers always have some strange way of talking about what our software
does. If we talk about A, they say it’s really called B. Its like we have to have some sort of dictionary and road
map on hand every time we try to communicate what we need. If we don’t let them have their way by calling B
what we know is A, they don’t cooperate. We waste so much time in this mode. Why can't the software just work
the way the real experts think about the business?”

You’ve got that right. One of the biggest problems is the false need for translation between business people and
techies. This chapter is for you. As you’re going to see, DDD puts you and developers on level ground.

And, surprise! You’ve got some developers already leaning your way. Help them here.

* Manager: “We are shipping software. It’s not always with the greatest result, and changes seem to take longer than
they should. The developers keep talking about some domain something-or-another. I’m not sure we need to get high
centered on yet another technique or methodology, like it’s some kind of silver bullet. I’ve heard all that a thousand
times before. We try, the fad dies, and we are right back to the same-old same-old. I keep saying that we need to stay
the course and stop dreaming, but the team keeps hounding me. They’ve worked hard, so I owe them a listen. They
are smart people and they all deserve a chance to improve things before they get torqued and move on. I could
allow them some time to learn and adjust if I can get backing from upper management. I think I could get tha:
approval if I can convince my boss of the team’s claims of achieving critical software investment and a
centralization of business knowledge. Truth is, it will make my job easier if [can do something to inspire trust
and cooperation between my teams and business experts. Anyway, that’s what [am hearing I can do.”

Good manager!

Whoever you are, here’s an important heads-up. To succeed with DDD you are going to have to learn something, and
actually a lot of somethings. That shouldn’t be a big deal, though. You are smart and you have to learn all the time. Yet we all
face this challenge:

Personally I'm always ready to learn, although I do not always like being taught.
—Sir Winston Churchill

That’s where this book comes in. I’ve tried to make the teaching as pleasant as possible while delivering the vital
understanding you need to implement DDD with success.

Your question, though, is: “Why should I do DDD?” That’s fair.

Why You Should Do DDD

Actually, I’ve already given you some pretty good reasons why DDD makes so much practical sense. At the risk of breaking
the DRY principle (“Don’t repeat yourself”), I reiterate them here and also add to the earlier reasons. Does anyone hear ar

echo?

» Put domain experts and developers on a level playing field, which produces software that makes perfect sense to
the business, not just the coders. This doesn’t mean merely tolerating the opposite group. It means becoming one
cohesive, tight-knit team.

» That “makes sense to the business” thing means investing in the business by making software that is as close as
possible to what the business leaders and experts would create if they were the coders.

* You can actually teach the business more about itself. No domain expert, no C-level manager, no one, ever knows
every single thing about the business. It’s a constant discovery process that becomes more insightful over time. With
DDD, everybody learns because everybody contributes to discovery discussions.

* Centralizing knowledge is key, because with that the business is capable of ensuring that understanding the software
is not locked in “tribal knowledge,” available only to a select few, who are usually only the developers.

» There are zero translations between the domain experts, the software developers, and the software. That doesn’t
mean maybe some few translations. It means zero translations because your team develops a common, shared
language that everyone on the team speaks.

» The design is the code, and the code is the design. The design is how it works. Knowing the best code desigr
comes through quick experimental models using an agile discovery process.

* DDD provides sound software development techniques that address both strategic and tactical design. Strategic
design helps us understand what are the most important software investments to make, what existing software assets
to leverage in order to get there fastest and safest, and who must be involved. Tactical design helps us craft the
single elegant model of a solution using time-tested, proven software building blocks.

Like any good, high-yielding investment, DDD has some up-front cost of time and effort for the team. Considering the typica
challenges encountered by every software development effort will reinforce the need to invest in a sound software
development approach.

Delivering Business Value Can Be Elusive

Developing software that delivers true business value is not the same thing as developing ordinary business software.
Software that delivers true business value aligns with the business strategic initiatives and bears solutions with clearly
identifiable competitive advantage—software that is not about technology, but about the business.

Business knowledge is never centralized. Development teams have to balance and prioritize among the needs and requests
of multiple stakeholders and engage with many people having diverse skill sets, all with the goal of uncovering software
functional and nonfunctional requirements. After gathering all that information, how can teams be certain that any given
requirement delivers true business value? In fact, what are the business values being sought, and how do you uncover them,
prioritize them, and realize them?

One of the worst disconnects of a business software development effort is seen in the gap between domain experts and
software developers. Generally speaking, true domain experts are focused on delivering business value. On the other hand,
software developers are typically drawn to technology and technical solutions to business problems. It’s not that software
developers have wrong motivations; it’s just what tends to grab their attention. Even when software developers engage with
domain experts, the collaboration is largely at a surface level, and the software that gets developed often results in a
translation/mapping between how the business thinks and operates and how the software developer interprets that. The
resulting software generally does not reflect a recognizable realization of the mental model of the domain experts, or perhaps it
does so only partially. Over time this disconnect becomes costly. The translation of domain knowledge into software is lost as
developers transition to other projects or leave the company.

A different, yet related problem is when one or more domain experts do not agree with each other. This tends to happen
because each expert has more or less experience in the specific domain being modeled, or they are simply experts in related
but different areas. It’s also common for multiple “domain experts” to have no expertise in a given domain, where they are
more of a business analyst, yet they are expected to bring insightful direction to discussions. When this situation goes
unchecked, it results in blurred rather than crisp mental models, which lead to conflicting software models.

Worse still is when the technical approach to software development actually wrongly changes the way the business
functions. While a different scenario, it is well known that enterprise resource planning (ERP) software will often change the
overall business operations of an organization to fit the way the ERP functions. The total cost of owning the ERP cannot b
fully calculated in terms of license and maintenance fees. The reorganization and disruption to the business can be far more
costly than either of those two tangible factors. A similar dynamic is at play as your software development teams interpret what
the business needs into what the newly developed software actually does. This can be both costly and disruptive to the
business, its customers, and its partners. Furthermore, this technical interpretation is both unnecessary and avoidable with the

use of proven software development techniques. The solution is a key investment.

How DDD Helps
DDD is an approach to developing software that focuses on these three primary aspects:

1. DDD brings domain experts and software developers together in order to develop software that reflects the mental
model of the business experts. This does not mean that effort is spent on modeling the “real world.” Rather, DDLC
delivers a model that is the most useful to the business. Sometimes useful and realistic models happen to intersect,
but to the degree that they diverge, DDD chooses useful.

With this aspect the efforts of domain experts and software developers are devoted to jointly developing a
Ubiquitous Language of the areas of the business that they are focused on modeling. The Ubiquitous Language i:
developed with full team agreement, is spoken, and is directly captured in the model of the software. It is worth
reiterating that the team is composed of both domain experts and software developers. It’s never “us and them.”
It’s always us. This is a key business value that allows business know-how to outlive the relatively short initial
development efforts that deliver the first few versions of the software, and the teams that produce it. It’s the
point where the cost of developing software is a justifiable business investment, not just a cost center.

This entire effort unifies domain experts who initially disagree with each other, or who simply lack core
knowledge of the domain. Further, it strengthens the close-knit team by spreading deep domain insight among all
team members, including software developers. Consider this the hands-on training that every company should
invest in its knowledge workers.

2. DDD addresses the strategic initiatives of the business. While this strategic design approach naturally includes
technical analysis, it is more concerned with the strategic direction of the business. It helps define the best inter-team
organizational relationships and provides early-warning systems for recognizing when a given relationship could
cause software and even project failure. The technical aspects of strategic design have the goal of cleanly bounding
systems and business concerns, which protects each business-level service. This provides meaningful motivations
for how an overall service-oriented architecture or business-driven architecture is achieved.

3. DDD meets the real technical demands of the software by using tactical design modeling tools to analyze anc
develop the executable software deliverables. These tactical design tools allow developers to produce software that
is a correct codification of the domain experts’ mental model, is highly testable, is less error prone (a provable
statement), performs to service-level agreements (SLAs), is scalable, and allows for distributed computing. DDL
best practices generally address a dozen or more higher-level architectural and lower-level software design
concerns, with a focus on recognizing true business rules and data invariants, and protecting the rules from error
situations.

Using this approach to software development, you and your team can succeed in delivering true business value.

Grappling with the Complexity of Your Domain

We primarily want to use DDD in the areas that are most important to the business. You don’t invest in what can be easily
replaced. You invest in the nontrivial, the more complex stuff, the most valuable and important stuff that promises to return
the greatest dividends. That’s why we call such a model a Core Domain (2). It is these, and in second priority the significant
Supporting Subdomains (2), that deserve and get the biggest investment. Rightly, then, we need to grasp what complex means.

Use DDD to Simplify, Not to Complicate
Use DDD to model a complex domain in the simplest possible way. Never use DDD to make your solution more complex.

What qualifies as complex will differ from business to business. Different companies have different challenges, different
levels of maturity, and different software development capabilities. So rather than determining what is complex, it may be
easier to determine what is nontrivial. Thus, your team and management will have to determine if a system you are planning
to work on deserves the cost of making a DDD investment.

DDD Scorecard: Use Table 1.1 to determine whether your project qualifies for an investment in DDD. If a row on the
scorecard describes your project, place the corresponding number of points in the right-hand column. Tally all the points for
your project. If it’s 7 or higher, seriously consider using DDD.

Table 1.1. The DDD Scorecard

Does Your Project Score a Total of 7 Points or Higher?

Your
If Your Project . . . Points Supporting Thoughts Score
[f your application is completely data-centric and truly qualifies 0 This seems like a no-brainer, but it’s not usually that
tor a pure CRUD solution, where every operation is basically a easy to determine simple versus complex. [t’s not as if
simple darabase query to Create, Read, Update, or Delete, you every application that isn’t pure CRUD deserves the
don’t need DDD. Your team just needs to put a pretty face on time and effort of using DDD. So maybe we could
a darabase table editor. In other words, if you can trust your come up with other metrics to help us draw a line
users to insert data directly into a table, update it, and some- between what is complex and what is not . . .
times delete it, you wouldn’t even need a user interface. That's
not realistic, but it’s conceptually relevant. If you could even
use a simple database development tool to create a solution,
don’t waste your company’s time and money on DDD.
[f your system requires just 30 or fewer business operations, it’s 1 To be clear, I am talking about 25 to 30 single busi-
probably pretty simple. This would mean that your applica- ness methods, not 25 to 30 whole service interfaces,
tion would have no more than 30 total user stories or use case each with multiple methods. The latter might be
tlows, with each of those flows having only minimal business complex.
logic. If you could quickly and easily develop such an applica-
tion using Ruby on Rails or Groovy and Grails and not feel the
pain of lacking power and control over complexity and change,
your system prabably doesn’t need to use DDD,
So let’s say that somewhere in the range of 30 to 40 user stories 2 Caveat emptor: Very often complexity is not rec-
or use case flows could be creeping toward complexity. Your ognized soon enough. We software developers are
system might be getting into DDD territory. really, really good at underestimating complexity and
level of effort. Just because we might want to code up
a Rails or Grails application doesn’t mean we should.
In the long run those could hurt more than help.
Even if the application is not going to be complex now, will it 3 Here it pays off to walk through the more complex
grow in complexity? You may not know this for sure until real usage scenarios with domain experts and see where it
users start working with it, but there is a step in the “Sup- leads. Are domain experts . . .
porting Thoughts” column that may help uncover the true 1.... already asking for more complex features?
situation. If so, it’s likely an indication that the application is
Be careful here, If there is any hint at all that the application already or will soon become too complex to use a
has even moderate complexity—here’s a good rime to be para- CRUD approach.
noid—that may be sufficient indication that it will actually be 2....so bored with the features that they can hardly
more than moderately complex. Lean toward DDD. bear discussing them? It’s probably not complex.
The application’s features are going to change often over a 4 DDD can help you manage the complexity of refac-
number of years, and you can't anticipate that the kinds of toring your model over time.
changes will be simple.
You don’t understand the Domain (2) because it’s new. As 5 You are going to need to work with domain experts

far as you and your team know, nobody has done this before,
That most likely means it’s complex, or at least deserves due
diligence with analytical scrutiny to determine the level of
complexity.

and experiment with models to get it right. You
certainly also scored on one or more of the previous
criteria, so use DDD.

This scoring exercise may have led your team to these conclusions:

It’s too bad that we can’t shift gears quickly and easily when we discover we are on the wrong side
of complexity, no matter if the wrong side is more or less complex than we thought.

Sure, but that just means that we need to become much better at determining simplicity versus
complexity early on in our project planning. That would save us a lot of time, expense, and trouble.

Once we make a major architectural decision and get several use cases deep in development, we are
usually stuck with it. We had better choose wisely.

If any of these observations resonates with your team, you are making good use of critical thought.

Anemia and Memory Loss

Anemia can be a serious health ailment with dangerous side effects. When the name Anemic Domain Model [Fowler,
Anemic] was first coined, it wasn t meant to be a complimentary term, as if to say that a domain model that is weak, without
the power of inherent behavioral qualities, could possibly be a good thing. Strangely enough, Anemic Domain Models have
popped up left and right in our industry. The trouble is that most developers seem to think this is quite normal and would not
even acknowledge that a serious condition exists when employed in their systems. It’s a real problem.

Are you wondering if your model is feeling tired, listless, forgetful, clumsy, needing a good shot in the arm? If you’re
suddenly experiencing technical hypochondria, here’s a good way to perform a self-examination. You’ll either put yourself at
ease or confirm your worst fears. Use the steps in Table 1.2 to perform your checkup.

Table 1.2. Determine Your Domain Model Health History

Yes / No

Does the software you call a “domain model” have mostly public getters and setters,
and no business logic or almost none at all—you know, objects that are mostly attri-
bute value holders?

Are the software components that frequently use your “domain model” the ones
that house most of the business logic of your system, and do those heavily invoke the
public getters and setters on the “domain model™? You probably call this particular
client layer of the “domain model” a Service Layer or Application Layer (4, 14). If
instead this describes your user interface, answer “Yes” to this question and write a
thousand times on a whiteboard that you'll never, ever do that again.

Hint: The correct answers are either “Yes” to both questions or “No” to both questions.

How did you do?

If you answered “No” to both questions, your domain is doing well.

If you answered “Yes” to both questions, your “domain model” is very, very ill. It’s anemic. The
good news is that you can get help for it by reading on.

If you answered “Yes” to one question and “No” to the other question, you are either in denial or
suffering from delusions or another neurological issue that could be caused by anemia. What should
you do if you have conflicting answers? Go straight back to the first question and run the self-
examination once again. Take your time, but remember that your answer to both questions must be an
emphatic “Yes!”

As [Fowler, Anemic] says, an Anemic Domain Model is a bad thing because you pay most of the high cost of developing a
domain model, but you get little or none of the benefit. For example, because of the object-relational impedance mismatch,
developers of such a “domain model” spend a lot of time and effort mapping objects to and from the persistence store. That’s a
high price to pay while getting little or no benefit in return. I’1l add that what you have is not a domain model at all, but just a
data model projected from a relational model (or other database) into objects. It’s an impostor that may actually be closer to
the definition of Active Record [Fowler, P of EAA]. You can probably simplify your architecture by not being pretentious and
just admit that you are really using a form of Transaction Script [Fowler, P of EAA].

Reasons Why Anemia Happens

So if an Anemic Domain Model is the sickly outcome of a poorly executed design effort, why do so many use it while
thinking that their model is experiencing fine health? Certainly it does reflect a procedural programming mentality, but I don’t
think that’s the primary reason. A good portion of our industry is made up of sample code followers, which isn’t bad as long as
the samples are quality ones. Often, however, sample code is purposely focused on demonstrating some concept or application
programming interface (API) feature in the simplest possible way, without concern for good design principles. Yet
oversimplified sample code, which usually demonstrates with a lot of getters and setters, is copied every day without a second
thought about design.

There is another, older influence. The ancient history of Microsoft’s Visual Basic had much to do with where we are today.
I’m not saying that Visual Basic was a bad language and integrated development environment (IDE), because it’s always beer
a highly productive environment and in some ways influenced the industry for the good. Of course, some may have avoided its
direct influence altogether, but Visual Basic indirectly caught up with just about every software developer eventually. Just note
the timeline shown in Table 1.3.

Table 1.3. The Timeline from Behavior Rich to Infamous Anemia

1980s 1991 1992-1995 1996 1997 1998~

Objects make Visual Basic Visual tools and Java JDK JavaBean Explosion of

animpact due properties and IDEs become 1.0 released specification reflection-based

to Smalltalk property sheets prolific tools for Java

and C++ and .NET plat-
forms based on
properties

What I am talking about is the influence of properties and property sheets, both backed by property getters and setters that
were made so popular by the original Visual Basic forms designer. All you had to do was place a few custom control instances
on a form, fill out their property sheets, and voila! You had a fully functioning Windows application. It took just a few minutes
to do that compared to the few days required to program a similar application directly against the Windows API using C.

So what does all that have to do with Anemic Domain Models? The Java Bean standard was originally specified to assisi
in the creation of visual programming tools for Java. Its motivation was to bring the Microsoft ActiveX capabilities to the
Java platform. It offered the hope of creating a market full of third-party custom controls of various kinds, just like Visual
Basic’s. Soon almost every framework and library jumped on the JavaBean bandwagon. This included much of the Jav:
SDK/JDK as well as libraries such as the popular Hibernate. Specific to our DDD concernsHibernate was introduced to
persist domain models. The trend continued as the .NET platform reached us.

Interestingly, any domain model that was persisted using Hibernate in the early days had to expose public getters and setters
for every persistent simple attribute and complex association in every domain object. This meant that even if you wanted to
design your POJO (Plain Old Java Object) with a behavior-rich interface, you had to expose your internals publicly so the
Hibernate could persist and reconstitute your domain objects. Sure, you could do things to hide the public JavaBean interface
but by and large most developers didn’t bother or even understand why they should have.

Should I Be Concerned about Using Object-Relational Mappers with DDD?

The preceding critique of Hibernate is from a historical perspective. For quite a while now Hibernate has supported the
use of hidden getters and setters, and even direct field access. I demonstrate in later chapters how to avoid anemia in your
models when using Hibernate and other persistence mechanisms. So, don’t sweat it.

Most, if not all, of the Web frameworks also function solely on the JavaBean standard. If you want your Java objects to be
able to populate your Web pages, the Java objects had better support the JavaBean specification. If you want your HTMI
forms to populate a Java object when submitted to the server side, your Java form object had better support the JavaBear
specification.

Just about every framework on the market today requires, and therefore promotes, the use of public properties on simple
objects. Most developers can’t help but be influenced by all the anemic classes all over their enterprises. Admit it. You’ve
been bitten by it, haven’t you? As a result, we have a situation that might be best labeled anemia everywhere.

Look at What Anemia Does to Your Model

All right, so let’s say we can agree that this is both true and vexing to us. What does anemia everywhere have to do with
memory loss? When you are reading through the client code of an Anemic Domain Model (for example, the imposto1
Application Service (4, 14), a la Transaction Script), what do we usually see? Here’s a rudimentary example:

Click here to view code image

@Transactional
public void saveCustomer (
String customerId,
String customerFirstName, String customerLastName,
String streetAddressl, String streetAddress?2,
String city, String stateOrProvince,
String postalCode, String country,
String homePhone, String mobilePhone,
String primaryEmailAddress, String secondaryEmailAddress) {

Customer customer = customerDao.readCustomer (customerId);

if (customer == null) {

customer = new Customer () ;
customer.setCustomerId (customerId) ;

customer.setCustomerFirstName (customerFirstName) ;
customer.setCustomerLastName (customerLastName) ;
customer.setStreetAddressl (streetAddressl) ;
customer.setStreetAddress?2 (streetAddress?2) ;
customer.setCity(city);

customer.setStateOrProvince (stateOrProvince) ;
customer.setPostalCode (postalCode) ;
customer.setCountry (country) ;

customer.setHomePhone (homePhone) ;
customer.setMobilePhone (mobilePhone) ;
customer.setPrimaryEmailAddress (primaryEmailAddress) ;
customer.setSecondaryEmailAddress (secondaryEmailAddress);

customerDao.saveCustomer (customer) ;

Example Purposely Kept Simple

Admittedly, this example is not from a very interesting domain, but it does help us examine a less-than-ideal design and
determine how we can refactor it to a much better one. Let’s be clear that this exercise is not leading us to a cooler way to
save data. It’s about crafting a software model that adds value to your business, even though this example may not seem
valuable.

What did this code just do? Actually it’s pretty versatile code. It saves acustomer no matter whether it is new or
preexisting. It saves acustomer no matter whether the last name changed or the person moved to a new home. It saves a
customer no matter whether the person got a new home phone number or discontinued home phone service, or whether he or
she got a mobile phone for the first time, or both. It even saves a customer who switched from using Juno to using Gmail
instead, or who changed jobs and now has a new work e-mail address. Wow, this is an awesome method!

Or is it? Actually, we have no idea under what business situations this saveCustomer () method is used—not exactly,
anyway. Why was this method created in the first place? Does anyone remember its original intent, and all the motivations for
changing it to support a wide variety of business goals? Those memories were quite likely lost only a few weeks or months
after the method was created and then modified. And it gets even worse. You don’t believe me? Look at the next version of this
same method:

Click here to view code image

@Transactional
public void saveCustomer (
String customerId,
String customerFirstName, String customerLastName,
String streetAddressl, String streetAddress?2,
String city, String stateOrProvince,
String postalCode, String country,
String homePhone, String mobilePhone,
String primaryEmailAddress, String secondaryEmailAddress) {

Customer customer = customerDao.readCustomer (customerId);
if (customer == null) {
customer = new Customer () ;

customer.setCustomerId (customerId) ;

}

if (customerFirstName != null) {
customer.setCustomerFirstName (customerFirstName) ;

}

if (customerLastName != null) {
customer.setCustomerLastName (customerLastName) ;

}

if (streetAddressl != null) {
customer.setStreetAddressl (streetAddressl) ;

if (streetAddress?2 != null) {
customer.setStreetAddress2 (streetAddress?) ;

if (city != null) {
customer.setCity(city);

if (stateOrProvince != null) {
customer.setStateOrProvince (stateOrProvince) ;

if (postalCode != null) {
customer.setPostalCode (postalCode) ;

if (country != null) {
customer.setCountry (country) ;

if (homePhone != null) {
customer.setHomePhone (homePhone) ;

if (mobilePhone != null) {
customer.setMobilePhone (mobilePhone) ;

if (primaryEmailAddress != null) {
customer.setPrimaryEmailAddress (primaryEmailAddress) ;

if (secondaryEmailAddress != null) {
customer.setSecondaryEmailAddress (secondaryEmailAddress);

customerDao.saveCustomer (customer) ;

I have to note here that this example isn’t as bad as it gets. Many times the data-mapping code becomes quite complex, and a
lot of business logic gets tucked away in it. I’'m sparing you the worst in this example, but you’ve probably seen it for yourself.

Now each of the parameters other than the customer1d is optional. We can now use this method to save a customer under
at least a dozen business situations, and more! But is that really a good thing? How could we actuallytest this method to ensure
that it doesn’t save a customer under the wrong situations?

Without going into extensive detail, this method could function incorrectly in more ways than it could correctly. Perhaps
there are database constraints that prevent a completely invalid state from being persisted, but now you have to look at the
database to be sure. Almost certainly it will take you some time to mentally map between Java attributes and column names.
Once you’ve figured out that part, you find that the database constraints are missing or incomplete.

You could look at the possibly many clients (not counting those added after the user interface was completed to manage
automatic remote clients) and compare source revisions to gain some insight into why it is implemented the way it is right now.
As you search for answers, you learn that nobody can explain why this one method works the way it does, or how many correct
uses there are. It could take several hours or days to understand it on your own.

Cowboy Logic
AlJ: “That fella’s so confused, he doesn’t know if he’s sackin’ potatoes or rollerskatin’ in a buffalo herd.”

| = 3 T
) 1 —= 3
| OH @DDD_Corral |

Domain experts can’t help here because they would have to be programmers to understand the code. Even if a domain expert
or two knew enough about programming or could at least read the code, they would probably be at least equally at a loss as a
developer regarding all that code is meant to support. With all these concerns in mind, do we dare change this code in any way,
and if so, how?

There are at least three big problems here:
1. There is little intention revealed by the savecustomer () interface.
2. The implementation of savecustomer () itself adds hidden complexity.
3. The customer “domain object” isn’t really an object at all. It’s really just a dumb data holder.

Let’s call this unenviable situation anemia-induced memory loss. It happens all the time on projects that produce this kind of
implicit, completely subjective code “design.”

Hold On a Minute!

At this point some of you may be thinking, “Our designs never really leave the whiteboard. We just draw some structure,
and once agreement on that is reached, we are set free to implement. Scary.”

If so, try not to distinguish design from implementation. Remember that when practicing DDD,the design is the code
and the code is the design. In other words, whiteboard diagrams aren’t the design, just a way to discuss the challenges of
the model.

Stay tuned, as you’ll learn how to take ideas off the whiteboard and make them work for you.

By now you should be worried about this kind of code and how you can create a better design. The good news is that you
can succeed in producing an explicit, carefully crafted design in your code.

How to Do DDD

Let’s back away from heavy implementation discussions for a moment to consider one of the most empowering features of
DDD, the Ubiquitous Language. It’s one of the two primary pillars of DDD’s strengths, the second being theBounded Context
(2), and one cannot properly stand without the other.

Terms in a Context

For now think of a Bounded Context as a conceptual boundary around a whole application or finite system. The reason for
this boundary is to highlight that every use of a given domain term, phrase, or sentence—the Ubiquitous Language—inside
the boundary has a specific contextual meaning. Any use of the term outside that boundary could, and probably does, mean
something different. Chapter 2 explains Bounded Context in depth.

Ubiquitous Language

The Ubiquitous Language is a shared team language. It’s shared by domain experts and developers alike. In fact, it’s sharec
by everyone on the project team. No matter your role on the team, since you are on the team you use the Ubiquitous Language of
the project.

So, You Think You Know What a Ubiquitous Language Is
Obviously it’s the language of the business.

Well, no.

Surely it must be adopting industry standard terminology.
No, not really.

Clearly it’s the lingo used by the domain experts.

Sorry, but no.

The Ubiquitous Language is a shared language developed by the team—a team composed of both domain experts ana
software developers.

That’s it. Now you’ve got it!

Naturally, the domain experts have a heavy influence on the Language because they know that part of the business best and
may be influenced by industry standards. However, the Language is more centered on how the business itself thinks and
operates. Also, many times two or more domain experts disagree on concepts and terms, and they are actually wrong
about some because they haven’t thought of every case before. So, as the experts and developers work together to craft a
model of the domain, they use discussion with both consensus and compromise to achieve the very best Language for the
project. The team never compromises on the quality of the Language, just on the best concepts, terms, and meanings.
Initial consensus is not the end, however. The Language grows and changes over time as tiny and large breakthroughs are
achieved, much like any other living language.

This is no gimmick to get developers to be on the same page as domain experts. It’s not just a bunch of business jargon being
forced on developers. It’s a real language that is created by the whole team—domain experts, developers, business analysts,
everyone involved in producing the system. The Language may start out with terms that are the natural lingo of the domair
experts, but it isn’t limited to that because the Language must grow over time. Suffice it to say that when multiple domair
experts are involved in creating the Language, they often disagree ever so slightly on the terms and meanings of what they
thought were already ubiquitous.

InTable 1.4, we not only model the administration of flu vaccines in code, but the team must also speak the Language
openly. When the team discusses this aspect of the model, they literally speak phrases such as “Nurses administer flu vaccines
to patients in standard doses.”

Table 1.4. Analyzing the Best Model for the Business

Which is better for the business?

Though the second and third statements are similar, how should the code be designed?

Possible Viewpoints Resulting Code

“Who cares? Just code it up.” patient.setShotType(ShotTypes.TYPE_FLU);
patient.setDose(dose);

Um, not even close. ;
patient.setNurse(nurse);

“We give flu shots to patients.” patient.giveFluShot(};

Better, but misses some
Important concepts.

“Niurses administer ﬂy vadccines Vaccine vaccine = vaccines.standardAdultFluDosel();
to patients in standard doses.”

This seems like what we’d like nurse.administerFluVaccine(patient, wvaccine};

to run with ar this time, art least

until we learn more.

There will be some haggling and wrangling over the Language that exists in the minds of experts and what evolves fromn
there. It’s all part of the natural progression of developing the best Language that will matter a lot for a long time. This happens
through open discussion, looking at existing documents, business tribal knowledge that finally surfaces, as well as referencing
standards, dictionaries, and thesauruses. There’s also a point reached where we come to terms with the fact that some words
and phrases just don’t aptly fit the business context as well as we once thought, and we realize that others fit it much better.

So how do you capture this all-important Ubiquitous Language? Here are some ways that work as experimentation leads tc

advancement:

» Draw pictures of the physical and conceptual domain and label them with names and actions. These drawings are
mostly informal but may contain some aspects of formal software modeling. Even if your team does some formal
modeling with Unified Modeling Language (UML), you want to avoid any kind of ceremony that will bog dow:
discussions and stifle the creativity of the ultimate Language being sought.

* Create a glossary of terms with simple definitions. List alternative terms, including the ones that show promise and
the ones that didn’t work, and why. As you include definitions, you cannot help but develop reusable phrases for the
Language because you are forced to write in the Language of the domain.

* If you don’t like the idea of a glossary, still capture some kind of documentation that includes the informal drawings
of important software concepts. Again, the goal here is to force additional Language terms and phrases to surface.

* Since only one or a few team members may capture the glossary or other written documents, circle back with the
rest of the team to review the resulting phrases. You won’t always, if ever, agree on all the captured linguistics, so
be agile and ready to edit heavily.

Those are some ideal first steps to coining a Ubiquitous Language that fits your specific domain. However, this is absolutely
not the model that you are developing. It’s only the genesis of the Ubiquitous Language that will very soon be expressed in your
system’s source code. We are talking Java, or C#, or Scala, or some other programming language of choice. These drawings
and documents also don’t address that the Ubiquitous Language will continue to expand and morph over time. The artifacts thar
originally led us down an inspiring path to developing a useful Ubiquitous Language that was just right for our specialized
domain will very likely be rendered obsolete over time. Thats why in the end it is team speech and the model in the code
that are the most enduring and the only guaranteed current denotations of the Ubiquitous Language.

Since team speech and the code will be the lasting expression of the Ubiquitous Language, be prepared to abandon the
drawings, glossary, and other documentation that will be difficult to keep up-to-date with the spoken Ubiquitous Language and
source code as they are rapidly enhanced. This is not a requirement of using DDD, but it is pragmatic because it becomes
impractical to keep all the documentation in sync with the system.

With this knowledge we can redesign the savecustomer () example. What if we chose to make customer reflect each of the
possible business goals that it must support?

Click here to view code image

public interface Customer {

public void changePersonalName (

String firstName, String lastName);
public void postalAddress (PostalAddress postalAddress);
public void relocateTo (PostalAddress changedPostalAddress);
public void changeHomeTelephone (Telephone telephone);
public void disconnectHomeTelephone () ;
public void changeMobileTelephone (Telephone telephone);
public void disconnectMobileTelephone() ;
public void primaryEmailAddress (EmailAddress emailAddress);
public void secondaryEmailAddress (EmailAddress emailAddress) ;

We can argue that this is not the best model for a customer, but when implementing DDD, questioning the design is
expected. As a team we are free to haggle over what is the best model and settle only after we’ve discovered the Ubiquitous
Language that is agreed upon. Still, the preceding interface does explicitly reflect the various business goals that acustomer
must support, even if the Language could be improved by refinements again and again.

It’s important to understand too that the Application Service would also be refactored to reflect the explicit intentions of the
business goals at hand. Each Application Service method would be modified to deal with a single use case flow or user story:

Click here to view code image

@Transactional

public void changeCustomerPersonalName (
String customerId,
String customerFirstName,
String customerLastName) {

Customer customer = customerRepository.customerOfId(customerId);

if (customer == null) {
throw new IllegalStateException("Customer does not exist.");
}

customer.changePersonalName (customerFirstName, customerLastName) ;

}

This is different from the original example because in that code a single method was used to deal with many different use
case flows or user stories. In the new example we have limited a single Application Service method to deal with changing the
personal name of the customer, and nothing more. Thus, when using DDD, it is our job to refine Application Service:
accordingly. This implies that the user interface likewise reflects a narrower user goal, which may have previously been true.
Now, however, this specific Application Service method doesn’t require its client to pass ten nulls following the first- and
last-name parameters.

Doesn’t this new design put your mind at ease? You can read the code and easily comprehend it. You can also test it and
confirm that it does exactly what it is meant to do, and that it doesn’t do anything that it shouldn’t.

Thus, the Ubiquitous Language is a team pattern used to capture the concepts and terms of a specific core business domain ir
the software model itself. The software model incorporates the nouns, adjectives, verbs, and richer expressions formally
formulated and spoken by the close-knit team. Both the software and the tests that verify the model’s adherence to the tenets of
the domain capture and adhere to this Language, the same one spoken by the team.

Ubiquitous, but Not Universal

Some further clarification about the reach of a Ubiquitous Language is in order. There are a few basic concepts that we neec
to keep carefully in mind:

» Ubiquitous means “pervasive,” or “found everywhere,” as spoken among the team and expressed by the single
domain model that the team develops.

* The use of the word ubiquitous is not an attempt to describe some kind of enterprise-wide, company-wide, or
worldwide, universal domain language.

* There is one Ubiquitous Language per Bounded Context.

* Bounded Contexts are relatively small, smaller than we might at first imagine. A Bounded Context is large enougt
only to capture the complete Ubiquitous Language of the isolated business domain, and no larger.

» The Language is ubiquitous only within the team that is working on the project that develops in an isolated Boundec
Context.

* On a single project that develops a single Bounded Context, there are always one or more additional isolatec
Bounded Contexts with which it integrates using Context Maps (3). Each of the multiple Bounded Contexts tha
integrate has its own Ubiquitous Language, even though some terms of each may overlap.

» If you try to apply a single Ubiquitous Language to an entire enterprise, or worse, universally among many
enterprises, you will fail.

When you begin a new project in which you are properly using DDD, identify the isolated Bounded Context that is bein
developed. This places an explicit boundary around your domain model. Discuss, research, conceptualize, develop, and speak
the Ubiquitous Language of the isolated domain model within the explicit Bounded Context. Reject all concepts that are no
part of the agreed-upon Ubiquitous Language of your isolated Context.

The Business Value of Using DDD

If your experience is anything like mine, you know that software developers can no longer pursue technologies and
techniques just because they sound cool or intriguing. We must justify everything that we do. I think that has not always been
true, but it is a good thing it is true now. I think the best justification for using any technology or technique is to provide value
to the business. If we can establish real, tangible business value, why would the business ever refuse to use what we
recommend?

The business case is strengthened especially if we can demonstrate that the business values are higher with our
recommended approach than with other options.

Isn’t Business Value Most Important?

Sure, and perhaps I should have put this subheading “The Business Value of Using DDD’ earlier in the book. But it’s
done, now. This subheading could actually be “How You Can Sell DDD to Your Boss.” Until you are mostly convincec
that there is a real chance that you can actually implement DDD in your company, this book is just hypothetical. And]

don’t want you to read this book as just a theoretical exercise. Read it as a concrete reality for your company. Then you
can become more excited about how your company can really benefit. So read on.

Let’s consider the very realistic business value of employing DDD. Be sure to share this openly with your management
domain experts, and technical team members. The value and benefits are summarized here, then I will elaborate. I start off witt
the less technical benefits.

1. The organization gains a useful model of its domain.

. A refined, precise definition and understanding of the business is developed.
. Domain experts contribute to software design.

. A better user experience is gained.

. Clean boundaries are placed around pure models.

. Enterprise architecture is better organized.

N SN 0 AW

. Agile, iterative, continuous modeling is used.
8. New tools, both strategic and tactical, are employed.

1. The Organization Gains a Useful Model of Its Domain

The emphasis of DDD is to invest our efforts in what matters most to the business. We don’t over-model. We focus on the
Core Domain. Other models exist to support the Core Domain and are important, too. Yet the supporting models may not be
given the priority and effort of the Core Domain.

When our focus is on what distinguishes our business from all others, our mission is well understood and we have the
parameters we need to keep on track. We will deliver exactly what is needed to achieve competitive advantage.

2. A Refined, Precise Definition and Understanding of the Business Is Developed

The business may actually come to understand itself and its mission better than before. I have heard others state that the
Ubiquitous Language developed for the business’s Core Domain has found its way into marketing materials. Certainly it shoulc
be incorporated in vision documents and mission statements.

As the model is refined over time, the business develops a deep understanding that can serve as an analysis tool. Details
surface out of the minds of your domain experts as you are challenged by one another and shaped by technical team partners.
These details can help your business analyze the value of the current and future direction, both strategic and tactical.

3. Domain Experts Contribute to Software Design

There is business value when the organization grows a deeper understanding of the core business. Domain experts don’
always agree on concepts and terminology. Sometimes the differences are fostered by different experiences from outside
before joining the organization. Sometimes it happens because of the divergent paths taken by each expert within the same
organization. Yet when brought together to a DDD effort, the domain experts gain consensus among themselves. This fortifies
the effort and the organization as a whole.

Developers now share a common Language as a unified team along with domain experts. They benefit further from the
knowledge transfer from the domain experts they work with. As developers inevitably move on, either to a new Core Domair
or out of the organization, training and handoffs are easier. The chances of developing “tribal knowledge,” where only a select
few understand the model, are reduced. The experts, remaining developers, and new ones continue to share a common
knowledge that is available to anyone in the organization who requires it. This advantage exists because there remains an
express goal to adhere to the Language of the domain.

4. A Better User Experience Is Gained

Often the end user experience can be tuned to better reflect the model of the domain. Domain-Driven is formally “baked in,”
influencing human use of the software.

When software leaves too much to the understanding of its users, users must be trained to make a great number of decisions.
In essence the users are only transferring the understanding in their minds into data that they enter into forms. The data is ther
saved to a data store. If users don’t understand exactly what is needed, the results are incorrect. Often this leads to guesswork
with related lowered productivity until users can figure out the software.

When the user experience is designed to follow the contours of the underlying expert model, users are led to correct
conclusions. The software actually trains the users, which reduces the training overhead to the business. Quicker to
productivity with less training—that’s business value.

We next move into more technically driven benefits to the business.

5. Clean Boundaries Are Placed around Pure Models

The technical team is discouraged from doing what might appeal more to their programming and algorithmic interests by
aligning expectations with business advantage. Purity in direction allows for focus on the potency of the solution, with efforts
directed to where they matter the most. Achieving this is very closely connected to understanding the Bounded Context of the
project.

6. Enterprise Architecture Is Better Organized

When Bounded Contexts are well understood and carefully partitioned, all teams in the enterprise develop an acute
understanding of where and why integrations are necessary. The boundaries are explicit, and the relationships between them
are as well. The teams that have models that intersect by usage dependency employ Context Maps to establish formal
relationships and ways to integrate. This can actually lead to a very thorough understanding of the entire enterprise
architecture.

7. Agile, Iterative, Continuous Modeling Is Used

The word design can evoke negative thoughts in the minds of business management. However, DDD is not a heavyweight.
high-ceremony design and development process. DDD is not about drawing diagrams. It is about carefully refining the menta
model of domain experts into a useful model for the business. It is not about creating a real-world model, as in trying to mimic
reality.

The team’s efforts follow an agile approach, which is iterative and incremental. Any agile process that the team feels
comfortable with can be used successfully in a DDD project. The model that is produced is the working software. It is refinec
continuously until it is no longer needed by the business.

8. New Tools, Both Strategic and Tactical, Are Employed

A Bounded Context gives the team a modeling boundary in which to create a solution to a specific business problem domain.
Inside a single Bounded Context is a Ubiquitous Language formulated by the team. It is spoken among the team and in the
software model. Disparate teams, sometimes each responsible for a given Bounded Context, use Context Maps to strategically
segregate Bounded Contexts and understand their integrations. Within a single modeling boundary the team may employ any
number of useful tactical modeling tools: Aggregates (10), Entities (5), Value Objects (6), Services (7), Domain Events
(8), and others.

The Challenges of Applying DDD

As you implement DDD, you will encounter challenges. So has everyone else who has succeeded at it. What are the commor
challenges and how do we justify using DDD as we face them? I will discuss the more common ones:

* Allowing for the time and effort required to create a Ubiquitous Language
* Involving domain experts at the outset and continuously with the project
* Changing the way developers think about solutions in their domain

One of the greatest challenges in using DDD can be the time and effort required to think about the business domain, researcl
concepts and terminology, and converse with domain experts in order to discover, capture, and enhance the Ubiquitous
Language rather than coding in techno-babble. If you want to apply DDD completely, with the greatest value to the business
it’s going to require more thought and effort, and it’s going to take more time. That’s the way it is, period.

It can also be a challenge to solicit the necessary involvement from domain experts. No matter how difficult it is, make sure
you do. If you don’t get commitment from at least one real expert, you are not going to uncover deep knowledge of the domain.
When you do get the domain experts’ involvement, the onus falls back on the developers. Developers must converse with and
listen carefully to the true experts, molding their spoken language into software that reflects their mental model of the domain.

If the domain you are working in is truly distinguishing to your business, domain experts have the edge-knowledge locked up
in their heads, and you need to draw it out. I’ve been on projects where the real domain experts are hardly around. Sometimes
they travel a lot and it can be weeks between one-hour meetings with them. In a small business it can be the CEO or one of the
vice presidents, and they have lots of other things to do that may seem more important.

Cowboy Logic
AlJ: “If you can’t rope the big steer, you’re gonna go hungry.”

:] | O @DDBD_Corral
. A /\I

[. _"

Getting domain expert involvement may require creativity . . .

How to Involve Domain Experts in Your Project

Coffee. Use that Ubiquitous Language:

“Hi, Sally, I got you a tall half-skinny half-one-percent extra-hot split-quad-shot latte with whip. Do you have a few minutes tc
talk about . . . ?”

Learn to use the Ubiquitous Language of C-Level management: . . . profits . . . revenues . . . competitive edge . . . marke
domination.” Seriously.

Hockey tickets.

Most developers have had to change the way they think in order to properly apply DDD. We developers are technical
thinkers. Technical solutions come easy for us. It’s not that thinking technically is bad. It’s just that there are times when
thinking less technically is better. If it’s been our habit to practice software development only in technical ways for years,
perhaps now would be a good time to consider a new way of thinking. Developing the Ubiquitous Language of your domain is
the best place to start.

Cowboy Logic
LB: “That fella’s boots are too small. If he don’t find himself another pair, his toes are gonna hurt.”
AlJ: “Yep. If you don’t listen, you’re gonna have to feel.”

There’s another level of thought that is required with DDD that goes beyond concept naming. When we model a domair
through software, we are required to give careful thought to which model objects do what. It’s about designing the behaviors
of objects. Yes, we want the behaviors to be named properly to convey the essence of the Ubiquitous Language. But what an
object does by means of a specific behavior must be considered. This is a level of effort that goes beyond creating attributes on

a class and exposing getters and setters publicly to clients of the model.

L A t 7 i-'-—: /_

Let’s now look at a more interesting domain, one that is more challenging than the rudimentary one previously considered. I
purposely repeat my previous guidance here to reinforce the ideas.

Again, what happens if we simply provide data accessors to our model? To reemphasize, if we only expose the data
accessors for our model objects, the results will look much like a data model. Consider the following two examples and
decide for yourself which of the two requires more thorough design thought, and which produces the greater benefit to its
clients. The requirement is in a Scrum model, where we need to commit a backlog item to a sprint. You probably do this all the
time, so it’s most likely a familiar domain.

The first example, as is commonly done today, uses attribute accessors:

Click here to view code image

public class Backlogltem extends Entity ({
private SprintId sprintId;
private BacklogItemStatusType status;

public void setSprintId(SprintId sprintId) {
this.sprintId sprintId;

}

public void setStatus (BacklogltemStatusType status) {
this.status = status;

}

As for the client of this model:

Click here to view code image

// client commits the backlog item to a sprint
// by setting its sprintId and status

backlogItem.setSprintId(sprintId);
backlogItem.setStatus (BacklogItemStatusType.COMMITTED) ;

The second example uses a domain object behavior that expresses the Ubiquitous Language of the domain:

Click here to view code image

public class Backlogltem extends Entity ({

private SprintId sprintId;
private BacklogItemStatusType status;

public void commitTo (Sprint aSprint) {
if (!this.isScheduledForRelease()) {
throw new IllegalStateException (
"Must be scheduled for release to commit to sprint.");

}

if (this.isCommittedToSprint()) {
if (!aSprint.sprintId() .equals(this.sprintId())) {
this.uncommitFromSprint () ;
}
}

this.elevateStatusWith (BacklogItemStatus.COMMITTED) ;
this.setSprintId(aSprint.sprintId()):;

DomainEventPublisher

.instance ()

.publish (new BacklogItemCommitted (
this.tenant (),
this.backlogItemId(),
this.sprintId()));

The client of this explicit model seems to operate on safer ground:

Click here to view code image

// client commits the backlog item to a sprint
// by using a domain-specific behavior

backlogItem.commitTo (sprint) ;

The first example uses a very data-centric approach. The onus is entirely on the client to know how to correctly commit the
backlog item to a sprint. The model, which is not really a domain model, doesn’t help at all. What if the client mistakenly
changes only the sprint1d but not the status, or the opposite? Or what if in the future another attribute must be set? The
client code must be analyzed for correct mapping of data values to the proper attributes on the BacklogItem.

This approach also exposes the shape of the BacklogItem object and clearly focuses attention on its data attributes and not
on its behaviors. Evenif you argue that setsprintid() and setsStatus() are behaviors, the case in point is that these
“behaviors” have no real business domain value. These “behaviors” do not explicitly indicate the intentions of the scenarios
that the domain software is supposed to model, that of committing a backlog item to a sprint. They do cause cognitive overload
when the client developer tries to mentally select from among the Back1logIten attributes needed to commit a backlog item to
a sprint. There could be many because it’s a data-centric model.

Now consider the second example. Instead of exposing the data attributes to clients, it exposes a behavior that explicitly and
clearly indicates that a client may commit a backlog item to a sprint. Experts in this particular domain discuss the following
requirement of the model:

Allow each backlog item to be committed to a sprint. It may be committed only if it is already
scheduled for release. If it is already committed to a different sprint, it must be uncommitted first.
When the commit completes, notify interested parties.

Thus, the method in the second example captures the Ubiquitous Language of the model in context, that is, the Boundec
Context in which the BacklogItem type is isolated. And as we analyze this scenario, we discover that the first solution is
incomplete and contains bugs.

With the second implementation clients don’t need to know what is required to perform the commit, whether simple or
complex. The implementation of this method has as much or as little logic as necessary. We easily added a guard to protect
against committing a backlog item that is not yet scheduled for release. True, you can also place guards inside the setters of the

first implementation, but the setter now becomes responsible for understanding the full context of the object’s state rather than
just the requirements for sprint1d and status.

There’s another subtle difference here, too. Note that if the backlog item is already committed to another sprint, it will first
be uncommitted from the current sprint. This is an important detail, because when a backlog item is uncommitted from a sprint,
a Domain Event is to be published to clients:

Allow each backlog item to be uncommitted from a sprint. When the backlog item is uncommitted,
notify interested parties.

The publication of the uncommitted notification is obtained for free just by using the domain behavior uncommitFrom().
Method commitTo () doesn’t even need to know that it notifies. All it needs to know is that it must uncommit from any current
sprint before committing to a new sprint. Additionally, the commitTo () domain behavior also notifies interested parties with
an Event as its final step. Without placing this rich behavior inBacklogItem we would have to publish Events from the client.
That would certainly leak domain logic from the model. Bad.

Clearly, more thought is needed to create the BacklogTtem of the second example than that of the first. Yet the thought
needed is not so much greater, and the benefits are so much higher. The more we learn to design in this way, the easier it
becomes. In the end, there is certainly more required thought, more effort, more collaboration and orchestration of team efforts,
but not so much that DDD becomes heavy. New thought is well worth the effort.

Whiteboard Time
* Using the specific domain you currently work in, think of the common terms and actions of the model.
* Write the terms on the board.
* Next, write phrases that should be used by your team when you talk about the project.
* Discuss them with a real domain expert to see how they could be refined (remember to bring the coffee).

Justification for Domain Modeling

Tactical modeling is generally more complex than strategic modeling. Thus, if you intend to develop a domain model using
the DDD tactical patterns (Aggregates, Services, Value Objects, Events, and so forth), doing so will require more carefu
thought and greater investment. Since this is so, how does an organization justify tactical domain modeling? What criteria car
be used to qualify a given project for the extra investment needed to properly apply DDD from top to bottom?

Picture yourself leading an expedition through unfamiliar territory. You would want to understand the surrounding
landmasses and borders. Your team would study maps, maybe even draw their own, and determine their strategic approach.
You would consider aspects of the terrain and how it could be used to your advantage. No matter how much planning is done,
some facets of such an endeavor are going to be really difficult.

If your strategy indicated that you’d have to scale a vertical rock face, you’d need some fitting tactical tools and maneuvers
for that ascent. Standing at the bottom and looking up, you might see some indication of specific challenges and perilous areas.
Yet, you wouldn’t see every detail until you were on the rock face. You might need to drive pitons into slick rock, but you
could use various-size cams to wedge into natural cracks. To latch on to these climbing protections, you’d bring along your
carabiners. You would try to take as straight a path as possible but would have to make specific determinations point by point.
Sometimes you might even have to backtrack and reroute depending on what the rock dictated. Many people think of climbing
as a dangerous thrill sport, but those who actually climb will tell you it’s safer than driving a car or flying an airplane. Clearly,
for that to be true, climbers need to understand the tools and techniques and how to judge the rock.

If developing a given Subdomain (2) requires such a difficult, even precarious, ascent, we’d bring the DDD tactical patterns
along for the climb. A business initiative that matches the criteria of the Core Domain should not quickly dismiss the use of the
tactical patterns. The Core Domain is an unknown and complex area. The team is best protected against a disastrous mid-asse
fall if using the right tactics.

Here’s some practical guidance. I begin with the high-level ones and progress to more details:

* If a Bounded Context is being developed as the Core Domain, it is strategically vital to the success of the business
The core model is not well understood and will require lots of experimentation and refactoring. It likely deserves
commitment to longevity with continuous enhancement. It may not always be your Core Domain. Nonetheless, if the
Bounded Context is complex, innovative, and needs to endure for a long time as it undergoes change, strongly
consider the use of the tactical patterns as an investment in the future of your business. This assumes that your Core
Domain deserves the best developer resources with a high skill level.

* A domain that may become a Generic Subdomain (2) or Supporting Subdomain to its consumers may actually be a

Core Domain to your business. You don’t always judge a domain from the viewpoint of its ultimate consumers. It
you are developing a Bounded Context as your chief business initiative, it is your Core Domain regardless of how i
is viewed by customers outside your business. Strongly consider the use of the tactical patterns.

 If you are developing a Supporting Subdomain that, for various reasons, cannot be acquired as a third-party
Generic Subdomain, it is possible that the tactical patterns would benefit your efforts. In this case consider the skill
level of the team and whether or not the model is new and innovative. It is innovative if it adds specific business
value, captures special knowledge, and is not just technically intriguing. If the team is capable of properly applying
tactical design, and the Supporting Subdomain is innovative and must endure for years in the future, this is a good
opportunity to invest in your software using tactical design. However, this does not make this model the Core
Domain since in the eyes of the business it is merely Supporting.

These guidelines may be somewhat confining if your business employs a good number of developers with vast experience in
and a very high comfort level with domain modeling. Where experience is very high, and the engineers themselves believe the
tactical patterns would be the best choice, it makes sense to trust their opinion. Honest developers, no matter how experienced,
will indicate in a specific case that developing a domain model is, or is not, the best choice.

The type of business domain itself is not automatically the determining factor for choosing a development approach. Your
team should consider important questions to help you make the final determination. Consider the following short list of more
detailed decision parameters, which is more or less aligned with and expands on the preceding higher-level guidelines:

* Are domain experts available and are you committed to forming a team around them?
* Although the specific business domain is somewhat simple now, will it grow in complexity over time? There is

risk in using Transaction Script! for complex applications. If you use Transaction Script now, will the potential for
refactoring to a behavioral domain model later on be practical if/when the Context becomes complex?

» Will the use of the DDD tactical patterns make it easier and more practical to integrate with other Boundec
Contexts, whether third-party or custom developed?

» Will development really be simpler and require less code if you use Transaction Script? (Experience with botk
approaches proves that many times Transaction Script requires as much or more code. This is probably because the
complexity of the domain and the innovation of the model were not well understood during project planning.
Underestimating domain complexity and the innovation involved happens often.)

* Do the critical path and timeline allow for any overhead required for tactical investment?

» Will the tactical investment in a Core Domain protect the system from changing architectural influences?
Transaction Script may leave it exposed. (Domain models are often enduring while architectural influences tend to
be more disruptive to other layers.)

» Will clients/customers benefit from a cleaner, enduring design and development approach, or could their
application be replaced by an off-the-shelf solution tomorrow? In other words, why would we ever develop this as a
custom application/service in the first place?

» Will developing an application/service using tactical DDD be more difficult than using other approaches such as
Transaction Script? (Skill level and availability of domain experts is vital to answering this question.)

« If the team’s toolkit was complete with DDD enablers, would we conscientiously choose to use another approact
instead? (Some enablers make model persistence practical, such as using object-relational mapping, full Aggregate
serialization and persistence, an Event Store, or a framework that supports tactical DDD. There may be othe
enablers, t00.)

This list is not prioritized for your domain, and you can probably assemble additional criteria. You understand the
compelling reasons for using the best and most empowering methods possible to your advantage. You also know your business
and technology landscape. In the end it is the business customer, not the object practitioners and technologists, who must be
pleased. Choose wisely.

DDD Is Not Heavy

In no way do I want to imply that properly practicing DDD leads to a heavyweight process with lots of ceremony and all the
crufty documentation artifacts that must be supported. That’s not what DDD is about. It is meant to fit well into any agile
project framework, such as Scrum, that the team desires to use. Its design tenets lean toward rather rapid test-first refinements
of a real software model. If you were in need of developing a new domain object, such as an Entity or a Value Object, the test-
first approach works like this:

1. Write a test that demonstrates how the new domain object should be used by a client of the domain model.
2. Create the new domain object with enough code to make the test compile.

3. Refactor both until the test properly represents the way a client would use the domain object, and the domain
object has proper behavioral method signatures.

4. Implement each domain object behavior until the test passes, refactoring the domain object until no inappropriate
code duplications exist.

5. Demonstrate the code to team members, including domain experts, to ensure that the test is using the domain object
according to the current meaning of the Ubiquitous Language.

You may conclude that this is not any different from the test-first approach you already practice. Well, it might be a little
different, but the point is that it’s basically the same. This test stage is not attempting to prove with absolute certainty that the
model is bulletproof. Later we will add tests to do that. First we want to focus on how the model will be used by clients, and
these tests drive the model’s design. The good news is that it really is an agile approach. DDD promotes lightweigh
development, not ceremonious, heavy, up-front design. From that standpoint it really isn’t different from common agile
development. So, while the preceding steps may not enlighten you about agile, I think they clarify the position of DDD, that it i
meant to be used in an agile way.

Later you also add tests that verify the correctness of the new domain object from every possible (and practical) angle. At
this point you are interested in the correctness of the expression of a domain concept that is embodied in the new domain
object. Reading the demonstrative clientlike test code must reveal the proper expressiveness using the Ubiquitous Language.
Domain experts who are nontechnical should be able, with the help of a developer, to read the code well enough to get a clear
impression that the model has achieved the goal of the team. This implies that test data must be realistic and support and
enhance the desired expressiveness. Otherwise, domain experts cannot make a complete judgment about the implementation.

This test-first agile methodology repeats until you have a model that is working according to the tasks outlined for the current
iteration. The steps outlined previously are agile and represent what Extreme Programming originally promoted. Using agil¢
does not eliminate any essential DDD patterns and practices. They go together quite well. Of course, you can choose to use ful
DDD without doing test-first development. You can always develop tests against existing model objects. However, designing
from the model client’s perspective adds a very desirable dimension.

Fiction, with Bucketfuls of Reality

As I contemplated how to best present implementation guidance for contemporary use of DDD, I wanted to provid
justification for everything I say should be done. That meant supplying not just the how, but the why. It occurred to me that
looking at a few projects as case studies would appropriately illustrate why I made a certain suggestion and demonstrate how
proper use of DDD will solve the challenges commonly faced.

Sometimes it’s easier to look at the problems faced by other project teams and learn from their misuse of DDD than it is tc
look inward. Certainly, once you recognize the flaws of others’” work, you’ll be able to judge whether or not you are leaning in
the same precarious direction, or even standing in the thick of the same morass. Then, knowing where you are headed or where
you already are, you can make the precise adjustments to correct problems and avoid the same in the future.

Rather than present a series of actual projects that I have worked on—ones that I could not discuss openly anyway—/
decided to use a bit of fiction based on real-world situations that I and others have experienced. That way I could create the
perfect state of affairs to demonstrate the reasons a specific implementation approach works best, or at least better, when
dealing with challenges in DDD.

So it is not just fiction on which I am interested in building case studies. It is a fictitious company with a real-world business
charter, fictitious teams within the company with real-world software to build and deploy, and real-world DDD challenges and
resulting problems with real-world solutions to them. It’s what I call “fiction with bucketfuls of reality.” I have found it quite
effective to write in this style. I hope you benefit from it.

When presenting any set of examples, we must limit the scope to make it practical. Otherwise, the volume will drown efforts
to teach and learn. Examples cannot be overly simplistic either, or vital lessons would be lost. To balance this effort, the
business situation I have chosen is largely based on greenfield development.

As we peer into the projects at various points in time, we’ll see different problems and successes that the teams experience.
The Core Domain that is the focus of the examples is sufficiently complex to examine DDD from various perspectives. Ou
Bounded Contexts use one or more others, which enables us to investigate integration with DDD. Still, the three sample model:
cannot possibly demonstrate every aspect of strategic design, such as occurs in a “brownfield” environment common where
many legacy systems exist. I don’t completely dodge those less attractive regions, as if they are irrelevant. Whenever advisable
we will diverge from the main samples and study areas where DDD guidance can be used in additional advantageous ways.

Now allow me to introduce you to the company and tell you a little bit about its teams and the projects they are working on.

SaaSOvation, Its Products, and Its Use of DDD

The company is SaaSOvation. As its name implies, SaaSOvation’s charter is to develop a series of software as a service, o
SaaS, products. The SaaS products are hosted by SaaSOvation and accessed and used by subscribing organizations. Th
company’s business plan includes two planned products, one to precede the other.

The flagship product is named CollabOvation. It is a corporate collaboration suite, which sports the features of leading
social networks. These include forums, shared calendars, blogs, instant messaging, wiki, message boards, document
management, announcements and alerts, activity tracking, and RSS feeds. All of the collaboration tools are focused on the
needs of corporate businesses, helping them spike productivity in smaller projects, in larger programs, and across
business units. Business collaboration is important for creating and facilitating a synergistic atmosphere in today’s
changing and sometimes uncertain, yet fast-paced economy. Anything that can help propel productivity forward, transfer
knowledge, promote idea sharing, and associatively manage the creative process so results will not be misplaced will be
a boon to the corporate success equation. CollabOvation provides a high-value proposition to customers, and the
challenge will also please its developers.

The second product, named ProjectOvation, is the Core Domain of primary focus. The tool focuses on the managemen
of agile projects, using Scrum as the iterative and incremental project management framework. ProjectOvation follows the
traditional Scrum project management model, complete with product, product owner, team, backlog items, planned
releases, and sprints. Backlog item estimation is provided through business value calculators that use cost-benefit
analysis. If you think of Scrum at its richest, that’s where ProjectOvation is headed. But SaaSOvation plans to get mor:
bang for its buck.

CollabOvation and ProjectOvation would not go down entirely separate paths. SaaSOvation and its board of adviser
envisioned innovation around weaving collaboration tools in with agile software development. Thus, CollabOvatior
features will be offered as an optional add-on to ProjectOvation. Without a doubt, supplying collaboration tools for
project planning, feature and story discussions, team and inter-team group discussion, and support will be a popular
option. SaaSOvation forecasts that more than 60 percent of ProjectOvation subscribers will add on CollabOvatio
features. And this kind of add-on sales often ends up leading to new full sales of the add-on product itself. Once a sales
channel is established and software development teams see the power of collaboration in their project management suite,
their enthusiasm will influence full corporate adoption of the complete collaboration suite. Due to this viral sales
approach, SaaSOvation further forecasts that at a minimum 35 percent of all ProjectOvation sales will lead to ful
corporate adoption of CollabOvation. They consider this a conservative estimate, but one that will make it extremely
successful.

The CollabOvation product development team is staffed first. There are a few seasoned veterans on the team, but ¢
greater number of midlevel developers. Early meetings pointed to Domain-Driven Design as the favored design anc
development approach. One of the two senior developers had used a minimal set of DDD patterns on a previous project at
his former employer. As he described his experience to the team, it would have been clear to a more experienced DDD
practitioner that this was not full use of DDD. What he had done is sometimes referred to as DDD-Lite.

DDD-Lite is a means of picking and choosing a subset of the DDD tactical patterns, but without giving full attention t
discovering, capturing, and enhancing the Ubiquitous Language. As well, this technique generally bypasses the use of

Bounded Contexts and Context Mapping. Its focus is much more technical, with a desire to solve technical problems. I
can have benefits, but generally not with as high a reward as including strategic modeling along with it. SaaSOvatior
bought into this. In its case doing so soon led to problems because the team didn’t understand Subdomains and the power
and safety of explicit Bounded Contexts.

Things could have been worse. SaaSOvation actually avoided some major pitfalls of using DDD-Lite, just because it
two core products formed a natural set of Bounded Contexts. This tended to keep the CollabOvation model and the
ProjectOvation model formally segregated. But that was just by chance. It didn’t mean the team understood Boundec
Context, which is why the problems they did experience happened in the first place. Well, you either learn or you fail.

It’s good that we can benefit from examining SaaSOvation’s incomplete use of DDD. The team eventually learned from thei
mistakes by acquiring a better grasp of strategic design. You will also learn from the adjustments the CollabOvation team
made, as the eventual ProjectOvation team benefited from retrospectives of the early conditions of its sister and partner
project. See Subdomains (2) and Bounded Contexts (2), as well as Context Maps (3), for the full story.

Wrap-Up
Well, that’s a pretty encouraging start with DDD. I think by now you probably have gotten a good feeling that you and your
team can actually succeed with an advanced software development technique. I agree.

Of course, we aren’t going to oversimplify things. Implementing DDD takes real concerted effort. If it were easy, everybods
would be writing great code, and we know that just doesn’t happen. So get ready. It will be worth it, because your design will
be exactly how your software works.

Here’s what you’ve learned so far:
* You’ve discovered what DDD can do for your projects and your teams to help you grapple with domain
complexity.
* You found out how to score your project to see if it deserves the DDD investment.
* You considered the common alternatives to DDD and why using those approaches often leads to problems.
* You’ve grasped the foundations of DDD and are prepared to take the first steps on your project.
* You’ve found out how to sell DDD to your management, domain experts, and technical team members.
* You are now armed with knowledge of how to succeed while facing the challenges of DDD.

Here’s where we’re going next. The next two chapters are on the all-important strategic design, followed by a chapter on
software architectures with DDD. This is really important stuff to get a handle on before you move to the subsequent chapters
on tactical modeling

Chapter 2. Domains, Subdomains, and Bounded Contexts

There are just as many notes as I required, neither more nor less.
—Mozart in the film Amadeus (Orion Pictures, Warner Brothers, 1984)

There are three things you are going to have to understand very clearly:
* What your Domain is
» What your Subdomains are
» What your Bounded Contexts are

Just because all these concepts were discussed in detail in the second half of [Evans] does not mean that they are of
secondary importance. To succeed in implementing DDD, you have to get these right.

Road Map to This Chapter
* Grasp the big picture of DDD by understanding Domains, Subdomains, and Bounded Contexts.
* Learn why strategic design is so essential, and why designing without it hurts.
* Consider a practical real-world Domain with multiple Subdomains.
» Make sense of Bounded Contexts, both conceptually and technically.
* See SaaSOvation’s “aha!” moments as they discover strategic design.

Big Picture

A Domain, in the broad sense, is what an organization does and the world it does it in. Businesses identify a market and sell
products and services. Each kind of organization has its own unique realm of know-how and way of doing things. That realm of
understanding and its methods for carrying out its operations is its Domain. When you develop software for an organization,
you are working in its Domain. It should be pretty obvious to you what your Domain is. You work in it.

One thing to be aware of is that the term Domain may be a bit overloaded. Domain can refer to both the entire domain of the
business, as well as just one core or supporting area of it. I will do my best to distinguish each use of the term. When referring
to just one area of the business, I will generally qualify it with the use of Core Domain, Subdomain, and the like.

Because the term domain model includes the word domain, we might get the idea that we should create a single, cohesive,
all-inclusive model of an organization’s entire business domain—you know, like an enterprise model. However, when using
DDD, that is not our goal. DDD places emphasis on just the opposite. The whole Domain of the organization is composed o
Subdomains. Using DDD, models are developed in Bounded Contexts. In fact, developing a Domain Model is actually one way
that we focus on only one specific area of the whole business domain. Any attempt to define the business of even a moderately
complex organization in a single, all-encompassing model will be at best extremely difficult and will usually fail. As is made
clear in this chapter, vigorously separating distinct areas of the whole business domain will help us succeed.

So, if a domain model shouldn’t be all-inclusive of what the organization does and how it does it, what should it be, exactly?

Almost every software Domain has multiple Subdomains. It really doesn’t matter whether the organization is huge anc
extremely complex or consists of just a few people and the software they use. There are different functions that make any
business successful, so it’s advantageous to think about each of those business functions separately.

Subdomains and Bounded Contexts at Work

Here’s a fairly simple example to introduce how Subdomains can be used. Think of a retail company that sells products
online. The products it sells could be just about anything, so we won’t think too carefully about them. To do business in this
Domain, the company must present a catalog of products to shoppers, it must allow orders to be placed, it must collect payment
for the products sold, and it must ship the products to buyers. This online retailer’s Domain seems to be composed of these four
primary Subdomains: Product Catalog, Orders, Invoicing, and Shipping. The upper part of Figure 2.1 shows the e-Commerce
System.

Domain The outer boundary is the
/ whole business Domain

Dashed lines separate
Subdomains

Thisis a
Subdomain

Orders Subdomain
Product Catalog

Subdomain

/!
71
’\:
_” A Invoicing
\
\)

o — -

Subdomain

Thisis a
Subdomain

e-Commerce
System

! -
| Shipping
Subdomain

External Férecasting
System

Solid lines mark off
Bounded Contexts

7

| r
4 hvento Y Inventory
System Subdomain /

Straight lines between Subdomains and Bounded
Contexts indicate integration relationships

Figure 2.1. A Domain with Subdomains and Bounded Contexts

This all seems quite straightforward, and to some degree it is. However, if we introduce just one additional detail, we will
make our example more complex. Consider for a moment how difficult it can be to deal with Inventory, an additional system
and Subdomain seen in Figure 2.1. We’ll get back to the increased complexity in a moment. First let’s peer into the physical
subsystems and logical Subdomains in the diagram.

Notice that at this time just three physical systems exist to realize this retailer’s Domain, only two of which are hosted
internally. Those two internal systems represent what we might think of as two Bounded Contexts. Since, unfortunately, most
systems today are not created by employing a DDD approach, this ends up being a fairly typical situation, with fewe1
subsystems responsible for many business functions.

Inside the e-Commerce Bounded Context there are really multiple implicit domain models at play, even though they are not
cleanly separated as such. These otherwise separate domain models are actually fused into one software model, and that’s very
unfortunate. It might be less of a problem for the retailer if it had purchased this Bounded Context from a third party rather thar
building it, but whoever maintains this system has experienced the negative consequences of the increasing complexity that
results from blending the Product Catalog, the Orders, the Invoicing, and the Shipping models into one large e-commerce
model. As the various logical models need to grow to facilitate new features, each of the conflicting concerns will impede the
progress of each of the others. This would be especially so if another logical model—a major new feature set—must be added.
It’s just what happens when software concerns are not cleanly separated.

This is particularly unfortunate because a lot of software developers think it’s clever to bake everything possible into one
system. It’s your basic all-knowing, all-doing e-commerce system, and thus it will certainly satisfy everyone’s needs. This is
deceiving, however, because no matter how many concerns can be piled into one subsystem, it will never address the needs of
every potential consumer. Never. Add to this the fact that not separating otherwise distinct software domain models by
Subdomain will make ongoing changes much more burdensome, since everything will tend to be connected to and depend on
everything else.

Yet, using one of the DDD strategic design tools, we can to some degree cut through the complexity by externally dissecting

these intertwined models into logically separated Subdomains according to their actual functionality. The logical Subdomair
separations are indicated by the dashed lines in Figure 2.1. It’s not that we have somehow refactored the third-party models
into cleanly separated ones. We’ve just indicated what separate models should exist, at least as they apply to our specific
retailer’s business operations. We’ve also drawn some connections between logical Subdomains and even physical Bounded
Contexts to show integrations.

Now let’s shift from technical complexities and focus on the business complexities faced by our small company. It has
limited funds and it has limited warehouse space. There’s a constant juggling act going on. The company must not overspend on
products that aren’t selling well, and some products sell better at certain times than they do at other times. Obviously, if some
products don’t sell according to plans, the company’s funds are tied up with products that its customers don’t want, not right
now anyway. The money is frozen. As a result, the company has limited room to stock products that are selling well at any
given time.

That’s not all. There ends up being another problem. If some products sell more quickly than anticipated, the company will
not be able to inventory enough of them to fulfill customer demand. This insufficient inventory challenge could cause customers
to obtain the same urgently needed products elsewhere. Sure, some product wholesalers are willing to drop-ship on behalf of
the retailer, but that option costs more and introduces other undesirable consequences. There are also cost-saving strategies to
stock some products nearby for local consumption and drop-ship others that sell well in distant regions. Thus, drop-shipping
should be leveraged to the retailer’s advantage, not as a last-minute tactic employed to rescue a sale gone bad. After all, it’s
not that the products that are selling the best are scarce. It’s just that they are not readily available from the small retail
company because it didn’t optimally inventory them. If customers experience delays on a continuing basis, it will likely cost
the online sales company at least a significant part of any competitive advantage it had previously earned. This example is
inspired by customer problems commonly solved by Lokad.!

To be clear, we haven’t investigated the limits of the challenges faced with inventories, and these undesirable situations are
not limited to small retailers. Retailers everywhere desire to purchase and inventory precisely according to their exact needs,
minimizing cost and optimizing sales fulfillment according to demand. Yet the small retailer tends to suffer the penalties of
suboptimal performance more quickly than large retailers.

What would help any online retailer tremendously is a way to base future inventory and sales demands on past trends. If the
retailer could use a forecasting engine, providing it with data about inventory and sales history, it could obtain demand
forecasts with specific numbers for optimizing its inventory—when to reorder and how much of each product to obtain.

For the small retailer to add such forecasting capabilities would probably constitute a new Core Domain, because it is a
nontrivial problem to solve, and succeeding would help the company establish a new competitive advantage. In fact, the third
physical Bounded Context inFigure 2.1 is an External Forecasting System. The Orders Subdomain and the Inventory
Bounded Context integrate with Forecasting to supply historical product sales and returns information. Additionally, we
should also have the Catalog Subdomain provide globally recognized product bar codes, which would allow Forecasting to
compare the small retailer’s product lines to related and similar sales trends worldwide, resulting in a broader perspective.
This leads to the Forecasting engine possessing the means to calculate the most accurate numbers needed by the small retailer
to correctly stock products.

If this new solution were actually a Core Domain, and it most likely is, the team developing it would benefit greatly from
understanding the surrounding business terrain composed of logical Subdomains and the integrations needed. Thus, highlighting
the preexisting integrations indicated on the diagram in Figure 2.1 is key to grasping the project situation at the time the project
begins.

It’s not always the case that Subdomains feature such distinct models of significant size and functionality. Sometimes a
Subdomain can be as simple as a set of algorithms that, while essential to the business solution, are not part of the
distinguished Core Domain. Applying good DDD techniques, such simple Subdomains can be separated from the Core usin;
Modules (9) and need not be housed in a heavy, architecturally significant subsystem component.

When we employ DDD, we strive for each Bounded Context to mark off where the meaning of every term used by th
domain model is well understood, or at least should be if we’ve done a good job of modeling the software. It’s chiefly a
linguistic boundary. These contextual boundaries are a key to implementing DDD.

Cowboy Logic
LB: “We get along just fine with the neighbors, until their fences break down.”
AlJ: “That’s right. Keep your fences horse-high.”

| B— : S =t

Note that a single Bounded ConteXt does not necessarily fall within only a single Subdomain, but it may. InFigure 2.1, only

one Bounded Context, Inventory, falls within just one Subdomain? That makes it rather apparent that proper DDD was not it
use when the e-Commerce System was developed. In that system we’ve identified four Subdomains, and there are probably
more. On the other hand, the /nventory System does seem to be aligned as one Subdomain per Bounded Context by limiting its
domain model to inventorying products. The Inventory System’s apparently clean model may be due to employing DDD, or it
may be merely coincidental. We’d have to look under the hood to know for sure. Regardless, we can still make practical use of
Inventory to develop the new Core Domain.

Linguistically, which of the Bounded Contexts inFigure 2.1 has a better design? In other words, which has an unambiguous
set of domain-specific terms? When we consider that there are at least four Subdomains in the e-Commerce System, it’s almost
certain that terms and meanings collide there. For example, the term Customer must have multiple meanings. When a user is
browsing the Catalog, Customer means one thing, but when a user is placing an Order, it means something else. Here’s why.
When browsing the Catalog, Customer is being used in the context of previous purchases, loyalty, available products,
discounts, and shipping options. On the Order itself, however, Customer has a limited meaning. Among the few details there is
a name with a ship-to address, a bill-to address, a total due, and payment terms. Just by this basic reasoning we see that in the
e-Commerce System there is no one clean meaning for Customer. Given this situation, as we look around that system we would
expect to find several other terms that have multiple meanings. It’s not a clean Bounded Context with an explicit meaning for
each term naming a domain concept.

Yet, there’s also no guarantee that the /nventory System has a completely clean model, possessing wholly unambiguous
domain linguistics. Even in this apparently focused Context we could face differences in meanings among the things that are
being controlled in inventory. This is because there are different ways that inventoried /tems are used. Is there a clean
distinction between an Item being ordered, one being received, one in stock, and one moving out of stock? An Item on order
that is not yet available for sale is called Back-Ordered Item. An Item being received is often called Goods Received. An iten
in stock may be called a Stock Item. An Item being consumed is often referred to as an Item Leaving Inventory. An inventoriec
Item that becomes spoiled or broken is often called a Wasted Inventory Item.

By looking at Figure 2.1, we don’t know how well the range of inventory concepts and their accompanying linguistics are
modeled. When using DDD, we’d leave none of it to guesswork. We would be certain that each of those concepts is well
understood, spoken of explicitly, and modeled as such. The way domain experts describe each of these concepts could lead to
separating some in different Bounded Contexts.

From outward appearances we would conclude that the /nventory System has better DDD health than the e-Commerce
System. Perhaps the team that worked out its model didn’t attempt to make one Item represent all inventoried item situations.
Although uncertain, it’s possible that the model of the Inventory System will be easier to integrate with than that of the e-
Commerce System.

Speaking of integration, Figure 2.1 further shows that Bounded Contexts in an enterprise rarely if ever completely stand
alone. Even when the third-party e-Commerce System attempts to provide a large, all-encompassing model, it can’t do
everything the retailer needs. The solid straight lines running between and connecting the various Subdomains in the e-
Commerce System, the Inventory System, and the External Forecasting System show the necessary integration relationships,
which proves that different models must work together. There are always specific kinds of relationships involved in
integration, and you’ll learn more about the possible integration options in Contexts Maps (3).

That’s the high-level summary of one view of a simple business domain. We’ve briefly encountered a Core Domain and
gotten the notion that it is an important part of DDD. Now we need to understand it better.

Focus on the Core Domain

With an understanding of Subdomains and Bounded Contexts, consider an abstract view of a different Domain found ir
Figure 2.2. This could represent any domain, perhaps even the one you work in. I’ve removed the explicit names so you car
mentally fill in the blanks. Naturally, our business goals are on a path of continuous refinement and expansion reflected by
ever-changing Subdomains and the models within. This diagram only captures the whole business Domain at a moment in time
with a specific perspective, and one that could be somewhat short-lived.

Domain

Core
Domain

Supporting
Subdomain (A)

Bounded Context

Supporting
Subdomain (B)

Bounded Context

Bounded
Context

Generic
Subdomain

Bounded
Context
(External)

Figure 2.2. An abstract business Domain that includes Subdomains and Bounded Contexts

Whiteboard Time

* In one column make a list of all the Subdomains that you are aware of in your daily work. In another column list the
Bounded Contexts. Do Subdomains intersect with multiple Bounded Contexts? If so, it’s not necessarily a bad thing
just a fact of enterprise software.

» Now, using the template in Figure 2.2, write in some of the names of the software running in your enterprise with
the Subdomains, Bounded Contexts, and the integration relationships between them.

Was that difficult? Probably, because the template in Figure 2.2 likely doesn’t closely reflect the existing boundaries in
your Domain.

» Start over. This time you should draw a diagram that aligns with your Domain, Subdomains, and Boundec
Contexts. Use the techniques displayed in Figure 2.2, but go ahead and fit them to your world.

Of course, you may not know about every Subdomain and Bounded Context in your entire enterprise, especially if yow
Domain is really large and complex. But you may be able to figure out the ones you deal with on a day-to-day basis.
Anyway, give it a go. Don’t be afraid of being wrong. You’ll get some good practice at Context Mapping, which will be
refined in the next chapter. If you want to jump to that chapter briefly for more advice, that’s fine. Still, don’t worry about
being perfect just now. Grasp the basic ideas first.

Now look at the top of the Domain boundary inFigure 2.2 and you’ll see the Subdomain labeled Core Domain. Introduced
earlier, this is another aspect of DDD of major importance. A Core Domain is a part of the business Domain that is of primary
importance to the success of the organization. Strategically speaking, the business must exce/ with its Core Domain. It is of
utmost importance to the ongoing success of the business. That project gets the highest priority, one or more domain experts
with deep knowledge of that Subdomain, the best developers, and as much leeway and leverage as possible to give the close-
knit team an unobstructed success path. Most of your DDD project efforts will be focused on the Core Domain.

Two other kinds of Subdomains are found in Figure 2.2, Supporting Subdomain and Generic Subdomain. Sometimes a
Bounded Context is created or acquired to support the business. If it models some aspect of the business that is essential, ye
not Core, it is a Supporting Subdomain The business creates a Supporting Subdomain because it is somewhat specialized.
Otherwise, if it captures nothing special to the business, yet is required for the overall business solution, it is a Generic
Subdomain. Being Supporting or Generic doesn’t mean unimportant. These kinds of Subdomains are important to the success
of the business, yet there is no need for the business to excel in these areas. It’s the Core Domain that requires excellence ir
implementation, since it will provide distinct advantages to the business.

Whiteboard Time

» To make sure you grasp the significance of the Core Domain concepts, what you should do next is go back to your
fresh whiteboard drawing and see if you can identify where a Core Domain is being developed in your organization.

* Next, see if you can identify the Supporting Subdomains and Generic Subdomains in your Domain.

Remember: Ask the Domain Experts!

Even if you don’t get it just right the first time, this exercise will help you to think carefully about what software most
distinguishes your business, what supports the distinguishing software, and what doesn’t distinguish your business’s
success at all. Keep working at it so you become more comfortable with the thought processes and techniques.

Discuss each Subdomain and Bounded Context in your drawing with a few domain experts who specialize in the
different areas.

Not only will you learn a lot from them, but you’ll gain valuable experience in/istening to the experts. That’s a
hallmark of implementing DDD well.

What you’ve just learned is the big-picture foundation of strategic design.

Why Strategic Design Is So Incredibly Essential

OK, you’ve learned some DDD terminology and the meaning behind it, but not much has been said aboutwhy this is so
important. I’ve really just asserted that it is very important and hoped that you’d believe me. But like most statements of “fact,”
I’d better back my assertion now. Let’s jump in on our running example, that of the projects going on at SaaSOvation. They’v¢
managed to get themselves into a real jam.

Early on in their first effort with DDD, the collaboration project team began to veer off the path to developing a clean model
This happened because they didn’t understand strategic design, not even at its most basic level. As is true of most developers,
their focus was on the details of Entities (5) and Value Objects (6), which obscured their vision of the bigger picture. They
blended their core concepts with generic ones, causing the creation of two models in one. Before long they started to feel the
pain of the design reflected in Figure 2.3. The bottom line? They had not fully achieved the goal of implementing DDD.

Calendar Entry

. - 1 . .
Discussion | Permission

Figure 2.3. The team didn’t understand basic strategic design, which led to mismatched concepts in the collaboration
model. The dashes encircle the problem elements.

A few on the SaaSOvation team asserted, “So what if collaboration concepts are tightly coupled to Users anc
Permissions? We must track who did what!” The senior developer pointed out that it’s actually not the coupling alone that
the team should be concerned with. “In the end, a Forum, a Post, a Discussion, a Calendar, and a Calendar Entry will al
be coupled to some kind of human collaborator objects. And that’s just it. The linguistics are wrong here.” As he
elaborated, he showed that Forum, Post, Discussion, and the like were allcoupled to the wrong linguistic concepts.
Users and Permissions have nothing to do with collaboration and don’t harmonize in the true Ubiquitous Language of
Collaboration. Users and Permissions are identity and access concepts—security concerns. Every concept modeled in the
Collaboration Context—as in the Bounded Context surrounding the collaboration domain model—should have a
linguistic association to collaboration, and right now they don’t. “What we should be focused on are collaboration
concepts, such as Author and Moderator. Those are the correct concepts and linguistic terms in a collaboration setting.”

Naming a Bounded Context

Did you notice the name Collaboration Context used here? This is the way we name a Bounded Context, which is in the
form Name-of-Model Context. In this case we use Collaboration Context because it is the Bounded Context that contains
the domain model of the Collaboration project. We also have Identity and Access Context for the Bounded Context that

contains the model of the Identity and Access project, and Agile Project Management (PM) Context for the Bounded
Context that holds the model of the Agile Project Management project.

To reiterate, at a fundamental level, the SaaSOvation developers didn’t at first understand that Users and Permissions
had nothing to do with collaboration tools. Well, sure, they did have users of their software, and those users had to be
distinguished one from another to determine the tasks each could perform. But collaboration tools should be interested in
the roles of users, rather than who they specifically are and each little action they are permitted to perform. However, the
collaboration model now had user and permission details completely intertwined. If something changed about the way
users and/or permissions worked, a lot or all of the model would suffer from the ripple. In fact, this problem was right at
the threshold. The team wanted to switch from a permissions approach and use role-based access management instead.
When they decided to make this switch, it made them more aware of the strategic modeling problem at hand.

They now realized that a Forum should not be concerned with who can post a subject, or under what conditions that is
permitted. A Forum just needs to know that an Author is doing that right now, or had done that previously. The team was
now grasping that determining who can do something is the concern of a completely separate model, and the core
collaboration model only needed to know that any question regarding who can do what had already been answered. The
Forum just needed to be given an Author who wants to Post to a Discussion. The Forum and Author are clearly concept:
of the Ubiquitous Language of the collaboration model, a Bounded Context named Collaboration Context. User and
Permission, or some similar concepts such as Role, belonged someplace completely different. Those needed to be
isolated from the Collaboration Context.

It would be easy for the team to conclude that they only needed to factor out the tight coupling to User and Permission
After all, there would not be anything wrong with separating User and Permission/Role into a separate Module. Tha
could help them place these concepts in a separate logical Security Subdomain within the same Bounded Context.
However, what made the best modeling choice stand out even more boldly was the realization that the team’s next Core
Domain project would have very similar role-based access needs and would lean on the use of domain-specific role
characteristics. Clearly, Users and Roles were truly part of a Supporting or Generic Subdomain that had an enterprise:
wide, and even customer-facing, part to play in the future.

Taking a more vigorous approach to clean modeling would help them avoid a more insidious problem. They were
probably leaning toward working their way into a Big Ball of Mud (3). It wasn’t just that their User and Permissior
concepts were not properly modularized. While modularization is an essential DDD modeling tool, it doesn’t fis
linguistic misalignment.

The senior developer was very concerned that, if left unchecked, this situation could easily lead to an undisciplined
mindset that would allow more tangle to eventually creep in subtly. In time, as the team faced modeling another set of
noncollaboration concepts, the Core Domain would become even less clear. They could end up with only an implicit
model with source code that wouldn’t reflect an expressive Ubiquitous Language of Collaboration. What the team really
needed to understand was their business Domain, its Subdomains, as well as the Bounded Contexts they were developing
Doing so would prevent the entry of the dastardly foe of strategic design, the muck of the Big Ball of Mud. Thus,the team
needed to gain a strategic modeling mindset.

Oh, No! There’s That Word Design Again!

If you think that design is a dirty word when agile is in practice, it’s not with DDD. Using DDD with agile is completel’
natural. Always keep design in check with agile. Design need not be heavy.

Yeah, that was an important lesson to learn. They did manage to work their way through it with a lot of research and finally
got a handle on their Domain and Subdomains. How they did that will be presented soon.

Alignment with the DDD Community

The running examples in this book are provided as three Bounded Contexts. These Bounded Contexts are likely different fron
those you work with. The examples present fairly typical modeling situations. However, not everyone would agree that Users
and Permissions should be separated out of a given Core Domain. Perhaps in some cases it might make sense to intertwing
them with your Core model. As always, that is the choice of a specific team. In my experience, however, this is one of the
basic problems encountered by those new to DDD, and one that misleads their implementation efforts intoan unnecessarily
messy result. Another common misstep would be to meld the collaboration and agile project management models into one.
These are only a few common problems. Other common modeling errors are discussed in each chapter.

At a minimum, the problems posed here, and those that follow, are representative of the kinds of modeling mistakes that are
made when teams fail to understand the importance of linguistic drivers and Bounded Contexts. Thus, even if you disagree witl
the specific example problems, both the problems and solutions are still applicable in a general way to all DDD projects.
because they all focus on the linguistics of a given Bounded Context.

My goal is to teach the principles of implementing DDD using the simplest, yet nontrivial, examples possible. I can’t afford tc
allow the examples to get in the way of my teaching and your learning. If I demonstrate that identity and access management,
collaboration, and agile project management all have separate linguistics, readers are well served by what the examples
emphasize. Since it is each team’s choice to discover the linguistic drivers that they find important, and that help them achieve
the vision of their domain experts, assume that there is no mistake in the “ultimate correct” conclusions reached by the
SaaSOvation developers and the modeling choices they made in their DDD implementation journey.

All of my guidance regarding Subdomains and Bounded Contexts is closely aligned with that of the broader DDD community
as it reflects my own experience. Other DDD leaders may have a slightly different focus. However, my explanations definitely
provide a firm foundation for any team to move forward without ambiguity. Clearing the murky areas of DDD is the mos:
important service to the community, and it is my primary goal. It should be your goal to put these guidelines to use in the most
practical way to benefit your project.

Real-World Domains and Subdomains

I have something more to tell you about domains. They have both a problem space and a solution space. The problem space
enables us to think of a strategic business challenge to be solved, while the solution space focuses on how we will implement
the software to solve the problem of the business challenge. Here’s how that fits into what you’ve already learned:

* The problem space is the parts of the Domain that need to be developed to deliver a new Core Domain. Assessing
the problem space involves examining Subdomains thatalready exist and those that are needed. Thus, your
problem space is the combination of the Core Domain and the Subdomains it must use. The Subdomains in the
problem space are usually different from project to project since they are used to explore a current strategic business
problem. This makes Subdomains a very useful tool in assessing the problem space Subdomains allow us to rapidly
view different parts of the Domain that are necessary to solve a specific problem.

» The solution space is one or more Bounded Contexts, a set of specific software models. That’s because the
Bounded Context is a specific solution, a realization view, once developed. The Bounded Context is used to realize
a solution as software.

It is a desirable goal to align Subdomains one-to-one with Bounded Contexts. Doing so expressly segregates domain model:
into well-defined areas of business by objective, melding the problem space with the solution space. In practice this is not
always possible, but it can work in a greenfield effort. Considering a legacy system, and probably a Big Ball of Mud, however,
Subdomains often intersect Bounded Contexts, similar to what we discussed regardingFigure 2.1. In a large and complex
enterprise we can employ an assessment view to understand our problem space, which can save us from making costly
mistakes. We can conceptually divide a single, large Bounded Context using two or more Subdomains, or multiple Boundec
Contexts as part of a single Subdomain. Consider an example to help clarify the difference between the problem space and the
solution space.

Imagine a large, monolithic system, classified as an ERP application. Strictly speaking, an ERP may be thought of as a singl
Bounded Context. However, since ERP systems provide many modular business services, there’s a benefit to thinking of
distinct modules as different Subdomains. For example, we could divide the inventory module and purchasing module into
separate, logical Subdomains. True, these modules aren’t available through completely different systems. Both are part of the
same ERP. Still, each provides a very different set of services to the business domain. For analytical discussions let’s name
these as separate Subdomains, the Inventory Subdomain and the Purchasing Subdomain. Continuing with the example, we’ll
see why doing so is useful.

As a core business initiative, the organization whose Domain is represented inFigure 2.4 (a concrete example using the
template from Figure 2.2) starts planning the design and development of a specialized domain model to reduce the cost of
doing business. The model will provide decision-making tools to be used by purchasing agents. Algorithms discovered over
years of manual, human process must now be automated by software to ensure that they are always used by all purchasing
agents without error. This new Core Domainwill make the organization more competitive by identifying better deals more
quickly, and then ensuring that the needed inventories are met. To accurately stock inventory, use of the previously examined
Forecasting System of Figure 2.1 would help here as well.

Domain

Optimal Acquisition
Context

Purchasing
Context

Inventory
(Supporting)

Inventory Context

Resource
Planning
(Generic)

Mapping
Context
(External)

Figure 2.4. The Core Domain and other Subdomains involved in purchasing and inventory. This view is limited to select
Subdomains used for specific problem space analysis, not the entire Domain.

Before we can execute a specific solution, we need to make an assessment of the problem space and the solution space.
Here are some questions that should be answered in order to steer your project in the right direction:
» What is the name of and vision for the strategic Core Domain?
» What concepts should be considered part of the strategic Core Domain?
» What are the necessary Supporting Subdomains and the Generic Subdomains?
* Who should do the work in each area of the domain?
* Can the right teams be assembled?

If we don’t understand the vision and goals of the Core Domain and the areas of the Domain that are needed to support it, we
won’t be able to strategically take advantage of them and avoid associated pitfalls. Keep problem space assessment high-level,
but make it thorough. Be sure that all stakeholders are aligned with and committed to successfully delivering on the vision.

Whiteboard Time

Take a moment to look at your whiteboard work and consider: What is your problem space? Recall that it is the combination of
the strategic Core Domain and the Subdomains supporting it.

When you have a good understanding of the problem space, you then turn to the solution space. The first assessment will
contribute knowledge to the second. The solution space will be strongly influenced by the existing systems and technologies,
and those that are to be newly created. Here we really need to think in terms of cleanly separated Bounded Contexts because
we are looking at the Ubiquitous Language of each. Consider these crucial questions:

» What software assets already exist, and can they be reused?
» What assets need to be acquired or created?
* How are all of these connected to each other, or integrated?

» What additional integration will be needed?
* Given the existing assets and those that need to be created, what is the required effort?

* Do the strategic initiative and all supporting projects have a high probability of success, or will any one of them
cause the overall program to be delayed or even fail?

* Where are the terms of the Ubiquitous Languages involved completely different?
» Where is there overlap and sharing of concepts and data between Bounded Contexts?
* How are shared terms and/or overlapping concepts mapped and translated between the Bounded Contexts?

* Which Bounded Context contains the concepts that address the Core Domain and which of the[Evans] tactical
patterns will be used to model it?

Remember, the efforts in developing the solutions in the Core Domain are a key business investment!

The specialized purchasing model described previously and pictured in Figure 2.4—the one that captures decision-making
tools and algorithms—represents the solution for the Core Domain. The domain model will be implemented in an explici
Bounded Context: the Optimal Acquisitions Context. This Bounded Context aligns one-to-one with the Subdomain, the
Optimal Acquisitions Core Domain Being aligned with just one Subdomain, and its carefully crafted domain model, will
make it one of the best Bounded Contexts in this business domain.

Yet another Bounded Context, the Purchasing Context, will be developed in order to refine some technical aspects of the
purchasing process as a helper to the Optimal Acquisitions Context These refinements don’t reveal any special knowledge
about an optimal approach to purchasing. They just make it easier for the Optimal Acquisitions Context to interact with the
ERP at an arm’s length. It’s just a convenient model that operates against the ERP published interface. The new Purchasing
Context and the preexisting ERP purchasing module fall within the Purchasing (Supporting) Subdomain.

The ERP purchasing module is as a whole a Generic Subdomain. That’s because you could replace this Subdomain with an'
off-the-shelf purchasing system as long as it fulfills your basic business needs. However, being used along with the new
Purchasing Context in the Purchasing Subdomain makes it work in a Supporting fashion.

You Can’t Change the World of Bad Software Design

In a typical brownfield enterprise you are going to have undesirable situations like those illustrated in Figures 2.1 and 2.4.
This means that Subdomains in poorly designed software will not align in an ideal way, one-to-one, with Bounded
Contexts. You can’t change the world of bad software design. You can only hope to implement proper DDD in projects
you work on. In the end you will have to integrate with and even work in brownfield domains, so be prepared to exercise
the techniques taught in the first one-third of this chapter as you analyze the multiple implicit models found in a single,
brown Bounded Context.

Sticking with Figure 2.4, the Optimal Acquisition Context must also interact with the /nventory Context. Inventory manages
warehousing items. It uses the ERP inventory module, which falls within the Inventory (Supporting) Subdomain. As a
convenience to delivery contractors, the Inventory Context can provide maps and directions to each of its warehouses from an
origin location by using an external geographical mapping service. From the Inventory Context point of view, there is nothing
special about mapping. There are several geographical mapping services to choose from, and there may be advantages to
changing the chosen mapping system over time. The mapping service is itself a Generic Subdomain, but it is consumed by &
Supporting Subdomain.

Note these key points as viewed from the perspective of the company developing the Optimal Acquisition Context. In the
solution space the geographical mapping service is not part of the Inventory Context, although in the problem space it is
considered part of the Inventory Subdomain. In the solution space, even if the mapping services are provided by a simple
component-based API, it is in a different Bounded Context. The Ubiquitous Languages oflnventory and of Mapping are
mutually exclusive, which means they are in different Bounded Contexts. When the Inventory Context uses something from the
external Mapping Context, the data may go through at least some minimal translation to be properly consumed.

On the other hand, from the point of view of the external business organization that develops and offers the mapping service
for subscription, mapping is a Core Domain. That external organization has its own domain, or realm of business operations. I
must remain competitive, constantly refining its domain model in order to retain subscribers and attract new ones. If you were
the CEO of the mapping organization, you’d make sure to give customers, including the one subscriber under discussion, every
reason to stick with your services rather than move on to the competition. However, that doesn’t change the perspective of the
subscriber that is developing its inventory system. To the inventory system it is still a Generic Subdomain. It could, if it was to
its advantage, subscribe to a different mapping service.

Whiteboard Time

What are the Bounded Contexts in your solution space? At this point you should be able to refer back to your whiteboarc
diagram for a good idea. Still, you may be a bit surprised as we dig deeper into how to properly use Bounded Contexts. So b
ready for possible refinements. We are doing agile development, after all.

So, for the balance of this chapter we are going to shift gears and consider the importance of Bounded Contexts as ar
essential solution space modeling tool for DDD. InContext Maps (3) the discussion primarily stresses how to deal with
mapping different, but related, Ubiquitous Languages, by integrating their Bounded Contexts.

Making Sense of Bounded Contexts

Don’t forget, a Bounded Context is an explicit boundary within which a domain model exists. The domain model expresses ¢
Ubiquitous Language as a software model. The boundary is created because each of the model’s concepts inside, with its
properties and operations, has a special meaning. If you are a member of such a modeling team, you’d know exactly the
meaning of each of the concepts in your Context.

Bounded Context Is Explicit and Linguistic

A Bounded Context is an explicit boundary within which a domain model exists. Inside the boundary all terms anc
phrases of the Ubiquitous Language have specific meaning, and the model reflects the Language with exactness.

It is often the case that in two explicitly different models, objects with the same or similar names have different meanings.
When an explicit boundary is placed around each of the two models individually, the meaning of each concept in each Context
is certain. Thus, a Bounded Context is principally alinguistic boundary. You should use these points of reasoning as a
touchstone to determine if you are correctly using Bounded Contexts.

Some projects fall into the trap of attempting to create an all-inclusive model, one where the goal is to get the entire
organization to agree on concepts with names that have only one global meaning. Approaching a modeling effort in this way is
a pitfall. First, it will be nearly impossible to establish agreement among all stakeholders that all concepts have a single, pure,
and distinct global meaning. Some organizations are so large and complex that you’d never be able to get all stakeholders
together, let alone establish total meaningful agreement among them. Even if you are working in a smaller company with
relatively few stakeholders, establishing an enduring definition of a single global concept is still unlikely. Thus, the best
position to take is to embrace the fact that differences always exist and apply Bounded Context to separately delineate eact
domain model where differences are explicit and well understood.

A Bounded Context does not dictate the creation of a single kind of project artifact. It’s not an individual component,

document, or diagram.2 So it’s not a JAR or DLL, but these can be used to deploy a Bounded Context as described later in th
chapter.

Consider this sharp contrast between an Account in a Banking Context and an Account in a Literary Context as presented in
Table 2.1.

Table 2.1. The Diversity of Meanings That the Term Account Can Have

Context Meaning Example

Banking Context An Account maintains a record Checking Account and Sav-
of debit and credit transactions ings Account
indicating a customer”s current
financial state with the bank.

Literary Context An Account is a set of literary Amazon.com sells the book
expressions about one or more Into Thin Air: A Personal
related events over a time span. Account of the Mt. Everest

Disaster.

Looking at Figure 2.5, there is nothing characteristic of the Account types by name that distinguishes them. It is only by
looking at the name of each conceptual container—its Bounded Context—that you understand the differences between the two.

Account Account

Banking Context Literary Context

Figure 2.5. Account objects in two different Bounded Contexts have completely different meanings, but you know that
only by considering the name of each Bounded Context.

These two Bounded Contexts are probably not in the same Domain. The point is to demonstrate that context is king.

Context Is King
Context is king, especially when implementing DDD.

In the financial world the word security is often used. The Securities and Exchange Commission (SEC) restricts th
term security to use with equities. Now consider this: Futures contracts are commodities and not under the jurisdiction of
the SEC. However, some financial firms call Futures by the namesecurity as a reference but mark them with the
Standard Type (6) Futures.

Is that the best Language for a Future? It depends on the Domain it’s used in. Some would obviously say it is, while

others would insist that it isn’t. Context is also cultural. Inside a given firm that trades Futures, it may align best with the
culture to use the term Security in a specific Ubiquitous Language.

It is often the subtly different meanings that are most commonly faced in your enterprise. Here’s why. The name chosen
by each team in each Context is always made with the Ubiquitous Language in mind. You never name a concept arbitrarily,
such as to purposely distinguish it from a term in a different Context. Consider two banking Contexts, one for checking accounts
and one for savings accounts.* We don’t need to give the name Checking Account to the object in the Checking Context or the
name Savings Account to the object in the Savings Context. Both concepts may safely be named Account because each
Bounded Context distinguishes subtle meanings. Of course, there is no rule that says that more meaning cannot be added tc
these names. That’s the decision of your team.

When integrations are needed, mapping must be done between Bounded Contexts. This can be a complex aspect of DDD an
calls for a corresponding amount of care. We don’t usually use an object instance outside its boundary, but related objects in
multiple contexts may share some subset of common state.

Here’s another example with a common name used in multiple Bounded Contexts, but this time within the same Domain
Consider the modeling challenges of a publishing organization that must deal with the various stages of the life cycle of books.
Roughly speaking, publishers deal with similar stages as a book progresses through these different Contexts:

* Conceptualizing and proposing a book

* Contracting with authors

* Managing the book’s authorship and editorial process

* Designing the book layout, including illustrations

* Translating the book into other languages

* Producing the physical print and/or electronic editions

» Marketing the book

» Selling the book to resellers and/or directly to consumers
« Shipping a physical book to resellers and consumers

Throughout each of these stages, is there one single way to properly model a Book? Absolutely not. At each of these stages
the Book has different definitions. It is not until contract that the Book has a tentative title, which mightchange during editing.
During the authorship and editorial phases, the Book has a collection of drafts with comments and corrections, along with a
final draft. Graphic designers create page layouts. Production uses the layouts and to create press images, “blue lines,” and

finally plates. Marketing doesn’t need most of the editorial or production artifacts, perhaps just cover art and high-level
descriptions. For shipping, the Book might carry only an identity, inventory location, availability count, a size, and a weight.

What would happen if you tried to design a central model for Books that facilitated all the stages in its life cycle? There
would be a high degree of confusion, disagreement, and contention, and little deliverable software. Even if a correct common
model could be delivered from time to time, it would likely meet the needs of all clients only occasionally and far too briefly.

To counter that kind of undesirable churn and burn, such a publisher modeling with DDD would use separate Boundec
Contexts for each of the life cycle stages. In every one of the multiple Bounded Contexts, there is a type of Book. The variou:
Book objects would share an identity across all or most of the Contexts, perhaps first established at the conceptualizatior
stage. However, the model of a Book in each Context would be different from all others. That’s fine, and in fact the way if
should be. When the team of a given Bounded Context speaks about a Book, it means exactly what they require for thei
Context. The organization embraces the natural need for differences. This is not to say that such positive outcomes are trivial tc
achieve. Nonetheless, using explicit Bounded Contexts, software gets delivered regularly with incremental improvements thas
address the specific needs of the business.

At this point let’s take a quick look at the solution used by the SaaSOvation collaboration team to solve the modeling
challenge as shown in Figure 2.3.

As indicated previously, in a Collaboration Context domain experts don’t describe the people who employ the
collaboration facilities as Users with Permissions. Rather, they talk about these collaborators in terms of the roles they play ir
the Context, as Authors, Owners, Participants, and Moderators. Some contact information may exist there, but probably not al
of it. On the other hand, it’s in an I/dentity and Access Context that we talk about Users. In that Context User objects have
usernames and detailed information about the individual person, including detailed ways to contact the person.

Yet, we don’t create an Author object out of thin air. Every collaborator must be prequalified. We confirm the existence of a
User playing the appropriate Role within the Identity and Access Context. The attributes of an authentication descriptor are
passed with requests to the Identity and Access Context. To create a new collaborator object, such as a Moderator, we use a
subset of User attributes and a Role name. The exact details of how we obtain object state from a separate Bounded Context i
not important (although later onit’s explained extensively). What’s important now is that these two different concepts are
similar and different at the same time, and that the differences are determined by the Bounded Context. Figure 2.6 exemplifies
User and Role in their own Context being used to create a Moderator in a different Context.

Moderator

Collaboration Context

ldentity and Access
Context

Figure 2.6. The Moderator object in its Context is based on User and Role in a different context.

Whiteboard Time
* See if you can identify some subtly different concepts that exist in multiple Bounded Contexts in your Domain.
* Determine whether the concepts are properly separated, or if developers simply copied code into both.

Generally you can determine a proper separation because the similar objects have different properties and operations. Ir
that case the boundary has separated the concepts appropriately. However, if you see the exact same objects in multiple
contexts, it probably means there is some modeling error, unless the two Bounded Contexts are using a Shared Kernel

A3).

Room for More than the Model

A Bounded Context does not necessarily encompass only the domain model. True, the model is the primary occupant of the
conceptual container. However, a Bounded Context is not limited to the model only. It often marks off a system, an application,
or a business service.> Sometimes a Bounded Contexthouses less than this if, for example, a Generic Subdomain can be
produced without much more than a domain model. Consider portions of a system that are typically part of a Bounded Context.

When the model drives the creation of a persistence database schema, the database schema will live inside the boundary.
This is the case because the schema is designed, developed, and maintained by the modeling team. It means that the database
table names and column names, for example, will directly reflect names used in the model, rather than names translated to

another style. For example, say our model has a class named BacklogItem and that class has Value Object properties named
backlogItemIdZﬂulbusinessPriority:

Click here to view code image

public class Backlogltem extends Entity {

private BacklogItemId backlogItemId;
private BusinessPriority businessPriority;

We would expect to see those mapped to the database in like manner:

Click here to view code image

CREATE TABLE 'tbl backlog item” (

"backlog item id id" varchar(36) NOT NULL,
"business priority ratings benefit’® int NOT NULL,
"business priority ratings cost® int NOT NULL,
"business priority ratings penalty’ int NOT NULL,
"business priority ratings risk® int NOT NULL,

) ENGINE=InnoDB;

On the other hand, if a database schema is preexisting or if a separate team of data modelers forces contradicting designs on
the database schema, the schema does not live within the Bounded Context occupied by the domain model.

When there are User Interface (14) views that render the model and drive execution of its behavior, these are also inside
the Bounded Context. However, this does not mean that we model the Domain in the user interface, causing domain mode]
anemia. We want to reject the Smart Ul Anti-Pattern[Evans] and any temptation to drag domain concepts that belong in the
model into other areas of the system.

Users of the system/application are not always limited to humans and may include other computer systems. Components suct
as Web services may exist. We might use RESTful resources to provide interaction with the model as anOpen Host Service
(3, 13). Or perhaps we deploy Simple Object AccessProtocol (SOAP) or messaging service endpoints instead. In all sucl
cases, the service-oriented components are inside the boundary.

Both user interface components and service-oriented endpoints delegate to Application Services (14). These are different
kinds of services, generally providing security and transaction management, and acting as Facade [Gamma et al.] to the model.
They are task managers, transforming use case flow requests into the execution of domain logic. Application Services are also
inside the boundary.

More on Architectural and Application Concerns

If you want to consider how DDD fits with various architectural styles, see Architecture (4). Also, Application Services
are treated specially in Application (14). There are helpful diagrams and code snippets in both chapters.

The Bounded Context primarily encapsulates the Ubiquitous Language and its domain model, but it includes what exists tc
provide interaction with and support of the domain model. Pay attention to keeping the aspects of each Architectural concern in
their proper place.

Whiteboard Time

* Look at each of the Bounded Contexts you identified in your whiteboard diagram. When you think of those, do you
imagine components other than the domain model as being within the boundary?

« If there is a user interface and a set of Application Services, make sure they are inside the boundary. (You have
flexibility in how you represent these. See Figures 2.8, 2.9, and 2.10 for some ideas for representing various
components.)

* If your database schema or other persistence store was developed for your model, make sure it is also inside the
boundary. (Figures 2.8, 2.9, and 2.10 provide one way to represent a database schema.)

Size of Bounded Contexts

How many Modules (9), Aggregates (10), Events (8), and Services (7)—the primary building blocks of a domain model
created using DDD—should a Bounded Context contain? That’s a bit like asking, “How long is a piece of string?” A Boundec
Context should be as big as it needs to be in order to fully express its complete Ubiquitous Language.

Extraneous concepts that are not truly part of the Core Domain should be factored out. If a concept is not in your Ubiquitou:
Language, it should not be introduced in your model in the first place. Still, if one or more extraneous concepts creep in, get rid
of them. They probably belong in a separate Supporting or Generic Subdomain, or in no model at all.

Be careful not to mistakenly factor out concepts that do truly belong in the Core Domain. Your model must completely
exhibit the richness of the Ubiquitous Language in context, leaving out nothing essential. Clearly, good judgment is needed.
Tools such as Context Maps (3) can help shape your team’s good judgment.

In the film Amadeus® there is a scene where the Austrian emperor Joseph II communicates to Mozart that the musical worl
Mozart had just performed was a quality piece, but one that contained “simply too many notes.” Mozart aptly replies to the
emperor, “There are just as many notes as I required, neither more nor less.” This reply well illustrates an essential mentality
to take into stepping off contextual boundaries around our models. There is a very appropriate number of domain concepts to
model in a given Bounded Context, neither more nor less.

Of course this is rarely as easy for each of us to achieve as when Mozart would compose a symphony with the ease of
writing a letter to a friend. At any given time we may have missed an opportunity to refine the domain model to some degree.
During each iteration we challenge our assumptions about the model, which forces us to add or remove a concept or change the
way concepts behave and collaborate. But the point is that we face that challenge time and again, and using DDD principles
we give serious consideration to what belongs and what does not. We use Bounded Context and tools such as Context Maps
to help analyze what is truly part of a Core Domain. We don’t resort to applying arbitrary segregation rules based on non-DDL
principles.

The Beautiful Sound of Domain Models

If our models were music, they would have the unmistakable sound of completeness, purity, power, and possibly even
elegance and beauty.

If we constrain a given Bounded Context too stringently, gaping holes result from vital but missing contextual concepts. And
if we keep piling concepts onto the model that don’t express the core of the business problem being solved, we will muddy the
waters so much that we will fail to observe and understand what is essential. Our goal? If our models were music, they would
have the unmistakable sound of completeness, purity, power, and possibly even elegance and beauty. The number of notes—the
Modules, Aggregates, Events, and Services inside—would be neither more nor less than what the correct design requires.
Those “listening” in on the model would never have to ask what that strange “sound” is in the middle of an otherwise
harmonious symphony. Nor would they be distracted by moments of complete silence caused by a missing page or two of
musical notes.

What could lead us into creating a wrong-sized Bounded Context? We might mistakenly allow architectural influences,
rather than the Ubiquitous Language, to guide us. Perhaps the way a platform, framework, or some infrastructure is typically
used to package and deploy components could unduly influence the way we think about Bounded Contexts, treating them as
technical rather than linguistic boundaries.

Another trap would be to divide Bounded Contexts in order to distribute tasks to available developer resources. Technical
leads and project managers might think it is easier for developers to manage smaller tasks. While that might be the case,
enforcing boundaries for the sake of task distribution plays false to the linguistic motivations of contextual modeling. In fact,
there is no need to impose fake boundaries in order to manage technical resources.

The important question is, What does the Language of the domain experts indicate about the real contextual boundaries?

When a fake Context is formulated in order to address an architectural component or developer resources, the Language
becomes fragmented and lacks expressiveness. Hence, focus on the Core Domain with the concepts that naturally fit together
into a single Bounded Context, according to the Language spoken by domain experts. After you do so, you can identify the
components that naturally fit in a single, cohesive model. Keep all such components in the Bounded Context.

Sometimes the problem of creating miniature Bounded Contexts can be avoided with careful application of Modules. Giver
an analysis of a set of services that are spread across multiple “Bounded Contexts,” you will find that judicious use of Modules
could reduce the total number of actual Bounded Contexts to just one. Modules can also be used as a means to divide
developer responsibilities, hence managing task distribution using a more appropriate tactical approach.

Whiteboard Time
* Draw a Bounded Context of your current model as a big, irregularly shaped ellipse.

Even if you don’t yet have an explicit model, still think of the Language within.

« Inside the ellipse, write the names of the primary concepts that you are sure your code implements. See if you car
spot concepts that should be there but are missing, and those that are there but shouldn’t be. What should you do
about each of those problems?

Be Careful to Practice DDD Using Linguistic Drivers

The bottom line: If you are not following the Language drivers, you are not working with and listening to domain experts
to create the Bounded Context. Think carefully about the size of your Bounded Contexts. Don’t be too quick to miniaturiz
them.

Aligning with Technical Components

It doesn’t hurt to think about a Bounded Context in terms of the technical components that house it. Just keep in mind tha
technical components don’t define the Context. Let’s consider some common ways that they are composed and deployed.

When using an IDE such as Eclipse or IntelliJ IDEA, a Bounded Context is often housed in a single project. When usit
Visual Studio and .NET, you may favor dividing your user interface, Application Services, and domain model into separate
projects within the same solution, or you may decide on another division. The source tree of the project may be limited to the
domain model itself, or it may contain surrounding Layers (4) or Hexagonal (4) areas. There is a lot of flexibility here. Using
Java, the top-level package generally defines the highest-level Module name for the Bounded Context. Using one of the
preceding examples, that could be done something like this:

com.mycompany.optimalpurchasing

The source tree of this Bounded Context would be further divided according to Architectural responsibilities. Here’s a view
of the project’s possible second-level package names:

Click here to view code image

com.mycompany.optimalpurchasing.presentation
com.mycompany.optimalpurchasing.application
com.mycompany.optimalpurchasing.domain.model
com.mycompany.optimalpurchasing.infrastructure

Even with these modular divisions, only a single team should work in a single Bounded Context.

A Single Team for a Single Bounded Context

Assigning a single team to work on a single Bounded Context is not an attempt to limit flexibility to team organization. It’s
not as if teams can’t be arranged as needed, or that individual members of one team cannot be used on one or more other
projects. A company should use people in the way that best fits its needs. This is simply stating that it is best for one well-
defined, cohesive team of domain experts and developers to focus on one Ubiquitous Language modeled in an explicit
Bounded Context. If you assign two or more distinct teams to one Bounded Context, each team will contribute to ¢
divergent and ill-defined Ubiquitous Language.

There is also the possibility that two teams will cooperate in the design of a Shared Kernel, which is actually not ¢
typical Bounded Context. This Context Mapping pattern forms an intimate relationship between two teams, which requires
ongoing consultation when model changes are deemed necessary. This modeling approach is less common and is
generally avoided if possible.

When using Java, we may technically house a Bounded Context in one or more JAR files, including WAR or EAR files. Tt
desire for modularization may have an influence here. Loosely coupled parts of the domain model could be housed in separate
JAR files, enabling them to be deployed independently by version. This would be especially useful with large models
Creating multiple JAR files of a single model would provide the advantage of managing versions of its elements using OSG
bundles or using Java 8 Jigsaw modules. Thus, various high-level modules, their versions, and their dependencies could be

managed as bundles/modules. There are at least four such bundles/modules represented by the preceding DDD-based, second-
level Modules, and possibly more.

For a native Windows Bounded Context, such as for the .NET platform, deployment would be done using separat
assemblies in DLL files. Think of a DLL as having similar deployment motivations to those of JAR described previously. Th
model could be partitioned for deployment in similar ways. All common language runtime (CLR) modularization is managec
through assemblies. The specific version of an assembly and the versions of dependent assemblies are recorded in the
assembly’s manifest. See [MSDN Assemblies].

Sample Contexts

Because the samples represent a greenfield development environment, the three chosen Bounded Contexts eventually align ir
the most desirable way, one-to-one, with their respective Subdomains. The team wasn’t successful in aligning them one-to-one
from the start, which teaches a crucial lesson. The ultimate outcome is shown in Figure 2.7.

Domain

Agile FM (Core)

Agi!s PM Context Collaboration {Supporting)

Collaboration
Context

Identity and Access
(Generic)

ldentity and Access
Context

Figure 2.7. The assessment view of the sample Bounded Contexts in fully aligned Subdomains

The following material demonstrates how the three models form a realistic, modern enterprise solution. There are always
multiple Bounded Contexts in any project in the real world. Integration among them is an important scenario in today’s
enterprise. In addition to Bounded Context and Subdomains, we must also grasp Context Mapping with Integration (13).

Let’s look at the three Bounded Contexts provided as sample DDD implementations! They are the Collaboration Context,
the Identity and Access Context, and the Agile Project Management Context.

Collaboration Context

Business collaboration tools are one of the most important areas for creating and facilitating a synergistic workplace in the
fast-paced economy. Anything that can help increase productivity, transfer knowledge, promote idea sharing, and associatively
manage the creative process so results will not be misplaced is a boon to the corporate success equation. Whether the software
tools offer features for broad communities or for narrow audiences targeted to daily activities and projects, corporations are
flocking to the best-of-breed online tools, and SaaSOvation wants a share of that market.

The core team tasked to design and implement the Collaboration Context was given a first-release mandate to support the
following minimum suite of tools: forums, shared calendars, blogs, instant messaging, wiki, message boards, document
management, announcements and alerts, activity tracking, and RSS feeds. While supporting a broad array of features, each o
the individual collaboration tools in the suite can also support targeted, narrow team environments, yet they remain in the same
Bounded Context because they are all part of collaboration. Unfortunately this book cannot provide the entire collaboratior
suite. However, we do explore parts of the domain model for the tools represented in Figure 2.8, namely, Forums and Shared
Calendars.

Collaboration Context

<<aggregate root>> <<domain event>> <<domain event>> <<domain event>>
Forum ForumClosed ForumReopened ForumDescriptionChanged
<<value object>> <<value object>> <<aggregate root>> <<domain event>> <<domain event>>
Author Owner Discussion DiscussionStarted ForumSubjectChanged
<<value object>> <<value object>> <<agagregate root>> <<aggregate root>> <<domaln event>>
Creator Participant Calendar Post PostedToDiscussion
<<value object>> <<aggregate root>> <<domain event>>
Moderator CalendarEntry CalendarEntryScheduled

Invitee Repetition = Time Span

Collaboration Schema

Figure 2.8. The Collaboration Context. Its Ubiquitous Language determines what belongs inside the boundary. For
readability, some model elements are not shown. The same goes for user interface (UI) and Application Service
components.

Now, to the team experience . . .

Tactical DDD was used from the inception of product development, but the team was still learning some of DDD’s finer
points. In fact, they were really using what amounted to DDD-Lite, employing the tactical patterns mostly for a technica
payoff. Sure, they were attempting to capture the Ubiquitous Language of collaboration, but they didn’t understand that the
model had clear limits that couldn’t be stretched too far. As a result, they made a mistake by baking security and permissions
into the collaboration model. The team realized well into the project that designing security and permissions as part of their
model was not as desirable as they once thought.

Early on they were not overly concerned about or fully aware of the danger of constructing an application silo. Yet,
without using a central security provider, that’s just what would happen. It constituted mixing two models in one. Soon
enough they learned that the confusing entanglement that resulted from blending security concerns into their Core Domair
had backfired. Right in the middle of core business logic, in behavioral methods, developers would check for client
permissions to carry out the request:

Click here to view code image

public class Forum extends Entity {

public Discussion startDiscussion (
String aUsername, String aSubject) {
if (this.isClosed()) {
throw new IllegalStateException ("Forum is closed.");

User user = userRepository.userFor (this.tenantId(), aUsername) ;

if (!user.hasPermissionTo (Permission.Forum.StartDiscussion)) {
throw new IllegalStateException (
"User may not start forum discussion.");

String authorUser user.username () ;

String authorName = user.person() .name () .asFormattedName ()
String authorEmailAddress = user.person() .emailAddress();
Discussion discussion = new Discussion (
this.tenant (), this.forumId(),
DomainRegistry.discussionRepository () .nextIdentity(),

authorUser, authorName, authorEmailAddress,
aSubject) ;

return discussion;

Did I Just See a Train Wreck?

Some developers consider the chaining of multiple expressions in a row, such as
user.person () .name () .asFormattedName (), a “train wreck.” Others consider it expressiveness in code. I am not
addressing either of those viewpoints. Rather, I am focused on the muddled model. The “train wreck™ is another topic

entirely.

This was really bad design. Developers should not have been able to referenceuser here, let alone query a
Repository (12) for one. Even Permission should have been out of reach. It was possible because these were wrongly
designed as part of the collaboration model. What is more, this distortion caused them to overlook a concept that they
should have modeled, namely, author. Instead of gathering three related attributes into an explicit Value Object, the
developers seemed to be satisfied to deal with the data elements separately. Security was on their minds rather than
collaboration.

This was not an isolated case. Every collaboration object had similar issues. As the risk of creating a Big Ball of Muc
was becoming imminent, the team decided the code had to change. Besides, the team also wanted to switch from a
permissions approach to security and use role-based access management instead. What would they do?

Being users of agile development methodologies and eventual builders of agile project management tools, they were
not afraid to employ refactoring efforts just in time. So iteratively refactor they would. Still the question remained: Wha
were the best DDD patterns to get them out of their bad situation, a deep bog of ill-placed code?

As a few on the team spent extra hours poring over the [Evans] tactical building block patterns, they realized that these
were not the answer. They had followed the guidance in those patterns to create Aggregates by composing Entities and
Value Objects in a technical way. They used Repositories and Domain Services (7) as well. Nonetheless, they were
missing something important, and possibly this pointed to the need to pay closer attention to the second half of [Evans].

Finally doing so, they noted some empowering techniques. As they pored over “Part III: Refactoring toward Deepe
Insight” [Evans], it was obvious that DDD offered far more than they once thought. With the techniques gleaned from tha
part of [Evans], they now knew how they could improve their current model by paying closer attention to the Ubiquitous
Language. By spending more quality time with their domain experts, they could produce a model that more closely
resembled their mental model. But that still didn’t address the security morass that distorted their vision of a pure
collaboration domain model.

Further into the book there was “Part IV: Strategic Design”[Evans]. One of the team members found what proved to be
crucial guidance that would eventually lead them to the realization of a Core Domain. One of the first new tools employec
was Context Maps, which led to a better understanding of their current project situation. Although a simple exercise,
drawing the first Context Map and formulating discussions about their predicament was a big step forward. It led tc
productive analysis toward a resolution, which eventually unblocked the team.

They now had a few options to make interim refinements, enabling them to stabilize their increasingly brittle model:

1. They could possibly refactor the model into Responsibility Layers [Evans], dividing the security and permissions
features by pushing them down into a lower logical layer of the existing model. But that didn’t seem like the best
approach. The use of Responsibility Layers is intended to address large-scale models, or to plan for those that will
eventually grow to a large scale. Each layer is meant to remain in the model because it is part of the Core Domain.
even though the layers should be carefully divided. On the other hand, what the team was dealing with were
misappropriated concepts—ones that didn’t belong in the Core Domain.

2. Alternatively they could work toward a Segregated Core [Evans]. This could be accomplished by an exhaustive
search for all security and permissions concerns in the Collaboration Context, followed by the refactoring of the
identity and access components into completely separate packages in the same model. It would not produce the
ultimate outcome of creating a completely separate Bounded Context, but it would move the team closer to it. This
seemed to be precisely what was needed, for the pattern itself states: “The time to chop out a Segregated Core is
when you have a large Bounded Context that is critical to the system, but where the essential part of the model is
being obscured by a great deal of supporting capability.” The supporting capability was definitely security and
permissions. The team eventually realized that a separate Identity and Access Context would emerge out of these
efforts and serve as a Generic Subdomain to their Collaboration Context.

The initiative to create a Segregated Core would not be simple. It could require a few weeks of unplanned work. But i
they didn’t take corrective action and refactor soon, they’d be paying for their lack of corrective action with bugs, coupled
with a fragile code base that would not respond well to change. Business leadership helped confirm the wisdom of this
direction when they determined that a successful separation into a new business service could someday lead to a new
SaaS product.

Importantly, the team now understood the value of Bounded Contexts and of fighting hard to maintain a cohesive Core¢
Domain. Using additional patterns of strategic design, they could segregate reusable models in separate Bounded Contexts
and integrate as appropriate.

Likely the future /dentity and Access Bounded Context would look different from the embedded security and
permissions design. Designing for reuse would force the team to focus on a more general-purpose model, one that could
be exploited by many applications as necessary. That dedicated team—different from our Collaboration Context team,
but formed using a few members from it—could also introduce various implementation strategies. The strategies could

include use of third-party products and customer-specific integrations, which had become far out of reach due to the
embedded security tangle.

Since the development of the Segregated Core became an interim step, we don’t focus on those results here. Briefly, 1
amounted to moving all security and permissions classes to segregated Modules and requiring Application Services
clients to check security and permissions using those objects prior to calling into the Core Domain. That freed the Core tc
implement only collaboration model object compositions and behaviors. The Application Service took care of security
and object translation:

Click here to view code image

public class ForumApplicationService ... {

@Transactional
public Discussion startDiscussion (
String aTenantId, String aUsername,
String aForumId, String aSubject) {
Tenant tenant = new Tenant (aTenantId);
ForumId forumId = new ForumId (aForumId) ;

Forum forum = this.forum(tenant, forumId);

if (forum == null) ({
throw new IllegalStateException ("Forum does not exist.");

Author author =
this.collaboratorService.authorFrom(
tenant,
anAuthoriId);

Discussion newDiscussion =
forum.startDiscussion (
this.forumNavigationService (),
author,
aSubject) ;

this.discussionRepository.add(newDiscussion) ;

return newDiscussion;

The result to the Forum looked like this:
Click here to view code image

public class Forum extends Entity {

public Discussion startDiscussionFor (
ForumNavigationService aForumNavigationService,
Author anAuthor,
String aSubject) {
if (this.isClosed()) {
throw new IllegalStateException ("Forum is closed.");

Discussion discussion = new Discussion (
this.tenant (),
this.forumId(),

aForumNavigationService.nextDiscussionId(),
anAuthor,
aSubject) ;

DomainEventPublisher

.instance ()

.publish (new DiscussionStarted(
discussion.tenant (),
discussion.forumId(),
discussion.discussionId(),
discussion.subject())):;

return discussion;

This removed the user and permission tangle and focused the model strictly on collaboration. Again, it was not a
picture-perfect outcome, but it prepared the team for the future refactorings to separate and integrate Bounded Contexts.
The Collaboration Context team would finally remove all the security and permissions Modules and types from their
Bounded Context and gladly employ the new Identity and Access Context. Their ultimate goal to make security central
and reusable was now within reach.

Granted, the team could have started out going in the other direction. They could have miniaturized Bounded Context:
by creating a number of separate ones, ending up with ten or more total—one for each collaboration facility (for example,
Forum and Calendar as separate models). What could have led them in that direction? Since most of the collaboratior
facilities were not coupled to the others, each could be deployed as an autonomous component. By placing each facility in
a separate Bounded Context, the team could create ten or so natural deployment units. True, but producing ten different
domain models was unnecessary to achieve those deployment objectives and would probably only serve to work against
the modeling principles of the Ubiquitous Language.

Instead, the team kept the model as one but chose to create a separate JAR file for each collaboration facility. Using
Jigsaw modularization, they created a version-based deployment unit for each. Besides JAR files for the natura
collaboration divisions, they also needed one for shared model objects, such as Tenant, Moderator, Author,
Participant, and others. Going this route supported the development of a unified Ubiquitous Language, while meeting
the deployment objectives that had architectural and application management advantages.

With this understanding we can examine how the Identity and Access Context came about.

Identity and Access Context

Most enterprise applications today need to have some form of security and permissions components in place to ensure that

people who try to use the system are authentic users and are authorized to do what they attempt to do. As we just analyzed, a
naive approach to application security builds users and permissions in with each discrete system, which creates a silo effect in
every application.

Cowboy Logic
LB: “You have no locks on your barns and silos, but nobody steals your corn?”
Al: “My dog Tumbleweed cares for access management. It’s my own silo effect.”
LB: “I don’t think you really understand the book.”

using them are the same. To prevent silos from popping up all over the business landscape, architects need to centralize
security and permissions. This is done by purchasing or developing an identity and access management system. The route
chosen will depend much on the level of sophistication needed, the time available, and the total cost of ownership.

Correcting the identity and access tangle in CollabOvation would be a multistep process. First the team refactored using
Segregated Core [Evans]; see the “Collaboration Context” section. This step served the intended purpose at the time to ensure
that CollabOvation was cleansed of security and permissions concerns. However, they figured that identity and access
management should eventually occupy a context boundary of its own. That would require an even greater effort.

This constitutes a new Bounded Context—the /dentity and Access Context—and will be used by other Bounded Contexts
through standard DDD integration techniques. To the consuming contexts the /dentity and Access Context is a Generic
Subdomain. The product will be named IdOvation.

As Figure 2.9 shows, the Identity and Access Context provides support for multitenant subscribers. When developing an
SaaS product, this goes withoutsaying. Each tenant and every object asset owned by a given tenant would have a completely
unique identity, logically isolating each tenant from all others. Users of the systems are registered via self-service by invitation
only. Secured access is handled by means of an authentication service, and passwords are always highly encrypted. Groups of
users and nested groups enable sophisticated identity management across the entire organization and down to the smallest of
teams. Access to system resources is managed through simple, elegant, yet powerful role-based permissions.

ldentity and Access Context

<<aggregate root>>

<<aggregate roots>>
Tenant User
- |

<<entity>> <<entity>>

T

<<value object>> <<value object>>»

Registrationlnvitation Contactinformation Person Enablement

<<domain events> <<domain event>>

UserFasswordChanged

<<domain events>

UserRegistered

TenantProvisioned

<<domain events» <<domain event>> <<domain event s>

TenantActivated TenantDeactivated PersonNameChanged

<<aggregate root>> <<aggregate root>> <<domain event»>»

Group Role PersonContactinformationChanged
<<value object>>
GroupMember ldentity and Access Schema

Figure 2.9. The Identity and Access Context. Everything inside the boundary is in context per the Ubiquitous Language.
There are other components in this Bounded Context, some in the model and some in other layers, but they are not
shown here for the sake of readability. The same goes for UI and Application Service components.

As a more advanced step, throughout the model Domain Events (8) are published when model behaviors cause state
transformations of special interest to observers of such occurrences. These Events are generally modeled as nouns combined
with verbs in the past tense, such as TenantProvisioned, UserPasswordChanged, PersonNameChanged, and others as well.

The next chapter, “Context Maps,” shows how the Identity and Access Context is used by the other two sample Contexts
using DDD integration patterns.

Agile Project Management Context

The lightweight methods of agile development have propelled it to popularity, especially following the creation of the Agile
Manifesto in 2001. In its vision statement, SaaSOvation has as its second primary and strategic initiative to develop an agilc
project management application. Here’s how things went . . .

After three quarters of successful CollabOvation subscription sales, planned upgrades with incremental improvements pet
customer feedback, and better-than-expected revenues, the company’s plans for ProjectOvation were launched. It’s their new

Core Domain, and top developers from CollabOvation will be pulled in to leverage their SaaS multi-tenancy and new foun
DDD experience.

T

The tool focuses on management of agile projects, using Scrum as the iterative and incremental project management
framework. ProjectOvation follows the traditional Scrum project management model, complete with product, produc
owner, team, backlog items, planned releases, and sprints. Backlog item estimation is provided through business value
calculators that use cost-benefit analysis.

The business plan began with a two-headed vision. CollabOvation and ProjectOvation would not go down entirels
separate paths. SaaSOvation and its board of directors envisioned innovation around weaving collaboration tools in witl
agile software development. Thus, CollabOvation features will be offered as an optional add-on to ProjectOvation
Because it provides add-on features, CollabOvation is a Supporting Subdomain to ProjectOvation. Product owners an
team members will interact in product discussions, release and sprint planning, and backlog item discussions, and they
will share calendars, and more. There is a future plan to include corporate resource planning with ProjectOvation, bu
initial agile product goals must first be met.

The technical stakeholders originally planned to develop the ProjectOvation features as an extension of the
CollabOvation model by using a revision control system source branch. That actually would have been a huge mistake.
although typical of those not focusing proper attention on Subdomains in their problem space and Bounded Contexts ir
their solution space.

Fortunately the technical staff learned from early problems with the muddled Collaboration Context. The lesson they
learned from that experience convinced them that even starting down the path of combining the agile project management
model with the collaboration model would be a major mistake. Now the teams were starting to think with a strong leaning
toward DDD strategic design.

Figure 2.10 shows that as a result of adopting a strategic design mentality, the ProjectOvation team now
appropriately thinks of their consumers as Product Owners and Team Members. After all, those are the project member
roles played by Scrum practitioners. The users and roles are managed inside the separate Identity and Access Context.
By using that Bounded Context, self-service enables subscribers to manage their own personal identity. Administrative
controls enable managers, such as product owners, to specify their product team members. With the roles properly
managed, the Product Owners and Team Members can be created where they belong, inside the Agile Project
Management Context. The remainder of the project’s design will benefit as the team focuses on capturing the Ubiquitous
Language of agile project management into a carefully crafted domain model.

Agile Project Management Context

<<aggregate root>> <<aggregate root>> <<aggregate root>> <<aggregate root>>
Team Product Release Sprint

<<aggregate root>> <<aggregate root>> <<domain event>> <<domain event>>
ProductOwner Backlogltem ProductCreated ProductReleaseScheduled

<<aggregate root>> <<value object>> <<domain event>>
TeamMember BusinessPriority ProductBacklogltemPlanned
<<value object>> <<entity>> <<value object>> <<domain event»>>

EstimationLogEntry Task BusinessPriorityRatings ProductSprintScheduled

<<domain event>> <<domain event>>

TaskStatusChanged BacklogltemStatusChanged

Agile PM Schema

<<domalin events>> <<domalin events»

BacklogltemScheduled

BacklogltemCommitted

Figure 2.10. The Agile Project Management Context. The Ubiquitous Language of this Bounded Context is concerned
with Scrum-based agile products, iterations, and releases. For readability, some components, including those from the Ul
and Application Services, are not shown here.

One requirement calls for ProjectOvation to operate as a set of autonomous application services. The team desires tc
limit the dependency of ProjectOvation on other Bounded Contexts to a reasonable periodicity, or at least as much as is
practical. Generally speaking, ProjectOvation will be capable of operating on its own, and if IdOvation or CollabOvatio
were to go offline for any number of reasons, ProjectOvation would continue to function autonomously. Of course, in that
case some things might get out of sync for a while, and probably a very short while at that, but the system would continue
to function.

The Context Gives Each Term a Very Specific Meaning

A Scrum-based product has any number of BacklogItem instances that describe the software being constructed. This is
far different from the products on an e-commerce site that you put in a shopping cart to purchase. How do we know?
Because of the Context. We understand what our product means because it is in the Agile PM Context In an Online
Store Context, Product means something very different. The team didn’t need to name the product ScrumProduct in
order to communicate the difference.

The Core Domain of Product, Backlog Items, Tasks, Sprints, and Releases is already off to a better start given th
SaaSOvation experience gains. Still, we are interested in looking in on the big lessons they learned along the steep learning
curve of carefully modeling Aggregates (10).

Wrap-Up
That was a seriously intense discussion of the importance of DDD strategic design!
* You’ve looked into Domains, Subdomains, and Bounded Contexts.

* You’ve discovered how to strategically assess the current lay of the enterprise landscape using both problem space
and solution space assessments.

* You peered extensively into the details of how to use Bounded Contexts to explicitly segregate models
linguistically.

* You’ve learned what is included in Bounded Contexts, how to right-size them, and how they can be built for
deployment.

* You felt the pain the SaaSOvation team experienced early on in the design of the Collaboration Context and how
the team worked their way out of that bad situation.

* You saw the formation of the current Core Domain, the Agile Project Management Context, which is the focus of
the design and implementation examples.

As promised, the next chapter takes a deep dive into Context Mapping. It is an essential strategic modeling tool to use ir
designs. You may have figured out that we’ve done a bit of Context Mapping already in this chapter. It was unavoidable as we
assessed different domains. Still, we will go into much more detail next.

Chapter 3. Context Maps

Whatever course you decide upon, there is always someone to tell you that you are wrong. There are always
difficulties arising which tempt you to believe that your critics are right. To map out a course of action and
follow it to an end requires courage.

—Ralph Waldo Emerson

The Context Map of a project can be expressed in two ways. The easier way is to draw a simple diagram that shows the
mappings between two or more existing Bounded Contexts (2). Understand, however, that you are just drawing a simple
diagram of what already exists. The drawing illustrates how the actual software Bounded Contexts in the solution space are
related to one another through integration. This means that the more detailed way to express Context Maps is as the source code
implementations of the integrations. We’ll look at both ways in this chapter, but for most of the implementation details see
Integrating Bounded Contexts (13).

At a high level, keep in mind that this chapter focuses on the solution space assessment, whereas the previous chapter dealt
quite a bit with the problem space assessment.

Road Map to This Chapter
* Learn why drawing a Context Map is essential for the success of your project.
* See how easy it can be to draw a meaningful Context Map.
* Consider the common organizational and system relationships and how they affect your projects.
* Learn from the SaaSOvation teams as they produce Maps to get control of their projects.

Why Context Maps Are So Essential

When you start out on a DDD effort, first draw a visual Context Map of yourcurrent project situation. Produce a Context
Map of the current Bounded Contexts involved in your project and the integration relationships between them. Figure 3.1
shows an abstract Context Map. We’ll be filling in the details as we progress.

Name-A Context

Name-B Context

Name-C Context

Figure 3.1. A Context Map of an abstract Domain. Three Bounded Contexts and their relationships are drawn. The U
stands for Upstream and D stands for Downstream.

This simple drawing is your team’s Map. Other project teams can refer to it, but they should also create their own Maps 1ii
they are implementing DDD. Your Map is drawn primarily to give your team the solution space perspective it needs to
succeed. Other teams may not be using DDD and/or they may not care about your perspective.

Oh, No! There’s New Terminology!
We are introducing Big Ball of Mud, Customer-Supplier, and Conformist here. Be patient; these and other DDD team an

integration relationships noted here are discussed in detail later in this chapter.

For example, when you are integrating Bounded Contexts in a large enterprise, you may need to interface with a Big Ball of
Mud. The team maintaining the muddy monolith may not care what direction your project takes as long as you adhere to their
API. So, they aren’t going to gain any insight from your Map or what you do with their API. Still, your Map needs to reflect th
kind of relationship you have with them, because it will give your team needed insight and indicate areas where inter-team
communication is imperative. Having that understanding can do much to help your team succeed.

Communications Facility

Besides giving you an inventory of systems you must interact with, a Context Map serves as a catalyst for inter-tean
communication.

Imagine what would happen if your team assumes that the team maintaining the muddy monolith will provide new APIs tha
you are depending on, but they don’t intend to provide them, or they don’t even know what you are thinking. Your team is
counting on a Customer-Supplier relationship with the mud. The legacy team, however, by providing only what they currently
have, forces your team into an unexpected Conformist relationship. Depending on how late in the project you got the bad news,
this unseen yet actual relationship could delay your delivery or even cause your project’s failure. By drawing a Context Map
early, you will be forced to think carefully about your relationships with all other projects you depend on.

Identify each model in play on the project and define its BOUNDED CONTEXT. . . . Name eac
BOUNDED CONTEXT, and make the names part of the UBIQUITOUS LANGUAGE. Describe
points of contact between the models, outlining explicit translation for any communication and
highlighting any sharing. [Evans, p. 345]

When the CollabOvation team first started developing its greenfield model, they should have used a Context Map. Even thoug]
they were nearly starting from scratch, stating their assumptions about the project in the form of a Map would have prompted
them to think about separate Bounded Contexts. They still could have listed significant modeling elements on a whiteboard, anc
then gathered them into groups of related linguistic terms. That would have forced recognition of linguistic boundaries and
resulted in a simple Context Map. However, they actually didn’t understand strategic modeling in the least. They first needed to
attain a strategic modeling breakthrough. Later on they did make the crucial discovery of this project-saving tool, applying it to
their eventual benefit. When the subsequent Core Domain project got under way, it again paid off substantially.

Let’s see how you can quickly produce a useful Context Map.

Drawing Context Maps

A Context Map captures the existing terrain. First, you should map the present, not the imagined future. If the landscape will
change as your current project progresses, you can update the Map at that time. First focus on the current situation so you car
form an understanding of where you are and determine where to go next.

Creating a graphical Context Map need not be complicated. Your first option is always hand-drawn diagrams where
whiteboards and dry-erase markers rule. The style used here is easily adapted as shown by [Brandolini]. If you decide to use a

tool to capture the drawing, be sure to keep it informal.

Referring back to Figure 3.1, the Bounded Context names are just placeholders, as are the integration relationships. They
would all be actual names in a tangible Map. The upstream and downstream relationships are shown, the meanings of whick
are explained later in the chapter.

Whiteboard Time

Draw a simple diagram of your current project situation that communicates at a high level where the boundaries are, the
relationships between them and their teams, what kinds of integrations are involved, and the necessary translations between
them.

Remember that software implements what’s in the drawing. If you need more information about what you should draw,
consider the systems that your Bounded Context integrates with.

Sometimes we’ll want to zoom in and add more detail to a given part of a Context Map. It’s just a different perspective or
the same Context(s). Besides boundaries, relationships, and translations, we may want to include other items such as Modules
(9), significant Aggregates (10), perhaps how teams are allocated, and any other information relevant to the Contexts. These
techniques are demonstrated later in the chapter.

All of the drawings and any prose can be placed into a single reference document if it has value to the team. With any such
effort we should avoid ceremony and remain both simple and agile. The more ceremony you add, the fewer people will want to
use the Map. Putting too much detail in diagrams won’t really help the team. Open communication is the key. As conversations
unveil strategic insight, add it to the Context Map.

No, It’s Not Enterprisy
A Context Map is not an Enterprise Architecture or system topology diagram.

A Context Map isnot an Enterprise Architecture or system topology diagram. The information is conveyed relative to
interacting models and DDD organizational patterns. Still, Context Maps may be used in high-level architectural investigations,
providing views of the enterprise not otherwise available. They may highlight architectural deficiencies such as integration
bottlenecks. Because they exhibit an organizational dynamic, Context Maps may even help us identify sticky governance issues
that could block progress, and other team and management challenges that are more difficult to uncover using other methods.

Cowboy Logic
AlJ: “The missus said, ‘I was out in the pasture with the cows; didn’t you notice me?’ I said, ‘Nope.” She didn’t
talk to me for a week.”

' | O @DDD_Corral

The diagrams deserve to be posted prominently on a wall in a team area. If the team frequents a wiki, the diagrams might
also be uploaded there. If a wiki will be largely ignored, don’t bother. It’s been said that a wiki can be a place where
information goes to die. No matter where they are displayed, Context Maps will be hidden in plain sight unless the team pays
regular attention to them through meaningful discussion.

Projects and Organizational Relationships
To briefly reiterate, SaaSOvation is on a path to develop and refine three products:

1. A social collaboration suite product, CollabOvation, enables registered users to publish content of business value
using popular Web-based tools such as forums, shared calendars, blogs, wikis, and the like. This is the SaaSOvatior
flagship product and was the company’s first Core Domain (2) (although the team didn’t know the DDD terminology
at the time). It is the Context from which IdOvation’s (point 2) model was eventually extracted. CollabOvation now
uses IdOvation as a Generic Subdomain (2). CollabOvation will itself be consumed as a Supporting Subdomain
(2), being an optional add-on to ProjectOvation (point 3).

2. A reusable identity and access management model, IdOvation provides secure role-based access management for
registered users. These features were first combined with CollabOvation (point 1), but that implementation was
limited and not reusable. SaaSOvation has refactored CollabOvation, introducing a new, clean Bounded Context. A
key product feature is the support of multiple tenants, which is vital to an SaaS application. IdOvation serves as ¢
Generic Subdomain to its consuming models.

3. An agile project management product, ProjectOvation, is at this point in time the new Core Domain. Users of this
SaaS product can create project management assets, as well as analysis and design artifacts, and track progress using
a Scrum-based execution framework. As with CollabOvation, ProjectOvation uses IdOvation as a Generi
Subdomain. One of the innovative features adds team collaboration (point 1) to agile project management, enabling
discussions around Scrum products, releases, sprints, and individual backlog items.

Finally, the Definitions!
The organizational and integration patterns mentioned previously are defined . . .

What are the relationships between these Bounded Contexts and their individual project teams? There are several DDI
organizational and integration patterns, one of which commonly exists between any two Bounded Contexts. Each of the
following definitions is largely quoted from [Evans, Ref]:

 Partnership: When teams in two Contexts will succeed or fail together, a cooperative relationship needs to
emerge. The teams institute a process for coordinated planning of development and joint management of integration.
The teams must cooperate on the evolution of their interfaces to accommodate the development needs of both
systems. Interdependent features should be scheduled so that they are completed for the same release.

* Shared Kernel Sharing part of the model and associated code forms a very intimate interdependency, which can
leverage design work or undermine it. Designate with an explicit boundary some subset of the domain model that the
teams agree to share. Keep the kernel small. This explicit shared stuff has special status and shouldn’t be changed
without consultation with the other team. Define a continuous integration process that will keep the kernel model tight
and align the Ubiquitous Language (1) of the teams.

* Customer-Supplier Development: When two teams are in an upstream-downstream relationship, where the
upstream team may succeed interdependently of the fate of the downstream team, the needs of the downstream team
come to be addressed in a variety of ways with a wide range of consequences. Downstream priorities factor into
upstream planning. Negotiate and budget tasks for downstream requirements so that everyone understands the
commitment and schedule.

» Conformist: When two development teams have an upstream/downstream relationship in which the upstream team
has no motivation to provide for the downstream team’s needs, the downstream team is helpless. Altruism may
motivate upstream developers to make promises, but they are unlikely to be fulfilled. The downstream team
eliminates the complexity of translation between bounded contexts by slavishly adhering to the model of the upstream
team.

 Anticorruption Layer. Translation layers can be simple, even elegant, when bridging well-designed Bounded
Contexts with cooperative teams. But when control or communication is not adequate to pull off a shared kernel,
partner, or customer-supplier relationship, translation becomes more complex. The translation layer takes on a more
defensive tone. As a downstream client, create an isolating layer to provide your system with functionality of the
upstream system in terms of your own domain model. This layer talks to the other system through its existing
interface, requiring little or no modification to the other system. Internally, the layer translates in one or both
directions as necessary between the two models.

* Open Host Service: Define a protocol that gives access to your subsystem as a set of services. Open the protocol
so that all who need to integrate with you can use it. Enhance and expand the protocol to handle new integration

requirements, except when a single team has idiosyncratic needs. Then, use a one-off translator to augment the
protocol for that special case so that the shared protocol can stay simple and coherent.

* Published Language: The translation between the models of two Bounded Contexts requires a common language.
Use a well-documented shared language that can express the necessary domain information as a common medium of
communication, translating as necessary into and out of that language. Published Language is often combined witk
Open Host Service.

» Separate Ways: We must be ruthless when it comes to defining requirements. If two sets of functionality have no
significant relationship, they can be completely cut loose from each other. Integration is always expensive, and
sometimes the benefit is small. Declare a bounded context to have no connection to the others at all, enabling
developers to find simple, specialized solutions within this small scope.

* Big Ball of Mud As we survey existing systems, we find that, in fact, there are parts of systems, often large ones,
where models are mixed and boundaries are inconsistent. Draw a boundary around the entire mess and designate it a
Big Ball of Mud. Do not try to apply sophisticated modeling within this Context. Be alert to the tendency for sucl
systems to sprawl into other Contexts.

By integrating with the /dentity and Access Context, both the Collaboration Context and the Agile Project Management
Context avoid going their Separate Ways with respect to security and permissions. True, Separate Ways may be applied
Context-wide for a specific system, but it can also be employed on a case-by-case basis. For example, one team could refuse
to use a centralized security system but may still choose to integrate with some other corporate standard facilities.

The teams will cooperate with Customer-Supplier roles. There’s no way that SaaSOvation’s management will allow ong
team to force others to be Conformists. It’s not that a Conformist relationship is always negative. Rather, Customer-Suppliei
requires commitment on the part of the Supplier to provide support for the Customer, which fosters the kind of inter-team
relationships SaaSOvation thinks it needs to achieve complete success. Of course, Customers aren’t always right, and so somx
give-and-take must exist. Overall it is the positive organizational relationship that the teams need to maintain.

The teams’ integrations will make use of Open Host Service and Published Language. Perhaps surprisingly they will alsc
employ Anticorruption Layer. This is not a contradiction, even though they are establishing open standards between their
Bounded Contexts. They can still realize the benefits of isolated translation by using its fundamental principles in the
downstream Contexts, but with less complexity than needed when consuming a Big Ball of Mud. The translation layers will be
simple and elegant.

The Context Map drawings that follow use these abbreviations to indicate the patterns employed at each end of e
relationship:
* ACL for Anticorruption Layer
* OHS for Open Host Service
* PL for Published Language
As you review the following sample Context Maps and supporting text, it may be helpful to glance back atChapter 2,
“Domains, Subdomains, and Bounded Contexts” The diagrams of each of the three sample Bounded Contexts are also useful

here. Since they remain fairly high-level, those diagrams could be included as part of the Maps for each Context, although they
are not repeated here.

Mapping the Three Contexts

Now let’s jump into the team experience so we can learn from what they did . . .

Lo | A5 B
When the CollabOvation team realized the tangle they had created, they dug into [Evans] to help find their way out of it. Among
other discoveries of enormous value within the strategic design patterns, they found a practical tool named Context Maps. They
also found a helpful article online by [Brandolini] expanding on this technique. Since the tool’s guidance indicated that they
should map the existing terrain, that’s the first step they took. Figure 3.2 shows the results.

Users-Permissions

Collaboration Context

Figure 3.2. The tangle within the Collaboration Context caused by unwelcome concepts is exposed by this Map. The
caution sign points out the area of impurity.

The first Map produced by the team highlights their early recognition of the existence of a Bounded Context that they
named Collaboration Context. By the odd shape of the existing boundary they appropriately conveyed the likely existence
of'a second Context, but one without a clean and clear separation from the Core Domain.

A narrow passage near the top allows foreign concepts to migrate back and forth almost without censure, as the caution sign
indicates. It’s not that Context boundaries need to be completely impenetrable. As with any boundary, the team wants the
Collaboration Context to control with full knowledge what crosses its borders and for what purpose. Otherwise the territory
becomes overrun with unknown and possibly unwelcome visitors. In the case of a model, the unwelcome visitors generally
cause confusion and bugs. Modelers should be cordial and even welcoming, but under conditions that favor order and harmony.
Any foreign concepts entering the boundaries need to demonstrate the right to be there, even taking on characteristics
compatible with the territory within.

This analysis led to a better understanding not only of the current condition of the model, but in what direction the project
needed to go. Once the project team realized that concepts such as security, users, and permissions did not belong inside the
Collaboration Context, they responded accordingly. The team had to segregate these from the Core Domain and allow them to
enter only under agreeable terms.

This is a vital DDD project commitment. The Language of each Bounded Context must be honored in order for all models t
remain pure. Linguistic segregation and a strict adherence to it help each team involved in the project to focus on their own
Bounded Context and keep their vision correctly focused on their own work.

Applying Subdomain analysis, or problem space assessment, led the team to the diagram shown inFigure 3.3. Two
Subdomains were carved out of a single Bounded Context. Since it is a good goal to align Subdomains one-to-one witl
Bounded Contexts, this analysis showed the need to separate the single Bounded Context into two.

Security (Generic) Subdomain

Users-FPermissions

Collaboration Context

Collaboration (Core) Subdomain

Figure 3.3. The team’s Subdomain analysis led to the discovery of two, a Collaboration Core Domain and a Security
Generic Subdomain.

The Subdomain and boundary analysis led to decisions. When human users of CollabOvation interact with the available
features, they do so as Participants, Authors, Moderators, and so forth. A variety of other contextual separations are discussed
later, but this gives a good idea of the necessary divisions that were created. With that knowledge, the clean and crisp
boundaries indicated on the high-level Context Map shown in Figure 3.4 came about. The team used Segregated Core [Evans
to refactor to reach this point of clarity. The recognizable shapes of the boundaries act as icons or visual cues for each Context.
Keeping the same relative shapes across diagrams can help with cognition.

ldentity and Access
Context

OHS / PL

Collaboration Context

Figure 3.4. The original Core Domain is marked with a bold boundary and integration points. Here IdOvation serves as
a Generic Subdomain for the downstream CollabOvation.

The Context Maps usually don’t appear all at once as the various sketches may lead you to believe, although when finally
understood, they are not difficult to produce. Thought and discussion help to refine a Map through rapid iterations. Some of the
refinements might come in the way of integration points, which describe the relationships between Contexts.

The first two Maps indicate the gains made after applying strategic design. After the original CollabOvation project was wel
under way, the team had factored out identity and access concerns. As they progressed, they produced the Context Map in
Figure 3.4. The team sketched only the Core Domain, Collaboration Context, along with the new Generic Subdomain, /dentity
and Access Context. They didn’t depict any future models, such as the Agile Project Management Context. It wouldn’t help
the team to jump ahead too far. They only needed to correct flaws with what existed. Transformations supporting forthcoming
systems would be needed soon enough, and that Map belonged to the future team to produce.

Whiteboard Time

» Thinking of your own Bounded Context, can you identify concepts that don’t belong? If so, draw a new Contex
Map that shows the desired Contexts and relationships between them.

* Which of the nine DDD organizational and integration relationships would you choose, and why?

When the next project involving ProjectOvation was starting up, it was time to augment the existing Map with the new Cor
Domain, the Agile Project Management Context. The results of that mapping are seen in Figure 3.5. It was not premature to
capture what was in planning, even though it was not yet in code. The details inside the new Context weren’t fully understood,
but that would come with discussion. Applying high-level strategic design at this early stage would help all teams understand
where their responsibilities lay. Since the third of the three high-level Maps is just an augmentation of the previous, we’ll be
focusing on it. That’s where SaaSOvation is headed. The company has assigned experienced lead developers to the new
project. Being the richest of the three Contexts and the current direction, the new Core Domain is where the best developers
should be working.

Ildentity and Access
Context

OHS /PL
U \
D

Collaboration Context

ACL

OHS / FPL

Agile Project Management
Context

Figure 3.5. The current Core Domain is marked with a bold boundary and integration points. The CollabOvation
Supporting Subdomain and IdOvation Generic Subdomain are upstream.

Some essential segregations are already well understood. Similar to the Collaboration Context, when users of
ProjectOvation create products, plan releases, schedule sprints, and work on the tasks of backlog items, they do so as
Product Owners and Team Members. The Identity and Access Context is segregated out of the Core Domain. The same
goes for their use of the Collaboration Context. It is now a Supporting Subdomain. Any consumption by the new mode]
will be protected by boundaries and translations into Core Domain concepts.

Consider the finer details of these diagrams. They are not system architecture diagrams. If they were, given thatAgile
Project Management Context is our new Core Domain, we would expect it to reside at the top or center of the diagram. Here.
however, it is at the bottom. This possibly curious characteristic indicates visually that the core model is downstream of the
others.

This nuance serves as another visual cue. Upstream models have influences on downstream models, as activities on a river
that occur upstream tend to have impacts on populations downstream, whether positive or negative. Consider pollutants
dumped into a river by a large city. Those pollutants may have little impact on that city, but downstream cities may face severe
consequences. The vertical proximity of models on the diagram helps identify the upstream influences on downstream models.
The labels U and D explicitly call this out between each associated model. These labels make vertical positioning of each
Context less important, yet it is still visually appealing to employ them.

Cowboy Logic

LB: “When you get yourself a powerful thirst, always drink upstream from the herd.”
)

&
Fu

; %‘\
o

o
= ;r‘fﬁa

The Identity and Access Context is furthest upstream. It has an impact on both the Collaboration Context and the Agile
Project Management Context. Our Collaboration Context is also upstream to the Agile Project Management Contexi
because the agile model depends on the collaboration model and services. As noted in Bounded Contexts (2), ProjectOvatior
will operate as autonomously as is practical. Operation must continue largely independent of the availability of surrounding
systems. This does not mean that autonomous services can operate entirely independently of upstream models. We must design
in ways to drastically limit direct real-time dependencies. Though autonomous, our Agile Project Management Context s still
downstream of the others.

Outfitting an application with autonomous services does not mean that databases from upstream Contexts are simply
replicated into the dependent Context. Replication would force the local system to take on many undesirable responsibilities.
That would require the creation of a Shared Kernel, which doesn’t really achieve autonomy.

On the latest Map, note the connector boxes on the upstream side of each connection. Both of the connectors are labelec
OHS/PL, an abbreviation identifying Open Host Service and Published Language. All three downstream connector boxes ar
labeled ACL, shorthand for Anticorruption Layer. The technical implementations are covered under Integrating Bounded
Contexts (13). Briefly, these integration patterns have these technical characteristics:

* Open Host Service: This pattern can be implemented as REST-based resources that client Bounded Context:
interact with. We generally think of Open Host Service as a remote procedure call (RPC) API, but it can b
implemented using message exchange.

* Published Language: This can be implemented in a few different ways but is many times done as an XML schema.
When expressed with REST-based services, the Published Language is rendered as representations of domait
concepts. Representations may include both XML and JSON, for example. It is also possible to rende
representations as Google Protocol Buffers. If you are publishing Web user interfaces, it might also include HTMI
representations. One advantage to using REST is that each client can specify its preferred Published Language, anc
the resources render representations in the requested content type. REST also has the advantage of producing
hypermedia representations, which facilitates HATEOAS. Hypermedia makes a Published Language very dynami
and interactive, enabling clients to navigate to sets of linked resources. The Language may be published using
standard and/or custom media types. A Published Language is also used in an Event-Driven Architecture (4),

where Domain Events (8) are delivered as messages to subscribing interested parties.

» Anticorruption Layer. A Domain Service (7) can be defined in the downstream Context for each type of
Anticorruption Layer. You may also put an Anticorruption Layer behind a Repository (12) interface. If using REST.
a client Domain Service implementation accesses a remote Open Host Service. Server responses product
representations as a Published Language. The downstream Anticorruption Layer translates representations intc
domain objects of its local Context. This is where, for example, the Collaboration Context asks the Identity and
Access Context for a User-in-Moderator-role resource. It might receive the requested resource as XML or JSON
and then translates to a Moderator, which is a Value Object. The new Moderator instance reflects a concept in
terms of the downstream model, not the upstream model.

The chosen patterns are common ones. Constraining the choices helps keep the scope of integration discussed in this book
manageable. We’ll see, even among these select few patterns, that there is diversity in how they can be applied.

The question remains: Is that all there is to creating a Context Map? Possibly. The high-level view provides a good amoun
of knowledge about the project as a whole. Still, we may be curious about what goes on inside the connections and the named
relationships on each Context. Curiosity among team members influences us to produce a bit more detail. When we zoom in,
the somewhat blurred picture of the three integration patterns becomes clearer.

Let’s take a minor step back in time. Since the Collaboration Context was the first Core Domain, let’s peer inside it. First
we introduce the zooming technique with the simpler integrations, then progress to the more advanced ones.

Collaboration Context

Now, back to the experience of the Collaboration team. . .

The Collaboration Context was the first model and system—the first Core Domain—and its workings are now well
understood. The integrations employed here are easier yet less robust in terms of reliability and autonomy. Creating a zoomed
Context Map is done with relative ease.

As a client of the REST-based services published by the Identity and Access Context, the Collaboration Context takes a
traditional RPC-like approach to reaching resources. This Context doesn’t permanently record any data fromthe Identity and
Access Context that it can subsequently reference for local reuse. Rather, it reaches out to the remote system to request
information every single time it needs it. This Context is obviously highly dependent on remote services, not autonomous. This
is a fact that SaaSOvation is willing to live with for now. Integration with a Generic Subdomain was completely unexpected
To meet their demanding delivery schedule the team couldn’t invest time in a more elaborate autonomous design. At the time
the up-front ease-of-design perk could not be passed up. After the rollout of ProjectOvation and the experience with autonomy
gained there, similar techniques may be employed for CollabOvation.

The boundary objects in the zoomed Map captured inFigure 3.6 request a resource synchronously. When the remote model’s

representation is received, the boundary objects grab the content of interest out of the representation and translate it, creating
the appropriate Value Object instance. A Translation Map to turn the representation into a Value Object is shown in Figure 3.7.

Here auser in the Role of Moderator in the Identity and Access Context is translated as a Moderator Value Object in the
Collaboration Context.

ldentity and Access
Context

UserResource

/tenants/(tenantld)/users/(username)/inRole/(role)

HTTFPClient (Facade)

\\

UserRoleAdapter

CollaberaterTranslator

CollaboratorService

Collaboration Context

Figure 3.6. A zoom in on the Anticorruption Layer and Open Host Service of the integration between the Collaboration
Context and the Identity and Access Context

Moderator

emailAddress
identity

name

HTTP/1.1l 200 OK
Content-Tvpe: app 1/wnd. saadovation. idovation+ml
<userInRole>

<tenantId=CChi (E-6409-41B9-B4DA-DBT7R5107C8CE</tenantId>

<emailiddress=John.Doe@domainmethod. org</emailaddress>
<rolexModerator</role>
</userInRole>
Figure 3.7. A logical Translation Map that shows how a representational state (XML in this case) is mapped to a Value
Object in the local model.

Whiteboard Time
Create a Translation Map of one of the interesting aspects of integration found in your project’s Bounded Context.

What if you find the translations overly complex, requiring a lot of data copying and synchronization, making your
translated object look a lot like the one from the other model? Perhaps you are using too much from the foreign Bounded
Context, adopting too much from that model, and thus causing confusing conflict in your own model.

Unfortunately, if the synchronous request fails because the remote system is unavailable, the entire local execution must fail.
The user will be informed of the problem and asked to try again later.

Systems integrations commonly rely on RPC. At a high level RPC appears to be very much like a regular programmin;
procedure call. Libraries and tools make it attractive and easy to use. Unlike calling a procedure that resides in your owr
process space, however, a remote call has a higher potential for performance-degrading latency or outright failure. Network
and remote system load can delay RPC completion. When the RPC target system is unavailable, a user’s request to your syster
will not complete successfully.

While REST-based resource usage isn’t really RPC, it still has similar characteristics. Although complete system failure i:
relatively rare, this is a potentially annoying limitation. The team looks forward to improving on this situation as soon as
possible.

Agile Project Management Context

Since the Agile Project Management Context is the new Core Domain, let’s pay particularly close attention to it. Let’s
zoom in on it and its connections to other models.

To achieve a greater degree of autonomy than RPC affords, the Agile Project Management Context team will need to
carefully constrain its use. Out-of-band, or asynchronous, event processing is therefore strategically favored.

A greater degree of autonomy can be achieved when dependent state is already in place in our local system. Some may think
of this as a cache of whole dependent objects, but that’s not usually the case when using DDD. Instead we create local domair
objects translated from the foreign model, maintaining only the minimal amount of state needed by the local model. To get the
state in the first place we may need to make limited, well-placed RPC calls, or similar requests for REST-based resources
But any necessary synchronization with remote model changes can often best be achieved through message-oriented
notifications published by remote systems. The notifications might be sent on a service bus or a message queue, or be
published via REST.

Think Minimalistic
The synchronized state is the limited, minimal attributes of the remote models that are needed by the local model. It’s not
only to limit our need to synchronize data, it’s also a matter of modeling concepts properly.

It pays to limit our use of remote state, even when considering the design of the local modeling elements themselves. We
don’t want, for example, a Productowner and a TeamMember to in reality reflect a Userowner and a UserMember because they
take on so many characteristics of the remote User object that a hybridization happens unwittingly.

Integration with the Identity and Access Context

Looking at the zoomed Map inFigure 3.8, we see that the resource URIs provide notifications about significant Domair
Events that have occurred in the /dentity and Access Context These are made available through the NotificationResource
provider, which publishes a RESTful resource. Notification resources are groups of published Domain Events. Every Ever
ever published is always available for consumption in order of occurrence, but each client is responsible for preventing
duplicate consumption.

ldentity and Access
Context

MotificationResource

/tenants/notifications

/tenants/notifications/(notificationld)

HTTPClient (Facade)

N

ldentityAccessNotificationsAdapter

7

MemberTranslator

MemberService

maintainMembers()

Agile Project Management
Context

Figure 3.8. A zoom in on the Anticorruption Layer and Open Host Service of the integration between the Agile Project
Management Context and the Identity and Access Context

A custom media type indicates that two resources can be requested:

Click here to view code image

application/vnd.saasovation.idovation+json
//iam/notifications
//iam/notifications/{notificationId}

The first resource URI enables clients to get (literallynTTep GET) the current notification log (a fixed set of individual
notifications). Per the documented custom media type,

application/vnd.saasovation.idovation+json

the URI is considered minted and stable because it never changes. No matter what the current notification log consists of
this URI provides it. The current log is a set of the most recent events that have occurred in the Identity and Access model. The
second resource URI enables clients to get and navigate a chain of all previous event-based notifications that have beer
archived. Why do we need a current log and any number of distinct archived notification logs? See Domain Events (8) and
Integrating Bounded Contexts (13) for details on how feed-based notifications work.

Actually at this point the ProjectOvation team is not committed to using REST in all cases. For example, they are currentl
negotiating with the CollabOvation team over whether to use a messaging infrastructure instead. Under consideration is the use
of RabbitMQ. Nonetheless, at this time their integrations with the Identity and Access Context will be REST-based.

For now let’s leave most of the technology details out of the picture and consider the role of each of the objects interacting
in the zoomed Map. Here’s an explanation of the integration steps visually demonstrated in the sequence diagram found in
Figure 3.9:

* MemberService 1S @ Domain Service that is responsible for providingProductowner and TeamMember objects to
its local model. It is the interface of the basic Anticorruption Layer. Specifically, maintainMembers () is used
periodically to check for new notifications from the /dentity and Access Context This method is not invoked by

normal clients of the model. When a recurring timer interval fires, the notified component uses the Memberservice
by invoking method maintainMembers (). Figure 3.9 shows the timer recipient as MemberSynchronizer, which
delegates to MemberService.

* The Memberservice delegates to TdentityAccessNotificationAdapter, wWhich plays the role of the Adapter
between the Domain Service and the remote system’s Open Host Service. The Adapter acts as a client to the remotx
system. The interaction with the remote Notification-Resource is not shown.

* Once the Adapter has received the response from the remote Open Host Service, it delegates to the
MemberTranslator to translate the Published Language media into concepts of the local system. If the local Member
instance already exists, the translation updates the existing domain object. This is indicated by the Memberservice
self-delegation to its internal updateMember (). The Member subclasses are ProductOwner and TeamMember, which
reflect the local contextual concepts.

MemberSynchronizer MemberService || ldentityAccessNotificationAdapter || MemberTranslator || HTTFPClient

maintainMembers() I : i :
> synchronizeMembers() r-' 1 |
| GET |
| 1
| toMember ()
| updateMember())D |
| |
| | | | |
| o | |
| | | | |

|
< |
|
Figure 3.9. A view of the inner workings of the Agile Project Management Context and Identity and Access
Anticorruption Layer

We should not focus on the technologies or integration products involved. Rather, by cleanly separating Bounded Contexts,
we are able to keep each Context pure, while applying data from other Contexts to express concepts in our own.

The diagrams and supporting text exemplify how we might create Context Map documents. It need not be extensive bu
should provide enough background and explanation to bring a new project member up to speed. However, create a document
only if it is helpful to the team.

Integration with the Collaboration Context

Next, let’s consider how the Agile Project Management Context interacts with the Collaboration Context. Here, too, we
strive for autonomy, but this raises the bar, posing some interesting challenges to accomplish the goal of system independence.

ProjectOvation has add-on features that are supplied by CollabOvation. Some include project-based forum discussions anc
shared calendar scheduling. Users won’t directly interact with CollabOvation. ProjectOvation must determine whether the
options are available to a given tenant and, if so, on its own facilitate resource creation in CollabOvation.

Consider a section of this Create a Product use case:
Precondition: The collaboration feature is enabled (option was purchased).
1. The user provides Product descriptive information.
2. The user indicates a desire for a team discussion.
3. The user requests that the defined Product be created.
4. The system creates the Product with a Forum and Discussion.

A Forum and a Discussion must be created in the Collaboration Context on behalf of the Product. In contrast, this is unlike
the Identity and Access Context where a tenant has already been provisioned and users, groups, and roles have been defined,
and notifications about those events are available. In that case the objects are preexisting. In this case the Agile Project
Management Context needs objects that don’t exist yet and won’t exist until it requests them. That’s a potential obstacle to
autonomy because we depend on the availability of the Collaboration Context in order to create resources remotely. With
desired autonomy, this raises an interesting challenge.

Why Is Discussion Used in Both Contexts?

This is an interesting situation because it’s one where the name of the concept, Discussion, is the same in both Bounded
Contexts, but they are different types, different objects, and thus have different state and different behavior.

In the Collaboration Context a Discussion is an Aggregate and it manages a set of Posts—implicit children that are
themselves Aggregates. In the Agile PM Context the Discussion is a Value Object and only holds a reference to the actual
Discussion with Posts in the foreign Context. Note, however, that inChapter 13 when the team implements the
integrations, they discover that they should strongly type the different kinds of Discussions in the Agile PM Context.

We need to leverage eventual consistency using Domain Events (8) and an Event-Driven Architecture (4). There’s
nothing that says that only remote systems can consume notifications produced by our local system. When a
ProductInitiated Domain Event is published by our model, it is handled by our own system. The local handler requests the
Forum and Discussion to be created remotely. This could be done via RPC or messaging, depending on what CollabOvatio
supports. If using RPC and the remote collaboration system were not available at that time, the local handler would simply
keep trying on a periodic basis until it finally met with success. If messaging is supported instead of RPC, the local handlei
would send a message to the collaboration system. In turn, collaboration would respond with its own message when resource
creation completes. When the Event handler back in ProjectOvation received this notification, it would update theproduct
with an identity reference to its newly created discussion.

What happens if the product owner or team members try to use the discussion prior to its existence? Is the unavailable
discussion considered a bug in the model? Will it cause the system to exhibit an unreliable condition? Consider the fact that
any given subscriber may not have paid to use the collaboration add-on in the first place. That’s a nontechnical reason to

design in resource unavailability. Working around eventual consistency is in no way a kludge. It’s just another valid state that
should be modeled.

An elegant way to handle all of the possible unavailability scenarios is to make them explicit. Consider this Standard Type
implemented as a State [Gamma et al.], as described in Value Objects (6):

Click here to view code image

public enum DiscussionAvailability {
ADD ON NOT ENABLED, NOT_ REQUESTED, REQUESTED, READY;
}

public final class Discussion implements Serializable {
private DiscussionAvailability availability;
private DiscussionDescriptor descriptor;

}

public class Product extends Entity {

private Discussion discussion;

Using this design, abpiscussion Value Object is protected from misuse because the State defined by
DiscussionAvailability protects it. When someone attempts to participate in a discussion about the product, it can safely
hand off its discussion State. If not READY, the participant will be shown one of three messages:

To use team collaboration you need to purchase the add-on option.

The product owner didn’t request the creation of a product discussion.

The discussion setup has not yet completed; check back soon.

Ifthe Discussion availability is READY, we allow full team member participation.

Interestingly, as implied by the first of the unavailable state messages, the possibility exists that the business chooses to
make collaboration options selectable even though they have not yet been purchased. Leaving collaboration Ul options enablec
could be an effective marketing tickler to encourage follow-on purchase. Who better to nag management to purchase an add-on
option than those who are daily reminded that they could be using it, but cannot? Clearly, technical benefits are not the only
ones realized by the use of the availability State.

At this time the team isn’t certain what its actual integration with collaboration will be. For the sake of Customer-Supplier
discussions, they’ve produced the diagram in Figure 3.10. The Agile Project Management Context may use a second
Anticorruption Layer to manage integration between itself and the Collaboration Context. It would be like the one it uses for
the Identity and Access Context. The diagram shows the primary boundary objects, which are similar to their counterparts
used for identity and access management integration. Actually there is not one single collaborationAdapter. It is just a

placeholder for the several needed, but unknown at this time.

Collaboration Context

CalendarResource

ForumResource

HTTPClient (Facade)

\

CollaborationAdapter

X

| ___——> DiscussionTranslator

SchedulingTranslator

DiscussionService SchedulingService

Agile Project Management
Context

Figure 3.10. A zoom in on an Anticorruption Layer and Open Host Service of the possible integration components
between Agile Project Management Context and Collaboration Context

Shown inside the local Context are DiscussionService and SchedulingService. These represent the Domain Services
that could be used to manage discussions and calendar entries in the collaboration system. The actual mechanisms will be
determined by Customer-Supplier negotiations between the teams, which are implemented in Integrating Bounded Contexts
(13).

The team can understand part of their model now. What happens, for example, when a discussion has been created and the
result is communicated to the local Context? The asynchronous component—either RPC client or message handler—tells the
Product t0 attachDiscussion (), passing it a new Discussion Value instance. All local Aggregates with pending remote
resource interests will be cared for in this fashion.

This examination has gone into some useful detail on Context Maps. We need to exercise restraint, however, as we can
quickly reach the point of diminishing returns. Perhaps we could have included Modules (9), but those have been placed in
their own dedicated chapter. Include any relevant, high-level elements that will lead to vital team communication. On the other
hand, push back when detail seems ceremonious.

Produce Context Maps that you can post on the wall. You can upload them to a team wiki as long as it’s not just the project’s
attic where nobody ever goes. Keep discussions about the project flowing back to your Map to stimulate useful refinements.

Wrap-Up
That was definitely a productive session with Context Mapping.

» We’ve discussed what Context Maps are, what help they provide to your team, and how you can create them with
ease.

* You took a detailed look into SaaSOvation’s three Bounded Contexts and their supporting Context Maps.

» Using mapping, you zoomed in on the integrations between each of the Contexts.
* You examined the boundary objects supporting Anticorruption Layer and their interactions.

* You saw how to produce a Translation Map showing the local mapping between REST-based resources and the
corresponding object in the consuming domain model.

Not every project will need the level of detail demonstrated here. Others may require more. The trick is to balance the neec
to understand with practicality and not pile too much detail into this level. Remember that we are likely not going to keep a
very detailed graphical Map up-to-date far into the project. We’ll benefit most from what can be posted on a wall, enabling
team members to point at them during discussions. If we reject ceremony and embrace simplicity and agility, we’ll produce
useful Context Maps that help us move forward rather than bog down the project.

Chapter 4. Architecture

Architecture should speak of its time and place, but yearn for timelessness.
—Frank Gehry

One of the big advantages of DDD is that it doesn’t require the use of any specific architecture. Since our carefully craftec
Core Domain (2) resides at the heart of a Bounded Context (2), it enables one or more architectural influences to play a role
in the entire application or system.1 Some architectural influences surround the domain model and have a broad overall effect,
while others address specific demands. The goal is to use just the right choices and combinations of architecture and
architecture patterns.

The real demands for specific software qualities should drive the use of architectural styles and patterns. The ones choser
must be proven to meet or exceed required qualities. Avoiding architectural style and pattern overuse is just as important as
using the right ones. Allowing real, genuine quality demands to drive what we do with architecture is a beneficial risk-driven
approach [Fairbanks]. That way we use architecture only to mitigate the risk of failure, not to increase our risk of failure by
using an architectural style or pattern that cannot be justified. Thus, we must be able to justify every architectural influence in
use, or we eliminate it from our system.

Our ability to justify the selection of any architectural styles and patterns is limited to the available functional requirements,
such as use cases or user stories, and even scenarios specific to the domain model. In other words, you cannot determine the
necessary software qualities without functional requirements. Lacking these kinds of inputs, we actually cannot make sound
architectural choices, which implies that employing a use-case-driven architecture approach to software development is still
applicable today.

Road Map to This Chapter
« Listen in on a retrospective interview with SaaSOvation’s CIO.
* Learn how the trusty Layers Architecture has been improved on by DIP and Hexagonal.
* See how Hexagonal can support Service-Oriented and REST.
* Gain perspective on Data Fabric or Grid-Based Distributed Cache and Event-Driven styles.
* Consider how a newer architecture pattern called CQRS helps with DDD.
* Learn from the architectures employed by the SaaSOvation teams.

Architecture Isn’t a Coolness Factor

The following architectural styles and patterns are not a grab bag of cool tools we should apply everywhere possible.
Instead, use them only where applicable, where they mitigate a specific risk that would otherwise increase the potential
for project or system failure.

[Evans] focused on the Layers Architecture. That being so, SaaSOvation first concluded that DDD could only be effectiv
using that well-known pattern. It took the teams some time to understand that DDD is considerably more adaptable than that
even though Layers was most popular at the time [Evans] was written.

The principles of a Layers Architecture can still be used to govern good decision making. We don’t need to stop there,
however, as we’ll consider some of the more modern architectures and patterns that can be leveraged where needed. This will
prove the versatility and broad applicability of DDD.

For sure, SaaSOvation did not need every architectural influence all at once, but its teams needed to choose wisely from the
options available to them.

Interviewing the Successful C1I0

To give a bit of a perspective on why each of the architectural influences discussed in the chapter might be used, we’re
going to leap a decade into the future and talk to SaaSOvation’s CIO. While the company’s beginnings werehumble,
architectural decision helped it succeed each step of the way. Let’s tune in to the program TechMoney, with Anchor Maria
Finance-Ilmundo . . .

Maria: Tonight, my exclusive interview is with Mitchell Williams, CIO of the enormously successful
SaaSOvation. We’re continuing our “Know Your Architectural $tyles” series. Tonight’s focus is on
how selecting the right architecture can bring enduring success. Welcome to the show, Mitchell, and
thanks for joining us.

Mitchell: I'm glad to be here again, Maria. It’s always a pleasure.

Maria: Can you take us through some of the early architectural decisions you went with, and why?

Mitchell: Of course. Believe it or not, we actually started off planning our projects around desktop
deployment. Our team designed for the desktop application to persist to a central database. They
chose the Layers Architecture for this approach.

Maria: Did that make sense?

Mitchell: Well, we believe it did, especially since we were only dealing with a single application
tier plus the central database. It would have served us well for a simple client-server style.

Maria: But the tables soon turned, didn’t they?

Mitchell: They certainly did. We actually joined forces with a business partner and decided to move
forward with an SaaS subscription model. We sought some significant funding to support our efforts
and landed it. We determined that our agile project management application would go on the back
burner for a while until we first developed a suite of collaboration tools. This had a twofold benefit.
First, we’d enter the accelerating collaboration market, but then we’d also have a natural feature add-
on for the project management application. You know, collaborating on software development project
deliverables.

Maria: Interesting. It all sounds quite grassroots. Where did these decisions lead you?

Mitchell: As the software complexity increased, we needed to manage quality by introducing unit and
feature testing tools. To do that, we kind of turned Layers on its ear by introducing the Dependency
Inversion Principle, or DIP. It was important since the team could easily test by stubbing out the U
and Infrastructure Layers and concentrate on testing the Application and Domain. In fact, we coulc
develop the Ul in isolation and delay decisions on persistence technology for some time. And it
actually wasn’t a big leap away from Layers. The team had a high comfort level.

Maria: Wow, swapping out the Ul and persistence! That seems risky. How tough was it?

Mitchell: Well, actually not so much. As it turns out, the fact that we were using the Domain-Driven
Design tactical patterns didn’t hurt us at all. Since we used the Aggregate pattern and Repositories.
we could develop against in-memory persistence behind the Repository interfaces and swap in a
persistence mechanism after we had time to consider our options.

Maria: Dude.

Mitchell: Totally.

Maria: And?

Mitchell: Bang. Things were off and running. We delivered CollabOvation and ProjectOvation, witl

successive profitable quarters.

Maria: Ka-ching.

Mitchell: Got that right. We then decided that we wanted to support mobile devices in addition to
desktop browsers since mobile exploded and it got all over us. For that we’d use REST. Subscribers
started asking for things like federated identity and security, as well as sophisticated project and time
resource management tools. And then new investors wanted to see reports on their preferred business
intelligence dash.

Maria: Amazing. So mobile wasn’t the only thing exploding. Let me get your take on dealing with all
that.

Mitchell: The team decided that migrating to a Hexagonal Architecture was an appropriate choice to
handle all these additions. They found that the Ports and Adapters approach gave them the ability to
add new kinds of clients almost ad hoc. The same went for new output Port types, like innovative new
persistence mechanisms, such as NoSQL, and messaging capabilities. And that all spelled c-1-o0-u-d.

Maria: So you had confidence in those modifications?
Mitchell: Absolutely.

Maria: Huge. If you don’t buckle under all that, it probably means you made great choices that
leveraged your ability to go even further.

Mitchell: Exactly. By now we were adding new tenants by many hundreds every month. We actually
added a service to migrate existing data from legacy corporate collaboration tools into our cloud. The
team decided that an SOA focus allowed them to aggregate this data nicely using Mule’s Collectior
Aggregator. It could sit on the service boundary while still using the Hexagonal Architecture.

Maria: Ah, so you didn’t introduce SOA because it sounded cool. You used it when it made sense.
Perfect. We haven’t seen good decision making like that throughout the industry.

Mitchell: Yes, Maria, and that’s really the approach we took all along. It was our blueprint for
success. For example, in time we added TrackOvation, our defect tracking software, which integrated
with ProjectOvation. And as ProjectOvation features grew, the Ul became more and mork
sophisticated. The Product Owner’s dashboard of all Scrum products and defects in their systems
updated with each application command and corresponding event. Since Product Owners across
subscribing tenants had different preferred views, it made the dashboards even more complex. And,
naturally, we also had to support the mobile devices. The team considered the merits of including a
CQRS architecture pattern.

Maria: CQRS? Come on, Mitch, that’s pretty heady. Was that one of those uncertainties that we don
know how it plays out? What about walking off the plank there?

Mitchell: No, not really. Once the team had a valid reason to use CQRS to ease the friction betweer
the command and query universes, it was full steam ahead, and they never looked back.

Maria: Exactly. Wasn’t that about the time that your subscribers starting asking for features that
required distributed processing?

Mitchell: Yes; if we didn’t get this one right we’d soon be drowning in complexity. Some features
required running through a series of distributed processes before delivering an answer. The
ProjectOvation team would not make the user wait for these potentially long-running tasks and risk
time-outs. They introduced a fully Event-Driven Architecture, employing a classic Pipes and Filters:
pattern to manage these.

Maria: But that wasn’t the end of your journey down Complexity Lane, was it? How tough was that?

Mitchell: LOL. No, no. Never would that happen, it seemed. However, when you have a smart team
it makes Complexity Lane like a stroll in the park. In actuality, the Event-Driven Architecturc
simplified many areas of the expanding suite of systems.

Maria: True, that. Go on. That was anobvious opportunity. We’re getting to my favorite part of the
story. You know . . . [eyes twinkle $$$]

Mitchell: Our architecture allowed us to scale so rapidly and manage change so well that
RoaringCloud acquired SaaSOvation for, well . . . that’s all a matter of public record.

Maria: I’d say, and very public. At $50 per common share that was around $3 billion worth of public

record.

Mitchell: Good memory for financial facts! And that was serious incentive to get the integration right.
They brought a vast number of new subscribers, and the user base actually started to stress the
ProjectOvation infrastructure. It was now time to distribute and parallelize the Pipes and Filters. Tha
called for adding in long-running processes, sometimes called Sagas.

Maria: Nice. Can you categorically say that that was fun?
Mitchell: Fun indeed, but necessary even more so.

Maria: And it seems that the fun would never end. Probably one of the least expected and even
shocking chapters in your long success story came next.

Mitchell: You know it. Now that RoaringCloud had a monopoly in the marketplace due to the
plethora of subscription applications and millions of users, the government took notice and began
regulating the industry. A new law was passed to require RoaringCloud to track every change to a
project. Actually, the best way to handle this compliance situation as a natural part of the domain
model was to use Event Sourcing.

Maria: Man, you were poised. That’s crazy. [mean, really, really crazy.
Mitchell: That’s a crazy good problem to have, really.
Maria: What’s so amazing to me is that through all these years, the core of your applications was

based on DDD software models. Yet, obviously DDD didn’t hurt you. You seemed to not experience
hardships because of it.

Mitchell: In fact it was quite the opposite. We firmly believe that it was because we chose DDD
early, and took the time to understand it thoroughly, that the business situations we could not escape—
and didn’t want to—were handled in stride.

Maria: Well, as I like to say, “Ka-ching!” Thanks again, Mitchell. We’ve learned how selecting the
right architecture can bring enduring success, right here on “Know Your Architectural $tyles.”

Mitchell: My pleasure, Maria. Thanks for inviting me.

That was a bit quirky, but helpful. It demonstrates how the architectural influences discussed in the following sections can be
used with DDD, and how to introduce each at just the right time.

Layers

The Layers Architecture [Buschmann et al.] pattern is considered by many to be the granddaddy of all. It supports N-tier
systems and is, thus, commonly used in Web, enterprise, and desktop applications. Here we rigorously separate the various
concerns of our application or system into well-defined layers.

Isolate the expression of the domain model and the business logic, and eliminate any dependency on
infrastructure, user interface, or even application logic that is not business logic. Partition a complex
program into layers. Develop a design within each layer that is cohesive and that depends only on the
layers below. [Evans, Ref, p. 16]

Figure 4.1 shows the layers common to a DDD application that uses a traditional Layers Architecture. Here the isolatec
Core Domain resides in one layer in the architecture. Above it are the User Interface and Application Layers. Below it is the
Infrastructure Layer.

User Interface Laver

/

Applicatiora Layer

\ Y

Domain Layer

! /

Infrastructure Layer

Figure 4.1. The traditional Layers Architecture in which DDD is applied

An essential rule of this architecture is that each layer may couple only to itself and below. There are distinctions within the
style. A Strict Layers Architecture is one that allows coupling only to the layer directly below. A Relaxed Layers
Architecture, however, allows any higher-level layer to couple to any layer below it. Since both the User Interface and the
Application Services often need to employ infrastructure, many, if not most, systems are based on Relaxed Layers.

Lower layers may actually loosely couple to higher layers, but this is only by means of a mechanism such as Observer or
Mediator [Gamma et al.]; there is never a direct reference from lower to higher. Using Mediator, for example, the higher layer
would implement an interface defined by the lower layer, then pass the implementing object as an argument to the lower layer.
The lower layer uses the implementing object with no knowledge of where it resides architecturally.

The User Interface is to contain only code that addresses user view and request concerns. It must not contair
domain/business logic. Some may conclude that since validation is required by the User Interface, it must contain business
logic. The kinds of validation found in the User Interface are not the kinds that belong in the domain model (only). As discussed
in Entities (5), we still want to limit coarse-grained validations that express deep business knowledge only to the model.

If the User Interface components use objects from the domain model, it is generally limited to rendering its data on the glass.
If using this approach, a Presentation Model (14) can be used to prevent the view itself from knowing about domain objects.

Since a user may be either a human or other systems, sometimes this layer will provide the means to remotely invoke the
services of an API in the form of an Open Host Service (13).

Components in the User Interface are direct clients of the Application Layer.

Application Services (14) reside in the Application Layer. These are different from Domain Services (7) and are thus
devoid of domain logic. They may control persistence transactions and security. They may also be in charge of sending Event-
based notifications to other systems and/or for composing e-mail messages to be sent to users. The Application Services in this
layer are the direct clients of the domain model, though themselves possessing no business logic. They remain very lightweight,
coordinating operations performed against domain objects, such as Aggregates (10). They are the primary means of
expressing use cases or user stories on the model. Hence, a common function of an Application Service is to accept parameters
from the User Interface, use a Repository (12) to obtain an Aggregate instance, and then execute some command operation on
it:

Click here to view code image

@Transactional

public void commitBacklogItemToSprint (
String aTenantId, String aBacklogItemId, String aSprintId) {
TenantId tenantId = new TenantId(aTenantId);

BacklogItem backlogItem =
backlogItemRepository.backlogItemOfId (
tenantId, new BacklogItemId (aBacklogItemId)):;

Sprint sprint = sprintRepository.sprintOfId(
tenantId, new SprintId(aSprintId)):;

backlogItem.commitTo (sprint);

If our Application Services become much more complex than this, it is probably an indication that domain logic is leaking
into the Application Services, and that the model is becoming anemic. So it’s a best practice to keep these model clients very
thin. When a new Aggregate must be created, an Application Service would use a Factory (11) or the Aggregate’s constructor
to instantiate it and then use the corresponding Repository to persist it. An Application Service may also use a Domain Service
to fulfill some domain-specific task designed as a stateless operation.

When the domain model is designed to publish Domain Events (8), the Application Layer may register subscribers to any
number of Events. Doing so enables the Events to be stored, forwarded, and otherwise dealt with as one of the application’s
duties. This frees the domain model to be aware of only its own core concerns and enables the Domain Event Publisher (8) to
remain lightweight and liberated from messaging infrastructure dependencies.

Since the domain model possessing all business logic is discussed at great length in the other chapters, it is not repeated
here. Nonetheless, there are some challenges associated with the domain and the use of traditional Layers. Using Layers may
require the Domain Layer to make some limited use of Infrastructure. I’m not saying that core domain objects would do this, as
we should absolutely avoid that altogether. However, adhering to the definition of Layers may require implementations of some
interfaces in the Domain Layer that depend on technologies provided by Infrastructure.

For example, Repository interfaces require implementations that use components, such as persistence mechanisms, housed ir
Infrastructure. What if we just implemented the Repository interfaces in Infrastructure? Since the Infrastructure Layer is below
the Domain Layer, the references from Infrastructure upward to Domain would violate the rules of Layers Architecture. Still
avoiding that does not mean that the primary domain objects would couple to Infrastructure. To avoid that we might use
implementation Modules (9) to hide technical classes:

com.saasovation.agilepm.domain.model.product.impl

As indicated in Modules (9), MongoProductRepository could be housed in that package. This is not the only way to
address this challenge, however. We might decide instead to implement such interfaces in the Application Layer, which would
uphold the rules of Layers. Figure 4.2 provides a glimpse of this approach. But doing that may seem a bit distasteful.

User Interface Layer

A_pplication Laver

Implements Domain Layer
interfaces

Domain Layer

Figure 4.2. The Application Layer could house some technical implementations of interfaces defined by the Domain
Layer.

There is a better way, as discussed in the section entitled “Dependency Inversion Principle.”

In a traditional Layers Architecture the Infrastructure is at the bottom. Things like persistence and messaging mechanisms
reside there. Messages may include those sent by enterprise messaging middleware systems or more basic e-mails (SMTP) o
text messages (SMS). Think of all the technical components and frameworks that provide low-level services for the

application. Those are usually considered to be part of Infrastructure. The higher-level Layers couple to the lower-leve
components to reuse the technical facilities provided. That being the case, again we want to reject any notion of coupling core
domain model objects to Infrastructure.

The SaaSOvation teams noted that having the Infrastructure Layer at the bottom posed some disadvantages. For one it mad
implementing technical aspects required by the Domain Layer kind of bitter-tasting since the rules of Layers had to be violated
And actually their code was difficult to test. How could they overcome this disadvantage?

Could we whip up something a bit sweeter if we adjusted the order of Layers?

Dependency Inversion Principle
There is a way to improve on the traditional Layers Architecture by adjusting the way dependencies work. The Dependency
Inversion Principle (DIP) was postulated by Robert C. Martin and described in [Martin, DIP]. The formal definition states:
High-level modules should not depend on low-level modules. Both should depend on abstractions.
Abstractions should not depend upon details. Details should depend upon abstractions.

The essence of this definition is communicating that a component that provides low-level services (Infrastructure, for this
discussion) should depend on interfaces defined by high-level components (for this discussion, User Interface, Application,
and Domain). While there are several ways to express an architecture that uses DIP, we could boil it down to the structure
shown in Figure 4.3.

Infrastructure Layer

!

User Interface Layer

! /
Application Layer

\ Y

Domain Lavyer

Figure 4.3. The possible Layers when the Dependency Inversion Principle is used. We move the Infrastructure Layer
above all others, enabling it to implement interfaces for all Layers below.

Does DIP Really Support All Those Layers?

Some would conclude that DIP has only two layers, one at the top and one at the bottom. The one at the top woulc
implement interface abstractions defined in the layer at the bottom. Adjusting Figure 4.3 to fit this, the Infrastructure Layer
would be the one at the top, and the User Interface Layer, Application Layer, and Domain Layer would constitute one a
the bottom. You may or may not prefer this view of a DIP architecture. Don’t worry; the Hexagonal [Cockburn] or Ports
and Adapters Architecture is where this is all headed.

From the architecture of Figure 4.3, we would have a Repository implemented in Infrastructure for an interface defined ir
Domain:

Click here to view code image

package com.saasovation.agilepm.infrastructure.persistence;
import com.saasovation.agilepm.domain.model.product.*;

public class HibernateBacklogItemRepository
implements BacklogItemRepository {

@Override

@SuppressWarnings ("unchecked")

public Collection<BacklogItem> allBacklogItemsComittedTo (
Tenant aTenant, SprintId aSprintId) {
Query query =

this.session () .createQuery (
"from -BacklogItem as obj "
+ "where obj .tenant = ? and obj .sprintId = ?");

query.setParameter (0, aTenant);
query.setParameter (1, aSprintId);

return (Collection<BacklogItem>) query.list();

Focusing on the Domain Layer, using DIP enables both the Domain and Infrastructure to depend on abstractions (interfaces
defined by the domain model. Since the Application Layer is the direct client of the Domain, it depends on Domain interfaces
and indirectly accesses Repository and any technical Domain Service implementation classes provided by Infrastructure. I
may use any one of a few ways to acquire the implementations, including Dependency Injection, Service Factory, and Plug
In [Fowler, P of EAA] The examples throughout the book use Dependency Injection provided by Spring Framework anc
sometimes the Service Factory via class DomainRegistry. In fact, DomainRegistry uses Spring to look up references to
beans that implement interfaces defined by the domain model, including Repositories and Domain Services.

Interestingly enough, when we think about the influence that DIP has on this architecture, we might conclude that there are
actually no longer any layers at all. Both high-level and low-level concerns are dependent only on abstractions, which seems to
topple the stack. What if we actually thought of turning this architecture on its ear and adding a bit more symmetry? Let’s next
see how that would work.

Hexagonal or Ports and Adapters

With the Hexagonal Architecture? Alistair Cockburn codified a style to produce symmetry [Cockburn]. It advances this
goal by allowing many disparate clients to interact with the system on equal footing. Need a new client? Not a problem. Jus
add an Adapter to transform any given client’s input into that understood by the internal application’s API. At the same time,
output mechanisms employed by the system, such as graphics, persistence, and messaging, may also be diverse and swappable.
That’s possible because an Adapter is created to transform application results into a form accepted by a specific output
mechanism.

As we discuss it, you may agree that this architecture has potential for timelessness.

These days many teams that say they are using a Layers Architecture are actually using Hexagonal instead. This is due, ir
part, to the number of projects that now use some form of Dependency Injection. It’s not that Dependency Injection is
automatically Hexagonal. It’s just that it encourages a way of producing an architecture that leans naturally toward the
development of a Ports and Adapters style. In any case, a more thorough understanding will clarify this point.

We usually think of the place where clients interact with the system as its “front end.” Likewise, we consider the place
where the application retrieves persisted data, stores new persistent data, or sends output as its “back end.” But Hexagonal
promotes a different way of looking at the areas of a system, as indicated by Figure 4.4. There are two primary areas, the
outside and the inside. The outside enables disparate clients to submit input and also provides mechanisms to retrieve
persisted data, store the application’s output (for example, a database), or send it elsewhere along its way (for example,
messaging).

Adapter A

Adapter B

Adapter C
Application

AdapterE
\:ﬁ) Adapter D
Adapter F
Domain Model
Adapter G

Adapter H

10D

Figure 4.4. The Hexagonal Architecture is also known as Ports and Adapters. There are Adapters for each of the
outside types. The outside reaches the inside through the application’s API.

¥

Cowboy Logic
AlJ: “My horses sure do like their new hexagonal corral. It gives em more corners to run to when I’m carryin’ a
saddle.”
€« : = B e T = ;
] | O @DDBD_Corral

.Y "o e [

InFigure 4.4 each client type has its own Adapter [Gamma et al.], which transforms input protocols into input that is
compatible with the application’s API—the inside. Each of the hexagon’s sides represents a different kind of Port, for either
input or output. Three of the clients’ requests arrive via the same kind of input Port (Adapters A, B, and C), and one uses ¢
different kind of Port (Adapter D). Perhaps the three use HTTP (browser, REST, SOAP, and so on) and the one uses AMQ
(for example, RabbitMQ). There is not a strict definition of what a Port means, making it a flexible concept. In whatever wa:

Ports are partitioned, client requests arrive and the respective Adapter transforms their input. It then invokes an operation or
the application or sends the application an event. Control is thus transferred to the inside.

We Probably Are Not Implementing the Ports Ourselves

We actually normally don’t implement the Ports ourselves. Think of a Port as HTTP and the Adapter as a Java Servlet o
JAX-RS annotated class that receives method invocations from a container (JEE) or framework (RESTEasy or Jersey
Or we might create a message listener for NServiceBus or RabbitMQ. In that case the Port is more or less the messagin
mechanism, and the Adapter is the message listener, because it is the responsibility of the message listener to grab data
from the message and translate it into parameters suitable to pass into the Application’s API (the client of the domain
model).

Design the Application Inside per Functional Requirements

When using Hexagonal, we design the application with our use cases in mind, not the number of supported clients. Any
number and type of clients may request through various Ports, but each Adapter delegates to the application using the same
APL

The application receives requests by way of its public API. The application boundary, or inner hexagon, is also the use case¢
(or user story) boundary. In other words, we should create use cases based on application functional requirements, not on the
number of diverse clients or output mechanisms. When the application receives a request via its API, it uses the domain mode]
to fulfill all requests involving the execution of business logic. Thus, the application’s API is published as a set of Applicatior
Services. Here again, Application Services are the direct client of the domain model, just as when using Layers.

The following represents a RESTful resource published using JAX-RS. A request arrives through the HTTP input Port, ar
the handler acts as an Adapter, delegating to an Application Service:

Click here to view code image

@Path ("/tenants/{tenantId}/products")
public class ProductResource extends Resource ({

private ProductService productService;
QGET
@Path ("{productIid}")
@Produces ({ "application/vnd.saasovation.projectovation+xml" })
public Product getProduct (
@PathParam("tenantId") String aTenantId,

@PathParam("productId") String aProductId,
@Context Request aRequest) {

Product product = productService.product (aTenantId, aProductId);

if (product == null) {
throw new WebApplicationException (
Response.Status.NOT_ FOUND) ;
}

return product; // serialized to XML using MessageBodyWriter

The various JAX-RS annotations provide a significant part of the Adapter, parsing the resource path and turning it
parameters into String instances. The productsService instance is injected and used by this request to delegate to the
application inside. The product is serialized to XML and placed in aresponse, which is then sent through the HTTP outpw

Port.

JAX-RS Isn’t the Focus Here
This is just one way to use the application and domain model inside. In essence, JAX-RS is not important. We coulc

instead use Restfulie, or create a Node.js server running the restify module. Further still, Adapters designed to handle
input from other Ports would delegate to the same API, as you will see.

What about the other side of the application, to the right? Consider Repository implementations as persistence Adapters,
providing access to previously stored Aggregate instances and storage for new ones. As depicted in the diagram (Adapters E,
F, and G), we might have Repository implementations for relational databases, document stores, distributed cache, and in-
memory stores. If the application sends Domain Event messages to the outside, it would use a different Adapter (H) for
messaging. The output messaging Adapter is the opposite of the input Adapter that supports AMQP and thus goes out a differen
Port from the one used for persistence.

A big advantage with Hexagonal is that Adapters are easily developed for test purposes. The entire application and domair
model can be designed and tested before clients and storage mechanisms exist. Tests could be created to exercise
ProductService well before any decision is made to support HTTP/REST, SOAP, or messaging Ports. Any number of tes
clients can be developed before the user interface wireframes have been completed. Long before a persistence mechanism is
selected for the project, in-memory Repositories can be employed to mimic persistence for the sake of testing. See
Repositories (12) for details on developing in-memory implementations. Significant progress can be made on the core without
the need for supplementary technical components.

If using true Layers, consider the advantages of toppling the structure and developing based on Ports and Adapters instead.
When designed properly, the hexagon inside—the application and domain model—will not leak to the outside parts. This
promotes a clean application boundary inside in which use cases are implemented. Outside any number of client Adapters can
support numerous automated tests and real-world clients, as well as storage, messaging, and other output mechanisms.

When the SaaSOvation teams considered the advantages of using the Hexagonal Architecture, they decided to make the switcl
from Layers. It wasn’t difficult, actually. It just required adopting a slightly different mindset in using the familiar Spring
Framework.

Because the Hexagonal Architecture is versatile, it could well be the foundation that supports other architectures required by
the system. For instance, we might factor in Service-Oriented, REST, or an Event-Driven Architecture; employ CQRS; use
Data Fabric or Grid-Based Distributed Cache; or tack on Map-Reduce distributed and parallel processing, most of which ar
discussed later in this chapter. The Hexagonal style forms the strong foundation for supporting any and all of those additional
architectural options. There are other ways, but for the remainder of this chapter assume that Ports and Adapters is used to
assist with developing around each of the remaining topics discussed.

Service-Oriented

The Service-Oriented Architecture, or SOA, has different meanings to different people. This can make discussions about i
somewhat challenging. It’s best to try to find some common ground, or at least define the ground for this discussion. Consider
some principles of SOA as defined by Thomas Erl[Erl]. Besides the fact that services are always interoperable, they also
possess the eight design principles presented in Table 4.1.

Table 4.1. Design Principles of Services

Service Design Principle Description

1. Service Contract Services express their purpose and capabilities by
means of a contract in one or more description
documents.

2. Service Loose Coupling Services minimize dependency and only have an
awareness of each other,

3. Service Abstraction Services publish only their contract and hide internal
logic from clients,

4, Service Reusability Services can be reused by others in order to build
more coarse-grained services.

5. Service Autonomy Services control their underlying environment and
resources to remain independent, which allows them
to remain consistent and reliable.

6. Service Statelessness Services place the responsibility of state management
on consumers, where this does not conflict with
what is controlled for Service Autonomy.

7. Service Discoverability Services are described with metadara to allow dis-
covery and to make their Service Contract under-
stood, allowing them to be (rejusable assets.

8. Service Composability Services may be composed within more coarse-
grained services no matter the size and complexity of
the composition they tall within.

We can combine these principles with a Hexagonal Architecture, with the service boundary at the far left and the domain
model at the heart. The basic architecture is presented in Figure 4.5, where consumers reach services using REST, SOAP, anc
messaging. Note that one Hexagonal-based system supports multiple technical service endpoints. This has a bearing on how
DDD is used within an SOA.

Services Registry

T-Services

REST
Adapter

T-Services

SOAP
Adapter . .
Application
Adapter E)8
T-Services Adppert ,JJ
i Domain Model
% Messaging Adsptar G
Adapter

Messaging
Adapter

Figure 4.5. A Hexagonal Architecture supporting SOA, with REST, SOAP, and messaging services

Since opinions vary widely on what SOA is and what value it provides, it wouldn’t be surprising if you disagree witt
what’s presented here. Martin Fowler labels this situation “service-oriented ambiguity” [Fowler, SOA] Therefore, I won’t
make a valiant attempt to disambiguate SOA here. I will, however, provide a perspective on one way DDD fits into the set o

priorities declared in the SOA Manifesto.3

First, considering the pragmatic viewpoints expressed by one of the Manifesto contributors [Tilkov, Manifesto] gives an
important context. Commenting on the Manifesto, he brings us at least a step or two closer to understanding what SOA services
can be:

[The Manifesto] gives me the option to view a service as either a set of SOAP/WSDL interfaces or
collection of RESTful resources. . . . This is not [an] attempt at a definition—it’s an attempt to finc
out what values and principles we could find that we all can agree on.

Stefan’s comments are noteworthy. Finding agreement always helps, and we can probably agree that a business service can
be provided by any number of technical services.

The technical services could be RESTful resources, SOAP interfaces, or message types. The business service emphasize
business strategy, a way to bring business and technology together. However, defining a single business service does not
equate to defining a single Subdomain (2) or Bounded Context. No doubt as we perform both problem space and solutior
space assessments, we will find that a business service comprises a number of each. Thus, Figure 4.5 shows the architecture of
only a single Bounded Context, one that may provide a set of technical services realized through a number of RESTfu
resources, SOAP interfaces, or message types—just a part of the overall business service. In the SOA solutions space we
would expect to see many Bounded Contexts, whether any individual one uses a Hexagonal Architecture or another. Neithet
SOA nor DDD need specify how each set of technical services is designed and deployed, there being a wide variety o
options.

Still, when using DDD our goal is to create a Bounded Context with a complete, linguistically well-defined domain model
As discussed in Bounded Contexts (2), we don’t want architecture to influence the size of the domain model. That could
happen if one or a few of the technical service endpoints, such as a single REST resource, a single SOAP interface, or :

system message type, were to be used to dictate the size of a Bounded Context. Doing so would force many, very small
Bounded Contexts and domain models, perhaps each consisting of only one Entity acting as the Root of a single, smal
Aggregate. This could result in hundreds of such miniature Bounded Contexts in a single enterprise.

While that approach may be viewed as having technical advantages, it does not necessarily realize the goals of strategic
DDD. It works against a clean, well-modeled domain based on a complete and comprehensive Ubiquitous Language (1),
actually fragmenting the Language. And, according to the SOA Manifesto, unnaturally fragmenting Bounded Contexts is no
necessarily the spirit of SOA:

1. Business value over technical strategy
2. Strategic goals over project-specific benefits

Assuming we can accept these as worthy values, they align very well with strategic DDD. As explained inBounded
Contexts (2), the technical component architecture drivers are less important when partitioning models.

The SaaSOvation teams had to learn a difficult and important lesson, that listening to the linguistic drivers aligns better witlh
DDD. Each of their three Bounded Contexts reflects the goals of SOA—both for the business and in the technical services.

The three sample models discussed in Bounded Contexts (2), Context Maps (3), and Integrating Bounded Contexts (13)
individually represent the single linguistically well-defined domain model. Each domain model is surrounded by a set of open
services that implement an SOA that meets the business objectives.

Representational State Transfer—REST
Contributed by Stefan Tilkov

REST has become one of the most used, and abused, architecture buzzwords of the last few years. As usual, different people
think about different things when they use the acronym. To some, REST means sending XML over HTTP connections withot
using SOAP; some equate it with using HTTP and JSON; others believe that to do REST you need to send method arguments :
URI query parameters. All of these interpretations are wrong, but luckily—and vastly different from many other concepts suclt
as “components” or “SOA”—there is an authoritative source for what REST means: the dissertation by Roy T. Fielding, whic!
coined the term and defines it very clearly.

REST as an Architectural Style

The first thing to understand when trying to “get” REST is the concept of architectural styles. An architectural style is tc
architecture what a design pattern is to a specific design. It is an abstraction of those aspects that are common to different
concrete implementations, enabling discussion of their relevant benefits without getting lost in technical detail. There are many
different styles of distributed systems architecture, including client-server and distributed objects. The first few chapters of
Fielding’s thesis explain some of them, including the constraints they mandate for an architecture that adheres to each of them.
The concept of architectural styles and constraints imposed by them might strike you as somewhat theoretical, and you’d be
right. They form the theoretical foundation of a (then) new architectural style that Fielding introduces. This is REST, which i:
the architectural style that the Web’s architecture is supposed to adhere to.

Of course the Web—as embodied by its most important standards, URI, HTTP, and HTML—predates Fielding’s PhD worl
But he had been one of the main forces in standardization of HTTP 1.1, and a huge influence on many design decisions that lec

to the Web as we know it.# Seen this way, REST is a theoretical extrapolation, created after the fact, of the Web’s architecture
itself.

So why do we now equate “REST” with a specific way of building systems or, even more restricting, a way to build Wet
services? The reason for this is, as it turns out, that like any other technology, the Web protocols can be used in many different
ways. Some of them match the goals of the original designers; some of them don’t. One often-used analogy highlights this using
the RDBMS world familiar to many. You can use an RDBMS in line with its architectural concepts—that is, define tables wit
columns, foreign key relationships, views, constraints, and so on—or you can create a single table with two columns, one
called “key,” one called “value,” and simply store serialized objects in the value column. Of course, you’d still be using an
RDBMS, but many of its benefits will not be available to you (meaningful queries, joins, sorting and grouping, and so forth).

In a very similar fashion, the Web protocols can be used in line with the original ideas that made them what they are—with
an architecture that conforms to the REST architectural style—or be used in a way that fails to follow it. And similar to ow
RDBMS example, we ignore the underlying architectural style to our peril. Thus, a different kind of distributed system:
architecture might be appropriate if we don’t end up exploiting any of the benefits of using HTTP in a “RESTful” way, just as
NoSQL/key-value store is the better choice for storing whole values that are associated with a single unique key.

Key Aspects of a RESTful HTTP Server

So what are the key aspects of a distribution architecture that uses “RESTful HTTP”? Let’s look at the server side first. Note
that it’s entirely irrelevant whether we are talking about a server that’s used by a human using a Web browser (a “Web
application”) or used by some other agent, such as a client written in your programming language of choice (a “Web service”).

First of all, as the name implies, resources are a key concept. How so? As a system designer, you decide what are the
meaningful “things” that you want to expose as accessible from the outside, and you assign each a distinct identity. In general,
each resource has one URI, and more importantly, each URI should point to one resource—the “things” you expose to th
outside need to be individually addressable. For example, you might decide that each customer, each product, each product
listing, each search result, and maybe each change to the product catalog should be resources in their own right. Resources
have representations, renditions of their state, in one or more formats. It’s through representations—an XML or JSOM
document, an HTML form’s post data, or some binary format—that clients interact with resources.

The next key aspect is the idea of stateless communication, using self-descriptive messages. Such is an HTTP request tha
carries all the information the server needs to handle it. Of course, the server can (and usually will) use its own persistent state
to help, but it’s important that the client and server don’t rely on individual requests to set up an implicit context (a session).
This enables access to each resource independently of other requests, an aspect that helps in achieving massive scalability.

If you view resources as objects—and it’s not at all unreasonable to do so—it’s valid to ask what kind of interface they
should have. The answer is another very important aspect that differentiates REST from any other architectural style for
distributed systems. The set of methods that you can invoke is fixed. Every object supports the same interface. In RESTfu
HTTP, the methods are the HTTP verbs—most importantly, GeT, pUT, POST, DELETE—that can be applied to resources.

Even though it might appear so at first sight, these methods do not translate to CRUD operations. It is very common to creat
resources that do not represent any persistent entity but instead encapsulate behavior that is invoked once an appropriate verb
is used on them. Each of the HTTP methods has a very clear definition in the HTTP specification. For example, the ceT method
is to be used only for “safe” operations: (1) it can perform actions that reflect an effect a client might not have requested; (2) it
always reads data; (3) it can potentially be cached (if the server indicates that this is the case by means of appropriate
response headers).

HTTP’s ceT method has been called “the most optimized piece of distributed systems plumbing in the world” by none other
than Don Box, one of the main figures behind SOAP-style Web services. His words highlight that a lot of the Web’s
performance and scalability that we take for granted is due to HTTP optimizations for this particular, very common case.

Some HTTP methods areidempotent, meaning that they can be safely called again without problems in case of an error or
unclear outcome. This is true for GeT, PUT, and DELETE.

Finally, a RESTful server enables a client to discover a path through the application’s possible state transitions by means of
hypermedia. This is called Hypermedia as the Engine of Application State(HATEOAS) in Fielding’s dissertation. Put mor«
simply, the individual resources don’t stand on their own. They are connected, linked to each other. This should not come as a
surprise. After all, this is where the Web got its name. For the server, this means that it will embed links in its answers,
enabling the client to interact with connected resources.

Key Aspects of a RESTful HTTP Client

A RESTful HTTP client moves from one resource to the next either by following links contained in resource representation
or by being redirected to resources as a result of sending data for processing to the server. Server and client cooperate to

influence the client’s distribution behavior dynamically. As a URI contains all information necessary for dereferencing an
address—including host name and port—a client following the hypermedia principle might end up talking to a resource hosted
by a different application, a different host, or even a different company.

In an ideal REST setup, a client will start with a single well-known URI and continue following hypermedia controls fror
then on. This is exactly the model used by the browser when rendering and displaying HTML, including links and forms, to th
user. Then, it uses the user’s input to interact with a multitude of Web applications, without up-front knowledge about their
interface or implementations.

Granted, a browser is not a self-sufficient agent. It requires a human to make the actual decisions. But a programmatic clien
can adopt many of the same principles, even when some logic is hard-coded. It will follow links instead of assuming specific
URI structures, or even colocation of resources in one server, and it will make use of its knowledge of one or more media

types.
REST and DDD

Tempting though it may be, it is not advisable to directly expose a domain model via RESTful HTTP. This approach ofte:
leads to system interfaces that are more brittle than they need to be, as each change in the domain model is directly reflected in
the system interface. There are two alternative approaches for combining DDD and RESTful HTTP.

The first approach is to create a separate Bounded Context for the system’s interface layer and use appropriate strategies to
access the actual Core Domain from the system’s interface model. This can be deemed a classic approach, as it views the
system’s interface as a cohesive whole that is simply exposed using resource abstractions instead of services or remote
interfaces.

Consider a concrete example of this approach. We build a system that manages a workgroup, including its tasks,
schedules/appointments, subgroups, and all of the processes needed to handle these. We would design a pure domain model,
untainted by the infrastructure details, that captures the Ubiquitous Language and implements the necessary business logic. To
publish an interface to this carefully crafted domain model, we provide a remote interface as a set of RESTful resources
These resources reflect the use cases the client needs, which is very likely different from the pure domain model. Yet each
resource is built from, for example, one or more Aggregates belonging to the Core Domain.

Of course, we could simply use the domain objects as parameters to JAX-RS resource methods—Ilet’s say/:user/:task
would map to a method get-Task () that returns a Task object. That’s seemingly simple, but it comes with one major problem.
Any change to the Task object structure is immediately reflected in the remote interface, possibly breaking many clients, even
though we might only have changed something that’s entirely irrelevant to the outside world. Not good.

So the first approach is preferred, that of decoupling the Core Domain from the system’s interface model. Doing so enables
us to make changes to the Core Domain and then decide in each individual case whether that change must be reflected in the
system’s interface model and, if so, the best mapping to use. Note that with this approach, the classes designed for the system’s
interface model are usually driven by those of the Core Domain, but are certainly driven by the use cases. Note: Even in this
case we could define a custom media type.

Another approach is appropriate when more emphasis is placed on standard media types. If specific media types are
developed to support not only a single system interface but a category of similar client-server interactions, a domain model can
be created to represent each standard media type. Such a domain model might even be reused across clients and servers,
although some REST and SOA proponents view this as an anti-pattern. Note: Such an approach is essentially aShared Kernel
(3) or Published Language (3) in DDD terms.

This reflects more of an outside-in, crosscutting approach. In the workgroup and task management domain mentioned
previously, there are many common formats. Let’s consider the ical/ format as an example. This is a generic format that can be
used by many different applications. In this case we would start by selecting a media type (ical) and then creating a domain
model for this format. This model could then be used by any system that needs to understand this format—our server
application, for example, but also others (such as an Android client). Naturally, with this approach a server might need to deal
with many different media types, and the same media type might be used by multiple servers.

Which of these two approaches is chosen depends to a large degree on the goals of the system designer in terms of
reusability. The more specialized the solution, the more useful the first approach turns out to be. The more generally useful the
solution is, with the extreme end of the spectrum being standardization by an official standards body, the more sense it makes to
go with the second, media-type-centric approach.

Why REST?

In my experience, a system designed conforming to REST principles fulfills the promise of loose coupling. In general, it’s
very easy to add new resources and links to them in existing resource representations. It’s also easy to add support for new

formats where needed, leading to a much less brittle set of system connections. A REST-based system is much easier to
understand, as it’s split into smaller chunks—the resources—each of which exposes a separately testable, debuggable, and
usable entry point. The design of HTTP and the maturity of the tooling with support for features such as URI rewriting an
caching make RESTful HTTP a great choice for architectures that need to be both loosely coupled and highly scalable.

Command-Query Responsibility Segregation, or CQRS

It can be difficult to query from Repositories all the data users need to view. This is especially so when user experience
design creates views of data that cuts across a number of Aggregate types and instances. The more sophisticated your domain,
the more this situation tends to occur.

Using only Repositories to solve this can be less than desirable. We could require clients to use multiple Repositories to get
all the necessary Aggregate instances, then assemble just what’s needed into a Data Transfer Object (DTO) [Fowler, P of
EAA]. Or we could design specialized finders on various Repositories to gather the disjointed data using a single query. I
these solutions seem unsuitable, perhaps we should instead compromise on user experience design, making views rigidly
adhere to the model’s Aggregate boundaries. Most would agree that in the long run a mechanical and spartan user interface
won’t suffice.

Is there an altogether different way to map domain data to views? The answer lies in the oddly named architecture patterr
CQRS [Dahan, CQRS; Nijof, CQRS]. It is the result of pushing a stringent object (or component) design principle, command-
query separation (CQS), up to an architecture pattern.

This principle, devised by Bertrand Meyer, asserts the following;

Every method should be either a command that performs an action, or a query that returns data to the
caller, but not both. In other words, asking a question should not change the answer. More formally,
methods should return a value only if they are referentially transparent and hence possess no side

effects. [Wikipedia, CQS]

At an object level this means:

1. If a method modifies the state of the object, it is a command, and its method must not return a value. In Java and
C# the method must be declared void.

2. If a method returns some value, it is a query, and it must not directly or indirectly cause the modification of the
state of the object. In Java and C# the method must be declared with the type of the value it returns.

That’s pretty straightforward guidance, and there is a practical and theoretical basis for adhering to it. Yet, as an architecture
pattern when using DDD, why and how is it applied?

Visualize a domain model, such as one of those discussed under Bounded Contexts (2). We’d normally see Aggregates
with both command and query methods. We’d also see Repositories that have a number of finder methods that filter on certain
properties. With CQRS we are going to disregard these “normalities” and design a different way to query display data.

Now think of segregating all of the pure query responsibilities traditionally found in a model from all responsibilities that
execute pure commands on the same model. Aggregates would have no query methods (getters), only command methods.
Repositories would be stripped down to anadd () or save () method (supporting both creation and updating saves) and only a
single query method, such as from1d (). The single query method takes the unique identity of an Aggregate and returns it. A
Repository could not be used to find an Aggregate by any other means, such as by filtering on some additional properties. With
all of that removed from the traditional model, we designate it a command model. We still need a way to display data to the
user. For that we create a second model, one that is tuned for optimized queries. That’s our query model.

Isn’t This Accidental Complexity?
Your impression may be that this proposed style is a lot of work and that we are merely replacing one set of problems
with another set of problems, and adding a lot more code to do it.

Don’t be too quick to dismiss this style, however. Under some circumstances the added complexity is justifiable.
Remember, CQRS is meant to solve a specific view sophistication problem, not to tack on as a cool new style that wil
strengthen your résumg.

Known by Other Names

Note that some areas/components of CQRS may be known by other names. What I call the query model is also known a
the read model, and the command model is also called the write model.

As a result, the traditional domain model would be split in two. The command model is persisted in one store and the query
model in another. We end up with a set of components like the one in Figure 4.6. Some more details will clarify this pattern.

s

Query Query

Processor Event (all) 7| Model

Subscriber \-——-‘/

Command /—-h\
7| Processors Command _____/

(Application =
Services) Mode! Command
Model
Store

e

Figure 4.6. With CQRS, commands from clients travel one way to the command model. Queries are run against a
separate data source optimized for presentation and delivered as user interface or reports.

Examining Areas of CQRS

Let’s step through each of the major areas of this pattern. We can start with the client and query support and move through to
the command model and how updates to the query model are done.

Client and Query Processor

The client (at the far left in the diagram) may be a Web browser or a custom desktop user interface. It uses a set of query
processors running on a server. The diagram doesn’t show architecturally significant divisions between tiers on the server(s).
Whatever tiers exist, the query processor represents a simple component that only knows how to execute basic queries on a
database, such as a SQL store.

There are no complex layers here. At most this component runs a query against the query store database and maybe
serializes the query result into some format for transport (maybe a DTO, but maybe not), if that’s necessary. If the client runs
Java or C#, it could query the database directly. However, that might require a large number of database client licenses, one
per connection. Employing a query processor that uses pooled connections is the best choice.

If the client can consume a database result set (for example, JDBC variety), serialization is unnecessary but may b
desirable anyway. There are two schools of thought here. One asserts that ultimate simplicity requires that the result set, or a
very basic wire-compatible serialization of it (XML or JSON), must be consumed by the client. Others assert that DTO
should be built and consumed by the client. This may be a matter of taste, but we might agree that anytime we add DTOs anc
DTO Assemblers [Fowler, P of EAA] there is added complexity, and if not truly needed, these would be accidental
complexity. Each team determines which approach works best for their project.

Query Model (or Read Model)

The query model is a denormalized data model. It is not meant to deliver domain behavior, only data for display (and
possibly reporting). If this data model is a SQL database, each table would hold the data for a single kind of client view
(display). The table can have many columns, even a superset of those needed by any given user interface display view. Table
views can be created from tables, each of which is used as a logical subset of the whole.

Create Support for as Many Views as Needed

It’s worth noting that CQRS-based views can be both cheap and disposable (for development and in maintenance). This i
especially so if you use a simple form of Event Sourcing (see the section “Event Sourcing”’ later in the chapter and
Appendix A) and save all Events into a persistent store, which can be republished at any time to create new persistent
view data. Doing so, any single view could be rewritten from scratch in isolation or the entire query model be switched to
completely different persistence technology. This makes it easy to create and maintain views that continuously address
ongoing Ul needs. This can lead to more intuitive user experiences that avoid the table paradigm but are instead mucl
richer.

For example, a table could be designed with enough data to display user interfaces for normal users, managers, and
administrators. If a corresponding database table view was created for each of those user types, the data for each security role

would be divided appropriately. This builds security into the viewable data per user type. A normal user view component
would select all columns from the normal user table view. A manager’s view component would select all columns from the
manager’s table view. That way normal users would not be able to see what managers can see.

Preferably, a select statement requires only a primary key for the view being used. Here the query processor selects all
columns from the normal user table view of a product:

SELECT * FROM vw_usr product WHERE id = ?

As a side note, the table view naming convention seen here is not necessarily recommended. It just makes obvious what the
sample select is doing. The primary key corresponds to the unique identity of some Aggregate type or a combined set of
Aggregate types merged into a single table. In this example the id primary key column is the unique identity of a Product in the
command model. The data model design should follow, as much as possible, the pattern of one table per user interface view
type, with as many table views as necessary to reflect application security roles. But, be practical.

Be Practical

If there are 25 traders at a high-frequency trading desk and each one is trading securities that most of the others cannot
view due to SEC compliance, would we need 25 table views? Using a trader filter would be more appropriate
Otherwise, there may be too many views to maintain to be truly practical.

In practice this may be difficult to achieve, and queries may have to join multiple tables or table views as necessarily for
practical use. Joins across views/tables may be necessary or at least more practical to achieve necessary filtering. This may
tend to be the case, especially when there are many user roles at play in your domain.

Don’t Database Table Views Cause Overhead?

A basic database table view has no overhead when performing updates on the backing table. The view just corresponds to
a query, which in this case does not even require a join. Only materialized views incur update overhead since the view’s
data must be copied into one place so it is ready for selects. Use care when designing tables and views so that query
model updates perform optimally.

Client Drives Command Processing

User interface clients submit commands to the server (or indirectly execute an Application Service method) as the means of
executing behavior on Aggregates, which are in the command model. The submitted command contains the name of the
behavior to execute and the parameters necessary to carry it out. The command packet is a serialized method invocation. Since
the command model has carefully designed contracts and behaviors, matching the commands to the contracts is a
straightforward mapping.

To accomplish this the user interface must collect the data necessary to correctly parameterize the command. This implies
that much thought must be given to user experience design. It must lead users toward the proper goal of submitting an explicit
command. An inductive, task-driven user interface design works best [Inductive UI] It filters out all inapplicable options,
focusing on precision command execution. That said, it is possible to design a deductive user interface that generates an
explicit command.

Command Processors

A command submission is received by a Command Handler/processor, which can have a few different styles. We consider
those styles here, along with some advantages and disadvantages.

We can use a categorized style with several Command Handlers in one Application Service. This style creates ar
Application Service interface and implementation for a category of commands. Each Application Service could have multiple
methods, one method declared for each type of command with parameters that fits the category. The primary advantage here is
simplicity. This kind of handler is well understood, easy to create, and easy to maintain.

We can create a dedicated style handler. Each one would be a single class with one method. The method contract facilitates
a specific command with parameters. This has clear advantages: There is a single responsibility per handler/processor; eact
handler may be redeployed independently of others; handler types can be scaled out to manage high volumes of certain kinds of
commands.

This leads to the messaging style of Command Handler. Each command is sent as an asynchronous message and delivered to
a handler designed with the dedicated style. This not only enables each command processor component to receive specifically
typed messages, but processors of a given type can be added to deal with command processing load. This approach should not

be used by default, as it has a more complex design. Instead, start off with either of the other two styles as synchronous
command processors. Switch to asynchronous only if scalability demands require it. That said, some will conclude that an
asynchronous approach providing temporal decoupling leads to more resilient systems. That viewpoint will often lead to a
bias toward implementing the messaging style of Command Handlers.

Whatever kind of handler is used, decouple each one from all others. Do not allow any one handler to depend on (make use
of) any others. This will allow any type of handler to be redeployed independently without impacting others.

Command Handlers generally do only a few things. If one has a creation aspect, it instantiates a new Aggregate instance anc
adds the new instance to its Repository. Most often it gets an Aggregate instance from its Repository and executes a command
method behavior on it:

Click here to view code image

@Transactional

public void commitBacklogItemToSprint (
String aTenantId, String aBacklogItemId, String aSprintId) {
TenantId tenantId = new TenantId(aTenantId);

BacklogItem backlogltem =
backlogItemRepository.backlogltemOfId (
tenantId, new BacklogItemlId (aBacklogItemId)) ;

Sprint sprint = sprintRepository.sprintOfId(
tenantId, new SprintId(aSprintId)):;

backlogItem.commitTo (sprint) ;

When the Command Handler completes, a single Aggregate instance has been updated and a Domain Event has beet
published by the command model. This is essential to ensuring that the query model is updated. Note too that, as discussed ir
Domain Events (8) and Aggregates (10), the published Event may also be used to cause the synchronization of other
Aggregate instances effected by this one command, but the modification of the additional Aggregate instances would be
eventually consistent with the one committed by this transaction.

Command Model (or Write Model) Executes Behavior

As each command method on the command model is executed, it completes by publishing an Event as described in Domain
Events (8). Using the running example, the Back1ogItem would complete its command method as follows:

Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
public void commitTo (Sprint aSprint) {

DomainEventPublisher

.instance ()

.publish (new BacklogItemCommitted (
this.tenant (),
this.backlogItemId(),
this.sprintId()));

What’s Behind the Publisher Component?

This particular bomainEventPublisher is a lightweight component based on the Observer pattern [Gamma et al.]. See
Domain Events (8) for details on how Events get published broadly.

This is the linchpin for updating the query model with the most recent changes to the command model. If using Even
Sourcing, the Events are also necessary for persisting the state of the Aggregate that has just been modified (BacklogItem in
this example). However, it is not a necessity to use Event Sourcing with CQRS. Unless Event logging is a requiremer

specified by the business, the command model can be persisted using an object-relational mapper (ORM) to a relational
database or some other approach. Either way, a Domain Event must still be published to ensure that the query model is
updated.

When Commands Don’t Result in Event Publishing

There are circumstances when command dispatching does not lead to Events being published. For example, if a commanc
was delivered by “at-least-once” messaging and the application ensures idempotent operations, the redelivered message
is silently dropped.

Also consider the case where the application validates incoming commands. All authorized clients know about
validation rules and will always pass them. However, all unauthorized clients—such as those of attackers—submitting
invalid commands will fail and can be silently dropped without endangering authorized users.

Event Subscriber Updates the Query Model

A special subscriber registers to receive all Domain Events published by the command model. The subscriber uses eact
Domain Event to update the query model to reflect the most recent changes to the command model. This implies that each Even
must be rich enough to supply all the data necessary to produce the correct state in the query model.

Should the updates be performed synchronously or asynchronously? It depends on the normal load on the system, and
possibly also on where the query model database is stored. Data consistency constraints and performance requirements will
influence the decision.

To update synchronously, the query model and command model would normally share the same database (or schema), and
we would update the two models in the same transaction. That keeps both models completely consistent. Yet, this will require
more processing time for the multiple table updates, which may not meet the service-level agreement (SLA). If the system is
normally under heavy load and the query model update process is lengthy, use asynchronous updates instead. This may lead to
challenges of eventual consistency, where the user interface will not immediately reflect the most recent changes in the
command model. The lag time is unpredictable, but it is a trade-off that may be necessary to meet other SLAs.

What happens when a new user interface view is created but its data must be created? Design the table and any table views
as described previously. Populate the new table with current state using one of a few techniques. If the command model is
persisted using Event Sourcing, or if there is a full historical Event Store, replay the historical Events to produce the updates
This is possible only if the right kinds of Events already exist in the store. If they don’t, the table may have to be populated as
future commands enter the system. There may be another option.

If the command model is persisted using an ORM, use the backing command model store to populate the new query mode
table. This may employ a common data warehousing (or report database) generation technique, such as extract, transform, load
(ETL). Extract the data from the command model store, transform it as needed by the user interface, and load it into the query
model store.

Dealing with an Eventually Consistent Query Model

If the query model is designed to be eventually consistent—query model updates are performed asynchronously following
writes to the command model store—there will be resulting idiosyncrasies in the user interface to deal with. For example, after
a user submits a command, will the next user interface view have the fully updated and consistent data reflected from the query
model? It may depend on system load and other factors. But we had better assume not and design for the worst case, where the
user interface is never consistent.

One option is to design the user interface to temporarily display the data that was successfully submitted as parameters of the
command just executed. This is a bit of a trick, but it enables the user to immediately see what will eventually be reflected in
the query model. It may be the only way to ensure that the user interface does not display completely stale data just after a
command is successfully executed.

What if that is not practical for a given user interface? Even if it is, there are also times when any one user executes a
command and all other users viewing related data will absolutely see stale data. How can this challenge be met?

One technique suggested by [Dahan, CQRS]always explicitly displays on the user interface the date and time of the data
from the query model that a user is currently viewing. To do so, each record in the query model needs to maintain the date and
time of the latest update. This is a trivial step, generally supported by a database trigger. With the date and time of the latest
update, the user interface can now inform the user how old the data is. If the user determines that the data is too stale to use, he
or she can at that time request fresher data. Admittedly this approach is lauded by some as an effective pattern and heavily
criticized by others as a hack or artifice. Certainly these opposing viewpoints indicate the need to perform user acceptance
tests before this approach is employed in our own systems.

Yet, it’s possible that the delayed view data synchronization is not a critical problem at all. It may also be overcome by
other means, such as Comet (aka Ajax Push), or another form of latent update, such as some variation of Observer [Gamma et
al.] or Distributed Cache/Grid (for example, Coherence or GemFire) event subscriptions. Addressing delays may even be as
easy as informing users that their request has been accepted and a result will require some processing time. Carefully
determine whether the eventual consistency lag time poses a problem. If so, you’ll have to find the best way to address it in a
given environment.

As with every pattern, CQRS introduces a number of competing forces. We must exercise a great deal of care and choose
wisely. Certainly if a user interface is not overly complex or regularly cut across several different Aggregates in a single view,
employing CQRS would serve to introduce accidental complexity rather than necessary complexity. CQRS is the right choici
when it removes a risk that has a high probability of causing failure if ignored.

Event-Driven Architecture

Event-driven architecture (EDA) is a software architecture promoting the production, detection
consumption of, and reaction to events. [Wikipedia, EDA]

The Hexagonal Architecture shown in Figure 4.4 can represent the notion of one system participating in an EDA by means of
incoming and outgoing messages. An EDA doesn’t have to use Hexagonal, but it’s a decent way to present the concepts here.
On a greenfield project it would be well worth it to consider using Hexagonal as the overarching style.

Examining Figure 4.4, say that the triangular client and the corresponding triangular output mechanism represent the
messaging mechanism used by the Bounded Context. Input events enter on a Port separate from the one used by the other threc
clients. Output events likewise travel via a different Port. As proposed previously, the separate Ports could represent the
message transport over AMQP, as used by RabbitMQ, rather than the more common HTTP that the other clients use
Whichever actual messaging mechanism may be in use, we will assume that events enter and exit the system by means of the
symbolic triangles.

There may be a number of different kinds of events that enter and exit a hexagon. We are interested specifically in Domain
Events. The application may also subscribe to system, enterprise, or other types of events as well. Perhaps those deal witl
system health and monitoring, logging, dynamic provisioning, and the like. Yet, it is the Domain Events that convey the
happenings requiring our modeling attention.

We can replicate the system in the Hexagonal Architecture view as many times as necessary to represent the complement of
systems in the enterprise that support the Event-Driven way. That’s been done in Figure 4.7. Again, it’s not that every system
will be based on Hexagonal. The diagram just demonstrates how Event-Driven could be supported if multiple systems were
Hexagonal at their foundation. Otherwise, feel free to replace the hexagons with Layers, or another style.

Incoming events Hexagonal Architecture

Y\

Incoming events Outgoing events

VAN
>

Figure 4.7. Three systems using an Event-Driven Architecture with an overarching Hexagonal style. The EDA style
decouples all but the systems’ dependency on the messaging mechanism itself and the Event types they subscribe to.

The Domain Events published by one such system through the output Port would be delivered to subscribers represented ir
the others through their input Port. The various Domain Events received have a specific meaning in each receivingBounded

Context, or possibly no meaning at all2 If the Event type is of interest in a specific Context, its properties are adapted to the

application’s API and used to execute an operation there. The command operation executed on the application’s API is ther
reflected into the domain model according to its protocol.

It’s possible that a specific Domain Event received represents only one part of a multitask process. Until all anticipatec
Domain Events arrive, the multitask process is not considered completed. But how does the process begin? How is 1
distributed across the enterprise? And how do we handle tack progress through to process completion? The answers are
discussed subsequently in the section on long-running processes. But first some initial groundwork is in order. Message-based
systems often reflect a Pipes and Filters style.

Pipes and Filters

In one of its simplest forms, Pipes and Filters are available using a shell/console command line:

$ cat phone numbers.txt | grep 303 | wc -1
3
S

Here a Linux command line is used to find how many contacts are in the fancy personal information manager,
phone numbers.txt, Who have Colorado-based phone numbers. Admittedly this is not a very reliable way to implement that
use case, but it does demonstrate how Pipes and Filters work:

1. The cat utility outputs the contents of phone numbers.txt to what is called the standard output stream.
Normally this stream is connected to the console. But when the | symbol is used, the output is piped to the input of the
next utility.

2. Next, grep reads its input from the standard input stream, which was the result of cat. The argument to grep tells
it to match lines that contain the text 303. Each line that it finds is output to its standard output stream. As with cat,
grep’s output stream is now piped to the input of the next utility.

3. Finally, we reads its standard input stream, which was piped from grep’s standard output. The command-line
argument to wc is -1, telling it to count the number of lines it reads. It outputs the result, which in this case is 3,
because three lines were output by grep. Note that now the standard output is displayed to the console since this time
there is no Pipe to an additional command.

This can be approximated using a Windows console, but with less piping:

Click here to view code image

C:\fancy pim> type phone numbers.txt | find /c "303"
3
C:\fancy pim>

Consider what happens with each of the utilities. Each receives a dataset, processes it, and outputs a different dataset. The
dataset that is output changes from the input because each utility acts as a Filter. By the end of the filtering process the output is
completely different from the input. The input started out as a text file with individual lines of contact information and ended up
being the text digit representing the number 3.

Using the basic principles from this example, how might we apply them to an Event-Driven Architecture? In fact, we car
find some useful overlap. The following discussion is based on the Pipes and Filters messaging pattern found in [Hohpe,
Woolf]. Understand, however, that a messaging Pipes and Filters approach is not exactly like the command-line version, and it
is not intended to be. For example, an EDA Filter doesn’t need to actually filter anything. A Filter in an EDA may be used t
perform some processing while leaving the message data intact. Yet Pipes and Filters in an EDA is similar enough to the
command-line type that the previous example helped lay some groundwork for what follows. If you are a more advanced
reader, feel free to “filter” what follows.

Table 4.2 presents some of the basic characteristics of a message-based Pipes and Filters process.

Table 4.2. Basic Characteristics of a Message-Based Pipes and Filters Process

Characteristic

Description

Pipes are message
channels

Filters receive messages on an inbound Pipe and send mes-
sages on an outbound Pipe. The Pipe is actually a message
channel.

Ports connect Filters
to Pipes

Filters connect to inbound and outbound Pipes through a
Port. Ports make Hexagonal (Ports and Adapters) a fitting
overarching style.

Filters are processors

Filters may process messages without actually filtering.

Separate processors

Each Filter processor is a separate component, and proper
component granularity is achieved by careful design.

Loosely coupled

Each Filter processor is composed into the process inde-

pendent of all others, Filter processor composition may be
defined by configurarion.

The order in which a processor receives messages may be
rearranged per use case requirements, again using config-
ured composition.

Interchangeable

While the command-line Filters read from and write to
only one Pipe, messaging Filters may read from and/or
write to multiple Pipes, which implies parallel or concur-
rent processing,.

Filters may
multi-Pipe

The busiest and possibly slowest Filters may be deployed in
multiples to increase throughput.

Use same-type Filters
in parallel

Now, what if we were to think of each of the utilities cat, grep, and we (or type and find) as components in an Event-
Driven Architecture? What if we even implemented components to act as message senders and receivers to process telephone
numbers in a similar way? (Again, I am not trying to illustrate a one-to-one command-line replacement, just a simple messaging
example with the same basic goals.)

Here’s how a messaging Pipes and Filters approach could work, with steps illustrated in Figure 4.8:

1. We could start off with a component named PhoneNumbersPublisher that reads all the lines in
phone numbers.txt and then creates and sends an Event message that includes all of the text lines. The Event is
named A11PhoneNumbersListed. Once it is sent, the pipeline begins.

2. A message handler component named PhoneNumberFinder 1is configured to subscribe to
AllPhoneNumbersListed and receives it. This message handler is the first Filter in the pipeline. The Filter i
configured to search for the text 303. This component processes the Event by searching each line for the 303 text
sequence. It then creates a new Event named PhoneNumbersMatched, placing the full lines of matching results in the
Event. The Event message is sent, continuing the pipeline.

3. A message handler component named MatchedPhoneNumberCounter 1S configured to subscribe to
PhoneNumbersMatched and receives it. This message handler is the second Filter in the pipeline. Its sole
responsibility is to count the phone numbers in the Event and then forward the results in a new Event. In this case 1
counts three total lines containing phone numbers. The Filter completes by creating the MatchedPhoneNumbers-
counted Event, setting the count property to 3. The Event message is sent, continuing the pipeline.

4. Finally, a message handler component subscribed to MatchedPhoneNumbersCounted receives it. This component
is named PhoneNumber-Executive. Its single responsibility is to log the result, including the count Event property
and the date and time it was received, to a file. In this case it writes

3 phone numbers matched on July 15, 2012 at 11:15 PM

FPhoneNumbersFPublisher &6

sends

Y

<<event:>>

AllPhoneNumberslListed

received by

PhoneNumberFinder

sends

Y
<<event>>

PhoneNumbersMatched

received by

Y
MatchedPhoneNumberCounter

sends

/

<<event:>>

MatchedPhoneNumbersCounted

received by

Y
logs
PhoneNumberExecutive ‘--_._! \

Figure 4.8. A pipeline is formed by sending Events that the Filters process.

The pipeline for this specific process is now completed.®

This kind of pipeline is somewhat flexible. If we wanted to add any new Filters to the pipeline, we’d create new Events tha
each existing Filter subscribes to and publishes. Basically we’d have to carefully change the sequential order of the pipeline
via configuration. Of course, it’s not as easy to change this process as with the command-line approach. Typically, however,
we won’t change Domain Event pipelines all that frequently. While this particular distributed process is not very useful ir
itself, it does demonstrate how Pipes and Filters might work in a messaging, Event-Driven Architecture.

So, would we actually expect that we’d see Pipes and Filters exploited to solve a problem like this? Well, ideally not. (Ir
fact, if you find this example annoying, it’s probably because you already know better. That’s fine, but there are plenty of
others who are helped by it.) This is meant only as a synthetic example, one that highlights the concepts. In a real enterprise we
would use this pattern to break down a large problem into smaller steps that would make distributed processing easier to
understand and manage. It would also allow multiple systems to care only for what they do well.

In an actual DDD scenario, Domain Events reflect names meaningful to the business. Step 1 could publish a Domain Ever
based on the behavioral outcome of an Aggregate in one Bounded Context. Steps 2 through 4 could occur in one or more
different Bounded Contexts that receive the initial Event and then publish one of the subsequent ones. Those three steps coulc
create or modify Aggregates in their respective Contexts. It does depend on the domain, but those are common outcomes of
handling Domain Events in a Pipes and Filters Architecture.

As explained in Domain Events (8), these are not just paper-thin technical notifications. They explicitly model business
process activity occurrences that are useful for domain-wide subscribers to know about, and they pack unique identity and as
many knowledge-conveying properties as necessary to clearly get their point across. Yet this synchronous, step-by-step style
can be extended to accomplish more than one thing at the same time.

Long-Running Processes, aka Sagas

The synthetic Pipes and Filters example can be extended to demonstrate another Event-Driven, distributed, paralle

processing pattern, namely, Long-Running Processes. A Long-Running Process is sometimes called a Saga, but depending or
your background that name may collide with a preexisting pattern. An early description of Sagas is presented in[Garcia-
Molina & Salem)]. In an attempt to avoid confusion and ambiguity, I have chosen to use the name Long-Running Process, anc
sometimes I use the name Process for brevity.

Cowboy Logic
LB: “Dallas and Dynasty, now those are what I call sagas!”
AlJ: “For all you German readers, y’all know Dynasty as Der Denver Clan.”

1 $ e

Extending the previous example, we could create parallel pipelines by adding just one new Filter,
TotalPhoneNumbersCounter, as an additional subscriber to AllPhoneNumbersListed. It receives the Event
AllPhoneNumbersListed virtually in parallel with the PhoneNumberFinder. The new Filter has a very simple goal, counting
all existing contacts. This time, however, PhoneNumberExecutive both starts the Long-Running Process and tracks it througt
completion. The executive may or may not reuse the PhoneNumbersPublisher, but the important thing is what’s new about it.
The executive, implemented as an Application Service or Command Handler, tracks the progress of the Long-Running Proces:
and understands when it is completed and what to do when that happens. Refer to Figure 4.9 as we step through the sample
Long-Running Process.

reads logs

=>| FhoneNumberExecutive <

received by received by

Jlssnds

ccevent>> <<event>>»

AllPhoneNumbersCounted AllPhoneNumberslisted

sendﬁT received by ‘ ‘ ‘Lreceived by

TotalPhoneNumbersCounter PhoneNumberFinder

J,sendﬁ

c<event>>

PhoneNumbersMatched

‘l,received by

sends <<events>
—

MatchedPhoneNumberCounter e

Figure 4.9. The single Long-Running Process executive initiates the parallel processing and tracks it to completion. The
wider arrows indicate where the parallelism begins when two Filters receive the same Event.

Different Ways to Design a Long-Running Process
Here are three approaches to designing a Long-Running Process, although there may be more:

» Design the process as a composite task, which is tracked by an executive component that records the steps and
completeness of the task using a persistent object. This is the approach discussed most thoroughly here.

* Design the process as a set of partner Aggregates that collaborate in a set of activities. One or more Aggregate
instances act as the executive and maintain the overall state of the process. This is the approach promoted by
Amazon’s Pat Helland [Helland].

* Design a stateless process in that each message handler component that receives an Event-carrying message must
enrich the received Event with more task progress information as it sends the next message. The state of the overall
process is maintained only in the body of each message sent from collaborator to collaborator.

Since the initial Event is now subscribed to by two components, both Filters receive the same Event virtually
simultaneously. The original Filter goes about as it always has, matching the specific 303 text pattern. The new Filter only
counts all lines, and when it has completed, it sends the EventA11PhoneNumberscounted. The Event includes the count of
total contacts. If there are, for example, 15 total phone numbers, the Event count property is set to 15.

Now it is the responsibility of PhoneNumberExecutive to subscribe to two Events, bothMatchedPhoneNumbersCounted
and A11PhoneNumbersCounted. The parallel processing is not considered completed until both of these Domain Events are
received. When completion is reached, the results of the parallel processing are merged into a single result. The executive now
logs

3 of 15 phone numbers matched on July 15, 2012 at 11:27 PM

The log output is enhanced with the total count of phone numbers in addition to the previous matching, date, and time
information. Although the tasks performed to yield results were really simple, they were performed in parallel. And if at least
some of the subscriber components were deployed to different computing nodes, the parallel processing was also distributed.

There is a problem with this Long-Running Process, however. TherhoneNumberExecutive currently has no way of
knowing that it has received the two completion Domain Events associated with the specific, corresponding parallel
processes. If many such processes were started in parallel, and completion Events for each were received out of order, how
would the executive know which parallel process was ending? For our synthetic example, logging with mismatched events is
hardly tragic. But when dealing with corporate business domains, an improperly aligned Long-Running Process could be¢
disastrous.

The first step in the solution to this troublesome situation is to assign a unique Process identity that is carried by each of the
associated Domain Events. This could be the same identity assigned to the originating Domain Event that causes the Long
Running Process to begin (for example,A11PhoneNumbers-Listed). We could use a universally unique identifier (UUID)
allocated specifically to the Process. See Entities (5) and Domain Events (8) for a discussion of providing unique identity.
The PhoneNumberExecutive would now write output to the log only upon receiving completion Events with equal identities.
However, we can’t expect the executive to wait around until all the completion Events are received. It, too, is an Even
subscriber that comes and goes with the receipt and handling of each delivery.

Executive and Tracker?

Some find that merging the concepts of executive and tracker into a single object—an Aggregate—to be the simplest approach.
Implementing such an Aggregate as a part of the domain model that naturally tracks just a part of the overall Process can be a
liberating technique. For one, we avoid developing a separate tracker as state machine, in addition to the Aggregates that must
also exist. In fact, the most basic Long-Running Processes are best implemented just that way.

In a Hexagonal Architecture, a Port-Adapter message handler would simply dispatch to an Application Service (or Commanc
Handler), which would load the target Aggregate and delegate to its appropriate command method. Since the Aggregate would
in turn fire a Domain Event, the Event would be published in part as an indication that the Aggregate has completed its role ir
the Process.

This approach closely follows that promoted by Pat Helland, which he refers to aspartner activities [Helland], and is the
second approach described in the sidebar “Different Ways to Design a Long-Running Process” Ideally, however, discussing a
separate executive and tracker is a more effective way to teach the overall technique, and a more intuitive way to learn it.

In an actual domain each instance of a Process executive creates a new Aggregate-like state object for tracking its eventual
completion. The state object is created when the Process begins, associating the same unique identity that each related Domair
Event must carry. It may also be useful for it to hold a timestamp of when the Process began (the reasons are discussed later ir
the chapter). The Process state tracker object is illustrated in Figure 4.10.

reads logs

= PhoneNumberExecutive <

received by received by
checks and
updates
c<event>> f ccevent>>
AllPhoneNumbersCounted <<saga state>> MatchedPhoneNumbersCounted

FPhoneNumberStateTracker

+hasTimedOut()
+isCompleted()
+totalMatchedPhoneNumbers()
+totalPhoneNumberCount()

Figure 4.10. A PhoneNumberStateTracker serves as a Long-Running Process state object to track progress. The
tracker is implemented as an Aggregate.

As each pipeline in the parallel processing completes, the executive receives a corresponding completion Event. The
executive retrieves the state tracking instance by matching the unique Process identity carried by the received Event and sets a
property that represents the step just completed.

The Process state instance usually has a method such as iscompleted (). As each step is completed and recorded on this
state tracker, the executive checks iscompleted (). This method checks for the recorded completion of all required parallel
processes. When the method answers true, the executive has the option to publish a final Domain Event if required by the
business. This Event could be required if the completing Process is just a branch in a larger parallel process, for example.

A given messaging mechanism may lack features that guarantee single delivery of each Event! If it is possible for the
messaging mechanism to deliver a Domain Event message two or more times, we can use the Process state object to de-
duplicate. Does this require special features to be provided by the messaging mechanism? Consider how it can be handled
without them.

When each completion Event is received, the executive checks the state object for an existing record of completion for
that specific Event. If the completion indicator is already set, the Event is considered a duplicate and is ignored, yet
acknowledged.® Another option is to design the state object to be idempotent. That way, if duplicate messages are received
by the executive, the state object absorbs the duplicate occurrence recordings equally. While only the second option designs
the state tracker itself as idempotent, both of these approaches support idempotent messaging. See Domain Events (8) for
further discussion of Event de-duplication.

Some Process completion tracking may be time-sensitive. We can deal with Process time-outs passively or actively. Recall
that the Process state tracker can hold a timestamp of its inception. Add to this a total allowable time constant (or
configuration) value and the executive can manage time-sensitive Long-Running Processes.

A passive time-out check is performed each time a parallel processing completion Event is received by the executive. The
executive retrieves the state tracker and asks it if a time-out has occurred. A method such as hasTimedout () can serve that
purpose. If the passive time-out check indicates that the allowable time threshold has been exceeded, the Process state tracker
can be marked as abandoned. It’s also possible to publish a corresponding failure Domain Event. Note that a disadvantage of
the passive time-out check is that the Process could remain active well past its threshold if one or more completion Events are
for some reason never received by the executive. This may be unacceptable if a larger parallel process is dependent on certain
success or failure of this Process.

An active Process time-out check can be managed using an external timer. For example, a JMXTimerMBean instance is one
way to get a Java-managed timer. The timer is set for the maximum time-out threshold just as the Process begins. When the
timer fires, the listener accesses the Process state tracker. If the state is not already completed (always checked in case the

timer fires just as an asynchronous Event completes the Process), it is then marked as abandoned, and a corresponding failure
Event is published. If the state tracker is marked as completed prior to the timer firing, the timer can then be terminated. One
disadvantage of the active time-out check is that it requires more system resources, which may burden a high-traffic
environment. Also, a race condition between the timer and the arriving completion Event could incorrectly cause failure.

Long-Running Processes are often associated with distributed parallel processing but have nothing to do with distributec
transactions. They require a mindset that embraces eventual consistency. We must enter any effort to design a Long-Running
Process soberly, with the expectation that when infrastructure or the tasks themselves fail, well-designed error recovery is
essential. Every system participating in a single instance of a Long-Running Process must be considered inconsistent with al
other participants until the executive receives the final completion notification. True, some Long-Running Processes may be
capable of succeeding with only partial completion, or they may delay for even a number of days before full completion. But it
the Process runs aground and the participating systems are left in inconsistent states, compensation may be necessary. If
compensation is mandatory, it could surpass the complexity of designing the success path. Perhaps business procedures could
allow for failures and offer workflow solutions instead.

N
The SaaSOvation teams employ an Event-Driven Architecture across Bounded Contexts, and the ProjectOvation team will us

the simplest form of a Long-Running Process to manage the creation ofpiscussions assigned to Product instances. The
overarching style is Hexagonal to manage the outside messaging and publishing of Domain Events around the enterprise.

Not to be overlooked is that the Long-Running Process executive can publish one, two, or more Events to initiate the parallel
processing. There may also be not only two, but three or more subscribers to any initiating Event or Events. In other words, ¢
Long-Running Process may lead to many separate business process activities executing simultaneously. Thus, our synthetic
example is limited in complexity only for the sake of communicating the basic concepts of a Long-Running Process.

Long-Running Processes are often useful when integration with legacy systems can have high latency. Even if latency anc
legacy are not the chief concerns, we still benefit from the distribution and parallelism with elegance, which can lead to highly
scalable, highly available business systems.

Some messaging mechanisms have built-in support for Long-Running Processes, which can greatly expedite adoption. Ong
such is [NServiceBus], which specifically calls them Sagas. Another Saga implementation is provided with [MassTransit].

Event Sourcing

Sometimes the business cares about tracking changes that occur to the objects in a domain model. There are varying levels of
change tracking interest, and ways to support each level. Typically businesses have chosen to track only when some entity is
created and last modified, and by whom. It’s a relatively simple and straightforward approach to change tracking. This,
however, doesn’t provide any information about the individual changes in the model.

With an increased desire for even more change tracking, the business demands more metadata. It begins to care also about
the individual operations that were executed over time. Maybe it even wants to understand how long certain operations took to
execute. Those desires lead to the need to maintain an audit log or journal of the finer-grained use case metrics. But an audit
log or journal has its limitations. It can convey some information about what has happened in the system, perhaps even
allowing for some debugging. But it doesn’t allow us to examine the state of individual domain objects before and after

specific kinds of changes. What if we could stretch more out of change tracking?

As developers we have all experienced finer-grained change tracking in one form or another. The most common example is
with the use of a source code repository, such as CVS, Subversion, Git, or Mercurial. What all of these variations of sourcs
revision management systems have in common is that they all know how to track changes that occur on a source file. The
change tracking provided by this genre of tool enables us to go all the way back in time, to view a source code artifact from its
very first revision, and then to proceed revision by revision, all the way to the very latest. When committing all source files to
revision control, it can track changes of the whole development life cycle.

Now, if we think about applying this concept to a single Entity, then to an Aggregate, then to every Aggregate in the model,
we can understand the power of change tracking objects and the value it can produce in our systems. With that in mind, we
want to develop a means to know what occurred in the model to cause the creation of any given Aggregate instance, and also
what has happened to that given Aggregate instance throughout time, operation by operation. Given the history of everything
that’s happened, we could even support temporal models. This level of change tracking is at the heart of a pattern named Event

Sourcing.? Figure 4.11 shows a high-level view of this pattern.

executes
: command on publishes received by ; .
Client > Aggregate > Event >| EventsPersisterSubscriber
| Event
stores
applied to Event
finds aggregate instance using read by
>| Repository < -L—.L,

Figure 4.11. A high-level view of Event Sourcing, where Aggregates publish Events that are stored and used to track
the model’s state changes. The Repository reads Events from the Store and applies them to reconstitute the
Aggregate’s state.

There are varying definitions of Event Sourcing, so some clarification is fitting. We are discussing the use where every
operational command executed on any given Aggregate instance in the domain model will publish at least one Domain Event
that describes the execution outcome. Each of the events is saved to an Event Store (8) in the order in which it occurred.
When each Aggregate is retrieved from its Repository, the instance is reconstituted by playing back the Events in the order ir
which they previously occurred.l? In other words, first the very earliest Event is played back, and the Aggregate applies the
Event to itself, modifying its state. Next, the second-oldest Event is played back in the same manner. This continues until all
Events, from the oldest to the most recent, are completely played back and applied. At that point the Aggregate exists in the
state it had upon the most recent execution of some command behavior.

A Moving Target?
The definition of Event Sourcing has undergone some scrutiny and refinement, and at the time of writing it is still nor
completely settled. As with most leading-edge techniques, refinement is necessary. What is described here captures the

essence of the pattern as applied using DDD and probably to a large degree reflects how in general it will be used moving
forward.

Over a long period of changes to any and all Aggregate instances, doesn’t the playback of hundreds, thousands, or even
millions of Events cause serious latency and overhead in processing the model? At least for some of the higher-traffic models
that would most certainly be the case.

To avoid this bottleneck we can apply an optimization that uses Aggregate state snapshots. A process is developed to
produce, in the background, a snapshot of the Aggregate’s in-memory state at a specific point in Event Store history. To do this,
the Aggregate is loaded into memory using all previous Events to the current point in time. The Aggregate state is ther
serialized, and the serialized snapshot image is then saved to the Event Store. From that point forward the Aggregate is firs
instantiated using the most recent snapshot, and then all Events newer than that snapshot are played back on the Aggregate as
described previously.

Snapshots are not created randomly. Rather, they can be created at points where a predefined number of newer Events have

occurred. The team would determine a number based on domain heuristics or other observations. For example, we might find
that Aggregate retrieval performs optimally when having no more than 50 or 100 or so Events between snapshots.

Event Sourcing leans heavily in the direction of technical solution. We can produce domain models that publish Domair
Events without the need to support Event Sourcing. As a persistence mechanism, Event Sourcing replaces and is far differen
from using an ORM tool. Because Events are often persisted in an Event Store as binary representations, they cannc
(optimally) be used for queries. In fact, Repositories designed for an Event Sourcing model require only a single get/finc
operation, and that method takes as a parameter only the Aggregate unique identity. Further, by design Aggregates don’t have
any query methods (getters). As a result, we need another way to query, which generally leads to employing CQRS (discussec
previously) hand-in-glove with Event Sourcing.11

Since Event Sourcing leads us down the path of thinking differently about the way domain models are designed, we need tc
justify our use. At its most basic, Event history can reveal solutions to bugs in the system. Debugging with the use of explicit
history of everything that has ever happened to the model has a big advantage. Event Sourcing can lead to high-throughput
domain models, scaling to extremely large numbers of transactions per second. Appending to a single database table, for
example, is extremely fast. Further, it enables the CQRS query model to be scaled out, because updates to that data source ar¢
performed in the background after the Event Store is updated with new Events. This can additionally allow for replicating the
query model to more data source instances in support of growing numbers of clients.

But technical advantages don’t always sell techniques to the business. Thus, consider just a few of the business advantages
of using Event Sourcing that are afforded due to the technical implementation:

* Patch the Event Store with new or modified Events that fix problems. This may have business implications, but if i
is legal in a given situation, the patch can save the system from serious issues that occurred because of bugs in the
model. Since the patches have a built-in audit trail, the use of patches may decrease any legal implications by making
them explicit and traceable.
* Besides patching, we can also undo and redo changes in the model by replaying varying sets of Events. This may
have technical implications and business implications and may not be possible to support in all cases.
 With an accurate history of everything that has occurred in the domain model, the business can consider “what if?”
questions. That is, by playing back stored Events on a set of Aggregates that have experimental enhancements, the
business can get accurate answers to hypothetical questions. Would the business benefit if it could simulate
conceptual scenarios using real historical data? Very likely, yes. It’s an alternative way to approach business
intelligence.

Would the business benefit from one or more of these technical and nontechnical advantages?

Appendix A provides rich details on implementing Aggregates with Event Sourcing and discusses how views may be
projected for CQRS. For further details see [Dahan, CQRS] and [Nijof, CQRS].

Data Fabric and Grid-Based Distributed Computing
Contributed by Wes Williams

As software systems become more and more complex and sophisticated, with expanding user bases and requirements
centered around “big data,” traditional database solutions can become performance bottlenecks. Organizations that face the
realities of information systems of colossal size have no alternative but to seek solutions that are equal to the computing

challenges. Data Fabrics—also sometimes called Grid Computing2—offer performance and elastic scalability capabilities
that such business situations demand.

Cowboy Logic
AJ: “Would you like some information in exchange for a drink?”
LB: “Sorry, J. We only accept cache here.”

- A\

One good thing about Data Fabrics is that they support domain models in a natural way, nearly eliminating any impedance
mismatch. In fact, their distributed caches easily accommodate the persistence of domain objects in general and act as
Aggregate Stores specifically.!3 Simply stated, an Aggregate stored in a Fabric’s map-based cache!? is the value part of a key-
value pair. The key is formed from the globally unique identity of the Aggregate, and the Aggregate state itself is serialized to
some binary or textual representation serving as the value:

Click here to view code image

String key = product.productId() .id():
byte[] value = Serializer.serialize (product);

// region (GemFire) or cache (Coherence)
region.put (key, value);

Thus, a positive consequence of using a Data Fabric with features closely aligned with the technical aspects of a domair
model is the possibility of shortened development cycles. 12

The examples provided in this section demonstrate how a Data Fabric can host a domain model in cache and enable systen
functionalities at distributed scale. In doing so, we’ll explore ways to support the CQRS architecture pattern and Event-Drive
Architecture using Long-Running Processes.

Data Replication

Thinking of an in-memory data cache, we may immediately consider the real possibility of losing all or part of our system’s
state if the cache fails in some way. It’s a real concern, but far from troublesome when redundancy is built into the Fabric.

Consider the memory cache provided by a Fabric when using a cache-per-Aggregate strategy. In that case the Repository o
a given Aggregate type is backed by a dedicated cache. A cache supporting only a single node would be quite vulnerable to
failures at a single point. However, a Fabric providing multinode caches with replication would be quite reliable. You can
choose the level of redundancy based on the probability of the number of nodes that may fail at any given time, which becomes
very narrow as more nodes are included. You also have the latitude to trade redundancy for performance since, of course,
performance can be impacted by the number of node replications required for an Aggregate to be fully committed.

Here’s an example of how cache (or region, again depending on the concrete Fabric) redundancy may work. One node acts
as the primary cache/region, and any number of others are secondary. If a primary store fails, a fail-over occurs and one of the
secondaries becomes the new primary. When the former primary recovers, all data stored on the new primary gets replicated
to the recovered node and it becomes a secondary.

An additional advantage of fail-over nodes is that they ensure guaranteed delivery of events published from the Fabric. Thus,
updates to Aggregates and any Fabric events published as a result are never lost. Obviously, cache redundancy and replication
are essential features for storing business-critical domain model objects.

Event-Driven Fabrics and Domain Events

A primary feature of a Fabric is the support of an Event-Driven style, with guaranteed delivery. Most Fabrics have built-ir
eventing of a technical nature, that is, the automatic notification of events that inform about cache-level and entry-level

occurrences. Those should not be confused with Domain Events. For example, a cache-level event informs of happenings suclt
as cache reinitialization, and an entry-level event informs about occurrences such as entry creation and updates.

Still, with a Fabric supporting an open architecture there should be a way to support publishing Domain Events directly ou
of Aggregates. Your Domain Events may have to subclass a specific framework event type, such as EntryEvent (for example,
GemFire), but that’s a small price to pay for the power they afford.

How might you actually use Domain Events in a Fabric? As discussed inDomain Events (8), your Aggregates would use a
simple DomainEvent-Publisher component. In the cache of a Fabric this publisher may simply putthe published Events into
a specific cache/region. Cached Events would then be delivered to subscribers (listeners), either synchronously or
asynchronously. So as not to waste precious memory in this dedicated Event cache/region, as each Event is fully acknowledged
by all subscribers, its entry would be removed from the map. Of course, each Event is only fully acknowledged once it has
been published by one or more subscribers to a message queue or bus and/or used to freshen a CQRS query model.

Since Domain Event subscribers may also use the Events to carry out the synchronization of other dependent Aggregates
eventual consistency is guaranteed by means of the architecture.

Continuous Queries

Some Fabrics support a kind of event notification known as Continuous Query. This enables a client to register a query witl
the Fabric that will ensure that the client receives notification of changes in the cache that satisfy the query. One use of the
Continuous Query is by user interface components, which enables these to listen for changes that could impact the current view.

Do you see what’s coming? CQRS has a strong fit with the Continuous Query feature, assuming that the query model i:
maintained in the Fabric. Rather than requiring the view to chase after view table updates, the notifications delivered as
registered Continuous Queries are resolved, allowing the views to update just in time. Here’s an example of a client
registering for GemFire Continuous Query events:

Click here to view code image

CgAttributesFactory factory = new CgAttributesFactory():;
Cglistener listener = new BacklogIltemWatchListener():;
factory.addCglistener (listener);

String continuousQueryName = "BacklogItemWatcher";

String query = "select * from /queryModelBacklogItem gmbli "
+ "where gmbli.status = 'Committed'";

CgQuery backlogltemWatcher = queryService.newCqg(
continuousQueryName, query, factory.create());

The Data Fabric will now deliver CQRS query model updates based on Aggregate modifications to the client callbac!
object provided by the cqListener, along with metadata that was added, updated, or destroyed when the matching criteria are
met.

Distributed Processing

A powerful use of a Data Fabric is to distribute processing across the Fabric’s replicated caches and return the aggregated
results to the client. This enables the Fabric to fulfill Event-Driven, distributed parallel processing, perhaps using Long
Running Processes.

To illustrate this feature, we’ll have to mention some concrete approaches in GemFire and Coherence. Your Process
executive could be implemented as a GemFire Function or a Coherence Entry Processor. Both can serve asCommand
[Gamma et al.] handlers that execute in parallel across distributed, replicated cache. (You might instead choose to think of this
concept as a Domain Service, but what it does may not be domain-centric.) For consistency let’s call this feature a Function. A
Function can optionally accept a filter to constrain the execution against matching Aggregate instances.

Let’s look at a sample Function that implements a Long-Running Process for the previously presented Phone Number Cour
Process. This Process will be executed in parallel across the replicated cache using a GemFire Function:

Click here to view code image

public class PhoneNumberCountSaga extends FunctionAdapter {

@Override

public void execute (FunctionContext context) {
Cache cache = CacheFactory.getAnyInstance();
QueryService queryService = cache.getQueryService();

String phoneNumberFilterQuery = (String) context.getArguments();

// Pseudo code

// - Execute Function to obtain MatchedPhoneNumbersCounted.
// - Send answer to the aggregator by invoking the

// aggregator.sendResult (MatchedPhoneNumbersCounted) .
// - Execute Function to obtain AllPhoneNumbersCounted.

// - Send answer to the aggregator by invoking the

// aggregator.sendResult (AllPhoneNumbersCounted) .

// - The aggregator automatically accumulates the answers
// from each distributed Function call and returns the

// single aggregated answer to the client.

Here is sample code for a client that will execute a Long-Running Process in parallel against distributed replicated cache:

Click here to view code image

PhoneNumberCountProcess phoneNumberCountProcess =
new PhoneNumberCountProcess() ;

String phoneNumberFilterQuery =
"select phoneNumber from /phoneNumberRegion pnr "
+ "where pnr.areaCode = '303'";

Execution execution =
FunctionService.onRegion (phoneNumberRegion)
.withFilter (0)
.withArgs (phoneNumberFilterQuery)
.withCollector (new PhoneNumberCountResultCollector()):;

PhoneNumberCountResultCollector resultCollector =
execution.execute (phoneNumberCountProcess) ;

List allPhoneNumberCountResults = (List) resultsCollector.getResult();

Of course, the process could be much more complex or far simpler than this one. This also demonstrates that a Process is no
of necessity an Event-Driven concept, but one that can work with other concurrent, distributed processing approaches. For ¢
full discussion of Fabric-based distributed and parallel processing, see [GemFire Functions].

o

Wrap-Up

We’ve reviewed several architectural styles and architecture patterns that can be used with DDD. This is not an exhaustive
list because there are just too many possibilities, which emphasizes the versatility of DDD. For example, we haven™
considered how to apply DDD when Map-Reduce is at play. That’s a topic for a future discussion.

» We’ve discussed the traditional Layers Architecture and how it can be improved on by using the Dependency
Inversion Principle.

* You’ve learned about the strengths of the possibly timeless Hexagonal Architecture, which provides an overarching
style for application architectures.

» We’ve emphasized how DDD should be used in an SOA environment, with REST, and using a Data Fabric or

Grid-Based Distributed Cache.

* You got an overview of CQRS and how it can simplify some aspects of the application.

» We’ve taken a look at the various aspects of how Event-Driven works, including Pipes and Filters, Long-Running
Processes, and even a glimpse at Event Sourcing.

We next move on to a series of chapters on DDD tactical modeling. Those chapters will help you see the finer-grainec
modeling options at your disposal, and how to best put them to work.

Chapter S. Entities

I'm Chevy Chase . . . and you’re not.
—Chevy Chase

There is a tendency for developers to focus on data rather than the domain. This can happen with those new to DDD
because of the prevailing approaches to software development that place importance on the database. Instead of designing
domain concepts with rich behaviors, we might think primarily about the attributes (columns) and associations (foreign keys)
of the data. Doing so reflects the data model into object counterparts, which leads to almost every concept in our “domain
model” being coded as an Entity abounding with getter and setter methods. It’s easy to find tools that will generate all that for
us. Although there may be nothing wrong with property accessors, that’s not the only behavior DDD Entities should have.

It’s a trap that was sprung on SaaSOvation developers. Learn from their lessons in Entity design.

Road Map to This Chapter
* Consider why Entities have their proper place when we need to model unique things.
* See how unique identities may be generated for Entities.
* Look in on a design session as a team captures its Ubiquitous Language (1) in Entity design.
* Learn how you can express Entity roles and responsibilities.
* See examples of how Entities can be validated and how to persist them to storage.

Why We Use Entities

We design a domain concept as an Entity when we care about its individuality, when distinguishing it from all other objects
in a system is a mandatory constraint. An Entity is a unique thing and is capable of being changed continuously over a long
period of time. Changes may be so extensive that the object might seem much different from what it once was. Yet, it is the
same object by identity.

As the object changes, we may be interested in tracking when, how, and by whom changes were made. Or we might be
satisfied that its current form implies enough about its previous state transitions that explicit change tracking is unnecessary.
Even if we don’t decide to track every detail of its change history, we could still reason on and discuss the sequences of valid
changes that could occur to these objects over their entire lifetime. It is the unique identity and mutability characteristics that
set Entities apart from Value Objects (6).

There are times when an Entity is not the appropriate modeling tool to reach for. Misappropriated use happens far more
often than many are aware. Often a concept should be modeled as a Value. If this is a disagreeable notion, it might be that DDLC
doesn’t fit your business needs. It is quite possible that a CRUD-based system would be more fitting. If so, that decision shoulc
save your project both time and money. The problem is that pursuing CRUD-based alternatives doesn’t always save thos¢
precious resources.

Businesses regularly put too much effort into developing glorified database table editors. Without the correct tool selection,
CRUD-based solutions treated elaborately are too expensive. When CRUD makes sense, languages and frameworks such a
Groovy and Grails, Ruby on Rails, and the like make the most sense. If the choice is correct, it should save time and money.

Cowboy Logic
AJ: “What kinda CRUD did I just land in?”
LB: “That’s a cow pie, J!”
AJ: “I know what pie is. You got your apple pie and your cherry pie. This ain’t no pie.”
LB: “Like they say, ‘Never kick a cow pie on a hot day.’ It’s a good thing you didn’t kick it.”

(T S

On the other hand, if we apply CRUD to the wrong systems—more complex ones that deserve the precision of DDD—w
may regret it. When complexity grows, we experience the limitation of poor tool selection. CRUD systems can’t produce
refined business model by only capturing data.

If DDD is a justifiable investment in the business’s bottom line, we use Entities as intended.

When an object is distinguished by its identity, rather than its attributes, make this primary to its
definition in the model. Keep the class definition simple and focused on life cycle continuity and
identity. Define a means of distinguishing each object regardless of its form or history. . . . The model
must define what it means to be the same thing. [Evans, p. 92]

This chapter teaches how to place the proper emphasis on Entities and shows you various Entity design techniques.

Unique Identity

In the early stages of designing an Entity, we purposely focus only on those primary attributes and behaviors that are central
to its unique identity, as well as those useful for querying it, and we purposely ignore all other attributes and behaviors until
we settle on the primary ones.

Rather than focusing on the attributes or even the behavior, strip the Entity object’s definition down to
the most intrinsic characteristics, particularly those that identify it or are commonly used to find or
match it. Add only behavior that is essential to the concept and attributes that are required by that
behavior. [Evans, p. 93]

So that’s what we’ll do first. Having a range of available options for implementing identity is really important, as are those
for ensuring that the uniqueness is preserved throughout time.

An Entity’s unique identity may or may not also be practical for finding or matching. Using the unique identity for matching
usually depends on how human-readable it is. For example, if the application makes searching for a person’s name available to
users, it is very unlikely that the name is used as the person Entity unique identity. People very frequently have nonunique
names. On the other hand, if the application makes searching for a company’s tax ID possible, the tax ID may well be the
primary unique identifier for the company Entity. Governments issue unique tax identities.

Value Objects can serve as holders of unique identity. They are immutable, which ensures identity stability, and any
behavior specific to the kind of identity is centralized. Having a focal point for identity behavior, however simple, keeps the
know-how from leaking into other parts of the model and into clients.

Consider some common identity creation strategies, from the apparently simplest and most basic to those with increasing
complexity:
* The user provides one or more original unique values as input to the application. The application must ensure that
they are unique.

» The application internally generates an identity using an algorithm that ensures uniqueness. We can get a library or
framework to do this for us, but it can be done by the application.

* The application relies on a persistence store, such as a database, to generate a unique identity.

» Another Bounded Context (2) (system or application) has already determined the unique identity. It is input or
selected by the user from a set of choices.

Let’s consider the individual strategies, along with particular challenges related to each. There are almost always side

effects when considering the range of technical solutions. One such side effect occurs when we use relational databases for
object persistence, which leak into our domain models. We round out identity creation concerns by addressing the impact of the
timing of identity generation, the relational database’s referential identity on domain objects, and how object-relational
mapping (ORM) plays into this situation. We’ll also consider some practical guidance on keeping unique identities stable.

User Provides Identity

It appears to be a straightforward approach to have a user manually enter the details of unique identity. The user types a
recognizable value or symbol into an input field or selects from a set of available characteristics, and the Entity is created.
True, it is a simple enough approach. But there can be complications.

One complication is relying on users to produce quality identities. The identity may be unique but incorrect. Most times
identities must be immutable, so users shouldn’t change them. This is not always the case, and there may be advantages to
enabling users to correct identity values. Here’s an example. If we use the titles of Forum and Discussion as unique identities,
what would happen if the user spelled the title incorrectly, or later decided that the title was not as fitting as it could have been,
as shown in Figure 5.1? What’s the cost of change? Although user-provided identity may seem like a well-budgeted approach,
it may not be. Can users be relied upon to produce both unique and correct, long-lasting identities?

MNew Forum X Mew Discussion X
Forum Title: Discussion Title:
Uneck Identity & User Inpt ids and stuff

| OK I Cancel I | OK I Cancel I

Figure 5.1. The forum title is misspelled and the discussion title is less than desirable.

Preventing this problem starts with design discussions. Teams need to consider fail-proof approaches to enable users to
define unique identity. Workflow-based identity approval is not conducive to high-throughput domains but works best when
human-readable identity is a must. If it takes extra time and effort to create and approve an identity that will be used
pervasively throughout the business for years to come, and supporting a workflow is possible, adding a few extra cycles to
ensure the quality of the identity is a good investment.

We always have the option to include user-entered values as Entity properties available for matching, but not to use them for
unique identity. Simple properties are more easily modified as part of the normal operational state of the Entity that changes
over time. In that case we will need to use another means to obtain unique identity.

Application Generates Identity

There are highly reliable ways to autogenerate unique identities, although care must be taken when the application is
clustered or otherwise distributed across multiple computing nodes. There are identity creation patterns that can, to a much
greater degree of certainty, produce a completely unique identity. The universally unique identifier (UUID), orglobally
unique identifier (GUID), is one such approach. A common variation follows, where the result of each step is concatenatec
into a single textual representation:

1. Time in milliseconds on the computing node

2. IP address of the computing code

3. Object identity of the factory object instance within the virtual machine (Java)

4. Random number generated by the same generator within the virtual machine (Java)

This produces a 128-bit unique value. It is most often expressed as a 32-byte or 36-byte hexadecimal encoded text string.
The text format is 36 bytes when you use the common hyphen segment separators in the format f36ab21c-67dc-5274-c642-
1de2f4d5e72a. Without the hyphens it is 32 bytes. Either way, the identity is big and is not considered human-readable.

In the Java world, this formula has been replaced by a standard UUID generator available since Java 1.5. It’s provided br
class java.util.vuip. This implementation supports four different generator algorithms based on the Leach-Salz variant
Using the Java standard API, we can easily generate a pseudo-random unique identity:

String rawId = java.util.UUID.randomUUID() .toString():;

It uses type 4, employing a cryptographically strong pseudo-random-number generator, which is based on the
java.security.SecureRandom generator. Type 3 employs a name encryption approach, which uses

java.security.MessageDigest. We can get a name-based UUID like this:

Click here to view code image

String rawId = java.util.UUID.nameUUIDFromBytes (
"Some text".getBytes()).toString();

We can also blend the pseudo-random-number generation with encryption:

Click here to view code image

SecureRandom randomGenerator = new SecureRandom() ;

int randomNumber = randomGenerator.nextInt();

String randomDigits = new Integer (randomNumber) .toString();

MessageDigest encryptor = MessageDigest.getInstance ("SHA-1");

byte[] rawIdBytes = encryptor.digest (randomDigits.getBytes()):;

Now we are left only with the task of converting the rawTdBytes array to a hexadecimal text representation. We could get
that conversion for free. After generating the random number and converting it to a string, we pass that text to the uuIp
nameUUIDFromBytes () Factory [Gamma et al.] method.

There are other identity generation facilities, such as java.rmi.server.UID and java.rmi.dgc.vMID, but these seem
inferior to java.util.uuID and are not discussed here.

UUID is a relatively fast identity to generate, requiring no interaction with the outside, such as a persistence mechanism
Even if a specific kind of Entity is created many times per second, the UUID generator can keep up the pace. For higher
performance domains we can cache any number of UUID instances, refilling the cache in the background. If cached UUII
instances are lost due to server restart, there are no gaps in identities because they are all based on random, manufactured
values. Refilling the cache on server restart has no negative consequences of abandoned values.

With such a large identity, its use could in rare cases be rendered impractical because of the memory overhead. In such
cases an 8-byte long identity generated by the persistence mechanism would improve matters. A smaller, 4-byte integer, with
two billion or so unique values, may even suffice. These approaches are discussed next.

Considering the following, understandably we don’t normally want to display a UUID on our user interface views:
£36ab2lc-67dc-5274-c642-1de2f4d5e72a

A full UUID is usually appropriate when it can be hidden from users and human-readable reference techniques can be used
For example, we can design hypermedia resources with URIs that can be e-mailed or sent around using other user-to-usei
messaging. The text relationship part of the link can be used to disguise the mysterious-looking UUID, just as thetext in
<a>text disguises technical links in HTML.

Depending on the level of trust you have in the uniqueness of individual segments of the hexadecimal text UUID, you may
decide to use just one or a few segments of the whole. The shortened identities are more trustworthy when used only as the
local identity of Entities within the Aggregate (10) boundary. Local identity means that Entities held inside an Aggregate need
only have uniqueness among other Entities held inside the same Aggregate. On the other hand, the Entity serving as ar
Aggregate Root requires global unique identity.

Our own identity generator could use one or more specific UUID segments. Consider a contrived example:apM-p-08-14-
2012-r36aB21cC. This 25-character identity represents a product (P) from the Agile Project Management Context (npm) that
was created on August 14, 2012. The extra text F36aB21c is the first segment of a generated UUID, which uniquely sets it apar
from other product Entities created on the same day. It has the benefit of human readability with a high probability for global
uniqueness. Users aren’t the only ones to benefit. When identities such as this one are passed between Bounded Contexts
developers immediately know where they originated. For SaaSOvation this approach could be practical since Aggregates ar¢
further segregated by tenancy.

Maintaining this kind of identity in a string would probably not be a good choice. A custom identity Value Object would
work better:

Click here to view code image

String rawId = "APM-P-08-14-2012-F36AB21C"; // would be generated
ProductId productId = new ProductId(rawld);

Date productCreationDate = productlId.creationDate();

A client can ask for identity details, such as the date the product was created, and it’s conveniently provided. Clients need
not understand the raw identity format. Now the product Aggregate Root can expose its creation date without indicating to
clients how it is obtained:

Click here to view code image

public class Product extends Entity {
private ProductId productId;

public Date creationDate() {
return this.productId().creationDate();

}

You may find identity generation in third-party libraries and frameworks. The Apache Commons project has a Commons Ic
(sandbox) component, which supplies five different identity generators.

Some persistence stores, such as NoSQL Riak and MongoDB, can generate identities for you. Normally to save a value i
Riak, youuse HTTP purt, which takes a key:

PUT /riak/bucket/key

[object serialization]

You may instead use posT without providing a key, forcing Riak to generate a unique identity. Still, we do need to think
about early versus late identity generation, as discussed later in this chapter.

What will serve as a Factory for your application-generated identities? For Aggregate Root identity generation, I like to use
its Repository (12):

Click here to view code image

public class HibernateProductRepository
implements ProductRepository {

public ProductId nextIdentity() {
return new ProductId(
java.util.UUID.randomUUID() .toString () .toUpperCase())

This seems like a natural location for identity generation.

Persistence Mechanism Generates Identity

Delegating the generation of unique identity to a persistence mechanism has some unique advantages. If we call on the
database for a sequence or incrementing value, it will always be unique.

Depending on the range needed, the database can generate a unique 2-byte, 4-byte, or 8-byte value. In Java, a 2-byte shor
integer would allow for up to 32,767 unique identities; a 4-byte normal integer would afford 2,147,483,647 unique values; and
an 8-byte long integer would provide up to 9,223,372,036,854,775,807 distinct identities. Even zero-filled text representations
of these ranges are narrow, at five, ten, and 19 characters respectively. These can also be employed to create composite
identities.

One possible downside is performance. It can take significantly longer to go to the database to get each value than to
generate identities in the application. Much depends on database load and application demand. One way around this is to cache
sequence/increment values in the application, such as in a Repository. This can work well, but we generally count on losing a
good number of unused values when server nodes must be restarted. If the gaps caused by lost cache are unacceptable, or if you

have planned for only a relatively small number of values (2-byte short integer), caching preallocated values may not be a

practical or necessary option. It may be possible to harvest and recover lost identities, but that may be more trouble than it is
worth.

Preallocation and caching are not an issue if the model can suffice with late identity generation. Here’s how it’s done with
Hibernate and an Oracle sequence:

Click here to view code image

<id name="id" type="long" column="product id">
<generator class="sequence">
<param name="sequence">product seqg</param>
</generator>
</id>

Here’s an example of the same approach, but using a MySQL auto-increment column:

Click here to view code image

<id name="id" type="long" column="product id">
<generator class="native"/>
</id>

This does perform well, and it is quite easy to configure in a Hibernate mapping definition. The problem could be the timing
of generation, which is discussed a bit later. The remainder of this subsection covers the early identity generation requirement.

Order May Matter

Sometimes it matters when the identity generation and assignment occur for an Entity.
Early identity generation and assignment happen before the Entity is persisted.
Late identity generation and assignment happen when the Entity is persisted.

Here a Repository supports early generation, serving the next available Oracle sequence using a query:

Click here to view code image

public ProductId nextIdentity () {

Long rawProductId = (Long)
this.session ()
.createSQLQuery (

"select product seqg.nextval as product id from dual")
.addScalar ("product id", Hibernate.LONG)
.uniqueResult () ;

return new ProductlId(rawProductId);

Since Oracle returns sequence values that Hibernate maps asBigbecimal instances, we must inform Hibernate that we want
the product id result converted to a Long.

What do we do about databases, such as MySQL, that don’t support sequences? MySQL supports auto-incrementin
columns. Normally the auto-increment does not occur until a row is newly inserted. Still, there is a way to make a MySQI
auto-increment work like an Oracle sequence:

Click here to view code image

mysgl> CREATE TABLE product seq (nextval INT NOT NULL);
Query OK, 0 rows affected (0.14 sec)

mysqgl> INSERT INTO product seq VALUES (0);
Query OK, 1 row affected (0.03 sec)

mysgl> UPDATE product seq SET nextval=LAST INSERT ID(nextval + 1);
Query OK, 1 row affected (0.03 sec)

Rows matched: 1 Changed: 1 Warnings: O

mysqgl> SELECT LAST INSERT ID();

o +
| LAST INSERT ID() |
I — ——— —— +
| 1
o +

1 row in set (0.06 sec)

mysgl> SELECT * FROM product_ seqg;

o ————— +
| nextval |
o ————— +
| 1|
o ————— +

1 row in set (0.00 sec)

We’ve created a table in a MySQL database named product seq. Next, we insert a single row into the table, initializing its
one and only column, nextval, to 0. Those first two steps establish the sequence emulator for the product Entity. The next
two statements demonstrate a single sequence value generation. We update the one and only row by incrementing the nextval
column by 1. The update statement uses a MySQL function,LAST INSERT ID(), to increment the column’s InT value. The
expression parameter is first executed, then the result is assigned to the nextval column. The result of the expression
parameter nextval + 1 remains stable in the LasT INSERT ID() function, such that when the subsequence seLECT
LAST INSERT ID() statement is evaluated, the value of nextval that results from that exact execution is returned in the result
set. Last, as a test, we can SELECT * FROM product_seq to prove that the current value of nextval is the same returned with
the function result.

Hibernate 3.2.3 uses org.hibernate.id.enhanced.SequenceStyle-Generator to facilitate portable sequences, but that
supports only late identity generation (when the Entity is inserted). To support early sequence generation in a Repository we
will have to create a custom Hibernate or JDBC query. Here is a reimplementation of theproductRepository method next-
Identity () for MySQL:

Click here to view code image

public ProductId nextIdentity () {
long rawId = -1L;
try |
PreparedStatement ps =
this.connection () .prepareStatement (
"update product seqg "
+ "set next val=LAST INSERT ID(next val + 1)");

ResultSet rs = ps.executeQuery();

try |
rs.next () ;
rawId = rs.getLong(l);
} finally {
try |
rs.close();
} catch(Throwable t) {
// ignore
}

} catch (Throwable t) {
throw new IllegalStateException (
"Cannot generate next identity", t);

return new ProductId(rawId);

Using JDBC, there is no need to execute a second query on the database to get the results of functionLaST INSERT ID().
The update query does it all. We get the 1ong value from the Resultset, using it to create the Product1d.

The last trick is to get a JDBC connection from Hibernate. This can be a bit of a pain, but it’s possible:

Click here to view code image

private Connection connection() {
SessionFactoryImplementor sfi =
(SessionFactoryImplementor) sessionFactory;
ConnectionProvider cp = sfi.getConnectionProvider();
return cp.getConnection();

Without a connection object we can’t get a ResultSet by executing a PreparedsStatement. Without that it’s not possible
to use a portable sequence.

Using portable sequences from Oracle, MySQL, and other databases, we have the means to generate more compact
guaranteed unique identities that support pre-insert creation.

Another Bounded Context Assigns Identity

When another Bounded Context assigns identity, we need to integrate to find, match, and assign each identity. DDLC
integrations are explained in Context Maps (3) and Integrating Bounded Contexts (13).

Making an exact match is the most desirable. Users need to provide one or more attributes, such as an account number,
username, e-mail address, or other unique symbol, to pinpoint the intended result.

Often, matching involves fuzzy input, resulting in multiple search results, along with some human user selection. Figure 5.2
illustrates this. The user enters the “like search” (wildcard) criterion for the sought-after Entity. We access the API of the
external Bounded Context, which resolves the search to zero, one, or multiple similarly described objects. The user ther
selects the specific result from among the multiple options. The identity of the selected choice is used as the local identity.
Some additional state (properties) from the foreign Entity may also be copied into the local Entity.

Find Product X

Product Name:

Bright Day*

Bright Day Sunscreen SPF 50 22350
Bright Day Sunscreen SPF 30 22330
Bright Day Sunglasses 22399

OK] Cancel I

Figure 5.2. The search results from matching an external system to find an identity. The selection user interface may or
may not display the identity. This example does display it.

This has synchronization implications. What happens if externally referenced objects transition in ways that affect local
Entities? How will we know that the associated object changed? This problem can be solved using anEvent-Driven
Architecture (4) with Domain Events (8). Our local Bounded Context subscribes to Domain Events published by externa
systems. When a relevant notification is received, our local system transitions its own Aggregate Entities to reflect the state of
those in external systems. Sometimes synchronization must be initiated by the local Bounded Context with changes being
pushed to the originating external system.

This is rarely easy to do, but it leads to more autonomous systems. When autonomy is achieved, it can actually narrow
searches to local objects. This is not a matter of caching foreign objects locally. Rather, it involves translating foreign concepts
into those of the local Bounded Context, as explained in Context Mapping (3).

This is the most complex of identity creation strategies. The maintenance of the local Entity is dependent not only or

transitions caused by local domain behaviors but possibly also on those that occur in one or more external systems. Use this
approach as conservatively as possible.

When the Timing of Identity Generation Matters

Identity generation can occur either early, as part of the object’s construction, or late, as part of its persistence. Sometimes
it’s important to time identity generation early, and other times not. If it matters, we need to understand what’s involved.

Consider possibly the simplest case, that we can tolerate the late allocation of identity when a new Entity is persisted, that
is, a new row is inserted in the database. This is demonstrated in the diagram in Figure 5.3. The client just instantiates a new
Product and adds it to the ProductRepository. When the Product instance is newly created, the client doesn’t need its
identity. And it’s a good thing, too, because the identity won’t exist then. It’s only after the instance is persisted that the identity
is available.

Client ProductRepository Database
T I
il Product | |
=13 | I
new | l
E | I
add(aProduct) _L l
1 INSERT
setProductld()
< |

T T |
|

o I |

|

I

Figure 5.3. The simplest way to allocate a unique identity is to have the data store generate it the first time the object is
persisted.

Why might timing matter? Consider a scenario where the client subscribes to outgoing Domain Events. An Event occur:
when a new Product instantiation completes. The client saves the published Event to an Event Store (8). Eventually those
stored Events are published as notifications that reach subscribers outside the Bounded Context. Using the approach ofFigure
5.3, the Domain Event is received before the client has the opportunity to add the new product to the ProductRepository.
Thus, the Domain Event would not contain the valid identity of the new product. For the Domain Event to be correctly
initialized, the identity generation must be completed early. Figure 5.4 demonstrates that approach. The client queries for the
next identity from the ProductRepository, passing it to the Product constructor.

Client ProductRepository Database
I | I
.L| nextldentity()] l
> l
Froduct :
—_ i
l
|
add(aProduct) |
> l
INSERT
| 2 |

Figure 5.4. Here unique identity is queried from the Repository and assigned during instantiation. The complexities of
identity generation are hidden behind the Repository implementation.

There is another problem that can occur when identity generation is delayed until the Entity is persisted. It occurs when twc
or more new Entities must be added to a java.util.set, but their identity has not yet been assigned, making them equal to the
other new ones (for example, nul1, or 0, or -1). If the Entity’s equals () method compares identities, those newly added to the

set will appear to be the same object. Only the first object added will be contained, and all others will be excluded. This
causes a dubious bug whose root cause is at first difficult to understand and fix.

To avoid this bug we must do one of two things. Either we change the design to allocate and assign identity early, or we
refactor the equals () method to compare attributes other than the domain identity. If choosing the equals () method approach,
it must be implemented as if the Entity is a Value Object. In that case, the same object’s hashcode () method must harmonize
with the equals () method:

Click here to view code image

public class User extends Entity {

@Override

public boolean equals (Object anObject) {
boolean equalObjects = false;
if (anObject != null &&
this.getClass () == anObject.getClass()) {
User typedObject = (User) anObject;
equalObjects =
this.tenantId() .equals (typedObject.tenantId()) &&
this.username () .equals (typedObject.username()))

}

return equalObjects;

}

@Override
public int hashCode () {
int hashCode =
+ (151513 * 229)
+ this.tenantId () .hashCode ()
+ this.username () .hashCode () ;

return hashCode;

In the case of a multitenancy environment, the Tenant1d instance is also considered part of unique identity. No two User
objects under different Tenant subscribers must be considered equal.

More to the point, when faced with this add-to-set situation, I prefer early allocation and assignment to the Value equality
test approach. It is more desirable for Entities to haveequals () and hashCode () methods that are based on the object’s
unique identity rather than other attributes.

Surrogate Identity

Some ORM tools, such as Hibernate, want to deal with object identity on their own terms. Hibernate prefers the database’s
native type, such as a numeric sequence, as the primary identity of each Entity. If the domain requires another kind of identity, it
causes an undesirable conflict for Hibernate. To cure this, we need to use two identities. One of the identities is designed for
the domain model and adheres to the requirements of the domain. The other is for Hibernate and is known as asurrogate
identity.

Creating a surrogate identity is straightforward. Create an attribute on the Entity to hold the type of the surrogate. Generally ¢
long or int does it. Also create a column in the database entity table to hold the unique identity, and place a primary key
constraint on it. Then include in the Entity’s Hibernate mapping definition an<id> element. Remember, in this case it has
nothing to do with the domain-specific identity. It is being created only for the sake of the ORM, Hibernate.

It’s best to hide the surrogate attribute from the outside world. Because the surrogate is not part of the domain model,
visibility constitutes persistence leakage. Although some leakage may be unavoidable, we can take some steps to tuck it away
from model developers and clients.

One safeguard employs a Layer Supertype [Fowler, P of EAA]:
Click here to view code image

public abstract class IdentifiedDomainObject
implements Serializable {

private long id = -1;
public IdentifiedDomainObject () {
super () ;

}

protected long id() {
return this.id;

}

protected void setId(long anId) {
this.id = anId;
}

This Layer Supertype isTdentifiedDomainObject, an abstract base class that hides the surrogate primary key from the
view of clients using protected accessor methods. Clients will never have to wonder if the methods are for their use since
they are not visible outside the Module (9) of the Entity that extends the base class. We could even declare private scope.
Hibernate has no problems using method or field reflection with any level of visibility, public to private. Additional Layer
Supertypes may add value, such as for supporting optimistic concurrency, as seen in Aggregates (10).

We need to map the surrogate id attribute to the database column through the Hibernate definition. Here class user has its
id attribute mapped to the database table column named iq:

Click here to view code image

<hibernate-mapping default-cascade="all">
<class

name="com.saasovation.identityaccess.domain.model.identity.User"
table="tbl user" lazy="true">

<id
name="3id"
type="1long"
column="1id"
unsaved-value="-1">

<generator class="native"/>
</id>
</class>
</hibernate-mapping>

Here is the MySQL table definition to store the user objects:

Click here to view code image

CREATE TABLE "tbl user (
"id® int (11) NOT NULL auto_increment,
‘enablement enabled’ tinyint (1) NOT NULL,
‘enablement end date’ datetime,
‘enablement start date’ datetime,
‘password’ varchar (32) NOT NULL,
“tenant id id® varchar(36) NOT NULL,
‘username’ varchar (25) NOT NULL,
KEY "k tenant id id" (" tenant id id’"),
UNIQUE KEY "k tenant id username’ (tenant id id’, "username’),
PRIMARY KEY (id")

) ENGINE=InnoDB;

The first column, id, is the surrogate identity. The last column statement in the definition declares id as the table’s primary
key. We can distinguish the surrogate and the domain’s identity. There are two columns, tenant id id and username, that
provide unique identity for the domain. They are combined to form one unique key named k_tenant id username.

There is no need for the domain identity to play the role of database primary key. We allow the surrogate id to serve as the
database primary key, which keeps Hibernate happy.

Surrogate database primary keys can be used throughout the data model as foreign keys in other tables, providing referential
integrity. This may be a requirement for data management in your enterprise (for example, for audits) or for tools support. The
referential integrity is important for Hibernate, too, when wiring tables together to implement the various any-to-any (such as
1:M) mappings. They also support table joins to optimize queries when reading Aggregates out of the database.

Identity Stability

In most cases unique identity must be protected from modification, remaining stable throughout the lifetime of the Entity to
which it is assigned.

Trivial measures may be taken to prevent identity modification. We can hide identity setters from clients. We might also
create guards in setters to prevent even the Entity itself from changing the state of the identity if it already exists. Guards are
coded as assertions in Entity setters. Here’s an example of an identity setter:

Click here to view code image

public class User extends Entity {

protected void setUsername (String aUsername) {
if (this.username != null) {
throw new IllegalStateException (
"The username may not be changed.");
}
if (aUsername == null) {
throw new IllegalArgumentException (
"The username may not be set to null.");

}

this.username = aUsername;

In this example, the username attribute, being the domain identity of the user Entity, is mutable only once, and only
internally. The setter, method setUsername (), provides self-encapsulation that is hidden from clients. When an Entity public
behavior self-delegates to the setter, the method checks the username attribute to see if it is already non-nu11. If it is already
non-null, indicating an unchangeable invariant state, the T11egalstateException is thrown. The exception indicates that
username must be maintained as a modify-once state.

Whiteboard Time
* Consider some true Entities from your current domain and write their names.

What are their unique identities, both domain and surrogate? Would any of the identities have been better served by a
different kind of identity generation, or the timing of the identity assignment?

* Indicate next to each Entity whether you should have used a different identity assignment approach—user,
application, persistence, or other Bounded Context—and why (even if you can’t change it now).

» Note next to each Entity whether it needs early identity generation or can suffice with late identity generation, and
explain why.

Consider the stability of each identity, which is one area you can improve on if necessary.

This setter does not get in the way of Hibernate when it needs to reconstitute object state from persistence. Since the objec
is first constructed with its default, zero-argument constructor, the username attribute is initially nu11. This enables re-
initialization to occur cleanly, and the setter will enable the one-time Hibernate-initiated assignment to take place. This is
completely bypassed when instructing Hibernate to use field (attribute) access for persistence and rehydration purposes, rather
than accessors.

A test affirms that the modify-once guard properly protects the state of user identity:
Click here to view code image

public class UserTest extends IdentityTest ({

public void testUsernameImmutable () throws Exception {
try |
User user = this.userFixture();
user.setUsername ("testusername") ;
fail ("The username must be immutable after<
initialization.");
} catch (IllegalStateException e) {
// expected, fall through
}

This exemplary test demonstrates how the model works. Upon successful completion it proves that method setUsername ()
guards existing, non-null identity from being altered. (We discuss guards and Entity tests more thoroughly as part of
validation.)

Discovering Entities and Their Intrinsic Characteristics

Now let’s look at some lessons learned by the SaaSOvation teams . . .

T

At first the CollabOvation team got caught in the trap of doing a lot of entity-relationship (ER) modeling in Java code. They pu
too much focus on database, tables, and columns, and how those were reflected in objects. That led to a largely Anemic
Domain Model [Fowler, Anemic] composed of a lot of getters and setters. They should have been thinking more about DDD
By the time they needed to factor out the security tangle, as described in Bounded Contexts (2), they had learned to focus more
on modeling the Ubiquitous Language. That led to good results. In this section we will see how the newer/dentity and Access
Context team gained from the lessons learned.

The Ubiquitous Language in a cleanly separated Bounded Context gives us the concepts and terms we need to design ow
domain model. The Language doesn’t suddenly appear. It must be developed through careful discussion with domain experts
and by mining requirements. Some terminology uncovered will be nouns that name things, adjectives that describe them, and
verbs that indicate what the things do. It would be a mistake to think that the objects distill to only a set of nouns that name
classes and verbs that name prominent operations, that we can capture deep insight by considering nothing else. Limiting
ourselves in that way could stifle the fluency and richness that the model deserves. Investing in liberal amounts of discussion
and reviews of specifications will help develop a Language that reflects considerable thought, effort, agreement, and
compromise. In the end the team speaks the Language in complete sentences, and the model clearly reflects the spoker
Language.

If it is important for these special domain scenarios to outlive team discussions, capture them in a lightweight document. Ir
an early form, your Ubiquitous Language can take the shape of a glossary and a set of simple usage scenarios. Yet, it would be
a further mistake to think of the Language as the glossary and scenarios only. In the end the Language is modeled by your code,
and it may be difficult or impossible to keep documentation in sync.

Uncovering Entities and Properties

Let’s take up a very basic example. In the Identity and Access Context the SaaSOvation team knows that it needs to model e
User. True, this modeling example is not taken from the Core Domain (2), but we do transition to that example later. At this
time I want to clear away added complexity inherent with the Core Domain and just focus on a more basic Entity. It has enougt
modeling challenge to serve as an effective teaching tool.

Here’s what the team knew about a user in terse software requirements (not use cases or user stories) that roughly reflected
statements from the Ubiquitous Language. They did need refinement:

» Users exist in association with and under the control of a tenancy.

» Users of a system must be authenticated.

* Users possess personal information, including a name and contact information.

* User personal information may be changed by the users themselves or by a manager.

» User security credentials (passwords) may be changed.

The team had to read and listen carefully. As soon as they saw/heard different forms of the word change used, they
were pretty sure that they were dealing with at least one Entity. True enough, “change” could also mean “replace the
Value” instead of “change the Entity.” Was there anything else that sealed the team’s choice of which building block to
use? There was. The key term was authenticated, which was a strong indication to the team that some kind of search
resolution needed to be provided. If you have a bunch of things, and one of the things needs to be found out of many, you

need unique identity to distinguish the one from all others. A search will need to resolve from many users in association
with a tenant down to a single one.

But what about the statement regarding tenancy controlling users? Doesn’t that imply that the real Entity here isTenant, not
user? This opens up a discussion about Aggregates (10), which we save for that chapter. In short, the answer is “yes and no.”
Yes, there is a Tenant Entity, and no, this doesn’t mean there is not a uUser Entity. They are both Entities. To understand why
Tenant and User are the Roots (10) of two different Aggregates, see that chapter. And yes, both uUser and Tenant are
ultimately types of Aggregates, but the team avoids those concerns at first.

The justification here is that each user must be uniquely identified, clearly distinguished from all others. A user must also
support change over time, so it is clearly an Entity. At this time, it doesn’t matter how we model the personal information
inside the User.

The team needed to give some attention to clarifying the meaning of the first requirement:
» Users exist in association with and under the control of a tenancy.

At first the team could just add a note or change the wording of the statement in some way that would show that tenants
own users, but they don't collect and contain them. The team needed to be careful because they didn’t want to get down
into the technical and tactical modeling weeds. The statements needed to make sense to the whole team. They settled or
this:

* Tenants allow for the registration of many users by invitation.
* Tenants may be active or be deactivated.
» Users of a system must be authenticated but can be authenticated only if the tenant is active.

Well, that was a surprise! Following further discussion, the team cut cleanly through the issues of word craft and at the
same time gave the requirements much more meaning. They found that the original statement about users under tenancy
control was incomplete. The fact is that users are registered within a tenancy, and by invitation only. It was also important
to state that tenants may be active or inactive, and that users can be authenticated only when their tenancy is active. This
complete restating of one requirement, the addition of another, and the clarification of a third revealed a far more accurate
definition of what actually happens.

The effort did away with any possible implications about what manages the life cycle of users but made it clear that
whatever owns users, some users may be unavailable under specific circumstances. Those were the important scenarios
to capture at that time.

It seemed at this point that they had the beginnings of a glossary of the terms of a Ubiquitous Language. Still, they didn’
have enough information to flesh out the definitions. The team will wait a while longer to make entries in the glossary.

They had a couple of known Entities, as shown inFigure 5.5. It was important to know next how they would be
uniquely identified, and what additional properties might be needed to find them among many possible objects of the same

type.

<<entity>> <<entity>>

Tenant User

Figure 5.5. Two Entities, Tenant and User, following early discovery

The team decided that they would use a full UUID to identify eachTenant uniquely, a case where the application
generates the identity. The large text value was easily justified, not only for guaranteed uniqueness, but also because it
added a good measure of security to each subscriber. It would be difficult for anyone to randomly reproduce a UUID as
first-level access to proprietary data. They also saw the need to explicitly segregate the Entities that belonged under eack
Tenant from those that belonged to every other. A requirement like this is stated to address additional security issues that
tenant subscribers—competitive businesses—have with hosted applications and services. Thus, every Entity in all
systems would be “striped” with this unique identity, and every query would require the unique identity to find any Entity,
no matter what.

The unique tenant identity is not an Entity. It is a Value of some kind. The question is, Should this identity have &
specialized type, or can it remain a simple string?

There seemed to be no need to model Side-Effect-Free Functions (6) on the identity. It’s just a hexadecimal text
representation of a large number. But the identity would be used broadly. It would be set on all other Entities in every
Context. In this case strong typing could be advantageous. By defining aTenant1d Value Object, the team could more
confidently ensure that all subscriber-owned Entities were striped with the correct identity. Figure 5.6 shows how this is
modeled, with both the Tenant and the user Entities.

<<value object>>

Tenantld
<<entity>> <<entity>>
Tenant User
hame: String username: String
_.»" | password: String

password encrypted ﬁ

Figure 5.6. After an Entity is discovered and named, uncover the attributes/properties that uniquely identify it and
enable it to be found.

The Tenant must be named. The name can be a simple string attribute because it has no special behavior. The name
helps resolve queries. A help desk worker would need to find the Tenant byname before he or she could provide
assistance. It’s a necessary attribute and an “intrinsic characteristic.” The name may also be constrained as unique among
all other subscribers, but that’s not important now.

Other attributes may be associated with each subscriber, such as a support contract and call activation PIN, billing anc
payment information, and maybe a business location along with customer contacts. But those are business concerns, not
part of security. Attempting to stretch the /dentity and Access Context too far would be a defeating effort.

Support will be managed by a different Context. After finding the tenant by name, the software can use its unique
TenantId. It would then be used to access the Support Context, for example, or the Billing Context, or the Customer
Relationship Management Context. Support contracts, business location, and customer contacts have little to nothing to
do with security. Still, associating the name of the subscriber with the Tenant will help support personnel quickly
provide needed support. The name belongs.

Having completed what appears to be the essence of Tenant, the team turned their attention to the user Entity for a
while. What would serve as its unique identity? Most identity systems support a unique username. It doesn’t matter muct
what comprises the username, as long as it is unique within the tenant. (Usernames need not be unique across tenant lines.)
It will be left to the discretion of users to determine their own usernames. If the subscribing business has certain policy
criteria for usernames, or if the names will be determined by a federated security integration, it will be left to the
registering user to comply. The team simply declared a username attribute on class User.

One requirement states that a security credential exists. It indicates that this is a password. The team picked up on the
terminology and declared a password attribute on class user. They concluded that the password would never be stored
as clear text. A note was made that the password must be encrypted. Since they will need a way to encrypt each password
before it is associated with the user, it seemed as if this called for some kind of Domain Service (7). The team created a
placeholder in the glossary of the Ubiquitous Language, which could now be started. The glossary would be limited, bu
useful:

» Tenant: A named organizational subscriber of identity and access services, as well as other online services.
Facilitates user registration through invitation.

 User: A registered security principal within a tenancy, complete with personal name and contact information. The
User has a unique username and an encrypted password.

» Encryption Service: Provides a means to encrypt passwords and other data that cannot be stored and used as clear
text.

One question remained: Should the password be considered a part of the unique identity of a user? After all, it is used
to find a user. If so, we’d probably want to combine the two attributes into a Whole Value, naming it something like
Security-Principal. That would make this concept much more explicit. It is an interesting idea, but it overlooks ar
important requirement: Passwords can be changed. There may also be times when services will need to find auser
without being provided with a password. This is not for authentication. (Consider the scenario where we need to check to

see if a user is playing a security Role. We can’t require a password to find a User every time we need to check for
access permissions.) It’s not identity. We can still include both the username and the password in a single authentication
query.

The idea of creating a securityPrincipal Value type produced a desirable modeling proposition. It was noted for
later consideration. There were also some other concepts that went unexplored, such as how registration invitations
would be provided, and the details on personal name and contact information. The team would catch those in the next
quick iteration.

Digging for Essential Behavior

After essential attributes were identified, the team could look into indispensable behavior . . .

After looking back at the basic requirements the team was given, they now sought the behavior of Tenant and User:

* Tenants may be active or be deactivated.

When we think of activating and deactivating a Tenant, we probably visualize a Boolean toggle. As true as that may be,
how it is implemented is unimportant here. If we were to place active in the attributes compartment of Tenant in the class
diagram, would that necessarily tell the reader anything useful? InTenant.java, would the following attribute declaration
reveal intentions?

public class Tenant extends Entity {

private boolean active;

Probably not entirely. And at first we want to focus only on attributes/properties that provide identity and enable matching
on queries. We add support details like that later.

The team could have decided in favor of declaring method setactive (boolean), though that wouldn’t really address the
terminology of the requirement. It’s not that public setter methods are never appropriate, but they should be used only when the
Language allows for them and usually only when you won’t have to use multiple setters to fulfill a single request. The multiple
setters make the intention ambiguous. They also complicate publishing a single, meaningful Domain Event as an outcome tc
what should actually be a single logical command.

To address the Language, the team noted that domain experts talk about activating and deactivating. To incorporate that
terminology they’d assign operations such as activate () and deactivate () instead.

The following source is an Intention Revealing Interface [Evans] and complies with the team’s growing Ubiquitous
Language:

public class Tenant extends Entity {

public void activate() {

// TODO: implement
}

public void deactivate () {
// TODO: implement
}

To animate their ideas, the team first developed a test to see how it feels to use the new behaviors:

Click here to view code image

public class TenantTest ... {
public void testActivateDeactivate () throws Exception {
Tenant tenant = this.tenantFixture();
assertTrue (tenant.isActive());

tenant.deactivate () ;
assertFalse (tenant.isActive());

tenant.activate();
assertTrue (tenant.isActive());

After this test the team felt confident in the quality of the interface. Writing the test made them realize that another
method, isactive (), was needed. They settled on these three new methods, as seen inFigure 5.7. The Ubiquitous
Language glossary grew as well:

* Activate tenant: Facilitate the activation of a tenant using this operation, and the current state may be confirmed.

c<ghtity»»
Tenant

<<value object>>
hame: String Tenantld

activate()
deactivate()
isActive()
registerUser()

Figure 5.7. Indispensable behavior is assigned to Tenant during the first rapid iteration. Some behaviors are omitted due
to complexity but can be added soon.

» Deactivate tenant: Facilitate the deactivation of a tenant using this operation. Users may not be authenticated
when the tenant is deactivated.
* Authentication Service: Coordinates the authentication of users, first ensuring that their owning tenant is active.

The last glossary entry added here indicates the discovery of another Domain Service. Before attempting to match the
User instance, something must first check Tenant for isactive (). That understanding was gained when also considering
this requirement:

» Users of a system must be authenticated but can be authenticated only if the tenant is active.

Since there is more to authentication than merely finding a user that matches a specific username and password, a
higher-level coordinator is needed. Domain Services are good at that. Details can be added later. For now it’s important
that the team captured the authenticationService by name and added it to the Ubiquitous Language. The test-firs:
approach sure paid off.

The team also considered the following requirement:
* Tenants allow for the registration of many users by invitation.

When they started analyzing this carefully, they understood it to be a bit more complex than they wanted to deal with in
the first, rapid iteration. There seemed to be some kind of 1nvitation object involved. But the requirement didn’t tell
them enough to be understood clearly. The behavior to manage invitations wasn’t clear either. So the team postponed

modeling this until they could solicit more input from early domain experts and early customers. They did define the
registerUser () method, however. It is essential to the creation of user instances (see “Construction” later in the
chapter).
With that they ventured back into class user:
» Users possess personal information, including a name and contact information.
» User personal information may be changed by the users themselves or by a manager.
» User security credentials (passwords) may be changed.
User along with Fundamental Identity, two commonly combined security patterns, were applied.l From the use of the

term personal, it is clear that a personal concept accompanies the user. The team worked out the composition and
behavior based on the preceding statements.

person 1s modeled as a separate class to avoid placing too much responsibility on the user. The word personal led
the team to add person to the Ubiquitous Language:

* Person: Contains and manages personal data about a User, including name and contact information.

Is the person an Entity or a Value Object? Again here the word change is key. It seems unnecessary to replace the
entire Person object just because the individual’s work telephone number may change. The team made it an Entity, as
indicated in Figure 5.8, which holds two Values, the contactInformation and name. These were currently fuzzy
concepts and would stand to be refactored in time.

<<value object>>

Tenantld

<<entity>>
<<entity>>
User / \
username: 51,'.-!"“‘1.3 <<value object>> <<value object>>
changePassword() S
changePersonalName()
password encrypted

changePersonalContactinformation()

Figure 5.8. The foundational behavior of user drives out more associations. Without being overly specific, the team
modeled a few more objects along with the operations.

Managing changes to the personal name and contact information of a user resulted in some further deliberation. Should
clients be given access to the person object inside the user? One developer questioned whether a user would always be
a person. What if it were an external system? This was not the current situation and might be rushing ahead on unknowr
future requirements, but the concern had merit. If clients were given access to the shape of user, with navigation into the
person in order to execute behavior, that could require client refactoring later.

If, instead, they modeled the personal behavior onuser, making it more generalized for a security principal, they
would probably avoid some of the ripple later. After they wrote some exemplary tests to explore the notion, it seemed
like the right thing to do. They modeled user as shown in Figure 5.8.

There were other considerations. Should the team expose person at all, or hide it from all clients? For now they
decided to leave person exposed for the purpose of querying information. The accessor could later be redesigned to
serve a Principal interface, and person and system would each be a specialized principal. The team would be able
to refactor this as they gained deeper understanding.

Maintaining their cadence, the team quickly recognized the Ubiquitous Language highlighted by the final requiremen
currently under consideration:

» User security credentials (passwords) may be changed.

The User has a changePassword () behavior. This reflects the term used in requirements and satisfies domain experts.
Access to even the encrypted password is never granted to clients. Once the password is set onuser, it is never exposed
beyond the Aggregate boundary. Anything seeking authentication has but one approach, using the

AuthenticationService.

The team also decided that all behaviors that could cause modification, when successful, were to publish a specific
Domain Event outcome. This, too, was more detail than the team wanted to address early on. But they did recognize the
need for Events. Events would accomplish at least two things. First, they would enable change tracking through the life
cycle of all objects (discussed later). Second, they would enable outside subscribers to synchronize with the changes,
giving outsiders the potential for autonomy.

Those topics are discussed in Events (8) and Integrating Bounded Contexts (13).

Roles and Responsibilities

An aspect of modeling is to discover the roles and responsibilities of objects. Role and responsibility analysis is applicable
to domain objects in general. Here we look specifically at the roles and responsibilities of Entities.

We need some context for the term role. One use, when discussing the /dentity and Access Context, 1s that a Role is an
Entity and Aggregate Root that addresses a broad system security concern. Clients can ask if a user is in, or plays, a security
role. That’s completely different from what I am now discussing. What I am discussing in this section is how roles can be
played by the objects in your model.

Domain Objects Playing Multiple Roles

In object-oriented programming, generally interfaces determine the roles of an implementing class. When designed correctly,
a class has one role for each interface that it implements. If the class has no explicitly declared roles—it doesn’t implement
any explicit interfaces—by default it has the role of its class. That is, the class has the implicit interface of its public methods.
Class user in the preceding examples implements no explicit interfaces, yet it plays one role, a User.

We could make one object play the role of both user and Person. Not that this is being suggested, but for now assume that
we consider this a good idea. If we did, there would be no reason to aggregate a separate person object as a referenced
association of the user object. Instead, there would be just one object, one that plays two roles.

Why might we do this? Usually it’s because we see both similarities and differences in two or more objects. The
overlapping characteristics can be addressed by blending multiple interfaces on a single object. For example, we could have
one object be both a user and a person, naming the implementation class HumanUser:

Click here to view code image

public interface User ({

}

public interface Person {

}

public class HumanUser implements User, Person {

}

Does this make sense? Possibly, but it may also complicate things. If both interfaces are complex, it could be difficult to
implement both in one object. Also, a User may be a system, which would increase the necessary interfaces to three. Designing
the single object to play the roles of User, Person, and system would be even harder. Maybe we could simplify this by
creating a general-purpose Principal:

Click here to view code image

public interface User ({
}

public interface Principal {

}
public class UserPrincipal implements User, Principal {

}

With this design we are attempting to determine the actual principal type at runtime (late binding). A person principal and a
system principal have different implementations. Systems don’t need the same kind of contact information as a person has.
Still, we might try anyway, designing a forwarding delegation implementation. To do that we’d check for the existence of one
type or the other at runtime and delegate to the existing object:

Click here to view code image

public interface User ({
}

public interface Principal {
public Name principalName () ;

}
public class PersonPrincipal implements Principal {
}
public class SystemPrincipal implements Principal {

}

public class UserPrincipal implements User, Principal {
private Principal personPrincipal;
private Principal systemPrincipal;

public Name principalName () {

if (personPrincipal !'= null) {
return personPrincipal.principalName () ;
} else if (systemPrincipal != null) {
return systemPrincipal.principalName () ;
} else {
throw new IllegalStateException (
"The principal is unknown.");

This design produces various problems. For one, it suffers from what is called object schizophrenia.? Behavior is delegated
by a technique known as forwarding or dispatching. Neither personPrincipal nor system-Principal carries the identity of
Entity UserPrincipal, on which the behavior was originally executed. Object schizophrenia describes the situation where the
objects delegated to don’t know the identity of their originating object. There is confusion inside the delegates as to who they
really are. It’s not that every delegate method in the two concrete classes would be required to take on the base object’s
identity, but some could need it. We could pass in a reference to the userPrincipal. But that complicates the design and
actually requires the principal interface to change. That’s not good. As [Gamma et al.] states, “Delegation is a good design
choice only when it simplifies more than it complicates.”

We won’t try to solve this modeling challenge here. It’s used only to illustrate the challenges sometimes encountered when
using object roles and to emphasize that it’s a modeling style we need to be careful with. With the right tools, such as Qi4;
[Oberg], we could improve things.

It might help the situation to make role interfaces finer grained, as Udi Dahan[Dahan, Roles] promotes. Here are two
requirements that enable us to create fine-grained interfaces:

* Add new orders to a customer.
» Make a customer preferred (the condition for meeting this level is not stated).

Class customer implements two fine-grained role interfaces: TaddordersToCustomer and IMakeCustomerPreferred.
Each defines only a single operation, as seen in Figure 5.9. We might even implement other interfaces, such as 1validator.

<<role>> <<role>>
IAddOrdersToCustomer IMakeCustomerPreferred
AddOrder(anOrder:Order) MakePreferred()

<<entity>>

Customer

Figure 5.9. Using C#NET naming conventions, the customer Entity implements two object roles,
IAddOrdersToCustomer and IMakeCustomerPreferred.

As discussed in Aggregates (10), we wouldn’t normally collect a large number of objects, such as all its orders, on a
customer. So let’s view this as a synthetic example, used solely as a means to illustrate how object roles are used.

The 1 interface name prefix is a style widely used in .NET programming. Besides following the .NET approach in general
some think it enhances readability: “I add orders to customer” and “I make customer preferred.” Without the 1 prefix, the
resulting verb-based names may be less desirable: AddordersToCustomer and MakeCustomerPreferred. We may be more
used to naming interfaces as nouns or adjectives, and that standard could certainly be applied here instead.

Consider some advantages this style promotes. The role of an Entity can change from use case to use case. When a clien
needs to add a new order instance to a Customer, the role is different from when they want to make the customer preferred.
There’s also a technical advantage. Different use cases may require specialized fetching strategies:

Click here to view code image

IMakeCustomerPreferred customer =
session.Get<IMakeCustomerPreferred> (customerId) ;
customer.MakePreferred() ;

IAddOrdersToCustomer customer =
session.Get<IAddOrdersToCustomer> (customerId) ;
customer.AddOrder (order) ;

The persistence mechanism interrogates the parameterization type name T of the cet<T> () method. It uses the type to look
up an associated fetching strategy that is registered with the infrastructure. If the interface happens to have no special fetching
strategy, the default is used. By executing the fetching strategy, the identified customer object is loaded in the shape needed by
the specific use case.

We may see technical merit as role marker interfaces lend a hand to enabling behind-the-scenes hooks. Other use-case-
specific behavior can be associated with any given role, such as validation, enabling the execution of a specific validator as
the Entity modifications are being persisted.

Fine-grained interfaces make it easier for the implementing class, such as customer, to implement the behavior on itself.
There is no need to delegate the implementation to separate classes, which helps prevent object schizophrenia.

It’s fair to ask whether there is a distinct domain modeling advantage to separating customer behaviors by role. Compare
the previous customer to the one in Figure 5.10; is one better than the other? Would it be easier for a client to mistakenly
invoke the addorder () method when it should actually invoke MakePreferred () ? Probably not. But we should not judge the
approach on this alone.

<<entity>>
Customer

AddOrder(anOrder:Order)
MakePreferred()

Figure 5.10. Here customer is modeled with the operations that were previously on different interfaces now collapsed
onto the single interface of the Entity class.

Perhaps the most practical use of role interfaces is also the simplest. We can leverage interfaces to hide implementation
details that we don’t want leaking out of the model to clients. Design an interface to expose exactly what we want to allow
clients to use, and nothing more. The implementation class can be far more complex than the interface. It might have all kinds of
supporting properties with getters and setters, and implementation behavior that clients will never get a glimpse of. For
example, perhaps a tool or framework forces the creation of public methods that we don’t want clients to use. Even so, the
domain model interface is not influenced by necessarily nasty technical implementation details. This has a definite domain
modeling advantage.

Along with any design choice, ensure that the Ubiquitous Language holds sway over any technical preferences. With DDD
it’s a model of the business domain that matters most.

Construction

When we newly instantiate an Entity, we want to use a constructor that captures enough state to fully identify it and enable
clients to find it. When early identity generation is used, a correctly designed constructor takes as a parameter at least the
unique identity. If the Entity is queried by other means, such as with a name or description, we would also include all such as
constructor parameters.

Sometimes an Entity maintains one or more invariants. An invariant is a state that must stay transactionally consistent
throughout the Entity life cycle. Invariants are a concern of Aggregates, but since the Aggregate Root is always an Entity, it is
mentioned here. If an Entity has an invariant that is satisfied by the non-nu11 state of a contained object, or calculated using
some other state, that state must be provided by one or more constructor parameters.

Everyuser object must contain a tenantId, username, password, and person. In other words, following successful
construction, references to these declared instance variables may never be nui1l. The user constructor and its instance
variable setters ensure this:

Click here to view code image

public class User extends Entity {

protected User (TenantId aTenantId, String aUsername,
String aPassword, Person aPerson) {
this();
this.setPassword (aPassword) ;
this.setPerson (aPerson);
this.setTenantId (aTenantId);
this.setUsername (aUsername) ;
this.initialize();

}

protected void setPassword(String aPassword) {

if (aPassword == null) {
throw new IllegalArgumentException (
"The password may not be set to null.");
}
this.password = aPassword;

}

protected void setPerson (Person aPerson) {
if (aPerson == null) {
throw new IllegalArgumentException (
"The person may not be set to null.");

}

this.person = aPerson;

protected void setTenantId(TenantId aTenantId) {
if (aTenantId == null) {
throw new IllegalArgumentException (
"The tenantId may not be set to null.");

}
this.tenantId = aTenantId;

protected void setUsername (String aUsername) {

if (this.username != null) {
throw new IllegalStateException (
"The username may not be changed.");
}
if (aUsername == null) {
throw new IllegalArgumentException (
"The username may not be set to null.");
}
this.username = aUsername;

The design of class user demonstrates the power of self-encapsulation. The constructor delegates instance variable
assignment to its own internal attribute/property setters, which provide self-encapsulation for the variables. The self-
encapsulation enables each setter to determine the appropriate contractual conditions for setting a portion of state. Each of the
setters individually asserts a non-nu11 constraint on behalf of the Entity, which enforces the instance contract. The assertions
are called guards (see “Validation™). As indicated earlier in the “Identity Stability” section, the self-encapsulation techniques
of these setter methods can be more complex as needed.

Use a Factory for complex Entity instantiations. This is covered in more detail inFactories (11). In the preceding example,
did you notice that the user constructor has protected visibility? The Tenant Entity serves as a Factory for user instances, and
only classes in the same Module can see the user constructor. That way no object other than a Tenant may create User
instances:

Click here to view code image

public class Tenant extends Entity {

public User registerUser (
String aUsername,
String aPassword,
Person aPerson) {

aPerson.setTenantId(this.tenantId());

User user =
new User (
this.tenantId(),
aUsername,
aPassword,
aPerson) ;

return user;

Here method registerUser () is the Factory. The Factory simplifies construction of the user default state and ensures that
the Tenant1d for both the user and Person Entities is always correct. This all happens under the control of a Factory methoc
that addresses the Ubiquitous Language.

Validation

The primary reasons to use validation in the model are to check the correctness of any one attribute/property, any whole
object, or any composition of objects. We look at three levels of validation in the model. Although there are lots of ways to
perform validation, including specialized frameworks/libraries, those are not examined here. Instead, general-purpose

approaches are presented, but these can lead to more elaborate approaches.

Validation accomplishes different things. Just because all of the attributes/properties of a domain object are individually
valid, that does not mean that the object as a whole is valid. Maybe the combination of two correct attributes invalidates the
whole object. Just because a single object as a whole is valid, that does not mean that a composition of objects is valid.
Perhaps the combination of two Entities, each of which has individual valid states, actually makes the composition invalid.
Therefore, we may need to use one or more levels of validation to address all possible issues.

Validating Attributes/Properties

How can we protect a single attribute or property—see Value Objects (6) for the difference between the two—from being
set to an invalid value? As discussed elsewhere in this chapter and book, I highly recommend the use of self-encapsulation.
Self-encapsulation facilitates the first solution.

To quote Martin Fowler, “Self encapsulation is designing your classes so that all access to data, even from within the same
class, goes through accessor methods” [Fowler, Self Encap]. Using this technique provides several advantages. It allows for
the abstraction of an object’s instance (and class/static) variables. It provides a way to easily derive attributes/properties from
any number of others the object holds. And not least for this specific discussion, it lends support for a simple form of
validation.

Actually, I don’t necessarily like calling the use of self-encapsulation to protect correct object state by the name validation.
That name puts off some developers, because validation is a separate concern and should be the responsibility of a validation
class, not a domain object. I agree. Still, I am talking about something a bit different. What I’'m discussing isassertions that
follow a design-by-contract approach.

By definition, design by contract enables us to specify the preconditions, postconditions, and invariants of the components
we design. This is advocated by Bertrand Meyer and was thoroughly expressed in his Eiffel programming language. There i:

some support for the Java and C# languages and a book on the subject, Design Patterns and Contracts[Jezequel et al.]. Here
we look only at preconditions, by applying guards, as a form of validation:

Click here to view code image

public final class EmailAddress {
private String address;

public EmailAddress (String anAddress) {
super () ;
this.setAddress (anAddress) ;

}

private void setAddress (String anAddress) {
if (anAddress == null) {
throw new IllegalArgumentException (
"The address may not be set to null.");
}
if (anAddress.length() == 0) {
throw new IllegalArgumentException (
"The email address is required.");
}
if (anAddress.length() > 100) {
throw new IllegalArgumentException (
"Email address must be 100 characters or less.");

}

if (!java.util.regex.Pattern.matches (
"NAWH ([=4 T TN\wH) F@ANNwH ([= I\ \w+) "N\ \w+ ([=. T\ \w+) *",
anAddress)) {

throw new IllegalArgumentException (
"Email address and/or its format is invalid.");

}

this.address = anAddress;

There are four preconditions to the method contract of setaddress (). All of the precondition guards assert a condition of

the argument anAddress:
* The parameter may not be null.
* The parameter must not be an empty string.
* The parameter must be 100 characters in length or less (but not zero characters).
* The parameter must match the basic format of an e-mail address.

If all of these preconditions pass, the address property is set to the value of anAddress. If one is not met, an
IllegalArgumentException i thrown.

Class Emailaddress is not an Entity. It is a Value Object. We use it here for a few reasons. First, it is a good example of
implementing various degrees of precondition guards, from null checks down to value formatting (more on this next). Second,
this Value is held by the person Entity as one of its properties, indirectly through the contactInformation Value. So,
actually, this is part of an Entity in the same way that a simple attribute declared on an Entity class is also part of it. We use the
exact same kinds of precondition guards when implementing setters for simple attributes. When a Whole Value is assigned to
an Entity property, there is no way to guard against setting insane state unless the smaller attributes within the Value are
guarded.

Cowboy Logic
LB: “I thought I had a valid argument with the missus, but then she suddenly threw an illegal argument exception

atme.”
| _ :)
e =)_‘— : 3
| OH @DBDBD_Corral

¥y
o

Some developers refer to these kinds of precondition checks as defensive programming. It certainly is defensive
programming to guard against completely invalid values entering your model. Some may not agree with the increasing degree
of specificity that such guards have. Some defensive programmers agree with checking for nulls, and maybe even checking for
empty strings, but may shy away from checking for conditions such as string lengths, numeric ranges, value formats, and the
like. Some think, for example, that leaving value size checks to the database is best. They consider things like maximum string

lengths to be a concern of something other than model objects. Yet, these preconditions may be viewed as justifiable sanity
checks.

There may be occasions when it is unnecessary to check for string lengths. It could make sense when using a database whose
maximum NVARCHAR column size can never be reached. The text columns of Microsoft SQL Server can be declared using the
max keyword:

Click here to view code image

CREATE TABLE PERSON (

CONTACT INFORMATION EMAIL ADDRESS ADDRESS
NVARCHAR (max) NOT NULL,
) ON PRIMARY
GO

It’s not that we’d ever want an e-mail address to be 1,073,741,822 characters wide. It’s just that we want to declare a
column width that we will never need to worry about exceeding.

This may not be possible with some databases. With MySQL, there is a maximumrow width of 65,535 bytes. Again, that’s

row width, not column width. If we declare even one column with the maximum varcHAR column type width of 65,535, there is
no space left for one additional column in the table. Depending on the number of vARCHAR columns in a given table, we will
need to restrict each column width to some practical limit that will allow for all of the columns to fit. In cases like this we
could declare character columns as TExT, since TExT and BLOB columns are stored in separate segments. Hence, depending on
the database, there may be ways to work around column width limits and reduce the need for string length checks in the model.

If there is a potential to overflow a column, a simple string length check in the model is warranted. How impractical would
it be to translate the following into a meaningful domain error?

ORA-01401: inserted wvalue too large for column

We couldn’t even determine which column was overflowed. It may be best to avoid this problem altogether by checking text
widths in setter preconditions. Besides, the length check need not be only about a database column constraint. In the end, it is
the domain itself that may constrain a text length for very justifiable reasons, such as constraints on legacy systems we integrate
with.

We may also have to consider guarding high-low range checks, and possibly others. Even a simple formatting check, like the
e-mail address format, makes sense if we want to prevent a completely insane value from being associated with an Entity.
Certainly if basic values of a single Entity are sane, it will be easier to perform coarse-grained validation on whole objects
and object compositions.

Validating Whole Objects

Even though we may have an Entity with completely valid attributes/properties, it does not necessarily mean the entire Entity
is valid. To validate a whole Entity, we need to have access to the state of the entire object—all of its attributes/properties.
We also need a Specification [Evans & Fowler, Spec] or Strategy [Gamma et al.] for the validation.

In his Checks pattern language, Ward Cunningham [Cunningham, Checks] addresses several approaches to validation. A
useful one for whole objects is Deferred Validation. Ward says that this is “a class of checking that should be deferred until
the last possible moment.” It is deferred because it is a kind of very detailed validation, one that we would run over at least
one complex object, or even a composition of objects. For that reason we discuss Deferred Validation later also as a means to
address larger compositions of objects. Inthis subsection I limit validations to what Ward calls “the checks of simpler
activities.”

Because the entire state of the Entity must be available to the validation, some may see this as a good time to embed
validation processing logic right in the Entity. Be cautious here. Many times the validation of a domain object changes more
often than the domain object itself. Embedding validation inside an Entity also gives it too many responsibilities. It already has
the responsibility to address domain behavior as it maintains its state.

A validation component has the responsibility to determine whether or not the Entity state is valid. When designing a
separate validation class with Java, place it in the same Module (package) as the Entity. Assuming the use of Java, declare
attribute/property read accessors with at least protected/package scope, and public is fine. Private scope will not allow the
validation class to read the necessary state. If the validation class is not placed in the same Module as the Entity, all
attribute/property accessors must be public, which is undesirable in many cases.

The validation class can implement the Specification pattern or the Strategy pattern. If it detects an invalid state, it informs
the client or otherwise makes a record of the results that can be reviewed later (for example, after batch processing). It is
important for the validation process to collect a full set of results rather than throw an exception at the first sign of trouble.
Consider this reusable, abstract validator and concrete subclass:

Click here to view code image

public abstract class Validator {
private ValidationNotificationHandler notificationHandler;

public Validator (ValidationNotificationHandler aHandler) {
super () ;
this.setNotificationHandler (aHandler);

}
public abstract void wvalidate();

protected ValidationNotificationHandler notificationHandler () {
return this.notificationHandler;

}

private void setNotificationHandler (
ValidationNotificationHandler aHandler) {
this.notificationHandler = aHandler;

Click here to view code image

public class WarbleValidator extends Validator ({
private Warble warble;

public Validator (
Warble aWarble,
ValidationNotificationHandler aHandler) {
super (aHandler) ;
this.setWarble (aWarble) ;
}

public void validate () {
if (this.hasWarpedWarbleCondition (this.warble())) {
this.notificationHandler () .handleError (
"The warble is warped.");
}
if (this.hasWackyWarbleState (this.warble())) {
this.notificationHandler () .handleError (
"The warble has a wacky state.");

Thewarblevalidator is instantiated with a validationNotificationHandler. Whenever an invalid condition is
encountered, the validationNotificationHandler is asked to handle the condition. The
ValidationNotificationHandler iS a general-purpose implementation with a handleError () method that takes a string
notification message. We may instead create specialized implementations that have a different method for each kind of invalid
condition:

Click here to view code image

class WarbleValidator extends Validator {

public void validate () {
if (this.hasWarpedWarbleCondition(this.warble())) {
this.notificationHandler () .handleWarpedWarble () ;
}
if (this.hasWackyWarbleState (this.warble())) {
this.notificationHandler () .handleWackyWarbleState () ;

This has the advantage of not coupling error messages, or message property keys, or anything specific to notification, to the
validation process. Even better, place the notification handling inside the check method:

Click here to view code image

class WarbleValidator extends Validator {

public Validator (
Warble aWarble,
ValidationNotificationHandler aHandler) {
super (aHandler) ;
this.setWarble (aWarble) ;

public void validate () {
this.checkForWarpedWarbleCondition() ;
this.checkForWackyWarbleState () ;

}

protected checkForWarpedWarbleCondition () {
if (this.warble()...) {
this.warbleNotificationHandler () .handleWarpedWarble () ;
}
}

protected WarbleValidationNotificationHandler
warbleNotificationHandler () {
return (WarbleValidationNotificationHandler)
this.notificationHandler () ;

In this example we use a warble-specific validationNotificationHandler. It comes in as a standard type but is cast to

the specific type when used internally. It is up to the model to work out the contract between itself and clients to supply the
correct type.

How do clients ensure that Entity validation occurs? And where does validation processing begin?
One way places a validate () method on all Entities that require validation and may do so using a Layer Supertype:

Click here to view code image

public abstract class Entity
extends IdentifiedDomainObject {

public Entity() {
super () ;

}

public void wvalidate (
ValidationNotificationHandler aHandler) {

AnyEntity subclass can safely have its validate () method invoked. If the concrete Entity supports specialized
validation, it is executed. If not supported, the behavior is a no-op. If only some Entities validate, it may be best to declare
validate () only on those that need it.

However, should Entities actually validate themselves? Having its ownvalidate () method doesn’t mean the Entity itself
performs validation. Yet, it does allow the Entity to determine what validates it, relieving clients from that concern:

Click here to view code image

public class Warble extends Entity {

@Override

public void validate(ValidationNotificationHandler aHandler) {
(new WarbleValidator(this, aHandler)) .validate();

}

Each specialized validator subclass performs any number of fine-grained validations, as needed. The Entity needs to
know nothing about Zow it is validated, only that it can be validated. The separate validator subclass also allows the
validation process to change at a different pace from the Entity and enables complex validations to be thoroughly tested.

Validating Object Compositions

We can use Deferred Validation for what Ward Cunningham says are the “more complex actions requiring all of the checks
of simpler activities and then some.” Here we determine not only that an individual Entity is valid, but that a cluster or

composition of Entities are all valid together, including one or more Aggregate instances. To do so we could instantiate the
concrete validator subclass with the appropriate number of instances. But it may be best to manage that kind of validation
using a Domain Service. The Domain Service can use Repositories to read the Aggregate instances it needs to validate. It ca;
then run each instance through its paces, separately or in combination with others.

Decide whether validation is appropriate at all times. On occasion an Aggregate or a set of Aggregates is in a temporary,
intermediate state. Perhaps we could model a status on an Aggregate to indicate this, preventing validation at inappropriate
times. When the conditions are ripe for validation, the model could inform clients by publishing a Domain Event:

Click here to view code image

public class SomeApplicationService ... {

public void doWarbleUseCaseTask(...) {
Warble warble =
this.warbleRepository.warbleOfId (aWarbleld)

DomainEventPublisher
.instance ()
.subscribe (new DomainEventSubscriber<WarbleTransitioned> () {
public void handleEvent (DomainEvent aDomainEvent) {
ValidationNotificationHandler handler = ...;
warble.validate (handler) ;

}
public Class<WarbleTransitioned>
subscribedToEventType () {
return WarbleTransitioned.class;
}
)

warble.performSomeMajorTransitioningBehavior () ;

When received by the client, warbleTransitioned indicates that validation is now appropriate. Until that time the client
refrains from validating.

Change Tracking

By the definition of Entity, it is not necessary to track the changes that occur on state over its lifetime. We have to support
only its continuously changing state. However, sometimes domain experts care about important occurrences in the model as
time passes. When that’s the case, tracking specific changes to Entities can help.

The most practical way to achieve accurate and useful change tracking is with Domain Events and an Event Store. We creatc
a unique Event type for every important state-altering command executed against every Aggregate that domain experts care
about. The combination of the Event name and its properties makes the record of change explicit. The Events are published as
the command methods complete. A subscriber registers to receive every Event produced by the model. When received, the
subscriber saves the Event to the Event Store.

Domain experts may not care about every change to a model, but the technical team may care anyway. This is usually for
technical reasons, using a pattern named Event Sourcing (4).

Wrap-Up
We’ve run the gamut of Entity-related topics. Here’s a recap of what you’ve learned:

* You’ve covered four primary ways to generate Entity unique identities.
* You understand the importance of the timing of generation, and how to use surrogate identity.

* You now know how to ensure the stability of identities.

» We discussed how to discover the intrinsic characteristics of Entities by uncovering the Ubiquitous Language ir
Context. You saw how both properties and behavior are discovered.

* Along with core behavior, you looked into the strengths and weaknesses of modeling Entities using multiple roles.

* Finally, you examined the details of how to construct Entities, how to validate them, and how to track their changes
when necessary.

Next, we’ll be looking at a very important building block among the tactical modeling tools, Value Objects.

Chapter 6. Value Objects

Price is what you pay. Value is what you get.
—Warren Buffett

Although often overshadowed by entity-think, Value Objects are a vital building block of DDD. Examples of objects tha
are commonly modeled as Values are numbers, such as 3, 10, and 293.51; text strings, such as “hello, world!” and “Domain-
Driven Design”; dates; times; more detailed objects such as a person’s full name composed of first, middle, last name, and title
attributes; and others such as currency, colors, phone numbers, and postal addresses. And there are more complex kinds. I’11 be
discussing Values that model concepts of your domain using your Ubiquitous Language (1), addressing the goals of Domain-
Driven Design.

Know the Value Advantages
Value types that measure, quantify, or describe things are easier to create, test, use, optimize, and maintain.

It may surprise you to learn that we should strive to model using Value Objects instead of Entities wherever possible. Ever
when a domain concept must be modeled as an Entity, the Entity’s design should be biased toward serving as a Value container
rather than a child Entity container. That advice is not based on an arbitrary preference. Value types that measure, quantify, or
describe things are easier to create, test, use, optimize, and maintain.

Road Map to This Chapter
* Learn how to understand the characteristics of a domain concept to model as a Value.
* See how to leverage Value Objects to minimize integration complexity.
 Examine the use of domain Standard Types expressed as Values.
* Consider how SaaSOvation learned the importance of Values.
* Learn how the SaaSOvation teams tested, implemented, and persisted their Value types.

T

At first the SaaSOvation teams went overboard with their use of Entities. This actually started to happen well before the Use
and Permission concepts got intertwined with collaboration. From project inception they followed the popular mode of
thinking that every element of their domain model needed to map to its own database table, and that all their attributes should
be easily set and retrieved through public accessor methods. Since every object had a database primary key, the model was
tightly stitched together into a large, complex graph. That idea primarily came from the data modeling perspective that most
developers have when unduly influenced by relational databases, where everything is normalized and referenced using foreign
keys. As they later learned, getting caught in the tide of entity-think was not only unnecessary, it was also more costly in
development time and effort.

When designed correctly, a Value instance can be created, handed off, and forgotten about. We don’t have to worry that the

consumer has somehow modified it incorrectly, or even modified it at all. A Value can have a brief or long existence. It’s just
an unharmed and harmless Value that comes and goes as needed.

This is a huge load off of our mind, similar to transitioning from a programming language without managed memory facilities
to one with garbage collection. With the ease of use that Values afford, we should want as much of their kind as we can
possibly justify.

So how do we determine if a domain concept should be modeled as a Value? We have to pay close attention to its
characteristics.

When you care only about the attributes of an element of the model, classify it as a VALUE OBJECT
Make it express the meaning of the attributes it conveys and give it related functionality. Treat the
VALUE OBJECT as immutable. Don’t give it any identity and avoid the design complexitie
necessary to maintain ENTITIES. [Evans, p. 99]

As easy as it may be to create a Value type, sometimes those inexperienced with DDD face confusion when trying to choose
whether to model an Entity or a Value in a specific instance. The truth is that even experienced designers struggle with this
from time to time. Along with showing you how to implement a Value, I hope to clear up some of the mystery around the
sometimes confusing decision-making process.

Value Characteristics

As a first order of business, make certain when modeling a domain concept as a Value Object that you are addressing the
Ubiquitous Language. Consider this to be an overarching principle and a characteristic that must be achieved. I imply this
principle throughout the chapter.

When you are trying to decide whether a concept is a Value, you should determine whether it possesses most of these
characteristics:

« It measures, quantifies, or describes a thing in the domain.

* It can be maintained as immutable.

« It models a conceptual whole by composing related attributes as an integral unit.
« It is completely replaceable when the measurement or description changes.

* It can be compared with others using Value equality.

» It supplies its collaborators with Side-Effect-Free Behavior [Evans].

It will help to understand each of these characteristics in more detail. By employing this approach to analyzing desigr
elements in the model, you may find that you should use Value Objects far more often than you may have before.

Measures, Quantifies, or Describes

When you have a true Value Object in your model, whether you realize it or not, it is not a thing in your domain. Instead, it is
actually a concept that measures, quantifies, or otherwise describes a thing in the domain. A person has an age. The age is not
really a thing but measures or quantifies the number of years the person (thing) has lived. A person has a name. The name is not
a thing but describes what the person (thing) is called.

This is closely related to the Conceptual Whole characteristic.

Immutable

An object that is a Value is unchangeable after it has been created.! When programming in Java or C#, for example, you use
one of the Value class’s constructors to create an instance, passing in as parameters all objects on which its state will be
based. The parameters may be the objects that will directly serve as the attributes of the Value, or they may be objects that will
be used to derive one or more newly constituted attributes during construction. Here’s an example of a Value Object type that
holds a reference to another Value Object:

Click here to view code image

package com.saasovation.agilepm.domain.model.product;

public final class BusinessPriority implements Serializable {
private BusinessPriorityRatings ratings;

public BusinessPriority(BusinessPriorityRatings aRatings) {
super () ;
this.setRatings (aRatings) ;

this.initialize();

}

Instantiation alone does not guarantee that an object is immutable. After the object has been instantiated and initialized by
means of construction, none of its methods, whether public or hidden, will from that time forward cause its state to change. In
this example only the setRatings () and initialize () methods may mutate state because they are used only in the scope of
construction. Method setRatings () is private/hidden and cannot be invoked from outside the instance.? Further, class
BusinessPriority must be implemented such that none of its methods other than constructors, public or hidden, may invoke
the setter. Later I will discuss how to test Value Objects for immutability.

Depending on your taste, you can at times design Value Objects that hold references to Entities. But some caution may be
warranted. When the referenced Entities change state—by the Entity’s behavior—the Value changes, too, which violates the
quality of immutability. Thus, it may be best to employ the mindset that Entity references held by Value types are used for the
sake of compositional immutability, expressiveness, and convenience. Otherwise, if Entities are held with the express purpose
of mutating their state through the Value Object’s interface, that’s probably the wrong reason to compose them. Weigh the
competing forces while considering the Side-Effect-Free Behavior characteristic discussed later in the chapter.

Challenge Your Assumptions
If you think that the object you are designing must be mutated by its behavior, ask yourself why that is necessary. Would it
be possible instead to use replacement when the Value must change? Using this approach where possible is designing
toward simplification.

Sometimes it makes no sense for an object to be immutable. That’s perfectly fine, and it indicates that the object should
be modeled as an Entity. If your analysis leads you to that conclusion, refer to Entities (5).

Conceptual Whole

A Value Object may possess just one, a few, or a number of individual attributes, each of which is related to the others.
Each attribute contributes an important part to a whole that collectively the attributes describe. Taken apart from the others,
each of the attributes fails to provide a cohesive meaning. Only together do all the attributes form the complete intended
measure or description. This is different from merely grouping a set of attributes together in an object. The grouping itsel
accomplishes little if the whole fails to adequately describe another thing in the model.

As Ward Cunningham illustrates in his Whole Value pattern® [Cunningham, Whole Value aka Value Object], the Value
{50,000,000 dollars} has two attributes: the attribute 50,000,000 and the attribute dollars. Separately these attributes describe
something else or nothing special. This is especially true of the number 50,000,000, but certainly also of dollars. Together
these attributes are a conceptual whole that describes a monetary measure. So we would not expect the thing that is said to be
worth 50,000,000 dollars to have two separate attributes to describe its worth, one of amount that is 50,000,000 and one of
currency that is dollars. Because the thing’s worth is not just 50,000,000, and not just dollars. Here’s the inexplicit way to
model it:

Click here to view code image

// incorrectly modeled thing of worth
public class ThingOfWorth {

private String name; // attribute
private BigDecimal amount; // attribute
private String currency; // attribute
/...

}

In this example the model and its clients have to know when and how to use amount and currency together because they
don’t form a conceptual whole. This begs for a better approach.

To properly describe a thing’s worth it must be treated not as two separate attributes, but as a whole value: {50,000,000
dollars}. Here it is modeled as a Whole Value:

Click here to view code image

public final class MonetaryValue implements Serializable {
private BigDecimal amount;
private String currency;

public MonetaryValue (BigDecimal anAmount, String aCurrency) {
this.setAmount (anAmount) ;
this.setCurrency(aCurrency);

This is not to say thatMonetaryvalue is perfect and could not be improved. For sure, the use of an additional Value type
such as currency would help here. We’d replace the string type of the currency attribute with the much more descriptive
currency type. There may also be a good argument to have a Factory and possibly a Builder [Gamma et al.] to take care of
that. But those topics would detract from the simple example that is meant to focus on the concept of Whole Value.

Because the wholeness of a concept in the domain is so important, the parent reference to a Value Object is not just an
attribute. Rather, it is a property of the containing parent object/thing in the model that holds a reference to it. Granted, the type
of the Value Object has one or more attributes (two in the case of Monetaryvalue). But to the thing that holds the reference to
the Value Object instance, it is a property. Therefore, the thing that is worth 50,000,000 dollars—Iet’s call it ThingofWorth—
would have a property—possibly named worth—that holds a reference to an instance of a Value Object that has two attributes
that collectively describe the measure {50,000,000 dollars}. Remember, though, that the property name—possibly worth—
and the Value type name—possibly Monetaryvalue—can be determined only after establishing our Bounded Context (2) and
its Ubiquitous Language. Here’s an improved implementation:

Click here to view code image

// correctly modeled thing of worth
public class ThingOfWorth {

private ThingName name; // property
private MonetaryValue worth; // property
//

As expected, I changed Thingofworth to possess a property of type Monetaryvalue that is named worth. It sure cleans up
the otherwise disorganized attributes. But more importantly, there is now a Value that expresses a whole.

I want to draw attention to a second change, perhaps one that you were not expecting. The name of the Thingofworth may
be just as important to aptly describe as is its worth. So I also replaced the string type of name with the ThingName type. The
use of a string attribute for name could seem thorough enough at first. But, in later iterations, you learn that the use of a plain
String causes problems. It has allowed domain logic central to the name of a ThingofwWorth to leak out of the model. It has
leaked into other parts of the model and into client code:

Click here to view code image

// clients deal with naming issues

String name = thingOfWorth.name () ;

String capitalizedName =
name.substring (0, 1) .toUpperCase ()
+ name.substring(l) .toLowerCase() ;

Here the client makes a feeble attempt to fix possible capitalization issues with the name. By defining a ThingName type
instead, we can centralize all concerns dealing with the name of a Thingofworth. Based on this example, the ThingName may
fully format the text name upon instantiation, relieving clients of that burden. This emphasizes the need to proliferate Values
throughout the model as opposed to minimizing their significance and use. Now, rather than containing three less meaningful
attributes, ThingofWorth contains two properly typed and named property Values.

The constructors of a Value class play into the effectiveness of a conceptual whole. Along with immutability, we require a
Value class’s constructors to be the means to ensure that the Whole Value is created in one operation. You must not allow the
attributes of a Value instance to be populated after construction, as if to build up the Whole Value piece by piece. Instead, the
final state must be guaranteed to initialize all at once, atomically. The previously expressed BusinessPriority and
MonetaryValue constructors demonstrate this.

Here’s another angle on basic value type (for example, string, Integer, Or Double) overuse. There are programming
languages (such as Ruby) that allow you to effectively patch a class with new, specialized behavior. With such capabilities,
you may consider using, for example, a double floating-point value to represent currency. If you need to calculate exchange
rates between currencies, you could just patch class bouble with a convertToCurrency (Currency aCurrency) behavior.
This might seem like programming coolness, but is it really a good idea to use a language feature in this case? For one thing,
this currency-specific behavior is probably lost in a sea of general-purpose floating-point responsibilities. Strike one.
Likewise, there is no built-in understanding of currencies in class bouble. So you’d have to build up the language default type
to understand more about currencies. After all, you have to pass ina currency to know the one to convert to. Strike two. Most
importantly, class bouble says nothing explicit about your domain. You lose track of your domain concerns by not applying the
Ubiquitous Language. Big swing and a miss. Strike three.

Challenge Your Assumptions

If you are tempted to place multiple attributes on an Entity that as a result manifests a weakened relationship to all other
attributes, the attributes should very likely be gathered into a single Value type, or multiple Value types. Each should form
a conceptual whole that reflects cohesiveness, appropriately named from your Ubiquitous Language. If even one attribute
is associated with a descriptive concept, it is very possible that centralizing all concerns of this concept will improve the
power of the model. If one or more of the attributes must change over time, consider Whole Value replacement over
maintaining an Entity through a long life cycle.

Replaceability

In your model an immutable Value should be held as a reference by an Entity as long as its constant state describes the
currently correct Whole Value. If that is no longer true, the entire Value is completely replaced with a new Value that does
represent the currently correct whole.

The concept of replaceability is readily understood in the context of numbers. Say that you have the concept of atotal that
is an integer in your domain. If the total is currently set to the value 3 but must now be the value 4, you don’t, of course,
modify the integer 3 itself to become the number 4. Instead you simply set the total to the integer 4:

int total = 3;

// later...

total = 4;

This is obvious, but it helps make a point. In this example we have justreplaced the tota1 value 3 with the value 4. This is
not an oversimplification. It is exactly what replacement does even when a given Value Object type is more complex than an
integer. Consider a more complex Value type:

Click here to view code image

FullName name = new FullName ("Vaughn", "Vernon");
// later...
name = new FullName ("Vaughn", "L", "Vernon");

The name starts out as the descriptive value of my first name and my last name. Later that Whole Value is replaced with the
Whole Value of my first name, the first initial of my middle name, and my last name. I did not use a method on Ful1Name to
change the state of the value of name to contain the first initial of my middle name. That would violate the immutability quality
of the Ful1name Value type. Rather we simply use Whole Value replacement, assigning the name object reference an entirely
new instance of FullName. (True, this example was not an expressive way to handle replacement, and a better way is just
ahead.)

Challenge Your Assumptions

If you are leaning toward the creation of an Entity because the attributes of the object must change, challenge your
assumptions that it’s the correct model. Would object replacement work instead? Considering the preceding replacement
example, you may think that creating a new instance is impractical and lacks expressiveness. Even if the object you are

dealing with is complex and changes somewhat frequently, replacement need not be an impractical, or even ugly,
proposition. A later example demonstrates Side-Effect-Free Behavior for a simple and expressive way to deal witt
Whole Value replacement.

Value Equality

When a Value Object instance is compared to another instance, a test of object equality is employed. Throughout the systenr
there may be many, many Value instances that are equal, and yet not the same objects. Equality is determined by comparing the
types of both objects and then their attributes. If both the types and their attributes are equal, the Values are considered equal.
Further, if any two or more Value instances are equal, you could assign (using replacement) any one of the equal Value
instances to an Entity’s property of that type and the assignment would not change the value of the property.

Here’s an example of class Ful1Name implementing a test for Value equality:

Click here to view code image

public boolean equals (Object anObject) {
boolean equalObjects = false;
if (anObject != null &&
this.getClass () =
FullName typedObject
equalObjects =
this.firstName () .equals (typedObject.firstName ()) &&
this.lastName () .equals (typedObject.lastName ()) ;

anObject.getClass ()) {
(FullName) anObject;

}

return equalObjects;

Each of the attributes of two Ful1Name instances is compared to the others (assuming this version has only first and last
names, not a middle name). If all of the attributes in both objects are equal, the two Ful1Name instances are considered equal.
This particular Value prevents null firstName and lastName upon construction. Thus, there is no need to protect against
null inequals () comparisons of each of the corresponding properties. Further, I favor the use of self-encapsulation, so 1
access attributes through their query methods. This allows for derived attributes rather than requiring each attribute to exist as
explicit state. Also implied is the need for a corresponding hashcode () implementation (demonstrated later).

Consider the combination of Value characteristics necessary to support Aggregate (10) unique identity. We need the Value
equality capability, for example, when we query for a specific Aggregate instance by identity. Immutability is also crucial. The
unique identity must never change, and this can in part be ensured through the Value immutability characteristic. We also
benefit from the conceptual whole characteristic, because the identity is named per the Ubiquitous Language and holds all
uniqueness-identifying attributes in one instance. However, in this specific case we don’t need the replacement characteristic
of a Value Object because the unique identity of an Aggregate Root will never be replaced. Yet, lacking the need for
replacement characteristics does not disqualify the use of a Value here. Further, if the identity requires some Side-Effect-Free
Behavior, it is implemented on the Value type.

Challenge Your Assumptions

Ask yourself if the concept you are designing must be an Entity identified uniquely from all other objects or if it is
sufficiently supported using Value equality. If the concept itself doesn’t require unique identity, model it as a Value
Object.

Side-Effect-Free Behavior

A method of an object can be designed as a Side-Effect-Free Function [Evans]. A function is an operation of an object that
produces output but without modifying its own state. Since no modification occurs when executing a specific operation, that
operation is said to be side-effect free. The methods of an immutable Value Object must all be Side-Effect-Free Function:
because they must not violate its immutability quality. You may consider this characteristic as part and parcel with
immutability. It is closely tied. However, I prefer to break it out as a distinct characteristic because doing so emphasizes a
huge benefit of Value Objects. Otherwise, we might see Values only as attribute containers, overlooking one of the most
powerful aspects of the pattern.

The Functional Way

Functional programming languages generally enforce this characteristic. In fact, pure functional languages allow nothing
but Side-Effect-Free Behavior, requiring all closures to receive and produce only immutable Value Objects.

Bertrand Meyer described Side-Effect-Free Functions as theQuery methods of his Command-Query Separation principle.
or CQS, as discussed by Martin Fowler in [Fowler, CQS]. A query method is one that asks an object a question. By definition,
asking an object a question must not change the answer.

Here is an example of the Ful1Name type’s use of Side-Effect-Free Behavior to produce a new replacement value of itself:

Click here to view code image

FullName name = new FullName ("Vaughn", "Vernon");
// later...
name = name.withMiddleInitial ("L");

This produces the same outcome as the example discussed under “Replaceability,” but in a more expressive way. This Side-
Effect-Free Function is implemented as follows:

Click here to view code image

public FullName withMiddleInitial (String aMiddleNameOrInitial) {
if (aMiddleNameOrInitial == null) {
throw new IllegalArgumentException (
"Must provide a middle name or initial.");

}

String middle = aMiddleNameOrInitial.trim();

if (middle.isEmpty()) {
throw new IllegalArgumentException (
"Must provide a middle name or initial.");

}

return new FullName (
this.firstName (),
middle.substring (0, 1) .toUpperCase(),
this.lastName()) ;

In this example the method withMiddleInitial () does not modify the state of its own Value and is, therefore, side-effect
free. Instead it instantiates a new Value composed from some of its own parts and a given middle initial. This method captures
important domain business logic in the model rather than allowing it to leak out into client code, which could happen in the
earlier example.

When a Value References an Entity

Should a Value Object method be permitted to cause the modification of an Entity that is passed as a parameter? Without
stating a rule, if such a method does cause the modification of an Entity, is it really side-effect free? Would it be easy to
test that method? I say not easy or less easy. Thus, when a Value’s method takes an Entity as parameter, it may be best for
it to answer a result that the Entity could use to modify itself on its own terms.

Nonetheless, there are problems with such a design. Consider an example. Here a Scrum product, an Entity, is used in some
way by BusinessPriority, a Value Object, to calculate a priority:

float priority = businessPriority.priorityOf (product)

Do you see flaws in this? You have probably concluded that at least some problems exist:

» What I draw attention to is that we are forcing the Value to not only depend on a product, but also to understand
the shape of this Entity. Where possible, limit a Value to depend on and understand only its own type and the types of
its attributes. That is not always possible, but it’s a good goal.

» Someone reading the code will not know what parts of the product will be used. The expression is not explicit,
which weakens the clarity of the model. It would be much better if some actual or derived property of product were
passed.

» More important for this discussion, any Value method that takes an Entity as parameter cannot easily prove that it
doesn’t cause the Entity’s modification, making the operation more difficult to test. So, even though a Value promises
not to cause modification, no one can easily prove that it doesn’t.

Given this analysis, we haven’t really improved anything here. To change that and make the Value robust, you’d pass only
Values as parameters to Value methods. This way you reach the greatest level of Side-Effect-Free Behavior. It is not difficul
to accomplish:

Click here to view code image

float priority =
businessPriority.priority(
product.businessPriorityTotals());

Here we simply ask the product to provide an instance of Value BusinessPriorityTotals. You may conclude that
priority () should return a type other than f1oat. That would be especially true if expressing a priority should be a more
formal part of the Ubiquitous Language, in which case a custom value type would be in order. Decisions like these come as a
result of continually refining the model. Indeed, after some analysis the SaaSOvation team finds that theproduct Entity should
not itself calculate business priority totals at all. That would eventually be performed by a Domain Service (7), and you will
see the better solution in that chapter.

If you decide against designing a specialized Value Object in favor of using a basic language Value type instead (primitive
or wrapper), you might be shortchanging your model. You won’t have the opportunity to assign domain-specific Side-Effect-
Free Functions to the basic language Value type. Any specialty behavior will be separate from the Value. And even if your
programming language allows you to patch the basic type with new behavior, is that really going to enable you to capture deep
domain insight?

Challenge Your Assumptions

If you think that a specific method cannot be side-effect free and must mutate the state of its own instance, challenge your
assumptions. Is there a way to employ replacement rather than mutation? The preceding example provides a very simple
approach to creating a new Value by reusing parts of the existing one and replacing only the specifically changed parts.
Rarely would every object in the system be a Value. Some objects will almost certainly be Entities. Carefully compare
the Value characteristic qualifiers against those of Entities. A reasonable amount of team thought and discussion should
lead to the correct conclusions.

Once the SaaSOvation teams read the[Evans] guidance about Side-Effect-Free Functions, and other Whole Value material
they realized that they should be using Value Objects far more frequently. The teams have since come to realize that
understanding the preceding Value characteristics really helped them discover more natural Value types in their domain.

Is Everything a Value Object?

By now you may have begun to think that everything looks like a Value Object. That’s better than thinking that everything
looks like an Entity. Where you might use a little caution is when there are truly simple attributes that really don’t need
any special treatment. Perhaps those are Booleans or any numeric value that is really self-contained, needing no
additional functional support, and is related to no other attributes in the same Entity. On their own the simple attributes are
a Meaningful Whole. Still, you could certainly make the “mistake” of unnecessarily wrapping a single attribute in a Value
type with no special functionality and be better off than those who never give Value design a nod. If you find that you’ve
overdone it a bit, you can always refactor a little.

Integrate with Minimalism

There are always multiple Bounded Contexts in every DDD initiative, which means we must find appropriate ways tc
integrate them. Where possible use Value Objects to model concepts in the downstream Context when objects from the
upstream Context flow in. By doing so you can integrate with a priority on minimalism, that is, minimizing the number of

properties that you assume responsibility for managing in your downstream model. Using immutable Values results in assuming
less responsibility.

Why Be So Responsible?
Using immutable Values results in assuming less responsibility.

Reusing an example from Bounded Contexts (2), recall that two Aggregates in the upstream Identity and Access Contexi
have an impact on the downstream Collaboration Context, as illustrated in Figure 6.1. In the Identity and Access Context the
two Aggregates are User and Role. The Collaboration Context is interested in whether a specific user plays a specific Role,
namely, Moderator. The Collaboration Context uses its Anticorruption Layer (3) to query the Open Host Service (3) of the
Identity and Access Context. If the integration-based query indicates that the Moderator role is being played by the specific
user, the Collaboration Context creates a representative object, namely, a Moderator.

Moderator

Collaboration Context

Identity and Access
Context

Figure 6.1. The Moderator object in its Context is based on the state of a user and Role in a different Context. User
and Role are Aggregates, but Moderator is a <<value object>>

Moderator, among the collaborator subclasses shown in Figure 6.2, is modeled as a Value Object. Instances are
statically created and associated with a Forum Aggregate, the important point being the minimized impact that multiple
Aggregates in the upstream Identity and Access Context, possessing many attributes, have on the Collaboration Context. With
just a few attributes of its own, aModerator models an essential concept of the Ubiquitous Language spoken in the
Collaboration Context. Furthermore, class Moderator contains no single attribute from the rRo1e Aggregate. Rather, the class
name itself captures the Moderator role played by a user. By choice, the Moderator is a statically created Value instance, and
there is no goal to keep it synchronized with the remote Context of origin. This carefully chosen quality-of-service contract lifts
a potentially heavy burden off the consuming Context.

<zvalue object>>

Collaborator

emailAddress

identity
name
<<value object>> <<value object>> <<value object>> <<value object>> <<value object>>
Author Creator Moderator Owner Participant

Figure 6.2. The colliaborator class hierarchy of Value Objects. Only a few user attributes are retained from the
upstream Context, with class names making roles explicit.

Of course, there are times when an object in a downstream Context must be eventually consistent with the partial state of one
or more Aggregates in a remote Context. In that case we’d design an Aggregate in the downstream consuming Context, because
Entities are used to maintain a thread of continuity of change. But we should strive to avoid this modeling choice where
possible. When you can, choose Value Objects to model integrations. This advice is applicable in many cases when consuming
remote Standard Types.

Standard Types Expressed as Values

In many systems and applications there is a need for what I call Standard Types. Standard Types are descriptive objects
that indicate the types of things. There is the thing (Entity) or description (Value) itself, and there are also the Standard Types
to distinguish them from other types of the same thing. I am unaware of an industry standard name for this concept, but I have
also heard it called a type code and a lookup. The name type code doesn’t say much. And a lookup is a lookup of what? I
prefer the name Standard Types because it is more descriptive. To make this concept clearer, consider a few uses. In some
cases these are modeled as Power Types.

Your Ubiquitous Language defines a phoneNumber (Value), which also requires you to describe the type of each one. “Is the
phone number a home, mobile, work, or other type of number?” asks your domain expert. Should different types of phone
numbers be modeled as a class hierarchy? Having a separate class for each type makes it more difficult for clients to
distinguish among them. Here you’d likely desire to use a Standard Type to describe the type of phone, either Home, Mobile,
Work, or other. These descriptions represent the Standard Types of phones.

As I previously discussed, in a financial domain there is the possibility of having acurrency (Value) type to constrain a
MonetaryValue to an amount within a specific world currency. In this case the Standard Type would provide a Value for each
of the world’s currencies: AUD, CAD, CNY, EUR, GBP, JPY, USD, and so on. Using a Standard Type here helps you avoi
bogus currencies. Although the incorrect currency could be assigned to the Monetaryvalue, a nonexistent currency could not
be. If using a string attribute, you could place the model into an invalid state. Consider the misspelled doolars and the
problems it would cause.

You might be working in the pharmaceutical field and designing for medications that have various kinds of administration
routes. A specific medication (Entity) has a long life cycle and change is managed over time—it is conceptualized, researched,
developed, tested, manufactured, improved, and finally discontinued. You may or may not decide to manage the life cycle
stages using Standard Types. These life cycle shifts may justifiably be managed in a few different Bounded Contexts. On the
other hand, the directed patient administration route of each medication can be classified by Standard Type descriptions, such
as IV, Oral, or Topical.

Depending on the level of standardization, these types may be maintained at the application level only, or be escalated in
importance to shared corporate databases, or be available through national or international standards bodies.

The level of standardization can sometimes influence the way Standard Types are retrieved and used inside a model.

We may think of these as Entities because they have a life of their own in a dedicated, native Bounded Context. Regardless
of how they are created and maintained by any kind of standards body, if possible we should strive to treat them as Values in
our consuming Context. This works well because they measure and describe the types of things, and measures and descriptions
are best modeled as Values. Further, one instance of {IV}, for example, is just the same as any other instance of {IV}. They ar¢
clearly interchangeable, which also means that they are replaceable and can employ Value equality. Thus, if there is no need to
maintain a continuity of change over the life cycle of descriptive types in your Bounded Context, model them as Values.

For the sake of maintenance it is common for Standard Types to natively reside in a separate Context from the models that
consume them. There they are Entities and have a persistent life cycle with attributes such asidentity, name, and
description. There may be other attributes as well, but the ones mentioned are the most common to use in a consuming
Context. We often use just one. This is in adherence to the goal to integrate with minimalism.

As a very simple example, consider a Standard Type that models a member of a group for which two types exist. There may
be members that are users and members that are themselves groups (nested groups). This Java enum represents one way to
support a Standard Type:

Click here to view code image

package com.saasovation.identityaccess.domain.model.identity;
public enum GroupMemberType {

GROUP {
public boolean isGroup () {
return true;
}
}I
USER {
public boolean isUser () {
return true;
}
}i

public boolean isGroup () {
return false;

}

public boolean isUser () {
return false;

}

A GroupMember Value instance is instantiated with a specific Group-MemberType. To demonstrate, when a User or a
Group 1s assigned to a Group, the assigned Aggregate is asked to render a GroupMember corresponding to itself. Here is the
toGroupMember () method implementation of class User:

Click here to view code image

protected GroupMember toGroupMember () {
GroupMember groupMember =
new GroupMember (
this.tenantId(),
this.username (),
GroupMemberType.USER); // enum standard type

return groupMember;

Use of a Java enum is a very simple way to support a Standard Type. The enum provides a well-defined finite number of
Values (in this case two), it is very lightweight, and it has by convention Side-Effect-Free Behavior. But where is the Value’s
textual description? There are two possible answers. Often there is no need to provide a description of the type, just its name.
Why? Textual descriptions are generally valid only in the User Interface Layer (14) and can be supplied by matching the type
name to a view-centric property. Many times the view-centric property must be localized (as in multilanguage computing),
making this inappropriate to support in the model. Often the name of the Standard Type alone is the best attribute to use in the
model. The second answer is that there are limited descriptions built right into the enum state names Group and UseR. You may
render the descriptive names using the tostring () behavior of each type. But if necessary, descriptive text of each type may
be modeled as well.

This sample Java enum Standard Type is also, in essence, an elegant and clutter-free State [Gamma et al.] object. At the
bottom of the enum declaration there are two methods that implement the default behavior for all States, isGroup () and
isUser (). By default, both of these methods answer false, which is the proper basic behavior. In each of the State
definitions, however, the methods are overridden to answer true as applicable for their specific State. When the state of the
Standard Type is the GrouP, the isGroup () method is overridden to produce a true outcome. When the state of the Standard
Type is the UsER, the isuser () method is overridden to produce a true outcome. The state changes by replacing the current
enum value with a different one.

This enum demonstrates some very basic behavior. The State pattern implementation can be more sophisticated as needed by
the domain, adding more standard behaviors that are overridden and specialized by each State. As it is, this is an example of a
Value type whose states are constrained to a well-defined set of constants. An important one is the BacklogItemStatusType,
which provides PLANNED, SCHEDULED, COMMITTED, DONE, and REMOVED states. [use this Standard Type approach throughout the
three sample Bounded Contexts. I think it keeps them as simple as possible.

State Pattern Considered Harmful?

Some consider the State pattern to be less than desirable. A common complaint is the need to create an abstract
implementation of each of the behaviors supported by the type (the two methods at the bottom of GroupMemberType) and
then to override those behaviors when the given State must provide a specialized implementation. In Java this typically
requires a separate class (usually in a separate file) for the abstract type and also for each State. Like it or not, that is the
way of the State pattern.

I agree that when separate State classes must be developed—one for each unique state plus an abstract type—it car
become an unwieldy mess. The distinct behaviors in each class, perhaps mixed with some default behavior from the
abstract class, can lead to tight coupling of subclasses and lack of readability between types. This burden is especially
taxing if you have a large number of States. However, I think that the use of a Java enum is a very simple and possibly the
more optimal way to use the State pattern to produce a set of Standard Types. I think you get the best of both approaches.

You get a very simple Standard Type and a way to interrogate the standard for its current State. This keeps behavior
cohesive to the type. Limiting the State behavior makes for practical use.

But it’s still possible that you don’t like even this simple implementation of State, and to each his or her own.

If you decide that you dislike the use of Java enums to support Standard Types, you can always use a unique Value instance
for each type. However, if your concern is primarily that you don’t like the idea of using the State pattern, you can easily use an
enum for elegant Standard Type support without thinking of it as the State pattern. After all, I may be the first person to have put
the enum-as-State thought into your mind. That being said, there are alternatives to implementing Standard Types other than the
enum and Value approaches.

As one alternative, you can use an Aggregate as a Standard Type with one instance of the Aggregate per type. Think twice
before you run with this. Standard types should generally not be maintained inside the Bounded Context that consumes them
Widely used Standard Types should normally be maintained in a separate Context with very carefully planned updates to
consumers. Instead, you could choose to expose Standard Type Aggregates as immutable in consumer Contexts. But ask
yourself if an immutable Entity is by definition really an Entity. If you think not, you should consider modeling it as a shared
immutable Value Object instead.

A shared immutable Value Object can be obtained from a hidden persistence store. This is a viable choice if obtained from
a Standard Type Service (7) or Factory (11). If employed, you should probably have one Service or Factory provider for each
set of Standard Types (one for phone number types, another for postal address types, one for currency types), as depicted in
Figure 6.3. In both cases the concrete implementations of a Service or Factory would access the persistence store to obtain the
shared Values as needed, but clients would never know that the Values are stored in a standards database. Using either a
Service or a Factory to provide the types also enables you to put a number of viable caching strategies to work easily and
safely because the Values are read-only from the store and immutable in the system.

<edomain services>>

-
Ty

CurrencyService

<<instantiates>>

{n!n-n-vrv—w

TBL_CURRENCY_TYPE

<<value object>>

CurrencyType

*ID NUMBER
*NAME VARCHAR(50)
*SYMBOL YARCHAR(4)

Figure 6.3. A Domain Service can be used to provide Standard Types. In this case the Service goes out to the database
to read the state of a requested currencyType.

In the end, I think it is best to be biased toward enum for Standard Types whether or not you actually think of it as a State. I
you have many possible Standard Type instances in a single category, consider code generation to produce the enum. A code
generation approach could read through all existing Standard Types in their respective persistence store (system of record) and
create a unique type/state per row, for example.

If you decide to use classical Value Objects as Standard Types, you may find it useful to introduce a Service or Factory tc
statically create instances as needed. This would have similar motivations as discussed previously but would be different in its
implementation from those producing shared Values. In this case your Service or Factory would provide statically created
immutable Value instances of each individual Standard Type. Any changes to the underlying Standard Type database entities in
the system of record would not be automatically reflected in the preexisting statically created representation instances. If you
desired to keep such statically created Value instances synchronized with the system of record, you’d need to provide a custom
solution to search for and update their state in your model. This could negate the potential usefulness of this approach Thus,
you might from design inception determine that all such statically created Standard Type Values will never be updated in the
consuming Bounded Context. All competing forces must be weighed.

Testing Value Objects

To emphasize test-first, I first present sample tests before I provide the Value Object implementation. These tests drive the
domain model’s design by providing examples of how a client will use each object.

Employing this style, we are not as interested in addressing the various aspects of unit testing, thoroughly proving that the
model is completely bulletproof in every way. Rather, at this point in time there is more interest in demonstrating how various
objects in the domain model will be used by clients and what those clients can expect when they use them. It is essential to
assume the client’s perspective when designing the model in order to capture the essential concepts. Otherwise, we could be
modeling from our own perspective instead of from the business’s.

Best Sample Code

Here’s one way of thinking about this style of test: If we were writing a user’s manual for the model, we would provide
these tests as the most appropriate code samples for how clients should use this specific domain object.

This is not to say that unit tests should not be developed. All additional tests that address team standards should and must be
written. However, there are different motivations for each type of test. Unit tests and behavioral tests have their place, as do
the following modeling tests.

The Value Object selected is a good all-around representation taken from the latest Core Domain (2), the Agile Project
Management Context.

In this Bounded Context business domain experts speak of the “business priority of backlog items.” To fulfill this part of the
Ubiquitous Language we model the concept as aBusinessPriority. It provides calculated output suitable for supporting the
business analysis of the value of developing each product backlog item [Wiegers]. The outputs are cost percentage, or the cost
of developing a specific backlog item as compared to the cost of developing all others; total value, which is the total value
gained by developing a specific backlog item; and value percentage, as in the value of developing a specific backlog item
compared to the value of developing any other; and priority, which is the calculated priority the business should consider
giving this backlog item when compared against all others.

These tests actually emerged over multiple brief refactoring iterations of stepwise refinements, although they are

presented here as a finished set:

Click here to view code image

package com.saasovation.agilepm.domain.model.product;
import com.saasovation.agilepm.domain.model.DomainTest;
import java.text.NumberFormat;

public class BusinessPriorityTest extends DomainTest {

public BusinessPriorityTest () {
super () ;

}

private NumberFormat oneDecimal () {
return this.decimal(1l);

}

private NumberFormat twoDecimals () {
return this.decimal (2);

}

private NumberFormat decimal (int aNumberOfDecimals) {
NumberFormat fmt = NumberFormat.getInstance():;
fmt.setMinimumFractionDigits (aNumberOfDecimals) ;
fmt.setMaximumFractionDigits (aNumberOfDecimals) ;
return fmt;

The class has some fixture helpers. Since the team needed to test the accuracy of various calculations, they coded
methods to provide NumberFormat instances for fractional values that had either one or two places to the right of the
decimal point. You’ll see next why these are useful:

Click here to view code image

public void testCostPercentageCalculation() throws Exception {

BusinessPriority businessPriority =
new BusinessPriority(
new BusinessPriorityRatings (2, 4, 1, 1));

BusinessPriority businessPriorityCopy =
new BusinessPriority(businessPriority);

assertEquals (businessPriority, businessPriorityCopy):;

BusinessPriorityTotals totals =
new BusinessPriorityTotals (53, 49, 53 + 49, 37, 33);

float cost = businessPriority.costPercentage(totals);
assertEquals (this.oneDecimal () .format (cost), "2.7");

assertEquals (businessPriority, businessPriorityCopy):;

The team came up with a good idea to test for immutability. Each test first created an instance ofBusinessPriority
and then made an equivalent copy of it using the copy constructor. The first assertion in the test ensured that the copy
constructor produced a copy equal to the original.

Next, they designed the test to create BusinessPriorityTotals and assigned it to the totals method variable. With
totals they were able to use the cost-Percentage () query method and assign the results to cost. They then asserted
that the value returned was 2.7, which was the manually calculated correct outcome. Finally, they asserted that the
behavior of method costpPercentage () was truly side-effect free, which would be the case if businesspPriority still
had Value equality with businessPriorityCopy. From this test they gained a good idea of how to calculate cost
percentages and what their outcome would be like.

Next, they needed to test the priority, the total value, and the value percentage calculations, using the same basic plan of
attack:

Click here to view code image

public void testPriorityCalculation() throws Exception {

BusinessPriority businessPriority =
new BusinessPriority(

new BusinessPriorityRatings (2, 4, 1, 1));

BusinessPriority businessPriorityCopy =
new BusinessPriority(businessPriority);

assertEquals (businessPriorityCopy, businessPriority);

BusinessPriorityTotals totals =
new BusinessPriorityTotals (53, 49, 53 + 49, 37, 33);

float calculatedPriority = businessPriority.priority(totals);

assertEquals("1.03",
this.twoDecimals () .format (calculatedPriority))

assertEquals (businessPriority, businessPriorityCopy):;

public void testTotalValueCalculation() throws Exception {

BusinessPriority businessPriority =
new BusinessPriority(
new BusinessPriorityRatings (2, 4, 1, 1));

BusinessPriority businessPriorityCopy =
new BusinessPriority(businessPriority);

assertEquals (businessPriority, businessPriorityCopy):;
float totalValue = businessPriority.totalValue():;
assertEquals ("6.0", this.oneDecimal ().format (totalVvalue));

assertEquals (businessPriority, businessPriorityCopy)

public void testValuePercentageCalculation() throws Exception ({

BusinessPriority businessPriority =
new BusinessPriority(
new BusinessPriorityRatings (2, 4, 1, 1));

BusinessPriority businessPriorityCopy =
new BusinessPriority(businessPriority);

assertEquals (businessPriority, businessPriorityCopy)

BusinessPriorityTotals totals =
new BusinessPriorityTotals (53, 49, 53 + 49, 37, 33);

float valuePercentage =
businessPriority.valuePercentage (totals);

assertEquals ("5.9", this.oneDecimal () .format (valuePercentage)):;

assertEquals (businessPriorityCopy, businessPriority);

Tests Should Have Domain Meaning
Your model tests should have meaning to your domain experts.

Nontechnical domain experts—given a bit of help—reading these example-based tests were able to understand just
how BusinessPriority was used, the kinds of outcomes it produced, that its behavior was guaranteed to be side-effect

free, and that it adhered to the concepts and intent of the Ubiquitous Language.

Importantly, the state of the Value Object was guaranteed immutable for every usage. Clients could produce results
from the priority calculations of any number of product backlog items, sort them, compare them, and adjust the
BusinessPriorityRatings of each item as needed.

Implementation

I like this BusinessPriority example because it demonstrates all of the Value characteristics and more. Besides showing
how to design for immutability, conceptual wholeness, replaceability, Value equality, and Side-Effect-Free Behavior, it also
demonstrates how you can use a Value type as a Strategy [Gamma et al.] (aka Policy).

As each test method was developed, the team understood more about how a client would use a BusinessPriority, enabling
them to implement it to behave as the tests asserted it should. Here is the basic class definition along with constructors that the
team coded:

Click here to view code image

public final class BusinessPriority implements Serializable ({
private static final long serialVersionUID = 1L;
private BusinessPriorityRatings ratings;

public BusinessPriority(BusinessPriorityRatings aRatings) {
super () ;
this.setRatings (aRatings) ;

}

public BusinessPriority(BusinessPriority aBusinessPriority) {
this (aBusinessPriority.ratings());

}

The team decided to declare their Value types serializable. There are times when a Value instance needs to be
serialized, such as when it is communicated to a remote system, and may be useful for some persistence strategies.

ThisBusinessPriority itself was designed to hold a Value property named ratings of type
BusinessPriorityRatings (not shown here). The ratings property described the business value and expense trade-oft
of either implementing, or not implementing, a given product backlog item. The BusinessPriority-Ratings type
provided the BusinessPriority withbenefit, cost, penalty, and risk ratings, which enabled a range of calculations
to be performed.

Usually I support at least two constructors for each of my Value Objects. The first constructor takes the full complement o1
parameters necessary to derive and/or set state attributes. This primary constructor first initializes its default state. The basic
attribute initialization is performed first by invoking private setters. [recommend the use of self-delegation and demonstrate its
use here with private setters.

Keeping Values Immutable

Only the primary constructor(s) use self-delegation to set properties/attributes. No other methods shall self-delegate to
setter methods. Since all setter methods in a Value Object are always private scope, there is no opportunity for attributes
to be exposed to mutation by consumers. These are two important factors in maintaining the immutability of Values.

The second constructor is used to copy an existing Value to create a new one, or what is called a copy constructor. This
constructor performs what’s known as a shallow copy as it self-delegates to its primary constructor, passing as parameters
each of the corresponding attributes of the Value being copied. We could perform a deep copy or clone where all contained
attributes and properties are themselves copied to produce a completely unique object, but still equal to the value of the one
copied. However, this many times proves to be both complex and unnecessary when dealing with Values. If a deep copy is
ever needed, it can be added. But when dealing with immutable Values, it is never a problem to share attributes/properties
between instances.

This second constructor, the copy constructor, is important for unit tests. When we test a Value Object, we want to include
verification that it is immutable. As demonstrated earlier, when the unit test begins, create the new test Value Object instance
and a copy of it using the copy constructor, and assert that the two instances are equal. Next, test the Value instance Side-
Effect-Free Behavior. If all test goal assertions pass, the final assertion is that the tested and the copied instances are still
equal.

Next, we implement the Strategy/Policy part of the Value type:

Click here to view code image

public float costPe