

Implementing Domain-Driven Design

Vaughn Vernon

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any
kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales, which
may include electronic versions and/or custom covers and content particular to your business, training goals, marketing focus,
and branding interests. For more information, please contact:

 U.S. Corporate and Government Sales
 (800) 382-3419
 corpsales@pearsontechgroup.com

For sales outside the United States, please contact:
 International Sales

 international@pearsoned.com
Visit us on the Web: informit.com/aw
Library of Congress Control Number: 2012954071
Copyright © 2013 Pearson Education, Inc.
All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must

be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form
or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this
work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-83457-7
ISBN-10: 0-321-83457-7

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.
First printing, January 2013

mailto:corpsales@pearsontechgroup.com
mailto:international@pearsoned.com
http://informit.com/aw

Praise for Implementing Domain-Driven Design

“With Implementing Domain-Driven Design, Vaughn has made an important contribution not only to the literature of the
Domain-Driven Design community, but also to the literature of the broader enterprise application architecture field. In key
chapters on Architecture and Repositories, for example, Vaughn shows how DDD fits with the expanding array of architecture
styles and persistence technologies for enterprise applications—including SOA and REST, NoSQL and data grids—that has
emerged in the decade since Eric Evans’ seminal book was first published. And, fittingly, Vaughn illuminates the blocking and
tackling of DDD—the implementation of entities, value objects, aggregates, services, events, factories, and repositories—with
plentiful examples and valuable insights drawn from decades of practical experience. In a word, I would describe this book as
thorough. For software developers of all experience levels looking to improve their results, and design and implement
domain-driven enterprise applications consistently with the best current state of professional practice, Implementing Domain-
Driven Design will impart a treasure trove of knowledge hard won within the DDD and enterprise application architecture
communities over the last couple decades.”

—Randy Stafford, Architect At-Large, Oracle Coherence Product Development

“Domain-Driven Design is a powerful set of thinking tools that can have a profound impact on how effective a team can be
at building software-intensive systems. The thing is that many developers got lost at times when applying these thinking tools
and really needed more concrete guidance. In this book, Vaughn provides the missing links between theory and practice. In
addition to shedding light on many of the misunderstood elements of DDD, Vaughn also connects new concepts like
Command/Query Responsibility Segregation and Event Sourcing that many advanced DDD practitioners have used with great
success. This book is a must-read for anybody looking to put DDD into practice.”

—Udi Dahan, Founder of NServiceBus

“For years, developers struggling to practice Domain-Driven Design have been wishing for more practical help in actually
implementing DDD. Vaughn did an excellent job in closing the gap between theory and practice with a complete
implementation reference. He paints a vivid picture of what it is like to do DDD in a contemporary project, and provides
plenty of practical advice on how to approach and solve typical challenges occurring in a project life cycle.”

—Alberto Brandolini, DDD Instructor, Certified by Eric Evans and Domain Language, Inc.

“Implementing Domain-Driven Design does a remarkable thing: it takes a sophisticated and substantial topic area in DDD
and presents it clearly, with nuance, fun and finesse. This book is written in an engaging and friendly style, like a trusted
advisor giving you expert counsel on how to accomplish what is most important. By the time you finish the book you will be
able to begin applying all the important concepts of DDD, and then some. As I read, I found myself highlighting many sections .
. . I will be referring back to it, and recommending it, often.”

—Paul Rayner, Principal Consultant & Owner, Virtual Genius, LLC., DDD Instructor, Certified by Eric Evans and Domain
Language, Inc., DDD Denver Founder and Co-leader

“One important part of the DDD classes I teach is discussing how to put all the ideas and pieces together into a full blown
working implementation. With this book, the DDD community now has a comprehensive reference that addresses this in detail.
Implementing Domain-Driven Design deals with all aspects of building a system using DDD, from getting the small details
right to keeping track of the big picture. This is a great reference and an excellent companion to Eric Evans seminal DDD
book.”

—Patrik Fredriksson, DDD Instructor, Certified by Eric Evans and Domain Language, Inc.

“If you care about software craftsmanship—and you should—then Domain-Driven Design is a crucial skill set to master and
Implementing Domain-Driven Design is the fast path to success. IDDD offers a highly readable yet rigorous discussion of
DDD’s strategic and tactical patterns that enables developers to move immediately from understanding to action. Tomorrow’s
business software will benefit from the clear guidance provided by this book.”

—Dave Muirhead, Principal Consultant, Blue River Systems Group

“There’s theory and practice around DDD that every developer needs to know, and this is the missing piece of the puzzle
that puts it all together. Highly recommended!”

—Rickard Öberg, Java Champion and Developer at Neo Technology

“In IDDD, Vaughn takes a top-down approach to DDD, bringing strategic patterns such as bounded context and context maps
to the fore, with the building block patterns of entities, values and services tackled later. His book uses a case study throughout,
and to get the most out of it you’ll need to spend time grokking that case study. But if you do you’ll be able to see the value of
applying DDD to a complex domain; the frequent sidenotes, diagrams, tables, and code all help illustrate the main points. So if
you want to build a solid DDD system employing the architectural styles most commonly in use today, Vaughn’s book comes
recommended.”

—Dan Haywood, author of Domain-Driven Design with Naked Objects

“This book employs a top-down approach to understanding DDD in a way that fluently connects strategic patterns to lower
level tactical constraints. Theory is coupled with guided approaches to implementation within modern architectural styles.
Throughout the book, Vaughn highlights the importance and value of focusing on the business domain all while balancing
technical considerations. As a result, the role of DDD, as well as what it does and perhaps more importantly doesn’t imply,
become ostensibly clear. Many a time, my team and I would be at odds with the friction encountered in applying DDD. With
Implementing Domain-Driven Design as our luminous guide we were able to overcome those challenges and translate our
efforts into immediate business value.”

—Lev Gorodinski, Principal Architect, DrillSpot.com

This book is dedicated to my dearest Nicole and Tristan.
Thanks for your love, your support, and your patience.

Contents

Foreword

Preface

Acknowledgments

About the Author

Guide to This Book

Chapter 1 Getting Started with DDD
Can I DDD?
Why You Should Do DDD
How to Do DDD
The Business Value of Using DDD

1. The Organization Gains a Useful Model of Its Domain
2. A Refined, Precise Definition and Understanding of the Business Is Developed
3. Domain Experts Contribute to Software Design
4. A Better User Experience Is Gained
5. Clean Boundaries Are Placed around Pure Models
6. Enterprise Architecture Is Better Organized
7. Agile, Iterative, Continuous Modeling Is Used
8. New Tools, Both Strategic and Tactical, Are Employed

The Challenges of Applying DDD
Fiction, with Bucketfuls of Reality
Wrap-Up

Chapter 2 Domains, Subdomains, and Bounded Contexts
Big Picture

Subdomains and Bounded Contexts at Work
Focus on the Core Domain

Why Strategic Design Is So Incredibly Essential
Real-World Domains and Subdomains
Making Sense of Bounded Contexts

Room for More than the Model
Size of Bounded Contexts
Aligning with Technical Components

Sample Contexts
Collaboration Context
Identity and Access Context
Agile Project Management Context

Wrap-Up

Chapter 3 Context Maps
Why Context Maps Are So Essential

Drawing Context Maps
Projects and Organizational Relationships
Mapping the Three Contexts

Wrap-Up

Chapter 4 Architecture
Interviewing the Successful CIO
Layers

Dependency Inversion Principle
Hexagonal or Ports and Adapters
Service-Oriented
Representational State Transfer—REST

REST as an Architectural Style
Key Aspects of a RESTful HTTP Server
Key Aspects of a RESTful HTTP Client
REST and DDD
Why REST?

Command-Query Responsibility Segregation, or CQRS
Examining Areas of CQRS
Dealing with an Eventually Consistent Query Model

Event-Driven Architecture
Pipes and Filters
Long-Running Processes, aka Sagas
Event Sourcing

Data Fabric and Grid-Based Distributed Computing
Data Replication
Event-Driven Fabrics and Domain Events
Continuous Queries
Distributed Processing

Wrap-Up

Chapter 5 Entities
Why We Use Entities
Unique Identity

User Provides Identity
Application Generates Identity
Persistence Mechanism Generates Identity
Another Bounded Context Assigns Identity
When the Timing of Identity Generation Matters
Surrogate Identity
Identity Stability

Discovering Entities and Their Intrinsic Characteristics
Uncovering Entities and Properties
Digging for Essential Behavior
Roles and Responsibilities
Construction
Validation
Change Tracking

Wrap-Up

Chapter 6 Value Objects

Value Characteristics
Measures, Quantifies, or Describes
Immutable
Conceptual Whole
Replaceability
Value Equality
Side-Effect-Free Behavior

Integrate with Minimalism
Standard Types Expressed as Values
Testing Value Objects
Implementation
Persisting Value Objects

Reject Undue Influence of Data Model Leakage
ORM and Single Value Objects
ORM and Many Values Serialized into a Single Column
ORM and Many Values Backed by a Database Entity
ORM and Many Values Backed by a Join Table
ORM and Enum-as-State Objects

Wrap-Up

Chapter 7 Services
What a Domain Service Is (but First, What It Is Not)
Make Sure You Need a Service
Modeling a Service in the Domain

Is Separated Interface a Necessity?
A Calculation Process
Transformation Services
Using a Mini-Layer of Domain Services

Testing Services
Wrap-Up

Chapter 8 Domain Events
The When and Why of Domain Events
Modeling Events

With Aggregate Characteristics
Identity

Publishing Events from the Domain Model
Publisher
Subscribers

Spreading the News to Remote Bounded Contexts
Messaging Infrastructure Consistency
Autonomous Services and Systems
Latency Tolerances

Event Store
Architectural Styles for Forwarding Stored Events

Publishing Notifications as RESTful Resources
Publishing Notifications through Messaging Middleware

Implementation
Publishing the NotificationLog
Publishing Message-Based Notifications

Wrap-Up

Chapter 9 Modules
Designing with Modules
Basic Module Naming Conventions
Module Naming Conventions for the Model
Modules of the Agile Project Management Context
Modules in Other Layers
Module before Bounded Context
Wrap-Up

Chapter 10 Aggregates
Using Aggregates in the Scrum Core Domain

First Attempt: Large-Cluster Aggregate
Second Attempt: Multiple Aggregates

Rule: Model True Invariants in Consistency Boundaries
Rule: Design Small Aggregates

Don’t Trust Every Use Case
Rule: Reference Other Aggregates by Identity

Making Aggregates Work Together through Identity References
Model Navigation
Scalability and Distribution

Rule: Use Eventual Consistency Outside the Boundary
Ask Whose Job It Is

Reasons to Break the Rules
Reason One: User Interface Convenience
Reason Two: Lack of Technical Mechanisms
Reason Three: Global Transactions
Reason Four: Query Performance
Adhering to the Rules

Gaining Insight through Discovery
Rethinking the Design, Again
Estimating Aggregate Cost
Common Usage Scenarios
Memory Consumption
Exploring Another Alternative Design
Implementing Eventual Consistency
Is It the Team Member’s Job?
Time for Decisions

Implementation
Create a Root Entity with Unique Identity
Favor Value Object Parts
Using Law of Demeter and Tell, Don’t Ask
Optimistic Concurrency

Avoid Dependency Injection
Wrap-Up

Chapter 11 Factories
Factories in the Domain Model
Factory Method on Aggregate Root

Creating CalendarEntry Instances
Creating Discussion Instances

Factory on Service
Wrap-Up

Chapter 12 Repositories
Collection-Oriented Repositories

Hibernate Implementation
Considerations for a TopLink Implementation

Persistence-Oriented Repositories
Coherence Implementation
MongoDB Implementation

Additional Behavior
Managing Transactions

A Warning
Type Hierarchies
Repository versus Data Access Object
Testing Repositories

Testing with In-Memory Implementations
Wrap-Up

Chapter 13 Integrating Bounded Contexts
Integration Basics

Distributed Systems Are Fundamentally Different
Exchanging Information across System Boundaries

Integration Using RESTful Resources
Implementing the RESTful Resource
Implementing the REST Client Using an Anticorruption Layer

Integration Using Messaging
Staying Informed about Product Owners and Team Members
Can You Handle the Responsibility?
Long-Running Processes, and Avoiding Responsibility
Process State Machines and Time-out Trackers
Designing a More Sophisticated Process
When Messaging or Your System Is Unavailable

Wrap-Up

Chapter 14 Application
User Interface

Rendering Domain Objects
Render Data Transfer Object from Aggregate Instances
Use a Mediator to Publish Aggregate Internal State

Render Aggregate Instances from a Domain Payload Object
State Representations of Aggregate Instances
Use Case Optimal Repository Queries
Dealing with Multiple, Disparate Clients
Rendition Adapters and Handling User Edits

Application Services
Sample Application Service
Decoupled Service Output

Composing Multiple Bounded Contexts
Infrastructure
Enterprise Component Containers
Wrap-Up

Appendix A Aggregates and Event Sourcing: A+ES
Inside an Application Service
Command Handlers
Lambda Syntax
Concurrency Control
Structural Freedom with A+ES
Performance
Implementing an Event Store
Relational Persistence
BLOB Persistence
Focused Aggregates
Read Model Projections
Use with Aggregate Design
Events Enrichment
Supporting Tools and Patterns

Event Serializers
Event Immutability
Value Objects

Contract Generation
Unit Testing and Specifications
Event Sourcing in Functional Languages

Bibliography

Index

Foreword

In this new book, Vaughn Vernon presents the whole of Domain-Driven Design (DDD) in a distinctive way, with new
explanations of the concepts, new examples, and an original organization of topics. I believe this fresh, alternative approach
will help people grasp the subtleties of DDD, particularly the more abstract ones such as Aggregates and Bounded Contexts.
Not only do different people prefer different styles—subtle abstractions are hard to absorb without multiple explanations.

Also, the book conveys some of the insights of the past nine years that have been described in papers and presentations but
have not appeared in a book before now. It places Domain Events alongside Entities and Value Objects as the building blocks
of a model. It discusses the Big Ball of Mud and places it into the Context Map. It explains the hexagonal architecture, which
has emerged as a better description of what we do than the layered architecture.

My first exposure to the material in this book came almost two years ago (although Vaughn had been working on his book for
some time by then). At the first DDD Summit, several of us committed to writing about certain topics about which we felt there
were fresh things to say or there was a particular need in the community for more specific advice. Vaughn took up the challenge
of writing about Aggregates, and he followed through with a series of excellent articles about Aggregates (which became a
chapter in this book).

There was also a consensus at the summit that many practitioners would benefit from a more prescriptive treatment of some
of the DDD patterns. The honest answer to almost any question in software development is, “It depends.” That is not very
useful to people who want to learn to apply a technique, however. A person who is assimilating a new subject needs concrete
guidance. Rules of thumb don’t have to be right in all cases. They are what usually works well or the thing to try first. Through
their decisiveness, they convey the philosophy of the approach to solving the problem. Vaughn’s book has a good mix of
straightforward advice balanced with a discussion of trade-offs that keep it from being simplistic.

Not only have additional patterns, such as Domain Events, become a mainstream part of DDD—people in the field have
progressed in learning how to apply those patterns, not to mention adapting them to newer architectures and technologies. Nine
years after my book, Domain-Driven Design: Tackling Complexity in the Heart of Software, was published, there’s actually
a lot to say about DDD that is new, and there are new ways to talk about the fundamentals. Vaughn’s book is the most complete
explanation yet of those new insights into practicing DDD.

—Eric Evans
 Domain Language, Inc.

Preface

All the calculations show it can’t work. There’s only one thing to do: make it work.
—Pierre-Georges Latécoère, early French aviation entrepreneur

And make it work we shall. The Domain-Driven Design approach to software development is far too important to leave any
capable developer without clear directions for how to implement it successfully.

Getting Grounded, Getting Airborne
When I was a kid, my father learned to pilot small airplanes. Often the whole family would go up flying. Sometimes we flew

to another airport for lunch, then returned. When Dad had less time but longed to be in the air, we’d go out, just the two of us,
and circle the airport doing “touch-and-goes.”

We also took some long trips. For those, we always had a map of the route that Dad had earlier charted. Our job as kids was
to help navigate by looking out for landmarks below so we could be certain to stay on course. This was great fun for us
because it was a challenge to spot objects so far below that exhibited little in the way of identifying details. Actually, I’m sure
that Dad always knew where we were. He had all the instruments on the dashboard, and he was licensed for instrument flight.

The view from the air really changed my perspective. Now and then Dad and I would fly over our house in the countryside.
At a few hundred feet up, this gave me a context for home that I didn’t have before. As Dad would cruise over our house, Mom
and my sisters would run out into the yard to wave at us. I knew it was them, although I couldn’t look into their eyes. We
couldn’t converse. If I had shouted out the airplane window, they would never have heard me. I could see the split-rail fence in
the front dividing our property from the road. When on the ground I’d walk across it as if on a balance beam. From the air, it
looked like carefully woven twigs. And there was the huge yard that I circled row by row on our riding lawn mower every
summer. From the air, I saw only a sea of green, not the blades of grass.

I loved those moments in the air. They are etched in my memory as if Dad and I were just taxiing in after landing to tie down
for the evening. As much as I loved those flights, they sure were no substitute for being on the ground. And as cool as they
were, the touch-and-goes were just too brief to make me feel grounded.

Landing with Domain-Driven Design
Getting in touch with Domain-Driven Design (DDD) can be like flight to a kid. The view from the air is stunning, but

sometimes things look unfamiliar enough to prevent us from knowing exactly where we are. Getting from point A to point B
appears far from realistic. The DDD grownups always seem to know where they are. They’ve long ago plotted a course, and
they are completely in tune with their navigational instruments. A great number of others don’t feel grounded. What is needed is
the ability to “land and tie down.” Next, a map is needed to guide the way from where we are to where we need to be.

In the book Domain-Driven Design: Tackling Complexity in the Heart of Software [Evans], Eric Evans brought about what
is a timeless work. It is my firm belief that Eric’s work will guide developers in practical ways for decades to come. Like
other pattern works, it establishes flight far enough above the surface to give a broad vision. Yet, there may be a bit more of a
challenge when we need to understand the groundwork involved in implementing DDD, and we usually desire more detailed
examples. If only we could land and stay on the surface a bit longer, and even drive home or to some other familiar place.

Part of my goal is to take you in for a soft landing, secure the aircraft, and help you get home by way of a well-known
surface route. That will help you make sense of implementing DDD, giving you examples that use familiar tools and
technologies. And since none of us can stay home all the time, I will also help you venture out onto other paths to explore new
terrain, taking you to places that perhaps you’ve never been before. Sometimes the path will be steep, but given the right
tactics, a challenging yet safe ascent is possible. On this trip you’ll learn about alternative architectures and patterns for
integrating multiple domain models. This may expose you to some previously unexplored territory. You will find detailed
coverage of strategic modeling with multiple integrations, and you’ll even learn how to develop autonomous services.

My goal is to provide a map to help you take both short jaunts and long, complicated treks, enjoying the surrounding detail,
without getting lost or injured along the way.

Mapping the Terrain and Charting for Flight
It seems that in software development we are always mapping from one thing to another. We map our objects to databases.

We map our objects to the user interface and then back again. We map our objects to and from various application
representations, including those that can be consumed by other systems and applications. With all this mapping, it’s natural to
want a map from the higher-level patterns of Evans to implementation.

Even if you have already landed a few times with DDD, there is probably more to benefit from. Sometimes DDD is first
embraced as a technical tool set. Some refer to this approach to DDD as DDD-Lite. We may have homed in on Entities,
Services, possibly made a brave attempt at designing Aggregates, and tried to manage their persistence using Repositories.
Those patterns felt a bit like familiar ground, so we put them to use. We may even have found some use for Value Objects
along the way. All of these fall within the catalog of tactical design patterns, which are more technical. They help us take on a
serious software problem with the skill of a surgeon with a scalpel. Still, there is much to learn about these and other places to
go with tactical design as well. I map them to implementation.

Have you traveled beyond tactical modeling? Have you visited and even lingered with what some call the “other half” of
DDD, the strategic design patterns? If you’ve left out the use of Bounded Context and Context Maps, you have probably also
missed out on the use of the Ubiquitous Language.

If there is a single “invention” Evans delivers to the software development community, it is the Ubiquitous Language. At a
minimum he brought the Ubiquitous Language out of the dusty archives of design wisdom. It is a team pattern used to capture
the concepts and terms of a specific core business domain in the software model itself. The software model incorporates the
nouns, adjectives, verbs, and richer expressions formally spoken by the development team, a team that includes one or more
business domain experts. It would be a mistake, however, to conclude that the Language is limited to mere words. Just as any
human language reflects the minds of those who speak it, the Ubiquitous Language reflects the mental model of the experts of
the business domain you are working in. Thus, the software and the tests that verify the model’s adherence to the tenets of the
domain both capture and adhere to this Language, the same conceived and spoken by the team. The Language is equally as
valuable as the various strategic and tactical modeling patterns and in some cases has a more enduring quality.

Simply stated, practicing DDD-Lite leads to the construction of inferior domain models. That’s because the Ubiquitous
Language, Bounded Context, and Context Mapping have so much to offer. You get more than a team lingo. The Language of a
team in an explicit Bounded Context expressed as a domain model adds true business value and gives us certainty that we are
implementing the correct software. Even from a technical standpoint, it helps us create better models, ones with more potent
behaviors, that are pure and less error prone. Thus, I map the strategic design patterns to understandable example
implementations.

This book maps the terrain of DDD in a way that allows you to experience the benefits of both strategic and tactical design.
It puts you in touch with its business value and technical strengths by peering closely at the details.

It would be a disappointment if all we ever did with DDD is stay on the ground. Getting stuck in the details, we’d forget that
the view from flight teaches us a lot, too. Don’t limit yourself to rugged ground travel. Brave the challenge of getting in the
pilot’s seat and see from a height that is telling. With training flights on strategic design, with its Bounded Contexts and Context
Maps, you will be prepared to gain a grander perspective on its full realization. When you reward yourself with DDD flight, I
will have reached my goal.

Summary of Chapters
The following highlights the chapters of this book and how you can benefit from each one.

Chapter 1: Getting Started with DDD
This chapter introduces you to the benefits of using DDD and how to achieve the most from it. You will learn what DDD can

do for your projects and your teams as you grapple with complexity. You’ll find out how to score your project to see if it
deserves the DDD investment. You will consider the common alternatives to DDD and why they often lead to problems. The
chapter lays the foundations of DDD as you learn how to take the first steps on your project, and it even gives you some ways
to sell DDD to your management, domain experts, and technical team members. That will enable you to face the challenges of
using DDD armed with the knowledge of how to succeed.

You are introduced to a project case study that involves a fictitious company and team, yet one with real-world DDD
challenges. The company, with the charter to create innovative SaaS-based products in a multitenant environment, experiences
many of the mistakes common to DDD adoption but makes vital discoveries that help the teams solve their issues and keep the
project on track. The project is one that most developers can relate to, as it involves developing a Scrum-based project
management application. This case study introduction sets the stage for subsequent chapters. Each strategic and tactical pattern
is taught through the eyes of the team, both as they err and as they make strides toward maturity in implementing DDD
successfully.

Chapter 2: Domains, Subdomains, and Bounded Contexts
What is a Domain, a Subdomain, and a Core Domain? What are Bounded Contexts, and why and how should you use them?

These questions are answered in the light of mistakes made by the project team in our case study. Early on in their first DDD
project they failed to understand the Subdomain they were working within, its Bounded Context, and a concise Ubiquitous

Language. In fact, they were completely unfamiliar with strategic design, only leveraging the tactical patterns for their technical
benefits. This led to problems in their initial domain model design. Fortunately, they recognized what had happened before it
became a hopeless morass.

A vital message is conveyed, that of applying Bounded Contexts to distinguish and segregate models properly. Addressed
are common misapplications of the pattern along with effective implementation advice. The text then leads you through the
corrective steps the team took and how that resulted in the creation of two distinct Bounded Contexts. This led to the proper
separation of modeling concepts in their third Bounded Context, the new Core Domain, and the main sample used in the book.

This chapter will strongly resonate with readers who have felt the pain of applying DDD only in a technical way. If you are
uninitiated in strategic design, you are pointed in the right direction to start out on a successful journey.

Chapter 3: Context Maps
Context Maps are a powerful tool to help a team understand their business domain, the boundaries between distinct models,

and how they are currently, or can be, integrated. This technique is not limited to drawing a diagram of your system
architecture. It’s about understanding the relationships between the various Bounded Contexts in an enterprise and the patterns
used to map objects cleanly from one model to another. Use of this tool is important to succeeding with Bounded Contexts in a
complex business enterprise. This chapter takes you through the process used by the project team as they applied Context
Mapping to understand the problems they created with their first Bounded Context (Chapter 2). It then shows how the two
resulting clean Bounded Contexts were leveraged by the team responsible for designing and implementing the new Core
Domain.

Chapter 4: Architecture
Just about everyone knows the Layers Architecture. Are Layers the only way to house a DDD application, or can other

diverse architectures be used? Here we consider how to use DDD within such architectures as Hexagonal (Ports and
Adapters), Service-Oriented, REST, CQRS, Event-Driven (Pipes and Filters, Long-Running Processes or Sagas, Event
Sourcing), and Data Fabric/Grid-Based. Several of these architectural styles were put to use by the project team.

Chapter 5: Entities
The first of the DDD tactical patterns treated is Entities. The project team first leaned too heavily on these, overlooking the

importance of designing with Value Objects when appropriate. This led to a discussion of how to avoid widespread overuse of
Entities because of the undue influence of databases and persistence frameworks.

Once you are familiar with ways to distinguish their proper use, you see lots of examples of how to design Entities well.
How do we express the Ubiquitous Language with an Entity? How are Entities tested, implemented, and persisted? You are
stepped through how-to guidance for each of these.

Chapter 6: Value Objects
Early on the project team missed out on important modeling opportunities with Value Objects. They focused too intensely on

the individual attributes of Entities when they should have been giving careful consideration to how multiple related attributes
are properly gathered as an immutable whole. This chapter looks at Value Object design from several angles, discussing how
to identify the special characteristics in the model as a means to determine when to use a Value rather than an Entity. Other
important topics are covered, such as the role of Values in integration and modeling Standard Types. The chapter then shows
how to design domain-centric tests, how to implement Value types, and how to avoid the bad influence persistence mechanisms
can have on our need to store them as part of an Aggregate.

Chapter 7: Services
This chapter shows how to determine when to model a concept as a fine-grained, stateless Service that lives in the domain

model. You are shown when you should design a Service instead of an Entity or Value Object, and how Domain Services can
be implemented to handle business domain logic as well as for technical integration purposes. The decisions of the project
team are used to exemplify when to use Services and how they are designed.

Chapter 8: Domain Events
Domain Events were not formally introduced by Eric Evans as part of DDD until after his book was published. You’ll learn

why Domain Events published by the model are so powerful, and the diverse ways that they can be used, even in supporting
integration and autonomous business services. Although various kinds of technical events are sent and processed by
applications, the distinguishing characteristics of Domain Events are spotlighted. Design and implementation guidance is
provided, instructing you on available options and trade-offs. The chapter then teaches how to create a Publish-Subscribe
mechanism, how Domain Events are published to integrated subscribers across the enterprise, ways to create and manage an

Event Store, and how to properly deal with common messaging challenges faced. Each of these areas is discussed in light of
the project team’s efforts to use them correctly and to their best advantage.

Chapter 9: Modules
How do we organize model objects into right-sized containers with limited coupling to objects that are in different

containers? How do we name these containers so they reflect the Ubiquitous Language? Beyond packages and namespaces,
how can we use the more modern modularization facilities, such as OSGi and Jigsaw, provided by languages and frameworks?
Here you will see how Modules were put to use by the project team across a few of their projects.

Chapter 10: Aggregates
Aggregates are probably the least well understood among DDD’s tactical tools. Yet, if we apply some rules of thumb,

Aggregates can be made simpler and quicker to implement. You will learn how to cut through the complexity barrier to use
Aggregates that create consistency boundaries around small object clusters. Because of putting too much emphasis on the less
important aspects of Aggregates, the project team in our case study stumbled in a few different ways. We step through the
team’s iterations with a few modeling challenges and analyze what went wrong and what they did about it. The result of their
efforts led to a deeper understanding of their Core Domain. We look in on how the team corrected their mistakes through the
proper application of transactional and eventual consistency, and how that led them to design a more scalable and high-
performing model within a distributed processing environment.

Chapter 11: Factories
[Gamma et al.] has plenty to say about Factories, so why bother with treating them in this book? This is a simple chapter that

does not attempt to reinvent the wheel. Rather, its focus is on understanding where Factories should exist. There are, of course,
a few good tips to share about designing a worthy Factory in a DDD setting. See how the project team created Factories in
their Core Domain as a way to simplify the client interface and protect the model’s consumers from introducing disastrous bugs
into their multitenant environment.

Chapter 12: Repositories
Isn’t a Repository just a simple Data Access Object (DAO)? If not, what’s the difference? Why should we consider

designing Repositories to mimic collections rather than databases? Learn how to design a Repository that is used with an
ORM, one that supports the Coherence grid-based distributed cache, and one that uses a NoSQL key-value store. Each of these
optional persistence mechanisms was at the disposal of the project team because of the power and versatility behind the
Repository building block pattern.

Chapter 13: Integrating Bounded Contexts
Now that you understand the higher-level techniques of Context Mapping and have the tactical patterns on your side, what is

involved in actually implementing the integrations between models? What integration options are afforded by DDD? This
chapter uncovers a few different ways to implement model integrations using Context Mapping. Instruction is given based on
how the project team integrated the Core Domain with other supporting Bounded Contexts introduced in early chapters.

Chapter 14: Application
You have designed a model per your Core Domain’s Ubiquitous Language. You’ve developed ample tests around its usage

and correctness, and it works. But how do other members of your team design the areas of the application that surround the
model? Should they use DTOs to transfer data between the model and the user interface? Or are there other options for
conveying model state up to the presentation components? How do the Application Services and infrastructure work? This
chapter addresses those concerns using the now familiar project to convey available options.

Appendix A: Aggregates and Event Sourcing: A+ES
Event Sourcing is an important technical approach to persisting Aggregates that also provides the basis for developing an

Event-Driven Architecture. Event Sourcing can be used to represent the entire state of an Aggregate as a sequence of Events
that have occurred since it was created. The Events are used to rebuild the state of the Aggregate by replaying them in the same
order in which they occurred. The premise is that this approach simplifies persistence and allows capturing concepts with
complex behavioral properties, besides the far-reaching influence the Events themselves can have on your own and external
systems.

Java and Development Tools
The majority of the examples in this book use the Java Programming Language. I could have provided the examples in C#,

but I made a conscious decision to use Java instead.

First of all, and sad to say, I think there has been a general abandonment of good design and development practices in the
Java community. These days it may be difficult to find a clean, explicit domain model in most Java-based projects. It seems to
me that Scrum and other agile techniques are being used as substitutes for careful modeling, where a product backlog is thrust
at developers as if it serves as a set of designs. Most agile practitioners will leave their daily stand-up without giving a second
thought to how their backlog tasks will affect the underlying model of the business. Although I assume this is needless to say, I
must assert that Scrum, for example, was never meant to stand in place of design. No matter how many project and product
managers would like to keep you marching on a relentless path of continuous delivery, Scrum was not meant only as a means to
keep Gantt chart enthusiasts happy. Yet, it has become that in so many cases.

I consider this a big problem, and a major theme I have is to inspire the Java community to return to domain modeling by
giving a reasonable amount of thought to how sound, yet agile and rapid, design techniques can benefit their work.

Further, there are already some good resources for using DDD in a .NET environment, one being Applying Domain-Driven
Design and Patterns: With Examples in C# and .NET by Jimmy Nilsson [Nilsson]. Due to Jimmy’s good work and that of
others promoting the Alt.NET mindset, there is a high tide of good design and development practices going on in the .NET
community. Java developers need to take notice.

Second, I am well aware that the C#.NET community will have no problem whatsoever understanding Java code. Due to the
fact that much of the DDD community uses C#.NET, most of my early book reviewers are C# developers, and I never once
received a complaint about their having to read Java code. So, I have no concern that my use of Java in any way alienates C#
developers.

I need to add that at the time of this writing there was a significant shift toward interest in using document-based and key-
value storage over relational databases. This is for good reason, for even Martin Fowler has aptly nicknamed these “aggregate-
oriented storage.” It’s a fitting name and well describes the advantages of using NoSQL storage in a DDD setting.

Yet, in my consulting work I find that many are still quite married to relational databases and object-relational mapping.
Therefore, I think that in practical terms there has been no disservice to the community of NoSQL enthusiasts by my including
guidance on using object-relational mapping techniques for domain models. I do acknowledge, however, that this may earn me
some scorn from those who think that the object-relational impedance mismatch makes it unworthy of consideration. That’s
fine, and I accept the flames, because there is a vast majority who must still live with the drudgeries of this impedance
mismatch on a day-to-day basis, however unenlightened they may seem to the minority.

Of course, I also provide guidance in Chapter 12, “Repositories,” on the use of document-based, key-value, and Data
Fabric/Grid-Based stores. As well, in several places I discuss where the use of a NoSQL store would tend to influence an
alternative design of Aggregates and their contained parts. It’s quite likely that the trend toward NoSQL stores will continue to
spur growth in that sector, so in this case object-relational developers need to take notice. As you can see, I understand both
sides of the argument, and I agree with both. It’s all part of the ongoing friction created by technology trends, and the friction
needs to happen in order for positive change to happen.

Acknowledgments

I am grateful to the fine staff at Addison-Wesley for giving me the opportunity to publish under their highly respected label.
As I have stated before in my classes and presentations, I see Addison-Wesley as a publisher that understands the value of
DDD. Both Christopher Guzikowski and Chris Zahn (Dr. Z) have supported my efforts throughout the editorial process. I will
not forget the day that Christopher Guzikowski called to share the news that he wanted to sign me as one of his authors. I will
remember how he encouraged me to persevere through the doubts that most authors must experience, until publication was in
sight. Of course, it was Dr. Z who made sure the text was put into a publishable state. Thanks to my production editor,
Elizabeth Ryan, for coordinating the book’s publication details. And thanks to my intrepid copyeditor, Barbara Wood.

Going back a ways, it was Eric Evans who devoted a major portion of five years of his career to write the first definitive
work on DDD. Without his efforts, the wisdom that grew out of the Smalltalk and patterns communities, and that Eric himself
refined, many more developers would just be hacking their way to delivering bad software. Sadly, this problem is more
common than it should be. As Eric says, the poor quality of software development, and the uncreative joylessness of the teams
that produce the software, nearly drove him to exit the software industry for good. We owe Eric hearty thanks for concentrating
his energy into educating rather than into a career change.

At the end of the first DDD Summit in 2011, which Eric invited me to attend, it was determined that the leadership should
produce a set of guidelines by which more developers could succeed with DDD. I was already far along with this book and
was in a good position to understand what developers were missing. I offered to write an essay to provide the “rules of thumb”
for Aggregates. I determined that this three-part series entitled “Effective Aggregate Design” would form the foundation for
Chapter 10 of this book. Once released on dddcommunity.org, it became quite clear how such sound guidance was greatly
needed. Thanks to others among the DDD leadership who reviewed that essay and thus provided valuable feedback for this
book. Eric Evans and Paul Rayner did several detailed reviews of the essay. I also received feedback from Udi Dahan, Greg
Young, Jimmy Nilsson, Niclas Hedhman, and Rickard Öberg.

Special thanks go to Randy Stafford, a longtime member of the DDD community. After attending a DDD talk I gave several
years ago in Denver, Randy urged me to become more involved in the larger DDD community. Sometime later, Randy
introduced me to Eric Evans so I could pitch my ideas about drawing the DDD community together. While my ideas were a bit
grander and possibly less achievable, Eric convinced us that forming a smaller contingent composed of clear DDD leadership
would have more near-term value. From these discussions the DDD Summit 2011 was formed. Needless to say, without
Randy’s coaxing me to push forward with my views of DDD, this book would not exist, and perhaps not even a DDD Summit.
Although Randy was too busy with Oracle Coherence work to contribute to this book, perhaps we will get the chance to write
something in the future in a combined effort.

A huge thank-you goes to Rinat Abdullin, Stefan Tilkov, and Wes Williams for contributing sections about specialized
topics to the text. It’s nearly impossible to know everything about everything related to DDD, and absolutely impossible to be
an expert in all areas of software development. That’s why I turned to experts in specific areas to write a few sections of
Chapter 4 and Appendix A. Thanks go to Stefan Tilkov for his uncommon knowledge of REST, to Wes Williams for his
GemFire experience, and to Rinat Abdullin for sharing his continually expanding experience with Event Sourcing for
Aggregate implementation.

One of my earliest reviewers was Leo Gorodinsk, and he stuck with the project. I first met Leo at our DDD Denver meetup.
He provided a lot of great feedback on this book based on his own struggles while implementing DDD with his team in
Boulder, Colorado. I hope my book helped Leo as much as his critical reviews helped me. I see Leo as part of DDD’s future.

Many others provided feedback on at least one chapter of my book, and some on several chapters. Some of the more critical
feedback was provided by Gojko Adzic, Alberto Brandolini, Udi Dahan, Dan Haywood, Dave Muirhead, and Stefan Tilkov.
Specifically, Dan Haywood and Gojko Adzic delivered much of the early feedback, which was based on the most-painful-to-
read content I produced. I am glad they endured and corrected me. Alberto Brandolini’s insights into strategic design in
general, and Context Mapping specifically, helped me focus on the essence of that vital material. Dave Muirhead, with an
abundance of experience in object-oriented design, domain modeling, as well as object persistence and in-memory data grids
—including GemFire and Coherence—influenced my text regarding some of the history and finer details of object persistence.
Besides his REST contribution, Stefan Tilkov supplied additional insights into architecture in general, and SOA and Pipes and
Filters specifically. Finally, Udi Dahan validated and helped me clarify some of the concepts of CQRS, Long-Running
Processes (aka Sagas), and messaging with NServiceBus. Other reviewers who provided valuable feedback were Rinat
Abdullin, Svein Arne Ackenhausen, Javier Ruiz Aranguren, William Doman, Chuck Durfee, Craig Hoff, Aeden Jameson, Jiwei
Wu, Josh Maletz, Tom Marrs, Michael McCarthy, Rob Meidal, Jon Slenk, Aaron Stockton, Tom Stockton, Chris Sutton, and
Wes Williams.

Scorpio Steele produced the fantastic illustrations for the book. Scorpio made everyone on the IDDD team the superheroes

that they truly are. At the other end of the spectrum was the nontechnical editorial review by my good friend Kerry Gilbert.
While everyone else made sure I was technically correct, Kerry put me “under the grammar hammer.”

My father and mother have provided great inspiration and support throughout my life. My father—AJ in the “Cowboy Logic”
humor throughout this book—is not just a cowboy. Don’t get me wrong. Being a great cowboy would be enough. Besides
loving flight and piloting airplanes, my father was an accomplished civil engineer and land surveyor, and a talented negotiator.
He still loves math and studying the galaxies. Among many other things he taught me, my Dad imparted to me how to solve a
right triangle when I was around ten years old. Thanks, Dad, for giving me a technical bent at a young age. Thanks also go to
my mom, one of the nicest people you could ever know. She has always encouraged and supported me through my personal
challenges. Besides, what stamina I have comes from her. I could go on, but I could never say enough good things about her.

Although this book is dedicated to my loving wife, Nicole, and our marvelous son, Tristan, my thanks would not be complete
without a special mention here. They are the ones who allowed me to work on and complete the book. Without their support
and encouragement my task would not have been possible. Thanks so much, my dearest loved ones.

About the Author

Vaughn Vernon is a veteran software craftsman with more than twenty-five years of experience in software design,
development, and architecture. He is a thought leader in simplifying software design and implementation using innovative
methods. He has been programming with object-oriented languages since the 1980s and applying the tenets of Domain-Driven
Design since his Smalltalk domain modeling days in the early 1990s. His experience spans a wide range of business domains,
including aerospace, environmental, geospatial, insurance, medical and health care, and telecommunications. He has also
succeeded in technical endeavors, creating reusable frameworks, libraries, and implementation acceleration tools. He consults
and speaks internationally and has taught his Implementing Domain-Driven Design classes on multiple continents. You can read
more about his latest efforts at www.VaughnVernon.co and follow him on Twitter here: @VaughnVernon.

http://www.VaughnVernon.co
mailto:@VaughnVernon

Guide to This Book

The book Domain-Driven Design by Eric Evans presents what is essentially a large pattern language. A pattern language
is a set of software patterns that are intertwined because they are dependent on each other. Any one pattern references one or
more other patterns that it depends on, or that depend on it. What does this mean for you?

It means that as you read any given chapter of this book, you could run into a DDD pattern that isn’t discussed in that chapter
and that you don’t already know. Don’t panic, and please don’t stop reading out of frustration. The referenced pattern is very
likely explained in detail in another chapter of the book.

In order to help unravel the pattern language, I used the syntax found in Table G.1 in the text.

Table G.1. The Syntax Used in This Book

If you start reading in the middle of a chapter and you see a reference such as Bounded Context, remember that you’ll
probably find a chapter in this book that covers the pattern. Just glance at the index for a richer set of references.

If you have already read [Evans] and you know its patterns to some degree, you’ll probably tend to use this book as a way to
clarify your understanding of DDD and to get ideas for how to improve your existing model designs. In that case you may not
need a big-picture view right now. But if you are relatively new to DDD, the following section will help you see how the
patterns fit together, and how this book can be used to get you up and running quickly. So, read on.

Big-Picture View of DDD
Early on I take you through one of the pillars of DDD, the Ubiquitous Language (1). A Ubiquitous Language is applicable

within a single Bounded Context (2). Straightaway, you need to familiarize yourself with that critical domain modeling
mindset. Just remember that whichever way your software models are designed tactically, strategically you’ll want them to
reflect the following: a clean Ubiquitous Language modeled in an explicitly Bounded Context.

Strategic Modeling
A Bounded Context is a conceptual boundary where a domain model is applicable. It provides a context for the Ubiquitous

Language that is spoken by the team and expressed in its carefully designed software model, as shown in Figure G.1.

Figure G.1. A diagram illustrating a Bounded Context and relevant Ubiquitous Language

As you practice strategic design, you’ll find that the Context Mapping (3) patterns seen in Figure G.2 work in harmony.
Your team will use Context Maps to understand their project terrain.

Figure G.2. Context Maps show the relationships among Bounded Contexts.
We’ve just considered the big picture of DDD’s strategic design. Understanding it is imperative.

Architecture
Sometimes a new Bounded Context or existing ones that interact through Context Mapping will need to take on a new style of

Architecture (4). It’s important to keep in mind that your strategically and tactically designed domain models should be
architecturally neutral. Still, there will need to be some architecture around and between each model. A powerful architectural
style for hosting a Bounded Context is Hexagonal, which can be used to facilitate other styles such as Service-Oriented,
REST and Event-Driven, and others. Figure G.3 depicts a Hexagonal Architecture, and while it may look a little busy, it’s a
fairly simplistic style to employ.

Figure G.3. The Hexagonal Architecture with the domain model at the heart of the software
Sometimes we may be tempted to place too much emphasis on architecture rather than focusing on the importance of

carefully crafting a DDD-based model. Architecture is important, but architectural influences come and go. Remember to
prioritize correctly, placing more emphasis on the domain model, which has greater business value and will be more enduring.

Tactical Modeling
We model tactically inside a Bounded Context using DDD’s building block patterns. One of the most important patterns of

tactical design is Aggregate (10), as illustrated in Figure G.4.

Figure G.4. Two Aggregate types with their own transactional consistency boundaries

An Aggregate is composed of either a single Entity (5) or a cluster of Entities and Value Objects (6) that must remain
transactionally consistent throughout the Aggregate’s lifetime. Understanding how to effectively model Aggregates is quite
important and one of the least well understood techniques among DDD’s building blocks. If they are so important, you may be
wondering why Aggregates are placed later in the book. First of all, the placement of tactical patterns in this book follows the
same order as is found in [Evans]. Also, since Aggregates are based on other tactical patterns, we cover the basic building
blocks—such as Entities and Value Objects—before the more complex Aggregate pattern.

An instance of an Aggregate is persisted using its Repository (12) and later searched for within and retrieved from it. You
can see an indication of that in Figure G.4.

Use stateless Services (7), such as seen in Figure G.5, inside the domain model to perform business operations that don’t fit
naturally as an operation on an Entity or a Value Object.

Figure G.5. Domain Services carry out domain-specific operations, which may involve multiple domain objects.

Use Domain Events (8) to indicate the occurrence of significant happenings in the domain. Domain Events can be modeled
a few different ways. When they capture occurrences that are a result of some Aggregate command operation, the Aggregate
itself publishes the Event as depicted in Figure G.6.

Figure G.6. Domain Events can be published by Aggregates.

Although often given little thought, it’s really important to design Modules (9) correctly. In its simplest form, think of a
Module as a package in Java or a namespace in C#. Remember that if you design your Modules mechanically rather than
according to the Ubiquitous Language, they will probably do more harm than good. Figure G.7 illustrates how Modules should
contain a limited set of cohesive domain objects.

Figure G.7. A Module contains and organizes cohesive domain objects.
Of course, there’s much more to implementing DDD, and I won’t try to cover it all here. There’s a whole book ahead of you

that does just that. I think this Guide gets you off on the right foot for your journey through implementing DDD. So, enjoy the
journey!

Oh, and just to get you familiarized with Cowboy Logic, here’s one for the trail:

Cowboy Logic
AJ: “Don’t worry about bitin’ off more than you can chew. Your mouth is probably a whole lot bigger than you
think.” ;-)
LB: “You meant to say ‘mind,’ J. Your mind is bigger than you think!”

Chapter 1. Getting Started with DDD

Design is not just what it looks like and feels like. Design is how it works.
—Steve Jobs

We strive to produce quality in the software we develop. We achieve some quality by using tests to help us avoid delivering
software with a fatal number of bugs. Yet, even if we could produce completely bug-free software, that in itself does not
necessarily mean that a quality software model is designed. The software model—the way the software expresses the solution
to the business goal being sought—could still suffer greatly. Delivering software with few defects is obviously good. Still, we
can reach higher for a well-designed software model that explicitly reflects the intended business objective, and our work may
even reach the level of great.

The software development approach called Domain-Driven Design, or DDD, exists to help us more readily succeed at
achieving high-quality software model designs. When implemented correctly, DDD helps us reach the point where our design
is exactly how the software works. This book is about helping you correctly implement DDD.

You may be completely new to DDD, you may have tried it and struggled, or you may have already succeeded with it before.
Regardless, you no doubt are reading this book because you want to improve your ability to implement DDD, and you can. The
chapter road map helps you target your specific needs.

Road Map to This Chapter
• Discover what DDD can do for your projects and your teams as you grapple with complexity.
• Find out how to score your project to see if it deserves the DDD investment.
• Consider the common alternatives to DDD and why they often lead to problems.
• Grasp the foundations of DDD as you learn how to take the first steps on your project.
• Learn how to sell DDD to your management, domain experts, and technical team members.
• Face the challenges of using DDD armed with knowledge of how to succeed.
• Look in on a team that is learning how to implement DDD.

What should you expect from DDD? Not a heavy, dense, ceremonial process that blocks your way to progress. Rather,
expect to use the agile development techniques you probably already have come to trust. Beyond agile, anticipate the
acquisition of methods that help you gain deep insight into your business domain, with the prospect of producing testable,
malleable, organized, carefully crafted, high-quality software models.

DDD gives you both the strategic and tactical modeling tools necessary to design high-quality software that meets core
business objectives.

Can I DDD?
You can implement DDD if you have

• A passion for creating excellent software every day, and the tenacity to achieve that goal
• The eagerness to learn and improve, and the fortitude to admit you need to
• The aptitude to understand software patterns and how to properly apply them
• The skill and patience to explore design alternatives using proven agile methods
• The courage to challenge the status quo
• The desire and ability to pay attention to details, to experiment and discover
• A drive to seek ways to code smarter and better

I’m not going to tell you that there isn’t a learning curve. To put it bluntly, the learning curve can be steep. Yet, this book has
been put together to help flatten the curve as much as possible. My goal is to help you and your team implement DDD with the
greatest potential for success.

DDD isn’t first and foremost about technology. In its most central principles, DDD is about discussion, listening,
understanding, discovery, and business value, all in an effort to centralize knowledge. If you are capable of understanding the
business in which your company works, you can at a minimum participate in the software model discovery process to produce
a Ubiquitous Language. Sure, you’re going to have to learn more about the business, lots more. Still, you are on your way to

succeeding with DDD already because you can comprehend the concepts of your business, you revel in developing great
software, and that gives you the proper footing to take DDD all the way.

Won’t having years, even a decade or two, of software development experience help? It might. Nevertheless, software
development experience doesn’t give you the ability to listen and learn from domain experts, the people who know the most
about some high-priority area of the business. You are at a greater advantage if you can engage with those who seldom, if ever,
express themselves using technical lingo. You’re going to have to listen and listen carefully. You’re going to have to respect
their viewpoint and trust that they know a lot more than you do.

There Are Big Advantages to Engaging with Domain Experts
You are at a greater advantage if you can engage with those who seldom, if ever, express themselves using technical
lingo. Just as you are going to learn from them, there is a high probability that they are also going to learn from you.

What you may like best about DDD is that the domain experts are also going to have to listen to you. You are on the team
just as they are. As strange as it may seem, the domain experts don’t know everything about their business, and they are also
going to learn more about it. Just as you are going to learn from them, there is a high probability that they are also going to learn
from you. Your questions about what they know will most likely also uncover what they don’t know. You’ll be directly
involved in helping everyone on the team discover a deeper understanding of the business, even shaping the business.

It’s great when a team learns and grows together. If you give it a chance, DDD makes that possible.

But We Don’t Have Domain Experts
A domain expert is not one by job title. These are the people who know the line of business you are working in really
well. They probably have a lot of background in the business domain, and they might be product designers or even your
salespeople.

Look past the job title. The people you are looking for know more about what you are working on than anyone else, and
for sure way more than you know. Find them. Listen. Learn. Design in code.

So far we’re off to a pretty reassuring start. Still, I am also not going to tell you that technical ability isn’t important, that
somehow you can get by without it. You will have to grasp some advanced software domain modeling concepts. Even so, it
doesn’t necessarily mean you are going to be in over your head. If you have abilities somewhere between grasping Head First
Design Patterns [Freeman et al.] and grokking the original Design Patterns [Gamma et al.] text, or even more advanced
patterns, you stand a really good chance of succeeding with DDD. You can bank on this: I’m going to do everything I can to
make that happen by lowering the bar, no matter what your level of experience.

What’s a Domain Model?
It’s a software model of the very specific business domain you are working in. Often it’s implemented as an object model,
where those objects have both data and behavior with literal and accurate business meaning.

Creating a unique, carefully crafted domain model at the heart of a core, strategic application or subsystem is essential
to practicing DDD. With DDD your domain models will tend to be smallish, very focused. Using DDD, you never try to
model the whole business enterprise with a single, large domain model. Phew, that’s good!

Consider the following perspectives of the people who can benefit from DDD. I know you fit in here somewhere:
• Newbie, junior developer: “I’m young, with fresh ideas, I’ve got pent-up energy to code, and I’m going to have an
impact. What’s got me miffed is one of the projects I sprint on. I didn’t expect that my first gig off campus would
mean shoveling data back and forth using lots of almost identical yet redundant ‘objects.’ Why is this architecture so
complex if that’s all that’s happening? What’s up with that? The code breaks a lot when I try to change it. Does
anyone actually understand what it’s supposed to do? Now there are some complex new features I have to add. I
regularly slap an adapter around legacy classes to shield me from the goo. No joy. I’m sure there’s something I can
do besides code and debug all day and night just to finish iterations. Whatever that is, I’m going to track it down and
own it. I heard some of the others talking about DDD. It sounds like Gang of Four, but tuned for the domain model.
Nice.”

Gotcha covered.
• Midlevel developer: “Over the past few months I’ve been included on the new system. It’s my turn to make a

difference. I get it, but what I’m missing are profound insights when I’m meeting with the senior developers.
Sometimes things seem whacked, but I’m not sure why. I’m going to help change the way things are done around
here. I know that throwing technology at a problem only takes you so far, and that’s basically not far enough. What I
need is a sound software development technique that’s going to help me become a wise and experienced software
practitioner. One of the senior architects, the new guy, made a pitch for something called DDD. I’m listening.”

You’re sounding senior already. Read on. Your forward-thinking attitude will be rewarded.
• Senior developer, architect: “I’ve used DDD on a few projects, but not since landing this new position. I like the
power of the tactical patterns, but there’s a lot more I could apply, with strategic design being one. What I found
most insightful when reading [Evans] was the Ubiquitous Language. That’s powerful stuff. I’ve had discussions with
a number of my teammates and management, trying to influence DDD’s adoption here. One of the new kids and a few
of the midlevel and senior members are jazzed about the prospects. Management isn’t so excited. I recently joined
this company, and although I was brought in to lead, it seems that the organization is less interested in disruptive
advancements than I thought. Whatever. I’m not giving up. With other developers psyched about it, I know we can
make it happen. The payoffs are going to be much greater than anticipated. We’ll draw the pure business people—
the domain experts—closer to our technical teams, and we’ll actually invest in our solutions, not just grunt them out
iteration after iteration.”

Now that’s what a leader does. This book has lots of guidance that shows how to succeed with strategic
design.

• Domain expert: “I’ve been involved in specifying the IT solutions to our business challenges for a long time now.
Maybe it’s too much to expect, but I wish the developers understood better what we do here. They’re always talking
down to us like we’re stupid. What they don’t understand is, if it wasn’t for us there wouldn’t be jobs here for them
to mess around with computers. The developers always have some strange way of talking about what our software
does. If we talk about A, they say it’s really called B. It’s like we have to have some sort of dictionary and road
map on hand every time we try to communicate what we need. If we don’t let them have their way by calling B
what we know is A, they don’t cooperate. We waste so much time in this mode. Why can’t the software just work
the way the real experts think about the business?”

You’ve got that right. One of the biggest problems is the false need for translation between business people and
techies. This chapter is for you. As you’re going to see, DDD puts you and developers on level ground.
And, surprise! You’ve got some developers already leaning your way. Help them here.

• Manager: “We are shipping software. It’s not always with the greatest result, and changes seem to take longer than
they should. The developers keep talking about some domain something-or-another. I’m not sure we need to get high
centered on yet another technique or methodology, like it’s some kind of silver bullet. I’ve heard all that a thousand
times before. We try, the fad dies, and we are right back to the same-old same-old. I keep saying that we need to stay
the course and stop dreaming, but the team keeps hounding me. They’ve worked hard, so I owe them a listen. They
are smart people and they all deserve a chance to improve things before they get torqued and move on. I could
allow them some time to learn and adjust if I can get backing from upper management. I think I could get that
approval if I can convince my boss of the team’s claims of achieving critical software investment and a
centralization of business knowledge. Truth is, it will make my job easier if I can do something to inspire trust
and cooperation between my teams and business experts. Anyway, that’s what I am hearing I can do.”

Good manager!
Whoever you are, here’s an important heads-up. To succeed with DDD you are going to have to learn something, and

actually a lot of somethings. That shouldn’t be a big deal, though. You are smart and you have to learn all the time. Yet we all
face this challenge:

Personally I’m always ready to learn, although I do not always like being taught.
—Sir Winston Churchill

That’s where this book comes in. I’ve tried to make the teaching as pleasant as possible while delivering the vital
understanding you need to implement DDD with success.

Your question, though, is: “Why should I do DDD?” That’s fair.

Why You Should Do DDD
Actually, I’ve already given you some pretty good reasons why DDD makes so much practical sense. At the risk of breaking

the DRY principle (“Don’t repeat yourself”), I reiterate them here and also add to the earlier reasons. Does anyone hear an

echo?
• Put domain experts and developers on a level playing field, which produces software that makes perfect sense to
the business, not just the coders. This doesn’t mean merely tolerating the opposite group. It means becoming one
cohesive, tight-knit team.
• That “makes sense to the business” thing means investing in the business by making software that is as close as
possible to what the business leaders and experts would create if they were the coders.
• You can actually teach the business more about itself. No domain expert, no C-level manager, no one, ever knows
every single thing about the business. It’s a constant discovery process that becomes more insightful over time. With
DDD, everybody learns because everybody contributes to discovery discussions.
• Centralizing knowledge is key, because with that the business is capable of ensuring that understanding the software
is not locked in “tribal knowledge,” available only to a select few, who are usually only the developers.
• There are zero translations between the domain experts, the software developers, and the software. That doesn’t
mean maybe some few translations. It means zero translations because your team develops a common, shared
language that everyone on the team speaks.
• The design is the code, and the code is the design. The design is how it works. Knowing the best code design
comes through quick experimental models using an agile discovery process.
• DDD provides sound software development techniques that address both strategic and tactical design. Strategic
design helps us understand what are the most important software investments to make, what existing software assets
to leverage in order to get there fastest and safest, and who must be involved. Tactical design helps us craft the
single elegant model of a solution using time-tested, proven software building blocks.

Like any good, high-yielding investment, DDD has some up-front cost of time and effort for the team. Considering the typical
challenges encountered by every software development effort will reinforce the need to invest in a sound software
development approach.

Delivering Business Value Can Be Elusive
Developing software that delivers true business value is not the same thing as developing ordinary business software.

Software that delivers true business value aligns with the business strategic initiatives and bears solutions with clearly
identifiable competitive advantage—software that is not about technology, but about the business.

Business knowledge is never centralized. Development teams have to balance and prioritize among the needs and requests
of multiple stakeholders and engage with many people having diverse skill sets, all with the goal of uncovering software
functional and nonfunctional requirements. After gathering all that information, how can teams be certain that any given
requirement delivers true business value? In fact, what are the business values being sought, and how do you uncover them,
prioritize them, and realize them?

One of the worst disconnects of a business software development effort is seen in the gap between domain experts and
software developers. Generally speaking, true domain experts are focused on delivering business value. On the other hand,
software developers are typically drawn to technology and technical solutions to business problems. It’s not that software
developers have wrong motivations; it’s just what tends to grab their attention. Even when software developers engage with
domain experts, the collaboration is largely at a surface level, and the software that gets developed often results in a
translation/mapping between how the business thinks and operates and how the software developer interprets that. The
resulting software generally does not reflect a recognizable realization of the mental model of the domain experts, or perhaps it
does so only partially. Over time this disconnect becomes costly. The translation of domain knowledge into software is lost as
developers transition to other projects or leave the company.

A different, yet related problem is when one or more domain experts do not agree with each other. This tends to happen
because each expert has more or less experience in the specific domain being modeled, or they are simply experts in related
but different areas. It’s also common for multiple “domain experts” to have no expertise in a given domain, where they are
more of a business analyst, yet they are expected to bring insightful direction to discussions. When this situation goes
unchecked, it results in blurred rather than crisp mental models, which lead to conflicting software models.

Worse still is when the technical approach to software development actually wrongly changes the way the business
functions. While a different scenario, it is well known that enterprise resource planning (ERP) software will often change the
overall business operations of an organization to fit the way the ERP functions. The total cost of owning the ERP cannot be
fully calculated in terms of license and maintenance fees. The reorganization and disruption to the business can be far more
costly than either of those two tangible factors. A similar dynamic is at play as your software development teams interpret what
the business needs into what the newly developed software actually does. This can be both costly and disruptive to the
business, its customers, and its partners. Furthermore, this technical interpretation is both unnecessary and avoidable with the

use of proven software development techniques. The solution is a key investment.

How DDD Helps
DDD is an approach to developing software that focuses on these three primary aspects:

1. DDD brings domain experts and software developers together in order to develop software that reflects the mental
model of the business experts. This does not mean that effort is spent on modeling the “real world.” Rather, DDD
delivers a model that is the most useful to the business. Sometimes useful and realistic models happen to intersect,
but to the degree that they diverge, DDD chooses useful.

With this aspect the efforts of domain experts and software developers are devoted to jointly developing a
Ubiquitous Language of the areas of the business that they are focused on modeling. The Ubiquitous Language is
developed with full team agreement, is spoken, and is directly captured in the model of the software. It is worth
reiterating that the team is composed of both domain experts and software developers. It’s never “us and them.”
It’s always us. This is a key business value that allows business know-how to outlive the relatively short initial
development efforts that deliver the first few versions of the software, and the teams that produce it. It’s the
point where the cost of developing software is a justifiable business investment, not just a cost center.
This entire effort unifies domain experts who initially disagree with each other, or who simply lack core
knowledge of the domain. Further, it strengthens the close-knit team by spreading deep domain insight among all
team members, including software developers. Consider this the hands-on training that every company should
invest in its knowledge workers.

2. DDD addresses the strategic initiatives of the business. While this strategic design approach naturally includes
technical analysis, it is more concerned with the strategic direction of the business. It helps define the best inter-team
organizational relationships and provides early-warning systems for recognizing when a given relationship could
cause software and even project failure. The technical aspects of strategic design have the goal of cleanly bounding
systems and business concerns, which protects each business-level service. This provides meaningful motivations
for how an overall service-oriented architecture or business-driven architecture is achieved.
3. DDD meets the real technical demands of the software by using tactical design modeling tools to analyze and
develop the executable software deliverables. These tactical design tools allow developers to produce software that
is a correct codification of the domain experts’ mental model, is highly testable, is less error prone (a provable
statement), performs to service-level agreements (SLAs), is scalable, and allows for distributed computing. DDD
best practices generally address a dozen or more higher-level architectural and lower-level software design
concerns, with a focus on recognizing true business rules and data invariants, and protecting the rules from error
situations.

Using this approach to software development, you and your team can succeed in delivering true business value.

Grappling with the Complexity of Your Domain
We primarily want to use DDD in the areas that are most important to the business. You don’t invest in what can be easily

replaced. You invest in the nontrivial, the more complex stuff, the most valuable and important stuff that promises to return
the greatest dividends. That’s why we call such a model a Core Domain (2). It is these, and in second priority the significant
Supporting Subdomains (2), that deserve and get the biggest investment. Rightly, then, we need to grasp what complex means.

Use DDD to Simplify, Not to Complicate
Use DDD to model a complex domain in the simplest possible way. Never use DDD to make your solution more complex.

What qualifies as complex will differ from business to business. Different companies have different challenges, different
levels of maturity, and different software development capabilities. So rather than determining what is complex, it may be
easier to determine what is nontrivial. Thus, your team and management will have to determine if a system you are planning
to work on deserves the cost of making a DDD investment.

DDD Scorecard: Use Table 1.1 to determine whether your project qualifies for an investment in DDD. If a row on the
scorecard describes your project, place the corresponding number of points in the right-hand column. Tally all the points for
your project. If it’s 7 or higher, seriously consider using DDD.

Table 1.1. The DDD Scorecard

This scoring exercise may have led your team to these conclusions:
It’s too bad that we can’t shift gears quickly and easily when we discover we are on the wrong side
of complexity, no matter if the wrong side is more or less complex than we thought.
Sure, but that just means that we need to become much better at determining simplicity versus
complexity early on in our project planning. That would save us a lot of time, expense, and trouble.
Once we make a major architectural decision and get several use cases deep in development, we are
usually stuck with it. We had better choose wisely.

If any of these observations resonates with your team, you are making good use of critical thought.

Anemia and Memory Loss
Anemia can be a serious health ailment with dangerous side effects. When the name Anemic Domain Model [Fowler,

Anemic] was first coined, it wasn’t meant to be a complimentary term , as if to say that a domain model that is weak, without
the power of inherent behavioral qualities, could possibly be a good thing. Strangely enough, Anemic Domain Models have
popped up left and right in our industry. The trouble is that most developers seem to think this is quite normal and would not
even acknowledge that a serious condition exists when employed in their systems. It’s a real problem.

Are you wondering if your model is feeling tired, listless, forgetful, clumsy, needing a good shot in the arm? If you’re
suddenly experiencing technical hypochondria, here’s a good way to perform a self-examination. You’ll either put yourself at
ease or confirm your worst fears. Use the steps in Table 1.2 to perform your checkup.

Table 1.2. Determine Your Domain Model Health History

How did you do?
If you answered “No” to both questions, your domain is doing well.
If you answered “Yes” to both questions, your “domain model” is very, very ill. It’s anemic. The
good news is that you can get help for it by reading on.
If you answered “Yes” to one question and “No” to the other question, you are either in denial or
suffering from delusions or another neurological issue that could be caused by anemia. What should
you do if you have conflicting answers? Go straight back to the first question and run the self-
examination once again. Take your time, but remember that your answer to both questions must be an
emphatic “Yes!”

As [Fowler, Anemic] says, an Anemic Domain Model is a bad thing because you pay most of the high cost of developing a
domain model, but you get little or none of the benefit. For example, because of the object-relational impedance mismatch,
developers of such a “domain model” spend a lot of time and effort mapping objects to and from the persistence store. That’s a
high price to pay while getting little or no benefit in return. I’ll add that what you have is not a domain model at all, but just a
data model projected from a relational model (or other database) into objects. It’s an impostor that may actually be closer to
the definition of Active Record [Fowler, P of EAA]. You can probably simplify your architecture by not being pretentious and
just admit that you are really using a form of Transaction Script [Fowler, P of EAA].
Reasons Why Anemia Happens

So if an Anemic Domain Model is the sickly outcome of a poorly executed design effort, why do so many use it while
thinking that their model is experiencing fine health? Certainly it does reflect a procedural programming mentality, but I don’t
think that’s the primary reason. A good portion of our industry is made up of sample code followers, which isn’t bad as long as
the samples are quality ones. Often, however, sample code is purposely focused on demonstrating some concept or application
programming interface (API) feature in the simplest possible way, without concern for good design principles. Yet
oversimplified sample code, which usually demonstrates with a lot of getters and setters, is copied every day without a second
thought about design.

There is another, older influence. The ancient history of Microsoft’s Visual Basic had much to do with where we are today.
I’m not saying that Visual Basic was a bad language and integrated development environment (IDE), because it’s always been
a highly productive environment and in some ways influenced the industry for the good. Of course, some may have avoided its
direct influence altogether, but Visual Basic indirectly caught up with just about every software developer eventually. Just note
the timeline shown in Table 1.3.

Table 1.3. The Timeline from Behavior Rich to Infamous Anemia

What I am talking about is the influence of properties and property sheets, both backed by property getters and setters that
were made so popular by the original Visual Basic forms designer. All you had to do was place a few custom control instances
on a form, fill out their property sheets, and voilà! You had a fully functioning Windows application. It took just a few minutes
to do that compared to the few days required to program a similar application directly against the Windows API using C.

So what does all that have to do with Anemic Domain Models? The Java Bean standard was originally specified to assist
in the creation of visual programming tools for Java. Its motivation was to bring the Microsoft ActiveX capabilities to the
Java platform. It offered the hope of creating a market full of third-party custom controls of various kinds, just like Visual
Basic’s. Soon almost every framework and library jumped on the JavaBean bandwagon. This included much of the Java
SDK/JDK as well as libraries such as the popular Hibernate. Specific to our DDD concerns, Hibernate was introduced to
persist domain models. The trend continued as the .NET platform reached us.

Interestingly, any domain model that was persisted using Hibernate in the early days had to expose public getters and setters
for every persistent simple attribute and complex association in every domain object. This meant that even if you wanted to
design your POJO (Plain Old Java Object) with a behavior-rich interface, you had to expose your internals publicly so that
Hibernate could persist and reconstitute your domain objects. Sure, you could do things to hide the public JavaBean interface,
but by and large most developers didn’t bother or even understand why they should have.

Should I Be Concerned about Using Object-Relational Mappers with DDD?
The preceding critique of Hibernate is from a historical perspective. For quite a while now Hibernate has supported the
use of hidden getters and setters, and even direct field access. I demonstrate in later chapters how to avoid anemia in your
models when using Hibernate and other persistence mechanisms. So, don’t sweat it.

Most, if not all, of the Web frameworks also function solely on the JavaBean standard. If you want your Java objects to be
able to populate your Web pages, the Java objects had better support the JavaBean specification. If you want your HTML
forms to populate a Java object when submitted to the server side, your Java form object had better support the JavaBean
specification.

Just about every framework on the market today requires, and therefore promotes, the use of public properties on simple
objects. Most developers can’t help but be influenced by all the anemic classes all over their enterprises. Admit it. You’ve
been bitten by it, haven’t you? As a result, we have a situation that might be best labeled anemia everywhere.
Look at What Anemia Does to Your Model

All right, so let’s say we can agree that this is both true and vexing to us. What does anemia everywhere have to do with
memory loss? When you are reading through the client code of an Anemic Domain Model (for example, the impostor
Application Service (4, 14), à la Transaction Script), what do we usually see? Here’s a rudimentary example:
Click here to view code image

@Transactional
public void saveCustomer(
 String customerId,
 String customerFirstName, String customerLastName,
 String streetAddress1, String streetAddress2,
 String city, String stateOrProvince,
 String postalCode, String country,
 String homePhone, String mobilePhone,
 String primaryEmailAddress, String secondaryEmailAddress) {

 Customer customer = customerDao.readCustomer(customerId);

 if (customer == null) {

 customer = new Customer();
 customer.setCustomerId(customerId);
 }

 customer.setCustomerFirstName(customerFirstName);
 customer.setCustomerLastName(customerLastName);
 customer.setStreetAddress1(streetAddress1);
 customer.setStreetAddress2(streetAddress2);
 customer.setCity(city);
 customer.setStateOrProvince(stateOrProvince);
 customer.setPostalCode(postalCode);
 customer.setCountry(country);
 customer.setHomePhone(homePhone);
 customer.setMobilePhone(mobilePhone);
 customer.setPrimaryEmailAddress(primaryEmailAddress);
 customer.setSecondaryEmailAddress (secondaryEmailAddress);

 customerDao.saveCustomer(customer);
}

Example Purposely Kept Simple
Admittedly, this example is not from a very interesting domain, but it does help us examine a less-than-ideal design and
determine how we can refactor it to a much better one. Let’s be clear that this exercise is not leading us to a cooler way to
save data. It’s about crafting a software model that adds value to your business, even though this example may not seem
valuable.

What did this code just do? Actually it’s pretty versatile code. It saves a Customer no matter whether it is new or
preexisting. It saves a Customer no matter whether the last name changed or the person moved to a new home. It saves a
Customer no matter whether the person got a new home phone number or discontinued home phone service, or whether he or
she got a mobile phone for the first time, or both. It even saves a Customer who switched from using Juno to using Gmail
instead, or who changed jobs and now has a new work e-mail address. Wow, this is an awesome method!

Or is it? Actually, we have no idea under what business situations this saveCustomer() method is used—not exactly,
anyway. Why was this method created in the first place? Does anyone remember its original intent, and all the motivations for
changing it to support a wide variety of business goals? Those memories were quite likely lost only a few weeks or months
after the method was created and then modified. And it gets even worse. You don’t believe me? Look at the next version of this
same method:
Click here to view code image

@Transactional
public void saveCustomer(
 String customerId,
 String customerFirstName, String customerLastName,
 String streetAddress1, String streetAddress2,
 String city, String stateOrProvince,
 String postalCode, String country,
 String homePhone, String mobilePhone,
 String primaryEmailAddress, String secondaryEmailAddress) {

 Customer customer = customerDao.readCustomer(customerId);

 if (customer == null) {
 customer = new Customer();
 customer.setCustomerId(customerId);
 }
 if (customerFirstName != null) {
 customer.setCustomerFirstName(customerFirstName);
 }
 if (customerLastName != null) {
 customer.setCustomerLastName(customerLastName);
 }
 if (streetAddress1 != null) {
 customer.setStreetAddress1(streetAddress1);
 }

 if (streetAddress2 != null) {
 customer.setStreetAddress2(streetAddress2);
 }
 if (city != null) {
 customer.setCity(city);
 }
 if (stateOrProvince != null) {
 customer.setStateOrProvince(stateOrProvince);
 }
 if (postalCode != null) {
 customer.setPostalCode(postalCode);
 }
 if (country != null) {
 customer.setCountry(country);
 }
 if (homePhone != null) {
 customer.setHomePhone(homePhone);
 }
 if (mobilePhone != null) {
 customer.setMobilePhone(mobilePhone);
 }
 if (primaryEmailAddress != null) {
 customer.setPrimaryEmailAddress(primaryEmailAddress);
 }
 if (secondaryEmailAddress != null) {
 customer.setSecondaryEmailAddress (secondaryEmailAddress);
 }

 customerDao.saveCustomer(customer);
}

I have to note here that this example isn’t as bad as it gets. Many times the data-mapping code becomes quite complex, and a
lot of business logic gets tucked away in it. I’m sparing you the worst in this example, but you’ve probably seen it for yourself.

Now each of the parameters other than the customerId is optional. We can now use this method to save a Customer under
at least a dozen business situations, and more! But is that really a good thing? How could we actually test this method to ensure
that it doesn’t save a Customer under the wrong situations?

Without going into extensive detail, this method could function incorrectly in more ways than it could correctly. Perhaps
there are database constraints that prevent a completely invalid state from being persisted, but now you have to look at the
database to be sure. Almost certainly it will take you some time to mentally map between Java attributes and column names.
Once you’ve figured out that part, you find that the database constraints are missing or incomplete.

You could look at the possibly many clients (not counting those added after the user interface was completed to manage
automatic remote clients) and compare source revisions to gain some insight into why it is implemented the way it is right now.
As you search for answers, you learn that nobody can explain why this one method works the way it does, or how many correct
uses there are. It could take several hours or days to understand it on your own.

Cowboy Logic
AJ: “That fella’s so confused, he doesn’t know if he’s sackin’ potatoes or rollerskatin’ in a buffalo herd.”

Domain experts can’t help here because they would have to be programmers to understand the code. Even if a domain expert
or two knew enough about programming or could at least read the code, they would probably be at least equally at a loss as a
developer regarding all that code is meant to support. With all these concerns in mind, do we dare change this code in any way,
and if so, how?

There are at least three big problems here:
1. There is little intention revealed by the saveCustomer() interface.
2. The implementation of saveCustomer() itself adds hidden complexity.
3. The Customer “domain object” isn’t really an object at all. It’s really just a dumb data holder.

Let’s call this unenviable situation anemia-induced memory loss. It happens all the time on projects that produce this kind of
implicit, completely subjective code “design.”

Hold On a Minute!
At this point some of you may be thinking, “Our designs never really leave the whiteboard. We just draw some structure,
and once agreement on that is reached, we are set free to implement. Scary.”

If so, try not to distinguish design from implementation. Remember that when practicing DDD, the design is the code
and the code is the design. In other words, whiteboard diagrams aren’t the design, just a way to discuss the challenges of
the model.

Stay tuned, as you’ll learn how to take ideas off the whiteboard and make them work for you.

By now you should be worried about this kind of code and how you can create a better design. The good news is that you
can succeed in producing an explicit, carefully crafted design in your code.

How to Do DDD
Let’s back away from heavy implementation discussions for a moment to consider one of the most empowering features of

DDD, the Ubiquitous Language. It’s one of the two primary pillars of DDD’s strengths, the second being the Bounded Context
(2), and one cannot properly stand without the other.

Terms in a Context
For now think of a Bounded Context as a conceptual boundary around a whole application or finite system. The reason for
this boundary is to highlight that every use of a given domain term, phrase, or sentence—the Ubiquitous Language—inside
the boundary has a specific contextual meaning. Any use of the term outside that boundary could, and probably does, mean
something different. Chapter 2 explains Bounded Context in depth.

Ubiquitous Language
The Ubiquitous Language is a shared team language. It’s shared by domain experts and developers alike. In fact, it’s shared

by everyone on the project team. No matter your role on the team, since you are on the team you use the Ubiquitous Language of
the project.

So, You Think You Know What a Ubiquitous Language Is
Obviously it’s the language of the business.
Well, no.
Surely it must be adopting industry standard terminology.
No, not really.
Clearly it’s the lingo used by the domain experts.
Sorry, but no.
The Ubiquitous Language is a shared language developed by the team—a team composed of both domain experts and
software developers.
That’s it. Now you’ve got it!
Naturally, the domain experts have a heavy influence on the Language because they know that part of the business best and
may be influenced by industry standards. However, the Language is more centered on how the business itself thinks and
operates. Also, many times two or more domain experts disagree on concepts and terms, and they are actually wrong
about some because they haven’t thought of every case before. So, as the experts and developers work together to craft a
model of the domain, they use discussion with both consensus and compromise to achieve the very best Language for the
project. The team never compromises on the quality of the Language, just on the best concepts, terms, and meanings.
Initial consensus is not the end, however. The Language grows and changes over time as tiny and large breakthroughs are
achieved, much like any other living language.

This is no gimmick to get developers to be on the same page as domain experts. It’s not just a bunch of business jargon being
forced on developers. It’s a real language that is created by the whole team—domain experts, developers, business analysts,
everyone involved in producing the system. The Language may start out with terms that are the natural lingo of the domain
experts, but it isn’t limited to that because the Language must grow over time. Suffice it to say that when multiple domain
experts are involved in creating the Language, they often disagree ever so slightly on the terms and meanings of what they
thought were already ubiquitous.

In Table 1.4, we not only model the administration of flu vaccines in code, but the team must also speak the Language
openly. When the team discusses this aspect of the model, they literally speak phrases such as “Nurses administer flu vaccines
to patients in standard doses.”

Table 1.4. Analyzing the Best Model for the Business

There will be some haggling and wrangling over the Language that exists in the minds of experts and what evolves from
there. It’s all part of the natural progression of developing the best Language that will matter a lot for a long time. This happens
through open discussion, looking at existing documents, business tribal knowledge that finally surfaces, as well as referencing
standards, dictionaries, and thesauruses. There’s also a point reached where we come to terms with the fact that some words
and phrases just don’t aptly fit the business context as well as we once thought, and we realize that others fit it much better.

So how do you capture this all-important Ubiquitous Language? Here are some ways that work as experimentation leads to

advancement:
• Draw pictures of the physical and conceptual domain and label them with names and actions. These drawings are
mostly informal but may contain some aspects of formal software modeling. Even if your team does some formal
modeling with Unified Modeling Language (UML), you want to avoid any kind of ceremony that will bog down
discussions and stifle the creativity of the ultimate Language being sought.
• Create a glossary of terms with simple definitions. List alternative terms, including the ones that show promise and
the ones that didn’t work, and why. As you include definitions, you cannot help but develop reusable phrases for the
Language because you are forced to write in the Language of the domain.
• If you don’t like the idea of a glossary, still capture some kind of documentation that includes the informal drawings
of important software concepts. Again, the goal here is to force additional Language terms and phrases to surface.
• Since only one or a few team members may capture the glossary or other written documents, circle back with the
rest of the team to review the resulting phrases. You won’t always, if ever, agree on all the captured linguistics, so
be agile and ready to edit heavily.

Those are some ideal first steps to coining a Ubiquitous Language that fits your specific domain. However, this is absolutely
not the model that you are developing. It’s only the genesis of the Ubiquitous Language that will very soon be expressed in your
system’s source code. We are talking Java, or C#, or Scala, or some other programming language of choice. These drawings
and documents also don’t address that the Ubiquitous Language will continue to expand and morph over time. The artifacts that
originally led us down an inspiring path to developing a useful Ubiquitous Language that was just right for our specialized
domain will very likely be rendered obsolete over time. That’s why in the end it is team speech and the model in the code
that are the most enduring and the only guaranteed current denotations of the Ubiquitous Language.

Since team speech and the code will be the lasting expression of the Ubiquitous Language, be prepared to abandon the
drawings, glossary, and other documentation that will be difficult to keep up-to-date with the spoken Ubiquitous Language and
source code as they are rapidly enhanced. This is not a requirement of using DDD, but it is pragmatic because it becomes
impractical to keep all the documentation in sync with the system.

With this knowledge we can redesign the saveCustomer() example. What if we chose to make Customer reflect each of the
possible business goals that it must support?
Click here to view code image

public interface Customer {
 public void changePersonalName(
 String firstName, String lastName);
 public void postalAddress(PostalAddress postalAddress);
 public void relocateTo(PostalAddress changedPostalAddress);
 public void changeHomeTelephone(Telephone telephone);
 public void disconnectHomeTelephone();
 public void changeMobileTelephone(Telephone telephone);
 public void disconnectMobileTelephone();
 public void primaryEmailAddress(EmailAddress emailAddress);
 public void secondaryEmailAddress(EmailAddress emailAddress);
}

We can argue that this is not the best model for a Customer, but when implementing DDD, questioning the design is
expected. As a team we are free to haggle over what is the best model and settle only after we’ve discovered the Ubiquitous
Language that is agreed upon. Still, the preceding interface does explicitly reflect the various business goals that a Customer
must support, even if the Language could be improved by refinements again and again.

It’s important to understand too that the Application Service would also be refactored to reflect the explicit intentions of the
business goals at hand. Each Application Service method would be modified to deal with a single use case flow or user story:
Click here to view code image

@Transactional
public void changeCustomerPersonalName(
 String customerId,
 String customerFirstName,
 String customerLastName) {

 Customer customer = customerRepository.customerOfId(customerId);

 if (customer == null) {
 throw new IllegalStateException("Customer does not exist.");
 }

 customer.changePersonalName(customerFirstName, customerLastName);
}

This is different from the original example because in that code a single method was used to deal with many different use
case flows or user stories. In the new example we have limited a single Application Service method to deal with changing the
personal name of the Customer, and nothing more. Thus, when using DDD, it is our job to refine Application Services
accordingly. This implies that the user interface likewise reflects a narrower user goal, which may have previously been true.
Now, however, this specific Application Service method doesn’t require its client to pass ten nulls following the first- and
last-name parameters.

Doesn’t this new design put your mind at ease? You can read the code and easily comprehend it. You can also test it and
confirm that it does exactly what it is meant to do, and that it doesn’t do anything that it shouldn’t.

Thus, the Ubiquitous Language is a team pattern used to capture the concepts and terms of a specific core business domain in
the software model itself. The software model incorporates the nouns, adjectives, verbs, and richer expressions formally
formulated and spoken by the close-knit team. Both the software and the tests that verify the model’s adherence to the tenets of
the domain capture and adhere to this Language, the same one spoken by the team.
Ubiquitous, but Not Universal

Some further clarification about the reach of a Ubiquitous Language is in order. There are a few basic concepts that we need
to keep carefully in mind:

• Ubiquitous means “pervasive,” or “found everywhere,” as spoken among the team and expressed by the single
domain model that the team develops.
• The use of the word ubiquitous is not an attempt to describe some kind of enterprise-wide, company-wide, or
worldwide, universal domain language.
• There is one Ubiquitous Language per Bounded Context.
• Bounded Contexts are relatively small, smaller than we might at first imagine. A Bounded Context is large enough
only to capture the complete Ubiquitous Language of the isolated business domain, and no larger.
• The Language is ubiquitous only within the team that is working on the project that develops in an isolated Bounded
Context.
• On a single project that develops a single Bounded Context, there are always one or more additional isolated
Bounded Contexts with which it integrates using Context Maps (3). Each of the multiple Bounded Contexts that
integrate has its own Ubiquitous Language, even though some terms of each may overlap.
• If you try to apply a single Ubiquitous Language to an entire enterprise, or worse, universally among many
enterprises, you will fail.

When you begin a new project in which you are properly using DDD, identify the isolated Bounded Context that is being
developed. This places an explicit boundary around your domain model. Discuss, research, conceptualize, develop, and speak
the Ubiquitous Language of the isolated domain model within the explicit Bounded Context. Reject all concepts that are not
part of the agreed-upon Ubiquitous Language of your isolated Context.

The Business Value of Using DDD
If your experience is anything like mine, you know that software developers can no longer pursue technologies and

techniques just because they sound cool or intriguing. We must justify everything that we do. I think that has not always been
true, but it is a good thing it is true now. I think the best justification for using any technology or technique is to provide value
to the business. If we can establish real, tangible business value, why would the business ever refuse to use what we
recommend?

The business case is strengthened especially if we can demonstrate that the business values are higher with our
recommended approach than with other options.

Isn’t Business Value Most Important?
Sure, and perhaps I should have put this subheading “The Business Value of Using DDD” earlier in the book. But it’s
done, now. This subheading could actually be “How You Can Sell DDD to Your Boss.” Until you are mostly convinced
that there is a real chance that you can actually implement DDD in your company, this book is just hypothetical. And I

don’t want you to read this book as just a theoretical exercise. Read it as a concrete reality for your company. Then you
can become more excited about how your company can really benefit. So read on.

Let’s consider the very realistic business value of employing DDD. Be sure to share this openly with your management,
domain experts, and technical team members. The value and benefits are summarized here, then I will elaborate. I start off with
the less technical benefits.

1. The organization gains a useful model of its domain.
2. A refined, precise definition and understanding of the business is developed.
3. Domain experts contribute to software design.
4. A better user experience is gained.
5. Clean boundaries are placed around pure models.
6. Enterprise architecture is better organized.
7. Agile, iterative, continuous modeling is used.
8. New tools, both strategic and tactical, are employed.

1. The Organization Gains a Useful Model of Its Domain
The emphasis of DDD is to invest our efforts in what matters most to the business. We don’t over-model. We focus on the

Core Domain. Other models exist to support the Core Domain and are important, too. Yet the supporting models may not be
given the priority and effort of the Core Domain.

When our focus is on what distinguishes our business from all others, our mission is well understood and we have the
parameters we need to keep on track. We will deliver exactly what is needed to achieve competitive advantage.

2. A Refined, Precise Definition and Understanding of the Business Is Developed
The business may actually come to understand itself and its mission better than before. I have heard others state that the

Ubiquitous Language developed for the business’s Core Domain has found its way into marketing materials. Certainly it should
be incorporated in vision documents and mission statements.

As the model is refined over time, the business develops a deep understanding that can serve as an analysis tool. Details
surface out of the minds of your domain experts as you are challenged by one another and shaped by technical team partners.
These details can help your business analyze the value of the current and future direction, both strategic and tactical.

3. Domain Experts Contribute to Software Design
There is business value when the organization grows a deeper understanding of the core business. Domain experts don’t

always agree on concepts and terminology. Sometimes the differences are fostered by different experiences from outside
before joining the organization. Sometimes it happens because of the divergent paths taken by each expert within the same
organization. Yet when brought together to a DDD effort, the domain experts gain consensus among themselves. This fortifies
the effort and the organization as a whole.

Developers now share a common Language as a unified team along with domain experts. They benefit further from the
knowledge transfer from the domain experts they work with. As developers inevitably move on, either to a new Core Domain
or out of the organization, training and handoffs are easier. The chances of developing “tribal knowledge,” where only a select
few understand the model, are reduced. The experts, remaining developers, and new ones continue to share a common
knowledge that is available to anyone in the organization who requires it. This advantage exists because there remains an
express goal to adhere to the Language of the domain.

4. A Better User Experience Is Gained
Often the end user experience can be tuned to better reflect the model of the domain. Domain-Driven is formally “baked in,”

influencing human use of the software.
When software leaves too much to the understanding of its users, users must be trained to make a great number of decisions.

In essence the users are only transferring the understanding in their minds into data that they enter into forms. The data is then
saved to a data store. If users don’t understand exactly what is needed, the results are incorrect. Often this leads to guesswork
with related lowered productivity until users can figure out the software.

When the user experience is designed to follow the contours of the underlying expert model, users are led to correct
conclusions. The software actually trains the users, which reduces the training overhead to the business. Quicker to
productivity with less training—that’s business value.

We next move into more technically driven benefits to the business.

5. Clean Boundaries Are Placed around Pure Models
The technical team is discouraged from doing what might appeal more to their programming and algorithmic interests by

aligning expectations with business advantage. Purity in direction allows for focus on the potency of the solution, with efforts
directed to where they matter the most. Achieving this is very closely connected to understanding the Bounded Context of the
project.

6. Enterprise Architecture Is Better Organized
When Bounded Contexts are well understood and carefully partitioned, all teams in the enterprise develop an acute

understanding of where and why integrations are necessary. The boundaries are explicit, and the relationships between them
are as well. The teams that have models that intersect by usage dependency employ Context Maps to establish formal
relationships and ways to integrate. This can actually lead to a very thorough understanding of the entire enterprise
architecture.

7. Agile, Iterative, Continuous Modeling Is Used
The word design can evoke negative thoughts in the minds of business management. However, DDD is not a heavyweight,

high-ceremony design and development process. DDD is not about drawing diagrams. It is about carefully refining the mental
model of domain experts into a useful model for the business. It is not about creating a real-world model, as in trying to mimic
reality.

The team’s efforts follow an agile approach, which is iterative and incremental. Any agile process that the team feels
comfortable with can be used successfully in a DDD project. The model that is produced is the working software. It is refined
continuously until it is no longer needed by the business.

8. New Tools, Both Strategic and Tactical, Are Employed
A Bounded Context gives the team a modeling boundary in which to create a solution to a specific business problem domain.

Inside a single Bounded Context is a Ubiquitous Language formulated by the team. It is spoken among the team and in the
software model. Disparate teams, sometimes each responsible for a given Bounded Context, use Context Maps to strategically
segregate Bounded Contexts and understand their integrations. Within a single modeling boundary the team may employ any
number of useful tactical modeling tools: Aggregates (10), Entities (5), Value Objects (6), Services (7), Domain Events
(8), and others.

The Challenges of Applying DDD
As you implement DDD, you will encounter challenges. So has everyone else who has succeeded at it. What are the common

challenges and how do we justify using DDD as we face them? I will discuss the more common ones:
• Allowing for the time and effort required to create a Ubiquitous Language
• Involving domain experts at the outset and continuously with the project
• Changing the way developers think about solutions in their domain

One of the greatest challenges in using DDD can be the time and effort required to think about the business domain, research
concepts and terminology, and converse with domain experts in order to discover, capture, and enhance the Ubiquitous
Language rather than coding in techno-babble. If you want to apply DDD completely, with the greatest value to the business,
it’s going to require more thought and effort, and it’s going to take more time. That’s the way it is, period.

It can also be a challenge to solicit the necessary involvement from domain experts. No matter how difficult it is, make sure
you do. If you don’t get commitment from at least one real expert, you are not going to uncover deep knowledge of the domain.
When you do get the domain experts’ involvement, the onus falls back on the developers. Developers must converse with and
listen carefully to the true experts, molding their spoken language into software that reflects their mental model of the domain.

If the domain you are working in is truly distinguishing to your business, domain experts have the edge-knowledge locked up
in their heads, and you need to draw it out. I’ve been on projects where the real domain experts are hardly around. Sometimes
they travel a lot and it can be weeks between one-hour meetings with them. In a small business it can be the CEO or one of the
vice presidents, and they have lots of other things to do that may seem more important.

Cowboy Logic
AJ: “If you can’t rope the big steer, you’re gonna go hungry.”

Getting domain expert involvement may require creativity . . .

How to Involve Domain Experts in Your Project

Coffee. Use that Ubiquitous Language:
“Hi, Sally, I got you a tall half-skinny half-one-percent extra-hot split-quad-shot latte with whip. Do you have a few minutes to
talk about . . . ?”
Learn to use the Ubiquitous Language of C-Level management: “. . . profits . . . revenues . . . competitive edge . . . market
domination.” Seriously.
Hockey tickets.

Most developers have had to change the way they think in order to properly apply DDD. We developers are technical
thinkers. Technical solutions come easy for us. It’s not that thinking technically is bad. It’s just that there are times when
thinking less technically is better. If it’s been our habit to practice software development only in technical ways for years,
perhaps now would be a good time to consider a new way of thinking. Developing the Ubiquitous Language of your domain is
the best place to start.

Cowboy Logic
LB: “That fella’s boots are too small. If he don’t find himself another pair, his toes are gonna hurt.”
AJ: “Yep. If you don’t listen, you’re gonna have to feel.”

There’s another level of thought that is required with DDD that goes beyond concept naming. When we model a domain
through software, we are required to give careful thought to which model objects do what. It’s about designing the behaviors
of objects. Yes, we want the behaviors to be named properly to convey the essence of the Ubiquitous Language. But what an
object does by means of a specific behavior must be considered. This is a level of effort that goes beyond creating attributes on
a class and exposing getters and setters publicly to clients of the model.

Let’s now look at a more interesting domain, one that is more challenging than the rudimentary one previously considered. I
purposely repeat my previous guidance here to reinforce the ideas.

Again, what happens if we simply provide data accessors to our model? To reemphasize, if we only expose the data
accessors for our model objects, the results will look much like a data model. Consider the following two examples and
decide for yourself which of the two requires more thorough design thought, and which produces the greater benefit to its
clients. The requirement is in a Scrum model, where we need to commit a backlog item to a sprint. You probably do this all the
time, so it’s most likely a familiar domain.

The first example, as is commonly done today, uses attribute accessors:
Click here to view code image

public class BacklogItem extends Entity {
 private SprintId sprintId;
 private BacklogItemStatusType status;
 ...
 public void setSprintId(SprintId sprintId) {
 this.sprintId = sprintId;
 }

 public void setStatus(BacklogItemStatusType status) {
 this.status = status;
 }
 ...
}

As for the client of this model:
Click here to view code image

// client commits the backlog item to a sprint
// by setting its sprintId and status

backlogItem.setSprintId(sprintId);
backlogItem.setStatus(BacklogItemStatusType.COMMITTED);

The second example uses a domain object behavior that expresses the Ubiquitous Language of the domain:
Click here to view code image

public class BacklogItem extends Entity {

 private SprintId sprintId;
 private BacklogItemStatusType status;
 ...

 public void commitTo(Sprint aSprint) {
 if (!this.isScheduledForRelease()) {
 throw new IllegalStateException(
 "Must be scheduled for release to commit to sprint.");
 }

 if (this.isCommittedToSprint()) {
 if (!aSprint.sprintId().equals(this.sprintId())) {
 this.uncommitFromSprint();
 }
 }

 this.elevateStatusWith(BacklogItemStatus.COMMITTED);

 this.setSprintId(aSprint.sprintId());

 DomainEventPublisher
 .instance()
 .publish(new BacklogItemCommitted(
 this.tenant(),
 this.backlogItemId(),
 this.sprintId()));
 }
 ...
}

The client of this explicit model seems to operate on safer ground:
Click here to view code image

// client commits the backlog item to a sprint
// by using a domain-specific behavior

backlogItem.commitTo(sprint);

The first example uses a very data-centric approach. The onus is entirely on the client to know how to correctly commit the
backlog item to a sprint. The model, which is not really a domain model, doesn’t help at all. What if the client mistakenly
changes only the sprintId but not the status, or the opposite? Or what if in the future another attribute must be set? The
client code must be analyzed for correct mapping of data values to the proper attributes on the BacklogItem.

This approach also exposes the shape of the BacklogItem object and clearly focuses attention on its data attributes and not
on its behaviors. Even if you argue that setSprintId() and setStatus() are behaviors, the case in point is that these
“behaviors” have no real business domain value. These “behaviors” do not explicitly indicate the intentions of the scenarios
that the domain software is supposed to model, that of committing a backlog item to a sprint. They do cause cognitive overload
when the client developer tries to mentally select from among the BacklogItem attributes needed to commit a backlog item to
a sprint. There could be many because it’s a data-centric model.

Now consider the second example. Instead of exposing the data attributes to clients, it exposes a behavior that explicitly and
clearly indicates that a client may commit a backlog item to a sprint. Experts in this particular domain discuss the following
requirement of the model:

Allow each backlog item to be committed to a sprint. It may be committed only if it is already
scheduled for release. If it is already committed to a different sprint, it must be uncommitted first.
When the commit completes, notify interested parties.

Thus, the method in the second example captures the Ubiquitous Language of the model in context, that is, the Bounded
Context in which the BacklogItem type is isolated. And as we analyze this scenario, we discover that the first solution is
incomplete and contains bugs.

With the second implementation clients don’t need to know what is required to perform the commit, whether simple or
complex. The implementation of this method has as much or as little logic as necessary. We easily added a guard to protect
against committing a backlog item that is not yet scheduled for release. True, you can also place guards inside the setters of the

first implementation, but the setter now becomes responsible for understanding the full context of the object’s state rather than
just the requirements for sprintId and status.

There’s another subtle difference here, too. Note that if the backlog item is already committed to another sprint, it will first
be uncommitted from the current sprint. This is an important detail, because when a backlog item is uncommitted from a sprint,
a Domain Event is to be published to clients:

Allow each backlog item to be uncommitted from a sprint. When the backlog item is uncommitted,
notify interested parties.

The publication of the uncommitted notification is obtained for free just by using the domain behavior uncommitFrom().
Method commitTo() doesn’t even need to know that it notifies. All it needs to know is that it must uncommit from any current
sprint before committing to a new sprint. Additionally, the commitTo() domain behavior also notifies interested parties with
an Event as its final step. Without placing this rich behavior in BacklogItem we would have to publish Events from the client.
That would certainly leak domain logic from the model. Bad.

Clearly, more thought is needed to create the BacklogItem of the second example than that of the first. Yet the thought
needed is not so much greater, and the benefits are so much higher. The more we learn to design in this way, the easier it
becomes. In the end, there is certainly more required thought, more effort, more collaboration and orchestration of team efforts,
but not so much that DDD becomes heavy. New thought is well worth the effort.

Whiteboard Time
• Using the specific domain you currently work in, think of the common terms and actions of the model.
• Write the terms on the board.
• Next, write phrases that should be used by your team when you talk about the project.
• Discuss them with a real domain expert to see how they could be refined (remember to bring the coffee).

Justification for Domain Modeling
Tactical modeling is generally more complex than strategic modeling. Thus, if you intend to develop a domain model using

the DDD tactical patterns (Aggregates, Services, Value Objects, Events, and so forth), doing so will require more careful
thought and greater investment. Since this is so, how does an organization justify tactical domain modeling? What criteria can
be used to qualify a given project for the extra investment needed to properly apply DDD from top to bottom?

Picture yourself leading an expedition through unfamiliar territory. You would want to understand the surrounding
landmasses and borders. Your team would study maps, maybe even draw their own, and determine their strategic approach.
You would consider aspects of the terrain and how it could be used to your advantage. No matter how much planning is done,
some facets of such an endeavor are going to be really difficult.

If your strategy indicated that you’d have to scale a vertical rock face, you’d need some fitting tactical tools and maneuvers
for that ascent. Standing at the bottom and looking up, you might see some indication of specific challenges and perilous areas.
Yet, you wouldn’t see every detail until you were on the rock face. You might need to drive pitons into slick rock, but you
could use various-size cams to wedge into natural cracks. To latch on to these climbing protections, you’d bring along your
carabiners. You would try to take as straight a path as possible but would have to make specific determinations point by point.
Sometimes you might even have to backtrack and reroute depending on what the rock dictated. Many people think of climbing
as a dangerous thrill sport, but those who actually climb will tell you it’s safer than driving a car or flying an airplane. Clearly,
for that to be true, climbers need to understand the tools and techniques and how to judge the rock.

If developing a given Subdomain (2) requires such a difficult, even precarious, ascent, we’d bring the DDD tactical patterns
along for the climb. A business initiative that matches the criteria of the Core Domain should not quickly dismiss the use of the
tactical patterns. The Core Domain is an unknown and complex area. The team is best protected against a disastrous mid-asset
fall if using the right tactics.

Here’s some practical guidance. I begin with the high-level ones and progress to more details:
• If a Bounded Context is being developed as the Core Domain, it is strategically vital to the success of the business.
The core model is not well understood and will require lots of experimentation and refactoring. It likely deserves
commitment to longevity with continuous enhancement. It may not always be your Core Domain. Nonetheless, if the
Bounded Context is complex, innovative, and needs to endure for a long time as it undergoes change, strongly
consider the use of the tactical patterns as an investment in the future of your business. This assumes that your Core
Domain deserves the best developer resources with a high skill level.
• A domain that may become a Generic Subdomain (2) or Supporting Subdomain to its consumers may actually be a

Core Domain to your business. You don’t always judge a domain from the viewpoint of its ultimate consumers. If
you are developing a Bounded Context as your chief business initiative, it is your Core Domain regardless of how it
is viewed by customers outside your business. Strongly consider the use of the tactical patterns.
• If you are developing a Supporting Subdomain that, for various reasons, cannot be acquired as a third-party
Generic Subdomain, it is possible that the tactical patterns would benefit your efforts. In this case consider the skill
level of the team and whether or not the model is new and innovative. It is innovative if it adds specific business
value, captures special knowledge, and is not just technically intriguing. If the team is capable of properly applying
tactical design, and the Supporting Subdomain is innovative and must endure for years in the future, this is a good
opportunity to invest in your software using tactical design. However, this does not make this model the Core
Domain since in the eyes of the business it is merely Supporting.

These guidelines may be somewhat confining if your business employs a good number of developers with vast experience in
and a very high comfort level with domain modeling. Where experience is very high, and the engineers themselves believe the
tactical patterns would be the best choice, it makes sense to trust their opinion. Honest developers, no matter how experienced,
will indicate in a specific case that developing a domain model is, or is not, the best choice.

The type of business domain itself is not automatically the determining factor for choosing a development approach. Your
team should consider important questions to help you make the final determination. Consider the following short list of more
detailed decision parameters, which is more or less aligned with and expands on the preceding higher-level guidelines:

• Are domain experts available and are you committed to forming a team around them?
• Although the specific business domain is somewhat simple now, will it grow in complexity over time? There is
risk in using Transaction Script1 for complex applications. If you use Transaction Script now, will the potential for
refactoring to a behavioral domain model later on be practical if/when the Context becomes complex?
• Will the use of the DDD tactical patterns make it easier and more practical to integrate with other Bounded
Contexts, whether third-party or custom developed?
• Will development really be simpler and require less code if you use Transaction Script? (Experience with both
approaches proves that many times Transaction Script requires as much or more code. This is probably because the
complexity of the domain and the innovation of the model were not well understood during project planning.
Underestimating domain complexity and the innovation involved happens often.)
• Do the critical path and timeline allow for any overhead required for tactical investment?
• Will the tactical investment in a Core Domain protect the system from changing architectural influences?
Transaction Script may leave it exposed. (Domain models are often enduring while architectural influences tend to
be more disruptive to other layers.)
• Will clients/customers benefit from a cleaner, enduring design and development approach, or could their
application be replaced by an off-the-shelf solution tomorrow? In other words, why would we ever develop this as a
custom application/service in the first place?
• Will developing an application/service using tactical DDD be more difficult than using other approaches such as
Transaction Script? (Skill level and availability of domain experts is vital to answering this question.)
• If the team’s toolkit was complete with DDD enablers, would we conscientiously choose to use another approach
instead? (Some enablers make model persistence practical, such as using object-relational mapping, full Aggregate
serialization and persistence, an Event Store, or a framework that supports tactical DDD. There may be other
enablers, too.)

This list is not prioritized for your domain, and you can probably assemble additional criteria. You understand the
compelling reasons for using the best and most empowering methods possible to your advantage. You also know your business
and technology landscape. In the end it is the business customer, not the object practitioners and technologists, who must be
pleased. Choose wisely.

DDD Is Not Heavy
In no way do I want to imply that properly practicing DDD leads to a heavyweight process with lots of ceremony and all the

crufty documentation artifacts that must be supported. That’s not what DDD is about. It is meant to fit well into any agile
project framework, such as Scrum, that the team desires to use. Its design tenets lean toward rather rapid test-first refinements
of a real software model. If you were in need of developing a new domain object, such as an Entity or a Value Object, the test-
first approach works like this:

1. Write a test that demonstrates how the new domain object should be used by a client of the domain model.
2. Create the new domain object with enough code to make the test compile.

3. Refactor both until the test properly represents the way a client would use the domain object, and the domain
object has proper behavioral method signatures.
4. Implement each domain object behavior until the test passes, refactoring the domain object until no inappropriate
code duplications exist.
5. Demonstrate the code to team members, including domain experts, to ensure that the test is using the domain object
according to the current meaning of the Ubiquitous Language.

You may conclude that this is not any different from the test-first approach you already practice. Well, it might be a little
different, but the point is that it’s basically the same. This test stage is not attempting to prove with absolute certainty that the
model is bulletproof. Later we will add tests to do that. First we want to focus on how the model will be used by clients, and
these tests drive the model’s design. The good news is that it really is an agile approach. DDD promotes lightweight
development, not ceremonious, heavy, up-front design. From that standpoint it really isn’t different from common agile
development. So, while the preceding steps may not enlighten you about agile, I think they clarify the position of DDD, that it is
meant to be used in an agile way.

Later you also add tests that verify the correctness of the new domain object from every possible (and practical) angle. At
this point you are interested in the correctness of the expression of a domain concept that is embodied in the new domain
object. Reading the demonstrative clientlike test code must reveal the proper expressiveness using the Ubiquitous Language.
Domain experts who are nontechnical should be able, with the help of a developer, to read the code well enough to get a clear
impression that the model has achieved the goal of the team. This implies that test data must be realistic and support and
enhance the desired expressiveness. Otherwise, domain experts cannot make a complete judgment about the implementation.

This test-first agile methodology repeats until you have a model that is working according to the tasks outlined for the current
iteration. The steps outlined previously are agile and represent what Extreme Programming originally promoted. Using agile
does not eliminate any essential DDD patterns and practices. They go together quite well. Of course, you can choose to use full
DDD without doing test-first development. You can always develop tests against existing model objects. However, designing
from the model client’s perspective adds a very desirable dimension.

Fiction, with Bucketfuls of Reality
As I contemplated how to best present implementation guidance for contemporary use of DDD, I wanted to provide

justification for everything I say should be done. That meant supplying not just the how, but the why. It occurred to me that
looking at a few projects as case studies would appropriately illustrate why I made a certain suggestion and demonstrate how
proper use of DDD will solve the challenges commonly faced.

Sometimes it’s easier to look at the problems faced by other project teams and learn from their misuse of DDD than it is to
look inward. Certainly, once you recognize the flaws of others’ work, you’ll be able to judge whether or not you are leaning in
the same precarious direction, or even standing in the thick of the same morass. Then, knowing where you are headed or where
you already are, you can make the precise adjustments to correct problems and avoid the same in the future.

Rather than present a series of actual projects that I have worked on—ones that I could not discuss openly anyway—I
decided to use a bit of fiction based on real-world situations that I and others have experienced. That way I could create the
perfect state of affairs to demonstrate the reasons a specific implementation approach works best, or at least better, when
dealing with challenges in DDD.

So it is not just fiction on which I am interested in building case studies. It is a fictitious company with a real-world business
charter, fictitious teams within the company with real-world software to build and deploy, and real-world DDD challenges and
resulting problems with real-world solutions to them. It’s what I call “fiction with bucketfuls of reality.” I have found it quite
effective to write in this style. I hope you benefit from it.

When presenting any set of examples, we must limit the scope to make it practical. Otherwise, the volume will drown efforts
to teach and learn. Examples cannot be overly simplistic either, or vital lessons would be lost. To balance this effort, the
business situation I have chosen is largely based on greenfield development.

As we peer into the projects at various points in time, we’ll see different problems and successes that the teams experience.
The Core Domain that is the focus of the examples is sufficiently complex to examine DDD from various perspectives. Our
Bounded Contexts use one or more others, which enables us to investigate integration with DDD. Still, the three sample models
cannot possibly demonstrate every aspect of strategic design, such as occurs in a “brownfield” environment common where
many legacy systems exist. I don’t completely dodge those less attractive regions, as if they are irrelevant. Whenever advisable
we will diverge from the main samples and study areas where DDD guidance can be used in additional advantageous ways.

Now allow me to introduce you to the company and tell you a little bit about its teams and the projects they are working on.

SaaSOvation, Its Products, and Its Use of DDD

The company is SaaSOvation. As its name implies, SaaSOvation’s charter is to develop a series of software as a service, or
SaaS, products. The SaaS products are hosted by SaaSOvation and accessed and used by subscribing organizations. The
company’s business plan includes two planned products, one to precede the other.

The flagship product is named CollabOvation. It is a corporate collaboration suite, which sports the features of leading
social networks. These include forums, shared calendars, blogs, instant messaging, wiki, message boards, document
management, announcements and alerts, activity tracking, and RSS feeds. All of the collaboration tools are focused on the
needs of corporate businesses, helping them spike productivity in smaller projects, in larger programs, and across
business units. Business collaboration is important for creating and facilitating a synergistic atmosphere in today’s
changing and sometimes uncertain, yet fast-paced economy. Anything that can help propel productivity forward, transfer
knowledge, promote idea sharing, and associatively manage the creative process so results will not be misplaced will be
a boon to the corporate success equation. CollabOvation provides a high-value proposition to customers, and the
challenge will also please its developers.

The second product, named ProjectOvation, is the Core Domain of primary focus. The tool focuses on the management
of agile projects, using Scrum as the iterative and incremental project management framework. ProjectOvation follows the
traditional Scrum project management model, complete with product, product owner, team, backlog items, planned
releases, and sprints. Backlog item estimation is provided through business value calculators that use cost-benefit
analysis. If you think of Scrum at its richest, that’s where ProjectOvation is headed. But SaaSOvation plans to get more
bang for its buck.

CollabOvation and ProjectOvation would not go down entirely separate paths. SaaSOvation and its board of advisers
envisioned innovation around weaving collaboration tools in with agile software development. Thus, CollabOvation
features will be offered as an optional add-on to ProjectOvation. Without a doubt, supplying collaboration tools for
project planning, feature and story discussions, team and inter-team group discussion, and support will be a popular
option. SaaSOvation forecasts that more than 60 percent of ProjectOvation subscribers will add on CollabOvation
features. And this kind of add-on sales often ends up leading to new full sales of the add-on product itself. Once a sales
channel is established and software development teams see the power of collaboration in their project management suite,
their enthusiasm will influence full corporate adoption of the complete collaboration suite. Due to this viral sales
approach, SaaSOvation further forecasts that at a minimum 35 percent of all ProjectOvation sales will lead to full
corporate adoption of CollabOvation. They consider this a conservative estimate, but one that will make it extremely
successful.

The CollabOvation product development team is staffed first. There are a few seasoned veterans on the team, but a
greater number of midlevel developers. Early meetings pointed to Domain-Driven Design as the favored design and
development approach. One of the two senior developers had used a minimal set of DDD patterns on a previous project at
his former employer. As he described his experience to the team, it would have been clear to a more experienced DDD
practitioner that this was not full use of DDD. What he had done is sometimes referred to as DDD-Lite.

DDD-Lite is a means of picking and choosing a subset of the DDD tactical patterns, but without giving full attention to
discovering, capturing, and enhancing the Ubiquitous Language. As well, this technique generally bypasses the use of

Bounded Contexts and Context Mapping. Its focus is much more technical, with a desire to solve technical problems. It
can have benefits, but generally not with as high a reward as including strategic modeling along with it. SaaSOvation
bought into this. In its case doing so soon led to problems because the team didn’t understand Subdomains and the power
and safety of explicit Bounded Contexts.

Things could have been worse. SaaSOvation actually avoided some major pitfalls of using DDD-Lite, just because its
two core products formed a natural set of Bounded Contexts. This tended to keep the CollabOvation model and the
ProjectOvation model formally segregated. But that was just by chance. It didn’t mean the team understood Bounded
Context, which is why the problems they did experience happened in the first place. Well, you either learn or you fail.

It’s good that we can benefit from examining SaaSOvation’s incomplete use of DDD. The team eventually learned from their
mistakes by acquiring a better grasp of strategic design. You will also learn from the adjustments the CollabOvation team
made, as the eventual ProjectOvation team benefited from retrospectives of the early conditions of its sister and partner
project. See Subdomains (2) and Bounded Contexts (2), as well as Context Maps (3), for the full story.

Wrap-Up
Well, that’s a pretty encouraging start with DDD. I think by now you probably have gotten a good feeling that you and your

team can actually succeed with an advanced software development technique. I agree.
Of course, we aren’t going to oversimplify things. Implementing DDD takes real concerted effort. If it were easy, everybody

would be writing great code, and we know that just doesn’t happen. So get ready. It will be worth it, because your design will
be exactly how your software works.

Here’s what you’ve learned so far:
• You’ve discovered what DDD can do for your projects and your teams to help you grapple with domain
complexity.
• You found out how to score your project to see if it deserves the DDD investment.
• You considered the common alternatives to DDD and why using those approaches often leads to problems.
• You’ve grasped the foundations of DDD and are prepared to take the first steps on your project.
• You’ve found out how to sell DDD to your management, domain experts, and technical team members.
• You are now armed with knowledge of how to succeed while facing the challenges of DDD.

Here’s where we’re going next. The next two chapters are on the all-important strategic design, followed by a chapter on
software architectures with DDD. This is really important stuff to get a handle on before you move to the subsequent chapters
on tactical modeling.

Chapter 2. Domains, Subdomains, and Bounded Contexts

There are just as many notes as I required, neither more nor less.
—Mozart in the film Amadeus (Orion Pictures, Warner Brothers, 1984)

There are three things you are going to have to understand very clearly:
• What your Domain is
• What your Subdomains are
• What your Bounded Contexts are

Just because all these concepts were discussed in detail in the second half of [Evans] does not mean that they are of
secondary importance. To succeed in implementing DDD, you have to get these right.

Road Map to This Chapter
• Grasp the big picture of DDD by understanding Domains, Subdomains, and Bounded Contexts.
• Learn why strategic design is so essential, and why designing without it hurts.
• Consider a practical real-world Domain with multiple Subdomains.
• Make sense of Bounded Contexts, both conceptually and technically.
• See SaaSOvation’s “aha!” moments as they discover strategic design.

Big Picture
A Domain, in the broad sense, is what an organization does and the world it does it in. Businesses identify a market and sell

products and services. Each kind of organization has its own unique realm of know-how and way of doing things. That realm of
understanding and its methods for carrying out its operations is its Domain. When you develop software for an organization,
you are working in its Domain. It should be pretty obvious to you what your Domain is. You work in it.

One thing to be aware of is that the term Domain may be a bit overloaded. Domain can refer to both the entire domain of the
business, as well as just one core or supporting area of it. I will do my best to distinguish each use of the term. When referring
to just one area of the business, I will generally qualify it with the use of Core Domain, Subdomain, and the like.

Because the term domain model includes the word domain, we might get the idea that we should create a single, cohesive,
all-inclusive model of an organization’s entire business domain—you know, like an enterprise model. However, when using
DDD, that is not our goal. DDD places emphasis on just the opposite. The whole Domain of the organization is composed of
Subdomains. Using DDD, models are developed in Bounded Contexts. In fact, developing a Domain Model is actually one way
that we focus on only one specific area of the whole business domain. Any attempt to define the business of even a moderately
complex organization in a single, all-encompassing model will be at best extremely difficult and will usually fail. As is made
clear in this chapter, vigorously separating distinct areas of the whole business domain will help us succeed.

So, if a domain model shouldn’t be all-inclusive of what the organization does and how it does it, what should it be, exactly?
Almost every software Domain has multiple Subdomains. It really doesn’t matter whether the organization is huge and

extremely complex or consists of just a few people and the software they use. There are different functions that make any
business successful, so it’s advantageous to think about each of those business functions separately.

Subdomains and Bounded Contexts at Work
Here’s a fairly simple example to introduce how Subdomains can be used. Think of a retail company that sells products

online. The products it sells could be just about anything, so we won’t think too carefully about them. To do business in this
Domain, the company must present a catalog of products to shoppers, it must allow orders to be placed, it must collect payment
for the products sold, and it must ship the products to buyers. This online retailer’s Domain seems to be composed of these four
primary Subdomains: Product Catalog, Orders, Invoicing, and Shipping. The upper part of Figure 2.1 shows the e-Commerce
System.

Figure 2.1. A Domain with Subdomains and Bounded Contexts
This all seems quite straightforward, and to some degree it is. However, if we introduce just one additional detail, we will

make our example more complex. Consider for a moment how difficult it can be to deal with Inventory, an additional system
and Subdomain seen in Figure 2.1. We’ll get back to the increased complexity in a moment. First let’s peer into the physical
subsystems and logical Subdomains in the diagram.

Notice that at this time just three physical systems exist to realize this retailer’s Domain, only two of which are hosted
internally. Those two internal systems represent what we might think of as two Bounded Contexts. Since, unfortunately, most
systems today are not created by employing a DDD approach, this ends up being a fairly typical situation, with fewer
subsystems responsible for many business functions.

Inside the e-Commerce Bounded Context there are really multiple implicit domain models at play, even though they are not
cleanly separated as such. These otherwise separate domain models are actually fused into one software model, and that’s very
unfortunate. It might be less of a problem for the retailer if it had purchased this Bounded Context from a third party rather than
building it, but whoever maintains this system has experienced the negative consequences of the increasing complexity that
results from blending the Product Catalog, the Orders, the Invoicing, and the Shipping models into one large e-commerce
model. As the various logical models need to grow to facilitate new features, each of the conflicting concerns will impede the
progress of each of the others. This would be especially so if another logical model—a major new feature set—must be added.
It’s just what happens when software concerns are not cleanly separated.

This is particularly unfortunate because a lot of software developers think it’s clever to bake everything possible into one
system. It’s your basic all-knowing, all-doing e-commerce system, and thus it will certainly satisfy everyone’s needs. This is
deceiving, however, because no matter how many concerns can be piled into one subsystem, it will never address the needs of
every potential consumer. Never. Add to this the fact that not separating otherwise distinct software domain models by
Subdomain will make ongoing changes much more burdensome, since everything will tend to be connected to and depend on
everything else.

Yet, using one of the DDD strategic design tools, we can to some degree cut through the complexity by externally dissecting

these intertwined models into logically separated Subdomains according to their actual functionality. The logical Subdomain
separations are indicated by the dashed lines in Figure 2.1. It’s not that we have somehow refactored the third-party models
into cleanly separated ones. We’ve just indicated what separate models should exist, at least as they apply to our specific
retailer’s business operations. We’ve also drawn some connections between logical Subdomains and even physical Bounded
Contexts to show integrations.

Now let’s shift from technical complexities and focus on the business complexities faced by our small company. It has
limited funds and it has limited warehouse space. There’s a constant juggling act going on. The company must not overspend on
products that aren’t selling well, and some products sell better at certain times than they do at other times. Obviously, if some
products don’t sell according to plans, the company’s funds are tied up with products that its customers don’t want, not right
now anyway. The money is frozen. As a result, the company has limited room to stock products that are selling well at any
given time.

That’s not all. There ends up being another problem. If some products sell more quickly than anticipated, the company will
not be able to inventory enough of them to fulfill customer demand. This insufficient inventory challenge could cause customers
to obtain the same urgently needed products elsewhere. Sure, some product wholesalers are willing to drop-ship on behalf of
the retailer, but that option costs more and introduces other undesirable consequences. There are also cost-saving strategies to
stock some products nearby for local consumption and drop-ship others that sell well in distant regions. Thus, drop-shipping
should be leveraged to the retailer’s advantage, not as a last-minute tactic employed to rescue a sale gone bad. After all, it’s
not that the products that are selling the best are scarce. It’s just that they are not readily available from the small retail
company because it didn’t optimally inventory them. If customers experience delays on a continuing basis, it will likely cost
the online sales company at least a significant part of any competitive advantage it had previously earned. This example is
inspired by customer problems commonly solved by Lokad.1

To be clear, we haven’t investigated the limits of the challenges faced with inventories, and these undesirable situations are
not limited to small retailers. Retailers everywhere desire to purchase and inventory precisely according to their exact needs,
minimizing cost and optimizing sales fulfillment according to demand. Yet the small retailer tends to suffer the penalties of
suboptimal performance more quickly than large retailers.

What would help any online retailer tremendously is a way to base future inventory and sales demands on past trends. If the
retailer could use a forecasting engine, providing it with data about inventory and sales history, it could obtain demand
forecasts with specific numbers for optimizing its inventory—when to reorder and how much of each product to obtain.

For the small retailer to add such forecasting capabilities would probably constitute a new Core Domain, because it is a
nontrivial problem to solve, and succeeding would help the company establish a new competitive advantage. In fact, the third
physical Bounded Context in Figure 2.1 is an External Forecasting System. The Orders Subdomain and the Inventory
Bounded Context integrate with Forecasting to supply historical product sales and returns information. Additionally, we
should also have the Catalog Subdomain provide globally recognized product bar codes, which would allow Forecasting to
compare the small retailer’s product lines to related and similar sales trends worldwide, resulting in a broader perspective.
This leads to the Forecasting engine possessing the means to calculate the most accurate numbers needed by the small retailer
to correctly stock products.

If this new solution were actually a Core Domain, and it most likely is, the team developing it would benefit greatly from
understanding the surrounding business terrain composed of logical Subdomains and the integrations needed. Thus, highlighting
the preexisting integrations indicated on the diagram in Figure 2.1 is key to grasping the project situation at the time the project
begins.

It’s not always the case that Subdomains feature such distinct models of significant size and functionality. Sometimes a
Subdomain can be as simple as a set of algorithms that, while essential to the business solution, are not part of the
distinguished Core Domain. Applying good DDD techniques, such simple Subdomains can be separated from the Core using
Modules (9) and need not be housed in a heavy, architecturally significant subsystem component.

When we employ DDD, we strive for each Bounded Context to mark off where the meaning of every term used by the
domain model is well understood, or at least should be if we’ve done a good job of modeling the software. It’s chiefly a
linguistic boundary. These contextual boundaries are a key to implementing DDD.

Cowboy Logic
LB: “We get along just fine with the neighbors, until their fences break down.”
AJ: “That’s right. Keep your fences horse-high.”

Note that a single Bounded Context does not necessarily fall within only a single Subdomain, but it may. In Figure 2.1, only
one Bounded Context, Inventory, falls within just one Subdomain.2 That makes it rather apparent that proper DDD was not in
use when the e-Commerce System was developed. In that system we’ve identified four Subdomains, and there are probably
more. On the other hand, the Inventory System does seem to be aligned as one Subdomain per Bounded Context by limiting its
domain model to inventorying products. The Inventory System’s apparently clean model may be due to employing DDD, or it
may be merely coincidental. We’d have to look under the hood to know for sure. Regardless, we can still make practical use of
Inventory to develop the new Core Domain.

Linguistically, which of the Bounded Contexts in Figure 2.1 has a better design? In other words, which has an unambiguous
set of domain-specific terms? When we consider that there are at least four Subdomains in the e-Commerce System, it’s almost
certain that terms and meanings collide there. For example, the term Customer must have multiple meanings. When a user is
browsing the Catalog, Customer means one thing, but when a user is placing an Order, it means something else. Here’s why.
When browsing the Catalog, Customer is being used in the context of previous purchases, loyalty, available products,
discounts, and shipping options. On the Order itself, however, Customer has a limited meaning. Among the few details there is
a name with a ship-to address, a bill-to address, a total due, and payment terms. Just by this basic reasoning we see that in the
e-Commerce System there is no one clean meaning for Customer. Given this situation, as we look around that system we would
expect to find several other terms that have multiple meanings. It’s not a clean Bounded Context with an explicit meaning for
each term naming a domain concept.

Yet, there’s also no guarantee that the Inventory System has a completely clean model, possessing wholly unambiguous
domain linguistics. Even in this apparently focused Context we could face differences in meanings among the things that are
being controlled in inventory. This is because there are different ways that inventoried Items are used. Is there a clean
distinction between an Item being ordered, one being received, one in stock, and one moving out of stock? An Item on order
that is not yet available for sale is called Back-Ordered Item. An Item being received is often called Goods Received. An item
in stock may be called a Stock Item. An Item being consumed is often referred to as an Item Leaving Inventory. An inventoried
Item that becomes spoiled or broken is often called a Wasted Inventory Item.

By looking at Figure 2.1, we don’t know how well the range of inventory concepts and their accompanying linguistics are
modeled. When using DDD, we’d leave none of it to guesswork. We would be certain that each of those concepts is well
understood, spoken of explicitly, and modeled as such. The way domain experts describe each of these concepts could lead to
separating some in different Bounded Contexts.

From outward appearances we would conclude that the Inventory System has better DDD health than the e-Commerce
System. Perhaps the team that worked out its model didn’t attempt to make one Item represent all inventoried item situations.
Although uncertain, it’s possible that the model of the Inventory System will be easier to integrate with than that of the e-
Commerce System.

Speaking of integration, Figure 2.1 further shows that Bounded Contexts in an enterprise rarely if ever completely stand
alone. Even when the third-party e-Commerce System attempts to provide a large, all-encompassing model, it can’t do
everything the retailer needs. The solid straight lines running between and connecting the various Subdomains in the e-
Commerce System, the Inventory System, and the External Forecasting System show the necessary integration relationships,
which proves that different models must work together. There are always specific kinds of relationships involved in
integration, and you’ll learn more about the possible integration options in Contexts Maps (3).

That’s the high-level summary of one view of a simple business domain. We’ve briefly encountered a Core Domain and
gotten the notion that it is an important part of DDD. Now we need to understand it better.

Focus on the Core Domain
With an understanding of Subdomains and Bounded Contexts, consider an abstract view of a different Domain found in

Figure 2.2. This could represent any domain, perhaps even the one you work in. I’ve removed the explicit names so you can
mentally fill in the blanks. Naturally, our business goals are on a path of continuous refinement and expansion reflected by
ever-changing Subdomains and the models within. This diagram only captures the whole business Domain at a moment in time
with a specific perspective, and one that could be somewhat short-lived.

Figure 2.2. An abstract business Domain that includes Subdomains and Bounded Contexts

Whiteboard Time
• In one column make a list of all the Subdomains that you are aware of in your daily work. In another column list the
Bounded Contexts. Do Subdomains intersect with multiple Bounded Contexts? If so, it’s not necessarily a bad thing,
just a fact of enterprise software.
• Now, using the template in Figure 2.2, write in some of the names of the software running in your enterprise with
the Subdomains, Bounded Contexts, and the integration relationships between them.

Was that difficult? Probably, because the template in Figure 2.2 likely doesn’t closely reflect the existing boundaries in
your Domain.

• Start over. This time you should draw a diagram that aligns with your Domain, Subdomains, and Bounded
Contexts. Use the techniques displayed in Figure 2.2, but go ahead and fit them to your world.

Of course, you may not know about every Subdomain and Bounded Context in your entire enterprise, especially if your
Domain is really large and complex. But you may be able to figure out the ones you deal with on a day-to-day basis.
Anyway, give it a go. Don’t be afraid of being wrong. You’ll get some good practice at Context Mapping, which will be
refined in the next chapter. If you want to jump to that chapter briefly for more advice, that’s fine. Still, don’t worry about
being perfect just now. Grasp the basic ideas first.

Now look at the top of the Domain boundary in Figure 2.2 and you’ll see the Subdomain labeled Core Domain. Introduced
earlier, this is another aspect of DDD of major importance. A Core Domain is a part of the business Domain that is of primary
importance to the success of the organization. Strategically speaking, the business must excel with its Core Domain. It is of
utmost importance to the ongoing success of the business. That project gets the highest priority, one or more domain experts
with deep knowledge of that Subdomain, the best developers, and as much leeway and leverage as possible to give the close-
knit team an unobstructed success path. Most of your DDD project efforts will be focused on the Core Domain.

Two other kinds of Subdomains are found in Figure 2.2, Supporting Subdomain and Generic Subdomain. Sometimes a
Bounded Context is created or acquired to support the business. If it models some aspect of the business that is essential, yet
not Core, it is a Supporting Subdomain. The business creates a Supporting Subdomain because it is somewhat specialized.
Otherwise, if it captures nothing special to the business, yet is required for the overall business solution, it is a Generic
Subdomain. Being Supporting or Generic doesn’t mean unimportant. These kinds of Subdomains are important to the success
of the business, yet there is no need for the business to excel in these areas. It’s the Core Domain that requires excellence in
implementation, since it will provide distinct advantages to the business.

Whiteboard Time
• To make sure you grasp the significance of the Core Domain concepts, what you should do next is go back to your
fresh whiteboard drawing and see if you can identify where a Core Domain is being developed in your organization.
• Next, see if you can identify the Supporting Subdomains and Generic Subdomains in your Domain.

Remember: Ask the Domain Experts!
Even if you don’t get it just right the first time, this exercise will help you to think carefully about what software most
distinguishes your business, what supports the distinguishing software, and what doesn’t distinguish your business’s
success at all. Keep working at it so you become more comfortable with the thought processes and techniques.

Discuss each Subdomain and Bounded Context in your drawing with a few domain experts who specialize in the
different areas.

Not only will you learn a lot from them, but you’ll gain valuable experience in listening to the experts. That’s a
hallmark of implementing DDD well.

What you’ve just learned is the big-picture foundation of strategic design.

Why Strategic Design Is So Incredibly Essential
OK, you’ve learned some DDD terminology and the meaning behind it, but not much has been said about why this is so

important. I’ve really just asserted that it is very important and hoped that you’d believe me. But like most statements of “fact,”
I’d better back my assertion now. Let’s jump in on our running example, that of the projects going on at SaaSOvation. They’ve
managed to get themselves into a real jam.

Early on in their first effort with DDD, the collaboration project team began to veer off the path to developing a clean model.
This happened because they didn’t understand strategic design, not even at its most basic level. As is true of most developers,
their focus was on the details of Entities (5) and Value Objects (6), which obscured their vision of the bigger picture. They
blended their core concepts with generic ones, causing the creation of two models in one. Before long they started to feel the
pain of the design reflected in Figure 2.3. The bottom line? They had not fully achieved the goal of implementing DDD.

Figure 2.3. The team didn’t understand basic strategic design, which led to mismatched concepts in the collaboration
model. The dashes encircle the problem elements.

A few on the SaaSOvation team asserted, “So what if collaboration concepts are tightly coupled to Users and
Permissions? We must track who did what!” The senior developer pointed out that it’s actually not the coupling alone that
the team should be concerned with. “In the end, a Forum, a Post, a Discussion, a Calendar, and a Calendar Entry will all
be coupled to some kind of human collaborator objects. And that’s just it. The linguistics are wrong here .” As he
elaborated, he showed that Forum, Post, Discussion, and the like were all coupled to the wrong linguistic concepts.
Users and Permissions have nothing to do with collaboration and don’t harmonize in the true Ubiquitous Language of
Collaboration. Users and Permissions are identity and access concepts—security concerns. Every concept modeled in the
Collaboration Context—as in the Bounded Context surrounding the collaboration domain model—should have a
linguistic association to collaboration, and right now they don’t. “What we should be focused on are collaboration
concepts, such as Author and Moderator. Those are the correct concepts and linguistic terms in a collaboration setting.”

Naming a Bounded Context
Did you notice the name Collaboration Context used here? This is the way we name a Bounded Context, which is in the
form Name-of-Model Context. In this case we use Collaboration Context because it is the Bounded Context that contains
the domain model of the Collaboration project. We also have Identity and Access Context for the Bounded Context that

contains the model of the Identity and Access project, and Agile Project Management (PM) Context for the Bounded
Context that holds the model of the Agile Project Management project.

To reiterate, at a fundamental level, the SaaSOvation developers didn’t at first understand that Users and Permissions
had nothing to do with collaboration tools. Well, sure, they did have users of their software, and those users had to be
distinguished one from another to determine the tasks each could perform. But collaboration tools should be interested in
the roles of users, rather than who they specifically are and each little action they are permitted to perform. However, the
collaboration model now had user and permission details completely intertwined. If something changed about the way
users and/or permissions worked, a lot or all of the model would suffer from the ripple. In fact, this problem was right at
the threshold. The team wanted to switch from a permissions approach and use role-based access management instead.
When they decided to make this switch, it made them more aware of the strategic modeling problem at hand.

They now realized that a Forum should not be concerned with who can post a subject, or under what conditions that is
permitted. A Forum just needs to know that an Author is doing that right now, or had done that previously. The team was
now grasping that determining who can do something is the concern of a completely separate model, and the core
collaboration model only needed to know that any question regarding who can do what had already been answered. The
Forum just needed to be given an Author who wants to Post to a Discussion. The Forum and Author are clearly concepts
of the Ubiquitous Language of the collaboration model, a Bounded Context named Collaboration Context. User and
Permission, or some similar concepts such as Role, belonged someplace completely different. Those needed to be
isolated from the Collaboration Context.

It would be easy for the team to conclude that they only needed to factor out the tight coupling to User and Permission.
After all, there would not be anything wrong with separating User and Permission/Role into a separate Module. That
could help them place these concepts in a separate logical Security Subdomain within the same Bounded Context.
However, what made the best modeling choice stand out even more boldly was the realization that the team’s next Core
Domain project would have very similar role-based access needs and would lean on the use of domain-specific role
characteristics. Clearly, Users and Roles were truly part of a Supporting or Generic Subdomain that had an enterprise-
wide, and even customer-facing, part to play in the future.

Taking a more vigorous approach to clean modeling would help them avoid a more insidious problem. They were
probably leaning toward working their way into a Big Ball of Mud (3). It wasn’t just that their User and Permission
concepts were not properly modularized. While modularization is an essential DDD modeling tool, it doesn’t fix
linguistic misalignment.

The senior developer was very concerned that, if left unchecked, this situation could easily lead to an undisciplined
mindset that would allow more tangle to eventually creep in subtly. In time, as the team faced modeling another set of
noncollaboration concepts, the Core Domain would become even less clear. They could end up with only an implicit
model with source code that wouldn’t reflect an expressive Ubiquitous Language of Collaboration. What the team really
needed to understand was their business Domain, its Subdomains, as well as the Bounded Contexts they were developing.
Doing so would prevent the entry of the dastardly foe of strategic design, the muck of the Big Ball of Mud. Thus, the team
needed to gain a strategic modeling mindset.

Oh, No! There’s That Word Design Again!
If you think that design is a dirty word when agile is in practice, it’s not with DDD. Using DDD with agile is completely
natural. Always keep design in check with agile. Design need not be heavy.

Yeah, that was an important lesson to learn. They did manage to work their way through it with a lot of research and finally
got a handle on their Domain and Subdomains. How they did that will be presented soon.

Alignment with the DDD Community
The running examples in this book are provided as three Bounded Contexts. These Bounded Contexts are likely different from
those you work with. The examples present fairly typical modeling situations. However, not everyone would agree that Users
and Permissions should be separated out of a given Core Domain. Perhaps in some cases it might make sense to intertwine
them with your Core model. As always, that is the choice of a specific team. In my experience, however, this is one of the
basic problems encountered by those new to DDD, and one that misleads their implementation efforts into an unnecessarily
messy result. Another common misstep would be to meld the collaboration and agile project management models into one.
These are only a few common problems. Other common modeling errors are discussed in each chapter.

At a minimum, the problems posed here, and those that follow, are representative of the kinds of modeling mistakes that are
made when teams fail to understand the importance of linguistic drivers and Bounded Contexts. Thus, even if you disagree with
the specific example problems, both the problems and solutions are still applicable in a general way to all DDD projects,
because they all focus on the linguistics of a given Bounded Context.
My goal is to teach the principles of implementing DDD using the simplest, yet nontrivial, examples possible. I can’t afford to
allow the examples to get in the way of my teaching and your learning. If I demonstrate that identity and access management,
collaboration, and agile project management all have separate linguistics, readers are well served by what the examples
emphasize. Since it is each team’s choice to discover the linguistic drivers that they find important, and that help them achieve
the vision of their domain experts, assume that there is no mistake in the “ultimate correct” conclusions reached by the
SaaSOvation developers and the modeling choices they made in their DDD implementation journey.
All of my guidance regarding Subdomains and Bounded Contexts is closely aligned with that of the broader DDD community,
as it reflects my own experience. Other DDD leaders may have a slightly different focus. However, my explanations definitely
provide a firm foundation for any team to move forward without ambiguity. Clearing the murky areas of DDD is the most
important service to the community, and it is my primary goal. It should be your goal to put these guidelines to use in the most
practical way to benefit your project.

Real-World Domains and Subdomains
I have something more to tell you about domains. They have both a problem space and a solution space. The problem space

enables us to think of a strategic business challenge to be solved, while the solution space focuses on how we will implement
the software to solve the problem of the business challenge. Here’s how that fits into what you’ve already learned:

• The problem space is the parts of the Domain that need to be developed to deliver a new Core Domain. Assessing
the problem space involves examining Subdomains that already exist and those that are needed . Thus, your
problem space is the combination of the Core Domain and the Subdomains it must use. The Subdomains in the
problem space are usually different from project to project since they are used to explore a current strategic business
problem. This makes Subdomains a very useful tool in assessing the problem space. Subdomains allow us to rapidly
view different parts of the Domain that are necessary to solve a specific problem.
• The solution space is one or more Bounded Contexts, a set of specific software models. That’s because the
Bounded Context is a specific solution, a realization view, once developed. The Bounded Context is used to realize
a solution as software.

It is a desirable goal to align Subdomains one-to-one with Bounded Contexts. Doing so expressly segregates domain models
into well-defined areas of business by objective, melding the problem space with the solution space. In practice this is not
always possible, but it can work in a greenfield effort. Considering a legacy system, and probably a Big Ball of Mud, however,
Subdomains often intersect Bounded Contexts, similar to what we discussed regarding Figure 2.1. In a large and complex
enterprise we can employ an assessment view to understand our problem space, which can save us from making costly
mistakes. We can conceptually divide a single, large Bounded Context using two or more Subdomains, or multiple Bounded
Contexts as part of a single Subdomain. Consider an example to help clarify the difference between the problem space and the
solution space.

Imagine a large, monolithic system, classified as an ERP application. Strictly speaking, an ERP may be thought of as a single
Bounded Context. However, since ERP systems provide many modular business services, there’s a benefit to thinking of
distinct modules as different Subdomains. For example, we could divide the inventory module and purchasing module into
separate, logical Subdomains. True, these modules aren’t available through completely different systems. Both are part of the
same ERP. Still, each provides a very different set of services to the business domain. For analytical discussions let’s name
these as separate Subdomains, the Inventory Subdomain and the Purchasing Subdomain. Continuing with the example, we’ll
see why doing so is useful.

As a core business initiative, the organization whose Domain is represented in Figure 2.4 (a concrete example using the
template from Figure 2.2) starts planning the design and development of a specialized domain model to reduce the cost of
doing business. The model will provide decision-making tools to be used by purchasing agents. Algorithms discovered over
years of manual, human process must now be automated by software to ensure that they are always used by all purchasing
agents without error. This new Core Domain will make the organization more competitive by identifying better deals more
quickly, and then ensuring that the needed inventories are met. To accurately stock inventory, use of the previously examined
Forecasting System of Figure 2.1 would help here as well.

Figure 2.4. The Core Domain and other Subdomains involved in purchasing and inventory. This view is limited to select
Subdomains used for specific problem space analysis, not the entire Domain.

Before we can execute a specific solution, we need to make an assessment of the problem space and the solution space.
Here are some questions that should be answered in order to steer your project in the right direction:

• What is the name of and vision for the strategic Core Domain?
• What concepts should be considered part of the strategic Core Domain?
• What are the necessary Supporting Subdomains and the Generic Subdomains?
• Who should do the work in each area of the domain?
• Can the right teams be assembled?

If we don’t understand the vision and goals of the Core Domain and the areas of the Domain that are needed to support it, we
won’t be able to strategically take advantage of them and avoid associated pitfalls. Keep problem space assessment high-level,
but make it thorough. Be sure that all stakeholders are aligned with and committed to successfully delivering on the vision.

Whiteboard Time
Take a moment to look at your whiteboard work and consider: What is your problem space? Recall that it is the combination of
the strategic Core Domain and the Subdomains supporting it.

When you have a good understanding of the problem space, you then turn to the solution space. The first assessment will
contribute knowledge to the second. The solution space will be strongly influenced by the existing systems and technologies,
and those that are to be newly created. Here we really need to think in terms of cleanly separated Bounded Contexts because
we are looking at the Ubiquitous Language of each. Consider these crucial questions:

• What software assets already exist, and can they be reused?
• What assets need to be acquired or created?
• How are all of these connected to each other, or integrated?

• What additional integration will be needed?
• Given the existing assets and those that need to be created, what is the required effort?
• Do the strategic initiative and all supporting projects have a high probability of success, or will any one of them
cause the overall program to be delayed or even fail?
• Where are the terms of the Ubiquitous Languages involved completely different?
• Where is there overlap and sharing of concepts and data between Bounded Contexts?
• How are shared terms and/or overlapping concepts mapped and translated between the Bounded Contexts?
• Which Bounded Context contains the concepts that address the Core Domain and which of the [Evans] tactical
patterns will be used to model it?

Remember, the efforts in developing the solutions in the Core Domain are a key business investment!
The specialized purchasing model described previously and pictured in Figure 2.4—the one that captures decision-making

tools and algorithms—represents the solution for the Core Domain. The domain model will be implemented in an explicit
Bounded Context: the Optimal Acquisitions Context. This Bounded Context aligns one-to-one with the Subdomain, the
Optimal Acquisitions Core Domain. Being aligned with just one Subdomain, and its carefully crafted domain model, will
make it one of the best Bounded Contexts in this business domain.

Yet another Bounded Context, the Purchasing Context, will be developed in order to refine some technical aspects of the
purchasing process as a helper to the Optimal Acquisitions Context. These refinements don’t reveal any special knowledge
about an optimal approach to purchasing. They just make it easier for the Optimal Acquisitions Context to interact with the
ERP at an arm’s length. It’s just a convenient model that operates against the ERP published interface. The new Purchasing
Context and the preexisting ERP purchasing module fall within the Purchasing (Supporting) Subdomain.

The ERP purchasing module is as a whole a Generic Subdomain. That’s because you could replace this Subdomain with any
off-the-shelf purchasing system as long as it fulfills your basic business needs. However, being used along with the new
Purchasing Context in the Purchasing Subdomain makes it work in a Supporting fashion.

You Can’t Change the World of Bad Software Design
In a typical brownfield enterprise you are going to have undesirable situations like those illustrated in Figures 2.1 and 2.4.
This means that Subdomains in poorly designed software will not align in an ideal way, one-to-one, with Bounded
Contexts. You can’t change the world of bad software design. You can only hope to implement proper DDD in projects
you work on. In the end you will have to integrate with and even work in brownfield domains, so be prepared to exercise
the techniques taught in the first one-third of this chapter as you analyze the multiple implicit models found in a single,
brown Bounded Context.

Sticking with Figure 2.4, the Optimal Acquisition Context must also interact with the Inventory Context. Inventory manages
warehousing items. It uses the ERP inventory module, which falls within the Inventory (Supporting) Subdomain. As a
convenience to delivery contractors, the Inventory Context can provide maps and directions to each of its warehouses from an
origin location by using an external geographical mapping service. From the Inventory Context point of view, there is nothing
special about mapping. There are several geographical mapping services to choose from, and there may be advantages to
changing the chosen mapping system over time. The mapping service is itself a Generic Subdomain, but it is consumed by a
Supporting Subdomain.

Note these key points as viewed from the perspective of the company developing the Optimal Acquisition Context. In the
solution space the geographical mapping service is not part of the Inventory Context, although in the problem space it is
considered part of the Inventory Subdomain. In the solution space, even if the mapping services are provided by a simple
component-based API, it is in a different Bounded Context. The Ubiquitous Languages of Inventory and of Mapping are
mutually exclusive, which means they are in different Bounded Contexts. When the Inventory Context uses something from the
external Mapping Context, the data may go through at least some minimal translation to be properly consumed.

On the other hand, from the point of view of the external business organization that develops and offers the mapping service
for subscription, mapping is a Core Domain. That external organization has its own domain, or realm of business operations. It
must remain competitive, constantly refining its domain model in order to retain subscribers and attract new ones. If you were
the CEO of the mapping organization, you’d make sure to give customers, including the one subscriber under discussion, every
reason to stick with your services rather than move on to the competition. However, that doesn’t change the perspective of the
subscriber that is developing its inventory system. To the inventory system it is still a Generic Subdomain. It could, if it was to
its advantage, subscribe to a different mapping service.

Whiteboard Time
What are the Bounded Contexts in your solution space? At this point you should be able to refer back to your whiteboard
diagram for a good idea. Still, you may be a bit surprised as we dig deeper into how to properly use Bounded Contexts. So be
ready for possible refinements. We are doing agile development, after all.

So, for the balance of this chapter we are going to shift gears and consider the importance of Bounded Contexts as an
essential solution space modeling tool for DDD. In Context Maps (3) the discussion primarily stresses how to deal with
mapping different, but related, Ubiquitous Languages, by integrating their Bounded Contexts.

Making Sense of Bounded Contexts
Don’t forget, a Bounded Context is an explicit boundary within which a domain model exists. The domain model expresses a

Ubiquitous Language as a software model. The boundary is created because each of the model’s concepts inside, with its
properties and operations, has a special meaning. If you are a member of such a modeling team, you’d know exactly the
meaning of each of the concepts in your Context.

Bounded Context Is Explicit and Linguistic
A Bounded Context is an explicit boundary within which a domain model exists. Inside the boundary all terms and
phrases of the Ubiquitous Language have specific meaning, and the model reflects the Language with exactness.

It is often the case that in two explicitly different models, objects with the same or similar names have different meanings.
When an explicit boundary is placed around each of the two models individually, the meaning of each concept in each Context
is certain. Thus, a Bounded Context is principally a linguistic boundary. You should use these points of reasoning as a
touchstone to determine if you are correctly using Bounded Contexts.

Some projects fall into the trap of attempting to create an all-inclusive model, one where the goal is to get the entire
organization to agree on concepts with names that have only one global meaning. Approaching a modeling effort in this way is
a pitfall. First, it will be nearly impossible to establish agreement among all stakeholders that all concepts have a single, pure,
and distinct global meaning. Some organizations are so large and complex that you’d never be able to get all stakeholders
together, let alone establish total meaningful agreement among them. Even if you are working in a smaller company with
relatively few stakeholders, establishing an enduring definition of a single global concept is still unlikely. Thus, the best
position to take is to embrace the fact that differences always exist and apply Bounded Context to separately delineate each
domain model where differences are explicit and well understood.

A Bounded Context does not dictate the creation of a single kind of project artifact. It’s not an individual component,
document, or diagram.3 So it’s not a JAR or DLL, but these can be used to deploy a Bounded Context as described later in the
chapter.

Consider this sharp contrast between an Account in a Banking Context and an Account in a Literary Context as presented in
Table 2.1.

Table 2.1. The Diversity of Meanings That the Term Account Can Have

Looking at Figure 2.5, there is nothing characteristic of the Account types by name that distinguishes them. It is only by
looking at the name of each conceptual container—its Bounded Context—that you understand the differences between the two.

Figure 2.5. Account objects in two different Bounded Contexts have completely different meanings, but you know that
only by considering the name of each Bounded Context.

These two Bounded Contexts are probably not in the same Domain. The point is to demonstrate that context is king.

Context Is King
Context is king, especially when implementing DDD.

In the financial world the word security is often used. The Securities and Exchange Commission (SEC) restricts the
term security to use with equities. Now consider this: Futures contracts are commodities and not under the jurisdiction of
the SEC. However, some financial firms call Futures by the name security as a reference but mark them with the
Standard Type (6) Futures.

Is that the best Language for a Future? It depends on the Domain it’s used in. Some would obviously say it is, while
others would insist that it isn’t. Context is also cultural. Inside a given firm that trades Futures, it may align best with the
culture to use the term Security in a specific Ubiquitous Language.

It is often the subtly different meanings that are most commonly faced in your enterprise. Here’s why. The name chosen
by each team in each Context is always made with the Ubiquitous Language in mind. You never name a concept arbitrarily,
such as to purposely distinguish it from a term in a different Context. Consider two banking Contexts, one for checking accounts
and one for savings accounts.4 We don’t need to give the name Checking Account to the object in the Checking Context or the
name Savings Account to the object in the Savings Context. Both concepts may safely be named Account because each
Bounded Context distinguishes subtle meanings. Of course, there is no rule that says that more meaning cannot be added to
these names. That’s the decision of your team.

When integrations are needed, mapping must be done between Bounded Contexts. This can be a complex aspect of DDD and
calls for a corresponding amount of care. We don’t usually use an object instance outside its boundary, but related objects in
multiple contexts may share some subset of common state.

Here’s another example with a common name used in multiple Bounded Contexts, but this time within the same Domain.
Consider the modeling challenges of a publishing organization that must deal with the various stages of the life cycle of books.
Roughly speaking, publishers deal with similar stages as a book progresses through these different Contexts:

• Conceptualizing and proposing a book
• Contracting with authors
• Managing the book’s authorship and editorial process
• Designing the book layout, including illustrations
• Translating the book into other languages
• Producing the physical print and/or electronic editions
• Marketing the book
• Selling the book to resellers and/or directly to consumers
• Shipping a physical book to resellers and consumers

Throughout each of these stages, is there one single way to properly model a Book? Absolutely not. At each of these stages
the Book has different definitions. It is not until contract that the Book has a tentative title, which might change during editing.
During the authorship and editorial phases, the Book has a collection of drafts with comments and corrections, along with a
final draft. Graphic designers create page layouts. Production uses the layouts and to create press images, “blue lines,” and
finally plates. Marketing doesn’t need most of the editorial or production artifacts, perhaps just cover art and high-level
descriptions. For shipping, the Book might carry only an identity, inventory location, availability count, a size, and a weight.

What would happen if you tried to design a central model for Books that facilitated all the stages in its life cycle? There
would be a high degree of confusion, disagreement, and contention, and little deliverable software. Even if a correct common
model could be delivered from time to time, it would likely meet the needs of all clients only occasionally and far too briefly.

To counter that kind of undesirable churn and burn, such a publisher modeling with DDD would use separate Bounded
Contexts for each of the life cycle stages. In every one of the multiple Bounded Contexts, there is a type of Book. The various
Book objects would share an identity across all or most of the Contexts, perhaps first established at the conceptualization
stage. However, the model of a Book in each Context would be different from all others. That’s fine, and in fact the way it
should be. When the team of a given Bounded Context speaks about a Book, it means exactly what they require for their
Context. The organization embraces the natural need for differences. This is not to say that such positive outcomes are trivial to
achieve. Nonetheless, using explicit Bounded Contexts, software gets delivered regularly with incremental improvements that
address the specific needs of the business.

At this point let’s take a quick look at the solution used by the SaaSOvation collaboration team to solve the modeling
challenge as shown in Figure 2.3.

As indicated previously, in a Collaboration Context domain experts don’t describe the people who employ the
collaboration facilities as Users with Permissions. Rather, they talk about these collaborators in terms of the roles they play in
the Context, as Authors, Owners, Participants, and Moderators. Some contact information may exist there, but probably not all
of it. On the other hand, it’s in an Identity and Access Context that we talk about Users. In that Context User objects have
usernames and detailed information about the individual person, including detailed ways to contact the person.

Yet, we don’t create an Author object out of thin air. Every collaborator must be prequalified. We confirm the existence of a
User playing the appropriate Role within the Identity and Access Context. The attributes of an authentication descriptor are
passed with requests to the Identity and Access Context. To create a new collaborator object, such as a Moderator, we use a
subset of User attributes and a Role name. The exact details of how we obtain object state from a separate Bounded Context is
not important (although later on it’s explained extensively). What’s important now is that these two different concepts are
similar and different at the same time, and that the differences are determined by the Bounded Context. Figure 2.6 exemplifies
User and Role in their own Context being used to create a Moderator in a different Context.

Figure 2.6. The Moderator object in its Context is based on User and Role in a different context.

Whiteboard Time
• See if you can identify some subtly different concepts that exist in multiple Bounded Contexts in your Domain.
• Determine whether the concepts are properly separated, or if developers simply copied code into both.

Generally you can determine a proper separation because the similar objects have different properties and operations. In
that case the boundary has separated the concepts appropriately. However, if you see the exact same objects in multiple
contexts, it probably means there is some modeling error, unless the two Bounded Contexts are using a Shared Kernel
(3).

Room for More than the Model
A Bounded Context does not necessarily encompass only the domain model. True, the model is the primary occupant of the

conceptual container. However, a Bounded Context is not limited to the model only. It often marks off a system, an application,
or a business service.5 Sometimes a Bounded Context houses less than this if, for example, a Generic Subdomain can be
produced without much more than a domain model. Consider portions of a system that are typically part of a Bounded Context.

When the model drives the creation of a persistence database schema, the database schema will live inside the boundary.
This is the case because the schema is designed, developed, and maintained by the modeling team. It means that the database
table names and column names, for example, will directly reflect names used in the model, rather than names translated to

another style. For example, say our model has a class named BacklogItem and that class has Value Object properties named
backlogItemId and businessPriority:
Click here to view code image

public class BacklogItem extends Entity {
 ...
 private BacklogItemId backlogItemId;
 private BusinessPriority businessPriority;
 ...
}

We would expect to see those mapped to the database in like manner:
Click here to view code image

CREATE TABLE `tbl_backlog_item` (
 ...
 `backlog_item_id_id` varchar(36) NOT NULL,
 `business_priority_ratings_benefit` int NOT NULL,
 `business_priority_ratings_cost` int NOT NULL,
 `business_priority_ratings_penalty` int NOT NULL,
 `business_priority_ratings_risk` int NOT NULL,
 ...
) ENGINE=InnoDB;

On the other hand, if a database schema is preexisting or if a separate team of data modelers forces contradicting designs on
the database schema, the schema does not live within the Bounded Context occupied by the domain model.

When there are User Interface (14) views that render the model and drive execution of its behavior, these are also inside
the Bounded Context. However, this does not mean that we model the Domain in the user interface, causing domain model
anemia. We want to reject the Smart UI Anti-Pattern [Evans] and any temptation to drag domain concepts that belong in the
model into other areas of the system.

Users of the system/application are not always limited to humans and may include other computer systems. Components such
as Web services may exist. We might use RESTful resources to provide interaction with the model as an Open Host Service
(3, 13). Or perhaps we deploy Simple Object Access Protocol (SOAP) or messaging service endpoints instead. In all such
cases, the service-oriented components are inside the boundary.

Both user interface components and service-oriented endpoints delegate to Application Services (14). These are different
kinds of services, generally providing security and transaction management, and acting as Facade [Gamma et al.] to the model.
They are task managers, transforming use case flow requests into the execution of domain logic. Application Services are also
inside the boundary.

More on Architectural and Application Concerns
If you want to consider how DDD fits with various architectural styles, see Architecture (4). Also, Application Services
are treated specially in Application (14). There are helpful diagrams and code snippets in both chapters.

The Bounded Context primarily encapsulates the Ubiquitous Language and its domain model, but it includes what exists to
provide interaction with and support of the domain model. Pay attention to keeping the aspects of each Architectural concern in
their proper place.

Whiteboard Time
• Look at each of the Bounded Contexts you identified in your whiteboard diagram. When you think of those, do you
imagine components other than the domain model as being within the boundary?
• If there is a user interface and a set of Application Services, make sure they are inside the boundary. (You have
flexibility in how you represent these. See Figures 2.8, 2.9, and 2.10 for some ideas for representing various
components.)
• If your database schema or other persistence store was developed for your model, make sure it is also inside the
boundary. (Figures 2.8, 2.9, and 2.10 provide one way to represent a database schema.)

Size of Bounded Contexts
How many Modules (9), Aggregates (10), Events (8), and Services (7)—the primary building blocks of a domain model

created using DDD—should a Bounded Context contain? That’s a bit like asking, “How long is a piece of string?” A Bounded
Context should be as big as it needs to be in order to fully express its complete Ubiquitous Language.

Extraneous concepts that are not truly part of the Core Domain should be factored out. If a concept is not in your Ubiquitous
Language, it should not be introduced in your model in the first place. Still, if one or more extraneous concepts creep in, get rid
of them. They probably belong in a separate Supporting or Generic Subdomain, or in no model at all.

Be careful not to mistakenly factor out concepts that do truly belong in the Core Domain. Your model must completely
exhibit the richness of the Ubiquitous Language in context, leaving out nothing essential. Clearly, good judgment is needed.
Tools such as Context Maps (3) can help shape your team’s good judgment.

In the film Amadeus6 there is a scene where the Austrian emperor Joseph II communicates to Mozart that the musical work
Mozart had just performed was a quality piece, but one that contained “simply too many notes.” Mozart aptly replies to the
emperor, “There are just as many notes as I required, neither more nor less.” This reply well illustrates an essential mentality
to take into stepping off contextual boundaries around our models. There is a very appropriate number of domain concepts to
model in a given Bounded Context, neither more nor less.

Of course this is rarely as easy for each of us to achieve as when Mozart would compose a symphony with the ease of
writing a letter to a friend. At any given time we may have missed an opportunity to refine the domain model to some degree.
During each iteration we challenge our assumptions about the model, which forces us to add or remove a concept or change the
way concepts behave and collaborate. But the point is that we face that challenge time and again, and using DDD principles
we give serious consideration to what belongs and what does not. We use Bounded Context and tools such as Context Maps
to help analyze what is truly part of a Core Domain. We don’t resort to applying arbitrary segregation rules based on non-DDD
principles.

The Beautiful Sound of Domain Models
If our models were music, they would have the unmistakable sound of completeness, purity, power, and possibly even
elegance and beauty.

If we constrain a given Bounded Context too stringently, gaping holes result from vital but missing contextual concepts. And
if we keep piling concepts onto the model that don’t express the core of the business problem being solved, we will muddy the
waters so much that we will fail to observe and understand what is essential. Our goal? If our models were music, they would
have the unmistakable sound of completeness, purity, power, and possibly even elegance and beauty. The number of notes—the
Modules, Aggregates, Events, and Services inside—would be neither more nor less than what the correct design requires.
Those “listening” in on the model would never have to ask what that strange “sound” is in the middle of an otherwise
harmonious symphony. Nor would they be distracted by moments of complete silence caused by a missing page or two of
musical notes.

What could lead us into creating a wrong-sized Bounded Context? We might mistakenly allow architectural influences,
rather than the Ubiquitous Language, to guide us. Perhaps the way a platform, framework, or some infrastructure is typically
used to package and deploy components could unduly influence the way we think about Bounded Contexts, treating them as
technical rather than linguistic boundaries.

Another trap would be to divide Bounded Contexts in order to distribute tasks to available developer resources. Technical
leads and project managers might think it is easier for developers to manage smaller tasks. While that might be the case,
enforcing boundaries for the sake of task distribution plays false to the linguistic motivations of contextual modeling. In fact,
there is no need to impose fake boundaries in order to manage technical resources.

The important question is, What does the Language of the domain experts indicate about the real contextual boundaries?
When a fake Context is formulated in order to address an architectural component or developer resources, the Language

becomes fragmented and lacks expressiveness. Hence, focus on the Core Domain with the concepts that naturally fit together
into a single Bounded Context, according to the Language spoken by domain experts. After you do so, you can identify the
components that naturally fit in a single, cohesive model. Keep all such components in the Bounded Context.

Sometimes the problem of creating miniature Bounded Contexts can be avoided with careful application of Modules. Given
an analysis of a set of services that are spread across multiple “Bounded Contexts,” you will find that judicious use of Modules
could reduce the total number of actual Bounded Contexts to just one. Modules can also be used as a means to divide
developer responsibilities, hence managing task distribution using a more appropriate tactical approach.

Whiteboard Time
• Draw a Bounded Context of your current model as a big, irregularly shaped ellipse.

Even if you don’t yet have an explicit model, still think of the Language within.
• Inside the ellipse, write the names of the primary concepts that you are sure your code implements. See if you can
spot concepts that should be there but are missing, and those that are there but shouldn’t be. What should you do
about each of those problems?

Be Careful to Practice DDD Using Linguistic Drivers
The bottom line: If you are not following the Language drivers, you are not working with and listening to domain experts
to create the Bounded Context. Think carefully about the size of your Bounded Contexts. Don’t be too quick to miniaturize
them.

Aligning with Technical Components
It doesn’t hurt to think about a Bounded Context in terms of the technical components that house it. Just keep in mind that

technical components don’t define the Context. Let’s consider some common ways that they are composed and deployed.
When using an IDE such as Eclipse or IntelliJ IDEA, a Bounded Context is often housed in a single project. When using

Visual Studio and .NET, you may favor dividing your user interface, Application Services, and domain model into separate
projects within the same solution, or you may decide on another division. The source tree of the project may be limited to the
domain model itself, or it may contain surrounding Layers (4) or Hexagonal (4) areas. There is a lot of flexibility here. Using
Java, the top-level package generally defines the highest-level Module name for the Bounded Context. Using one of the
preceding examples, that could be done something like this:

com.mycompany.optimalpurchasing

The source tree of this Bounded Context would be further divided according to Architectural responsibilities. Here’s a view
of the project’s possible second-level package names:
Click here to view code image

com.mycompany.optimalpurchasing.presentation
com.mycompany.optimalpurchasing.application
com.mycompany.optimalpurchasing.domain.model
com.mycompany.optimalpurchasing.infrastructure

Even with these modular divisions, only a single team should work in a single Bounded Context.

A Single Team for a Single Bounded Context
Assigning a single team to work on a single Bounded Context is not an attempt to limit flexibility to team organization. It’s
not as if teams can’t be arranged as needed, or that individual members of one team cannot be used on one or more other
projects. A company should use people in the way that best fits its needs. This is simply stating that it is best for one well-
defined, cohesive team of domain experts and developers to focus on one Ubiquitous Language modeled in an explicit
Bounded Context. If you assign two or more distinct teams to one Bounded Context, each team will contribute to a
divergent and ill-defined Ubiquitous Language.

There is also the possibility that two teams will cooperate in the design of a Shared Kernel, which is actually not a
typical Bounded Context. This Context Mapping pattern forms an intimate relationship between two teams, which requires
ongoing consultation when model changes are deemed necessary. This modeling approach is less common and is
generally avoided if possible.

When using Java, we may technically house a Bounded Context in one or more JAR files, including WAR or EAR files. The
desire for modularization may have an influence here. Loosely coupled parts of the domain model could be housed in separate
JAR files, enabling them to be deployed independently by version. This would be especially useful with large models.
Creating multiple JAR files of a single model would provide the advantage of managing versions of its elements using OSGi
bundles or using Java 8 Jigsaw modules. Thus, various high-level modules, their versions, and their dependencies could be

managed as bundles/modules. There are at least four such bundles/modules represented by the preceding DDD-based, second-
level Modules, and possibly more.

For a native Windows Bounded Context, such as for the .NET platform, deployment would be done using separate
assemblies in DLL files. Think of a DLL as having similar deployment motivations to those of JAR described previously. The
model could be partitioned for deployment in similar ways. All common language runtime (CLR) modularization is managed
through assemblies. The specific version of an assembly and the versions of dependent assemblies are recorded in the
assembly’s manifest. See [MSDN Assemblies].

Sample Contexts
Because the samples represent a greenfield development environment, the three chosen Bounded Contexts eventually align in

the most desirable way, one-to-one, with their respective Subdomains. The team wasn’t successful in aligning them one-to-one
from the start, which teaches a crucial lesson. The ultimate outcome is shown in Figure 2.7.

Figure 2.7. The assessment view of the sample Bounded Contexts in fully aligned Subdomains
The following material demonstrates how the three models form a realistic, modern enterprise solution. There are always

multiple Bounded Contexts in any project in the real world. Integration among them is an important scenario in today’s
enterprise. In addition to Bounded Context and Subdomains, we must also grasp Context Mapping with Integration (13).

Let’s look at the three Bounded Contexts provided as sample DDD implementations.7 They are the Collaboration Context,
the Identity and Access Context, and the Agile Project Management Context.

Collaboration Context
Business collaboration tools are one of the most important areas for creating and facilitating a synergistic workplace in the

fast-paced economy. Anything that can help increase productivity, transfer knowledge, promote idea sharing, and associatively
manage the creative process so results will not be misplaced is a boon to the corporate success equation. Whether the software
tools offer features for broad communities or for narrow audiences targeted to daily activities and projects, corporations are
flocking to the best-of-breed online tools, and SaaSOvation wants a share of that market.

The core team tasked to design and implement the Collaboration Context was given a first-release mandate to support the
following minimum suite of tools: forums, shared calendars, blogs, instant messaging, wiki, message boards, document
management, announcements and alerts, activity tracking, and RSS feeds. While supporting a broad array of features, each of
the individual collaboration tools in the suite can also support targeted, narrow team environments, yet they remain in the same
Bounded Context because they are all part of collaboration. Unfortunately this book cannot provide the entire collaboration
suite. However, we do explore parts of the domain model for the tools represented in Figure 2.8, namely, Forums and Shared
Calendars.

Figure 2.8. The Collaboration Context. Its Ubiquitous Language determines what belongs inside the boundary. For
readability, some model elements are not shown. The same goes for user interface (UI) and Application Service

components.
Now, to the team experience . . .

Tactical DDD was used from the inception of product development, but the team was still learning some of DDD’s finer
points. In fact, they were really using what amounted to DDD-Lite, employing the tactical patterns mostly for a technical
payoff. Sure, they were attempting to capture the Ubiquitous Language of collaboration, but they didn’t understand that the
model had clear limits that couldn’t be stretched too far. As a result, they made a mistake by baking security and permissions
into the collaboration model. The team realized well into the project that designing security and permissions as part of their
model was not as desirable as they once thought.

Early on they were not overly concerned about or fully aware of the danger of constructing an application silo. Yet,
without using a central security provider, that’s just what would happen. It constituted mixing two models in one. Soon
enough they learned that the confusing entanglement that resulted from blending security concerns into their Core Domain
had backfired. Right in the middle of core business logic, in behavioral methods, developers would check for client
permissions to carry out the request:

Click here to view code image

public class Forum extends Entity {
 ...
 public Discussion startDiscussion(
 String aUsername, String aSubject) {
 if (this.isClosed()) {
 throw new IllegalStateException("Forum is closed.");
 }

 User user = userRepository.userFor(this.tenantId(), aUsername);

 if (!user.hasPermissionTo(Permission.Forum.StartDiscussion)) {
 throw new IllegalStateException(
 "User may not start forum discussion.");
 }

 String authorUser = user.username();
 String authorName = user.person().name().asFormattedName();
 String authorEmailAddress = user.person().emailAddress();

 Discussion discussion = new Discussion(
 this.tenant(), this.forumId(),
 DomainRegistry.discussionRepository().nextIdentity(),
 authorUser, authorName, authorEmailAddress,
 aSubject);

 return discussion;
 }
 ...
}

Did I Just See a Train Wreck?
Some developers consider the chaining of multiple expressions in a row, such as
user.person().name().asFormattedName(), a “train wreck.” Others consider it expressiveness in code. I am not
addressing either of those viewpoints. Rather, I am focused on the muddled model. The “train wreck” is another topic

entirely.

This was really bad design. Developers should not have been able to reference User here, let alone query a
Repository (12) for one. Even Permission should have been out of reach. It was possible because these were wrongly
designed as part of the collaboration model. What is more, this distortion caused them to overlook a concept that they
should have modeled, namely, Author. Instead of gathering three related attributes into an explicit Value Object, the
developers seemed to be satisfied to deal with the data elements separately. Security was on their minds rather than
collaboration.

This was not an isolated case. Every collaboration object had similar issues. As the risk of creating a Big Ball of Mud
was becoming imminent, the team decided the code had to change. Besides, the team also wanted to switch from a
permissions approach to security and use role-based access management instead. What would they do?

Being users of agile development methodologies and eventual builders of agile project management tools, they were
not afraid to employ refactoring efforts just in time. So iteratively refactor they would. Still the question remained: What
were the best DDD patterns to get them out of their bad situation, a deep bog of ill-placed code?

As a few on the team spent extra hours poring over the [Evans] tactical building block patterns, they realized that these
were not the answer. They had followed the guidance in those patterns to create Aggregates by composing Entities and
Value Objects in a technical way. They used Repositories and Domain Services (7) as well. Nonetheless, they were
missing something important, and possibly this pointed to the need to pay closer attention to the second half of [Evans].

Finally doing so, they noted some empowering techniques. As they pored over “Part III: Refactoring toward Deeper
Insight” [Evans], it was obvious that DDD offered far more than they once thought. With the techniques gleaned from that
part of [Evans], they now knew how they could improve their current model by paying closer attention to the Ubiquitous
Language. By spending more quality time with their domain experts, they could produce a model that more closely
resembled their mental model. But that still didn’t address the security morass that distorted their vision of a pure
collaboration domain model.

Further into the book there was “Part IV: Strategic Design” [Evans]. One of the team members found what proved to be
crucial guidance that would eventually lead them to the realization of a Core Domain. One of the first new tools employed
was Context Maps, which led to a better understanding of their current project situation. Although a simple exercise,
drawing the first Context Map and formulating discussions about their predicament was a big step forward. It led to
productive analysis toward a resolution, which eventually unblocked the team.

They now had a few options to make interim refinements, enabling them to stabilize their increasingly brittle model:
1. They could possibly refactor the model into Responsibility Layers [Evans], dividing the security and permissions
features by pushing them down into a lower logical layer of the existing model. But that didn’t seem like the best
approach. The use of Responsibility Layers is intended to address large-scale models, or to plan for those that will
eventually grow to a large scale. Each layer is meant to remain in the model because it is part of the Core Domain,
even though the layers should be carefully divided. On the other hand, what the team was dealing with were
misappropriated concepts—ones that didn’t belong in the Core Domain.
2. Alternatively they could work toward a Segregated Core [Evans]. This could be accomplished by an exhaustive
search for all security and permissions concerns in the Collaboration Context, followed by the refactoring of the
identity and access components into completely separate packages in the same model. It would not produce the
ultimate outcome of creating a completely separate Bounded Context, but it would move the team closer to it. This
seemed to be precisely what was needed, for the pattern itself states: “The time to chop out a Segregated Core is
when you have a large Bounded Context that is critical to the system, but where the essential part of the model is
being obscured by a great deal of supporting capability.” The supporting capability was definitely security and
permissions. The team eventually realized that a separate Identity and Access Context would emerge out of these
efforts and serve as a Generic Subdomain to their Collaboration Context.

The initiative to create a Segregated Core would not be simple. It could require a few weeks of unplanned work. But if
they didn’t take corrective action and refactor soon, they’d be paying for their lack of corrective action with bugs, coupled
with a fragile code base that would not respond well to change. Business leadership helped confirm the wisdom of this
direction when they determined that a successful separation into a new business service could someday lead to a new
SaaS product.

Importantly, the team now understood the value of Bounded Contexts and of fighting hard to maintain a cohesive Core
Domain. Using additional patterns of strategic design, they could segregate reusable models in separate Bounded Contexts
and integrate as appropriate.

Likely the future Identity and Access Bounded Context would look different from the embedded security and
permissions design. Designing for reuse would force the team to focus on a more general-purpose model, one that could
be exploited by many applications as necessary. That dedicated team—different from our Collaboration Context team,
but formed using a few members from it—could also introduce various implementation strategies. The strategies could
include use of third-party products and customer-specific integrations, which had become far out of reach due to the
embedded security tangle.

Since the development of the Segregated Core became an interim step, we don’t focus on those results here. Briefly, it
amounted to moving all security and permissions classes to segregated Modules and requiring Application Services
clients to check security and permissions using those objects prior to calling into the Core Domain. That freed the Core to
implement only collaboration model object compositions and behaviors. The Application Service took care of security
and object translation:

Click here to view code image

public class ForumApplicationService ... {
 ...
 @Transactional
 public Discussion startDiscussion(
 String aTenantId, String aUsername,
 String aForumId, String aSubject) {
 Tenant tenant = new Tenant(aTenantId);
 ForumId forumId = new ForumId(aForumId);

 Forum forum = this.forum(tenant, forumId);

 if (forum == null) {
 throw new IllegalStateException("Forum does not exist.");
 }

 Author author =
 this.collaboratorService.authorFrom(
 tenant,
 anAuthorId);

 Discussion newDiscussion =
 forum.startDiscussion(
 this.forumNavigationService(),
 author,
 aSubject);

 this.discussionRepository.add(newDiscussion);

 return newDiscussion;
 }
 ...
}

The result to the Forum looked like this:
Click here to view code image

public class Forum extends Entity {
 ...

 public Discussion startDiscussionFor(
 ForumNavigationService aForumNavigationService,
 Author anAuthor,
 String aSubject) {
 if (this.isClosed()) {
 throw new IllegalStateException("Forum is closed.");
 }

 Discussion discussion = new Discussion(
 this.tenant(),
 this.forumId(),

 aForumNavigationService.nextDiscussionId(),
 anAuthor,
 aSubject);

 DomainEventPublisher
 .instance()
 .publish(new DiscussionStarted(
 discussion.tenant(),
 discussion.forumId(),
 discussion.discussionId(),
 discussion.subject()));

 return discussion;
 }
 ...
}

This removed the User and Permission tangle and focused the model strictly on collaboration. Again, it was not a
picture-perfect outcome, but it prepared the team for the future refactorings to separate and integrate Bounded Contexts.
The Collaboration Context team would finally remove all the security and permissions Modules and types from their
Bounded Context and gladly employ the new Identity and Access Context. Their ultimate goal to make security central
and reusable was now within reach.

Granted, the team could have started out going in the other direction. They could have miniaturized Bounded Contexts
by creating a number of separate ones, ending up with ten or more total—one for each collaboration facility (for example,
Forum and Calendar as separate models). What could have led them in that direction? Since most of the collaboration
facilities were not coupled to the others, each could be deployed as an autonomous component. By placing each facility in
a separate Bounded Context, the team could create ten or so natural deployment units. True, but producing ten different
domain models was unnecessary to achieve those deployment objectives and would probably only serve to work against
the modeling principles of the Ubiquitous Language.

Instead, the team kept the model as one but chose to create a separate JAR file for each collaboration facility. Using
Jigsaw modularization, they created a version-based deployment unit for each. Besides JAR files for the natural
collaboration divisions, they also needed one for shared model objects, such as Tenant, Moderator, Author,
Participant, and others. Going this route supported the development of a unified Ubiquitous Language, while meeting
the deployment objectives that had architectural and application management advantages.

With this understanding we can examine how the Identity and Access Context came about.

Identity and Access Context
Most enterprise applications today need to have some form of security and permissions components in place to ensure that

people who try to use the system are authentic users and are authorized to do what they attempt to do. As we just analyzed, a
naive approach to application security builds users and permissions in with each discrete system, which creates a silo effect in
every application.

Cowboy Logic
LB: “You have no locks on your barns and silos, but nobody steals your corn?”
AJ: “My dog Tumbleweed cares for access management. It’s my own silo effect.”
LB: “I don’t think you really understand the book.”

The users of one system cannot be easily associated with the users of any other systems, even though many of the people
using them are the same. To prevent silos from popping up all over the business landscape, architects need to centralize
security and permissions. This is done by purchasing or developing an identity and access management system. The route
chosen will depend much on the level of sophistication needed, the time available, and the total cost of ownership.

Correcting the identity and access tangle in CollabOvation would be a multistep process. First the team refactored using
Segregated Core [Evans]; see the “Collaboration Context” section. This step served the intended purpose at the time to ensure
that CollabOvation was cleansed of security and permissions concerns. However, they figured that identity and access
management should eventually occupy a context boundary of its own. That would require an even greater effort.

This constitutes a new Bounded Context—the Identity and Access Context—and will be used by other Bounded Contexts
through standard DDD integration techniques. To the consuming contexts the Identity and Access Context is a Generic
Subdomain. The product will be named IdOvation.

As Figure 2.9 shows, the Identity and Access Context provides support for multitenant subscribers. When developing an
SaaS product, this goes without saying. Each tenant and every object asset owned by a given tenant would have a completely
unique identity, logically isolating each tenant from all others. Users of the systems are registered via self-service by invitation
only. Secured access is handled by means of an authentication service, and passwords are always highly encrypted. Groups of
users and nested groups enable sophisticated identity management across the entire organization and down to the smallest of
teams. Access to system resources is managed through simple, elegant, yet powerful role-based permissions.

Figure 2.9. The Identity and Access Context. Everything inside the boundary is in context per the Ubiquitous Language.
There are other components in this Bounded Context, some in the model and some in other layers, but they are not

shown here for the sake of readability. The same goes for UI and Application Service components.

As a more advanced step, throughout the model Domain Events (8) are published when model behaviors cause state
transformations of special interest to observers of such occurrences. These Events are generally modeled as nouns combined
with verbs in the past tense, such as TenantProvisioned, UserPasswordChanged, PersonNameChanged, and others as well.

The next chapter, “Context Maps,” shows how the Identity and Access Context is used by the other two sample Contexts
using DDD integration patterns.

Agile Project Management Context
The lightweight methods of agile development have propelled it to popularity, especially following the creation of the Agile

Manifesto in 2001. In its vision statement, SaaSOvation has as its second primary and strategic initiative to develop an agile
project management application. Here’s how things went . . .

After three quarters of successful CollabOvation subscription sales, planned upgrades with incremental improvements per
customer feedback, and better-than-expected revenues, the company’s plans for ProjectOvation were launched. It’s their new
Core Domain, and top developers from CollabOvation will be pulled in to leverage their SaaS multi-tenancy and newfound
DDD experience.

The tool focuses on management of agile projects, using Scrum as the iterative and incremental project management
framework. ProjectOvation follows the traditional Scrum project management model, complete with product, product
owner, team, backlog items, planned releases, and sprints. Backlog item estimation is provided through business value
calculators that use cost-benefit analysis.

The business plan began with a two-headed vision. CollabOvation and ProjectOvation would not go down entirely
separate paths. SaaSOvation and its board of directors envisioned innovation around weaving collaboration tools in with
agile software development. Thus, CollabOvation features will be offered as an optional add-on to ProjectOvation.
Because it provides add-on features, CollabOvation is a Supporting Subdomain to ProjectOvation. Product owners and
team members will interact in product discussions, release and sprint planning, and backlog item discussions, and they
will share calendars, and more. There is a future plan to include corporate resource planning with ProjectOvation, but
initial agile product goals must first be met.

The technical stakeholders originally planned to develop the ProjectOvation features as an extension of the
CollabOvation model by using a revision control system source branch. That actually would have been a huge mistake,
although typical of those not focusing proper attention on Subdomains in their problem space and Bounded Contexts in
their solution space.

Fortunately the technical staff learned from early problems with the muddled Collaboration Context. The lesson they
learned from that experience convinced them that even starting down the path of combining the agile project management
model with the collaboration model would be a major mistake. Now the teams were starting to think with a strong leaning
toward DDD strategic design.

Figure 2.10 shows that as a result of adopting a strategic design mentality, the ProjectOvation team now
appropriately thinks of their consumers as Product Owners and Team Members. After all, those are the project member
roles played by Scrum practitioners. The users and roles are managed inside the separate Identity and Access Context.
By using that Bounded Context, self-service enables subscribers to manage their own personal identity. Administrative
controls enable managers, such as product owners, to specify their product team members. With the roles properly
managed, the Product Owners and Team Members can be created where they belong, inside the Agile Project
Management Context. The remainder of the project’s design will benefit as the team focuses on capturing the Ubiquitous
Language of agile project management into a carefully crafted domain model.

Figure 2.10. The Agile Project Management Context. The Ubiquitous Language of this Bounded Context is concerned
with Scrum-based agile products, iterations, and releases. For readability, some components, including those from the UI

and Application Services, are not shown here.
One requirement calls for ProjectOvation to operate as a set of autonomous application services. The team desires to

limit the dependency of ProjectOvation on other Bounded Contexts to a reasonable periodicity, or at least as much as is
practical. Generally speaking, ProjectOvation will be capable of operating on its own, and if IdOvation or CollabOvation
were to go offline for any number of reasons, ProjectOvation would continue to function autonomously. Of course, in that
case some things might get out of sync for a while, and probably a very short while at that, but the system would continue
to function.

The Context Gives Each Term a Very Specific Meaning
A Scrum-based Product has any number of BacklogItem instances that describe the software being constructed. This is
far different from the products on an e-commerce site that you put in a shopping cart to purchase. How do we know?
Because of the Context. We understand what our Product means because it is in the Agile PM Context. In an Online
Store Context, Product means something very different. The team didn’t need to name the product ScrumProduct in
order to communicate the difference.

The Core Domain of Product, Backlog Items, Tasks, Sprints, and Releases is already off to a better start given the
SaaSOvation experience gains. Still, we are interested in looking in on the big lessons they learned along the steep learning
curve of carefully modeling Aggregates (10).

Wrap-Up
That was a seriously intense discussion of the importance of DDD strategic design!

• You’ve looked into Domains, Subdomains, and Bounded Contexts.
• You’ve discovered how to strategically assess the current lay of the enterprise landscape using both problem space
and solution space assessments.
• You peered extensively into the details of how to use Bounded Contexts to explicitly segregate models
linguistically.
• You’ve learned what is included in Bounded Contexts, how to right-size them, and how they can be built for
deployment.
• You felt the pain the SaaSOvation team experienced early on in the design of the Collaboration Context and how
the team worked their way out of that bad situation.
• You saw the formation of the current Core Domain, the Agile Project Management Context, which is the focus of
the design and implementation examples.

As promised, the next chapter takes a deep dive into Context Mapping. It is an essential strategic modeling tool to use in
designs. You may have figured out that we’ve done a bit of Context Mapping already in this chapter. It was unavoidable as we
assessed different domains. Still, we will go into much more detail next.

Chapter 3. Context Maps

Whatever course you decide upon, there is always someone to tell you that you are wrong. There are always
difficulties arising which tempt you to believe that your critics are right. To map out a course of action and

follow it to an end requires courage.
—Ralph Waldo Emerson

The Context Map of a project can be expressed in two ways. The easier way is to draw a simple diagram that shows the
mappings between two or more existing Bounded Contexts (2). Understand, however, that you are just drawing a simple
diagram of what already exists. The drawing illustrates how the actual software Bounded Contexts in the solution space are
related to one another through integration. This means that the more detailed way to express Context Maps is as the source code
implementations of the integrations. We’ll look at both ways in this chapter, but for most of the implementation details see
Integrating Bounded Contexts (13).

At a high level, keep in mind that this chapter focuses on the solution space assessment, whereas the previous chapter dealt
quite a bit with the problem space assessment.

Road Map to This Chapter
• Learn why drawing a Context Map is essential for the success of your project.
• See how easy it can be to draw a meaningful Context Map.
• Consider the common organizational and system relationships and how they affect your projects.
• Learn from the SaaSOvation teams as they produce Maps to get control of their projects.

Why Context Maps Are So Essential
When you start out on a DDD effort, first draw a visual Context Map of your current project situation . Produce a Context

Map of the current Bounded Contexts involved in your project and the integration relationships between them. Figure 3.1
shows an abstract Context Map. We’ll be filling in the details as we progress.

Figure 3.1. A Context Map of an abstract Domain. Three Bounded Contexts and their relationships are drawn. The U
stands for Upstream and D stands for Downstream.

This simple drawing is your team’s Map. Other project teams can refer to it, but they should also create their own Maps if
they are implementing DDD. Your Map is drawn primarily to give your team the solution space perspective it needs to
succeed. Other teams may not be using DDD and/or they may not care about your perspective.

Oh, No! There’s New Terminology!
We are introducing Big Ball of Mud, Customer-Supplier, and Conformist here. Be patient; these and other DDD team and

integration relationships noted here are discussed in detail later in this chapter.

For example, when you are integrating Bounded Contexts in a large enterprise, you may need to interface with a Big Ball of
Mud. The team maintaining the muddy monolith may not care what direction your project takes as long as you adhere to their
API. So, they aren’t going to gain any insight from your Map or what you do with their API. Still, your Map needs to reflect the
kind of relationship you have with them, because it will give your team needed insight and indicate areas where inter-team
communication is imperative. Having that understanding can do much to help your team succeed.

Communications Facility
Besides giving you an inventory of systems you must interact with, a Context Map serves as a catalyst for inter-team
communication.

Imagine what would happen if your team assumes that the team maintaining the muddy monolith will provide new APIs that
you are depending on, but they don’t intend to provide them, or they don’t even know what you are thinking. Your team is
counting on a Customer-Supplier relationship with the mud. The legacy team, however, by providing only what they currently
have, forces your team into an unexpected Conformist relationship. Depending on how late in the project you got the bad news,
this unseen yet actual relationship could delay your delivery or even cause your project’s failure. By drawing a Context Map
early, you will be forced to think carefully about your relationships with all other projects you depend on.

Identify each model in play on the project and define its BOUNDED CONTEXT. . . . Name each
BOUNDED CONTEXT, and make the names part of the UBIQUITOUS LANGUAGE. Describe the
points of contact between the models, outlining explicit translation for any communication and
highlighting any sharing. [Evans, p. 345]

When the CollabOvation team first started developing its greenfield model, they should have used a Context Map. Even though
they were nearly starting from scratch, stating their assumptions about the project in the form of a Map would have prompted
them to think about separate Bounded Contexts. They still could have listed significant modeling elements on a whiteboard, and
then gathered them into groups of related linguistic terms. That would have forced recognition of linguistic boundaries and
resulted in a simple Context Map. However, they actually didn’t understand strategic modeling in the least. They first needed to
attain a strategic modeling breakthrough. Later on they did make the crucial discovery of this project-saving tool, applying it to
their eventual benefit. When the subsequent Core Domain project got under way, it again paid off substantially.

Let’s see how you can quickly produce a useful Context Map.

Drawing Context Maps
A Context Map captures the existing terrain. First, you should map the present, not the imagined future. If the landscape will

change as your current project progresses, you can update the Map at that time. First focus on the current situation so you can
form an understanding of where you are and determine where to go next.

Creating a graphical Context Map need not be complicated. Your first option is always hand-drawn diagrams where
whiteboards and dry-erase markers rule. The style used here is easily adapted as shown by [Brandolini]. If you decide to use a

tool to capture the drawing, be sure to keep it informal.
Referring back to Figure 3.1, the Bounded Context names are just placeholders, as are the integration relationships. They

would all be actual names in a tangible Map. The upstream and downstream relationships are shown, the meanings of which
are explained later in the chapter.

Whiteboard Time
Draw a simple diagram of your current project situation that communicates at a high level where the boundaries are, the
relationships between them and their teams, what kinds of integrations are involved, and the necessary translations between
them.

Remember that software implements what’s in the drawing. If you need more information about what you should draw,
consider the systems that your Bounded Context integrates with.

Sometimes we’ll want to zoom in and add more detail to a given part of a Context Map. It’s just a different perspective on
the same Context(s). Besides boundaries, relationships, and translations, we may want to include other items such as Modules
(9), significant Aggregates (10), perhaps how teams are allocated, and any other information relevant to the Contexts. These
techniques are demonstrated later in the chapter.

All of the drawings and any prose can be placed into a single reference document if it has value to the team. With any such
effort we should avoid ceremony and remain both simple and agile. The more ceremony you add, the fewer people will want to
use the Map. Putting too much detail in diagrams won’t really help the team. Open communication is the key. As conversations
unveil strategic insight, add it to the Context Map.

No, It’s Not Enterprisy
A Context Map is not an Enterprise Architecture or system topology diagram.

A Context Map is not an Enterprise Architecture or system topology diagram. The information is conveyed relative to
interacting models and DDD organizational patterns. Still, Context Maps may be used in high-level architectural investigations,
providing views of the enterprise not otherwise available. They may highlight architectural deficiencies such as integration
bottlenecks. Because they exhibit an organizational dynamic, Context Maps may even help us identify sticky governance issues
that could block progress, and other team and management challenges that are more difficult to uncover using other methods.

Cowboy Logic
AJ: “The missus said, ‘I was out in the pasture with the cows; didn’t you notice me?’ I said, ‘Nope.’ She didn’t
talk to me for a week.”

The diagrams deserve to be posted prominently on a wall in a team area. If the team frequents a wiki, the diagrams might
also be uploaded there. If a wiki will be largely ignored, don’t bother. It’s been said that a wiki can be a place where
information goes to die. No matter where they are displayed, Context Maps will be hidden in plain sight unless the team pays
regular attention to them through meaningful discussion.

Projects and Organizational Relationships
To briefly reiterate, SaaSOvation is on a path to develop and refine three products:

1. A social collaboration suite product, CollabOvation, enables registered users to publish content of business value
using popular Web-based tools such as forums, shared calendars, blogs, wikis, and the like. This is the SaaSOvation
flagship product and was the company’s first Core Domain (2) (although the team didn’t know the DDD terminology
at the time). It is the Context from which IdOvation’s (point 2) model was eventually extracted. CollabOvation now
uses IdOvation as a Generic Subdomain (2). CollabOvation will itself be consumed as a Supporting Subdomain
(2), being an optional add-on to ProjectOvation (point 3).
2. A reusable identity and access management model, IdOvation provides secure role-based access management for
registered users. These features were first combined with CollabOvation (point 1), but that implementation was
limited and not reusable. SaaSOvation has refactored CollabOvation, introducing a new, clean Bounded Context. A
key product feature is the support of multiple tenants, which is vital to an SaaS application. IdOvation serves as a
Generic Subdomain to its consuming models.
3. An agile project management product, ProjectOvation, is at this point in time the new Core Domain. Users of this
SaaS product can create project management assets, as well as analysis and design artifacts, and track progress using
a Scrum-based execution framework. As with CollabOvation, ProjectOvation uses IdOvation as a Generic
Subdomain. One of the innovative features adds team collaboration (point 1) to agile project management, enabling
discussions around Scrum products, releases, sprints, and individual backlog items.

Finally, the Definitions!
The organizational and integration patterns mentioned previously are defined . . .

What are the relationships between these Bounded Contexts and their individual project teams? There are several DDD
organizational and integration patterns, one of which commonly exists between any two Bounded Contexts. Each of the
following definitions is largely quoted from [Evans, Ref]:

• Partnership: When teams in two Contexts will succeed or fail together, a cooperative relationship needs to
emerge. The teams institute a process for coordinated planning of development and joint management of integration.
The teams must cooperate on the evolution of their interfaces to accommodate the development needs of both
systems. Interdependent features should be scheduled so that they are completed for the same release.
• Shared Kernel: Sharing part of the model and associated code forms a very intimate interdependency, which can
leverage design work or undermine it. Designate with an explicit boundary some subset of the domain model that the
teams agree to share. Keep the kernel small. This explicit shared stuff has special status and shouldn’t be changed
without consultation with the other team. Define a continuous integration process that will keep the kernel model tight
and align the Ubiquitous Language (1) of the teams.
• Customer-Supplier Development: When two teams are in an upstream-downstream relationship, where the
upstream team may succeed interdependently of the fate of the downstream team, the needs of the downstream team
come to be addressed in a variety of ways with a wide range of consequences. Downstream priorities factor into
upstream planning. Negotiate and budget tasks for downstream requirements so that everyone understands the
commitment and schedule.
• Conformist: When two development teams have an upstream/downstream relationship in which the upstream team
has no motivation to provide for the downstream team’s needs, the downstream team is helpless. Altruism may
motivate upstream developers to make promises, but they are unlikely to be fulfilled. The downstream team
eliminates the complexity of translation between bounded contexts by slavishly adhering to the model of the upstream
team.
• Anticorruption Layer: Translation layers can be simple, even elegant, when bridging well-designed Bounded
Contexts with cooperative teams. But when control or communication is not adequate to pull off a shared kernel,
partner, or customer-supplier relationship, translation becomes more complex. The translation layer takes on a more
defensive tone. As a downstream client, create an isolating layer to provide your system with functionality of the
upstream system in terms of your own domain model. This layer talks to the other system through its existing
interface, requiring little or no modification to the other system. Internally, the layer translates in one or both
directions as necessary between the two models.
• Open Host Service: Define a protocol that gives access to your subsystem as a set of services. Open the protocol
so that all who need to integrate with you can use it. Enhance and expand the protocol to handle new integration

requirements, except when a single team has idiosyncratic needs. Then, use a one-off translator to augment the
protocol for that special case so that the shared protocol can stay simple and coherent.
• Published Language: The translation between the models of two Bounded Contexts requires a common language.
Use a well-documented shared language that can express the necessary domain information as a common medium of
communication, translating as necessary into and out of that language. Published Language is often combined with
Open Host Service.
• Separate Ways: We must be ruthless when it comes to defining requirements. If two sets of functionality have no
significant relationship, they can be completely cut loose from each other. Integration is always expensive, and
sometimes the benefit is small. Declare a bounded context to have no connection to the others at all, enabling
developers to find simple, specialized solutions within this small scope.
• Big Ball of Mud: As we survey existing systems, we find that, in fact, there are parts of systems, often large ones,
where models are mixed and boundaries are inconsistent. Draw a boundary around the entire mess and designate it a
Big Ball of Mud. Do not try to apply sophisticated modeling within this Context. Be alert to the tendency for such
systems to sprawl into other Contexts.

By integrating with the Identity and Access Context, both the Collaboration Context and the Agile Project Management
Context avoid going their Separate Ways with respect to security and permissions. True, Separate Ways may be applied
Context-wide for a specific system, but it can also be employed on a case-by-case basis. For example, one team could refuse
to use a centralized security system but may still choose to integrate with some other corporate standard facilities.

The teams will cooperate with Customer-Supplier roles. There’s no way that SaaSOvation’s management will allow one
team to force others to be Conformists. It’s not that a Conformist relationship is always negative. Rather, Customer-Supplier
requires commitment on the part of the Supplier to provide support for the Customer, which fosters the kind of inter-team
relationships SaaSOvation thinks it needs to achieve complete success. Of course, Customers aren’t always right, and so some
give-and-take must exist. Overall it is the positive organizational relationship that the teams need to maintain.

The teams’ integrations will make use of Open Host Service and Published Language. Perhaps surprisingly they will also
employ Anticorruption Layer. This is not a contradiction, even though they are establishing open standards between their
Bounded Contexts. They can still realize the benefits of isolated translation by using its fundamental principles in the
downstream Contexts, but with less complexity than needed when consuming a Big Ball of Mud. The translation layers will be
simple and elegant.

The Context Map drawings that follow use these abbreviations to indicate the patterns employed at each end of a
relationship:

• ACL for Anticorruption Layer
• OHS for Open Host Service
• PL for Published Language

As you review the following sample Context Maps and supporting text, it may be helpful to glance back at Chapter 2,
“Domains, Subdomains, and Bounded Contexts.” The diagrams of each of the three sample Bounded Contexts are also useful
here. Since they remain fairly high-level, those diagrams could be included as part of the Maps for each Context, although they
are not repeated here.

Mapping the Three Contexts
Now let’s jump into the team experience so we can learn from what they did . . .

When the CollabOvation team realized the tangle they had created, they dug into [Evans] to help find their way out of it. Among
other discoveries of enormous value within the strategic design patterns, they found a practical tool named Context Maps. They
also found a helpful article online by [Brandolini] expanding on this technique. Since the tool’s guidance indicated that they
should map the existing terrain, that’s the first step they took. Figure 3.2 shows the results.

Figure 3.2. The tangle within the Collaboration Context caused by unwelcome concepts is exposed by this Map. The
caution sign points out the area of impurity.

The first Map produced by the team highlights their early recognition of the existence of a Bounded Context that they
named Collaboration Context. By the odd shape of the existing boundary they appropriately conveyed the likely existence
of a second Context, but one without a clean and clear separation from the Core Domain.

A narrow passage near the top allows foreign concepts to migrate back and forth almost without censure, as the caution sign
indicates. It’s not that Context boundaries need to be completely impenetrable. As with any boundary, the team wants the
Collaboration Context to control with full knowledge what crosses its borders and for what purpose. Otherwise the territory
becomes overrun with unknown and possibly unwelcome visitors. In the case of a model, the unwelcome visitors generally
cause confusion and bugs. Modelers should be cordial and even welcoming, but under conditions that favor order and harmony.
Any foreign concepts entering the boundaries need to demonstrate the right to be there, even taking on characteristics
compatible with the territory within.

This analysis led to a better understanding not only of the current condition of the model, but in what direction the project
needed to go. Once the project team realized that concepts such as security, users, and permissions did not belong inside the
Collaboration Context, they responded accordingly. The team had to segregate these from the Core Domain and allow them to
enter only under agreeable terms.

This is a vital DDD project commitment. The Language of each Bounded Context must be honored in order for all models to
remain pure. Linguistic segregation and a strict adherence to it help each team involved in the project to focus on their own
Bounded Context and keep their vision correctly focused on their own work.

Applying Subdomain analysis, or problem space assessment, led the team to the diagram shown in Figure 3.3. Two
Subdomains were carved out of a single Bounded Context. Since it is a good goal to align Subdomains one-to-one with
Bounded Contexts, this analysis showed the need to separate the single Bounded Context into two.

Figure 3.3. The team’s Subdomain analysis led to the discovery of two, a Collaboration Core Domain and a Security
Generic Subdomain.

The Subdomain and boundary analysis led to decisions. When human users of CollabOvation interact with the available
features, they do so as Participants, Authors, Moderators, and so forth. A variety of other contextual separations are discussed
later, but this gives a good idea of the necessary divisions that were created. With that knowledge, the clean and crisp
boundaries indicated on the high-level Context Map shown in Figure 3.4 came about. The team used Segregated Core [Evans]
to refactor to reach this point of clarity. The recognizable shapes of the boundaries act as icons or visual cues for each Context.
Keeping the same relative shapes across diagrams can help with cognition.

Figure 3.4. The original Core Domain is marked with a bold boundary and integration points. Here IdOvation serves as
a Generic Subdomain for the downstream CollabOvation.

The Context Maps usually don’t appear all at once as the various sketches may lead you to believe, although when finally
understood, they are not difficult to produce. Thought and discussion help to refine a Map through rapid iterations. Some of the
refinements might come in the way of integration points, which describe the relationships between Contexts.

The first two Maps indicate the gains made after applying strategic design. After the original CollabOvation project was well
under way, the team had factored out identity and access concerns. As they progressed, they produced the Context Map in
Figure 3.4. The team sketched only the Core Domain, Collaboration Context, along with the new Generic Subdomain, Identity
and Access Context. They didn’t depict any future models, such as the Agile Project Management Context. It wouldn’t help
the team to jump ahead too far. They only needed to correct flaws with what existed. Transformations supporting forthcoming
systems would be needed soon enough, and that Map belonged to the future team to produce.

Whiteboard Time
• Thinking of your own Bounded Context, can you identify concepts that don’t belong? If so, draw a new Context
Map that shows the desired Contexts and relationships between them.
• Which of the nine DDD organizational and integration relationships would you choose, and why?

When the next project involving ProjectOvation was starting up, it was time to augment the existing Map with the new Core
Domain, the Agile Project Management Context. The results of that mapping are seen in Figure 3.5. It was not premature to
capture what was in planning, even though it was not yet in code. The details inside the new Context weren’t fully understood,
but that would come with discussion. Applying high-level strategic design at this early stage would help all teams understand
where their responsibilities lay. Since the third of the three high-level Maps is just an augmentation of the previous, we’ll be
focusing on it. That’s where SaaSOvation is headed. The company has assigned experienced lead developers to the new
project. Being the richest of the three Contexts and the current direction, the new Core Domain is where the best developers
should be working.

Figure 3.5. The current Core Domain is marked with a bold boundary and integration points. The CollabOvation
Supporting Subdomain and IdOvation Generic Subdomain are upstream.

Some essential segregations are already well understood. Similar to the Collaboration Context, when users of
ProjectOvation create products, plan releases, schedule sprints, and work on the tasks of backlog items, they do so as
Product Owners and Team Members. The Identity and Access Context is segregated out of the Core Domain. The same
goes for their use of the Collaboration Context. It is now a Supporting Subdomain. Any consumption by the new model
will be protected by boundaries and translations into Core Domain concepts.

Consider the finer details of these diagrams. They are not system architecture diagrams. If they were, given that Agile
Project Management Context is our new Core Domain, we would expect it to reside at the top or center of the diagram. Here,
however, it is at the bottom. This possibly curious characteristic indicates visually that the core model is downstream of the
others.

This nuance serves as another visual cue. Upstream models have influences on downstream models, as activities on a river
that occur upstream tend to have impacts on populations downstream, whether positive or negative. Consider pollutants
dumped into a river by a large city. Those pollutants may have little impact on that city, but downstream cities may face severe
consequences. The vertical proximity of models on the diagram helps identify the upstream influences on downstream models.
The labels U and D explicitly call this out between each associated model. These labels make vertical positioning of each
Context less important, yet it is still visually appealing to employ them.

Cowboy Logic
LB: “When you get yourself a powerful thirst, always drink upstream from the herd.”

The Identity and Access Context is furthest upstream. It has an impact on both the Collaboration Context and the Agile
Project Management Context. Our Collaboration Context is also upstream to the Agile Project Management Context
because the agile model depends on the collaboration model and services. As noted in Bounded Contexts (2), ProjectOvation
will operate as autonomously as is practical. Operation must continue largely independent of the availability of surrounding
systems. This does not mean that autonomous services can operate entirely independently of upstream models. We must design
in ways to drastically limit direct real-time dependencies. Though autonomous, our Agile Project Management Context is still
downstream of the others.

Outfitting an application with autonomous services does not mean that databases from upstream Contexts are simply
replicated into the dependent Context. Replication would force the local system to take on many undesirable responsibilities.
That would require the creation of a Shared Kernel, which doesn’t really achieve autonomy.

On the latest Map, note the connector boxes on the upstream side of each connection. Both of the connectors are labeled
OHS/PL, an abbreviation identifying Open Host Service and Published Language. All three downstream connector boxes are
labeled ACL, shorthand for Anticorruption Layer. The technical implementations are covered under Integrating Bounded
Contexts (13). Briefly, these integration patterns have these technical characteristics:

• Open Host Service: This pattern can be implemented as REST-based resources that client Bounded Contexts
interact with. We generally think of Open Host Service as a remote procedure call (RPC) API, but it can be
implemented using message exchange.
• Published Language: This can be implemented in a few different ways but is many times done as an XML schema.
When expressed with REST-based services, the Published Language is rendered as representations of domain
concepts. Representations may include both XML and JSON, for example. It is also possible to render
representations as Google Protocol Buffers. If you are publishing Web user interfaces, it might also include HTML
representations. One advantage to using REST is that each client can specify its preferred Published Language, and
the resources render representations in the requested content type. REST also has the advantage of producing
hypermedia representations, which facilitates HATEOAS. Hypermedia makes a Published Language very dynamic
and interactive, enabling clients to navigate to sets of linked resources. The Language may be published using
standard and/or custom media types. A Published Language is also used in an Event-Driven Architecture (4),

where Domain Events (8) are delivered as messages to subscribing interested parties.
• Anticorruption Layer: A Domain Service (7) can be defined in the downstream Context for each type of
Anticorruption Layer. You may also put an Anticorruption Layer behind a Repository (12) interface. If using REST,
a client Domain Service implementation accesses a remote Open Host Service. Server responses produce
representations as a Published Language. The downstream Anticorruption Layer translates representations into
domain objects of its local Context. This is where, for example, the Collaboration Context asks the Identity and
Access Context for a User-in-Moderator-role resource. It might receive the requested resource as XML or JSON,
and then translates to a Moderator, which is a Value Object. The new Moderator instance reflects a concept in
terms of the downstream model, not the upstream model.

The chosen patterns are common ones. Constraining the choices helps keep the scope of integration discussed in this book
manageable. We’ll see, even among these select few patterns, that there is diversity in how they can be applied.

The question remains: Is that all there is to creating a Context Map? Possibly. The high-level view provides a good amount
of knowledge about the project as a whole. Still, we may be curious about what goes on inside the connections and the named
relationships on each Context. Curiosity among team members influences us to produce a bit more detail. When we zoom in,
the somewhat blurred picture of the three integration patterns becomes clearer.

Let’s take a minor step back in time. Since the Collaboration Context was the first Core Domain, let’s peer inside it. First
we introduce the zooming technique with the simpler integrations, then progress to the more advanced ones.
Collaboration Context

Now, back to the experience of the Collaboration team . . .

T he Collaboration Context was the first model and system—the first Core Domain—and its workings are now well
understood. The integrations employed here are easier yet less robust in terms of reliability and autonomy. Creating a zoomed
Context Map is done with relative ease.

As a client of the REST-based services published by the Identity and Access Context, the Collaboration Context takes a
traditional RPC-like approach to reaching resources. This Context doesn’t permanently record any data from the Identity and
Access Context that it can subsequently reference for local reuse. Rather, it reaches out to the remote system to request
information every single time it needs it. This Context is obviously highly dependent on remote services, not autonomous. This
is a fact that SaaSOvation is willing to live with for now. Integration with a Generic Subdomain was completely unexpected.
To meet their demanding delivery schedule the team couldn’t invest time in a more elaborate autonomous design. At the time
the up-front ease-of-design perk could not be passed up. After the rollout of ProjectOvation and the experience with autonomy
gained there, similar techniques may be employed for CollabOvation.

The boundary objects in the zoomed Map captured in Figure 3.6 request a resource synchronously. When the remote model’s
representation is received, the boundary objects grab the content of interest out of the representation and translate it, creating
the appropriate Value Object instance. A Translation Map to turn the representation into a Value Object is shown in Figure 3.7.

Here a User in the Role of Moderator in the Identity and Access Context is translated as a Moderator Value Object in the
Collaboration Context.

Figure 3.6. A zoom in on the Anticorruption Layer and Open Host Service of the integration between the Collaboration
Context and the Identity and Access Context

Figure 3.7. A logical Translation Map that shows how a representational state (XML in this case) is mapped to a Value
Object in the local model.

Whiteboard Time
Create a Translation Map of one of the interesting aspects of integration found in your project’s Bounded Context.

What if you find the translations overly complex, requiring a lot of data copying and synchronization, making your
translated object look a lot like the one from the other model? Perhaps you are using too much from the foreign Bounded
Context, adopting too much from that model, and thus causing confusing conflict in your own model.

Unfortunately, if the synchronous request fails because the remote system is unavailable, the entire local execution must fail.
The user will be informed of the problem and asked to try again later.

Systems integrations commonly rely on RPC. At a high level RPC appears to be very much like a regular programming
procedure call. Libraries and tools make it attractive and easy to use. Unlike calling a procedure that resides in your own
process space, however, a remote call has a higher potential for performance-degrading latency or outright failure. Network
and remote system load can delay RPC completion. When the RPC target system is unavailable, a user’s request to your system
will not complete successfully.

While REST-based resource usage isn’t really RPC, it still has similar characteristics. Although complete system failure is
relatively rare, this is a potentially annoying limitation. The team looks forward to improving on this situation as soon as
possible.
Agile Project Management Context

Since the Agile Project Management Context is the new Core Domain, let’s pay particularly close attention to it. Let’s
zoom in on it and its connections to other models.

To achieve a greater degree of autonomy than RPC affords, the Agile Project Management Context team will need to
carefully constrain its use. Out-of-band, or asynchronous, event processing is therefore strategically favored.

A greater degree of autonomy can be achieved when dependent state is already in place in our local system. Some may think
of this as a cache of whole dependent objects, but that’s not usually the case when using DDD. Instead we create local domain
objects translated from the foreign model, maintaining only the minimal amount of state needed by the local model. To get the
state in the first place we may need to make limited, well-placed RPC calls, or similar requests for REST-based resources.
But any necessary synchronization with remote model changes can often best be achieved through message-oriented
notifications published by remote systems. The notifications might be sent on a service bus or a message queue, or be
published via REST.

Think Minimalistic
The synchronized state is the limited, minimal attributes of the remote models that are needed by the local model. It’s not
only to limit our need to synchronize data, it’s also a matter of modeling concepts properly.

It pays to limit our use of remote state, even when considering the design of the local modeling elements themselves. We
don’t want, for example, a ProductOwner and a TeamMember to in reality reflect a UserOwner and a UserMember because they
take on so many characteristics of the remote User object that a hybridization happens unwittingly.
Integration with the Identity and Access Context

Looking at the zoomed Map in Figure 3.8, we see that the resource URIs provide notifications about significant Domain
Events that have occurred in the Identity and Access Context. These are made available through the NotificationResource
provider, which publishes a RESTful resource. Notification resources are groups of published Domain Events. Every Event
ever published is always available for consumption in order of occurrence, but each client is responsible for preventing
duplicate consumption.

Figure 3.8. A zoom in on the Anticorruption Layer and Open Host Service of the integration between the Agile Project
Management Context and the Identity and Access Context

A custom media type indicates that two resources can be requested:
Click here to view code image

application/vnd.saasovation.idovation+json
//iam/notifications
//iam/notifications/{notificationId}

The first resource URI enables clients to get (literally HTTP GET) the current notification log (a fixed set of individual
notifications). Per the documented custom media type,

application/vnd.saasovation.idovation+json

the URI is considered minted and stable because it never changes. No matter what the current notification log consists of,
this URI provides it. The current log is a set of the most recent events that have occurred in the Identity and Access model. The
second resource URI enables clients to get and navigate a chain of all previous event-based notifications that have been
archived. Why do we need a current log and any number of distinct archived notification logs? See Domain Events (8) and
Integrating Bounded Contexts (13) for details on how feed-based notifications work.

Actually at this point the ProjectOvation team is not committed to using REST in all cases. For example, they are currently
negotiating with the CollabOvation team over whether to use a messaging infrastructure instead. Under consideration is the use
of RabbitMQ. Nonetheless, at this time their integrations with the Identity and Access Context will be REST-based.

For now let’s leave most of the technology details out of the picture and consider the role of each of the objects interacting
in the zoomed Map. Here’s an explanation of the integration steps visually demonstrated in the sequence diagram found in
Figure 3.9:

• MemberService is a Domain Service that is responsible for providing ProductOwner and TeamMember objects to
its local model. It is the interface of the basic Anticorruption Layer. Specifically, maintainMembers() is used
periodically to check for new notifications from the Identity and Access Context. This method is not invoked by

normal clients of the model. When a recurring timer interval fires, the notified component uses the MemberService
by invoking method maintainMembers(). Figure 3.9 shows the timer recipient as MemberSynchronizer, which
delegates to MemberService.
• The MemberService delegates to IdentityAccessNotificationAdapter, which plays the role of the Adapter
between the Domain Service and the remote system’s Open Host Service. The Adapter acts as a client to the remote
system. The interaction with the remote Notification-Resource is not shown.
• Once the Adapter has received the response from the remote Open Host Service, it delegates to the
MemberTranslator to translate the Published Language media into concepts of the local system. If the local Member
instance already exists, the translation updates the existing domain object. This is indicated by the MemberService
self-delegation to its internal updateMember(). The Member subclasses are ProductOwner and TeamMember, which
reflect the local contextual concepts.

Figure 3.9. A view of the inner workings of the Agile Project Management Context and Identity and Access
Anticorruption Layer

We should not focus on the technologies or integration products involved. Rather, by cleanly separating Bounded Contexts,
we are able to keep each Context pure, while applying data from other Contexts to express concepts in our own.

The diagrams and supporting text exemplify how we might create Context Map documents. It need not be extensive but
should provide enough background and explanation to bring a new project member up to speed. However, create a document
only if it is helpful to the team.
Integration with the Collaboration Context

Next, let’s consider how the Agile Project Management Context interacts with the Collaboration Context. Here, too, we
strive for autonomy, but this raises the bar, posing some interesting challenges to accomplish the goal of system independence.

ProjectOvation has add-on features that are supplied by CollabOvation. Some include project-based forum discussions and
shared calendar scheduling. Users won’t directly interact with CollabOvation. ProjectOvation must determine whether the
options are available to a given tenant and, if so, on its own facilitate resource creation in CollabOvation.

Consider a section of this Create a Product use case:
Precondition: The collaboration feature is enabled (option was purchased).

1. The user provides Product descriptive information.
2. The user indicates a desire for a team discussion.
3. The user requests that the defined Product be created.
4. The system creates the Product with a Forum and Discussion.

A Forum and a Discussion must be created in the Collaboration Context on behalf of the Product. In contrast, this is unlike
the Identity and Access Context where a tenant has already been provisioned and users, groups, and roles have been defined,
and notifications about those events are available. In that case the objects are preexisting. In this case the Agile Project
Management Context needs objects that don’t exist yet and won’t exist until it requests them. That’s a potential obstacle to
autonomy because we depend on the availability of the Collaboration Context in order to create resources remotely. With
desired autonomy, this raises an interesting challenge.

Why Is Discussion Used in Both Contexts?
This is an interesting situation because it’s one where the name of the concept, Discussion, is the same in both Bounded
Contexts, but they are different types, different objects, and thus have different state and different behavior.

In the Collaboration Context a Discussion is an Aggregate and it manages a set of Posts—implicit children that are
themselves Aggregates. In the Agile PM Context the Discussion is a Value Object and only holds a reference to the actual
Discussion with Posts in the foreign Context. Note, however, that in Chapter 13 when the team implements the
integrations, they discover that they should strongly type the different kinds of Discussions in the Agile PM Context.

We need to leverage eventual consistency using Domain Events (8) and an Event-Driven Architecture (4). There’s
nothing that says that only remote systems can consume notifications produced by our local system. When a
ProductInitiated Domain Event is published by our model, it is handled by our own system. The local handler requests the
Forum and Discussion to be created remotely. This could be done via RPC or messaging, depending on what CollabOvation
supports. If using RPC and the remote collaboration system were not available at that time, the local handler would simply
keep trying on a periodic basis until it finally met with success. If messaging is supported instead of RPC, the local handler
would send a message to the collaboration system. In turn, collaboration would respond with its own message when resource
creation completes. When the Event handler back in ProjectOvation received this notification, it would update the Product
with an identity reference to its newly created discussion.

What happens if the product owner or team members try to use the discussion prior to its existence? Is the unavailable
discussion considered a bug in the model? Will it cause the system to exhibit an unreliable condition? Consider the fact that
any given subscriber may not have paid to use the collaboration add-on in the first place. That’s a nontechnical reason to
design in resource unavailability. Working around eventual consistency is in no way a kludge. It’s just another valid state that
should be modeled.

An elegant way to handle all of the possible unavailability scenarios is to make them explicit. Consider this Standard Type
implemented as a State [Gamma et al.], as described in Value Objects (6):
Click here to view code image

public enum DiscussionAvailability {
 ADD_ON_NOT_ENABLED, NOT_REQUESTED, REQUESTED, READY;
}

public final class Discussion implements Serializable {
 private DiscussionAvailability availability;
 private DiscussionDescriptor descriptor;
 ...
}

public class Product extends Entity {
 ...
 private Discussion discussion;
 ...
}

Using this design, a Discussion Value Object is protected from misuse because the State defined by
DiscussionAvailability protects it. When someone attempts to participate in a discussion about the Product, it can safely
hand off its discussion State. If not READY, the participant will be shown one of three messages:

To use team collaboration you need to purchase the add-on option.
The product owner didn’t request the creation of a product discussion.
The discussion setup has not yet completed; check back soon.
If the Discussion availability is READY, we allow full team member participation.
Interestingly, as implied by the first of the unavailable state messages, the possibility exists that the business chooses to

make collaboration options selectable even though they have not yet been purchased. Leaving collaboration UI options enabled
could be an effective marketing tickler to encourage follow-on purchase. Who better to nag management to purchase an add-on
option than those who are daily reminded that they could be using it, but cannot? Clearly, technical benefits are not the only
ones realized by the use of the availability State.

At this time the team isn’t certain what its actual integration with collaboration will be. For the sake of Customer-Supplier
discussions, they’ve produced the diagram in Figure 3.10. The Agile Project Management Context may use a second
Anticorruption Layer to manage integration between itself and the Collaboration Context. It would be like the one it uses for
the Identity and Access Context. The diagram shows the primary boundary objects, which are similar to their counterparts
used for identity and access management integration. Actually there is not one single CollaborationAdapter. It is just a

placeholder for the several needed, but unknown at this time.

Figure 3.10. A zoom in on an Anticorruption Layer and Open Host Service of the possible integration components
between Agile Project Management Context and Collaboration Context

Shown inside the local Context are DiscussionService and SchedulingService. These represent the Domain Services
that could be used to manage discussions and calendar entries in the collaboration system. The actual mechanisms will be
determined by Customer-Supplier negotiations between the teams, which are implemented in Integrating Bounded Contexts
(13).

The team can understand part of their model now. What happens, for example, when a discussion has been created and the
result is communicated to the local Context? The asynchronous component—either RPC client or message handler—tells the
Product to attachDiscussion(), passing it a new Discussion Value instance. All local Aggregates with pending remote
resource interests will be cared for in this fashion.

This examination has gone into some useful detail on Context Maps. We need to exercise restraint, however, as we can
quickly reach the point of diminishing returns. Perhaps we could have included Modules (9), but those have been placed in
their own dedicated chapter. Include any relevant, high-level elements that will lead to vital team communication. On the other
hand, push back when detail seems ceremonious.

Produce Context Maps that you can post on the wall. You can upload them to a team wiki as long as it’s not just the project’s
attic where nobody ever goes. Keep discussions about the project flowing back to your Map to stimulate useful refinements.

Wrap-Up
That was definitely a productive session with Context Mapping.

• We’ve discussed what Context Maps are, what help they provide to your team, and how you can create them with
ease.
• You took a detailed look into SaaSOvation’s three Bounded Contexts and their supporting Context Maps.

• Using mapping, you zoomed in on the integrations between each of the Contexts.
• You examined the boundary objects supporting Anticorruption Layer and their interactions.
• You saw how to produce a Translation Map showing the local mapping between REST-based resources and the
corresponding object in the consuming domain model.

Not every project will need the level of detail demonstrated here. Others may require more. The trick is to balance the need
to understand with practicality and not pile too much detail into this level. Remember that we are likely not going to keep a
very detailed graphical Map up-to-date far into the project. We’ll benefit most from what can be posted on a wall, enabling
team members to point at them during discussions. If we reject ceremony and embrace simplicity and agility, we’ll produce
useful Context Maps that help us move forward rather than bog down the project.

Chapter 4. Architecture

Architecture should speak of its time and place, but yearn for timelessness.
—Frank Gehry

One of the big advantages of DDD is that it doesn’t require the use of any specific architecture. Since our carefully crafted
Core Domain (2) resides at the heart of a Bounded Context (2), it enables one or more architectural influences to play a role
in the entire application or system.1 Some architectural influences surround the domain model and have a broad overall effect,
while others address specific demands. The goal is to use just the right choices and combinations of architecture and
architecture patterns.

The real demands for specific software qualities should drive the use of architectural styles and patterns. The ones chosen
must be proven to meet or exceed required qualities. Avoiding architectural style and pattern overuse is just as important as
using the right ones. Allowing real, genuine quality demands to drive what we do with architecture is a beneficial risk-driven
approach [Fairbanks]. That way we use architecture only to mitigate the risk of failure, not to increase our risk of failure by
using an architectural style or pattern that cannot be justified. Thus, we must be able to justify every architectural influence in
use, or we eliminate it from our system.

Our ability to justify the selection of any architectural styles and patterns is limited to the available functional requirements,
such as use cases or user stories, and even scenarios specific to the domain model. In other words, you cannot determine the
necessary software qualities without functional requirements. Lacking these kinds of inputs, we actually cannot make sound
architectural choices, which implies that employing a use-case-driven architecture approach to software development is still
applicable today.

Road Map to This Chapter
• Listen in on a retrospective interview with SaaSOvation’s CIO.
• Learn how the trusty Layers Architecture has been improved on by DIP and Hexagonal.
• See how Hexagonal can support Service-Oriented and REST.
• Gain perspective on Data Fabric or Grid-Based Distributed Cache and Event-Driven styles.
• Consider how a newer architecture pattern called CQRS helps with DDD.
• Learn from the architectures employed by the SaaSOvation teams.

Architecture Isn’t a Coolness Factor
The following architectural styles and patterns are not a grab bag of cool tools we should apply everywhere possible.
Instead, use them only where applicable, where they mitigate a specific risk that would otherwise increase the potential
for project or system failure.

[Evans] focused on the Layers Architecture. That being so, SaaSOvation first concluded that DDD could only be effective
using that well-known pattern. It took the teams some time to understand that DDD is considerably more adaptable than that,
even though Layers was most popular at the time [Evans] was written.

The principles of a Layers Architecture can still be used to govern good decision making. We don’t need to stop there,
however, as we’ll consider some of the more modern architectures and patterns that can be leveraged where needed. This will
prove the versatility and broad applicability of DDD.

For sure, SaaSOvation did not need every architectural influence all at once, but its teams needed to choose wisely from the
options available to them.

Interviewing the Successful CIO
To give a bit of a perspective on why each of the architectural influences discussed in the chapter might be used, we’re

going to leap a decade into the future and talk to SaaSOvation’s CIO. While the company’s beginnings were humble,
architectural decision helped it succeed each step of the way. Let’s tune in to the program TechMoney, with Anchor Maria
Finance-Ilmundo . . .

Maria: Tonight, my exclusive interview is with Mitchell Williams, CIO of the enormously successful
SaaSOvation. We’re continuing our “Know Your Architectural $tyles” series. Tonight’s focus is on
how selecting the right architecture can bring enduring success. Welcome to the show, Mitchell, and
thanks for joining us.
Mitchell: I’m glad to be here again, Maria. It’s always a pleasure.
Maria: Can you take us through some of the early architectural decisions you went with, and why?
Mitchell: Of course. Believe it or not, we actually started off planning our projects around desktop
deployment. Our team designed for the desktop application to persist to a central database. They
chose the Layers Architecture for this approach.
Maria: Did that make sense?
Mitchell: Well, we believe it did, especially since we were only dealing with a single application
tier plus the central database. It would have served us well for a simple client-server style.
Maria: But the tables soon turned, didn’t they?
Mitchell: They certainly did. We actually joined forces with a business partner and decided to move
forward with an SaaS subscription model. We sought some significant funding to support our efforts
and landed it. We determined that our agile project management application would go on the back
burner for a while until we first developed a suite of collaboration tools. This had a twofold benefit.
First, we’d enter the accelerating collaboration market, but then we’d also have a natural feature add-
on for the project management application. You know, collaborating on software development project
deliverables.
Maria: Interesting. It all sounds quite grassroots. Where did these decisions lead you?
Mitchell: As the software complexity increased, we needed to manage quality by introducing unit and
feature testing tools. To do that, we kind of turned Layers on its ear by introducing the Dependency
Inversion Principle, or DIP. It was important since the team could easily test by stubbing out the UI
and Infrastructure Layers and concentrate on testing the Application and Domain. In fact, we could
develop the UI in isolation and delay decisions on persistence technology for some time. And it
actually wasn’t a big leap away from Layers. The team had a high comfort level.
Maria: Wow, swapping out the UI and persistence! That seems risky. How tough was it?
Mitchell: Well, actually not so much. As it turns out, the fact that we were using the Domain-Driven
Design tactical patterns didn’t hurt us at all. Since we used the Aggregate pattern and Repositories,
we could develop against in-memory persistence behind the Repository interfaces and swap in a
persistence mechanism after we had time to consider our options.
Maria: Dude.
Mitchell: Totally.
Maria: And?
Mitchell: Bang. Things were off and running. We delivered CollabOvation and ProjectOvation, with

successive profitable quarters.
Maria: Ka-ching.
Mitchell: Got that right. We then decided that we wanted to support mobile devices in addition to
desktop browsers since mobile exploded and it got all over us. For that we’d use REST. Subscribers
started asking for things like federated identity and security, as well as sophisticated project and time
resource management tools. And then new investors wanted to see reports on their preferred business
intelligence dash.
Maria: Amazing. So mobile wasn’t the only thing exploding. Let me get your take on dealing with all
that.
Mitchell: The team decided that migrating to a Hexagonal Architecture was an appropriate choice to
handle all these additions. They found that the Ports and Adapters approach gave them the ability to
add new kinds of clients almost ad hoc. The same went for new output Port types, like innovative new
persistence mechanisms, such as NoSQL, and messaging capabilities. And that all spelled c-l-o-u-d.
Maria: So you had confidence in those modifications?
Mitchell: Absolutely.
Maria: Huge. If you don’t buckle under all that, it probably means you made great choices that
leveraged your ability to go even further.
Mitchell: Exactly. By now we were adding new tenants by many hundreds every month. We actually
added a service to migrate existing data from legacy corporate collaboration tools into our cloud. The
team decided that an SOA focus allowed them to aggregate this data nicely using Mule’s Collection
Aggregator. It could sit on the service boundary while still using the Hexagonal Architecture.
Maria: Ah, so you didn’t introduce SOA because it sounded cool. You used it when it made sense.
Perfect. We haven’t seen good decision making like that throughout the industry.
Mitchell: Yes, Maria, and that’s really the approach we took all along. It was our blueprint for
success. For example, in time we added TrackOvation, our defect tracking software, which integrated
with ProjectOvation. And as ProjectOvation features grew, the UI became more and more
sophisticated. The Product Owner’s dashboard of all Scrum products and defects in their systems
updated with each application command and corresponding event. Since Product Owners across
subscribing tenants had different preferred views, it made the dashboards even more complex. And,
naturally, we also had to support the mobile devices. The team considered the merits of including a
CQRS architecture pattern.
Maria: CQRS? Come on, Mitch, that’s pretty heady. Was that one of those uncertainties that we don’t
know how it plays out? What about walking off the plank there?
Mitchell: No, not really. Once the team had a valid reason to use CQRS to ease the friction between
the command and query universes, it was full steam ahead, and they never looked back.
Maria: Exactly. Wasn’t that about the time that your subscribers starting asking for features that
required distributed processing?
Mitchell: Yes; if we didn’t get this one right we’d soon be drowning in complexity. Some features
required running through a series of distributed processes before delivering an answer. The
ProjectOvation team would not make the user wait for these potentially long-running tasks and risk
time-outs. They introduced a fully Event-Driven Architecture, employing a classic Pipes and Filters
pattern to manage these.
Maria: But that wasn’t the end of your journey down Complexity Lane, was it? How tough was that?
Mitchell: LOL. No, no. Never would that happen, it seemed. However, when you have a smart team,
it makes Complexity Lane like a stroll in the park. In actuality, the Event-Driven Architecture
simplified many areas of the expanding suite of systems.
Maria: True, that. Go on. That was an obvious opportunity. We’re getting to my favorite part of the
story. You know . . . [eyes twinkle $$$]
Mitchell: Our architecture allowed us to scale so rapidly and manage change so well that
RoaringCloud acquired SaaSOvation for, well . . . that’s all a matter of public record.
Maria: I’d say, and very public. At $50 per common share that was around $3 billion worth of public

record.
Mitchell: Good memory for financial facts! And that was serious incentive to get the integration right.
They brought a vast number of new subscribers, and the user base actually started to stress the
ProjectOvation infrastructure. It was now time to distribute and parallelize the Pipes and Filters. That
called for adding in long-running processes, sometimes called Sagas.
Maria: Nice. Can you categorically say that that was fun?
Mitchell: Fun indeed, but necessary even more so.
Maria: And it seems that the fun would never end. Probably one of the least expected and even
shocking chapters in your long success story came next.
Mitchell: You know it. Now that RoaringCloud had a monopoly in the marketplace due to the
plethora of subscription applications and millions of users, the government took notice and began
regulating the industry. A new law was passed to require RoaringCloud to track every change to a
project. Actually, the best way to handle this compliance situation as a natural part of the domain
model was to use Event Sourcing.
Maria: Man, you were poised. That’s crazy. I mean, really, really crazy.
Mitchell: That’s a crazy good problem to have, really.
Maria: What’s so amazing to me is that through all these years, the core of your applications was
based on DDD software models. Yet, obviously DDD didn’t hurt you. You seemed to not experience
hardships because of it.
Mitchell: In fact it was quite the opposite. We firmly believe that it was because we chose DDD
early, and took the time to understand it thoroughly, that the business situations we could not escape—
and didn’t want to—were handled in stride.
Maria: Well, as I like to say, “Ka-ching!” Thanks again, Mitchell. We’ve learned how selecting the
right architecture can bring enduring success, right here on “Know Your Architectural $tyles.”
Mitchell: My pleasure, Maria. Thanks for inviting me.

That was a bit quirky, but helpful. It demonstrates how the architectural influences discussed in the following sections can be
used with DDD, and how to introduce each at just the right time.

Layers
The Layers Architecture [Buschmann et al.] pattern is considered by many to be the granddaddy of all. It supports N-tier

systems and is, thus, commonly used in Web, enterprise, and desktop applications. Here we rigorously separate the various
concerns of our application or system into well-defined layers.

Isolate the expression of the domain model and the business logic, and eliminate any dependency on
infrastructure, user interface, or even application logic that is not business logic. Partition a complex
program into layers. Develop a design within each layer that is cohesive and that depends only on the
layers below. [Evans, Ref, p. 16]

Figure 4.1 shows the layers common to a DDD application that uses a traditional Layers Architecture. Here the isolated
Core Domain resides in one layer in the architecture. Above it are the User Interface and Application Layers. Below it is the
Infrastructure Layer.

Figure 4.1. The traditional Layers Architecture in which DDD is applied
An essential rule of this architecture is that each layer may couple only to itself and below. There are distinctions within the

style. A Strict Layers Architecture is one that allows coupling only to the layer directly below. A Relaxed Layers
Architecture, however, allows any higher-level layer to couple to any layer below it. Since both the User Interface and the
Application Services often need to employ infrastructure, many, if not most, systems are based on Relaxed Layers.

Lower layers may actually loosely couple to higher layers, but this is only by means of a mechanism such as Observer or
Mediator [Gamma et al.]; there is never a direct reference from lower to higher. Using Mediator, for example, the higher layer
would implement an interface defined by the lower layer, then pass the implementing object as an argument to the lower layer.
The lower layer uses the implementing object with no knowledge of where it resides architecturally.

The User Interface is to contain only code that addresses user view and request concerns. It must not contain
domain/business logic. Some may conclude that since validation is required by the User Interface, it must contain business
logic. The kinds of validation found in the User Interface are not the kinds that belong in the domain model (only). As discussed
in Entities (5), we still want to limit coarse-grained validations that express deep business knowledge only to the model.

If the User Interface components use objects from the domain model, it is generally limited to rendering its data on the glass.
If using this approach, a Presentation Model (14) can be used to prevent the view itself from knowing about domain objects.

Since a user may be either a human or other systems, sometimes this layer will provide the means to remotely invoke the
services of an API in the form of an Open Host Service (13).

Components in the User Interface are direct clients of the Application Layer.
Application Services (14) reside in the Application Layer. These are different from Domain Services (7) and are thus

devoid of domain logic. They may control persistence transactions and security. They may also be in charge of sending Event-
based notifications to other systems and/or for composing e-mail messages to be sent to users. The Application Services in this
layer are the direct clients of the domain model, though themselves possessing no business logic. They remain very lightweight,
coordinating operations performed against domain objects, such as Aggregates (10). They are the primary means of
expressing use cases or user stories on the model. Hence, a common function of an Application Service is to accept parameters
from the User Interface, use a Repository (12) to obtain an Aggregate instance, and then execute some command operation on
it:
Click here to view code image

@Transactional
public void commitBacklogItemToSprint(
 String aTenantId, String aBacklogItemId, String aSprintId) {
 TenantId tenantId = new TenantId(aTenantId);

 BacklogItem backlogItem =
 backlogItemRepository.backlogItemOfId(
 tenantId, new BacklogItemId(aBacklogItemId));

 Sprint sprint = sprintRepository.sprintOfId(
 tenantId, new SprintId(aSprintId));

 backlogItem.commitTo(sprint);
}

If our Application Services become much more complex than this, it is probably an indication that domain logic is leaking
into the Application Services, and that the model is becoming anemic. So it’s a best practice to keep these model clients very
thin. When a new Aggregate must be created, an Application Service would use a Factory (11) or the Aggregate’s constructor
to instantiate it and then use the corresponding Repository to persist it. An Application Service may also use a Domain Service
to fulfill some domain-specific task designed as a stateless operation.

When the domain model is designed to publish Domain Events (8), the Application Layer may register subscribers to any
number of Events. Doing so enables the Events to be stored, forwarded, and otherwise dealt with as one of the application’s
duties. This frees the domain model to be aware of only its own core concerns and enables the Domain Event Publisher (8) to
remain lightweight and liberated from messaging infrastructure dependencies.

Since the domain model possessing all business logic is discussed at great length in the other chapters, it is not repeated
here. Nonetheless, there are some challenges associated with the domain and the use of traditional Layers. Using Layers may
require the Domain Layer to make some limited use of Infrastructure. I’m not saying that core domain objects would do this, as
we should absolutely avoid that altogether. However, adhering to the definition of Layers may require implementations of some
interfaces in the Domain Layer that depend on technologies provided by Infrastructure.

For example, Repository interfaces require implementations that use components, such as persistence mechanisms, housed in
Infrastructure. What if we just implemented the Repository interfaces in Infrastructure? Since the Infrastructure Layer is below
the Domain Layer, the references from Infrastructure upward to Domain would violate the rules of Layers Architecture. Still,
avoiding that does not mean that the primary domain objects would couple to Infrastructure. To avoid that we might use
implementation Modules (9) to hide technical classes:

com.saasovation.agilepm.domain.model.product.impl

As indicated in Modules (9), MongoProductRepository could be housed in that package. This is not the only way to
address this challenge, however. We might decide instead to implement such interfaces in the Application Layer, which would
uphold the rules of Layers. Figure 4.2 provides a glimpse of this approach. But doing that may seem a bit distasteful.

Figure 4.2. The Application Layer could house some technical implementations of interfaces defined by the Domain
Layer.

There is a better way, as discussed in the section entitled “Dependency Inversion Principle.”
In a traditional Layers Architecture the Infrastructure is at the bottom. Things like persistence and messaging mechanisms

reside there. Messages may include those sent by enterprise messaging middleware systems or more basic e-mails (SMTP) or
text messages (SMS). Think of all the technical components and frameworks that provide low-level services for the

application. Those are usually considered to be part of Infrastructure. The higher-level Layers couple to the lower-level
components to reuse the technical facilities provided. That being the case, again we want to reject any notion of coupling core
domain model objects to Infrastructure.

The SaaSOvation teams noted that having the Infrastructure Layer at the bottom posed some disadvantages. For one it made
implementing technical aspects required by the Domain Layer kind of bitter-tasting since the rules of Layers had to be violated.
And actually their code was difficult to test. How could they overcome this disadvantage?

Could we whip up something a bit sweeter if we adjusted the order of Layers?

Dependency Inversion Principle
There is a way to improve on the traditional Layers Architecture by adjusting the way dependencies work. The Dependency

Inversion Principle (DIP) was postulated by Robert C. Martin and described in [Martin, DIP]. The formal definition states:
High-level modules should not depend on low-level modules. Both should depend on abstractions.
Abstractions should not depend upon details. Details should depend upon abstractions.

The essence of this definition is communicating that a component that provides low-level services (Infrastructure, for this
discussion) should depend on interfaces defined by high-level components (for this discussion, User Interface, Application,
and Domain). While there are several ways to express an architecture that uses DIP, we could boil it down to the structure
shown in Figure 4.3.

Figure 4.3. The possible Layers when the Dependency Inversion Principle is used. We move the Infrastructure Layer
above all others, enabling it to implement interfaces for all Layers below.

Does DIP Really Support All Those Layers?
Some would conclude that DIP has only two layers, one at the top and one at the bottom. The one at the top would
implement interface abstractions defined in the layer at the bottom. Adjusting Figure 4.3 to fit this, the Infrastructure Layer
would be the one at the top, and the User Interface Layer, Application Layer, and Domain Layer would constitute one at
the bottom. You may or may not prefer this view of a DIP architecture. Don’t worry; the Hexagonal [Cockburn] or Ports
and Adapters Architecture is where this is all headed.

From the architecture of Figure 4.3, we would have a Repository implemented in Infrastructure for an interface defined in
Domain:
Click here to view code image

package com.saasovation.agilepm.infrastructure.persistence;

import com.saasovation.agilepm.domain.model.product.*;

public class HibernateBacklogItemRepository
 implements BacklogItemRepository {
 ...
 @Override
 @SuppressWarnings("unchecked")
 public Collection<BacklogItem> allBacklogItemsComittedTo(
 Tenant aTenant, SprintId aSprintId) {
 Query query =
 this.session().createQuery(
 "from -BacklogItem as _obj_ "
 + "where _obj_.tenant = ? and _obj_.sprintId = ?");

 query.setParameter(0, aTenant);
 query.setParameter(1, aSprintId);

 return (Collection<BacklogItem>) query.list();
 }
 ...
}

Focusing on the Domain Layer, using DIP enables both the Domain and Infrastructure to depend on abstractions (interfaces)
defined by the domain model. Since the Application Layer is the direct client of the Domain, it depends on Domain interfaces
and indirectly accesses Repository and any technical Domain Service implementation classes provided by Infrastructure. It
may use any one of a few ways to acquire the implementations, including Dependency Injection, Service Factory, and Plug
In [Fowler, P of EAA]. The examples throughout the book use Dependency Injection provided by Spring Framework and
sometimes the Service Factory via class DomainRegistry. In fact, DomainRegistry uses Spring to look up references to
beans that implement interfaces defined by the domain model, including Repositories and Domain Services.

Interestingly enough, when we think about the influence that DIP has on this architecture, we might conclude that there are
actually no longer any layers at all. Both high-level and low-level concerns are dependent only on abstractions, which seems to
topple the stack. What if we actually thought of turning this architecture on its ear and adding a bit more symmetry? Let’s next
see how that would work.

Hexagonal or Ports and Adapters
With the Hexagonal Architecture2 Alistair Cockburn codified a style to produce symmetry [Cockburn]. It advances this

goal by allowing many disparate clients to interact with the system on equal footing. Need a new client? Not a problem. Just
add an Adapter to transform any given client’s input into that understood by the internal application’s API. At the same time,
output mechanisms employed by the system, such as graphics, persistence, and messaging, may also be diverse and swappable.
That’s possible because an Adapter is created to transform application results into a form accepted by a specific output
mechanism.

As we discuss it, you may agree that this architecture has potential for timelessness.
These days many teams that say they are using a Layers Architecture are actually using Hexagonal instead. This is due, in

part, to the number of projects that now use some form of Dependency Injection. It’s not that Dependency Injection is
automatically Hexagonal. It’s just that it encourages a way of producing an architecture that leans naturally toward the
development of a Ports and Adapters style. In any case, a more thorough understanding will clarify this point.

We usually think of the place where clients interact with the system as its “front end.” Likewise, we consider the place
where the application retrieves persisted data, stores new persistent data, or sends output as its “back end.” But Hexagonal
promotes a different way of looking at the areas of a system, as indicated by Figure 4.4. There are two primary areas, the
outside and the inside. The outside enables disparate clients to submit input and also provides mechanisms to retrieve
persisted data, store the application’s output (for example, a database), or send it elsewhere along its way (for example,
messaging).

Figure 4.4. The Hexagonal Architecture is also known as Ports and Adapters. There are Adapters for each of the
outside types. The outside reaches the inside through the application’s API.

Cowboy Logic
AJ: “My horses sure do like their new hexagonal corral. It gives ’em more corners to run to when I’m carryin’ a
saddle.”

I n Figure 4.4 each client type has its own Adapter [Gamma et al.], which transforms input protocols into input that is
compatible with the application’s API—the inside. Each of the hexagon’s sides represents a different kind of Port, for either
input or output. Three of the clients’ requests arrive via the same kind of input Port (Adapters A, B, and C), and one uses a
different kind of Port (Adapter D). Perhaps the three use HTTP (browser, REST, SOAP, and so on) and the one uses AMQP
(for example, RabbitMQ). There is not a strict definition of what a Port means, making it a flexible concept. In whatever way

Ports are partitioned, client requests arrive and the respective Adapter transforms their input. It then invokes an operation on
the application or sends the application an event. Control is thus transferred to the inside.

We Probably Are Not Implementing the Ports Ourselves
We actually normally don’t implement the Ports ourselves. Think of a Port as HTTP and the Adapter as a Java Servlet or
JAX-RS annotated class that receives method invocations from a container (JEE) or framework (RESTEasy or Jersey).
Or we might create a message listener for NServiceBus or RabbitMQ. In that case the Port is more or less the messaging
mechanism, and the Adapter is the message listener, because it is the responsibility of the message listener to grab data
from the message and translate it into parameters suitable to pass into the Application’s API (the client of the domain
model).

Design the Application Inside per Functional Requirements
When using Hexagonal, we design the application with our use cases in mind, not the number of supported clients. Any
number and type of clients may request through various Ports, but each Adapter delegates to the application using the same
API.

The application receives requests by way of its public API. The application boundary, or inner hexagon, is also the use case
(or user story) boundary. In other words, we should create use cases based on application functional requirements, not on the
number of diverse clients or output mechanisms. When the application receives a request via its API, it uses the domain model
to fulfill all requests involving the execution of business logic. Thus, the application’s API is published as a set of Application
Services. Here again, Application Services are the direct client of the domain model, just as when using Layers.

The following represents a RESTful resource published using JAX-RS. A request arrives through the HTTP input Port, and
the handler acts as an Adapter, delegating to an Application Service:
Click here to view code image

@Path("/tenants/{tenantId}/products")
public class ProductResource extends Resource {

 private ProductService productService;
 ...
 @GET
 @Path("{productId}")
 @Produces({ "application/vnd.saasovation.projectovation+xml" })
 public Product getProduct(
 @PathParam("tenantId") String aTenantId,
 @PathParam("productId") String aProductId,
 @Context Request aRequest) {

 Product product = productService.product(aTenantId, aProductId);

 if (product == null) {
 throw new WebApplicationException(
 Response.Status.NOT_FOUND);
 }

 return product; // serialized to XML using MessageBodyWriter
 }
 ...
}

The various JAX-RS annotations provide a significant part of the Adapter, parsing the resource path and turning its
parameters into String instances. The ProductService instance is injected and used by this request to delegate to the
application inside. The Product is serialized to XML and placed in a Response, which is then sent through the HTTP output
Port.

JAX-RS Isn’t the Focus Here
This is just one way to use the application and domain model inside. In essence, JAX-RS is not important. We could

instead use Restfulie, or create a Node.js server running the restify module. Further still, Adapters designed to handle
input from other Ports would delegate to the same API, as you will see.

What about the other side of the application, to the right? Consider Repository implementations as persistence Adapters,
providing access to previously stored Aggregate instances and storage for new ones. As depicted in the diagram (Adapters E,
F, and G), we might have Repository implementations for relational databases, document stores, distributed cache, and in-
memory stores. If the application sends Domain Event messages to the outside, it would use a different Adapter (H) for
messaging. The output messaging Adapter is the opposite of the input Adapter that supports AMQP and thus goes out a different
Port from the one used for persistence.

A big advantage with Hexagonal is that Adapters are easily developed for test purposes. The entire application and domain
model can be designed and tested before clients and storage mechanisms exist. Tests could be created to exercise
ProductService well before any decision is made to support HTTP/REST, SOAP, or messaging Ports. Any number of test
clients can be developed before the user interface wireframes have been completed. Long before a persistence mechanism is
selected for the project, in-memory Repositories can be employed to mimic persistence for the sake of testing. See
Repositories (12) for details on developing in-memory implementations. Significant progress can be made on the core without
the need for supplementary technical components.

If using true Layers, consider the advantages of toppling the structure and developing based on Ports and Adapters instead.
When designed properly, the hexagon inside—the application and domain model—will not leak to the outside parts. This
promotes a clean application boundary inside in which use cases are implemented. Outside any number of client Adapters can
support numerous automated tests and real-world clients, as well as storage, messaging, and other output mechanisms.

When the SaaSOvation teams considered the advantages of using the Hexagonal Architecture, they decided to make the switch
from Layers. It wasn’t difficult, actually. It just required adopting a slightly different mindset in using the familiar Spring
Framework.

Because the Hexagonal Architecture is versatile, it could well be the foundation that supports other architectures required by
the system. For instance, we might factor in Service-Oriented, REST, or an Event-Driven Architecture; employ CQRS; use a
Data Fabric or Grid-Based Distributed Cache; or tack on Map-Reduce distributed and parallel processing, most of which are
discussed later in this chapter. The Hexagonal style forms the strong foundation for supporting any and all of those additional
architectural options. There are other ways, but for the remainder of this chapter assume that Ports and Adapters is used to
assist with developing around each of the remaining topics discussed.

Service-Oriented
The Service-Oriented Architecture, or SOA, has different meanings to different people. This can make discussions about it

somewhat challenging. It’s best to try to find some common ground, or at least define the ground for this discussion. Consider
some principles of SOA as defined by Thomas Erl [Erl]. Besides the fact that services are always interoperable, they also
possess the eight design principles presented in Table 4.1.

Table 4.1. Design Principles of Services

We can combine these principles with a Hexagonal Architecture, with the service boundary at the far left and the domain
model at the heart. The basic architecture is presented in Figure 4.5, where consumers reach services using REST, SOAP, and
messaging. Note that one Hexagonal-based system supports multiple technical service endpoints. This has a bearing on how
DDD is used within an SOA.

Figure 4.5. A Hexagonal Architecture supporting SOA, with REST, SOAP, and messaging services
Since opinions vary widely on what SOA is and what value it provides, it wouldn’t be surprising if you disagree with

what’s presented here. Martin Fowler labels this situation “service-oriented ambiguity” [Fowler, SOA]. Therefore, I won’t
make a valiant attempt to disambiguate SOA here. I will, however, provide a perspective on one way DDD fits into the set of
priorities declared in the SOA Manifesto.3

First, considering the pragmatic viewpoints expressed by one of the Manifesto contributors [Tilkov, Manifesto] gives an
important context. Commenting on the Manifesto, he brings us at least a step or two closer to understanding what SOA services
can be:

[The Manifesto] gives me the option to view a service as either a set of SOAP/WSDL interfaces or a
collection of RESTful resources. . . . This is not [an] attempt at a definition—it’s an attempt to find
out what values and principles we could find that we all can agree on.

Stefan’s comments are noteworthy. Finding agreement always helps, and we can probably agree that a business service can
be provided by any number of technical services.

The technical services could be RESTful resources, SOAP interfaces, or message types. The business service emphasizes
business strategy, a way to bring business and technology together. However, defining a single business service does not
equate to defining a single Subdomain (2) or Bounded Context. No doubt as we perform both problem space and solution
space assessments, we will find that a business service comprises a number of each. Thus, Figure 4.5 shows the architecture of
only a single Bounded Context, one that may provide a set of technical services realized through a number of RESTful
resources, SOAP interfaces, or message types—just a part of the overall business service. In the SOA solutions space we
would expect to see many Bounded Contexts, whether any individual one uses a Hexagonal Architecture or another. Neither
SOA nor DDD need specify how each set of technical services is designed and deployed, there being a wide variety of
options.

Still, when using DDD our goal is to create a Bounded Context with a complete, linguistically well-defined domain model.
As discussed in Bounded Contexts (2), we don’t want architecture to influence the size of the domain model. That could
happen if one or a few of the technical service endpoints, such as a single REST resource, a single SOAP interface, or a

system message type, were to be used to dictate the size of a Bounded Context. Doing so would force many, very small
Bounded Contexts and domain models, perhaps each consisting of only one Entity acting as the Root of a single, small
Aggregate. This could result in hundreds of such miniature Bounded Contexts in a single enterprise.

While that approach may be viewed as having technical advantages, it does not necessarily realize the goals of strategic
DDD. It works against a clean, well-modeled domain based on a complete and comprehensive Ubiquitous Language (1),
actually fragmenting the Language. And, according to the SOA Manifesto, unnaturally fragmenting Bounded Contexts is not
necessarily the spirit of SOA:

1. Business value over technical strategy
2. Strategic goals over project-specific benefits

Assuming we can accept these as worthy values, they align very well with strategic DDD. As explained in Bounded
Contexts (2), the technical component architecture drivers are less important when partitioning models.

The SaaSOvation teams had to learn a difficult and important lesson, that listening to the linguistic drivers aligns better with
DDD. Each of their three Bounded Contexts reflects the goals of SOA—both for the business and in the technical services.

The three sample models discussed in Bounded Contexts (2), Context Maps (3), and Integrating Bounded Contexts (13)
individually represent the single linguistically well-defined domain model. Each domain model is surrounded by a set of open
services that implement an SOA that meets the business objectives.

Representational State Transfer—REST
Contributed by Stefan Tilkov

REST has become one of the most used, and abused, architecture buzzwords of the last few years. As usual, different people
think about different things when they use the acronym. To some, REST means sending XML over HTTP connections without
using SOAP; some equate it with using HTTP and JSON; others believe that to do REST you need to send method arguments as
URI query parameters. All of these interpretations are wrong, but luckily—and vastly different from many other concepts such
as “components” or “SOA”—there is an authoritative source for what REST means: the dissertation by Roy T. Fielding, which
coined the term and defines it very clearly.

REST as an Architectural Style
The first thing to understand when trying to “get” REST is the concept of architectural styles. An architectural style is to

architecture what a design pattern is to a specific design. It is an abstraction of those aspects that are common to different
concrete implementations, enabling discussion of their relevant benefits without getting lost in technical detail. There are many
different styles of distributed systems architecture, including client-server and distributed objects. The first few chapters of
Fielding’s thesis explain some of them, including the constraints they mandate for an architecture that adheres to each of them.
The concept of architectural styles and constraints imposed by them might strike you as somewhat theoretical, and you’d be
right. They form the theoretical foundation of a (then) new architectural style that Fielding introduces. This is REST, which is
the architectural style that the Web’s architecture is supposed to adhere to.

Of course the Web—as embodied by its most important standards, URI, HTTP, and HTML—predates Fielding’s PhD work.
But he had been one of the main forces in standardization of HTTP 1.1, and a huge influence on many design decisions that led

to the Web as we know it.4 Seen this way, REST is a theoretical extrapolation, created after the fact, of the Web’s architecture
itself.

So why do we now equate “REST” with a specific way of building systems or, even more restricting, a way to build Web
services? The reason for this is, as it turns out, that like any other technology, the Web protocols can be used in many different
ways. Some of them match the goals of the original designers; some of them don’t. One often-used analogy highlights this using
the RDBMS world familiar to many. You can use an RDBMS in line with its architectural concepts—that is, define tables with
columns, foreign key relationships, views, constraints, and so on—or you can create a single table with two columns, one
called “key,” one called “value,” and simply store serialized objects in the value column. Of course, you’d still be using an
RDBMS, but many of its benefits will not be available to you (meaningful queries, joins, sorting and grouping, and so forth).

In a very similar fashion, the Web protocols can be used in line with the original ideas that made them what they are—with
an architecture that conforms to the REST architectural style—or be used in a way that fails to follow it. And similar to our
RDBMS example, we ignore the underlying architectural style to our peril. Thus, a different kind of distributed systems
architecture might be appropriate if we don’t end up exploiting any of the benefits of using HTTP in a “RESTful” way, just as a
NoSQL/key-value store is the better choice for storing whole values that are associated with a single unique key.

Key Aspects of a RESTful HTTP Server
So what are the key aspects of a distribution architecture that uses “RESTful HTTP”? Let’s look at the server side first. Note

that it’s entirely irrelevant whether we are talking about a server that’s used by a human using a Web browser (a “Web
application”) or used by some other agent, such as a client written in your programming language of choice (a “Web service”).

First of all, as the name implies, resources are a key concept. How so? As a system designer, you decide what are the
meaningful “things” that you want to expose as accessible from the outside, and you assign each a distinct identity. In general,
each resource has one URI, and more importantly, each URI should point to one resource—the “things” you expose to the
outside need to be individually addressable. For example, you might decide that each customer, each product, each product
listing, each search result, and maybe each change to the product catalog should be resources in their own right. Resources
have representations, renditions of their state, in one or more formats. It’s through representations—an XML or JSON
document, an HTML form’s post data, or some binary format—that clients interact with resources.

The next key aspect is the idea of stateless communication, using self-descriptive messages. Such is an HTTP request that
carries all the information the server needs to handle it. Of course, the server can (and usually will) use its own persistent state
to help, but it’s important that the client and server don’t rely on individual requests to set up an implicit context (a session).
This enables access to each resource independently of other requests, an aspect that helps in achieving massive scalability.

If you view resources as objects—and it’s not at all unreasonable to do so—it’s valid to ask what kind of interface they
should have. The answer is another very important aspect that differentiates REST from any other architectural style for
distributed systems. The set of methods that you can invoke is fixed. Every object supports the same interface. In RESTful
HTTP, the methods are the HTTP verbs—most importantly, GET, PUT, POST, DELETE—that can be applied to resources.

Even though it might appear so at first sight, these methods do not translate to CRUD operations. It is very common to create
resources that do not represent any persistent entity but instead encapsulate behavior that is invoked once an appropriate verb
is used on them. Each of the HTTP methods has a very clear definition in the HTTP specification. For example, the GET method
is to be used only for “safe” operations: (1) it can perform actions that reflect an effect a client might not have requested; (2) it
always reads data; (3) it can potentially be cached (if the server indicates that this is the case by means of appropriate
response headers).

HTTP’s GET method has been called “the most optimized piece of distributed systems plumbing in the world” by none other
than Don Box, one of the main figures behind SOAP-style Web services. His words highlight that a lot of the Web’s
performance and scalability that we take for granted is due to HTTP optimizations for this particular, very common case.

Some HTTP methods are idempotent, meaning that they can be safely called again without problems in case of an error or
unclear outcome. This is true for GET, PUT, and DELETE.

Finally, a RESTful server enables a client to discover a path through the application’s possible state transitions by means of
hypermedia. This is called Hypermedia as the Engine of Application State (HATEOAS) in Fielding’s dissertation. Put more
simply, the individual resources don’t stand on their own. They are connected, linked to each other. This should not come as a
surprise. After all, this is where the Web got its name. For the server, this means that it will embed links in its answers,
enabling the client to interact with connected resources.

Key Aspects of a RESTful HTTP Client
A RESTful HTTP client moves from one resource to the next either by following links contained in resource representations

or by being redirected to resources as a result of sending data for processing to the server. Server and client cooperate to

influence the client’s distribution behavior dynamically. As a URI contains all information necessary for dereferencing an
address—including host name and port—a client following the hypermedia principle might end up talking to a resource hosted
by a different application, a different host, or even a different company.

In an ideal REST setup, a client will start with a single well-known URI and continue following hypermedia controls from
then on. This is exactly the model used by the browser when rendering and displaying HTML, including links and forms, to the
user. Then, it uses the user’s input to interact with a multitude of Web applications, without up-front knowledge about their
interface or implementations.

Granted, a browser is not a self-sufficient agent. It requires a human to make the actual decisions. But a programmatic client
can adopt many of the same principles, even when some logic is hard-coded. It will follow links instead of assuming specific
URI structures, or even colocation of resources in one server, and it will make use of its knowledge of one or more media
types.

REST and DDD
Tempting though it may be, it is not advisable to directly expose a domain model via RESTful HTTP. This approach often

leads to system interfaces that are more brittle than they need to be, as each change in the domain model is directly reflected in
the system interface. There are two alternative approaches for combining DDD and RESTful HTTP.

The first approach is to create a separate Bounded Context for the system’s interface layer and use appropriate strategies to
access the actual Core Domain from the system’s interface model. This can be deemed a classic approach, as it views the
system’s interface as a cohesive whole that is simply exposed using resource abstractions instead of services or remote
interfaces.

Consider a concrete example of this approach. We build a system that manages a workgroup, including its tasks,
schedules/appointments, subgroups, and all of the processes needed to handle these. We would design a pure domain model,
untainted by the infrastructure details, that captures the Ubiquitous Language and implements the necessary business logic. To
publish an interface to this carefully crafted domain model, we provide a remote interface as a set of RESTful resources.
These resources reflect the use cases the client needs, which is very likely different from the pure domain model. Yet each
resource is built from, for example, one or more Aggregates belonging to the Core Domain.

Of course, we could simply use the domain objects as parameters to JAX-RS resource methods—let’s say /:user/:task
would map to a method get-Task() that returns a Task object. That’s seemingly simple, but it comes with one major problem.
Any change to the Task object structure is immediately reflected in the remote interface, possibly breaking many clients, even
though we might only have changed something that’s entirely irrelevant to the outside world. Not good.

So the first approach is preferred, that of decoupling the Core Domain from the system’s interface model. Doing so enables
us to make changes to the Core Domain and then decide in each individual case whether that change must be reflected in the
system’s interface model and, if so, the best mapping to use. Note that with this approach, the classes designed for the system’s
interface model are usually driven by those of the Core Domain, but are certainly driven by the use cases. Note: Even in this
case we could define a custom media type.

Another approach is appropriate when more emphasis is placed on standard media types. If specific media types are
developed to support not only a single system interface but a category of similar client-server interactions, a domain model can
be created to represent each standard media type. Such a domain model might even be reused across clients and servers,
although some REST and SOA proponents view this as an anti-pattern. Note: Such an approach is essentially a Shared Kernel
(3) or Published Language (3) in DDD terms.

This reflects more of an outside-in, crosscutting approach. In the workgroup and task management domain mentioned
previously, there are many common formats. Let’s consider the ical format as an example. This is a generic format that can be
used by many different applications. In this case we would start by selecting a media type (ical) and then creating a domain
model for this format. This model could then be used by any system that needs to understand this format—our server
application, for example, but also others (such as an Android client). Naturally, with this approach a server might need to deal
with many different media types, and the same media type might be used by multiple servers.

Which of these two approaches is chosen depends to a large degree on the goals of the system designer in terms of
reusability. The more specialized the solution, the more useful the first approach turns out to be. The more generally useful the
solution is, with the extreme end of the spectrum being standardization by an official standards body, the more sense it makes to
go with the second, media-type-centric approach.

Why REST?
In my experience, a system designed conforming to REST principles fulfills the promise of loose coupling. In general, it’s

very easy to add new resources and links to them in existing resource representations. It’s also easy to add support for new

formats where needed, leading to a much less brittle set of system connections. A REST-based system is much easier to
understand, as it’s split into smaller chunks—the resources—each of which exposes a separately testable, debuggable, and
usable entry point. The design of HTTP and the maturity of the tooling with support for features such as URI rewriting and
caching make RESTful HTTP a great choice for architectures that need to be both loosely coupled and highly scalable.

Command-Query Responsibility Segregation, or CQRS
It can be difficult to query from Repositories all the data users need to view. This is especially so when user experience

design creates views of data that cuts across a number of Aggregate types and instances. The more sophisticated your domain,
the more this situation tends to occur.

Using only Repositories to solve this can be less than desirable. We could require clients to use multiple Repositories to get
all the necessary Aggregate instances, then assemble just what’s needed into a Data Transfer Object (DTO) [Fowler, P of
EAA]. Or we could design specialized finders on various Repositories to gather the disjointed data using a single query. If
these solutions seem unsuitable, perhaps we should instead compromise on user experience design, making views rigidly
adhere to the model’s Aggregate boundaries. Most would agree that in the long run a mechanical and spartan user interface
won’t suffice.

Is there an altogether different way to map domain data to views? The answer lies in the oddly named architecture pattern
CQRS [Dahan, CQRS; Nijof, CQRS]. It is the result of pushing a stringent object (or component) design principle, command-
query separation (CQS), up to an architecture pattern.

This principle, devised by Bertrand Meyer, asserts the following:
Every method should be either a command that performs an action, or a query that returns data to the
caller, but not both. In other words, asking a question should not change the answer. More formally,
methods should return a value only if they are referentially transparent and hence possess no side
effects. [Wikipedia, CQS]

At an object level this means:
1. If a method modifies the state of the object, it is a command, and its method must not return a value. In Java and
C# the method must be declared void.
2. If a method returns some value, it is a query, and it must not directly or indirectly cause the modification of the
state of the object. In Java and C# the method must be declared with the type of the value it returns.

That’s pretty straightforward guidance, and there is a practical and theoretical basis for adhering to it. Yet, as an architecture
pattern when using DDD, why and how is it applied?

Visualize a domain model, such as one of those discussed under Bounded Contexts (2). We’d normally see Aggregates
with both command and query methods. We’d also see Repositories that have a number of finder methods that filter on certain
properties. With CQRS we are going to disregard these “normalities” and design a different way to query display data.

Now think of segregating all of the pure query responsibilities traditionally found in a model from all responsibilities that
execute pure commands on the same model. Aggregates would have no query methods (getters), only command methods.
Repositories would be stripped down to an add() or save() method (supporting both creation and updating saves) and only a
single query method, such as fromId(). The single query method takes the unique identity of an Aggregate and returns it. A
Repository could not be used to find an Aggregate by any other means, such as by filtering on some additional properties. With
all of that removed from the traditional model, we designate it a command model. We still need a way to display data to the
user. For that we create a second model, one that is tuned for optimized queries. That’s our query model.

Isn’t This Accidental Complexity?
Your impression may be that this proposed style is a lot of work and that we are merely replacing one set of problems
with another set of problems, and adding a lot more code to do it.

Don’t be too quick to dismiss this style, however. Under some circumstances the added complexity is justifiable.
Remember, CQRS is meant to solve a specific view sophistication problem, not to tack on as a cool new style that will
strengthen your résumé.

Known by Other Names
Note that some areas/components of CQRS may be known by other names. What I call the query model is also known as
the read model, and the command model is also called the write model.

As a result, the traditional domain model would be split in two. The command model is persisted in one store and the query
model in another. We end up with a set of components like the one in Figure 4.6. Some more details will clarify this pattern.

Figure 4.6. With CQRS, commands from clients travel one way to the command model. Queries are run against a
separate data source optimized for presentation and delivered as user interface or reports.

Examining Areas of CQRS
Let’s step through each of the major areas of this pattern. We can start with the client and query support and move through to

the command model and how updates to the query model are done.
Client and Query Processor

The client (at the far left in the diagram) may be a Web browser or a custom desktop user interface. It uses a set of query
processors running on a server. The diagram doesn’t show architecturally significant divisions between tiers on the server(s).
Whatever tiers exist, the query processor represents a simple component that only knows how to execute basic queries on a
database, such as a SQL store.

There are no complex layers here. At most this component runs a query against the query store database and maybe
serializes the query result into some format for transport (maybe a DTO, but maybe not), if that’s necessary. If the client runs
Java or C#, it could query the database directly. However, that might require a large number of database client licenses, one
per connection. Employing a query processor that uses pooled connections is the best choice.

If the client can consume a database result set (for example, JDBC variety), serialization is unnecessary but may be
desirable anyway. There are two schools of thought here. One asserts that ultimate simplicity requires that the result set, or a
very basic wire-compatible serialization of it (XML or JSON), must be consumed by the client. Others assert that DTOs
should be built and consumed by the client. This may be a matter of taste, but we might agree that anytime we add DTOs and
DTO Assemblers [Fowler, P of EAA] there is added complexity, and if not truly needed, these would be accidental
complexity. Each team determines which approach works best for their project.
Query Model (or Read Model)

The query model is a denormalized data model. It is not meant to deliver domain behavior, only data for display (and
possibly reporting). If this data model is a SQL database, each table would hold the data for a single kind of client view
(display). The table can have many columns, even a superset of those needed by any given user interface display view. Table
views can be created from tables, each of which is used as a logical subset of the whole.

Create Support for as Many Views as Needed
It’s worth noting that CQRS-based views can be both cheap and disposable (for development and in maintenance). This is
especially so if you use a simple form of Event Sourcing (see the section “Event Sourcing” later in the chapter and
Appendix A) and save all Events into a persistent store, which can be republished at any time to create new persistent
view data. Doing so, any single view could be rewritten from scratch in isolation or the entire query model be switched to
completely different persistence technology. This makes it easy to create and maintain views that continuously address
ongoing UI needs. This can lead to more intuitive user experiences that avoid the table paradigm but are instead much
richer.

For example, a table could be designed with enough data to display user interfaces for normal users, managers, and
administrators. If a corresponding database table view was created for each of those user types, the data for each security role

would be divided appropriately. This builds security into the viewable data per user type. A normal user view component
would select all columns from the normal user table view. A manager’s view component would select all columns from the
manager’s table view. That way normal users would not be able to see what managers can see.

Preferably, a select statement requires only a primary key for the view being used. Here the query processor selects all
columns from the normal user table view of a product:

SELECT * FROM vw_usr_product WHERE id = ?

As a side note, the table view naming convention seen here is not necessarily recommended. It just makes obvious what the
sample select is doing. The primary key corresponds to the unique identity of some Aggregate type or a combined set of
Aggregate types merged into a single table. In this example the id primary key column is the unique identity of a Product in the
command model. The data model design should follow, as much as possible, the pattern of one table per user interface view
type, with as many table views as necessary to reflect application security roles. But, be practical.

Be Practical
If there are 25 traders at a high-frequency trading desk and each one is trading securities that most of the others cannot
view due to SEC compliance, would we need 25 table views? Using a trader filter would be more appropriate.
Otherwise, there may be too many views to maintain to be truly practical.

In practice this may be difficult to achieve, and queries may have to join multiple tables or table views as necessarily for
practical use. Joins across views/tables may be necessary or at least more practical to achieve necessary filtering. This may
tend to be the case, especially when there are many user roles at play in your domain.

Don’t Database Table Views Cause Overhead?
A basic database table view has no overhead when performing updates on the backing table. The view just corresponds to
a query, which in this case does not even require a join. Only materialized views incur update overhead since the view’s
data must be copied into one place so it is ready for selects. Use care when designing tables and views so that query
model updates perform optimally.

Client Drives Command Processing

User interface clients submit commands to the server (or indirectly execute an Application Service method) as the means of
executing behavior on Aggregates, which are in the command model. The submitted command contains the name of the
behavior to execute and the parameters necessary to carry it out. The command packet is a serialized method invocation. Since
the command model has carefully designed contracts and behaviors, matching the commands to the contracts is a
straightforward mapping.

To accomplish this the user interface must collect the data necessary to correctly parameterize the command. This implies
that much thought must be given to user experience design. It must lead users toward the proper goal of submitting an explicit
command. An inductive, task-driven user interface design works best [Inductive UI]. It filters out all inapplicable options,
focusing on precision command execution. That said, it is possible to design a deductive user interface that generates an
explicit command.
Command Processors

A command submission is received by a Command Handler/processor, which can have a few different styles. We consider
those styles here, along with some advantages and disadvantages.

We can use a categorized style with several Command Handlers in one Application Service. This style creates an
Application Service interface and implementation for a category of commands. Each Application Service could have multiple
methods, one method declared for each type of command with parameters that fits the category. The primary advantage here is
simplicity. This kind of handler is well understood, easy to create, and easy to maintain.

We can create a dedicated style handler. Each one would be a single class with one method. The method contract facilitates
a specific command with parameters. This has clear advantages: There is a single responsibility per handler/processor; each
handler may be redeployed independently of others; handler types can be scaled out to manage high volumes of certain kinds of
commands.

This leads to the messaging style of Command Handler. Each command is sent as an asynchronous message and delivered to
a handler designed with the dedicated style. This not only enables each command processor component to receive specifically
typed messages, but processors of a given type can be added to deal with command processing load. This approach should not

be used by default, as it has a more complex design. Instead, start off with either of the other two styles as synchronous
command processors. Switch to asynchronous only if scalability demands require it. That said, some will conclude that an
asynchronous approach providing temporal decoupling leads to more resilient systems. That viewpoint will often lead to a
bias toward implementing the messaging style of Command Handlers.

Whatever kind of handler is used, decouple each one from all others. Do not allow any one handler to depend on (make use
of) any others. This will allow any type of handler to be redeployed independently without impacting others.

Command Handlers generally do only a few things. If one has a creation aspect, it instantiates a new Aggregate instance and
adds the new instance to its Repository. Most often it gets an Aggregate instance from its Repository and executes a command
method behavior on it:
Click here to view code image

@Transactional
public void commitBacklogItemToSprint(
 String aTenantId, String aBacklogItemId, String aSprintId) {
 TenantId tenantId = new TenantId(aTenantId);

 BacklogItem backlogItem =
 backlogItemRepository.backlogItemOfId(
 tenantId, new BacklogItemId(aBacklogItemId));

 Sprint sprint = sprintRepository.sprintOfId(
 tenantId, new SprintId(aSprintId));

 backlogItem.commitTo(sprint);
}

When the Command Handler completes, a single Aggregate instance has been updated and a Domain Event has been
published by the command model. This is essential to ensuring that the query model is updated. Note too that, as discussed in
Domain Events (8) and Aggregates (10), the published Event may also be used to cause the synchronization of other
Aggregate instances effected by this one command, but the modification of the additional Aggregate instances would be
eventually consistent with the one committed by this transaction.
Command Model (or Write Model) Executes Behavior

As each command method on the command model is executed, it completes by publishing an Event as described in Domain
Events (8). Using the running example, the BacklogItem would complete its command method as follows:
Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 public void commitTo(Sprint aSprint) {
 ...
 DomainEventPublisher
 .instance()
 .publish(new BacklogItemCommitted(
 this.tenant(),
 this.backlogItemId(),
 this.sprintId()));
 }
 ...
}

What’s Behind the Publisher Component?
This particular DomainEventPublisher is a lightweight component based on the Observer pattern [Gamma et al.]. See
Domain Events (8) for details on how Events get published broadly.

This is the linchpin for updating the query model with the most recent changes to the command model. If using Event
Sourcing, the Events are also necessary for persisting the state of the Aggregate that has just been modified (BacklogItem in
this example). However, it is not a necessity to use Event Sourcing with CQRS. Unless Event logging is a requirement

specified by the business, the command model can be persisted using an object-relational mapper (ORM) to a relational
database or some other approach. Either way, a Domain Event must still be published to ensure that the query model is
updated.

When Commands Don’t Result in Event Publishing
There are circumstances when command dispatching does not lead to Events being published. For example, if a command
was delivered by “at-least-once” messaging and the application ensures idempotent operations, the redelivered message
is silently dropped.

Also consider the case where the application validates incoming commands. All authorized clients know about
validation rules and will always pass them. However, all unauthorized clients—such as those of attackers—submitting
invalid commands will fail and can be silently dropped without endangering authorized users.

Event Subscriber Updates the Query Model

A special subscriber registers to receive all Domain Events published by the command model. The subscriber uses each
Domain Event to update the query model to reflect the most recent changes to the command model. This implies that each Event
must be rich enough to supply all the data necessary to produce the correct state in the query model.

Should the updates be performed synchronously or asynchronously? It depends on the normal load on the system, and
possibly also on where the query model database is stored. Data consistency constraints and performance requirements will
influence the decision.

To update synchronously, the query model and command model would normally share the same database (or schema), and
we would update the two models in the same transaction. That keeps both models completely consistent. Yet, this will require
more processing time for the multiple table updates, which may not meet the service-level agreement (SLA). If the system is
normally under heavy load and the query model update process is lengthy, use asynchronous updates instead. This may lead to
challenges of eventual consistency, where the user interface will not immediately reflect the most recent changes in the
command model. The lag time is unpredictable, but it is a trade-off that may be necessary to meet other SLAs.

What happens when a new user interface view is created but its data must be created? Design the table and any table views
as described previously. Populate the new table with current state using one of a few techniques. If the command model is
persisted using Event Sourcing, or if there is a full historical Event Store, replay the historical Events to produce the updates.
This is possible only if the right kinds of Events already exist in the store. If they don’t, the table may have to be populated as
future commands enter the system. There may be another option.

If the command model is persisted using an ORM, use the backing command model store to populate the new query model
table. This may employ a common data warehousing (or report database) generation technique, such as extract, transform, load
(ETL). Extract the data from the command model store, transform it as needed by the user interface, and load it into the query
model store.

Dealing with an Eventually Consistent Query Model
If the query model is designed to be eventually consistent—query model updates are performed asynchronously following

writes to the command model store—there will be resulting idiosyncrasies in the user interface to deal with. For example, after
a user submits a command, will the next user interface view have the fully updated and consistent data reflected from the query
model? It may depend on system load and other factors. But we had better assume not and design for the worst case, where the
user interface is never consistent.

One option is to design the user interface to temporarily display the data that was successfully submitted as parameters of the
command just executed. This is a bit of a trick, but it enables the user to immediately see what will eventually be reflected in
the query model. It may be the only way to ensure that the user interface does not display completely stale data just after a
command is successfully executed.

What if that is not practical for a given user interface? Even if it is, there are also times when any one user executes a
command and all other users viewing related data will absolutely see stale data. How can this challenge be met?

One technique suggested by [Dahan, CQRS] always explicitly displays on the user interface the date and time of the data
from the query model that a user is currently viewing. To do so, each record in the query model needs to maintain the date and
time of the latest update. This is a trivial step, generally supported by a database trigger. With the date and time of the latest
update, the user interface can now inform the user how old the data is. If the user determines that the data is too stale to use, he
or she can at that time request fresher data. Admittedly this approach is lauded by some as an effective pattern and heavily
criticized by others as a hack or artifice. Certainly these opposing viewpoints indicate the need to perform user acceptance
tests before this approach is employed in our own systems.

Yet, it’s possible that the delayed view data synchronization is not a critical problem at all. It may also be overcome by
other means, such as Comet (aka Ajax Push), or another form of latent update, such as some variation of Observer [Gamma et
al.] or Distributed Cache/Grid (for example, Coherence or GemFire) event subscriptions. Addressing delays may even be as
easy as informing users that their request has been accepted and a result will require some processing time. Carefully
determine whether the eventual consistency lag time poses a problem. If so, you’ll have to find the best way to address it in a
given environment.

As with every pattern, CQRS introduces a number of competing forces. We must exercise a great deal of care and choose
wisely. Certainly if a user interface is not overly complex or regularly cut across several different Aggregates in a single view,
employing CQRS would serve to introduce accidental complexity rather than necessary complexity. CQRS is the right choice
when it removes a risk that has a high probability of causing failure if ignored.

Event-Driven Architecture
Event-driven architecture (EDA) is a software architecture promoting the production, detection,
consumption of, and reaction to events. [Wikipedia, EDA]

The Hexagonal Architecture shown in Figure 4.4 can represent the notion of one system participating in an EDA by means of
incoming and outgoing messages. An EDA doesn’t have to use Hexagonal, but it’s a decent way to present the concepts here.
On a greenfield project it would be well worth it to consider using Hexagonal as the overarching style.

Examining Figure 4.4, say that the triangular client and the corresponding triangular output mechanism represent the
messaging mechanism used by the Bounded Context. Input events enter on a Port separate from the one used by the other three
clients. Output events likewise travel via a different Port. As proposed previously, the separate Ports could represent the
message transport over AMQP, as used by RabbitMQ, rather than the more common HTTP that the other clients use.
Whichever actual messaging mechanism may be in use, we will assume that events enter and exit the system by means of the
symbolic triangles.

There may be a number of different kinds of events that enter and exit a hexagon. We are interested specifically in Domain
Events. The application may also subscribe to system, enterprise, or other types of events as well. Perhaps those deal with
system health and monitoring, logging, dynamic provisioning, and the like. Yet, it is the Domain Events that convey the
happenings requiring our modeling attention.

We can replicate the system in the Hexagonal Architecture view as many times as necessary to represent the complement of
systems in the enterprise that support the Event-Driven way. That’s been done in Figure 4.7. Again, it’s not that every system
will be based on Hexagonal. The diagram just demonstrates how Event-Driven could be supported if multiple systems were
Hexagonal at their foundation. Otherwise, feel free to replace the hexagons with Layers, or another style.

Figure 4.7. Three systems using an Event-Driven Architecture with an overarching Hexagonal style. The EDA style
decouples all but the systems’ dependency on the messaging mechanism itself and the Event types they subscribe to.
The Domain Events published by one such system through the output Port would be delivered to subscribers represented in

the others through their input Port. The various Domain Events received have a specific meaning in each receiving Bounded
Context, or possibly no meaning at all.5 If the Event type is of interest in a specific Context, its properties are adapted to the

application’s API and used to execute an operation there. The command operation executed on the application’s API is then
reflected into the domain model according to its protocol.

It’s possible that a specific Domain Event received represents only one part of a multitask process. Until all anticipated
Domain Events arrive, the multitask process is not considered completed. But how does the process begin? How is it
distributed across the enterprise? And how do we handle tack progress through to process completion? The answers are
discussed subsequently in the section on long-running processes. But first some initial groundwork is in order. Message-based
systems often reflect a Pipes and Filters style.

Pipes and Filters
In one of its simplest forms, Pipes and Filters are available using a shell/console command line:

$ cat phone_numbers.txt | grep 303 | wc -l
3
$

Here a Linux command line is used to find how many contacts are in the fancy personal information manager,
phone_numbers.txt, who have Colorado-based phone numbers. Admittedly this is not a very reliable way to implement that
use case, but it does demonstrate how Pipes and Filters work:

1. The cat utility outputs the contents of phone_numbers.txt to what is called the standard output stream .
Normally this stream is connected to the console. But when the | symbol is used, the output is piped to the input of the
next utility.
2. Next, grep reads its input from the standard input stream, which was the result of cat. The argument to grep tells
it to match lines that contain the text 303. Each line that it finds is output to its standard output stream. As with cat,
grep’s output stream is now piped to the input of the next utility.
3. Finally, wc reads its standard input stream, which was piped from grep’s standard output. The command-line
argument to wc is -l, telling it to count the number of lines it reads. It outputs the result, which in this case is 3,
because three lines were output by grep. Note that now the standard output is displayed to the console since this time
there is no Pipe to an additional command.

This can be approximated using a Windows console, but with less piping:
Click here to view code image

C:\fancy_pim> type phone_numbers.txt | find /c "303"
3
C:\fancy_pim>

Consider what happens with each of the utilities. Each receives a dataset, processes it, and outputs a different dataset. The
dataset that is output changes from the input because each utility acts as a Filter. By the end of the filtering process the output is
completely different from the input. The input started out as a text file with individual lines of contact information and ended up
being the text digit representing the number 3.

Using the basic principles from this example, how might we apply them to an Event-Driven Architecture? In fact, we can
find some useful overlap. The following discussion is based on the Pipes and Filters messaging pattern found in [Hohpe,
Woolf]. Understand, however, that a messaging Pipes and Filters approach is not exactly like the command-line version, and it
is not intended to be. For example, an EDA Filter doesn’t need to actually filter anything. A Filter in an EDA may be used to
perform some processing while leaving the message data intact. Yet Pipes and Filters in an EDA is similar enough to the
command-line type that the previous example helped lay some groundwork for what follows. If you are a more advanced
reader, feel free to “filter” what follows.

Table 4.2 presents some of the basic characteristics of a message-based Pipes and Filters process.

Table 4.2. Basic Characteristics of a Message-Based Pipes and Filters Process

Now, what if we were to think of each of the utilities cat, grep, and wc (or type and find) as components in an Event-
Driven Architecture? What if we even implemented components to act as message senders and receivers to process telephone
numbers in a similar way? (Again, I am not trying to illustrate a one-to-one command-line replacement, just a simple messaging
example with the same basic goals.)

Here’s how a messaging Pipes and Filters approach could work, with steps illustrated in Figure 4.8:
1. We could start off with a component named PhoneNumbersPublisher that reads all the lines in
phone_numbers.txt and then creates and sends an Event message that includes all of the text lines. The Event is
named AllPhoneNumbersListed. Once it is sent, the pipeline begins.
2. A message handler component named PhoneNumberFinder is configured to subscribe to
AllPhoneNumbersListed and receives it. This message handler is the first Filter in the pipeline. The Filter is
configured to search for the text 303. This component processes the Event by searching each line for the 303 text
sequence. It then creates a new Event named PhoneNumbersMatched, placing the full lines of matching results in the
Event. The Event message is sent, continuing the pipeline.
3. A message handler component named MatchedPhoneNumberCounter is configured to subscribe to
PhoneNumbersMatched and receives it. This message handler is the second Filter in the pipeline. Its sole
responsibility is to count the phone numbers in the Event and then forward the results in a new Event. In this case it
counts three total lines containing phone numbers. The Filter completes by creating the MatchedPhoneNumbers-
Counted Event, setting the count property to 3. The Event message is sent, continuing the pipeline.
4. Finally, a message handler component subscribed to MatchedPhoneNumbersCounted receives it. This component
is named PhoneNumber-Executive. Its single responsibility is to log the result, including the count Event property
and the date and time it was received, to a file. In this case it writes

3 phone numbers matched on July 15, 2012 at 11:15 PM

Figure 4.8. A pipeline is formed by sending Events that the Filters process.

The pipeline for this specific process is now completed.6

This kind of pipeline is somewhat flexible. If we wanted to add any new Filters to the pipeline, we’d create new Events that
each existing Filter subscribes to and publishes. Basically we’d have to carefully change the sequential order of the pipeline
via configuration. Of course, it’s not as easy to change this process as with the command-line approach. Typically, however,
we won’t change Domain Event pipelines all that frequently. While this particular distributed process is not very useful in
itself, it does demonstrate how Pipes and Filters might work in a messaging, Event-Driven Architecture.

So, would we actually expect that we’d see Pipes and Filters exploited to solve a problem like this? Well, ideally not. (In
fact, if you find this example annoying, it’s probably because you already know better. That’s fine, but there are plenty of
others who are helped by it.) This is meant only as a synthetic example, one that highlights the concepts. In a real enterprise we
would use this pattern to break down a large problem into smaller steps that would make distributed processing easier to
understand and manage. It would also allow multiple systems to care only for what they do well.

In an actual DDD scenario, Domain Events reflect names meaningful to the business. Step 1 could publish a Domain Event
based on the behavioral outcome of an Aggregate in one Bounded Context. Steps 2 through 4 could occur in one or more
different Bounded Contexts that receive the initial Event and then publish one of the subsequent ones. Those three steps could
create or modify Aggregates in their respective Contexts. It does depend on the domain, but those are common outcomes of
handling Domain Events in a Pipes and Filters Architecture.

As explained in Domain Events (8), these are not just paper-thin technical notifications. They explicitly model business
process activity occurrences that are useful for domain-wide subscribers to know about, and they pack unique identity and as
many knowledge-conveying properties as necessary to clearly get their point across. Yet this synchronous, step-by-step style
can be extended to accomplish more than one thing at the same time.

Long-Running Processes, aka Sagas
The synthetic Pipes and Filters example can be extended to demonstrate another Event-Driven, distributed, parallel

processing pattern, namely, Long-Running Processes. A Long-Running Process is sometimes called a Saga, but depending on
your background that name may collide with a preexisting pattern. An early description of Sagas is presented in [Garcia-
Molina & Salem]. In an attempt to avoid confusion and ambiguity, I have chosen to use the name Long-Running Process, and
sometimes I use the name Process for brevity.

Cowboy Logic
LB: “Dallas and Dynasty, now those are what I call sagas!”
AJ: “For all you German readers, y’all know Dynasty as Der Denver Clan.”

Extending the previous example, we could create parallel pipelines by adding just one new Filter,
TotalPhoneNumbersCounter, as an additional subscriber to AllPhoneNumbersListed. It receives the Event
AllPhoneNumbersListed virtually in parallel with the PhoneNumberFinder. The new Filter has a very simple goal, counting
all existing contacts. This time, however, PhoneNumberExecutive both starts the Long-Running Process and tracks it through
completion. The executive may or may not reuse the PhoneNumbersPublisher, but the important thing is what’s new about it.
The executive, implemented as an Application Service or Command Handler, tracks the progress of the Long-Running Process
and understands when it is completed and what to do when that happens. Refer to Figure 4.9 as we step through the sample
Long-Running Process.

Figure 4.9. The single Long-Running Process executive initiates the parallel processing and tracks it to completion. The
wider arrows indicate where the parallelism begins when two Filters receive the same Event.

Different Ways to Design a Long-Running Process
Here are three approaches to designing a Long-Running Process, although there may be more:

• Design the process as a composite task, which is tracked by an executive component that records the steps and
completeness of the task using a persistent object. This is the approach discussed most thoroughly here.
• Design the process as a set of partner Aggregates that collaborate in a set of activities. One or more Aggregate
instances act as the executive and maintain the overall state of the process. This is the approach promoted by
Amazon’s Pat Helland [Helland].
• Design a stateless process in that each message handler component that receives an Event-carrying message must
enrich the received Event with more task progress information as it sends the next message. The state of the overall
process is maintained only in the body of each message sent from collaborator to collaborator.

Since the initial Event is now subscribed to by two components, both Filters receive the same Event virtually
simultaneously. The original Filter goes about as it always has, matching the specific 303 text pattern. The new Filter only
counts all lines, and when it has completed, it sends the Event AllPhoneNumbersCounted. The Event includes the count of
total contacts. If there are, for example, 15 total phone numbers, the Event count property is set to 15.

Now it is the responsibility of PhoneNumberExecutive to subscribe to two Events, both MatchedPhoneNumbersCounted
and AllPhoneNumbersCounted. The parallel processing is not considered completed until both of these Domain Events are
received. When completion is reached, the results of the parallel processing are merged into a single result. The executive now
logs

3 of 15 phone numbers matched on July 15, 2012 at 11:27 PM

The log output is enhanced with the total count of phone numbers in addition to the previous matching, date, and time
information. Although the tasks performed to yield results were really simple, they were performed in parallel. And if at least
some of the subscriber components were deployed to different computing nodes, the parallel processing was also distributed.

There is a problem with this Long-Running Process, however. The PhoneNumberExecutive currently has no way of
knowing that it has received the two completion Domain Events associated with the specific, corresponding parallel
processes. If many such processes were started in parallel, and completion Events for each were received out of order, how
would the executive know which parallel process was ending? For our synthetic example, logging with mismatched events is
hardly tragic. But when dealing with corporate business domains, an improperly aligned Long-Running Process could be
disastrous.

The first step in the solution to this troublesome situation is to assign a unique Process identity that is carried by each of the
associated Domain Events. This could be the same identity assigned to the originating Domain Event that causes the Long-
Running Process to begin (for example, AllPhoneNumbers-Listed). We could use a universally unique identifier (UUID)
allocated specifically to the Process. See Entities (5) and Domain Events (8) for a discussion of providing unique identity.
The PhoneNumberExecutive would now write output to the log only upon receiving completion Events with equal identities.
However, we can’t expect the executive to wait around until all the completion Events are received. It, too, is an Event
subscriber that comes and goes with the receipt and handling of each delivery.

Executive and Tracker?
Some find that merging the concepts of executive and tracker into a single object—an Aggregate—to be the simplest approach.
Implementing such an Aggregate as a part of the domain model that naturally tracks just a part of the overall Process can be a
liberating technique. For one, we avoid developing a separate tracker as state machine, in addition to the Aggregates that must
also exist. In fact, the most basic Long-Running Processes are best implemented just that way.
In a Hexagonal Architecture, a Port-Adapter message handler would simply dispatch to an Application Service (or Command
Handler), which would load the target Aggregate and delegate to its appropriate command method. Since the Aggregate would
in turn fire a Domain Event, the Event would be published in part as an indication that the Aggregate has completed its role in
the Process.
This approach closely follows that promoted by Pat Helland, which he refers to as partner activities [Helland], and is the
second approach described in the sidebar “Different Ways to Design a Long-Running Process.” Ideally, however, discussing a
separate executive and tracker is a more effective way to teach the overall technique, and a more intuitive way to learn it.

In an actual domain each instance of a Process executive creates a new Aggregate-like state object for tracking its eventual
completion. The state object is created when the Process begins, associating the same unique identity that each related Domain
Event must carry. It may also be useful for it to hold a timestamp of when the Process began (the reasons are discussed later in
the chapter). The Process state tracker object is illustrated in Figure 4.10.

Figure 4.10. A PhoneNumberStateTracker serves as a Long-Running Process state object to track progress. The
tracker is implemented as an Aggregate.

As each pipeline in the parallel processing completes, the executive receives a corresponding completion Event. The
executive retrieves the state tracking instance by matching the unique Process identity carried by the received Event and sets a
property that represents the step just completed.

The Process state instance usually has a method such as isCompleted(). As each step is completed and recorded on this
state tracker, the executive checks isCompleted(). This method checks for the recorded completion of all required parallel
processes. When the method answers true, the executive has the option to publish a final Domain Event if required by the
business. This Event could be required if the completing Process is just a branch in a larger parallel process, for example.

A given messaging mechanism may lack features that guarantee single delivery of each Event.7 If it is possible for the
messaging mechanism to deliver a Domain Event message two or more times, we can use the Process state object to de-
duplicate. Does this require special features to be provided by the messaging mechanism? Consider how it can be handled
without them.

When each completion Event is received, the executive checks the state object for an existing record of completion for
that specific Event. If the completion indicator is already set, the Event is considered a duplicate and is ignored, yet
acknowledged.8 Another option is to design the state object to be idempotent. That way, if duplicate messages are received
by the executive, the state object absorbs the duplicate occurrence recordings equally. While only the second option designs
the state tracker itself as idempotent, both of these approaches support idempotent messaging. See Domain Events (8) for
further discussion of Event de-duplication.

Some Process completion tracking may be time-sensitive. We can deal with Process time-outs passively or actively. Recall
that the Process state tracker can hold a timestamp of its inception. Add to this a total allowable time constant (or
configuration) value and the executive can manage time-sensitive Long-Running Processes.

A passive time-out check is performed each time a parallel processing completion Event is received by the executive. The
executive retrieves the state tracker and asks it if a time-out has occurred. A method such as hasTimedOut() can serve that
purpose. If the passive time-out check indicates that the allowable time threshold has been exceeded, the Process state tracker
can be marked as abandoned. It’s also possible to publish a corresponding failure Domain Event. Note that a disadvantage of
the passive time-out check is that the Process could remain active well past its threshold if one or more completion Events are
for some reason never received by the executive. This may be unacceptable if a larger parallel process is dependent on certain
success or failure of this Process.

An active Process time-out check can be managed using an external timer. For example, a JMX TimerMBean instance is one
way to get a Java-managed timer. The timer is set for the maximum time-out threshold just as the Process begins. When the
timer fires, the listener accesses the Process state tracker. If the state is not already completed (always checked in case the

timer fires just as an asynchronous Event completes the Process), it is then marked as abandoned, and a corresponding failure
Event is published. If the state tracker is marked as completed prior to the timer firing, the timer can then be terminated. One
disadvantage of the active time-out check is that it requires more system resources, which may burden a high-traffic
environment. Also, a race condition between the timer and the arriving completion Event could incorrectly cause failure.

Long-Running Processes are often associated with distributed parallel processing but have nothing to do with distributed
transactions. They require a mindset that embraces eventual consistency. We must enter any effort to design a Long-Running
Process soberly, with the expectation that when infrastructure or the tasks themselves fail, well-designed error recovery is
essential. Every system participating in a single instance of a Long-Running Process must be considered inconsistent with all
other participants until the executive receives the final completion notification. True, some Long-Running Processes may be
capable of succeeding with only partial completion, or they may delay for even a number of days before full completion. But if
the Process runs aground and the participating systems are left in inconsistent states, compensation may be necessary. If
compensation is mandatory, it could surpass the complexity of designing the success path. Perhaps business procedures could
allow for failures and offer workflow solutions instead.

The SaaSOvation teams employ an Event-Driven Architecture across Bounded Contexts, and the ProjectOvation team will use
the simplest form of a Long-Running Process to manage the creation of Discussions assigned to Product instances. The
overarching style is Hexagonal to manage the outside messaging and publishing of Domain Events around the enterprise.

Not to be overlooked is that the Long-Running Process executive can publish one, two, or more Events to initiate the parallel
processing. There may also be not only two, but three or more subscribers to any initiating Event or Events. In other words, a
Long-Running Process may lead to many separate business process activities executing simultaneously. Thus, our synthetic
example is limited in complexity only for the sake of communicating the basic concepts of a Long-Running Process.

Long-Running Processes are often useful when integration with legacy systems can have high latency. Even if latency and
legacy are not the chief concerns, we still benefit from the distribution and parallelism with elegance, which can lead to highly
scalable, highly available business systems.

Some messaging mechanisms have built-in support for Long-Running Processes, which can greatly expedite adoption. One
such is [NServiceBus], which specifically calls them Sagas. Another Saga implementation is provided with [MassTransit].

Event Sourcing
Sometimes the business cares about tracking changes that occur to the objects in a domain model. There are varying levels of

change tracking interest, and ways to support each level. Typically businesses have chosen to track only when some entity is
created and last modified, and by whom. It’s a relatively simple and straightforward approach to change tracking. This,
however, doesn’t provide any information about the individual changes in the model.

With an increased desire for even more change tracking, the business demands more metadata. It begins to care also about
the individual operations that were executed over time. Maybe it even wants to understand how long certain operations took to
execute. Those desires lead to the need to maintain an audit log or journal of the finer-grained use case metrics. But an audit
log or journal has its limitations. It can convey some information about what has happened in the system, perhaps even
allowing for some debugging. But it doesn’t allow us to examine the state of individual domain objects before and after

specific kinds of changes. What if we could stretch more out of change tracking?
As developers we have all experienced finer-grained change tracking in one form or another. The most common example is

with the use of a source code repository, such as CVS, Subversion, Git, or Mercurial. What all of these variations of source
revision management systems have in common is that they all know how to track changes that occur on a source file. The
change tracking provided by this genre of tool enables us to go all the way back in time, to view a source code artifact from its
very first revision, and then to proceed revision by revision, all the way to the very latest. When committing all source files to
revision control, it can track changes of the whole development life cycle.

Now, if we think about applying this concept to a single Entity, then to an Aggregate, then to every Aggregate in the model,
we can understand the power of change tracking objects and the value it can produce in our systems. With that in mind, we
want to develop a means to know what occurred in the model to cause the creation of any given Aggregate instance, and also
what has happened to that given Aggregate instance throughout time, operation by operation. Given the history of everything
that’s happened, we could even support temporal models. This level of change tracking is at the heart of a pattern named Event
Sourcing.9 Figure 4.11 shows a high-level view of this pattern.

Figure 4.11. A high-level view of Event Sourcing, where Aggregates publish Events that are stored and used to track
the model’s state changes. The Repository reads Events from the Store and applies them to reconstitute the

Aggregate’s state.
There are varying definitions of Event Sourcing, so some clarification is fitting. We are discussing the use where every

operational command executed on any given Aggregate instance in the domain model will publish at least one Domain Event
that describes the execution outcome. Each of the events is saved to an Event Store (8) in the order in which it occurred.
When each Aggregate is retrieved from its Repository, the instance is reconstituted by playing back the Events in the order in
which they previously occurred.10 In other words, first the very earliest Event is played back, and the Aggregate applies the
Event to itself, modifying its state. Next, the second-oldest Event is played back in the same manner. This continues until all
Events, from the oldest to the most recent, are completely played back and applied. At that point the Aggregate exists in the
state it had upon the most recent execution of some command behavior.

A Moving Target?
The definition of Event Sourcing has undergone some scrutiny and refinement, and at the time of writing it is still not
completely settled. As with most leading-edge techniques, refinement is necessary. What is described here captures the
essence of the pattern as applied using DDD and probably to a large degree reflects how in general it will be used moving
forward.

Over a long period of changes to any and all Aggregate instances, doesn’t the playback of hundreds, thousands, or even
millions of Events cause serious latency and overhead in processing the model? At least for some of the higher-traffic models
that would most certainly be the case.

To avoid this bottleneck we can apply an optimization that uses Aggregate state snapshots. A process is developed to
produce, in the background, a snapshot of the Aggregate’s in-memory state at a specific point in Event Store history. To do this,
the Aggregate is loaded into memory using all previous Events to the current point in time. The Aggregate state is then
serialized, and the serialized snapshot image is then saved to the Event Store. From that point forward the Aggregate is first
instantiated using the most recent snapshot, and then all Events newer than that snapshot are played back on the Aggregate as
described previously.

Snapshots are not created randomly. Rather, they can be created at points where a predefined number of newer Events have

occurred. The team would determine a number based on domain heuristics or other observations. For example, we might find
that Aggregate retrieval performs optimally when having no more than 50 or 100 or so Events between snapshots.

Event Sourcing leans heavily in the direction of technical solution. We can produce domain models that publish Domain
Events without the need to support Event Sourcing. As a persistence mechanism, Event Sourcing replaces and is far different
from using an ORM tool. Because Events are often persisted in an Event Store as binary representations, they cannot
(optimally) be used for queries. In fact, Repositories designed for an Event Sourcing model require only a single get/find
operation, and that method takes as a parameter only the Aggregate unique identity. Further, by design Aggregates don’t have
any query methods (getters). As a result, we need another way to query, which generally leads to employing CQRS (discussed
previously) hand-in-glove with Event Sourcing.11

Since Event Sourcing leads us down the path of thinking differently about the way domain models are designed, we need to
justify our use. At its most basic, Event history can reveal solutions to bugs in the system. Debugging with the use of explicit
history of everything that has ever happened to the model has a big advantage. Event Sourcing can lead to high-throughput
domain models, scaling to extremely large numbers of transactions per second. Appending to a single database table, for
example, is extremely fast. Further, it enables the CQRS query model to be scaled out, because updates to that data source are
performed in the background after the Event Store is updated with new Events. This can additionally allow for replicating the
query model to more data source instances in support of growing numbers of clients.

But technical advantages don’t always sell techniques to the business. Thus, consider just a few of the business advantages
of using Event Sourcing that are afforded due to the technical implementation:

• Patch the Event Store with new or modified Events that fix problems. This may have business implications, but if it
is legal in a given situation, the patch can save the system from serious issues that occurred because of bugs in the
model. Since the patches have a built-in audit trail, the use of patches may decrease any legal implications by making
them explicit and traceable.
• Besides patching, we can also undo and redo changes in the model by replaying varying sets of Events. This may
have technical implications and business implications and may not be possible to support in all cases.
• With an accurate history of everything that has occurred in the domain model, the business can consider “what if?”
questions. That is, by playing back stored Events on a set of Aggregates that have experimental enhancements, the
business can get accurate answers to hypothetical questions. Would the business benefit if it could simulate
conceptual scenarios using real historical data? Very likely, yes. It’s an alternative way to approach business
intelligence.

Would the business benefit from one or more of these technical and nontechnical advantages?
Appendix A provides rich details on implementing Aggregates with Event Sourcing and discusses how views may be

projected for CQRS. For further details see [Dahan, CQRS] and [Nijof, CQRS].

Data Fabric and Grid-Based Distributed Computing
Contributed by Wes Williams

As software systems become more and more complex and sophisticated, with expanding user bases and requirements
centered around “big data,” traditional database solutions can become performance bottlenecks. Organizations that face the
realities of information systems of colossal size have no alternative but to seek solutions that are equal to the computing
challenges. Data Fabrics—also sometimes called Grid Computing12—offer performance and elastic scalability capabilities
that such business situations demand.

Cowboy Logic
AJ: “Would you like some information in exchange for a drink?”
LB: “Sorry, J. We only accept cache here.”

One good thing about Data Fabrics is that they support domain models in a natural way, nearly eliminating any impedance
mismatch. In fact, their distributed caches easily accommodate the persistence of domain objects in general and act as
Aggregate Stores specifically.13 Simply stated, an Aggregate stored in a Fabric’s map-based cache14 is the value part of a key-
value pair. The key is formed from the globally unique identity of the Aggregate, and the Aggregate state itself is serialized to
some binary or textual representation serving as the value:
Click here to view code image

String key = product.productId().id();

byte[] value = Serializer.serialize(product);

// region (GemFire) or cache (Coherence)
region.put(key, value);

Thus, a positive consequence of using a Data Fabric with features closely aligned with the technical aspects of a domain
model is the possibility of shortened development cycles.15

The examples provided in this section demonstrate how a Data Fabric can host a domain model in cache and enable system
functionalities at distributed scale. In doing so, we’ll explore ways to support the CQRS architecture pattern and Event-Driven
Architecture using Long-Running Processes.

Data Replication
Thinking of an in-memory data cache, we may immediately consider the real possibility of losing all or part of our system’s

state if the cache fails in some way. It’s a real concern, but far from troublesome when redundancy is built into the Fabric.
Consider the memory cache provided by a Fabric when using a cache-per-Aggregate strategy. In that case the Repository of

a given Aggregate type is backed by a dedicated cache. A cache supporting only a single node would be quite vulnerable to
failures at a single point. However, a Fabric providing multinode caches with replication would be quite reliable. You can
choose the level of redundancy based on the probability of the number of nodes that may fail at any given time, which becomes
very narrow as more nodes are included. You also have the latitude to trade redundancy for performance since, of course,
performance can be impacted by the number of node replications required for an Aggregate to be fully committed.

Here’s an example of how cache (or region, again depending on the concrete Fabric) redundancy may work. One node acts
as the primary cache/region, and any number of others are secondary. If a primary store fails, a fail-over occurs and one of the
secondaries becomes the new primary. When the former primary recovers, all data stored on the new primary gets replicated
to the recovered node and it becomes a secondary.

An additional advantage of fail-over nodes is that they ensure guaranteed delivery of events published from the Fabric. Thus,
updates to Aggregates and any Fabric events published as a result are never lost. Obviously, cache redundancy and replication
are essential features for storing business-critical domain model objects.

Event-Driven Fabrics and Domain Events
A primary feature of a Fabric is the support of an Event-Driven style, with guaranteed delivery. Most Fabrics have built-in

eventing of a technical nature, that is, the automatic notification of events that inform about cache-level and entry-level

occurrences. Those should not be confused with Domain Events. For example, a cache-level event informs of happenings such
as cache reinitialization, and an entry-level event informs about occurrences such as entry creation and updates.

Still, with a Fabric supporting an open architecture there should be a way to support publishing Domain Events directly out
of Aggregates. Your Domain Events may have to subclass a specific framework event type, such as EntryEvent (for example,
GemFire), but that’s a small price to pay for the power they afford.

How might you actually use Domain Events in a Fabric? As discussed in Domain Events (8), your Aggregates would use a
simple DomainEvent-Publisher component. In the cache of a Fabric this publisher may simply put the published Events into
a specific cache/region. Cached Events would then be delivered to subscribers (listeners), either synchronously or
asynchronously. So as not to waste precious memory in this dedicated Event cache/region, as each Event is fully acknowledged
by all subscribers, its entry would be removed from the map. Of course, each Event is only fully acknowledged once it has
been published by one or more subscribers to a message queue or bus and/or used to freshen a CQRS query model.

Since Domain Event subscribers may also use the Events to carry out the synchronization of other dependent Aggregates,
eventual consistency is guaranteed by means of the architecture.

Continuous Queries
Some Fabrics support a kind of event notification known as Continuous Query. This enables a client to register a query with

the Fabric that will ensure that the client receives notification of changes in the cache that satisfy the query. One use of the
Continuous Query is by user interface components, which enables these to listen for changes that could impact the current view.

Do you see what’s coming? CQRS has a strong fit with the Continuous Query feature, assuming that the query model is
maintained in the Fabric. Rather than requiring the view to chase after view table updates, the notifications delivered as
registered Continuous Queries are resolved, allowing the views to update just in time. Here’s an example of a client
registering for GemFire Continuous Query events:
Click here to view code image

CqAttributesFactory factory = new CqAttributesFactory();

CqListener listener = new BacklogItemWatchListener();

factory.addCqListener(listener);

String continuousQueryName = "BacklogItemWatcher";

String query = "select * from /queryModelBacklogItem qmbli "
 + "where qmbli.status = 'Committed'";

CqQuery backlogItemWatcher = queryService.newCq(
 continuousQueryName, query, factory.create());

The Data Fabric will now deliver CQRS query model updates based on Aggregate modifications to the client callback
object provided by the CqListener, along with metadata that was added, updated, or destroyed when the matching criteria are
met.

Distributed Processing
A powerful use of a Data Fabric is to distribute processing across the Fabric’s replicated caches and return the aggregated

results to the client. This enables the Fabric to fulfill Event-Driven, distributed parallel processing, perhaps using Long-
Running Processes.

To illustrate this feature, we’ll have to mention some concrete approaches in GemFire and Coherence. Your Process
executive could be implemented as a GemFire Function or a Coherence Entry Processor. Both can serve as Command
[Gamma et al.] handlers that execute in parallel across distributed, replicated cache. (You might instead choose to think of this
concept as a Domain Service, but what it does may not be domain-centric.) For consistency let’s call this feature a Function. A
Function can optionally accept a filter to constrain the execution against matching Aggregate instances.

Let’s look at a sample Function that implements a Long-Running Process for the previously presented Phone Number Count
Process. This Process will be executed in parallel across the replicated cache using a GemFire Function:
Click here to view code image

public class PhoneNumberCountSaga extends FunctionAdapter {

 @Override
 public void execute(FunctionContext context) {
 Cache cache = CacheFactory.getAnyInstance();
 QueryService queryService = cache.getQueryService();

 String phoneNumberFilterQuery = (String) context.getArguments();
 ...
 // Pseudo code
 // - Execute Function to obtain MatchedPhoneNumbersCounted.
 // - Send answer to the aggregator by invoking the
 // aggregator.sendResult(MatchedPhoneNumbersCounted).
 // - Execute Function to obtain AllPhoneNumbersCounted.
 // - Send answer to the aggregator by invoking the
 // aggregator.sendResult(AllPhoneNumbersCounted).
 // - The aggregator automatically accumulates the answers
 // from each distributed Function call and returns the
 // single aggregated answer to the client.
 }
}

Here is sample code for a client that will execute a Long-Running Process in parallel against distributed replicated cache:
Click here to view code image

PhoneNumberCountProcess phoneNumberCountProcess =
 new PhoneNumberCountProcess();

String phoneNumberFilterQuery =
 "select phoneNumber from /phoneNumberRegion pnr "
 + "where pnr.areaCode = '303'";

Execution execution =
 FunctionService.onRegion(phoneNumberRegion)
 .withFilter(0)
 .withArgs(phoneNumberFilterQuery)
 .withCollector(new PhoneNumberCountResultCollector());

PhoneNumberCountResultCollector resultCollector =
 execution.execute(phoneNumberCountProcess);

List allPhoneNumberCountResults = (List) resultsCollector.getResult();

Of course, the process could be much more complex or far simpler than this one. This also demonstrates that a Process is not
of necessity an Event-Driven concept, but one that can work with other concurrent, distributed processing approaches. For a
full discussion of Fabric-based distributed and parallel processing, see [GemFire Functions].

Wrap-Up
We’ve reviewed several architectural styles and architecture patterns that can be used with DDD. This is not an exhaustive

list because there are just too many possibilities, which emphasizes the versatility of DDD. For example, we haven’t
considered how to apply DDD when Map-Reduce is at play. That’s a topic for a future discussion.

• We’ve discussed the traditional Layers Architecture and how it can be improved on by using the Dependency
Inversion Principle.
• You’ve learned about the strengths of the possibly timeless Hexagonal Architecture, which provides an overarching
style for application architectures.
• We’ve emphasized how DDD should be used in an SOA environment, with REST, and using a Data Fabric or a

Grid-Based Distributed Cache.
• You got an overview of CQRS and how it can simplify some aspects of the application.
• We’ve taken a look at the various aspects of how Event-Driven works, including Pipes and Filters, Long-Running
Processes, and even a glimpse at Event Sourcing.

We next move on to a series of chapters on DDD tactical modeling. Those chapters will help you see the finer-grained
modeling options at your disposal, and how to best put them to work.

Chapter 5. Entities

I’m Chevy Chase . . . and you’re not.
—Chevy Chase

There is a tendency for developers to focus on data rather than the domain. This can happen with those new to DDD,
because of the prevailing approaches to software development that place importance on the database. Instead of designing
domain concepts with rich behaviors, we might think primarily about the attributes (columns) and associations (foreign keys)
of the data. Doing so reflects the data model into object counterparts, which leads to almost every concept in our “domain
model” being coded as an Entity abounding with getter and setter methods. It’s easy to find tools that will generate all that for
us. Although there may be nothing wrong with property accessors, that’s not the only behavior DDD Entities should have.

It’s a trap that was sprung on SaaSOvation developers. Learn from their lessons in Entity design.

Road Map to This Chapter
• Consider why Entities have their proper place when we need to model unique things.
• See how unique identities may be generated for Entities.
• Look in on a design session as a team captures its Ubiquitous Language (1) in Entity design.
• Learn how you can express Entity roles and responsibilities.
• See examples of how Entities can be validated and how to persist them to storage.

Why We Use Entities
We design a domain concept as an Entity when we care about its individuality, when distinguishing it from all other objects

in a system is a mandatory constraint. An Entity is a unique thing and is capable of being changed continuously over a long
period of time. Changes may be so extensive that the object might seem much different from what it once was. Yet, it is the
same object by identity.

As the object changes, we may be interested in tracking when, how, and by whom changes were made. Or we might be
satisfied that its current form implies enough about its previous state transitions that explicit change tracking is unnecessary.
Even if we don’t decide to track every detail of its change history, we could still reason on and discuss the sequences of valid
changes that could occur to these objects over their entire lifetime. It is the unique identity and mutability characteristics that
set Entities apart from Value Objects (6).

There are times when an Entity is not the appropriate modeling tool to reach for. Misappropriated use happens far more
often than many are aware. Often a concept should be modeled as a Value. If this is a disagreeable notion, it might be that DDD
doesn’t fit your business needs. It is quite possible that a CRUD-based system would be more fitting. If so, that decision should
save your project both time and money. The problem is that pursuing CRUD-based alternatives doesn’t always save those
precious resources.

Businesses regularly put too much effort into developing glorified database table editors. Without the correct tool selection,
CRUD-based solutions treated elaborately are too expensive. When CRUD makes sense, languages and frameworks such as
Groovy and Grails, Ruby on Rails, and the like make the most sense. If the choice is correct, it should save time and money.

Cowboy Logic
AJ: “What kinda CRUD did I just land in?”
LB: “That’s a cow pie, J!”
AJ: “I know what pie is. You got your apple pie and your cherry pie. This ain’t no pie.”
LB: “Like they say, ‘Never kick a cow pie on a hot day.’ It’s a good thing you didn’t kick it.”

On the other hand, if we apply CRUD to the wrong systems—more complex ones that deserve the precision of DDD—we
may regret it. When complexity grows, we experience the limitation of poor tool selection. CRUD systems can’t produce a
refined business model by only capturing data.

If DDD is a justifiable investment in the business’s bottom line, we use Entities as intended.
When an object is distinguished by its identity, rather than its attributes, make this primary to its
definition in the model. Keep the class definition simple and focused on life cycle continuity and
identity. Define a means of distinguishing each object regardless of its form or history. . . . The model
must define what it means to be the same thing. [Evans, p. 92]

This chapter teaches how to place the proper emphasis on Entities and shows you various Entity design techniques.

Unique Identity
In the early stages of designing an Entity, we purposely focus only on those primary attributes and behaviors that are central

to its unique identity, as well as those useful for querying it, and we purposely ignore all other attributes and behaviors until
we settle on the primary ones.

Rather than focusing on the attributes or even the behavior, strip the Entity object’s definition down to
the most intrinsic characteristics, particularly those that identify it or are commonly used to find or
match it. Add only behavior that is essential to the concept and attributes that are required by that
behavior. [Evans, p. 93]

So that’s what we’ll do first. Having a range of available options for implementing identity is really important, as are those
for ensuring that the uniqueness is preserved throughout time.

An Entity’s unique identity may or may not also be practical for finding or matching. Using the unique identity for matching
usually depends on how human-readable it is. For example, if the application makes searching for a person’s name available to
users, it is very unlikely that the name is used as the Person Entity unique identity. People very frequently have nonunique
names. On the other hand, if the application makes searching for a company’s tax ID possible, the tax ID may well be the
primary unique identifier for the Company Entity. Governments issue unique tax identities.

Value Objects can serve as holders of unique identity. They are immutable, which ensures identity stability, and any
behavior specific to the kind of identity is centralized. Having a focal point for identity behavior, however simple, keeps the
know-how from leaking into other parts of the model and into clients.

Consider some common identity creation strategies, from the apparently simplest and most basic to those with increasing
complexity:

• The user provides one or more original unique values as input to the application. The application must ensure that
they are unique.
• The application internally generates an identity using an algorithm that ensures uniqueness. We can get a library or
framework to do this for us, but it can be done by the application.
• The application relies on a persistence store, such as a database, to generate a unique identity.
• Another Bounded Context (2) (system or application) has already determined the unique identity. It is input or
selected by the user from a set of choices.

Let’s consider the individual strategies, along with particular challenges related to each. There are almost always side

effects when considering the range of technical solutions. One such side effect occurs when we use relational databases for
object persistence, which leak into our domain models. We round out identity creation concerns by addressing the impact of the
timing of identity generation, the relational database’s referential identity on domain objects, and how object-relational
mapping (ORM) plays into this situation. We’ll also consider some practical guidance on keeping unique identities stable.

User Provides Identity
It appears to be a straightforward approach to have a user manually enter the details of unique identity. The user types a

recognizable value or symbol into an input field or selects from a set of available characteristics, and the Entity is created.
True, it is a simple enough approach. But there can be complications.

One complication is relying on users to produce quality identities. The identity may be unique but incorrect. Most times
identities must be immutable, so users shouldn’t change them. This is not always the case, and there may be advantages to
enabling users to correct identity values. Here’s an example. If we use the titles of Forum and Discussion as unique identities,
what would happen if the user spelled the title incorrectly, or later decided that the title was not as fitting as it could have been,
as shown in Figure 5.1? What’s the cost of change? Although user-provided identity may seem like a well-budgeted approach,
it may not be. Can users be relied upon to produce both unique and correct, long-lasting identities?

Figure 5.1. The forum title is misspelled and the discussion title is less than desirable.
Preventing this problem starts with design discussions. Teams need to consider fail-proof approaches to enable users to

define unique identity. Workflow-based identity approval is not conducive to high-throughput domains but works best when
human-readable identity is a must. If it takes extra time and effort to create and approve an identity that will be used
pervasively throughout the business for years to come, and supporting a workflow is possible, adding a few extra cycles to
ensure the quality of the identity is a good investment.

We always have the option to include user-entered values as Entity properties available for matching, but not to use them for
unique identity. Simple properties are more easily modified as part of the normal operational state of the Entity that changes
over time. In that case we will need to use another means to obtain unique identity.

Application Generates Identity
There are highly reliable ways to autogenerate unique identities, although care must be taken when the application is

clustered or otherwise distributed across multiple computing nodes. There are identity creation patterns that can, to a much
greater degree of certainty, produce a completely unique identity. The universally unique identifier (UUID), or globally
unique identifier (GUID), is one such approach. A common variation follows, where the result of each step is concatenated
into a single textual representation:

1. Time in milliseconds on the computing node
2. IP address of the computing code
3. Object identity of the factory object instance within the virtual machine (Java)
4. Random number generated by the same generator within the virtual machine (Java)

This produces a 128-bit unique value. It is most often expressed as a 32-byte or 36-byte hexadecimal encoded text string.
The text format is 36 bytes when you use the common hyphen segment separators in the format f36ab21c-67dc-5274-c642-
1de2f4d5e72a. Without the hyphens it is 32 bytes. Either way, the identity is big and is not considered human-readable.

In the Java world, this formula has been replaced by a standard UUID generator available since Java 1.5. It’s provided by
class java.util.UUID. This implementation supports four different generator algorithms based on the Leach-Salz variant.
Using the Java standard API, we can easily generate a pseudo-random unique identity:

String rawId = java.util.UUID.randomUUID().toString();

It uses type 4, employing a cryptographically strong pseudo-random-number generator, which is based on the
java.security.SecureRandom generator. Type 3 employs a name encryption approach, which uses

java.security.MessageDigest. We can get a name-based UUID like this:
Click here to view code image

String rawId = java.util.UUID.nameUUIDFromBytes(
 "Some text".getBytes()).toString();

We can also blend the pseudo-random-number generation with encryption:
Click here to view code image

SecureRandom randomGenerator = new SecureRandom();

int randomNumber = randomGenerator.nextInt();

String randomDigits = new Integer(randomNumber).toString();

MessageDigest encryptor = MessageDigest.getInstance("SHA-1");

byte[] rawIdBytes = encryptor.digest(randomDigits.getBytes());

Now we are left only with the task of converting the rawIdBytes array to a hexadecimal text representation. We could get
that conversion for free. After generating the random number and converting it to a String, we pass that text to the UUID
nameUUIDFromBytes() Factory [Gamma et al.] method.

There are other identity generation facilities, such as java.rmi.server.UID and java.rmi.dgc.VMID, but these seem
inferior to java.util.UUID and are not discussed here.

UUID is a relatively fast identity to generate, requiring no interaction with the outside, such as a persistence mechanism.
Even if a specific kind of Entity is created many times per second, the UUID generator can keep up the pace. For higher-
performance domains we can cache any number of UUID instances, refilling the cache in the background. If cached UUID
instances are lost due to server restart, there are no gaps in identities because they are all based on random, manufactured
values. Refilling the cache on server restart has no negative consequences of abandoned values.

With such a large identity, its use could in rare cases be rendered impractical because of the memory overhead. In such
cases an 8-byte long identity generated by the persistence mechanism would improve matters. A smaller, 4-byte integer, with
two billion or so unique values, may even suffice. These approaches are discussed next.

Considering the following, understandably we don’t normally want to display a UUID on our user interface views:
f36ab21c-67dc-5274-c642-1de2f4d5e72a

A full UUID is usually appropriate when it can be hidden from users and human-readable reference techniques can be used.
For example, we can design hypermedia resources with URIs that can be e-mailed or sent around using other user-to-user
messaging. The text relationship part of the link can be used to disguise the mysterious-looking UUID, just as the text in
<a>text disguises technical links in HTML.

Depending on the level of trust you have in the uniqueness of individual segments of the hexadecimal text UUID, you may
decide to use just one or a few segments of the whole. The shortened identities are more trustworthy when used only as the
local identity of Entities within the Aggregate (10) boundary. Local identity means that Entities held inside an Aggregate need
only have uniqueness among other Entities held inside the same Aggregate. On the other hand, the Entity serving as an
Aggregate Root requires global unique identity.

Our own identity generator could use one or more specific UUID segments. Consider a contrived example: APM-P-08-14-
2012-F36AB21C. This 25-character identity represents a Product (P) from the Agile Project Management Context (APM) that
was created on August 14, 2012. The extra text F36AB21C is the first segment of a generated UUID, which uniquely sets it apart
from other Product Entities created on the same day. It has the benefit of human readability with a high probability for global
uniqueness. Users aren’t the only ones to benefit. When identities such as this one are passed between Bounded Contexts,
developers immediately know where they originated. For SaaSOvation this approach could be practical since Aggregates are
further segregated by tenancy.

Maintaining this kind of identity in a String would probably not be a good choice. A custom identity Value Object would
work better:
Click here to view code image

String rawId = "APM-P-08-14-2012-F36AB21C"; // would be generated
ProductId productId = new ProductId(rawId);
...
Date productCreationDate = productId.creationDate();

A client can ask for identity details, such as the date the product was created, and it’s conveniently provided. Clients need
not understand the raw identity format. Now the Product Aggregate Root can expose its creation date without indicating to
clients how it is obtained:
Click here to view code image

public class Product extends Entity {
 private ProductId productId;
 ...
 public Date creationDate() {
 return this.productId().creationDate();
 }
 ...
}

You may find identity generation in third-party libraries and frameworks. The Apache Commons project has a Commons Id
(sandbox) component, which supplies five different identity generators.

Some persistence stores, such as NoSQL Riak and MongoDB, can generate identities for you. Normally to save a value in
Riak, you use HTTP PUT, which takes a key:

PUT /riak/bucket/key

[object serialization]

You may instead use POST without providing a key, forcing Riak to generate a unique identity. Still, we do need to think
about early versus late identity generation, as discussed later in this chapter.

What will serve as a Factory for your application-generated identities? For Aggregate Root identity generation, I like to use
its Repository (12):
Click here to view code image

public class HibernateProductRepository
 implements ProductRepository {
 ...
 public ProductId nextIdentity() {
 return new ProductId(
 java.util.UUID.randomUUID().toString().toUpperCase());
 }
 ...
}

This seems like a natural location for identity generation.

Persistence Mechanism Generates Identity
Delegating the generation of unique identity to a persistence mechanism has some unique advantages. If we call on the

database for a sequence or incrementing value, it will always be unique.
Depending on the range needed, the database can generate a unique 2-byte, 4-byte, or 8-byte value. In Java, a 2-byte short

integer would allow for up to 32,767 unique identities; a 4-byte normal integer would afford 2,147,483,647 unique values; and
an 8-byte long integer would provide up to 9,223,372,036,854,775,807 distinct identities. Even zero-filled text representations
of these ranges are narrow, at five, ten, and 19 characters respectively. These can also be employed to create composite
identities.

One possible downside is performance. It can take significantly longer to go to the database to get each value than to
generate identities in the application. Much depends on database load and application demand. One way around this is to cache
sequence/increment values in the application, such as in a Repository. This can work well, but we generally count on losing a
good number of unused values when server nodes must be restarted. If the gaps caused by lost cache are unacceptable, or if you

have planned for only a relatively small number of values (2-byte short integer), caching preallocated values may not be a
practical or necessary option. It may be possible to harvest and recover lost identities, but that may be more trouble than it is
worth.

Preallocation and caching are not an issue if the model can suffice with late identity generation. Here’s how it’s done with
Hibernate and an Oracle sequence:
Click here to view code image

<id name="id" type="long" column="product_id">
 <generator class="sequence">
 <param name="sequence">product_seq</param>
 </generator>
</id>

Here’s an example of the same approach, but using a MySQL auto-increment column:
Click here to view code image

<id name="id" type="long" column="product_id">
 <generator class="native"/>
</id>

This does perform well, and it is quite easy to configure in a Hibernate mapping definition. The problem could be the timing
of generation, which is discussed a bit later. The remainder of this subsection covers the early identity generation requirement.

Order May Matter
Sometimes it matters when the identity generation and assignment occur for an Entity.

Early identity generation and assignment happen before the Entity is persisted.
Late identity generation and assignment happen when the Entity is persisted.

Here a Repository supports early generation, serving the next available Oracle sequence using a query:
Click here to view code image

public ProductId nextIdentity() {
 Long rawProductId = (Long)
 this.session()
 .createSQLQuery(
 "select product_seq.nextval as product_id from dual")
 .addScalar("product_id", Hibernate.LONG)
 .uniqueResult();

 return new ProductId(rawProductId);
}

Since Oracle returns sequence values that Hibernate maps as BigDecimal instances, we must inform Hibernate that we want
the product_id result converted to a Long.

What do we do about databases, such as MySQL, that don’t support sequences? MySQL supports auto-incrementing
columns. Normally the auto-increment does not occur until a row is newly inserted. Still, there is a way to make a MySQL
auto-increment work like an Oracle sequence:
Click here to view code image

mysql> CREATE TABLE product_seq (nextval INT NOT NULL);
Query OK, 0 rows affected (0.14 sec)

mysql> INSERT INTO product_seq VALUES (0);
Query OK, 1 row affected (0.03 sec)

mysql> UPDATE product_seq SET nextval=LAST_INSERT_ID(nextval + 1);
Query OK, 1 row affected (0.03 sec)

Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.06 sec)

mysql> SELECT * FROM product_seq;
+---------+
| nextval |
+---------+
| 1 |
+---------+
1 row in set (0.00 sec)

We’ve created a table in a MySQL database named product_seq. Next, we insert a single row into the table, initializing its
one and only column, nextval, to 0. Those first two steps establish the sequence emulator for the Product Entity. The next
two statements demonstrate a single sequence value generation. We update the one and only row by incrementing the nextval
column by 1. The update statement uses a MySQL function, LAST_INSERT_ID(), to increment the column’s INT value. The
expression parameter is first executed, then the result is assigned to the nextval column. The result of the expression
parameter nextval + 1 remains stable in the LAST_INSERT_ID() function, such that when the subsequence SELECT
LAST_INSERT_ID() statement is evaluated, the value of nextval that results from that exact execution is returned in the result
set. Last, as a test, we can SELECT * FROM product_seq to prove that the current value of nextval is the same returned with
the function result.

Hibernate 3.2.3 uses org.hibernate.id.enhanced.SequenceStyle-Generator to facilitate portable sequences, but that
supports only late identity generation (when the Entity is inserted). To support early sequence generation in a Repository we
will have to create a custom Hibernate or JDBC query. Here is a reimplementation of the ProductRepository method next-
Identity() for MySQL:
Click here to view code image

public ProductId nextIdentity() {
 long rawId = -1L;
 try {
 PreparedStatement ps =
 this.connection().prepareStatement(
 "update product_seq "
 + "set next_val=LAST_INSERT_ID(next_val + 1)");

 ResultSet rs = ps.executeQuery();

 try {
 rs.next();
 rawId = rs.getLong(1);
 } finally {
 try {
 rs.close();
 } catch(Throwable t) {
 // ignore
 }
 }

 } catch (Throwable t) {
 throw new IllegalStateException(
 "Cannot generate next identity", t);
 }

 return new ProductId(rawId);
}

Using JDBC, there is no need to execute a second query on the database to get the results of function LAST_INSERT_ID().
The update query does it all. We get the long value from the ResultSet, using it to create the ProductId.

The last trick is to get a JDBC connection from Hibernate. This can be a bit of a pain, but it’s possible:
Click here to view code image

private Connection connection() {
 SessionFactoryImplementor sfi =
 (SessionFactoryImplementor)sessionFactory;
 ConnectionProvider cp = sfi.getConnectionProvider();
 return cp.getConnection();
}

Without a Connection object we can’t get a ResultSet by executing a PreparedStatement. Without that it’s not possible
to use a portable sequence.

Using portable sequences from Oracle, MySQL, and other databases, we have the means to generate more compact,
guaranteed unique identities that support pre-insert creation.

Another Bounded Context Assigns Identity
When another Bounded Context assigns identity, we need to integrate to find, match, and assign each identity. DDD

integrations are explained in Context Maps (3) and Integrating Bounded Contexts (13).
Making an exact match is the most desirable. Users need to provide one or more attributes, such as an account number,

username, e-mail address, or other unique symbol, to pinpoint the intended result.
Often, matching involves fuzzy input, resulting in multiple search results, along with some human user selection. Figure 5.2

illustrates this. The user enters the “like search” (wildcard) criterion for the sought-after Entity. We access the API of the
external Bounded Context, which resolves the search to zero, one, or multiple similarly described objects. The user then
selects the specific result from among the multiple options. The identity of the selected choice is used as the local identity.
Some additional state (properties) from the foreign Entity may also be copied into the local Entity.

Figure 5.2. The search results from matching an external system to find an identity. The selection user interface may or
may not display the identity. This example does display it.

This has synchronization implications. What happens if externally referenced objects transition in ways that affect local
Entities? How will we know that the associated object changed? This problem can be solved using an Event-Driven
Architecture (4) with Domain Events (8). Our local Bounded Context subscribes to Domain Events published by external
systems. When a relevant notification is received, our local system transitions its own Aggregate Entities to reflect the state of
those in external systems. Sometimes synchronization must be initiated by the local Bounded Context with changes being
pushed to the originating external system.

This is rarely easy to do, but it leads to more autonomous systems. When autonomy is achieved, it can actually narrow
searches to local objects. This is not a matter of caching foreign objects locally. Rather, it involves translating foreign concepts
into those of the local Bounded Context, as explained in Context Mapping (3).

This is the most complex of identity creation strategies. The maintenance of the local Entity is dependent not only on
transitions caused by local domain behaviors but possibly also on those that occur in one or more external systems. Use this
approach as conservatively as possible.

When the Timing of Identity Generation Matters

Identity generation can occur either early, as part of the object’s construction, or late, as part of its persistence. Sometimes
it’s important to time identity generation early, and other times not. If it matters, we need to understand what’s involved.

Consider possibly the simplest case, that we can tolerate the late allocation of identity when a new Entity is persisted, that
is, a new row is inserted in the database. This is demonstrated in the diagram in Figure 5.3. The client just instantiates a new
Product and adds it to the ProductRepository. When the Product instance is newly created, the client doesn’t need its
identity. And it’s a good thing, too, because the identity won’t exist then. It’s only after the instance is persisted that the identity
is available.

Figure 5.3. The simplest way to allocate a unique identity is to have the data store generate it the first time the object is
persisted.

Why might timing matter? Consider a scenario where the client subscribes to outgoing Domain Events. An Event occurs
when a new Product instantiation completes. The client saves the published Event to an Event Store (8). Eventually those
stored Events are published as notifications that reach subscribers outside the Bounded Context. Using the approach of Figure
5.3, the Domain Event is received before the client has the opportunity to add the new Product to the ProductRepository.
Thus, the Domain Event would not contain the valid identity of the new Product. For the Domain Event to be correctly
initialized, the identity generation must be completed early. Figure 5.4 demonstrates that approach. The client queries for the
next identity from the ProductRepository, passing it to the Product constructor.

Figure 5.4. Here unique identity is queried from the Repository and assigned during instantiation. The complexities of
identity generation are hidden behind the Repository implementation.

There is another problem that can occur when identity generation is delayed until the Entity is persisted. It occurs when two
or more new Entities must be added to a java.util.Set, but their identity has not yet been assigned, making them equal to the
other new ones (for example, null, or 0, or -1). If the Entity’s equals() method compares identities, those newly added to the

Set will appear to be the same object. Only the first object added will be contained, and all others will be excluded. This
causes a dubious bug whose root cause is at first difficult to understand and fix.

To avoid this bug we must do one of two things. Either we change the design to allocate and assign identity early, or we
refactor the equals() method to compare attributes other than the domain identity. If choosing the equals() method approach,
it must be implemented as if the Entity is a Value Object. In that case, the same object’s hashCode() method must harmonize
with the equals() method:
Click here to view code image

public class User extends Entity {
 ...
 @Override
 public boolean equals(Object anObject) {
 boolean equalObjects = false;
 if (anObject != null &&
 this.getClass() == anObject.getClass()) {
 User typedObject = (User) anObject;
 equalObjects =
 this.tenantId().equals(typedObject.tenantId()) &&
 this.username().equals(typedObject.username()));
 }
 return equalObjects;
 }

 @Override
 public int hashCode() {
 int hashCode =
 + (151513 * 229)
 + this.tenantId().hashCode()
 + this.username().hashCode();

 return hashCode;
 }
 ...
}

In the case of a multitenancy environment, the TenantId instance is also considered part of unique identity. No two User
objects under different Tenant subscribers must be considered equal.

More to the point, when faced with this add-to-Set situation, I prefer early allocation and assignment to the Value equality
test approach. It is more desirable for Entities to have equals() and hashCode() methods that are based on the object’s
unique identity rather than other attributes.

Surrogate Identity
Some ORM tools, such as Hibernate, want to deal with object identity on their own terms. Hibernate prefers the database’s

native type, such as a numeric sequence, as the primary identity of each Entity. If the domain requires another kind of identity, it
causes an undesirable conflict for Hibernate. To cure this, we need to use two identities. One of the identities is designed for
the domain model and adheres to the requirements of the domain. The other is for Hibernate and is known as a surrogate
identity.

Creating a surrogate identity is straightforward. Create an attribute on the Entity to hold the type of the surrogate. Generally a
long or int does it. Also create a column in the database entity table to hold the unique identity, and place a primary key
constraint on it. Then include in the Entity’s Hibernate mapping definition an <id> element. Remember, in this case it has
nothing to do with the domain-specific identity. It is being created only for the sake of the ORM, Hibernate.

It’s best to hide the surrogate attribute from the outside world. Because the surrogate is not part of the domain model,
visibility constitutes persistence leakage. Although some leakage may be unavoidable, we can take some steps to tuck it away
from model developers and clients.

One safeguard employs a Layer Supertype [Fowler, P of EAA]:
Click here to view code image

public abstract class IdentifiedDomainObject
 implements Serializable {

 private long id = -1;

 public IdentifiedDomainObject() {
 super();
 }

 protected long id() {
 return this.id;
 }

 protected void setId(long anId) {
 this.id = anId;
 }
}

This Layer Supertype is IdentifiedDomainObject, an abstract base class that hides the surrogate primary key from the
view of clients using protected accessor methods. Clients will never have to wonder if the methods are for their use since
they are not visible outside the Module (9) of the Entity that extends the base class. We could even declare private scope.
Hibernate has no problems using method or field reflection with any level of visibility, public to private. Additional Layer
Supertypes may add value, such as for supporting optimistic concurrency, as seen in Aggregates (10).

We need to map the surrogate id attribute to the database column through the Hibernate definition. Here class User has its
id attribute mapped to the database table column named id:
Click here to view code image

<hibernate-mapping default-cascade="all">
 <class
 name="com.saasovation.identityaccess.domain.model.identity.User"
 table="tbl_user" lazy="true">

 <id
 name="id"
 type="long"
 column="id"
 unsaved-value="-1">

 <generator class="native"/>
 </id>
 ...
 </class>
</hibernate-mapping>

Here is the MySQL table definition to store the User objects:
Click here to view code image

CREATE TABLE `tbl_user` (
 `id` int(11) NOT NULL auto_increment,
 `enablement_enabled` tinyint(1) NOT NULL,
 `enablement_end_date` datetime,
 `enablement_start_date` datetime,
 `password` varchar(32) NOT NULL,
 `tenant_id_id` varchar(36) NOT NULL,
 `username` varchar(25) NOT NULL,
 KEY `k_tenant_id_id` (`tenant_id_id`),
 UNIQUE KEY `k_tenant_id_username` (`tenant_id_id`,`username`),
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

The first column, id, is the surrogate identity. The last column statement in the definition declares id as the table’s primary
key. We can distinguish the surrogate and the domain’s identity. There are two columns, tenant_id_id and username, that
provide unique identity for the domain. They are combined to form one unique key named k_tenant_id_username.

There is no need for the domain identity to play the role of database primary key. We allow the surrogate id to serve as the
database primary key, which keeps Hibernate happy.

Surrogate database primary keys can be used throughout the data model as foreign keys in other tables, providing referential
integrity. This may be a requirement for data management in your enterprise (for example, for audits) or for tools support. The
referential integrity is important for Hibernate, too, when wiring tables together to implement the various any-to-any (such as
1:M) mappings. They also support table joins to optimize queries when reading Aggregates out of the database.

Identity Stability
In most cases unique identity must be protected from modification, remaining stable throughout the lifetime of the Entity to

which it is assigned.
Trivial measures may be taken to prevent identity modification. We can hide identity setters from clients. We might also

create guards in setters to prevent even the Entity itself from changing the state of the identity if it already exists. Guards are
coded as assertions in Entity setters. Here’s an example of an identity setter:
Click here to view code image

public class User extends Entity {
 ...
 protected void setUsername(String aUsername) {
 if (this.username != null) {
 throw new IllegalStateException(
 "The username may not be changed.");
 }
 if (aUsername == null) {
 throw new IllegalArgumentException(
 "The username may not be set to null.");
 }
 this.username = aUsername;
 }
 ...
}

In this example, the username attribute, being the domain identity of the User Entity, is mutable only once, and only
internally. The setter, method setUsername(), provides self-encapsulation that is hidden from clients. When an Entity public
behavior self-delegates to the setter, the method checks the username attribute to see if it is already non-null. If it is already
non-null, indicating an unchangeable invariant state, the IllegalStateException is thrown. The exception indicates that
username must be maintained as a modify-once state.

Whiteboard Time
• Consider some true Entities from your current domain and write their names.

What are their unique identities, both domain and surrogate? Would any of the identities have been better served by a
different kind of identity generation, or the timing of the identity assignment?

• Indicate next to each Entity whether you should have used a different identity assignment approach—user,
application, persistence, or other Bounded Context—and why (even if you can’t change it now).
• Note next to each Entity whether it needs early identity generation or can suffice with late identity generation, and
explain why.

Consider the stability of each identity, which is one area you can improve on if necessary.

This setter does not get in the way of Hibernate when it needs to reconstitute object state from persistence. Since the object
is first constructed with its default, zero-argument constructor, the username attribute is initially null. This enables re-
initialization to occur cleanly, and the setter will enable the one-time Hibernate-initiated assignment to take place. This is
completely bypassed when instructing Hibernate to use field (attribute) access for persistence and rehydration purposes, rather
than accessors.

A test affirms that the modify-once guard properly protects the state of User identity:
Click here to view code image

public class UserTest extends IdentityTest {
 ...
 public void testUsernameImmutable() throws Exception {
 try {
 User user = this.userFixture();
 user.setUsername("testusername");
 fail("The username must be immutable after↵
initialization.");
 } catch (IllegalStateException e) {
 // expected, fall through
 }
 }
 ...
}

This exemplary test demonstrates how the model works. Upon successful completion it proves that method setUsername()
guards existing, non-null identity from being altered. (We discuss guards and Entity tests more thoroughly as part of
validation.)

Discovering Entities and Their Intrinsic Characteristics
Now let’s look at some lessons learned by the SaaSOvation teams . . .

At first the CollabOvation team got caught in the trap of doing a lot of entity-relationship (ER) modeling in Java code. They put
too much focus on database, tables, and columns, and how those were reflected in objects. That led to a largely Anemic
Domain Model [Fowler, Anemic] composed of a lot of getters and setters. They should have been thinking more about DDD.
By the time they needed to factor out the security tangle, as described in Bounded Contexts (2), they had learned to focus more
on modeling the Ubiquitous Language. That led to good results. In this section we will see how the newer Identity and Access
Context team gained from the lessons learned.

The Ubiquitous Language in a cleanly separated Bounded Context gives us the concepts and terms we need to design our
domain model. The Language doesn’t suddenly appear. It must be developed through careful discussion with domain experts
and by mining requirements. Some terminology uncovered will be nouns that name things, adjectives that describe them, and
verbs that indicate what the things do. It would be a mistake to think that the objects distill to only a set of nouns that name
classes and verbs that name prominent operations, that we can capture deep insight by considering nothing else. Limiting
ourselves in that way could stifle the fluency and richness that the model deserves. Investing in liberal amounts of discussion
and reviews of specifications will help develop a Language that reflects considerable thought, effort, agreement, and
compromise. In the end the team speaks the Language in complete sentences, and the model clearly reflects the spoken
Language.

If it is important for these special domain scenarios to outlive team discussions, capture them in a lightweight document. In
an early form, your Ubiquitous Language can take the shape of a glossary and a set of simple usage scenarios. Yet, it would be
a further mistake to think of the Language as the glossary and scenarios only. In the end the Language is modeled by your code,
and it may be difficult or impossible to keep documentation in sync.

Uncovering Entities and Properties

Let’s take up a very basic example. In the Identity and Access Context the SaaSOvation team knows that it needs to model a
User. True, this modeling example is not taken from the Core Domain (2), but we do transition to that example later. At this
time I want to clear away added complexity inherent with the Core Domain and just focus on a more basic Entity. It has enough
modeling challenge to serve as an effective teaching tool.

Here’s what the team knew about a User in terse software requirements (not use cases or user stories) that roughly reflected
statements from the Ubiquitous Language. They did need refinement:

• Users exist in association with and under the control of a tenancy.
• Users of a system must be authenticated.
• Users possess personal information, including a name and contact information.
• User personal information may be changed by the users themselves or by a manager.
• User security credentials (passwords) may be changed.

The team had to read and listen carefully. As soon as they saw/heard different forms of the word change used, they
were pretty sure that they were dealing with at least one Entity. True enough, “change” could also mean “replace the
Value” instead of “change the Entity.” Was there anything else that sealed the team’s choice of which building block to
use? There was. The key term was authenticated, which was a strong indication to the team that some kind of search
resolution needed to be provided. If you have a bunch of things, and one of the things needs to be found out of many, you
need unique identity to distinguish the one from all others. A search will need to resolve from many users in association
with a tenant down to a single one.

But what about the statement regarding tenancy controlling users? Doesn’t that imply that the real Entity here is Tenant, not
User? This opens up a discussion about Aggregates (10), which we save for that chapter. In short, the answer is “yes and no.”
Yes, there is a Tenant Entity, and no, this doesn’t mean there is not a User Entity. They are both Entities. To understand why
Tenant and User are the Roots (10) of two different Aggregates, see that chapter. And yes, both User and Tenant are
ultimately types of Aggregates, but the team avoids those concerns at first.

The justification here is that each User must be uniquely identified, clearly distinguished from all others. A User must also
support change over time, so it is clearly an Entity. At this time, it doesn’t matter how we model the personal information
inside the User.

The team needed to give some attention to clarifying the meaning of the first requirement:
• Users exist in association with and under the control of a tenancy.

At first the team could just add a note or change the wording of the statement in some way that would show that tenants
own users, but they don’t collect and contain them . The team needed to be careful because they didn’t want to get down
into the technical and tactical modeling weeds. The statements needed to make sense to the whole team. They settled on
this:

• Tenants allow for the registration of many users by invitation.
• Tenants may be active or be deactivated.
• Users of a system must be authenticated but can be authenticated only if the tenant is active.
• . . .

Well, that was a surprise! Following further discussion, the team cut cleanly through the issues of word craft and at the
same time gave the requirements much more meaning. They found that the original statement about users under tenancy
control was incomplete. The fact is that users are registered within a tenancy, and by invitation only. It was also important
to state that tenants may be active or inactive, and that users can be authenticated only when their tenancy is active. This
complete restating of one requirement, the addition of another, and the clarification of a third revealed a far more accurate
definition of what actually happens.

The effort did away with any possible implications about what manages the life cycle of users but made it clear that
whatever owns users, some users may be unavailable under specific circumstances. Those were the important scenarios
to capture at that time.

It seemed at this point that they had the beginnings of a glossary of the terms of a Ubiquitous Language. Still, they didn’t
have enough information to flesh out the definitions. The team will wait a while longer to make entries in the glossary.

They had a couple of known Entities, as shown in Figure 5.5. It was important to know next how they would be
uniquely identified, and what additional properties might be needed to find them among many possible objects of the same
type.

Figure 5.5. Two Entities, Tenant and User, following early discovery

The team decided that they would use a full UUID to identify each Tenant uniquely, a case where the application
generates the identity. The large text value was easily justified, not only for guaranteed uniqueness, but also because it
added a good measure of security to each subscriber. It would be difficult for anyone to randomly reproduce a UUID as
first-level access to proprietary data. They also saw the need to explicitly segregate the Entities that belonged under each
Tenant from those that belonged to every other. A requirement like this is stated to address additional security issues that
tenant subscribers—competitive businesses—have with hosted applications and services. Thus, every Entity in all
systems would be “striped” with this unique identity, and every query would require the unique identity to find any Entity,
no matter what.

The unique tenant identity is not an Entity. It is a Value of some kind. The question is, Should this identity have a
specialized type, or can it remain a simple String?

There seemed to be no need to model Side-Effect-Free Functions (6) on the identity. It’s just a hexadecimal text
representation of a large number. But the identity would be used broadly. It would be set on all other Entities in every
Context. In this case strong typing could be advantageous. By defining a TenantId Value Object, the team could more
confidently ensure that all subscriber-owned Entities were striped with the correct identity. Figure 5.6 shows how this is
modeled, with both the Tenant and the User Entities.

Figure 5.6. After an Entity is discovered and named, uncover the attributes/properties that uniquely identify it and
enable it to be found.

The Tenant must be named. The name can be a simple String attribute because it has no special behavior. The name
helps resolve queries. A help desk worker would need to find the Tenant by name before he or she could provide
assistance. It’s a necessary attribute and an “intrinsic characteristic.” The name may also be constrained as unique among
all other subscribers, but that’s not important now.

Other attributes may be associated with each subscriber, such as a support contract and call activation PIN, billing and
payment information, and maybe a business location along with customer contacts. But those are business concerns, not
part of security. Attempting to stretch the Identity and Access Context too far would be a defeating effort.

Support will be managed by a different Context. After finding the tenant by name, the software can use its unique
TenantId. It would then be used to access the Support Context, for example, or the Billing Context, or the Customer
Relationship Management Context. Support contracts, business location, and customer contacts have little to nothing to
do with security. Still, associating the name of the subscriber with the Tenant will help support personnel quickly
provide needed support. The name belongs.

Having completed what appears to be the essence of Tenant, the team turned their attention to the User Entity for a
while. What would serve as its unique identity? Most identity systems support a unique username. It doesn’t matter much
what comprises the username, as long as it is unique within the tenant. (Usernames need not be unique across tenant lines.)
It will be left to the discretion of users to determine their own usernames. If the subscribing business has certain policy
criteria for usernames, or if the names will be determined by a federated security integration, it will be left to the
registering user to comply. The team simply declared a username attribute on class User.

One requirement states that a security credential exists. It indicates that this is a password. The team picked up on the
terminology and declared a password attribute on class User. They concluded that the password would never be stored
as clear text. A note was made that the password must be encrypted. Since they will need a way to encrypt each password
before it is associated with the User, it seemed as if this called for some kind of Domain Service (7). The team created a
placeholder in the glossary of the Ubiquitous Language, which could now be started. The glossary would be limited, but
useful:

• Tenant: A named organizational subscriber of identity and access services, as well as other online services.
Facilitates user registration through invitation.
• User: A registered security principal within a tenancy, complete with personal name and contact information. The
User has a unique username and an encrypted password.
• Encryption Service: Provides a means to encrypt passwords and other data that cannot be stored and used as clear
text.

One question remained: Should the password be considered a part of the unique identity of a User? After all, it is used
to find a User. If so, we’d probably want to combine the two attributes into a Whole Value, naming it something like
Security-Principal. That would make this concept much more explicit. It is an interesting idea, but it overlooks an
important requirement: Passwords can be changed. There may also be times when services will need to find a User
without being provided with a password. This is not for authentication. (Consider the scenario where we need to check to

see if a User is playing a security Role. We can’t require a password to find a User every time we need to check for
access permissions.) It’s not identity. We can still include both the username and the password in a single authentication
query.

The idea of creating a SecurityPrincipal Value type produced a desirable modeling proposition. It was noted for
later consideration. There were also some other concepts that went unexplored, such as how registration invitations
would be provided, and the details on personal name and contact information. The team would catch those in the next
quick iteration.

Digging for Essential Behavior
After essential attributes were identified, the team could look into indispensable behavior . . .

After looking back at the basic requirements the team was given, they now sought the behavior of Tenant and User:
• Tenants may be active or be deactivated.

When we think of activating and deactivating a Tenant, we probably visualize a Boolean toggle. As true as that may be,
how it is implemented is unimportant here. If we were to place active in the attributes compartment of Tenant in the class
diagram, would that necessarily tell the reader anything useful? In Tenant.java, would the following attribute declaration
reveal intentions?

public class Tenant extends Entity {
 ...
 private boolean active;
 ...

Probably not entirely. And at first we want to focus only on attributes/properties that provide identity and enable matching
on queries. We add support details like that later.

The team could have decided in favor of declaring method setActive(boolean), though that wouldn’t really address the
terminology of the requirement. It’s not that public setter methods are never appropriate, but they should be used only when the
Language allows for them and usually only when you won’t have to use multiple setters to fulfill a single request. The multiple
setters make the intention ambiguous. They also complicate publishing a single, meaningful Domain Event as an outcome to
what should actually be a single logical command.

To address the Language, the team noted that domain experts talk about activating and deactivating. To incorporate that
terminology they’d assign operations such as activate() and deactivate() instead.

The following source is an Intention Revealing Interface [Evans] and complies with the team’s growing Ubiquitous
Language:

public class Tenant extends Entity {
 ...
 public void activate() {

 // TODO: implement
 }

 public void deactivate() {
 // TODO: implement
 }
 ...

To animate their ideas, the team first developed a test to see how it feels to use the new behaviors:
Click here to view code image

public class TenantTest ... {
 public void testActivateDeactivate() throws Exception {
 Tenant tenant = this.tenantFixture();
 assertTrue(tenant.isActive());

 tenant.deactivate();
 assertFalse(tenant.isActive());

 tenant.activate();
 assertTrue(tenant.isActive());
 }
}

After this test the team felt confident in the quality of the interface. Writing the test made them realize that another
method, isActive(), was needed. They settled on these three new methods, as seen in Figure 5.7. The Ubiquitous
Language glossary grew as well:

• Activate tenant: Facilitate the activation of a tenant using this operation, and the current state may be confirmed.

Figure 5.7. Indispensable behavior is assigned to Tenant during the first rapid iteration. Some behaviors are omitted due
to complexity but can be added soon.

• Deactivate tenant: Facilitate the deactivation of a tenant using this operation. Users may not be authenticated
when the tenant is deactivated.
• Authentication Service: Coordinates the authentication of users, first ensuring that their owning tenant is active.

The last glossary entry added here indicates the discovery of another Domain Service. Before attempting to match the
User instance, something must first check Tenant for isActive(). That understanding was gained when also considering
this requirement:

• Users of a system must be authenticated but can be authenticated only if the tenant is active.
Since there is more to authentication than merely finding a User that matches a specific username and password, a

higher-level coordinator is needed. Domain Services are good at that. Details can be added later. For now it’s important
that the team captured the AuthenticationService by name and added it to the Ubiquitous Language. The test-first
approach sure paid off.

The team also considered the following requirement:
• Tenants allow for the registration of many users by invitation.

When they started analyzing this carefully, they understood it to be a bit more complex than they wanted to deal with in
the first, rapid iteration. There seemed to be some kind of Invitation object involved. But the requirement didn’t tell
them enough to be understood clearly. The behavior to manage invitations wasn’t clear either. So the team postponed

modeling this until they could solicit more input from early domain experts and early customers. They did define the
registerUser() method, however. It is essential to the creation of User instances (see “Construction” later in the
chapter).

With that they ventured back into class User:
• Users possess personal information, including a name and contact information.
• User personal information may be changed by the users themselves or by a manager.
• User security credentials (passwords) may be changed.

User along with Fundamental Identity, two commonly combined security patterns, were applied.1 From the use of the
term personal, it is clear that a personal concept accompanies the User. The team worked out the composition and
behavior based on the preceding statements.

Person is modeled as a separate class to avoid placing too much responsibility on the User. The word personal led
the team to add Person to the Ubiquitous Language:

• Person: Contains and manages personal data about a User, including name and contact information.
Is the Person an Entity or a Value Object? Again here the word change is key. It seems unnecessary to replace the

entire Person object just because the individual’s work telephone number may change. The team made it an Entity, as
indicated in Figure 5.8, which holds two Values, the ContactInformation and Name. These were currently fuzzy
concepts and would stand to be refactored in time.

Figure 5.8. The foundational behavior of User drives out more associations. Without being overly specific, the team
modeled a few more objects along with the operations.

Managing changes to the personal name and contact information of a user resulted in some further deliberation. Should
clients be given access to the Person object inside the User? One developer questioned whether a User would always be
a person. What if it were an external system? This was not the current situation and might be rushing ahead on unknown
future requirements, but the concern had merit. If clients were given access to the shape of User, with navigation into the
Person in order to execute behavior, that could require client refactoring later.

If, instead, they modeled the personal behavior on User, making it more generalized for a security principal, they
would probably avoid some of the ripple later. After they wrote some exemplary tests to explore the notion, it seemed
like the right thing to do. They modeled User as shown in Figure 5.8.

There were other considerations. Should the team expose Person at all, or hide it from all clients? For now they
decided to leave Person exposed for the purpose of querying information. The accessor could later be redesigned to
serve a Principal interface, and Person and System would each be a specialized Principal. The team would be able
to refactor this as they gained deeper understanding.

Maintaining their cadence, the team quickly recognized the Ubiquitous Language highlighted by the final requirement
currently under consideration:

• User security credentials (passwords) may be changed.

The User has a changePassword() behavior. This reflects the term used in requirements and satisfies domain experts.
Access to even the encrypted password is never granted to clients. Once the password is set on User, it is never exposed
beyond the Aggregate boundary. Anything seeking authentication has but one approach, using the
AuthenticationService.

The team also decided that all behaviors that could cause modification, when successful, were to publish a specific
Domain Event outcome. This, too, was more detail than the team wanted to address early on. But they did recognize the
need for Events. Events would accomplish at least two things. First, they would enable change tracking through the life
cycle of all objects (discussed later). Second, they would enable outside subscribers to synchronize with the changes,
giving outsiders the potential for autonomy.

Those topics are discussed in Events (8) and Integrating Bounded Contexts (13).

Roles and Responsibilities
An aspect of modeling is to discover the roles and responsibilities of objects. Role and responsibility analysis is applicable

to domain objects in general. Here we look specifically at the roles and responsibilities of Entities.
We need some context for the term role. One use, when discussing the Identity and Access Context, is that a Role is an

Entity and Aggregate Root that addresses a broad system security concern. Clients can ask if a user is in, or plays, a security
role. That’s completely different from what I am now discussing. What I am discussing in this section is how roles can be
played by the objects in your model.
Domain Objects Playing Multiple Roles

In object-oriented programming, generally interfaces determine the roles of an implementing class. When designed correctly,
a class has one role for each interface that it implements. If the class has no explicitly declared roles—it doesn’t implement
any explicit interfaces—by default it has the role of its class. That is, the class has the implicit interface of its public methods.
Class User in the preceding examples implements no explicit interfaces, yet it plays one role, a User.

We could make one object play the role of both User and Person. Not that this is being suggested, but for now assume that
we consider this a good idea. If we did, there would be no reason to aggregate a separate Person object as a referenced
association of the User object. Instead, there would be just one object, one that plays two roles.

Why might we do this? Usually it’s because we see both similarities and differences in two or more objects. The
overlapping characteristics can be addressed by blending multiple interfaces on a single object. For example, we could have
one object be both a User and a Person, naming the implementation class HumanUser:
Click here to view code image

public interface User {
 ...
}

public interface Person {
 ...
}

public class HumanUser implements User, Person {
 ...
}

Does this make sense? Possibly, but it may also complicate things. If both interfaces are complex, it could be difficult to
implement both in one object. Also, a User may be a system, which would increase the necessary interfaces to three. Designing
the single object to play the roles of User, Person, and System would be even harder. Maybe we could simplify this by
creating a general-purpose Principal:
Click here to view code image

public interface User {
 ...
}

public interface Principal {
 ...

}

public class UserPrincipal implements User, Principal {
 ...
}

With this design we are attempting to determine the actual principal type at runtime (late binding). A person principal and a
system principal have different implementations. Systems don’t need the same kind of contact information as a person has.
Still, we might try anyway, designing a forwarding delegation implementation. To do that we’d check for the existence of one
type or the other at runtime and delegate to the existing object:
Click here to view code image

public interface User {
 ...
}

public interface Principal {
 public Name principalName();
 ...
}

public class PersonPrincipal implements Principal {
 ...
}

public class SystemPrincipal implements Principal {
 ...
}

public class UserPrincipal implements User, Principal {
 private Principal personPrincipal;
 private Principal systemPrincipal;
 ...
 public Name principalName() {
 if (personPrincipal != null) {
 return personPrincipal.principalName();
 } else if (systemPrincipal != null) {
 return systemPrincipal.principalName();
 } else {
 throw new IllegalStateException(
 "The principal is unknown.");
 }
 }
 ...
}

This design produces various problems. For one, it suffers from what is called object schizophrenia.2 Behavior is delegated
by a technique known as forwarding or dispatching. Neither personPrincipal nor system-Principal carries the identity of
Entity UserPrincipal, on which the behavior was originally executed. Object schizophrenia describes the situation where the
objects delegated to don’t know the identity of their originating object. There is confusion inside the delegates as to who they
really are. It’s not that every delegate method in the two concrete classes would be required to take on the base object’s
identity, but some could need it. We could pass in a reference to the UserPrincipal. But that complicates the design and
actually requires the Principal interface to change. That’s not good. As [Gamma et al.] states, “Delegation is a good design
choice only when it simplifies more than it complicates.”

We won’t try to solve this modeling challenge here. It’s used only to illustrate the challenges sometimes encountered when
using object roles and to emphasize that it’s a modeling style we need to be careful with. With the right tools, such as Qi4j
[Öberg], we could improve things.

It might help the situation to make role interfaces finer grained, as Udi Dahan [Dahan, Roles] promotes. Here are two
requirements that enable us to create fine-grained interfaces:

• Add new orders to a customer.
• Make a customer preferred (the condition for meeting this level is not stated).

Class Customer implements two fine-grained role interfaces: IAddOrdersToCustomer and IMakeCustomerPreferred.
Each defines only a single operation, as seen in Figure 5.9. We might even implement other interfaces, such as Ivalidator.

Figure 5.9. Using C#.NET naming conventions, the Customer Entity implements two object roles,
IAddOrdersToCustomer and IMakeCustomerPreferred.

As discussed in Aggregates (10), we wouldn’t normally collect a large number of objects, such as all its orders, on a
Customer. So let’s view this as a synthetic example, used solely as a means to illustrate how object roles are used.

The I interface name prefix is a style widely used in .NET programming. Besides following the .NET approach in general,
some think it enhances readability: “I add orders to customer” and “I make customer preferred.” Without the I prefix, the
resulting verb-based names may be less desirable: AddOrdersToCustomer and MakeCustomerPreferred. We may be more
used to naming interfaces as nouns or adjectives, and that standard could certainly be applied here instead.

Consider some advantages this style promotes. The role of an Entity can change from use case to use case. When a client
needs to add a new Order instance to a Customer, the role is different from when they want to make the Customer preferred.
There’s also a technical advantage. Different use cases may require specialized fetching strategies:
Click here to view code image

IMakeCustomerPreferred customer =
 session.Get<IMakeCustomerPreferred>(customerId);
customer.MakePreferred();

...

IAddOrdersToCustomer customer =
 session.Get<IAddOrdersToCustomer>(customerId);
customer.AddOrder(order);

The persistence mechanism interrogates the parameterization type name T of the Get<T>() method. It uses the type to look
up an associated fetching strategy that is registered with the infrastructure. If the interface happens to have no special fetching
strategy, the default is used. By executing the fetching strategy, the identified Customer object is loaded in the shape needed by
the specific use case.

We may see technical merit as role marker interfaces lend a hand to enabling behind-the-scenes hooks. Other use-case-
specific behavior can be associated with any given role, such as validation, enabling the execution of a specific validator as
the Entity modifications are being persisted.

Fine-grained interfaces make it easier for the implementing class, such as Customer, to implement the behavior on itself.
There is no need to delegate the implementation to separate classes, which helps prevent object schizophrenia.

It’s fair to ask whether there is a distinct domain modeling advantage to separating Customer behaviors by role. Compare
the previous Customer to the one in Figure 5.10; is one better than the other? Would it be easier for a client to mistakenly
invoke the AddOrder() method when it should actually invoke MakePreferred()? Probably not. But we should not judge the
approach on this alone.

Figure 5.10. Here Customer is modeled with the operations that were previously on different interfaces now collapsed
onto the single interface of the Entity class.

Perhaps the most practical use of role interfaces is also the simplest. We can leverage interfaces to hide implementation
details that we don’t want leaking out of the model to clients. Design an interface to expose exactly what we want to allow
clients to use, and nothing more. The implementation class can be far more complex than the interface. It might have all kinds of
supporting properties with getters and setters, and implementation behavior that clients will never get a glimpse of. For
example, perhaps a tool or framework forces the creation of public methods that we don’t want clients to use. Even so, the
domain model interface is not influenced by necessarily nasty technical implementation details. This has a definite domain
modeling advantage.

Along with any design choice, ensure that the Ubiquitous Language holds sway over any technical preferences. With DDD,
it’s a model of the business domain that matters most.

Construction
When we newly instantiate an Entity, we want to use a constructor that captures enough state to fully identify it and enable

clients to find it. When early identity generation is used, a correctly designed constructor takes as a parameter at least the
unique identity. If the Entity is queried by other means, such as with a name or description, we would also include all such as
constructor parameters.

Sometimes an Entity maintains one or more invariants. An invariant is a state that must stay transactionally consistent
throughout the Entity life cycle. Invariants are a concern of Aggregates, but since the Aggregate Root is always an Entity, it is
mentioned here. If an Entity has an invariant that is satisfied by the non-null state of a contained object, or calculated using
some other state, that state must be provided by one or more constructor parameters.

Every User object must contain a tenantId, username, password, and person. In other words, following successful
construction, references to these declared instance variables may never be null. The User constructor and its instance
variable setters ensure this:
Click here to view code image

public class User extends Entity {
 ...
 protected User(TenantId aTenantId, String aUsername,
 String aPassword, Person aPerson) {
 this();
 this.setPassword(aPassword);
 this.setPerson(aPerson);
 this.setTenantId(aTenantId);
 this.setUsername(aUsername);
 this.initialize();
 }
 ...
 protected void setPassword(String aPassword) {
 if (aPassword == null) {
 throw new IllegalArgumentException(
 "The password may not be set to null.");
 }
 this.password = aPassword;
 }

 protected void setPerson(Person aPerson) {
 if (aPerson == null) {
 throw new IllegalArgumentException(
 "The person may not be set to null.");
 }
 this.person = aPerson;
 }

 protected void setTenantId(TenantId aTenantId) {
 if (aTenantId == null) {
 throw new IllegalArgumentException(
 "The tenantId may not be set to null.");
 }
 this.tenantId = aTenantId;
 }

 protected void setUsername(String aUsername) {
 if (this.username != null) {
 throw new IllegalStateException(
 "The username may not be changed.");
 }
 if (aUsername == null) {
 throw new IllegalArgumentException(
 "The username may not be set to null.");
 }
 this.username = aUsername;
 }
 ...
}

The design of class User demonstrates the power of self-encapsulation. The constructor delegates instance variable
assignment to its own internal attribute/property setters, which provide self-encapsulation for the variables. The self-
encapsulation enables each setter to determine the appropriate contractual conditions for setting a portion of state. Each of the
setters individually asserts a non-null constraint on behalf of the Entity, which enforces the instance contract. The assertions
are called guards (see “Validation”). As indicated earlier in the “Identity Stability” section, the self-encapsulation techniques
of these setter methods can be more complex as needed.

Use a Factory for complex Entity instantiations. This is covered in more detail in Factories (11). In the preceding example,
did you notice that the User constructor has protected visibility? The Tenant Entity serves as a Factory for User instances, and
only classes in the same Module can see the User constructor. That way no object other than a Tenant may create User
instances:
Click here to view code image

public class Tenant extends Entity {
 ...
 public User registerUser(
 String aUsername,
 String aPassword,
 Person aPerson) {

 aPerson.setTenantId(this.tenantId());

 User user =
 new User(
 this.tenantId(),
 aUsername,
 aPassword,
 aPerson);

 return user;
 }
 ...
}

Here method registerUser() is the Factory. The Factory simplifies construction of the User default state and ensures that
the TenantId for both the User and Person Entities is always correct. This all happens under the control of a Factory method
that addresses the Ubiquitous Language.

Validation
The primary reasons to use validation in the model are to check the correctness of any one attribute/property, any whole

object, or any composition of objects. We look at three levels of validation in the model. Although there are lots of ways to
perform validation, including specialized frameworks/libraries, those are not examined here. Instead, general-purpose

approaches are presented, but these can lead to more elaborate approaches.
Validation accomplishes different things. Just because all of the attributes/properties of a domain object are individually

valid, that does not mean that the object as a whole is valid. Maybe the combination of two correct attributes invalidates the
whole object. Just because a single object as a whole is valid, that does not mean that a composition of objects is valid.
Perhaps the combination of two Entities, each of which has individual valid states, actually makes the composition invalid.
Therefore, we may need to use one or more levels of validation to address all possible issues.
Validating Attributes/Properties

How can we protect a single attribute or property—see Value Objects (6) for the difference between the two—from being
set to an invalid value? As discussed elsewhere in this chapter and book, I highly recommend the use of self-encapsulation.
Self-encapsulation facilitates the first solution.

To quote Martin Fowler, “Self encapsulation is designing your classes so that all access to data, even from within the same
class, goes through accessor methods” [Fowler, Self Encap]. Using this technique provides several advantages. It allows for
the abstraction of an object’s instance (and class/static) variables. It provides a way to easily derive attributes/properties from
any number of others the object holds. And not least for this specific discussion, it lends support for a simple form of
validation.

Actually, I don’t necessarily like calling the use of self-encapsulation to protect correct object state by the name validation.
That name puts off some developers, because validation is a separate concern and should be the responsibility of a validation
class, not a domain object. I agree. Still, I am talking about something a bit different. What I’m discussing is assertions that
follow a design-by-contract approach.

By definition, design by contract enables us to specify the preconditions, postconditions, and invariants of the components
we design. This is advocated by Bertrand Meyer and was thoroughly expressed in his Eiffel programming language. There is
some support for the Java and C# languages and a book on the subject, Design Patterns and Contracts [Jezequel et al.]. Here
we look only at preconditions, by applying guards, as a form of validation:
Click here to view code image

public final class EmailAddress {

 private String address;

 public EmailAddress(String anAddress) {
 super();
 this.setAddress(anAddress);
 }
 ...
 private void setAddress(String anAddress) {
 if (anAddress == null) {
 throw new IllegalArgumentException(
 "The address may not be set to null.");
 }
 if (anAddress.length() == 0) {
 throw new IllegalArgumentException(
 "The email address is required.");
 }
 if (anAddress.length() > 100) {
 throw new IllegalArgumentException(
 "Email address must be 100 characters or less.");
 }
 if (!java.util.regex.Pattern.matches(
 "\\w+([-+.']\\w+)*@\\w+([-.]\\w+)*\\.\\w+([-.]\\w+)*",
 anAddress)) {
 throw new IllegalArgumentException(
 "Email address and/or its format is invalid.");
 }

 this.address = anAddress;
 }
 ...
}

There are four preconditions to the method contract of setAddress(). All of the precondition guards assert a condition of

the argument anAddress:
• The parameter may not be null.
• The parameter must not be an empty string.
• The parameter must be 100 characters in length or less (but not zero characters).
• The parameter must match the basic format of an e-mail address.

If all of these preconditions pass, the address property is set to the value of anAddress. If one is not met, an
IllegalArgumentException is thrown.

Class EmailAddress is not an Entity. It is a Value Object. We use it here for a few reasons. First, it is a good example of
implementing various degrees of precondition guards, from null checks down to value formatting (more on this next). Second,
this Value is held by the Person Entity as one of its properties, indirectly through the ContactInformation Value. So,
actually, this is part of an Entity in the same way that a simple attribute declared on an Entity class is also part of it. We use the
exact same kinds of precondition guards when implementing setters for simple attributes. When a Whole Value is assigned to
an Entity property, there is no way to guard against setting insane state unless the smaller attributes within the Value are
guarded.

Cowboy Logic
LB: “I thought I had a valid argument with the missus, but then she suddenly threw an illegal argument exception
at me.”

Some developers refer to these kinds of precondition checks as defensive programming. It certainly is defensive
programming to guard against completely invalid values entering your model. Some may not agree with the increasing degree
of specificity that such guards have. Some defensive programmers agree with checking for nulls, and maybe even checking for
empty strings, but may shy away from checking for conditions such as string lengths, numeric ranges, value formats, and the
like. Some think, for example, that leaving value size checks to the database is best. They consider things like maximum string
lengths to be a concern of something other than model objects. Yet, these preconditions may be viewed as justifiable sanity
checks.

There may be occasions when it is unnecessary to check for string lengths. It could make sense when using a database whose
maximum NVARCHAR column size can never be reached. The text columns of Microsoft SQL Server can be declared using the
max keyword:
Click here to view code image

CREATE TABLE PERSON (
 ...
 CONTACT_INFORMATION_EMAIL_ADDRESS_ADDRESS
 NVARCHAR(max) NOT NULL,
 ...
) ON PRIMARY
GO

It’s not that we’d ever want an e-mail address to be 1,073,741,822 characters wide. It’s just that we want to declare a
column width that we will never need to worry about exceeding.

This may not be possible with some databases. With MySQL, there is a maximum row width of 65,535 bytes. Again, that’s

row width, not column width. If we declare even one column with the maximum VARCHAR column type width of 65,535, there is
no space left for one additional column in the table. Depending on the number of VARCHAR columns in a given table, we will
need to restrict each column width to some practical limit that will allow for all of the columns to fit. In cases like this we
could declare character columns as TEXT, since TEXT and BLOB columns are stored in separate segments. Hence, depending on
the database, there may be ways to work around column width limits and reduce the need for string length checks in the model.

If there is a potential to overflow a column, a simple string length check in the model is warranted. How impractical would
it be to translate the following into a meaningful domain error?

ORA-01401: inserted value too large for column

We couldn’t even determine which column was overflowed. It may be best to avoid this problem altogether by checking text
widths in setter preconditions. Besides, the length check need not be only about a database column constraint. In the end, it is
the domain itself that may constrain a text length for very justifiable reasons, such as constraints on legacy systems we integrate
with.

We may also have to consider guarding high-low range checks, and possibly others. Even a simple formatting check, like the
e-mail address format, makes sense if we want to prevent a completely insane value from being associated with an Entity.
Certainly if basic values of a single Entity are sane, it will be easier to perform coarse-grained validation on whole objects
and object compositions.
Validating Whole Objects

Even though we may have an Entity with completely valid attributes/properties, it does not necessarily mean the entire Entity
is valid. To validate a whole Entity, we need to have access to the state of the entire object—all of its attributes/properties.
We also need a Specification [Evans & Fowler, Spec] or Strategy [Gamma et al.] for the validation.

In his Checks pattern language, Ward Cunningham [Cunningham, Checks] addresses several approaches to validation. A
useful one for whole objects is Deferred Validation. Ward says that this is “a class of checking that should be deferred until
the last possible moment.” It is deferred because it is a kind of very detailed validation, one that we would run over at least
one complex object, or even a composition of objects. For that reason we discuss Deferred Validation later also as a means to
address larger compositions of objects. In this subsection I limit validations to what Ward calls “the checks of simpler
activities.”

Because the entire state of the Entity must be available to the validation, some may see this as a good time to embed
validation processing logic right in the Entity. Be cautious here. Many times the validation of a domain object changes more
often than the domain object itself. Embedding validation inside an Entity also gives it too many responsibilities. It already has
the responsibility to address domain behavior as it maintains its state.

A validation component has the responsibility to determine whether or not the Entity state is valid. When designing a
separate validation class with Java, place it in the same Module (package) as the Entity. Assuming the use of Java, declare
attribute/property read accessors with at least protected/package scope, and public is fine. Private scope will not allow the
validation class to read the necessary state. If the validation class is not placed in the same Module as the Entity, all
attribute/property accessors must be public, which is undesirable in many cases.

The validation class can implement the Specification pattern or the Strategy pattern. If it detects an invalid state, it informs
the client or otherwise makes a record of the results that can be reviewed later (for example, after batch processing). It is
important for the validation process to collect a full set of results rather than throw an exception at the first sign of trouble.
Consider this reusable, abstract validator and concrete subclass:
Click here to view code image

public abstract class Validator {
 private ValidationNotificationHandler notificationHandler;
 ...
 public Validator(ValidationNotificationHandler aHandler) {
 super();
 this.setNotificationHandler(aHandler);
 }

 public abstract void validate();

 protected ValidationNotificationHandler notificationHandler() {
 return this.notificationHandler;
 }

 private void setNotificationHandler(
 ValidationNotificationHandler aHandler) {
 this.notificationHandler = aHandler;
 }
}

Click here to view code image

public class WarbleValidator extends Validator {

 private Warble warble;

 public Validator(
 Warble aWarble,
 ValidationNotificationHandler aHandler) {
 super(aHandler);
 this.setWarble(aWarble);
 }
 ...
 public void validate() {
 if (this.hasWarpedWarbleCondition(this.warble())) {
 this.notificationHandler().handleError(
 "The warble is warped.");
 }
 if (this.hasWackyWarbleState(this.warble())) {
 this.notificationHandler().handleError(
 "The warble has a wacky state.");
 }
 ...
 }
}

T he WarbleValidator is instantiated with a ValidationNotificationHandler. Whenever an invalid condition is
encountered, the ValidationNotificationHandler is asked to handle the condition. The
ValidationNotificationHandler is a general-purpose implementation with a handleError() method that takes a String
notification message. We may instead create specialized implementations that have a different method for each kind of invalid
condition:
Click here to view code image

class WarbleValidator extends Validator {
 ...
 public void validate() {
 if (this.hasWarpedWarbleCondition(this.warble())) {
 this.notificationHandler().handleWarpedWarble();
 }
 if (this.hasWackyWarbleState(this.warble())) {
 this.notificationHandler().handleWackyWarbleState();
 }
 }
 ...
}

This has the advantage of not coupling error messages, or message property keys, or anything specific to notification, to the
validation process. Even better, place the notification handling inside the check method:
Click here to view code image

class WarbleValidator extends Validator {
 ...
 public Validator(
 Warble aWarble,
 ValidationNotificationHandler aHandler) {
 super(aHandler);
 this.setWarble(aWarble);
 }
 ...

 public void validate() {
 this.checkForWarpedWarbleCondition();
 this.checkForWackyWarbleState();
 ...
 }
 ...
 protected checkForWarpedWarbleCondition() {
 if (this.warble()...) {
 this.warbleNotificationHandler().handleWarpedWarble();
 }
 }
 ...
 protected WarbleValidationNotificationHandler
 warbleNotificationHandler() {
 return (WarbleValidationNotificationHandler)
 this.notificationHandler();
 }
}

In this example we use a Warble-specific ValidationNotificationHandler. It comes in as a standard type but is cast to
the specific type when used internally. It is up to the model to work out the contract between itself and clients to supply the
correct type.

How do clients ensure that Entity validation occurs? And where does validation processing begin?
One way places a validate() method on all Entities that require validation and may do so using a Layer Supertype:

Click here to view code image

public abstract class Entity
 extends IdentifiedDomainObject {

 public Entity() {
 super();
 }

 public void validate(
 ValidationNotificationHandler aHandler) {

 }
}

A ny Entity subclass can safely have its validate() method invoked. If the concrete Entity supports specialized
validation, it is executed. If not supported, the behavior is a no-op. If only some Entities validate, it may be best to declare
validate() only on those that need it.

However, should Entities actually validate themselves? Having its own validate() method doesn’t mean the Entity itself
performs validation. Yet, it does allow the Entity to determine what validates it, relieving clients from that concern:
Click here to view code image

public class Warble extends Entity {
 ...
 @Override
 public void validate(ValidationNotificationHandler aHandler) {
 (new WarbleValidator(this, aHandler)).validate();
 }
 ...
}

Each specialized Validator subclass performs any number of fine-grained validations, as needed. The Entity needs to
know nothing about how it is validated, only that it can be validated. The separate Validator subclass also allows the
validation process to change at a different pace from the Entity and enables complex validations to be thoroughly tested.
Validating Object Compositions

We can use Deferred Validation for what Ward Cunningham says are the “more complex actions requiring all of the checks
of simpler activities and then some.” Here we determine not only that an individual Entity is valid, but that a cluster or

composition of Entities are all valid together, including one or more Aggregate instances. To do so we could instantiate the
concrete Validator subclass with the appropriate number of instances. But it may be best to manage that kind of validation
using a Domain Service. The Domain Service can use Repositories to read the Aggregate instances it needs to validate. It can
then run each instance through its paces, separately or in combination with others.

Decide whether validation is appropriate at all times. On occasion an Aggregate or a set of Aggregates is in a temporary,
intermediate state. Perhaps we could model a status on an Aggregate to indicate this, preventing validation at inappropriate
times. When the conditions are ripe for validation, the model could inform clients by publishing a Domain Event:
Click here to view code image

public class SomeApplicationService ... {
 ...
 public void doWarbleUseCaseTask(...) {
 Warble warble =
 this.warbleRepository.warbleOfId(aWarbleId);

 DomainEventPublisher
 .instance()
 .subscribe(new DomainEventSubscriber<WarbleTransitioned>(){
 public void handleEvent(DomainEvent aDomainEvent) {
 ValidationNotificationHandler handler = ...;
 warble.validate(handler);
 ...
 }
 public Class<WarbleTransitioned>
 subscribedToEventType() {
 return WarbleTransitioned.class;
 }
 });

 warble.performSomeMajorTransitioningBehavior();
 }
}

When received by the client, WarbleTransitioned indicates that validation is now appropriate. Until that time the client
refrains from validating.

Change Tracking
By the definition of Entity, it is not necessary to track the changes that occur on state over its lifetime. We have to support

only its continuously changing state. However, sometimes domain experts care about important occurrences in the model as
time passes. When that’s the case, tracking specific changes to Entities can help.

The most practical way to achieve accurate and useful change tracking is with Domain Events and an Event Store. We create
a unique Event type for every important state-altering command executed against every Aggregate that domain experts care
about. The combination of the Event name and its properties makes the record of change explicit. The Events are published as
the command methods complete. A subscriber registers to receive every Event produced by the model. When received, the
subscriber saves the Event to the Event Store.

Domain experts may not care about every change to a model, but the technical team may care anyway. This is usually for
technical reasons, using a pattern named Event Sourcing (4).

Wrap-Up
We’ve run the gamut of Entity-related topics. Here’s a recap of what you’ve learned:

• You’ve covered four primary ways to generate Entity unique identities.
• You understand the importance of the timing of generation, and how to use surrogate identity.

• You now know how to ensure the stability of identities.
• We discussed how to discover the intrinsic characteristics of Entities by uncovering the Ubiquitous Language in
Context. You saw how both properties and behavior are discovered.
• Along with core behavior, you looked into the strengths and weaknesses of modeling Entities using multiple roles.
• Finally, you examined the details of how to construct Entities, how to validate them, and how to track their changes
when necessary.

Next, we’ll be looking at a very important building block among the tactical modeling tools, Value Objects.

Chapter 6. Value Objects

Price is what you pay. Value is what you get.
—Warren Buffett

Although often overshadowed by entity-think, Value Objects are a vital building block of DDD. Examples of objects that
are commonly modeled as Values are numbers, such as 3, 10, and 293.51; text strings, such as “hello, world!” and “Domain-
Driven Design”; dates; times; more detailed objects such as a person’s full name composed of first, middle, last name, and title
attributes; and others such as currency, colors, phone numbers, and postal addresses. And there are more complex kinds. I’ll be
discussing Values that model concepts of your domain using your Ubiquitous Language (1), addressing the goals of Domain-
Driven Design.

Know the Value Advantages
Value types that measure, quantify, or describe things are easier to create, test, use, optimize, and maintain.

It may surprise you to learn that we should strive to model using Value Objects instead of Entities wherever possible. Even
when a domain concept must be modeled as an Entity, the Entity’s design should be biased toward serving as a Value container
rather than a child Entity container. That advice is not based on an arbitrary preference. Value types that measure, quantify, or
describe things are easier to create, test, use, optimize, and maintain.

Road Map to This Chapter
• Learn how to understand the characteristics of a domain concept to model as a Value.
• See how to leverage Value Objects to minimize integration complexity.
• Examine the use of domain Standard Types expressed as Values.
• Consider how SaaSOvation learned the importance of Values.
• Learn how the SaaSOvation teams tested, implemented, and persisted their Value types.

At first the SaaSOvation teams went overboard with their use of Entities. This actually started to happen well before the User
and Permission concepts got intertwined with collaboration. From project inception they followed the popular mode of
thinking that every element of their domain model needed to map to its own database table, and that all their attributes should
be easily set and retrieved through public accessor methods. Since every object had a database primary key, the model was
tightly stitched together into a large, complex graph. That idea primarily came from the data modeling perspective that most
developers have when unduly influenced by relational databases, where everything is normalized and referenced using foreign
keys. As they later learned, getting caught in the tide of entity-think was not only unnecessary, it was also more costly in
development time and effort.

When designed correctly, a Value instance can be created, handed off, and forgotten about. We don’t have to worry that the

consumer has somehow modified it incorrectly, or even modified it at all. A Value can have a brief or long existence. It’s just
an unharmed and harmless Value that comes and goes as needed.

This is a huge load off of our mind, similar to transitioning from a programming language without managed memory facilities
to one with garbage collection. With the ease of use that Values afford, we should want as much of their kind as we can
possibly justify.

So how do we determine if a domain concept should be modeled as a Value? We have to pay close attention to its
characteristics.

When you care only about the attributes of an element of the model, classify it as a VALUE OBJECT.
Make it express the meaning of the attributes it conveys and give it related functionality. Treat the
VALUE OBJECT as immutable. Don’t give it any identity and avoid the design complexities
necessary to maintain ENTITIES. [Evans, p. 99]

As easy as it may be to create a Value type, sometimes those inexperienced with DDD face confusion when trying to choose
whether to model an Entity or a Value in a specific instance. The truth is that even experienced designers struggle with this
from time to time. Along with showing you how to implement a Value, I hope to clear up some of the mystery around the
sometimes confusing decision-making process.

Value Characteristics
As a first order of business, make certain when modeling a domain concept as a Value Object that you are addressing the

Ubiquitous Language. Consider this to be an overarching principle and a characteristic that must be achieved. I imply this
principle throughout the chapter.

When you are trying to decide whether a concept is a Value, you should determine whether it possesses most of these
characteristics:

• It measures, quantifies, or describes a thing in the domain.
• It can be maintained as immutable.
• It models a conceptual whole by composing related attributes as an integral unit.
• It is completely replaceable when the measurement or description changes.
• It can be compared with others using Value equality.
• It supplies its collaborators with Side-Effect-Free Behavior [Evans].

It will help to understand each of these characteristics in more detail. By employing this approach to analyzing design
elements in the model, you may find that you should use Value Objects far more often than you may have before.

Measures, Quantifies, or Describes
When you have a true Value Object in your model, whether you realize it or not, it is not a thing in your domain. Instead, it is

actually a concept that measures, quantifies, or otherwise describes a thing in the domain. A person has an age. The age is not
really a thing but measures or quantifies the number of years the person (thing) has lived. A person has a name. The name is not
a thing but describes what the person (thing) is called.

This is closely related to the Conceptual Whole characteristic.

Immutable

An object that is a Value is unchangeable after it has been created.1 When programming in Java or C#, for example, you use
one of the Value class’s constructors to create an instance, passing in as parameters all objects on which its state will be
based. The parameters may be the objects that will directly serve as the attributes of the Value, or they may be objects that will
be used to derive one or more newly constituted attributes during construction. Here’s an example of a Value Object type that
holds a reference to another Value Object:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

public final class BusinessPriority implements Serializable {
 private BusinessPriorityRatings ratings;

 public BusinessPriority(BusinessPriorityRatings aRatings) {
 super();
 this.setRatings(aRatings);

 this.initialize();
 }
 ...
}

Instantiation alone does not guarantee that an object is immutable. After the object has been instantiated and initialized by
means of construction, none of its methods, whether public or hidden, will from that time forward cause its state to change. In
this example only the setRatings() and initialize() methods may mutate state because they are used only in the scope of
construction. Method setRatings() is private/hidden and cannot be invoked from outside the instance.2 Further, class
BusinessPriority must be implemented such that none of its methods other than constructors, public or hidden, may invoke
the setter. Later I will discuss how to test Value Objects for immutability.

Depending on your taste, you can at times design Value Objects that hold references to Entities. But some caution may be
warranted. When the referenced Entities change state—by the Entity’s behavior—the Value changes, too, which violates the
quality of immutability. Thus, it may be best to employ the mindset that Entity references held by Value types are used for the
sake of compositional immutability, expressiveness, and convenience. Otherwise, if Entities are held with the express purpose
of mutating their state through the Value Object’s interface, that’s probably the wrong reason to compose them. Weigh the
competing forces while considering the Side-Effect-Free Behavior characteristic discussed later in the chapter.

Challenge Your Assumptions
If you think that the object you are designing must be mutated by its behavior, ask yourself why that is necessary. Would it
be possible instead to use replacement when the Value must change? Using this approach where possible is designing
toward simplification.

Sometimes it makes no sense for an object to be immutable. That’s perfectly fine, and it indicates that the object should
be modeled as an Entity. If your analysis leads you to that conclusion, refer to Entities (5).

Conceptual Whole
A Value Object may possess just one, a few, or a number of individual attributes, each of which is related to the others.

Each attribute contributes an important part to a whole that collectively the attributes describe. Taken apart from the others,
each of the attributes fails to provide a cohesive meaning. Only together do all the attributes form the complete intended
measure or description. This is different from merely grouping a set of attributes together in an object. The grouping itself
accomplishes little if the whole fails to adequately describe another thing in the model.

As Ward Cunningham illustrates in his Whole Value pattern3 [Cunningham, Whole Value aka Value Object], the Value
{50,000,000 dollars} has two attributes: the attribute 50,000,000 and the attribute dollars. Separately these attributes describe
something else or nothing special. This is especially true of the number 50,000,000, but certainly also of dollars. Together
these attributes are a conceptual whole that describes a monetary measure. So we would not expect the thing that is said to be
worth 50,000,000 dollars to have two separate attributes to describe its worth, one of amount that is 50,000,000 and one of
currency that is dollars. Because the thing’s worth is not just 50,000,000, and not just dollars. Here’s the inexplicit way to
model it:
Click here to view code image

// incorrectly modeled thing of worth
public class ThingOfWorth {
 private String name; // attribute
 private BigDecimal amount; // attribute
 private String currency; // attribute

 // ...
}

In this example the model and its clients have to know when and how to use amount and currency together because they
don’t form a conceptual whole. This begs for a better approach.

To properly describe a thing’s worth it must be treated not as two separate attributes, but as a whole value: {50,000,000
dollars}. Here it is modeled as a Whole Value:
Click here to view code image

public final class MonetaryValue implements Serializable {
 private BigDecimal amount;
 private String currency;

 public MonetaryValue(BigDecimal anAmount, String aCurrency) {
 this.setAmount(anAmount);
 this.setCurrency(aCurrency);
 }
 ...
}

This is not to say that MonetaryValue is perfect and could not be improved. For sure, the use of an additional Value type
such as Currency would help here. We’d replace the String type of the currency attribute with the much more descriptive
Currency type. There may also be a good argument to have a Factory and possibly a Builder [Gamma et al.] to take care of
that. But those topics would detract from the simple example that is meant to focus on the concept of Whole Value.

Because the wholeness of a concept in the domain is so important, the parent reference to a Value Object is not just an
attribute. Rather, it is a property of the containing parent object/thing in the model that holds a reference to it. Granted, the type
of the Value Object has one or more attributes (two in the case of MonetaryValue). But to the thing that holds the reference to
the Value Object instance, it is a property. Therefore, the thing that is worth 50,000,000 dollars—let’s call it ThingOfWorth—
would have a property—possibly named worth—that holds a reference to an instance of a Value Object that has two attributes
that collectively describe the measure {50,000,000 dollars}. Remember, though, that the property name—possibly worth—
and the Value type name—possibly MonetaryValue—can be determined only after establishing our Bounded Context (2) and
its Ubiquitous Language. Here’s an improved implementation:
Click here to view code image

// correctly modeled thing of worth
public class ThingOfWorth {
 private ThingName name; // property
 private MonetaryValue worth; // property
 // ...
}

As expected, I changed ThingOfWorth to possess a property of type MonetaryValue that is named worth. It sure cleans up
the otherwise disorganized attributes. But more importantly, there is now a Value that expresses a whole.

I want to draw attention to a second change, perhaps one that you were not expecting. The name of the ThingOfWorth may
be just as important to aptly describe as is its worth. So I also replaced the String type of name with the ThingName type. The
use of a String attribute for name could seem thorough enough at first. But, in later iterations, you learn that the use of a plain
String causes problems. It has allowed domain logic central to the name of a ThingOfWorth to leak out of the model. It has
leaked into other parts of the model and into client code:
Click here to view code image

// clients deal with naming issues

String name = thingOfWorth.name();
String capitalizedName =
 name.substring(0, 1).toUpperCase()
 + name.substring(1).toLowerCase();

Here the client makes a feeble attempt to fix possible capitalization issues with the name. By defining a ThingName type
instead, we can centralize all concerns dealing with the name of a ThingOfWorth. Based on this example, the ThingName may
fully format the text name upon instantiation, relieving clients of that burden. This emphasizes the need to proliferate Values
throughout the model as opposed to minimizing their significance and use. Now, rather than containing three less meaningful
attributes, ThingOfWorth contains two properly typed and named property Values.

The constructors of a Value class play into the effectiveness of a conceptual whole. Along with immutability, we require a
Value class’s constructors to be the means to ensure that the Whole Value is created in one operation. You must not allow the
attributes of a Value instance to be populated after construction, as if to build up the Whole Value piece by piece. Instead, the
final state must be guaranteed to initialize all at once, atomically. The previously expressed BusinessPriority and
MonetaryValue constructors demonstrate this.

Here’s another angle on basic value type (for example, String, Integer, or Double) overuse. There are programming
languages (such as Ruby) that allow you to effectively patch a class with new, specialized behavior. With such capabilities,
you may consider using, for example, a double floating-point value to represent currency. If you need to calculate exchange
rates between currencies, you could just patch class Double with a convertToCurrency(Currency aCurrency) behavior.
This might seem like programming coolness, but is it really a good idea to use a language feature in this case? For one thing,
this currency-specific behavior is probably lost in a sea of general-purpose floating-point responsibilities. Strike one.
Likewise, there is no built-in understanding of currencies in class Double. So you’d have to build up the language default type
to understand more about currencies. After all, you have to pass in a Currency to know the one to convert to. Strike two. Most
importantly, class Double says nothing explicit about your domain. You lose track of your domain concerns by not applying the
Ubiquitous Language. Big swing and a miss. Strike three.

Challenge Your Assumptions
If you are tempted to place multiple attributes on an Entity that as a result manifests a weakened relationship to all other
attributes, the attributes should very likely be gathered into a single Value type, or multiple Value types. Each should form
a conceptual whole that reflects cohesiveness, appropriately named from your Ubiquitous Language. If even one attribute
is associated with a descriptive concept, it is very possible that centralizing all concerns of this concept will improve the
power of the model. If one or more of the attributes must change over time, consider Whole Value replacement over
maintaining an Entity through a long life cycle.

Replaceability
In your model an immutable Value should be held as a reference by an Entity as long as its constant state describes the

currently correct Whole Value. If that is no longer true, the entire Value is completely replaced with a new Value that does
represent the currently correct whole.

The concept of replaceability is readily understood in the context of numbers. Say that you have the concept of a total that
is an integer in your domain. If the total is currently set to the value 3 but must now be the value 4, you don’t, of course,
modify the integer 3 itself to become the number 4. Instead you simply set the total to the integer 4:

int total = 3;

// later...

total = 4;

This is obvious, but it helps make a point. In this example we have just replaced the total value 3 with the value 4. This is
not an oversimplification. It is exactly what replacement does even when a given Value Object type is more complex than an
integer. Consider a more complex Value type:
Click here to view code image

FullName name = new FullName("Vaughn", "Vernon");

// later...

name = new FullName("Vaughn", "L", "Vernon");

The name starts out as the descriptive value of my first name and my last name. Later that Whole Value is replaced with the
Whole Value of my first name, the first initial of my middle name, and my last name. I did not use a method on FullName to
change the state of the value of name to contain the first initial of my middle name. That would violate the immutability quality
of the FullName Value type. Rather we simply use Whole Value replacement, assigning the name object reference an entirely
new instance of FullName. (True, this example was not an expressive way to handle replacement, and a better way is just
ahead.)

Challenge Your Assumptions
If you are leaning toward the creation of an Entity because the attributes of the object must change, challenge your
assumptions that it’s the correct model. Would object replacement work instead? Considering the preceding replacement
example, you may think that creating a new instance is impractical and lacks expressiveness. Even if the object you are

dealing with is complex and changes somewhat frequently, replacement need not be an impractical, or even ugly,
proposition. A later example demonstrates Side-Effect-Free Behavior for a simple and expressive way to deal with
Whole Value replacement.

Value Equality
When a Value Object instance is compared to another instance, a test of object equality is employed. Throughout the system

there may be many, many Value instances that are equal, and yet not the same objects. Equality is determined by comparing the
types of both objects and then their attributes. If both the types and their attributes are equal, the Values are considered equal.
Further, if any two or more Value instances are equal, you could assign (using replacement) any one of the equal Value
instances to an Entity’s property of that type and the assignment would not change the value of the property.

Here’s an example of class FullName implementing a test for Value equality:
Click here to view code image

public boolean equals(Object anObject) {
 boolean equalObjects = false;
 if (anObject != null &&
 this.getClass() == anObject.getClass()) {
 FullName typedObject = (FullName) anObject;
 equalObjects =
 this.firstName().equals(typedObject.firstName()) &&
 this.lastName().equals(typedObject.lastName());
 }
 return equalObjects;
}

Each of the attributes of two FullName instances is compared to the others (assuming this version has only first and last
names, not a middle name). If all of the attributes in both objects are equal, the two FullName instances are considered equal.
This particular Value prevents null firstName and lastName upon construction. Thus, there is no need to protect against
null in equals() comparisons of each of the corresponding properties. Further, I favor the use of self-encapsulation, so I
access attributes through their query methods. This allows for derived attributes rather than requiring each attribute to exist as
explicit state. Also implied is the need for a corresponding hashCode() implementation (demonstrated later).

Consider the combination of Value characteristics necessary to support Aggregate (10) unique identity. We need the Value
equality capability, for example, when we query for a specific Aggregate instance by identity. Immutability is also crucial. The
unique identity must never change, and this can in part be ensured through the Value immutability characteristic. We also
benefit from the conceptual whole characteristic, because the identity is named per the Ubiquitous Language and holds all
uniqueness-identifying attributes in one instance. However, in this specific case we don’t need the replacement characteristic
of a Value Object because the unique identity of an Aggregate Root will never be replaced. Yet, lacking the need for
replacement characteristics does not disqualify the use of a Value here. Further, if the identity requires some Side-Effect-Free
Behavior, it is implemented on the Value type.

Challenge Your Assumptions
Ask yourself if the concept you are designing must be an Entity identified uniquely from all other objects or if it is
sufficiently supported using Value equality. If the concept itself doesn’t require unique identity, model it as a Value
Object.

Side-Effect-Free Behavior
A method of an object can be designed as a Side-Effect-Free Function [Evans]. A function is an operation of an object that

produces output but without modifying its own state. Since no modification occurs when executing a specific operation, that
operation is said to be side-effect free. The methods of an immutable Value Object must all be Side-Effect-Free Functions
because they must not violate its immutability quality. You may consider this characteristic as part and parcel with
immutability. It is closely tied. However, I prefer to break it out as a distinct characteristic because doing so emphasizes a
huge benefit of Value Objects. Otherwise, we might see Values only as attribute containers, overlooking one of the most
powerful aspects of the pattern.

The Functional Way

Functional programming languages generally enforce this characteristic. In fact, pure functional languages allow nothing
but Side-Effect-Free Behavior, requiring all closures to receive and produce only immutable Value Objects.

Bertrand Meyer described Side-Effect-Free Functions as the Query methods of his Command-Query Separation principle,
or CQS, as discussed by Martin Fowler in [Fowler, CQS]. A query method is one that asks an object a question. By definition,
asking an object a question must not change the answer.

Here is an example of the FullName type’s use of Side-Effect-Free Behavior to produce a new replacement value of itself:
Click here to view code image

FullName name = new FullName("Vaughn", "Vernon");

// later...

name = name.withMiddleInitial("L");

This produces the same outcome as the example discussed under “Replaceability,” but in a more expressive way. This Side-
Effect-Free Function is implemented as follows:
Click here to view code image

public FullName withMiddleInitial(String aMiddleNameOrInitial) {
 if (aMiddleNameOrInitial == null) {
 throw new IllegalArgumentException(
 "Must provide a middle name or initial.");
 }

 String middle = aMiddleNameOrInitial.trim();

 if (middle.isEmpty()) {
 throw new IllegalArgumentException(
 "Must provide a middle name or initial.");
 }

 return new FullName(
 this.firstName(),
 middle.substring(0, 1).toUpperCase(),
 this.lastName());
}

In this example the method withMiddleInitial() does not modify the state of its own Value and is, therefore, side-effect
free. Instead it instantiates a new Value composed from some of its own parts and a given middle initial. This method captures
important domain business logic in the model rather than allowing it to leak out into client code, which could happen in the
earlier example.

When a Value References an Entity
Should a Value Object method be permitted to cause the modification of an Entity that is passed as a parameter? Without
stating a rule, if such a method does cause the modification of an Entity, is it really side-effect free? Would it be easy to
test that method? I say not easy or less easy. Thus, when a Value’s method takes an Entity as parameter, it may be best for
it to answer a result that the Entity could use to modify itself on its own terms.

Nonetheless, there are problems with such a design. Consider an example. Here a Scrum Product, an Entity, is used in some
way by BusinessPriority, a Value Object, to calculate a priority:

float priority = businessPriority.priorityOf(product);

Do you see flaws in this? You have probably concluded that at least some problems exist:
• What I draw attention to is that we are forcing the Value to not only depend on a Product, but also to understand
the shape of this Entity. Where possible, limit a Value to depend on and understand only its own type and the types of
its attributes. That is not always possible, but it’s a good goal.

• Someone reading the code will not know what parts of the Product will be used. The expression is not explicit,
which weakens the clarity of the model. It would be much better if some actual or derived property of Product were
passed.
• More important for this discussion, any Value method that takes an Entity as parameter cannot easily prove that it
doesn’t cause the Entity’s modification, making the operation more difficult to test. So, even though a Value promises
not to cause modification, no one can easily prove that it doesn’t.

Given this analysis, we haven’t really improved anything here. To change that and make the Value robust, you’d pass only
Values as parameters to Value methods. This way you reach the greatest level of Side-Effect-Free Behavior. It is not difficult
to accomplish:
Click here to view code image

float priority =
 businessPriority.priority(
 product.businessPriorityTotals());

Here we simply ask the Product to provide an instance of Value BusinessPriorityTotals. You may conclude that
priority() should return a type other than float. That would be especially true if expressing a priority should be a more
formal part of the Ubiquitous Language, in which case a custom value type would be in order. Decisions like these come as a
result of continually refining the model. Indeed, after some analysis the SaaSOvation team finds that the Product Entity should
not itself calculate business priority totals at all. That would eventually be performed by a Domain Service (7), and you will
see the better solution in that chapter.

If you decide against designing a specialized Value Object in favor of using a basic language Value type instead (primitive
or wrapper), you might be shortchanging your model. You won’t have the opportunity to assign domain-specific Side-Effect-
Free Functions to the basic language Value type. Any specialty behavior will be separate from the Value. And even if your
programming language allows you to patch the basic type with new behavior, is that really going to enable you to capture deep
domain insight?

Challenge Your Assumptions
If you think that a specific method cannot be side-effect free and must mutate the state of its own instance, challenge your
assumptions. Is there a way to employ replacement rather than mutation? The preceding example provides a very simple
approach to creating a new Value by reusing parts of the existing one and replacing only the specifically changed parts.
Rarely would every object in the system be a Value. Some objects will almost certainly be Entities. Carefully compare
the Value characteristic qualifiers against those of Entities. A reasonable amount of team thought and discussion should
lead to the correct conclusions.

Once the SaaSOvation teams read the [Evans] guidance about Side-Effect-Free Functions, and other Whole Value material,
they realized that they should be using Value Objects far more frequently. The teams have since come to realize that
understanding the preceding Value characteristics really helped them discover more natural Value types in their domain.

Is Everything a Value Object?
By now you may have begun to think that everything looks like a Value Object. That’s better than thinking that everything
looks like an Entity. Where you might use a little caution is when there are truly simple attributes that really don’t need
any special treatment. Perhaps those are Booleans or any numeric value that is really self-contained, needing no
additional functional support, and is related to no other attributes in the same Entity. On their own the simple attributes are
a Meaningful Whole. Still, you could certainly make the “mistake” of unnecessarily wrapping a single attribute in a Value
type with no special functionality and be better off than those who never give Value design a nod. If you find that you’ve
overdone it a bit, you can always refactor a little.

Integrate with Minimalism
There are always multiple Bounded Contexts in every DDD initiative, which means we must find appropriate ways to

integrate them. Where possible use Value Objects to model concepts in the downstream Context when objects from the
upstream Context flow in. By doing so you can integrate with a priority on minimalism, that is, minimizing the number of

properties that you assume responsibility for managing in your downstream model. Using immutable Values results in assuming
less responsibility.

Why Be So Responsible?
Using immutable Values results in assuming less responsibility.

Reusing an example from Bounded Contexts (2), recall that two Aggregates in the upstream Identity and Access Context
have an impact on the downstream Collaboration Context, as illustrated in Figure 6.1. In the Identity and Access Context the
two Aggregates are User and Role. The Collaboration Context is interested in whether a specific User plays a specific Role,
namely, Moderator. The Collaboration Context uses its Anticorruption Layer (3) to query the Open Host Service (3) of the
Identity and Access Context. If the integration-based query indicates that the Moderator role is being played by the specific
user, the Collaboration Context creates a representative object, namely, a Moderator.

Figure 6.1. The Moderator object in its Context is based on the state of a User and Role in a different Context. User
and Role are Aggregates, but Moderator is a <<value object>>

Moderator, among the Collaborator subclasses shown in Figure 6.2, is modeled as a Value Object. Instances are
statically created and associated with a Forum Aggregate, the important point being the minimized impact that multiple
Aggregates in the upstream Identity and Access Context, possessing many attributes, have on the Collaboration Context. With
just a few attributes of its own, a Moderator models an essential concept of the Ubiquitous Language spoken in the
Collaboration Context. Furthermore, class Moderator contains no single attribute from the Role Aggregate. Rather, the class
name itself captures the Moderator role played by a user. By choice, the Moderator is a statically created Value instance, and
there is no goal to keep it synchronized with the remote Context of origin. This carefully chosen quality-of-service contract lifts
a potentially heavy burden off the consuming Context.

Figure 6.2. The Collaborator class hierarchy of Value Objects. Only a few User attributes are retained from the
upstream Context, with class names making roles explicit.

Of course, there are times when an object in a downstream Context must be eventually consistent with the partial state of one
or more Aggregates in a remote Context. In that case we’d design an Aggregate in the downstream consuming Context, because
Entities are used to maintain a thread of continuity of change. But we should strive to avoid this modeling choice where
possible. When you can, choose Value Objects to model integrations. This advice is applicable in many cases when consuming
remote Standard Types.

Standard Types Expressed as Values
In many systems and applications there is a need for what I call Standard Types. Standard Types are descriptive objects

that indicate the types of things. There is the thing (Entity) or description (Value) itself, and there are also the Standard Types
to distinguish them from other types of the same thing. I am unaware of an industry standard name for this concept, but I have
also heard it called a type code and a lookup. The name type code doesn’t say much. And a lookup is a lookup of what? I
prefer the name Standard Types because it is more descriptive. To make this concept clearer, consider a few uses. In some
cases these are modeled as Power Types.

Your Ubiquitous Language defines a PhoneNumber (Value), which also requires you to describe the type of each one. “Is the
phone number a home, mobile, work, or other type of number?” asks your domain expert. Should different types of phone
numbers be modeled as a class hierarchy? Having a separate class for each type makes it more difficult for clients to
distinguish among them. Here you’d likely desire to use a Standard Type to describe the type of phone, either Home, Mobile,
Work, or Other. These descriptions represent the Standard Types of phones.

As I previously discussed, in a financial domain there is the possibility of having a Currency (Value) type to constrain a
MonetaryValue to an amount within a specific world currency. In this case the Standard Type would provide a Value for each
of the world’s currencies: AUD, CAD, CNY, EUR, GBP, JPY, USD, and so on. Using a Standard Type here helps you avoid
bogus currencies. Although the incorrect currency could be assigned to the MonetaryValue, a nonexistent currency could not
be. If using a string attribute, you could place the model into an invalid state. Consider the misspelled doolars and the
problems it would cause.

You might be working in the pharmaceutical field and designing for medications that have various kinds of administration
routes. A specific medication (Entity) has a long life cycle and change is managed over time—it is conceptualized, researched,
developed, tested, manufactured, improved, and finally discontinued. You may or may not decide to manage the life cycle
stages using Standard Types. These life cycle shifts may justifiably be managed in a few different Bounded Contexts. On the
other hand, the directed patient administration route of each medication can be classified by Standard Type descriptions, such
as IV, Oral, or Topical.

Depending on the level of standardization, these types may be maintained at the application level only, or be escalated in
importance to shared corporate databases, or be available through national or international standards bodies.

The level of standardization can sometimes influence the way Standard Types are retrieved and used inside a model.
We may think of these as Entities because they have a life of their own in a dedicated, native Bounded Context. Regardless

of how they are created and maintained by any kind of standards body, if possible we should strive to treat them as Values in
our consuming Context. This works well because they measure and describe the types of things, and measures and descriptions
are best modeled as Values. Further, one instance of {IV}, for example, is just the same as any other instance of {IV}. They are
clearly interchangeable, which also means that they are replaceable and can employ Value equality. Thus, if there is no need to
maintain a continuity of change over the life cycle of descriptive types in your Bounded Context, model them as Values.

For the sake of maintenance it is common for Standard Types to natively reside in a separate Context from the models that
consume them. There they are Entities and have a persistent life cycle with attributes such as identity, name, and
description. There may be other attributes as well, but the ones mentioned are the most common to use in a consuming
Context. We often use just one. This is in adherence to the goal to integrate with minimalism.

As a very simple example, consider a Standard Type that models a member of a group for which two types exist. There may
be members that are users and members that are themselves groups (nested groups). This Java enum represents one way to
support a Standard Type:
Click here to view code image

package com.saasovation.identityaccess.domain.model.identity;

public enum GroupMemberType {

 GROUP {
 public boolean isGroup() {
 return true;
 }
 },
 USER {
 public boolean isUser() {
 return true;
 }
 };

 public boolean isGroup() {
 return false;
 }

 public boolean isUser() {
 return false;
 }
}

A GroupMember Value instance is instantiated with a specific Group-MemberType. To demonstrate, when a User or a
Group is assigned to a Group, the assigned Aggregate is asked to render a GroupMember corresponding to itself. Here is the
toGroupMember() method implementation of class User:
Click here to view code image

protected GroupMember toGroupMember() {
 GroupMember groupMember =
 new GroupMember(
 this.tenantId(),
 this.username(),
 GroupMemberType.USER); // enum standard type

 return groupMember;
}

Use of a Java enum is a very simple way to support a Standard Type. The enum provides a well-defined finite number of
Values (in this case two), it is very lightweight, and it has by convention Side-Effect-Free Behavior. But where is the Value’s
textual description? There are two possible answers. Often there is no need to provide a description of the type, just its name.
Why? Textual descriptions are generally valid only in the User Interface Layer (14) and can be supplied by matching the type
name to a view-centric property. Many times the view-centric property must be localized (as in multilanguage computing),
making this inappropriate to support in the model. Often the name of the Standard Type alone is the best attribute to use in the
model. The second answer is that there are limited descriptions built right into the enum state names GROUP and USER. You may
render the descriptive names using the toString() behavior of each type. But if necessary, descriptive text of each type may
be modeled as well.

This sample Java enum Standard Type is also, in essence, an elegant and clutter-free State [Gamma et al.] object. At the
bottom of the enum declaration there are two methods that implement the default behavior for all States, isGroup() and
isUser(). By default, both of these methods answer false, which is the proper basic behavior. In each of the State
definitions, however, the methods are overridden to answer true as applicable for their specific State. When the state of the
Standard Type is the GROUP, the isGroup() method is overridden to produce a true outcome. When the state of the Standard
Type is the USER, the isUser() method is overridden to produce a true outcome. The state changes by replacing the current
enum value with a different one.

This enum demonstrates some very basic behavior. The State pattern implementation can be more sophisticated as needed by
the domain, adding more standard behaviors that are overridden and specialized by each State. As it is, this is an example of a
Value type whose states are constrained to a well-defined set of constants. An important one is the BacklogItemStatusType,
which provides PLANNED, SCHEDULED, COMMITTED, DONE, and REMOVED states. I use this Standard Type approach throughout the
three sample Bounded Contexts. I think it keeps them as simple as possible.

State Pattern Considered Harmful?
Some consider the State pattern to be less than desirable. A common complaint is the need to create an abstract
implementation of each of the behaviors supported by the type (the two methods at the bottom of GroupMemberType) and
then to override those behaviors when the given State must provide a specialized implementation. In Java this typically
requires a separate class (usually in a separate file) for the abstract type and also for each State. Like it or not, that is the
way of the State pattern.

I agree that when separate State classes must be developed—one for each unique state plus an abstract type—it can
become an unwieldy mess. The distinct behaviors in each class, perhaps mixed with some default behavior from the
abstract class, can lead to tight coupling of subclasses and lack of readability between types. This burden is especially
taxing if you have a large number of States. However, I think that the use of a Java enum is a very simple and possibly the
more optimal way to use the State pattern to produce a set of Standard Types. I think you get the best of both approaches.

You get a very simple Standard Type and a way to interrogate the standard for its current State. This keeps behavior
cohesive to the type. Limiting the State behavior makes for practical use.

But it’s still possible that you don’t like even this simple implementation of State, and to each his or her own.

If you decide that you dislike the use of Java enums to support Standard Types, you can always use a unique Value instance
for each type. However, if your concern is primarily that you don’t like the idea of using the State pattern, you can easily use an
enum for elegant Standard Type support without thinking of it as the State pattern. After all, I may be the first person to have put
the enum-as-State thought into your mind. That being said, there are alternatives to implementing Standard Types other than the
enum and Value approaches.

As one alternative, you can use an Aggregate as a Standard Type with one instance of the Aggregate per type. Think twice
before you run with this. Standard types should generally not be maintained inside the Bounded Context that consumes them.
Widely used Standard Types should normally be maintained in a separate Context with very carefully planned updates to
consumers. Instead, you could choose to expose Standard Type Aggregates as immutable in consumer Contexts. But ask
yourself if an immutable Entity is by definition really an Entity. If you think not, you should consider modeling it as a shared
immutable Value Object instead.

A shared immutable Value Object can be obtained from a hidden persistence store. This is a viable choice if obtained from
a Standard Type Service (7) or Factory (11). If employed, you should probably have one Service or Factory provider for each
set of Standard Types (one for phone number types, another for postal address types, one for currency types), as depicted in
Figure 6.3. In both cases the concrete implementations of a Service or Factory would access the persistence store to obtain the
shared Values as needed, but clients would never know that the Values are stored in a standards database. Using either a
Service or a Factory to provide the types also enables you to put a number of viable caching strategies to work easily and
safely because the Values are read-only from the store and immutable in the system.

Figure 6.3. A Domain Service can be used to provide Standard Types. In this case the Service goes out to the database
to read the state of a requested CurrencyType.

In the end, I think it is best to be biased toward enum for Standard Types whether or not you actually think of it as a State. If
you have many possible Standard Type instances in a single category, consider code generation to produce the enum. A code
generation approach could read through all existing Standard Types in their respective persistence store (system of record) and
create a unique type/state per row, for example.

If you decide to use classical Value Objects as Standard Types, you may find it useful to introduce a Service or Factory to
statically create instances as needed. This would have similar motivations as discussed previously but would be different in its
implementation from those producing shared Values. In this case your Service or Factory would provide statically created
immutable Value instances of each individual Standard Type. Any changes to the underlying Standard Type database entities in
the system of record would not be automatically reflected in the preexisting statically created representation instances. If you
desired to keep such statically created Value instances synchronized with the system of record, you’d need to provide a custom
solution to search for and update their state in your model. This could negate the potential usefulness of this approach.4 Thus,
you might from design inception determine that all such statically created Standard Type Values will never be updated in the
consuming Bounded Context. All competing forces must be weighed.

Testing Value Objects
To emphasize test-first, I first present sample tests before I provide the Value Object implementation. These tests drive the

domain model’s design by providing examples of how a client will use each object.

Employing this style, we are not as interested in addressing the various aspects of unit testing, thoroughly proving that the
model is completely bulletproof in every way. Rather, at this point in time there is more interest in demonstrating how various
objects in the domain model will be used by clients and what those clients can expect when they use them. It is essential to
assume the client’s perspective when designing the model in order to capture the essential concepts. Otherwise, we could be
modeling from our own perspective instead of from the business’s.

Best Sample Code
Here’s one way of thinking about this style of test: If we were writing a user’s manual for the model, we would provide
these tests as the most appropriate code samples for how clients should use this specific domain object.

This is not to say that unit tests should not be developed. All additional tests that address team standards should and must be
written. However, there are different motivations for each type of test. Unit tests and behavioral tests have their place, as do
the following modeling tests.

The Value Object selected is a good all-around representation taken from the latest Core Domain (2), the Agile Project
Management Context.

In this Bounded Context business domain experts speak of the “business priority of backlog items.” To fulfill this part of the
Ubiquitous Language we model the concept as a BusinessPriority. It provides calculated output suitable for supporting the
business analysis of the value of developing each product backlog item [Wiegers]. The outputs are cost percentage, or the cost
of developing a specific backlog item as compared to the cost of developing all others; total value, which is the total value
gained by developing a specific backlog item; and value percentage, as in the value of developing a specific backlog item
compared to the value of developing any other; and priority, which is the calculated priority the business should consider
giving this backlog item when compared against all others.

These tests actually emerged over multiple brief refactoring iterations of stepwise refinements, although they are
presented here as a finished set:

Click here to view code image

package com.saasovation.agilepm.domain.model.product;

import com.saasovation.agilepm.domain.model.DomainTest;

import java.text.NumberFormat;

public class BusinessPriorityTest extends DomainTest {

 public BusinessPriorityTest() {
 super();

 }
 ...
 private NumberFormat oneDecimal() {
 return this.decimal(1);
 }

 private NumberFormat twoDecimals() {
 return this.decimal(2);
 }

 private NumberFormat decimal(int aNumberOfDecimals) {
 NumberFormat fmt = NumberFormat.getInstance();
 fmt.setMinimumFractionDigits(aNumberOfDecimals);
 fmt.setMaximumFractionDigits(aNumberOfDecimals);
 return fmt;
 }
}

The class has some fixture helpers. Since the team needed to test the accuracy of various calculations, they coded
methods to provide NumberFormat instances for fractional values that had either one or two places to the right of the
decimal point. You’ll see next why these are useful:

Click here to view code image

 public void testCostPercentageCalculation() throws Exception {

 BusinessPriority businessPriority =
 new BusinessPriority(
 new BusinessPriorityRatings(2, 4, 1, 1));

 BusinessPriority businessPriorityCopy =
 new BusinessPriority(businessPriority);

 assertEquals(businessPriority, businessPriorityCopy);

 BusinessPriorityTotals totals =
 new BusinessPriorityTotals(53, 49, 53 + 49, 37, 33);

 float cost = businessPriority.costPercentage(totals);

 assertEquals(this.oneDecimal().format(cost), "2.7");

 assertEquals(businessPriority, businessPriorityCopy);
 }

The team came up with a good idea to test for immutability. Each test first created an instance of BusinessPriority
and then made an equivalent copy of it using the copy constructor. The first assertion in the test ensured that the copy
constructor produced a copy equal to the original.

Next, they designed the test to create BusinessPriorityTotals and assigned it to the totals method variable. With
totals they were able to use the cost-Percentage() query method and assign the results to cost. They then asserted
that the value returned was 2.7, which was the manually calculated correct outcome. Finally, they asserted that the
behavior of method costPercentage() was truly side-effect free, which would be the case if businessPriority still
had Value equality with businessPriorityCopy. From this test they gained a good idea of how to calculate cost
percentages and what their outcome would be like.

Next, they needed to test the priority, the total value, and the value percentage calculations, using the same basic plan of
attack:

Click here to view code image

 public void testPriorityCalculation() throws Exception {

 BusinessPriority businessPriority =
 new BusinessPriority(

 new BusinessPriorityRatings(2, 4, 1, 1));

 BusinessPriority businessPriorityCopy =
 new BusinessPriority(businessPriority);

 assertEquals(businessPriorityCopy, businessPriority);

 BusinessPriorityTotals totals =
 new BusinessPriorityTotals(53, 49, 53 + 49, 37, 33);

 float calculatedPriority = businessPriority.priority(totals);

 assertEquals("1.03",
 this.twoDecimals().format(calculatedPriority));

 assertEquals(businessPriority, businessPriorityCopy);
 }

 public void testTotalValueCalculation() throws Exception {

 BusinessPriority businessPriority =
 new BusinessPriority(
 new BusinessPriorityRatings(2, 4, 1, 1));

 BusinessPriority businessPriorityCopy =
 new BusinessPriority(businessPriority);

 assertEquals(businessPriority, businessPriorityCopy);

 float totalValue = businessPriority.totalValue();

 assertEquals("6.0", this.oneDecimal().format(totalValue));

 assertEquals(businessPriority, businessPriorityCopy);
 }

 public void testValuePercentageCalculation() throws Exception {

 BusinessPriority businessPriority =
 new BusinessPriority(
 new BusinessPriorityRatings(2, 4, 1, 1));

 BusinessPriority businessPriorityCopy =
 new BusinessPriority(businessPriority);

 assertEquals(businessPriority, businessPriorityCopy);

 BusinessPriorityTotals totals =
 new BusinessPriorityTotals(53, 49, 53 + 49, 37, 33);

 float valuePercentage =
 businessPriority.valuePercentage(totals);

 assertEquals("5.9", this.oneDecimal().format(valuePercentage));

 assertEquals(businessPriorityCopy, businessPriority);
 }

Tests Should Have Domain Meaning
Your model tests should have meaning to your domain experts.

Nontechnical domain experts—given a bit of help—reading these example-based tests were able to understand just
how BusinessPriority was used, the kinds of outcomes it produced, that its behavior was guaranteed to be side-effect

free, and that it adhered to the concepts and intent of the Ubiquitous Language.
Importantly, the state of the Value Object was guaranteed immutable for every usage. Clients could produce results

from the priority calculations of any number of product backlog items, sort them, compare them, and adjust the
BusinessPriorityRatings of each item as needed.

Implementation
I like this BusinessPriority example because it demonstrates all of the Value characteristics and more. Besides showing

how to design for immutability, conceptual wholeness, replaceability, Value equality, and Side-Effect-Free Behavior, it also
demonstrates how you can use a Value type as a Strategy [Gamma et al.] (aka Policy).

As each test method was developed, the team understood more about how a client would use a BusinessPriority, enabling
them to implement it to behave as the tests asserted it should. Here is the basic class definition along with constructors that the
team coded:
Click here to view code image

public final class BusinessPriority implements Serializable {

 private static final long serialVersionUID = 1L;

 private BusinessPriorityRatings ratings;

 public BusinessPriority(BusinessPriorityRatings aRatings) {
 super();
 this.setRatings(aRatings);
 }

 public BusinessPriority(BusinessPriority aBusinessPriority) {
 this(aBusinessPriority.ratings());
 }

The team decided to declare their Value types Serializable. There are times when a Value instance needs to be
serialized, such as when it is communicated to a remote system, and may be useful for some persistence strategies.

T h i s BusinessPriority itself was designed to hold a Value property named ratings of type
BusinessPriorityRatings (not shown here). The ratings property described the business value and expense trade-off
of either implementing, or not implementing, a given product backlog item. The BusinessPriority-Ratings type
provided the BusinessPriority with benefit, cost, penalty, and risk ratings, which enabled a range of calculations
to be performed.

Usually I support at least two constructors for each of my Value Objects. The first constructor takes the full complement of
parameters necessary to derive and/or set state attributes. This primary constructor first initializes its default state. The basic
attribute initialization is performed first by invoking private setters. I recommend the use of self-delegation and demonstrate its
use here with private setters.

Keeping Values Immutable
Only the primary constructor(s) use self-delegation to set properties/attributes. No other methods shall self-delegate to
setter methods. Since all setter methods in a Value Object are always private scope, there is no opportunity for attributes
to be exposed to mutation by consumers. These are two important factors in maintaining the immutability of Values.

The second constructor is used to copy an existing Value to create a new one, or what is called a copy constructor. This
constructor performs what’s known as a shallow copy as it self-delegates to its primary constructor, passing as parameters
each of the corresponding attributes of the Value being copied. We could perform a deep copy or clone where all contained
attributes and properties are themselves copied to produce a completely unique object, but still equal to the value of the one
copied. However, this many times proves to be both complex and unnecessary when dealing with Values. If a deep copy is
ever needed, it can be added. But when dealing with immutable Values, it is never a problem to share attributes/properties
between instances.

This second constructor, the copy constructor, is important for unit tests. When we test a Value Object, we want to include
verification that it is immutable. As demonstrated earlier, when the unit test begins, create the new test Value Object instance
and a copy of it using the copy constructor, and assert that the two instances are equal. Next, test the Value instance Side-
Effect-Free Behavior. If all test goal assertions pass, the final assertion is that the tested and the copied instances are still
equal.

Next, we implement the Strategy/Policy part of the Value type:
Click here to view code image

public float costPercentage(BusinessPriorityTotals aTotals) {
 return (float) 100 * this.ratings().cost() /
 aTotals.totalCost();
}

public float priority(BusinessPriorityTotals aTotals) {
 return
 this.valuePercentage(aTotals) /
 (this.costPercentage(aTotals) +
 this.riskPercentage(aTotals));
}

public float riskPercentage(BusinessPriorityTotals aTotals) {
 return (float) 100 * this.ratings().risk() /
 aTotals.totalRisk();
}

public float totalValue() {
 return this.ratings().benefit() + this.ratings().penalty();
}

public float valuePercentage(BusinessPriorityTotals aTotals) {
 return (float) 100 * this.totalValue() / aTotals.totalValue();
}

public BusinessPriorityRatings ratings() {
 return this.ratings;
}

Some of the calculation behavior requires a parameter of type BusinessPriorityTotals. This Value provides a
description of the cost-risk totals across all product backlog items. Totals are necessary when calculating percentages and the
overall business priority compared to all other backlog items. None of these behaviors modifies its own instance state. We
assert this externally in tests by comparing the copied state with the current state following the execution of each behavior.

There currently is no Separated Interface [Fowler, P of EAA] for the Strategy because there is at present only one

implementation. No doubt in time that will change, and customers of the Agile PM SaaS product will be given other business
priority calculation options, each with its own Strategy implementation.

The method names of the Side-Effect-Free Functions are important. Although these methods all return Values (because they
are CQS query methods), they purposely avoid the use of the get-prefix JavaBean naming convention. This simple but
effective approach to object design keeps the Value Object faithful to the Ubiquitous Language. The use of
getValuePercentage() is a technical computer statement, but valuePercentage() is a fluent human-readable language
expression.

Where Did My Fluent Java Go?
I think that the JavaBean specification has had a negative impact on object design, one that doesn’t promote the principles of
Domain-Driven Design or good object design in general. Consider the Java API that existed prior to the JavaBean
specification. Take java.lang.String, for one example. There are but a few query methods on the class String that are
prefixed by get. Most of the query methods are named more fluently, such as charAt(), compareTo(), concat(),
contains(), endsWith(), indexOf(), length(), replace(), startsWith(), substring(), and the like. There’s no Java
Bean code smell there! Of course, this example alone doesn’t prove my point. Nonetheless, it is true that Java APIs since the
JavaBean specification have been greatly influenced and lack fluency in expression. A fluent, human-readable language
expression is a very worthwhile style to embrace.
If you are concerned about tooling that depends on the JavaBean specification, there are solutions. For example, Hibernate
provides support for field-level access (object attributes). Thus, as far as Hibernate is concerned, your methods can be named
as desired without a negative impact on persistence.
With other tools there could be a downside to designing with expressive interfaces, however. If you desire to use the standard
Java EL or OGNL, for instance, you won’t be able to render such types directly. You would have to use another means, such as
a Data Transfer Object [Fowler, P of EAA] with getters, to transfer Value Object properties to the user interface. Since DTO
is a commonly used pattern, albeit often technically unnecessary, some may find this of little consequence. If DTO is not an
option for you, there are others. Consider the Presentation Model as discussed in Application (14). Since your Presentation
Model can serve as an Adapter [Gamma et al.], it can surface getters for use by views that use EL, for example. Yet, if all else
fails, you may need to grudgingly design your domain objects with getters.
If you reach that conclusion, you should still not design Value Objects with full JavaBean capabilities that would allow their
state to be initialized through public setters. That would violate their essential Value immutability characteristic.

The next set of methods includes the standard object overrides equals(), hashCode(), and toString():
Click here to view code image

@Override
public boolean equals(Object anObject) {
 boolean equalObjects = false;
 if (anObject != null &&
 this.getClass() == anObject.getClass()) {
 BusinessPriority typedObject = (BusinessPriority) anObject;
 equalObjects =
 this.ratings().equals(typedObject.ratings());
 }
 return equalObjects;
}

@Override
public int hashCode() {
 int hashCodeValue =
 + (169065 * 179)
 + this.ratings().hashCode();

 return hashCodeValue;
}

@Override
public String toString() {
 return
 "BusinessPriority"
 + " ratings = " + this.ratings();

}

T he equals() method fulfills the Value Object requirement to check for Value equality, one of the five Value
characteristics. Here we always eliminate null parameters from equality. The class of the parameter must be the same as the
class of the Value. If they are the same, each of the properties/attributes is compared in both Values. If each one is affirmed as
equal to its corresponding property/attribute, the Whole Values are considered equal.

Per Java standards, hashCode() has the same contract as equals() in that all Values that are equal also produce equal hash
code values.

There is nothing special about toString(). It creates a human-readable representation of the Value instance state. You may
design the representation format as needed.

There are a few remaining methods to review:
Click here to view code image

 protected BusinessPriority() {
 super();
 }

 private void setRatings(BusinessPriorityRatings aRatings) {
 if (aRatings == null) {
 throw new IllegalArgumentException(
 "The ratings are required.");
 }
 this.ratings = aRatings;
 }
}

The zero-argument constructor is provided for the sake of framework tools that require it, such as Hibernate. Since the zero-
argument constructor is always hidden, there is no danger of model clients creating invalid instances. Hibernate functions
perfectly well with hidden constructors and accessors. This constructor enables Hibernate and other tools to create instances
of the type as they are being reconstituted from, for example, the persistence store. Tools use the zero-argument constructor to
create an initially hollow instance and then call each property/attribute setter to hydrate the object. Optionally you can tell
Hibernate to bypass setter methods and directly set attributes, as is the case with this model since it doesn’t provide a complete
JavaBean interface. Just to reiterate, model clients use the public constructors, never the hidden one.

Finally, the class definition ends with the property setter for ratings. One of the strengths of self-encapsulation/delegation
is seen in this method. An accessor method—getter or setter—need not be limited to setting an instance field. It can also
perform important Assertions [Evans], a key element to successful software development in general and DDD models
specifically.

The Assertion for valid parameters is called a guard, because it guards the method from being subjected to obviously
invalid data. Guards can and should be used in any method when wrong parameters would cause more serious problems later
if correctness were otherwise taken for granted. Here the setter asserts that the parameter aRatings is not null, and if it
happens to be, it throws an IllegalArgumentException. True, the setter is logically used only once in the Value’s lifetime.
Still, the Assertion is a well-placed guard. You will see the advantages of self-delegation demonstrated elsewhere, too.
Specifically, Entities (5) explains the technique thoroughly as part of a discussion of validation.

Persisting Value Objects
There are a variety of ways to persist Value Object instances to a persistent store. In a general sense it involves serializing

the object to some text or binary format and saving it to disk. However, since we are not concerned with persisting individual
Value instances on their own, I won’t be focusing on general-purpose persistence. Rather, we are more interested in persisting
Values along with the state of the Aggregate instances that contain them. The following approaches assume that a parent Entity
ultimately holds references to the Value instances that get persisted. All of the following examples are based on the assumption
that an Aggregate is being added to or read from its Repository (12), and its contained Values are persisted and reconstituted
behind the scenes along with the Entity—such as the Aggregate Root—that contains them.

Object-relational mapping (ORM, such as Hibernate) persistence is popular and widely used. However, using an ORM to
map every class to a table and every attribute to a column adds complexity, which may be unwarranted. Rising in popularity is
the use of NoSQL databases and key-value stores because of their ability to provide high-performance, scalable, fault-tolerant,
and highly available enterprise storage. To boot, key-value stores can greatly simplify Aggregate persistence. In this chapter I

stick with ORM-based persistence. Because NoSQL, key-value stores persist Aggregates exceptionally well, I give attention to
that style in Repositories (12).

But before we jump into Value ORM persistence examples, there’s a vital modeling commitment that must be well
understood and diligently followed. So to start off, let’s tackle what can happen when data modeling (as opposed to domain
modeling) has an inappropriate influence on your domain model, and what can be done to reject this wrong and harmful
influence.

Reject Undue Influence of Data Model Leakage
Probably most times that a Value Object is persisted to a data store (for example, using an ORM tool along with a relational

database) it is stored in a denormalized fashion; that is, its attributes are stored in the same database table row as its parent
Entity object. This makes the storage and retrieval of Values clean and optimized and prevents any persistence store leakage
into the model. It’s both a pleasure and a relief when Values can be persisted this way.

There are times, however, when a Value Object in the model will of necessity be stored as an Entity with respect to a
relational persistence store. In other words, when persisted, an instance of a specific Value Object type will occupy its own
row in a relational database table that exists specifically for its type, and it will have its own database primary key column.
This happens, for example, when supporting a collection of Value Object instances with ORM. In such cases the Value type
persistent data is modeled as a database entity.

Is this an indication that the domain model object should reflect the design of the data model and be an Entity rather than a
Value? No. When you face the consequences of this impedance mismatch, it is important to maintain a domain model
perspective rather than a persistence perspective. To keep your perspective on the domain model you can ask yourself these
questions:

1. Is the concept I am modeling a thing in the domain or does it measure, quantify, or describe a thing as one of its
properties?
2. If modeled correctly to describe an element of the domain, must this model concept possess all or most of the
value characteristics outlined previously?
3. Am I considering the use of an Entity in the model only because the underlying data model must store the domain
model object as an entity?
4. Am I using an Entity because the domain model requires unique identity, I care about individual instances, and I
must manage a continuity of change over the object’s life cycle?

If your answers are “Describes, Yes, Yes, and No,” you should use a Value Object. Model the persistence store in the way
necessary to deal with the storage of the object, but don’t let that influence the way your team conceptualizes the Value
property in the domain model.

The Data Model Should Be Subordinate
Design your data model for the sake of your domain model, not your domain model for the sake of your data model.

If at all possible, always design your data model for the sake of your domain model, not your domain model for the sake of
your data model. If you do the former, you will maintain a domain model perspective. If you do the latter, you will maintain a
persistence perspective and your domain model will tend to serve merely as a projection of your data model. As you discipline
your mind to think in terms of the domain model—DDD-think—rather than the data model, you will avoid the negative
consequences of data model leakage. See Entities (5) for more discussion of DDD-think.

Of course, there are times when database referential integrity matters (such as for foreign keys). Absolutely, you want key
columns to be properly indexed. Sure, there certainly is the need to support business intelligence reporting tools that operate
against your business data. You can enable all these facets in appropriate and necessary places. Most conclude that reporting
and business intelligence should not operate against your production data and should instead have a dedicated, specially
designed data model. Following this more strategic mentality frees you to design your domain model’s backing data model to
best support your DDD efforts.

Whatever technical facets your data model uses, its entities, primary keys, referential integrity, and indexes simply must not
drive the way you model domain objects. DDD is not about structuring data in a normalized fashion. It is about modeling the
Ubiquitous Language in a consistent Bounded Context. I encourage you to adhere to DDD, not to data structure. As you do so,
you should wisely take every possible step to hide all vestiges of data model leakage (which will occur to at least a minimal
degree when using an ORM) from your domain model and its clients. This is something I discuss in the next section.

ORM and Single Value Objects

Persisting a single Value Object instance to a database is usually very straightforward. Here my focus is on the use of
Hibernate with the MySQL relational database. The basic idea is to store each of the attributes of the Value in separate
columns of the row where its parent Entity is stored. Said another way, a single Value Object is denormalized into its parent
Entity’s row. There are advantages to employing convention for column naming to clearly identify and standardize the way
serialized objects are named. I present a persisted Value Object naming convention here.

When using Hibernate to persist a single instance of a Value Object, use the component mapping element. The component
element is employed because it enables the Value to be mapped directly into the parent Entity table row in a denormalized
fashion. This is an optimal serialization technique that still enables Values to be included in SQL queries. Here is the section
of the Hibernate mapping document that describes the mapping of the Business-Priority Value Object held by its parent
Entity, class BacklogItem:
Click here to view code image

<component name="businessPriority"
 class="com.saasovation.agilepm.domain.model.product.↵
 BusinessPriority">
 <component name="ratings"
 class="com.saasovation.agilepm.domain.model.product.↵
 BusinessPriorityRatings">
 <property
 name="benefit"
 column="business_priority_ratings_benefit"
 type="int"
 update="true"
 insert="true"
 lazy="false"
 />
 <property
 name="cost"
 column="business_priority_ratings_cost"
 type="int"
 update="true"
 insert="true"
 lazy="false"
 />
 <property
 name="penalty"
 column="business_priority_ratings_penalty"
 type="int"
 update="true"
 insert="true"
 lazy="false"
 />
 <property
 name="risk"
 column="business_priority_ratings_risk"
 type="int"
 update="true"
 insert="true"
 lazy="false"
 />
 </component>
</component>

This is a good example because it demonstrates a simple Value Object mapping, but one that contains a child Value Object
instance. Recall that BusinessPriority has a single ratings Value property and no additional attributes. Thus, in the
mapping description the outer component element has a nested component element. This is used to denormalize the single
contained ratings Value property of type BusinessPriorityRatings. Since the BusinessPriority has no attributes of its
own, there are none mapped in the outer component. Instead we immediately nest the mapping of its ratings Value property.
In the end, we actually store only the four integer attributes of the BusinessPriorityRatings instance into four separate
columns of table tbl_backlog_item. So we map two component element Value Objects, one that has no attributes of its own
and an inner Value that has four attributes.

Note the use of standard column naming of each of the Hibernate property elements. The naming convention is based on the
navigation path from the ultimate parent Value down to the individual attributes. For example, consider the navigation path

from the BusinessPriority down to the benefit attribute of the ValueCostRiskRatings instance. Logically it is
businessPriority.ratings.benefit

To represent this navigation path as a single relational column name I use the following:
business_priority_ratings_benefit

Of course, you can use another representative name if you like. Perhaps you prefer one that mixes camel case with
underscores:

businessPriority_ratings_benefit

To your mind this sample notation may better express the navigation. I have standardized on all underscores since it leans
more toward traditional SQL column names rather than object names. The corresponding MySQL database table definition
includes the following columns:
Click here to view code image

CREATE TABLE `tbl_backlog_item` (
 ...
 `business_priority_ratings_benefit` int NOT NULL,
 `business_priority_ratings_cost` int NOT NULL,
 `business_priority_ratings_penalty` int NOT NULL,
 `business_priority_ratings_risk` int NOT NULL,
 ...
) ENGINE=InnoDB;

Together, the Hibernate mapping and relational database table definition provide both an optimal and queryable persistent
object. Because Value attributes are denormalized into their parent Entity’s table row, there is no need for the database to use
joins to retrieve even a deeply nested Value instance. When you specify an HQL query, Hibernate is able to easily map from
the object expression of an object attribute into an optimal SQL query expression using a column, where

businessPriority.ratings.benefit

becomes
business_priority_ratings_benefit

Hence, although there is a clear impedance mismatch between objects and relational databases, we have realized one of the
more functional and optimal mappings possible.

ORM and Many Values Serialized into a Single Column
There are unique challenges associated with mapping a collection of many Value Objects into a relational database using an

ORM. To be clear, by collection I mean a List or Set that is held by an Entity and contains zero, one, or more Value
instances. The challenges are not insurmountable, but the object-relational impedance mismatch becomes glaringly obvious
here.

One option available with Hibernate object-relational mapping is to serialize the entire collection of objects into a textual
representation and persist the representation into a single column. This approach has some drawbacks. However, in some
cases the drawbacks are unobtrusive and may be summarily ignored in favor of leveraging this option’s advantages. In such
cases you may decide to use this Value collection persistence option. Here are the potential drawbacks to consider:

• Column width. Sometimes you cannot determine the maximum number of Value elements in the collection, or the
maximum size of each serialized Value. For example, some object collections could have any number of elements—
an unknown upper limit. Also, each of the Value elements in the collection could have an indeterminate serialized
representation character width. This can happen when one or more of the attributes of the Value type are of type
String and the length in characters is many or open-ended. In either or both of these situations, it is possible that the
serialized form or the entire collection would overflow the maximum available width of a character column. This
may be further compounded by character columns that have a relatively narrow maximum width, or by the total
maximum number of bytes available to store an entire row of data. While the MySQL InnoDB engine, for example,
has a maximum VARCHAR width of 65,535 characters, it also has a limit of 65,535 total bytes of storage for a single
row. You must allow room for enough columns to store an entire Entity. Oracle Database has a maximum
VARCHAR2/NVARCHAR2 width of 4,000. If you cannot predetermine the maximum width required to store a serialized
representation of a Value collection and/or your maximum column width could be overflowed, you should avoid this

option.
• Must query. Since with this style Value collections are serialized into a flat text representation, the attributes of
individual Value elements cannot be used in SQL query expressions. If any of the Value attributes must be queryable,
you cannot use this option. It’s possible that this is a less likely reason to avoid this option since the need to query
one or more attributes out of objects in a contained collection could be rare.
• Requires custom user type. To use this approach you must develop a Hibernate custom user type that manages
serialization and deserialization of each collection. Personally, I think this is less obtrusive than the other concerns
because a single, well-thought-out, custom user type implementation can support collections of every Value Object
type (one size fits all).

I don’t provide a Hibernate custom user type here to manage collection serialization to a single column, but the Hibernate
community provides plenty of guidance for you to implement your own.

ORM and Many Values Backed by a Database Entity
A very straightforward approach to persisting a collection of Value instances using Hibernate (or other ORM) and a

relational database is to treat the Value type as an entity in the data model. To reiterate what I asserted in the section “Reject
Undue Influence of Data Model Leakage,” this approach must not lead to wrongly modeling a concept as an Entity in the
domain model just because it is best represented as a database entity for the sake of persistence. It is the object-relation
impedance mismatch that in some cases requires this approach, not a DDD principle. If there were a perfectly matched
persistence style available to you, you’d model the concept as a Value type and never give database entity characteristics a
second thought. It helps our domain modeling mind to think that way.

To accomplish this we can employ a Layer Supertype [Fowler, P of EAA]. Personally it makes me feel better to tuck away
the necessary surrogate identity (primary key). However, since every Object in Java (and other languages) already has an
internal unique identity that is used only by the virtual machine, you may feel justified in adding a specialized identity directly
to the Value. I think whatever approach we prefer, when working around the object-relational impedance mismatch we need to
formulate a convincing justification in our minds for why we make a technical choice. My preferences are addressed next.

Here’s an example of my preferred approach to surrogate keys, which uses two Layer Supertype classes:
Click here to view code image

public abstract class IdentifiedDomainObject
 implements Serializable {

 private long id = -1;

 public IdentifiedDomainObject() {
 super();
 }

 protected long id() {
 return this.id;
 }

 protected void setId(long anId) {
 this.id = anId;
 }
}

The first Layer Supertype involved is IdentifiedDomainObject. This abstract base class provides a basic surrogate
primary key that is hidden from the view of clients. Because the accessor methods are declared protected, clients will never
have to wonder if the methods are for their use. Of course, you can further avoid any knowledge of these methods by declaring
their scope private. Hibernate has no problems using method or field reflection on any scope other than public.

Next, I provide one more Layer Supertype that is specific to Value Objects:
Click here to view code image

public abstract class IdentifiedValueObject
 extends IdentifiedDomainObject {

 public IdentifiedValueObject() {

 super();
 }
}

You may consider class IdentifiedValueObject as merely a marker class, a behaviorless subclass of
IdentifiedDomainObject. I see it as having a source code documentation benefit because it makes the modeling challenge it
addresses more explicit. Along those lines, class IdentifiedDomainObject has a second direct abstract subclass named
Entity, which is discussed in Entities (5). I like this approach. You may prefer to eliminate these extra classes.

Now that there is a convenient and suitably hidden means to give any Value type a surrogate identity, here’s a sample class
that puts it to use:
Click here to view code image

public final class GroupMember extends IdentifiedValueObject {
 private String name;
 private TenantId tenantId;
 private GroupMemberType type;

 public GroupMember(
 TenantId aTenantId,
 String aName,
 GroupMemberType aType) {
 this();
 this.setName(aName);
 this.setTenantId(aTenantId);
 this.setType(aType);
 this.initialize();
 }
 ...
}

Class GroupMember is a Value type that is collected by the Root Entity of the Aggregate class Group. The Root Entity
contains any number of Group-Member instances. Now with each GroupMember instance being uniquely identified to the data
model using its surrogate primary key, we are free to map its persistence as a database entity while keeping it a Value in the
domain model. Here’s the relevant portion of class Group:
Click here to view code image

public class Group extends Entity {
 private String description;
 private Set<GroupMember> groupMembers;
 private String name;
 private TenantId tenantId;

 public Group(
 TenantId aTenantId,
 String aName,
 String aDescription) {
 this();
 this.setDescription(aDescription);
 this.setName(aName);
 this.setTenantId(aTenantId);
 this.initialize();
 }
 ...
 protected Group() {
 super();
 this.setGroupMembers(new HashSet<GroupMember>(0));
 }
 ...
}

Class Group will gradually build up any number of GroupMember instances in its Set of groupMembers. Keep in mind that
if you will ever perform whole collection replacement, always use the Collection’s clear() method prior to replacement.
Doing so ensures that the backing Hibernate Collection implementation will delete obsolete elements from the data store.

The following is not an actual Group method, but an example provided to demonstrate how, in general, to avoid orphaned
Value elements when performing whole collection replacement:
Click here to view code image

public void replaceMembers(Set<GroupMember> aReplacementMembers) {
 this.groupMembers().clear();
 this.setGroupMembers(aReplacementMembers);
}

I think this ORM leakage into the model is unobtrusive because it uses a common Collection facility, and besides, the
client doesn’t see it. Synchronizing collection contents with the database doesn’t always require careful thought. A single
Value data store deletion is automatically covered by the use of Collection’s remove() method, so in that case there’s no
ORM leakage at all.

Next, we are interested in the section of Group’s mapping description that maps the collection:
Click here to view code image

<hibernate-mapping>
 <class name="com.saasovation.identityaccess.domain.model.↵
 identity.Group"
 table="tbl_group" lazy="true">
 ...
 <set name="groupMembers" cascade="all,delete-orphan"
 inverse="false" lazy="true">
 <key column="group_id" not-null="true" />
 <one-to-many class="com.saasovation.[ccc]
 identityaccess.domain.model.identity.GroupMember" />
 </set>
 ...
 </class>
</hibernate-mapping>

The Set of groupMembers is mapped exactly as a database entity. Additionally we see the full GroupMember mapping
description:
Click here to view code image

<hibernate-mapping>
 <class name="com.saasovation.identityaccess.domain.model.↵
 identity.GroupMember"
 table="tbl_group_member" lazy="true">
 <id
 name="id"
 type="long"
 column="id"
 unsaved-value="-1">

 <generator class="native"/>
 </id>
 <property
 name="name"
 column="name"
 type="java.lang.String"
 update="true"
 insert="true"
 lazy="false"
 />
 <component name="tenantId"
 class="com.saasovation.identityaccess.domain.model.↵
 identity.TenantId">
 <property
 name="id"
 column="tenant_id_id"
 type="java.lang.String"
 update="true"

 insert="true"
 lazy="false"
 />
 </component>
 <property
 name="type"
 column="type"
 type="com.saasovation.identityaccess.infrastructure.↵
 persistence.GroupMemberTypeUserType"
 update="true"
 insert="true"
 not-null="true"
 />
 </class>
</hibernate-mapping>

Note the <id> element that defines the persistence surrogate primary key. And finally, here is the corresponding MySQL
tbl_group_member description:

Click here to view code image

CREATE TABLE `tbl_group_member` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(100) NOT NULL,
 `tenant_id_id` varchar(36) NOT NULL,
 `type` varchar(5) NOT NULL,
 `group_id` int(11) NOT NULL,
 KEY `k_group_id` (`group_id`),
 KEY `k_tenant_id_id` (`tenant_id_id`),
 CONSTRAINT `fk_1_tbl_group_member_tbl_group`
 FOREIGN KEY (`group_id`) REFERENCES `tbl_group` (`id`),
 PRIMARY KEY (`id`)
) ENGINE=InnoDB;

When we look at the GroupMember mapping and database table description, we get the strong impression that we are dealing
with an entity. There’s the primary key named id. There’s the separate table that must be joined with tbl_group. There’s the
foreign key back to tbl_group. By any other name we are dealing with an entity, but only from the data model perspective. In
the domain model GroupMember is clearly a Value Object. Appropriate steps have been taken in the domain model to carefully
hide any persistence concerns. I give no clue to clients of the domain model that any persistence leakage has occurred. And
what is more, even developers in the model must look hard to detect any notion of persistence leakage.

ORM and Many Values Backed by a Join Table
Hibernate provides a means to persist multivalued collections in a join table without requiring the Value type itself to have

any data model entity characteristics. This mapping type simply persists the collection Value elements to a dedicated table with
the parent Entity domain object’s database identity as a foreign key. Thus, all collection Value elements can be queried by their
parent’s foreign key identity and reconstituted into the model’s Value collection. The strength of this mapping approach is that
the Value type doesn’t need to have a hidden surrogate identity in order to achieve a join. To use this Value collection mapping
option you employ Hibernate’s <composite-element> tag.

This seems like a big win, and it may be for your needs. However, there are weaknesses to this approach that you should be
aware of. One downside is that a join is necessary even if your Value type requires no surrogate key because it involves
normalization of two tables. True, the “ORM and Many Values Backed by a Database Entity” approach also requires a join.
But that approach is not limited by the second weakness of this one, which is . . .

If your collection is a Set, none of your Value type’s attributes may be null. This is the case because in order to delete
(garbage collection in the data model) a given Set element, all attributes that make the element a unique Value must be used as
a sort of composite key to find and delete it. A null cannot be used as a part of the required composite key. Of course, if you
know that a given Value type will never have null attributes, this is a viable approach—that is, as long as you have no
additional conflicting needs.

The third downside of using this mapping approach is that the Value type being mapped may itself not contain a collection.
There is no provision for mapping with <composite-element> if the elements themselves contain collections. If your Value
type does not hold a collection of any kind and otherwise meets the requirements for this mapping style, it is available for your
use.

In the end, I find this mapping approach to be limiting enough that it deserves general avoidance. To me it is simply easier to
put a well-hidden surrogate identity on the Value type that is collected into a one-to-many association and not worry about any
of the <composite-element> constraints. You may feel differently, and it certainly can be leveraged to your benefit if all the
modeling cards fall into place for you.

ORM and Enum-as-State Objects
If you find enums an effective modeling choice for Standard Types and/or State objects, you will need the means to persist

them. With Hibernate, Java enums require a specialized persistence technique. Unfortunately to date, the Hibernate
development community does not support enums as an out-of-the-box property type. Therefore, to persist enums in our model
we have to create a Hibernate custom user type.

Recall that each GroupMember has a GroupMemberType:
Click here to view code image

public final class GroupMember extends IdentifiedValueObject {
 private String name;
 private TenantId tenantId;
 private GroupMemberType type;

 public GroupMember(
 TenantId aTenantId,
 String aName,
 GroupMemberType aType) {
 this();
 this.setName(aName);
 this.setTenantId(aTenantId);
 this.setType(aType);
 this.initialize();
 }
 ...
}

The GroupMemberType enum Standard Types include GROUP and USER. Here again is the definition:
Click here to view code image

package com.saasovation.identityaccess.domain.model.identity;

public enum GroupMemberType {

 GROUP {
 public boolean isGroup() {
 return true;
 }
 },
 USER {
 public boolean isUser() {
 return true;
 }
 };

 public boolean isGroup() {
 return false;
 }

 public boolean isUser() {
 return false;
 }
}

The simple answer to persisting a Java enum Value is to store its text representation. However, the simple answer leads to
the unfolding of a slightly more complex technique of creating a Hibernate customer user type. Rather than include here the
various approaches to class EnumUserType provided by the Hibernate community, I provide the wiki article resource link:
http://community.jboss.org/wiki/Java5EnumUserType.

http://community.jboss.org/wiki/Java5EnumUserType

At the time of writing, this wiki article provided a variety of approaches. There were samples for implementing a custom
user type class for each enum type; a way to use Hibernate 3 parameterized types to avoid implementing a custom user for each
enum type (very desirable); one that supports not only text string but numeric representations of the enum value; and even an
enhanced implementation by Gavin King. Gavin King’s enhanced implementation allows the enum to be used as a type
discriminator or as a data table identity (id).

Given the selection of one choice from these options, here’s an example of how the enum GroupMemberType is mapped:
Click here to view code image

<hibernate-mapping>
 <class name="com.saasovation.identityaccess.domain.model.↵
 identity.GroupMember" table="tbl_group_member" lazy="true">
 ...
 <property
 name="type"
 column="type"
 type="com.saasovation.identityaccess.infrastructure.↵
 persistence.GroupMemberTypeUserType"
 update="true"
 insert="true"
 not-null="true"
 />
 </class>
</hibernate-mapping>

Note that the <property> element’s type attribute is set to class Group-MemberTypeUserType’s full classpath. This is just
one choice, and you should choose whatever one you prefer. Recall that the MySQL table description contains the column to
hold the enum:

CREATE TABLE `tbl_group_member` (
 ...
 `type` varchar(5) NOT NULL, ...
) ENGINE=InnoDB;

T he type column is a VARCHAR type with a maximum size of five characters, enough to hold the widest type text
representation: GROUP or USER.

Wrap-Up
In this chapter you’ve seen the importance of favoring the use of Value Objects whenever possible, because they are simply

easier to develop, test, and maintain.
• You’ve learned the characteristics of Value Objects and how to use them.
• You’ve seen how to leverage Value Objects to minimize integration complexity.
• You examined the use of domain Standard Types expressed as Values and have a few strategies for implementing
them.
• You saw why SaaSOvation now favors modeling with Values whenever possible.
• You gained experience in how to test, implement, and persist Value types through the SaaSOvation projects.

Next, we’ll be looking at Domain Services, stateless operations that are actually part of the model.

Chapter 7. Services

Sometimes, it just isn’t a thing.
—Eric Evans

A Service in the domain is a stateless operation that fulfills a domain-specific task. Often the best indication that you should
create a Service in the domain model is when the operation you need to perform feels out of place as a method on an
Aggregate (10) or a Value Object (6). To alleviate that uncomfortable feeling, our natural tendency might be to create a static
method on the class of an Aggregate Root. However, when using DDD, that tactic is a code smell that likely indicates you need
a Service instead.

Road Map to This Chapter
• See how domain model refinements can lead to the realization that you need a Service.
• Learn what a Service in the domain is, and what it isn’t.
• Consider a necessary caution when deciding whether or not to create a Service.
• Discover how to model Services in a domain through two examples from SaaSOvation’s projects.

Smelly code? That’s exactly what SaaSOvation’s developers experienced because of refactoring an Aggregate. Let’s
consider their tactical correction. Here’s what happened . . .

Early on in their project the team had modeled the collection of BacklogItem instances as a composed Aggregate part of
Product. That modeling situation allowed calculating the total business priority value of all product backlog items to be a
simple instance method on class Product:
Click here to view code image

public class Product extends ConcurrencySafeEntity {
 ...
 private Set<BacklogItem> backlogItems;
 ...
 public BusinessPriorityTotals businessPriorityTotals() {
 ...
 }
 ...
}

At that time the design made perfect sense because method business-PriorityTotals() would just iterate over the

composed BacklogItem instances and come up with the queried total business priority. The design properly answered
the query with a Value Object, namely, BusinessPriorityTotals.

However, it wouldn’t stay that way. As the analysis found in Aggregates (10) showed, the large cluster Product
needed to be broken up, and BacklogItem would be redesigned to stand on its own as an Aggregate. Thus, the previous
design that used an instance method no longer worked.

Since Product no longer contained the BacklogItem collection, the team’s first reaction was to refactor the existing
instance method to use the new BacklogItemRepository to get all the BacklogItem instances the calculation needed.
Does that sound right?

Actually, the senior team mentor persuaded the team not to do that. As a rule of thumb, we should try to avoid the use of
Repositories (12) from inside Aggregates, if at all possible. What about just making the same method static on class
Product and passing in the collection of BacklogItem instances that static method would need for the calculation? That
way the method would remain almost intact, except for the new parameter:

Click here to view code image

public class Product extends ConcurrencySafeEntity {
 ...
 public static BusinessPriorityTotals businessPriorityTotals(
 Set<BacklogItem> aBacklogItems) {
 ...
 }
 ...
}

Was Product really the best place to create the static method? It seemed difficult to determine where it really
belonged. Since the operation actually only used the business priority values of each BacklogItem, maybe the static
method belonged there. Still, the business priority being sought was that of a product, not a backlog item. Quandaries.

At that point the mentoring senior developer spoke up. He noted that the team’s entire source of discomfort could be
dismissed with a single modeling tool, the Domain Service. How would that work?

Let’s first establish some background. Then we’ll revisit this modeling situation and see what the team decided to do.

What a Domain Service Is (but First, What It Is Not)
When we hear the term service in a software context, we might naturally envision a coarse-grained component that enables a

remote client to interact with a complex business system. That basically describes a service in a Service-Oriented
Architecture (4). There are different technologies and approaches for developing SOA services. In the end these kinds of
services emphasize system-level remote procedure calls (RPCs) or message-oriented middleware (MoM), where other
systems across the data center, or across the globe, are able to interact with the service to carry out business transactions.

None of those is a Domain Service.
Further, don’t confuse a Domain Service with an Application Service. We don’t want to house business logic in an

Application Service, but we do want business logic housed in a Domain Service. If you are confused about the difference,
compare with Application (14). Briefly, to differentiate the two, an Application Service, being the natural client of the domain
model, would normally be the client of a Domain Service. You’ll see that demonstrated later in the chapter.

Just because a Domain Service has the word service in its name does not mean that it is required to be a coarse-grained,
remote-capable, heavyweight transactional operation.1

Cowboy Logic
LB: “Always take a good look at what you are about to eat. It’s not so important to know what it is, but it’s
critical to know what it was.”

Services that specifically belong to the business domain are a perfect modeling tool to use when your needs intersect with
their sweet spot. So, now that we know what a Domain Service isn’t, let’s consider what it is.

Sometimes, it just isn’t a thing. . . . When a significant process or transformation in the domain is not a
natural responsibility of an ENTITY or VALUE OBJECT, add an operation to the model as a
standalone interface declared as a SERVICE. Define the interface in terms of the language of the
model and make sure the operation name is part of the UBIQUITOUS LANGUAGE. Make the
SERVICE stateless. [Evans, pp. 104, 106]

Since the domain model generally deals with finer-grained behaviors that are focused on some specific aspect of the
business at hand, a Service in the domain would tend to adhere to similar tenets. Since it may be dealing with multiple domain
objects in a single, atomic operation, it would have the latitude to scale up a bit in complexity.

Under what conditions would an operation not belong on an existing Entity (5) or Value Object? It is difficult to give an
exhaustive list of reasons, but I’ve listed a few here. You can use a Domain Service to

• Perform a significant business process
• Transform a domain object from one composition to another
• Calculate a Value requiring input from more than one domain object

The last one—a calculation—probably falls under the “significant process” category, but I call it out to be clear. It’s a very
common one, and that kind of operation can require two, and possibly many, different Aggregates or their composed parts as
input. And when it is just plain clumsy to place the method on any one Entity or Value, it works out best to define a Service.
Make sure the Service is stateless and has an interface that clearly expresses the Ubiquitous Language (1) in its Bounded
Context.

Make Sure You Need a Service
Don’t lean too heavily toward modeling a domain concept as a Service. Do so only if the circumstances fit. If we aren’t

careful, we might start to treat Services as our modeling “silver bullet.” Using Services overzealously will usually result in the
negative consequences of creating an Anemic Domain Model [Fowler, Anemic], where all the domain logic resides in
Services rather than mostly spread across Entities and Value Objects. The following analysis shows the importance of thinking
carefully about the tactics you should employ for each modeling situation. Following this guidance should help you make good
decisions about whether or not to model a Service.

Let’s investigate an example of recognizing the need to model a Service. Think of trying to authenticate a User in our
Identity and Access Context. Recall that in Entities (5) we ran into this domain scenario that the team wanted to push off until
later. Well, later is now:

• Users of a system must be authenticated but can be authenticated only if the tenant is active.
Let’s consider why a Service is necessary. Could we simply place this behavior on an Entity? From a client’s perspective,

maybe we could model authentication like this:
Click here to view code image

// client finds User and asks it to authenticate itself

boolean authentic = false;

User user =
 DomainRegistry
 .userRepository()
 .userWithUsername(aTenantId, aUsername);

if (user != null) {
 authentic = user.isAuthentic(aPassword);
}

return authentic;

I think there are at least a few problems with this design. We require clients to understand what it means to authenticate.
They have to find the User and then ask the User if a given password matches the one the User holds. Also, the Ubiquitous
Language is not explicitly modeled. Here we asked the User if it “is authentic” rather than ask the model to “authenticate.” If
possible it would be best to model in terms of the natural expressions spoken by the team, rather than force the team to adjust
their view away from what comes naturally because we failed to better model the concept. But there are worse problems than
these.

This does not properly model what that team discovered about authenticating a user. A glaring omission is that there is no
check to determine whether or not the tenant is active. Per the requirement, if the tenant under which the user resides is not
active, the user is not authenticated. Perhaps we could solve the problem like this:
Click here to view code image

// maybe this way is better ...

boolean authentic = false;

Tenant tenant =
 DomainRegistry
 .tenantRepository()
 .tenantOfId(aTenantId);

if (tenant != null && tenant.isActive()) {
 User user =
 DomainRegistry
 .userRepository()
 .userWithUsername(aTenantId, aUsername);

 if (user != null) {
 authentic = tenant.authenticate(user, aPassword)
 }
}

return authentic;

This test does properly determine that the Tenant is active before carrying on with authentication. We were also able to rid
User of method isAuthentic() by placing authenticate() on Tenant.

But there are problems with this. Look at the additional burden that we’ve heaped on the client. It now needs to understand
much more about authentication than it should. We could alleviate this a bit by checking whether Tenant isActive() inside
method authenticate(), but I’d argue that that is not an explicit model. It also produces another problem. Now Tenant might
need to understand what to do with a password. Recall that another requirement was realized, though not specifically called
out in the authentication scenario:

• Passwords must be stored encrypted, not as clear text.
With our proposed solutions, we seem to keep producing more friction in the model. With the latest proposal we have to

choose one of four undesirable approaches:
1. Handle encryption in Tenant and pass the encrypted password to User. This violates Tenant’ s Single
Responsibility [Martin, SRP] to deal with modeling only a tenant.
2. User may already need to know a little bit about encryption since it must guarantee that any stored password is
encrypted. If so, create a method on User that knows how to authenticate given a clear-text password. But in this

case authentication becomes a facade on Tenant that is fully implemented only on User. Further still, User must
have a protected authentication interface to prevent clients outside the model from directly using it.
3. Tenant asks User to encrypt the clear-text password, then it compares it with the one User is holding. This seems
to have extra steps with an untidy set of collaborations. Tenant is still required to understand the details of
authentication even though it doesn’t quite carry it out.
4. Have the client encrypt the password and pass it in to the Tenant. This adds further to the responsibility that the
client has, when in fact the client should need to know nothing of the need to encrypt passwords.

None of these proposals help much, and the client is still too complex. Responsibility that we’ve dumped on the client
should instead be elegantly tucked away in the model. Knowledge that is purely domain specific should never be leaked out
into clients. Even if the client is an Application Service, that component is not responsible for the domain of identity and
access management.

Cowboy Logic
AJ: “When you find yourself in a hole, the first thing to do is stop digging.”

Really, the only business responsibility that the client should have is to coordinate the use of a single domain-specific
operation that handles all other details of the business problem:
Click here to view code image

// inside an Application Service client with
// only task coordination responsibility

UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(aTenantId, aUsername, aPassword);

In this simple and elegant solution, the client need only obtain a reference to a stateless instance of
AuthenticationService and then ask it to authenticate(). This pushes all details of authentication out of the Application
Service client and into the Domain Service. Any number of domain objects may be used by the Service, as needed. This
includes ensuring that password encryption is performed as appropriate. The client doesn’t need to understand any of those
details. The Ubiquitous Language in the Context is satisfied because the proper terms are expressed by the software that
models the identity management domain, rather than partly by the model and partly by the client.

A Value Object, UserDescriptor, is returned from the Service method. This object is small and secure. Unlike a full User,
it includes only a few attributes essential to referencing a User:
Click here to view code image

public class UserDescriptor implements Serializable {
 private String emailAddress;
 private TenantId tenantId;
 private String username;

 public UserDescriptor(
 TenantId aTenantId,
 String aUsername,
 String anEmailAddress) {
 ...
 }
 ...
}

It is suitable for storing in a per-user Web session. The client Application Service may itself return this object to its invoker
or create one more suitable for it.

Modeling a Service in the Domain
Depending on the purpose of a Domain Service, it can be quite simple to model. You’ll have to decide whether or not your

Service should have a Separated Interface [Fowler, P of EAA]. If so, this might be the interface definition:
Click here to view code image

package com.saasovation.identityaccess.domain.model.identity;

public interface AuthenticationService {

 public UserDescriptor authenticate(
 TenantId aTenantId,
 String aUsername,
 String aPassword);
}

The interface is declared in the same Module (9) as the identity-specific Aggregates, such as Tenant, User, and Group.
That is done because AuthenticationService is an identity concept, and we currently place all identity-related concepts in
the identity Module. The interface definition itself is quite simple. Only one operation, authenticate(), is necessary.

A choice we have is where to place the implementation class. If you are using the Dependency Inversion Principle (4) or
Hexagonal (4), you may decide to place this somewhat technical implementation class in a location outside the domain model.
Technical implementations may be housed in a Module in the Infrastructure Layer, for example.

Here is the class:
Click here to view code image

package com.saasovation.identityaccess.infrastructure.services;

import com.saasovation.identityaccess.domain.model.DomainRegistry;
import com.saasovation.identityaccess.domain.model.identity.↵
AuthenticationService;
import com.saasovation.identityaccess.domain.model.identity.Tenant;
import com.saasovation.identityaccess.domain.model.identity.TenantId;
import com.saasovation.identityaccess.domain.model.↵
identity.User;
import com.saasovation.identityaccess.domain.model.↵
identity.UserDescriptor;

public class DefaultEncryptionAuthenticationService
 implements AuthenticationService {

 public DefaultEncryptionAuthenticationService() {
 super();
 }

 @Override
 public UserDescriptor authenticate(
 TenantId aTenantId,
 String aUsername,
 String aPassword) {

 if (aTenantId == null) {
 throw new IllegalArgumentException(
 "TenantId must not be null.");
 }
 if (aUsername == null) {
 throw new IllegalArgumentException(
 "Username must not be null.");
 }
 if (aPassword == null) {
 throw new IllegalArgumentException(
 "Password must not be null.");
 }

 UserDescriptor userDescriptor = null;

 Tenant tenant =
 DomainRegistry
 .tenantRepository()
 .tenantOfId(aTenantId);

 if (tenant != null && tenant.isActive()) {
 String encryptedPassword =
 DomainRegistry
 .encryptionService()
 .encryptedValue(aPassword);

 User user =
 DomainRegistry
 .userRepository()
 .userFromAuthenticCredentials(
 aTenantId,
 aUsername,
 encryptedPassword);

 if (user != null && user.isEnabled()) {
 userDescriptor = user.userDescriptor();
 }
 }

 return userDescriptor;
 }
}

The method guards against null parameters. Otherwise, if the authentication process fails under normal conditions, the
returned UserDescriptor will be null.

To authenticate we begin by attempting to retrieve the Tenant from its Repository using its identity. If the Tenant both exists
and is active, we next encrypt the clear-text password. We do that now because we will use the encrypted password to retrieve
the User. Rather than request the User only from a TenantId and matching username, we also match on the encrypted
password. (The result of encryption is always the same for two equal clear-text passwords.) The Repository is designed to
filter on all three.

If the human user has submitted the correct tenant identity, username, and clear-text password, it will result in retrieving the
matching User instance. Still, this does not completely prove the user’s authenticity. There is one final requirement not yet
handled:

• Users can be authenticated only if they are enabled.
Even if the Repository finds the filtered User instance, it may have been disabled. Providing the possibility of disabling a

User allows the tenant to control user authentication at a different level. Thus, as a final step the User instance must be both
non-null and enabled, which will result in a UserDescriptor being derived from the User.

Is Separated Interface a Necessity?
Since this AuthenticationService does not have a technical implementation, is it really necessary to create a Separated

Interface and implementation class, and in separate Layers and Modules? No, it is not, in fact, an absolute necessity. We could
have created this particular Service with only a single implementation class with the name of the Service:
Click here to view code image

package com.saasovation.identityaccess.domain.model.identity;

public class AuthenticationService {

 public AuthenticationService() {
 super();
 }

 public UserDescriptor authenticate(
 TenantId aTenantId,
 String aUsername,
 String aPassword) {
 ...
 }
}

There would be nothing wrong with this. You might even consider this a more fitting approach since this particular Service
may never need to have multiple implementations. However, given that different tenants might eventually desire specialized
security standards, it’s possible that there could be multiple implementations. At this point in time, however, the team has
decided to drop the use of a Separated Interface and go with the class as shown here.

Naming Your Implementation Class
In the Java world it’s become quite common to name the implementation class with its interface’s name as a prefix and Impl as
a postfix. In our example using this approach would render the name Authentication-ServiceImpl. Further, the interface
and implementing class are often housed in the same package. Is this a good thing?
Actually, if your implementation class is named this way, it’s probably a very good indication that you don’t need a Separated
Interface, or that you need to think more carefully about the name of the implementing class. So, no, the
AuthenticationServiceImpl name isn’t a really good one. But then again, DefaultEncryptionAuthenticationService
is not particularly useful either. For that reason the SaaSOvation team decided to eliminate the Separated Interface for now and
go with AuthenticationService as a simple class instead.
If your implementation class has specific decoupling goals because you are providing multiple specific implementations, name
the class according to its specialty. The need to name each specialized implementation carefully is proof that specialties exist
in your domain.
Some will conclude that having the interface and implementation class similarly named makes large packages of these pairs
easier to browse and navigate. However, others would conclude that such large packages are poorly designed according to the
goals of Modules. Further still, those with focused modularity goals will also favor placing the interface and various
implementation classes in separate packages, as we do with Dependency Inversion Principle (4). For example, the
EncryptionService interface is in the domain model, while MD5EncryptionService resides in infrastructure.
Eliminating the Separated Interface for nontechnical Domain Services will not weaken testability since any interfaces that the
Service depends on can be injected or resolved by a test-configured Service Factory, or you could pass in as parameters
instances of inbound and outbound dependencies as needed. Remember, too, that nontechnical, domain-specific Services, such
as calculations, must be tested for correctness.
Understandably this is a controversial topic, and I am aware that there is a large camp that regularly names interface
realizations using Impl. Just be aware that there is a well-informed polar opposite to that camp that has very sound reasons for
avoiding that approach. As always, the choice is yours to make.

Using Separated Interface may be more a matter of style in cases where the Service is always domain specific and will
never have a technical implementation or multiple implementations. As Fowler [Fowler, P of EAA] states, Separated Interface
is useful if you have certain decoupling goals: “A client that needs the dependency to the interface can be completely unaware
of the implementation.” However, if you are using Dependency Injection or a Factory [Gamma et al.] of Services, even when
the Service interface and class are combined, you can still prevent the client from being aware of the implementation. In other
words, the following use of the DomainRegistry as Service Factory will decouple the client from implementation:
Click here to view code image

// the registry decouples client from implementation knowledge

UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(aTenantId, aUsername, aPassword);

Or if you are using Dependency Injection, you can get similar benefits:
Click here to view code image

public class SomeApplicationService ... {
 @Autowired
 private AuthenticationService authenticationService;
 ...
}

The inversion-of-control container (such as Spring) injects the Service instance. Since the client never instantiates the
Service, it isn’t aware that the interface and implementation are either combined or separated.

Clearly, some have utter disdain for both the Service Factory and Dependency Injection and prefer to set up inbound
dependencies by way of a constructor or pass them in as method parameters. In the end that is the most explicit way to wire
dependencies and make code testable, and it could even be considered easier than Dependency Injection. Some may find it
beneficial to use a combination of all three depending on the situation, while preferring constructor-based dependency setup
overall. Several of the samples in this chapter use DomainRegistry for clarity, though not necessarily indicating a
preference. Much of the source code actually distributed online in support of this book leans toward dependency set up by way
of constructors, or by passing dependencies directly to methods as parameters.

A Calculation Process
Here’s another example, this time from the current Core Domain (2), the Agile Project Management Context. This Service

calculates a result from Values on any number of Aggregates of a specific type. Here I think there is no good reason to use a
Separated Interface, at least not at present. The calculations are always performed the same way. Unless that situation changes,
we shouldn’t bother separating the interface from the implementation.

Cowboy Logic
LB: “My stallion brings $5,000 per service, and I’ve got the mares lined up.”
AJ: “Now that horse is in his domain.”

Recall that the SaaSOvation developers originally created fine-grained static methods on Product to perform the desired
calculations. Here’s what happened next . . .

The team’s mentor also pointed to the desirability of using a Domain Service instead of a static method. The idea behind this
Service would be very similar to the current design, to calculate and return a BusinessPriorityTotals Value instance. But
the Service would have to do a bit more work. This would include finding all outstanding backlog items of a given Scrum
product and then totaling each of their individual BusinessPriority Values. Here’s the implementation:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

import com.saasovation.agilepm.domain.model.DomainRegistry;
import com.saasovation.agilepm.domain.model.tenant.Tenant;

public class BusinessPriorityCalculator {

 public BusinessPriorityCalculator() {
 super();
 }

 public BusinessPriorityTotals businessPriorityTotals(
 Tenant aTenant,
 ProductId aProductId) {
 int totalBenefit = 0;
 int totalPenalty = 0;
 int totalCost = 0;
 int totalRisk = 0;

 java.util.Collection<BacklogItem> outstandingBacklogItems =
 DomainRegistry
 .backlogItemRepository()
 .allOutstandingProductBacklogItems(
 aTenant,
 aProductId);

 for (BacklogItem backlogItem : outstandingBacklogItems) {
 if (backlogItem.hasBusinessPriority()) {
 BusinessPriorityRatings ratings =
 backlogItem.businessPriority().ratings();

 totalBenefit += ratings.benefit();
 totalPenalty += ratings.penalty();
 totalCost += ratings.cost();
 totalRisk += ratings.risk();
 }
 }

 BusinessPriorityTotals businessPriorityTotals =

 new BusinessPriorityTotals(
 totalBenefit,
 totalPenalty,
 totalBenefit + totalPenalty,
 totalCost,
 totalRisk);

 return businessPriorityTotals;
 }
}

The BacklogItemRepository is used to get all outstanding BacklogItem instances. An outstanding BacklogItem is one
with a status type of Planned, Scheduled, or Committed, not either Done or Removed. A Service in the domain is welcome to
use Repositories as needed, but accessing Repositories from an Aggregate instance is not a recommended practice.

With all outstanding items for a given product, we iterate over them and total each of the ratings of their
BusinessPriority. The totals that result from iteratively calculating are used to instantiate a new
BusinessPriorityTotals, which is returned to the client. There is no need for a Service calculation process to be complex,
though it could be a necessity. This one happens to be rather simple.

Note from this example that you would absolutely not want this logic to reside in an Application Service. Even if you
consider the summing calculation in the for loop to be trivial, it is still business logic. But there’s another reason:
Click here to view code image

BusinessPriorityTotals businessPriorityTotals =
 new BusinessPriorityTotals(
 totalBenefit,
 totalPenalty,
 totalBenefit + totalPenalty,
 totalCost,
 totalRisk);

As the BusinessPriorityTotals is instantiated, its totalValue attribute is derived from summing the totalBenefit and
totalPenalty. This logic is domain specific and must not leak into the Application Layer. We could argue that the
BusinessPriorityTotals constructor should itself arrange for this to be derived from the two passed-in parameters. While
that might be a way to improve the model, doing so wouldn’t be a justification for moving the remaining calculations into an
Application Service.

Although we don’t house this business logic in an Application Service, an Application Service does serve as the client to
the Domain Service:
Click here to view code image

public class ProductService ... {
 ...
 private BusinessPriorityTotals productBusinessPriority(
 String aTenantId,
 String aProductId) {
 BusinessPriorityTotals productBusinessPriority =
 DomainRegistry
 .businessPriorityCalculator()
 .businessPriorityTotals(
 new TenantId(aTenantId),
 new ProductId(aProductId));

 return productBusinessPriority;
 }
}

In this case a private method in the Application Service is responsible for requesting the total business priority for the
product. Here the method may be supplying just one part of the payload returned to the client of ProductService, such as the
user interface.

Transformation Services

The more technical Domain Service implementations that definitely live in Infrastructure are often those used for integration.
For that reason I have delegated such examples to Integrating Bounded Contexts (13). There you’ll see the Service
interfaces, implementation classes, and also Adapters [Gamma et al.] and translators used by the implementations.

Using a Mini-Layer of Domain Services
Sometimes it may be desirable to create a “mini-layer” of Domain Services above the rest of your domain model Entities

and Value Objects. As I previously indicated, this will often lead down the precarious path of Anemic Domain Model, which
should be considered an anti-pattern.

Yet, there are some systems where designing in the mini-layer of Domain Services makes more sense than in others and will
not lead to Anemic Domain Model. It depends on the characteristics of the domain model, and in the case of the Identity and
Access Context this is actually quite helpful.

If you were to experience working in such a domain and you did decide to produce a mini-layer of Domain Services,
remember that such are always different from Application Services in the Application Layer. Address transactions and security
as application concerns in Application Services, not in Domain Services.

Testing Services
We want to test our Services to make sure we gain a client perspective on how we should model. We want our domain-

focused tests to reflect the way the model should be used, while at this point ignoring some of the finer software correctness
focus.

Isn’t It a Bit Late to Test?
I have normally introduced tests before implementations. I did show some test-first code snippets earlier when analyzing
the need for a Service. It’s just that I found it more natural to discuss the implementation a bit earlier in this chapter, that’s
all. However, this does show that test-first isn’t an absolute necessity, although it may limit a proper modeling focus.

These tests demonstrate how to properly use AuthenticationService, and we first test against the successful
authentication scenario:
Click here to view code image

public class AuthenticationServiceTest
 extends IdentityTest {

 public void testAuthenticationSuccess() throws Exception {

 User user = this.getUserFixture();

 DomainRegistry
 .userRepository()
 .add(user);

 UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(
 user.tenantId(),
 user.username(),
 FIXTURE_PASSWORD);

 assertNotNull(userDescriptor);
 assertEquals(user.tenantId(), userDescriptor.tenantId());
 assertEquals(user.username(), userDescriptor.username());
 assertEquals(user.person().emailAddress(),
 userDescriptor.emailAddress());
 }
 ...

This example shows how the AuthenticationService would be used by an Application Service client. It’s a happy path
where that client would successfully authenticate a user by passing expected parameters.

Note that the Repository could be the full implementation, an in-memory variety, or mocked. It works fine to test with the full

implementation if it is fast enough, as long as the test ends with a rollback of the transaction, preventing the buildup of
extraneous instances across tests. The kind of Repository implementation used for testing is your choice.

Next, we demonstrate a scenario under which authentication fails:
Click here to view code image

public void testAuthenticationTenantFailure() throws Exception {

 User user = this.getUserFixture();

 DomainRegistry
 .userRepository()
 .add(user);

 TenantId bogusTenantId =
 DomainRegistry.tenantRepository().nextIdentity();

 UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(
 bogusTenantId, // bogus
 user.username(),
 FIXTURE_PASSWORD);

 assertNull(userDescriptor);
}

This authentication test fails because we purposely pass in a TenantId that is different from the one in which the User was
created. Then there is the invalid username condition to demonstrate:
Click here to view code image

public void testAuthenticationUsernameFailure() throws Exception {

 User user = this.getUserFixture();

 DomainRegistry
 .userRepository()
 .add(user);

 UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(
 user.tenantId(),
 "bogususername",
 user.password());

 assertNull(userDescriptor);
}

This authentication test scenario fails because we pass in a wrong username. There’s one last failure scenario demonstrated
in these tests:
Click here to view code image

 public void testAuthenticationPasswordFailure() throws Exception {

 User user = this.getUserFixture();

 DomainRegistry
 .userRepository()
 .add(user);

 UserDescriptor userDescriptor =
 DomainRegistry
 .authenticationService()
 .authenticate(
 user.tenantId(),
 user.username(),
 "passw0rd");

 assertNull(userDescriptor);
 }
}

This test provides the wrong password, which causes it to fail. In all cases when demonstrating failure scenarios the
UserDescriptor is returned as null. This is a detail that clients should take note of, as it indicates what they should expect
when the user is not authenticated. It also indicates that failing authentication is not an exceptional error, just a normal
possibility of this domain. Otherwise, if failing authentication were considered exceptional, we’d make the Service throw an
AuthenticationFailedException.

There are actually a few tests missing. I will leave it to you to test domain scenarios that include when a Tenant is not
active and a User that is disabled. After that, you can create tests for the BusinessPriorityCalculator.

Wrap-Up
In this chapter we discussed what a Domain Service is and what it is not, and we analyzed when we should use a Service

rather than an operation on an Entity or Value Object. There was more:
• You learned that recognizing a legitimate need for a Service is necessary to avoid overusing Services.
• You were reminded that overuse of Domain Services leads to Anemic Domain Model, an anti-pattern.
• You saw the specific steps of general practice when implementing a Service.
• You considered the pluses and minuses of using a Separated Interface.
• You reviewed a sample calculation process from the Agile Project Management Context.
• Finally, you considered how to provide exemplary tests to demonstrate how to use the Services our models
provide.

Next, we are going to consider one of the newer DDD tactical modeling tools to appear on the scene. It’s the powerful
Domain Event building block pattern.

Chapter 8. Domain Events

History is the version of past events that people have decided to agree upon.
—Napoleon Bonaparte

Use a Domain Event to capture an occurrence of something that happened in the domain. This is an extremely powerful
modeling tool. Once you get the hang of using Domain Events, you will be addicted and wonder how you survived without
them until now. To get started with them, all you have to do is find agreement on what your Events actually are.

Road Map to This Chapter
• Discover what Domain Events are, and when and why you should consider using them.
• Learn how Events are modeled as objects, and when they must be uniquely identified.
• Examine a lightweight Publish-Subscribe [Gamma et al.] pattern and how it fits with notifying clients.
• See which components publish Events and which ones are the subscribers.
• Consider why you’d want to develop an Event Store, how it can be done, and how one is used.
• Learn from SaaSOvation how Events are published to autonomous systems in different ways.

The When and Why of Domain Events
Referencing [Evans], you will find no formal definition for Domain Events. The pattern was introduced in detail sometime

after the book was published. To begin a discussion about implementing Events in the Domain (2), consider the contemporary
definition:

Something happened that domain experts care about.
Model information about activity in the domain as a series of discrete events. Represent each event as
a domain object. . . . A domain event is a full-fledged part of the domain model, a representation of
something that happened in the domain. [Evans, Ref, p. 20]

How can we determine if something that happens in the domain is important to the domain experts? As we have discussions
with them, we must listen carefully for clues. Consider a few key phrases to listen for when domain experts talk:

• “When . . .”
• “If that happens . . .”
• “Inform me if . . .” and “Notify me if . . .”
• “An occurrence of . . .”

Of course, with the “Inform me if . . .” and “Notify me if . . .” expressions it’s not the notification that constitutes an Event.
It’s just a statement of the fact that someone in the domain wants to be notified as a result of an important occurrence, and that
likely means the need to model an explicit Event. In addition, domain experts might say things such as “If that happens, it isn’t
important, but if this happens, it is important.” (Replace that and this with something meaningful in your domain.) Depending
on your organizational culture, there could be other triggering phrases.

Cowboy Logic
AJ: “In the event that I want my horse, I just yell, ‘Here, Trigger!’ and he comes runnin’. Of course, it never
hurts to let him know I’m carryin’ a cube of sugar.”

There will probably be times when the spoken language of the experts doesn’t lead to a clear reason to model an Event, yet
the business situation may still call for it. Domain experts may or may not be aware of these kinds of requirements, and they
could become known only as a result of cross-team discussions. This tends to happen when Events must be broadcast to
external services, where the systems in your enterprise have been decoupled and occurrences throughout the domain must be
communicated across Bounded Contexts (2). Events like this get published, and subscribers are notified. As such Events are
handled by subscribers, they may have far-reaching impact on local and remote Bounded Contexts.

Domain Experts and Events
Although domain experts may not initially be aware of the need for every kind of Event, they should understand the
reasons for them as they are included in discussions about specific Events. Once there is clear consensus, new Events
become a formal part of the Ubiquitous Language (1).

When Events are delivered to interested parties, in either local or foreign systems, they are generally used to facilitate
eventual consistency. This is purposeful and by design. It can eliminate the need for two-phase commits (global transactions)
and support of the rules of Aggregates (10). One rule of Aggregates states that only a single instance should be modified in a
single transaction, and all other dependent changes must occur in separate transactions. So other Aggregate instances in the
local Bounded Context may be synchronized using this approach. We also bring remote dependencies into a consistent state
with latency. The decoupling helps provide a highly scalable and peak-performing set of cooperating services. It also allows
us to achieve loose coupling between systems.

Figure 8.1 shows how Events may originate, how they can be stored and forwarded, and where they may be used. Events
may be consumed by the local, and foreign, Bounded Contexts.

Figure 8.1. Aggregates create Events and publish them. Subscribers may store Events and then forward them to remote
subscribers, or just forward them without storing. Immediate forwarding requires XA (two-phase commit) unless

messaging middleware shares the model’s data store.
Also, think of times when your systems normally perform batch processing. Perhaps during off-peak hours (possibly

nighttime) your systems process daily maintenance of some kind, deleting obsolete objects, creating ones that are needed to
support newly formed business situations, bringing some objects into agreement with others, and even notifying certain users
that important things have happened. Often performing such batch processes requires you to execute some complex queries in
order to determine the business situations that require attention. The calculations and procedures to address them are costly,
and synchronizing all the changes requires large transactions. What if those pesky batch processes could be made redundant?

Now think of the actual occurrences that took place throughout the previous day that led to the need to play catch-up later. If
each of those discrete occurrences were captured by a single Event, and published to listeners in your own system, would that
simplify things? Indeed, it would eliminate the complex queries because you would know exactly what occurred and when,
providing the context of what needs to happen as a result. You would just do it as you receive notification of each Event. The
processing currently dealt with in I/O and processor-intensive batches would be spread out into short spurts throughout the day,
and your business situations would be in harmony much more quickly, ready for users to take the next steps.

Does every Aggregate command result in an Event? Just as important as recognizing the need for an Event is knowing when
to disregard extraneous happenings in the domain that experts or the business as a whole don’t care about. Still, depending on
the technical implementation aspects of the model or the goals of collaborating systems, it is possible that Events will be more
prolific than domain experts directly require. Such is the case when using Event Sourcing (4, Appendix A).

I leave some of this to Integrating Bounded Contexts (13), but we’ll consider the essential modeling tools here.

Modeling Events
Let’s take a requirement from the Agile Project Management Context. The domain experts indicated the need for an Event

in this way (italics added for emphasis):

Allow each backlog item to be committed to a sprint. It may be committed only if it is already scheduled for release. If it is
already committed to a different sprint, it must be uncommitted first. When the backlog item is committed, notify the sprint
and other interested parties.

When modeling Events, name them and their properties according to the Ubiquitous Language in the Bounded Context where
they originate. If an Event is the result of executing a command operation on an Aggregate, the name is usually derived from the
command that was executed. The command is the cause of the Event, and hence the Event’s name is rightly stated in terms of
the command having occurred in the past. Per the example scenario, when we commit a backlog item to a sprint, we publish an
Event that explicitly models what happened in the domain:

Command operation: BacklogItem#commitTo(Sprint aSprint)
Event outcome: BacklogItemCommitted
The Event name states what occurred (past tense) in the Aggregate after the requested operation succeeded: “The backlog

item was committed.” The team could have modeled the name a bit more verbosely, such as
BacklogItemCommittedToSprint, and that would work. However, in the Ubiquitous Language of Scrum, a backlog item is
never committed to anything besides a sprint. In other words, backlog items are scheduled for release, not committed to a
release. There would be no doubt that this Event was published as a result of using the commitTo() operation. Thus, the Event
is sufficiently named as it is, and the more compact name is easier to read. If your team likes a more verbose name in a specific
case, however, use it.

When publishing Events from Aggregates, it is important that the Event name reflect the past nature of the occurrence. It is
not occurring now. It occurred previously. The best name to choose is the one that reflects that fact.

After the right name is found, what properties should it have? For one, we need a timestamp that indicates when the Event
occurred. In Java we could represent it as a java.util.Date:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

public class BacklogItemCommitted implements DomainEvent {
 private Date occurredOn;
 ...
}

The minimal interface DomainEvent, implemented by all Events, ensures support of an occurredOn() accessor. It enforces
a basic contract for all Events:
Click here to view code image

package com.saasovation.agilepm.domain.model;

import java.util.Date;

public interface DomainEvent {
 public Date occurredOn();
}

Besides this, the team determines what other properties are necessary to represent a meaningful occurrence of what
happened. Consider including whatever would be necessary to trigger the Event again. This normally includes the identity of
the Aggregate instance on which it took place, or any Aggregate instances involved. Using this guidance, we might create
properties of any parameters that caused the Event, if discussion proves they are useful. It’s also possible that some resulting
Aggregate state transition values could be helpful to subscribers.

Here’s what analysis of BacklogItemCommitted led to:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

public class BacklogItemCommitted implements DomainEvent {
 private Date occurredOn;
 private BacklogItemId backlogItemId;
 private SprintId committedToSprintId;
 private TenantId tenantId;
 ...
}

The team decided that the identity of the BacklogItem and that of the Sprint were essential. It was the BacklogItem that the
Event occurred on, and the Sprint that it occurred with. But more was involved in this decision. The requirement that drove
out the need for this Event indicated specifically that the Sprint must be notified that a certain BacklogItem was committed to
it. Thus, an Event subscriber in the same Bounded Context must eventually inform the Sprint, and it can do so only if
BacklogItemCommitted has the SprintId.

Additionally, in the multitenancy environment, recording the TenantId is always necessary, even though it was not
passed as a command parameter. It is needed for both the local and foreign Bounded Contexts. Locally the team would
need the TenantId to query the BacklogItem and the Sprint from their respective Repositories (12). Likewise, any
foreign, remote systems that listen for a broadcast of this Event would need to know which TenantId it applies to.

How do we model the behavioral operations supplied by Events? These are generally very simple because an Event is
usually designed as immutable. First and foremost, the Event’s interface has the express purpose to convey the properties that
reflect its cause. Most Events will have a constructor that permits only full state initialization, along with a complement of read
accessors for each of its properties.

Based on that, here’s what the ProjectOvation team did:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

public class BacklogItemCommitted implements DomainEvent {
 ...
 public BacklogItemCommitted(
 TenantId aTenantId,
 BacklogItemId aBacklogItemId,
 SprintId aCommittedToSprintId) {
 super();
 this.setOccurredOn(new Date());
 this.setBacklogItemId(aBacklogItemId);
 this.setCommittedToSprintId(aCommittedToSprintId);
 this.setTenantId(aTenantId);
 }

 @Override
 public Date occurredOn() {
 return this.occurredOn;
 }

 public BacklogItemId backlogItemId() {
 return this.backlogItemId;
 }

 public SprintId committedToSprintId() {
 return this.committedToSprintId;
 }

 public TenantId tenantId() {
 return this.tenant;
 }
 ...
}

With this Event published, a subscriber in the local Bounded Context can use it to notify the Sprint that a certain
BacklogItem was recently committed to it:

Click here to view code image

MessageConsumer.instance(messageSource, false)
 .receiveOnly(
 new String[] { "BacklogItemCommitted" },
 new MessageListener(Type.TEXT) {
 @Override
 public void handleMessage(
 String aType,
 String aMessageId,
 Date aTimestamp,
 String aTextMessage,
 long aDeliveryTag,
 boolean isRedelivery)
 throws Exception {
 // first de-duplicate message by aMessageId
 ...
 // get tenantId, sprintId, and backlogItemId from JSON
 ...

 Sprint sprint =
 sprintRepository.sprintOfId(tenantId, sprintId);

 BacklogItem backlogItem =
 backlogItemRepository.backlogItemOfId(
 tenantId,
 backlogItemId);

 sprint.commit(backlogItem);
 }
 });

Per the system requirements, after handling the specific "BacklogItemCommitted" message, the Sprint is consistent with
the BacklogItem that was recently committed to it. How the subscriber receives this Event is discussed later in this chapter.

The team realized that there might be a bit of a problem here. How is the Sprint updating transaction managed? We could
have the message handler do that, but either way the code found in the handler needs some refactoring. It would be best for it to
delegate to an Application Service (14) to harmonize with the Hexagonal Architecture (4). Doing so would allow the
Application Service to manage the transaction, which is a natural application concern. In that case the handler would now look
like this:
Click here to view code image

MessageConsumer.instance(messageSource, false)
 .receiveOnly(
 new String[] { "BacklogItemCommitted" },
 new MessageListener(Type.TEXT) {
 @Override
 public void handleMessage(
 String aType,
 String aMessageId,
 Date aTimestamp,
 String aTextMessage,
 long aDeliveryTag,
 boolean isRedelivery)
 throws Exception {
 // get tenantId, sprintId, and backlogItemId from JSON
 String tenantId = ...
 String sprintId = ...
 String backlogItemId = ...

 ApplicationServiceRegistry
 .sprintService()
 .commitBacklogItem(
 tenantId, sprintId, backlogItemId);
 }
 });

In this example Event de-duplication is unnecessary because committing a BacklogItem to a Sprint is an idempotent
operation. If the specific BacklogItem is already committed to the Sprint, the current request to commit it again is ignored.

It may be necessary to provide additional state and behavior if subscribers require more than the indication of the Event’s
cause. This could be conveyed by enriched state (more properties) or operations that derive richer state. Subscribers thus

avoid querying back on the Aggregate from which the Event was published, which could be needlessly difficult or expensive.
Event enrichment may be more common when using Event Sourcing because an Event used for persistence may need additional
state when also published out of the Bounded Context. Examples of Event enrichment are provided in Appendix A.

Whiteboard Time
• List the kinds of Events that already occur in your domain but that aren’t being captured.
• Make note of how making them an explicit part of your model would improve your design.

It might be easiest to identify Aggregates that have dependencies on the state of other Aggregates, where eventual
consistency is necessary.

To derive richer state using operations, make sure that any additional Event behaviors are Side-Effect Free, as discussed in
Value Objects (6), protecting the object’s immutability.

With Aggregate Characteristics
Sometimes Events are designed to be created by direct request from clients. This is done in response to some occurrence

that is not the direct result of executing behavior on an instance of an Aggregate in the model. Possibly a user of the system
initiates some action that is considered an Event in its own right. When that happens, the Event can be modeled as an Aggregate
and retained in its own Repository. Since it represents some past occurrence, its Repository would not permit its removal.

When Events are modeled in this way, like Aggregates they become part of the model’s structure. Thus, they are not just a
record of some past occurrence, although they are that also.

The Event is still designed as immutable, but it may be assigned a generated unique identity. It is possible, however, that the
identity can be supported by a number of the Event’s properties. Even if unique identity could be determined by a set of
properties, it may be best to assign a generated unique identity as discussed in Entities (5). This would allow the Event to
undergo various design changes over time without risking its uniqueness among all others.

When an Event is modeled in this fashion, it can be published via messaging infrastructure at the same time as it is added to
its Repository. The client could call on a Domain Service (7) to create the Event, add it to its Repository, and then publish it
over a messaging infrastructure. With this approach, both the Repository and the messaging infrastructure must be backed by
the same persistence instance (data source), or a global transaction (aka XA and two-phase commit) would be necessary to
guarantee that both commit successfully.

After the messaging infrastructure successfully saves the new Event message to its persistence store, it would then
asynchronously send it on to any queue listener, topic/exchange subscribers, or actor if using the Actor Model.1 If the
messaging infrastructure uses a persistence store that is separate from that used by the model, and if it does not support global
transactions, your Domain Service would have to see that it is first saved in the Event Store, which in this case would also act
as a queue for out-of-band publishing. Each Event in the Store would be processed by a forwarding component that would send
it out over the messaging infrastructure. This technique is discussed in detail later in this chapter.

Identity
Let’s clarify the reasons for assigning unique identity. At times it may be necessary to distinguish Events one from another,

but the need may be rare. In the Bounded Context where the Event is caused, created, and published, there will tend to be little
reason to compare one Event to another, if ever. But what if, for some reason, Events must be compared? And what if an Event
is designed as an Aggregate?

It may be enough to allow Event identity to be represented by its properties, as is the case with Value Objects. The Event’s
name/type along with the identities of the Aggregate(s) involved in the cause, as well as a timestamp of when the Event
occurred, may be enough to distinguish it from others.

In cases where an Event is modeled as an Aggregate, or in other cases when Events must be compared and their combined
properties do not distinguish them, we may assign an Event a formal unique identity. But there may be other reasons to assign
unique identity.

Unique identity may be necessary when Events are published outside the local Bounded Context where they occur, when
messaging infrastructure forwards them along. In some situations individual messages can be delivered more than once. This
would happen if the message sender crashes before the messaging infrastructure confirms that the message was sent.

Whatever may cause a message’s redelivery, the solution is to get the remote subscribers to detect duplicate message
delivery and ignore messages already received. To help with this, some messaging infrastructures provide a unique message

identity as part of the header/envelope around its body, making it unnecessary for the model to generate one. Even if the
messaging system doesn’t itself automatically provide a unique identity for all messages, publishers can assign one either to the
Event itself or to the message. In either case, remote subscribers can use the unique identity to manage de-duplication when
messages are delivered more than once.

Is there a need for equals() and hashCode() implementations? These would most often be necessary only if the local
Bounded Context used them. Events sent via messaging infrastructure are sometimes not reconstituted as their native typed
objects when received by subscribers but are consumed as, for example, XML, JSON, or key-value maps. On the other hand,
when an Event is designed as an Aggregate and saved to its own Repository, the Event type should provide both of these
standard methods.

Publishing Events from the Domain Model
Avoid exposing the domain model to any kind of middleware messaging infrastructure. Those kinds of components live only

in the infrastructure. And while the domain model might at times use such infrastructure indirectly, it would never explicitly
couple to it. We’ll use an approach that completely avoids the use of infrastructure.

One of the simplest and most effective ways to publish Domain Events without coupling to components outside the domain
model is to create a lightweight Observer [Gamma et al.]. For the sake of naming I use Publish-Subscribe, which is
acknowledged by [Gamma et al.] as another name for the same pattern. The examples in that pattern and my use of it are
lightweight because there is no network involved in subscribing to Events and publishing them. All registered subscribers
execute in the same process space with the publisher and run on the same thread. When an Event is published, each subscriber
is notified synchronously, one by one. This also implies that all subscribers are running within the same transaction, perhaps
controlled by an Application Service that is the direct client of the domain model.

Considering the two halves of Publish-Subscribe separately helps to explain them in a DDD context.

Publisher
Perhaps the most common use of Domain Events is when an Aggregate creates an Event and publishes it. The publisher

resides in a Module (9) of the model, but it doesn’t model some aspect of the domain. Rather, it provides a simple service to
Aggregates that need to notify subscribers of Events. The following is a DomainEventPublisher, which adheres to this
definition. An abstract view of how the DomainEventPublisher is used can be found in Figure 8.2.
Click here to view code image

package com.saasovation.agilepm.domain.model;

import java.util.ArrayList;
import java.util.List;

public class DomainEventPublisher {

 @SuppressWarnings("unchecked")
 private static final ThreadLocal<List> subscribers =
 new ThreadLocal<List>();

 private static final ThreadLocal<Boolean> publishing =
 new ThreadLocal<Boolean>() {
 protected Boolean initialValue() {
 return Boolean.FALSE;
 }
 };

 public static DomainEventPublisher instance() {
 return new DomainEventPublisher();
 }

 public DomainEventPublisher() {
 super();
 }

 @SuppressWarnings("unchecked")
 public <T> void publish(final T aDomainEvent) {
 if (publishing.get()) {
 return;

 }
 try {
 publishing.set(Boolean.TRUE);
 List<DomainEventSubscriber<T>> registeredSubscribers =
 subscribers.get();
 if (registeredSubscribers != null) {
 Class<?> eventType = aDomainEvent.getClass();
 for (DomainEventSubscriber<T> subscriber :
 registeredSubscribers) {
 Class<?> subscribedTo =
 subscriber.subscribedToEventType();
 if (subscribedTo == eventType ||
 subscribedTo == DomainEvent.class) {
 subscriber.handleEvent(aDomainEvent);
 }
 }
 }
 } finally {
 publishing.set(Boolean.FALSE);
 }
 }

 public DomainEventPublisher reset() {
 if (!publishing.get()) {
 subscribers.set(null);
 }
 return this;
 }

 @SuppressWarnings("unchecked")
 public <T> void subscribe(DomainEventSubscriber<T> aSubscriber) {
 if (publishing.get()) {
 return;
 }
 List<DomainEventSubscriber<T>> registeredSubscribers =
 subscribers.get();
 if (registeredSubscribers == null) {
 registeredSubscribers =
 new ArrayList<DomainEventSubscriber<T>>();
 subscribers.set(registeredSubscribers);
 }
 registeredSubscribers.add(aSubscriber);
 }
}

Figure 8.2. An abstract view of the sequence interactions between the lightweight Observer, User Interface (14),

Application Services, and the Domain Model (1)
Since every incoming request from users of the system is handled on a separate dedicated thread, we divide subscribers by

thread. So the two ThreadLocal variables, subscribers and publishing, are allocated per thread. When interested parties
use the subscribe() operation to register themselves, the subscriber object reference is added to the thread-bound List. Any
number of subscribers may be registered per thread.

Depending on the application server, threads may be pooled and reused request by request. We don’t want subscribers
registered on the thread for a previous request to remain registered for the next request that reuses the thread. When a new user
request is received by the system, it should use the reset() operation to clear any previous subscribers. This ensures that
subscribers will be limited only to those registered from that point forward. On the presentation tier (“User Interface” in Figure
8.2), for example, we might intercept each request using a filter. The intercepting component would in some way cause a
reset():
Click here to view code image

// in a Web filter component when user request is received
DomainEventPublisher.instance().reset();

...

// later in an Application Service during same request
DomainEventPublisher.instance().subscribe(subscriber);

Following the execution of this code—by two separate components, as seen in Figure 8.2—there will be just one registered
subscriber for the thread. From the implementation of method subscribe() you can see that subscribers may be registered
only when the publisher is not in the process of publishing. This prevents problems such as concurrent modification exceptions
on the List. This problem is manifest if subscribers call back on the publisher to add new subscribers in response to a handled
Event.

Next, note how an Aggregate publishes an Event. Continuing with the running example, when BacklogItem’s commitTo()
executes successfully, BacklogItemCommitted is published:
Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 public void commitTo(Sprint aSprint) {
 ...
 DomainEventPublisher
 .instance()
 .publish(new BacklogItemCommitted(
 this.tenantId(),
 this.backlogItemId(),
 this.sprintId()));
 }
 ...
}

When publish() is executed on DomainEventPublisher, it iterates through all registered subscribers. Invoking
subscribedToEventType() on each subscriber allows it to filter out all subscribers not subscribed to the specific Event type.
Subscribers answering DomainEvent.class to this filter query will receive all Events. All qualified subscribers are sent the
published Event by way of their handleEvent() method. After all subscribers have been either filtered or notified, the
publisher completes.

As with subscribe(), publish() does not allow nested requests to publish Events. The thread-bound Boolean named
publishing is checked and must be false for publish() to iterate and dispatch.

How is Event publishing extended to reach remote Bounded Contexts, supporting autonomous services? We’ll get to that
soon, but let’s look closer at local subscribers.

Subscribers
What components register subscribers to Domain Events? Generally speaking, Application Services (14), and sometimes

Domain Services, will. The subscriber may be any component that is running on the same thread as the Aggregate that

publishes the Event, and that can subscribe prior to the Event being published. This means that the subscriber is registered in
the method execution path that uses the domain model.

Cowboy Logic
LB: “I want a subscription to the The Fence Post so I can find even more corny things to say in this book.”

Since Application Services are the direct client of the domain model when using Hexagonal Architecture, they are in an
ideal position to register a subscriber with the publisher before they execute Event-generating behavior on Aggregates. Here’s
one example of an Application Service that subscribes:
Click here to view code image

public class BacklogItemApplicationService ... {
 public void commitBacklogItem(
 Tenant aTenant,
 BacklogItemId aBacklogItemId,
 SprintId aSprintId) {

 DomainEventSubscriber subscriber =
 new DomainEventSubscriber<BacklogItemCommitted>() {
 @Override
 public void handleEvent(BacklogItemCommitted aDomainEvent) {
 // handle event here ...
 }
 @Override
 public Class<BacklogItemCommitted> subscribedToEventType() {
 return BacklogItemCommitted.class;
 }
 }

 DomainEventPublisher.instance().subscribe(subscriber);

 BacklogItem backlogItem =
 backlogItemRepository
 .backlogItemOfId(aTenant, aBacklogItemId);

 Sprint sprint = sprintRepository.sprintOfId(aTenant, aSprintId);

 backlogItem.commitTo(sprint);
 }
}

In this (contrived) example, BacklogItemApplicationService is an Application Service, with a service method
commitBacklogItem(). The method instantiates an instance of an anonymous DomainEventSubscriber. The Application
Service task coordinator then registers the subscriber with the DomainEventPublisher. Finally, the service method uses
Repositories to get instances of BacklogItem and Sprint and executes the backlog item’s commitTo() behavior. When
completed, method commitTo() publishes an Event of type BacklogItemCommitted.

What the subscriber does with the Event is not shown in this example. It could send an e-mail about the fact that a

BacklogItemCommitted, if that made any sense. It might store the Event in an Event Store. It could forward the Event via a
messaging infrastructure. Usually in these last two cases—saving to an Event Store and forwarding using messaging
infrastructure—we wouldn’t make a use-case-specific Application Service to handle the Event in this way. Instead we’d
design a single subscriber component to do that. An example of a single-responsibility component that saves to an Event Store
is found in the section “Event Store.”

Be Careful about What the Event Handler Does
Remember, the Application Service controls the transaction. Don’t use the Event notification to modify a second
Aggregate instance. That breaks a rule of thumb to modify one Aggregate instance per transaction.

One thing the subscriber should not do is get another Aggregate instance and execute modifying command behavior on it.
This would violate the modify-single-aggregate-instance-in-single-transaction rule of thumb, as discussed in Aggregates
(10). As [Evans] indicates, the consistency of all Aggregate instances other than the one used in the single transaction must be
enforced by asynchronous means.

Forwarding the Event via a messaging infrastructure would allow asynchronous delivery to out-of-band subscribers. Each of
those asynchronous subscribers could arrange to modify an additional Aggregate instance in one or more separate transactions.
The additional Aggregate instances could be in the same Bounded Context or in others. Publishing the Event outward to any
number Bounded Contexts of other Subdomains (2) emphasizes the word Domain in the term Domain Event. In other words,
Events are a domain-wide concept, not just a concept in a single Bounded Context. The contract of Event publishing should
have the potential to be at least as broad as the enterprise, or even broader. Yet, wide broadcast does not forbid delivery of
Events by consumers in the same Bounded Context. Refer back to Figure 8.1.

Sometimes it is necessary for Domain Services to register subscribers. The motivation for doing so would be similar to the
reasons that Application Services do, but in this case there would be domain-specific reasons to listen for Events.

Spreading the News to Remote Bounded Contexts
There are several possible ways for remote Bounded Contexts to become aware of Events that occur in your Bounded

Context. The primary idea is that some form of messaging takes place, and an enterprise messaging mechanism is needed. To
be clear, the mechanism being spoken of here goes well beyond the simple, lightweight Publish-Subscribe components just
discussed. Here we are discussing what takes over where the lightweight mechanism leaves off.

There are numerous such messaging components available, and they are generally classed as middleware. From the open
source ActiveMQ, RabbitMQ, Akka, NServiceBus, and MassTransit, to the various commercially licensed products, there are
plenty of options. We might also home-grow a form of messaging based on REST resources, where autonomous systems are the
interested parties that reach out to the publishing system, requesting all Event notifications that they have not previously
consumed. All of these fall under the umbrella of Publish-Subscribe [Gamma et al.], with varying degrees of advantage or
disadvantage. Much depends on the budget, taste, functional requirements, and nonfunctional qualities sought by the teams
involved.

The use of any such messaging mechanism between Bounded Contexts requires that we adopt a commitment to eventual
consistency. It can’t be fought. The changes in one model that influence changes in one or more other models will not be fully
consistent for some elapsed period of time. What is more, depending on the traffic to individual systems and the effects they
have on others, it may be that the systems as a whole may never be fully consistent at any one instant in time.

Messaging Infrastructure Consistency
With all the chatter about eventual consistency, it might surprise you that at least two mechanisms in a messaging solution

must always be consistent with each other: the persistence store used by the domain model, and the persistence store backing
the messaging infrastructure used to forward the Events published by the model. This is required to ensure that when the
model’s changes are persisted, Event delivery is also guaranteed, and that if an Event is delivered through messaging, it
indicates a true situation reflected by the model that published it. If either of these is out of lockstep with the other, it will lead
to incorrect states in one or more interdependent models.

How is model and Event persistence consistency accomplished? There are three basic ways:
1. Your domain model and messaging infrastructure share the same persistence store (for example, a data source).
This will allow the changes to the model and the insertion of the new message to commit under the same local
transaction. It has the advantage of relatively good performance. It has the possible disadvantage that the messaging
system’s storage areas (such as database tables) must reside in the same database (or schema) as your model’s,
which may be a matter of taste. Of course, this is not a viable option if your choice of model store and your

messaging mechanism’s store cannot be shared.
2. Your domain model’s persistence store and your messaging persistence store are controlled under a global, XA
transaction (two-phase commit). This has the advantage that you can keep model and messaging storage separated
from each other. It has the disadvantage that global transactions require special support, which may not be available
for all persistence stores or messaging systems. Global transactions tend to be expensive and perform poorly. It is
also possible that either the model’s store or the messaging mechanism’s store, or both, isn’t XA compatible.
3. You create a special storage area (for example, a database table) for Events in the same persistence store that is
used to store your domain model. This is an Event Store, as discussed later in this chapter. It is similar to option 1;
however, this storage area is not owned and controlled by your messaging mechanism but instead by your Bounded
Context. An out-of-band component that you create uses the Event Store to publish all stored, unpublished Events
through the messaging mechanism. This has the advantage that your model and your Events are guaranteed to be
consistent within a single, local transaction. It has the further advantages that are characteristic of an Event Store,
including the ability to produce REST-based notification feeds. This approach allows the use of a messaging
infrastructure whose message store is completely private. Given that a middleware messaging mechanism can be
used after Event storage, this approach has the disadvantage that the Event forwarder must be custom-developed in
order to send through the messaging mechanism, and that clients must be designed to de-duplicate incoming messages
(see “Event Store”).

It is the third approach that I use in my examples. While there are disadvantages to this approach, there are also several
advantages that are made clear under “Event Store.” My choice of this one approach in no way negates the value of selecting in
favor of a different set of trade-offs. You and your team must choose from among them.

Autonomous Services and Systems
Using Domain Events allows any number of your enterprise systems to be designed as autonomous services and systems. I

use the term autonomous service to represent any coarse-grained business service, possibly thought of as a system or
application, that operates largely independent of other such “services” in the enterprise. The autonomous service may have a
number of service interface endpoints, meaning that it offers potentially many technical service interfaces to remote clients. A
high degree of independence from other systems is achieved by avoiding in-band remote procedure calls (RPCs), where a user
request is satisfied only by successful completion of an API request to a remote system.

Since there may be times when the remote system is either completely unavailable or under heavy load, RPC may affect the
success of the dependent system. This risk multiples as the number of systems with RPC APIs that a given system depends on
increases. Thus, avoiding in-band RPC greatly eases dependency and related instances of complete failure and/or unacceptable
performance caused by unavailable or low-throughput remote systems.

Rather than calling out to other systems, use asynchronous messaging to achieve a greater degree of independence between
systems—autonomy. As messages carrying Domain Events from Bounded Contexts around the enterprise are received, execute
behavior on your model that reflects the meaning of those Events within your Bounded Context. This does not mean that you
simply replicate data or make exact copies of objects from other business services into your business service. True, some data
may be copied between systems. At a minimum, copied data will include some unique identities of foreign Aggregates. But the
objects in one system will seldom if ever be exact copies of objects from surrounding ones. If that probable modeling error
exists, see Bounded Contexts (2) and Context Maps (3) for reasons why it is problematic and for ways to avoid it. In fact, if
Domain Events are correctly designed, they will rarely if ever carry entire objects as part of their state.

The Event will hold some limited amount of command parameters and/or Aggregate state that will convey enough meaning to
allow subscribing Bounded Contexts to react correctly. Certainly if any given Event does not hold enough information for any
given subscriber, the domain-wide contract of the Event must be altered in order to supply what is needed. This probably
spells designing an explicitly new version of the Event or a completely different one.

It is also true that in some cases the use of RPC cannot be easily avoided. Some legacy systems may be capable of providing
only RPC. Also, when translating a concept or set of concepts from a foreign Bounded Context to your local Bounded Context
is very difficult to do, extrapolating sufficient meaning from multiple Events may tend to increase complexity. If you must
nearly replicate the concepts, objects, and their associations from the foreign model in your own model, you may need to
consider sticking with RPC. This must be considered on a case-by-case basis, and I suggest not giving in to RPC too easily. If
it can’t be avoided, either surrender to RPC or try to influence the team that owns the foreign model to find a way to simplify
their design. Admittedly the latter may be very difficult, if not impossible.

Latency Tolerances
Won’t the potentially long latency periods before a message is received—where eventual consistency represents delays of

more than a few milliseconds—cause problems? Certainly this is a matter to consider carefully, given that out-of-sync data

could influence wrong and even damaging actions. We must ask how long between consistent states is acceptable, and how
much delay is too great. Domain experts will likely be very much in tune with what constitutes acceptable and unacceptable
delays. It may surprise developers to learn that most times, several seconds, minutes, hours, or even days between consistent
states is completely tolerable. This is not to say that it is always true. But we must not assume that in any given domain, near-
consistent time frames are always imperative.

Sometimes the following question will lead to an informative answer: How did the business work prior to computers, or
how would it work without them now? Perhaps not even the very simplest of paper-based systems is ever immediately
consistent. It would only make sense, then, that automated computer systems could also tolerate and even thrive in an eventually
consistent manner. We might conclude that eventual consistency makes better business sense.

Imagine a Subdomain used to plan future team activities. As any of the individual activities becomes approved, a Domain
Event is published that reflects the approval: TeamActivityApproved. This one follows any number of other Events that have
already been published about the genesis and definition of all now-approved activities. Another Bounded Context reacts to the
approval by scheduling the latest readied activity to start sometime in relation to all other approved activities.

We know that any given activity is specified and approved at least weeks before it begins. That being so, would it matter if
the Event necessary to cause placement of the approved activity in the schedule were to be received minutes, hours, or
possibly even days following approval? Maybe days wouldn’t be acceptable. However, if the outage of a system caused the
Event to be delayed for a number of hours—probably an unlikely situation—would hours without having the activity on the
schedule be a completely intolerable delay? No, because it is a rare system outage that must be worked around, and the activity
is still weeks off anyway. Since that is so, certainly a typical delay of perhaps as much as a few seconds—at the outer limits—
for the same Event to arrive under completely normal circumstances would be not only tolerable, but acceptable. In fact any
actual delays may not even be perceptible.

Cowboy Logic
AJ: “Is that a Kentucky ‘shortly’?”
LB: “It might be a New York ‘minute.’”

Just as much as this example may prove true, other business services will demand higher throughput. Maximum latency
tolerances should be well understood and systems should have the architectural qualities to meet them and possibly even out-
perform them. High availability and scalability must be designed into autonomous services and their supporting messaging
infrastructure in order to dutifully fulfill stringent enterprise nonfunctional requirements.

Event Store
Maintaining a store of all Domain Events for a single Bounded Context has several potential benefits. Consider what you

could do if you were to store a discrete Event for every model command behavior that is ever executed. You could
1. Use the Event Store as a queue for publishing all Domain Events through a messaging infrastructure. This is one of
the primary uses in this book. It allows integrations between Bounded Contexts, where remote subscribers react to
the Events in terms of their own contextual needs. (See the previous section, “Spreading the News to Remote
Bounded Contexts.”)
2. You may use the same Event Store to feed REST-based Event notifications to polling clients. (This is logically the

same as point 1, but different in actual use.)
3. Examine a historical record of the result of every command that has ever been executed on the model. This could
help trace bugs, not only in the model but also in clients. It’s important to grasp that an Event Store is not just an audit
log. Audit logs may helpful for debugging, but they rarely carry the complete results of each Aggregate command
outcome.
4. Use the data in trending, forecasting, and for other business analytics. Many times businesses have no idea how
such historical data can be used until they later realize that they need it. Unless an Event Store is maintained from the
start, the historical data will be unavailable as needs arise.
5. Use the Events to reconstitute each Aggregate instance when it is retrieved from its Repository. This is a required
part of what is known as Event Sourcing. It is done by applying to an Aggregate instance all previously stored Events
in chronological order. You may produce snapshots of any number of stored Events (for example, groups of 100) to
optimize instance reconstitution.
6. Given an application of the preceding point, undo blocks of changes to an Aggregate. This is possible by
preventing (perhaps by removal or marking as obsolete) certain Events from being used to reconstitute a given
Aggregate instance. You may also patch Events or insert additional Events to correct bugs in the Event stream.

Depending on your reasons to create an Event Store, it will have certain characteristics. Since the examples presented here
are primarily motivated by benefits 1 and 2, our Event Store is basically concerned with holding serialized Events in the order
in which they occurred. This does not mean that we couldn’t use the Events to realize all of the first four benefits, because the
second two are possible based on the fact that we are making a record of all significant Events in the domain. Achieving
benefits 3 and 4 is, therefore, further application of what’s accomplished by the first two. However, we will not be attempting
to leverage the Event Store for points 5 and 6 in this chapter.

Several steps are necessary to realize benefits 1 and 2. The steps are summarized in Figure 8.3. Let’s first discuss the steps
covered in that sequence diagram and the components involved. We’ll do so through the project experiences of SaaSOvation.

Figure 8.3. The IdentityAccessEventProcessor anonymously subscribes to all Events of the model. It delegates to
EventStore, which serializes each to a StoredEvent and saves it.

For whatever reasons we use an Event Store, one of the first things we need to do is create a subscriber that will receive
every Event that is published out of the model. The team decided to do that using an aspect-oriented hook that can insert itself
in the execution path of every Application Service in the system.

Here’s what the SaaSOvation team did for the Identity and Access Context. The following component has the single
responsibility to see to it that all Domain Events get stored:
Click here to view code image

@Aspect
public class IdentityAccessEventProcessor {
 ...
 @Before(
 "execution(* com.saasovation.identityaccess.application.*.*(..))")
 public void listen() {
 DomainEventPublisher
 .instance()
 .subscribe(new DomainEventSubscriber<DomainEvent>() {

 public void handleEvent(DomainEvent aDomainEvent) {
 store(aDomainEvent);
 }

 public Class<DomainEvent> subscribedToEventType() {
 return DomainEvent.class; // all domain events
 }
 });
 }

 private void store(DomainEvent aDomainEvent) {
 EventStore.instance().append(aDomainEvent);
 }
}

It’s a simple Event processor, and a similar one could be used by any other Bounded Context with the same mission.
It’s designed as an aspect (using Spring’s AOP) that intercepts all Application Service method invocations. When an
Application Service method is executed, this processor arranges to listen for all Domain Events that get published due to
the Application Service’s interaction with the model. The processor registers a subscriber with the thread-bound instance
o f DomainEventPublisher. This subscriber’s filter is wide open, which is indicated by its answering
DomainEvent.class from subscribedToEventType(). Returning that class indicates that the subscriber wants to
receive all Events. When its handleEvent() is invoked, it delegates to store(), which in turn delegates to class
EventStore to append the Event to the end of the actual Event Store.

Here’s a look at the EventStore component’s append() method:
Click here to view code image

package com.saasovation.identityaccess.application.eventStore;
...
public class EventStore ... {
 ...
 public void append(DomainEvent aDomainEvent) {

 String eventSerialization =
 EventStore.objectSerializer().serialize(aDomainEvent);

 StoredEvent storedEvent =
 new StoredEvent(
 aDomainEvent.getClass().getName(),
 aDomainEvent.occurredOn(),
 eventSerialization);

 this.session().save(storedEvent);

 this.setStoredEvent(storedEvent);
 }
}

Method store() serializes the DomainEvent instance, places that into a new StoredEvent instance, and then writes that
new object to the Event Store. Here is a portion of class StoredEvent that holds the serialized DomainEvent:
Click here to view code image

package com.saasovation.identityaccess.application.eventStore;
...
public class StoredEvent {
 private String eventBody;
 private long eventId;
 private Date occurredOn;
 private String typeName;

 public StoredEvent(
 String aTypeName,
 Date anOccurredOn,
 String anEventBody) {
 this();
 this.setEventBody(anEventBody);
 this.setOccurredOn(anOccurredOn);
 this.setTypeName(aTypeName);
 }
 ...
}

Each StoredEvent instance gets a unique sequence value autogenerated by the database and set as its eventId. Its
eventBody contains the serialization of the DomainEvent. The serialization used here is JSON using the [Gson] library, but
we could use another form. The typeName holds the name of the concrete class of the corresponding DomainEvent, and
occurredOn is a copy of the same occurredOn in the DomainEvent.

All StoredEvent objects are persisted into a MySQL table. Plenty of room is reserved for Event serializations, although
65,000 characters is no doubt far more storage than will ever be needed by a single instance:
Click here to view code image

CREATE TABLE `tbl_stored_event` (
 `event_id` int(11) NOT NULL auto_increment,
 `event_body` varchar(65000) NOT NULL,
 `occurred_on` datetime NOT NULL,
 `type_name` varchar(100) NOT NULL,
 PRIMARY KEY (`event_id`)
) ENGINE=InnoDB;

That takes us through the high-level review of a few components necessary to build up the Event Store with all Event
instances published by Aggregates in the domain model. We’ll look at more detail later. Let’s next see how these stored

records of happenings in our model can be consumed by other systems.

Architectural Styles for Forwarding Stored Events
Once the Event Store is populated, it is available to provide Events to be forwarded as notifications to interested parties.

We’ll look at two styles of making these Events available. One style is through RESTful resources that are queried by clients,
and the second style is by sending messages over a topic/exchange of a middleware messaging product.

Granted, the REST-based approach is not truly a forwarding technique. Yet, it is used to produce the same results as a
Publish-Subscribe style, much as an e-mail client is a “subscriber” to e-mail messages “published” by an e-mail server.

Publishing Notifications as RESTful Resources
The REST style of Event notification works best when used in an environment that follows the basic premises of Publish-

Subscribe. That is, many consumers are interested in the same events that are available from a single producer. On the other
hand, if you attempt to use the REST-based style as a Queue, the approach tends to break down. Here is a summary of the good
and the bad of the RESTful approach:

• If potentially many clients can go to a single well-known URI to request the same set of notifications, the RESTful
approach works well. Essentially notifications are fanned out to any number of polling consumers. This follows the
basic Publish-Subscribe pattern, even though it uses the pull model instead of the push model.2

• If one or a few consumers are required to pull from multiple producers for resources in order to get a single set of
tasks to be performed in a specific sequence, you will probably quickly feel the pain of using a RESTful approach.
This describes a Queue, where potentially many producers need to feed notifications to one or a few consumers, and
the order of receipt may matter. A polling model is typically not a good choice for implementing Queues.

The RESTful approach to publishing Event notifications is quite the opposite of those published using a typical messaging
infrastructure. The “publisher” does not maintain a set of registered “subscribers” because nothing gets pushed to interested
parties. Instead this approach requires REST clients to pull for notifications using a well-known URI.

Consider the RESTful approach from a high level. If you are familiar with the way Atom feeds are consumed on the Web,
this approach will look very familiar. It’s actually based on Atom concepts.

Clients use the HTTP GET method to request what is known as the current log. The current log contains the very latest
notifications that have been published. The client receives the current log with a number of notifications not to exceed a
standard limit. Our examples use 20 as the maximum number of notifications for each log. The client navigates through each of
the Events in the current log to find all that have not yet been consumed by its Bounded Context.

How does a client consume Event notifications locally? It interprets the serialized Event by type, translating any pertinent
data as appropriate to the local Bounded Context. This likely includes finding related Aggregate instances in its own model and
executing commands based on the interpretation of applicable Events. Of course, Events must be applied in chronological
order, since the oldest Events represent operations that took place earlier than newer ones. Unless the oldest Events are
applied first in the order in which they occurred, the changes that are affected on the local model could well cause bugs.

In our implementation, the current log will have at most 19 notifications. It could have somewhat fewer than 19, even as few
as zero. When the current log reaches 20 total notifications, it is automatically archived. If there are no new notifications
available at the time the previous current log is archived, the new current log will be empty of notifications.

What’s an Archived Log All About?
There’s nothing mysterious about an archived log. It just means that the specific log can no longer be altered by any action
in the owning system, and clients are guaranteed that no matter how many times they ask for a particular archived log, it
will always be the same.

On the other hand, the current log will change up to the point where it becomes full and is finally archived. However,
the only changes that can occur to the current log would be to add new notifications until it is full.

Events previously added to any log must never change. This is so because clients must have the guarantee that once they
have applied a specific Event locally, it has been applied once and for all times.

Thus, the current log may not always hold the newest or oldest notification that has yet to be applied locally. The oldest such
Event may reside in the log previous to the current, or even the others before it. It’s all a matter of timing based on how
frequently Events fill up a given finite log (in this case with just 20 entries) and how often clients pull for the logs. Figure 8.4
shows how notification logs chain together to provide a virtual array of individual notifications.

Figure 8.4. The current log and any number of linked archived logs form a virtual array of all Events from the most
recent Event back to the very first Event. Here notifications 1 through 65 are depicted. Each of the archived logs
contains the full 20-notification limit. The current log has not yet filled up and contains just five total notifications.

Assuming the log state depicted by Figure 8.4, let’s say that notifications 1 through 58 have already been applied locally.
That means that notifications 59 through 65 have not yet been applied. If the client pulls the following URI, it will receive the
current log:

//iam/notifications

The client reads from its own database a tracking record of the identity of the most recently applied notification, which in
our example is 58. The onus is on the client, not the server, to track the next notification to apply. The client navigates from the
top to the bottom through the current log in search of the notification with identity 58. It doesn’t find it there, so it continues to
navigate back to the previous log, which is an archived log. The previous log is reached by use of a hypermedia link in the
current log. One style is to allow hypermedia navigation to leverage a header:
Click here to view code image

HTTP/1.1 200 OK
Content-Type: application/vnd.saasovation.idovation+json
...
Link: <http://iam/notifications/61,80>; rel=self
Link: <http://iam/notifications/41,60>; rel=previous
...

Why Doesn’t the URI Reflect What’s Actually in the Current Log?
Note that although the current log presently has only notifications with identities 61 through 65, its URI is composed of the
full identity range, 61 through 80, for example:

Link: <http://iam/notifications/61,80>; rel=self

That’s because the resource must remain stable over its entire lifetime. This allows for consistent access and for
caching to work correctly.

From the Link containing rel=previous, the URI is used for a GET, which retrieves the log previous to the current one:
//iam/notifications/41,60

Using this archived log, the client now finds the sought-after notification, the one with identity 58, after three probes on
individual notifications (60, 59, then 58). Since this client has already applied that notification (identity 58), it does not apply
notification 58 again. Instead, it now navigates in the other direction in search of all newer notifications. In this archived log it
finds identity 59 and applies it. Then it finds 60 and applies it. It has now reached the top of this archived log, so it navigates to
the rel=next resource, which is the current log:
Click here to view code image

HTTP/1.1 200 OK
Content-Type: application/vnd.saasovation.idovation+json
...
Link: <http://iam/notifications/61,80>; rel=next
Link: <http://iam/notifications/41,60>; rel=self
Link: <http://iam/notifications/21,40>; rel=previous
...

It finds in that log notifications with identities 61, 62, 63, 64, and 65, applying each in chronological order. It reaches the
end of the current log and stops processing for now, because the current log never has a link header of rel=next.

Sometime later the process repeats. The current log is requested by URI. Perhaps by now the activity in the source Bounded
Context has caused the generation of significantly different logs by producing a number of new notifications. When the current
log is now requested, it may have any number of new notifications. The client may have to navigate back one, two, or even
more archived logs to find the most recently applied notification, which is presently the one with identity 65. As before, when
the client finds notification 65, it will apply all newer ones in chronological order.

Any number of different client Bounded Contexts may request the notification logs. In fact, any Bounded Context that needs
to know what Events have been produced by any other Bounded Context providing this kind of notification publisher may reach
out to get the notifications as far back as the “beginning of time.” Of course, each client Bounded Context may actually be a
client only if it has proper access to the source system (for example, security rights).

But won’t client polling of notification resources cause enormous amounts of unwanted traffic against your Web server? Not
if your RESTful resources make effective use of caching. For example, the current log might be cached by the client itself for
approximately one minute:
Click here to view code image

HTTP/1.1 200 OK
Content-Type: application/vnd.saasovation.idovation+json
...
Cache-Control: max-age=60
...

Every time the client polling precedes the one-minute caching, the client cache itself provides the previously retrieved
current log. When the cache times out, the latest current log will be retrieved from the server resource. Archived logs may be
cached longer since their contents never change, as demonstrated by this one-hour max-age:
Click here to view code image

HTTP/1.1 200 OK
Content-Type: application/vnd.saasovation.idovation+json
...
Cache-Control: max-age=3600
...

The client may use the current log max-age value as a timer/sleep threshold since it is unnecessary to perform GET requests
continuously on cached resources. Sleep-induced decreased polling can benefit processing load on the client Bounded Context
and on the source server. The resource provider will never receive the requests as long as the cache max-age has not expired.
So an ill-behaved client can never hurt performance or availability of the notification producer, assuming the proper use of
client caching. This highlights the benefits of using the Web and its built-in infrastructure to achieve tremendous performance
and scalability benefits.

The server may also provide its own cache. Server caching of notification logs works really well because the contents of
archived logs never change. Any client that requests a given archived notification log not only receives the resource, it also
warms the cache for all other clients in need of the same resource. There is no need for the cache to refresh an archived log
because the log is guaranteed immutable.

Wow! That was quite a bit of detail, and still more remains under Integrating Bounded Contexts (13). I suggest that you
reference [Parastatidis et al., RiP] for various strategies on designing efficient RESTful Event notification systems. There you
will find discussions on the advantages and disadvantages of the standard media type Atom-based notification logs, as well as
a few reference implementations. Also, Jim Webber provides further insight on this approach in his presentation [Webber,
REST & DDD]. One of the earliest references to this approach comes from Stefan Tilkov’s article on InfoQ [Tilkov, RESTful
Doubts]. You can also watch my own presentation using this approach [Vernon, RESTful DDD].

Publishing Notifications through Messaging Middleware
Not surprisingly, a messaging middleware product such as RabbitMQ manages details for you that the REST style forces you

to deal with on your own. The messaging system also allows you to fairly easily support both Publish-Subscribe and Queues,
whichever better fits your needs. In both cases the messaging system uses a push model to send messages of Event notifications
to registered subscribers or listeners.

Consider the requirements for publishing Events from our Event Store via a messaging middleware product. We are going to
stick with Publish-Subscribe, using what RabbitMQ calls a fanout exchange. We will need a set of components that together
do the following in order:

1. Query all Domain Event objects from the Event Store that have not yet been published to the specific exchange.
Order the queried objects in ascending order by their sequenced unique identity.
2. Iterate over the queried objects in ascending order, sending each to the exchange.
3. When the messaging system indicates that the message was successfully published, track that Domain Event as
having been published through that exchange.

We do not wait to see if subscribers confirm receipt. Subscriber systems may not even be running when the publisher sends
messages through the exchange. Each subscriber is responsible for handling messages in its own time frame, ensuring that it
properly carries out any necessary domain behavior on its own model. We simply allow the messaging mechanism to guarantee
delivery.

Whiteboard Time
• Draw a Context Map of the Bounded Context you work on and the others you integrate with. Make sure you show
connections between the Contexts that interact.
• Make notations of the kinds of relationships between them, such as Anticorruption Layer (3).
• Now indicate how you would integrate these Contexts. Would you use RPC, RESTful notifications, or a messaging
infrastructure? Draw those in.

Remember, you might not have much choice when integrating with a legacy system.

Implementation
Having decided on the architectural styles used for publishing Events, the SaaSOvation team is now focused on the

implementation of components to accomplish that . . .

The core of notification publishing behavior is placed behind an Application Service, the NotificationService. That
allowed the team to manage the transactional scope of changes in their own data source. It also emphasized that notification is
an application concern, not a domain concern, even though the Events being published as notifications originated in the model.

There was no need for the NotificationService to have a Separated Interface [Fowler, P of EAA]. At this time
there would be just one implementation of the Application Service, so the team would keep things simple. Still, every
simple class has a public interface, so here it is presented as stubbed-out methods:

Click here to view code image

package com.saasovation.identityaccess.application;
...
public class NotificationService {
 ...
 @Transactional(readOnly=true)
 public NotificationLog currentNotificationLog() {
 ...
 }

 @Transactional(readOnly=true)
 public NotificationLog notificationLog(String aNotificationLogId) {
 ...
 }

 @Transactional
 public void publishNotifications() {
 ...
 }
 ...
}

The first two methods will be used for querying NotificationLog instances that are provided to clients as RESTful
resources, and the third will be used to publish individual Notification instances over a messaging mechanism. The
team will first tackle the query methods for getting NotificationLog instances, then turn their attention to the one that
interacts with the messaging infrastructure.

There are some interesting implementations ahead.

Publishing the NotificationLog
Recall that there are two kinds of notification logs, a current log and an archived log. Thus, the NotificationService

interface provides a query method for each type:
Click here to view code image

public class NotificationService {
 @Transactional(readOnly=true)
 public NotificationLog currentNotificationLog() {
 EventStore eventStore = EventStore.instance();

 return this.findNotificationLog(
 this.calculateCurrentNotificationLogId(eventStore),
 eventStore);
 }

 @Transactional(readOnly=true)
 public NotificationLog notificationLog(String aNotificationLogId) {
 EventStore eventStore = EventStore.instance();

 return this.findNotificationLog(
 new NotificationLogId(aNotificationLogId),
 eventStore);
 }
 ...
}

Ultimately both of these methods must “find” a NotificationLog. What that really means is finding a section of
DomainEvent instances that have been serialized in the Event Store, encapsulating each one with a Notification, and
collecting all those into a NotificationLog. Once a NotificationLog instance is created, it can be represented as a
RESTful resource and provided to a requesting client.

Since the current log may be a constantly moving target, its identity must be calculated every time it is requested. Here’s the
calculation:
Click here to view code image

public class NotificationService {
 ...
 protected NotificationLogId calculateCurrentNotificationLogId(
 EventStore anEventStore) {

 long count = anEventStore.countStoredEvents();

 long remainder = count % LOG_NOTIFICATION_COUNT;

 if (remainder == 0) {
 remainder = LOG_NOTIFICATION_COUNT;
 }

 long low = count - remainder + 1;

 // ensures a minted id value even though there may
 // not be a full set of notifications at present
 long high = low + LOG_NOTIFICATION_COUNT - 1;

 return new NotificationLogId(low, high);
 }
 ...
}

Otherwise, for an archived log all that is needed is a NotificationLogId to encapsulate the low and high range of the
identifier. Remember that the identifier is encoded as a textual representation of a range between low and high values, such as
21–40. Thus, the constructor for an encoded identity looks like this:
Click here to view code image

public class NotificationLogId {
 ...
 public NotificationLogId(String aNotificationLogId) {
 super();
 String[] textIds = aNotificationLogId.split(",");
 this.setLow(Long.parseLong(textIds[0]));
 this.setHigh(Long.parseLong(textIds[1]));
 }
 ...
}

Whether querying for the current log or an archived log, we now have a NotificationLogId that describes what method
findNotificationLog() will query for:
Click here to view code image

public class NotificationService {
 ...
 protected NotificationLog findNotificationLog(
 NotificationLogId aNotificationLogId,
 EventStore anEventStore) {

 List<StoredEvent> storedEvents =
 anEventStore.allStoredEventsBetween(
 aNotificationLogId.low(),
 aNotificationLogId.high());

 long count = anEventStore.countStoredEvents();

 boolean archivedIndicator = aNotificationLogId.high() < count;

 NotificationLog notificationLog =
 new NotificationLog(
 aNotificationLogId.encoded(),
 NotificationLogId.encoded(
 aNotificationLogId.next(

 LOG_NOTIFICATION_COUNT)),
 NotificationLogId.encoded(
 aNotificationLogId.previous(
 LOG_NOTIFICATION_COUNT)),
 this.notificationsFrom(storedEvents),
 archivedIndicator);

 return notificationLog;
 }
 ...
 protected List<Notification> notificationsFrom(
 List<StoredEvent> aStoredEvents) {
 List<Notification> notifications =
 new ArrayList<Notification>(aStoredEvents.size());

 for (StoredEvent storedEvent : aStoredEvents) {
 DomainEvent domainEvent =
 EventStore.toDomainEvent(storedEvent);

 Notification notification =
 new Notification(
 domainEvent.getClass().getSimpleName(),
 storedEvent.eventId(),
 domainEvent.occurredOn(),
 domainEvent);

 notifications.add(notification);
 }

 return notifications;
 }
 ...
}

It’s quite interesting that there is no need to actually persist any Notification instances or whole logs. We can just
manufacture them each time they are needed. Obviously, for that reason, it helps with performance and scalability to cache
NotificationLog resources at the points of request.

Method findNotificationLog() uses the EventStore component to query the StoredEvent instances it needs for a given
log. Here’s how the EventStore finds them:
Click here to view code image

package com.saasovation.identityaccess.application.eventStore;
...
public class EventStore ... {
 ...
 public List<StoredEvent> allStoredEventsBetween(
 long aLowStoredEventId,
 long aHighStoredEventId) {

 Query query =
 this.session().createQuery(
 "from StoredEvent as _obj_ "
 + "where _obj_.eventId between ? and ? "
 + "order by _obj_.eventId");

 query.setParameter(0, aLowStoredEventId);
 query.setParameter(1, aHighStoredEventId);

 List<StoredEvent> storedEvents = query.list();

 return storedEvents;
 }
 ...
}

Finally, at the Web tier we publish the current log and archived logs:
Click here to view code image

@Path("/notifications")
public class NotificationResource {
 ...
 @GET
 @Produces({ OvationsMediaType.NAME })
 public Response getCurrentNotificationLog(
 @Context UriInfo aUriInfo) {

 NotificationLog currentNotificationLog =
 this.notificationService()
 .currentNotificationLog();

 if (currentNotificationLog == null) {
 throw new WebApplicationException(
 Response.Status.NOT_FOUND);
 }

 Response response =
 this.currentNotificationLogResponse(
 currentNotificationLog,
 aUriInfo);

 return response;
 }

 @GET
 @Path("{notificationId}")
 @Produces({ OvationsMediaType.ID_OVATION_NAME })
 public Response getNotificationLog(
 @PathParam("notificationId") String aNotificationId,
 @Context UriInfo aUriInfo) {

 NotificationLog notificationLog =
 this.notificationService()
 .notificationLog(aNotificationId);

 if (notificationLog == null) {
 throw new WebApplicationException(
 Response.Status.NOT_FOUND);
 }

 Response response =
 this.notificationLogResponse(
 notificationLog,
 aUriInfo);

 return response;
 }
 ...
}

The team could have used a MessageBodyWriter to generate the response, but there are some necessary minor complexities
that are managed in response builder methods.

That covers the important bits used to publish both current and archived notification logs to RESTful clients.

Publishing Message-Based Notifications
T h e NotificationService provides a single method for publishing DomainEvent instances over a messaging

infrastructure. Here is the service method:
Click here to view code image

public class NotificationService {

 ...
 @Transactional
 public void publishNotifications() {
 PublishedMessageTracker publishedMessageTracker =
 this.publishedMessageTracker();

 List<Notification> notifications =
 this.listUnpublishedNotifications(
 publishedMessageTracker
 .mostRecentPublishedMessageId());

 MessageProducer messageProducer = this.messageProducer();

 try {
 for (Notification notification : notifications) {
 this.publish(notification, messageProducer);
 }

 this.trackMostRecentPublishedMessage(
 publishedMessageTracker,
 notifications);
 } finally {
 messageProducer.close();
 }
 }
 ...
}

Method publishNotifications() first gets its PublishedMessage-Tracker. This is the object that persists the record of
which Events have already been published:
Click here to view code image

package com.saasovation.identityaccess.application.notifications;
...
public class PublishedMessageTracker {
 private long mostRecentPublishedMessageId;
 private long trackerId;
 private String type;
 ...
}

Note that this class is not part of the domain model but rather belongs to the application. The trackerId is just this object’s
unique identity (essentially an Entity). The type attribute holds the String description of the type of topic/channel that the
Events were published on. The attribute mostRecentPublishedMessageId corresponds to the unique identity of the
individual DomainEvent that was serialized and persisted as a StoreEvent. Thus, it holds the value of the StoredEvent
eventId of the most recently published instance. After all new Notification messages have been sent, the service method
ensures that the PublishedMessageTracker is saved with the identity of the now most recently published Event.

The Event identity along with the type attribute allows us to publish the same notifications at different times to any
number of topics/channels. We just create a new instance of the PublishedMessageTracker with the name of the
topic/channel as its type and start again with the first StoredEvent. In fact, here’s how method
publishedMessageTracker() does it:
Click here to view code image

public class NotificationService {
 private static final String EXCHANGE_NAME =
 "saasovation.identity_access";
 ...
 private PublishedMessageTracker publishedMessageTracker() {
 Query query =
 this.session().createQuery(
 "from PublishedMessageTracker as _obj_ "
 + "where _obj_.type = ?");

 query.setParameter(0, EXCHANGE_NAME);

 PublishedMessageTracker publishedMessageTracker =
 (PublishedMessageTracker) query.uniqueResult();

 if (publishedMessageTracker == null) {
 publishedMessageTracker =
 new PublishedMessageTracker(EXCHANGE_NAME);
 }

 return publishedMessageTracker;
 }
 ...
}

Multichannel publishing is not yet supported, but it could be added easily with a little refactoring.
Next, method listUnpublishedNotifications() is responsible for querying a sorted list of all unpublished

Notification instances:
Click here to view code image

public class NotificationService {
 ...
 protected List<Notification> listUnpublishedNotifications(
 long aMostRecentPublishedMessageId) {
 EventStore eventStore = EventStore.instance();

 List<StoredEvent> storedEvents =
 eventStore.allStoredEventsSince(
 aMostRecentPublishedMessageId);

 List<Notification> notifications =
 this.notificationsFrom(storedEvents);

 return notifications;
 }
 ...
}

In reality it’s querying the EventStore for StoredEvent instances with eventId values greater than the one held by
parameter aMostRecentPublishedMessageId. Those returned from the EventStore are used to create a new collection of
Notification instances.

Now, back to the main service method publishNotifications(). With the collection of DomainEvent wrapper
Notification instances, it iterates and dispatches to method publish():
Click here to view code image

...
for (Notification notification : notifications) {
 this.publish(notification, messageProducer);
}

This method that publishes individual Notification instances does so through RabbitMQ, but using a very simple object
library to make its interface seem more object-oriented:
Click here to view code image

public class NotificationService {
 ...
 protected void publish(
 Notification aNotification,
 MessageProducer aMessageProducer) {

 MessageParameters messageParameters =

 MessageParameters.durableTextParameters(
 aNotification.type(),
 Long.toString(aNotification.notificationId()),
 aNotification.occurredOn());

 String notification =
 NotificationService
 .objectSerializer()
 .serialize(aNotification);

 aMessageProducer.send(notification, messageParameters);
 }
 ...
}

This publish() method creates MessageParameters and then sends the JSON serialized DomainEvent by way of a
MessageProducer.3 The MessageParameters include select properties to send along with the message body. Among these
special parameters are the Event type string, the notification identity used as a unique message ID, and the occurredOn
timestamp of the Event. These parameters allow subscribers to determine important facts about each message without the need
to parse the JSON message body, which is the serialized Event. And the unique message ID (notification identity) supports
message de-duplication, which is explained later.

Consider one more method used to fully implement publishing:
Click here to view code image

public class NotificationService {
 ...
 private MessageProducer messageProducer() {

 // create my exchange if nonexistent
 Exchange exchange =
 Exchange.fanOutInstance(
 ConnectionSettings.instance(),
 EXCHANGE_NAME,
 true);

 // create a message producer used to forward Events
 MessageProducer messageProducer =
 MessageProducer.instance(exchange);

 return messageProducer;
 }
 ...
}

Method publishNotifications() uses messageProducer() to ensure that the exchange exists and then gets the instance
of MessageProducer used to publish. RabbitMQ supports exchange idempotence, so the first time you ask for the exchange it
is created, and all subsequent times you are given the preexisting one. We don’t retain an open instance of the Message-
Producer in case a problem with the backing broker channel somehow develops. Reestablishing the connection each time
publish is executed helps prevent a completely inoperable publisher. We may need to look out for possible performance issues
if constant reconnection becomes a bottleneck. But for now we will count on the configured pauses between publish operations
to alleviate reconnection overhead.

Speaking of pauses between publish operations, none of the preceding code indicates how Events are published to the
exchange on a regular, recurring basis. That can be accomplished in a few different ways and may depend on your operational
environment. For one, a JMX TimerMBean can be used to manage recurring time intervals.

Before presenting the following timer solution, it’s important to note an important context. The Java MBean standard also
uses the term notification, but this is not the same used by our own publishing process. In this case, a listener receives
notification of each occurrence of the timer firing. Just be prepared to sort that out in your mind.

Whatever suitable interval is determined and configured for a given timer, a NotificationListener is registered so the
MBeanServer can notify on each occasion when an interval is reached:
Click here to view code image

mbeanServer.addNotificationListener(
 timer.getObjectName(),
 new NotificationListener() {
 public void handleNotification(
 Notification aTimerNotification,
 Object aHandback) {
 ApplicationServiceRegistry
 .notificationService()
 .publishNotifications();
 }
 },
 null,
 null);

In this example, when method handleNotification() is invoked due to the timer firing, it requests the
NotificationService to perform its publishNotifications() operation. That’s all that’s necessary. For as long as the
TimerMBean continues to fire at regular, recurring intervals, Domain Events will continue to be published through the exchange
and consumed by subscribers across the enterprise.

Using an application-server-managed timer has the added advantage that you don’t have to create a component to monitor the
life cycle of your publishing process. If, for example, the publishNotifications() should for some reason on any given
execution encounter problems and terminate with an exception, the TimerMBean would continue to run and fire on subsequent
intervals. Administrators may need to address infrastructure errors, perhaps with RabbitMQ, but once problems are out of the
way, messages would continue to be published. That said, there are other timer facilities available, such as [Quartz].

But we are still left with questions about message de-duplication. What is message de-duplication? And why is it necessary
for messaging subscribers to support it?
Event De-duplication

De-duplication is a necessity in environments where a single message published through a messaging system could possibly
be delivered to subscribers more than once. There are various causes of duplicate messages. One way this can happen is the
following:

1. RabbitMQ delivers the newly sent messages to one or more subscribers.
2. The subscribers process the messages.
3. Before subscribers can acknowledge that the messages were received and processed, they fail.
4. RabbitMQ delivers the unacknowledged messages again.

The possibility also exists when publishing out of an Event Store, and the messaging system doesn’t share the Event Store’s
persistence mechanism, and global, XA transactions are not controlling atomic commits of Event Store and messaging
persistence changes. As discussed earlier under “Publishing Notifications through Messaging Middleware,” that is exactly our
situation. Consider a scenario that highlights how a message could be sent more than once:

1. The NotificationService queries and publishes three unpublished Notification instances. It updates the
record of this with PublishedMessageTracker.
2. The RabbitMQ broker receives all three messages and prepares to send them to all subscribers.
3. However, due to some exceptional condition on the application server, there is a failure of the
NotificationService. The modification to the PublishedMessageTracker is not committed.
4. RabbitMQ delivers the newly sent messages to subscribers.
5. The exceptional condition on the application server is corrected. The process of publishing begins again and the
NotificationService successfully sends messages for all unpublished Events. This includes sending (again!)
messages for all Events that were previously published but unknown to the PublishedMessageTracker.
6. RabbitMQ delivers the newly sent messages to subscribers, at least three of which are duplicate deliveries.

In this scenario I arbitrarily use three Events. I could have used one, two, four, or many more. The number is not significant,
only the fact that problems like these could cause redelivery. When you face this and other reasons for message duplication,
de-duplication is necessary. See Idempotent Receiver [Hohpe & Woolf] for more elaborate treatment.

An Idempotent Operation
An idempotent operation is one that can be executed two or more times in succession with results identical to those of
executing the same operation only once.

One way to deal with the possibility of duplicate message delivery is for subscriber model operation to be idempotent. The
subscriber’s response to all messages could be idempotent operations against its own domain model. The problem is that
designing a domain object, or any object for that matter, to be idempotent can be difficult, impractical, or even impossible. And
if we attempt to design the Event itself to carry information that reflects an idempotent action to be taken, that can also be
troublesome. For one, the sender must fully understand the current business situation of all receivers relative to the Event state
they will send. Further, receipt of Events that are out of sequence due to latency, retries, and so on could cause errors.

When domain object idempotence is not a viable option, you can instead design the subscriber/receiver itself to be
idempotent. The receiver can be designed to refuse to execute an operation in response to a duplicate message. First, you
should check to see if your messaging product supports this as a feature. If not, your receiver will need to track which
messages have already been handled. One way to accomplish that is to allocate an area in the subscriber’s persistence
mechanism to save the name of the topic/exchange along with the unique message ID of all handled messages—yes, similar to a
PublishedMessageTracker. Then you can query for duplicates before handling each message. If the query finds that a
message was already handled, the subscriber simply ignores it. The handled message tracking is not part of the domain model.
It should be viewed only as a technical work-around for common messaging idiosyncrasies.

When using a typical messaging middleware product, it is not enough to save only a record of the latest handled message
because messages can be received out of order. Thus, a de-duplication query that checks for message IDs less than the most
recent one would cause you to ignore some messages that were received out of order. Also to be considered is that sometimes
you will want to discard all handled message tracking entries that are obsolete, as in database garbage collection.

When using the REST-based notification approach, de-duplication is not really a factor. Client receivers need to save only
the most recently applied notification identity since they will always be applying only the notifications of events that occurred
after it. Each notification log will always be in reverse chronological order (descending) by notification identity.

In both cases—messaging middleware subscribers and REST-based notification clients—it is important that the tracking of
handled message identity be committed along with any changes to the local domain model state. Otherwise, you will be unable
to maintain tracking consistency in conjunction with the modifications made in response to Events.

Wrap-Up
In this chapter we looked at the definition of Domain Events and how they determine when modeling an Event would be to

your advantage.
• You’ve learned what Domain Events are, and when and why to use them.
• You looked into how Events are modeled as objects, and when they must be uniquely identified.
• You considered when an Event should have Aggregate characteristics, and when a simple Value-based Event
works best.
• You saw how lightweight Publish-Subscribe components are used in the model.
• You discovered which components publish Events and which ones subscribe to them.
• You grasped why you’d want to develop an Event Store, how it can be done, and how one is used.
• You learned about two approaches to Event publishing outside the Bounded Context: REST-based notifications and
the use of messaging middleware.
• You learned some ways to de-duplicate messages in subscribing systems.

Next, we are going to change directions quite a bit and look into how domain model objects can be well organized by using
Modules.

Chapter 9. Modules

The secret of all victory lies in the organization of the non-obvious.
—Marcus Aurelius

If you are using Java or C#, you are already familiar with Modules, though you know them by another name. Java calls them
packages. C# calls them namespaces. Actually in Ruby you can use the module language construct to effect namespaces for
classes. In Ruby’s case the DDD pattern name matches the name of the language construct. For the sake of our DDD context I
will continue to call them Modules in most cases. It will be easy for you to map that name to the programming language term
you regularly use. I won’t spend much time trying to explain technically what Modules do, because you probably figured that
out long ago.

Road Map to This Chapter
• Learn the difference between traditional Modules and the newer deployment modularity approach.
• Consider the importance of naming Modules per the Ubiquitous Language (1).
• See how designing Modules mechanically actually stifles modeling creativity.
• Learn the design choices and trade-offs made by the SaaSOvation teams.
• Find out the role Modules play outside the domain model, and when to favor new Modules over new Bounded
Contexts.

Designing with Modules
In a DDD context, Modules in your model serve as named containers for domain object classes that are highly cohesive with

one another. The goal should be low coupling between the classes that are in different Modules. Since Modules as used in
DDD are not bland or generic storage compartments, it is also important to properly name the Modules. Their names are an
important facet of the Ubiquitous Language.

Choose Modules that tell the story of the system and contain a cohesive set of concepts. This often
yields low coupling among Modules, but if it doesn’t, look for a way to change the model to
disentangle the concepts. . . . Give Modules names that become part of the Ubiquitous Language.
Modules and their names should reflect insight into the domain. [Evans, pp. 110, 111]

There are a few simple rules to keep in mind when designing Modules, as noted in Table 9.1.

Table 9.1. Simple Rules for Module Design

View Modules as first-class citizens of the model, and strive to create ones with as much meaning and naming consideration
as is given to Entities (5), Value Objects (6), Services, and Events (8). This means being aggressive enough to rename
existing Modules with the same boldness as when creating new ones. Always assertively place fresh and freshened domain
concepts into the Modules that contemporary insight calls for.

None of us would feel good about opening a drawer in our home kitchen and finding a disorganized assortment of forks,
knives, spoons, wrenches, screwdrivers, sockets, and hammers. We would probably at least refuse to eat with the silverware,
even if we could gather a full place setting. We might avoid digging through the disorganized drawer to look for a particular
screwdriver out of fear of being sliced by an undetected butcher’s knife.

Contrast this with a kitchen drawer that has silverware neatly organized into sets of forks, knives, and spoons, and a toolbox
in your garage where each type of tool has its own well-arranged drawer. We would have no problem finding what we need to
use for a specific purpose, or hesitate to put it to its intended use. Everything is well organized, uncluttered. With all this
modular organization in place, no one would expect to find cups and saucers in the drawer with silverware, even though both
belong in the kitchen. The neat stacks of tableware would likely lead us to believe that cups and saucers have a proper place of
their own. A few quick glances into nearby obvious-looking cabinets, and there they would be. We would likewise expect to
find sharp cutlery in a location that promised to protect their edges and protect those intending to use them.

On the other hand, we would probably not organize our kitchen’s contents using a mechanical approach, such as placing all
sturdy things in one drawer and all things that might break in a high cabinet. We wouldn’t want to have to remember that our
flower vases are kept with our fine teacups just because both are somewhat fragile. Neither would we want to remember that
we keep our stainless steel meat tenderizer with the fine cutlery just because both kinds of devices are in little danger of
damage by the other sturdy ones.

If we were modeling a kitchen, it would be perfectly natural to see a Module named placesettings, and in it we would
see objects such as Fork, Spoon, and Knife. Possibly we might even decide to place Serviette there as well, proving that
it’s not only being made of metal that qualifies an object to be a part of the placesettings Module. On the other hand, it
would be less helpful to modeling place settings if we had separate Modules named pronged, scooping, and blunt.

Note that more recent advances in the modularization of software have led to a different level of software modularity. This
approach has to do with the packaging of loosely coupled yet logically cohesive segments of software into a deployment unit
by version. In a Java ecosystem we still think in terms of JAR files, but with those now assembled by version using, for
example, OSGi bundles or Java 8 Jigsaw modules. Thus, various high-level modules, their versions, and their dependencies
could be managed as bundles/modules. These kinds of modules/bundles are a bit different from DDD Modules, but they can
complement each other. Certainly it makes sense to bundle loosely coupled parts of a domain model into the larger-grained
modules according to their DDD Modules. After all, it’s the loosely coupled design of your DDD Modules that will contribute
to your ability to bundle with OSGi or modularize to Jigsaw.

Cowboy Logic
LB: “You gotta wonder how this gas station keeps their restrooms so neat and clean.”
AJ: “Now, LB, a tornado could hit that restroom and do $10,000 in improvements.”

We’ll focus on how DDD Modules are used. Thinking of the purposes of specific Entities, Value Objects, Services, and
Events of your model benefits Module design. Let’s look at examples of thoughtful Module design.

Basic Module Naming Conventions
In both Java and C#, the names of Modules reflect a hierarchical form.1 Each level in the hierarchy is separated by a

dot/period. The name hierarchy generally begins with the name of the organization that produced it, composed with its Internet
domain name. When the Internet domain name is used, it typically starts with the top-level domain, followed by the
organizational domain name:

com.saasovation // Java
SaaSOvation // C#

Using unique top-level names prevents namespace collision with third-party Modules that are employed on your projects, or
those caused when yours are consumed by others. If you have questions about the most basic conventions, you can consult the
standard.2

Very likely your organization has already settled on a top-level Module naming convention. It’s best to be consistent.

Module Naming Conventions for the Model
The next segment of the Module name identifies the Bounded Context. Basing this segment on the name of the Bounded

Context is a good choice.

Here is how the SaaSOvation teams named these Modules:

 com.saasovation.identityaccess
 com.saasovation.collaboration
 com.saasovation.agilepm

They considered using the following, but it added little if any value compared to the previous Module names. Even
though they exactly name the Context, they probably produce unnecessary noise:

 com.saasovation.identityandaccess
 com.saasovation.agileprojectmanagement

Interestingly, too, they did not use their commercial product names (brands) in the Module names. Brand names can
change, and sometimes product names have little or no direct correlation to the underlying Bounded Contexts. It is more
important to identify the Context by name since that’s what the team discusses. The goal is to reflect the Ubiquitous
Language. If the team were to use the following names, it wouldn’t help them realize that goal:

 com.saasovation.idovation
 com.saasovation.collabovation
 com.saasovation.projectovation

The first Module name, com.saasovation.idovation, has almost no correlation to its Bounded Context. The second
one is fairly close. The third name is almost as deficient as the first, but slightly better. At least it has the word project in
it. Nonetheless, the team decided that these names didn’t have an intuitively obvious mental mapping to the Bounded
Contexts represented. Even more, if marketing decided that any of the product names had to change—possibly for
trademark infringement or cultural incompatibilities—these Module names would be completely obsolete. So the team
decided to stick with the first set.

Next, they tacked on an important qualifier. It identifies that the specific Module is in the domain:

 com.saasovation.identityaccess.domain
 com.saasovation.collaboration.domain
 com.saasovation.agilepm.domain

This convention is compatible with a traditional Layers Architecture (4) and a Hexagonal Architecture (4). These days a
system that uses Layers will generally manage them using a Hexagonal, injection style. With Hexagonal you have an “inside”
part of the application, which includes the domain part. This will be similar with other architectural styles.

The domain compartment may be devoid of interfaces/classes and serve only as a container for lower-level Modules.
Here’s the next level down:
Click here to view code image

com.saasovation.identityaccess.domain.model
com.saasovation.collaboration.domain.model
com.saasovation.agilepm.domain.model

This is where model classes start to be defined. This package level can contain reusable interfaces and abstract classes.

SaaSOvation liked to place in this Module common interfaces, such as those that were used for Event publishing, and abstract
base classes for Entities and Value Objects:

 ConcurrencySafeEntity
 DomainEvent
 DomainEventPublisher
 DomainEventSubscriber
 DomainRegistry
 Entity
 IdentifiedDomainObject
 IdentifiedValueObject

If you favor the style of placing Domain Services outside the domain.model Module, you can create a peer to it:

com.saasovation.identityaccess.domain.service
com.saasovation.collaboration.domain.service
com.saasovation.agilepm.domain.service

It is not a requirement to place Domain Services here. It is available if you consider them to be a kind of medium-grained
service mini-layer above the model, or a ring surrounding it [Evans, p. 108, “Granularity”]. However, be aware that this
approach can quickly lead to Anemic Domain Model, which is discussed in Services (7).

In the case where you do not divide model and services into two packages, it is possible to drop the model Module and just
place all model Modules directly under domain:

com.saasovation.identityaccess.domain.conceptname

It does eliminate one level that may seem redundant. Yet, what happens if later you do decide to place a few Domain
Services into a domain.service sub-Module? At that point you’d probably be pretty disappointed that you failed to create a
domain.model sub-Module.

But there’s an even more important naming influence to consider. Remember that we do not develop a domain. The Domain
(2) is some realm of know-how of the business we are working in. What we design and implement is a model of a domain. So
when naming the ultimate Module of the model, domain.model seems most appropriate. Still, that’s the choice of your team.

Modules of the Agile Project Management Context
SaaSOvation’s current Core Domain (2) is the Agile Project Management Context, so it makes sense to see how its

Modules are designed.
The ProjectOvation team chose three top-level Modules: tenant, team, and product. Here’s the first:

Click here to view code image

com.saasovation.agilepm.domain.model.tenant
 <<value object>> TenantId

Its contents are a simple Value Object, TenantId, that holds the unique identity of a specific tenant, which originates in the
Identity and Access Context. In the case of this Module, just about all others in the model will depend on it. It’s essential for
segregating one tenant’s objects from another’s. Yet, the dependency is acyclic. The tenant Module does not depend on the
others.

The team Module holds Aggregates and a Domain Service that is used to manage product teams:
Click here to view code image

com.saasovation.agilepm.domain.model.team
 <<service>> MemberService

 <<aggregate root>> ProductOwner
 <<aggregate root>> Team
 <<aggregate root>> TeamMember

There are three Aggregates and one Domain Service interface. Class Team holds one ProductOwner instance and any
number of TeamMember instances in a collection. The ProductOwner and TeamMember instances are created by the
MemberService. All three of the Aggregate Root Entities reference the TenantId of the tenant Module:
Click here to view code image

package com.saasovation.agilepm.domain.model.team;
import com.saasovation.agilepm.domain.model.tenant.TenantId;
public class Team extends ConcurrencySafeEntity {
 private TenantId tenantId;
 ...
}

The MemberService is a front end for an Anticorruption Layer (3) that synchronizes product team members with identities
and roles of the Identity and Access Context. The synchronization happens in the background, out of band with regular user
requests. This Service is proactive, creating members as they are registered in the remote Context. The synchronization is
eventually consistent with the remote system but lags only a short period of time from actual changes that occur remotely. It
also updates member details, such as names and e-mail addresses, as needed.

The Agile Project Management Context has a parent Module named product and three children:
Click here to view code image

com.saasovation.agilepm.domain.model.product
 <<aggregate root>> Product
 ...
 com.saasovation.agilepm.domain.model.product.backlogitem
 <<aggregate root>> BacklogItem
 ...
 com.saasovation.agilepm.domain.model.product.release
 <<aggregate root>> Release
 ...
 com.saasovation.agilepm.domain.model.product.sprint
 <<aggregate root>> Sprint
 ...

This is where the modeling of Scrum’s core lives. Here you will find Product, BacklogItem, Release, and Sprint
Aggregates. You’ll see in Aggregates (10) why the concepts are modeled as separate Aggregates.

The team liked how the Modules read naturally per the Ubiquitous Language: “product,” “product backlog item,” “product
release,” and “product sprint.”

With so few closely related Aggregates—only four—why didn’t the team place all four in the product Module? Not
shown here are all the other Aggregate parts, such as the ProductBacklogItem Entity contained by Product, the Task
Entity contained by BacklogItem, the ScheduledBacklogItem contained by Release, and the CommittedBacklogItem
contained by Sprint. There are other Entities and Value Objects held by each Aggregate type. Too, there are a number of
Domain Events published by some Aggregates. All in all, placing nearly 60 classes and interfaces in a single Module
would make it quite busy, giving a definite impression of disorganization. The team opted for organization over cross-
Module coupling concerns.

Like ProductOwner, Team, and TeamMember, all of the Product, BacklogItem, Release, and Sprint Aggregate types
reference TenantId. And there are additional dependencies. Consider Product:

Click here to view code image
package com.saasovation.agilepm.domain.model.product;

import com.saasovation.agilepm.domain.model.tenant.TenantId;

public class Product extends ConcurrencySafeEntity {
 private ProductId productId;
 private TeamId teamId;
 private TenantId tenantId;
 ...
}

Also, look at BacklogItem:
Click here to view code image

package com.saasovation.agilepm.domain.model.product.backlogitem;

import com.saasovation.agilepm.domain.model.tenant.TenantId;

public class BacklogItem extends ConcurrencySafeEntity {
 private BacklogItemId backlogItemId;
 private ProductId productId;
 private TeamId teamId;
 private TenantId tenantId;
 ...
}

The references to TenantId and TeamId are acyclic dependencies; they go in a single direction. Yet, while the
BacklogItem reference to ProductId seems to form an acyclic dependency from the backlogItem Module to product,
it is actually bidirectional. Each Product serves as a Factory for creating BacklogItem (and Release, and Sprint)
instances. Thus, the dependencies go in both directions. Still, the three sub-Modules are children of product, and we can
relax the rules of dependencies a bit. Here the trade-off is organizational strengths over coupling. Again, BacklogItem,
Release, and Sprint are all natural and expected child concepts of Product, so there is little sense in trying to break up
these concepts beyond Aggregate boundaries.

However, couldn’t the team have achieved loose coupling among these elements by the use of a generic identity type,
where BacklogItem, Release, and Sprint would all refer to their Product in a nonbinding manner?

Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 private Identity backlogItemId;
 private Identity productId;
 private Identity teamId;
 private Identity tenantId;
 ...
}

True, the team could have achieved looser coupling. However, it would also have opened up the potential for bugs in
code where each Identity type could not be distinguished from the others.

The Agile Project Management Context will continue to evolve. SaaSOvation plans to support other agile approaches
and tools. Doing so will impact the current Modules, at least in driving the creation of new ones, but probably also
influencing changes to existing ones. The team, having an agile mentality, was committed to refactoring Modules with due
diligence.

Next, let’s consider how Modules are used in other locations through the system’s source code.

Modules in Other Layers
Regardless of the Architecture (4) you choose, you will always have to create and name the Modules of the non-model

components of your architecture. Here we discuss some options for a conventional Layered Architecture (4), but ones that
can be applied with other architectural styles.

In a typical Layered Architecture used for an application that sports a domain model, you’d stack the layers as follows: User
Interface, Application, Domain, Infrastructure. Depending on the kinds of components in each layer, as determined by your
application’s needs, the Modules within each layer will vary.

To start, consider the User Interface Layer (14) and the effect of supporting RESTful resources. It is possible that your
resources will be used to service a GUI and system clients, producing representational state in XML, JSON, and HTML.
However, in the case of supporting a GUI, RESTful resources will not/should not create representations that include
presentation layout. They will instead produce only bland representations in a variety of markup (XML, HTML) and
serialization formats (XML, JSON, Protocol Buffers). All of the graphical layouts that any of the representational state might
be subjected to on the client will come from a different channel. Thus, in the User Interface Layer that supports REST you may
choose to have at least two Modules that could be named like this:

com.saasovation.agilepm.resources
com.saasovation.agilepm.resources.view

RESTful resources are maintained in the resources package. Pure presentation concerns are provided by components in the
view sub-package (or presentation, if you prefer). Depending on the number of REST-based resources your system requires,
you may have a number of sub-Modules under each primary Module. Keeping in mind that one resource provider class can
support several URIs, you may have few enough resource provider classes to keep them all in the primary Module. Whether or
not to further modularize them is an easy decision to make once you determine your actual resource requirements.

The Application Layer may have other Modules, which could consist of one per service type:
Click here to view code image

com.saasovation.agilepm.application.team
com.saasovation.agilepm.application.product
...
com.saasovation.agilepm.application.tenant

Similar to the design principles of RESTful service resources, the services in the Application Layer are divided into sub-
Modules only if it helps. In the Identity and Access Context, for example, there are only a few Application Services, and the
team chose to leave them in the main Module:

com.saasovation.identityaccess.application

You could decide in favor of the more modularized design. That would also be fine. When you have more than a few
services, perhaps half a dozen or so, it would probably help to modularize them more carefully.

Module before Bounded Context
We have to give careful consideration to the perceived need to divide cohesive domain model objects into separate models,

or to keep them together. Sometimes the linguistics of the true, actual domain will jump out at you, and sometimes the
terminology will be fuzzy. In cases where terminology is fuzzy and it is not clear if contextual boundaries should be created,
first consider the possibility of keeping them together. This approach will use the thinner boundary of Module to separate,
rather than the thicker one of Bounded Context.

This does not mean that we rarely use multiple Bounded Contexts. Boundaries between models are clearly justified, as the

linguistics demand. You should take away that Bounded Contexts are not meant to be used as a substitute for Modules. Use
Modules to modularize cohesive domain objects, and to separate those that are not cohesive or less cohesive.

Wrap-Up
We’ve just considered domain model modularization, why it is important, and how it is done.

• You noted the difference between traditional Modules and the newer deployment modularity approach.
• You learned about the importance of naming Modules per the Ubiquitous Language.
• You saw how designing Modules incorrectly, even mechanically, actually stifles modeling creativity.
• You considered how the Modules of the Agile PM Context were designed, and why certain choices were made.
• You received some helpful guidance on Modules in areas of the system outside the model.
• Finally, you got a few reminders about considering the use of Modules rather than creating new Bounded Contexts,
unless the linguistics dictate the coarser-grained division.

Next, we will take a seriously deep dive into one of the least understood modeling tools of DDD, Aggregates.

Chapter 10. Aggregates

The universe is built up into an aggregate of permanent objects connected by causal relations that are
independent of the subject and are placed in objective space and time.

—Jean Piaget

Clustering Entities (5) and Value Objects (6) into an Aggregate with a carefully crafted consistency boundary may at first
seem like quick work, but among all DDD tactical guidance, this pattern is one of the least well understood.

Road Map to This Chapter
• Along with SaaSOvation, experience the negative consequences of improperly modeling Aggregates.
• Learn to design by the Aggregate Rules of Thumb as a set of best-practice guidelines.
• Grasp how to model true invariants in consistency boundaries according to real business rules.
• Consider the advantages of designing small Aggregates.
• See why you should design Aggregates to reference other Aggregates by identity.
• Discover the importance of using eventual consistency outside the Aggregate boundary.
• Learn Aggregate implementation techniques, including Tell, Don’t Ask and Law of Demeter.

To start off, it might help to consider some common questions. Is an Aggregate just a way to cluster a graph of closely
related objects under a common parent? If so, is there some practical limit to the number of objects that should be allowed to
reside in the graph? Since one Aggregate instance can reference other Aggregate instances, can the associations be navigated
deeply, modifying various objects along the way? And what is this concept of invariants and a consistency boundary all
about? It is the answer to this last question that greatly influences the answers to the others.

There are various ways to model Aggregates incorrectly. We could fall into the trap of designing for compositional
convenience and make them too large. At the other end of the spectrum we could strip all Aggregates bare and as a result fail to
protect true invariants. As we’ll see, it’s imperative that we avoid both extremes and instead pay attention to the business
rules.

Using Aggregates in the Scrum Core Domain
We’ll take a close look at how Aggregates are used by SaaSOvation, and specifically within the Agile Project Management

Context the application named ProjectOvation. It follows the traditional Scrum project management model, complete with
product, product owner, team, backlog items, planned releases, and sprints. If you think of Scrum at its richest, that’s where
ProjectOvation is headed; this is a familiar domain to most of us. The Scrum terminology forms the starting point of the
Ubiquitous Language (1). Since it is a subscription-based application hosted using the software as a service (SaaS) model,
each subscribing organization is registered as a tenant, another term of our Ubiquitous Language.

The company has assembled a group of talented Scrum experts and developers. However, since their experience with DDD is

somewhat limited, the team will make some mistakes with DDD as they climb a difficult learning curve. They will grow by
learning from their experiences with Aggregates, and so can we. Their struggles may help us recognize and change similar
unfavorable situations we’ve created in our own software.

The concepts of this domain, along with its performance and scalability requirements, are more complex than any that
the team has previously faced in the initial Core Domain (2), the Collaboration Context. To address these issues, one of
the DDD tactical tools that they will employ is Aggregates.

How should the team choose the best object clusters? The Aggregate pattern discusses composition and alludes to
information hiding, which they understand how to achieve. It also discusses consistency boundaries and transactions, but
they haven’t been overly concerned with that. Their chosen persistence mechanism will help manage atomic commits of
their data. However, that was a crucial misunderstanding of the pattern’s guidance that caused them to regress. Here’s
what happened. The team considered the following statements in the Ubiquitous Language:

• Products have backlog items, releases, and sprints.
• New product backlog items are planned.
• New product releases are scheduled.
• New product sprints are scheduled.
• A planned backlog item may be scheduled for release.
• A scheduled backlog item may be committed to a sprint.

From these they envisioned a model and made their first attempt at a design. Let’s see how it went.

First Attempt: Large-Cluster Aggregate
The team put a lot of weight on the words Products have in the first statement, which influenced their initial attempt to

design Aggregates for this domain.

It sounded to some like composition, that objects needed to be interconnected like an object graph. Maintaining these object
life cycles together was considered very important. As a result the developers added the following consistency rules to the
specification:

• If a backlog item is committed to a sprint, we must not allow it to be removed from the system.
• If a sprint has committed backlog items, we must not allow it to be removed from the system.
• If a release has scheduled backlog items, we must not allow it to be removed from the system.
• If a backlog item is scheduled for release, we must not allow it to be removed from the system.

As a result, Product was first modeled as a very large Aggregate. The Root object, Product, held all BacklogItem,
all Release, and all Sprint instances associated with it. The interface design protected all parts from inadvertent client
removal.

This design is shown in the following code, and as a UML diagram in Figure 10.1:
Click here to view code image

public class Product extends ConcurrencySafeEntity {
 private Set<BacklogItem> backlogItems;
 private String description;
 private String name;
 private ProductId productId;
 private Set<Release> releases;
 private Set<Sprint> sprints;
 private TenantId tenantId;
 ...
}

Figure 10.1. Product modeled as a very large Aggregate
The big Aggregate looked attractive, but it wasn’t truly practical. Once the application was running in its intended multi-user

environment, it began to regularly experience transactional failures. Let’s look more closely at a few client usage patterns and
how they interact with our technical solution model. Our Aggregate instances employ optimistic concurrency to protect
persistent objects from simultaneous overlapping modifications by different clients, thus avoiding the use of database locks. As
discussed in Entities (5), objects carry a version number that is incremented when changes are made and checked before they
are saved to the database. If the version on the persisted object is greater than the version on the client’s copy, the client’s is
considered stale and updates are rejected.

Consider a common simultaneous, multiclient usage scenario:
• Two users, Bill and Joe, view the same Product marked as version 1 and begin to work on it.
• Bill plans a new BacklogItem and commits. The Product version is incremented to 2.
• Joe schedules a new Release and tries to save, but his commit fails because it was based on Product version 1.

Persistence mechanisms are used in this general way to deal with concurrency.1 If you argue that the default concurrency
configurations can be changed, reserve your verdict for a while longer. This approach is actually important to protecting
Aggregate invariants from concurrent changes.

These consistency problems came up with just two users. Add more users, and you have a really big problem. With Scrum,
multiple users often make these kinds of overlapping modifications during the sprint planning meeting and in sprint execution.
Failing all but one of their requests on an ongoing basis is completely unacceptable.

Nothing about planning a new backlog item should logically interfere with scheduling a new release! Why did Joe’s commit
fail? At the heart of the issue, the large-cluster Aggregate was designed with false invariants in mind, not real business rules.
These false invariants are artificial constraints imposed by developers. There are other ways for the team to prevent
inappropriate removal without being arbitrarily restrictive. Besides causing transactional issues, the design also has
performance and scalability drawbacks.

Second Attempt: Multiple Aggregates
Now consider an alternative model as shown in Figure 10.2, in which there are four distinct Aggregates. Each of the

dependencies is associated by inference using a common ProductId, which is the identity of Product considered the parent of
the other three.

Figure 10.2. Product and related concepts are modeled as separate Aggregate types.
Breaking the single large Aggregate into four will change some method contracts on Product. With the large-cluster

Aggregate design the method signatures looked like this:
Click here to view code image

public class Product ... {
 ...

 public void planBacklogItem(
 String aSummary, String aCategory,
 BacklogItemType aType, StoryPoints aStoryPoints) {
 ...
 }
 ...
 public void scheduleRelease(
 String aName, String aDescription,
 Date aBegins, Date anEnds) {
 ...
 }

 public void scheduleSprint(
 String aName, String aGoals,
 Date aBegins, Date anEnds) {
 ...
 }
 ...
}

All of these methods are CQS commands [Fowler, CQS]; that is, they modify the state of the Product by adding the new
element to a collection, so they have a void return type. But with the multiple-Aggregate design, we have
Click here to view code image

public class Product ... {
 ...
 public BacklogItem planBacklogItem(
 String aSummary, String aCategory,
 BacklogItemType aType, StoryPoints aStoryPoints) {
 ...
 }

 public Release scheduleRelease(
 String aName, String aDescription,
 Date aBegins, Date anEnds) {
 ...
 }

 public Sprint scheduleSprint(
 String aName, String aGoals,
 Date aBegins, Date anEnds) {
 ...
 }
 ...
}

These redesigned methods have a CQS query contract and act as Factories (11); that is, each creates a new Aggregate
instance and returns a reference to it. Now when a client wants to plan a backlog item, the transactional Application Service
(14) must do the following:
Click here to view code image

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void planProductBacklogItem(
 String aTenantId, String aProductId,
 String aSummary, String aCategory,
 String aBacklogItemType, String aStoryPoints) {

 Product product =
 productRepository.productOfId(
 new TenantId(aTenantId),
 new ProductId(aProductId));

 BacklogItem plannedBacklogItem =

 product.planBacklogItem(
 aSummary,
 aCategory,
 BacklogItemType.valueOf(aBacklogItemType),
 StoryPoints.valueOf(aStoryPoints));

 backlogItemRepository.add(plannedBacklogItem);
 }
 ...
}

So we’ve solved the transaction failure issue by modeling it away. Any number of BacklogItem, Release, and Sprint
instances can now be safely created by simultaneous user requests. That’s pretty simple.

However, even with clear transactional advantages, the four smaller Aggregates are less convenient from the perspective of
client consumption. Perhaps instead we could tune the large Aggregate to eliminate the concurrency issues. By setting our
Hibernate mapping optimistic-lock option to false, we make the transaction failure domino effect go away. There is no
invariant on the total number of created BacklogItem, Release, or Sprint instances, so why not just allow the collections to
grow unbounded and ignore these specific modifications on Product? What additional cost would there be for keeping the
large-cluster Aggregate? The problem is that it could actually grow out of control. Before thoroughly examining why, let’s
consider the most important modeling tip the SaaSOvation team needed.

Rule: Model True Invariants in Consistency Boundaries
When trying to discover the Aggregates in a Bounded Context (2), we must understand the model’s true invariants. Only

with that knowledge can we determine which objects should be clustered into a given Aggregate.
An invariant is a business rule that must always be consistent. There are different kinds of consistency. One is transactional

consistency, which is considered immediate and atomic. There is also eventual consistency. When discussing invariants, we
are referring to transactional consistency. We might have the invariant

c = a + b

Therefore, when a is 2 and b is 3, c must be 5. According to that rule and conditions, if c is anything but 5, a system
invariant is violated. To ensure that c is consistent, we design a boundary around these specific attributes of the model:

AggregateType1 {

 int a;

 int b;

 int c;

 operations ...
}

The consistency boundary logically asserts that everything inside adheres to a specific set of business invariant rules no
matter what operations are performed. The consistency of everything outside this boundary is irrelevant to the Aggregate. Thus,
Aggregate is synonymous with transactional consistency boundary. (In this limited example, AggregateType1 has three
attributes of type int, but any given Aggregate could hold attributes of various types.)

When employing a typical persistence mechanism, we use a single transaction2 to manage consistency. When the transaction
commits, everything inside one boundary must be consistent. A properly designed Aggregate is one that can be modified in
any way required by the business with its invariants completely consistent within a single transaction. And a properly
designed Bounded Context modifies only one Aggregate instance per transaction in all cases. What is more, we cannot
correctly reason on Aggregate design without applying transactional analysis.

Limiting modification to one Aggregate instance per transaction may sound overly strict. However, it is a rule of thumb and
should be the goal in most cases. It addresses the very reason to use Aggregates.

Whiteboard Time
• List on your whiteboard all large-cluster Aggregates in your system.

• Make a note next to each of those Aggregates why it is a large cluster and any potential problems caused by its size.
• Next to that list, name any Aggregates that are modified in the same transaction with others.
• Make a note next to each of those Aggregates whether true or false invariants caused the formation of poorly
designed Aggregate boundaries.

The fact that Aggregates must be designed with a consistency focus implies that the user interface should concentrate each
request to execute a single command on just one Aggregate instance. If user requests try to accomplish too much, the
application will be forced to modify multiple instances at once.

Therefore, Aggregates are chiefly about consistency boundaries and not driven by a desire to design object graphs. Some
real-world invariants will be more complex than this. Even so, typically invariants will be less demanding on our modeling
efforts, making it possible to design small Aggregates.

Rule: Design Small Aggregates
We can now thoroughly address this question: What additional cost would there be for keeping the large-cluster Aggregate?

Even if we guarantee that every transaction would succeed, a large cluster still limits performance and scalability. As
SaaSOvation develops its market, it’s going to bring in lots of tenants. As each tenant makes a deep commitment to
ProjectOvation, SaaSOvation will host more and more projects and the management artifacts to go along with them. That will
result in vast numbers of products, backlog items, releases, sprints, and others. Performance and scalability are nonfunctional
requirements that cannot be ignored.

Keeping performance and scalability in mind, what happens when one user of one tenant wants to add a single backlog item
to a product, one that is years old and already has thousands of backlog items? Assume a persistence mechanism capable of
lazy loading (Hibernate). We almost never load all backlog items, releases, and sprints at once. Still, thousands of backlog
items would be loaded into memory just to add one new element to the already large collection. It’s worse if a persistence
mechanism does not support lazy loading. Even being memory conscious, sometimes we would have to load multiple
collections, such as when scheduling a backlog item for release or committing one to a sprint; all backlog items, and either all
releases or all sprints, would be loaded.

To see this clearly, look at the diagram in Figure 10.3 containing the zoomed composition. Don’t let the 0..* fool you; the
number of associations will almost never be zero and will keep growing over time. We would likely need to load thousands
and thousands of objects into memory all at once, just to carry out what should be a relatively basic operation. That’s just for a
single team member of a single tenant on a single product. We have to keep in mind that this could happen all at once with
hundreds or thousands of tenants, each with multiple teams and many products. And over time the situation will only become
worse.

Figure 10.3. With this Product model, multiple large collections load during many basic operations.

This large-cluster Aggregate will never perform or scale well. It is more likely to become a nightmare leading only to
failure. It was deficient from the start because the false invariants and a desire for compositional convenience drove the
design, to the detriment of transactional success, performance, and scalability.

If we are going to design small Aggregates, what does “small” mean? The extreme would be an Aggregate with only its
globally unique identity and one additional attribute, which is not what’s being recommended (unless that is truly what one
specific Aggregate requires). Rather, limit the Aggregate to just the Root Entity and a minimal number of attributes and/or
Value-typed properties.3 The correct minimum is however many are necessary, and no more.

Which ones are necessary? The simple answer is: those that must be consistent with others, even if domain experts don’t
specify them as rules. For example, Product has name and description attributes. We can’t imagine name and description
being inconsistent, modeled in separate Aggregates. When you change the name, you probably also change the description. If
you change one and not the other, it’s probably because you are fixing a spelling error or making the description more fitting
to the name. Even though domain experts will probably not think of this as an explicit business rule, it is an implicit one.

What if you think you should model a contained part as an Entity? First ask whether that part must itself change over time, or
whether it can be completely replaced when change is necessary. Cases where instances can be completely replaced point to
the use of a Value Object rather than an Entity. At times Entity parts are necessary. Yet, if we run through this design exercise
on a case-by-case basis, many concepts modeled as Entities can be refactored to Value Objects. Favoring Value types as
Aggregate parts doesn’t mean the Aggregate is immutable since the Root Entity itself mutates when one of its Value-typed
properties is replaced.

There are important advantages to limiting internal parts to Values. Depending on your persistence mechanism, Values can
be serialized with the Root Entity, whereas Entities can require separately tracked storage. Overhead is higher with Entity
parts, as, for example, when SQL joins are necessary to read them using Hibernate. Reading a single database table row is
much faster. Value objects are smaller and safer to use (fewer bugs). Due to immutability it is easier for unit tests to prove
their correctness. These advantages are discussed in Value Objects (6).

On one project for the financial derivatives sector using Qi4j [Öberg], Niclas Hedhman4 reported that his team was able to
design approximately 70 percent of all Aggregates with just a Root Entity containing some Value-typed properties. The
remaining 30 percent had just two to three total Entities. This doesn’t indicate that all domain models will have a 70/30 split. It
does indicate that a high percentage of Aggregates can be limited to a single Entity, the Root.

The [Evans] discussion of Aggregates gives an example where having multiple Entities makes sense. A purchase order is
assigned a maximum allowable total, and the sum of all line items must not surpass the total. The rule becomes tricky to
enforce when multiple users simultaneously add line items. Any one addition is not permitted to exceed the limit, but
concurrent additions by multiple users could collectively do so. I won’t repeat the solution here, but I want to emphasize that
most of the time the invariants of business models are simpler to manage than that example. Recognizing this helps us to model
Aggregates with as few properties as possible.

Smaller Aggregates not only perform and scale better, they are also biased toward transactional success, meaning that
conflicts preventing a commit are rare. This makes a system more usable. Your domain will not often have true invariant
constraints that force you into large-composition design situations. Therefore, it is just plain smart to limit Aggregate size.
When you occasionally encounter a true consistency rule, add another few Entities, or possibly a collection, as necessary, but
continue to push yourself to keep the overall size as small as possible.

Don’t Trust Every Use Case
Business analysts play an important role in delivering use case specifications. Much work goes into a large and detailed

specification, and it will affect many of our design decisions. Yet, we mustn’t forget that use cases derived in this way don’t
carry the perspective of the domain experts and developers of our close-knit modeling team. We still must reconcile each use
case with our current model and design, including our decisions about Aggregates. A common issue that arises is a particular
use case that calls for the modification of multiple Aggregate instances. In such a case we must determine whether the specified
large user goal is spread across multiple persistence transactions, or if it occurs within just one. If it is the latter, it pays to be
skeptical. No matter how well it is written, such a use case may not accurately reflect the true Aggregates of our model.

Assuming your Aggregate boundaries are aligned with real business constraints, it’s going to cause problems if business
analysts specify what you see in Figure 10.4. Thinking through the various commit order permutations, you’ll see that there are
cases where two of the three requests will fail.5 What does attempting this indicate about your design? The answer to that
question may lead to a deeper understanding of the domain. Trying to keep multiple Aggregate instances consistent may be
telling you that your team has missed an invariant. You may end up folding the multiple Aggregates into one new concept with a
new name in order to address the newly recognized business rule. (And, of course, it might be only parts of the old Aggregates
that get rolled into the new one.)

Figure 10.4. Concurrency contention exists among three users who are all trying to access the same two Aggregate
instances, leading to a high number of transactional failures.

So a new use case may lead to insights that push us to remodel the Aggregate, but be skeptical here, too. Forming one
Aggregate from multiple ones may drive out a completely new concept with a new name, yet if modeling this new concept
leads you toward designing a large-cluster Aggregate, that can end up with all the problems common to that approach. What
different approach may help?

Just because you are given a use case that calls for maintaining consistency in a single transaction doesn’t mean you should
do that. Often, in such cases, the business goal can be achieved with eventual consistency between Aggregates. The team
should critically examine the use cases and challenge their assumptions, especially when following them as written would lead
to unwieldy designs. The team may have to rewrite the use case (or at least re-imagine it if they face an uncooperative business
analyst). The new use case would specify eventual consistency and the acceptable update delay. This is one of the issues
taken up later in this chapter.

Rule: Reference Other Aggregates by Identity
When designing Aggregates, we may desire a compositional structure that allows for traversal through deep object graphs,

but that is not the motivation of the pattern. [Evans] states that one Aggregate may hold references to the Root of other
Aggregates. However, we must keep in mind that this does not place the referenced Aggregate inside the consistency boundary
of the one referencing it. The reference does not cause the formation of just one whole Aggregate. There are still two (or
more), as shown in Figure 10.5.

Figure 10.5. There are two Aggregates, not one.
In Java the association would be modeled like this:

Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 private Product product;
 ...

}

That is, the BacklogItem holds a direct object association to Product.
In combination with what’s already been discussed and what’s next, this has a few implications:

1. Both the referencing Aggregate (BacklogItem) and the referenced Aggregate (Product) must not be modified in
the same transaction. Only one or the other may be modified in a single transaction.
2. If you are modifying multiple instances in a single transaction, it may be a strong indication that your consistency
boundaries are wrong. If so, it is possibly a missed modeling opportunity; a concept of your Ubiquitous Language has
not yet been discovered although it is waving its hands and shouting at you (see earlier in this chapter).
3. If you are attempting to apply point 2, and doing so influences a large-cluster Aggregate with all the previously
stated caveats, it may be an indication that you need to use eventual consistency (see later in this chapter) instead of
atomic consistency.

If you don’t hold any reference, you can’t modify another Aggregate. So the temptation to modify multiple Aggregates in the
same transaction could be squelched by avoiding the situation in the first place. But that is overly limiting since domain models
always require some associative connections. What might we do to facilitate necessary associations, protect from transaction
misuse or inordinate failure, and allow the model to perform and scale?

Making Aggregates Work Together through Identity References
Prefer references to external Aggregates only by their globally unique identity, not by holding a direct object reference (or

“pointer”). This is exemplified in Figure 10.6.

Figure 10.6. The BacklogItem Aggregate, inferring associations outside its boundary with identities
We would refactor the source to

Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 private ProductId productId;
 ...
}

Aggregates with inferred object references are thus automatically smaller because references are never eagerly loaded. The
model can perform better because instances require less time to load and take less memory. Using less memory has positive
implications for both memory allocation overhead and garbage collection.

Model Navigation
Reference by identity doesn’t completely prevent navigation through the model. Some will use a Repository (12) from

inside an Aggregate for lookup. This technique is called Disconnected Domain Model, and it’s actually a form of lazy
loading. There’s a different recommended approach, however: Use a Repository or Domain Service (7) to look up dependent
objects ahead of invoking the Aggregate behavior. A client Application Service may control this, then dispatch to the
Aggregate:
Click here to view code image

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void assignTeamMemberToTask(
 String aTenantId,
 String aBacklogItemId,
 String aTaskId,
 String aTeamMemberId) {

 BacklogItem backlogItem =
 backlogItemRepository.backlogItemOfId(
 new TenantId(aTenantId),
 new BacklogItemId(aBacklogItemId));

 Team ofTeam =
 teamRepository.teamOfId(
 backlogItem.tenantId(),
 backlogItem.teamId());

 backlogItem.assignTeamMemberToTask(
 new TeamMemberId(aTeamMemberId),
 ofTeam,
 new TaskId(aTaskId));
 }
 ...
}

Having an Application Service resolve dependencies frees the Aggregate from relying on either a Repository or a Domain
Service. However, for very complex and domain-specific dependency resolutions, passing a Domain Service into an
Aggregate command method can be the best way to go. The Aggregate can then double-dispatch to the Domain Service to
resolve references. Again, in whatever way one Aggregate gains access to others, referencing multiple Aggregates in one
request does not give license to cause modification on two or more of them.

Cowboy Logic
LB: “I’ve got two points of reference when I’m navigating at night. If it smells like beef on the hoof, I’m heading
to the herd. If it smells like beef on the grill, I’m heading home.”

Limiting a model to using only reference by identity could make it more difficult to serve clients that assemble and render
User Interface (14) views. You may have to use multiple Repositories in a single use case to populate views. If query
overhead causes performance issues, it may be worth considering the use of theta joins or CQRS. Hibernate, for example,
supports theta joins as a means to assemble a number of referentially associated Aggregate instances in a single join query,
which can provide the necessary viewable parts. If CQRS and theta joins are not an option, you may need to strike a balance
between inferred and direct object reference.

If all this advice seems to lead to a less convenient model, consider the additional benefits it affords. Making Aggregates
smaller leads to better-performing models, plus we can add scalability and distribution.

Scalability and Distribution
Since Aggregates don’t use direct references to other Aggregates but reference by identity, their persistent state can be

moved around to reach large scale. Almost-infinite scalability is achieved by allowing for continuous repartitioning of
Aggregate data storage, as explained by Amazon.com’s Pat Helland in his position paper “Life beyond Distributed
Transactions: An Apostate’s Opinion” [Helland]. What we call Aggregate, he calls entity. But what he describes is still an
Aggregate by any other name: a unit of composition that has transactional consistency. Some NoSQL persistence mechanisms
support the Amazon-inspired distributed storage. These provide much of what [Helland] refers to as the lower, scale-aware
layer. When employing a distributed store, or even when using a SQL database with similar motivations, reference by identity
plays an important role.

Distribution extends beyond storage. Since there are always multiple Bounded Contexts at play in a given Core Domain
initiative, reference by identity allows distributed domain models to have associations from afar. When an Event-Driven
approach is in use, message-based Domain Events (8) containing Aggregate identities are sent around the enterprise. Message
subscribers in foreign Bounded Contexts use the identities to carry out operations in their own domain models. Reference by
identity forms remote associations or partners. Distributed operations are managed by what [Helland] calls two-party
activities, but in Publish-Subscribe [Buschmann et al.] or Observer [Gamma et al.] terms it’s multiparty (two or more).
Transactions across distributed systems are not atomic. The various systems bring multiple Aggregates into a consistent state
eventually.

Rule: Use Eventual Consistency Outside the Boundary
There is a frequently overlooked statement found in the [Evans] Aggregate pattern definition. It bears heavily on what we

must do to achieve model consistency when multiple Aggregates must be affected by a single client request:
Any rule that spans AGGREGATES will not be expected to be up-to-date at all times. Through event
processing, batch processing, or other update mechanisms, other dependencies can be resolved within
some specific time. [Evans, p. 128]

Thus, if executing a command on one Aggregate instance requires that additional business rules execute on one or more other
Aggregates, use eventual consistency. Accepting that all Aggregate instances in a large-scale, high-traffic enterprise are never
completely consistent helps us accept that eventual consistency also makes sense in the smaller scale where just a few
instances are involved.

Ask the domain experts if they could tolerate some time delay between the modification of one instance and the others
involved. Domain experts are sometimes far more comfortable with the idea of delayed consistency than are developers. They
are aware of realistic delays that occur all the time in their business, whereas developers are usually indoctrinated with an
atomic change mentality. Domain experts often remember the days prior to computer automation of their business operations,
when various kinds of delays occurred all the time and consistency was never immediate. Thus, domain experts are often

willing to allow for reasonable delays—a generous number of seconds, minutes, hours, or even days—before consistency
occurs.

There is a practical way to support eventual consistency in a DDD model. An Aggregate command method publishes a
Domain Event that is in time delivered to one or more asynchronous subscribers:
Click here to view code image

public class BacklogItem extends ConcurrencySafeEntity {
 ...
 public void commitTo(Sprint aSprint) {
 ...
 DomainEventPublisher
 .instance()
 .publish(new BacklogItemCommitted(
 this.tenantId(),
 this.backlogItemId(),
 this.sprintId()));
 }
 ...
}

Each of these subscribers then retrieves a different yet corresponding Aggregate instance and executes its behavior based on
it. Each of the subscribers executes in a separate transaction, obeying the rule of Aggregates to modify just one instance per
transaction.

What happens if the subscriber experiences concurrency contention with another client, causing its modification to fail? The
modification can be retried if the subscriber does not acknowledge success to the messaging mechanism. The message will be
redelivered, a new transaction started, a new attempt made to execute the necessary command, and a corresponding commit
made. This retry process can continue until consistency is achieved, or until a retry limit is reached.6 If complete failure
occurs, it may be necessary to compensate, or at a minimum to report the failure for pending intervention.

What is accomplished by publishing the BacklogItemCommitted Domain Event in this specific example? Recalling that
BacklogItem already holds the identity of the Sprint it is committed to, we are in no way interested in maintaining a
meaningless bidirectional association. Rather, the Event allows for the eventual creation of a CommittedBacklogItem so the
Sprint can make a record of work commitment. Since each CommittedBacklogItem has an ordering attribute, it allows the
Sprint to give each BacklogItem an ordering different from those of Product and Release, and that is not tied to the
BacklogItem instance’s own recorded estimation of BusinessPriority. Thus, Product and Release hold similar
associations, namely, ProductBacklogItem and ScheduledBacklogItem, respectively.

Whiteboard Time
• Return to your list of large-cluster Aggregates and the two or more modified in a single transaction.
• Describe and diagram how you will break up the large clusters. Circle and note each of the true invariants inside
each of the new small Aggregates.
• Describe and diagram how you will keep separate Aggregates eventually consistent.

This example demonstrates how to use eventual consistency in a single Bounded Context, but the same technique can also be
applied in a distributed fashion as previously described.

Ask Whose Job It Is
Some domain scenarios can make it very challenging to determine whether transactional or eventual consistency should be

used. Those who use DDD in a classic/traditional way may lean toward transactional consistency. Those who use CQRS may
tend toward eventual consistency. But which is correct? Frankly, neither of those tendencies provides a domain-specific
answer, only a technical preference. Is there a better way to break the tie?

Cowboy Logic
LB: “My son told me that he found on the Internet how to make my cows more fertile. I told him that’s the bull’s
job.”

Discussing this with Eric Evans revealed a very simple and sound guideline. When examining the use case (or story), ask
whether it’s the job of the user executing the use case to make the data consistent. If it is, try to make it transactionally
consistent, but only by adhering to the other rules of Aggregates. If it is another user’s job, or the job of the system, allow it to
be eventually consistent. That bit of wisdom not only provides a convenient tie breaker, but it helps us gain a deeper
understanding of our domain. It exposes the real system invariants: the ones that must be kept transactionally consistent. That
understanding is much more valuable than defaulting to a technical leaning.

This is a great tip to add to the Aggregate Rules of Thumb. Since there are other forces to consider, it may not always lead to
the final choice between transactional and eventual consistency but will usually provide deeper insight into the model. This
guideline is used later in the chapter when the team revisits their Aggregate boundaries.

Reasons to Break the Rules
An experienced DDD practitioner may at times decide to persist changes to multiple Aggregate instances in a single

transaction, but only with good reason. What might some reasons be? I discuss four reasons here. You may experience these
and others.

Reason One: User Interface Convenience
Sometimes user interfaces, as a convenience, allow users to define the common characteristics of many things at once in

order to create batches of them. Perhaps it happens frequently that team members want to create several backlog items as a
batch. The user interface allows them to fill out all the common properties in one section, and then one by one the few
distinguishing properties of each, eliminating repeated gestures. All of the new backlog items are then planned (created) at
once:
Click here to view code image

public class ProductBacklogItemService ... {
 ...
 @Transactional
 public void planBatchOfProductBacklogItems(
 String aTenantId, String productId,
 BacklogItemDescription[] aDescriptions) {

 Product product =
 productRepository.productOfId(
 new TenantId(aTenantId),
 new ProductId(productId));

 for (BacklogItemDescription desc : aDescriptions) {
 BacklogItem plannedBacklogItem =
 product.planBacklogItem(
 desc.summary(),
 desc.category(),
 BacklogItemType.valueOf(
 desc.backlogItemType()),
 StoryPoints.valueOf(
 desc.storyPoints()));

 backlogItemRepository.add(plannedBacklogItem);
 }
 }
 ...
}

Does this cause a problem with managing invariants? In this case, no, since it would not matter whether these were created
one at a time or in batch. The objects being instantiated are full Aggregates, which maintain their own invariants. Thus, if
creating a batch of Aggregate instances all at once is semantically no different from creating one at a time repeatedly, it
represents one reason to break the rule of thumb with impunity.

Reason Two: Lack of Technical Mechanisms
Eventual consistency requires the use of some kind of out-of-band processing capability, such as messaging, timers, or

background threads. What if the project you are working on has no provision for any such mechanism? While most of us would
consider that strange, I have faced that very limitation. With no messaging mechanism, no background timers, and no other
home-grown threading capabilities, what could be done?

If we aren’t careful, this situation could lead us back toward designing large-cluster Aggregates. While that might make us
feel as if we are adhering to the single transaction rule, as previously discussed it would also degrade performance and limit
scalability. To avoid that, perhaps we could instead change the system’s Aggregates altogether, forcing the model to solve our
challenges. We’ve already considered the possibility that project specifications may be jealously guarded, leaving us little
room for negotiating previously unimagined domain concepts. That’s not really the DDD way, but sometimes it does happen.
The conditions may allow for no reasonable way to alter the modeling circumstances in our favor. In such cases project
dynamics may force us to modify two or more Aggregate instances in one transaction. However obvious this might seem, such
a decision should not be made too hastily.

Cowboy Logic
AJ: “If you think that rules are made to be broken, you’d better know a good repairman.”

Consider an additional factor that could further support diverging from the rule: user-aggregate affinity. Are the business
workflows such that only one user would be focused on one set of Aggregate instances at any given time? Ensuring user-
aggregate affinity makes the decision to alter multiple Aggregate instances in a single transaction more sound since it tends to
prevent the violation of invariants and transactional collisions. Even with user-aggregate affinity, in rare situations users may
face concurrency conflicts. Yet each Aggregate would still be protected from that by using optimistic concurrency. Anyway,
concurrency conflicts can happen in any system, and even more frequently when user-aggregate affinity is not our ally. Besides,
recovering from concurrency conflicts is straightforward when encountered at rare times. Thus, when our design is forced to,
sometimes it works out well to modify multiple Aggregate instances in one transaction.

Reason Three: Global Transactions
Another influence considered is the effects of legacy technologies and enterprise policies. One such might be the need to

strictly adhere to the use of global, two-phase commit transactions. This is one of those situations that may be impossible to
push back on, at least in the short term.

Even if you must use a global transaction, you don’t necessarily have to modify multiple Aggregate instances at once in your

local Bounded Context. If you can avoid doing so, at least you can prevent transactional contention in your Core Domain and
actually obey the rules of Aggregates as far as you are able. The downside to global transactions is that your system will
probably never scale as it could if you were able to avoid two-phase commits and the immediate consistency that goes along
with them.

Reason Four: Query Performance
There may be times when it’s best to hold direct object references to other Aggregates. This could be used to ease

Repository query performance issues. These must be weighed carefully in the light of potential size and overall performance
trade-off implications. One example of breaking the rule of reference by identity is given later in the chapter.

Adhering to the Rules
You may experience user interface design decisions, technical limitations, stiff policies, or other factors in your enterprise

environment that require you to make some compromises. Certainly we don’t go in search of excuses to break the Aggregate
Rules of Thumb. In the long run, adhering to the rules will benefit our projects. We’ll have consistency where necessary, and
support for optimally performing and highly scalable systems.

Gaining Insight through Discovery
With the rules of Aggregates in use, we’ll see how adhering to them affects the design of the SaaSOvation Scrum model.

We’ll see how the project team rethinks their design again, applying newfound techniques. That effort leads to the discovery of
new insights into the model. Their various ideas are tried and then superseded.

Rethinking the Design, Again
After the refactoring iteration that broke up the large-cluster Product, the BacklogItem now stands alone as its own

Aggregate. It reflects the model presented in Figure 10.7. The team composed a collection of Task instances inside the
BacklogItem Aggregate. Each BacklogItem has a globally unique identity, its BacklogItemId. All associations to other
Aggregates are inferred through identities. That means its parent Product, the Release it is scheduled within, and the Sprint
to which it is committed are referenced by identities. It seems fairly small.

Figure 10.7. The fully composed BacklogItem Aggregate
With the team now jazzed about designing small Aggregates, could they possibly overdo it in that direction?

Despite the good feeling coming out of that previous iteration, there was still some concern. For example, the story attribute
allowed for a good deal of text. Teams developing agile stories won’t write lengthy prose. Even so, there is an optional editor
component that supports writing rich use case definitions. Those could be many thousands of bytes. It was worth considering
the possible overhead.

Given this potential overhead and the errors already made in designing the large-cluster Product of Figures 10.1 and
10.3, the team was now on a mission to reduce the size of every Aggregate in the Bounded Context. Crucial questions
arose. Was there a true invariant between BacklogItem and Task that this relationship must maintain? Or was this yet
another case where the association could be further broken apart, with two separate Aggregates being safely formed?
What would be the total cost of keeping the design as is?

A key to their making a proper determination lay in the Ubiquitous Language. Here is where an invariant was stated:
• When progress is made on a backlog item task, the team member will estimate task hours remaining.
• When a team member estimates that zero hours are remaining on a specific task, the backlog item checks all tasks
for any remaining hours. If no hours remain on any tasks, the backlog item status is automatically changed to done.
• When a team member estimates that one or more hours are remaining on a specific task and the backlog item’s
status is already done, the status is automatically regressed.

This sure seemed like a true invariant. The backlog item’s correct status is automatically adjusted and is completely
dependent on the total number of hours remaining on all its tasks. If the total number of task hours and the backlog item
status are to remain consistent, it seems as if Figure 10.7 does stipulate the correct Aggregate consistency boundary.
However, the team should still determine what the current cluster could cost in terms of performance and scalability. That
would be weighed against what they might save if the backlog item status could be eventually consistent with the total task
hours remaining.

Some will see this as a classic opportunity to use eventual consistency, but we won’t jump to that conclusion just yet. Let’s
analyze a transactional consistency approach, then investigate what could be accomplished using eventual consistency. We can
then draw our own conclusion as to which approach is preferred.

Estimating Aggregate Cost
As Figure 10.7 shows, each Task holds a collection of EstimationLogEntry instances. These logs model the specific

occasions when a team member enters a new estimate of hours remaining. In practical terms, how many Task elements will
each BacklogItem hold, and how many EstimationLogEntry elements will a given Task hold? It’s hard to say exactly. It’s
largely a measure of how complex any one task is and how long a sprint lasts. But some back-of-the-envelope (BOTE)
calculations might help [Bentley].

Task hours are usually reestimated each day after a team member works on a given task. Let’s say that most sprints are either
two or three weeks in length. There will be longer sprints, but a two- to three-week time span is common enough. So let’s
select a number of days somewhere between ten and 15. Without being too precise, 12 days works well since there may
actually be more two-week than three-week sprints.

Next, consider the number of hours assigned to each task. Remembering that tasks must be broken down into manageable

units, we generally use a number of hours between four and 16. Normally if a task exceeds a 12-hour estimate, Scrum experts
suggest breaking it down further. But using 12 hours as a first test makes it easier to simulate work evenly. We can say that
tasks are worked on for one hour on each of the 12 days of the sprint. Doing so favors more complex tasks. So we’ll figure 12
reestimations per task, assuming that each task starts out with 12 hours allocated to it.

The question remains: How many tasks would be required per backlog item? That too is a difficult question to answer. What
if we thought in terms of there being two or three tasks required per Layer (4) or Hexagonal Port-Adapter (4) for a given
feature slice? For example, we might count three for the User Interface Layer (14), two for the Application Layer (14), three
for the Domain Layer, and three for the Infrastructure Layer (14). That would bring us to 11 total tasks. It might be just right
or a bit slim, but we’ve already erred on the side of numerous task estimations. Let’s bump it up to 12 tasks per backlog item to
be more liberal. With that we are allowing for 12 tasks, each with 12 estimation logs, or 144 total collected objects per
backlog item. While this may be more than the norm, it gives us a chunky BOTE calculation to work with.

There is another variable to be considered. If Scrum expert advice to define smaller tasks is commonly followed, it would
change things somewhat. Doubling the number of tasks (24) and halving the number of estimation log entries (6) would still
produce 144 total objects. However, it would cause more tasks to be loaded (24 rather than 12) during all estimation requests,
consuming more memory on each. The team will try various combinations to see if there is any significant impact on their
performance tests. But to start they will use 12 tasks of 12 hours each.

Common Usage Scenarios
Now it’s important to consider common usage scenarios. How often will one user request need to load all 144 objects into

memory at once? Would that ever happen? It seems not, but the team needs to check. If not, what’s the likely high-end count of
objects? Also, will there typically be multiclient usage that causes concurrency contention on backlog items? Let’s see.

The following scenarios are based on the use of Hibernate for persistence. Also, each Entity type has its own optimistic
concurrency version attribute. This is workable because the changing status invariant is managed on the BacklogItem Root
Entity. When the status is automatically altered (to done or back to committed), the Root’s version is bumped. Thus, changes to
tasks can happen independently of each other and without impacting the Root each time one is modified, unless the result is a
status change. (The following analysis could need to be revisited if using, for example, document-based storage, since the Root
is effectively modified every time a collected part is modified.)

When a backlog item is first created, there are zero contained tasks. Normally it is not until sprint planning that tasks are
defined. During that meeting tasks are identified by the team. As each one is called out, a team member adds it to the
corresponding backlog item. There is no need for two team members to contend with each other for the Aggregate, as if racing
to see who can enter new tasks more quickly. That would cause collision, and one of the two requests would fail (for the same
reason simultaneously adding various parts to Product previously failed). However, the two team members would probably
soon figure out how counterproductive their redundant work is.

If the developers learned that multiple users do indeed regularly want to add tasks together, it would change the analysis
significantly. That understanding could immediately tip the scales in favor of breaking BacklogItem and Task into two
separate Aggregates. On the other hand, this could also be a perfect time to tune the Hibernate mapping by setting the
optimistic-lock option to false. Allowing tasks to grow simultaneously could make sense in this case, especially if they
don’t pose performance and scalability issues.

If tasks are at first estimated at zero hours and later updated to an accurate estimate, we still don’t tend to experience
concurrency contention, although this would add one additional estimation log entry, pushing our BOTE total to 13.
Simultaneous use here does not change the backlog item status. Again, it advances to done only by going from greater than zero
to zero hours, or regresses to committed if already done and hours are changed from zero to one or more—two uncommon
events.

Will daily estimations cause problems? On day one of the sprint there are usually zero estimation logs on a given task of a
backlog item. At the end of day one, each volunteer team member working on a task reduces the estimated hours by one. This
adds a new estimation log to each task, but the backlog item’s status remains unaffected. There is never contention on a task
because just one team member adjusts its hours. It’s not until day 12 that we reach the point of status transition. Still, as each of
any 11 tasks is reduced to zero hours, the backlog item’s status is not altered. It’s only the very last estimation, the 144th on the
12th task, that causes automatic status transition to the done state.

This analysis led the team to an important realization. Even if they altered the usage scenarios, accelerating task completion by
double (six days) or even mixing it up completely, it wouldn’t change anything. It’s always the final estimate that transitions the
status, which modifies the Root. This seemed like a safe design, although memory overhead was still in question.

Memory Consumption
Now to address the memory consumption. Important here is that estimates are logged by date as Value Objects. If a team

member reestimates any number of times on a single day, only the most recent estimate is retained. The latest Value of the same
date replaces the previous one in the collection. At this point there’s no requirement to track task estimation mistakes. There is
the assumption that a task will never have more estimation log entries than the number of days the sprint is in progress. That
assumption changes if tasks were defined one or more days before the sprint planning meeting, and hours were reestimated on
any of those earlier days. There would be one extra log for each day that occurred.

What about the total number of tasks and estimates in memory for each reestimation? When using lazy loading for the tasks
and estimation logs, we would have as many as 12 plus 12 collected objects in memory at one time per request. This is
because all 12 tasks would be loaded when accessing that collection. To add the latest estimation log entry to one of those
tasks, we’d have to load the collection of estimation log entries. That would be up to another 12 objects. In the end the
Aggregate design requires one backlog item, 12 tasks, and 12 log entries, or 25 objects maximum total. That’s not very many;
it’s a small Aggregate. Another factor is that the higher end of objects (for example, 25) is not reached until the last day of the
sprint. During much of the sprint the Aggregate is even smaller.

Will this design cause performance problems because of lazy loads? Possibly, because it actually requires two lazy loads,
one for the tasks and one for the estimation log entries for one of the tasks. The team will have to test to investigate the possible
overhead of the multiple fetches.

There’s another factor. Scrum enables teams to experiment in order to identify the right planning model for their practices.
As explained by [Sutherland], experienced teams with a well-known velocity can estimate using story points rather than task
hours. As they define each task, they can assign just one hour to each task. During the sprint they will reestimate only once per
task, changing one hour to zero when the task is completed. As it pertains to Aggregate design, using story points reduces the
total number of estimation logs per task to just one and almost eliminates memory overhead.

Later on, ProjectOvation developers will be able to analytically determine (on average) how many actual tasks and estimation
log entries exist per backlog item by examining real production data.

The foregoing analysis was enough to motivate the team to test against their BOTE calculations. After inconclusive
results, however, they decided that there were still too many variables for them to be confident that this design dealt well
with their concerns. There were enough unknowns to consider an alternative design.

Exploring Another Alternative Design
Is there another design that could contribute to Aggregate boundaries more fitting to the usage scenarios?

To be thorough, the team wanted to think through what they would have to do to make Task an independent Aggregate, and if
that would actually work to their benefit. What they envisioned is seen in Figure 10.8. Doing this would reduce part
composition overhead by 12 objects and reduce lazy load overhead. In fact, this design gave them the option to eagerly load

estimation log entries in all cases if that would perform best.

Figure 10.8. BacklogItem and Task modeled as separate Aggregates
The developers agreed not to modify separate Aggregates, both the Task and the BacklogItem, in the same transaction.

They had to determine if they could perform a necessary automatic status change within an acceptable time frame. They’d
be weakening the invariant’s consistency since the status couldn’t be consistent by transaction. Would that be acceptable?
They discussed the matter with the domain experts and learned that some delay between the final zero-hour estimate and
the status being set to done, and vice versa, would be acceptable.

Implementing Eventual Consistency
It looks as if there could be a legitimate use of eventual consistency between separate Aggregates. Here is how it could

work.

When a Task processes an estimateHoursRemaining() command, it publishes a corresponding Domain Event. It does that
already, but the team would now leverage the Event to achieve eventual consistency. The Event is modeled with the following
properties:

Click here to view code image

public class TaskHoursRemainingEstimated implements DomainEvent {
 private Date occurredOn;
 private TenantId tenantId;
 private BacklogItemId backlogItemId;
 private TaskId taskId;
 private int hoursRemaining;
 ...
}

A specialized subscriber would now listen for these and delegate to a Domain Service to coordinate the consistency
processing. The Service would

• Use the BacklogItemRepository to retrieve the identified BacklogItem.
• Use the TaskRepository to retrieve all Task instances associated with the identified BacklogItem.
• Execute the BacklogItem command named estimateTaskHoursRemaining(), passing the Domain Event’s
hoursRemaining and the retrieved Task instances. The BacklogItem may transition its status depending on
parameters.

The team should find a way to optimize this. The three-step design requires all Task instances to be loaded every time
a reestimation occurs. When using our BOTE estimate and advancing continuously toward done, 143 out of 144 times
that’s unnecessary. This could be optimized pretty easily. Instead of using the Repository to get all Task instances, they
could simply ask it for the sum of all Task hours as calculated by the database:

Click here to view code image

public class HibernateTaskRepository implements TaskRepository {
 ...
 public int totalBacklogItemTaskHoursRemaining(
 TenantId aTenantId,
 BacklogItemId aBacklogItemId) {

 Query query = session.createQuery(
 "select sum(task.hoursRemaining) from Task task "
 + "where task.tenantId = ? and "
 + "task.backlogItemId = ?");
 ...
 }
}

Eventual consistency complicates the user interface a bit. Unless the status transition can be achieved within a few hundred
milliseconds, how would the user interface display the new state? Should they place business logic in the view to determine
the current status? That would constitute a smart UI anti-pattern. Perhaps the view would just display the stale status and allow
users to deal with the visual inconsistency. That could easily be perceived as a bug, or at least be very annoying.

The view could use a background Ajax polling request, but that could be quite inefficient. Since the view component could not
easily determine exactly when checking for a status update is necessary, most Ajax pings would be unnecessary. Using our
BOTE numbers, 143 of 144 reestimations would not cause the status update, which is a lot of redundant requests on the Web
tier. With the right server-side support the clients could instead depend on Comet (aka Ajax Push). Although a nice challenge,
that would introduce a completely new technology that the team had no experience using.

On the other hand, perhaps the best solution is the simplest. They could opt to place a visual cue on the screen that
informs the user that the current status is uncertain. The view could suggest a time frame for checking back or refreshing.
Alternatively, the changed status will probably show on the next rendered view. That’s safe. The team would need to run
some user acceptance tests, but it looked hopeful.

Is It the Team Member’s Job?
One important question has thus far been completely overlooked: Whose job is it to bring a backlog item’s status into

consistency with all remaining task hours? Do team members using Scrum care if the parent backlog item’s status transitions to
done just as they set the last task’s hours to zero? Will they always know they are working with the last task that has remaining
hours? Perhaps they will and perhaps it is the responsibility of each team member to bring each backlog item to official
completion.

On the other hand, what if there is another project stakeholder involved? For example, the product owner or some other
person may desire to check the candidate backlog item for satisfactory completion. Maybe someone wants to use the feature on
a continuous integration server first. If others are happy with the developers’ claim of completion, they will manually mark the
status as done. This certainly changes the game, indicating that neither transactional nor eventual consistency is necessary.
Tasks could be split off from their parent backlog item because this new use case allows it. However, if it is really the team
members who should cause the automatic transition to done, it would mean that tasks should probably be composed within the
backlog item to allow for transactional consistency. Interestingly, there is no clear answer here either, which probably
indicates that it should be an optional application preference. Leaving tasks within their backlog item solves the consistency
problem, and it’s a modeling choice that can support both automatic and manual status transitions.

This valuable exercise uncovered a completely new aspect of the domain. It seems as if teams should be able to configure a
workflow preference. They won’t implement such a feature now, but they will promote it for further discussion. Asking
“whose job is it?” led them to a few vital perceptions about their domain.

Next, one of the developers made a very practical suggestion as an alternative to this whole analysis. If they were
chiefly concerned with the possible overhead of the story attribute, why not do something about that specifically? They
could reduce the total storage capacity for the story and in addition create a new useCaseDefinition property. They
could design it to lazy load, since much of the time it would never be used. Or they could even design it as a separate
Aggregate, loading it only when needed. With that idea they realized this could be a good time to break the rule to
reference external Aggregates only by identity. It seemed like a suitable modeling choice to use a direct object reference
and declare its object-relational mapping so as to lazily load it. Perhaps that made sense.

Time for Decisions
This level of analysis can’t continue all day. There needs to be a decision. It’s not as if going in one direction now would

negate the possibility of going another route later. Open-mindedness is now blocking pragmatism.

Based on all this analysis, currently the team was shying away from splitting Task from BacklogItem. They couldn’t be
certain that splitting it now was worth the extra effort, the risk of leaving the true invariant unprotected, or allowing users to
experience a possible stale status in the view. The current Aggregate, as they understood it, was fairly small. Even if their
common worst case loaded 50 objects rather than 25, it would still be a reasonably sized cluster. For now they planned
around the specialized use case definition holder. Doing that was a quick win with lots of benefits. It added little risk,
because it will work now, and it will also work in the future if they decide to split Task from BacklogItem.

The option to split it in two remained in their hip pocket just in case. After further experimentation with the current
design, running it through performance and load tests, as well investigating user acceptance with an eventually consistent
status, it will become clearer which approach is better. The BOTE numbers could prove to be wrong if in production the
Aggregate is larger than imagined. If so, the team will no doubt split it into two.

If you were a member of the ProjectOvation team, which modeling option would you have chosen? Don’t shy away from
discovery sessions as demonstrated in the case study. That entire effort would require 30 minutes, and perhaps as much as 60
minutes at worst. It’s well worth the time to gain deeper insight into your Core Domain.

Implementation
The more prominent factors summarized and highlighted here can make implementations more robust but should be

investigated more thoroughly in Entities (5), Value Objects (6), Domain Events (8), Modules (9), Factories (11), and
Repositories (12). Use this amalgamation as a point of reference.

Create a Root Entity with Unique Identity
Model one Entity as the Aggregate Root. Examples of Root Entities in the preceding modeling efforts are Product,

BacklogItem, Release, and Sprint. Depending on the decision made to split Task from BacklogItem, Task may also be a
Root.

The refined Product model finally led to the declaration of the following Root Entity:
Click here to view code image

public class Product extends ConcurrencySafeEntity {

 private Set<ProductBacklogItem> backlogItems;
 private String description;
 private String name;
 private ProductDiscussion productDiscussion;
 private ProductId productId;
 private TenantId tenantId;
 ...
}

Class ConcurrencySafeEntity is a Layer Supertype [Fowler, P of EAA] used to manage surrogate identity and
optimistic concurrency versioning, as explained in Entities (5).

A Set of ProductBacklogItem instances not previously discussed has been, perhaps mysteriously, added to the Root. This
is for a special purpose. It’s not the same as the BacklogItem collection that was formerly composed here. It is for the
purpose of maintaining a separate ordering of backlog items.

Each Root must be designed with a globally unique identity. The Product has been modeled with a Value type named
ProductId. That type is the domain-specific identity, and it is different from the surrogate identity provided by
ConcurrencySafeEntity. How a model-based identity is designed, allocated, and maintained is further explained in Entities
(5). The implementation of ProductRepository has nextIdentity() generate ProductId as a UUID:
Click here to view code image

public class HibernateProductRepository implements ProductRepository {
 ...
 public ProductId nextIdentity() {
 return new ProductId(java.util.UUID.randomUUID()↵
.toString().toUpperCase());
 }
 ...
}

Using nextIdentity(), a client Application Service can instantiate a Product with its globally unique identity:
Click here to view code image

public class ProductService ... {
 ...
 @Transactional
 public String newProduct(
 String aTenantId, aProductName, aProductDescription) {
 Product product =
 new Product(
 new TenantId(aTenantId),
 this.productRepository.nextIdentity(),
 "My Product",
 "This is the description of my product.",
 new ProductDiscussion(
 new DiscussionDescriptor(
 DiscussionDescriptor.UNDEFINED_ID),
 DiscussionAvailability.NOT_REQUESTED));

 this.productRepository.add(product);

 return product.productId().id();
 }
 ...
}

The Application Service uses ProductRepository to both generate an identity and then persist the new Product instance.
It returns the plain String representation of the new ProductId.

Favor Value Object Parts
Choose to model a contained Aggregate part as a Value Object rather than an Entity whenever possible. A contained part

that can be completely replaced, if its replacement does not cause significant overhead in the model or infrastructure, is the
best candidate.

Our current Product model is designed with two simple attributes and three Value-typed properties. Both description and
name are String attributes that can be completely replaced. The productId and tenantId Values are maintained as stable
identities; that is, they are never changed after construction. They support reference by identity rather than direct to object. In
fact, the referenced Tenant Aggregate is not even in the same Bounded Context and thus should be referenced only by identity.
T he productDiscussion is an eventually consistent Value-typed property. When the Product is first instantiated, the
discussion may be requested but will not exist until sometime later. It must be created in the Collaboration Context. Once the
creation has been completed in the other Bounded Context, the identity and status are set on the Product.

There are good reasons why ProductBacklogItem is modeled as an Entity rather than a Value. As discussed in Value
Objects (6), since the backing database is used via Hibernate, it must model collections of Values as database entities.
Reordering any one of the elements could cause a significant number, even all, of the ProductBacklogItem instances to be
deleted and replaced. That would tend to cause significant overhead in the infrastructure. As an Entity, it allows the ordering
attribute to be changed across any and all collection elements as often as a product owner requires. However, if we were to
switch from using Hibernate with MySQL to a key-value store, we could easily change ProductBacklogItem to be a Value
type instead. When using a key-value or document store, Aggregate instances are typically serialized as one value
representation for storage.

Using Law of Demeter and Tell, Don’t Ask
Both Law of Demeter [Appleton, LoD] and Tell, Don’t Ask [PragProg, TDA] are design principles that can be used when

implementing Aggregates, both of which stress information hiding. Consider the high-level guiding principles to see how we
can benefit:

• Law of Demeter: This guideline emphasizes the principle of least knowledge. Think of a client object and another
object the client object uses to execute some system behavior; refer to the second object as a server. When the client
object uses the server object, it should know as little as possible about the server’s structure. The server’s attributes
and properties—its shape—should remain completely unknown to the client. The client can ask the server to perform
a command that is declared on its surface interface. However, the client must not reach into the server, ask the server
for some inner part, and then execute a command on the part. If the client needs a service that is rendered by the
server’s inner parts, the client must not be given access to the inner parts to request that behavior. The server should
instead provide only a surface interface and, when invoked, delegate to the appropriate inner parts to fulfill its
interface.

Here’s a basic summary of the Law of Demeter: Any given method on any object may invoke methods only on
the following: (1) itself, (2) any parameters passed to it, (3) any object it instantiates, (4) self-contained part
objects that it can directly access.

• Tell, Don’t Ask: This guideline simply asserts that objects should be told what to do. The “Don’t Ask” part of the
guideline applies to the client as follows: A client object should not ask a server object for its contained parts, then
make a decision based on the state it got, and then make the server object do something. Instead, the client should
“Tell” a server what to do, using a command on the server’s public interface. This guideline has very similar
motivations as Law of Demeter, but Tell, Don’t Ask may be easier to apply broadly.

Given these guidelines, let’s see how we apply the two design principles to Product:
Click here to view code image

public class Product extends ConcurrencySafeEntity {
 ...
 public void reorderFrom(BacklogItemId anId, int anOrdering) {
 for (ProductBacklogItem pbi : this.backlogItems()) {
 pbi.reorderFrom(anId, anOrdering);
 }
 }

 public Set<ProductBacklogItem> backlogItems() {
 return this.backlogItems;
 }
 ...
}

The Product requires clients to use its method reorderFrom() to execute a state-modifying command in its contained
backlogItems. That is a good application of the guidelines. Yet, method backlogItems() is also public. Does this break the
principles we are trying to follow by exposing ProductBacklogItem instances to clients? It does expose the collection, but

clients may use those instances only to query information from them. Because of the limited public interface of
ProductBacklogItem, clients cannot determine the shape of Product by deep navigation. Clients are given least knowledge.
As far as clients are concerned, the returned collection instances may have been created only for the single operation and may
represent no definite state of Product. Clients may never execute state-altering commands on the instances of
ProductBacklogItem, as its implementation indicates:
Click here to view code image

public class ProductBacklogItem extends ConcurrencySafeEntity {
 ...
 protected void reorderFrom(BacklogItemId anId, int anOrdering) {
 if (this.backlogItemId().equals(anId)) {
 this.setOrdering(anOrdering);
 } else if (this.ordering() >= anOrdering) {
 this.setOrdering(this.ordering() + 1);
 }
 }
 ...
}

Its only state-modifying behavior is declared as a hidden, protected method. Thus, clients can’t see or reach this command.
For all practical purposes, only Product can see it and execute the command. Clients may use only the Product public
reorderFrom() command method. When invoked, the Product delegates to all its internal ProductBacklogItem instances to
perform the inner modifications.

The implementation of Product limits knowledge about itself, is more easily tested, and is more maintainable, due to the
application of these simple design principles.

You will need to weigh the competing forces between use of Law of Demeter and Tell, Don’t Ask. Certainly the Law of
Demeter approach is much more restrictive, disallowing all navigation into Aggregate parts beyond the Root. On the other
hand, the use of Tell, Don’t Ask allows for navigation beyond the Root but does stipulate that modification of the Aggregate
state belongs to the Aggregate, not the client. You may thus find Tell, Don’t Ask to be a more broadly applicable approach to
Aggregate implementation.

Optimistic Concurrency
Next, we need to consider where to place the optimistic concurrency version attribute. When we contemplate the definition

of Aggregate, it could seem safest to version only the Root Entity. The Root’s version would be incremented every time a state-
altering command is executed anywhere inside the Aggregate boundary, no matter how deep. Using the running example,
Product would have a version attribute, and when any of its describeAs(), initiateDiscussion(), rename(), or
reorderFrom() command methods are executed, the version would always be incremented. This would prevent any other
client from simultaneously modifying any attributes or properties anywhere inside the same Product. Depending on the given
Aggregate design, this may be difficult to manage, and even unnecessary.

Assuming we are using Hibernate, when the Product name or description is modified, or its productDiscussion is
attached, the version is automatically incremented. That’s a given, because those elements are directly held by the Root
Entity. However, how do we see to it that the Product version is incremented when any of its backlogItems are reordered?
Actually, we can’t, or at least not automatically. Hibernate will not consider a modification to a ProductBacklogItem part
instance as a modification to the Product itself. To solve this, perhaps we could just change the Product method
reorderFrom(), dirtying some flag or just incrementing the version on our own:
Click here to view code image

public class Product extends ConcurrencySafeEntity {
 ...
 public void reorderFrom(BacklogItemId anId, int anOrdering) {
 for (ProductBacklogItem pbi : this.backlogItems()) {
 pbi.reorderFrom(anId, anOrdering);
 }
 this.version(this.version() + 1);
 }
 ...
}

One problem is that this code always dirties the Product, even when a reordering command actually has no effect. Further,

this code leaks infrastructural concerns into the model, which is a less desirable domain modeling choice if it can be avoided.
What else can be done?

Cowboy Logic
AJ: “I’m thinkin’ that marriage is a sort of optimistic concurrency. When a man gets married, he is optimistic
that the gal will never change. And at the same time, she’s optimistic that he will.”

Actually in the case of the Product and its ProductBacklogItem instances, it’s possible that we don’t need to modify the
Root’s version when any backlogItems are modified. Since the collected instances are themselves Entities, they can carry
their own optimistic concurrency version. If two clients reorder any of the same ProductBacklogItem instances, the last
client to commit changes will fail. Admittedly, overlapping reordering would rarely if ever happen, because it’s usually only
the product owner who reorders the product backlog items.

Versioning all Entity parts doesn’t work in every case. Sometimes the only way to protect an invariant is to modify the Root
version. This can be accomplished more easily if we can modify a legitimate property on the Root. In this case, the Root’s
property would always be modified in response to a deeper part modification, which in turn causes Hibernate to increment the
Root’s version. Recall that this approach was described previously to model the status change on BacklogItem when all of
its Task instances have been transitioned to zero hours remaining.

However, that approach may not be possible in all cases. If not, we may be tempted to resort to using hooks provided by the
persistence mechanism to manually dirty the Root when Hibernate indicates a part has been modified. This becomes
problematic. It can usually be made to work only by maintaining bidirectional associations between child parts and the parent
Root. The bidirectional associations allow navigation from a child back to the Root when Hibernate sends a life cycle event to
a specialized listener. Not to be forgotten, though, is that [Evans] generally discourages bidirectional associations in most
cases. This is especially so if they must be maintained only to deal with optimistic concurrency, which is an infrastructural
concern.

Although we don’t want infrastructural concerns to drive modeling decisions, we may be motivated to travel a less painful
route. When modifying the Root becomes very difficult and costly, it could be a strong indication that we need to break down
our Aggregates to just a Root Entity, containing only simple attributes and Value-typed properties. When our Aggregates
consist of only a Root Entity, the Root is always modified when any part is modified.

Finally, it must be acknowledged that the preceding scenarios are not a problem when an entire Aggregate is persisted as
one value and the value itself prevents concurrency conflict. This approach can be leveraged when using MongoDB, Riak,
Oracle’s Coherence distributed grid, or VMware’s GemFire. For example, when an Aggregate Root implements the Coherence
Versionable interface and its Repository uses the VersionedPut entry processor, the Root will always be the single object
used for concurrency conflict detection. Other key-value stores may provide similar conveniences.

Avoid Dependency Injection
Dependency injection of a Repository or Domain Service into an Aggregate should generally be viewed as harmful. The

motivation may be to look up a dependent object instance from inside the Aggregate. The dependent object could be another
Aggregate, or a number of them. As stated earlier under “Rule: Reference Other Aggregates by Identity,” preferably dependent
objects are looked up before an Aggregate command method is invoked, and passed in to it. The use of Disconnected Domain
Model is generally a less favorable approach.

Additionally, in a very high-traffic, high-volume, high-performance domain, with heavily taxed memory and garbage

collection cycles, think of the potential overhead of injecting Repositories and Domain Service instances into Aggregates. How
many extra object references would that require? Some may contend that it’s not enough to tax their operational environment,
but theirs is probably not the kind of domain being described here. Still, take great care not to add unnecessary overhead that
could be easily avoided by using other design principles, such as looking up dependencies before an Aggregate command
method is invoked, and passing them in to it.

This is only meant to warn against injecting Repositories and Domain Services into Aggregate instances. Of course,
dependency injection is quite suitable for many other design situations. For example, it could be quite useful to inject
Repository and Domain Service references into Application Services.

Wrap-Up
We’ve examined how crucial it is to follow the Aggregate Rules of Thumb when designing Aggregates.

• You experienced the negative consequences of modeling large-cluster Aggregates.
• You learned to model true invariants in consistency boundaries.
• You considered the advantages of designing small Aggregates.
• You now know why you should favor referencing other Aggregates by identity.
• You discovered the importance of using eventual consistency outside the Aggregate boundary.
• You saw various implementation techniques, including how you might use Tell, Don’t Ask and Law of Demeter.

If we adhere to the rules, we’ll have consistency where necessary and support optimally performing and highly scalable
systems, all while capturing the Ubiquitous Language of our business domain in a carefully crafted model.

Chapter 11. Factories

I can’t abide ugliness in factories! In we go, then! But do be careful, my dear children! Don’t lose your heads!
Don’t get overexcited! Keep very calm!

—Willy Wonka

Of all the patterns used in DDD, Factory is probably one of the better known. Highly publicized in Design Patterns
[Gamma et al.] are Abstract Factory, Factory Method, and Builder. I won’t in any way attempt to overshadow the advice
given there, or that provided by [Evans]. The focus here is to provide examples of how you can use Factories in the domain
model.

Road Map to This Chapter
• Learn why the use of Factories can produce expressive models that adhere to the Ubiquitous Language (1).
• See how SaaSOvation uses Factory Methods as Aggregate (10) behaviors.
• Consider how to use Factory Methods to create Aggregate instances of other types.
• Learn how Domain Services can be designed as Factories while interacting with other Bounded Contexts (2) and
translating foreign objects to local types.

Factories in the Domain Model
Consider the primary motivations for using Factories:

Shift the responsibility for creating instances of complex objects and AGGREGATES to a separate
object, which may itself have no responsibility in the domain model but is still part of the domain
design. Provide an interface that encapsulates all complex assembly and does not require the client to
reference the concrete classes of the objects being instantiated. Create entire AGGREGATES as a
piece, enforcing their invariants. [Evans, p. 138]

A Factory may or may not have additional responsibilities in the domain model other than object creation. An object that has
the purpose only of instantiating a specific Aggregate type will have no other responsibilities and will not even be considered
a first-class citizen of the model. It is only a Factory. An Aggregate Root that provides a Factory Method for producing
instances of another Aggregate type (or inner parts) will have the primary responsibility of providing its main Aggregate
behavior, the Factory Method being just one of those.

The latter is what tends to occur more frequently in my examples. The Aggregates I demonstrate have mostly non-complex
construction. Yet, some important details of Aggregate construction must be protected against the production of wrong state.
Consider the demands of a multitenancy environment. If an Aggregate instance were created under the wrong tenant, giving it
the wrong TenantId, it could be disastrous. There is a high degree of accountability to keep all data of each tenant segregated
and secure from all others. Placing a carefully designed Factory Method on specific Aggregate Roots can ensure that tenancy
and other association identities are created correctly. It simplifies clients, requiring them to pass only basic parameters, often
Value Objects (6) only, by hiding the construction details from them.

Further, Factory Methods on Aggregates allow you to express the Ubiquitous Language in ways not possible through
constructors alone. When the behavioral method name is expressive with respect to the Ubiquitous Language, you’ve made an
additional powerful case for using a Factory Method.

Cowboy Logic
LB: “I used to work in a fire hydrant factory. You couldn’t park anywhere near the place.”

The sample Bounded Contexts do in some cases require complex construction. These situations occur when Integrating
Bounded Contexts (13). At those times Services (7) function as Factories producing Aggregates or Value Objects of various
types.

One case where you would find an Abstract Factory of great benefit is when creating objects of different types in a class
hierarchy, which is a classic use. The client is required to pass in only some basic parameters from which the Factory can
determine the concrete type that must be created. I don’t have any domain-specific class hierarchies among my examples, so I
won’t be demonstrating this usage here. If you see class hierarchies in your future domain modeling efforts, I suggest that you
look at the related discussion under Repositories (12). It will help you enter such an effort with eyes wide open. If you decide
to use class hierarchies in your design, be prepared for the potential for pain that could result.

Factory Method on Aggregate Root
Throughout the three sample Bounded Contexts there are Factory sites on Aggregate Root Entities, of which Table 11.1

provides a summary.

Table 11.1. Sites of Factory Methods on Aggregates

I discuss the Product Factory Methods under Aggregates (10). For example, its method planBacklogItem() creates a
new BacklogItem, which is an Aggregate that is subsequently returned to the client.

To demonstrate the design of Factory Methods, let’s look at the three in the Collaboration Context.

Creating CalendarEntry Instances
Let’s look at the design. The Factory we are considering now has its site on Calendar and is used to create CalendarEntry

instances. The CollabOvation team takes us through the implementation.

Here’s a test developed to demonstrate how the Calendar Factory Method should be used:
Click here to view code image

public class CalendarTest extends DomainTest {
 private CalendarEntry calendarEntry;
 private CalendarEntryId calendarEntryId;
 ...
 public void testCreateCalendarEntry() throws Exception {

 Calendar calendar = this.calendarFixture();

 DomainRegistry.calendarRepository().add(calendar);

 DomainEventPublisher
 .instance()
 .subscribe(
 new DomainEventSubscriber<CalendarEntryScheduled>() {
 public void handleEvent(
 CalendarEntryScheduled aDomainEvent) {
 calendarEntryId = aDomainEvent.calendarEntryId();
 }
 public Class<CalendarEntryScheduled>
 subscribedToEventType() {
 return CalendarEntryScheduled.class;
 }
 });

 calendarEntry =
 calendar.scheduleCalendarEntry(
 DomainRegistry
 .calendarEntryRepository()
 .nextIdentity()
 new Owner(
 "jdoe",
 "John Doe",
 "jdoe@lastnamedoe.org"),
 "Sprint Planning",
 "Plan sprint for first half of April 2012.",
 this.tomorrowOneHourTimeSpanFixture(),
 this.oneHourBeforeAlarmFixture(),
 this.weeklyRepetitionFixture(),
 "Team Room",
 new TreeSet<Invitee>(0));

 DomainRegistry.calendarEntryRepository().add(calendarEntry);

 assertNotNull(calendarEntryId);
 assertNotNull(calendarEntry);
 ...
 }
}

Nine parameters are passed in to scheduleCalendarEntry(). Yet, as seen later, the CalendarEntry constructor
requires a total of 11 parameters. We’ll consider the benefits of this in a moment. After a new CalendarEntry is
successfully created, the client must add it to its Repository. Failing to do so will release the new instance to be swept by
the garbage collector.

The first assertion demonstrates that the CalendarEntryId published with the Event must be non-null, confirming that
the Event was successfully published. It’s not that the direct client of Calendar will actually subscribe to that Event, but
the test demonstrates that the Event CalendarEntryScheduled is in fact published.

The new CalendarEntry instance must also be non-null. We could make additional assertions, but the two just shown
are most important to documenting the Factory Method design and the client’s use of it.

Now let’s take a look at the implementation of the Factory Method:
Click here to view code image

package com.saasovation.collaboration.domain.model.calendar;
public class Calendar extends Entity {
 ...
 public CalendarEntry scheduleCalendarEntry(
 CalendarEntryId aCalendarEntryId,
 Owner anOwner,
 String aSubject,
 String aDescription,
 TimeSpan aTimeSpan,
 Alarm anAlarm,
 Repetition aRepetition,
 String aLocation,
 Set<Invitee> anInvitees) {
 CalendarEntry calendarEntry =
 new CalendarEntry(
 this.tenant(),
 this.calendarId(),
 aCalendarEntryId,
 anOwner,
 aSubject,
 aDescription,
 aTimeSpan,
 anAlarm,
 aRepetition,
 aLocation,
 anInvitees);

 DomainEventPublisher
 .instance()
 .publish(new CalendarEntryScheduled(...));

 return calendarEntry;
 }
 ...
}

The Calendar instantiates a new Aggregate, namely, CalendarEntry. The new instance is returned to the client following
the Event CalendarEntryScheduled being published. (The details of the Event published are not significant to this
discussion.) You may note the lack of guards at the top of this method. It is unnecessary to guard the Factory Method itself since
the constructors of each of the Value parameters and the CalendarEntry constructor, as well as the setter methods that the
constructor self-delegates to, provide all the needed guards. (See Entities (5) for more details on self-delegation and guards.)
If you’d like to be doubly cautious, you could add guards here as well.

The team designed the method name to adhere to the Ubiquitous Language. Domain experts, along with the rest of the team,
discussed the following scenario:

Calendars schedule calendar entries.
If our design were to support only a public constructor on CalendarEntry, it would reduce the expressiveness of the

model and we would not be able to explicitly model that part of the Language of the domain. Using this design requires the
full Aggregate constructor to be hidden from clients. We declare the constructor with protected scope, which forces
clients to make use of the scheduleCalendarEntry() Factory Method on Calendar:

Click here to view code image

public class CalendarEntry extends Entity {
 ...
 protected CalendarEntry(
 Tenant aTenant, CalendarId aCalendarId,
 CalendarEntryId aCalendarEntryId, Owner anOwner,
 String aSubject, String aDescription, TimeSpan aTimeSpan,
 Alarm anAlarm, Repetition aRepetition, String aLocation,
 Set<Invitee> anInvitees) {
 ...
 }
 ...
}

While having the upside of careful construction, the lowered usage burden on clients, and an expressive model, using
the Calendar Factory Method does have the downside of a bit more performance overhead. As is the case with any such
Aggregate Factory Method, the Calendar will have to be acquired from its persistence store before it can be used to
create the CalendarEntry. This extra hit may be well worth it, but as the traffic in this Bounded Context increases, the
team will have to weigh the consequences carefully.

Germane to the benefits of using Factories is that two of the CalendarEntry constructor parameters are not passed in
by clients. Given that there are 11 required constructor parameters, this design unburdens clients, requiring them to supply
only nine. Most of the nine required parameters are fairly easily created by clients. (Admittedly the Set of Invitee
instances is more involved, but that’s not the fault of the Factory Method. The team should think in terms of designing a
facility to more conveniently provide this Set, which may be pointing toward the creation of a dedicated Factory.)

Still, the Tenant and associated CalendarId are strictly provided only by the Factory Method. This is where we
guarantee that CalendarEntry instances are created only for the correct Tenant and in association with the correct
Calendar.

Let’s now consider one more example from the Collaboration Context.

Creating Discussion Instances
Look at the Factory Method on Forum. It has the same motivation and very similar implementation as the one on Calendar,

so there is no need to dive into great detail on it. Yet, there is an additional advantage of using the Factory Method here, as the
team demonstrates.

Consider the Language-specific startDiscussion() Factory Method on Forum:
Click here to view code image

package com.saasovation.collaboration.domain.model.forum;
public class Forum extends Entity {
 ...
 public Discussion startDiscussion(
 DiscussionId aDiscussionId,
 Author anAuthor,
 String aSubject) {
 if (this.isClosed()) {
 throw new IllegalStateException("Forum is closed.");
 }

 Discussion discussion = new Discussion(
 this.tenant(),
 this.forumId(),
 aDiscussionId,
 anAuthor,
 aSubject);

 DomainEventPublisher
 .instance()
 .publish(new DiscussionStarted(...));

 return discussion;
 }
 ...
}

Besides creating a Discussion, this Factory Method also guards against creating one if the Forum is closed. The
Forum supplies the Tenant and associated ForumId. Thus, only three of five parameters required to instantiate a new
Discussion must be supplied by the client.

This Factory Method also expresses the Ubiquitous Language of the Collaboration Context. The team used Forum’s
startDiscussion() to design in just what the domain experts said it should do:

Authors start discussions on forums.
This allows the client to be just this simple:

Click here to view code image

Discussion discussion = agilePmForum.startDiscussion(
 this.discussionRepository.nextIdentity(),
 new Author("jdoe", "John Doe", "jdoe@saasovation.com"),
 "Dealing with Aggregate Concurrency Issues");

assertNotNull(discussion);
...
this.discussionRepository.add(discussion);

Simple, indeed, which is always a goal of a domain modeler.
This Factory Method pattern can repeat as often as necessary. I think it has been duly demonstrated how effectively Factory

Methods on Aggregates can be used to express the Language in Context, reduce the burden on clients when creating new
Aggregate instances, and ensure instantiations with correct state.

Factory on Service

Since much of how I use Services as Factories is related to Integrating Bounded Contexts (13), I leave the bulk of the
discussion to that chapter. In that chapter my focus is more on integrating with Anti-Corruption Layer (3), Published
Language (3), and Open Host Service (3). Here I want to emphasize the Factory itself and how a Service can be designed as
one.

The team now provides another example from the Collaboration Context. It’s a Factory in the form of
CollaboratorService, producing Collaborator instances from tenant and user identity:
Click here to view code image

package com.saasovation.collaboration.domain.model.collaborator;

import com.saasovation.collaboration.domain.model.tenant.Tenant;

public interface CollaboratorService {

 public Author authorFrom(Tenant aTenant, String anIdentity);

 public Creator creatorFrom(Tenant aTenant, String anIdentity);

 public Moderator moderatorFrom(Tenant aTenant, String anIdentity);

 public Owner ownerFrom(Tenant aTenant, String anIdentity);

 public Participant participantFrom(
 Tenant aTenant,
 String anIdentity);
}

This Service provides object translation from the Identity and Access Context to the Collaboration Context. As shown
in Bounded Contexts (2), the CollabOvation team doesn’t speak of users when discussing collaboration. It is more to the
point that humans in the collaborative media domain are authors, creators, moderators, owners, and participants. To
accomplish this, the team will need to interact with the Identity and Access Context behind a Service and transform user
and role objects from that model into corresponding collaborator objects of their own model’s Context.

Since new objects that are derived from the abstract base Collaborator are created by the Service, it actually
functions as a Factory. Taking a look at one of the interface method implementations reveals some of the detail involved:

Click here to view code image

package com.saasovation.collaboration.infrastructure.services;

public class UserRoleToCollaboratorService
 implements CollaboratorService {

 public UserRoleToCollaboratorService() {
 super();
 }

 @Override
 public Author authorFrom(Tenant aTenant, String anIdentity) {
 return
 (Author)
 UserInRoleAdapter
 .newInstance()
 .toCollaborator(
 aTenant,
 anIdentity,
 "Author",
 Author.class);
 }
 ...
}

Because it is a technical implementation, the class is housed in a Module (9) in the Infrastructure Layer.
The implementation hitches to the UserInRoleAdapter to morph a Tenant and an identity—the user’s username—into

an instance of class Author. This Adapter [Gamma et al.] interacts with the Open Host Service of the Identity and
Access Context to confirm that the given user is in the role named Author. If that is true, the Adapter delegates to class
CollaboratorTranslator to translate the Published Language integration response to an instance of class Author in the
local model. The Author, as well as the other Collaborator subclasses, is a simple Value Object:

Click here to view code image

package com.saasovation.collaboration.domain.model.collaborator;

public class Author extends Collaborator {
 ...
}

Other than constructors, equals(), hashCode(), and toString(), each of the subclasses receives all state and
behavior from Collaborator:

Click here to view code image

package com.saasovation.collaboration.domain.model.collaborator;

public abstract class Collaborator implements Serializable {
 private String emailAddress;
 private String identity;
 private String name;

 public Collaborator(
 String anIdentity,
 String aName,
 String anEmailAddress) {
 super();
 this.setEmailAddress(anEmailAddress);
 this.setIdentity(anIdentity);
 this.setName(aName);
 }
 ...
}

The Collaboration Context uses the username as the Collaborator identity attribute. The emailAddress and name are
simple String instances. In this model the team has chosen to keep each of these concepts as simple as possible. The user’s
name, for example, is kept as the full name in text. We’ve managed to separate the life cycles and conceptual terminologies

from the two Bounded Contexts by means of a Service-Based Factory.
There is a measure of complexity in UserInRoleAdapter and CollaboratorTranslator. In a nutshell the

UserInRoleAdapter is responsible only for communicating with the foreign Context. The CollaboratorTranslator is
responsible only for translation that results in creation. See Integrating Bounded Contexts (13) for details.

Wrap-Up
We examined the reasons for using Factories in DDD and how they often fit into the model.

• You now understand why the use of Factories can produce expressive models that more closely adhere to the
Ubiquitous Language in context.
• You’ve seen two different Factory Methods implemented as Aggregate behaviors.
• This helped you learn how to use Factory Methods to create Aggregate instances of other types, all while ensuring
the correct production and use of sensitive data.
• You also learned how Domain Services can be designed as Factories, even interacting with other Bounded
Contexts and translating foreign objects to local types.

Next, we’ll take a look at how Repositories can be designed for two primary styles of persistence, along with other
implementation choices that must be considered.

Chapter 12. Repositories

Your eyes are the same color as my storage unit.
—Overheard at a redneck bar

A repository commonly refers to a storage location, usually considered a place of safety or preservation of the items stored
in it. When you store something in a repository and later return to retrieve it, you expect that it will be in the same state as it
was in when you put it there. At some point you may choose to remove the stored item from the repository.

This basic set of principles applies to a DDD Repository. Placing an Aggregate (10) instance in its corresponding
Repository, and later using that Repository to retrieve the same instance, yields the expected whole object. If you alter a
preexisting Aggregate instance that you retrieve from the Repository, its changes will be persisted. If you remove the instance
from the Repository, you will be unable to retrieve it from that point forward.

For each type of object that needs global access, create an object that can provide the illusion of an
in-memory collection of all objects of that type. Set up access through a well-known global interface.
Provide methods to add and remove objects. . . . Provide methods that select objects based on some
criteria and return fully instantiated objects or collections of objects whose attribute values meet the
criteria. . . . Provide repositories only for aggregates. . . . [Evans, p. 151]

These collection-like objects are all about persistence. Every persistent Aggregate type will have a Repository. Generally
speaking, there is a one-to-one relationship between an Aggregate type and a Repository. However, sometimes when two or
more Aggregate types share an object hierarchy, the types may share a single Repository. Both of these approaches are
discussed in this chapter.

Road Map to This Chapter
• Learn about the two different kinds of Repositories and why to use one or the other.
• See how to implement Repositories for Hibernate, TopLink, Coherence, and MongoDB.
• Understand why you might need additional behavior on a Repository’s interface. Consider how transactions play
into the use of Repositories.
• Become familiar with the challenges of designing Repositories for type hierarchies.
• Look at some fundamental differences between Repositories and Data Access Objects [Crupi et al.].
• Consider some ways to test Repositories and how to test using Repositories.

Strictly speaking, only Aggregates have Repositories. If you are not using Aggregates in a given Bounded Context (2), the
Repository pattern may be less useful. If you are retrieving and using Entities (5) directly in an ad hoc fashion rather than
crafting Aggregate transactional boundaries, you may prefer to avoid Repositories. However, those less concerned with the
tenets of DDD, only using some of its patterns in a technical way, may prefer Repositories over Data Access Objects. Still
others will think that direct use of a persistence mechanism’s Session or Unit of Work [P of EAA] makes more sense. This is
not to suggest that you should avoid the use of Aggregates. In fact, the opposite is true. Still, it is an option that some will
employ.

In my estimation there are two kinds of Repository designs, a collection-oriented design and a persistence-oriented design.
There are circumstances under which a collection-oriented design will work for you, and circumstances when it is best to use a
persistence-oriented design. I first discuss when to use and how to create a collection-oriented Repository and follow that with
a treatment of persistence-oriented ones.

Collection-Oriented Repositories
We can consider a collection-oriented design a traditional approach because it adheres to the basic ideas presented in the

original DDD pattern. These very closely mimic a collection, simulating at least some of its standard interface. Here you
design a Repository interface that does not hint in any way that there is an underlying persistence mechanism, avoiding any
notion of saving or persisting data to a store.

Because this design approach requires some specific capabilities of the underlying persistence mechanism, it’s possible that
it won’t work for you. If your persistence mechanism prevents or hampers your ability to design with a collection perspective,
see the following subsection. I address the conditions under which I think collection-oriented design works best. To do so I
need to establish some foundational background.

Consider how a standard collection works. In Java, C#, or most any other object-oriented language, objects are added to a
collection, and they remain in the collection until they are removed. There is no need to do anything special to get the
collection to recognize changes to the objects that it contains, other than to ask the collection to hand you a reference to a
specific object and then ask that object to do something to itself, which modifies its own state. The same object is still held by
the collection, and now the state of that contained object is different from what it was prior to the modification.

Let’s look at this a bit closer by stepping through a few examples. Using java.util.Collection as an example, here, in
part, is the standard interface:
Click here to view code image

package java.util;

public interface Collection ... {
 public boolean add(Object o);
 public boolean addAll(Collection c);
 public boolean remove(Object o);
 public boolean removeAll(Collection c);
 ...
}

If we want to add an object to a collection, we use add(). If we want to remove the same object, we pass its reference to
remove(). The following test assumes a newly instantiated collection of some kind that can contain Calendar instances:
Click here to view code image

assertTrue(calendarCollection.add(calendar));

assertEquals(1, calendarCollection.size());

assertTrue(calendarCollection.remove(calendar));

assertEquals(0, calendarCollection.size());

Simple enough. One special kind of collection, java.util.Set, and its implementing java.util.HashSet, provides the
kind of collection that a Repository mimics. Every object added to a Set must be unique. If you attempt to add an object
already contained by the Set, it will not be added because it is already contained. Thus, you never need to add the same object
twice, as if adding it again somehow saves changes that you have asked the object to make to itself. The following test
assertions prove that adding the same object more than once has no effect, positive or negative:
Click here to view code image

Set<Calendar> calendarSet = new HashSet<Calendar>();

assertTrue(calendarSet.add(calendar));

assertEquals(1, calendarSet.size());

assertFalse(calendarSet.add(calendar));

assertEquals(1, calendarSet.size());

All of these assertions succeed because, although the same Calendar instance is added twice, the second attempt to add the
object does not change the state of the Set. The same goes for a Repository designed using a collection orientation. If we add
the Aggregate instance calendar to a CalendarRepository designed with a collection orientation, adding calendar a
second time is benign. Each Aggregate has a globally unique identity that is associated with the Root Entity (5, 10). It is this
unique identity that allows the Set-like Repository to prevent adding the same Aggregate instances more than once.

It is important to understand the kind of collection—a Set—that a Repository should mimic. Whatever the backing
implementation with a specific persistence mechanism, you must not allow instances of the same object to be added twice.

Another key takeaway is that you don’t need to “re-save” modified objects already held by the Repository. Consider again
how you’d go about modifying an object that is held by a collection. It’s really simple, actually. You’d just retrieve from the

collection the reference to the object you desire to modify, and then ask the object to execute some state-transitioning behavior
by invoking a command method.

Take-aways for Collection-Oriented Repositories
A Repository should mimic a Set collection. Whatever the backing implementation with a specific persistence
mechanism, you must not allow instances of the same object to be added twice. Also, when retrieving objects from a
Repository and modifying them, you don’t need to “re-save” them to the Repository.

To illustrate, say we extend (subclass) a standard java.util.HashSet and create a method on the new type that allows us
to find a specific object instance by unique identity. We’ll give the extending class a name that identifies it as a Repository, but
it’s just an in-memory HashSet:
Click here to view code image

public class CalendarRepository extends HashSet {
 private Set<CalendarId, Calendar> calendars;

 public CalendarRepository() {
 this.calendars = new HashSet<CalendarId, Calendar>();
 }

 public void add(Calendar aCalendar) {
 this.calendars.add(aCalendar.calendarId(), aCalendar);
 }

 public Calendar findCalendar(CalendarId aCalendarId) {
 return this.calendars.get(aCalendarId);
 }
}

We don’t normally subclass HashSet in order to create a typical Repository. Here we do so just for the sake of example.
So, back to the example. Now we can add a Calendar instance to the specialized Set and later find the instance and ask it to
modify itself:
Click here to view code image

CalendarId calendarId = new CalendarId(...);
Calendar calendar =
 new Calendar(calendarId, "Project Calendar", ...);
CalendarRepository calendarRepository = new CalendarRepository();
calendarRepository.add(calendar);

// later ...

Calendar calendarToRename =
 calendarRepository.findCalendar(calendarId);

calendarToRename.rename("CollabOvation Project Calendar");

// even later still ...

Calendar calendarThatWasRenamed =
 calendarRepository.findCalendar(calendarId);

assertEquals("CollabOvation Project Calendar",
 calendarThatWasRenamed.name());

Note that the instance of Calendar, referenced by calendarToRename, is modified by asking it to rename itself. Much later,
after the rename is performed, the name is still what it was changed to. This was accomplished without asking the HashSet
subclass CalendarRepository to save changes to the Calendar instance, which wouldn’t make any sense.
CalendarRepository doesn’t have a save() method because there is no need for one. There is no reason to save changes to
the Calendar instance that calendarToRename references, because the collection still holds a reference to the object being

modified, and the modifications are made directly on that object.
The bottom line, then, is that a traditional collection-oriented Repository truly mimics a collection in that no parts of the

persistence mechanisms are surfaced to the client by its public interface. Therefore, it is our goal to design and implement such
a collection-oriented Repository with the characteristics demonstrated by a HashSet, but with a persistent data store instead.

As you can imagine, this requires some specific capabilities of the backing persistence mechanism. The persistence
mechanism must in some way support the ability to implicitly track changes made to each persistent object that it manages. This
may be accomplished in various ways, including the following two:

1. Implicit Copy-on-Read [Keith & Stafford]: The persistence mechanism implicitly copies each persistent object
on read when it is reconstituted from the data store and compares its private copy to the client’s copy on commit.
Stepping through this, when you ask the persistence mechanism to read an object from the data store, it does so and
immediately makes a copy of the entire object (minus any lazy-loaded parts, which also may be loaded and copied
later). When a transaction created through the persistence mechanism is committed, the persistence mechanism
checks for modifications on the copied objects it has loaded (or reattached to) by comparing them. All objects with
detected changes are flushed to the data store.
2. Implicit Copy-on-Write [Keith & Stafford]: The persistence mechanism manages all loaded persistent objects
through a proxy. As each object is loaded from the data store, a thin proxy is created and handed to the client. Clients
unknowingly invoke behavior on the proxy object, which reflects the behavior onto the real object. When the proxy
first receives a method invocation, it makes a copy of the managed object. The proxy tracks changes made to the state
of the managed object and marks it dirty. When a transaction created through the persistence mechanism is
committed, it checks for dirty objects and all such are flushed to the data store.

The advantages and differences between these approaches may vary, and if your system stands to suffer the negative
consequences of choosing one over the other, you should measure them carefully. Of course, you can decide to go with your
favorite rather than doing your homework, but that may not be the safest decision.

Still, the overall advantage to either of these approaches is that persistent object changes are tracked implicitly, requiring no
explicit client knowledge or intervention to make changes known to the persistence mechanism. The bottom line here is that
using a persistence mechanism like this, such as Hibernate, allows you to employ a traditional, collection-oriented
Repository.

That said, it is possible even if you have the latitude to use such an implicit-copying change-tracking persistence mechanism,
such as Hibernate, that it may be undesirable or inappropriate to use. If your requirements demand a very high-performance
domain with many, many objects in memory at any given time, this sort of mechanism is going to add gratuitous overhead, in
both memory and execution. You will have to consider and decide carefully whether or not this works for you. Certainly there
are many domains in which Hibernate does work. So don’t take my call to attention as an attempt to declare a taboo. The use of
any tool should be with full awareness of trade-offs.

Cowboy Logic
LB: “When my dog got a case of worms, the veterinarian prescribed some repositories.”

This could lead you to consider the use of a more optimally performing object-relational mapping tool that can support a
collection-oriented Repository. One such tool is Oracle’s TopLink, and its nearest relative, EclipseLink. TopLink provides a
Unit of Work, which is not entirely unlike Hibernate’s Session. However, TopLink’s Unit of Work does not make an implicit
copy-on-read. Instead, it makes an Explicit Copy-before-Write [Keith & Stafford]. Here the term explicit means that the

client must inform the Unit of Work that changes are about to take place. This gives the Unit of Work the opportunity to clone
the given domain object in preparation for modifications (what it calls edits, discussed later in this chapter). The key point is
that TopLink consumes memory only when it must.

Hibernate Implementation
There are two primary steps to creating either orientation of a Repository. You need to define a public interface and at least

one implementation.
Specifically in the case of a collection-oriented design, in the first step you define an interface that mimics a collection. The

second step provides an implementation that addresses the use of the backing primary storage mechanism, such as Hibernate.
The interface, like a collection, will often have common methods such as are found in the following example:
Click here to view code image

package com.saasovation.collaboration.domain.model.calendar;

public interface CalendarEntryRepository {
 public void add(CalendarEntry aCalendarEntry);
 public void addAll(
 Collection<CalendarEntry> aCalendarEntryCollection);
 public void remove(CalendarEntry aCalendarEntry);
 public void removeAll(
 Collection<CalendarEntry> aCalendarEntryCollection);
 ...
}

Place the interface definition in the same Module (9) as the Aggregate type that it stores. In this case interface
CalendarEntryRepository is placed in the same Module (Java package) as CalendarEntry. The implementation class goes
in a separate package, as discussed later.

Interface CalendarEntryRepository has methods that are very much like those provided by collections, such as the
standard java.util.Collection. One new CalendarEntry may be added to this Repository using add(). Multiple new
instances may be added using addAll(). Once the instances have been added, they will be persisted to some sort of data store
and be retrievable by unique identity from that point forward. The antithesis of those methods is remove() and removeAll(),
allowing for the removal of one or multiple instances from the collection.

I personally don’t like these methods to answer Boolean results as do full-fledged collections. That’s because in some cases
answering true to an add-type operation does not guarantee success. The true results may still be subject to a transaction
commit on the data store. Thus, void may be the more accurate return type in the case of a Repository.

There may be cases where adding and/or removing multiple Aggregate instances in one transaction isn’t appropriate. When
that is true of a given case in your domain, don’t include methods addAll() and removeAll(). However, these methods are
provided only for convenience. A client can always use a loop to invoke add() or remove() multiple times when iterating
over a collection on its own. So eliminating the addAll() and removeAll() methods is only symbolic of a policy that can’t
actually be enforced by design, unless you also build in a means to detect adding and removing multiple objects in a single
transaction. Doing so would likely require such a Repository to be instantiated for every transaction, which is a potentially
costly proposal. I won’t discuss this further.

It is possible that instances of some Aggregate types must never be removed through normal application use cases. It may be
necessary to retrain the instance long after it is no longer usable in the application, possibly for referential and/or historical
purposes. Referentially it may actually be very difficult or impossible to remove some objects. From a business perspective it
may be unwise, ill advised, or even illegal to remove some objects. In those cases you may decide to simply mark the
Aggregate instance disabled, unusable, or, in some other domain-specific way, logically removed. If so, you may determine
not to include any removal methods on the Repository public interface, or you may decide to implement the removal methods to
set the unusable state of the Aggregate instance. You may instead prevent full object removal through code reviews, where
clients are carefully inspected to ensure that no such uses of removal behavior exist. It’s a decision to ponder, but you may find
it easier to disallow removal altogether. After all, any methods on public interfaces are generally considered available for use.
If removal is publicly available when logically disallowed, you probably want to consider implementing logical rather than
physical removal.

Another important part of the Repository interface is the definition of finder methods:
Click here to view code image

public interface CalendarEntryRepository {
 ...
 public CalendarEntry calendarEntryOfId(
 Tenant aTenant,
 CalendarEntryId aCalendarEntryId);

 public Collection<CalendarEntry> calendarEntriesOfCalendar(
 Tenant aTenant,
 CalendarId aCalendarId);

 public Collection<CalendarEntry> overlappingCalendarEntries(
 Tenant aTenant,
 CalendarId aCalendarId,
 TimeSpan aTimeSpan);
}

The first method definition, calendarEntryOfId(), allows you to retrieve a specific instance of the CalendarEntry
Aggregate by unique identity. This type uses an explicit identity type, namely, CalendarEntryId. The second method
definition, calendarEntriesOfCalendar(), allows you to retrieve a collection of all CalendarEntry instances for a
specific Calendar by its unique identity. Finally, the third finder method definition, overlapping-CalendarEntries(),
provides a collection of all CalendarEntry instances for a specific Calendar over a specific TimeSpan. In particular, this
method supports retrieving what is scheduled over a particular contiguous period of dates and times.

Finally, you may be wondering how a CalendarEntry is assigned its globally unique identity. This also can be conveniently
provided by the Repository:
Click here to view code image

public interface CalendarEntryRepository {
 public CalendarEntryId nextIdentity();
 ...
}

Any code responsible for instantiating new CalendarEntry instances uses nextIdentity() to get a new instance of
CalendarEntryId:
Click here to view code image

CalendarEntry calendarEntry =
 new CalendarEntry(tenant, calendarId,
 calendarEntryRepository.nextIdentity(),
 owner, subject, description, timeSpan, alarm,
 repetition, location, invitees);

See Entities (5) for an exhaustive discussion of identity creation techniques, the use of domain-specific and surrogate
identities, and the importance of properly timing the assignment of identity.

Let’s now look at the implementation class for this traditional Repository. There are a few options for selecting the Module
in which to place the class. Some like to use a Module (Java package) directly under the Aggregate and Repository Module. In
this case that would mean
Click here to view code image

package com.saasovation.collaboration.domain.model.calendar.impl;

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
}

Placing the class here allows you to manage the implementation in the Domain Layer, but in a special package for
implementations. That way you keep the domain concepts cleanly separated from those that directly deal with persistence. This
style of declaring interfaces in a richly named package, and their implementations in a sub-package named impl directly under
it, is widely practiced in Java projects. However, in the case of the Collaboration Context the team has chosen to locate all

technical implementation classes in the Infrastructure Layer:
Click here to view code image

package com.saasovation.collaboration.infrastructure.persistence;

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
}

This uses the Dependency Inversion Principle (4), or DIP, for layering infrastructure concerns. The Infrastructure Layer is
logically above all others, making references unidirectional and downward to the Domain Layer.

Class HibernateCalendarEntryRepository is a registered Spring bean. It has a zero-argument constructor and has
another infrastructure bean object dependency injected:
Click here to view code image

import com.saasovation.collaboration.infrastructure
 .persistence.SpringHibernateSessionProvider;

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {

 public HibernateCalendarEntryRepository() {
 super();
 }
 ...
 private SpringHibernateSessionProvider sessionProvider;

 public void setSessionProvider(
 SpringHibernateSessionProvider aSessionProvider) {
 this.sessionProvider = aSessionProvider;
 }

 private org.hibernate.Session session() {
 return this.sessionProvider.session();
 }
}

C l a s s SpringHibernateSessionProvider is also housed in the Infrastructure Layer in the
com.saasovation.collaboration.infrastructure.persistence Module and is injected into each Hibernate-based
Repository. Each method that uses Hibernate’s Session object self-invokes method session() to get it. Method session()
uses the dependency-injected sessionProvider instance to get the thread-bound Session instance (seen later in this chapter).

Methods add(), addAll(), remove(), and removeAll() are implemented as follows:
Click here to view code image

package com.saasovation.collaboration.infrastructure.persistence;

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
 @Override
 public void add(CalendarEntry aCalendarEntry) {
 try {
 this.session().saveOrUpdate(aCalendarEntry);
 } catch (ConstraintViolationException e) {
 throw new IllegalStateException(
 "CalendarEntry is not unique.", e);
 }
 }

 @Override
 public void addAll(

 Collection<CalendarEntry> aCalendarEntryCollection) {
 try {
 for (CalendarEntry instance : aCalendarEntryCollection) {
 this.session().saveOrUpdate(instance);
 }
 } catch (ConstraintViolationException e) {
 throw new IllegalStateException(
 "CalendarEntry is not unique.", e);
 }
 }

 @Override
 public void remove(CalendarEntry aCalendarEntry) {
 this.session().delete(aCalendarEntry);
 }

 @Override
 public void removeAll(
 Collection<CalendarEntry> aCalendarEntryCollection) {
 for (CalendarEntry instance : aCalendarEntryCollection) {
 this.session().delete(instance);
 }
 }
 ...
}

These methods have rather simplistic implementations. Each method self-invokes session() to get its Hibernate Session
instance (as just previously explained).

Perhaps curiously, methods add() and addAll() use the Session’s method saveOrUpdate(). This is further support for
Set-like adds. If a client happens to add the same CalendarEntry more than once, the saveOr-Update() behavior makes it
appear as a benign no-op. In fact, since Hibernate version 3 any form of update is a no-op since, as previously noted, updates
are tracked implicitly by object state modifications. Therefore, unless the objects added by these two methods are entirely
new, the behavior does nothing.

Adding can cause a ConstraintViolationException. Rather than allowing Hibernate exceptions to trickle out to clients,
those exceptions are caught and wrapped by the more client-friendly IllegalStateException. We could also declare
domain-specific exceptions and throw those. That is a choice for each project team. The main point is that since we are going
to the trouble of abstracting away the implementation details of the underlying persistence framework, we want to insulate
clients from all such details, including exceptions.

Methods remove() and removeAll() are quite simple. They only need to use the Session delete() to facilitate removal
from the underlying data store. There is one additional detail regarding the removal of Aggregates that use one-to-one
mappings, which is true in one case in the Identity and Access Context. Because you cannot cascade changes on such
relationships, you will need to explicitly delete objects on both sides of the association:
Click here to view code image

package com.saasovation.identityaccess.infrastructure.persistence;

public class HibernateUserRepository implements UserRepository {
 ...
 @Override
 public void remove(User aUser) {
 this.session().delete(aUser.person());
 this.session().delete(aUser);
 }

 @Override
 public void removeAll(Collection<User> aUserCollection) {
 for (User instance : aUserCollection) {
 this.session().delete(instance.person());
 this.session().delete(instance);
 }
 }
 ...
}

The inner Person object must first be deleted, and then the User Aggregate Root. If you do not delete the inner Person
object, it will be orphaned in its corresponding database table. In general this is a good reason to avoid one-to-one
associations and instead use a constrained singular many-to-one unidirectional association. However, I chose to implement the
one-to-one bidirectional association purposely in order to demonstrate what working with the more troublesome mappings
involves.

Note that there are different preferred approaches for dealing with such situations. Some may choose to depend on ORM life
cycle events to cause part object cascading deletes. I have purposely avoided such approaches because I am a strong opponent
of Aggregate-managed persistence, and I strongly advocate Repository-only persistence. The arguments are passionate and
never-ending, ad nauseam. You should make an informed choice, but understand that DDD experts avoid Aggregate-managed
persistence as a rule of thumb.

Now back to HibernateCalendarEntryRepository and its finder method implementations:
Click here to view code image

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
 @Override
 @SuppressWarnings("unchecked")
 public Collection<CalendarEntry> overlappingCalendarEntries(
 Tenant aTenant, CalendarId aCalendarId, TimeSpan aTimeSpan) {
 Query query =
 this.session().createQuery(
 "from CalendarEntry as _obj_ " +
 "where _obj_.tenant = :tenant and " +
 "_obj_.calendarId = :calendarId and " +
 "((_obj_.repetition.timeSpan.begins between " +
 ":tsb and :tse) or " +
 " (_obj_.repetition.timeSpan.ends between " +
 ":tsb and :tse))");

 query.setParameter("tenant", aTenant);
 query.setParameter("calendarId", aCalendarId);
 query.setParameter("tsb", aTimeSpan.begins(), Hibernate.DATE);
 query.setParameter("tse", aTimeSpan.ends(), Hibernate.DATE);

 return (Collection<CalendarEntry>) query.list();
 }

 @Override
 public CalendarEntry calendarEntryOfId(
 Tenant aTenant,
 CalendarEntryId aCalendarEntryId) {
 Query query =
 this.session().createQuery(
 "from CalendarEntry as _obj_ " +
 "where _obj_.tenant = ? and _obj_.calendarEntryId = ?");

 query.setParameter(0, aTenant);
 query.setParameter(1, aCalendarEntryId);

 return (CalendarEntry) query.uniqueResult();
 }

 @Override
 @SuppressWarnings("unchecked")
 public Collection<CalendarEntry> calendarEntriesOfCalendar(
 Tenant aTenant, CalendarId aCalendarId) {
 Query query =
 this.session().createQuery(
 "from CalendarEntry as _obj_ " +
 "where _obj_.tenant = ? and _obj_.calendarId = ?");

 query.setParameter(0, aTenant);
 query.setParameter(1, aCalendarId);

 return (Collection<CalendarEntry>) query.list();
 }
 ...
}

Each of the three finders creates a Query through its Session. As is common with Hibernate queries, the team uses HQL to
describe the criteria and then loads up the parameter objects. The query is then run, asking for either a singular, unique result or
a list collection of objects. The more sophisticated of the thread queries is that of overlappingCalendarEntries(), in which
case we must find all CalendarEntry instances that overlap a specific date and time range, or TimeSpan.

Last we look at the implementation of method nextIdentity():
Click here to view code image

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
 public CalendarEntryId nextIdentity() {
 return new CalendarEntryId(
 UUID.randomUUID().toString().toUpperCase());
 }
 ...
}

This particular implementation does not use the persistence mechanism or data store to generate a unique identity. Rather,
the relatively fast and very reliable UUID generator is used.

Considerations for a TopLink Implementation
TopLink has both a Session and a Unit of Work. This differs somewhat from Hibernate in that Hibernate’s Session is also a

Unit of Work.1 Let’s look at a perspective on the use of Unit of Work as separate from Session, and then ease into how to use
them in a Repository implementation.

Without the benefit of a Repository abstraction, you’d use TopLink in this way:
Click here to view code image

Calendar calendar = session.readObject(...);

UnitOfWork unitOfWork = session.acquireUnitOfWork();

Calendar calendarToRename = unitOfWork.registerObject(calendar);

calendarToRename.rename("CollabOvation Project Calendar");

unitOfWork.commit();

The UnitOfWork provides a much more efficient use of memory and processing power since you must explicitly inform the
UnitOfWork that you intend to modify the object. It is not until that time that a clone, or editing copy, of your Aggregate is
made. As shown previously, method registerObject() answers a clone of the original Calendar instance. It is this clone
object, referenced by calendarToRename, that must be edited/modified. As you cause modifications on the object, TopLink is
able to track the changes that occur. When method commit() on UnitOfWork is invoked, all modified objects are committed to
the database.2

Adding new objects to a TopLink Repository can be facilitated easily enough:
Click here to view code image

...
public void add(Calendar aCalendar) {
 this.unitOfWork().registerNewObject(aCalendar);
}
...

The use of registerNewObject() stipulates that aCalendar is a new instance. This would enforce failure if add() was

invoked with aCalendar that is actually preexisting. We could also use the vanilla registerObject() here, which would be
similar to using Hibernate’s saveOrUpdate() method (discussed earlier). Either way we satisfy the need for a workable
collection-oriented interface.

But we still need a way to acquire a clone when we have to modify a preexisting Aggregate. The trick is to find a convenient
way to register such an Aggregate instance with a UnitOfWork. So far our discussion hasn’t provided a Repository interface to
do that because we’ve been trying to mimic a Set and avoid any inference to persistence in the interface. Still, we could
accomplish this in a way that doesn’t necessarily influence a persistence frame of mind. Consider using one of two approaches:
Click here to view code image

public Calendar editingCopy(Calendar aCalendar);

// or

public void useEditingMode();

With the first approach editingCopy() would acquire a UnitOfWork, register the given Calendar instance, get its clone,
and answer it:
Click here to view code image

...
public Calendar editingCopy(Calendar aCalendar) {
 return (Calendar) this.unitOfWork().registerObject(aCalendar);
}
...

This reflects the underlying registerObject() way of doing things. Understandably this may not be desirable, but it is a
clean approach and doesn’t reflect a persistence frame of mind.

The second approach is to place the Repository into editing mode with useEditingMode(). After this is done, all
subsequent finder methods will automatically register all objects they query with a backing UnitOfWork and answer the
clones. It does more or less lock the Repository into use for Aggregate modifications. That is, nonetheless, how Repositories
tend to be used, either read-only or read for modification. It also reflects the use of a Repository for Aggregates that have well-
crafted boundaries that reflect a bias toward transactional success.

There may be other ways to design a collection-oriented repository for TopLink, but this provides a few options worth
considering.

Persistence-Oriented Repositories
For times when a collection-oriented style doesn’t work, you will need to employ a persistence-oriented, save-based

Repository. This will be the case when your persistence mechanism doesn’t implicitly or explicitly detect and track object
changes. This happens to be the case when using an in-memory Data Fabric (4), or by any other name a NoSQL key-value data
store. Every time you create a new Aggregate instance or change a preexisting one, you will have to put it into the data store by
using save() or a save-like Repository method.

There is another consideration for choosing a persistence-oriented approach, even if you are using an object-relational
mapper that supports a collection-oriented approach. What would happen if you designed collection-oriented Repositories and
then decided to swap out your relational database with a key-value store? You’d have a lot of ripple through your Application
Layer as it would have to be changed to use save() in all places where Aggregate updates occur. You’d also want to rid your
Repositories of add() and addAll(), because those would no longer pertain. In cases where it is a very realistic possibility
that your persistence mechanism will shift in the future, it might be best to design with the more flexible interface in mind. The
downside is that your current object-relational mapper may cause you to leave out necessary uses of save() that you may catch
only later when there is no longer a backing Unit of Work.3 The upside is that the Repository pattern will allow you to
completely replace your persistence mechanism with potentially little impact on your application.

Take-aways for Persistence-Oriented Repositories
We must explicitly put() both new and changed objects into the store, effectively replacing any value previously
associated with the given key. Using these kinds of data stores greatly simplifies the basic writes and reads of Aggregates.
For this reason they are sometimes called Aggregate Stores or Aggregate-Oriented Databases.

When using an in-memory Data Fabric, such as GemFire or Oracle Coherence, the storage is an in-memory Map
implementation mimicking java.util.HashMap, where each mapped element is considered an entry. Similarly, when using a
NoSQL store such as MongoDB or Riak, object persistence gives the illusion of something like a collection, instead of tables,
rows, and columns. These store key-value pairs. This is effectively a Map-like store, but it uses disk rather than memory as its
primary persistence medium.

Although both of these styles of persistence mechanisms roughly mimic a Map collection, we must unfortunately explicitly
put() both new and changed objects into the store, effectively replacing the value previously associated with the given key.
That’s true even when a changed object is logically the same object that is already stored, because these typically don’t
provide a Unit of Work to track changes or support transaction demarcation to control atomic writes. Rather, each put() and
putAll() represents a separate logical transaction.

Using either of these kinds of data stores greatly simplifies the basic writes and reads of Aggregates. For example, consider
the simplicity of adding this Product (Agile Project Management Context) to a Coherence data grid, and then reading it back
again:

cache.put(product.productId(), product);

// later ...

product = cache.get(productId);

Here the Product instance is automatically serialized to the Map using standard Java serialization. This simplistic interface
can be a bit deceptive, however. If you want really high-performing domains, there is a bit more to do. Coherence supports
standard Java serialization when a custom serialization provider is not registered. Using the standard Java serialization is not
generally the best option. It requires a premium of bytes to represent each object, and it performs relatively poorly.4 You don’t
want to purchase a high-performance Data Fabric and then hamstring it by reducing the number of objects it can cache and
reduce the overall throughput using slow serialization. So keep in mind that when using a Data Fabric, for example,
distribution is introduced into your system. That will often bring a new force into domain model design, namely, custom or at
least specialized serialization. That can cause you to make different decisions, at least at an implementation level.

So when using the GemFire or Coherence caches, the MongoDB or Riak key-value stores, or some other kind of NoSQL
persistence, you will probably want to use a fast and compact means to convert Aggregates to their serialized/document form
and then back again to their object form. Granted, attacking these challenges isn’t that difficult. For instance, creating an
optimal serialization for an Aggregate persisted by GemFire or Coherence is no more challenging than creating mapping
descriptions for an object-relational mapper. But it’s not as easy as just using put() and get() on a Map.

Next, I demonstrate how a persistence-oriented Repository can be created for Coherence, and following that I highlight some
techniques for doing the same for MongoDB.

Coherence Implementation
As we did with the collection-oriented Repository, we first define an interface and then its implementation. Here’s a

persistence-oriented interface that defines save-based methods that are used for the Oracle Coherence data grid:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

import java.util.Collection;

import com.saasovation.agilepm.domain.model.tenant.Tenant;

public interface ProductRepository {
 public ProductId nextIdentity();
 public Collection<Product> allProductsOfTenant(Tenant aTenant);
 public Product productOfId(Tenant aTenant, ProductId aProductId);
 public void remove(Product aProduct);
 public void removeAll(Collection<Product> aProductCollection);
 public void save(Product aProduct);
 public void saveAll(Collection<Product> aProductCollection);
}

This ProductRepository is not entirely unlike the CalendarEntryRepository from the previous section. It differs only in
the way it allows Aggregate instances to be included in the mimicked collection. In this case we have save() and saveAll()
methods rather than add() and addAll() methods. Both method styles logically do similar things. The main difference is how
the client uses the methods. To reiterate, when using a collection-oriented style, Aggregate instances are added only when they
are created. When using a persistence-oriented style, Aggregate instances must be saved both when they are created and when
they are modified:
Click here to view code image

Product product = new Product(...);

productRepository.save(product);

// later ...

Product product =
 productRepository.productOfId(tenantId, productId);

product.reprioritizeFrom(backlogItemId, orderOfPriority);

productRepository.save(product);

Other than that, the details are in the implementation. So let’s dive right into that. First take a look at the Coherence
infrastructure we need to make the leap to the data grid cache:
Click here to view code image

package com.saasovation.agilepm.infrastructure.persistence;

import com.tangosol.net.CacheFactory;
import com.tangosol.net.NamedCache;

public class CoherenceProductRepository
 implements ProductRepository {
 private Map<Tenant,NamedCache> caches;

 public CoherenceProductRepository() {
 super();
 this.caches = new HashMap<Tenant,NamedCache>();
 }
 ...
 private synchronized NamedCache cache(TenantId aTenantId) {
 NamedCache cache = this.caches.get(aTenantId);

 if (cache == null) {
 cache = CacheFactory.getCache(
 "agilepm.Product." + aTenantId.id(),
 Product.class.getClassLoader());

 this.caches.put(aTenantId, cache);
 }

 return cache;
 }
 ...
}

In the case of the Agile Project Management Context, the team has chosen to place Repository technical implementations in
the Infrastructure Layer.

Along with a simple zero-argument constructor, there is the Coherence linchpin, the NamedCache. Among other imports, note
those that are specific to creating or attaching to and using a cache, CacheFactory and NamedCache. Both of these classes are
in package com.tangosol.net.

The private method cache() is the means by which a NamedCache is obtained. The method lazily gets the cache on the

Repository’s first attempt to use it. This is primarily because each cache is named for the specific Tenant and the Repository
must wait for a public method to be invoked before it has access to a TenantId. There are various Coherence named cache
strategies that could be designed. In this case the team has chosen to cache using the following namespace:

1. First level by the Bounded Context short name: agilepm
2. Second level by the Aggregate simple name: Product
3. Third level by the unique identity of each tenant: TenantId

This has a few benefits. First, the model of each Bounded Context, Aggregate, and tenant that is managed by Coherence can
be tuned and scaled separately. Also, each tenant is completely segregated from all others, so there is no way that queries for
one tenant can accidentally include the objects of other tenants. This is the same motivation used when “striping” each entity
table with the tenant identity in a MySQL persistence solution, yet it is even cleaner in this case. Further, anytime a finder
method is required to answer all Aggregate instances for a given tenant, there is actually no query required. The finder method
just asks Coherence for all entries in the cache. You’ll see this optimization later with the implementation of
allProductsOfTenant().

As each NamedCache is created or attached to, it is placed into the Map associated with the caches instance variable. This
allows each cache to be looked up quickly by TenantId on all uses subsequent to the first.

There are far too many Coherence configuration and tuning considerations to address here. It’s an entire discussion on its
own, and the literature already goes into this. I’ll leave it to Aleks Seovi to cover this topic [Seovi]. Now on with the
implementation:
Click here to view code image

public class CoherenceProductRepository
 implements ProductRepository {
 ...
 @Override
 public ProductId nextIdentity() {
 return new ProductId(
 java.util.UUID.randomUUID()
 .toString()
 .toUpperCase());
 }
 ...
}

T h e nextIdentity() method of the ProductRepository is implemented in the same fashion as that of the
CalendarEntryRepository. It grabs a UUID and uses it to instantiate a ProductId, which it then answers:
Click here to view code image

public class CoherenceProductRepository
 implements ProductRepository {
 ...
 @Override
 public void save(Product aProduct) {
 this.cache(aProduct.tenantId())
 .put(this.idOf(aProduct), aProduct);
 }

 @Override
 public void saveAll(Collection<Product> aProductCollection) {
 if (!aProductCollection.isEmpty()) {
 TenantId tenantId = null;

 Map<String,Product> productsMap =
 new HashMap<String,Product>(aProductCollection.size());

 for (Product product : aProductCollection) {
 if (tenantId == null) {
 tenantId = product.tenantId();
 }
 productsMap.put(this.idOf(product), product);
 }

 this.cache(tenantId).putAll(productsMap);
 }
 }
 ...
 private String idOf(Product aProduct) {
 return this.idOf(aProduct.productId());
 }

 private String idOf(ProductId aProductId) {
 return aProductId.id();
 }
}

To persist a single new or modified Product instance to the data grid, use save(). The save() method uses cache() to get
the NamedCache instance for the TenantId of the Product. It then puts the Product instance into the NamedCache. Note the
use of method idOf(), which has two editions, one for a Product and the other for a ProductId. In both cases these methods
answer the String form of the Product’s unique identity, or ProductId. So the put() method of the NamedCache, which
implements java.util.Map, is given a String-based key and the Product instance as the value.

Method saveAll() may be a bit more complex than you expected. Why not just iterate over aProductCollection,
invoking save() for each element? We could do so. However, depending on the specific Coherence cache in use, each
invocation of put() requires a network request. Therefore, it’s best to batch up all Product instances to be persisted in a
simple local HashMap and submit them with putAll() instead. This reduces the network latency to the lowest possible delay
by using a single request, which is the most optimal.
Click here to view code image

public class CoherenceProductRepository
 implements ProductRepository {
 ...
 @Override
 public void remove(Product aProduct) {
 this.cache(aProduct.tenant()).remove(this.idOf(aProduct));
 }

 @Override
 public void removeAll(Collection<Product> aProductCollection) {
 for (Product product : aProductCollection) {
 this.remove(product);
 }
 }
 ...
}

The implementation of remove() works exactly as expected. However, given the implementation of saveAll(),
removeAll() may be as big a surprise. After all, isn’t there a way to remove a batch of entries? Well, no, the standard
java.util.Map interface doesn’t provide that, and thus neither does Coherence. So in this case we do just iterate over
aProductCollection and use remove() for each element. Considering the possible consequences of removing only some of
the given collection due to Coherence failure, this may seem dangerous. Of course, you will have to weigh the forces of
providing a removeAll(), but remember that a major strength of Data Fabrics such as GemFire and Coherence is redundancy
and high availability.

Finally, we arrive at interface method implementations that provide a few ways of finding Product instances:
Click here to view code image

public class CoherenceProductRepository
 implements ProductRepository {
 ...

 @SuppressWarnings("unchecked")
 @Override
 public Collection<Product> allProductsOfTenant(Tenant aTenant) {
 Set<Map.Entry<String, Product>> entries =
 this.cache(aTenant).entrySet();

 Collection<Product> products =
 new HashSet<Product>(entries.size());

 for (Map.Entry<String, Product> entry : entries) {
 products.add(entry.getValue());
 }

 return products;
 }

 @Override
 public Product productOfId(Tenant aTenant, ProductId aProductId) {
 return (Product) this.cache(aTenant).get(this.idOf(aProductId));
 }
 ...
}

Method productOfId() only has to do a basic get() on the NamedCache, providing the identity of the Product instance
being requested.

Method allProductsOfTenant() is the one I previously referred to. Rather than having to employ a more sophisticated
Coherence filter entry process, all it needs to do is ask the data grid for all Product instances in the specific NamedCache.
Because each cache is segregated down to the individual tenant, every Aggregate instance in the cache satisfies the query.

That wraps up class CoherenceProductRepository. This implementation shows how an abstract interface is fulfilled
using Coherence as a client to persist data on the grid cache and then find it later. It doesn’t show everything involved in
configuring and tuning Coherence, or what it takes to create indexes for each cache, or design a compacting, high-performance
serializer for each domain object. That’s not the Repository’s responsibility. See [Seovi] for extensive coverage of those
topics.

MongoDB Implementation
As with the other Repository implementations, there are some basic implementation considerations. The MongoDB

implementation is actually similar to the Coherence version. Here is the high-level overview of what we need:
1. A means to serialize Aggregate instances to the MongoDB format, and then deserialize from that format and
reconstitute the Aggregate instance. MongoDB uses a special form of JSON called BSON, which is a binary JSON
format.
2. A unique identity generated by MongoDB and assigned to the Aggregate.
3. A reference to the MongoDB node/cluster.
4. A unique collection in which to store each Aggregate type. All instances of each Aggregate type must be stored as
a set of serialized documents (key-value pairs) in their own collection.

Let’s take this step by step as we look through a Repository implementation. Since we’ll use the ProductRepository again,
you can compare the implementation to that for Coherence (previous section).
Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {

 public MongoProductRepository() {
 super();

 this.serializer(new BSONSerializer<Product>(Product.class));
 }
 ...
}

This implementation holds an instance of a BSONSerializer, which is used to serialize and deserialize all Product
instances (actually held by superclass MongoRepository). I won’t go into deep detail about BSONSerializer. It’s a custom-
developed solution for producing MongoDB DBObject instances from Product instances (and any other Aggregate types) and
back to Product instances. This class is provided along with other sample code.

There are a few notable things you can do with a BSONSerializer. Basic serialization and deserialization are handled
using direct field access. This frees your domain objects from having to implement JavaBean getters and setters, which tends to
steer you away from an Anemic Domain Model [Fowler, Anemic]. Since you won’t use methods to access fields, you will at
some point need to migrate from one version of an Aggregate type to another version. To do so you can specify override
mappings for each field on deserialization:
Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {

 public MongoProductRepository() {
 super();

 this.serializer(new BSONSerializer<Product>(Product.class));

 Map<String, String> overrides = new HashMap<String, String>();
 overrides.put("description", "summary");
 this.serializer().registerOverrideMappings(overrides);
 }
 ...
}

In this example we’ll assume that a previous version of class Product had a field named description. In a subsequent
version this field was renamed summary. To solve this problem we could run a migration script across all MongoDB
collections used to store Product instances for each tenant. However, that could be a difficult and very lengthy set of
operations, rendering it an impractical approach. As an alternative, we’ll simply ask the BSONSerializer to map any BSON
field on Product named description to the field named summary. Then, when the migrated Product is serialized back to a
DBObject and saved in the MongoDB collection, the new serialization will contain a field named summary rather than
description. Of course, it also means that any Product instances never read and saved back to the store will remain with the
obsolete description field names. You’ll have to weigh the trade-offs of this lazy migration approach.

Next, we need a way for MongoDB to generate a unique identity for each Aggregate instance to use:
Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {
 ...
 public ProductId nextIdentity() {
 return new ProductId(new ObjectId().toString());
 }
 ...
}

We still use method nextIdentity(), but in this implementation we initialize the ProductId with the String value of a
new ObjectId. The main reason for this is that we want MongoDB to use the same unique identity that we hold in the
Aggregate instance itself. Thus, when we serialize a Product (or another type in a different Repository implementation), we
can ask the BSONSerializer to map that identity to the special MongoDB _id key:
Click here to view code image

public class BSONSerializer<T> {
 ...
 public DBObject serialize(T anObject) {
 DBObject serialization = this.toDBObject(anObject);

 return serialization;
 }

 public DBObject serialize(String aKey, T anObject) {
 DBObject serialization = this.serialize(anObject);

 serialization.put("_id", new ObjectId(aKey));

 return serialization;
 }
 ...
}

The first serialize() method supports no such _id mapping, giving clients the option to retain the matching identities, or
not. Next, look at how the save() method is implemented:
Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {
 ...
 @Override
 public void save(Product aProduct) {
 this.databaseCollection(
 this.collectionName(aProduct.tenantId()))
 .save(this.serialize(aProduct));
 }
 ...
}

Similar to the Coherence implementation of the same Repository interface, we get a tenant-specific collection in which to
store the Product instances for a given TenantId. This yields a Mongo DBCollection from a DB. To get the DBCollection
object we have the following in the MongoRepository abstract base class:
Click here to view code image

public abstract class MongoRepository<T> {
 ...
 protected DBCollection databaseCollection(
 String aDatabaseName,
 String aCollectionName) {
 return MongoDatabaseProvider
 .database(aDatabaseName)
 .getCollection(aCollectionName);
 }
 ...
}

We use a MongoDatabaseProvider to get a connection to the database instance, which answers with a DB object. From the
returned DB object we ask for a DBCollection. As seen in the concrete Repository implementation, the collection is named by
the combination of the text "product" and the full identity of the tenant. The Agile PM Context uses a dedicated database
named agilepm, much like the way the Coherence implementation names its cache:
Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {
 ...
 protected String collectionName(TenantId aTenantId) {
 return "product" + aTenantId.id();
 }

 protected String databaseName() {
 return "agilepm";
 }
 ...
}

Similar to the SpringHibernateSessionProvider presented previously, the MongoDatabaseProvider is the means to

retrieve an application-wide instance of DB.
The same DBCollection is used for save() and for finding instances of Product:

Click here to view code image

public class MongoProductRepository
 extends MongoRepository<Product>
 implements ProductRepository {
 ...
 @Override
 public Collection<Product> allProductsOfTenant(
 TenantId aTenantId) {
 Collection<Product> products = new ArrayList<Product>();

 DBCursor cursor =
 this.databaseCollection(
 this.databaseName(),
 this.collectionName(aTenantId)).find();

 while (cursor.hasNext()) {
 DBObject dbObject = cursor.next();

 Product product = this.deserialize(dbObject);

 products.add(product);
 }

 return products;
 }

 @Override
 public Product productOfId(
 TenantId aTenantId, ProductId aProductId) {
 Product product = null;

 BasicDBObject query = new BasicDBObject();

 query.put("productId",
 new BasicDBObject("id", aProductId.id()));

 DBCursor cursor =
 this.databaseCollection(
 this.databaseName(),
 this.collectionName(aTenantId)).find(query);

 if (cursor.hasNext()) {
 product = this.deserialize(cursor.next());
 }

 return product;
 }
 ...
}

The implementation of allProductsOfTenant() is, again, very similar to that for Coherence. We simply ask the tenant-
based DBCollection to find() all instances. As for productOfId(), this time we give the DBCollection method find() a
DBObject describing the specific Product instance to retrieve. In both finder methods we use the returned DBCursor to get all,
and get only the first instance, respectively.

Additional Behavior
Sometimes it is beneficial to provide additional behavior on a Repository interface, besides the typical kinds presented in

the previous sections. One behavior that comes in handy is to answer the count of all instances in the collection of Aggregates.
You might think of this behavior as having the name count. However, since a Repository should mimic a collection as closely
as possible, you might consider instead using the following method:

Click here to view code image

public interface CalendarEntryRepository {
 ...
 public int size();
}

Method size() is exactly what a standard java.util.Collection supplies. When using Hibernate, the implementation
would work like this:
Click here to view code image

public class HibernateCalendarEntryRepository
 implements CalendarEntryRepository {
 ...
 public int size() {
 Query query =
 this.session().createQuery(
 "select count(*) from CalendarEntry");

 int size = ((Integer) query.uniqueResult()).intValue();

 return size;
 }
}

There may be other calculations that must be performed in the data store (database or grid included) in order to meet some
stringent nonfunctional requirement. This can be the case if moving the data from its store to where the business logic executes
is too slow. Instead you may have to move the code to the data. This can be accomplished using database stored procedures or
data grid entry processors, such as are available with Coherence. However, such implementations are often best placed under
the control of Domain Services (7), since those are used to house stateless, domain-specific operations.

It may at times be advantageous to query Aggregate parts out of the Repository without directly accessing the Root itself.
This might be so if an Aggregate holds a large collection of some Entity type, and you need to get access only to the instances
that match a certain criterion. Of course, this might make sense only if the Aggregate allows for such access by navigation
through the Root. You wouldn’t design a Repository to provide access to parts that the Aggregate Root would not otherwise
allow access to by way of navigation. Doing so would violate the Aggregate contract. I suggest that you would also not design
the Repository to provide this kind of access as a mere shortcut for client convenience. I think this should be used primarily to
address performance concerns under conditions where navigation through the Root would cause an unacceptable bottleneck.
The methods that address such optimal access would have the same basic characteristics as other finders (see earlier in this
chapter) but would answer instances of the contained parts rather than Root Entities. Again, use with caution.

Another reason might influence you to design in special finder methods. Certain use cases of your system may not follow the
exact contours of a single Aggregate type when rendering views of domain data. They may instead cut across types, possibly
composing just certain parts of one or more Aggregates. In situations like this you might choose not to, in a single transaction,
find whole Aggregate instances of various types and then programmatically compose them into a single container, and supply
that payload container to a client. You might instead use what is called a use case optimal query. This is where you specify a
complex query against the persistence mechanism, dynamically placing the results into a Value Object (6) specifically
designed to address the needs of the use case.

It should not seem strange for a Repository to in some cases answer a Value Object rather than an Aggregate instance. A
Repository that provides a size() method answers a very simple Value in the form of an integer count of the total Aggregate
instances it holds. A use case optimal query is just extending this notion a bit to provide a somewhat more complex Value, one
that addresses more complex client demands.

If you find that you must create many finder methods supporting use case optimal queries on multiple Repositories, it’s
probably a code smell. First of all, this situation could be an indication that you’ve misjudged Aggregate boundaries and
overlooked the opportunity to design one or more Aggregates of different types. The code smell here might be called
Repository masks Aggregate mis-design.

However, what if you encounter this situation and your analysis indicates that your Aggregate boundaries are well designed?
This could point to the need to consider using CQRS (4).

Managing Transactions
The domain model and its encompassing Domain Layer is never the correct place to manage transactions.5 The operations

associated with a model are usually too fine grained to themselves manage transactions and shouldn’t be aware that
transactions play a part in their life cycle. If you are to avoid placing transactional concerns in the model, just where do they
belong?

A common architectural approach to facilitating transactions on behalf of persistence aspects of the domain model is to
manage them in the Application Layer (14).6 Generally, we create one Facade [Gamma et al.] there for each major use case
grouping addressed by the application/system. The Facade is designed with coarse-grained business methods, usually one for
each use case flow (which may be limited to one for a given use case). Each such business method coordinates a task as
required by the use case. When a Facade’s business method is invoked by the User Interface Layer (14), whether on behalf
of a human or another system, the business method begins a transaction and then acts as a client to the domain model. After all
necessary interaction with the domain model is successfully completed, the Facade’s business method commits the transaction
it started. If an error/exception occurs that prevents completion of the use case task, the transaction is rolled back by the same
managing business method.

The transaction may be managed declaratively or explicitly by developer code. Whether or not your transactions are
declarative or user managed, what I have described here logically works as follows:
Click here to view code image

public class SomeApplicationServiceFacade {
 ...
 public void doSomeUseCaseTask() {
 Transaction transaction = null;

 try {
 transaction = this.session().beginTransaction();

 // use the domain model ...

 transaction.commit();

 } catch (Exception e) {
 if (transaction != null) {
 transaction.rollback();
 }
 }
 }
}

To enlist changes to the domain model in a transaction, ensure that Repository implementations have access to the same
Session or Unit of Work for the transaction that the Application Layer started. That way the modifications made in the Domain
Layer will be properly committed to the underlying database or rolled back.

There is such a variety in how this can be accomplished that I cannot address all possibilities. What I will do is note that
enterprise Java containers and inversion-of-control containers, such as Spring, provide the means to do what I have described,
and it is generally well understood. The emphasis here is to use what is appropriate for your environment. As an example,
here’s how you might do so using Spring:
Click here to view code image

<tx:annotation-driven transaction-manager="transactionManager"/>

<bean
 id="sessionFactory"
 class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
 <property name="configLocation">
 <value>classpath:hibernate.cfg.xml</value>
 </property>
</bean>

<bean
 id="sessionProvider"

 class="com.saasovation.identityaccess.infrastructure
 .persistence.SpringHibernateSessionProvider"
 autowire="byName">
</bean>

<bean
 id="transactionManager"
 class="org.springframework.orm.hibernate3
 .HibernateTransactionManager">
 <property name="sessionFactory">
 <ref bean="sessionFactory"/>
 </property>
</bean>

<bean
 id="abstractTransactionalServiceProxy"
 abstract="true"
 class="org.springframework.transaction.interceptor
 .TransactionProxyFactoryBean">
 <property name="transactionManager">
 <ref bean="transactionManager"/>
 </property>
 <property name="transactionAttributes">
 <props>
 <prop key="*">PROPAGATION_REQUIRED</prop>
 </props>
 </property>
</bean>

The configured sessionFactory bean provides the means to obtain a Hibernate Session. The bean named
sessionProvider is used to associate a Session obtained from the sessionFactory with the current Thread of execution.
The sessionProvider bean can be used by Hibernate-based Repositories when they need to get the Session instance for the
Thread they are running under. The transactionManager uses the session-Factory to get and manage Hibernate
transactions. The one remaining bean, abstractTransactionalServiceProxy, is used optionally as a proxy for declaring
transactional beans using Spring configuration. The topmost declaration allows transactions to be declared via Java
annotations, which may be more convenient than using configuration:

<tx:annotation-driven transaction-manager="transactionManager"/>

With this wired you can now declare a given Facade business method transactional using a simple annotation:
Click here to view code image

public class SomeApplicationServiceFacade {
 ...
 @Transactional
 public void doSomeUseCaseTask() {

 // use the domain model ...
 }
}

Compared to the previous example of managing a transaction, this certainly cuts down on clutter in the business method and
allows you to focus on the task coordination itself. By means of this annotation, when the business method is invoked, Spring
automatically starts a transaction, and when the method completes, the transaction is either committed or rolled back as
appropriate.

Here is a look at the source code of the sessionProvider bean as it is implemented for the Identity and Access Context:
Click here to view code image

package com.saasovation.identityaccess.infrastructure.persistence;

import org.hibernate.Session;
import org.hibernate.SessionFactory;

public class SpringHibernateSessionProvider {

 private static final ThreadLocal<Session> sessionHolder =
 new ThreadLocal<Session>();

 private SessionFactory sessionFactory;

 public SpringHibernateSessionProvider() {
 super();
 }

 public Session session() {
 Session threadBoundsession = sessionHolder.get();
 if (threadBoundsession == null) {
 threadBoundsession = sessionFactory.openSession();
 sessionHolder.set(threadBoundsession);
 }
 return threadBoundsession;
 }

 public void setSessionFactory(SessionFactory aSessionFactory) {
 this.sessionFactory = aSessionFactory;
 }
}

Since the sessionProvider is a Spring bean that is declared with autowire="byName", when the bean is instantiated as a
singleton its setSessionFactory() method is invoked to inject the sessionFactory bean instance. To save you looking
back through the chapter in search of how a Hibernate-based Repository uses this, here’s a brief reminder:
Click here to view code image

package com.saasovation.identityaccess.infrastructure.persistence;

public class HibernateUserRepository
 implements UserRepository {

 @Override
 public void add(User aUser) {
 try {
 this.session().saveOrUpdate(aUser);
 } catch (ConstraintViolationException e) {
 throw new IllegalStateException("User is not unique.", e);
 }
 }
 ...
 private SpringHibernateSessionProvider sessionProvider;

 public void setSessionProvider(
 SpringHibernateSessionProvider aSessionProvider) {
 this.sessionProvider = aSessionProvider;
 }

 private org.hibernate.Session session() {
 return this.sessionProvider.session();
 }
}

This snippet is from the HibernateUserRepository of the Identity and Access Context. This class, too, is a Spring bean
that is autowired by name, which means its method setSessionProvider() is automatically invoked upon creation so that it
gets a reference to the sessionProvider bean, which is an instance of SpringHibernateSessionProvider. When the add()
method (or any other method that provides persistence) is invoked, it asks for a Session through its session() method. In
turn, session() uses the injected sessionProvider to obtain the thread-bound Session instance.

While I have demonstrated how transactions are managed only when using Hibernate, all of these principles carry over to
TopLink, JPA, and other persistence mechanisms. With any such persistence mechanism you must find a way to provide access
to the same Session, Unit of Work, and transaction that the Application Layer is managing. Dependency injection works well
for this if it is available. If it isn’t available, there are other creative ways to facilitate the necessary wiring, even going as far

as manually binding such objects to the current thread.

A Warning
I feel obligated to provide a parting warning about overuse of transactions in conjunction with the domain model.

Aggregates must be designed carefully in order to ensure correct consistency boundaries. Be careful not to overuse the ability
to commit modifications to multiple Aggregates in a single transaction just because it works in a unit test environment. If you
aren’t careful, what works well in development and test can fail severely in production because of concurrency issues. If need
be, revisit Aggregates (10) for vital reminders to precisely define consistency boundaries in order to ensure transactional
success.

Type Hierarchies
When using an object-oriented language to develop a domain model, it can be tempting to leverage inheritance to create type

hierarchies. We might think of this as an opportunity to place default state and behavior in a base class and then extend that
using subclasses. And why not? It seems like a perfect way to avoid repeating yourself.

Creating Aggregates that have a common ancestry and yet stand apart from their relatives with a separate Repository is a
different use of inheritance from creating Aggregates with the same ancestry that share a single Repository. So this section does
not discuss the situation where all Aggregate types in a single domain model extend a Layer Supertype [Fowler, P of EAA] to
provide domain-wide common state and/or behavior.7

Rather, here I am referring to creating a relatively small number of Aggregate types that extend a common domain-specific
superclass. These are designed in order to form a hierarchy of closely related types that have interchangeable, polymorphic
characteristics. These kinds of hierarchies use a single Repository to store and retrieve instances of the separate types, because
the client should use the instances interchangeably, and clients rarely if ever have to be aware of the specific subclass that they
are dealing with at any given time, which reflects the Liskov Substitution Principle (LSP) [Liskov].

Here’s what I mean. Say your business uses external businesses to provide various kinds of services, and you need to model
the relationships. You decide to have a common abstract base class ServiceProvider, but for some good reason you need to
divide various concrete types of these because the services each provides are both common and yet distinctly different. You
might have a WarbleServiceProvider and a WonkleServiceProvider. You design these types such that you can schedule a
service request in a generic way:
Click here to view code image

// client of domain model
serviceProviderRepository.providerOf(id)
 .scheduleService(date, description);

With this context, it is clear that the creation of domain-specific Aggregate type hierarchies will probably have limited
usefulness in many domains. Here’s why. As demonstrated previously, most times the common Repository will be designed
with finder methods that retrieve instances of any of the subclasses. That means that the method will answer instances of the
common superclass, in this case a ServiceProvider, not instances of the specific subclasses, WarbleServiceProvider and
WonkleServiceProvider. Think of what would happen if finders were designed to return specific types. Clients would have
to know which identities or other descriptive attributes of the Aggregates would lead to specific typed instances. Otherwise it
could lead to an unmatched find or a ClassCastException when a matched instance of the wrong type is returned. Even if you
could design in a good way to find instances of the correct types, clients would also have to know which subclasses could
perform specifically different operations, given that the Aggregates could not be entirely designed for LSP.

To solve the first problem of segregating types by identity, you might conclude that you could safely detect instances by
encoding Aggregate type information as a discriminator in the class of the unique identity. You could do so. But that also leads
to two additional problems. The client must take on the responsibility of resolving and mapping identities to types. The other
new problem is coupling clients to the distinct operations by type. It leads to this kind of client type dependencies:
Click here to view code image

// client of domain model

if (id.identifiesWarble()) {
 serviceProviderRepository.warbleOf(id)
 .scheduleWarbleService(date, warbleDescription);
} else if (id.identifiesWonkle()) {
 serviceProviderRepository.wonkleOf(id)

 .scheduleWonkleService(date, wonkleDescription);
} ...

If this kind of interaction becomes the norm rather than the exception, it indicates a code smell. Granted, if the benefits
gained from creating a hierarchy are so great, a rare one-off usage like this may be a worthwhile trade-off. However, in this
contrived example a more discerning design of the implied ServiceDescription type and the internal implementation of
scheduleService() would probably suffice. Otherwise, I think we’d have to ask if we could gain some benefits from using
inheritance while assigning each type a separate Repository. In the case where only two or a few such concrete subclasses are
necessary, it may be best to create separate Repositories. When the number of concrete subclasses grows to several or many,
most of which can be used completely interchangeably (LSP), it is worthwhile for them to share a common Repository.

Most of the time, this kind of situation can be completely avoided by designing type descriptive information as a property of
the Aggregate (not in the identity). See the discussion about Standard Types under Value Objects (6). This way a single
Aggregate type could internally implement different behavior based on an explicitly determined Standard Type. Using an
explicit Standard Type, we could have a single concrete ServiceProvider Aggregate and design its scheduleService() to
dispatch based on its type. To shield clients from the decisions based on the type we ensure that such is not leaked out to them.
Instead, scheduleService() and other ServiceProvider methods properly enclose such domain-specific decisions, as can
be seen here:
Click here to view code image

public class ServiceProvider {
 private ServiceType type;
 ...
 public void scheduleService(
 Date aDate,
 ServiceDescription aDescription) {
 if (type.isWarble()) {
 this.scheduleWarbleService(aDate, aDescription);
 } else if (type.isWonkle()) {
 this.scheduleWonkleService(aDate, aDescription);
 } else {
 this.scheduleCommonService(aDate, aDescription);
 }
 }
 ...
}

If the internal dispatching becomes messy, we can always design another smaller hierarchy to deal with that. In fact, the
Standard Type itself could be designed as a State [Gamma et al.], assuming you like that approach. In that case the various
types would implement specialized behavior. This, of course, also means that we’d have a single
ServiceProviderRepository, which addresses the desire to store different types in one Repository and use them with
common behavior.

The situation could also be sidestepped with the use of role-based interfaces. Here we might have decided to design a
SchedulableService interface that multiple Aggregate types would implement. See the discussion about roles and
responsibilities under Entities (5). Even if inheritance is used, Aggregate polymorphic behavior can most often be carefully
designed such that no special cases are surfaced to clients.

Repository versus Data Access Object
Sometimes the idea of a Repository is considered synonymous with Data Access Object, or DAO. Both provide an

abstraction over a persistence mechanism. This is true. However, an object-relational mapping tool also provides an
abstraction over a persistence mechanism, but it is neither a Repository nor a DAO. Thus, we wouldn’t call just any
persistence abstraction a DAO. We must rather determine if the DAO pattern is being implemented.

I think there are generally differences between Repositories and DAOs. Basically, a DAO is expressed in terms of database
tables, providing CRUD interfaces to them. Martin Fowler in [Fowler, P of EAA] separates the uses of DAO-like facilities
from those that are used with a domain model. He identifies Table Module, Table Data Gateway, and Active Record as
patterns that would typically be used in a Transaction Script application. That’s because DAO and related patterns tend to
serve as wrappers around database tables. On the other hand, Repository and Data Mapper, having object affinity, are
typically the patterns that would be used with a domain model.

Since you can use DAO and related patterns to perform fine-grained CRUD operations on data that would otherwise be

considered parts of an Aggregate, this would be a pattern to avoid with a domain model. Under normal conditions you want the
Aggregate itself to manage its business logic and other internals and keep everyone else out.

I did indicate previously that at times a stored procedure or a data grid entry processor is essential to meet some demanding
nonfunctional requirement. Depending on your domain, this may be more the rule than the exception. If a system nonfunctional
requirement is not driving this, however, I suggest that you should avoid it. Housing and executing business logic in the data
store many times runs orthogonal to DDD. I would conclude that the use of a Data Fabric Function/Entry Processor is not really
disruptive to the goals of domain modeling. The Function/Entry Processor implementation would be written in Java, for
example, and would adhere to the Ubiquitous Language (1) and goals of the domain. The only difference from the core model
is where the Function/Entry Processor is executed, which is not disruptive. On the other hand, prolific use of stored procedures
is potentially very disruptive to DDD because the programming language is generally not well understood by the modeling
team and implementations are generally “safely” tucked away from their view. If so, that is exactly the opposite of what DDD
is trying to accomplish.

You may choose to think of a Repository as a DAO in a general sense. The primary thing to keep in mind is that as much as
possible you should try to design your Repositories with a collection orientation rather than a data access orientation. That will
help keep you focused on the domain as a model rather than on data and any CRUD operations that may be used behind the
scenes to manage its persistence.

Testing Repositories
There are two ways to look at testing Repositories. You have to test the Repositories themselves in order to prove that they

work correctly. You also must test code that uses Repositories to store the Aggregates that they create and to find preexisting
ones. For the first kind of test you must use the full production-quality implementations. Otherwise you won’t know if your
production code will work. For the second kind of test, either you can use your production implementations, or you can use in-
memory implementations instead. I discuss the production implementation tests now and defer the in-memory tests to just a bit
later.

Let’s take a look at the tests for the Coherence implementation of the Prod-uctRepository presented previously:
Click here to view code image

public class CoherenceProductRepositoryTest extends DomainTest {

 private ProductRepository productRepository;
 private TenantId tenantId;

 public CoherenceProductRepositoryTest() {
 super();
 }
 ...
 @Override
 protected void setUp() throws Exception {
 this.setProductRepository(new CoherenceProductRepository());
 this.tenantId = new TenantId("01234567");
 super.setUp();
 }

 @Override
 protected void tearDown() throws Exception {
 Collection<Product> products =
 this.productRepository()
 .allProductsOfTenant(tenantId);

 this.productRepository().removeAll(products);
 }

 protected ProductRepository productRepository() {
 return this.productRepository;
 }

 protected void setProductRepository(
 ProductRepository aProductRepository) {
 this.productRepository = aProductRepository;
 }
}

There are some general setup and tear-down operations to prepare for and clean up after each test. To set up we create an
instance of class Coherence-ProductRepository and then create a fake instance of TenantId.

To tear down we remove all Product instances that may have been added to the backing cache by each test. For Coherence
this is an important cleanup step. If you don’t remove all cached instances, they will remain during subsequent tests, which may
cause failure for certain assertions such as persisted instance counts.

Next, we test the Repository behavior:
Click here to view code image

public class CoherenceProductRepositoryTest extends DomainTest {
 ...
 public void testSaveAndFindOneProduct() throws Exception {

 Product product =
 new Product(
 tenantId,
 this.productRepository().nextIdentity(),
 "My Product",
 "This is the description of my product.");

 this.productRepository().save(product);

 Product readProduct =
 this.productRepository()
 .productOfId(tenantId, product.productId());

 assertNotNull(readProduct);
 assertEquals(readProduct.tenantId(), tenantId);
 assertEquals(readProduct.productId(), product.productId());
 assertEquals(readProduct.name(), product.name());
 assertEquals(readProduct.description(), product.description());
 }
 ...
}

As the test method name states, here we save a single Product and attempt to find it. The first task is to instantiate a
Product and then save it to the Repository. If no exception is thrown by the infrastructure, we may think that the Product was
correctly saved. However, there is only one way to know for certain. We have to find the instance and compare it to the
original. To find the instance we pass its globally unique identity to method productOfId(). If the instance was found, we can
successfully assert that it is not null, that its tenantId is the same, its productId is the same, its name is the same, and its
description is the same as the one that was stored.

Next, we test saving and finding multiple instances:
Click here to view code image

public class CoherenceProductRepositoryTest extends DomainTest {
 ...
 public void testSaveAndFindMultipleProducts() throws Exception {

 Product product1 =
 new Product(
 tenantId,
 this.productRepository().nextIdentity(),
 "My Product 1",
 "This is the description of my first product.");

 Product product2 =
 new Product(
 tenantId,
 this.productRepository().nextIdentity(),
 "My Product 2",
 "This is the description of my second product.");

 Product product3 =

 new Product(
 tenantId,
 this.productRepository().nextIdentity(),
 "My Product 3",
 "This is the description of my third product.");

 this.productRepository()
 .saveAll(Arrays.asList(product1, product2, product3));

 assertNotNull(this.productRepository()
 .productOfId(tenant, product1.productId()));
 assertNotNull(this.productRepository()
 .productOfId(tenant, product2.productId()));
 assertNotNull(this.productRepository()
 .productOfId(tenant, product3.productId()));

 Collection<Product> allProducts =
 this.productRepository().allProductsOfTenant(tenant);

 assertEquals(allProducts.size(), 3);
 }
 ...
}

First we instantiate three Product instances and then save them at once using saveAll(). Next, we again use
productOfId() to find individual instances. If all three instances are not null, we are convinced that all three instances were
correctly persisted.

Cowboy Logic
AJ: “My sister told me her husband asked her to sell all the stuff in his storage unit when he dies. My sister
asked him why. He said he didn’t want some jerk to have his stuff when she remarries. She told him not to
worry since she wasn’t going to marry another jerk.”

There is one Repository method, allProductsOfTenant(), that has not yet been tested. Given that the Repository cache
was completely empty when the test started, we should be able to successfully read three Product instances from it. So we
attempt to find all of them. The returned Collection should never be null, even if you don’t find what you expected. So the
last step in the test is to assert that the full number of expected Product instances, or three, was in fact found.

Now that we have a test that demonstrates how clients can use the Repository and proves its correctness, we can look at
how you can more optimally test clients that use Repositories.

Testing with In-Memory Implementations
If it is very difficult to set up the full persistent implementation of a Repository for test, or too slow to use it, you can

leverage another approach. You may also face undesirable conditions early on during domain modeling, perhaps when your
persistence mechanisms, including the database schema, are not yet available. When you face any of these situations, it works
best to implement an in-memory edition of Repositories.

Creating in-memory editions can be quite simple, but it may also pose some challenges. The simple part is creating a
HashMap to back your interface. It is straightforward to put() entries to and remove() them from the Map. We just use the
globally unique identity of each Aggregate instance as the key. The Aggregate instance itself serves as the value. The add() or
save() methods and the remove() methods are quite trivial. In fact, in the case of the Prod-uctRepository the entire
implementation is fairly simple:
Click here to view code image

package com.saasovation.agilepm.domain.model.product.impl;

public class InMemoryProductRepository implements ProductRepository {

 private Map<ProductId,Product> store;

 public InMemoryProductRepository() {
 super();
 this.store = new HashMap<ProductId,Product>();
 }

 @Override
 public Collection<Product> allProductsOfTenant(Tenant aTenant) {
 Set<Product> entries = new HashSet<Product>();

 for (Product product : this.store.values()) {
 if (product.tenant().equals(aTenant)) {
 entries.add(product);
 }
 }

 return entries;
 }

 @Override
 public ProductId nextIdentity() {
 return new ProductId(java.util.UUID.randomUUID()
 .toString().toUpperCase());
 }

 @Override
 public Product productOfId(Tenant aTenant, ProductId aProductId) {
 Product product = this.store.get(aProductId);

 if (product != null) {
 if (!product.tenant().equals(aTenant)) {
 product = null;
 }
 }

 return product;
 }

 @Override
 public void remove(Product aProduct) {
 this.store.remove(aProduct.productId());
 }

 @Override
 public void removeAll(Collection<Product> aProductCollection) {
 for (Product product : aProductCollection) {
 this.remove(product);
 }
 }

 @Override
 public void save(Product aProduct) {
 this.store.put(aProduct.productId(), aProduct);
 }

 @Override
 public void saveAll(Collection<Product> aProductCollection) {
 for (Product product : aProductCollection) {
 this.save(product);
 }
 }
}

There is actually only a single special case for productOfId(). To correctly implement this finder, after getting a matching
Product by the given ProductId, we must also check that the TenantId of the Product matches the Tenant parameter. If it
doesn’t, we set the Product instance to null.

We can actually make a near-identical copy of CoherenceProductRepositoryTest named
InMemoryProductRepositoryTest to test this in-memory implementation. The only change that needs to be made is in
setUp():
Click here to view code image

public class InMemoryProductRepositoryTest extends TestCase {
 ...
 @Override
 protected void setUp() throws Exception {
 this.setProductRepository(new InMemoryProductRepository());
 this.tenantId = new TenantId("01234567");

 super.setUp();
 }
 ...
}

Just instantiate InMemoryProductRepository rather than the Coherence implementation. Other than that the test methods
themselves are identical.

The possible difficult challenges are generally related to implementing more advanced finders, where parameter criteria are
complex to resolve. If the criteria and resolution logic becomes too complex, you may have to find a way to work around the
situation. It might mean prepopulating the Repository with instances that will resolve the search while making the finder
method itself return only the instance or instances that are prepopulated. You can prepopulate using the test’s setUp() method.

Another advantage to implementing in-memory editions of your Repositories is when you need to test for proper uses of
save() with a persistence-oriented interface. You can implement the save() methods to count invocations. After each test is
run, you can assert that the invocation count matches the number required by the client of the specific Repository. Generally,
you could use this approach when testing Application Services that must explicitly save() changes to an Aggregate.

Wrap-Up
In this chapter we looked in depth at implementing Repositories.

• You learned about collection-oriented and persistence-oriented Repositories, and why to use one or the other.
• You saw how to implement Repositories for Hibernate, TopLink, Coherence, and MongoDB.
• You investigated why you might need additional behavior on a Repository’s interface.
• You considered how transactions play into the use of Repositories.
• You are now familiar with the challenges of designing Repositories for type hierarchies.
• You looked at some fundamental differences between Repositories and Data Access Objects.
• You saw how to test Repositories and different ways to test using Repositories.

Next, we’ll shift gears and take a careful look at integrating Bounded Contexts.

Chapter 13. Integrating Bounded Contexts

Making mental connections is our most crucial learning tool, the essence of human intelligence; to forge links;
to go beyond the given; to see patterns, relationships, context.

—Marilyn Ferguson

There are always multiple Bounded Contexts (2) in any project of significance, and two or more of those Bounded
Contexts will need to integrate. Using Context Maps (3), we discussed the relationships that commonly exist between
Bounded Contexts, and we examined some ways that those relationships can be managed correctly according to the principles
of DDD. If you don’t have a fairly strong grasp of Domains (2), Subdomains (2), and Bounded Contexts, or of Context Maps,
you should obtain that before continuing. The material presented here builds on those fundamental concepts.

As previously discussed, Context Maps have two primary forms. One form is a simple drawing that is used to illustrate the
kinds of relationships that exist between any two or more Bounded Contexts. The second and far more concrete form is the
code that actually implements those relationships. That’s what we are considering now.

Road Map to This Chapter
• Review some of the basics of integration, and develop the proper mindset necessary to succeed in integrating
systems in a distributed computing environment.
• See how you can approach integration using RESTful resources, and consider some of its advantages and
disadvantages.
• Learn how to integrate when using messaging.
• Understand the challenges you will face when you decide to duplicate information across Bounded Contexts.
• Study examples that provide increasing maturity in design approaches.

Integration Basics
When two Bounded Contexts need to integrate, there are a few reasonably straightforward ways this can be done in code.
One such straightforward approach is for a Bounded Context to expose an application programming interface (API), and

another Bounded Context to use that API via remote procedure calls (RPCs). The API could be made available using SOAP or
simply support sending XML requests and responses over HTTP (not the same as REST). Actually, there are several ways to
create a remotely accessible API. This is one of the more popular ways to integrate, and since it supports a procedure call
style, it is easily understood by programmers used to calling procedures or methods. That’s pretty much all of us.

A second straightforward way to integrate Bounded Contexts is through the use of a messaging mechanism. Each of the
systems that need to interact do so through the use of a message queue or a Publish-Subscribe [Gamma et al.] mechanism. Of
course, these messaging gateways can well be thought of as an API, but we may find broader acceptance if we simply refer to
them as service interfaces instead. There are a large number of integration techniques that may be employed when using
messaging, many of them discussed in [Hohpe & Woolf].

A third way to integrate Bounded Contexts is by using RESTful HTTP. Some think of this as a kind of RPC approach, but it
really is not. It has some similar properties in that one system makes a request of another system, but these requests are not
made using procedures that take parameters. As discussed in Architecture (4), REST is a means of exchanging and modifying
resources that are uniquely identified using a distinct URI. Various operations can be performed on each resource. RESTful
HTTP provides methods, primarily GET, PUT, POST, and DELETE. Even though these may seem to support only CRUD
operations, using a little imagination allows us to actually categorize operations with explicit intent within one of the four
method categories. For example, GET can be used to categorize various kinds of query operations, and PUT can be used to
encapsulate a command operation that executes on an Aggregate (10).

Of course, this in no way means that there are only three ways to integrate applications. You can, for example, use file-based
integration and shared-database integration, but doing so could make you old before your time.

Cowboy Logic
AJ: “You better take a low seat in your saddle. That horse is a tough one and it’ll make you feel old before your
time.”

Although I’ve highlighted three common ways that are used to integrate Bounded Contexts, we’ll actually stick with just two
of those in this chapter. We will mostly focus on integrating with messaging mechanisms but will see how to use RESTful
HTTP as well. We’ll avoid examples using RPC because you can easily imagine creating procedural APIs that could be used
to replace the other two approaches. Also, RPC has less resilience when our goal is to support autonomous services (aka
autonomous applications). A failed system that would normally provide an RPC-based API will prevent dependent systems
from succeeding in their own operations.

This brings up a topic of vital importance, which requires the attention of every integration developer.

Distributed Systems Are Fundamentally Different
Problems always arise with integration when developers who are unfamiliar with the principles of distributed systems gloss

over its inherent complexity. This can be especially true when using RPC, because those inexperienced with distribution
commonly imagine that any one remote call is as good as an in-process call. Such assumptions can cause cascading failure
across any number of systems when just one system or one of its components becomes unavailable, even temporarily so. Thus,
all developers working within distributed systems will succeed or fail by the following Principles of Distributed Computing:

• The network is not reliable.
• There is always some latency, and maybe a lot.
• Bandwidth is not infinite.
• Do not assume that the network is secure.
• Network topology changes.
• Knowledge and policies are spread across multiple administrators.
• Network transport has cost.
• The network is heterogeneous.

These are purposely stated differently from the “Fallacies of Distributed Computing” [Deutsch]. I call them principles to
emphasize the challenges that must be worked around and complexities that must be planned for, rather than the mistakes
commonly made by the naive.

Exchanging Information across System Boundaries
Most of the time when we need a foreign system to provide a service for our own system, we need to pass informational

data to the service. The services we use sometimes need to provide responses. Thus, we need a reliable way to pass
informational data between systems. This data needs to be exchanged between disparate systems in a structure that is easily
consumed by all involved. Most of us would choose to use some standard way to do that.

Informational data sent as parameters or messages constitutes just machine-readable structures that can be generated in one
of many formats. We must also create some form of contract between the data-exchanging systems, and possibly even the
mechanisms to parse or interpret those structures, so they can be consumed.

There are several ways to generate the structures used to exchange information between systems. One technical
implementation simply relies on the programming language facilities to serialize objects into a binary format and deserialize
them on the consumer’s side. This works well as long as all systems support the same language facilities, and if the
serialization is actually compatible or interchangeable between disparate hardware architectures. It also requires you to
deploy all the interfaces and classes of objects that are used across systems to each system that uses the specific object type.

Another approach to building exchangeable information structures is to use some standard intermediate format. Some options
are to use XML, JSON, or a specialized format such as Protocol Buffers. Each of these approaches has advantages and
disadvantages, some of which include richness and compactness factors, performance of type conversions, support for
flexibility between object versions, and ease of use. Some of these can have costly impacts when considering the Principles of
Distributed Computing listed earlier (for example, “Network transport has cost”).

Using this intermediate format approach, you may still desire to deploy all the interfaces and classes of objects that are used
across systems, and use a tool to place the data of the intermediate format into your type-safe objects. This has the advantage
that you can use objects the same way in the consuming system as you would in the source system.

Of course, deploying these interfaces and classes also has related complexity, and it typically means that the consuming
system will need to be recompiled to maintain compatibility with the latest versions of interface and class definitions. There is
also the danger of using the foreign objects freely in the consuming system as if they were our very own, which would tend to
violate the very DDD strategic design principles we have been fighting so hard to follow. Some may think that by declaring
this as a Shared Kernel (3), it indemnifies the approach. However, be aware that the convenience of objects that are shared
between systems can lead you down a slippery slope. Yet, regardless of the complexity and potential danger of polluted
models, many believe that any strong typing afforded by this tactic is a suitable trade-off for the required complexity.

Still, I encounter those who struggle with this for various reasons, and they often wish for an easier and safer approach, but
one that doesn’t entirely discard type safety. Let’s consider such an approach.

What if we could define a contract between the systems that produce the exchangeable information structures and those that
consume them in such a way that the consumers could confidently use the data without deserializing it into object instances of
specific classes? We can define such a reliable contract using a standards-based approach, which actually forms a Published
Language (3). One such standard approach is to define a custom media type, or the semantic equivalent. Whether or not you
have good reason to register such a media type using the guidelines from RFC 4288, it is the actual specification that matters.
The specification defines the binding contract between producers and consumers and offers a foolproof means to exchange
such media without sharing the interface and class binaries.

This does require some trade-offs, as always. You will not be able to navigate using property accessors as you would if you
had the interfaces/classes for each object, and with associated type safety. You would also lack some IDE support, such as the
ability to use code completion. This isn’t really a big disadvantage. Further, you would have no operational function/method
support that having the Event class could provide. However, I do not see the lack of Event operational functions/methods as a
disadvantage, but rather as a protection. The consuming Bounded Context should be interested only in the data properties and
should never be tempted to use functionality that is part of a different model. The consumer’s Port Adapters (4) should shield
its domain model from any such dependencies and must instead pass needed Event data as appropriate parameters with types
as defined only in its own Bounded Context. Any necessary calculations or processing should be performed by the producing
Bounded Context and provided as enriching Event data attributes.

Consider an example. SaaSOvation needs to exchange media between its various Bounded Contexts. It will do so using
RESTful resources and by sending messages containing Events (8) between services. In fact, one kind of RESTful resource is
a notification, and Event-based messages are also sent to subscribers as Notification objects. In other words, in both cases
the Notification holds an Event, and the two are formatted into a single structure. The custom media type specification for
notifications and Events could indicate a contract that includes

• Type: Notification format: JSON
• notificationId: long integer unique identity
• typeName: text String type of notification, an example type name being
com.saasovation.agilepm.domain.model.product.↵backlogItem.BacklogItemCommitted

• version: integer version of the notification
• occurredOn: date/time when the notification’s contained Event happened
• event: JSON payload details; see specific Event types

Using the fully qualified class name (package name included) for the typeName allows subscribers to precisely differentiate
various Notification types. The notification specification would be followed by the various Event type specifications. For
one example, consider a familiar Event named BacklogItemCommitted:

• Event type: com.saasovation.agilepm.domain.model.product.↵backlogItem.BacklogItemCommitted
• eventVersion: integer version of the Event, which is the same as the Notification version
• occurredOn: date/time when the Event occurred, which is the same as Notification occurredOn
• backlogItemId: BacklogItemId, which contains the id text string attribute

• committedToSprintId: SprintId, which contains the id text string attribute
• tenantId: TenantId, which contains the id text string attribute
• Event details: see specific Event types

We would, of course, specify the Event details for every Event type. With the Notification and all Event types specified,
we can safely use a NotificationReader as demonstrated by this test:
Click here to view code image

DomainEvent domainEvent = new TestableDomainEvent(100, "testing");

Notification notification = new Notification(1, domainEvent);

NotificationSerializer serializer =
 NotificationSerializer.instance();

String serializedNotification = serializer.serialize(notification);

NotificationReader reader =
 new NotificationReader(serializedNotification);

assertEquals(1L, reader.notificationId());
assertEquals("1", reader.notificationIdAsString());
assertEquals(domainEvent.occurredOn(), reader.occurredOn());
assertEquals(notification.typeName(), reader.typeName());
assertEquals(notification.version(), reader.version());
assertEquals(domainEvent.eventVersion(), reader.version());

The test shows how the NotificationReader can provide type-safe standard parts for every serialized Notification
object.

The next test shows how the special parts of each Event’s details can also be read out of a Notification payload. Event
object navigation is provided using XPath-like syntax, or dot-separated properties, or you may use attribute names separated
by commas (Java varargs). You can see that each attribute can be read as a String value or as its actual primitive type (int,
long, boolean, double, and so on) if the type is other than String:
Click here to view code image

TestableNavigableDomainEvent domainEvent =
 new TestableNavigableDomainEvent(100, "testing");

Notification notification = new Notification(1, domainEvent);

NotificationSerializer serializer = NotificationSerializer.instance();

String serializedNotification = serializer.serialize(notification);

NotificationReader reader =
 new NotificationReader(serializedNotification);

assertEquals("" + domainEvent.eventVersion(),
 reader.eventStringValue("eventVersion"));
assertEquals("" + domainEvent.eventVersion(),
 reader.eventStringValue("/eventVersion"));
assertEquals(domainEvent.eventVersion(),
 reader.eventIntegerValue("eventVersion").intValue());
assertEquals(domainEvent.eventVersion(),
 reader.eventIntegerValue("/eventVersion").intValue());

assertEquals("" + domainEvent.nestedEvent().eventVersion(),
 reader.eventStringValue("nestedEvent", "eventVersion"));
assertEquals("" + domainEvent.nestedEvent().eventVersion(),
 reader.eventStringValue("/nestedEvent/eventVersion"));
assertEquals(domainEvent.nestedEvent().eventVersion(),
 reader.eventIntegerValue("nestedEvent", "eventVersion").intValue());
assertEquals(domainEvent.nestedEvent().eventVersion(),

 reader.eventIntegerValue("/nestedEvent/eventVersion").intValue());

assertEquals("" + domainEvent.nestedEvent().id(),
 reader.eventStringValue("nestedEvent", "id"));
assertEquals("" + domainEvent.nestedEvent().id(),
 reader.eventStringValue("/nestedEvent/id"));
assertEquals(domainEvent.nestedEvent().id(),
 reader.eventLongValue("nestedEvent", "id").longValue());
assertEquals(domainEvent.nestedEvent().id(),
 reader.eventLongValue("/nestedEvent/id").longValue());

assertEquals("" + domainEvent.nestedEvent().name(),
 reader.eventStringValue("nestedEvent", "name"));
assertEquals("" + domainEvent.nestedEvent().name(),
 reader.eventStringValue("/nestedEvent/name"));

assertEquals("" + domainEvent.nestedEvent().occurredOn().getTime(),
 reader.eventStringValue("nestedEvent", "occurredOn"));
assertEquals("" + domainEvent.nestedEvent().occurredOn().getTime(),
 reader.eventStringValue("/nestedEvent/occurredOn"));
assertEquals(domainEvent.nestedEvent().occurredOn(),
 reader.eventDateValue("nestedEvent", "occurredOn"));
assertEquals(domainEvent.nestedEvent().occurredOn(),
 reader.eventDateValue("/nestedEvent/occurredOn"));
assertEquals("" + domainEvent.occurredOn().getTime(),
 reader.eventStringValue("occurredOn"));
assertEquals("" + domainEvent.occurredOn().getTime(),
 reader.eventStringValue("/occurredOn"));
assertEquals(domainEvent.occurredOn(),
 reader.eventDateValue("occurredOn"));
assertEquals(domainEvent.occurredOn(),
 reader.eventDateValue("/occurredOn"));

The TestableNavigableDomainEvent holds a TestableDomain-Event, which allows us to test navigation to deeper
attributes. The various attributes are read using XPath-like syntax with varargs attribute navigation. We also test reading each
attribute value as various types.

Since Notification and Event instances always have a version number, you can key off of the version to read specialized
attributes in a specific version. Consumers that specialize in a given version can pick out the special parts that they need.
However, it is also possible for consumers to receive any given Event-containing Notification as if it were version 1.

Thus, if we carefully consider how each Event type is designed, we can protect most consumers from incompatibility when
all they need is version 1 of a given Event. Such consumers never have to change or be recompiled when an Event changes.
Still, you really have to think in terms of the version compatibility and plan for smart modifications to new versions so you
don’t break most consumers. Sometimes it’s impossible to achieve, but in many cases it is entirely possible.

This approach has the added advantage that Events can hold more than just primitive attributes and strings. Events may also
safely hold instances of more sophisticated Value Objects (6), which is especially effective when their Value types tend to be
stable. This is certainly the case with BacklogItemId, SprintId, and TenantId, as demonstrated by the following code, this
time using dot-separated property navigation:
Click here to view code image

NotificationReader reader =
 new NotificationReader(backlogItemCommittedNotification);

String backlogItemId = reader.eventStringValue("backlogItemId.id"));

String sprintId = reader.eventStringValue("sprintId.id"));

String tenantId = reader.eventStringValue("tenantId.id"));

The fact that any held Value instances are frozen in the structure allows Events to be not only immutable, but also eternally
fixed. New versions of Value Object types contained by Events do not impact your ability to read older versions of those
Values from preexisting Notification instances. Certainly, Protocol Buffers can be far easier to use when Event versions
change significantly and often, and dealing with those changes becomes unwieldy for consumers that use the

NotificationReader.
Understand that this is simply an option for gracefully handling deserialization without deploying Event types and

dependencies everywhere. Some will find this approach quite elegant and liberating, while others will find it risky, inept, or
downright dangerous. The opposite approach of deploying interfaces and classes everywhere the serialized objects are
consumed is well known. Here I provide some food for thought by pointing out a less traveled road.

Cowboy Logic
LB: “You know, J, when a cowboy’s too old to set a bad example, he hands out good advice.”

It is possible that each approach—deploying classes to exchange serializations versus defining a media type contract—has
an advantage at different stages of a project. For example, depending on the number of teams, Bounded Contexts, change ratio,
and other factors, it might work out to share classes and interfaces when your project is starting, but it could be better to use a
more decoupled, custom media type contract in the production stage. In practice this may or may not work for a particular team
or set of teams. Sometimes what a team starts out with ends up being what they live with ongoing, and they never take the time
to make a 180-degree change.

To keep our running examples simple and understandable, in the remainder of the chapter I use the NotificationReader
throughout. Whether or not to use a custom media type contract and NotificationReader in your Bounded Contexts is your
choice to make.

Integration Using RESTful Resources
When a Bounded Context provides a rich set of RESTful resources through URIs, it is a kind of Open Host Service (3):

Define a protocol that gives access to your subsystem as a set of services. Open the protocol so that
all who need to integrate with you can use it. Enhance and expand the protocol to handle new
integration requirements. [Evans]

We can well think of the HTTP methods—GET, PUT, POST, and DELETE—combined with resources on which they operate, as
a set of open services. HTTP and REST certainly form an open protocol allowing all who need to integrate with the subsystem
to do so. The fact that a virtually unlimited number of resources—each with a unique identity through a URI—can be created
allows the protocol to handle new integration requirements as needed. It is a very versatile way to allow clients to integrate
with your Bounded Context.

Even so, since the RESTful service provider must be directly interacted with whenever a resource is operated on, this style
does not permit clients to be completely autonomous. If the REST-based Bounded Context becomes unavailable for some
reason, dependent client Bounded Contexts will be unable to carry out necessary integration operations during any downtime.

Still, we can overcome this to some extent by making dependence on RESTful resources a lesser obstacle to consumer
autonomy. Even when RESTful (or RPC for that matter) is your only means to integrate, you can create the illusion of temporal
decoupling by using timers or messaging in your own system. That way your system will reach out to any remote systems only
when a timer elapses or when a message is received. If the remote system is unavailable, the timer threshold can be backed off,
or if using messaging the message can be negatively acknowledged to the broker and redelivered. This naturally places more of
a burden on your team to make the systems loosely coupled, but that’s a price you may have to pay to achieve autonomy.

When the SaaSOvation team developing the Identity and Access Context needed to create a way for integrators to use their
Bounded Context, they determined that RESTful HTTP would be one of the best ways to open their system for integration
without directly exposing the structural and behavioral details of their domain model. For them this meant designing a set of
RESTful resources that would provide representations of identity and access concepts on a tenant-by-tenant basis.

Much of their design would allow integrating Bounded Contexts to GET resources that convey user and group identity,
and also indicate role-based security permissions for those identity types. For example, if an integration client needs to
know if a user within a given tenant could play a specific access role, the client should GET a resource using this URI
format:

/tenants/{tenantId}/users/{username}/inRole/{role}

If the tenant’s user is in the role, the resource representation is included in the successful 200 response. Otherwise, the
response is a 204 No Content status code if the user does not exist or does not play that named role. It’s a simple RESTful
HTTP design.

Let’s look at how the team exposed the access resources and how integration clients could consume them in terms of the
Ubiquitous Language (1) of their own Bounded Context.

Implementing the RESTful Resource
As SaaSOvation started applying REST principles to one of their Bounded Contexts, they learned some important lessons.

Let’s look in on their journey.

As the SaaSOvation team working in the Identity and Access Context considered how to provide an Open Host Service for
integrators, they considered simply exposing their domain model as a set of RESTful linked resources. That would mean
allowing HTTP clients to GET a unique tenant resource and navigate through its users, groups, and roles. Was that a good idea?
It seemed natural at first. After all, that would afford clients with the greatest flexibility. Clients could know everything about
the domain model and just make decisions in their own Bounded Context.

Which DDD Context Mapping pattern best describes this design approach? In reality that is not an Open Host Service,
but depending on the size of the shared model it would instead be a Shared Kernel or a Conformist (3). Publishing a
Shared Kernel or accepting a Conformist relationship puts consumers into a tightly coupled integration with the consumed
domain model. Those kinds of relationships should be avoided if at all possible since they tend to run counter to the most
fundamental goals of DDD.

It was a good thing that along the way the team found some good advice to avoid exposing their model to clients in that
way. They learned to think of the use cases (or user stories) that integrators needed. That was in harmony with this part of
the Open Host Service definition: “Enhance and expand the protocol to handle new integration requirements.” That means
that you provide only what integrators need at present, and you understand those needs only by considering a range of use
case scenarios.

When the team followed that advice, they realized that, for example, what integrators are really interested in is whether or
not a given user can play a specific role. Shielding the integrators from the details of understanding the domain model would
ultimately increase their productivity and make their dependent Bounded Contexts more maintainable. In terms of design it

meant that their User RESTful resource could include the following design:
Click here to view code image

@Path("/tenants/{tenantId}/users")
public class UserResource {
 ...
 @GET
 @Path("{username}/inRole/{role}")
 @Produces({ OvationsMediaType.ID_OVATION_TYPE })
 public Response getUserInRole(
 @PathParam("tenantId") String aTenantId,
 @PathParam("username") String aUsername,
 @PathParam("role") String aRoleName) {

 Response response = null;

 User user = null;

 try {
 user = this.accessService().userInRole(
 aTenantId, aUsername, aRoleName);
 } catch (Exception e) {
 // fall through
 }

 if (user != null) {
 response = this.userInRoleResponse(user, aRoleName);
 } else {
 response = Response.noContent().build();
 }

 return response;
 }
 ...
}

In the Hexagonal (4) or Ports and Adapters architecture, class User-Resource is an Adapter for the RESTful HTTP Port
provided by the JAX-RS implementation. A consumer makes a request in the form

GET /tenants/{tenantId}/users/{username}/inRole/{role}

The Adapter delegates to the AccessService, an Application Service (14) that provides an API at the inner hexagon. Being
a direct client of the domain model, the AccessService manages the use case task and transaction. The task includes finding
whether or not the User exists at all, and if so, whether or not it plays the named role:
Click here to view code image

package com.saasovation.identityaccess.application;
...
public class AccessService ... {
 ...
 @Transactional(readOnly=true)
 public User userInRole(
 String aTenantId,
 String aUsername,
 String aRoleName) {

 User userInRole = null;

 TenantId tenantId = new TenantId(new TenantId(aTenantId));

 User user =
 DomainRegistry
 .userRepository()
 .userWithUsername(tenantId, aUsername);

 if (user != null) {
 Role role =
 DomainRegistry
 .roleRepository()
 .roleNamed(tenantId, aRoleName);

 if (role != null) {
 GroupMemberService groupMemberService =
 DomainRegistry.groupMemberService();

 if (role.isInRole(user, groupMemberService)) {
 userInRole = user;
 }
 }
 }

 return userInRole;
 }
 ...
}

The Application Service finds both the User and the named Role Aggregate. When the Role query method isInRole() is
called, a GroupMemberService is passed in. This is not an Application Service, but rather a Domain Service (7) that helps
the Role perform certain domain-specific checks and queries that the Role itself should not be responsible for.

The Response from the UserResource is formed from the resolved User and the specific role name, using one of the
custom media types:
Click here to view code image

package com.saasovation.common.media;

public class OvationsMediaType {
 public static final String COLLAB_OVATION_TYPE =
 "application/vnd.saasovation.collabovation+json";

 public static final String ID_OVATION_TYPE =
 "application/vnd.saasovation.idovation+json";

 public static final String PROJECT_OVATION_TYPE =
 "application/vnd.saasovation.projectovation+json";
 ...
}

When the user is in the named role, the UserResource Adapter produces an HTTP response with a JSON representation
like the following:
Click here to view code image

HTTP/1.1 200 OK
Content-Type: application/vnd.saasovation.idovation+json
...
{
 "role":"Author","username":"zoe",
 "tenantId":"A94A8298-43B8-4DA0-9917-13FFF9E116ED",
 "firstName":"Zoe","lastName":"Doe",
 "emailAddress":"zoe@saasovation.com"
}

As you will see next, the integrating consumer of this RESTful resource can translate it into the specific kind of domain
object needed by its Bounded Context.

Implementing the REST Client Using an Anticorruption Layer
Although the JSON representation produced by the Identity and Access Context is quite useful to the client integrators, when

we are focused on the goals of DDD, the representation will not be consumed as is in the client Bounded Context. As discussed

in previous chapters, if the consumer is the Collaboration Context, the team is not interested in primitive users and their roles.
Instead, the team developing in the collaboration model is interested in the domain-specific roles. The fact that in some other
model there is a set of User objects that can be assigned to one or more roles as modeled by a Role object is really not in the
collaboration sweet spot.

So, then, how do we make the user-in-role representation serve our specific collaboration purposes? Let’s take another look
at a previously drawn Context Map, this time found in Figure 13.1. The important parts of the UserResource Adapter were
shown in the previous subsection. This leaves the interfaces and classes to be developed specifically for the Collaboration
Context. These are the CollaboratorService, the UserInRoleAdapter, and the CollaboratorTranslator. There is also
t h e HttpClient, but that is provided by the JAX-RS implementation through the classes ClientRequest and
ClientResponse.

Figure 13.1. The Open Host Service of the Identity and Access Context and the Anticorruption Layer of the
Collaboration Context used for integration between the two

The trio of CollaboratorService, UserInRoleAdapter, and CollaboratorTranslator is used to form an
Anticorruption Layer (3), the means by which the Collaboration Context will interact with the Identity and Access Context
and translate the user-in-role representation into a Value Object for a specific kind of Collaborator.

Here’s interface CollaboratorService, which forms the simple operations of the Anticorruption Layer:
Click here to view code image

public interface CollaboratorService {
 public Author authorFrom(Tenant aTenant, String anIdentity);
 public Creator creatorFrom(Tenant aTenant, String anIdentity);
 public Moderator moderatorFrom(Tenant aTenant, String anIdentity);
 public Owner ownerFrom(Tenant aTenant, String anIdentity);
 public Participant participantFrom(
 Tenant aTenant, String anIdentity);
}

From the viewpoint of the clients of CollaboratorService, the interface completely abstracts away the complexity of the
remote system access and subsequent translations from the Published Language to objects that adhere to the local Ubiquitous
Language. In this particular case we do use a Separated Interface [Fowler, P of EAA] and an implementation class because
the implementation is technical and should not reside in the Domain Layer.

All of these Factories (11) are very similar to each other. They all create a subclass of the abstract Collaborator Value

type, but only if the user within aTenant and having anIdentity plays the security role within one of the five types: Author,
Creator, Moderator, Owner, and Participant. Since they are so similar, let’s look at just one of the method
implementations, authorFrom():
Click here to view code image

package com.saasovation.collaboration.infrastructure.services;

import com.saasovation.collaboration.domain.model.collaborator.Author;
...
public class TranslatingCollaboratorService
 implements CollaboratorService {
 ...
 @Override
 public Author authorFrom(Tenant aTenant, String anIdentity) {
 Author author =
 this.userInRoleAdapter
 .toCollaborator(
 aTenant,
 anIdentity,
 "Author",
 Author.class);

 return author;
 }
 ...
}

First note that TranslatingCollaboratorService is in a Module (9) of the Infrastructure. We create the Separated
Interface in the inner hexagon as part of the domain model. Yet, the implementation is technical and is housed at the outside of
the Hexagonal architecture, where the Ports and Adapters reside.

As part of the technical implementation, generally an Anticorruption Layer will have a specialized Adapter [Gamma et al.]
and a translator. Looking again at Figure 13.1, you can see that our specific Adapter is UserInRoleAdapter, and the translator
is the CollaboratorTranslator. The specialized UserInRoleAdapter of this Anticorruption Layer is responsible for
reaching out to the remote system, requesting the necessary user-in-role resource:
Click here to view code image

package com.saasovation.collaboration.infrastructure.services;

import org.jboss.resteasy.client.ClientRequest;
import org.jboss.resteasy.client.ClientResponse;
...
public class UserInRoleAdapter {
 ...
 public <T extends Collaborator> T toCollaborator(
 Tenant aTenant,
 String anIdentity,
 String aRoleName,
 Class<T> aCollaboratorClass) {

 T collaborator = null;

 try {
 ClientRequest request =
 this.buildRequest(aTenant, anIdentity, aRoleName);

 ClientResponse<String> response =
 request.get(String.class);

 if (response.getStatus() == 200) {
 collaborator =
 new CollaboratorTranslator()
 .toCollaboratorFromRepresentation(
 response.getEntity(),
 aCollaboratorClass);

 } else if (response.getStatus() != 204) {
 throw new IllegalStateException(
 "There was a problem requesting the user: "
 + anIdentity
 + " in role: "
 + aRoleName
 + " with resulting status: "
 + response.getStatus());
 }

 } catch (Throwable t) {
 throw new IllegalStateException(
 "Failed because: " + t.getMessage(), t);
 }

 return collaborator;
 }
 ...
}

If the response to the GET request is successful (status 200), it means that the UserInRoleAdapter has received a user-in-
role resource, which can now be translated into our Collaborator subclass:
Click here to view code image

package com.saasovation.collaboration.infrastructure.services;

import java.lang.reflect.Constructor;
import com.saasovation.common.media.RepresentationReader;
...
public class CollaboratorTranslator {
 public CollaboratorTranslator() {
 super();
 }

 public <T extends Collaborator> T toCollaboratorFromRepresentation(
 String aUserInRoleRepresentation,
 Class<T> aCollaboratorClass)
 throws Exception {

 RepresentationReader reader =
 new RepresentationReader(aUserInRoleRepresentation);

 String username = reader.stringValue("username");
 String firstName = reader.stringValue("firstName");
 String lastName = reader.stringValue("lastName");
 String emailAddress = reader.stringValue("emailAddress");

 T collaborator =
 this.newCollaborator(
 username,
 firstName,
 lastName,
 emailAddress,
 aCollaboratorClass);

 return collaborator;
 }

 private <T extends Collaborator> T newCollaborator(
 String aUsername,
 String aFirstName,
 String aLastName,
 String aEmailAddress,
 Class<T> aCollaboratorClass)
 throws Exception {

 Constructor<T> ctor =

 aCollaboratorClass.getConstructor(
 String.class, String.class, String.class);

 T collaborator =
 ctor.newInstance(
 aUsername,
 (aFirstName + " " + aLastName).trim(),
 aEmailAddress);

 return collaborator;
 }
}

This translator takes a user-in-role representation text String and the Class to be used to create the Collaborator
subclass instance. First the RepresentationReader—quite similar to the NotificationReader introduced previously—is
used to read four attributes out of the JSON representation. Again, we can confidently and reliably do this because the
SaaSOvation custom media type forms a binding contract between producers and consumers. After the translator has the
necessary String values, it uses them to instantiate the Collaborator Value Object and, in the case of this example, an
Author:
Click here to view code image

package com.saasovation.collaboration.domain.model.collaborator;

public final class Author
 extends Collaborator {

 public Author(
 String anIdentity,
 String aName,
 String anEmailAddress) {
 super(anIdentity, aName, anEmailAddress);
 }
 ...
}

There is no effort made to keep Collaborator Value instances synchronized with the Identity and Access Context. They
are immutable and can only be fully replaced, not modified. Here’s how an Author is obtained by an Application Service and
then given to a Forum to start a new Discussion:
Click here to view code image

package com.saasovation.collaboration.application;
...
public class ForumService ... {
 ...
 @Transactional
 public Discussion startDiscussion(
 String aTenantId,
 String aForumId,
 String anAuthorId,
 String aSubject) {

 Tenant tenant = new Tenant(aTenantId);
 ForumId forumId = new ForumId(aForumId);

 Forum forum = this.forum(tenant, forumId);

 if (forum == null) {
 throw new IllegalStateException("Forum does not exist.");
 }

 Author author =
 this.collaboratorService.authorFrom(
 tenant, anAuthorId);

 Discussion newDiscussion =
 forum.startDiscussion(
 this.forumNavigationService(),
 author,
 aSubject);

 this.discussionRepository.add(newDiscussion);

 return newDiscussion;
 }
 ...
}

If a Collaborator name or e-mail address changes in the Identity and Access Context, such changes won’t be
automatically updated in the Collaboration Context. Those kinds of changes rarely occur, so the team made the decision to
keep this particular design simple and not attempt to synchronize changes in the remote Context with objects in their local
Context. We will see, however, that the Agile Project Management Context has different design goals.

There are other ways to implement an Anticorruption Layer, such as by means of a Repository (12). However, since
Repositories are typically used to persist and reconstitute Aggregates, creating Value Objects by that means seems misplaced.
If our goal is to produce an Aggregate from an Anticorruption Layer, a Repository may be a more natural source.

Integration Using Messaging
A message-based approach to integration can allow any one system to achieve a higher degree of autonomy from systems it

depends on. As long as the messaging infrastructure remains operational, messages can be sent and delivered even when any
one system is unavailable.

One of the ways that DDD can be leveraged to make systems autonomous is through the use of Domain Events. When
something of significance happens in one system, it produces an Event about it. There will tend to be several or even many
such Events that occur in each system, and you will create a unique kind of Event as a means to record each. As Events occur,
they are published to interested parties by means of a messaging mechanism. That’s just a big-picture review. In case you
bypassed the details of this topic in earlier chapters, you may be better off getting some background from Architecture (4),
Domain Events (8), and Aggregates (10) before continuing here.

Staying Informed about Product Owners and Team Members
The Agile Project Management Context needs to manage a pool of Scrum product owners and team members for each

tenant that subscribes to the service. At any time a product owner can create a new product and then assign team members to
the team. How can the Scrum project management application know who plays each of these roles? The answer is that it won’t
go it alone.

Actually, the Agile Project Management Context is going to allow those roles to be managed by the Identity and Access
Context, a natural and fitting choice. In that system each tenant that subscribes to the Scrum service will have two Role
instances created: ScrumProductOwner and ScrumTeamMember. Each User who needs to play one of those roles will be
assigned to it. Here’s the Application Service method in the Identity and Access Context that manages the task of assigning a
User to a Role:
Click here to view code image

package com.saasovation.identityaccess.application;
...
public class AccessService ... {
 ...
 @Transactional
 public void assignUserToRole(AssignUserToRoleCommand aCommand) {

 TenantId tenantId =
 new TenantId(aCommand.getTenantId());

 User user =
 this.userRepository
 .userWithUsername(
 tenantId,
 aCommand.getUsername());

 if (user != null) {
 Role role =
 this.roleRepository
 .roleNamed(
 tenantId,
 aCommand.getRoleName());

 if (role != null) {
 role.assignUser(user);
 }
 }
 }
 ...
}

Great, but how does this help the Agile Project Management Context know who is in the role of a ScrumTeamMember or
ScrumProductOwner? Here’s how. When method assignUser() of the Role completes, its last responsibility is to publish an
Event:
Click here to view code image

package com.saasovation.identityaccess.domain.model.access;
...
public class Role extends Entity {
 ...
 public void assignUser(User aUser) {
 if (aUser == null) {
 throw new NullPointerException("User must not be null.");
 }
 if (!this.tenantId().equals(aUser.tenantId())) {
 throw new IllegalArgumentException(
 "Wrong tenant for this user.");
 }

 this.group().addUser(aUser);

 DomainEventPublisher
 .instance()
 .publish(new UserAssignedToRole(
 this.tenantId(),
 this.name(),
 aUser.username(),
 aUser.person().name().firstName(),
 aUser.person().name().lastName(),
 aUser.person().emailAddress()));
 }
 ...
}

Event UserAssignedToRole, enriched with User name and e-mail address properties, is eventually delivered to all
interested parties. When the Agile Project Management Context receives the Event, it will use it to ensure that a new
TeamMember or ProductOwner is established in its model. This is not a terribly difficult use case. Yet, there are more details
to manage than may at first meet the eye. Let’s break these down.

As it turns out, there are some highly reusable aspects to listening for notifications from RabbitMQ. We already have a
simple object-oriented library that helps make the RabbitMQ Java client easier to use. Now we’re going to add one more
simple class to make becoming an exchange queue consumer really simple:
Click here to view code image

package com.saasovation.common.port.adapter.messaging.rabbitmq;
...
public abstract class ExchangeListener {

 private MessageConsumer messageConsumer;
 private Queue queue;

 public ExchangeListener() {
 super();

 this.attachToQueue();

 this.registerConsumer();
 }

 protected abstract String exchangeName();

 protected abstract void filteredDispatch(
 String aType, String aTextMessage);

 protected abstract String[] listensToEvents();

 protected String queueName() {
 return this.getClass().getSimpleName();
 }

 private void attachToQueue() {
 Exchange exchange =
 Exchange.fanOutInstance(
 ConnectionSettings.instance(),
 this.exchangeName(),
 true);

 this.queue =
 Queue.individualExchangeSubscriberInstance(
 exchange,
 this.exchangeName() + "." + this.queueName());
 }

 private Queue queue() {
 return this.queue;
 }

 private void registerConsumer() {
 this.messageConsumer =
 MessageConsumer.instance(this.queue(), false);

 this.messageConsumer.receiveOnly(
 this.listensToEvents(),
 new MessageListener(MessageListener.Type.TEXT) {

 @Override
 public void handleMessage(
 String aType,
 String aMessageId,
 Date aTimestamp,
 String aTextMessage,
 long aDeliveryTag,
 boolean isRedelivery)
 throws Exception {
 filteredDispatch(aType, aTextMessage);
 }
 });
 }
}

The ExchangeListener is an abstract base class that concrete listener subclasses reuse. A concrete subclass need add only
a little bit of code in addition to extending the abstract base class. First, it just ensures that the default base class constructor is
invoked, which always happens anyway. Then all that’s left is to implement three abstract methods, two of which are very
simple to implement: exchangeName(), filteredDispatch(), and listensToEvents().

To implement exchangeName() all that is needed is to return the String name of the exchange for which the concrete
listener consumes notifications. To implement the abstract method listensToEvents() you must answer a String[] of
notification types that you want to receive. Many listeners will consume only one type of notification and so would answer an

array with only one element. The one remaining method, filteredDispatch(), is the most complex of the three because it is
responsible for the heavy lifting of handling received messages. To see how it works, let’s take a look at the listener of Event-
carrying notifications for UserAssignedToRole:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class TeamMemberEnablerListener extends ExchangeListener {

 @Autowired
 private TeamService teamService;

 public TeamMemberEnablerListener() {
 super();
 }

 @Override
 protected String exchangeName() {
 return Exchanges.IDENTITY_ACCESS_EXCHANGE_NAME;
 }

 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 NotificationReader reader =
 new NotificationReader(aTextMessage);

 String roleName = reader.eventStringValue("roleName");

 if (!roleName.equals("ScrumProductOwner") &&
 !roleName.equals("ScrumTeamMember")) {
 return;
 }

 String emailAddress = reader.eventStringValue("emailAddress");
 String firstName = reader.eventStringValue("firstName");
 String lastName = reader.eventStringValue("lastName");
 String tenantId = reader.eventStringValue("tenantId.id");
 String username = reader.eventStringValue("username");
 Date occurredOn = reader.occurredOn();

 if (roleName.equals("ScrumProductOwner")) {
 this.teamService.enableProductOwner(
 new EnableProductOwnerCommand(
 tenantId,
 username,
 firstName,
 lastName,
 emailAddress,
 occurredOn));
 } else {
 this.teamService.enableTeamMember(
 new EnableTeamMemberCommand(
 tenantId,
 username,
 firstName,
 lastName,
 emailAddress,
 occurredOn));
 }
 }

 @Override
 protected String[] listensToEvents() {
 return new String[] {
 "com.saasovation.identityaccess.domain.model.↵

access.UserAssignedToRole"
 };
 }
}

The ExchangeListener default constructor is properly invoked, exchangeName() answers the name of the exchange
published to by the Identity and Access Context, and method listensToEvents() answers a one-element array with the fully
qualified class name of Event User-AssignedToRole. Note that publishers and subscribers should consider the use of fully
qualified class names, which includes the Module name and the class name. This removes all possible collision or ambiguity
that could exist with same or similarly named Events from different Bounded Contexts.

Again, it is filteredDispatch() that contains the bulk of the behavior. The method is named as it is because it can further
filter the notification before it dispatches to the Application Service API. In this case it does filter before dispatching, by
ignoring all notifications of type UserAssignedToRole that are not conveying Events about the roles named
ScrumProductOwner and ScrumTeamMember. On the other hand, if the roles are the ones we are interested in receiving Events
about, we get the UserAssignedToRole details out of the notification and dispatch to the Application Service named
TeamService. Each of the Service methods enableProductOwner() and enableTeamMember() takes a command object,
either EnableProductOwnerCommand or EnableTeamMemberCommand, respectively.

At first it might seem that a member would just be created as a result of one of these Events. However, since it is possible
that each User could be assigned to one of these Roles, and then later unassigned, and then reassigned, it’s possible that the
member represented by the User in the received notification already exists. Here’s how the TeamService deals with that
situation:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class TeamService ... {

 @Autowired
 private ProductOwnerRepository productOwnerRepository;

 @Autowired
 private TeamMemberRepository teamMemberRepository;

 ...

 @Transactional
 public void enableProductOwner(
 EnableProductOwnerCommand aCommand) {
 TenantId tenantId = new TenantId(aCommand.getTenantId());

 ProductOwner productOwner =
 this.productOwnerRepository.productOwnerOfIdentity(
 tenantId,
 aCommand.getUsername());

 if (productOwner != null) {
 productOwner.enable(aCommand.getOccurredOn());
 } else {
 productOwner =
 new ProductOwner(
 tenantId,
 aCommand.getUsername(),
 aCommand.getFirstName(),
 aCommand.getLastName(),
 aCommand.getEmailAddress(),
 aCommand.getOccurredOn());

 this.productOwnerRepository.add(productOwner);
 }
 }
}

For example, Service method enableProductOwner() deals with the possibility that the specific ProductOwner already

exists. If it does exist, we assume that it may need to be enabled again, so we dispatch to the corresponding command
operation. If the ProductOwner does not yet exist, we instantiate a new Aggregate and add it to its Repository. Actually, we
deal with the TeamMember in the same way, so enableTeamMember() is implemented in the same way.

Can You Handle the Responsibility?
This all seems fine and good. It appears simple enough. We have Product-Owner and TeamMember Aggregate types, and

we’ve designed them so that each holds some information about the backing User from the foreign Bounded Context. But did
you realize how much responsibility we’ve just assumed by designing these Aggregates that way?

Recall that in the Collaboration Context the team decided to just create immutable Value Objects that hold similar
information (see “Implementing the REST Client Using an Anticorruption Layer”). Because the Values are immutable, the team
will never have to worry about keeping the shared information up-to-date. Of course, the downside to that advantage is that if
some of the shared information is updated, the Collaboration Context will never update the related objects that it created in
the past. So the Agile Project Management team went for the opposite trade-off.

Now, however, there are a few challenges to keeping the Aggregates up-to-date. Why? Can’t we just listen for additional
Event-carrying notifications that reflect changes to the User instances that correspond to our ProductOwner and TeamMember
instances? Yes, indeed, we can and must do so. But the fact that we are using a messaging infrastructure makes this just a bit
more challenging than might be obvious.

For example, what would happen if in the Identity and Access Context a manager mistakenly unassigns Joe Johnson from the
ScrumTeamMember role? Well, we receive an Event-carrying notification that indicates that fact, so we use the TeamService
to disable the TeamMember corresponding to Joe Johnson. Wait. Seconds later the manager realizes that she has unassigned the
wrong user from the ScrumTeamMember role, and that she should have unassigned Joe Jones instead. So she quickly assigns Joe
Johnson back to the role and unassigns Joe Jones. Next, the Agile Project Management Context receives the corresponding
notifications, and everyone is happy (except maybe Joe Jones). Or, is everything actually OK?

We could be making a bad assumption about this use case. We are assuming that we receive the notifications in the order in
which they actually occurred in the Identity and Access Context. Yet, things might not always work out so well. What would
happen if, for whatever reason, the notifications about Joe Johnson were received in this order, UserAssignedToRole and
then User-UnassignedFromRole? What will happen is that the TeamMember corresponding to Joe Johnson will be stuck in a
disabled state, and at best someone will have to patch the data in the Agile PM database, or the manager will have to play
some tricks to get the right Joe reenabled. This can happen, and ironically, it seems to always happen when we overlook the
fact that it could happen. So, how do we prevent this?

Let’s take a closer look at the command objects that we pass as parameters to the TeamService APIs. For example,
consider the commands EnableTeamMemberCommand and DisableTeamMemberCommand. Each of these requires a Date object,
namely, occurredOn, to be provided. In fact, all of our command objects are designed this way. We will use the occurredOn
values to ensure that our ProductOwner and TeamMember Aggregates deal with the command operations in a time-aware way.
Thinking back to the use case that could have caused us trouble before, let’s see what would happen if we dealt with the
possibility of the UserUnassignedFromRole arriving after UserAssignedToRole, even though they occurred in the opposite
order:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class TeamService ... {
 ...
 @Transactional
 public void disableTeamMember(DisableTeamMemberCommand aCommand) {
 TenantId tenantId = new TenantId(aCommand.getTenantId());

 TeamMember teamMember =
 this.teamMemberRepository.teamMemberOfIdentity(
 tenantId,
 aCommand.getUsername());

 if (teamMember != null) {
 teamMember.disable(aCommand.getOccurredOn());
 }
 }
}

Note that when we dispatch to the TeamMember disable() command method, we are required to pass an occurredOn
value from the command object. The TeamMember will use this internally to make certain that disabling takes place only if it
should:
Click here to view code image

package com.saasovation.agilepm.domain.model.team;
...
public abstract class Member extends Entity {
 ...
 private MemberChangeTracker changeTracker;
 ...
 public void disable(Date asOfDate) {
 if (this.changeTracker().canToggleEnabling(asOfDate)) {
 this.setEnabled(false);
 this.setChangeTracker(
 this.changeTracker().enablingOn(asOfDate));
 }
 }

 public void enable(Date asOfDate) {
 if (this.changeTracker().canToggleEnabling(asOfDate)) {
 this.setEnabled(true);
 this.setChangeTracker(
 this.changeTracker().enablingOn(asOfDate));
 }
 }
 ...
}

Note that this Aggregate behavior is provided by a common abstract base class, Member. Both the disable() and the
enable() methods are designed to query a changeTracker to determine whether the requested operation can be carried out
according to the asOfDate parameter (the command’s occurredOn value). The MemberChangeTracker Value Object
maintains the occurrence of the most recent related operation and uses that to answer the query:
Click here to view code image

package com.saasovation.agilepm.domain.model.team;
...
public final class MemberChangeTracker implements Serializable {
 private Date emailAddressChangedOn;
 private Date enablingOn;
 private Date nameChangedOn;
 ...
 public boolean canToggleEnabling(Date asOfDate) {
 return this.enablingOn().before(asOfDate);
 }
 ...
 public MemberChangeTracker enablingOn(Date asOfDate) {
 return new MemberChangeTracker(
 asOfDate,
 this.nameChangedOn(),
 this.emailAddressChangedOn());
 }
 ...
}

If the operation is permitted and carried out, a replacement MemberChange-Tracker instance is obtained by using the
corresponding enablingOn() method. Since we can expect PersonNameChanged and PersonContactInformationChanged
changes to possibly arrive out of order, the same kinds of facilities are available with emailAddressChangedOn and
nameChangedOn. In fact, there is one additional check for the case of e-mail address changes. It’s possible that
PersonContactInformationChanged Events are indicating a change of telephone number or postal address rather than a less
common e-mail address change:
Click here to view code image

package com.saasovation.agilepm.domain.model.team;
...
public abstract class Member extends Entity {
 ...
 public void changeEmailAddress(
 String anEmailAddress,
 Date asOfDate) {

 if (this.changeTracker().canChangeEmailAddress(asOfDate) &&
 !this.emailAddress().equals(anEmailAddress)) {
 this.setEmailAddress(anEmailAddress);
 this.setChangeTracker(
 this.changeTracker().emailAddressChangedOn(asOfDate));
 }
 }
 ...
}

Here we check to see if in fact the e-mail address has changed. If it has not, we don’t want to track it as changed. If we did
so, an out-of-order Event of the same type that did in fact carry a changed e-mail address would be ignored.

The MemberChangeTracker also serves to make Member subclass command operations idempotent, such that when the same
notification is delivered multiple times by the messaging infrastructure, redundant deliveries are ignored.

We might argue that introducing the MemberChangeTracker in the Aggregate design is a mistake. We might conclude that
this has nothing to do with the Ubiquitous Language of Scrum-based teams. That is true. However, we never expose the
MemberChangeTracker outside the Aggregate boundary. It is an implementation detail, and clients will never know it exists.
The only detail that clients are aware of is that they must supply the occurredOn value for when the corresponding fact of a
modification took place. What is more, this is exactly the kind of implementation detail that Pat Helland calls for as he
describes how partner relationships are managed in his treatment of scalable, distributed systems that are eventually consistent.
In that paper [Helland], specifically see section 5, “Activities: Coping with Messy Messages.”

Now, back to dealing with our new responsibilities . . .
Although this is a very basic example of maintaining changes to duplicate information originating in a foreign Bounded

Context, it is not a trivial responsibility to take on, at least not if you are using a messaging mechanism that could deliver
messages out of order and more than once.1 Further, when we realize all of the possible operations in the Identity and Access
Context that could have some kind of impact on just the few attributes that we maintain in Member, it can be a wake-up call:

• PersonContactInformationChanged
• PersonNameChanged
• UserAssignedToRole
• UserUnassignedFromRole

And then we realize that there are a few other Events that could be just as important to react to:
• UserEnablementChanged
• TenantActivated
• TenantDeactivated

These facts emphasize that, if at all possible, it is best to minimize or even completely eliminate information duplication
across Bounded Contexts. It may not be possible to entirely avoid the duplication of information. SLAs may make it
impractical to retrieve remote data every time it is needed. That’s one of the motivations the team had to hold the personal
name of the User and the user’s e-mail address locally. However, having the goal to reduce the amount of foreign information
we take responsibility for will make our jobs much easier. It’s integrating with a minimalist’s mindset.

Of course, there is no way to avoid duplication of tenant and user identity, and identity duplication across Bounded Contexts
is necessary in general. That is one of the primary ways that Bounded Contexts can integrate at all. Besides, identity is safe to
share because it is immutable. We can even use Aggregate disabling and soft deletions to ensure that referenced objects never
disappear, as we do, for example, with Tenant, User, ProductOwner, and TeamMember.

This call to attention doesn’t mean that Domain Events should not be enriched with information-conveying properties.
Certainly, Events must provide enough information to inform consumers of the kinds of steps that they must take in response to
past facts. Still, it is possible for Event data to be used to perform calculations and derive state in consuming foreign Bounded
Contexts while not actually holding on to and assuming the responsibility for keeping it synchronized with its official state
located in the system of record.

Long-Running Processes, and Avoiding Responsibility
If we likened what we described in the previous section to being a responsible adult, we might compare this section to an

attempt to return to our teenage years. You know, adults have to assume all kinds of responsibility. Parents have to buy cars,
insure them, pay to put gasoline in the tank, and spend their money to repair them. As teens we just want to use our parents’ car,
but not pay for any of its expenses. There’s no way teenagers are going to make a car payment for their parents, fill the tank
with gasoline, pay for a mechanic, or cover the cost of insurance. They just allow their parents to take care of that horrible R-
word stuff so they can have all the fun.

What we are doing in this section is having fun with Long-Running Processes (4), but making sure we refuse to accept any
of the painful responsibilities required when we duplicate information from other Bounded Contexts. We will just let the
system of record deal with its own information after we’ve had all the fun making that foreign Bounded Context create and
maintain data for us.

In Context Maps (3) we were presented with the Create a Product use case:
Precondition: The collaboration feature is enabled (option was purchased).

1. The user provides Product descriptive information.
2. The user indicates a desire for a team discussion.
3. The user requests that the defined Product be created.
4. The system creates the Product with a Forum and Discussion.

Here’s where the fun begins, and where we kick responsibility across the network.
In Context Maps (3) the team proposed using a RESTful approach to integration between these two Bounded Contexts.

However, the team finally settled on a message-based solution instead.
Also, one of the first things that you may notice is that the proposed concept originally added to the Ubiquitous Language as

Discussion (in Chapter 3) has been refined. The Agile Project Management team saw the need to differentiate between the
types of discussions, so there are now two different types: ProductDiscussion and BacklogItemDiscussion. (In this
section we are concerned only with ProductDiscussion.) Both Value Objects have the same basic state and behavior, but the
distinction adds type safety to help developers avoid attaching the wrong discussions to Product and Backlog-Item. For all
practical purposes, they are the same. Each of these two discussion types just holds its availability and, if a discussion was
established, the identity of the actual Discussion Aggregate instance in the Collaboration Context.

It is worth stating that the original proposal in the Agile Project Management Context to name one Value Object the same as
the Aggregate in the Collaboration Context was not an error in judgment. Thus, to be completely clear, the Value Object’s
name was not changed from Discussion to ProductDiscussion in order to distinguish it from the Aggregate in the
Collaboration Context. From the standpoint of Context Mapping it would have been perfectly fine to leave the Value Object’s
name as it was, because the Context is what distinguished the two objects. The decision to create two distinct Value types in
the Agile Project Management Context was made only from the requirements of the isolated local model.

To dive in, let’s first take a look at the Application Service (API) that is used to create a Product:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {

 @Autowired
 private ProductRepository productRepository;

 @Autowired
 private ProductOwnerRepository productOwnerRepository;
 ...
 @Transactional
 public String newProductWithDiscussion(
 NewProductCommand aCommand) {

 return this.newProductWith(
 aCommand.getTenantId(),
 aCommand.getProductOwnerId(),
 aCommand.getName(),
 aCommand.getDescription(),
 this.requestDiscussionIfAvailable());

 }
 ...
}

There are actually two ways to create a new Product. The first method, not shown here, creates a Product without a
Discussion, while the one seen here does attempt to cause a ProductDiscussion to eventually be created and attached to the
Product. The two internal methods, newProduct-With() and requestDiscussionIfAvailable(), are not shown here. The
latter method is used to check whether or not the CollabOvation add-on is enabled. If it is, the availability state REQUESTED is
returned; otherwise, the state return value is ADD_ON_NOT_ENABLED. Method newProductWith() invokes the Product
constructor, so let’s look at the constructor next:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public class Product extends ConcurrencySafeEntity {
 ...
 public Product(
 TenantId aTenantId,
 ProductId aProductId,
 ProductOwnerId aProductOwnerId,
 String aName,
 String aDescription,
 DiscussionAvailability aDiscussionAvailability) {

 this();

 this.setTenantId(aTenantId);
 this.setProductId(aProductId);
 this.setProductOwnerId(aProductOwnerId);
 this.setName(aName);
 this.setDescription(aDescription);

 this.setDiscussion(
 ProductDiscussion.fromAvailability(
 aDiscussionAvailability));

 DomainEventPublisher
 .instance()
 .publish(new ProductCreated(
 this.tenantId(),
 this.productId(),
 this.productOwnerId(),
 this.name(),
 this.description(),
 this.discussion().availability().isRequested()));
 }
 ...
}

The client is required to pass a DiscussionAvailability, which may convey one of the following states:
ADD_ON_NOT_ENABLED, NOT_REQUESTED, or REQUESTED. The READY state is reserved as a completion state. Either of the first
two states results in the creation of a Product-Discussion with that exact state, which means there won’t be an associated
discussion, at least not as a result of construction. Given a request with the third state, REQUESTED, the ProductDiscussion
will be created with a PENDING_SETUP state. Here’s the ProductDiscussion Factory Method used by the Product
constructor:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public final class ProductDiscussion implements Serializable {
 ...
 public static ProductDiscussion fromAvailability(
 DiscussionAvailability anAvailability) {

 if (anAvailability.isReady()) {
 throw new IllegalArgumentException(
 "Cannot be created ready.");
 }

 DiscussionDescriptor descriptor =
 new DiscussionDescriptor(
 DiscussionDescriptor.UNDEFINED_ID);

 return new ProductDiscussion(descriptor, anAvailability);
 }
 ...
}

As long as the request is not for the READY state, which would be a problem, we get a ProductDiscussion with one of the
three other states and an undefined descriptor. If the state is REQUESTED, a Long-Running Process will manage the creation of
the collaborative discussion and its subsequent initiation with the Product. How? Recall that the last thing the Product
constructor does is publish the ProductCreated Event:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
 ...
 public Product(...) {
 ...
 DomainEventPublisher
 .instance()
 .publish(new ProductCreated(
 this.tenantId(),
 this.productId(),
 this.productOwnerId(),
 this.name(),
 this.description(),
 this.discussion().availability().isRequested()));
 }
 ...
}

If the state of the discussion availability is REQUESTED, the last parameter to the Event constructor will be true, which is
exactly what is needed to start the Long-Running Process.

Think back to Domain Events (8); every single Event instance, including those of type ProductCreated, is appended to an
Event Store for the specific Bounded Context in which the Event occurred. All newly appended Events are then forwarded
from the Event Store to interested parties by means of a messaging mechanism. In the case of SaaSOvation, the teams have
decided to use RabbitMQ for that purpose. We need to create a simple Long-Running Process to manage the creation of the
discussion and then attach it to the Product.

Before moving on to the details of the Long-Running Process, let’s consider one more possible way that a discussion is
requested. What if when a given Product instance is first created, either a discussion is not requested, or the collaboration
add-on is only enabled? Later on the product owner decides to add a discussion, and the add-on is now available. The product
owner can now use this command method on the Product:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public class Product extends ConcurrencySafeEntity {
 ...
 public void requestDiscussion(
 DiscussionAvailability aDiscussionAvailability) {
 if (!this.discussion().availability().isReady()) {
 this.setDiscussion(
 ProductDiscussion.fromAvailability(
 aDiscussionAvailability));

 DomainEventPublisher
 .instance()

 .publish(new ProductDiscussionRequested(
 this.tenantId(),
 this.productId(),
 this.productOwnerId(),
 this.name(),
 this.description(),
 this.discussion().availability().isRequested()));
 }
 }
 ...
}

Method requestDiscussion() takes the familiar Discussion-Availability parameter, because the client must prove to
the Product that the collaboration add-on is enabled. Of course, the client could cheat here and always pass REQUESTED, but
that would just end up in a dead-end bug if the add-on is actually not available. Here, too, if the state of the discussion
availability is REQUESTED, the last parameter to the Event constructor will be true, which is exactly what is needed to start the
Long-Running Process:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public class ProductDiscussionRequested implements DomainEvent {
 ...
 public ProductDiscussionRequested(
 TenantId aTenantId,
 ProductId aProductId,
 ProductOwnerId aProductOwnerId,
 String aName,
 String aDescription,
 boolean isRequestingDiscussion) {
 ...
 }
 ...
}

This Event has exactly the same properties as ProductCreated, which will allow both Event types to be handled by the
same listener.

We might ask whether publishing this Event makes any sense if the availability state is not REQUESTED. It does make sense,
because whether or not the request can be fulfilled, the request was still made, unless it is currently in READY state. It is the
responsibility of listeners to determine whether or not to actually do something in response to the Event. Perhaps receiving this
Event with isRequestingDiscussion set to false indicates a problem, or setup of the add-on is in progress but still not
done. Therefore, some intervention may be necessary. The process may need to send an e-mail to the administrator group, for
example.

The classes used to manage the Long-Running Process on the Agile Project Management Context side are similar to those
used to manage the creation and maintenance of the ProductOwner and TeamMember Aggregates (see the previous section).
Each of the listeners presented here is wired using Spring such that it is instantiated as the Spring application context is created
for this Bounded Context. The first listener registers itself to receive two kinds of notifications on the
AGILEPM_EXCHANGE_NAME, ProductCreated, and ProductDiscussionRequested:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class ProductDiscussionRequestedListener
 extends ExchangeListener {
 ...
 @Override
 protected String exchangeName() {
 return Exchanges.AGILEPM_EXCHANGE_NAME;
 }
 ...

 @Override
 protected String[] listensToEvents() {

 return new String[] {
 "com.saasovation.agilepm.domain.model↵
.product.ProductCreated",
 "com.saasovation.agilepm.domain.model↵
.product.ProductDiscussionRequested"
 };
 }
 ...
}

T h e COLLABORATION_EXCHANGE_NAME is the interest of the second listener, and specifically for notification
DiscussionStarted:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class DiscussionStartedListener extends ExchangeListener {
 ...
 @Override
 protected String exchangeName() {
 return Exchanges.COLLABORATION_EXCHANGE_NAME;
 }
 ...
 @Override
 protected String[] listensToEvents() {
 return new String[] {
 "com.saasovation.collaboration.domain.model.↵
forum.DiscussionStarted"
 };
 }
 ...
}

You can probably see where this is going. If either ProductCreated or ProductDiscussionRequested is received by the
first listener, it will dispatch a command to the Collaboration Context to have a new Forum and Discussion created on
behalf of the Product. When that request is fulfilled by the components in the Collaboration Context, the
DiscussionStarted notification is published and, once received, the corresponding discussion identity will be initiated on
the Product. That’s the long and short of this Long-Running Process. Here is how the filteredDispatch() works in the first
listener:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class ProductDiscussionRequestedListener
 extends ExchangeListener {
 private static final String COMMAND =
 "com.saasovation.collaboration.discussion.↵
CreateExclusiveDiscussion";
 ...
 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 NotificationReader reader =
 new NotificationReader(aTextMessage);

 if (!reader.eventBooleanValue("requestingDiscussion")) {
 return;
 }

 Properties parameters = this.parametersFrom(reader);
 PropertiesSerializer serializer =
 PropertiesSerializer.instance();
 String serialization = serializer.serialize(parameters);
 String commandId = this.commandIdFrom(parameters);

 this.messageProducer()
 .send(
 serialization,
 MessageParameters
 .durableTextParameters(
 COMMAND,
 commandId,
 new Date()))
 .close();
 }
 ...
}

In the case of either Event type, ProductCreated or Product-DiscussionRequested, if the requestingDiscussion
attribute is false, we ignore the Event. Otherwise, we build up a CreateExclusive-Discussion command from the Event’s
state and send the command to the message exchange of the Collaboration Context.

This is a good time to pause and reflect on how this process is designed. Should the Agile Project Management Context
really set up a listener to an Event published by a local Aggregate? Would it be better to create a listener for the
ProductCreated Event in the Collaboration Context instead? If we did so, we could simply have the listener in the
Collaboration Context manage the creation of the exclusive Forum and Discussion, and it would eliminate a bit of code from
the Agile Project Management Context. To determine which is the better approach requires the consideration of a few factors.

Does it make sense that an upstream Bounded Context listens for Events published from a downstream Context? Or, in an
Event-Driven Architecture (4), are systems really upstream and downstream to each other? Need they be cast in that mold?
Possibly the more important factor to consider is whether it would be correct for a ProductCreated Event to be interpreted in
the Collaboration Context as indicating that an exclusive Forum and Discussion should be created. In fact, does
ProductCreated actually have any meaning at all to the Collaboration Context? How many other Contexts may eventually
desire similar automatic support for this very feature given their own unique Event types? Is it best to place such a burden to
support any number of foreign Events as creation commands on the Collaboration Context? Yet, there is another factor to
consider, which requires us to more carefully manage the success of Long-Running Processes. This topic, discussed just a bit
later, may help to settle why we’ve approached it in this particular way.

Now, back to the example . . . Once received in the Collaboration Context, the command is adapted to pass to the
ForumService, which is an Application Service. Note that this API has not yet been designed to use command parameters but
rather takes individual attribute parameters:
Click here to view code image

package com.saasovation.collaboration.infrastructure.messaging;
...
public class ExclusiveDiscussionCreationListener
 extends ExchangeListener {

 @Autowired
 private ForumService forumService;
 ...
 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 NotificationReader reader =
 new NotificationReader(aTextMessage);

 String tenantId = reader.eventStringValue("tenantId");
 String exclusiveOwnerId =
 reader.eventStringValue("exclusiveOwnerId");
 String forumSubject = reader.eventStringValue("forumTitle");
 String forumDescription =
 reader.eventStringValue("forumDescription");
 String discussionSubject =
 reader.eventStringValue("discussionSubject");
 String creatorId = reader.eventStringValue("creatorId");
 String moderatorId = reader.eventStringValue("moderatorId");

 forumService.startExclusiveForumWithDiscussion(

 tenantId,
 creatorId,
 moderatorId,
 forumSubject,
 forumDescription,
 discussionSubject,
 exclusiveOwnerId);
 }
 ...
}

That makes sense, but shouldn’t this ExclusiveDiscussionCreationListener send a response message back to the Agile
Project Management Context? Well, not exactly. Both the Forum and Discussion Aggregates publish an Event in response to
their respective creation: ForumStarted and DiscussionStarted. This Bounded Context publishes all its Domain Events
though its exchange, defined by COLLABORATION_EXCHANGE_NAME. That’s why the DiscussionStartedListener in the Agile
Project Management Context receives the DiscussionStarted Event. And here’s what that listener does when it receives
the Event:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class DiscussionStartedListener extends ExchangeListener {

 @Autowired
 private ProductService productService;
 ...
 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 NotificationReader reader =
 new NotificationReader(aTextMessage);

 String tenantId = reader.eventStringValue("tenant.id");
 String productId = reader.eventStringValue("exclusiveOwner");
 String discussionId =
 reader.eventStringValue("discussionId.id");

 productService.initiateDiscussion(
 new InitiateDiscussionCommand(
 tenantId,
 productId,
 discussionId));
 }
 ...
}

This listener adapts the received notification’s Event properties to pass as a command to the ProductService Application
Service. This initiateDiscussion() service method works like this:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {

 @Autowired
 private ProductRepository productRepository;
 ...
 @Transactional
 public void initiateDiscussion(
 InitiateDiscussionCommand aCommand) {
 Product product =
 productRepository
 .productOfId(
 new TenantId(aCommand.getTenantId()),

 new ProductId(aCommand.getProductId()));

 if (product == null) {
 throw new IllegalStateException(
 "Unknown product of tenant id: "
 + aCommand.getTenantId()
 + " and product id: "
 + aCommand.getProductId());
 }

 product.initiateDiscussion(
 new DiscussionDescriptor(
 aCommand.getDiscussionId()));
 }
 ...
}

Ultimately the Product Aggregate’s initiateDiscussion() behavior is executed:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public class Product extends ConcurrencySafeEntity {
 ...
 public void initiateDiscussion(DiscussionDescriptor aDescriptor) {
 if (aDescriptor == null) {
 throw new IllegalArgumentException(
 "The descriptor must not be null.");
 }

 if (this.discussion().availability().isRequested()) {
 this.setDiscussion(this.discussion()
 .nowReady(aDescriptor));
 DomainEventPublisher
 .instance()
 .publish(new ProductDiscussionInitiated(
 this.tenantId(),
 this.productId(),
 this.discussion()));
 }
 }
 ...
}

If the Product discussion property is still in the REQUESTED state, it is transitioned to the READY state with the
DiscussionDescriptor, which holds an identity reference to the exclusive Discussion in the Collaboration Context. The
request for a Forum and Discussion to be created for and associated with the Product has just become consistent, although it
happened eventually.

However, if discussion is in the READY state at the time of this command invocation, it is not further transitioned. Is this a
bug? No. It is one way to ensure that initiateDiscussion() is an idempotent operation. The assumption must be made that if
the state is currently READY, the Long-Running Process has already completed. Perhaps any subsequent command invocation is
due to a notification redelivery, since the team chose to use a messaging mechanism that delivers messages at least once.
Whatever the case, we need not be concerned because the idempotent operation allows for any number of infrastructure and
architectural influences to be harmlessly ignored when they should be. Further, in this specific case we didn’t need to design
with a ProductChangeTracker as we did for the Member subclasses and their MemberChangeTracker. The simple fact that
the discussion is READY tells us all we need to know.

There could be a problem with this overall approach, however. What happens if the Long-Running Process experiences
some sort of problem due to the messaging mechanism? How would we ensure that the process is run completely to its finish?
Well, it’s probably time for the teenager to grow up a little.

Process State Machines and Time-out Trackers
We can make this process more mature by adding a concept similar to that described under Long-Running Processes (4).

The SaaSOvation developers created a reusable concept that they named TimeConstrainedProcess-Tracker. A tracker

watches for processes whose allotted time for completion has expired, and those that can be retried any number of times prior
to expiring. The tracker design allows for retries at fixed intervals if desired and can eventually completely time-out after no
retries at all, or after a determined number of retries.

To clarify, the tracker is not part of the Core Domain. It is rather part of a technical Subdomain that any SaaSOvation project
can reuse. This means that in some cases we aren’t overly concerned with the rules of Aggregates when persisting trackers and
later causing their modification. Trackers are relatively isolated and won’t tend to face concurrency conflicts since there is a
one-to-one relationship with the associated process. However, if there are conflicts, we can count on messaging retries to help
our cause. Any exception in the context of a notification delivery will cause the listener to NAK the message, which in turn
causes RabbitMQ to redeliver. Still, we don’t anticipate the necessity of a great number of retries.

It is the Product that holds the current state of the process, and in that context a tracker will publish the following Event
when a retry interval is reached, or when the observed process completely times out:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;

import com.saasovation.common.domain.model.process.ProcessId;
import com.saasovation.common.domain.model.process.ProcessTimedOut;

public class ProductDiscussionRequestTimedOut extends ProcessTimedOut {

 public ProductDiscussionRequestTimedOut(
 String aTenantId,
 ProcessId aProcessId,
 int aTotalRetriesPermitted,
 int aRetryCount) {

 super(aTenantId, aProcessId,
 aTotalRetriesPermitted, aRetryCount);
 }
}

Events that subclass ProcessTimedOut are used by the tracker when retry intervals or full time-outs have been reached.
Event listeners can use Event method hasFullyTimedOut() to determine whether the Event signifies a full time-out or is just a
retry. If retries are permitted, assuming listeners have use of the ProcessTimedOut class, they can ask the Event for indicators
and values such as allowsRetries(), retryCount(), totalRetriesPermitted(), and totalRetriesReached().

Armed with the ability to receive notifications about retries and time-outs, we can make the Product participate in a better
process. First, we need to start the process, and we can do that from our existing ProductDiscussionRequestedListener:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class ProductDiscussionRequestedListener
 extends ExchangeListener {
 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 NotificationReader reader =
 new NotificationReader(aTextMessage);

 if (!reader.eventBooleanValue("requestingDiscussion")) {
 return;
 }

 String tenantId = reader.eventStringValue("tenantId.id");
 String productId = reader.eventStringValue("product.id");

 productService.startDiscussionInitiation(
 new StartDiscussionInitiationCommand(
 tenantId,
 productId));

 // send command to Collaboration Context
 ...
 }
 ...
}

The ProductService creates the tracker and persists it, and it associates the process with the given Product:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {
 ...
 @Transactional
 public void startDiscussionInitiation(
 StartDiscussionInitiationCommand aCommand) {

 Product product =
 productRepository
 .productOfId(
 new TenantId(aCommand.getTenantId()),
 new ProductId(aCommand.getProductId()));

 if (product == null) {
 throw new IllegalStateException(
 "Unknown product of tenant id: "
 + aCommand.getTenantId()
 + " and product id: "
 + aCommand.getProductId());
 }

 String timedOutEventName =
 ProductDiscussionRequestTimedOut.class.getName();

 TimeConstrainedProcessTracker tracker =
 new TimeConstrainedProcessTracker(
 product.tenantId().id(),
 ProcessId.newProcessId(),
 "Create discussion for product: "
 + product.name(),
 new Date(),
 5L * 60L * 1000L, // retries every 5 minutes
 3, // 3 total retries
 timedOutEventName);

 processTrackerRepository.add(tracker);

 product.setDiscussionInitiationId(
 tracker.processId().id());
 }
 ...
}

The TimeConstrainedProcessTracker is instantiated to retry three times every five minutes, if necessary. True, we may
not normally hard-code these values, but doing so allows us to see clearly how the tracker is created.

Did You Detect a Possible Problem Here?
The retry specification we are using could contribute to problems if we aren’t careful, but we’ll leave the design as is for
now and act as if we think it’s all right.

It is this approach of creating a tracker on behalf of the Product that may best address the reason we have handled the
ProductCreated Event locally, rather than having it interpreted in the Collaboration Context. This gives our own system the
opportunity to set up process management and decouple the ProductCreated Event from the command in the Collaboration

Context, namely, CreateExclusiveDiscussion.
A background timer will fire regularly to check on process elapsed times. The timer will delegate to method

checkForTimedOutProcesses() in the ProcessService:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProcessService ... {
 ...
 @Transactional
 public void checkForTimedOutProcesses() {
 Collection<TimeConstrainedProcessTracker> trackers =
 processTrackerRepository.allTimedOut();

 for (TimeConstrainedProcessTracker tracker : trackers) {
 tracker.informProcessTimedOut();
 }
 }
 ...
}

It’s the tracker’s method informProcessTimedOut() that confirms the need to retry or time-out a process and, if confirmed,
publishes the ProcessTimedOut Event subclass.

Next, we need to add a new listener to handle retries and time-outs. Up to three retries may occur every five minutes as
needed. It’s the ProductDiscussionRetryListener:
Click here to view code image

package com.saasovation.agilepm.infrastructure.messaging;
...
public class ProductDiscussionRetryListener extends ExchangeListener {

 @Autowired
 private ProcessService processService;
 ...
 @Override
 protected String exchangeName() {
 return Exchanges.AGILEPM_EXCHANGE_NAME;
 }

 @Override
 protected void filteredDispatch(
 String aType,
 String aTextMessage) {
 Notification notification =
 NotificationSerializer
 .instance()
 .deserialize(aTextMessage, Notification.class);

 ProductDiscussionRequestTimedOut event =
 notification.event();

 if (event.hasFullyTimedOut()) {
 productService.timeOutProductDiscussionRequest(
 new TimeOutProductDiscussionRequestCommand(
 event.tenantId(),
 event.processId().id(),
 event.occurredOn()));
 } else {
 productService.retryProductDiscussionRequest(
 new RetryProductDiscussionRequestCommand(
 event.tenantId(),
 event.processId().id()));
 }
 }

 @Override
 protected String[] listensToEvents() {
 return new String[] {
 "com.saasovation.agilepm.process.↵
ProductDiscussionRequestTimedOut"
 };
 }
}

This listener is interested only in ProductDiscussionRequestTimedOut Events and is designed to work with any number
of retry and time-out permutations. It’s the process and tracker that determine how many times it could possibly be notified.
Events will be sent under one of two possible conditions. The process may have completely timed out, or it may be a
notification to retry the operation. In both cases the listener dispatches to the new Product-Service. If a complete time-out
has occurred, the Application Service handles the situation:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {
 ...
 @Transactional
 public void timeOutProductDiscussionRequest(
 TimeOutProductDiscussionRequestCommand aCommand) {

 ProcessId processId =
 ProcessId.existingProcessId(
 aCommand.getProcessId());

 TenantId tenantId = new TenantId(aCommand.getTenantId());

 Product product =
 productRepository
 .productOfDiscussionInitiationId(
 tenantId,
 processId.id());

 this.sendEmailForTimedOutProcess(product);

 product.failDiscussionInitiation();
 }
 ...
}

First an e-mail is sent to the product owner indicating that the discussion setup has failed, and then the Product is marked as
failing discussion initiation. As seen from the new Product method failDiscussionInitiation(), we needed to declare an
additional FAILED state as a DiscussionAvailability. Method failDiscussionInitiation() deals with the simple
compensation necessary to keep the Product in a sound state:
Click here to view code image

package com.saasovation.agilepm.domain.model.product;
...
public class Product extends ConcurrencySafeEntity {
 ...
 public void failDiscussionInitiation() {
 if (!this.discussion().availability().isReady()) {
 this.setDiscussionInitiationId(null);
 this.setDiscussion(
 ProductDiscussion
 .fromAvailability(
 DiscussionAvailability.FAILED));
 }
 }
 ...
}

What may be missing here is a new DiscussionRequestFailed Event being published by
failDiscussionInitiation(). The team will have to consider the possible advantages of doing that. In fact, it could be that
the e-mails sent to product owners and other administrative resources would be best handled as a result of just that Event.
After all, what would happen if the ProductService method timeOutProductDiscussionRequest() encountered problems
sending the e-mail? Things could get tedious. (Aha!) The team has made note of this and will return to address it later.

On the other hand, if the Event indicates that a retry should be attempted, the listener delegates to the following operation in
the ProductService:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {
 ...
 @Transactional
 public void retryProductDiscussionRequest(
 RetryProductDiscussionRequestCommand aCommand) {

 ProcessId processId =
 ProcessId.existingProcessId(
 aCommand.getProcessId());

 TenantId tenantId = new TenantId(aCommand.getTenantId());

 Product product =
 productRepository
 .productOfDiscussionInitiationId(
 tenantId,
 processId.id());

 if (product == null) {
 throw new IllegalStateException(
 "Unknown product of tenant id: "
 + aCommand.getTenantId()
 + " and discussion initiation id: "
 + processId.id());
 }

 this.requestProductDiscussion(
 new RequestProductDiscussionCommand(
 aCommand.getTenantId(),
 product.productId().id()));
 }
 ...
}

The Product is retrieved from its Repository by means of the associated ProcessId, which is set on the Product attribute
discussionInitiationId. After the Product is obtained, it is used by the ProductService (self-delegation) to request the
discussion again.

Ultimately we get the desired outcome. When the discussion is started successfully, the Collaboration Context publishes the
DiscussionStarted Event. Shortly following this our DiscussionStartedListener in the Agile Project Management
Context receives the notification and dispatches to the ProductService as it did previously. This time, however, there’s new
behavior:
Click here to view code image

package com.saasovation.agilepm.application;
...
public class ProductService ... {
 ...
 @Transactional
 public void initiateDiscussion(
 InitiateDiscussionCommand aCommand) {
 Product product =

 productRepository
 .productOfId(
 new TenantId(aCommand.getTenantId()),
 new ProductId(aCommand.getProductId()));

 if (product == null) {
 throw new IllegalStateException(
 "Unknown product of tenant id: "
 + aCommand.getTenantId()
 + " and product id: "
 + aCommand.getProductId());
 }

 product.initiateDiscussion(
 new DiscussionDescriptor(
 aCommand.getDiscussionId()));

 TimeConstrainedProcessTracker tracker =
 this.processTrackerRepository.trackerOfProcessId(
 ProcessId.existingProcessId(
 product.discussionInitiationId()));

 tracker.completed();
 }
 ...
}

The ProductService now provides the finishing behavior for the process, informing the tracker that it is completed().
From this point forward the tracker will no longer be selected as a retry or time-out notifier. The process is done.

Although we’re probably feeling good about the results, there could be a bit of a problem with this design. The way things
stand, retrying requests to create a Product discussion could lead to some issues if we were to leave the design of the
Collaboration Context as it is. The basic problem is that the operations in the Collaboration Context are currently not
idempotent. Here is a breakdown of the minor design flaw and what should be done about it:

• Since guaranteed, at least once, delivery of messages is in use, as soon as a message is sent to the exchange, it is
sure to reach its listener(s) in a matter of time. If there is some delay in creating the new collaboration objects and it
causes even one retry, the retry will in turn cause multiple sends of the same CreateExclusiveDiscussion
command. All such commands will eventually be delivered. Thus, any retries will make the Collaboration Context
attempt to create the same Forum and Discussion multiple times. We won’t actually end up with duplicates since
uniqueness constraints are already imposed on Forum and Discussion properties. Thus, the multiple creation
attempt errors will end up being benign. Yet, from the perspective of error logs the failed attempts will appear to be
caused by bugs. The question is, While we still want to stipulate a complete process time-out, should the periodic
retries be disabled?
• While it might seem that the solution is to disable retries in the Agile Project Management Context, the bottom line
is that we need to make the Collaboration Context operations idempotent. Remember that RabbitMQ guarantees
delivery at least once and thus may deliver the same command message multiple times, even if it is sent only once.
Making the collaboration operations idempotent will prevent any attempt to create the same Forum and Discussion
multiple times and will stifle logging of benign failures.
• It is possible for the Agile Project Management Context to fail when attempting to send the
CreateExclusiveDiscussion command. If there is a problem with the message send, care must be taken to ensure
that a resend is attempted until it succeeds. Otherwise, a request for creation of the Forum and Discussion will
never be made. We can ensure command resend attempts in a few ways. If the message send fails, we can throw an
exception from filteredDispatch(), which will cause a message NAK. As a result, RabbitMQ will consider it
necessary to redeliver the ProductCreated or ProductDiscussionRequested Event notification, and our
ProductDiscussionRequestedListener will receive it again. The other way to handle this is to simply retry the
send until it succeeds, perhaps using a Capped Exponential Back-off. In the case of an offline RabbitMQ, retries
could fail for quite a while. Thus, using a combination of message NAKs and retries could be the best approach.
Still, if our process retries three times every five minutes, it could be all we need. After all, a complete process
time-out results in an e-mail requesting human intervention.

In the end, if the Collaboration Context’ s ExclusiveDiscussionCreationListener could delegate to an idempotent
Application Service operation, it would solve many of our problems:

Click here to view code image

package com.saasovation.collaboration.application;
...
public class ForumService ... {
 ...
 @Transactional
 public Discussion startExclusiveForumWithDiscussion(
 String aTenantId,
 String aCreatorId,
 String aModeratorId,
 String aForumSubject,
 String aForumDescription,
 String aDiscussionSubject,
 String anExclusiveOwner) {

 Tenant tenant = new Tenant(aTenantId);

 Forum forum =
 forumRepository
 .exclusiveForumOfOwner(
 tenant,
 anExclusiveOwner);

 if (forum == null) {
 forum = this.startForum(
 tenant,
 aCreatorId,
 aModeratorId,
 aForumSubject,
 aForumDescription,
 anExclusiveOwner);
 }

 Discussion discussion =
 discussionRepository
 .exclusiveDiscussionOfOwner(
 tenant,
 anExclusiveOwner);

 if (discussion == null) {
 Author author =
 collaboratorService
 .authorFrom(
 tenant,
 aModeratorId);

 discussion =
 forum.startDiscussion(
 forumNavigationService,
 author,
 aDiscussionSubject);

 discussionRepository.add(discussion);
 }

 return discussion;
 }
 ...
}

By trying to find the Forum and Discussion from their unique exclusive owner attribute, we prevent attempting to create
two Aggregate instances that may already exist. Wow, just a few lines of code make our Event-Driven processing so much
better!

Designing a More Sophisticated Process
Still, we may desire to design a more sophisticated process. In cases where multiple completion steps are necessary, it

works best to have a more elaborate state machine. To address such needs, here’s the definition of a Process interface:
Click here to view code image

package com.saasovation.common.domain.model.process;

import java.util.Date;

public interface Process {

 public enum ProcessCompletionType {
 NotCompleted,
 CompletedNormally,
 TimedOut
 }

 public long allowableDuration();
 public boolean canTimeout();
 public long currentDuration();
 public String description();
 public boolean didProcessingComplete();
 public void informTimeout(Date aTimedOutDate);
 public boolean isCompleted();
 public boolean isTimedOut();
 public boolean notCompleted();
 public ProcessCompletionType processCompletionType();
 public ProcessId processId();
 public Date startTime();
 public TimeConstrainedProcessTracker
 timeConstrainedProcessTracker();
 public Date timedOutDate();
 public long totalAllowableDuration();
 public int totalRetriesPermitted();
}

The following are some of the more significant operations available with a Process:
• allowableDuration(): If the Process can time-out, answers either the total duration or the duration between
retries.
• canTimeout(): If the Process can time-out, this method answers true.
• timeConstrainedProcessTracker(): If the Process can time-out, answers a new unique
TimeConstrainedProcessTracker.
• totalAllowableDuration(): Answers the total allowable duration of the Process. If retries are not permitted,
the answer is allowable-Duration(). If retries are permitted, the answer is allowableDuration() multiplied by
totalRetriesPermitted().
• totalRetriesPermitted(): If the Process permits time-outs and retries, this method answers the total number of
retries that may be attempted.

Implementers of Process may be observed for time-out and retries under the control of the now familiar
TimeConstrainedProcessTracker. Once we create our Process, we can ask it for a unique tracker. This test shows how the
two objects work together, which is much the same way that Product worked with its tracker:
Click here to view code image

Process process =
 new TestableTimeConstrainedProcess(
 TENANT_ID,
 ProcessId.newProcessId(),
 "Testable Time Constrained Process",
 5000L);

TimeConstrainedProcessTracker tracker =
 process.timeConstrainedProcessTracker();

process.confirm1();

assertFalse(process.isCompleted());
assertFalse(process.didProcessingComplete());
assertEquals(process.processCompletionType(),
 ProcessCompletionType.NotCompleted);

process.confirm2();

assertTrue(process.isCompleted());
assertTrue(process.didProcessingComplete());
assertEquals(process.processCompletionType(),
 ProcessCompletionType.CompletedNormally);
assertNull(process.timedOutDate());

tracker.informProcessTimedOut();

assertFalse(process.isTimedOut());

The Process created by this test must complete (without retries) within five seconds (5000L milliseconds), which it always
will do. The Process will be marked as completed, with fully completed processing, only after both confirm1() and
confirm2() have been invoked. Internally the Process knows that both states must be confirmed:
Click here to view code image

public class TestableTimeConstrainedProcess extends AbstractProcess {
 ...
 public void confirm1() {
 this.confirm1 = true;

 this.completeProcess(ProcessCompletionType.CompletedNormally);
 }

 public void confirm2() {
 this.confirm2 = true;

 this.completeProcess(ProcessCompletionType.CompletedNormally);
 }
 ...
 protected boolean completenessVerified() {
 return this.confirm1 && this.confirm2;
 }

 protected void completeProcess(
 ProcessCompletionType aProcessCompletionType) {

 if (!this.isCompleted() && this.completenessVerified()) {
 this.setProcessCompletionType(aProcessCompletionType);
 }
 }
 ...
}

Even when this Process self-invokes completeProcess(), the Process cannot be marked as completed until
completenessVerified() answers true. That method will answer true only when both confirm1 and confirm2 have been
set to true. In other words, both the confirm1() and confirm2() operations must have been executed. Thus, method
completenessVerified() allows for multiple processing steps to be confirmed as completed before the entire Process is
considered completed, and every specialized kind of Process can have its own definition of completenessVerified().

Yet, what will happen when the final step of this test is run?

...

tracker.informProcessTimedOut();

assertFalse(process.isTimedOut());

From its internal state the tracker knows that the Process has actually not timed out. Thus, the assertion in the next line of
code will always be false. (Of course, it is assumed that the entire test will complete in less than five seconds, and it is
strongly believed that it always will under normal test conditions.)

An AbstractProcess base class implements Process, serving as an Adapter, and provides a really easy way to develop a
more sophisticated Long-Running Process. Since AbstractProcess extends the Entity base class, it’s easy to design an
Aggregate as a Process. For example, we could make Product subclass AbstractProcess, although it doesn’t need that
level of sophistication. Still, we can imagine leveraging this approach to accommodate a more complex process and require
method completenessVerified() to determine whether or not all required steps have completed.

When Messaging or Your System Is Unavailable
No single approach to developing complex software systems is a panacea. There are always issues and drawbacks with any

approach, some of which we have already discussed. One problem with a messaging system is that it can become unavailable
for a period of time. This may be an infrequent situation, but when it does happen, there are a few things to keep in mind.

When a messaging mechanism is offline for some time, notification publishers will be unable to send messages through it.
Since this situation may be detected by the publishing client, it would likely work best to back off attempts to send notifications
until the messaging system is available once again. This will be evident when any one send succeeds. But until that time, make
sure that attempts to send occur less frequently than when everything is working well. It could make sense to back off as much
as 30 seconds or a minute between retries. Remember, if your system has an Event Store, your Events will continue to be
queued in your live system and can be sent as soon as messaging is available again.

Certainly listeners will not receive new Event-carrying notifications if the messaging infrastructure goes away for a period
of time. When the messaging mechanism becomes available again, will your client listeners be automatically reactivated, or
will it be necessary to subscribe to your consumer-side client mechanism again? If automatic recovery of consumers is not
supported, you will need to be certain that your consumers are reregistered. Otherwise, you will eventually make the unwanted
discovery that your Bounded Context isn’t receiving the notifications that are necessary to keep it interacting with the Bounded
Contexts it depends on. That’s one kind of eventual consistency that you want to avoid.

It’s not always the messaging mechanism that is the source of message-based problems. Consider this situation. Your
Bounded Context becomes unavailable for some lengthy period of time. When it becomes available again, the durable message
exchanges/queues that it subscribes to have collected a lot of undelivered messages. Once your Bounded Context starts up
again and registers its consumers, it could require a considerable amount of time to receive and process all the available
notifications. There may not be much that you can do about this situation other than doggedly pursue limited downtime goals,
develop a “live” deployment scheme, and design with redundant nodes (a cluster) so that losing one node doesn’t make your
system unavailable. Still, there may be times when you can’t avoid some downtime. For example, if changes to your
application’s code require changes to the database and you can’t patch in changes without causing problems, you will need
some system downtime. In such cases your message consumption processing may simply have to play catch-up. Clearly it’s a
situation that we need to be aware of and plan to avoid or deal with if it could be a problem.

Wrap-Up
In this chapter we’ve examined various ways to successfully integrate multiple Bounded Contexts.

• We reviewed the basic mindset necessary to succeed with integration in a distributed computing environment.
• We considered how we can integrate multiple Contexts by means of RESTful resources.
• You got to see several examples of integration with messaging, including how to develop and manage Long-
Running Processes, from simple to complex.
• You learned the challenges faced when you decide to duplicate information across Bounded Contexts, and how to
manage it and also how to avoid it.
• You benefited from considering simple examples, and then progressed to the more complex ones that employed
increasing design maturity.

Now that we’ve seen how to integrate multiple Bounded Contexts, let’s focus back on the single Bounded Context and how
to design the parts of the application that surround the domain model.

Chapter 14. Application

Any program is only as good as it is useful.
—Linus Torvalds

A domain model often lives at the heart of an application. The application may have a user interface that presents concepts
of the domain model and allows the user to perform various actions on the model. The user interface will make use of
application-level services that coordinate use case tasks, manage transactions, and assert necessary security authorizations.
Further, the user interface, Application Services, and domain model will rely on enterprise platform-specific infrastructural
support. The infrastructure implementation details will generally include the facilities of a component container, application
management, messaging, and database.

Road Map to This Chapter
• Learn several ways to provide domain model data for the user interface to render.
• See how Application Services are implemented, and the kinds of operations they perform.
• Study ways to decouple output from Application Services and disparate client types.
• Consider why you might need to compose multiple models in the user interface, and how it’s done.
• Learn ways to use the infrastructure to provide the application’s technical implementations.

Sometimes we work on models that exist to support applications. This is true of the Identity and Access Context.
SaaSOvation has seen the need to break off identity and access management concerns and form a supporting model that will
also serve as a subscription-based product of its own. Even in the case of IdOvation, it will of necessity have its own
administrative and self-service user interface. It’s true that Generic and Supporting Subdomains (2) will sometimes lack all
the extras associated with a full application, and that’s fine. When a model exists to support another model, the supporting
model may be as simple as a set of classes in a separate Module (9) that address a specialty concept and provide some
algorithms.1 Other models will require at least some human user experience and application components. This chapter focuses
on the latter, more complex variety.

We are here using the term application somewhat interchangeably with system and business service. I won’t attempt to
formally analyze at what point an application becomes a system, but I’d say when an application depends on other applications
or services through integration, the whole solution could be called a system. Sometimes the terms application and system are
used interchangeably to mean one and the same thing, where system really describes what we’d normally call an application.
And a single business service that provides several or many technical service endpoints might also be called a system in a
general sense. While I don’t want to muddy the waters of what makes each of these three concepts distinct, I do want to use a
single term that allows me to discuss concerns and responsibilities that are common to all three.

What’s an Application?
To boil it down, I am using the term application to mean the finest set of components that are assembled to interact with
and support a Core Domain (2) model. This generally means the domain model itself, a user interface, internally used
Application Services, and infrastructural components. What exactly fits into each of those compartments will vary from
application to application and will depend on the specific Architectures (4) in use.

When an application opens up its services programmatically, the user interface is broader and includes a kind of application
programming interface (API). There are different ways to open its services, but the interface is not meant for human
consumption. This kind of user interface is discussed in Integrating Bounded Contexts (13). In this chapter I cover aspects of
human user interfaces that are typically of the graphical variety.

For this topic I try to avoid leaning toward any specific Architecture. I reflect that departure in the odd-looking diagram of
Figure 14.1, which purposely adheres to no typical architecture. Dashed lines with clear arrowheads depict implementation
per UML, which is a reflection of Dependency Inversion Principle (4), or DIP. Solid lines with open arrowheads indicate
operation dispatching. For example, the infrastructure implements interface abstractions from the user interface, Application
Services, and the domain model. It also dispatches operations to Application Services, the domain model, and the data store.

Figure 14.1. The primary application areas of concern, but without ties to any one architecture. These areas still
emphasize the DIP with infrastructure dependent on abstractions of every other area.

Although it is inevitable that there will be some overlap with some architectural styles, our interest in this chapter is on what
most any architecture would need to do to sustain the goals of the application. Where a specific architecture does enter the
picture, I provide an acknowledgment.

It is difficult not to use the term layer, as in Layers Architecture (4). It is a useful term no matter what architectural style is
being discussed. For example, consider the place where Application Services live. Whether you think of the Application
Services as being in a ring around the domain model, in a hexagon encompassing the model, in a capsule hanging off a message
bus, or in a layer below the user interface and above the model, it should be acceptable to use the term Application Layer to
describe that conceptual place. While I try to refrain from overusing the term in this chapter, layer is helpful in labeling where
components reside. This certainly does not imply that DDD is limited to existing only in a Layers Architecture.2

I start with the user interface, move on to Application Services, and then to infrastructure. Through each of the subjects I
cover where the model fits in, but I don’t delve into the model proper since that would be redundant with the remainder of the
book.

User Interface
On the Java platform, the .NET platform, and others, there are so many human user interface frameworks that it seems neither

interesting nor productive to study their advantages here.
What seems best is to understand the broader categories, which fall mainly under those described in the following list. They

are listed in order of “heaviness” factors, not popularity. At the time of this writing it must almost certainly be the case that the
second category of Web-based rich user interface is the direction of greatest choice and will soon be influenced by HTML5.
Applications of the first category, pure request-response Web user interfaces, may still be more prolific as legacy applications
than Web 2.0.

• Pure request-response Web user interfaces, perhaps best known as Web 1.0. Frameworks such as Struts, Spring
MVC and Web Flow, and ASP.NET support this category.
• Web-based rich Internet application (RIA) user interfaces, including those that use DHTML and Ajax, known as
Web 2.0. Google’s GWT, Yahoo!’s YUI, Ext JS, Adobe’s Flex, and Microsoft’s Silverlight fall into this category.
• Native client GUIs (for example, Windows, Mac, and Linux desktop user interfaces) that may include the use of
abstraction libraries (such as Eclipse SWT, Java Swing, or WinForms and WPF on Windows). This does not
necessarily imply a heavy desktop application, but it is possible that it does. The native client GUI may access
services over HTTP, for example, making the user interface the only client installed component.

With any of these user interface categories, a few priority questions must be answered: How do we render domain objects
onto the glass? And how do we communicate user gestures back to the model?

Rendering Domain Objects
There is a fair amount of controversy and disagreement on how best to render objects of the domain model onto the user

interface. The user interface regularly benefits from views of data richer than is required to accomplish the direct task. The
display of extra data is necessary because it provides supporting information that users need in order to make intelligent
decisions to carry out their immediate task. The extra data may also include selection options. Thus, the user interface will
often need to render properties of multiple Aggregate (10) instances. This is despite the fact that in most cases a user should
be performing a state-mutating task that is to be applied to just one instance of a single type of Aggregate. This situation is
illustrated in Figure 14.2.

Figure 14.2. The user interface may need to render properties of multiple Aggregate instances but submit a request to
modify only a single instance at a time.

Render Data Transfer Object from Aggregate Instances
A popular way to tackle the problem of rendering multiple Aggregate instances to a single view is to use Data Transfer

Objects [Fowler, P of EAA], or DTOs. The DTO is designed to hold the entire number of attributes that need to be displayed
in a view. The Application Service (see “Application Services”) will use Repositories (12) to read the necessary Aggregate
instances and then delegate to a DTO Assembler [Fowler, P of EAA] to map the attributes of the DTO. The DTO thus carries
the full complement of information that needs to be rendered. The user interface component accesses each individual DTO
attribute and renders it onto the view.

With this approach both reads and writes are performed through Repositories. It has the advantage of resolving any lazy-
loaded collections because the DTO Assembler will directly access every part of the Aggregates that it needs to build the
DTO. It also solves the specific problem where the presentation tier is physically separated from the business tier and you
need to serialize data holders and transfer them over the network to another tier.

Interestingly, the DTO pattern was originally designed to deal with a remote presentation tier that consumes the DTO
instances. The DTO is built on the business tier, serialized, sent over the wire, and deserialized on the presentation tier. If your
presentation tier is not remote, this pattern many times leads to accidental complexity in the application’s design, as in YAGNI
(“You Ain’t Gonna Need It”). This includes the disadvantage of requiring the creation of classes that sometimes closely
resemble the shape of domain objects but are not quite the same. It also has the downside of instantiating additional potentially
large objects that must be managed by the virtual machine (for example, JVM) when in fact they are mismatched for a single
virtual machine application architecture.

Your Aggregates will need to be designed so that DTO Assemblers can query for necessary data. Think carefully about how
to reveal state without revealing too much about the internal shape or structure of the Aggregates. Try to eliminate a client’s
coupling to all internal parts of an Aggregate. Should you allow clients—the Assemblers in this case—to navigate deeply into
Aggregates? That can be a bad idea since it tightly couples each client to a specific Aggregate implementation.

Use a Mediator to Publish Aggregate Internal State
To work around the problem of tight coupling between the model and its clients, you may choose to design Mediator

[Gamma et al.] (aka Double-Dispatch and Callback) interfaces to which the Aggregate publishes its internal state. Clients
would implement the Mediator interface, passing the implementer’s object reference to the Aggregate as a method argument.
The Aggregate would then double-dispatch to that Mediator to publish the requested state, all without revealing its shape or
structure. The trick is to not wed the Mediator’s interface to any sort of view specification, but to keep it focused on rendering
Aggregate states of interest:
Click here to view code image

public class BacklogItem ... {
 ...
 public void provideBacklogItemInterest(
 BacklogItemInterest anInterest) {
 anInterest.informTenantId(this.tenantId().id());
 anInterest.informProductId(this.productId().id());
 anInterest.informBacklogItemId(this.backlogItemId().id());
 anInterest.informStory(this.story());
 anInterest.informSummary(this.summary());
 anInterest.informType(this.type().toString());
 ...
 }

 public void provideTasksInterest(TasksInterest anInterest) {
 Set<Task> tasks = this.allTasks();
 anInterest.informTaskCount(tasks.size());
 for (Task task : tasks) {
 ...
 }
 }
 ...
}

The various interest providers may be implemented by other classes, much the same way that Entities (5) describe the way
validation is delegated to separate validator classes.

Be aware that some will consider this approach completely outside the responsibility of an Aggregate. Others will consider
it a completely natural extension of a well-designed domain model. As always, such trade-offs must be discussed by your
technical team members.

Render Aggregate Instances from a Domain Payload Object
There is an approach that provides a possible improvement when DTOs are unnecessary. This one gathers multiple whole

Aggregate instances for view rendition into a single Domain Payload Object [Vernon, DPO]. DPO has motivations similar to
DTO but takes advantage of the single virtual machine application architecture. It is designed to contain references to whole
Aggregate instances, not individual attributes. Clusters of Aggregate instances can be transferred between logical tiers or
layers by a simple Payload container object. The Application Service (see “Application Services”) uses Repositories to
retrieve the necessary Aggregate instances and then instantiates the DPO to hold references to each. The presentation
components ask the DPO object for the Aggregate instance references, and then ask the Aggregates for viewable attributes.

Cowboy Logic
LB: “If you haven’t fallen off a horse, you haven’t been ridin’ long enough.”

This approach has the advantage of simplifying the design of objects to move clusters of data between logical tiers. The
DPOs tend to be much easier to design and have a smaller memory footprint. Since the Aggregate instances must be read into
memory anyway, we leverage that they already exist.

There are a few potential negative consequences to consider. Because of the similarity to DTOs, this approach also requires
Aggregates to provide a means to read their state. To avoid tightly coupling the user interface to the model, the same Mediator,
Double-Dispatch, or Aggregate Root query interface, suggested previously for use by DTO Assemblers, may be employed here
as well.

There’s still another situation to deal with. Since the DPO holds references to whole Aggregate instances, any lazy-loaded
objects/collections are not yet resolved. There is no reason to access all needed Aggregate properties to create the Domain
Payload Object. Since even read-only transactions are generally committed when the Application Service method ends, any
presentation component that references unresolved lazy-loaded objects will cause an exception.3

To fix up necessary lazy loads we might choose an eager loading strategy, or we can use a Domain Dependency Resolver
[Vernon, DDR]. This is a form of Strategy [Gamma et al.], usually employing one Strategy per use case flow. Each Strategy
forces access of all Aggregate lazy-loaded properties consumed by the specific use case flow. The forced access occurs
before the Application Service commits the transaction and returns the Domain Payload Object to its client. The Strategy may
be hard-coded to manually access the lazy-loaded properties, or it may employ a simple expression language that describes
how to introspectively and reflectively navigate through the Aggregate instances. The reflection-based navigation crawler has
the advantage that it can be made to work on hidden attributes. Still, you may be happier customizing your queries to eagerly
fetch objects that are normally lazy loaded, if the option is available.

State Representations of Aggregate Instances
If your application provides REST-based resources as discussed in REST (4), these will need to produce state

representations of domain objects for clients. It is very important to create representations that are based on use case, not on
Aggregate instances. This has very similar motivations as DTOs, which also are tuned for use cases. However, it may be more
accurate to think of a set of RESTful resources as a separate model in their own right—a View Model or Presentation Model
[Fowler, PM]. Resist the temptation to produce representations that are a one-to-one reflection of your domain model
Aggregate states, possibly with links to navigate to deeper state. Otherwise your clients will have to understand your domain
model as well as the Aggregates themselves. Clients will have to be fully aware of subtleties in behaviors and state transitions,
and you will lose all benefits of abstraction.

Use Case Optimal Repository Queries
Rather than reading multiple whole Aggregate instances of various types and then programmatically composing them into a

single container (DTO or DPO), you might instead use what is called a use case optimal query. This is where you design your
Repository with finder query methods that compose a custom object as a superset of one or more Aggregate instances. The
query dynamically places the results into a Value Object (6) specifically designed to address the needs of the use case. You
design a Value Object, not a DTO, because the query is domain specific, not application specific (as are DTOs). The custom
use case optimal Value Object is then consumed directly by the view renderer.

The use case optimal query approach has motivations similar to CQRS (4). However, the use case optimal query uses a
Repository against the unified domain model persistence store rather than a raw database (such as SQL) query against a
separate query/read store. To understand the trade-offs of this approach versus CQRS, see the related discussion under
Repositories (12). Still, once you start to go down this use case optimal query path, you are so close to CQRS that it may be
worth going that route instead.

Dealing with Multiple, Disparate Clients
What will you do if your application must support multiple, disparate clients? This may include an RIA, a graphical thick

client, REST-based services, and messaging too. You probably also consider various test drivers as being different client
types. Discussed in more detail a bit later, you may design your Application Services to accept Data Transformer, where
each client specifies the Data Transformer type. The Application Service would double-dispatch on the Data Transformer
parameter, which would produce the required data format. Here’s how the user interface side might look for a REST-based
client:
Click here to view code image

...
CalendarWeekData calendarWeekData =
 calendarAppService
 .calendarWeek(date, new CalendarWeekXMLDataTransformer());

Response response =
 Response.ok(calendarWeekData.value())
 .cacheControl(this.cacheControlFor(30)).build();

return response;

Method calendarWeek() of the CalendarApplicationService accepts a Date within a given week and an
implementation of interface CalendarWeekDataTransformer. The chosen implementer is class
CalendarWeekXMLDataTransformer, which creates an XML document as a state representation of the CalendarWeekData.
Method value() on Calendar-WeekData answers the preferred type of the given data format, which in this case is an XML
document String.

Admittedly the example could benefit from having the Data Transformer instance dependency injected. It’s hard-coded here
to make the example easier to understand.

Among the possible implementers of CalendarWeekDataTransformer could be, for example:
• CalendarWeekCSVDataTransformer
• CalendarWeekDPODataTransformer
• CalendarWeekDTODataTransformer
• CalendarWeekJSONDataTransformer
• CalendarWeekTextDataTransformer
• CalendarWeekXMLDataTransformer

There is another possible approach to abstracting application output types to disparate clients that I discuss later under
“Application Services.”

Rendition Adapters and Handling User Edits
When you get to the point where you have your domain data and it needs to be viewed and edited by a user, there are

patterns that can help you separate responsibilities. Again, there are simply too many frameworks out there and too many ways
to deal with them to recommend a surefire way to deal with all of them. With some user interface frameworks you must adhere
to the specific patterns that are supported. Sometimes those are good, and sometimes not so good. With others you have a bit
more flexibility.

In whatever way your domain data is provided from Application Services—through DTOs, DPOs, or state representations
—and whatever presentation framework you use, you may be able to benefit from Presentation Model.4 Its goal is to separate
responsibilities between presentation and view. While it could be made to work with Web 1.0 applications, I think its
strengths tend to be in favor of Web 2.0 RIA, or those with desktop clients, as described in the second and third categories
listed earlier.

Using this pattern, we want to make views passive in that they only manage display of data and user interface controls and
do little else. There are two possible ways of view rendering:

1. Views render themselves based on the Presentation Model. I think this is a more natural way and eliminates
coupling from the Presentation Model to the view.
2. Views are rendered by the Presentation Model. This way has test advantages but requires the Presentation Model
to couple to the view.

The Presentation Model acts as an Adapter [Gamma et al.]. It masks the details of the domain model by providing
properties and behaviors that are designed in terms of the needs of the view. This means that there is more than a thin veneer
around attributes on domain objects or DTOs. It means that decisions are made in the Adapter based on the state of the model
as it applies to the view. For example, enabling a specific control on the view may not have a direct relationship to any one
property of the domain model but can still be derived from one or more such. Rather than requiring the domain model to
specifically support the necessary view properties, it is the responsibility of the Presentation Model to derive the view-
specific indicators and properties from the state of the domain model.

A further, yet perhaps subtle, benefit of using a Presentation Model is that it can adapt Aggregates that don’t support a
JavaBean interface of getters to user interface frameworks that require getters. Many, if not all, of the Java-based Web
frameworks require objects to provide public getters, such as getSummary() and getStory(), while the domain model design
favors fluent, domain-specific expressions that closely reflect the Ubiquitous Language (1). The difference may be as simple
as summary() and story() but produces a user interface framework impedance mismatch. Yet, a Presentation Model can be
used to easily adapt summary() to getSummary() and story() to getStory(), eliminating tension between model and view:
Click here to view code image

public class BacklogItemPresentationModel
 extends AbstractPresentationModel {

 private BacklogItem backlogItem;

 public BacklogItemPresentationModel(BacklogItem aBacklogItem) {
 super();
 this.backlogItem = backlogItem;
 }

 public String getSummary() {
 return this.backlogItem.summary();
 }

 public String getStory() {
 return this.backlogItem.story();
 }
 ...
}

Of course, a Presentation Model can adapt between any number of the previously discussed approaches, including the use of
a DTO or DPO, or using a Mediator through which Aggregate internal state is published.

Additionally, edits performed by the user are tracked by the Presentation Model. This is not a case of placing overloaded
responsibilities on the Presentation Model, since it is meant to adapt in both directions, model to view and view to model.

One important point to keep in mind is that a Presentation Model is not a heavy-lifting Facade [Gamma et al.] around the
Application Services or the domain model. Granted, once users have completed a task with the user interface, they will usually
invoke an “apply” or “cancel” type of action, or preferably an explicit command. This will require the Presentation Model to
reflect the user’s action to the application, which in essence represents a minimal Facade around an Application Service:
Click here to view code image

public class BacklogItemPresentationModel
 extends AbstractPresentationModel {

 private BacklogItem backlogItem;
 private BacklogItemEditTracker editTracker;
 // following is injected
 private BacklogItemApplicationService backlogItemAppService;

 public BacklogItemPresentationModel(BacklogItem aBacklogItem) {
 super();
 this.backlogItem = backlogItem;
 this.editTracker = new BacklogItemEditTracker(aBacklogItem);
 }
 ...
 public void changeSummaryWithType() {

 this.backlogItemAppService
 .changeSummaryWithType(
 this.editTracker.summary(),
 this.editTracker.type());
 }
 ...
}

The user clicks a command button on the view that causes change-SummaryWithType() to be invoked. It is the
responsibility of Backlog-ItemPresentationModel to interact with an Application Service to apply the edits that occurred
on editTracker. There is no other bystander waiting to take the user’s edits and do something with them. So we might say that
the Presentation Model is a minimal Facade to the Application Services on behalf of the view, but just because
changeSummaryWithType() is a higher-level interface that makes BacklogItemApplicationService easier to use.
However, we would not want to see several lines of code in the Presentation Model class manage detailed use of the
Application Service, or worse yet, to itself act as the Application Service to the domain model. That would go well beyond the
responsibility of the Presentation Model. Instead, we want to see a simple delegation to the more complex and heavy-lifting
Facade, BacklogItemApplicationService.

This is a powerful approach to coordinating the domain model and UI. It may even receive your vote for the most versatile
UI management pattern. Using any of the view management techniques, however, we still often interact with an Application
Services API.

Application Services
In some cases your user interface will aggregate multiple Bounded Contexts (2) using independent Presentation Model

components, all composed on a single view. Whether your user interface renders a single model or composes multiple models,
it will likely interact with Application Services, so let’s consider those now.

The Application Services are the direct clients of the domain model. For options on the logical location of Application
Service, see Architecture (4). These are responsible for task coordination of use case flows, one service method per flow.
When using an ACID database, the Application Services also control transactions, ensuring that model state transitions are
atomically persisted. I discuss transaction control here briefly, but see Repositories (12) for a broader perspective. Security is
also commonly cared for by Application Services.

It is a mistake to consider Application Services to be the same as Domain Services (7). They are not. The contrast should
be stark, which is clearly demonstrated in the next section. We should strive to push all business domain logic into the domain
model, whether that be in Aggregates, Value Objects, or Domain Services. Keep Application Services thin, using them only to
coordinate tasks on the model.

Sample Application Service
Let’s take a look at the partial sample interface and implementation class for an Application Service. This is the service that

provides use case task management for tenants of the Identity and Access Context. It is just a sample and not meant to be taken
as the final say. Trade-offs will be apparent.

First consider the basic interface:
Click here to view code image

package com.saasovation.identityaccess.application;

public interface TenantIdentityService {

 public void activateTenant(TenantId aTenantId);

 public void deactivateTenant(TenantId aTenantId);

 public String offerLimitedRegistrationInvitation(
 TenantId aTenantId,
 Date aStartsOnDate,
 Date anUntilDate);

 public String offerOpenEndedRegistrationInvitation(
 TenantId aTenantId);

 public Tenant provisionTenant(
 String aTenantName,
 String aTenantDescription,
 boolean isActive,
 FullName anAdministratorName,
 EmailAddress anEmailAddress,
 PostalAddress aPostalAddress,
 Telephone aPrimaryTelephone,
 Telephone aSecondaryTelephone,
 String aTimeZone);

 public Tenant tenant(TenantId aTenantId);
 ...
}

These six Application Service methods are used to create or provision a tenant, to activate and deactivate an existing one, to
offer limited and open-ended registration invitations to future users, and to query for a specific tenant.

Some types from the domain model are used in these method signatures. That will require the user interface to be aware of
these types and depend on them. Sometimes the Application Services are designed to completely shield the user interface from
all such domain knowledge. Doing so, the Application Service method signatures use only primitive types (int, long,
double), Strings, and possibly DTOs. As an alternative to these approaches, however, a better approach may be to design
Command [Gamma et al.] objects instead. There is not necessarily a right or wrong way. It mostly depends on your tastes and
goals. This book presents each of these styles in various examples.

Consider the trade-offs. If you eliminate types from the model, you avoid dependency and coupling, but you lose out on
strong type checking and basic validations (guards) that you get for free from Value Object types. If you don’t expose domain
objects as return types, you will need to provide DTOs. If you provide DTOs, there may be accidental complexity in your
solution from the extra overhead of the additional types. Then there is also the aforementioned memory overhead in high-traffic
applications that is caused by the possibly unnecessary DTOs constantly being created and garbage collected.

Of course, if you expose domain objects to disparate clients, each client type will need to deal with them separately. Again,
coupling is higher and with more client types this becomes a bigger issue. Given that, at least a few of these methods could be
better designed to deal with return types. As discussed previously, we might instead use Data Transformers:
Click here to view code image

package com.saasovation.identityaccess.application;

public interface TenantIdentityService {
 ...
 public TenantData provisionTenant(
 String aTenantName,
 String aTenantDescription,
 boolean isActive,
 FullName anAdministratorName,
 EmailAddress anEmailAddress,
 PostalAddress aPostalAddress,
 Telephone aPrimaryTelephone,
 Telephone aSecondaryTelephone,
 String aTimeZone,
 TenantDataTransformer aDataTransformer);

 public TenantData tenant(
 TenantId aTenantId,
 TenantDataTransformer aDataTransformer);
 ...
}

For now I will stick with exposing domain objects to the client and assume that we have only one user interface that is Web
based. It will help to simplify the examples. Later I’ll go back to the Data Transformers approach.

Consider how the Application Service interface is implemented. Taking a look at a few of the more trivial methods to
implement it helps highlight some basic points. Note that there may be no advantage to having a Separated Interface [Fowler,
P of EAA]. Here is an example where we will just define the interface with the implementation class:
Click here to view code image

package com.saasovation.identityaccess.application;

public class TenantIdentityService {

 @Transactional
 public void activateTenant(TenantId aTenantId) {
 this.nonNullTenant(aTenantId).activate();
 }

 @Transactional
 public void deactivateTenant(TenantId aTenantId) {
 this.nonNullTenant(aTenantId).deactivate();
 }

 ...

 @Transactional(readOnly=true)
 public Tenant tenant(TenantId aTenantId) {
 Tenant tenant =
 this
 .tenantRepository()
 .tenantOfId(aTenantId);

 return tenant;
 }

 private Tenant nonNullTenant(TenantId aTenantId) {
 Tenant tenant = this.tenant(aTenantId);

 if (tenant == null) {
 throw new IllegalArgumentException(
 "Tenant does not exist.");
 }

 return tenant;
 }
}

A client requests to deactivate an existing Tenant using deactivate-Tenant(). To interact with the actual Tenant object
we need to retrieve it from its Repository using its TenantId. Here we have created an internal helper method named
nonNullTenant(), which itself delegates to tenant(). The helper exists to guard against nonexistent Tenant instances and is
used by all service methods that need to get an existing Tenant.

Methods activateTenant() and deactivateTenant() are marked write transactional by a Spring Transactional
annotation. Method tenant() is marked read-only transactional. In all three cases, when a client obtains this bean through its
Spring context and invokes a service method, a transaction is started. When the method completes by normal return, the
transaction is committed. Depending on configuration, exceptions thrown within the scope of the method will cause the
transaction to roll back.

But how would we prevent the misuse of these methods, say, by a malicious intruder? When we are talking about
deactivating or reactivating a tenant, it’s an operation that should actually be permitted only by an SaaSOvation employee
authorized user. The same goes for provisioning a new tenant subscriber.

What if we were to leverage something like Spring Security? We could use another annotation, PreAuthorize:
Click here to view code image

public class TenantIdentityService {

 @Transactional
 @PreAuthorize("hasRole('SubscriberRepresentative')")
 public void activateTenant(TenantId aTenantId) {
 this.nonNullTenant(aTenantId).activate();
 }

 @Transactional

 @PreAuthorize("hasRole('SubscriberRepresentative')")
 public void deactivateTenant(TenantId aTenantId) {
 this.nonNullTenant(aTenantId).deactivate();
 }

 ...

 @Transactional
 @PreAuthorize("hasRole('SubscriberRepresentative')")
 public Tenant provisionTenant(
 String aTenantName,
 String aTenantDescription,
 boolean isActive,
 FullName anAdministratorName,
 EmailAddress anEmailAddress,
 PostalAddress aPostalAddress,
 Telephone aPrimaryTelephone,
 Telephone aSecondaryTelephone,
 String aTimeZone) {

 return
 this
 .tenantProvisioningService
 .provisionTenant(
 aTenantName,
 aTenantDescription,
 isActive,
 anAdministratorName,
 anEmailAddress,
 aPostalAddress,
 aPrimaryTelephone,
 aSecondaryTelephone,
 aTimeZone);
 }
 ...
}

This is declarative method-level security and prevents unauthorized users from accessing Application Services. Of course,
the user interface would be designed to hide any navigation access to such facilities if the user were not authorized. That
wouldn’t stop a malicious attacker, however, but the security declaration will.

This declarative method security is different from what IdOvation is providing. SaaSOvation employees would log in to
IdOvation differently from tenant users. Particularly those with the special role SubscriberRepresentative would be
permitted to execute these sensitive methods, and no subscriber user would ever be permitted to. This, of course, would
require integration between IdOvation and Spring Security.

Now, when we look at the implementation of provisionTenant(), we see that it delegates to a Domain Service. This
highlights the difference between the two kinds of services, especially when we peek inside the domain Tenant-
ProvisioningService. There is significant domain logic inside this Domain Service, but very little in the Application
Service. Consider what the Domain Service does (although I don’t present the code here):

1. Instantiates a new Tenant Aggregate and adds it to its Repository.
2. Assigns a new administrator for the new Tenant. This includes provisioning the Administrator role for the new
Tenant and publishing Event TenantAdministratorRegistered.
3. Publishes the Event TenantProvisioned.

If the Application Service were to do more than step 1, we would be seriously leaking domain logic out of the model. Since
there are two additional steps that are not the responsibility of the Application Service, we instead place all three inside the
Domain Service. Using the Domain Service, we place this “significant process . . . in the domain” [Evans].5 We also properly
follow the definition of Application Service by managing the transaction, security, and the task of delegating this significant
tenant provisioning process to the model.

But consider for a moment the noise caused by the provisionTenant() parameter list. There is a total of nine parameters,
and that’s probably at least a few too many. We can prevent this situation by designing simple Command [Gamma et al.]
objects instead: “Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or
log requests, and support undoable operations.” In other words, we might think of a Command object as a serialized method

invocation, and in our case we are interested in everything a Command can help with except for undo operations. This is how
simple a Command class is to design:
Click here to view code image

public class ProvisionTenantCommand {
 private String tenantName;
 private String tenantDescription;
 private boolean isActive;
 private String administratorFirstName;
 private String administratorLastName;
 private String emailAddress;
 private String primaryTelephone;
 private String secondaryTelephone;
 private String addressStreetAddress;
 private String addressCity;
 private String addressStateProvince;
 private String addressPostalCode;
 private String addressCountryCode;
 private String timeZone;

 public ProvisionTenantCommand(...) {
 ...
 }

 public ProvisionTenantCommand() {
 super();
 }

 public String getTenantName() {
 return tenantName;
 }

 public void setTenantName(String tenantName) {
 this.tenantName = tenantName;
 }
 ...
}

The ProvisionTenantCommand doesn’t use model objects, just basic types. It has a multi-argument constructor and also a
zero-argument constructor. Along with the zero-argument constructor, having public setters allows the Command to be
populated by UI form-field-to-object mappers (for example, assuming a JavaBean, or .NET CLR properties). You might think
of the Command as a DTO, but it is truly more than that. Since the Command object is named for the operation that is to be
carried out, it is more explicit. The Command instance may be passed to an Application Service method:
Click here to view code image

public class TenantIdentityService {
 ...
 @Transactional
 public String provisionTenant(ProvisionTenantCommand aCommand) {
 ...
 return tenant.tenantId().id();
 }
 ...
}

Besides this approach of dispatching to an Application Service API method, as the pattern states we could instead or in
addition to send Commands to a queue to be dispatched to a Command Handler. Consider a Command Handler to be
semantically equivalent to an Application Service method, but temporally decoupled. As discussed in Appendix A, this
enables greater throughput and scalability of Command handling.

Decoupled Service Output
A couple of times earlier I discussed the use of Data Transformers as a way to accommodate disparate client types with the

specific data type they require. That approach uses Transformers to produce the data in a specific type that implements an

abstract interface that all related types share. Again, from the client’s perspective it might look like this:
Click here to view code image

TenantData tenantData =
 tenantIdentityService.provisionTenant(
 ..., myTenantDataTransformer);

TenantPresentationModel tenantPresentationModel =
 new TenantPresentationModel(tenantData.value());

The Application Services are designed as an API, with input and output. The reason for passing in a Data Transformer is to
produce the specific output type needed by the client.

What if we took an entirely different course and made the rule that Application Services are always declared void and, thus,
never return data to clients? How would that work? The answer lies in a mentality that the Hexagonal Architecture (4)
promotes, the use of the Ports and Adapters style. In this instance we would use a single standard output Port with any number
of adapters, one for each client type. Doing so would yield a provisionTenant() Application Service method like this one:
Click here to view code image

public class TenantIdentityService {
 ...

 @Transactional
 @PreAuthorize("hasRole('SubscriberRepresentative')")
 public void provisionTenant(
 String aTenantName,
 String aTenantDescription,
 boolean isActive,
 FullName anAdministratorName,
 EmailAddress anEmailAddress,
 PostalAddress aPostalAddress,
 Telephone aPrimaryTelephone,
 Telephone aSecondaryTelephone,
 String aTimeZone) {

 Tenant tenant =
 this
 .tenantProvisioningService
 .provisionTenant(
 aTenantName,
 aTenantDescription,
 isActive,
 anAdministratorName,
 anEmailAddress,
 aPostalAddress,
 aPrimaryTelephone,
 aSecondaryTelephone,
 aTimeZone);

 this.tenantIdentityOutputPort().write(tenant);
 }
 ...
}

The output Port here is a specific named Port at the edge of the application. Using Spring, it would be a bean injected into
the service. The only thing that provisionTenant() needs to know is that it must write() to the Port the Tenant instance it
gets from the Domain Service. This Port would have any number of readers, which register themselves ahead of using the
Application Service. When a write() occurs, each of the registered readers is signaled to read the output as its input. At that
point the readers may transform the output using the established mechanism, such as a Data Transformer.

This isn’t just a fancy artifice to add complexity to your architecture. The strength is the same as with any Ports and Adapters
architecture, whether for a software system or a hardware device. Each component only needs to understand the input it reads,
its own behavior, and the Port to which it writes output.

Writing to a Port is roughly the same thing that an Aggregate pure command method does when it produces no return value,

but it does publish a Domain Event (8). In the case of the Aggregate the Domain Event Publisher (8) is an Aggregate output
Port. Further, if we solve querying the state of an Aggregate by using a Double-Dispatch on a Mediator, it is similar to using
Ports and Adapters.

One downside of the Ports and Adapters approach is that it may make it more difficult to name Application Service methods
that perform queries. Consider method tenant() from the sample service. That name now seems inappropriate because it no
longer answers the Tenant that it queries. The name provisionTenant() still works for the provisioning API because it
actually becomes a pure command method, no longer returning a value. But we might want to think of a better name for
tenant(). The following may improve things a bit:
Click here to view code image

 ...
 @Override
 @Transactional(readOnly=true)
 public void findTenant(TenantId aTenantId) {
 Tenant tenant =
 this
 .tenantRepository
 .tenantOfId(aTenantId);

 this.tenantIdentityOutputPort().write(tenant);
 }
 ...
}

The name findTenant() might work because finding doesn’t necessarily imply the need to answer a result. Whatever name
is chosen, the situation confirms that each architectural decision we make leads to positive and negative consequences.

Composing Multiple Bounded Contexts
The examples I have provided don’t address the possibility that a single user interface may need to compose two or more

domain models. In my examples, concepts from upstream models are integrated into downstream models by translating them
into terms of the downstream model.

That’s different from the need to compose multiple models into one unified presentation, as seen in Figure 14.3. The foreign
models, in this example, are Products Context, Discussions Context, and Reviews Context. The user interface should not be
aware that it is composing multiple models. When a similar situation occurs in your application, you should give thought to
how Module (9) structure and naming support your needs, and how Application Services can smooth out the probable
disconnect between different models.

Figure 14.3. There are times when a UI must compose multiple models. Here three models are composed using a single
Application Layer.

One solution uses multiple Application Layers, which is unlike that shown in Figure 14.3. With multiple Application Layers
you would need to supply independent user interface components with each, where the user interface components would have
some affinity to a specific underlying domain model. This is basically the portal-portlet style. Still, it could be more difficult to
get the disparate Application Layers and independent user interface components to harmonize along use case flows, which is

what the user interface is concerned with.
Since the Application Layer manages use cases, it may be easiest to create a single Application Layer as the actual source of

model composition, which is the approach shown in Figure 14.3. Services in that single layer are devoid of business domain
logic. It will only serve to aggregate objects from each model into cohesive ones that the user interface needs. Likely in this
case you would name Modules in the User Interface and Application Layers according to the purpose of the composition, a
named context:
Click here to view code image

com.consumerhive.productreviews.presentation

com.consumerhive.productreviews.application

Consumer Hive provides consumer product reviews and discussions. It has separated the Products Context from the
Discussions Context and Reviews Context. Yet, the presentation and application Modules reflect the unification under one user
interface. Likely it gets its product catalog from one or more external sources, whereas the discussions and reviews are its
Core Domain.

And speaking of Core Domain . . . Strangely enough, what do you detect here? Isn’t this Application Layer really serving as
a new domain model with a built-in Anticorruption Layer (3)? Yes, it is basically a new bargain-basement Bounded Context.
Here the Application Services manage a merger of various DTOs, which mimic a sort of Anemic Domain Model (1). It is a bit
of a Transaction Script (1) approach that models the Core Domain.

If you were to decide that Consumer Hive’s three-model composition is crying for a new Domain Model (1) that is a unified
object model in a single Bounded Context, you might name the Modules of the new model as follows:
Click here to view code image

com.consumerhive.productreviews.domain.model.product

com.consumerhive.productreviews.domain.model.discussion

com.consumerhive.productreviews.domain.model.review

In the end you will have to decide how to model this situation. Will you decide to use strategic design and even tactical
design to create a new model? At a minimum, this situation begs the question: Where do we draw the line between composing
multiple Bounded Contexts into a single user interface, and creating a new, clean Bounded Context with a unified domain
model? Each case must be considered carefully. A less significant system would have other influences and priorities. Still, we
must not treat such decisions arbitrarily. Consideration should be given to the criteria provided in Bounded Contexts. In the end
the best approach is the one that benefits the business the most.

Infrastructure
The job of the infrastructure is to provide technical capabilities for other parts of your application. While avoiding a

discussion about Layers (4), it is still useful to maintain a Dependency Inversion Principle mentality. So wherever your
infrastructure lives architecturally, it works out very well if its components depend on the interfaces from the user interface,
Application Services, and domain model that require special technical capabilities. That way, when an Application Service
looks up a Repository, it will be dependent only on the interface from the domain model, but using the implementation from the
infrastructure. Figure 14.4 provides the UML static structure diagram to illustrate how that works.

Figure 14.4. The Application Service depends on the Repository interface from the domain model but uses the
implementation class from infrastructure. The packages encapsulate broad responsibilities.

The lookup may be implicit through Dependency Injection [Fowler, DI] or using a Service Factory. The final section of
this chapter, “Enterprise Component Containers,” discusses these options. Repeating a portion of the Application Service used
as a running example, you can see again here how the Service Factory is used to look up the Repository:
Click here to view code image

package com.saasovation.identityaccess.application;

public class TenantIdentityService {
 ...
 @Override
 @Transactional(readOnly=true)
 public Tenant tenant(TenantId aTenantId) {
 Tenant tenant =
 DomainRegistry
 .tenantRepository()
 .tenantOfId(aTenantId);

 return tenant;
 }
 ...
}

This Application Service could have instead injected the Repository, or we could have set up the inbound dependencies by
way of constructor parameters.

Implementations of Repositories are kept in the infrastructure because they deal with storage, which is not a responsibility
that the model should take on. You would use the infrastructure to implement interfaces that require use of messaging, such as
message queues and e-mail. If there are special user interface components that feature generated graphical charts, maps, and the
like, these would also be implemented in the infrastructure.

Enterprise Component Containers
These days, enterprise application servers are a commodity. There seems to be little innovation in the servers themselves

and in the component containers that run inside them. We can use Enterprise JavaBeans (EJB) as Session Facades [Crupi et
al.] or simple JavaBeans hosted by inversion-of-control containers, such as Spring, to facilitate the use of Application
Services. There are arguments about which is better, but there has also been a lot of convergence among the frameworks. In
fact, a peek inside some JEE servers reveals that some are implemented using Spring.

Is It WebLogic or Spring?
If you were to view a stack trace from the Oracle WebLogic Server, you’d likely see references to classes from Spring
Framework. They aren’t part of your application’s deployment. In this case you are using only standard JEE with EJB

Session Beans. The Spring classes you are seeing are part of WebLogic’s EJB container implementation. Is this a case of
“if you can’t beat them, join them”?

I have chosen to implement the three sample Bounded Contexts I have provided using Spring Framework. Yet, these
examples would easily carry over to other enterprise container platforms. So there’s nothing lost if you don’t use Spring on
your projects, and you should still feel quite comfortable reading through the examples. There are minimal logical differences
among the various containers.

In Repositories (12) is seen the Spring configuration used to wire up transactional support for Application Services that is
used for persisting domain objects. Here let’s look at other parts of the Spring configuration. Two files of interest are
Click here to view code image

config/spring/applicationContext-application.xml
config/spring/applicationContext-domain.xml

As the filenames indicate, Application Services and domain model components are wired in these. Consider a few from the
application wiring:
Click here to view code image

<beans ...>
 <aop:aspectj-autoproxy/>

 <tx:annotation-driven transaction-manager="transactionManager"/>
 ...
 <bean
 id="applicationServiceRegistry"
 class="com.saasovation.identityaccess.application↵
.ApplicationServiceRegistry"
 autowire="byName">
 </bean>
 ...
 <bean
 id="tenantIdentityService"
 class="com.saasovation.identityaccess.application↵
.TenantIdentityService"
 autowire="byName">
 </bean>
 ...
</beans>

The bean tenantIdentityService is the one reviewed earlier. This bean can be wired into other Spring beans, such as in
the user interface. If you prefer a Service Factory rather than injecting bean instances into others, we can use the other bean in
the configuration, applicationServiceRegistry. This bean provides lookup access to all Application Services. You’d use
it like this:

...
ApplicationServiceRegistry
 .tenantIdentityService()
 .deactivateTenant(tenantId);

We can do so because it is itself injected with the Spring Application-Context when the bean is newly created.
The same kind of registry bean is provided for access to components of the domain model, such as Repositories and Domain

Services. Here is the Registry, Repository, and Domain Service bean configuration for the domain model:
Click here to view code image

<beans ...>
 ...
 <bean
 id="authenticationService"
 class="com.saasovation.identityaccess.infrastructure↵
.services.DefaultEncryptionAuthenticationService"

 autowire="byName">
 </bean>

 <bean
 id="domainRegistry"
 class="com.saasovation.identityaccess.domain.model↵
.DomainRegistry"
 autowire="byName">
 </bean>

 <bean
 id="encryptionService"
 class="com.saasovation.identityaccess.infrastructure↵
.services.MessageDigestEncryptionService"
 autowire="byName">
 </bean>

 <bean
 id="groupRepository"
 class="com.saasovation.identityaccess.infrastructure↵
.persistence.HibernateGroupRepository"
 autowire="byName">
 </bean>

 <bean
 id="roleRepository"
 class="com.saasovation.identityaccess.infrastructure↵
.persistence.HibernateRoleRepository"
 autowire="byName">
 </bean>

 <bean
 id="tenantProvisioningService"
 class="com.saasovation.identityaccess.domain.model↵
.identity.TenantProvisioningService"
 autowire="byName">
 </bean>

 <bean
 id="tenantRepository"
 class="com.saasovation.identityaccess.infrastructure↵
.persistence.HibernateTenantRepository"
 autowire="byName">
 </bean>

 <bean
 id="userRepository"
 class="com.saasovation.identityaccess.infrastructure↵
.persistence.HibernateUserRepository"
 autowire="byName">
 </bean>
</beans>

Using the DomainRegistry, we can access any of these Spring registered beans. All of the beans are also available for
dependency injection into other Spring beans. Thus, the Application Services could choose to use the Service Factory or
Dependency Injection. See Services (7) for a more in-depth discussion of using these two approaches versus a constructor-
based dependency setup.

Wrap-Up
In this chapter we’ve looked into how the application works outside the domain model.

• You’ve considered several techniques for rendering the model’s data into user interfaces.
• You saw ways of accepting user input that is applied to the domain model.
• You’ve learned a variety of options for transferring model data, even when there are possibly many different kinds
of user interface types.
• You have looked into Application Services and what they are responsible for.
• You were introduced to an option for decoupling output from specific client types.
• You’ve learned ways to use the infrastructure to keep technical implementations out of the domain model.
• You considered how, using DIP, to make clients of every aspect of the application depend on abstractions rather
than implementation details, which promotes loose coupling.
• Finally, you saw how commodity application servers and enterprise component containers can give legs to your
applications.

You should now be on solid footing to implement DDD from the carefully crafted domain model through to the components
of the entire application.

Appendix A. Aggregates and Event Sourcing: A+ES

Contributed by Rinat Abdullin
The concept of Event Sourcing has been used for decades but has more recently been popularized by Greg Young by

applying it to DDD [Young, ES].
Event Sourcing can be used to represent the entire state of an Aggregate (10) as a sequence of Events (8) that have

occurred since it was created. The Events are used to rebuild the state of the Aggregate by replaying them in the same order in
which they occurred. The premise is that this approach simplifies persistence and allows capturing concepts with complex
behavioral properties.

The set of Events representing the state of each Aggregate is captured in an append-only Event Stream. This Aggregate state
is further mutated by successive operations that append new Events to the end of the Event Stream, as illustrated in Figure A.1.
(In this appendix Events are shown as light gray rectangles to make them stand out from other concepts.)

Figure A.1. An Event Stream with Domain Events in order of occurrence

The Event Stream of each Aggregate is usually persisted in Event Stores (8), where they are uniquely distinguished, usually
by the identity of the root Entity (5). How to build an Event Store specifically for use with Event Sourcing is addressed in
more detail later in the appendix.

From here forward, let’s refer to this approach of using Event Sourcing to maintain the state of Aggregates and persist them
as A+ES.

Some of the primary benefits of A+ES are:
• Event Sourcing guarantees that the reason for each change to an Aggregate instance will not be lost. When using the
traditional approach of serializing the current state of an Aggregate to a database, we are always overwriting the
previous serialized state, never to be recovered. However, retaining the reason for every change from the creation of
an Aggregate instance through its entire lifetime can be invaluable for the business. As discussed in Architecture
(4), the benefits can be far-reaching: reliability, near- and far-term business intelligence, analytic discoveries, full
audit log, the ability to look back in time for debugging purposes.
• The append-only nature of Event Streams performs outstandingly well and supports an array of data replication
options. Using similar approaches has allowed companies such as LMAX to facilitate very low-latency equities
trading systems.
• The Event-centric approach to Aggregate design can allow developers to focus more of their attention on behaviors
expressed by the Ubiquitous Language (1) by avoiding the potential impedance mismatch of object-relational
mapping and can lead to systems that are more robust and tolerant to change.

That said, make no mistake: A+ES is not a silver bullet. Consider a few realistic drawbacks:
• Defining Events for A+ES requires a deep understanding of the business domain. As in any DDD project, this level
of effort is usually justifiable only for complex models from which the organization will derive competitive
advantage.
• At the time of writing, there is a lack of tooling and a consistent body of knowledge in this field. This increases
costs and the risks of introducing the approach to inexperienced teams.
• The number of experienced developers is limited.
• Implementing A+ES almost certainly requires some form of Command-Query Responsibility Segregation, or
CQRS (4), since Event Streams are hard to query. This increases developer cognitive load and learning curve.

For those undaunted by these challenges, implementing with A+ES can provide a lot of benefits. Let’s examine some ways to
implement using this powerful approach in the object-oriented world.

Inside an Application Service

Looking at A+ES inside an Application Service (4, 14) demonstrates the big picture. It’s common for Aggregates to reside
inside a domain model behind Application Services, which serve as the direct clients of the domain model.

When an Application Service receives control, it loads an Aggregate and retrieves any supporting Domain Services (7)
needed by the Aggregate’s business operation. When the Application Service delegates to the Aggregate business operation,
the Aggregate’s method produces Events as the outcome. Those Events mutate the state of the Aggregate and are also published
as notifications to all subscribers. The Aggregate’s business method may require passing one or more Domain Services as
parameters. The use of any such Domain Services could compute values used to cause side effects to the Aggregate’s state.
Some such Domain Service operations could include calling a payment gateway, requesting a unique identity, or querying data
from a remote system. Figure A.2 illustrates how this works.

Figure A.2. An Application Service controls access to and use of the Aggregate.
The following Application Service implemented in C# shows how the steps of Figure A.2 might be supported:

Click here to view code image

public class CustomerApplicationService
{
 // event store for accessing event streams
 IEventStore _eventStore;

 // domain service that is neeeded by aggregate
 IPricingService _pricingService;

 // pass dependencies for this application service via constructor
 public CustomerApplicationService(
 IEventStore eventStore,
 IPricingService pricing)
 {
 _eventStore = eventStore;
 _pricingService = pricing;
 }

 // Step 1: LockForAccountOverdraft method of
 // Customer Application Service is called

 public void LockForAccountOverdraft(
 CustomerId customerId, string comment)
 {
 // Step 2.1: Load event stream for Customer, given its id
 var stream = _eventStore.LoadEventStream(customerId);
 // Step 2.2: Build aggregate from event stream
 var customer = new Customer(stream.Events);
 // Step 3: Call aggregate method, passing it arguments and
 // pricing domain service
 customer.LockForAccountOverdraft(comment, _pricingService);
 // Step 4: Commit changes to the event stream by id
 _eventStore.AppendToStream(
 customerId, stream.Version, customer.Changes);
 }

 public void LockCustomer(CustomerId customerId, string reason)
 {
 var stream = _eventStore.LoadEventStream(customerId);
 var customer = new Customer(stream.Events);
 customer.Lock(reason);
 _eventStore.AppendToStream(
 customerId, stream.Version, customer.Changes);
 }

 // other methods on this application service
}

The CustomerApplicationService is initialized with two dependencies through the constructor, the IEventStore, and
IPricingService. Constructor-based initialization is a worthy means to fulfill the dependencies, but they could have been
retrieved by means of a Service Factory or using dependency injection. Your team standards and practices reign.

Where Can I Find the Sample Code?
All source code for the A+ES examples is available for download here:
http://lokad.github.com/lokad-iddd-sample/.

Our IEventStore can have a simple interface definition, and our EventStream follows suit:
Click here to view code image

public interface IEventStore
{
 EventStream LoadEventStream(IIdentity id);

 EventStream LoadEventStream(
 IIdentity id, int skipEvents, int maxCount);

 void AppendToStream(
 IIdentity id, int expectedVersion, ICollection<IEvent> events);
}

public class EventStream
{
 // version of the event stream returned
 public int Version;

 // all events in the stream
 public List<IEvent> Events;
}

This Event Store can be implemented quite easily with a relational database (Microsoft SQL, Oracle, or MySQL) or with a
NoSQL store that has strong consistency guarantees (file system, MongoDB, RavenDB, or Azure Blob storage).

We load Events from the Event Store using the unique identity of the Aggregate instance to be reconstituted. Let’s see how
this can be done for an Aggregate named Customer. Although the unique identity could have any type, for expressiveness let’s
use an IIdentity interface implemented by CustomerId.

http://lokad.github.com/lokad-iddd-sample/

We need to load the Events belonging to the specific Customer, and the Events are passed to the Customer’s constructor to
instantiate the Aggregate:
Click here to view code image

var eventStream = _eventStore.LoadEventStream(customerId);

var customer = new Customer(eventStream.Events);

As seen in Figure A.3, the Aggregate applies Events by replaying them through method Mutate(). Here’s how it works:
Click here to view code image

public partial class Customer
{
 public Customer(IEnumerable<IEvent> events)
 {
 // reinstate this aggregate to the latest version
 foreach (var @event in events)
 {
 Mutate(@event);
 }
 }

 public bool ConsumptionLocked { get; private set; }

 public void Mutate(IEvent e)
 {
 // .NET magic to call one of 'When' handlers with
 // matching signature
 ((dynamic) this).When((dynamic)e);
 }

 public void When(CustomerLocked e)
 {
 ConsumptionLocked = true;
 }

 public void When(CustomerUnlocked e)
 {
 ConsumptionLocked = false;
 }

 // etc.

Figure A.3. The Aggregate state is reconstituted using Events applied in order of occurrence.
Mutate() just locates (via .NET dynamics) the appropriate overloaded When() method by the specific Event parameter

type, and then executes the method by passing in the Event. After Mutate() has completed, the Customer instance has a
completely reconstituted state.

We can make a reusable query operation for reconstituting an Aggregate instance from the Event Store:
Click here to view code image

public Customer LoadCustomerById(CustomerId id)
{
 var eventStream = _eventStore.LoadEventStream(id);
 var customer = new Customer(eventStream.Events);
 return customer;
}

After considering how an Aggregate instance can be reconstituted from a Stream of historic Events, it’s easy to imagine
other uses for the historical record. We can use them to look back in time just to view what happened, and when. The view
capability becomes even more powerful when considering the need to debug production deployments.

How are business operations performed? Once the Aggregate is reconstituted from the Event Store, the Application Service
delegates to a command operation on the Aggregate instance. It uses its current state and any Domain Services required by the
contract to carry out the operation. As a behavior is executed, changes to the state are expressed as new Events. Each new
Event is passed to the Aggregate’s Apply() method, as pictured in Figure A.4.

Figure A.4. Aggregate state is based on past Events, and outcome of behavior produces new Events.
As seen in the following code, new Events are accumulated in the Changes collection and then used to mutate the current

state of the Aggregate:
Click here to view code image

public partial class Customer
{
 ...
 void Apply(IEvent event)
 {
 // append event to change list for further persistence
 Changes.Add(event);

 // pass each event to modify current in-memory state
 Mutate(event);
 }
 ...
}

All Events added to the Changes collection will be persisted as newly appended. Since each Event is also used to
immediately mutate the Aggregate’s state, if a behavior has multiple steps, each subsequent step has up-to-date state to operate
on.

Next, take a look at some of the business behavior of the Customer Aggregate:
Click here to view code image

public partial class Customer
{
 // Second part of aggregate class
 public List<IEvent> Changes = new List<IEvent>();

 public void LockForAccountOverdraft(
 string comment, IPricingService pricing)
 {
 if (!ManualBilling)

 {
 var balance = pricing.GetOverdraftThreshold(Currency);
 if (Balance < balance)
 {
 LockCustomer("Overdraft. " + comment);
 }
 }
 }

 public void LockCustomer(string reason)
 {
 if (!ConsumptionLocked)
 {
 Apply(new CustomerLocked(_state.Id, reason));
 }
 }

 // Other business methods are not shown ...

 void Apply(IEvent e)
 {
 Changes.Add(e);
 Mutate(e);
 }
}

Consider Using Two Implementation Classes
To make your code clearer, you can split the A+ES implementation into two distinct classes, one for state and one for
behavior, with the state object being held by the behavioral. The two objects would collaborate exclusively through the
Apply() method. This ensures that state is mutated only by means of Events.

Once the mutating behaviors have completed, we must commit the Changes collection to the Event Store. We append all
new changes, ensuring that there are no concurrency conflicts with other writing threads. This check is possible because we
pass a concurrency version variable from the Load() to the Append() methods.

In the simplest implementation, there will be a background processor that catches up with newly appended Events and
publishes them to a messaging infrastructure (such as RabbitMQ, JMS, MSMQ, or cloud queues), delivering them to all
interested parties. See Figure A.5.

Figure A.5. Newly appended Aggregate behavioral outcome Events are published to subscribers.
This simple implementation can be replaced by more elaborate ones. One such immediately or eventually replicates Events

to one or more clones, increasing fault tolerance. Figure A.6 shows immediate Event replication to one clone. In this case, the
Master Event Store considers its own Events to be saved only after it has successfully replicated them to the Clone Event
Store, which is a write-through strategy.

Figure A.6. Write through: A Master Event Store immediately replicates all newly appended Events to a Clone Event
Store.

An alternative is to replicate Events to the Clone after changes are saved by the Master using a separate thread, which is a
write-behind strategy. This approach is illustrated in Figure A.7. In this case the Clone could be inconsistent with the Master,
which is especially true if a server crashes or if partitioning is impacted by network latency.

Figure A.7. Write behind: A Master Event Store eventually replicates all newly appended Events to a Clone Event
Store.

To summarize what has been discussed so far, let’s walk through the execution sequence that begins with the invocation of
an operation on an Application Service:

1. A client invokes a method on an Application Service.
2. Obtain any Domain Services needed to carry out the business operation.
3. With the client-supplied Aggregate instance identity, retrieve its Event Stream.
4. Reconstitute the Aggregate instance by applying to it all Events from the Stream.
5. Execute a business operation provided by the Aggregate, passing in all parameters required by the interface’s
contract.
6. The Aggregate may double-dispatch to any provided Domain Services, instances of other Aggregates, and so on
and will generate new Events as the outcome of the operation.
7. Assuming no failed business operations, append all newly generated Events to the Stream using the Stream version
to guard against concurrency conflicts.
8. Publish newly appended Events from the Event Store to subscribers using your choice of messaging infrastructure.

We could enhance our A+ES implementation using various options. For example, we could use a Repository (12) to
encapsulate access to the Event Store and the details of reconstitution of the Aggregate instances. Given the preceding code
snippets, it would be easy for you to create a reusable Repository base class. Let’s focus on just two practical optional
enhancements that help a lot with A+ES designs: Command Handlers and lambdas.

Command Handlers
Let’s consider the advantages of using Commands (4, 14) and Command Handlers to control the task management of our

application. To start, first take another look at our Application Service and its LockCustomer() method:
Click here to view code image

public class CustomerApplicationService
{

 ...
 public void LockCustomer(CustomerId id, string reason)
 {
 var eventStream = _eventStore.LoadEventStream(id);
 var customer = new Customer(stream.Events);
 customer.LockCustomer(reason);
 _store.AppendToStream(id, eventStream.Version, customer.Changes);
 }
 ...
}

Now imagine creating a serialized representation of the method name and its parameters. How might that look? We could
create a class named for the application operation and create instance properties to match the parameters to the service method.
This class forms a Command:

public sealed class LockCustomerCommand
{
 public CustomerId { get; set; }
 public string Reason { get; set; }
}

Command contracts follow the same semantics as Events and can be shared across systems in a similar fashion. This
Command could then be passed to a method on the Application Service:
Click here to view code image

public class CustomerApplicationService
{
 ...
 public void When(LockCustomerCommand command)
 {
 var eventStream = _eventStore.LoadEventStream(command.CustomerId);
 var customer = new Customer(stream.Events);
 customer.LockCustomer(command.Reason);
 _eventStore.AppendToStream(
 command.CustomerId, eventStream.Version, customer.Changes);
 }
 ...
}

This simple refactoring could have a few long-term benefits for the system. Let’s see how.
Since the Command objects can be serialized, we can send the textual or binary representations as messages over a message

queue. The object that the message is delivered to is a message handler and is to us a Command Handler. The Command
Handler effectively replaces the Application Service method, although it is roughly equivalent and may still be referred to as
such. Anyway, decoupling the client from the Service can enhance load balancing, enable competing consumers, and support
system partitioning. Take load balancing for one. We can spread the load by starting the same Command Handler
(semantically an Application Service) on any number of servers. As Commands are put on the message queue, the Command
messages can be delivered to one of the several Command Handlers that are listening for them. This is depicted in Figure A.8.
(In this appendix Commands are shown as circular objects.) The actual distribution might be done using a simple round-robin
style or some more sophisticated delivery algorithm, any of which are provided by the messaging infrastructure.

Figure A.8. Application Commands being distributed to any number of Command Handlers
This approach creates temporal decoupling between clients and the Application Service, leading toward more robust

systems. For one, the client will no longer be blocked if the Application Service is unavailable for a short period of time (for

example, for maintenance or upgrade). Instead, Commands will be put into a persistent queue, which will be processed by the
Command Handlers (Application Service) when its server comes back online, as indicated in Figure A.9.

Another advantage is the ability to chain additional aspects before Command dispatching as needed. For example, we could
easily patch in auditing, logging, authorization, and validation.

Figure A.9. The temporal decoupling characteristics of message-based Commands and their Command Handlers allow
for flexible system availability options.

Consider how we might patch in logging. We first define a standard interface and implement the interface in an Application
Service class:
Click here to view code image

public interface IApplicationService
{
 void Execute(ICommand cmd);
}

public partial class CustomerApplicationService : IApplicationService
{
 public void Execute(ICommand command)
 {
 // pass command to a specific method When()
 // that can handle the command
 ((dynamic)this).When((dynamic)command);
 }
}

Execute and Mutate Have Similar Implementations
Note that the way this Execute() method is implemented has some characteristics similar to the Mutate() method
described previously as part of an A+ES Aggregate’s design.

Once we have a standard interface for all Command Handlers (Application Services), we can patch in any kind of standard
pre- and post-execution features, such as generic logging:
Click here to view code image

public class LoggingWrapper : IApplicationService
{
 readonly IApplicationService _service;

 public LoggingWrapper(IApplicationService service)
 {
 _service = service;
 }

 public void Execute(ICommand cmd)
 {
 Console.WriteLine("Command: " + cmd);
 try

 {
 var watch = Stopwatch.StartNew();
 _service.Execute(cmd);
 var ms = watch.ElapsedMilliseconds;
 Console.WriteLine(" Completed in {0} ms", ms);
 }
 catch(Exception ex)
 {
 Console.WriteLine("Error: {0}", ex);
 }
 }
}

Because all Application Services have a standard interface, we can patch in any number of generic utilities that operate
before and/or after the actual Command Handler functions. Here’s how the CustomerApplicationService is initialized with
pre- and post-execution logging:
Click here to view code image

var customerService =
 new CustomerApplicationService(eventStore, pricingService);
var customerServiceWithLogging = new LoggingWrapper(customerService);

Of course, the fact that Commands are serialized objects dispatched to Command Handlers enables us to deal with various
failures and error conditions in a single location. Given a certain class of error, such as resource contention over concurrency
issues, we could choose a standard recovery action, such as retrying the operation X number of times. The retries could be
based on a Capped Exponential Back-off strategy, making all retries uniform, reliable, and maintained in a single class.

Lambda Syntax
If your language supports lambda expressions, it is possible to make otherwise repetitive code more compact by avoiding

repetitive Event Stream management. To demonstrate this fact, here we introduce a helper method within our Application
Service:
Click here to view code image

public class CustomerApplicationService
{
 ...
 public void Update(CustomerId id, Action<Customer> execute)
 {
 EventStream eventStream = _eventStore.LoadEventStream(id);
 Customer customer = new Customer(eventStream.Events);
 execute(customer);
 _eventStore.AppendToStream(
 id, eventStream.Version, customer.Changes);
 }
 ...
}

In this method the parameter Action<Customer> execute references an anonymous function (C# delegate) that can operate
on any Customer instance. The conciseness of the lambda expression can be seen in the parameter passed to Update():
Click here to view code image

public class CustomerApplicationService
{
 ...
 public void When(LockCustomer c)
 {
 Update(c.Id, customer => customer.LockCustomer(c.Reason));
 }
 ...
}

In actuality the C# compiler generates something similar to the following code that fulfills the intent of the lambda

expression:
Click here to view code image

public class AnonymousClass_X
{
 public string Reason;
 public void Execute(Customer customer);
 {
 Customer.LockCustomer(Reason);
 }
}

public delegate void Action<T>(T argument);

public void When(LockCustomer c)
{
 var x = new AnonymousClass_X();
 x.Reason = c.Reason
 Update(c.Id, new Action<Customer>(customer => x.Execute(customer));
}

Since this generated function takes a Customer instance as an argument, it can actually be used to capture the behavior in the
code and execute it multiple times on different Customer instances. The power of using lambdas is highlighted in the following
section.

Concurrency Control
Aggregate Event Streams can be accessed and read by multiple threads simultaneously. This opens up the real potential for

concurrency conflicts that, if left unchecked, could result in a random number of invalid Aggregate states. Consider a scenario
when two threads attempt to modify the Event Stream at the same time, as shown in Figure A.10.

Figure A.10. Two threads contending for the same instance of an Aggregate designed using A+ES
The simplest resolution to this situation is to use EventStoreConcurrencyException at step 4, allowing it to propagate all

the way up to the ultimate client:
Click here to view code image

public class EventStoreConcurrencyException : Exception
{
 public List<IEvent> StoreEvents { get; set; }
 public long StoreVersion { get; set; }
}

Upon catching this exception in the ultimate client, the user would probably be instructed to retry the operation manually.
Instead of taking that approach first, you would probably agree that a standardized retry approach might be best. So when

our Event Store throws EventStoreConcurrencyException, we can immediately attempt recovery:
Click here to view code image

void Update(CustomerId id, Action<Customer> execute)
{
 while(true)
 {
 EventStream eventStream = _eventStore.LoadEventStream(c.Id);
 var customer = new Customer(eventStream.Events);
 try
 {
 execute(customer);
 _eventStore.AppendToStream(
 c.Id, eventStream.Version, customer.Changes);
 return;
 }
 catch (EventStoreConcurrencyException)
 {
 // fall through and retry, with optional brief delay
 }
 }
}

In the case where a concurrency conflict occurs, we would add these additional steps to overcome the problem:
1. Thread 2 catches the exception and falls through, with control going to the beginning of the while loop. Now
Events 1–5 are loaded into a new Customer instance.
2. Thread 2 reexecutes the delegate on the reloaded Customer, which now creates Events 6–7, which will be
successfully appended after Event 5.

If the required Aggregate behavior reexecution is too expensive or for some reason not feasible (for example, requires
costly third-party system integration to place an order or to charge a credit card), we might want to employ a different strategy.

As is illustrated in Figure A.11, one such strategy is Event conflict resolution, which is employed to reduce the number of
actual concurrency exceptions. Here’s how a very simple use of conflict resolution can work:

Figure A.11. Using Event conflict resolution on the Event Stream of an Aggregate

Click here to view code image

void UpdateWithSimpleConflictResolution(
 CustomerId id, Action<Customer> execute)
{
 while (true)
 {
 EventStream eventStream = _eventStore.LoadEventStream(id);
 Customer customer = new Customer(eventStream.Events);
 execute(customer);

 try

 {
 _eventStore.AppendToStream(
 id, eventStream.Version, customer.Changes);
 return;
 }
 catch (EventStoreConcurrencyException ex)
 {
 foreach (var failedEvent in customer.Changes)
 {
 foreach (var succeededEvent in ex.ActualEvents)
 {
 if (ConflictsWith(failedEvent, succeededEvent))
 {
 var msg = string.Format("Conflict between {0} and {1}",
 failedEvent, succeededEvent);
 throw new RealConcurrencyException(msg, ex);
 }
 }
 }
 // there are no conflicts and we can append
 _eventStore.AppendToStream(
 id, ex.ActualVersion, customer.Changes);
 }
 }
}

In this case the conflict detection method ConflictsWith() is used to compare each of the Aggregate Events for conflicts
with Events that were concurrently appended to the Event Store (as reported in the exception).

This conflict resolution method is usually defined per Aggregate Root, depending on the specific kinds of behaviors it
supports. Yet, there is a ConflictsWith() implementation that would work for the majority of Aggregates:
Click here to view code image

bool ConflictsWith(IEvent event1, IEvent event2)
{
 return event1.GetType() == event2.GetType();
}

This majority-case conflict resolution is based on a simple rule: Events of the same type always conflict with each other, but
Events of different types do not.

Structural Freedom with A+ES
One of the biggest practical advantages of A+ES is the simplicity of persistence and the versatility it provides. No matter

how complex the structure of a given Aggregate is, it can always be represented with a sequence of serialized Events that can
be used to reconstitute it. Many domains influence changes to the model over time, with new behaviors or modeling subtleties
that arise from changing requirements of an evolving system. Even if we must restructure the internal implementation of a given
Aggregate in order to deal with significant changes, A+ES can most times facilitate such changes with lower risks and little
frustration to developers.

The sequence of Events associated with a specific identity is usually referred to as an Event Stream. In essence, it is just an
append-only list of messages serialized into byte blocks with the serializer of your choice. As such, an Event Stream can be
persisted with equal success using relational databases, NoSQL persistence, plain file systems, or cloud storage, as long as
any chosen store has strong consistency guarantees.

Here are three major advantages of A+ES persistence, which are especially important for Bounded Contexts (2) with a
long life:

• The ability to adapt the internal implementations of an Aggregate to any practical structural representation
necessary to express new behaviors encountered by domain experts
• The ability to move the entire infrastructure between various hosting solutions, which enables us to deal with cloud
outages and provide sound fail-over options
• The ability of an Event Stream for any Aggregate instance to be downloaded to a development machine and
replayed to debug an error condition

Performance
Sometimes loading Aggregates from large Streams can cause performance problems, especially when individual Streams go

beyond hundreds of thousands of Events. There are a couple of simple patterns that could be applied in individual cases to
solve this problem:

• Cache Event Streams in server memory, leveraging the fact that Events are immutable once written to an Event
Store. While querying the Event Store for any changes, we could supply a version of the last known Event and ask
only for those that occurred since then, if any. This can improve performance at the cost of memory consumption.
• Avoid loading and replaying a large portion of an Event Stream by taking a snapshot of each Aggregate instance.
This way, while loading any Aggregate instance, you just need to find its latest snapshot and then replay any Events
that were appended to the Event Stream since it was taken.

As seen in Figure A.12, snapshots are just serialized copies of an Aggregate’s full state, taken at certain moments in time,
that reside in the Event Stream as specific versions. They can be persisted in a Repository encapsulated behind a simple
interface like this:
Click here to view code image

public interface ISnapshotRepository
{
 bool TryGetSnapshotById<TAggregate>(
 IIdentity id, out TAggregate snapshot, out int version);
 void SaveSnapshot(IIdentity id, TAggregate snapshot, int version);
}

Figure A.12. An Aggregate’s Event Stream with a snapshot of its state followed by two Events that occurred after the
snapshot was taken

We must record the Stream’s version along with each snapshot. With the version we can load the snapshot along with only
the Events that have occurred since the moment the snapshot was recorded. We first retrieve the snapshot as the base state of
the Aggregate instance, and then we load and replay all Events that occurred since the snapshot was taken:
Click here to view code image

// simple document storage interface
ISnapshotRepository _snapshots;

// our event store
IEventStore _store;

public Customer LoadCustomerAggregateById(CustomerId id)
{
 Customer customer;
 long snapshotVersion = 0;
 if (_snapshots.TryGetSnapshotById(
 id, out customer, out snapshotVersion))
 {
 // load any events since snapshot was taken
 EventStream stream = _store.LoadEventStreamAfterVersion(
 id, snapshotVersion);
 // replay these events to update snapshot
 customer.ReplayEvents(stream.Events);
 return customer;
 }
 else // we don't have any persisted snapshot
 {
 EventStream stream = _store.LoadEventStream(id);
 return new Customer(stream.Events);
 }
}

The method ReplayEvents() must be used to bring the Aggregate instance state up-to-date with the Events that occurred
since the latest snapshot. Remember that the Aggregate instance state is mutated from the point of the latest snapshot forward.
Thus, we will not be instantiating the Customer (in this example) using an Event Stream only. And we can’t just use Apply()
because it not only mutates the current state with the given Event, it also saves each Event it receives to the Changes
collection. Saving Events to Changes that are already in the Event Stream would cause serious bugs. Thus, we simply need to
implement the new method ReplayEvents():
Click here to view code image

public partial class Customer
{
 ...
 public void ReplayEvents(IEnumerable<IEvent> events)
 {
 foreach (var event in events)
 {
 Mutate(event);
 }
 }
 ...
}

Here’s some simple code for generating Customer snapshots:
Click here to view code image

public void GenerateSnapshotForCustomer(IIdentity id)
{
 // load all events from the start
 EventStream stream = _store.LoadEventStream(id);
 Customer customer = new Customer(stream.Events);
 _snapshots.SaveSnapshot(id, customer, stream.Version);
}

Snapshot generation and persistence can be delegated to a background thread. New snapshots would be produced only after
some set number of Events have occurred since the latest snapshot. These steps are indicated in Figure A.13. Since the
characteristics of each Aggregate type could be quite different, the snapshot threshold for each type can be tuned for specific
performance needs.

Figure A.13. An Aggregate’s snapshot is generated after a specific number of new Events have occurred.
One additional way to address performance concerns with A+ES Aggregates is to partition Aggregates among multiple

processes or machines by Aggregate identity. This partitioning can be accomplished using identity hashing or other algorithms
and can be combined with both Aggregate instance memory caching and Aggregate snapshots.

Implementing an Event Store
Let’s now actually implement a few different Event Stores that are suitable for use with A+ES. The Stores here are simple

and aren’t designed for extremely high performance, yet they will be good enough for most domains.
While the implementation for each of the various Event Stores is different, the contracts are the same:

Click here to view code image

public interface IEventStore
{
 // loads all events for a stream
 EventStream LoadEventStream(IIdentity id);
 // loads subset of events for a stream
 EventStream LoadEventStream(
 IIdentity id, int skipEvents, int maxCount);
 // appends events to a stream, throwing
 // OptimisticConcurrencyException another appended
 // new events since expectedversion
 void AppendToStream(
 IIdentity id, int expectedVersion, ICollection<IEvent> events);
}

public class EventStream
{
 // version of the event stream returned
 public int Version;
 // all events in the stream
 public IList<IEvent> Events = new List<IEvent>();
}

As illustrated in Figure A.14, the class implementing IEventStore is a project-specific wrapper around the more generic
and reusable IAppendOnlyStore. While the IEventStore implementation deals with serialization and strong typing, the
IAppendOnlyStore implementations provide low-level access to various storage engines.

Figure A.14. The characteristics of the higher-level IEventStore and the lower-level IAppendOnlyStore

Event Store Source Code
Full source code for the range of Event Stores with multiple storage implementations is available for download as part of
an A+ES sample project: http://lokad.github.com/lokad-iddd-sample/.

Here is the lower-level IAppendOnlyStore interface:
Click here to view code image

public interface IAppendOnlyStore : IDisposable
{
 void Append(string name, byte[] data, int expectedVersion = -1);
 IEnumerable<DataWithVersion> ReadRecords(
 string name, int afterVersion, int maxCount);
 IEnumerable<DataWithName> ReadRecords(
 int afterVersion, int maxCount);

http://lokad.github.com/lokad-iddd-sample/

 void Close();
}

public class DataWithVersion
{
 public int Version;
 public byte[] Data;
}

public sealed class DataWithName
{
 public string Name;
 public byte[] Data;
}

As you can see, IAppendOnlyStore deals with arrays of bytes instead of Event collections, and string names instead of
strongly typed identities. Class EventStore handles conversions between the two types of data.

The IAppendOnlyStore declares two distinct ReadRecords() methods. The first one listed is used to read Events within a
single Stream by their names, and the second one to read all Events in the Store. Both method implementations must always
read Events in the order in which they were persisted. As you have probably deduced, the first overloaded method is required
for rebuilding the state of a single Aggregate. The second ReadRecords() is used by the infrastructure to replicate Events, to
publish them without the need for two-phase commit, and to rebuild persistent read models such as are needed for CQRS-
based user interfaces.

A simple approach to serialization and deserialization—conversion between bytes and strongly typed Event objects—could
use the .NET BinaryFormatter:
Click here to view code image

public class EventStore : IEventStore
{
 readonly BinaryFormatter _formatter = new BinaryFormatter();

 byte[] SerializeEvent(IEvent[] e)
 {
 using (var mem = new MemoryStream())
 {
 _formatter.Serialize(mem, e);
 return mem.ToArray();
 }
 }

 IEvent[] DeserializeEvent(byte[] data)
 {
 using (var mem = new MemoryStream(data))
 {
 return (IEvent[])_formatter.Deserialize(mem);
 }
 }
}

Here’s how we can use serialization and deserialization to load an Event Stream:
Click here to view code image

readonly IAppendOnlyStore _appendOnlyStore;
...
public EventStream LoadEventStream(IIdentity id, int skip, int take)
{
 var name = IdentityToString(id);
 var records = _appendOnlyStore.ReadRecords(name, skip, take).ToList();
 var stream = new EventStream();

 foreach (var tapeRecord in records)
 {
 stream.Events.AddRange(DeserializeEvent(tapeRecord.Data));

 stream.Version = tapeRecord.Version;
 }
 return stream;
}

string IdentityToString(IIdentity id)
{
 // in this project all identities produce proper name
 return id.ToString();
}

Here we see how to append new Events to the Event Store by way of the IAppendOnlyStore:
Click here to view code image

public void AppendToStream(
 IIdentity id, int originalVersion, ICollection<IEvent> events)
{
 if (events.Count == 0)
 return;
 var name = IdentityToString(id);
 var data = SerializeEvent(events.ToArray());
 try
 {
 _appendOnlyStore.Append(name, data, originalVersion);
 }
 catch(AppendOnlyStoreConcurrencyException e)
 {
 // load server events
 var server = LoadEventStream(id, 0, int.MaxValue);
 // throw a real problem
 throw OptimisticConcurrencyException.Create(
 server.Version, e.ExpectedVersion, id, server.Events);
 }
}

Relational Persistence
The capabilities and strong consistency guarantees provided by relational databases make for the simplest approach to

implementing append-only persistence. The fact that many enterprises have already standardized on one or more relational
database products means there is little to no cost or learning curve to using them for Event Stores.

Since the MySQL database is a popular open source relational database server that is available on several platforms, we
will use it to implement an Event Store. The MySQLAppendOnlyStore implements IAppendOnlyStore, acting as an access
layer. It will be used to save Events as binary data into an ES_Events table, and to subsequently load those persisted Events.

Here’s the table definition, which manages an Event Stream for each Aggregate type in a Bounded Context:
Click here to view code image

CREATE TABLE IF NOT EXISTS `ES_Events` (
 `Id` int NOT NULL AUTO_INCREMENT, -- unique id
 `Name` nvarchar(50) NOT NULL, -- name of the stream
 `Version` int NOT NULL, -- incrementing stream version
 `Data` LONGBLOB NOT NULL -- data payload
)

To append an Event to a specific Stream using a transaction, use the following steps:
1. Begin a transaction.
2. Check if the Event Store changed from the expected version; if so, throw an exception.
3. If there are no concurrency conflicts, append the Events.
4. Commit the transaction.

Here is the source code for method Append():
Click here to view code image

public void Append(string name, byte[] data, int expectedVersion)
{
 using (var conn = new MySqlConnection(_connectionString))
 {
 conn.Open();
 using (var tx = conn.BeginTransaction())
 {
 const string sql =
 @"SELECT COALESCE(MAX(Version),0)
 FROM `ES_Events`
 WHERE Name=?name";
 int version;
 using (var cmd = new MySqlCommand(sql, conn, tx))
 {
 cmd.Parameters.AddWithValue("?name", name);
 version = (int)cmd.ExecuteScalar();
 if (expectedVersion != -1)
 {
 if (version != expectedVersion)
 {
 throw new AppendOnlyStoreConcurrencyException(
 version, expectedVersion, name);
 }
 }
 }

 const string txt =
 @"INSERT INTO `ES_Events` (`Name`, `Version`, `Data`)
 VALUES(?name, ?version, ?data)";

 using (var cmd = new MySqlCommand(txt, conn, tx))
 {
 cmd.Parameters.AddWithValue("?name", name);
 cmd.Parameters.AddWithValue("?version", version+1);
 cmd.Parameters.AddWithValue("?data", data);
 cmd.ExecuteNonQuery();
 }
 tx.Commit();
 }
 }
}

Reading from the IAppendOnlyStore is quite simple, requiring only a basic query. For example, this is how we get a list of
records for an Aggregate’s Event Stream:
Click here to view code image

public IEnumerable<DataWithVersion> ReadRecords(
 string name, int afterVersion, int maxCount)
{
 using (var conn = new MySqlConnection(_connectionString))
 {
 conn.Open();
 const string sql =
 @"SELECT `Data`, `Version` FROM `ES_Events`
 WHERE `Name` = ?name AND `Version`>?version
 ORDER BY `Version`
 LIMIT 0,?take";
 using (var cmd = new MySqlCommand(sql, conn))
 {
 cmd.Parameters.AddWithValue("?name", name);
 cmd.Parameters.AddWithValue("?version", afterVersion);
 cmd.Parameters.AddWithValue("?take", maxCount);
 using (var reader = cmd.ExecuteReader())
 {
 while (reader.Read())
 {
 var data = (byte[])reader["Data"];
 var version = (int)reader["Version"];
 yield return new DataWithVersion(version, data);

 }
 }
 }
 }
}

You will find the full source code for this MySQL-based Event Store with the rest of the sample code. A similar
implementation is provided for Microsoft SQL Server.

BLOB Persistence
Leveraging a database server (such as MySQL or MS SQL Server) will save you a lot of work. It saves significant effort in

dealing with concurrency management, file fragmentation, caching, and data consistency. Obviously, then, not using a database
product would require us to handle many of those concerns on our own.

However, if we did choose to brave a rougher road to Event Stores, we do have some help. For example, Windows Azure
Blob storage and simple file system storage are at our disposal, and the sample project includes implementations of both.

Let’s consider some design guidelines for building an Event Store without a database, some of which are summarized by
Figure A.15:

1. Our custom storage is composed of a set of one or more append-only binary large object (BLOB) files or their
equivalents. The component that writes to the storage locks it exclusively as it appends but allows for concurrent
reads.

Figure A.15. File-based BLOB storage using a strategy of one file for each Aggregate instance, containing one record
for each Event

2. Depending on your strategy, you could use just one BLOB store for all Aggregate types and instances for a
Bounded Context. Alternatively you could create one BLOB store for each Aggregate type, where all instances of a
given type would be stored. Or you could split up the BLOB stores for each Aggregate type by instance, where the
Event Stream for a single instance would be stored on its own.
3. When the writer component appends, it opens the appropriate BLOB store, writes to it, and maintains an index
into the store.
4. Regardless of the BLOB storage strategy in use, all new Events are appended to the end. Each record is composed
of a name, version, and binary data fields. This is similar to the way we store Event records to a relational database.
However, with a BLOB store we must prefix variable-length fields with the byte count length, and we also append a
hash code or cyclic redundancy check (CRC) to verify data integrity when the records are read.
5. BLOB-based append-only storage allows for enumeration of all Events across all Event Streams simply by
enumerating all files and their contents. In order to speed up disk seeks and reading Events for a specific Stream, we
would need to maintain a dedicated in-memory index and/or cache the Event Streams in memory. If memory caching
is used, each append would require the cache to be refreshed. Further, Aggregate state snapshots and file
defragmentation can also help to improve performance.
6. Of course, we can avoid many of the file system disk fragmentation issues by preallocating large regions of BLOB
file space as each file-based Event Stream is created.

This design is inspired by the Riak Bitcask model. You can read more details and explanations in the Riak Bitcask
architecture paper: http://downloads.basho.com/papers/bitcask-intro.pdf.

http://downloads.basho.com/papers/bitcask-intro.pdf

Focused Aggregates
While developing Aggregates with traditional persistence (for example, relational database without the use of Event

Sourcing), development friction from introducing a new Entity into the system or enriching an existing one can be noticeable.
We need to create new tables and define new mapping schemata and Repository methods. If our tendency is to resist such
development overhead, it can cause us to grow Aggregates as we concentrate more state structure and behaviors on each. It can
be much easier to add onto an existing Aggregate rather than to create a new one.

However, our bias can shift if Aggregates are more easily designed anew, and I assert that this is true when Event Sourcing
is in use. In my experience, Aggregates designed using A+ES tend to be smaller, which is one of the primary Aggregate Rules
of Thumb.

For example, for a company providing software as a service, a real-world customer might be represented with distinct
Aggregates focusing on different behavioral aspects:

• Customer:505 hosts behaviors for billing, invoicing, and general account management.
• Security-Account:505 maintains multiple users with access permissions for each.
• Consumer:505 tracks actual service consumption.

Each of these Aggregate types may be implemented in a different Bounded Context, each Bounded Context using different
technologies and architectural approaches. For example, the Consumer aspect might need to provide high scalability and deal
with consuming thousands of messages for customers each second. Assuming that is so, such an Event Stream should be hosted
in auto-scaling cloud fabric. Other aspects might be less demanding, allowing them to be hosted in a less demanding
environment.

Of course, Aggregates should never be designed to be arbitrarily small. We always want to design Aggregates to protect true
business invariants, and doing so may cause any given Aggregate to be composed of multiple Entities and a number of Value
Objects. Yet, the ease of using A+ES provides us with greater opportunity to strive for simple and efficient designs. This is an
advantage that should be embraced whenever possible.

In fact, sometimes it can be helpful to start domain modeling by defining the core of your Ubiquitous Language by defining
the primary incoming Commands and outgoing Events, as well as the behaviors that are performed. Only at a later stage would
we actually group some concepts as Aggregates, based on similarity, relevance, and business rules. Such an approach—even if
it is just a temporary development spike used as a part of a domain modeling exercise—can lead to a deeper understanding of
our core business concepts.

Read Model Projections
One of the common concerns of the A+ES design approach is how to query the Aggregates by their properties. Event

Sourcing does not provide a simple way to answer a question such as “What is the total amount of all customer orders within
the last month?” We would actually need to load every Customer instance, enumerate all of the Order instances within the last
month for each one, and calculate their total, which would be extremely inefficient.

This is where Read Model Projections can help. Read Model Projections can be realized through a simple set of Domain
Event subscribers that are used to generate and update a persistent Read Model. In other words, they project Events to a
persistent Read Model. When Event subscribers receive new Events, they calculate some query results and store them in the
Read Model for later consumption.

In a nutshell, a Projection is very similar to an Aggregate instance. As Events are received and handled, we use the data
from them to build the Projection’s state. Read Model Projections are persisted after each update and can be accessed by many
readers, both inside and outside the Bounded Context.

Projection Samples Are Available
More information about using Projections, including source code for various persistence scenarios and automatic
rebuilding of Read Models, is available in the sample project: http://lokad.github.com/lokad-cqrs/.

This is how we could define a Projection to capture all transactions for each Customer:
Click here to view code image

public class CustomerTransactionsProjection
{
 IDocumentWriter<CustomerId, CustomerTransactions> _store;

http://lokad.github.com/lokad-cqrs/

 public CustomerTransactionsProjection(
 IDocumentWriter<CustomerId, CustomerTransactions> store)
 {
 _store = store;
 }

 public void When(CustomerCreated e)
 {
 _store.Add(e.Id, new CustomerTransactions());
 }

 public void When(CustomerChargeAdded e)
 {
 _store.UpdateOrThrow(e.Id,
 v => v.AddTx(e.ChargeName, -e.Charge, e.NewBalance, e.TimeUtc));
 }

 public void When(CustomerPaymentAdded e)
 {
 _store.UpdateOrThrow(e.Id,
 v => v.AddTx(e.PaymentName, e.Payment, e.NewBalance, e.TimeUtc));
 }
}

This Projection class is similar to an Application Service designed for A+ES that uses lambdas. However, our Projection
reacts to Events rather than Commands and updates documents using IDocumentWriter, rather than updating Aggregate
instances.

The underlying Read Model is actually just a simple Data Transfer Object (DTO) [Fowler] that can be serialized and
persisted to some underlying storage by means of an IDocumentWriter:
Click here to view code image

[Serializable]
public class CustomerTransactions
{
 public IList<CustomerTransaction> Transactions =
 new List<CustomerTransaction>();

 public void AddTx(
 string name, CurrencyAmount change,
 CurrencyAmount balance, DateTime timeUtc)
 {
 Transactions.Add(new CustomerTransaction()
 {
 Name = name,
 Balance = balance,
 Change = change,
 TimeUtc = timeUtc
 });
 }
}

[Serializable]
public class CustomerTransaction
{
 public CurrencyAmount Change;
 public CurrencyAmount Balance;
 public string Name;
 public DateTime TimeUtc;
}

It is common practice to persist Read Models in a document database, although other options can be used. We may cache
Read Models in memory (for example, memcached instance), push them as documents into a content-delivery network, or
persist them in relational database tables.

In addition to scalability, one of the major advantages of Projections is that they are completely disposable. They can be
added, modified, or completely replaced at any time during the application’s lifetime. To replace the whole Read Model,

discard all existing Read Model data and generate new data by running your entire Event Stream through your Projection
classes. This process can be automated. It’s even possible to prevent any downtime while effecting full Read Model
replacement.

Use with Aggregate Design
Such Read Model Projections are frequently used to expose information to various clients (such as desktop and Web user

interfaces), but they are also quite useful for sharing information between Bounded Contexts and their Aggregates. Consider the
scenario where an Invoice Aggregate needs some Customer information (for example, name, billing address, and tax ID) in
order to calculate and prepare a proper Invoice. We can capture this information in an easy-to-consume form via
CustomerBillingProjection, which will create and maintain an exclusive instance of CustomerBilling-View. This Read
Model is available to the Invoice Aggregate through the Domain Service named IProvideCustomerBillingInformation.
Under the covers this Domain Service just queries the document store for the appropriate instance of the
CustomerBillingView.

Projections also enable us to share information between Aggregate instances in a loosely coupled and more maintainable
way. If at any point in time we need to change information returned by IProvideCustomerBillingView, we can do so without
modifying the Customer Aggregate. We only need to change the Projection implementation and rebuild the Read Models by
replaying all Events.

Events Enrichment
One of the more common problems with A+ES designs comes from their dual purpose. Events are used both for Aggregate

persistence and to communicate domain-level happenings around the enterprise by means of Event publishing.
For example, consider the following: A project management system allows customers to create new projects and archive

completed projects. Imagine that we publish a ProjectArchived Event each time a user archives a project. This Domain
Event could have this design:
Click here to view code image

public class ProjectArchived {
 public ProjectId Id { get; set; }
 public UserId ChangeAuthorId { get; set; }
 public DateTime ArchivedUtc { get; set; }
 public string OptionalComment { get; set; }
}

This information is rich enough to be used to reconstitute an archived Project using A+ES. However, designed in this way,
our Event could be rather problematic for publishers to consume.

Why? Consider the Projection for the ArchivedProjectsPerCustomer view, as illustrated in Figure A.16. It subscribes to
Events and maintains a list of archived projects per customer. In order to get the job done, this Projection will need the latest
information about things like

• Project names
• Names of customers
• Assignments of projects to customers
• Project archival Events

Figure A.16. Multiple Domain Events are consumed by a Projection and used to build up a view of a Read Model.
We can simplify this Projection significantly by enriching our Project-Archived Event with additional data members to

push relevant information. The additional data members would not be essential for reconstituting the state of the corresponding
Aggregate but would noticeably simplify our Event consumers. Consider this alternative Event contract:
Click here to view code image

public class ProjectArchived {
 public ProjectId Id { get; set; }
 public string ProjectName { get; set; }
 public UserId ChangeAuthorId { get; set; }
 public DateTime ArchivedUtc { get; set; }
 public string OptionalComment { get; set; }
 public CustomerId Customer { get; set; }
 public string CustomerName { get; set; }
}

Given this newly enriched Event, our ArchivedProjectsPerCustomerView generated by the Projection can be simplified
as seen in Figure A.17.

Figure A.17. Domain Events such as ProjectArchived can be consumed by Projection processors that generate view-
and report-specific Read Models.

A Domain Event rule of thumb says to design them with enough information to satisfy 80 percent of subscribers, even though
doing so would require Events to have more information than needed by a good number of subscribers. Remembering that we
want to ensure that view Projection processors have a rich set of Event data, we usually include

• Entity identifiers, which are the Event owners/masters, such as CustomerId is to Customer
• Names and other properties that are generally used for display purposes, such as ProjectName, CustomerName,
and the like

These are recommendations, not rules. They usually work well for enterprises that have a lot of different Bounded Contexts.
Monolithic Bounded Contexts benefit less from these suggestions, since they tend to maintain secondary lookup tables and
Entity maps. Of course, you are in the best position to know which properties should be included in your Events. Sometimes
it’s obvious just which properties belong in a given Event type, and for those refactoring is seldom required.

Supporting Tools and Patterns
Developing, building, deploying, and maintaining systems using A+ES require a set of patterns that can differ somewhat

from those of traditional systems. This section presents some patterns, tools, and practices that have proven quite useful when
using A+ES.

Event Serializers
It’s wise to choose a serializer that favors versioning and renaming Events. This is especially true early on in an A+ES

project as the domain model tends to evolve rapidly. Consider this Event, which is declared using a .NET implementation of
Protocol Buffers1 annotations:
Click here to view code image

[DataContract]
public class ProjectClosed {
 [DataMember(Order=1)] public long ProjectId { get; set; }
 [DataMember(Order=2)] public DateTime Closed { get; set; }
}

Now, if we were to serialize ProjectClosed using DataContractSerializer or JsonSerializer rather than Protocol
Buffers, any renamed members could easily break dependent consumers. For example, assume you rename the Closed property
ClosedUtc. Unless you take special care to map the renamed property in a consuming Bounded Context, you’d produce a
confusing error or produce buggy data:
Click here to view code image

[DataContract]
public class ProjectClosed {
 [DataMember] public long ProjectId { get; set; }
 [DataMember(Name="Closed"] public DateTime ClosedUtc { get; set; }
}

Protocol Buffers accommodates evolving serialization situations because it tracks contract members by integral tags, not
names. As can be seen in the following code, clients may successfully use either Close or CloseUtc as the property name. It
serializes objects extremely quickly and produces a very compact binary representation. Using Protocol Buffers, we can
rename Event properties without worrying about backward compatibility, reducing development friction in an evolving domain
model.
Click here to view code image

[DataContract]
public class ProjectClosed {
 [DataMember(Order=1)] public long ProjectId { get; set; }
 [DataMember(Order=2)] public DateTime ClosedUtc { get; set; }
}

Some additional cross-platform serialization tools include Apache Thrift, Avro, and MessagePack, giving a variety of
worthy options.

Event Immutability
Event Streams are considered to be immutable by nature. In order to keep the development model consistent with this

concept (and avoid undesirable side effects), Event contracts should be implemented as immutable. To do that with C# on
.NET, we mark fields as read-only and set values only via the constructor. Given the previous ProjectClosed Event, we can
make it an immutable implementation:
Click here to view code image

[DataContract]
public class ProjectClosed {
 [DataMember(Order=1)] public long ProjectId { get; private set }
 [DataMember(Order=2)] public DateTime ClosedUtc { get; private set; }
 public ProjectClosed(long projectId, DateTime closedUtc)
 {
 ProjectId = projectId;
 ClosedUtc = closedUtc;
 }
}

Value Objects
As discussed thoroughly in Value Objects (6), this is a pattern that can greatly simplify development and the evolution of

rich domain models. Using Value Objects, we compose cohesive primitive types into an explicitly named immutable type. For
instance, instead of declaring the identity of a project as a long, we would model an explicit ProjectId:
Click here to view code image

public struct ProjectId
{
 public readonly long Id { get; private set; }
 public ProjectId(long id)
 {
 Id = id
 }
 public override ToString() {
 return string.Format("Project-{0}", Id);
 }
}

We still use a long type to hold the actual identity number, but we use the ProjectId type to distinguish it from all others.
Value types are certainly not limited to unique identities. Other appropriate Value types include money objects (especially in
multicurrency systems), addresses, e-mails, measurements, and so on.

In addition to enrichment and expressiveness of Event and Command contracts, domain Value Objects bring more practical
benefits to A+ES implementations, like static type checking and IDE support. Consider the following scenario, where a
developer can accidentally misplace parameters of a simple Event constructor by passing them in the wrong order:
Click here to view code image

long customerId = ...;
long projectId = ...;
var event = new ProjectAssignedToCustomer(customerId, projectId);

This is an error that would not be caught by the compiler but might be found only through much debugging and frustration.
However, if you use Value Objects as identifiers, the compiler (and thus the IDE editor) would catch the error in passing the
CustomerId first and the ProjectId second:
Click here to view code image

CustomerId customerId = ...;
ProjectId projectId = ...;
var event = new ProjectAssignedToCustomer(customerId, projectId);

Benefits become even more apparent when you have flat contract classes with a large number of fields. For instance,
consider this Event (simplified from the actual production version):
Click here to view code image

public class CustomerInvoiceWritten {
 public InvoiceId Id { get; private set; }
 public DateTime CreatedUtc { get; private set; }
 public CurrencyType Currency { get; private set; }
 public InvoiceLine[] Lines { get; private set; }
 public decimal SubTotal { get; private set; }

 public CustomerId Customer { get; private set; }
 public string CustomerName { get; private set; }
 public string CustomerBillingAddress { get; private set; }
 public float OptionalVatRatio { get; private set; }
 public string OptionalVatName { get; private set; }
 public decimal VatTax { get; private set; }
 public decimal Total { get; private set; }
}

As you can imagine, dealing with a class having so many properties2 can be a bit complicated. We can refactor this large
Event to be more explicit and readable by refining its model according to existing domain concepts:
Click here to view code image

public class CustomerInvoiceWritten {
 public InvoiceId Id { get; private set; }
 public InvoiceHeader Header { get; private set; }
 public InvoiceLine[] Lines { get; private set; }
 public InvoiceFooter Footer { get; private set; }
}

The InvoiceHeader and InvoiceFooter constitute cohesive properties:
Click here to view code image

public class InvoiceHeader {
 public DateTime CreatedUtc { get; private set; }
 public CustomerId Customer { get; private set; }
 public string CustomerName { get; private set; }
 public string CustomerBillingAddress { get; private set; }
}

public class InvoiceFooter {
 public CurrencyAmount SubTotal { get; private set; }
 public VatInformation OptionalVat { get; private set; }
 public CurrencyAmount VarAmount { get; private set; }
 public CurrencyAmount Total { get; private set; }
}

We replaced the separate CurrencyType Currency and decimal SubTotal properties with a CurrencyAmount Value
Object. An added benefit is that this class could be enhanced with sanity check logic that prevents operations between amounts
expressed in different currencies and other inappropriate operations. The same goes for joining VAT information into a
separate Value Object that is then composed on the InvoiceFooter, along with the other invoice totals.

Wherever possible we should strive to employ Value Objects, whether for Command objects, Events, or Aggregate parts.
Obviously, using Value Objects in Commands and/or Events would require deploying them together, or even creating a

Shared Kernel (3). However, some deeply complex domains might require designing some Value Objects with extremely
involved business logic. In such cases, placing such Value Objects in a Shared Kernel merely for type-safe deserialization
would likely result in a brittle design. It could help to distinguish between simple shared classes used to deserialize Command
and Event data in a type-safe way from the more complex ones required by the Core Domain (2). That would mean creating
two sets of Value Object classes, those used exclusively by the Core Domain and those that are deployed with Command and
Event classes. The data held by the two is converted from one to the other as needed.

Depending on your taste, duplicating classes may seem more complex than necessary, leading you down the path of creating
accidental complexity in your systems. If that’s your opinion, it may be worth considering a different approach. One alternative
is to standardize serialized Events as a Published Language (3). As explained in Integrating Bounded Contexts (13), you
may choose to consume Event notifications using a dynamic typing approach. Doing so would eliminate the need for Event and
Value Object types being deployed to the consuming subscribers. As with all approaches, this one has trade-offs that must be
weighed.

Contract Generation
Maintaining hundreds of Event (and Command) contracts manually is both tedious and error prone. It’s usually more

efficient to express their definitions in some compact domain-specific language (DSL) that can be used for simple code
generation, by building correct classes at build time. There are several ways to formulate a DSL syntax, and we might consider
the Protocol Buffer .proto format or a similar one to be the way to go. For example, you may find this approach useful:
Click here to view code image

CustomerInvoiceWritten!(InvoiceId Id, InvoiceHeader header,
 InvoiceLine[] lines, InvoiceFooter footer)

A simple code generator can use the parsed DSL to generate code for each source line. Note one example here, where the
CustomerInvoiceWritten is generated from the preceding DSL:
Click here to view code image

[DataContract]
public sealed class CustomerInvoiceWritten : IDomainEvent {
 [DataMember(Order=1) public InvoiceId Id
 { get; private set; }
 [DataMember(Order=2) public InvoiceHeader Header
 { get; private set; }
 [DataMember(Order=3) public InvoiceLine[] Lines
 { get; private set; }
 [DataMember(Order=4) public InvoiceFooter Footer
 { get; private set; }
 public CustomerInvoiceWriter(
 InvoiceId id, InvoiceHeader header, InvoiceLine[] lines,
 InvoiceFooter footer)
 {
 Id = id;
 Header = header;
 Lines = lines;
 Footer = footer;
 }

 // required by serializer
 ProjectClosed() {
 Lines = new InvoiceLine[0];
 }
}

This has the following practical benefits:
• It reduces development friction by enabling faster domain modeling iterations.
• It reduces the probability of human errors common with manual labor.
• The compact representation allows us to keep all Event definitions on a single screen, providing a big-picture view
for improved insight. This can even serve as a terse glossary to the Ubiquitous Language.
• We can version and distribute Event contracts as compact definitions instead of requiring source or binary code.
This might even serve to enhance collaboration between various teams.

The same can be applied to Command contracts as well. The open source implementation of a DSL-based code generation
tool along with examples is available within the sample project.

Unit Testing and Specifications
Consider an added benefit of using Event Sourcing as we create unit tests. We can easily specify our tests in the form Given-

When-Expect, as follows:
1. Given Events in the past
2. When Aggregate method is called
3. Expect the following Events or an exception

Here’s how it works. Past Events are used to set up the state of an Aggregate at the beginning of the unit test. We then
execute the Aggregate method being tested, supplying test arguments and mock implementations of Domain Services as needed.
Finally, we assert the expected results by comparing Events produced by an Aggregate with expected Events.

This approach allows us to capture and verify behaviors associated with each Aggregate. At the same time, we stay

decoupled from the internals of the Aggregate state. This helps to reduce test fragility because development teams can change
and optimize each Aggregate implementation in any way, as long as the behavioral contracts are fulfilled as confirmed by the
unit tests.

It is possible to take this approach one step further by expressing the When clause directly using a Command, which is
passed to the appropriate Application Service hosting the Aggregate under test. This allows us to express the unit test as a
specification expressed completely in the terms of our Ubiquitous Language, either through code or by creating a DSL.

With just a little bit of code, such specifications can be automatically printed out as human-readable use cases that domain
experts can comprehend. These use case definitions can help project teams communicate better over domains with complex
behaviors, which enhances their modeling efforts.

Here’s a simple specification defined by a text document:
Click here to view code image

[Passed] Use case 'Add Customer Payment - Unlock On Payment'.

Given:
1. Created customer 7 Eur 'Northwind' with key c67b30 ...
2. Customer locked

When:
 Add 'unlock' payment 10 EUR via unlock

Expectations:
 [ok] Tx 1: payment 10 EUR 'unlock' (none)
 [ok] Customer unlocked

If this approach interests you, performing a Web search for “Event Sourcing Specifications” will result in detailed guidance.

Event Sourcing in Functional Languages
The implementation patterns outlined previously focused on an object-oriented approach, which is a good fit for

programming languages such as Java and C#. However, Event Sourcing is inherently functional in nature. Thus, it can be
successfully implemented with functional languages such as F# and Clojure. Doing so could potentially lead to more concise
code that performs optimally.

Here are some peculiarities of switching from an object-oriented to a functional approach for Aggregate implementations:
• We must switch from using a mutable object-oriented Aggregate state object to designing a simple immutable state
record with a collection of mutating functions. The mutating functions simply take a state record and Event
arguments, returning a new state record as the result. This is quite like the design of an immutable Value Object,
where its Side-Effect-Free Functions only produce new Values based on its own state and function arguments. Such
functions take the form Func<State, Event, State>.
• The current Aggregate state can be defined as a left fold of all past Events that are passed to the mutating functions.
• Aggregate methods can also be transformed into a collection of stateless functions, which take Command
parameters, Domain Services, and a state. Such functions return zero or more Events and take the form Func<TArg1,
TArg2..., State, Event[]>.
• An Event Store can be perceived and communicated as a functional database, because it persists the arguments to
functions that mutate Aggregate state. Supporting snapshots in a functional Event Store is familiar to functional
programmers under the name memoization.

A development spike that captures core business concepts by means of A+ES in a functional programming language can
accelerate our domain modeling efforts. What is more, it forces us to shift our domain exploration focus away from Aggregate
structure toward a strict reflection of our domain’s Ubiquitous Language expressed by its behaviors. Anything that can help us
give more emphasis to the Core Domain and less to technology will likely drive out more value for the business and help it
achieve an even greater competitive advantage.

Bibliography

[Appleton, LoD] Appleton, Brad. n.d. “Introducing Demeter and Its Laws.” www.bradapp.com/docs/demeter-intro.html.

[Bentley] Bentley, Jon. 2000. Programming Pearls, Second Edition. Boston, MA: Addison-Wesley. http://cs.bell-
labs.com/cm/cs/pearls/bote.html.

[Brandolini] Brandolini, Alberto. 2009. “Strategic Domain-Driven Design with Context Mapping.”
www.infoq.com/articles/ddd-contextmapping.

[Buschmann et al.] Buschmann, Frank, et al. 1996. Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. New York: Wiley.

[Cockburn] Cockburn, Alastair. 2012. “Hexagonal Architecture.” http://alistair.cockburn.us/Hexagonal+architecture.

[Crupi et al.] Crupi, John, et al. n.d. “Core J2EE Patterns.”
http://corej2eepatterns.com/Patterns2ndEd/DataAccessObject.htm.

[Cunningham, Checks] Cunningham, Ward. 1994. “The CHECKS Pattern Language of Information Integrity.”
http://c2.com/ppr/checks.html.

[Cunningham, Whole Value] Cunningham, Ward. 1994. “1. Whole Value.” http://c2.com/ppr/checks.html#1.

[Cunningham, Whole Value aka Value Object] Cunningham, Ward. 2005. “Whole Value.” http://fit.c2.com/wiki.cgi?
WholeValue.

[Dahan, CQRS] Dahan, Udi. 2009. “Clarified CQRS.” www.udidahan.com/2009/12/09/clarified-cqrs/.

[Dahan, Roles] Dahan, Udi. 2009. “Making Roles Explicit.” www.infoq.com/presentations/Making-Roles-Explicit-Udi-
Dahan.

[Deutsch] Deutsch, Peter. 2012. “Fallacies of Distributed Computing.”
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing.

[Dolphin] Object Arts. 2000. “Dolphin Smalltalk; Twisting the Triad.” www.object-
arts.com/downloads/papers/TwistingTheTriad.PDF.

[Erl] Erl, Thomas. 2012. “SOA Principles: An Introduction to the Service-Oriented Paradigm.”
http://serviceorientation.com/index.php/serviceorientation/index.

[Evans] Evans, Eric. 2004. Domain-Driven Design: Tackling the Complexity in the Heart of Software. Boston, MA:
Addison-Wesley.

[Evans, Ref] Evans, Eric. 2012. “Domain-Driven Design Reference.”
http://domainlanguage.com/ddd/patterns/DDD_Reference_2011-01-31.pdf.

[Evans & Fowler, Spec] Evans, Eric, and Martin Fowler. 2012. “Specifications.”
http://martinfowler.com/apsupp/spec.pdf.

[Fairbanks] Fairbanks, George. 2011. Just Enough Software Architecture. Marshall & Brainerd.

[Fowler, Anemic] Fowler, Martin. 2003. “AnemicDomainModel.”
http://martinfowler.com/bliki/AnemicDomainModel.html.

[Fowler, CQS] Fowler, Martin. 2005. “CommandQuerySeparation.”
http://martinfowler.com/bliki/CommandQuerySeparation.html.

[Fowler, DI] Fowler, Martin. 2004. “Inversion of Control Containers and the Dependency Injection Pattern.”

http://www.bradapp.com/docs/demeter-intro.html
http://cs.bell-labs.com/cm/cs/pearls/bote.html
http://www.infoq.com/articles/ddd-contextmapping
http://alistair.cockburn.us/Hexagonal+architecture
http://corej2eepatterns.com/Patterns2ndEd/DataAccessObject.htm
http://c2.com/ppr/checks.html
http://c2.com/ppr/checks.html#1
http://fit.c2.com/wiki.cgi?WholeValue
http://www.udidahan.com/2009/12/09/clarified-cqrs/
http://www.infoq.com/presentations/Making-Roles-Explicit-Udi-Dahan
http://en.wikipedia.org/wiki/Fallacies_of_Distributed_Computing
http://www.object-arts.com/downloads/papers/TwistingTheTriad.PDF
http://serviceorientation.com/index.php/serviceorientation/index
http://domainlanguage.com/ddd/patterns/DDD_Reference_2011-01-31.pdf
http://martinfowler.com/apsupp/spec.pdf
http://martinfowler.com/bliki/AnemicDomainModel.html
http://martinfowler.com/bliki/CommandQuerySeparation.html

http://martinfowler.com/articles/injection.html.

[Fowler, P of EAA] Fowler, Martin. 2003. Patterns of Enterprise Application Architecture. Boston, MA: Addison-
Wesley.

[Fowler, PM] Fowler, Martin. 2004. “Presentation Model.” http://martinfowler.com/eaaDev/PresentationModel.html.

[Fowler, Self Encap] Fowler, Martin. 2012. “SelfEncapsulation.” http://martinfowler.com/bliki/SelfEncapsulation.html.

[Fowler, SOA] Fowler, Martin. 2005. “ServiceOrientedAmbiguity.”
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html.

[Freeman et al.] Freeman, Eric, Elisabeth Robson, Bert Bates, and Kathy Sierra. 2004. Head First Design Patterns.
Sebastopol, CA: O’Reilly Media.

[Gamma et al.] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design Patterns. Reading, MA:
Addison-Wesley.

[Garcia-Molina & Salem] Garcia-Molina, Hector, and Kenneth Salem. 1987. “Sagas.” ACM, Department of Computer
Science, Princeton University, Princeton, NJ. www.amundsen.com/downloads/sagas.pdf.

[GemFire Functions] 2012. VMware vFabric 5 Documentation Center. http://pubs.vmware.com/vfabric5/index.jsp?
topic=/com.vmware.vfabric.gemfire.6.6/developing/function_exec/chapter_overview.html.

[Gson] 2012. A Java JSON library hosted on Google Code. http://code.google.com/p/google-gson/.

[Helland] Helland, Pat. 2007. “Life beyond Distributed Transactions: An Apostate’s Opinion.” Third Biennial
Conference on Innovative DataSystems Research (CIDR), January 7–10, Asilomar, CA.
www.ics.uci.edu/~cs223/papers/cidr07p15.pdf.

[Hohpe & Woolf] Hohpe, Gregor, and Bobby Woolf. 2004. Enterprise Integration Patterns: Designing, Building, and
Deploying Messaging Systems. Boston, MA: Addison-Wesley.

[Inductive UI] 2001. Microsoft Inductive User Interface Guidelines. http://msdn.microsoft.com/en-
us/library/ms997506.aspx.

[Jezequel et al.] Jezequel, Jean-Marc, Michael Train, and Christine Mingins. 2000. Design Patterns and Contract.
Reading, MA: Addison-Wesley.

[Keith & Stafford] Keith, Michael, and Randy Stafford. 2008. “Exposing the ORM Cache.” ACM, May 1.
http://queue.acm.org/detail.cfm?id=1394141.

[Liskov] Liskov, Barbara. 1987. Conference Keynote: “Data Abstraction and Hierarchy.”
http://en.wikipedia.org/wiki/Liskov_substitution_principle. “The Liskov Substitution Principle.”
www.objectmentor.com/resources/articles/lsp.pdf.

[Martin, DIP] Martin, Robert. 1996. “The Dependency Inversion Principle.”
www.objectmentor.com/resources/articles/dip.pdf.

[Martin, SRP] Martin, Robert. 2012. “SRP: The Single Responsibility Principle.”
www.objectmentor.com/resources/articles/srp.pdf.

[MassTransit] Patterson, Chris. 2008. “Managing Long-Lived Transactions with MassTransit.Saga.”
http://lostechies.com/chrispatterson/2008/08/29/managing-long-lived-transactions-with-masstransit-saga/.

[MSDN Assemblies] 2012. http://msdn.microsoft.com/en-us/library/51ket42z%28v=vs.71%29.aspx.

[Nilsson] Nilsson, Jimmy. 2006. Applying Domain-Driven Design and Patterns: With Examples in C# and .NET.
Boston, MA: Addison-Wesley.

http://martinfowler.com/articles/injection.html
http://martinfowler.com/eaaDev/PresentationModel.html
http://martinfowler.com/bliki/SelfEncapsulation.html
http://martinfowler.com/bliki/ServiceOrientedAmbiguity.html
http://www.amundsen.com/downloads/sagas.pdf
http://pubs.vmware.com/vfabric5/index.jsp?topic=/com.vmware.vfabric.gemfire.6.6/developing/function_exec/chapter_overview.html
http://code.google.com/p/google-gson/
http://www.ics.uci.edu/~cs223/papers/cidr07p15.pdf
http://msdn.microsoft.com/en-us/library/ms997506.aspx
http://queue.acm.org/detail.cfm?id=1394141
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://www.objectmentor.com/resources/articles/lsp.pdf
http://www.objectmentor.com/resources/articles/dip.pdf
http://www.objectmentor.com/resources/articles/srp.pdf
http://lostechies.com/chrispatterson/2008/08/29/managing-long-lived-transactions-with-masstransit-saga/
http://msdn.microsoft.com/en-us/library/51ket42z%28v=vs.71%29.aspx

[Nijof, CQRS] Nijof, Mark. 2009. “CQRS à la Greg Young.” http://cre8ivethought.com/blog/2009/11/12/cqrs--la-greg-
young.

[NServiceBus] 2012. www.nservicebus.com/.

[Öberg] Öberg, Rickard. 2012. “What Is Qi4j™?” http://qi4j.org/.

[Parastatidis et al., RiP] Webber, Jim, Savas Parastatidis, and Ian Robinson. 2011. REST in Practice. Sebastopol, CA:
O’Reilly Media.

[PragProg, TDA] The Pragmatic Programmer. “Tell, Don’t Ask.” http://pragprog.com/articles/tell-dont-ask.

[Quartz] 2012. Terracotta Quartz Scheduler. http://terracotta.org/products/quartz-scheduler.

[Seovi] Seovi , Aleksandar, Mark Falco, and Patrick Peralta. 2010. Oracle Coherence 3.5: Creating Internet-Scale
Applications Using Oracle’s High-Performance Data Grid. Birmingham, England: Packt Publishing.

[SOA Manifesto] 2009. SOA Manifesto. www.soa-manifesto.org/.

[Sutherland] Sutherland, Jeff. 2010. “Story Points: Why Are They Better than Hours?”
http://scrum.jeffsutherland.com/2010/04/story-points-why-are-they-better-than.html.

[Tilkov, Manifesto] Tilkov, Stefan. 2009. “Comments on the SOA Manifesto.”
www.innoq.com/blog/st/2009/10/comments_on_the_soa_manifesto.html.

[Tilkov, RESTful Doubts] Tilkov, Stefan. 2012. “Addressing Doubts about REST.” www.infoq.com/articles/tilkov-rest-
doubts.

[Vernon, DDR] Vernon, Vaughn. n.d. “Architecture and Domain-Driven Design.” http://vaughnvernon.co/?page_id=38.

[Vernon, DPO] Vernon, Vaughn. n.d. “Architecture and Domain-Driven Design.” http://vaughnvernon.co/?page_id=40.

[Vernon, RESTful DDD] Vernon, Vaughn. 2010. “RESTful SOA or Domain-Driven Design—A Compromise?” QCon SF
2010. www.infoq.com/presentations/RESTful-SOA-DDD.

[Webber, REST & DDD] Webber, Jim. “REST and DDD.” http://skillsmatter.com/podcast/design-architecture/rest-and-
ddd.

[Wiegers] Wiegers, Karl E. 2012. “First Things First: Prioritizing Requirements.”
www.processimpact.com/articles/prioritizing.html.

[Wikipedia, CQS] 2012. “Command-Query Separation.” http://en.wikipedia.org/wiki/Command-query_separation.

[Wikipedia, EDA] 2012. “Event-Driven Architecture.” http://en.wikipedia.org/wiki/Event-driven_architecture.

[Young, ES] Young, Greg. 2010. “Why Use Event Sourcing?” http://codebetter.com/gregyoung/2010/02/20/why-use-
event-sourcing/.

http://cre8ivethought.com/blog/2009/11/12/cqrs--la-greg-young
http://www.nservicebus.com/
http://qi4j.org/
http://pragprog.com/articles/tell-dont-ask
http://terracotta.org/products/quartz-scheduler
http://www.soa-manifesto.org/
http://scrum.jeffsutherland.com/2010/04/story-points-why-are-they-better-than.html
http://www.innoq.com/blog/st/2009/10/comments_on_the_soa_manifesto.html
http://www.infoq.com/articles/tilkov-rest-doubts
http://vaughnvernon.co/?page_id=38
http://vaughnvernon.co/?page_id=40
http://www.infoq.com/presentations/RESTful-SOA-DDD
http://skillsmatter.com/podcast/design-architecture/rest-and-ddd
http://www.processimpact.com/articles/prioritizing.html
http://en.wikipedia.org/wiki/Command-query_separation
http://en.wikipedia.org/wiki/Event-driven_architecture
http://codebetter.com/gregyoung/2010/02/20/why-use-event-sourcing/

Index

A
Abstract classes, in modules, 338
Abstract Factory pattern, 389
Abstraction, Dependency Inversion Principle and, 123
Access management, identity and, 91–92
ACID databases, 521
ACL. See Anticorruption Layer (ACL)
Active Record, in Transaction Scripts, 441
ActiveMQ, as messaging middleware, 303
Actor Model, 295
Adapters. See also Hexagonal Architecture

Domain Services use for integration, 280
handling client output types, 529–530
Hexagonal Architecture and, 126–127
Presentation Model as, 519
for REST client implementation, 465–466

Aggregate Root query interface, 516
Aggregate Stores

distributed caches of Data Fabrics as, 164
persistence-oriented repositories and, 418

Aggregate-Oriented Databases, 418
Aggregates. See also A+ES (Aggregates and Event Sourcing)

Application Services and, 120–121
avoiding dependency Injection, 387
behavioral focus of, 569–570
Context Maps and, 90
cost estimates of memory overhead, 372–373
creating and publishing Events, 287
decision process in designing, 379–380
designing, 573
designing based on usage scenarios, 375–376
Domain Events with Aggregate characteristics, 294–295
Event Sourcing and, 160–162, 539
eventual consistency, 364–367, 376–378
executives and trackers merged in, 156
factories on Aggregate Root, 391–392
global transactions as reason to break design rules, 369
implementing, 380
information hiding (Law of Demeter and Tell, Don’t Ask), 382–384
invariant determination in creating clusters, 353–355
lack of technical mechanisms as reason to break design rules, 368–369
local identity of Entities and, 177
mediators publishing internal state of, 514–515
memory consumption and, 374–375
model navigation and, 362–363
motivations for Factory use, 389
as object collections, 203
optimistic concurrency, 385–387

organizing into large clusters, 349–351
organizing into smaller units, 351–353
overview of, 347–348
placing in repository, 401
query performance as reason to break design rules, 369–370
querying repositories and, 138
references between, 359–362
removing from repository, 409
rendering Data Transfer Objects, 513–514
rendering Domain Payload Objects, 515–516
rendering properties of multiple instances, 512–513
rethinking design, 370–372
review, 388
Root Entity and, 380–382
scalability and distribution of, 363–364
in Scrum Core Domain, 348–349
single-aggregate-instance-in-single-transaction rule of thumb, 302
size of Bounded Contexts and, 68
small Aggregate design, 355–358
snapshots of, 559–561
as Standard Type, 237
state of, 516–517
storing in Data Fabrics, 164
synchronizing instances in local Bounded Context, 287
tactical modeling tools, 29
results of asking whose job it is, 378–379
usage scenarios applied to designing, 373–374
use cases and, 358–359
user interface convenience as reason to break design rules, 367–368
Value Objects preferred over Entities when possible, 382

Aggregates and Event Sourcing (A+ES)
advantages of, 539–540
Aggregate design, 573
BLOB persistence, 568–569
Command Handlers, 549–553
concurrency control, 554–558
contract generation and maintenance, 580–581
drawbacks of, 540
event enrichment, 573–575
event immutability, 577
event serializers, 576–577
event sourcing in functional languages, 583
focusing Aggregates on different behavioral aspects, 569–570
implementing event stores, 561–565
inside Application Services, 541–549
lambda syntax, 553–554
overview of, 539
performance issues, 558–561
Read Model Projections, 570–572
relational persistence, 565–567
structural freedom with, 558
tools and patterns supporting, 576

unit tests and specifications, 582–583
Value Objects and, 577–580

Agile Manifesto, 82
Agile modeling

benefits of DDD, 28
design and, 55

Agile Project Management (APM), 177
Agile Project Management Context

calculation process from, 277
Context Maps and, 104
as Core Domain, 98
integrating with Collaboration Context, 107–110
integrating with Identity and Access Context, 104–107
modeling Domain Event from, 288–289
modules, 340–343
overview of, 82–84
ProjectOvation as example of, 92
Value Objects and, 239

Ajax Push (Comet), 147
Akka, as messaging middleware, 303
Anemia, 14–16
Anemia-induced memory loss, 16–20
Anemic Domain Model

avoiding, 426
causes of, 14–15
determining health of Domain Model and, 13
DTOs mimicking, 532
overuse of services resulting in, 268
overview of, 13
presence of anemia everywhere, 15–16
what anemia does to your model, 16–17

Anticorruption Layer (ACL)
Bounded Context relationships, 93–94
built-in, 532
defined, 101
implementing, 469
implementing REST clients and, 463–469
synchronizing team members with identities and roles, 340–341

APIs (application programming interfaces)
creating products, 482–483
integration basics and, 450–451
opening services and, 510

APM (Agile Project Management), 177. See also Agile Project Management Context
Application Layer

composing multiple Bounded Contexts and, 531–532
creating and naming modules of non-model components, 343–344
DIP (Dependency Inversion Principle) and, 124
in Layers Architecture, 119–121
managing transactions in, 433–434

Application programming interfaces. See APIs (application programming interfaces)
Application Services, 68

controlling access and use of Aggregates, 541–549

decoupling service output, 528–530
delegation of, 461–462
Domain Services compared with, 267
enterprise component containers, 534–537
example, 522–528
Hexagonal Architecture and, 126-128
infrastructure and, 509, 532–534
in Layers Architecture, 120–121
message handler, 293
overview of, 521
passing commands to, 550
performing business operations, 545
reasons for not wanting business logic in, 279–280
registering subscribers to Domain Events, 300–302
transactional service in multiple-Aggregate design, 352–353

Applications
Bounded Contexts and, 66–68
composing multiple Bounded Contexts, 531–532
dealing with multiple, disparate clients, 517–518
defined, 510
enterprise component containers, 534–537
generating identity of Entities, 175–178
infrastructure and, 532–534
mediators, 514–515
overview of, 509–511
rendering Aggregates, 515–516
rendering domain objects, 512–513
rendering DTOs, 513–514
rendition adapters and user edit handling, 518–521
representing state of Aggregate instances, 516–517
review, 534–537
task management for, 549
use case optimal repository queries, 517
user interface, 512

Architects, benefits of DDD to, 5–6
Architecture

Application Services and, 521
benefits of Aggregates, 540
Bounded Contexts and architectural issues, 68
Context Maps for, 90
CQRS. See CQRS (Command-Query Responsibility Segregation)
creating and naming modules of non-model components, 343–344
data fabric and grid-based distributed computing. See Data fabrics
decision process (in fictitious interview), 115–119
DIP (Dependency Inversion Principle) and, 123–125
event driven. See EDA (event-driven architecture)
Layers Architecture pattern, 119–123
overview of, 113–114
Ports and Adapters. See Hexagonal Architecture
REST. See REST (Representational State Transfer)
review, 168–169
SOA (Service-Oriented Architecture), 130–133

Archived logs
finding notification, 315
publishing NotificationLog, 319–323
what they are, 313

Assertions, design-by-contract approach and, 208
Assessment view, for understanding problem space, 57
Attributes, validating Entities, 208–211
Audit logs, 308
Authentication

deciding where to place technical components, 272–275
example of where to use a Domain Service, 269–271
testing authentication service, 281–284
of users, 198

Autonomous services and systems, Domain Events and, 305–306

B
Behaviors

essential Entity behaviors, 196–200
focusing Aggregates on different behavioral aspects, 569–570
modeling Domain Events, 291–293
naming object behaviors, 31–32
patching classes with specialized behaviors, 225–226
repositories and, 430–432

Big Ball of Mud
Bounded Contexts, 93–94
collaboration issues and, 76
failure from not using strategic design, 55
interfacing with, 88–89

Binary JSON (BSON), 426
Bitcask model, Riak, 569
BLOB (binary large object) persistence, 568–569
Boundaries

Context Maps and, 90
exchanging information across system boundaries, 452–458
modules and, 344

Bounded Context. See also Integrating Bounded Contexts
abstract business domain with Subdomains and, 50
Aggregate discovery in, 353–354
Agile Project Management Context and, 82–84
alignment with Subdomains, 57, 60
alignment with technical components, 71–72
assigning identity of Entities, 182–183
bank accounts example, 64
book publishing example, 64–65
business value and, 28
Collaboration Context. See Collaboration Context
combining DDD and RESTful HTTP and, 137
communicating Domain Events across, 286
communicating to remote, 303
composing multiple, 531–532
context is king, 63
Context Maps. See Context Maps

contextual boundaries and, 344
Core Domain and, 35
encompassing more than Domain Model, 66–68
examples, 72–73
explicit and linguistic nature of, 62
Identity and Access Context, 80–81
integrating with Subdomains, 46
integration between, 49–50, 450–451
linguistic boundaries, 48
mapping, 64
module name identifying, 337–339
naming, 54
overview of, 20
persistence of, 558
repositories and, 402
SaaSOvation case study, 65–66
size of, 68–71
SOA and, 132–133
solution space and, 57
Ubiquitous Language and, 25
whiteboard illustration of Subdomain and, 51

BSON (binary JSON), 426
Builder pattern, 389
Bundles, OSGi, 336
Business analysts, benefits of Ubiquitous Language to, 21
Business processes, uses of Domain Services, 268
Business services, 66–68. See also Applications
Business strategies, 132
Business value, of DDD

clean boundaries around models, 28
domain experts contributing to software design, 27
improved organization of enterprise architecture, 28
improved user experience, 27–28
overview of, 25–26
precise and refined understanding of business, 27
software development, 7–10
strategic and tactical tools, 28–29
useful Domain Models, 26–27

Business-driven architecture, 10
Business-level service, 9–10
BusinessPriority

testing for, 242
Ubiquitous Language and, 240
using Value type as Strategy, 243–244

C
C#

Application Service implemented in, 542
collections in, 403
namespaces, 333, 336–337

Cache
client cache, 316

Data Fabrics providing, 164–165
distributed, 147
Event Streams, 559
named cache strategies in Coherence, 422–424

Calculations
creating service for, 277–280
uses of Domain Services, 268

CalendarEntry instances, Factory examples, 392–395
Callback, 514–515
Capped Exponential Back-off, 365, 502, 553
Categorized style, CQRS Command Handlers, 143
Checks pattern language (Cunningham), 211
Classes

implementation classes for repository, 410–411
model in modules, 338
roles and, 200–201

Clear-text passwords, 274
Client and query processor, 141
Clients

dealing with multiple, disparate clients, 517–518
justification for domain modeling, 37
producing specific output types for, 528
RESTful HTTP clients, 136, 463–469

Client-server style, using Layers Architecture for, 115
Clojure, event sourcing in, 583
Clones, of Value Objects, 244
Cockburn, Alistair, 125
Code smells

Aggregate mis-design and, 432
indicating need of a service, 265
type hierarchies and, 439

Coherence (Oracle)
concurrency and, 385–386
distributed processing and, 167
implementing persistence-oriented repository, 420–425
persistence-oriented repositories and, 418–420
testing persistence-oriented repository, 442–445

Collaboration Context
designing and implementing, 74
facilitating synergistic workspace, 73
Factory Methods on Aggregates and, 391–392
implementing REST client, 463–469
integrating with Agile Project Management Context, 107–110
integrating with Identity and Access Context, 101–103
long-running processes (sagas) and, 488–490
mapping three contexts, 95–96
naming Bounded Context and, 54
responsibilities and, 476
Services as Factories and, 397–399
Value Objects preferred over Entities when possible, 382

Collaboration model, example from failure to use strategic design, 53–55
Collection-oriented repositories

background of collections and, 403–404
Hibernate implementation of. See Hibernate repository
mimicking set collections, 404–406
overview of, 402
persistent data store and, 406–407
tools for, 407

Columns, serialization of many Values into, 253–255
Comet (Ajax Push), 147
Command (write) model, in CQRS

client driving command processing, 143
command processors, 143–144
defined, 140
overview of, 144–145

Command Handlers
controlling task management for applications, 549–553
in CQRS, 143–144

Command objects
designing, 523
designing Command class, 527–528

Command-Query Responsibility Segregation. See CQRS (Command-Query Responsibility Segregation)
Command-Query Separation. See CQS (Command-Query Separation)
Commands

contract generation and maintenance, 580–581
controlling task management for applications, 549
CQRS, 139
passing to Application Services methods, 550

Communication
Context Maps facilitating inter-team, 88–89
of Domain Events across Bounded Context, 286
of Events to remote Bounded Contexts, 303

Complexity, Subdomains and, 46
Conceptual Wholeness characteristic, of Value Objects, 221, 223–226
Concurrency

concurrency control for Event Streams, 554–558
eventual consistency and, 365
persistence mechanisms for dealing with, 350

Conformist relationships
being forced into, 89
Bounded Context, 93
Context Maps and, 460

Consistency
eventual. See Eventual consistency
invariants and, 359
in modeling Aggregates, 349–351, 355
transactional. See Transactional consistency

Constructors
of Entities, 205–207
of Events, 291
fulfilling dependencies, 543
of Value class, 225
of Value Objects, 244

Containers, for enterprise components, 534–537

Context Maps
Agile Project Management Context and, 104
Bounded Context and, 25
business value from, 28
design approaches, 460
drawing, 89–91
forms of, 449
integrating Agile Project Management Context with Identity and Access Context, 104–107
integrating Collaboration Context with Agile Project Management Context, 107–110
integrating Collaboration Context with Identity and Access Context, 101–103
integration options in, 50
integration with, 182
iterative refinement of, 97–98
linguistic boundaries, 96
message-based approach to integration, 482
of organizational and integration patterns, 92–94
overview of, 87
in problem space assessment, 96–97
project and organizational relationships and, 91–92
review, 111
tool for shaping team judgment, 69
upstream/downstream relationships, 99–100
why essential, 87–89

Continuous Queries, Data Fabrics supporting, 166
Continuous modeling, benefits of DDD, 28
Contracts

design-by-contract approach and, 208
for Domain Events, 290
generating and maintaining, 580–581

Copy constructors, creating Value Objects, 244
Core Domain

aggregates in, 348–349
Agile Project Management Context as, 98, 239
in assessment of problem and solution spaces, 58–59
distinguishing between types of domains, 44
eliminating extraneous concepts, 69
focus on, 50–51
investing in what produces biggest benefit, 10
justification for domain modeling, 35, 37
module of Agile Project Management Context, 340
problem space in development of, 56–57
for SaaS Ovation Domain Model, 91
Transaction Script approach to modeling, 532
when to add, 47–48
whiteboard illustration of, 52

CQRS (Command-Query Responsibility Segregation)
client and query processor in, 141
client driving command processing, 143
code smell suggesting use of, 432
command (write) model, 144–145
command processors, 143–144
continuos queries, 166

dealing with inconsistency in query model, 146–147
Event Sourcing and, 160, 162
event subscriber updating query model, 145–146
eventual consistency and, 366
example of use of, 117
implementing Aggregates and Event Sourcing (A+ES), 540
overview of, 138–140
query (read) model, 141–142
references by identity and, 363
use case optimal query compared with, 517

CQS (Command-Query Separation)
defined, 139
in multiple-Aggregate design, 352
Query methods, 229
Side-Effect-Free Functions and, 245

CRC (cyclic redundancy check), BLOB data store and, 569
Critical path, justification for Domain Modeling, 36
CRUD-based systems

as alternative to Entities, 172
DAOs (Data Access Objects) and, 441

Cunningham, Ward, 211–212, 215, 223, 357
Current logs

HTTP GET method and, 313–315
publishing NotificationLog, 319–323

Customers, justification for Domain Modeling, 37
Customer-Supplier Development, Bounded Context relationships, 92, 94
Customer-Supplier relationship, 89
Cyclic redundancy check (CRC), BLOB data store and, 569

D
Dahan, Udi, 203
DAOs (Data Access Objects), 440–441
Data Fabrics

continuous queries, 166
data replication, 164–165
distributed processing, 167–168
domain modeling, 441
event-driven fabrics and Domain Events, 165–166
overview of, 163–164
persistence-oriented repositories and, 418

Data Mapper, use within Domain Model, 441
Data Model Leakage, 249–251
Data replication, 164–165
Data store

BLOB data store and, 569
persistence-oriented repositories and, 418–420

Data Transfer Objects. See DTOs (Data Transfer Objects)
Data Transformer

dealing with multiple, disparate clients, 517–518
for producing specific output types for clients, 528
type complexity and, 523

Databases

ACID, 521
functional, 583
many Values backed by database entity, 255–260
MySQL. See MySQL
NoSQL, 249, 418
relational, 543, 565–567

DDD (Domain-Driven Design), getting started
anemia-induced memory loss and, 16–20
benefits of, 26–29
benefits to architects and domain experts, 5–6
benefits to developers, 4–5
benefits to managers, 6
business value of, 25–26
case studies in presentation of, 38–39
challenges in applying, 29–34
delivering software with true business value, 7–10
determining Domain Model health, 13–14
justification for domain modeling, 34–37
modeling complex domains in simplest manner, 10
overview of, 1
reasons for implementing, 6–7
reasons for poor (anemic) domain health, 14–16
requirements for implementing, 2–4
review, 41–42
SaaSOvation case study, 40–41
scorecard for determining if project qualifies, 10–13
test-first approach, 37–38, 239–243
Ubiquitous Language and, 20–25

DDR (Domain Dependency Resolver), 516
Decision making

Aggregate design and, 379–380
fictitious interview and, 115–119
models providing tools for, 57

Decoupling service output
Application Services and, 528–530
decoupling service from client, 550–551
temporal decoupling, 551

Dedicated style, CQRS Command Handlers, 143
Deep clones, creating Value Objects, 244
Defensive programming, 210
Deferred Validation

of object compositions, 215
of whole objects, 211–212

Delegation
of Aggregate instances to DTO, 513–514
of Application Services, 461–462
self-delegation, 244, 248

DELETE method, HTTP, 135, 458
Dependency Injection

avoiding when implementing Aggregates, 387
fulfilling dependencies, 543
implicit lookup, 533

preventing client awareness of implementations, 276–277
Dependency Inversion Principle. See DIP (Dependency Inversion Principle)
Describing characteristic, of Value Objects, 221
Design

agile, 55
with modules, 333–336

Design Patterns and Contracts (Jezequel et. al.), 208
Design Patterns (Gamma et. al.), 389
Design rules, modules, 334–335
Design-by-contract approach, 208
Developers

benefits of DDD to, 4–5
benefits of Ubiquitous Language, 21
challenges in applying DDD, 30
delivering business value and, 8
how DDD helps in software development, 9
on level playing field with domain experts, 7

DIP (Dependency Inversion Principle)
example of use of, 115–116
Hexagonal Architecture and, 126
infrastructure and, 532
layering infrastructure, 411
Layers Architecture pattern and, 123–125
in UML, 510–511

Disconnected Domain Model, 362
Discussion instances, Factory examples, 395–397
Distributed Cache/Grid, data synchronization and, 147
Distributed Computing

Data Fabrics supporting, 167–168
principles of, 451

Distribution, Aggregate design and, 363–364
Documentation, in developing Ubiquitous Language, 22
Domain

the big picture, 43–44
mapping domain data to views. See CQRS (Command-Query Responsibility Segregation)
modeling complex, 10
problem space and solution space of, 56–58
with Subdomains and Bounded Contexts, 45

Domain Dependency Resolver (DDR), 516
Domain Event

with Aggregate characteristics, 294–295
architectural styles for forwarding stored Events, 312
assigning unique identifiers to, 156
autonomous services and systems and, 305–306
communicating to remote Bounded Contexts regarding, 303
contract for, 290
CQRS command model and, 144–145
CQRS query model and, 145–146
creating properties, 290–291
Data Fabrics and, 165–166
de-duplication, 329–331
enrichment, 294, 453, 471, 481, 573–575

Event Store and, 307–312
eventual consistency and, 108
Identity and Access Context and, 80, 104–105
identity of, 295–296
implementing, 318–319
latency tolerances, 306–307
messaging infrastructure consistency and, 303–304
modeling behavioral operations, 291–293
modeling Events, 288–289
naming and publishing, 289
overview of, 285
Published Language used in, 100
publishers and, 297–300
publishing, 121, 296–297
publishing message-based notifications, 324–329
publishing NotificationLog, 319–323
publishing notifications as RESTful resources, 312–317
publishing notifications using messaging middleware, 317–318
review, 324–329
subscribers and, 300–302
system autonomy and, 469
tactical modeling tools, 29
tracking changes, 216–217
when to use and why to use, 285–288

Domain Event Publisher, 121, 530
Domain experts

advantages of engaging, 3–4
availability of, 36
benefits of DDD to, 5–6
challenges of applying DDD, 29–30
contribution to software design, 27
in delivering business value, 8
influence on Ubiquitous Language, 21
involving in whiteboard drawing of domain, 52
on level playing field with developers, 7
in software development, 9

Domain Layer
accessing Infrastructure Layer, 121–122
creating and naming modules of non-model components, 343–344
DIP (Dependency Inversion Principle) and, 124
in Layers Architecture, 119
unidirectional and downward references from Infrastructure Layer, 411

Domain model
abstract business domains, 50
analyzing best model for business, 22
applications and, 509
benefit of, 26–27
Bounded Context encompassing more than, 66–68
characteristics of sound models, 69
clean boundaries around, 28
Data Fabrics and, 441
designing, 191

determining health of, 13–14
Disconnected Domain Model, 362
Factories in, 389–391
Hibernate and, 15–16
justification for, 34–37
modeling complex domains in simplest manner, 10
module naming conventions and, 339
publishing Domain Events from, 296–297
reducing costs of doing business, 57
SaaS Ovation example, 91
shielding from dependencies, 453
tailoring to specific business areas, 44
Value Objects in development of, 577–580
what anemia does to your model, 16–20
what it is, 4

Domain names, module naming conventions and, 337
Domain objects

with multiple roles, 200–205
rendering, 512–513

Domain Payload Objects (DPOs)
Presentation Model and, 520
rendering Aggregate instances from, 515–516

Domain Services
Application Services compared with, 120, 521, 526–527
Application Services supporting, 541
avoiding dependency injection, 387
in bad design example, 76
for business priorities, 231
calculation service, 277–280
creating Events, 295
determining need for, 268–272
mini-layer of, 281
model navigation and, 362–363
modeling, 272–275
overview of, 265–267
performing business operations, 545–546
providing Standard Types, 238
registering subscribers to Domain Events, 300–302
review, 284
Separated Interface and, 275–277
testing, 281–284
transformation services, 280
uses of, 268
for validating object compositions, 215–216
what they are and what they are not, 267–268

Don’t repeat yourself (DRY) principle, 6
Double-Dispatch

Domain Payload Objects and, 516
for handling client output types, 530
publishing internal state of Aggregates, 514–515

Downstream models, upstream models influencing, 99–100
DPOs (Domain Payload Objects)

Presentation Model and, 520
rendering Aggregate instances from, 515–516

Drawings, Context Maps, 89–91, 449
DRY (Don’t repeat yourself) principle, 6
DTO Assemblers, 141, 513
DTOs (Data Transfer Objects)

complexity and, 523
CQRS and, 141
Domain Payload Objects compared with, 515–516
mimicking Anemic Domain Model, 532
Presentation Model and, 520
querying repositories and, 138
Read Model Projections and, 572
rendering from Aggregate instances, 513–514

E
Eager loading strategy, 516
Eclipse, 71
EclipseLink, 407
EDA (event-driven architecture)

event sourcing, 160–163
example of use of, 117–118
integration implementation using, 469–508
leveraging eventual consistency, 108
long-running processes (sagas), 153–159
overview of, 147–149
Pipes and Filters and, 149–153

Editing, handling user edits, 518–521
Eiffel programming language, 208
EJB (Enterprise JavaBeans), 534
Encapsulation, power of self-encapsulation, 207
Encrypting passwords, 269–271
Enrichment, of Domain Events, 294, 453, 471, 481, 573–575
Enterprise architecture

Context Maps are not EA diagrams, 90
improving organization of, 28

Enterprise component containers, 534–537
Enterprise JavaBeans (EJB), 534
Enterprise resource planning (ERP)

delivering business value and, 8
Subdomains as modules in, 57

Entities
Aggregate with multiple Entities, 358
application assigning identity, 175–178
Bounded Context assigning identity, 182–183
clustering into Aggregate, 347
constructing, 205–207
creating and assigning identity, 410
developer focus on, 53
domain objects with multiple roles, 200–205
essential behaviors, 196–200
overview of, 171

persistence mechanism assigning identity of, 179–182
reasons for using, 171–173
refactoring as Value Objects, 357
repositories and, 402
review, 218
Root Entity, 380–382
stability of identity, 188–190
surrogate identities, 186–188
tactical modeling tools, 29
tracking changes, 216–217
uncovering Entities and their properties, 192–196
unique identity of, 156, 173–174
user providing identity, 174–175
validating attributes and properties, 208–211
validating object compositions, 215–216
validating whole objects, 211–215
Value Objects preferred when possible, 219–220, 382
when timing of identity generation matters, 183–186

Enum (Java)
enum-as-state objects, 261–263
support for Standard Types, 235–238

Equality, of Value Objects, 227–228
ERP (enterprise resource planning)

delivering business value and, 8
Subdomains as modules in, 57

Evans, Eric, 367, 510
Event Sourcing

aggregates and. See Aggregates and Event Sourcing (A+ES)
applying to DDD, 539
example of use of EDA and, 118
in functional languages, 583
overview of, 160–163
tracking changes and, 217
unit tests and specifications, 582–583

Event Store
Aggregate Event Stream persistence in, 539
BLOB persistence and, 568–569
committing Changes collection to, 547
functional databases and, 583
implementing, 561–565
implementing with relational database, 543
loading events from, 543–545
maintaining for Domain Events, 307–312
messaging infrastructure consistency and, 304
reconstituting Aggregate instance from, 545
tracking changes, 216–217

Event Streams
caching, 559
concurrency control, 554–558
immutability of, 577
overview of, 539–540

Event-based messages, in exchange of media between Bounded Contexts, 453–454

Event-driven architecture. See EDA (event-driven architecture)
Event-driven fabrics, 165–166
Events. See also Domain Event

Aggregates as series of, 539
architectural styles for forwarding stored, 312
consuming Events in local and foreign Bounded Contexts, 287
contract generation and maintenance, 580–581
de-duplication, 329–331
enrichment of, 573–575
immutability of, 577
incorporating into Ubiquitous Language, 287
loading from Event Store, 543–545
performing business operations, 545–546
Read Model Projections, 570–572
replicating and publishing, 547–548
serializing, 576–577
size of Bounded Contexts and, 68

Eventual consistency
acceptable update delay, 359
for execution outside Aggregate boundaries, 364–366
implementing in Aggregate design, 376–378
for multiple Aggregates, 364
technical mechanisms needed for, 368
vs. transactional consistency, 366–367

Execute(), 552
Executive, merging executives and trackers into Aggregates, 156
Explicit Copy-before-Write, collection-oriented repositories and, 407

F
F# language, 583
Facade

EJB Session Facades, 534
managing transactions and, 433–435
Presentation Model and, 520–521
services acting as, 68

Factories
on Aggregate Root, 391–392
for application-generated identities, 178
CalendarEntry instances example, 392–395
creating Aggregates, 121
creating Collaborator subclasses, 464–465
Discussion instances example, 395–397
in Domain Model, 389–391
Entity instantiations and, 207
overview of, 389
review, 400
of services, 276–277, 397–399

Factory Method
on Aggregate Root, 391–392
CalendarEntry instances example, 392–395
Design Patterns (Gamma et. al.) and, 389
Ubiquitous Language and, 390

Fallacies of Distributed Computing (Deutsch), 451
Fanout exchange, RabbitMQ, 317
Fielding, Roy T., 133–134
Filters. See Pipes and Filters
Finder methods, in repository interface, 409
Formats, for information exchange, 452
Fowler, Martin, 131, 164, 229, 276, 441
Functional databases, 583
Function/Entry Processor, 441
Functions, 228
Fundamental Identity pattern, 199–200

G
Gang of Four, 4
GemFire

concurrency and, 385–386
distributed processing and, 167
persistence-oriented repositories and, 418–420

Generic Subdomains
application support in, 509
assessment of problem space and solution space, 58, 61
defined, 52
Identity and Access Context and, 80
justification for domain modeling, 35
in SaaS Ovation Domain Model, 91

Generic utilities, patching in, 552–553
GET method, HTTP

applying HTTP verbs to resources, 135–136
requesting current logs, 313–315
RESTful notifications, 458

Given-When-Expect, unit tests, 582
Global transactions, as reason to break Aggregate design rules, 369
Globally unique identifiers. See GUIDs (globally unique identifiers)
Glossary, for developing Ubiquitous Language, 22
Google Protocol Buffers, 576–577
Graphical clients, 517
Graphical user interfaces (GUIs), 512
Greenfield development

Bounded Contexts and, 72
Context Maps in, 89

Grid Computing. See Data Fabrics
Guards

Entity assertions, 207
as form of validation, 208–211
parameter validity and, 248

GUIDs (globally unique identifiers)
assigning to Aggregate instances, 410
identity creation patterns and, 175
referencing Aggregate instances, 361–362

GUIs (graphical user interfaces), 512

H

HATEOAS (Hypermedia as the Engine of Application State), 136
Hedhman, Niclas, 357
Helland, Pat, 156, 363–364, 480
Hexagonal Architecture

adapter for RESTful HTTP port, 461
adapters for handling client output types, 529–530
advantages of, 129
EDA (event-driven architecture) and, 147–148
example of use of, 116
how ports and adapters work, 127
JAX-RS example, 128–129
module naming conventions and, 338
outside and inside dimensions of, 126
overview of, 125
ports, 126–127
versatility of, 129–130

Hibernate
enum-as-state objects and, 261–263
many Values backed by database entity, 255–260
many Values backed by join table, 260
optimistic concurrency, 350, 385–386
as persistence mechanism, 179–182, 373
for persistent Domain Models, 15
for persistent Value Objects, 251–253
serializing many Values into single column, 253–255
surrogate identities and, 186–188
theta joins supported by, 363
transaction management with, 432–437

Hibernate repository
creating and assigning identity, 410
implementation classes, 410–411
implementing methods, 412–415
interfaces for, 407–408
removing Aggregate instances, 409

HTML, 100
HTTP

API availability and, 450–451
methods (GET, PUT, POST, and DELETE), 313–315, 458
RESTful HTTP, 135–136, 450–451
standardization of, 134

Hypermedia as the Engine of Application State (HATEOAS), 136

I
IDE

alignment of Bounded Contexts with, 71
Value Objects supporting, 578

Idempotent, HTTP method, 136
Identity

access management and, 91–92
applications generating, 175–178
Bounded Contexts assigning, 182–183
creating Root Entity with unique identity, 380–382

of Domain Events, 294–296
persistence mechanism generating, 179–182
references between Aggregates, 359–361
referencing Aggregates by globally unique identity, 361–362
segregating types by, 439
stability of, 188–190
surrogate identities, 186–188
uniqueness of, 173–174
user providing, 174–175
when timing of creation matters, 183–186

Identity and Access Context
application support in, 509
centralizing security and permissions, 80–81
mini-layer of Domain Services and, 281
role assignments via, 200, 469–471, 480
service providing translation to Collaboration Context, 398
sessionProvider bean, 435–437
uncovering Entities and Entity properties, 192

Identity module, authentication service placed in, 273
Immutability

creating explicitly named immutable types, 577–578
of Events, 291, 577
instantiation not a guarantee of, 222
Side-Effect-Free Functions and, 228–229
testing for, 241
using immutable Values results in less responsibility, 232–233
of Value Objects, 221–223

Implementation classes, 275–276, 410–411
Implementations, technical, 273
Implementing

Aggregates and Event Sourcing (A+ES), 540, 561–565
Anticorruption Layer (ACL), 469
Collaboration Context, 74
Domain Events, 318–319
event stores, 543, 561–565
eventual consistency, 376–378
queues, 312
Value Objects, 243–248

Implementing Aggregates
avoiding dependency injection, 387
creating Root Entity, 380–382
information hiding (Law of Demeter and Tell, Don’t Ask), 382–384
optimistic concurrency, 385–387
overview of, 380
Value Objects preferred over Entities when possible, 382

Implementing DDD
reasons for, 6–7
requirements for, 2–4

Implementing repositories
classes, 410–411
Coherence in, 420–425
Hibernate in, 407–415

methods, 412–415
MongoDB in, 425–430
testing with in-memory implementations, 445–447
TopLink in, 416–417

Implementing RESTful resources
Bounded Contexts and, 459–462
HTTP clients, 463–469
HTTP servers, 135–136

Implicit copy-on-read, track changes mechanism for persistence, 406–407
Implicit copy-on-write, track changes mechanism for persistence, 406–407
Information

exchanging across system boundaries, 452–458
hiding (Law of Demeter and Tell, Don’t Ask), 382–384

Infrastructure Layer
applications and, 532–534
creating and naming modules of non-model components, 343–344
DIP (Dependency Inversion Principle) and, 122–124
Domain Layer accessing, 121–122
housing technical implementations in module in, 273
in Layers Architecture, 119
unidirectional and downward references to Domain Layer, 411

In-memory editions, of repositories, 445–447
Instantiation, not a guarantee of immutability, 222
Integrating Bounded Contexts

Agile Project Management Context and, 109
DDD integrations and, 182
distributed systems and, 451
Domain Services and, 280
exchanging information across system boundaries, 452–458
feed based notifications, 105
implementing RESTful clients, 463–469
implementing RESTful resources, 459–462
integration basics, 450–451
integration between Bounded Contexts, 49–50
integration using RESTful resources, 458–459
long-running processes (sagas) and, 481–493
message-based approach to, 469
overview of, 449
process state machines and time-out trackers, 493–503
responsibilities and, 476–481
review, 508
Services as Factories and, 397
sophistication of design, 503–507
staying informed about product owners and team members, 469–476
with Subdomains, 46
technical characteristics of integration, 100
Value Objects and, 219–220
when messaging or system is unavailable, 507–508

Integration
Agile Project Management Context with Identity and Access Context, 104–107
Collaboration Context with Agile Project Management Context, 107–110
Collaboration Context with Identity and Access Context, 101–103

integration patterns, 92–94
of Value Objects, 232–233

IntelliJ IDEA, 71
Intention Revealing Interface, compliance with Ubiquitous Language, 197
Interfaces

for Hibernate repository, 407–408
Intention Revealing Interface, 197
reusable, 338
Separated Interface. See Separated Interface
user interfaces. See User Interface Layer

Intermediate formats, for information exchange, 452
Invariants

in Aggregate design, 371
consistency and, 359
determining true invariants when determining Aggregate clusters, 353–355
Entities and, 205

Inversion-of-control containers, Spring, 434–437
Iterative modeling, benefits of DDD, 28
Iterative refinement, of Context Maps, 97–98

J
Java

collections in, 403–404
enum support for Standard Types, 235–238
Java 8 Jigsaw modules, 336
MBean standard, 328
naming implementation classes, 275–276
packages, 333, 336–337
UUID generator, 176

JavaBeans, 15–16, 245–246
JDBC, auto-incrementing sequences, 182
Jigsaw modules, Java 7, 336
JMS, publishing Events to messaging infrastructure, 547
Join table, many Values backed by, 260
JSON

binary JSON format in MongoDB, 426
client integrators and, 462–463
format for information exchange, 452
published language and, 100

K
King, Gavin, 262
Knowledge

centralizing, 7–8
Principle of least knowledge, 383

L
Lambda syntax, 553–554
Latency

long-running processes (sagas) and, 159
low latency trading systems, 540
tolerances for Domain Events, 306–307

Law of Demeter, 382–384
Layer Supertype

managing surrogate identities and optimistic concurrency versioning, 380
many Values backed by database entity, 255–260
surrogate identities and, 187–188

Layers, 511
Layers Architecture

Application Layer, 119–121
architectural styles and, 511
client-server styles and, 115
creating modules, 343–344
DIP (Dependency Inversion Principle) and, 123–125
Domain Layer, 121–122
Infrastructure Layer, 122–123
naming modules, 338
overview of, 119
strict and relaxed, 120
User Interface Layer, 119

Lazy loading
Disconnected Domain Model and, 362
Domain Payload Objects and, 516
performance issues due to, 375

Learning curve, for DDD, 2
Legacy systems, integration with, 159
Linguistic boundaries

Bounded Context and, 48
Context Maps and, 96

Linguistics, as driver in DDD, 71
Liskov Substitution Principle (LSP), 438–439
Load balancing, 550–551
Logs

HTTP GET method and, 313–315
patching in, 552–553

Long-running processes
avoiding responsibility, 481–493
designing, 155
example of use of EDA, 118
executives and trackers and, 156–159
overview of, 153
stepping through, 154–156

Lookups. See Standard Types
LSP (Liskov Substitution Principle), 438–439

M
Managers, benefits of DDD to, 6
Martin, Robert C., 123
MassTransit, messaging middleware, 303
MBean standard, Java, 328
Meaningful Whole pattern, 223
Measurement characteristic, of Value Objects, 221
Media types in use, 453–458, 462, 467
Media types, resource URIs and, 104–105

Mediator pattern
Domain Payload Objects and, 516
for handling client output types, 530
loose coupling in Layers Architecture, 120
Presentation Model using, 520
publishing internal state of Aggregates, 514–515

Memoization, 583
Memory consumption, Aggregate design and, 374–375
Message-based approach, to Integrating Bounded Contexts

long-running processes (sagas) and avoiding responsibility, 481–493
overview of, 469
responsibilities and, 476–481
staying informed about product owners and team members, 469–476
when messaging or system is unavailable, 507–508

Message-oriented middleware (MoM)
published notifications, 317–318
SOA services and, 267

Messaging
Command Handlers and, 143
dealing with multiple, disparate clients, 517
Event messages, 295
infrastructure consistency and, 303–304
in Infrastructure Layer, 122
integration basics, 450
message handlers, 550
publishing Events to messaging infrastructure, 547

Meyer, Bertrand, 139, 208, 229
Midlevel developer, benefits of DDD to, 4–5
Mini-layer of Domain Services, 281
Mission statements, Ubiquitous Language in, 27
Models/modeling

Actor Model, 295
Aggregate models, 348
collaboration model, 53–55
continuous modeling as benefit of DDD, 28
CQRS command model and, 144–145
CQRS query model and, 145–146
Data Model Leakage, 249–251
Domain Event behaviors, 291–293
Domain Events, 288–289
Domain Model. See Domain model
Domain Services, 272–275
identities and, 194
navigation and, 362–363
Presentation Model. See Presentation Model
pull vs. push models, 312
tactical modeling, 29, 75
tactical modeling vs. strategic modeling, 34
Transaction Script approach to, 532
understanding invariants in consistency boundaries, 353–355
Unified Modeling Language. See UML (Unified Modeling Language)
upstream models influencing downstream, 99–100

Model-View-Presenter (Dolphin), 518
Modules

Agile Project Management Context and, 110, 340–343
application support in, 510
avoiding miniature Bounded Contexts, 70
composing multiple Bounded Contexts, 531
contextual boundaries and, 344
designing with, 333–336
drawing Context Maps and, 90
hiding technical classes in, 122
housing technical implementations in Infrastructure Layer, 273
naming conventions, 336–339
of non-model components, 343–344
overview of, 333
publisher in, 297
review, 344
separating Subdomain from Core Domain, 48
size of Bounded Contexts and, 68
Subdomains as ERP modules, 57
Table module in Transaction Scripts, 441

MoM (Message-oriented middleware)
published notifications, 317–318
SOA services and, 267

MongoDB
concurrency and, 385–386
implementing persistence-oriented repository, 425–430
persistence-oriented repositories and, 418–420

MSMQ, 547
Multichannel publishing, 325
Mutability Values, 221
Mutate(), 552
MySQL

auto-incrementing sequences, 180–182
BLOB persistence, 568–569
relational persistence, 565–567
serialization of many Values into single column, 254–255
Value Object persistence, 251–253

N
Namespaces, C#, 333, 336–337
Naming conventions

Bounded Context model, 337–339
Domain Events, 289
modules, 336–337

.NET, implementation of Protocol Buffers, 576–577
Newbie or junior developer, benefits of DDD to, 4
NoSQL databases, 249, 418
Notifications

event-carrying, 473–476
published using messaging middleware, 317–318
publishing as RESTful resources, 312–317
publishing message-based notifications, 324–329

publishing the NotificationLog, 319–323
as RESTful resource, 453–457

NServiceBus, 303

O
Object oriented languages, 403
Object schizophrenia, 202–203
Object-relational mapping. See ORM (object-relational mapping)
Objects

domain objects with multiple roles, 200–205
rendering domain objects, 512–513
validating object compositions, 215–216
validating whole Entities, 211–215
Value Objects. See Value Objects

Observer pattern
data synchronization and, 147
loose coupling in Layers Architecture, 120
multiparty activities, 364
publishing Domain Events with, 296

OHS. See Open Host Service (OHS)
Onion architecture. See Hexagonal Architecture
Open Host Service (OHS)

Bounded Context relationships, 93–94
Context Maps and, 460
defined, 100
Layers Architecture pattern and, 120
service-oriented components in Bounded Context, 67

Open Session In View (OSIV), 516
Optimistic concurrency

Hibernate providing, 350
Layer Supertype and, 380
usage scenarios applied to Aggregate design, 373–374
version attribute and, 385–387

Oracle
auto-incrementing sequences, 179–180
Coherence. See Coherence
TopLink. See TopLink

Organizational patterns, 92–94
Organizational relationships, Context Maps and, 91–92
ORM (object-relational mapping)

enum-as-state objects, 261–263
Event Sourcing contrasted with, 162
Hibernate tool and. See Hibernate
many Values backed by database entity, 255–260
many Values backed by join table, 260
persistence and, 249
serialization of many Values into single column, 253–255
single Value Objects, 251–253

OSGi bundles, 336
OSIV (Open Session In View), 516

P

Packages, Java, 333, 336–337
Parallel processing, 159
Partner activities (Helland), 156
Partnerships

Bounded Context relationships, 92
reference by identity forming, 364

Passwords
encrypting, 269–271
testing authentication service, 281–284

Performance issues, Aggregates and Event Sourcing (A+ES) and, 558–561
Permissions, centralizing in Identity and Access Context, 80–81
Persistence

Aggregates and Event Sourcing (A+ES) and, 558
BLOB persistence, 568–569
in Infrastructure Layer, 122
Read Model Projections, 570–572
relational persistence, 565–567
repositories and, 401
of Value Objects, 248–249

Persistence mechanisms
for dealing with concurrency, 350
generating identity of Entities, 179–182
using single transaction to manage consistency, 354

Persistence stores
collection-oriented repositories and, 406–407
generating identity of Entities, 178
messaging infrastructure consistency and, 304
Value Objects and, 248–250

Persistence-oriented repositories
Coherence implementation of, 420–425
MongoDB in implementation of, 425–430
overview of, 418–420

Pipes and Filters
basic characteristics of, 150–151
EDA and, 118
how it works, 149–150
long-running processes (sagas) and, 153–159
message-based systems and, 149
messaging approach, 151–152

PL. See Published Language (PL)
Polling models, 312
Ports and Adapters architecture. See Hexagonal Architecture
POST method, HTTP, 135, 458
Power Types, modeling Standard Types as, 233
Presentation Model

Layers Architecture pattern and, 120
rendition adapters and user edit handling, 518–521
state representation of domain objects, 516

Primitive types, Application Services and, 522–523
Principle of least knowledge, 383
Priorities, business, 230–231
Problem space

assessing for Context Map, 96–97
of domains, 56–58

Process state machines, 493–503
Processes, long-running. See Long-running processes
Product owners

responsibilities and, 476–481
staying informed about, 469–476

Project relationships, Context Maps and, 91–92
Properties

Domain Events, 290–291
Entities, 208–211
Value Objects, 224–225

Protocol Buffers, 452, 576–577
Published Language (PL)

Bounded Context relationships, 93–94
combining DDD and RESTful HTTP, 137
defined, 100
information exchange and, 453
serializing Events as, 580

Publishers, Domain Events, 297–300
Publishing Domain Events

from Domain Model, 296–297
message-based notifications, 324–329
notifications published as RESTful resources, 312–317
notifications published using messaging middleware, 317–318
overview of, 289
publishing the NotificationLog, 319–323

Publish-Subscribe pattern
event notification and, 303
integration basics, 450
multiparty activities, 364
overview of, 296–297
publisher, 297–300
pull vs. push models, 312
subscriber, 300–302

Pull model, Publish-Subscribe pattern, 312
Push model, Publish-Subscribe pattern, 312
put(), Coherence cache and, 424
PUT method, HTTP

applying HTTP verbs to resources, 135
RESTful notifications and, 458

Q
Quantifying characteristic, of Value Objects, 221
Queries

Aggregate Root query interface, 516
Command-Query Responsibility Segregation. See CQRS (Command-Query Responsibility Segregation)
Command-Query Separation principle. See CQS (Command-Query Separation)
continuous queries, 166
query performance as reason to break Aggregate design rules, 369–370
repositories and, 138
use case optimal query, 432, 517

Query (read) model, in CQRS
client driving command processing, 143
command processors, 143–144
dealing with inconsistency in, 146–147
defined, 140
event subscriber updating query model, 145–146
overview of, 141–142
Query methods, 229

Queues, implementing, 312

R
RabbitMQ

abstraction layer around, 327
Event de-duplication, 329–331
Fanout exchange, 317
messaging middleware, 303
notifications from, 471–472
publishing Events, 547

Random number generators, for unique identifiers, 175
Read (query) model, in CQRS. See Query (read) model, in CQRS
Read Model Projections

persistence and, 570–572
use in Aggregate design, 573

Realization view, Bounded Contexts and, 57
Reference by identity

between Aggregates, 359–361
preferred by globally unique identity, 361–362
scalability and distribution of Aggregates and, 363–364

Relational databases
for implementing Event Store, 543
persistence and, 565–567

Relational persistence, 565–567
Relationships, Context Maps and, 90
Relaxed Layers Architecture, 120
Remote associations, reference by identity forming, 364
Remote procedure calls. See RPCs (remote procedure calls)
remove(), Coherence cache and, 424
Rendition adapters, 518–521
Replaceability, of Value Objects, 226–227
Replication

data replication, 164–165
event replication, 547–548

Repositories
accessing repository instances in Infrastructure Layer, 121–122
additional behaviors, 430–432
Anticorruption Layer (ACL) implemented via, 101, 469
avoiding dependency injection and, 387
in bad design example, 76
Coherence in implementation of, 420–425
collection-oriented, 402–407
Data Access Objects compared with, 440–441
Hibernate in implementation of, 407–415

identity generation and, 178
managing transactions, 432–437
model navigation and, 362–363
MongoDB in implementation of, 425–430
not accessing from Aggregate instances, 266, 279
obtaining Aggregate instances from, 121
overview of, 401–402
persistence-oriented, 418–420
querying, 138
reading Aggregate instances and delegating to DTO assemblers, 513–514
review, 448
testing, 129, 441–445
testing with in-memory implementations, 445–447
TopLink in implementation of, 416–417
type hierarchies in, 437–440

Responsibility Layers, refactoring model and, 77
Representational State Transfer. See REST (Representational State Transfer)
Responsibilities. See also Roles

avoiding, 481–493
integrating Bounded Contexts and, 476–481
of objects, 200
Single Responsibility principle, 270–271
team members and product owners and, 476–481
using immutable Values results in less responsibility, 232–233

REST (Representational State Transfer)
as architectural style, 133–134
creating/naming modules of non-model components, 343–344
DDD and, 136–138
Event Store feeding event notifications to clients, 307–308
in exchange of media between Bounded Contexts, 453–454
Hexagonal Architecture supporting, 130–132
HTTP clients, 136
HTTP servers, 135–136
implementing RESTful clients, 463–469
implementing RESTful resources, 459–462
Integrating Bounded Contexts, 458–459
integration basics, 450
publishing Events as RESTful resources, 312–317
service-oriented components in Bounded Context, 67
state representation of domain objects, 516

RIA (rich Internet applications)
dealing with multiple, disparate clients, 517
user interfaces and, 512

Riak
Bitcask model, 569
concurrency and, 385–386
persistence-oriented repositories and, 418–420

Rich Internet applications (RIA)
dealing with multiple, disparate clients, 517
user interfaces and, 512

Roles
assigning, 469–471

domain objects with multiple, 200–205
domain-specific, 463
event-carrying notification for, 473–476
overview of, 200
responsibilities and, 476–481

Root Entity
many Aggregates containing only single Entity, 357
optimistic concurrency and, 385–386
requires globally unique identity, 177

RPCs (remote procedure calls)
autonomous services and systems, 305–306
integration basics, 450–451
Open Host Service as, 100
system integration and, 103
system-level, 267

Ruby language
effecting class namespaces, 333
patching classes with specialized behaviors, 225–226

S
SaaS (software as a service), 40–41
Sagas. See Long-running processes
save()

Coherence cache and, 423
persistence-oriented repositories and, 418

Save-like Repository method, 418
Scalability

Aggregate design and, 363–364
limitations of single large-cluster Aggregate, 356
with Domain Events, 287, 316, 322

Scrum
Aggregate models and, 348
agile projects and, 82–83

Security
Application Services and, 521
centralizing in Identity and Access Context, 80–81
leveraging Spring Security, 525–526

Security patterns, 199–200
Segregated Core

creating, 77–78
team use of, 97

Self-delegation, 244, 248
Self-encapsulation, 248
Senior developer, benefits of DDD to, 5
Separate Ways, Bounded Context relationships, 93–94
Separated Interface

implementing REST client and, 464
modeling Domain Services and, 272
notification services and, 318
technical implementations and, 275–277

Serialization
of command objects, 550

conversion between bytes and strongly typed Event objects, 563–564
of events, 576–577
information exchange and, 452, 457–458
of many Values into single column, 253–255

Servers, RESTful HTTP servers, 135–136
Service Factories

fulfilling dependencies, 543
look up repository, 533–534

Service-oriented ambiguity (Fowler), 131
Service-Oriented Architecture. See SOA (Service-Oriented Architecture)
Services

Application Services. See Application Services
authentication services, 281–284
autonomous, 305–306
business services, 66–68
code smells indicating need for, 265
creating, 277–280
design principles for, 130
Domain Services. See Domain Services
factories of, 276–277, 397–399
notification services, 318
OHS. See Open Host Service (OHS)
opening, 510
SaaS (software as a service), 40–41
size of Bounded Contexts and, 68
SOA. See SOA (Service-Oriented Architecture)
stateless, 268
tactical modeling tools, 29
transactional services, 352–353
Web services, 67

Session
as alternative to repository, 402
Hibernate, 407

Session Facades, EJB (Enterprise JavaBeans), 534
Set collections, repositories mimicking, 404–406
Shallow copies, creating Value Objects, 244
Shared Kernel

Bounded Context relationships, 92
combining DDD and RESTful HTTP, 137
Context Maps and, 460
deploying Value Objects in Commands and/or in Events, 580
information exchange and, 452–453

Side-Effect-Free Functions
Event behaviors and, 294
Java enum and, 236
modeling on identities, 194
Value Objects and, 228–232

Simplification, benefits of DDD, 10
Single Responsibility, 143, 152, 270, 309
size(), for counting collection instances, 430–431
Smart UI Anti-Pattern, 67
Snapshots, of Aggregate state, 161–162, 559–561

SOA (Service-Oriented Architecture)
design principles for services, 130
example of use of, 117
goals of DDD and, 132–133
Hexagonal Architecture supporting, 130–131
how DDD helps, 10
services in, 267
SOA manifesto and, 131–132

SOAP (Simple Object Access Protocol)
APIs made available with, 450
Hexagonal Architecture supporting, 130–132
service-oriented components in Bounded Context, 67–68

Software
domain experts contributing to design, 27
with true business value, 9–10

Software as a service (SaaS), 40–41
Solution space

assessment of, 59–60
of domains, 56–58

Sophistication of design, integrating Bounded Contexts, 503–507
Specifications, 582–583
Spring

enterprise component containers, 534–537
inversion-of-control containers, 434–437
leveraging Spring Security, 525–526

Standard Types
Agile Project Management Context and, 108
consuming remote, 233
expressed as Values, 234–235, 238–239
Java enum for supporting, 235–238
type hierarchies and, 439–440

State
mediators publishing internal state of Aggregates, 514–515
persisting enum-as-state objects, 261–263
representing state of Aggregate instances, 516–517

State pattern
disadvantages of, 237
Standard Type as, 236–237, 440

Stateless services, 268
Static methods, Domain Services as alternative to, 278
Storage. See Repositories
Story points, as alternative to estimating task hours, 375
Strategic business initiatives, 9–10
Strategic design

aligning Subdomains with Bounded Contexts, 57
alignment with the DDD community, 55–56
big picture of, 44–52
cutting through complexity, 46
essential nature of, 53–56
focusing on Core Domain, 50-52
Generic Subdomains, 52
identifying multiple Subdomains in one Bounded Context, 49–52, 57–58

problem and solution space, 56–57
Supporting Subdomains, 52
understanding Bounded Contexts, 62–72
understanding Subdomains, 44–50
using to refactor problem code, 76–79
vision of Core Domain, 58
when dealing with a Big Ball of Mud, 55, 57
when doing greenfield development, 72–73
with Context Maps, 50, 95–110

Strategic tools, benefits of DDD, 28–29
Strategy pattern

DDR (Domain Dependency Resolver) and, 516
using Value type as, 243–244

Strict Layers Architecture, 120
Structural freedom, with Aggregates and Event Sourcing (A+ES), 558
Subdomains

abstract business domain and, 50
alignment with Bounded Contexts, 57, 60
distinguishing between types of domains, 44
in e-Commerce example, 48–50
how to use, 44–45
mapping three contexts, 96
modules and, 48
problem space and, 56
publishing Events to, 302
separating by functionality, 46
Supporting Subdomains. See Supporting Subdomains
tactical modeling and, 35
types of, 52
whiteboard illustration of, 51

Subscribers
Domain Events and, 300–302
publishing notifications using messaging middleware, 317

Supervising Controller and Passive View (Fowler), 518
Supporting Subdomains

application support in, 509
assessment of problem space and solution space, 58
Context Maps and, 98
defined, 52
investing in what produces biggest benefit, 10
justification for Domain Models, 35
for SaaS Ovation Domain Model, 91

Surrogate identities
Entities and, 186–188
Layer Supertype and, 255–256, 380
when persisting Value Objects, 255–260

Symmetry style. See Hexagonal Architecture
Systems. See also Applications

Bounded Context encompassing more than Domain Model, 66–68
Context Maps are not system topology diagrams, 90
decoupling service from client, 550
exchanging information across system boundaries, 452–458

T
Table Data Gateway, in Transaction Scripts, 441
Table Module, in Transaction Scripts, 441
Tactical modeling

strategic modeling compared with, 34
Ubiquitous Language and, 75

Tactical patterns, 36
Tactical tools, 10, 28–29
Task hours, used to estimate of memory overhead of Aggregate type, 372–373
Team members

benefits of asking whose job it is in Aggregate design, 378–379
responsibilities and, 476–481
staying informed about, 469–476

Teams
estimating Aggregate type memory overhead using in task hours, 372–373
facilitating inter-team communication, 88
single team for single Bounded Context, 72
Ubiquitous Language as shared language of, 20–21

Technical components
alignment with Bounded Contexts, 71–72
housing in Infrastructure Layer, 273
reasons to break Aggregate design rules, 368–369

Tell, Don’t Ask, information hiding in Aggregate implementation, 382–384
Temporal decoupling, between clients and Application Service, 551
Tenants

comparing with Users, 192–193
subscribing organizations registered as, 348
UUID applied to identifying, 194

Tests/testing
Domain Services, 281–284
Hexagonal Architecture and, 129
repositories, 441–445
repositories with in-memory implementations, 445–447
test-first approach, 37–38
unit tests, 582–583
Value Objects, 239–243

Textual descriptions, at User Interface Layer, 236
Theta joins, 363
Tilkov, Stefan, 133
Time-demands, challenges of applying DDD, 29
Timelessness, Hexagonal Architecture supporting, 125
Timeline, justification for domain modeling, 36
Time-out trackers, integrating Bounded Contexts, 493–503
Time-sensitivity

of identity generation, 183–186
long-running processes (sagas) and, 158

TopLink
implementing repository for, 416–417
Unit of Work in, 407

Track changes
to Entities, 216–217

persistence mechanisms and, 406–407
Trackers, merging executives and trackers into Aggregates, 156
Train wreck, 76
Transaction Script

justification for domain modeling, 36–37
modeling Core Domain, 532
patterns used in, 441

Transactional consistency
Aggregates and, 364
vs. eventual consistency, 366–367
invariants and, 353–354

Transactional consistency boundary. See Aggregates
Transactions, managing in repositories, 432–437
Transformation services, 280
Transformations, uses of Domain Services, 268
Translations, drawing Context Maps and, 90
Translators

Domain Services use for integration, 280
implementing REST client and, 465–467

Two-party activities, 364
Types

checking static types, 578
creating explicitly named immutable types, 577–578
hierarchies in repositories, 437–440
information exchange and type safety, 452–453
primitive, 522–523
standard. See Standard Types

U
Ubiquitous Language

BusinessPriority, 240
collaboration and, 53–54, 74
designing Domain Model and, 191
domain experts and developers jointly developing, 9
Entities properties and, 197–198
Event-centric approach to Aggregate design and, 540
Factory Method and, 390
Intention Revealing Interface complying with, 197
module naming conventions and, 338
naming object behaviors and, 31–32
principles, 24–25
process of producing, 3
refining, 23–24
Scrum terminology as starting point, 348
Shared Kernel and, 92
as shared team language, 20–21
SOA causing fragmentation of, 132
solution space and, 59
techniques for capturing, 22–23

UML (Unified Modeling Language)
of Application Services, 533
DIP (Dependency Inversion Principle) representation in, 510–511

techniques for developing Ubiquitous Language, 22
Unique identity, of Entities, 173–174
Unit of Work

as alternative to repository, 402
for handling transactions, 354
in TopLink, 407

Unit tests, 582–583
Universally unique identifiers. See UUIDs (universally unique identifiers)
Upstream models, influencing downstream, 99–100
URIs

integration of Bounded Contexts using RESTful resources, 458–459
media types and, 104–105
resources and, 135

Usage scenarios
adjusting Aggregate design, 375–376
applying to Aggregate design, 373–374

Use case optimal queries, 517
Use case optimal query, 432
Use cases

Aggregate design and, 358–359
Create a Product use case, 481–482
determining whose job it is, 367

User Entity
comparing with Tenants, 192–193
UUID applied to identifying, 195–196

User Interface Layer
creating and naming modules of non-model components, 343–344
DIP (Dependency Inversion Principle) and, 124
Facade business method invoked by, 433
in Layers Architecture, 119
textual descriptions and, 236
views in Bounded Context, 67

User interfaces
dealing with multiple, disparate clients, 517–518
eventual consistency and, 377–378
mediators publishing internal state of Aggregates, 514–515
overview of, 512
reasons to break Aggregate design rules, 367–368
rendering Aggregate instances from Domain Payload Objects, 515–516
rendering data transfer objects from Aggregate instances, 513–514
rendering domain objects, 512–513
rendition adapters and user edit handling, 518–521
representing state of Aggregate instances, 516–517
views impacted by references by identity, 363
Web user interfaces, 512

User pattern, security patterns, 199–200
User-aggregate affinity rule, 369
Users

handling user edits, 518–521
improvements in user experience due to DDD, 27–28
providing identity of Entities, 174–175

Utilities, patching in, 552–553

UUIDs (universally unique identifiers)
assigning to processes, 156
assigning to Tenants, 194–195
assigning to Users, 195–196
creating Aggregate Root Entity with unique identity, 381
identity creation patterns and, 175–177

V
Validating Entities

attributes and properties, 208–211
object compositions, 215–216
whole objects, 211–215

Value Objects
Agile Project Management Context and, 108–109
backed by database entity (ORM), 255–260
backed by join table (ORM), 260
characteristics of Values, 221
clustering into Aggregates, 347
conceptual wholeness of, 223–226
Data Model Leakage and, 249–251
developer focus on, 53
in development of Domain Models, 577–580
distinguishing Entities from, 172
enum-as-state objects (ORM), 261–263
equality of, 227–228
immutability of, 221–223
implementing, 243–248
integration based on prioritizing or minimalism, 232–233
Java enum for supporting Standard Type, 235–238
measuring, quantifying, describing, 221
not everything is a Value Object, 232
overview of, 219–220
persisting, 248–249
preferred over Entities when possible, 382
refactoring Entities as, 357
replaceability of, 226–227
review, 263
serialization of many Values into single column (ORM), 253–255
side-effect-free behavior, 228–232
single Value Objects (ORM), 251–253
Standard Types expressed as, 234–235, 238–239
tactical modeling tools, 29
testing, 239–243
unique identity and, 173
use case optimal query, 432, 517

Verbs, HTTP, 135
version attribute, optimistic concurrency and, 385–387
View Model, state representation of domain objects, 516
Views, mapping domain data to. See CQRS (Command-Query Responsibility Segregation)
Vision documents, Ubiquitous Language in, 27
Visual Basic, historical influence on Anemic Domain Model, 14–15
VMware GemFire. See GemFire

W
Web protocols, 134–135
Web services, service-oriented components in Bounded Context, 67
Web user interfaces, 512
Webber, Jim, 317
Whiteboard

drawing Context Maps, 90
illustration of Core Domain, 52
illustration of Subdomain, 51

Whole Value pattern, 223, 357
Williams, Wes, 163

X
XML

published language and, 100
standard intermediate formats for information exchange, 452

Y
YAGNI (“You Ain’t Gonna Need It”) principle, 514
Young, Greg, 539

Z
Zero-argument constructors, 248

Footnotes

Chapter 1
1. Here I am generalizing terms. In this list I use Transaction Script to represent several non-domain-model approaches.

Chapter 2
1. www.lokad.com/.
2. True, the Shipping Subdomain uses Inventory, but that doesn’t make Inventory part of the e-Commerce System where
Shipping has context.
3. You can draw a diagram of one or more Bounded Contexts as seen here and in Context Maps. However, the diagram is
not the Bounded Context.
4. This assumes a Domain where separate Bounded Contexts are used for checking and savings accounts.
5. Admittedly the meanings of system, application, and business service are not always agreed upon. However, in a
general sense I intend these to mean a complex set of components that interact to realize a set of significant business use
cases.
6. Orion Pictures, Warner Brothers, 1984.
7. Note that Context Maps provides more detail about the actual three sample Bounded Contexts, how they are related to
each other, and how they are integrated. Still, more depth is concentrated on the Core Domain.

Chapter 4
1. This chapter is about architectural styles, application architectures, and architecture patterns. A style describes how to
implement a specific architecture, while an architecture pattern explains how to address a specific concern within an
architecture but is broader than a design pattern. I suggest you not get too hung up on the differences, but just understand
that DDD can reside at the heart of a lot of surrounding architectural influences.
2. We refer to this architecture by the name Hexagonal, even though its name seems to have changed to Ports and
Adapters. Despite its changed name, the community still refers to it as Hexagonal. The Onion Architecture has also
surfaced. However, it appears to many that Onion is just an (unfortunate) alternate name for Hexagonal. We can safely
assume that they are the same and stick with the [Cockburn] definition.
3. The SOA Manifesto itself has received considerable negative criticism, but we may still glean some value from it.
4. He also happens to be the author of the very first widely used HTTP library, one of the original developers of the
Apache HTTP server, and founder of the Apache Software Foundation.
5. If using message filters or routing keys, subscribers can avoid receiving Events that are meaningless to them.
6. For simplicity I don’t discuss Ports, Adapters, and the application API of the Hexagonal Architecture.
7. This does not mean guaranteed delivery, but guaranteed single delivery, or once and only once.
8. When the messaging mechanism finally receives acknowledgment of receipt, the message will not be delivered again.
9. A discussion of Event Sourcing generally requires an understanding of CQRS, which is treated in the earlier section on
that topic.
10. The Aggregate state is a conflation of previous Events, but only by applying them in the same order in which they
occurred.
11. Although we can use CQRS without using Event Sourcing, the opposite is not usually practical.
12. This is not to say that Fabrics and Grids are identical concepts, but for those looking at this architecture in a general
way these labels often mean the same thing. Certainly marketing and sales often limit them to the same meaning. In any
case, this section uses the term Data Fabric since it generally represents a richer set of capabilities than Grid Computing.
13. Martin Fowler has recently promoted the term Aggregate Store, although the concept has existed for some time.
14. In GemFire this is called a region, but it’s the same concept that Coherence calls a cache. I use cache for consistency.
15. Some NoSQL stores likewise act as natural “Aggregate Stores,” simplifying technical aspects of implementing DDD.

Chapter 5
1. See my published patterns: http://vaughnvernon.co/.
2. It describes an object with multiple personalities, which is not medically the definition of schizophrenia. The actual

http://www.lokad.com/
http://vaughnvernon.co/

problem behind the confusing name is object identity confusion.

Chapter 6
1. There are times when a Value Object can be designed as mutable, but the need is usually rare. I don’t dwell on mutable
Values here. If you are interested in when to use a mutable Value type, please see the sidebar on page 101 of [Evans].
2. In some cases, frameworks such as object-relational mappers or serialization libraries (for XML, JSON, and so on)
may need to use setters to reconstitute Value state from its serialized form.
3. Also called Meaningful Whole.
4. This would be a good time to model an Aggregate in an upstream Context also as an Aggregate in the downstream
Context. They wouldn’t be the same class or necessarily contain all the same attributes, but modeling the downstream
concept as an Aggregate would allow for eventual consistency and single point updates.

Chapter 7
1. There are times when a Domain Service is concerned with remote invocations on a foreign Bounded Context (2). Yet,
the focus here is different in that the Domain Service is not itself providing a remote procedure call interface but is rather
the client of the RPC.

Chapter 8
1. See Erlang’s and Scala’s Actor Model of concurrency. In particular, Akka is worth considering if using Scala or Java.
2. See http://c2.com/cgi/wiki?ObserverPattern for a discussion of push versus pull model in conjunction with the
Observer pattern.
3. Classes Exchange, ConnectionSettings, MessageProducer, Message-Parameters, and others are part of a library
that serves as an abstraction layer around RabbitMQ. I provide this library, which makes using RabbitMQ much more
object friendly, along with the other sample code for the book.

Chapter 9
1. There will be some differences between Java packages and C# namespaces. If you’re developing with C#, for
example, you can still use this as guidance, but you’ll want to adapt it to make sense for your specific programming
language and platform.
2. http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#26639.

Chapter 10
1. For example, Hibernate provides optimistic concurrency in this way. The same could be true of a key-value store
because the entire Aggregate is often serialized as one value, unless designed to save composed parts separately.
2. The transaction may be handled by a Unit of Work [Fowler, P of EAA].
3. A Value-typed property is an attribute that holds a reference to a Value Object. I distinguish this from a simple attribute
such as a string or numeric type, as does Ward Cunningham when describing Whole Value [Cunningham, Whole Value].
4. See also www.jroller.com/niclas/
5. This doesn’t address the fact that some use cases describe modifications to multiple Aggregates that span transactions,
which would be fine. A user goal should not be viewed as synonymous with a transaction. We are concerned only with
use cases that actually indicate the modification of multiple Aggregate instances in one transaction.
6. Consider attempting retries using Capped Exponential Back-off. Rather than defaulting to a retry every N fixed number
of seconds, exponentially back off on retries while capping waits with an upper limit. For example, start at one second
and back off exponentially, doubling until success or until reaching a 32-second wait-and-retry cap.

Chapter 12
1. I am not measuring TopLink’s value in terms of Hibernate. In fact, TopLink has a very long history of success, which
was established long before Oracle picked up the product as a result of the WebGain debacle and subsequent “fire sale.”
Top is an acronym for “The Object People,” which was the original company behind the tool that is approaching two
decades of proven success. Here I am merely contrasting the way the two tools work.
2. This assumes that the Unit of Work is not nested inside a parent. If it is nested inside a parent Unit of Work, changes
from the committed Unit of Work are merged with its parent. Ultimately the outermost is committed to the database.
3. You could create Application Service (14) tests that account for updating saves as necessary. An in-memory

http://c2.com/cgi/wiki?ObserverPattern
http://java.sun.com/docs/books/jls/second_edition/html/packages.doc.html#26639
http://www.jroller.com/niclas/

Repository implementation (see the main text later in the chapter) could be designed to audit the thoroughness of saves.
4. It also limits your Coherence clients to Java only, when .NET and C++ clients could also use the grid data if you were
to provide Portable Object Format (POF) serialization.
5. Note that for some persistence mechanisms transaction management is either nonexistent or works differently from
ACID transactions common with relational databases. Both Coherence and many NoSQL stores differ in that way, and this
material is generally not applicable to such data storage mechanisms.
6. There are other concerns managed by the Application Layer, such as security, but I don’t discuss those here.
7. I discuss the benefits of using a Layer Supertype in the design of Entities (5) and Value Objects (6). See the
respective chapters.

Chapter 13
1. This could be a case where using the RESTful approach to notification consumption could be a distinct advantage since
the notifications are guaranteed to be delivered in the same order in which they were appended to the Event Store (4,
Appendix A). The notifications, from first to last, can be consumed over and over again for different reasons with the
same order guarantees each time.

Chapter 14
1. For an example Generic Subdomain that is a stand-alone model, see Eric Evans’s “Time and Money Code Library”:
http://timeandmoney.sourceforge.net/.
2. See Chapter 4 for details.
3. Some like to use Open Session In View (OSIV) to control transactions at the request-response level, high in the user
interface. For various reason I consider OSIV harmful, but YMMV (“Your Mileage May Vary”).
4. See also Model-View-Presenter [Dolphin], which [Fowler, PM] calls Supervising Controller and Passive View.
5. See Chapter 7.

Appendix A
1. Protocol Buffers was originated by Google. Others have created .NET implementations.
2. Empirical data proves an appropriate rule of thumb: There should be no more than five to seven property members per
class.

http://timeandmoney.sourceforge.net/

	Foreword
	Preface
	Acknowledgments
	About the Author
	Guide to This Book
	Chapter 1 Getting Started with DDD
	Can I DDD?
	Why You Should Do DDD
	How to Do DDD
	The Business Value of Using DDD
	1. The Organization Gains a Useful Model of Its Domain
	2. A Refined, Precise Definition and Understanding of the Business Is Developed
	3. Domain Experts Contribute to Software Design
	4. A Better User Experience Is Gained
	5. Clean Boundaries Are Placed around Pure Models
	6. Enterprise Architecture Is Better Organized
	7. Agile, Iterative, Continuous Modeling Is Used
	8. New Tools, Both Strategic and Tactical, Are Employed

	The Challenges of Applying DDD
	Fiction, with Bucketfuls of Reality
	Wrap-Up

	Chapter 2 Domains, Subdomains, and Bounded Contexts
	Big Picture
	Subdomains and Bounded Contexts at Work
	Focus on the Core Domain

	Why Strategic Design Is So Incredibly Essential
	Real-World Domains and Subdomains
	Making Sense of Bounded Contexts
	Room for More than the Model
	Size of Bounded Contexts
	Aligning with Technical Components

	Sample Contexts
	Collaboration Context
	Identity and Access Context
	Agile Project Management Context

	Wrap-Up

	Chapter 3 Context Maps
	Why Context Maps Are So Essential
	Drawing Context Maps
	Projects and Organizational Relationships
	Mapping the Three Contexts

	Wrap-Up

	Chapter 4 Architecture
	Interviewing the Successful CIO
	Layers
	Dependency Inversion Principle

	Hexagonal or Ports and Adapters
	Service-Oriented
	Representational State Transfer—REST
	REST as an Architectural Style
	Key Aspects of a RESTful HTTP Server
	Key Aspects of a RESTful HTTP Client
	REST and DDD
	Why REST?

	Command-Query Responsibility Segregation, or CQRS
	Examining Areas of CQRS
	Dealing with an Eventually Consistent Query Model

	Event-Driven Architecture
	Pipes and Filters
	Long-Running Processes, aka Sagas
	Event Sourcing

	Data Fabric and Grid-Based Distributed Computing
	Data Replication
	Event-Driven Fabrics and Domain Events
	Continuous Queries
	Distributed Processing

	Wrap-Up

	Chapter 5 Entities
	Why We Use Entities
	Unique Identity
	User Provides Identity
	Application Generates Identity
	Persistence Mechanism Generates Identity
	Another Bounded Context Assigns Identity
	When the Timing of Identity Generation Matters
	Surrogate Identity
	Identity Stability

	Discovering Entities and Their Intrinsic Characteristics
	Uncovering Entities and Properties
	Digging for Essential Behavior
	Roles and Responsibilities
	Construction
	Validation
	Change Tracking

	Wrap-Up

	Chapter 6 Value Objects
	Value Characteristics
	Measures, Quantifies, or Describes
	Immutable
	Conceptual Whole
	Replaceability
	Value Equality
	Side-Effect-Free Behavior

	Integrate with Minimalism
	Standard Types Expressed as Values
	Testing Value Objects
	Implementation
	Persisting Value Objects
	Reject Undue Influence of Data Model Leakage
	ORM and Single Value Objects
	ORM and Many Values Serialized into a Single Column
	ORM and Many Values Backed by a Database Entity
	ORM and Many Values Backed by a Join Table
	ORM and Enum-as-State Objects

	Wrap-Up

	Chapter 7 Services
	What a Domain Service Is �⠀戀甀琀 䘀椀爀猀琀Ⰰ 圀栀愀琀 䤀琀 䤀猀 一漀琀)
	Make Sure You Need a Service
	Modeling a Service in the Domain
	Is Separated Interface a Necessity?
	A Calculation Process
	Transformation Services
	Using a Mini-Layer of Domain Services

	Testing Services
	Wrap-Up

	Chapter 8 Domain Events
	The When and Why of Domain Events
	Modeling Events
	With Aggregate Characteristics
	Identity

	Publishing Events from the Domain Model
	Publisher
	Subscribers

	Spreading the News to Remote Bounded Contexts
	Messaging Infrastructure Consistency
	Autonomous Services and Systems
	Latency Tolerances

	Event Store
	Architectural Styles for Forwarding Stored Events
	Publishing Notifications as RESTful Resources
	Publishing Notifications through Messaging Middleware

	Implementation
	Publishing the NotificationLog
	Publishing Message-Based Notifications

	Wrap-Up

	Chapter 9 Modules
	Designing with Modules
	Basic Module Naming Conventions
	Module Naming Conventions for the Model
	Modules of the Agile Project Management Context
	Modules in Other Layers
	Module before Bounded Context
	Wrap-Up
	Using Aggregates in the Scrum Core Domain
	First Attempt: Large-Cluster Aggregate
	Second Attempt: Multiple Aggregates

	Rule: Model True Invariants in Consistency Boundaries
	Rule: Design Small Aggregates
	Don’t Trust Every Use Case

	Rule: Reference Other Aggregates by Identity
	Making Aggregates Work Together through Identity References
	Model Navigation
	Scalability and Distribution

	Rule: Use Eventual Consistency Outside the Boundary
	Ask Whose Job It Is

	Reasons to Break the Rules
	Reason One: User Interface Convenience
	Reason Two: Lack of Technical Mechanisms
	Reason Three: Global Transactions
	Reason Four: Query Performance
	Adhering to the Rules

	Gaining Insight through Discovery
	Rethinking the Design, Again
	Estimating Aggregate Cost
	Common Usage Scenarios
	Memory Consumption
	Exploring Another Alternative Design
	Implementing Eventual Consistency
	Is It the Team Member’s Job?
	Time for Decisions

	Implementation
	Create a Root Entity with Unique Identity
	Favor Value Object Parts
	Using Law of Demeter and Tell, Don’t Ask
	Optimistic Concurrency
	Avoid Dependency Injection

	Wrap-Up
	Factories in the Domain Model
	Factory Method on Aggregate Root
	Creating CalendarEntry Instances
	Creating Discussion Instances

	Factory on Service
	Wrap-Up
	Collection-Oriented Repositories
	Hibernate Implementation
	Considerations for a TopLink Implementation

	Persistence-Oriented Repositories
	Coherence Implementation
	MongoDB Implementation

	Additional Behavior
	Managing Transactions
	A Warning

	Type Hierarchies
	Repository versus Data Access Object
	Testing Repositories
	Testing with In-Memory Implementations

	Wrap-Up
	Integration Basics
	Distributed Systems Are Fundamentally Different
	Exchanging Information across System Boundaries

	Integration Using RESTful Resources
	Implementing the RESTful Resource
	Implementing the REST Client Using an Anticorruption Layer

	Integration Using Messaging
	Staying Informed about Product Owners and Team Members
	Can You Handle the Responsibility?
	Long-Running Processes, and Avoiding Responsibility
	Process State Machines and Time-out Trackers
	Designing a More Sophisticated Process
	When Messaging or Your System Is Unavailable

	Wrap-Up
	User Interface
	Rendering Domain Objects
	Render Data Transfer Object from Aggregate Instances
	Use a Mediator to Publish Aggregate Internal State
	Render Aggregate Instances from a Domain Payload Object
	State Representations of Aggregate Instances
	Use Case Optimal Repository Queries
	Dealing with Multiple, Disparate Clients
	Rendition Adapters and Handling User Edits

	Application Services
	Sample Application Service
	Decoupled Service Output

	Composing Multiple Bounded Contexts
	Infrastructure
	Enterprise Component Containers
	Wrap-Up
	Inside an Application Service
	Command Handlers
	Lambda Syntax
	Concurrency Control
	Structural Freedom with A+ES
	Performance
	Implementing an Event Store
	Relational Persistence
	BLOB Persistence
	Focused Aggregates
	Read Model Projections
	Use with Aggregate Design
	Events Enrichment
	Supporting Tools and Patterns
	Event Serializers
	Event Immutability
	Value Objects

	Contract Generation
	Unit Testing and Specifications
	Event Sourcing in Functional Languages

	Chapter 10 Aggregates
	Chapter 11 Factories
	Chapter 12 Repositories
	Chapter 13 Integrating Bounded Contexts
	Chapter 14 Application
	Appendix A Aggregates and Event Sourcing: A+ES
	Bibliography
	Index

