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I clearly recall my first conversation with Douglas about fifteen years ago. 
In the midst of trying to build a consulting practice around my Factor 

Analysis of Information Risk (FAIR) model, I had just read the first edi-
tion of his brilliant How to Measure Anything book and wanted to pick 
his brain. But what stood out most during our conversation wasn’t Doug’s 
incredible depth of knowledge—it was his passion for sharing insights with 
others. Similarly, when I first met Richard at an SIRA conference some years 
ago, he exhibited the same depth of knowledge and oozed the same pas-
sion. And although deep expertise is obviously important for their work, 
it’s their passion for helping others that provides the energy and intestinal 
fortitude to challenge conventional wisdom and lead our profession to 
higher ground.

In this book, Doug and Richard continue to apply their passion to the 
topic of reducing uncertainty and making (much) better decisions in a pro-
foundly complex problem space. As a cybersecurity professional for over 
thirty-five years and a CISO for over 10 years, I can attest to how important 
this is.

Anyone who’s been in the cybersecurity trenches for any length of 
time will be familiar with some of the common measurement-related chal-
lenges we face. “Religious debates” about whether something is “high risk” 
or “medium risk,” an inability to effectively measure and communicate to 
stakeholders the dangers associated with changes in the risk landscape or 
the value of improved controls, even simply being confident and logically 
consistent in determining which problems deserve the most attention has 
been an elusive objective for many in the profession. This is also why I’ve 
focused so strongly on understanding and measuring cybersecurity risk for 
over 20 years, which led me to develop the FAIR and FAIR Controls Analyt-
ics (FAIR-CAM) models.

Foreword for the Second Edition
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My own research also allows me to attest to the strengths of Doug and 
Rich’s methods. It is, unfortunately, incredibly easy to apply quantitative 
methods badly, which results not only in poorly informed decisions but 
also a false sense of security because you used numbers. This book does 
an outstanding job of laying the groundwork for defensible measurements.

That said, if you’re concerned about whether this book might be too 
“mathy,” rest assured that you do not need a background in calculus or sta-
tistics to find tremendous value here. Doug and Rich discuss the pitfalls of 
common approaches such as risk matrices and unaided intuition, dismantle 
prevailing misperceptions surrounding risk measurement, and describe the 
fundamental principles of good measurement in terms that anyone can 
understand and apply. They also provide very pragmatic methods and tools 
that anyone can use.

If you’re in the early stages of your cybersecurity career, this book will 
undoubtedly help you mature your understanding of the problem space 
far more quickly. Conversely, if you’ve been in the profession awhile, you 
will be able to better leverage your hard-won experience by looking at the 
cybersecurity landscape through a new and clearer lens. In either case your 
performance and value as a professional will increase.

The first edition of this book has been a key contributor to cyberse-
curity’s growing but still nascent transition from a qualitative, grossly over-
simplified approach to risk measurement to one that is quantitatively based 
and logically defensible. If you already own the first edition, you’ll find that 
this second edition contains significant new and updated material. A few 
examples of the new material include:

■■ Updated research on the impact of data breaches on stock prices;
■■ New examples of how to make incremental reductions in uncertainty 
from just a few observations;

■■ New research regarding how issues such as MFA, encryption, and user 
counts change risk;

■■ New distributions for modeling risk and how to implement them in 
Excel or R;

■■ How cybersecurity can/should integrate with enterprise risk manage-
ment and decision analysis;

Consequently, upgrading to this edition should be a no-brainer.
The bottom line is that managing cybersecurity well requires being able 

to identify and focus on what matters most. This is true whether the scope 
of your responsibilities is strategic and enterprise-wide or more tactical. 
Regardless, these decisions are always based on comparisons, which are 
inevitably based on some form of measurement. And if your measurements 
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are poor, your ability to make good decisions is hamstrung. As a result, if I 
had my way, this book would be required reading for every cybersecurity 
professional. Short of that, if I was still a CISO, this book would be required 
reading for anyone in my organization. It’s simply that important.
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When we wrote the first edition of this book, we were cautiously opti-
mistic about how well it would do. Some constructive criticisms of 

popular methods were long past due. We knew a lot of published research 
showed that although the ubiquitous risk matrix provided a kind of placebo 
effect and increased confidence in decision making, it actually harmed the 
quality of decision making.

The book quickly exceeded our expectations in terms of demand and 
the influence it has had on the content of training and standards in cyber-
security. Consequently, the publisher, Wiley, wanted to capitalize on this 
demand with a second edition.

A lot has happened in cybersecurity in the six years since the first edi-
tion was published. There have been new major cyberattacks and new 
threats have appeared. Ransomware was not perceived to be nearly as 
much a threat in 2016 as it is now. But there will always be a new threat, and 
there will always be new technologies developed in an attempt to reduce 
these risks. Any book about cyber risk that only addresses current problems 
and technical solutions will need to be rewritten much more frequently than 
once every few years.

So, if the only changes were technical details of threats and solutions, 
then a new edition would not be required. We felt it was time to write a new 
edition because we realize that some organizations need quicker, simpler 
solutions to quantify cybersecurity risks. At the same time, others are ready 
for a little more depth in the methods. In this edition we have attempted to 
provide more for both audiences.

Preface
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Why We Chose This Topic

The first edition of this book was planned to be the first of a series of 
spinoffs from Douglas Hubbard’s successful first book, How to Measure  
Anything: Finding the Value of “Intangibles” in Business. For future books 
in this franchise, we were considering titles such as How to Measure  
Anything in Project Management or industry-specific books such as How  
to Measure Anything in Health Care. All we had to do was pick a good idea 
from a long list of possibilities.

Cybersecurity risk seemed like an ideal first book for this new series. It 
is extremely topical and filled with measurement challenges that may often 
seem impossible. We also believe it is an extremely important topic for per-
sonal reasons (as we are credit card users and have medical records, client 
data, intellectual property, and so on) as well as for the economy as a whole. 
The success of the first edition is why we chose to write another edition 
instead of exploring another How to Measure Anything topic outside of cyber-
security risk.

Another factor in choosing a topic was finding the right co-author. 
Because Doug Hubbard—a generalist in measurement methods—would not 
be a specialist in any of the particular potential spinoff topics, he planned to 
find a co-author who could write authoritatively on the topic. Hubbard was 
fortunate to find an enthusiastic volunteer in Richard Seiersen—someone 
with years of experience in the highest levels of cybersecurity management 
with some of the largest organizations.

So with a topical but difficult measurement subject, a broad and 
growing audience, and a good co-author, cybersecurity seemed like an 
ideal fit.

Introduction
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What Is This Book About?

Even though this book focuses on cybersecurity risk, it still has a lot in com-
mon with the original How to Measure Anything book, including:

■■ Making better decisions when you are significantly uncertain about the
present and future; and

■■ Reducing that uncertainty even when data seems unavailable or the
targets of measurement seem ambiguous and intangible.

This book in particular offers an alternative to a set of deeply rooted
risk assessment methods now widely used in cybersecurity but that have no 
basis in the mathematics of risk or scientific method. We argue that these 
methods impede decisions about a subject of growing criticality. We also 
argue that methods based on real evidence of improving decisions are not 
only practical but already have been applied to a wide variety of equally 
difficult problems, including cybersecurity itself. We will show that we can 
start at a simple level and then evolve to whatever level is required while 
avoiding problems inherent to risk matrices and risk scores. So there is no 
reason not to adopt better methods immediately.

In this book, you should expect a gentle introduction to measurably 
better decision making—specifically, improvement in high-stakes decisions 
that have a lot of uncertainty and where, if you are wrong, your decisions 
could lead to catastrophe. We think security embodies all of these concerns.

We don’t expect our readers to be risk management experts or cyber-
security experts. The methods we apply to security can be applied to many 
other areas. Of course, we do hope it will make those who work in the field 
of cybersecurity better defenders and strategists. We also hope it will make 
the larger set of leaders more conscious of security risks in the process of 
becoming better decision makers.

If you really want to be sure this book is for you, here are the specific 
personas we are targeting:

■■ You are a decision maker looking to improve—that is, measurably
improve—your high-stakes decision making.

■■ You are a security professional looking to become more strategic in
your fight against the bad guys.

■■ You are neither of the above. Instead, you have an interest in under-
standing more about cybersecurity and/or risk management using read-
ily accessible quantitative techniques.

■■ If you are a hard-core quant, consider skipping the purely quant parts.
If you are a hard-core hacker, consider skipping the purely security
parts. That said, we will often have a novel perspective, or “epiphanies
of the obvious,” on topics you already know well. Read as you see fit.
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We Need More Than Technology

We need to lose less often in the fight against the bad guys. Or, at least, 
lose more gracefully and recover more quickly. Many feel that this requires 
better technology. We clamor for more innovation from our vendors in 
the security space even though breach frequency has not been reduced. 
To effectively battle security threats, we think there is something equally 
important as innovative technology, if not more important. We believe that 
“something” must include a better way to think quantitatively about risk.

We need decision makers who consistently make better choices through 
better analysis. We also need decision makers who know how to deftly 
handle uncertainty in the face of looming catastrophe. Parts of this solu-
tion are sometimes referred to with current trendy terms such as “predictive 
analytics,” but more broadly this includes all of decision science or decision 
analysis and even properly applied statistics.

In order to help decision makers with this task, we hope this book will 
explain why we should be skeptical of many current methods, how quan-
titative methods (even some very simple ones) improve the situation, and 
how to scale and evolve the solution.
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PART I
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CHAPTER 1

Everything’s fine today, that is our illusion.

—Voltaire, 17591

In a single year, cyberattacks resulted in one billion records compro-
mised and financial losses of $400 billion.2 This led Forbes Magazine to 

declare it “The Year of the Mega Data Breach.”3,4 Soon afterward, the head 
of the largest insurer, Lloyd’s of London—a marketplace for a collection of 
insurance companies, reinsurance companies, and other types of financial 
backers—said cybersecurity is the “biggest, most systemic risk” he has seen 
in his 42 years in insurance.5 The year of that article was 2014. A lot has 
happened since then.

By multiple measures, cybersecurity risk has been increasing every year 
since 2014. For example, records breached in 2021 were, according to one 
source, 22 times as high as 2014.6 It hasn’t peaked. We will only become 
more dependent on—and more vulnerable to—the technologies that drive 
our prosperity. We can try to reduce these risks, but resources are limited. 
To management, these risks may seem abstract, especially if they haven’t 
experienced these losses directly. And yet we need to convince manage-
ment, in their language, that these issues require their attention and a sig-
nificant budget. Once we have that, we can try to identify and address 
higher priority risks first.

The title of this book is self-explanatory. We will talk about how we can 
measure risks in cybersecurity and why it is important to change how we 
currently do it. For now, we will just make the case that there is a reason to 
be worried—both about the threats to cybersecurity and the adequacy of 
methods to assess them.

The One Patch Most Needed 
in Cybersecurity
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Insurance: A Canary in the Coal Mine

One of the authors of this book, Richard Seiersen, was a chief information 
security officer (CISO) who is now working as a chief risk officer (CRO) for 
the cyber insurance firm Resilience. These two viewpoints provide a useful 
perspective on cybersecurity risk. Insurance is at its core a “put your money 
where your mouth is” business. When insurers make bad bets, it catches up 
to them. However, to be competitive they can’t just charge whatever they 
want. They have a strong incentive to gather a lot of data, do the math, and 
work out what makes a good bet in the risks they cover. That doesn’t mean 
they are always right. It is a bet, after all. But they’ve done their homework, 
and their analysis is usually better than what most firms can muster.

Richard would point out that insurance companies reveal their con-
cerns about a risk when they increase their premiums, tighten their under-
writing requirements, or quit selling a type of coverage altogether. They 
are a sort of canary in the coal mine of risks. What has been happening in 
the field of cyber insurance is a type of leading indicator CISOs should pay 
attention to.

According to the National Association of Insurance Commissioners 
(NAIC), in the years from 2017 to 2021, total premiums collected have 
increased by 45%, and the share of those premiums paid out for claims has 
more than doubled in that same period.7 This means total cyber insurance 
claims paid has more than tripled in that same period. Note that claims 
just cover some losses. They exclude the retention (what retail consumer 
insurance would call a deductible), anything over the limit covered by the 
insurer, and exclusions such as acts of war.

If claims are completely independent of each other, then there is 
some expected variation from year to year, just like the total from rolling 
100 dice will give you a slightly different answer from rolling another 
100 dice. Insurance companies plan for that in how they manage their 
reserves for paying claims. However, the amount of change the NAIC 
observed is far beyond what could be explained as a random fluke. There 
are common, underlying trends driving all claims to be more frequent 
and more costly. This is the “systemic risk” mentioned earlier by the head 
of Lloyd’s. In addition to claims being larger and more frequent, there 
is a risk that many claims could all happen at the same time making it 
difficult or impossible for an insurer to cover them. Furthermore, certain 
recent developments have made systemic risks an even bigger problem 
for insurers.

A key legal battle created a new systemic risk for insurers, which 
forced them to rewrite policies or, in some cases, get out of cyber insur-
ance. In January 2022, Chubb, the largest cyber insurance provider,  
lost a case over whether it should cover $1.4 billion in losses claimed 
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by the pharmaceutical giant Merck.8 Merck was hit by malicious code 
known as “NotPetya,” which encrypted the data on thousands of Merck’s 
computers.

Because the source of the attack was six Russians with ties to Russian 
intelligence agencies, Chubb argued that this was an act of war, which is 
typically excluded in property insurance. But the court ruled the policy 
excluded only physical warfare, not cyber war. Other insurers took notice 
and responded by writing much more stringent underwriting requirements. 
In August 2022, Lloyd’s of London advised all cyber insurers selling through 
its platform to stop selling coverage for cyberattacks that are sponsored by 
government agencies.9

The NotPetya malware, which attacked Merck, was based on some pre-
vious code known as Petya. While Petya was used in ransomware, the 
attack on Merck did not demand ransom. This code, created by Russia  
to attack Ukrainian systems, was simply for the purpose of destruction. 
While both destructive and financially harmful for those effected, it could 
have been much worse.

A different hack on the company SolarWinds shows how widely one 
piece of malware can be spread. SolarWinds develops system performance 
monitoring software. One of its software packages, the Orion network man-
agement system, is used by over 30,000 public and private institutions. In 
2020, it was revealed that an update for Orion, which SolarWinds sent to 
its customers, contained some malicious code. While the attack was wide-
spread, it seems that companies (especially insurance) dodged a bullet. The 
SolarWinds hack was a major attack by any standard, but the motive appears 
to be access to classified government data more than exploiting individuals.

The original target of NotPetya, on the other hand, was a single 
Ukrainian software company but the malicious code leaked out to numer-
ous Ukrainian entities such as the National Bank of Ukraine—and spread 
across the globe. It led to billions of dollars of impact—much of which 
was collateral damage. And still it was not as widespread as the malware 
that hit SolarWinds. If one attack were as widespread as SolarWinds and as 
destructive as NotPetya, we would have had a completely different story.

The change in act-of-war exclusions combined with an apparent 
increase in frequency of exactly that kind of event adds to a growing list of 
systemic risks. Potential weaknesses in widely used software; interdepend-
ent network access between companies, vendors, and clients; and the pos-
sibility of large, coordinated attacks can affect much more than even one 
big company. We said this in the first edition of this book in 2016, and it 
is just as true now if not more. If this results in multiple major claims in a 
short period of time, this may be a bigger burden than insurers can realisti-
cally cover. What worries the insurance companies is that even the biggest 
attacks seen so far aren’t as big as they could have been.
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The Global Attack Surface

As we mentioned above, insurance companies have the option of limiting 
their risk by changing policy language or simply not selling insurance to you 
if they feel your risk is too great. They can simply choose not to participate in 
that risk. You don’t have that option. Whatever risks your insurers won’t cover 
are still carried by you. Nation-states, organized crime, hacktivist entities, and 
insider threats want our secrets, our money, and our intellectual property,  
and some want our complete demise. That’s not just being dramatic. If you are 
reading this book, you probably already accept the gravity of the situation.

What is causing such a dramatic rise in breach and the anticipation of 
even more breaches? It is called “attack surface.” Attack surface is usually 
defined as the total of all kinds of exposures of an information system. It 
exposes value to untrusted sources. You don’t need to be a security pro-
fessional to get this. Your home, your bank account, your family, and your 
identity all have an attack surface. If you received identity theft protection as 
a federal employee, or as a customer of a major retailer, then you received 
that courtesy of an attack surface. These companies put the digital you 
within reach of criminals. Directly or indirectly, the Internet facilitated this. 
This evolution happened quickly and not always with the knowledge or 
direct permission of all interested parties like you.

Various definitions of attack surface consider the ways into and out of a 
system, the defenses of that system, and sometimes the value of data in that 
system.10,11 Some definitions refer to the attack surface of a system and some 
refer to the attack surface of a network, but either might be too narrow 
even for a given firm. We might also define an “enterprise attack surface” 
that not only consists of all systems and networks in that organization but 
also the exposure of third parties. This includes everyone in the enterprise 
ecosystem including major customers, vendors, and perhaps government 
agencies. As we saw in the 2013 data breach of the major retailer Target, 
every possible connection matters. That exploit came from a vendor with 
access to their HVAC systems.12

Perhaps the total attack surface that concerns all citizens, consumers, 
and governments is a kind of “global attack surface”: the total set of cyber-
security exposures—across all systems, networks, and organizations—we 
all face just by shopping with a credit card, browsing online, receiving 
medical benefits, or even just being employed. This global attack surface 
is a macro-level phenomenon driven by at least four macro-level causes of 
growth: increasing users worldwide, variety of users worldwide, growth in 
discovered and exploited vulnerabilities, and organizations more networked 
with each other resulting in “cascade failure” risks.

■■ The increasing number of persons on the Internet. Internet users 
worldwide grew by a factor of 10 from 2001 to 2022 (half a billion to  
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5 billion).13 It may not be obvious that the number of users is a dimen-
sion in some attack surfaces, but some measures of attack surface 
also include the value of a target, which would be partly a function of 
number of users (e.g., gaining access to more personal records).14 Also, 
on a global scale, it acts as an important multiplier on the following 
dimensions.

■■ Each person does more online. We were already doing a lot online, and 
the pandemic accelerated it. In 2020, the first year of the pandemic, 
e-commerce increased by 43%.15 The videoconference became the new 
normal for meeting during the pandemic. There is also a different kind 
of “pandemic” in the growing number of connected devices per person. 
The Internet of Things (IoT) constitutes another potential way for an 
individual to use the Internet even without their active involvement—
attacks on IoT devices tripled in the first half of 2019.16

■■ Vulnerabilities increase. A natural consequence of the previous two 
factors is the number of ways such uses can be exploited increases. 
According to the Mitre CVE database, total known vulnerabilities grew 
at a rate of under 8% per year from 2005 to 2015 and then grew at more 
than 20% per year from 2016 to 2021. And there are more sophisticated 
actors looking for more ways to find and exploit those vulnerabilities.

■■ The possibility of a major breach “cascade.” The NotPetya attack showed 
how destructive an attack could be for the organizations it hit, and 
SolarWinds showed how widespread an attack could be. But even in 
2013, breaches such as the one at Target mentioned earlier show how 
routine and mundane connections between organizations can be an 
attack vector. Organizations such as Target have many vendors, several 
of which in turn have multiple large corporate and government clients. 
Mapping this cyber ecosystem of connections would be almost impos-
sible, since it would certainly require all these organizations to divulge 
sensitive information. The kinds of publicly available metrics we have 
for the previous three factors in this list do not exist for this one. But 
we suspect most large organizations could just be one or two degrees 
of separation from each other.

It seems reasonable that of these four trends the earlier trends magnify 
the latter trends. If so, the risk of the major breach “cascade” event could  
be the fastest growing risk.

Our naive and obvious hypothesis? Attack surface and breach are 
correlated. We are heading into a historic growth in attack surface, and 
hence breach, which will eclipse what has been seen to date. Given all 
this, comments such as the Lloyd’s of London insurers’ are not yet so 
dated and cannot be dismissed as alarmist. Even with the giant breaches 
at Target, Anthem, and Sony behind us, we believe we haven’t seen “The 
Big One” yet.
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The Cyber Threat Response

In order to respond to competition and pandemics, organizations have had 
to be even more aggressive about adopting online solutions. The public 
wants to shop online, order meals online, track deliveries online, and more. 
Businesses and schools have had to allow for more remote work forcing 
more meetings through services such as Zoom, Webex, and Teams.

It’s a bit of a catch-22 in that success in business is highly correlated 
with exposure. Banking, buying, getting medical attention, and even being 
employed is predicated on exposure. You need to expose data to transact 
business, and if you want to do more business, that means more attack sur-
face. When you are exposed, you can be seen and affected in unexpected 
and malicious ways. In defense, cybersecurity professionals try to “harden” 
systems—that is, removing all nonessentials, including programs, users, 
data, privileges, and vulnerabilities. Hardening shrinks, but does not elimi-
nate, attack surface. Yet even this partial reduction in attack surface requires 
significant resources, and the trends show that the resource requirements 
will grow.

Are organizations at least paying attention to and prioritizing these 
risks? There are several surveys that can answer this. Nearly every major 
consulting firm produces annual reports on risks, based on surveys of 
their executive-level clients. These reports are meant to cover all risks, not 
just cybersecurity, but cybersecurity has had a growing presence in these 
reports. Their methods of selecting executives, questions the surveys ask, 
and analysis of results vary, but they tell a similar story: cybersecurity gets a 
growing share of attention. In some cases, cybersecurity rates more concern 
among leadership than any other risk.

McKinsey, the largest and oldest of the major consulting firms, produces 
annual reports on all types of risks facing an organization. In the 2010  
McKinsey report on enterprise risks, cybersecurity was not mentioned  
once. In 2016, cybersecurity was mentioned but received the least coverage 
in terms of mentions than any other risk. In the 2021 “McKinsey on Risk” 
report, cybersecurity risk was mentioned more often than all other risks 
including finance, regulation, geopolitics, competition, or even COVID.

PWC’s 25th Annual Global CEO Survey, published in 2022, asked CEOs 
which types of threats to growth concerned them most. The number - 
one most cited threat was cybersecurity, with 49% of CEOs offering that 
response. This ranked ahead of geopolitical conflict, macroeconomic vola-
tility, and health risks in the year of Russia’s invasion of Ukraine and after 
two years of COVID.

Generally, executive-level attention on cybersecurity risks has increased, 
and attention is followed by resources. The boardroom is beginning to ask 
questions such as “Will we be breached?” or “Are we better than this other 
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recently breached company in our industry?” or “Did we spend enough on 
the right risks?”

Asking these questions eventually brings some to hire a chief informa-
tion security officer (CISO). The first Fortune 100 CISO role emerged in 
the 1990s, but for most of the time since then growth in CISOs was slow. 
CFO Magazine acknowledged that hiring a CISO as recently as 2008 would 
have been considered “superfluous.”17 By the time the first edition of this 
book was written (2016) the CISO role was becoming much more common. 
Now, nearly all Fortune 500 companies have a CISO or a similar VP, SVP, or 
C-level person dedicated to cybersecurity.18

Firms have also been showing a willingness, perhaps more slowly than 
cybersecurity professionals would like, to allocate serious resources to solve 
this problem. Cybersecurity spending per employee more than quadrupled  
from 2012 to 2020 to $2,691 (even adjusted for inflation).19 According to 
cyberseek.org, in August 2022, the US labor market reached a milestone of 
one million total workers in cybersecurity.

So what do organizations do with this new executive visibility and 
inflow of money to cybersecurity? Mostly, they seek out vulnerabilities, detect 
attacks, and eliminate compromises. Of course, the size of the attack surface 
and the sheer volume of vulnerabilities, attacks, and compromises means 
organizations must make tough choices; not everything gets fixed, stopped, 
recovered, and so forth. There will need to be some form of acceptable 
losses. What risks are acceptable is often not documented, and when they 
are, they are stated in soft, unquantified terms that cannot be used clearly 
in a calculation to determine whether a given expenditure is justified or not.

On the vulnerability side of the equation, this has led to what is called 
“vulnerability management.” An extension on the attack side is “security 
event management,” which can generalize to “security information and 
event management.” More recently there is “threat intelligence” as well 
as “threat management.” While all are within the tactical security solution 
space, the management portion attempts to rank-order what to do next. 
So how do organizations conduct security management? How do they pri-
oritize the allocation of significant, but limited, resources for an expand-
ing list of vulnerabilities? In other words, how do they make cybersecurity 
decisions to allocate limited resources in a fight against such uncertain and 
growing risks?

Certainly, a lot of expert intuition is involved, as there always is in 
management. But for more systematic approaches, surveys conducted by 
Hubbard Decision Research in 2016 found that about 80% of organizations 
concerned with cybersecurity will resort to some sort of “scoring” method. 
For example, an application with multiple vulnerabilities could have all of 
them aggregated into one score. Using similar methods at another scale, 
groups of applications can then be aggregated into a portfolio and plotted 

http://cyberseek.org
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with other portfolios. The aggregation process is typically some form of 
invented mathematics unfamiliar to actuaries, statisticians, and math-
ematicians.

Just over 50% of respondents plot risks on a two-dimensional matrix. In 
this approach, “likelihood” and “impact” will be rated subjectively, perhaps 
on a 1 to 5 scale, and those two values will be used to plot a particular risk 
on a matrix (variously called a “risk matrix,” “heat map,” “risk map,” etc.). The 
matrix—similar to the one shown in Figure 1.1—is then often further divided 
into sections of low, medium, and high risk. Events with high likelihood and 
high impact would be in the upper-right “high risk” corner, while those with 
low likelihood and low impact would be in the opposite “low risk” corner. 
The idea is that the higher the score, the more important something is and 
the sooner you should address it. You may intuitively think such an approach 
is reasonable, and if you thought so, you would be in good company.

Various versions of scores and risk maps are endorsed and promoted by 
several major organizations, standards, and frameworks such as the National 
Institute of Standards and Technology (NIST), the International Standards 
Organization (ISO), MITRE.org, and the Open Web Application Security 
Project (OWASP). Most organizations with a cybersecurity function claim 
at least one of these as part of their framework for assessing risk. In fact, 
most major software organizations such as Oracle, Microsoft, and Adobe 
rate their vulnerabilities using a NIST-supported scoring system called the 
“Common Vulnerability Scoring System” (CVSS). Many security solutions 
also include CVSS ratings, be it for vulnerability and/or attack related. While 
the control recommendations made by many of these frameworks are good, 
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Frequent 5 Medium Medium High High High

Likely 4 Medium Medium Medium High High

Occasional 3 Low Medium Medium Medium High

Seldom 2 Low Low Medium Medium Medium

Improbable 1 Low Low Low Medium Medium

FIGURE 1.1  The Familiar Risk Matrix (aka Heat Map or Risk Map)

http://mitre.org
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it’s how we are guided to prioritize risk management on an enterprise scale 
that is amplifying risk.

Literally hundreds of security vendors and even standards bodies have 
come to adopt some form of scoring system including the risk matrix. 
Indeed, scoring approaches and risk matrices are at the core of the security 
industry’s risk management approaches.

In all cases, they are based on the idea that such methods are beneficial 
to some degree. That is, they are assumed to be at least an improvement 
over not using such a method. As one of the standards organizations has put 
it, rating risk this way is adequate:

Once the tester has identified a potential risk and wants to figure out 
how serious it is, the first step is to estimate the likelihood. At the highest 
level, this is a rough measure of how likely this particular vulnerability 
is to be uncovered and exploited by an attacker. It is not necessary to be 
over-precise in this estimate. Generally, identifying whether the likeli-
hood is low, medium, or high is sufficient. (emphasis added)

—OWASP20

Does this last phrase, stating “low, medium, or high is sufficient,” need 
to be taken on faith? Considering the critical nature of the decisions such 
methods will guide, we argue that it should not. This is a testable hypoth-
esis, and it actually has been tested in many different ways. The growing 
trends of cybersecurity attacks alone indicate it might be high time to try 
something else.

So, let’s be clear about our position on current methods: They are a 
failure. They do not work. A thorough investigation of the research on these 
methods and decision-making methods in general indicates the following 
(all of this will be discussed in detail in later chapters):

■■ There is no evidence that the types of scoring and risk matrix methods 
widely used in cybersecurity improve judgment.

■■ On the contrary, there is evidence these methods add noise and error 
to the judgment process. One researcher we will discuss more—Tony 
Cox—goes as far as to say they can be “worse than random.”

■■ Any appearance of “working” is probably a type of “analysis placebo.” 
That is, a method may make you feel better even though the activ-
ity provides no measurable improvement in estimating risks (or even 
adds error).

■■ There is overwhelming evidence in published research that quantita-
tive, probabilistic methods are an improvement over unaided expert 
intuition.
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■■ The improvement over unaided expert intuition is measurable even 
when the inputs are partially or entirely subjective—as long as the 
inputs are unambiguous quantities from calibrated experts.

■■ Fortunately, most cybersecurity experts seem willing and able to adopt 
better quantitative solutions. But common misconceptions held by 
some—including misconceptions about basic statistics—create some 
obstacles for adopting better methods.

How cybersecurity assesses risk, and how it determines how much it 
reduces risk, are the basis for determining where cybersecurity needs to 
prioritize the use of resources. And if this method is broken—or even just 
leaves room for significant improvement—then that is the highest-priority 
problem for cybersecurity to tackle.

It’s not all bad news. We’ll show later in this book that cyber risk quan-
tification (CRQ) is catching on and is supported by a growing number of 
tools. As we will show in later chapters, even simple quantification methods 
will be better than the still widely used risk matrix.

A Proposal for Cybersecurity Risk Management

In this book, we will propose a different direction for cybersecurity. Every 
proposed solution will ultimately align with the title of this book. That is, 
we are solving problems by describing how to measure cybersecurity risk— 
anything in cybersecurity risk. These measurements will be a tool in the 
solutions proposed but also reveal how these solutions were selected in the 
first place. So let us propose that we adopt a new quantitative approach to 
cybersecurity, built upon the following principles:

■■ It is possible to greatly improve on the existing methods. As we mentioned 
already, we know that some methods measurably outperform others, 
even when comparing two purely subjective methods. The approaches 
that are currently the most popular use methods that are among the 
worst performing. This is not acceptable for the scale of the problems 
faced in cybersecurity.

■■ Cybersecurity can use the same quantitative language of risk analysis 
used in other problems. As we will see, there are plenty of fields with 
massive risk, minimal data, and profoundly chaotic actors that are regu-
larly modeled using traditional mathematical methods. We don’t need 
to reinvent terminology or methods from other fields that also have 
challenging risk analysis problems.

■■ These improved methods are entirely feasible. We know this because it 
has already been done. Both of the authors have had direct experience 
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with using every method described in this book in real-world corporate 
environments. The methods are currently used by cybersecurity ana-
lysts with a variety of backgrounds in many different industries. Nearly 
all of the analysts we trained in these methods had no quantitative 
risk analysis background (i.e., statisticians, actuaries, etc.). This is not 
just theory.

■■ Even these improved methods can be improved further—continuously. 
You have more data available than you think from a variety of existing 
and newly emerging sources. Even when data is scarce, mathemati-
cal methods with limited data can still be an improvement on subjec-
tive judgment alone. Even the risk analysis methods themselves can be 
measured and tracked to make continuous improvements.

With improved methods, the cybersecurity professional can effectively 
determine a kind of “return on control.” We can evaluate whether a given 
defense strategy is a better use of resources than another. In short, we can 
measure and monetize risk and risk reduction. To get there, we just need a 
“how to” book for professionals in charge of allocating limited resources to 
addressing ever-increasing cyber threats and leveraging those resources for 
optimal risk reduction.

This book is separated into three parts. Part I will introduce a simple 
quantitative method that requires a little more effort than the current scor-
ing methods but uses techniques that have shown a measurable improve-
ment in judgment. It will then discuss how to measure the measurement 
methods themselves. In other words, we will try to answer the question, 
“How do we know it works?” regarding different methods for assessing 
cybersecurity. The last chapter of Part I will address common objections to 
quantitative methods, detail the research against scoring methods, and dis-
cuss misconceptions and misunderstandings that keep some from adopting 
better methods.

Part II will move from the “why” we use the methods we use and focus 
on how to add further improvements to the simple model described in Part I.  
We will talk about how to add useful details to the simple model, how to 
refine the ability of cybersecurity experts to assess uncertainties, and how 
to improve a model with empirical data (even when data seems limited).

Part III will take a step back to the bigger picture of how these methods 
can be rolled out to the enterprise, how new threats may emerge, and how 
evolving tools and methods can further improve the measurement of cyber-
security risks. We will try to describe a call to action for the cybersecurity 
industry as a whole.

To get started, our next chapter will build a foundation for how we 
should understand the term “measurement.” That may seem simple and 
obvious, but misunderstandings about that term and the methods required 



18	 Why Cybersecurity Needs Better Measurements for Risk

to execute it are behind at least some of the resistance to applying measure-
ment to cybersecurity.

Let’s be explicit about what this book isn’t. This is not a technical secu-
rity book—if you’re looking for a book on “ethical hacking,” then you have 
certainly come to the wrong place. There will be no discussions about how 
to execute stack overflows, defeat encryption algorithms, or execute SQL 
injections. If and when we do discuss such things, it’s only in the context of 
understanding them as parameters in a risk model.

But don’t be disappointed if you’re a technical person. We will certainly 
be getting into some analytic nitty-gritty as it applies to security. This is from 
the perspective of an analyst or leader trying to make better bets in relation 
to possible future losses.
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CHAPTER 2

Success is a function of persistence and doggedness and the willing-
ness to work hard for twenty-two minutes to make sense of some-
thing that most people would give up on after thirty seconds.

—Malcom Gladwell, Outliers1

Before we can discuss how literally anything can be measured in cyber-
security, we need to discuss measurement itself, and we need to address 

early the objection that some things in cybersecurity are simply not measur-
able. The fact is that a series of misunderstandings about the methods of 
measurement, the thing being measured, or even the definition of measure-
ment itself will hold back many attempts to measure.

This chapter will be mostly redundant for readers of Doug Hubbard’s 
previous book How to Measure Anything: Finding the Value of “Intangibles” 
in Business. This chapter has been edited from the original and the exam-
ples geared slightly more in the direction of cybersecurity. However, if you 
have already read the original book, then you might prefer to skip this chap-
ter. Otherwise, you will need to read on to understand these critical basics.

We propose that there are just three reasons why anyone ever thought 
something was immeasurable—cybersecurity included—and all three are 
rooted in misconceptions of one sort or another. We categorize these three 
reasons as concept, object, and method. Various forms of these objections 
to measurement will be addressed in more detail later in this book (espe-
cially in Chapter 5). But for now, let’s review the basics:

1.	Concept of measurement. The definition of measurement itself is widely 
misunderstood. If one understands what “measurement” actually means, 
a lot more things become measurable.

A Measurement Primer 
for Cybersecurity



22	 Why Cybersecurity Needs Better Measurements for Risk

2.	Object of measurement. The thing being measured is not well defined. 
Sloppy and ambiguous language gets in the way of measurement.

3.	Methods of measurement. Many procedures of empirical observation are 
not well known. If people were familiar with some of these basic meth-
ods, it would become apparent that many things thought to be immeas-
urable are not only measurable but may have already been measured.

A good way to remember these three common misconceptions is by 
using the mnemonic “howtomeasureanything.com,” where the “c,” “o,” and 
“m” in “com” stand for concept, object, and method, respectively. Once 
we learn that these three objections are misunderstandings of one sort or 
another, it becomes apparent that everything really is measurable.

The Concept of Measurement

As far as the propositions of mathematics refer to reality, they are not 
certain; and as far as they are certain, they do not refer to reality.

—Albert Einstein

Although this may seem a paradox, all exact science is based on the idea 
of approximation. If a man tells you he knows a thing exactly, then you 
can be safe in inferring that you are speaking to an inexact man.

—Bertrand Russell,  
British mathematician and philosopher

For those who believe something to be immeasurable, the concept 
of measurement—or rather the misconception of it—is probably the most 
important obstacle to overcome. If we incorrectly think that measurement 
means meeting some nearly unachievable standard of certainty, then few 
things will be measurable even in the physical sciences.

If you asked a manager or cybersecurity expert what measurement 
means, you would usually get answers like, “To quantify something,” “To 
compute an exact value,” “To reduce to a single number,” or “To choose 
a representative amount,” and so on. Implicit or explicit in all of these 
answers is that measurement is a single, exact number with no room for 
error. If that were really what the term means, then, indeed, very few things 
would be measurable.

Perhaps the reader has heard—or said—something like, “We can’t meas-
ure the true impact of a data breach because some of the consequences can’t 
be known exactly.” Or perhaps, “There is no way we can put a probability 

http://howtomeasureanything.com
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on being the target of a massive denial-of-service attack because there is 
too much uncertainty.” These statements indicate a presumed definition of 
measurement that is both unrelated to real decision-making and also unsci-
entific. When scientists, actuaries, or statisticians perform a measurement, 
they are using a different de facto definition.

A Definition of Measurement

For all practical decision-making purposes, we need to treat measurement 
as observations that quantitatively reduce uncertainty. A mere reduction, 
not necessarily an elimination, of uncertainty will suffice for a measurement. 
Even if some scientists don’t articulate this definition exactly, the methods 
they use make it clear that, to them, measurement is only a probabilis-
tic exercise. Certainty about real-world quantities is usually beyond their 
reach. The fact that some amount of error is unavoidable but can still be an 
improvement on prior knowledge is central to how experiments, surveys, 
and other scientific measurements are performed.

The practical differences between this definition and the most popular 
definitions of measurement are enormous. Not only does a true measure-
ment not need to be infinitely precise to be considered a measurement, 
but the lack of reported error—implying the number is exact—can be an 
indication that empirical methods, such as sampling and experiments, were 
not used (i.e., it’s not really a measurement at all). Measurements that would 
pass basic standards of scientific validity would report results with some 
specified degree of uncertainty. For example, one might say, “There is a 90% 
chance that an attack on this system would cause it to be down somewhere 
between one and eight hours.”

This conception of measurement might be new to many readers, but 
there are strong mathematical foundations—as well as practical reasons—
for looking at measurement this way. A measurement is, ultimately, just 
information, and there is a rigorous theoretical construct for information. 
A field called information theory was developed in the 1940s by Claude 
Shannon, an American electrical engineer and mathematician. In 1948, he 
published a paper titled “A Mathematical Theory of Communication,”2 which 

Definition of Measurement

Measurement: A quantitatively expressed reduction of uncertainty 
based on one or more observations.



24	 Why Cybersecurity Needs Better Measurements for Risk

laid the foundation for information theory and, ultimately, much of the 
world of information technology that cybersecurity professionals work in.

Shannon proposed a mathematical definition of information as the 
amount of uncertainty reduction in a signal, which he discussed in terms of 
the entropy removed by a signal. To Shannon, the receiver of information 
could be described as having some prior state of uncertainty. That is, the 
receiver already knew something, and the new information merely removed 
some, not necessarily all, of the receiver’s uncertainty. The receiver’s prior 
state of knowledge or uncertainty can be used to compute such things as 
the limits to how much information can be transmitted in a signal, the mini-
mal amount of signal to correct for noise, and the maximum data compres-
sion possible.

This “uncertainty reduction” point of view is what is critical to busi-
ness. Major decisions made under a state of uncertainty—such as whether 
to approve large IT projects or new security controls—can be made better, 
even if just slightly, by reducing uncertainty. Sometimes even small uncer-
tainty reductions can be worth millions of dollars.

A Taxonomy of Measurement Scales

Okay, so measuring cybersecurity is like any other measurement in the 
sense that it does not require certainty. Various types of measurement scales 
can push our understanding of measurement even further. Usually, we think 
of measurements as involving a specific, well-defined unit of measure such 
as dollars per year in the cybersecurity budget or minutes of duration of 
system downtime.

But could a scale in qualitative terms of “high,” “medium,” or “low” 
constitute a proper measurement? Cybersecurity professionals will rec-
ognize scales like this as common in many standards and practices in 
all areas of risk assessment. It is common to see “impact” or “likelihood” 
assessed subjectively on a scale of 1 to 5 and then for those scales to 
be combined further to assess risk as high, medium, or low. These are 
deceptively simple methods that introduce a series of issues that will be 
discussed in further detail later in this book. For now, let’s talk about 
where it might make sense to use scales other than conventional units 
of measure.

Note that the definition we offer for measurement says a measurement 
is “quantitatively expressed.” The uncertainty has to be quantified, but the 
subject of observation might not be a quantity itself—it could be entirely 
qualitative, such as a membership in a set. For example, we could measure 
something where the answer is yes or no—such as whether a data breach 
will occur this year or whether a cyber insurance claim will be made—while 
still satisfying our precise definition of measurement. But our uncertainty 
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about those observations must still be expressed quantitatively (e.g., there is 
a 15% chance of a data breach this year or there is a 20% chance of making 
a cyber insurance claim).

The view that measurement applies to questions with a yes/no answer 
or other qualitative distinctions is consistent with another accepted school 
of thought on measurement. In 1946, the psychologist Stanley Smith Stevens 
wrote an article called “On the Theory of Scales and Measurement.”3 In it he 
describes four different scales of measurement: nominal, ordinal, interval, 
and ratio scales. If the reader is thinking of Celsius or dollars as a measure-
ment, they are thinking of an interval and ratio scale, respectively. These 
scales both have a well-defined “unit” of a regular size. In both cases we 
can say a 6 is 2 more than a 4 (6 degrees Celsius or $6). An interval scale, 
however, doesn’t really allow us to say that a 6 is “50% more” than a 4 or 
“twice as much” as a 3. For example, 6 degrees Celsius is not “twice as hot” 
as 3 degrees Celsius (since the “zero” position on the Celsius scale is set 
arbitrarily at the freezing point of water). But $6 million is twice as much as 
$3 million. So there are some mathematical operations we cannot do with 
interval scales, including simple multiplication or division.

Nominal and ordinal scales are even more limited. A nominal scale has 
no implied order or magnitude—like gender or whether a system has a given 
feature. A nominal scale expresses a state without saying that one state is 
twice as much as the other or even, for that matter, more or less than the 
other—each state scale is just a different state, not a higher or lower state. 
Ordinal scales, on the other hand, denote an order but tell us nothing about 
the amount of the difference between values on the scale. We can say, for 
example, that someone with admin rights has more privilege than a regular 
user. But we don’t say it is five times the privilege of a normal user and twice 
as much as another user. So most mathematical operations—other than basic 
logic or set operations—are not applicable to nominal or ordinal scales.

Still, it is possible for nominal and ordinal scales to be informative 
even though they vary from more conventional measurement scales such 
as kilograms and seconds. To a geologist, it is useful to know that one rock 
is harder than another, without necessarily having to know by how much. 
The method they use for comparing hardness of minerals—called the Mohs 
hardness scale—is an ordinal scale.

So, the use of the types of ordinal scales often found in cybersecurity 
is not strictly a violation of measurement concepts but how it is done, what 
it is applied to, and what is done with these values afterward actually does 
violate basic principles and can cause a lot of problems. Geologists don’t 
multiply Mohs hardness scale values times the rock’s color. And while the 
Mohs scale is a well-defined measurement, the uses of ordinal scales in 
cybersecurity often are not.

We will show later that measures based on well-defined quantities—
such as the annual probability of an event and a probability distribution of 
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potential losses—are preferable to the types of ordinal scales typically used 
in cybersecurity. In fact, nothing in science and engineering really relies on 
an ordinal scale. Even the Mohs hardness scale has been replaced in many 
uses. (Outside of geology, the Vickers scale, a proper ratio scale, is consid-
ered more suitable for materials in science and engineering problems.)

These are all important distinctions about the concept of measurement 
that contain many lessons for managers in general as well as cybersecu-
rity specialists. The commonplace notion that presumes measurements are 
exact quantities ignores the usefulness of simply reducing uncertainty, if 
eliminating uncertainty is not possible or economical. And not all measure-
ments even need to be about a conventional quantity. Measurement applies 
to discrete, nominal points of interest such as “Will we experience a major 
data breach?” as well as continuous quantities such as “How much will it 
cost if we do have a data breach?” In business, decision makers make deci-
sions under uncertainty. When that uncertainty is about big, risky decisions, 
then uncertainty reduction has a lot of value—and that is why we will use 
this definition of measurement.

Bayesian Measurement: A Pragmatic Concept for Decisions

…The true logic for this world is the calculus of Probabilities, which 
takes account of the magnitude of the probability which is, or ought to 
be, in a reasonable man’s mind.

—James Clerk Maxwell, 1850

When we talk about measurement as “uncertainty reduction,” we imply 
that there is some prior state of uncertainty to be reduced. And since this 
uncertainty can change as a result of observations, we treat uncertainty as 
a feature of the observer, not necessarily the thing being observed.4 When 
we conduct a penetration test on a system, we are not changing the state of 
the application with this inspection; rather, we are changing our uncertainty 
about the state of the application.

We quantify this initial uncertainty and the change in uncertainty from 
observations by using probabilities. This means that we are using the term 
“probability” to refer to the state of uncertainty of an observer or what 
some have called a “degree of belief.” If you are almost certain that a given 
system will be breached, you can say there is a 99% probability. If you are 
unsure, you may say there is a 50% probability (as we will see in Chapter 7, 
assigning these probabilities subjectively is actually a skill you can learn). 
Likewise, if you are very uncertain about the duration of an outage from a 
denial-of-service attack, you may say there is a 90% probability that the true 
value falls between 10 minutes and 2 hours. If you had more information, 
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you might give a much narrower range and still assign a 90% probability 
that the true value falls within that range.

This view of probabilities is called the subjectivist or sometimes the Bayes-
ian interpretation. The original inspiration for the Bayesian interpretation, 
Thomas Bayes, was an eighteenth-century British mathematician and Pres-
byterian minister whose most famous contribution to statistics would not be 
published until after he died. His simple formula, known as Bayes’s theorem, 
describes how new information can update prior probabilities. “Prior” could 
refer to a state of uncertainty informed mostly by previously recorded data, 
but it can also refer to a point before any objective and recorded observations. 
At least for the latter case, the prior probability often needs to be subjective.

For decision-making, this is the most relevant use of the word “prob-
ability.” It is not just something that must be computed based on other data. 
A person represents his or her uncertainty about something by stating a 
probability. Being able to express a prior state of uncertainty is an impor-
tant starting point in all practical decisions. In fact, you usually already 
have a prior uncertainty—even though you might not explicitly state prob-
abilities. Stating priors even allows us to compute the value of additional 
information since, of course, the value of additional information is at least 
partly dependent on your current state of uncertainty before you gather the 
information. The Bayesian approach does this while also greatly simplifying 
some problems and allowing us to get more use out of limited information.

This is a distinction that cybersecurity professionals need to understand. 
Those who think of probabilities as only being the result of calculations on 
data—and not also a reflection of personal uncertainty—are, whether they 
know it or not, effectively presuming a particular interpretation of prob-
ability. They are choosing the “frequentist” interpretation, and while they 
might think of this as objective and scientific, many great statisticians, math-
ematicians, and scientists would beg to differ. (The original How to Measure 
Anything book has an in-depth exposition of the differences.)

So, there is a fundamental irony when someone in cybersecurity says they 
lack the data to assign probabilities. We use probability because we lack per-
fect information, not in spite of it. This position was stated best by the widely 
recognized father of the field of decision analysis, Professor Ron Howard of 
Stanford University. During a podcast for an interview with Harvard Business 
Review, the interviewer asked Howard how to deal with the challenge of 
analysis “when you don’t know the probabilities.” Howard responded:

Well, see, but the whole idea of probability is to be able to describe by 
numbers your ignorance or equivalently your knowledge. So no matter 
how knowledgeable or ignorant you are, that’s going to determine what 
probabilities are consistent with that.

—Ron Howard, Harvard Business Review podcast,  
interviewed by Justin Fox, November 20, 2014
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There are cases where probability is a computed value but, as great 
minds such as Ron Howard and James Clerk Maxwell (from the earlier 
quote) state, probability is also used to represent our current state of 
uncertainty about something, no matter how much that uncertainty is. But 
keep in mind that, while subjective, the probability we refer to is not just 
irrational and capricious. We need subjective uncertainties to at least be 
mathematically coherent as well as consistent with repeated, subsequent 
observations. A rational person can’t simply say, for instance, that there 
is a 25% chance of their organization being hit by a particular type of 
cyberattack and a 90% chance that it won’t be (of course, these two pos-
sibilities should add to a total probability of 100%). Also, if someone keeps 
saying they are 100% certain of their predictions and they are consist-
ently wrong, then we can reject their subjective uncertainties on objective 
grounds just as we would with the readings of a broken digital scale or 
ammeter. In Chapter 7, you will see how probabilities can be subjective 
and yet rational.

Finally, we need to remember that there is another edge to the 
“uncertainty reduction” sword. Total elimination of uncertainty is not 
necessary for a measurement, but there must be some uncertainty reduc-
tion. If a decision maker or analyst engages in what they believe to be 
measurement activities, but their estimates and decisions actually get 
worse or don’t at least improve, then they are not actually reducing their 
error and are not conducting a measurement according to the stated 
definition.

And so, to determine whether these ordinal scales so commonly used 
in cybersecurity are proper measurements, we at least need to ask whether 
such scales really constitute a reduction in uncertainty. These finer points 
will be developed further in Chapter 5.

The Object of Measurement

A problem well stated is a problem half solved.

—Charles Kettering, American inventor, holder of over  
100 patents, including electrical ignition for automobiles

There is no greater impediment to the advancement of knowledge than 
the ambiguity of words.

—Thomas Reid, Scottish philosopher



A Measurement Primer for Cybersecurity	 29

Even when the more useful concept of measurement (as uncertainty-
reducing observations) is adopted, some things seem immeasurable because 
we simply don’t know what we mean when we first pose the question. In 
this case, we haven’t unambiguously defined the object of measurement. If 
someone asks how to measure “damage to reputation” or “threat” or “busi-
ness disruption,” we simply ask, “What do you mean, exactly?” It is inter-
esting how often people further refine their use of the term in a way that 
almost answers the measurement question by itself.

Once managers figure out what they mean and why it matters, the issue 
in question starts to look a lot more measurable. This is usually the first 
level of analysis when one of the authors, Hubbard, conducts what he calls 
“clarification workshops.” It’s simply a matter of clients stating a particular, 
but initially ambiguous, item they want to measure. Just ask, “What do you 
mean by [fill in the blank]?” and “Why do you care?”

This applies to a wide variety of measurement problems, and cyberse-
curity is no exception. In 2000, when the Department of Veterans Affairs 
asked Hubbard to help define performance metrics for what they referred 
to as “IT security,” Hubbard asked: “What do you mean by ‘IT security’?” and 
over the course of two or three workshops, the department staff defined 
it for him. They eventually revealed that what they meant by IT security 
were things such as a reduction in intrusions and virus infections. They pro-
ceeded to explain that these things impact the organization through fraud, 
lost productivity, or even potential legal liabilities (which they may have 
narrowly averted when they recovered a stolen notebook computer in 2006 
that contained the Social Security numbers of 26.5 million veterans). All of 
the identified impacts were, in almost every case, obviously measurable. 
“Security” was a vague concept until they decomposed it into what they 
actually expected to observe.

What we call a “clarification chain” is just a short series of connec-
tions that should bring us from thinking of something as an intangible 
to thinking of it as a tangible. First, we recognize that if X is something 
that we care about, then X, by definition, must be detectable in some 
way. How could we care about things such as “quality,” “risk,” “security,” 
or “public image” if these things were totally undetectable, in any way, 
directly or indirectly? If we have reason to care about some unknown 
quantity, it is because we think it corresponds to desirable or undesir-
able results in some way. Second, if this thing is detectable, then it must 
be detectable in some amount. If you can observe a thing at all, you can 
observe more of it or less of it. Once we accept that much, the final step 
is perhaps the easiest. If we can observe it in some amount, then it must 
be measurable.
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If the clarification chain doesn’t work, we might try what scientists would 
call a thought experiment. Imagine you are an alien scientist who can clone 
not just sheep or even people but entire organizations. You create a pair 
of the same organization, calling one the “test” group and the other the 
“control” group. Now imagine that you give the test group a little bit more 
“damage to reputation” while holding the amount in the control group 
constant. What do you imagine you would actually observe—in any way, 
directly or indirectly—that would change for the first organization? Does it 
mean sales go down in the near term or long term? Does it mean it becomes 
harder to recruit applicants who want to work at prestigious firms? Does it 
mean that you have to engage in expensive PR campaigns to offset these 
consequences? If you can identify even a single observation that would be 
different between the two cloned organizations, then you are well on the 
way to identifying how you would measure it.

It also helps to state why we want to measure something in order to 
understand what is really being measured. The purpose of the measurement 
is often the key to defining what the measurement is really supposed to be. 
Measurements should always support some kind of decision, whether that 
decision is a one-off or a frequent, recurring decision. In the case of meas-
uring cybersecurity risks, we are presumably conducting measurements to 
better allocate resources to reduce risks. The purpose of the measurement 
gives us clues about what the measure really means and how to measure 
it. In addition, we find several other potential items that may need to be 
measured to support the relevant decision.

Identifying the object of measurement really is the beginning of almost 
any scientific inquiry, including the truly revolutionary ones. Cybersecurity 
experts and executives need to realize that some things seem intangible 
only because they have been poorly defined. The avoidably vague terms 
“threat capability” or “damage to reputation” or “customer confidence” seem 
immeasurable at first, perhaps, only because what they mean is not well 
understood. These terms may actually represent a list of distinct and observ-
able phenomena that need to be identified in order to be understood. Later 

Clarification Chain

1.	 If it matters at all, it is detectable/observable.
2.	 If it is detectable, it can be detected as an amount (or range of pos-

sible amounts).
3.	 If it can be detected as a range of possible amounts, it can be  

measured.
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in this book (especially Chapter 6) we will offer ways of decomposing them 
into lists of more specific things.

We should start clarifying the objective of measurement by defining 
some of the other terms we’ve used many times up to now. To measure 
cybersecurity, we would need to ask such questions as “What do we mean 
by cybersecurity?” and “What decisions depend on my measurement of 
cybersecurity?”

To most people, an increase in security should ultimately mean more 
than just, for example, who has attended security training or how many 
desktop computers have new security software installed. If security is 
better, then some risks should decrease. If that is the case, then we also 
need to know what we mean by risk. Clarifying this problem requires that  
we jointly clarify uncertainty and risk. Not only are they measurable,  
they are key to understanding measurement in general. So, let’s define these 
terms and what it means to measure them.

We will explain how we assign these probabilities (initially by using 
skills you will learn in Chapter 7), but at least we have defined what we 
mean—which is always a prerequisite to measurement. We chose these def-
initions because they are the most relevant to how we measure the example 
we are using here: security and the value of security. But, as we will see, 
these definitions also are the most useful when discussing any other type of 
measurement problem we have.

Now that we have defined “uncertainty” and “risk,” we have a better 
tool box for defining terms such as “security” (or “safety,” “reliability,” and 

Definitions for Uncertainty and Risk and Their Measurements

Uncertainty: The lack of complete certainty, that is, the existence of 
more than one possibility. The “true” outcome/state/result/value is 
not known.
Measurement of Uncertainty: A set of probabilities assigned to a set 
of possibilities. For example: “There is a 20% chance we will have a data 
breach sometime in the next five years.”
Risk: A state of uncertainty where some of the possibilities involve a 
loss, catastrophe, or other undesirable outcome.
Measurement of Risk: A set of possibilities, each with quantified 
probabilities and quantified losses. For example: “We believe there is a 
10% chance that a data breach will result in a legal liability exceeding 
$10 million.”
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“quality,” but more on that later). When we say that security has improved, 
we generally mean that particular risks have decreased. If I apply the defi-
nition of risk given earlier, a reduction in risk must mean that the prob-
ability and/or severity (loss) decreases for a particular list of events. That is 
the approach mentioned earlier to help measure some very large IT secu-
rity investments—including the $100 million overhaul of IT security for the 
Department of Veterans Affairs.

In short, figure out what you mean and how you actually observe 
it, and you are halfway to measuring it. Chapter  6 will dive deeper into 
approaches for defining the observable consequences of cybersecurity, how 
to break down the effects of a cybersecurity event, and how to clarify the 
necessary decision. (There you will find that we will again refer to Ron 
Howard’s work in decision analysis.)

The Methods of Measurement

Our thesis is that people have strong intuitions about random sam-
pling…these intuitions are wrong in fundamental respects…[and] are 
shared by naive subjects and by trained scientists.

—Daniel Kahneman, Winner of the Nobel  
Prize in Economics, and Amos Tversky5

When imagining measurements, many people may think of something 
fairly direct and simple where the entire thing you wish to quantify is right 
in front of you, such as putting fruit on a scale to measure weight or using 
a tape measure to check the length of a piece of lumber. If you count 
the number of people who attended security training, there is no larger 
“unseen” population you are trying to assess. You aren’t necessarily using 
this observation to make inferences about something else.

If this is the limit of what one understands about measurement meth-
ods, then, no doubt, many things will seem immeasurable. Statistics and 
science in general would be much easier if we could directly see everything 
we ever measured. Most “hard” measurements, however, involve indirect 
deductions and inferences. This definitely applies to cybersecurity, where 
we often need to infer something unseen from something seen. Studying 
populations too large or dynamic to see all at once is what statistics is really 
all about.

Cybersecurity is not some exceptional area outside the domain of 
statistics but rather exactly the kind of problem statistics was made for. 
Cybersecurity professionals, like the scientists referred to in Kahneman 
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and Tversky’s quote, may be mistaken about what they think they know. 
They may believe they correctly recall and understand enough about sta-
tistics and probability so that they can make confident declarations about 
what inferences can be made from some data without attempting any math. 
Unfortunately, their mental math is often not at all close to correct. There 
are misconceptions about the methods of measurement that get in the way 
of assessing risk in many fields, including cybersecurity.

Statistical Significance: What’s the Significance?

You may often hear someone claim that a set of sample data is not large 
enough to be “statistically significant.” If you hear someone say that, you 
know one thing for sure: they misunderstand the concept of statistical sig-
nificance. A 2015 survey of 171 cybersecurity professionals conducted by 
the authors demonstrates that these misconceptions are just as prevalent in 
this industry as in any other (more about the findings from this survey will 
be covered in Chapter 5). You may notice that the beliefs some hold about 
statistics will contradict the following facts:

■■ There is no single, universal sample size required to be “statistically 
significant.”

■■ To compute it correctly, statistical significance is a function of not only 
sample size but also the variance within a sample and the “null hypothe-
sis.” These would be used to compute something called a “P-value.” This 
result is then compared to a stated “significance level.” Lacking those 
steps, the declaration of what is statistically significant cannot be trusted.

■■ Once you know how to compute statistical significance and understand 
what it means, then you will find out that it isn’t even what you wanted 
to know in the first place. Statistical significance does not mean you 
learned something and the lack of statistical significance does not mean 
you learned nothing.

In fact, the use of statistical significance is frequently debated in scien-
tific journals and by statisticians. In 2017, the American Statistical Association 
conducted a major conference dedicated to moving beyond the concept of 
statistical significance in all scientific literature, and it culminated in a spe-
cial issue of The American Statistician (Hubbard was one of the organizers 
and an associate editor of the issue). Some scientific journals have even 
begun to outright ban the use of statistical significance methods as the basis 
for testing hypotheses.6

This controversy is explored in further detail at a mathematical level in 
the original How to Measure Anything: Finding the Value of “Intangibles” in 
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Business. For now, it is probably better if you drop the phrase “statistically 
significant” from your vocabulary. What you want to determine is whether you 
have less uncertainty after considering some source of data and whether 
that reduction in uncertainty warrants some change in actions. Statisticians 
know that is not the question statistical significance answers, and they find 
themselves constantly correcting those who believe otherwise. There is 
math for questions related to how much uncertainty was reduced, but they 
can be answered without reference to statistical significance or what the 
cybersecurity analyst believes they recall about statistical significance. These 
questions can only be answered using Bayesian methods.

Cybersecurity experts, like many in virtually all fields of management, 
need to unlearn some misconceptions about statistics as much as they need 
to learn new concepts about statistics. Later, we will discuss how several 
proven measurement methods can be used for a variety of issues to help 
measure something you may have at first considered immeasurable. Here 
are a few examples involving inferences about something unseen from 
something seen:

■■ Measuring with very small random samples of a very large popula-
tion: You can learn something from a small sample of data breaches 
and other events—especially when there is currently a great deal of 
uncertainty.

■■ Measuring when many other, even unknown, variables are involved: 
We can estimate how much a new security control reduced risk even 
when there are many other factors affecting whether or not losses due 
to cyberattacks occur.

■■ Measuring the risk of rare events: The chance of a launch failure of 
a rocket that has never flown before, or the chance of another major 
financial crisis, can be informed in valuable ways through observation 
and reason. These problems are at least as difficult as the risk of the 
rare major breach in cybersecurity, yet measurements can and have 
been applied.

■■ Measuring subjective preferences and values: We can measure the value 
of art, free time, or reducing risk to your life by assessing how much 
people actually pay for these things. Again, the lessons from other fields 
apply equally well to cybersecurity.

Most of these approaches to measurements are just variations on basic 
methods involving different types of sampling and experimental controls 
and, sometimes, choosing to focus on different types of questions that 
are indirect indicators of what we are trying to measure. Basic methods 
of observation like these are often absent from certain decision-making 
processes in business, perhaps because such quantitative procedures are 
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considered to be some elaborate, overly formalized process. Such methods 
are not usually considered to be something you might do, if necessary, on 
a moment’s notice with little cost or preparation. But we will show some 
methods that—to use a popular concept in systems engineering—can even 
be considered “agile.”

Small Samples Tell You More than You Think

When someone in cybersecurity or any other field says something like, “We 
don’t have enough data to measure this,” they probably do not understand 
that they are making a very specific mathematical claim—for which they 
provided no actual math to support. Did they actually compute the uncer-
tainty reduction from a given amount of data? Did they actually compute the 
economic value of that uncertainty reduction? Probably not.

Our intuition is one problem when it comes to making probabilistic 
inferences about data. But perhaps a bigger problem is what we think we 
learned (but learned incorrectly) about statistics. Statistics actually helps us 
make some informative inferences from surprisingly small samples.

Consider a random sample of just five of anything. It could be time 
spent by employees on websites, a survey of firms in some industry report-
ing cybersecurity budgets, and so on. What is the chance that the median 
of the entire population (the point at which half the population is below 
and half above) is between the largest and smallest of that sample of five? 
The answer is 93.75%. In How to Measure Anything, Hubbard refers to this 
as the “rule of five.” With a sample this small, the range might be very wide, 
but if it is any narrower than your previous range, then it counts as a meas-
urement according to our previous definition. The rule of five is simple, it 
works, and it can be proven to be statistically valid for a surprisingly wide 
range of problems. If your intuition—or your recollection of statistics—
disagrees with this, it’s not the math that is wrong.

It might seem impossible to be 93.75% certain about anything based 
on a random sample of just five, but it’s not. If we randomly picked five val-
ues that were all above the median or all below it, then the median would 

Rule of Five

There is a 93.75% chance that the median of a population is between 
the smallest and largest values in any random sample of five from that 
population.
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be outside our range. But what is the chance of that, really? Remember, 
the chance of randomly picking a value above the median is, by definition, 
50%—the same as a coin flip resulting in heads. The chance of randomly 
selecting five values that happen to be all above the median is like flip-
ping a coin and getting heads five times in a row. The chance of getting 
heads five times in a row in a random coin flip is 1 in 32, or 3.125%; the 
same is true with getting five tails in a row. The chance of not getting all 
heads or all tails is then 100% − (3.125% × 2), or 93.75%. Therefore, the 
chance of at least one out of a sample of five being above the median and 
at least one being below is 93.75% (round it down to 93% or even 90% if 
you want to be conservative). Some readers might remember a statistics 
class that discussed statistics for very small samples. Those methods were 
more complicated than the Rule of Five, but the answer is really not much 
better. (Both methods make some simplifying assumptions that work very 
well in practice.)

The rule of five produces an interval that describes uncertainty about 
a continuous quantity, like the duration of an outage or the size of mon-
etary losses. It depends on having a sample of some defined population. 
It describes the median of a population, not the mean or the likely value 
of the next random sample. This can be handy but for risk assessments, 
we also need to assess uncertainty about a discrete event, like whether an 
organization will experience a data breach in a given year or whether a 
given vendor has the controls it claims it has. This is less like assessing what 
the median of a population might be and more like assessing the chance of 
what will happen on the next random draw from that population. For these 
situations, we might assign a single probability to represent our uncertainty 
about whether the event will happen or not. And we may have even less 
data than the rule of five needs.

Let’s suppose you have been working at the same organization for six 
years and you haven’t seen a major data breach. For our purposes, we’ll 
define “major” being a breach large enough to have to be reported in an 
annual report, resulting in regulatory fines and making national news. We’ll 
also assume that you have literally no other information than your imme-
diate experience of working at this organization for six years. That means 
you have no knowledge of news of such events outside of the organization 
other than that they are at least possible.

Would you say there is no way any probability could be assessed? It 
may seem counterintuitive at first, but the fact that you haven’t seen this 
event in six years is not completely uninformative. Remember, we are tak-
ing the Bayesian point of view where a probability represents your state of 
uncertainty. Even when you feel you have absolutely no information at all, 
that state of uncertainty and how it can be changed with even a few obser-
vations can be described mathematically.
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In the 1840s, the mathematician and scientist Pierre-Simon Laplace, 
who contributed many ideas to the math of probabilities, made major con-
tributions to Bayesian methods. One of these contributions was a method 
for computing an initial estimate for the probability of an event even if 
that event had never happened—such as whether the sun will fail to rise 
tomorrow given no other information other than it had risen every day in 
recorded history. He assumed we ignore any contextual knowledge we 
might normally use to inform judgments about the probability of an event. 
All we know is how often it occurred in some limited set of observations. 
Prior to these observations, we had no idea about the frequency of this 
event. In our minds, all possibilities between “it never happens” and “it hap-
pens every time” are equally likely.

He showed a mathematical basis for computing an initial estimate for 
just such a situation. Let’s say that there is a specific number of observations 
such as randomly drawing marbles in an urn with thousands of marbles, 
each of which are either red or green. We can sample a few marbles to 
estimate the proportion of all the marbles which are red. Of course, if we  
sample six marbles, and just one was red, it doesn’t prove that exactly  
one-sixth of the marbles in the urn are red. That was a small random sam-
ple, and the true proportion of red marbles could be more than one-sixth or 
less. But if you had to bet money on the color of the next randomly selected 
marble, you should bet that it is more likely to be red.

Let’s call each red marble a “hit,” a green marble a “miss,” and the total 
sample size is hits plus misses. Based only on these limited observations, 
we use the following formula to estimate a probability that there will be a 
“hit” in the next draw. We started with the assumption that before those six 
random draws, we had no idea what the true proportion of hits would be 
(anything from 0% to 100%, and all possibilities are equally likely). Laplace 
showed that the probability that the next draw will be red is (1 + hits)/
(2 + sample size). This became known as Laplace’s rule of succession (LRS).

Now let’s apply this to the example where you worked at the same 
organization for six years and had not yet observed a major data breach. We 
treat each year like a random draw of a population where a year observed 
without a data breach is a miss, and a year observed with a data breach is 

Laplace’s Rule of Succession

Given that some event occurred m times out of n observations, the 
probability it will occur in the next observation is (1 + m)/(2 + n).
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a hit. We assume you had absolutely no information about the rate of data 
breaches except for your immediate experience at the organization. LRS tells 
us that the chance of a data breach the next year is (1 + 0)/(2 + 6), or 12.5%.

Yes, this may seem absurdly simple. It ignores a lot of information you 
do have and it assumes that one year is a random sample of some popula-
tion. But it’s a better estimate than you might think, and it’s much better than 
throwing up our hands and just saying the chance is “medium.”

Even with its shortcomings, LRS is actually an estimation method that 
errs on the side of uncertainty. If we have no data at all about a population 
proportion (a sample size of zero, no hits or misses), then LRS defaults to 
50%. This makes sense if you had an urn with red and green marbles, you 
have no idea what proportion are red, and you estimate the chance that 
the first randomly selected marble is red. And if you keep sampling, replac-
ing each random sample so you can never be sure you sampled the entire 
population, LRS probabilities can approach 0% if no sampled marbles are 
red and 100% if all sampled marbles are red, but it will never reach exactly 
0% or 100%.

Remember, this is just an initial estimate, and it is based on an extremely 
conservative assumption (erring on the side of uncertainty) because it 
assumes that your only information is your own experience at the firm. 
Of course, it is rarely the case that your knowledge is limited to this. If the 
LRS result seems unrealistic, it is probably because you have lots of other 
information besides just the inputs to LRS. You probably know something 
about the data breaches in other firms like your own. You may know some-
thing about the vulnerabilities that were exploited and whether you have 
addressed those problems in your firm. You may know that unsuccessful 
attack attempts have become much more frequent in your organization, 
raising concerns that a successful attack will be more likely. This is all just 
more information.

The net effect of additional information may be simply changing the 
“reference class.” This is part of what Daniel Kahneman, an influential psy-
chologist who won the economics Nobel and who was quoted earlier in this 
chapter, would call the “outside view” to estimate a probability. Kahneman 
noted that when experts in many fields estimate probabilities, they tend to 
focus on the “inside view”—specifics unique to a situation instead of look-
ing at the frequency of occurrence in a set of similar situations. To gain an 
outside view, he proposes we identify a larger set of similar situations—the 
“reference class.” The frequency of the event within the reference class is 
called the “baseline.” The reference class can be a set of years or a set of 
companies and so on. A baseline could be the number of years an event 
occurred or the number of firms where it occurred in a year. For subjective 
estimates of probabilities, baselines based on reference classes are generally 
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much better than the inside view. Don’t think of each situation as so unique 
that nothing can be learned from similar situations—otherwise, what good 
is experience at all?

If the LRS probability seems too low, perhaps it is because you think 
there is a trend toward more frequent successful attacks. If so, then change 
your reference class to a reduced set of more recent years. If you believe 
the most recent two years are more relevant than previous years, but you 
haven’t observed any major breaches in that time, then LRS would give 
you a result of 25%. If you think the LRS result is too high, then it may be 
because you know something about the rate of breaches across the indus-
try. Instead of being limited to just your own experience at your firm, you 
could use many firms in an industry in the last year as the reference class. 
If you see 1 out of 78 major retailers suffered a major data breach last year, 
then LRS gives us a probability of (1 + 1)/(2 + 78), or 2.5% that a given 
retailer will suffer a major breach next year. If you looked at those same 
firms over a two-year period, then you have 156 “company-years” in your 
reference class. If how you might change the reference class is not obvious, 
try just changing the baseline directly. If 2.5% per year still feels too high 
because of what you know about recent controls you’ve implemented or 
because your organization may differ from others in the industry, adjust the 
2.5% downward. All of this is just more information, which we can use to 
further adjust the baseline.

In later chapters we refer to this urn example we just mentioned as the 
“Urn of Mystery” and we will dive a bit deeper into what this example can 
tell us about assessing risk. We will build on the initial estimate of how LRS 
is based on Bayesian methods. We will also show some additional simple 
and useful variations of LRS.

Building on Simple Estimation Methods

We can improve on these simple estimation methods by getting more sam-
ples, by using simple methods to account for certain types of bias, and by 
adding more detail to the model. We will discuss more of these improve-
ments in later chapters. But if you want to develop a better intuition for 
quantifying what seems unquantifiable, keep simple methods such as the 
rule of five and LRS handy.

As useful as these simple rules may be, certain persistent beliefs about 
measurement will be roadblocks for adoption. There are often assump-
tions that in order to measure something, a lot of data is required and that 
we have very little or no data. It is sometimes even assumed that a given 
measurement problem is a unique challenge unlike any that has ever been 
attempted before.
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We propose a contrarian set of assumptions that—because they are 
assumptions—may not always be true in every single case but in practice 
turn out to be much more effective. We will cover these points in more 
detail later, but for now we will just point them out:

1.	No matter how complex or “unique” your measurement problem seems, 
assume it has been measured before.

2.	 If you are resourceful, you can probably find more sources of data than 
you first thought.

3.	You probably need less data than your intuition tells you—this is actu-
ally even more the case when you have a lot of uncertainty now.

There might be the rare case where, only for lack of the most sophis-
ticated measurement methods, something seems immeasurable. But for 
those things labeled “intangible,” more advanced, sophisticated meth-
ods are almost never what are lacking. Things that are thought to be 
intangible tend to be so uncertain that even the most basic measure-
ment methods are likely to reduce some uncertainty. Cybersecurity is now 
such a critical endeavor that even small reductions in uncertainty can be 
extremely valuable.

There are many more advanced methods we can use to improve on 
these methods. We will show in later chapters that even the simplest first 
steps will probably be an improvement on unaided intuition or qualitative 
methods. But no matter how simple or complex these improvements may 
be, they all have one thing in common: they depend on us speaking the 
language of probabilities in our measurements.

In the next chapter, we will show how these concepts can be just par-
tially applied through a very simple yet quantitative method for evaluating 
cybersecurity risks, which will take barely any more time than the common 
risk matrix.
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CHAPTER 3

Build a little. Test a little. Learn a lot.

—Rear Admiral Wayne Meyer, 
Aegis Weapon System Program Manager

Since the publication of the first edition of this book, the authors have had 
the opportunity to consult with many dozens of CISOs and their security 

teams. While they often wanted detailed quantitative risk assessments for 
a complex organization, some just want to get started in the simplest way 
possible. Simple is the objective of this chapter.

In this chapter we will propose some first steps toward building a quan-
titative risk assessment, which shouldn’t be much more complicated than 
qualitative risk registers or risk matrices. We’ve cut about as many cor-
ners as we could while still introducing some basic quantitative risk assess-
ment concepts.

The first model we will describe in this chapter produces just a single 
monetary amount representing the average of possible losses. The next 
slightly more elaborate version we will describe introduces the Monte Carlo 
simulation—a powerful risk analysis tool. Instead of producing a single 
number, it can show a distribution of possible losses and their probabilities. 
Both of these tools and many others in this book require only an Excel 
spreadsheet. Excel templates for the examples explained in this chapter are 
already made for you and can be downloaded from this book’s website:

www.howtomeasureanything.com/cybersecurity
Later, we will explore more detailed models (starting in Chapter 6) and 

more advanced statistical methods (starting in Chapter 8). But for now, we 
will start with a model that merely replaces the common risk matrix. It will 

The Rapid Risk Audit
Starting With a Simple Quantitative Risk Model

http://www.howtomeasureanything.com/cybersecurity
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simply be a way to capture subjective estimates of likelihood and impact but 
do so with unambiguous quantities.

The Setup and Terminology

Imagine it’s your first day on the job as the new CISO of some mid-sized 
organization. It has grown large enough to warrant establishing a security 
organization. You’re the first hire. You have no staff. You have no budget. 
To build and fund a plan you need a rapid method of assessing your enter-
prise’s cyber risk.

This is what the “Rapid Risk Audit” was made for. Its goal is to quickly 
assess significant risks that can be readily assessed. It could be the first 
step for the new CISO, with deeper technical and quantitative assessments 
to follow.

A rapid risk audit could take an hour or two to complete if you keep it 
simple. It will consist of some interviews and your job is to take the results 
of the interviews to create rough loss forecasts. Let’s review some basic 
terminology you will use in the audit and then provide a list of steps for 
completing the audit.

There are six key terms used in this interview. Ultimately, they provide 
the backbone for the quantification of risk in support of security budgets, 
cyber insurance policies, and board reporting:

■■ Assets create value that threats may compromise—leading to financial 
impact. A whole enterprise can be an asset. A business unit or region 
can be an asset. Even an application or service can be an asset.

■■ Threats compromise the value of assets. Threats can be things such 
as extortion from ransomware, fraud from business email compromise, 
or disruption due to attacks on a vendor. From an enterprise risk per-
spective it can be anything that plausibly and materially impacts the 
business from meeting its goals. This term is sometimes defined differ-
ently in cybersecurity—for example, it may refer to specific categories 
of actors or even specific viruses. But we will use it to be synonymous 
with a “peril” as it is used in insurance. Here, we will define a threat as 
a combination of some cause or attack vector combined with a specific 
loss. A “threat event” is an instance of one of those losses occurring due 
to the stated cause. Table 3.1 shows a list of proposed basic threats you 
can use to get started. The same threats are provided in the Chapter 3 
spreadsheets on the book’s website.

■■ Likelihood measures the chance that a threat successfully compro-
mises an asset’s value leading to some amount of financial impact in 
a given period of time. Unless stated otherwise, our default likelihood 
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will be the chance that the stated threat even will occur at least once in 
a 12-month period. (Note that statisticians differentiate likelihood from 
probability, but the terminology is so ingrained in risk management that 
we’ll just defer to the common usage.)

■■ Impact is the amount lost when a threat successfully compromises
an asset’s value. Impact is always eventually expressed in monetary
terms. Even when impact involves reputation, quality, safety, or other
nonfinancial damages, we express that pain in terms of equivalent dol-
lar amounts. The authors have expressed all these forms of damage in
monetary terms, and clients have always eventually accepted the practi-
cal necessity of it given that resources to reduce risks cost real money
and decisions have to be made.

■■ Controls reduce the likelihood or impact of a threat event. It includes
not just technologies such as multifactor authentication or encryption
but also training and policy enforcement.

■■ Confidence Interval or Credible Interval (CI) represents your
uncertainty about continuous quantities. In this model, we will use it
for monetary impacts. Unless stated otherwise, we will always assume
an interval is a 90% CI. This means we allow for a 5% chance the true
loss could be below the lower bound and a 5% chance that the true
loss is above the upper bound. We will also assume this is a “skewed”

TABLE 3.1  List of Potential Cyber Threats for the Enterprise
(a spreadsheet with another version of this list is ready-made at www 
.howtomeasureanything.com/cybersecurity)

Cause (Attack Vector) Type of Loss

Ransomware Data breach

Ransomware Business disruption

Ransomware Extortion

Business email compromise Fraud

Cloud compromise Data breach

Cloud compromise Business disruption

SaaS compromise Data breach

SaaS compromise Business disruption

Insider threat Data breach

Insider threat Business disruption

Insider threat Fraud

. . .and so on

http://wwww.howtomeasureanything.com/cybersecurity
http://wwww.howtomeasureanything.com/cybersecurity
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distribution of impacts. There is no chance the loss can be zero or 
negative but there is some small chance it could be far above our upper 
bound. Sometimes statisticians use the term “credible interval,” which 
refers to a subjective estimate of uncertainty to differentiate it from sta-
tistical inferences about a population. In probabilistic models, these are 
usually used in the same way, and since we will simply use the initials 
“CI,” we find no need to make any finer points about the distinction.

The Rapid Audit Steps

Like any audit, this rapid audit should follow a structured checklist. Again, 
we are keeping it very simple for now. Since you will probably rely on some 
other people for some of the inputs, we need to make it easy to explain. 
You can download a spreadsheet from the following website as an optional 
audit step. The math at this point is so simple you hardly need it worked 
out for you in a spreadsheet, but it should provide some structure. www 
.howtomeasureanything.com/cybersecurity.

1.	 Identify your internal sources: These are the people you will inter-
view to answer the following questions. The concepts will probably be 
a bit unfamiliar to them at first, so be patient and coach them through 
the process. You may need to rely on your own knowledge to estimate 
some items (e.g., likelihood of ransomware) but other questions need 
input from the business (e.g., the cost of business disruption). If they 
previously used a risk matrix, the same individuals who provided input 
for that may be the sources for this risk audit. If they prefer the existing 
list of risks they identified, you can skip the next two steps (define assets, 
define threats). Whether you use an existing list of risks or generate a 
new one, we call that a “one-for-one substitution” because each risk that 
would have been plotted on a risk matrix is converted to an equivalent 
quantitative model. If your risk matrix had 20 risks plotted on it, then you 
use those same 20 risks in the spreadsheet we provided, instead of defin-
ing a new set of threats for each asset, as we are about to do. But if you 
want to start with a clean slate, then follow the rest of the process below.

2.	Define your assets: The first issue your internal sources can address 
is how to classify assets. You can treat the entire enterprise as one big 
asset—which it is. Or you can break it up into a few separate parts, 
such as operational business units. This is an easy starting point for a 
rapid audit. You use the existing organizational chart as your guide. 
For a rapid risk audit, avoid a highly granular approach, such as listing 
every server. Keep it simple and limit it to no more than a dozen major 
business units. The methods and benefits of further decomposition will 
be addressed later in the book.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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3.	Define your threats: A “starter” list of threats are provided in the 
spreadsheet (the same as Table 3.1) but you can change them or add 
more. There are a lot of possible ways to develop a taxonomy of threats, 
so the criteria you should use is what your sources feel makes sense 
to them. Again, if they have an existing risk register they prefer to use, 
then use that instead of a list they are unfamiliar with.

4.	Assess likelihoods: For each threat of each asset, assess the likeli-
hood that the threat event will be experienced by that asset sometime 
within a one-year period. If you have multiple assets and are using 
Table 3.1 for threats, you will repeat the process to estimate likelihoods 
for each threat/asset combination. For many analysts, this seems like 
the most challenging part of the process. Often, there will be at least 
some industry reports to use as a starting point. See a list of some 
sources later in this chapter. But if you feel you have nothing else to 
go on, just start with Laplace’s rule of succession (LRS) based on your 
own experience, as described in the previous chapter. Remember, for 
the LRS just think of how many observations are in a “reference class” 
(your years of experience, other companies in a given year, etc.) and 
out of those observations how many “hits” (threat events of a given 
type) were observed.

5.	Assess impacts: For each of the threats for each asset, estimate a 90% 
CI for potential losses. This is a simple form of a “probability distribu-
tion,” which represents the likelihood of quantities. We will assume 
this distribution of potential losses is skewed (lopsided) in a way that 
is similar to a distribution commonly used to model losses. In this type 
of distribution, the average of all possible losses is not the middle of 
the range but closer to the lower bound. (This means that when we 
compute the mean loss in the next step, we don’t just use the middle of 
the range.) For a primer on using subjective CIs, see the inset “Thinking 
about Ranges: The Elephant Example.”

6.	Compute Annual Expected Losses (AEL): We are going to compute 
the mean loss in this skewed distribution and multiply that value times 
the likelihood of the event. The spreadsheet you can download uses a 
more precise calculation for the mean of this skewed set of potential 
losses. But we can also just use the following simple equation:

	
Annual Expected Loss Per Threat Likelihood LB UB( . . )0 65 0 35 	

See Table 3.2 for an example with computed AEL values.
7.	Add up all the AELs: When all asseet AELs are combined, you have 

an AEL for the entire organization.
8.	Use the output: The total AEL for the enterprise is itself informative. It 

provides a quick assessment of the scale of the problem. The AEL for 
each individual threat/asset combination also gives us a simple way to 
prioritize which risks are the biggest.
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TABLE 3.2  Example of Rapid Risk Audit

 
 
Attack Vector Loss Type

Annual  
Probability  
of Loss

90% CI of Impact
Annual 
Expected  
Loss

Lower  
Bound

Upper  
Bound

Ransomware Data breach 0.1 $50,000 $500,000 $20,750

Ransomware Business  
disruption

0.05 $100,000 $10,000,000 $178,250

Ransomware Extortion 0.01 $200,000 $25,000,000 $88,800

Business email  
compromise

Fraud 0.03 $100,000 $15,000,000 $159,450

Cloud 
compromise

Data breach 0.05 $250,000 $30,000,000 $533,125

Etc. Etc. Etc. Etc. Etc. Etc.

Thinking about Ranges: The Elephant Example

You’re likely not a veterinarian, zoologist, or a big game hunter. Yet  
I bet you know something about the weight of an elephant—without 
having to use Google. You could even estimate the weight of a specific 
elephant at a specific zoo. You know that an elephant weighs more 
than 10 pounds. You may also have good reason to believe that 100,000 
pounds would be an impossible weight for an elephant. In fact, you 
could likely come up with a much more reasonable range if pressed—
let’s do that.

We will call this reasonable range your 90% CI. You start by fore-
casting the highest number on the range. It should be a “surprisingly 
high” value—but not impossible. More specifically, you think there is 
only a 5% (1 in 20) chance the correct answer could be above this up-
per bound. If you think there is only a 5% chance the weight of an el-
ephant is greater than, say, 20,000 pounds, then this is the upper bound 
of a 90% CI. It is also called your “P95,” the amount which you believe 
has a 95% chance of being above the correct answer.

Next we select the lower bound value. You decide that there is a 
95% chance the correct answer is above 5,000 pounds and equivalently 
only a 5% chance the correct answer is below it. This makes 5,000 your 
P5. Your 90% interval is now 5,000 to 20,000 pounds

If your 90% CI for the weight of the elephant is anything like most 
business losses, the typical loss is closer to the lower bound. (We’ve 
skewed the distribution for your losses automatically.)
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Once you have completed this rapid risk audit, you have a total dol-
lar amount that approximates the total probability-weighted losses for all 
the listed threats. It gives you a sense of the real scale of your risks. The 
AEL for each risk also gives you some idea of which risks should be more 
concerning.

Again, this is not much more complicated than a risk matrix, which, 
according to our surveys, about half of organizations already use. We simply 
replaced each risk on a risk matrix, one for one. So how is any of this dif-
ferent from what many organizations do now?

Since we are still making some simple judgments about likelihoods and 
impacts, it may seem like we haven’t changed much. After all, the reason 
we refer to our methods of replacing the risk matrix as a one-for-one sub-
stitution is because we can directly map the previous risks to the proposed 
model. However, even though the approach we described is very simple 
and may still be based mostly on subjective estimates, it introduces some 
basic quantitative principles the risk matrix excludes. The following table 
(Table 3.3) contrasts the two approaches.

TABLE 3.3  The Simple Substitutions of the Quantitative Model vs. the Risk Matrix

Instead of: We Substitute:

Rating likelihood on a scale 
of 1 to 5 or “low” to “high.” 
Example: “Likelihood of X 
is a 2” or “Likelihood of X is 
medium.”

Estimating the probability of the event 
occurring in a given period of time 
(e.g., 1 year). Example: “Event X has 
a 10% chance of occurring in the next 
12 months.” For some items we can use 
industry data. If we feel stumped, we 
use LRS from Chapter 2 for guidance.

Rating impact on a scale of 1 to 
5 or “low” to “high.” Example: 
“Impact of X is a 2” or “Impact 
of X is medium.”

Estimating a 90% CI for a monetized loss. 
Example: “If event X occurs, there is a 90% 
chance the loss will be between $1 million 
and $8 million.”

Plotting likelihood and impact 
scores on a risk matrix and 
further dividing the risk 
matrix into risk categories 
such as “low/medium/high” 
or “green/yellow/red”

Using the quantitative likelihood and 
impact to generate an annualized 
expected loss (AEL), and we can 
prioritize risks and controls. We can 
build on the AEL further when we use 
the same inputs in a very simple Monte 
Carlo simulation.
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In following chapters, we will describe in greater detail the prob-
lems that are introduced by the risk matrix and measurable improvements 
observed when using more quantitative methods, even if the quantitative 
assessments are subjective.

In the remainder of this chapter we will discuss the two sources of input 
for the initial estimates used in this simple model: actual data (from your 
own firm or the industry) and the judgments of your experts. We’ll discuss 
both of these next. After that, we will cover how to use this simple model 
for decisions about controls and how to improve the output of the risk audit 
with simple simulations.

Some Initial Sources of Data

Recall a key point from the previous chapter; you have more data than you 
think. Using Laplace’s rule of succession gives you some basis for inter-
preting what might seem like very limited observations. But you also have 
access to a wide variety of publicly available data. Here are just a few pub-
licly available sources.

■■ Insurance premiums vs. total AEL: Insurance companies need to 
collect a lot of data on claims to price their policies competitively and 
still make a profit. This means that what they are willing to quote for 
cyber insurance tells us something about the likelihood and mag-
nitude of potential losses. We can use this as a reality check on the 
total AELs in the rapid risk audit. Insurance companies generally hope 
to get a “claims payout ratio” of less than 60%. That’s the amount of 
collected premiums paid out for claims. It excludes other business 
overhead, so it has to be a lot less than 100% to be profitable. How-
ever, actual losses experiences by clients could be higher than 60% 
because industry data indicates that about 20% of claims are denied. 
Claims paid out also exclude anything below the “retention” (i.e., the 
deductible the client is expected to cover on their own) and anything 
above the limit of the policy. So a rule of thumb would be that your  
insurer believes your real AEL will be something more than half  
your premium but no more than the whole premium assuming you 
have a small retention and large limit. If your AEL is far above or far 
below that range, you either have reason to believe your risks are 
different than what the insurer believes or you might reconsider likeli-
hoods or CIs.

■■ Impact of ransomware extortion: Palo Alto Networks 2022 Unit 42 
Ransomware Threat Report provides some basis for estimating extor-
tion payments. The average payment for all of their cases was about 
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$530,000. Demands ranged upward of $50 million, but $5 million is a 
more common upper bound, although such requests were met with 
relatively tiny payments. For your specific range, consider that extortion 
requests range from 0.7% to 5% of revenue. Actual payments are negoti-
ated down to 0% to 90% of initial demands with most falling around 
50%. So you might consider the upper bound of your CI to be closer to 
2% or 3% of revenue.

■■ Impact-data compromise: You should know something about the 
number of personal records maintained in various assets. That should 
give you an upper bound. This applies regardless of whether the com-
promise was due to an internal threat, or compromise of the cloud, a 
vendor, and so forth. The simplest way to convert that into a monetary 
loss is just to multiply the bounds for number of records lost times some 
fixed cost per record. The 2015 Verizon DBIR report recommended a 
cost of $0.58 per record. This particular “cost per record” metric was not 
updated in 2022 (although it could be adjusted for inflation), but there 
are more realistic methods. The 2022 report does give some indication 
of ranges of losses for various events where cost per record decreases 
with larger breaches. We don’t recommend using sources that put the 
per record averages up in the multiple hundred per record. Such analy-
sis isn’t accounting for how the cost per records scale downward based 
on amount.

■■ Impact-business disruption: This is an area where you should have 
data internal to your firm. Outages of specific systems are one part 
of cybersecurity risks where there are more immediate observations 
within the firm and some knowledge of their consequences. Someone 
in your firm should know something about orders taken per minute, 
service level agreements, and examples of lost business based on past 
outages. For small companies that can start at $100 a minute. For larger 
companies the average value is closer to $5,600 a minute although  
We have seen questionable research that puts it closer to an average 
of $9,000 a minute. These are just rough guesstimates with some stat-
ing that the cost of disruption is 50 times that of payment. This is why  
people pay ransoms: the need for availability far outweighs the current 
average cost of extortion.

If you want to dig deeper, there are other potential sources. These 
might be out of the scope of a rapid audit, but there are some sources that 
can give you some guidance if you are willing to spend some time and/or 
money on getting the estimates.

For example, many public sources estimate the total number of breaches 
in the industry, but if you want to turn that into a likelihood that a threat will 
damage your firm, you will need to estimate a baseline. If you are a major 
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retailer, you will want to look up the number of breaches in that industry in 
a given year. Then, to convert that into a baseline likelihood, compare that 
to the total number of major retailers and apply LRS.

There are some sources that can do some work for you. Advisen LTD 
is a firm that tracks details on breaches. Firms like Cyentia Institute (which 
the authors have worked with) specialize in the analysis of this data. We will 
cover more of these sources in later chapters.

There is also new academic research coming out frequently about every 
risk. If you work for a large firm or have access to university resources, you 
may already have access to large databases of published research. Even 
without that, free sources such as Google Scholar can be useful. But this 
is a bit like prospecting for gold. You may have to search a while to find 
something that directly or indirectly informs what you need for estimating 
your firm’s own risks.

The Expert as the Instrument

If you were using qualitative scoring methods or risk matrices before, you 
were relying on expert judgment. The rapid audit uses that, too. We only 
propose that instead of using scales such as “high, medium, low” or 1 to 5, 
experts learn how to subjectively assess the actual quantities behind those 
scales—that is, probability and dollar impact.

The method proposed is, like the risk matrix, really just another expres-
sion of your current state of uncertainty. It does not yet reflect a proper 
“measurement” in the sense that we have further reduced uncertainty based 
on additional observations. We are merely stating our prior uncertainty. But 
now we have expressed this level of uncertainty in a way that allows us 
to unambiguously communicate risk and update this uncertainty with new 
information.

Some may object to the idea of subjectively assessing probabilities. 
Some analysts who had no problem saying likelihood was a 4 on a scale of 
1 to 5 or a medium on a verbal scale will argue that there are requirements 
for quantitative probabilities that make quantification infeasible. Somehow, 
the problems that were not an issue using more ambiguous methods are 
major roadblocks when attempting to state meaningful probabilities.

This is a common misunderstanding. As we first introduced in Chap-
ter 2, it is a mathematically valid position to use a subjective probability to 
represent the prior state of uncertainty of a subject matter expert. In fact, 
there are problems in statistics that can only be solved by using a proba-
bilistically expressed prior state of uncertainty, which may require a belief 
expressed in the form of a probability estimate. And these are actually the 
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very situations most relevant to decision making in any field, including 
cybersecurity.

Later, we will discuss the sources supporting this approach, including 
some very large empirical studies demonstrating its validity. Additionally, 
we have a chapter dedicated to helping readers measure and improve their 
own skill at assessing probabilities using a short series of exercises that can 
help them continue to improve it over time. We call this “calibrated prob-
ability assessment,” and we will show that there is quite a bit of research 
backing up the validity of this approach. Most experts are consistently over-
confident in estimates and calibration training reduces this error. We will 
also show methods for combining the estimates of multiple experts in a way 
that measurably outperforms the best individual expert.

For now, just recognize that most experts can be trained to subjectively 
assess probabilities and that this skill is objectively measurable (as ironic as 
that sounds). Remember, if the primary concern about using probabilistic 
methods is the lack of data, then you also lack the data to use nonquantita-
tive methods. As we’ve stated, both methods are based on the same source of 
data so far—that is, the expert opinion of cybersecurity specialists. And we 
cannot assume that whatever errors you may be introducing to the decision 
by using quantitative probabilities without being trained are being avoided 
by using qualitative methods. In Chapter 5, we’ll talk more about this among 
other common misconceptions and objections to quantitative methods.

In addition to correcting for overconfidence, the expert can also be 
improved by using methods that account for two other sources of error in 
judgment: the high degree of expert inconsistency and a tendency to make 
common inference errors when it comes to thinking probabilistically. These 
improvements will also be addressed in upcoming chapters. (Of course, 
these sources of error are not dealt with in the typical risk matrix at all.)

Supporting the Decision: Return on Controls

Ultimately, the point of risk analysis—even with the risk matrix we are 
replacing—is to support decisions. But the difficulty we had before was 
making specific resource-allocation choices for specific controls. What is it 
worth, after all, to move one high risk to a medium? Is it $5,000 or $5 mil-
lion? Or what if we have a budget of $8  million for cybersecurity and 
80 lows, 30 mediums, and 15 highs? And what if we can mitigate ten lows 
for the same money as one medium?

If you have observed (as the authors have) someone asking a ques-
tion such as, “If we spent another million dollars, can we move this risk 
from a red to a yellow?” then you may have felt the dissatisfaction from 
popular qualitative approaches. Clearly the traditional risk matrix offers 



54	 Why Cybersecurity Needs Better Measurements for Risk

little guidance once the CISO actually has to make choices about allocating 
resources. You might think that you may as well do without these methods 
altogether. But, as we will show later, the CISO should definitely not assume 
they handle these decisions well using their expert intuition alone.

What the CISO needs is a “return on control” calculation. That is the 
monetized value of the reduction in expected losses divided by the cost of 
the control. If we look only at the benefits in a single year (and ignore other 
time-value considerations), we can show this as:

	
return on control

reduction in expected losses

cost of controll
1
	

The difference in the loss before and after the control is the “reduc-
tion in expected losses” in the simple formula above. If the reduction in 
expected losses was exactly as much as the cost, then this formula would 
say the return on control (ROC) was 0%. This would be the convention for 
other forms of investment. Suppose we had an AEL of $100,000 for a given 
threat and we had a control that we estimated would reduce the chance of 
that loss by half. That would be a reduction in expected losses of $50,000. If 
the control cost $10,000, then the ROC is 50,000/10,000 – 1, or 400%

A ROC might have a benefit if it simply reduces the impact and not the 
chance that a threat event would occur. Methods to detect and stop attacks 
before they do more damage or methods to quickly recover after a business 
disruption may not reduce the chance the event would occur in the first 
place but reduce its impact. This particular type of control might be referred 
to as a risk mitigation. Regardless of whether it reduces likelihood, impact, 
or both, the calculation for ROC is the same.

In this example, we assumed that you paid for a risk reduction for one 
year only. If the control is an investment meant to provide risk reductions 
over multiple years, then you would also have to identify over what period 
of time this expected reduction in losses would occur. If the control was 
just an ongoing expense that could be started and stopped at any time, 
then this simple formula could just be applied to a year’s worth of benefits 
(loss reduction) and a year’s worth of costs. If the control is a one-time 
investment that could provide benefits over a longer period of time, then 
follow the financial conventions in your firm for capital investments. You 
will probably be required then to compute the benefits as a “present value” 
of a stream of investments at a given discount rate. Or you may be asked to 
produce an “internal rate of return.” We won’t spend time on those methods 
here, but there are fairly simple financial calculations that can, again, be 
done entirely with simple functions in Excel.

A note of caution is needed if you plan on decomposing our simple 
range for impact further into more variables that go into computing impact. 
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In the example we have shown so far, computing the expected losses is a 
very simple calculation. We can just multiply the computed mean of the 
distribution for the impact times the probability of the event occurring (the 
spreadsheet we provide on the website does this for you). But if we decom-
pose impact into multiple components that need to be multiplied together 
(e.g., records breached times cost per record, duration of outage times num-
ber of people affected times cost per person per hour), then working with 
the averages no longer becomes a reasonable estimation. We effectively 
have to run a separate simulation on each row. But in our simplest model 
we can ignore that for now. As we make the model more advanced, we can 
add more detail. Later chapters will describe how you can evolve the model 
by adding elements that incrementally improve realism.

The calculations for ROC are also provided in the example Excel spread-
sheet you can download from www.howtomeasureanything.com/cybersecurity.

You have just reviewed how to run a very simple rapid audit of cyber-
security risks. We left out a lot of detail about probabilistic methods, but 
it is enough to get by for the first day of being a CISO. Now, before you 
continue on from this chapter, let’s show what a simple simulation can do 
with the ranges and probabilities you already collected.

Doing “Uncertainty Math”

Using ranges and probabilities to represent your uncertainty instead of 
unrealistically precise point values clearly has advantages. When you allow 
yourself to use ranges and probabilities, you don’t really have to assume 
anything you don’t know for a fact. But precise values have the advantage of 
being simple to add, subtract, multiply, and divide in a spreadsheet. If you 
knew each type of loss exactly, it would be easy to compute the total loss.

In the previous rapid audit method, we asked for intervals, but we still 
boiled them down to a single point. We could have two ranges with the 
same mean but where one is far wider than the other. We lost something 
about the uncertainty when we converted that 90% CI to a single number. 
If multiple separate events occur in one year, how do we add up the ranges 
so that we have an aggregated range for the total? We would like to be able 
to answer questions such as “Given all the threats, what is the chance that 
the total losses will exceed $20 million in a single year?” We can’t answer 
that by adding up AELs. We need to do the math with the entire range of 
possibilities.

So how do we add, subtract, multiply, and divide in a spreadsheet 
when we have no exact values, only ranges? Fortunately, there is a practi-
cal, proven solution, and it can be performed on any modern personal 
computer—the Monte Carlo simulation method. A Monte Carlo simulation 

http://www.howtomeasureanything.com/cybersecurity
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uses a computer to generate a large number of scenarios based on prob-
abilities for inputs. For each scenario, a specific value would be randomly 
generated for each of the unknown variables. Then these specific values 
would go into a formula to compute an output for that single scenario. This 
process usually goes on for thousands of scenarios.

In the 1940s, some mathematicians and scientists started using such simu-
lations of thousands of random trials to help solve certain very hard mathemat-
ical problems. Stanislaw Ulam, John von Neumann, and Nicholas Metropolis 
had developed a way to use this method on the rudimentary computers 
available at the time to help solve math problems related to the development 
of the first atomic bomb in the Manhattan Project. They found that randomly 
running a large number of trials was a way to work out the probabilities of 
various outcomes when a model has a number of highly uncertain inputs. At 
the suggestion of Metropolis, Ulam named this computer-based method of 
generating random scenarios after Monte Carlo, a famous gambling hotspot, 
in honor of Ulam’s uncle, a gambler.1 Now, with the advantage of greater 
computing power (easily billions of times greater than what was available on 
the Manhattan Project, by almost any measure), Monte Carlo simulations have 
been used to simulate models on power plants, supply chains, insurance, 
project risks, financial risks, and, yes, cybersecurity.

If you have no experience with Monte Carlo simulations, they’re prob-
ably easier than you think. The authors and many of their staff routinely 
apply Monte Carlo simulations on a variety of practical business problems. 
We have seen that many people who initially were uncomfortable with the 
idea of using Monte Carlo simulations eventually became avid supporters 
after tinkering with the tools themselves.

Let’s start with the same likelihoods and 90% CIs you already gathered 
for the initial rapid audit. You have a set of possible events that could occur 
in a given one-year period. Each event has an assigned probability and, if 
it occurs, a range of possible losses. You may have some events that have 
a probability of 1% and perhaps some have a probability of more than 
10%. In any given year it is possible that no significant loss event occurs, 
and it is also possible that several events occur. It is even possible that the 
same event could happen multiple times in the same year. There is a solu-
tion to that, but for now we will keep it simple and just model an event as 
an either/or outcome that happens no more than once per year. The risk 
matrix doesn’t make this distinction anyway (and it misses quite a few other 
issues we will introduce later), so this will help keep the example closer to 
a one-for-one substitution.

Just like the previous example, we have all the tools we are about to 
describe already set up as templates in Excel on the website www.how 
tomeasureanything.com/cybersecurity.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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As stated earlier, we offer this in Excel to make it more accessible. But 
we’ve also been asked to provide solutions in Python and R. There are 
also existing tools specifically for Monte Carlo simulations in cybersecurity. 
Those tools might allow you to gloss over the basics on Monte Carlo simu-
lations in the remainder of this chapter. But for those who want to under-
stand some basics regardless of the tool or would like to see how the Excel 
spreadsheets work, read on through the rest of this chapter.

Armed with this information and some of the more detailed content 
of upcoming chapters, you should be able to model your uncertainty and 
answer questions such as “What is the chance we will lose more than X next 
year due to a cyberattack?”

An Introduction to Generating Random Events and Impacts in Excel

The prepared spreadsheets on the book’s website will have all of the fol-
lowing set up so that you don’t have to get into the details of how to run 
a simulation for risk assessment. But if you want to eventually make more 
elaborate models on your own, this will be a useful primer.

Monte Carlo can involve thousands of randomly generated scenarios. 
This can be done in any programming language the reader is probably 
familiar with, and it can even be done in an Excel spreadsheet. First, let’s 
generate one random scenario for a single threat. Let’s start with whether 
the event occurred for a single risk in a single scenario. To simulate whether 
a particular event occurs, we can randomly generate a “1” if it occurs and a 
“0” if it does not occur, where the probability of a “1” is equal to the stated 
probability of the event. In Excel, we can write this as

	 if rand() < event_probability, ,( )1 0 	

For example, if the event probability per year is .15, then this equation 
would produce a “1” (meaning the event occurred) in 15% of the scenarios. 
In Excel, every time you recalculate this (press F9), you will see a different 
result. If you did this a thousand times, you would see the event occurs 
about 150 times. Note that this would be for each individual risk you are 
listing in your simulation. So if you have 100 risks each with different prob-
abilities and you run 1,000 scenarios, this little formula would have been 
executed 100,000 times.

One note we’ll mention early is that we are using the Excel “rand()” 
function here as a shorthand for any random number generator. There 
actually is a rand() function in Excel, and the above equation will work 
exactly as described. But wherever we mention rand(), our spreadsheets 
will actually be using a different method for generating a random number. 
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See the inset “HDR PRNG” for more details. This is explained further in the 
spreadsheets.

Now, for the impact, we need to generate not just a “0” or “1” but  
a continuum of values. We can do this using one of Excel’s “inverse  
probability functions.” Some probability functions in Excel will tell you 
the probability of a given result in a particular probability distribution. For 
example, normdist(x, mean, standard deviation, 1) will tell you the prob-
ability that a normal distribution with a given mean and standard deviation  
will produce a value of x or less. The inverse probability function, on the 
other hand, tells you the value of x given a probability. In Excel, the inverse 
probability function for a normal distribution is

	 norminv probability, mean, standard deviation( ) 	

(Note: Recent versions of Excel also use “norm.inv()” but “norminv()” 
will still work.) If you use the Excel rand() function (or HDR PRNG) in place 
of the probability term, this will produce a normally distributed random 
value with the stated mean and standard deviation. The standard deviation 
is a sort of measure of the width of a probability distribution, but it is not 
really a very intuitive quantity for an expert to estimate. It will be better if 
we just ask the expert for a 90% CI as described earlier. This can be used 
to compute the required parameters such as mean and standard deviation 
based on an upper bound (UB) and lower bound (LB) of describing a range 
of potential losses provided by the expert.

We are going to turn that range into a probability distribution of a par-
ticular type that we will use often: the “lognormal” distribution. When we 
determined how to weight the bounds to compute the expected value in 
the simple rapid audit at the beginning of this chapter, this was the type of 
distribution we were assuming.

The lognormal distribution is a variation of the more familiar, bell-
shaped normal distribution. It is just a normal distribution on the log of 
a value we want to simulate and it is a distribution that is usually a much 
better representation of reality. Figure  3.1 illustrates an example of this 
distribution compared to the normal distribution. Notice how the lognor-
mal distribution is lopsided or “skewed,” unlike the normal distribution. 
The lognormal distribution can’t generate a zero or negative amount, but it 
has a tail to the right that allows for the possibility of extremely large out-
comes. This is why it is often a realistic representation of losses that may  
be shockingly high. A normal distribution wide enough to capture some 
extreme events could also produce illogical negative results on the other 
end of the scale (you can’t have a negative number of records breached or 
a negative downtime for a system). This is why the lognormal is also used 
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to model a variety of quantities that can’t be negative but could possibly 
(but rarely) be very large.

To generate a lognormal distribution, the tool provided on the book’s 
website uses the following formula in Excel:

	 lognorm inv rand mean of X standard deviation of X. ( (), ln( ), ln( )))	

where:

standard deviation of ln(X) = (ln(UB) − ln(LB))/3.29

mean of ln(X) = (ln(UB) + ln(LB))/2

So if we had a 90% CI for an impact of $100,000 to $8 million, then the mean  
and standard deviation we need to use for lognorm.inv (which is the  
mean and standard deviation of the log of the original distribution) would be:

	 mean of x /ln( ) (ln( ) ln( )) .8000000 100000 2 13 7 	

 standard deviation of x /ln( ) (ln( ) ln( )) .8000000 100000 3 29 1..33	

To generate the loss for an event with a 5% chance of occurrence and 
an impact of $1 million to $9 million, we would write

if rand , lognorm.inv rand( () . ( (), (ln( ) ln(0 05 9000000 1000000))) ,
(ln( ) ln( )) . ) )

/
/ ,

2
9000000 1000000 3 29 0

90%

90%

0 $1 million $2 million $3 million $4 million $5 million

Normal
Distribution

Lognormal
Distribution

FIGURE 3.1  The Lognormal versus Normal Distribution
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Most of the time (95%), this function would produce a zero. And just 
5% of the time it would generate a value with a 90% chance of falling 
between $1 million and $9 million. Note that since this is a 90% CI, there 
is a 5% chance of being below the lower bound (but above zero, since the 
log normal distribution can only produce positive values) and a 5% chance 
of being above the upper bound and sometimes well above. If the event 
occurs in the example above, there is a 1% chance the loss could exceed 
$14.2 million.

Here is one note of caution in using lognormal distributions. The 
extreme losses for a given 90% CI may be unrealistic when the upper bound 
is many times the lower bound. This can happen when the expert estimat-
ing the value makes the mistake of believing the upper bound represents a 
worst-case extreme, which it is not. The upper bound of a 90% CI allows for 
a 5% chance the value is higher. Extreme outcomes are also sensitive to the 
lower bound. If the 90% CI is $10,000 to $1 million, then the upper bound 
is 100 times as much as the lower bound. In this case there is a 1% chance 
the loss will exceed 2.6 times the stated upper bound ($2.6 million). If the 
90% CI was $1,000 to $10 million, then there is a 1% chance the loss could 
be more than 6.7 times the upper bound ($67 million). If that seems like too 
much, then reconsider the width of the range or simply truncate the gener-
ated value to some maximum. If we wanted to say that $10 million was the 
maximum loss, then we could use the Excel function =min(loss,$10000000) 
to take the lesser of the loss or $10 million. Appendix A has more distribu-
tions that will be more appropriate for certain kinds of problems. It provides 
the Excel formulas for them, along with a description of when different 
distributions are appropriate. Later, we will review some considerations for 
choosing distributions.

The HDR PRNG

Think of the rand() function in the previous formulas as any function 
that generates a random (or pseudorandom) number between 0 and 
1. Rand() happens to be how Excel writes that function, but every 
programming language has some form of a pseudorandom number 
generator (PRNG).

When you download the spreadsheet from the book’s website and 
look closely at the formulas, you may notice that we aren’t actually us-
ing the rand() function in Excel. Don’t worry, it has no bearing on how 
you use the spreadsheet at this point. But we will mention briefly why 
we use a different method.
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Adding Up the Risks

For a large number of events and impacts, we could make a table like 
Table 3.2 to simulate all of the losses for all of the events. Table 3.4 is 
like Table 3.2 but with an additional column on the right showing a single 
randomly generated result. An example is provided for download at www 
.howtomeasureanything.com/cybersecurity.

The value of interest in this particular trial shown in Table 3.4 is the 
total losses: $23,345,193. All you have to do now is run a few thousand 
more trials to see what the distribution of losses will be. Every time you 
recalculate this table you would see a different value come up in the total. 
(If you are an MS Office user on a PC, “recalculate” should be your F9 key.) 
If you could somehow record every result in a few thousand trials, then you 
have the output of a Monte Carlo simulation.

The easiest way to do this in Excel is with a “data table” in the “What-If 
Analysis” tools. You can run as many trials as you like and show each indi-
vidual result without you having to copy the result in Table 3.4 thousands of 
times. The data table lets the Excel user see what a series of answers would 
look like in a formula if you could change one input at a time. For example, you  
might have a very big spreadsheet for computing retirement income that 

Hubbard presented this algorithm at the Winter Simulation Confer-
ence in 2019.2 It is a simple, open source equation, which has been 
adopted as the standard PRNG used by probabilitymanagement.org, 
the organization founded to promote and create standards for Monte 
Carlo simulations. We refer to it as the HDR PRNG, and it has a number 
of advantages.

First, it is a multidimensional “counter”-based PRNG. A random num-
ber is generated based on a set of unique integer inputs. Each risk, 
variable, and trial has a unique identifier, and a specific combination 
of those integers will always produce the same number. Excel’s rand() 
can’t do that. Once you recalculate rand(), all the previous random 
values are replaced and there is no way to “rewind” to previous values.

The HDR PRNG is made so that rounding and precision differences 
between languages will not change the result. The Python or R versions 
of this formula will always produce identical answers to each other 
given identical identifiers for trials, variables, and so on.

Finally, it performs well on statistical tests. “Dieharder” is a battery 
of 114 statistical tests of randomness. These tests can detect even very 
subtle nonrandom patterns. In the Dieharder tests, the HDR PRNG out-
performs Excel’s rand() and meets or beats the PRNG in Python, R, and 
even random sets that can be bought from Amazon Web Services for 
cryptographic keys.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
http://probabilitymanagement.org
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TABLE 3.4  The One-for-One Substitution with Random Scenarios

 
 
Attack Vector Loss Type

Annual  
Probability  
of Loss

90% CI of Impact Random 
Result (zero 
when the 
event did 
not occur)

Lower 
Bound

Upper  
Bound

Ransomware Data breach 0.05 $100,000 $10,000,000 $8,456,193

Ransomware Business 
disruption

0.01 $200,000 $25,000,000 0

Ransomware Extortion 0.03 $100,000 $15,000,000 0

Business email  
compromise

Fraud 0.05 $250,000 $30,000,000 0

Cloud  
compromise

Data breach 0.1 $200,000 $2,000,000 0

Etc. Etc. Etc. Etc. Etc. Etc.

Total: $23,345,193

TABLE 3.5  The Excel Data Table Showing 10,000 Scenarios of Cybersecurity Losses

Data Table for 10,000
Scenarios
$23,345,193
$5,937,544

This cell contains the function you want to
replicate. In this case, it is simply the sum of the
entire “Random Result” column in Table 3.4.

Each of these rows is a potential value for
the total of the “Random Result” column in
Table 3.4.

If a row has a value of “$0”, it means that no
loss-producing event occurred from any of the
risks listed in Table 3.4 in that trial. If your
organization has enough risks, most years you
will have some losses.

1
$02
$3,744,9593
$26,814,5294
$12,048,1715
$06
$2,865,6197

$12,300,3849999
$14,639,83110000

(From the example provided in www.howtomeasureanything.com/cybersecurity.)

Untitled-3   62 23-02-2023   07:37:52

http://www.howtomeasureanything.com/cybersecurity
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includes current savings rates, market growth, and several other factors. You 
might want to see how the estimate of project duration changes if you mod-
ified your monthly savings from $100 to $5,000 in $100 increments. A data 
table would automatically show all of the results as if you manually changed 
that one input each time yourself and recorded the result. The spreadsheet 
you can download at www.howtomeasureanything.com/cybersecurity uses 
this method.

If you want to find out more about data tables in general, the help 
pages for Excel can take you through the basics, but we do make one modi-
fication in the example spreadsheet. Usually, you will need to enter either 
a “column input cell” or “row input cell” (we would just use “column input 
cell” in our example) to identify which value the data table will be repeat-
edly changing to produce different results. In this case, we don’t really need 
to identify an input to change because we already have the rand() function 
that changes every time we recalculate. So our “input” values are just arbi-
trary numbers counting from 1 to the number of scenarios we want to run.

There is an important consideration for the number of trials when simu-
lating cybersecurity events. We are often concerned with rare but high-
impact events. If an event likelihood is only 1% each year, then 10,000 trials 
will produce about 100 of these events most of the time, but this varies a 
bit. Out of this number of trials, it can vary randomly from an exact value 
of 100 (just as flipping a coin 100 times doesn’t necessarily produce exactly 
50 heads). In this case the result will be between 84 and 116 about 90% 
of the time.

Now, for each of these times the event occurs, we have to generate a 
loss. If that loss has a long tail, there may be a significant variation each time 
the Monte Carlo simulation is run. By “long tail,” what we mean is that it is 
not infeasible for the loss to be much more than the average loss. We could 
have, for example, a distribution for a loss where the most likely outcome 
is a $100,000 loss, but there is a 1% chance of a major loss ($50 million or 
more). The one-percentile worst-case scenario in a risk that has only a 1% 
chance per year of occurrence in the first place is a situation that would 
happen with a probability of 1/100 × 1/100, or 1 in 10,000, per year. Since 
10,000 is our number of trials, we could run a simulation where this worst-
case event occurred one or more times in 10,000 trials, and we could run 
another 10,000 trials where it never occurred at all. This means that every 
time you ran a Monte Carlo simulation, you would see the average total loss 
jump around a bit.

The simplest solution to this problem for the Monte Carlo modeler who 
doesn’t want to work too hard is to throw more trials at it. This simulation-
to-simulation variation would shrink if we ran 100,000 trials or a million. 
You might be surprised at how little time this takes in Excel on a decently 
fast machine. We’ve run 100,000 trials in a few seconds using Excel, which 

http://www.howtomeasureanything.com/cybersecurity
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doesn’t sound like a major constraint. We have even run a million scenarios— 
in plain ol’ native Excel—of models with several large calculations in 
15 minutes or less. As events get rarer and bigger, however, there are more 
efficient methods available than just greatly increasing the number of trials. 
But for now we will keep it simple and just throw cheap computing power 
at the problem.

Now we have a method of generating thousands of outcomes in a 
Monte Carlo simulation using native Excel—no add-ins or Visual Basic code 
to run. Given that Excel is so widely used, it is almost certain any cyberse-
curity analyst has the tools to use this. We can then use this data for another 
important element of risk analysis—visualizing the risk quantitatively.

Visualizing Risk With a Loss Exceedance Curve

The risk matrix familiar to anyone in cybersecurity is widely used because 
it appears to serve as a simple illustration of likelihood and impact on one 
chart. In our proposed simple solution, we have simply replaced the likeli-
hood scale with an explicit probability and the impact with a 90% CI repre-
senting a range of potential losses.

In our proposed solution, the vertical axis can still be represented by 
a single point—a probability as opposed to a score. But now the impact  
is represented by more than a single point. If we say that an event has a  
5% chance of occurrence, we can’t just say the impact will be exactly 
$10 million. There is really a 5% chance of losing something, while perhaps 
there is a 2% chance of losing more than $5 million, a 1% chance of losing 
more than $15 million, and so on.

This amount of information cannot be plotted with a single point on a 
risk matrix. Instead, we can represent this with a chart called a “loss exceed-
ance curve,” or LEC. In the spirit of not reinventing the wheel (as risk man-
agers in many industries have done many times), this is a concept also used 
in financial portfolio risk assessment, actuarial science, and what is known 
as “probabilistic risk assessment” in nuclear power and other areas of engi-
neering. In these other fields, it is also variously referred to as a “probability 
of exceedance” or even “complementary cumulative probability function.” 
Figure 3.2 shows an example of an LEC.

Explaining the Elements of the Loss Exceedance Curve

Figure 3.2 shows the chance that a given amount would be lost in a given 
period of time (e.g., a year) due to a particular category of risks. This curve 
can be constructed entirely from the data generated in the previous data 
table example (Table 3.5). A risk curve could be constructed for a particular 
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vulnerability, system, business unit, or enterprise. An LEC can show how a 
range of losses is possible (not just a point value) and that larger losses are 
less likely than smaller ones. In the example shown in Figure 3.2 (which, 
given the scale, would probably be enterprise-level cybersecurity risks for 
a large organization), there is a 40% chance per year of losing $10 million 
or more. There is also about a 15% chance of losing $100 million or more. 
A logarithmic scale is used on the horizontal axis to better show a wider 
range of losses (but that is just a matter of preference—a linear scale can 
be used, too).

We can also create another variation of this chart by adding a couple of 
additional curves. Figure 3.3 shows three curves: inherent risk, residual risk, 
and risk tolerance. Inherent versus residual risk is a common distinction made 
in cybersecurity to represent risks before the application of proposed controls 
(i.e., methods of mitigating risks) and risks after the application of controls, 
respectively. Inherent risk, however, doesn’t have to mean a complete lack 
of controls, since this is not a realistically viable alternative. Inherent risk 
might be defined instead as including only minimal required controls. Those 
are controls where it would be considered negligent to exclude them so 
there really is no dilemma about whether to include them. The differences 
between inherent and residual risks are only truly discretionary controls—
the sorts of controls where it would be considered a reasonable option to 
exclude them. Examples of minimal controls may be password protection, 
firewalls, some required frequency of updating patches, and limiting certain 
types of access to administrators. The organization can make its own list of 
minimal controls. If a control is considered a required minimum, then there 
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This means there is about a 40% chance of losing more than $10 million
in a year and about a 15% chance of losing more than $100 million.

FIGURE 3.2  Example of a Loss Exceedance Curve
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is no dilemma, and where there is no dilemma, there is no value to decision 
analysis. So it is helpful to focus our attention on controls where having 
them or not are both reasonable alternatives.

The LEC provides a simple and useful visual method for comparing a 
risk to our tolerance for risk. An LEC is compared to another curve, which 
represents what our management considers to be its maximum bearable 
appetite for risk. Like the LEC, the curve that represents our tolerance for 
risk is expressed unambiguously and quantitatively.

We will use the terms “risk appetite” and “risk tolerance” interchangea-
bly. We should note that there is a large body of work in decision science that 
has some specific mathematical definitions for risk tolerance. Those slightly 
more advanced methods are very useful for making trade-offs between risk 
and return. (Hubbard uses them routinely when he analyzes large, risky 
investments for clients.) But we will use this risk tolerance curve to express 
a kind of maximum bearable pain, regardless of potential benefits.

As Figure 3.3 shows, part of the inherent risk curve (shown in the thicker 
curve) is above the risk tolerance curve (shown as the dashed curve). The 
part of the inherent risk curve that is over the risk tolerance curve is said to 
“violate” or “break” the risk tolerance. The residual risk curve, on the other 
hand, is on or underneath the risk tolerance curve at all points. If this is 
the case, we say that the risk tolerance curve “stochastically dominates” the 
residual risk curve. This simply means that the residual risks are accept-
able. We will talk about a simple process for defining a risk tolerance curve 
shortly, but first we will describe how to generate the other curves from the 
Monte Carlo simulation we just ran.
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FIGURE 3.3  Inherent Risk, Residual Risk, and Risk Tolerance



The Rapid Risk Audit	 67

Generating the Inherent and Residual Loss Exceedance Curves

Remember, as with the other methods used in this chapter, the downloada-
ble spreadsheet at the previously mentioned website shows all the technical 
details. As Table 3.6 shows, the histogram has two columns, one showing 
a series of loss levels. These would be the values shown on the horizontal 
axis of an LEC. The second column shows the percentage of Monte Carlo 
results that generated something equal to or higher than the value in the 
first column. The simplest method involves using a “countif()” function in 
Excel. If we use “Monte Carlo Results” to stand for the second column of 
values in Table 3.5 and “Loss” to mean the cell in the spreadsheet in the loss 
column of the same row as the following formula, we get:

	 Countif Monte Carlo Results, Loss /( & )“ ” 10000 	

The countif() function does what it sounds like. It counts the number 
of values in a defined range that meet a stated condition. If countif() returns 
8,840 for a given range and if “Loss” is equal to $2 million, then that means 
there are 8,840  values in the range greater than $2 million. Dividing by 
10,000 is to turn the result into a value between 0 and 1 (0% and 100%) for 
the 10,000 trials in the Monte Carlo simulation. As this formula is applied to 
larger and larger values in the loss column, the percentage of values in the 
simulation that exceed that loss level will decrease.

Now, we simply create an XY scatterplot on these two columns in 
Excel. If you want to make it look just like the LEC that has been shown, 

TABLE 3.6  Histogram for a Loss Exceedance Curve

Loss
Probability per Year of  

Loss or Greater

$ − 99.9%

$500,000 98.8%

$1,000,000 95.8%

$1,500,000 92.6%

$2,000,000 88.4%

$2,500,000 83.4%

$3,000,000 77.5%

$24,000,000 3.0%

$24,500,000 2.7%
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you will want to use the version of the scatterplot that interpolates points 
with curves and without markers for the point. This is the version set up 
in the spreadsheet. More curves can be added simply by adding more 
columns of data. The residual risk curve, for example, is just the same 
procedure but based on your estimated probabilities and impacts (which 
would presumably be smaller) after your proposed additional controls are 
implemented.

One disadvantage of the LEC chart is that if multiple LECs are shown, 
it can get very busy-looking. While in the typical risk matrix, each risk is 
shown as a single point (although an extremely unrealistic and ambiguous 
point), an LEC is a curve. This is why one organization that produced a 
chart with a large number of LECs called it a “spaghetti chart.” However, this 
complexity was easily managed just by having separate charts for different 
categories. Also, since the LECs can always be combined in a mathemati-
cally proper way, we can have aggregate LEC charts where each curve on 
that chart could be decomposed into multiple curves shown on a separate, 
detailed chart for that curve. This is another key advantage of using a tool 
such as an LEC for communicating risks. We provide a spreadsheet on the 
book’s website to show how this is done.

Now, compare this to popular approaches in cybersecurity risk assess-
ment. The typical low/medium/high approach lacks the specificity to say 
that “seven lows and two mediums are riskier than one high” or “nine lows 
add up to one medium,” but this can be done with LECs. Again, we need 
to point out that the high ambiguity of the low/medium/high method in 
no way saves the analyst from having to think about these things. With the 
risk matrix, the analyst is just forced to think about risks in a much more 
ambiguous way.

What we need to do is to create another table like Table 3.5 that is 
then rolled up into another Table 3.6, but where each value in the table 
is the total of several simulated categories of risks. Again, we have a 
downloadable spreadsheet for this at www.howtomeasureanything.com/
cybersecurity. We can run another 10,000 trials on all the risks we want to 
add up, and we follow the LEC procedure for the total. You might think 
that we could just take separately generated tables like Table  3.6 and 
add up the number of values that fall within each bin to get an aggre-
gated curve, but that would produce an incorrect answer unless risks are 
perfectly correlated (I’ll skip over the details of why this is the case, but 
a little experimentation would prove it to you if you wanted to see the 
difference between the two procedures). Following this method we can 
see the risks of a system from several vulnerabilities, the risks of a busi-
ness unit from several systems, and the risks across the enterprise for all 
business units.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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Where Does the Risk Tolerance Curve Come From?

Ideally, the risk tolerance curve is gathered in a meeting with a level of man-
agement that is in a position to state, as a matter of policy, how much risk 
the organization is willing to accept. Hubbard has gathered risk tolerance 
curves of several types (LEC is one type of risk tolerance quantification) 
from many organizations, including multiple cybersecurity applications.  
The required meeting is usually done in about 90  minutes. It involves 
simply explaining the concept to management and then asking them to 
establish a few points on the curve. We also need to identify which risk 
tolerance curve we are capturing (e.g., the per-year risk for an individual 
system, the per-decade risk for the entire enterprise). But once we have  
laid the groundwork, we could simply start with one arbitrary point and ask  
the following:

Analyst: Would you accept a 10% chance, per year, of losing more 
than $5 million due to a cybersecurity risk?

Executive: I prefer not to accept any risk.

Analyst: Me too, but you accept risk right now in many areas. You 
could always spend more to reduce risks, but obviously 
there is a limit.

Executive: True. I suppose I would be willing to accept a 10% chance 
per year of a $5 million loss or greater.

Analyst: How about a 20% chance of losing more than $5 million 
in a year?

Executive: That feels like pushing it. Let’s stick with 10%.

Analyst: Great, 10% then. Now, how much of a chance would you be 
willing to accept for a much larger loss, like $50 million or 
more? Would you say even 1%?

Executive: I think I’m more risk averse than that. I might accept a 1% 
chance per year of accepting a loss of $25 million or more…

And so on. After plotting three or four points, we can interpolate the 
rest and give it to the executive for final approval. It is not a technically dif-
ficult process, but it is important to know how to respond to some potential 
questions or objections. Some executives may point out that this exercise 
feels a little abstract. In that case, give them some real-life examples from 
their firm or other firms of given losses and how often those happen.

Also, some may prefer to consider such a curve only for a given cyber-
security budget—as in, “That risk is acceptable depending on what it costs 
to avoid it.” This is also a reasonable concern. You could, if the execu-
tive was willing to spend more time, state more risk tolerance at different 
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expenditure levels for risk avoidance. There are ways to capture risk-return 
trade-offs (see Hubbard’s previous books, The Failure of Risk Management 
and How to Measure Anything, for details on this method). But most seem 
willing to consider the idea that there is still a maximum acceptable risk, 
and this is what we are attempting to capture.

It is also worth noting that the authors have had many opportunities 
to gather risk tolerance curves from upper management in organizations 
for problems in cybersecurity as well as other areas. If your concern is that 
upper management won’t understand this, we can say we have not observed 
this—even when we’ve been told that management wouldn’t understand it. 
In fact, upper management seems to understand having to determine which 
risks are acceptable at least as well as anyone in cybersecurity.

We will bring up concerns about adoption by management again in 
Chapter 5 when we discuss this and other illusory obstacles to adopting 
quantitative methods. In later chapters, we will also discuss other ways to 
think about risk tolerance.

Where to Go from Here

There are many models cybersecurity analysts could use to represent their 
current state of uncertainty. You could simply estimate likelihood and 
impact directly without further decomposition. You could develop a mod-
eling method that determines how likelihood and impact are modified by 
specifying types of threat, the capabilities of threats, vulnerabilities, or the 
characteristics of systems. You can list applications and evaluate risk by 
application, or you can list controls and assess the risks that individual con-
trols would address.

Ultimately, this book will be agnostic regarding which modeling strat-
egy you use, but we will discuss how various modeling strategies should 
be evaluated. When enough information is available to justify the indus-
try adopting a single, uniform modeling method, then it should do so. 
Until then, we should let different organizations adopt different mode-
ling techniques while taking care to measure the relative performance of 
these methods.

To get started, there are some ready-made solutions to decompose 
risks. In addition to the methods Hubbard uses, solutions include the meth-
odology and tools used by the FAIR method, developed by Jack Jones and 
Jack Freund.3 In the authors’ opinion, FAIR, as another Monte Carlo–based 
solution with its own variation on how to decompose risks into further 
components, could be a step in the right direction for your firm. We can also 
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build quite a lot on the simple tools we’ve already provided (and with more 
to come in later chapters). For readers who have had even basic program-
ming, math, or finance courses, they may be able to add more detail without 
much trouble. So most readers will be able to extrapolate from this as much 
as they see fit. The website will also add a few more tools for parts of this, 
like R and Python for those who are interested. But since everything we are 
doing in this book can be handled entirely within Excel, any of these tools 
would be optional.

So far, this method is still only a very basic solution based on expert 
judgment—updating this initial model with data using statistical methods 
comes later. Still, even at this stage there are advantages of a method like 
this when compared to the risk matrix. It can capture more details about 
the knowledge of the cybersecurity expert, and it gives us access to much 
more powerful analytical tools. If we wanted, we could do any or all of the 
following:

■■ As we just mentioned, we could decompose impacts into separate esti-
mates of different types of costs—legal, remediation, system outages, 
public relations costs, and so on. Each of those could be a function of 
known constraints such as the number of employees or business pro-
cesses affected by a system outage or number of records on a system 
that could be compromised in a breach. This leverages knowledge the 
organization has about the details of its systems.

■■ We could make relationships among events. For example, the cyberse-
curity analyst may know that if event X happens, event Y becomes far 
more likely. Again, this leverages knowledge that would otherwise not 
be directly used in a less quantitative method.

■■ Where possible, some of these likelihoods and impacts can be inferred 
from known data using proper statistical methods. We know ways we 
can update the state of uncertainty described in this method with new 
data using mathematically sound methods.

■■ These results can be properly “added up” to create aggregate risks for 
whole sets of systems, business units, or companies.

We will introduce more about each of these improvements and others  
later in the book, but we have demonstrated what a simple rapid risk  
audit and one-for-one substitution would look like. Now we can turn our  
attention to evaluating alternative methods for assessing risk. Of all the 
methods we could have started with in this simple model and for all  
the methods we could add to it, how do we select the best for our purposes? 
Or, for that matter, how do we know it works at all?
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CHAPTER 4

We hope Chapter 2 cleared up how the term “measurement” is used 
in decision science as well as the empirical sciences in general. We 

contend that this is the most relevant understanding of measurement for 
cybersecurity. Chapter 3 gave you an introduction to the most basic level of 
quantitative risk analysis. But why did we choose to focus on some methods 
as the solution and not others? How do we know some methods are bet-
ter than others? There will be a lot more to cover regarding the details of 
the methods of measurement, but for now we propose that our first target 
should be a measurement of risk analysis itself.

The authors have observed experts throughout the field with passion-
ately held positions on the relative merits of different cybersecurity risk-
assessment methods. One easy observation we could make is that both 
sides of polar-opposite positions were often argued by highly qualified 
cybersecurity experts, all with decades of experience. One knowledgeable 
expert will argue, for example, that a particular framework based on quali-
tative scores improves decisions, builds consensus, and avoids the problems 
of more quantitative methods. Another equally qualified expert will argue 
this is an illusion and that such methods simply “do the math wrong.” Since 
we know at least one (if not both) must be wrong, then we know qualifica-
tions and expertise in cybersecurity alone are not sufficient to determine if 
a given opinion on this topic is correct.

This leaves us with several hard questions. How do we decide which 
methods work better? Is it possible that the risk analysis methods cyberse-
curity experts have used for decades—methods in which many cybersecu-
rity experts have a high degree of confidence—could actually not work? 
Is it possible that the perceived benefits of widely used tools could be an  

The Single Most Important 
Measurement in Cybersecurity
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illusion? What do we even mean when we say a method “works,” and how 
would that be measured? We propose that the single most important meas-
urement in cybersecurity risk assessment, or any other risk assessment, is to 
measure how well the risk assessment methods themselves work.

More fundamentally, does it even matter whether risk analysis works? 
Is it sufficient to merely put on a show for compliance or do we expect 
a method to measurably improve decisions and reduce risks? We will 
take what we believe to be an obvious position that shouldn’t really be 
controversial:

■■ We believe it matters whether risk analysis actually works.
■■ What we mean by whether it “works” is whether it measurably reduces 
risks relative to alternative methods with the same resources. That is, 
we believe that risk analysis in any field, including cybersecurity, is not 
just a matter of putting on a show for the appearance of compliance.

■■ Regulators and standards organizations must measure the performance 
of methods they require. If complying with standards and regulations 
does not actually improve risk management, then those standards and 
regulations must change.

■■ We also think it is entirely reasonable to insist that in order to set-
tle an issue with many contradictory opinions from experts at all lev-
els, we will have to actually begin to measure how well risk analysis 
methods work.

■■ We assert that if firms are using cybersecurity risk-analysis methods that 
cannot show a measurable improvement or, even worse, if they make 
risk assessment worse, then that is the single biggest risk in cybersecu-
rity, and improving risk assessment will be the single most important 
risk management priority.

Measuring the methods themselves will be the basis of every recom-
mendation in this book. Either we will propose risk analysis methods based 
on measurements that have already been done and published, or, if no 
such measurement has been done, we will propose a measurement that 
will eventually help identify a valid method. And while we describe how to 
measure the relative effectiveness of methods, we also need to explain how 
not to measure them.

By the end of this chapter we will see what published research has 
already measured about key pieces of the quantitative methods we pro-
posed in Chapter  3. In the next chapter, we will also consider research 
showing that components of current popular risk-assessment methods may 
do more harm than good. Now, let’s look at why we need to base our meth-
ods on research in the first place as opposed to our expert opinion.
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The Analysis Placebo: Why We Can’t Trust Opinion Alone

The first principle is that you must not fool yourself, and you are the 
easiest person to fool.

—Richard P. Feynman, Nobel Prize–Winning Physicist

We often hear that a given method is “proven” and is a “best practice.” 
It may be touted as a “rigorous” and “formal” method—implying that this is 
adequate reason to believe that it improves estimates and decisions. Even-
tually it gets the title of “accepted standard.” Some satisfied users will even 
provide testimonials to the method’s effectiveness.

But how often are these claims ever based on actual measurements of 
the method’s performance? It is not as if large clinical trials were run with 
test groups and control groups. Estimates are rarely compared to actual 
outcomes, and costly cybersecurity breaches are almost never tracked over 
a large number of samples to see whether risk really changed as a function 
of which risk assessment and decision-making methods are used. Unfor-
tunately, the label of “best practice” does not mean it was measured and 
scientifically assessed to be the best performer among a set of practices. As 
Feynman’s quote states, we are easy to fool. Perceived improvements may 
actually be a mirage. Even if a method does more harm than good, users 
may still honestly feel they see a benefit.

How is this possible? Blame an “analysis placebo”—the feeling that 
some analytical method has improved decisions and estimates even when it 
has not. The analogy to a placebo as it is used in medical research is a bit 
imprecise. In that case, there can actually be a positive physiological effect 
from a mere placebo beyond the mere perception of benefit. But when we 
use the term in this context, we mean there literally is no benefit other than 
the perception of benefits. Several studies in fields outside of cybersecurity 
have been done that show how spending effort on analysis improved confi-
dence even when the actual performance was not improved at all. Here are 
a few examples that have also been mentioned in other books by Hubbard:

■■ Sports Picks: A 2008 study at the University of Chicago tracked proba-
bilities of outcomes of sporting events as assigned by participants given 
varying amounts of information about the teams without being told the 
names of teams or players. As the fans were given more information 
about the teams in a given game, they would increase their confidence 
that they were picking a winner, even though the actual chance of pick-
ing the winner was nearly flat no matter how much information they 
were given.1
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■■ Psychological Diagnosis: Another study showed how practicing clini-
cal psychologists became more confident in their diagnosis and their 
prognosis for various risky behaviors by gathering more information 
about patients, and yet, again, the agreement with observed outcomes 
of behaviors did not actually improve.2

■■ Investments: A psychology researcher at MIT, Paul Andreassen, con-
ducted several experiments in the 1980s showing that gathering more 
information about stocks in investment portfolios improved confidence 
but without any improvement in portfolio returns. In one study he 
showed how people tend to overreact to news and assume that the 
additional information is informative even though, on average, returns 
are not improved by these actions.3

■■ Collaboration on Sports Picks: In another study, sports fans were asked 
to collaborate with others to improve predictions. Again, confidence 
went up after collaboration, but actual performance did not. Indeed, 
the participants rarely even changed their views from before the discus-
sions. The net effect of collaboration was to seek confirmation of what 
participants had already decided.4

■■ Collaboration on Trivia Estimates: Another study investigating the ben-
efits of collaboration asked subjects for estimates of trivia from an alma-
nac. It considered multiple forms of interaction including the Delphi 
technique, free-form discussion, and other methods of collaboration. 
Although interaction did not improve estimates over simple averag-
ing of individual estimates, the subjects did feel more satisfied with 
the results.5

■■ Lie Detection: A 1999 study measured the ability of subjects to detect 
lies in controlled tests involving videotaped mock interrogations of 
“suspects.” The suspects were actors who were incentivized to conceal 
certain facts in staged crimes to create real nervousness about being 
discovered. Some of the subjects reviewing the videos received training 
in lie detection and some did not. The trained subjects were more con-
fident in judgments about detecting lies even though they were worse 
than untrained subjects at detecting lies.6

And these are just a few of many similar studies showing that we can 
engage in training, information gathering, and collaboration that improves 
confidence but not actual performance. Of course, these examples are from 
completely different types of problems than cybersecurity. But what is the 
basis for assuming that these same problems don’t appear in cybersecurity? 
In the pharmaceutical industry, a new drug is effectively assumed to be a 
placebo until it is shown that the observed effect would be very unlikely 
if it were a placebo. The fact that a placebo exists in some areas means it 
could exist in other areas unless the data shows otherwise. With examples 
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in problems as diverse as investments, horse racing, football games, and 
diagnosis of psychology patients, it would seem that the burden of proof is 
on the person claiming that some other area, such as cybersecurity, avoids 
these problems. So let’s start by assuming that cybersecurity is not particu-
larly immune to problems observed in so many other areas where humans 
have to make judgments.

What we will not do to measure the performance of various methods 
is rely on the proclamations of any expert regardless of his or her claimed 
level of knowledge or level of vociferousness. So even though the authors 
can fairly claim plenty of experience—cybersecurity in the case of Seiersen 
and quantitative risk analysis in general in the case of Hubbard—we will 
not rely on any appeals to our authority regarding what works and what 
does not. We see this as a shortcoming in many books on risk management 
and information security. Our arguments will be based on the published 
research from large experiments. Any mention of anecdotes or quotes from 
“thought leaders” will only be used to illustrate a point, never to prove it.

We don’t think it is controversial to insist that reason and evidence are 
the way to reach reliable conclusions about reality. For “reason,” we include 
using math and logic to derive new statements from previously confirmed 
statements. For “evidence,” we don’t include anecdotal or testimonial argu-
ments. Any method, including astrology and pet psychics, can produce 
those types of “evidence.” The best source of evidence is large, random 
samples; clinical trials; unbiased historical data; and so on. The data should 
then be assessed with proper mathematical methods to make inferences.

How You Have More Data than You Think

What we need to do is define a scientifically sound way to evaluate methods 
and then look at how different methods compare based on that evaluation. 
But a common concern is that cybersecurity simply lacks sufficient data 
for proper, statistically valid measurements. Ironically, this claim is almost 
always made without doing any proper math.

Recall from Chapter 2 that if we can expand our horizons about what 
data could be informative, we really do have more data than we think. So 
here are some ways that we have more data than we think about the per-
formance of cybersecurity risk assessment methods.

■■ We don’t have to be limited by looking just at ourselves. Sure, each 
organization is unique, but that doesn’t mean that we can’t learn from 
different examples. Indeed, experience would mean nothing if we 
couldn’t generalize from experiences that aren’t identical. Using infor-
mation from larger populations is how insurance companies estimate 
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your health risk even though you never made a claim, or how a doctor 
believes a drug you never tried will work with you because he knows 
of a large experiment involving many other people.

■■ We can measure components as well as whole systems. We can meas-
ure the overall performance of an entire system, or we can measure 
individual components of the system. When an engineer predicts the 
behavior of a new system that has not yet been built, the engineer is 
using knowledge of the behavior of components and how they inter-
act. It’s easier to measure several components of risk assessment than 
it is to wait for rare events to happen. For example, tracking how well 
cybersecurity analysts estimate more frequent, small events is a measure 
of the “expert estimation component” in the risk management system.

■■ We can use published research. If we are willing to consider component -  
level studies of larger populations outside of our own experience, then 
a lot more data becomes available. When you don’t have existing data 
or outside research of any kind, it might be time to start gathering the 
data as part of a defined measurement process.

Understanding what data we can use to support measurements is ulti-
mately the kind of “reference class” issue we discussed in the previous 
chapters. In a perfect world, your firm would have so much of its own data 
that it doesn’t need to make inferences from a reference class consisting of a 
large population of other firms. You can measure the overall performance of 
a risk assessment system by measuring outcomes observed within your own 
firm. If the firm were large enough and willing to wait long enough, you 
could observe variations in major data breaches in different business units 
using different risk assessment methods. Better yet, industry-wide experi-
ments could expand the reference class to include many organizations and 
would produce a lot of data even about events that would be rare for a 
single firm.

Of course, multiyear, industry-wide experiments would not be practical 
for several reasons, including the time it would take and the need to con-
vince organizations to participate knowing they might be in the “placebo” 
group. (Which organizations would want to be in the “placebo” group using 
a fake method?) Not surprisingly, no such study has been published in peer-
reviewed literature by the date of this writing. So what can be done to com-
pare different risk assessment methods in a scientifically rational way? The 
other measurement strategy dimensions we just mentioned give us some 
choices—some of which can give us immediate answers.

A more feasible answer for an initial measurement would be to experi-
ment with larger populations but with existing research at the component 
level. Component testing is an approach many professionals in engineer-
ing and information technology are already familiar with. Components we 
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could consider are the individual steps in risk assessment, the tools used, 
and the methods of collaboration. Even the act of simply putting a prob-
ability on a potential event is a component of the process we could test. In 
fact, a lot of research has already been done on this at a component level—
including some studies that were very large, conducted over many decades 
by many separate researchers and published in leading, peer-reviewed sci-
entific journals.

If the individual components of a method are shown to be an improve-
ment, then a method based entirely on these elements is much more likely 
to be effective than a method for which the components have no such evi-
dence or, worse yet, have been shown to be flawed. This is no different than 
a designer of an oil refinery or rocket using established physical principles 
to evaluate components of a system and then calculating how those compo-
nents would behave in the aggregate. There are many potential components 
to evaluate, so let’s divide them into two broad categories that are or could 
be used in cybersecurity risk assessment:

■■ What is the relative performance of purely historical models in estimat-
ing uncertain outcomes as compared to experts?

■■ Where we use experts, what is the performance of the tools the experts 
use to assist in making estimates of outcomes?

When Algorithms Beat Experts

A key “component” we should consider in cybersecurity risk analysis is the 
performance of how information is synthesized to make estimates. Specifi-
cally, is it better to rely on experts to make a judgment or a statistical model? 
One particular area where research is plentiful is in the comparison of statis-
tical models to human experts in the task of estimating uncertain outcomes 
of future events. This research generated one of the most consistently rep-
licated and consequential findings of psychology: that even relatively naive 
statistical models seem to outperform human experts in a surprising variety 
of estimation and forecasting problems.

We should note here that while we promote quantitative methods (for 
good reasons we are about to explore), we aren’t saying that we can entirely 
replace humans in risk assessment. We are simply looking at a few situa-
tions where objective, quantitative models were made and compared to 
expert intuition. We want to investigate the following question: If we could 
build a purely quantitative model on historical data, would that even be 
desirable?

As you read about this research, you may also want to know whether 
any of the research in other areas could even apply to cybersecurity. If you 
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bear with us, we think you will agree that it does. In fact, like the placebo 
effect mentioned earlier, the studies are so numerous and varied it seems 
the burden of proof would be on the one arguing that cybersecurity some-
how avoids these fundamental issues.

Some Research Comparing Experts and Algorithms

Some of this research started in a very different field and during a time 
before the concept of cybersecurity had even been imagined. As early as 
the 1950s, the American psychologist Paul Meehl proposed an idea that 
shook up the field of clinical psychology. He claimed that expert-based 
clinical judgments about psychiatric patients might not be as good as simple 
statistical models. Meehl collected a large set of studies showing that statisti-
cal models based on medical records produced diagnoses and prognoses 
that at least matched but usually beat the judgment of trained clinicians. 
Meehl was able to show, for example, that personality tests were better than 
experts at predicting several behaviors regarding neurological disorders, 
juvenile delinquency, and addictive behaviors.

In 1954, he wrote the seminal book on the subject, Clinical versus 
Statistical Prediction. At the time of this initial research, he could already 
cite over 90 studies that challenged the assumed authority of experts.7 
Researchers such as Robyn Dawes (1936–2010) of the University of Michi-
gan were inspired to build on this body of research, and every new study 
that was generated only confirmed Meehl’s findings, even as they expanded 
the scope to include experts outside of clinical diagnosis.8,9,10 The library 
of studies they compiled included findings predicting the GPAs of college 
freshmen and medical students, criminal recidivism, sporting events, and 
medical prognoses. After the studies had grown significantly in number, 
Meehl felt forced to conclude the following:

There is no controversy in social science which shows such a large 
body of qualitatively diverse studies coming out so uniformly in the 
same direction as this one. When you’re pushing 90 investigations [now 
over 150], predicting everything from the outcome of football games to 
the diagnosis of liver disease and when you can hardly come up with 
a half dozen studies showing even a weak tendency in favor of the 
[human expert], it is time to draw a practical conclusion.11

The methods used in this research were straightforward. Ask experts to 
predict some objectively verifiable outcomes—such as whether a new busi-
ness will fail or the effectiveness of chemotherapy for a cancer patient—
then predict the same thing using an algorithm based only on historical 
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data, then lastly track both over a large number of predictions, and see 
which method performs better.

Such conclusive findings as those of Meehl and his colleagues inevita-
bly draw the interest of other researchers looking for similar phenomena in 
other fields. In one of the more recent examples, a study of oil exploration 
firms shows a strong relationship between the use of quantitative methods 
(including Monte Carlo simulations) to assess risks and a firm’s financial 
performance.12,13 NASA has been applying Monte Carlo simulations based 
on historical data along with softer methods (based on subjective scales) 
to assess the risks of cost and schedule overruns and mission failures. The 
cost and schedule estimates from the quantitative methods had, on average, 
less than half the error of scientists and engineers using nonquantitative 
methods.14

In perhaps the most ambitious study of this kind, Philip Tetlock con-
ducted an experiment over a 20-year period and published it in his book 
Expert Political Judgment: How Good Is It? The title indicates a particular 
focus in politics, but he interpreted it broadly to include economics, military 
affairs, technology, and more. He tracked the probabilities of world events 
assigned by a total of 284 experts in their respective fields. By the conclu-
sion of the study he had collected over 82,000 individual forecasts.15 (This 
puts Tetlock’s data equal to or in excess of the largest phase III clinical drug 
trials published in scientific journals.) Based on this data, Tetlock was will-
ing to make even stronger statements than Meehl and his colleagues:

It is impossible to find any domain in which humans clearly outper-
formed crude extrapolation algorithms, less still sophisticated statistical  
ones.

Why Does This Happen?

Robyn Dawes, Meehl’s colleague whom we mentioned earlier, makes the 
case that poor performance by humans in forecasting and estimation tasks 
is partly due to inaccurate interpretations of probabilistic feedback.16 These 
researchers came to view the expert as a kind of imperfect mediator of 
input and output. Very few experts measure their performance over time,  
and they tend to summarize their memories with selected anecdotes. 
The expert then makes rough inferences from this selective memory, and 
according to the research published by Dawes, this can lead to an “illusion 
of learning.” That is, experts can interpret experience alone as evidence of  
performance. They believe years of experience should result in improved per-
formance, so they assume that it does. But it turns out that we cannot take 
learning for granted no matter how many years of experience are gained.
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Tetlock proposed in his book that “human performance suffers because 
we are, deep down, deterministic thinkers with an aversion to probabilistic 
strategies that accept the inevitability of error.” The math of dealing with 
error and uncertainty is the math of probabilities. If we can’t get that math 
right in our heads, then we will have a lot of difficulty with probabilistic 
forecasting problems.

For example, if someone was not good at simple arithmetic, we wouldn’t 
be surprised if that person was not very good at estimating, say, the costs 
and duration of a large, complex engineering project with many interrelated 
elements. Surely a person skilled at those estimates would know how to 
multiply the number of people involved in a task, their cost of labor, and 
the duration of the task in order to estimate the task’s labor costs. He or she 
would also know how to total the costs of the separate tasks along with 
other project costs (e.g., materials, licenses, and equipment rental).

When an expert says that, based on some experience and data, one 
threat is a bigger risk than another, they are doing a kind of “mental math” 
whether intentional or not. We aren’t saying they are literally trying to add 
numbers in their heads; rather, they are following an instinct for something 
that in many cases really could be computed. How well our intuition matches 
the math has also been measured by an impressive array of research includ-
ing that of Daniel Kahneman, winner of the 2002 Nobel Prize in Economic 
Sciences, and his colleague Amos Tversky. They showed how even statisti-
cally sophisticated researchers will tend to greatly misestimate the odds that 
new data will confirm or contradict a previous experiment of a given sam-
ple size,17 and will incorrectly estimate expected variations in observations 
based on sample size.18 (This was briefly mentioned in Chapter 2.)

By “statistically sophisticated,” we mean that the subjects of this 
research were actual scientists published in respected, peer-reviewed jour-
nals. As Kahneman and Tversky noted in this research, “It’s not just that 
they should know the math, they did know the math.” Even for those who 
know the math, when they resort to their intuition, their intuition is wrong.  
For all of us, including trained scientists, various recurring—but avoidable—
mathematical errors are just one of the challenges of trying to do math in 
our heads.

Even though all of this research is borrowed from fields outside of 
cybersecurity, the breadth of these findings in so many areas seems to dem-
onstrate that they are fundamental and apply to any area of human judg-
ment, including cybersecurity. But if the variety of findings in so many areas 
doesn’t convince us that these same issues apply to cybersecurity, consider 
another argument made by Kahneman and another researcher in decision 
psychology, Gary Klein.

Kahneman and Klein point out three necessary conditions for experi-
ence to result in learning. First, there must be consistent feedback. The 
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person must be given the information about past performance regularly, 
not rarely. Second, the feedback must be relatively immediate. If a person 
makes several forecasts for events that may happen years from now (which 
is often the case in a cost-benefit analysis for some new investment in, say, 
technology, infrastructure, or new products), the delay in the feedback will 
make learning more difficult. Third, the feedback should be unambiguous. 
If the person simply says a cybersecurity project will be a “success” or that 
risk will be reduced, that may be open to interpretation. And when our past 
performance is left to interpretation, we are likely to interpret data in a way 
that would be flattering to ourselves. Unless we get regular, immediate, and 
unambiguous feedback, we are likely to have selective memory and inter-
pret our experiences in the most flattering way.

So the uncomfortable question cybersecurity risk analysts must ask 
themselves is this: Does the experience of the cybersecurity expert actually 
meet those requirements? Do cybersecurity experts actually record all their 
estimates of probability and impact and then compare them to observation? 
Even assuming they did that, how long would they typically have to wait 
before they learned whether their estimate was correct? Even if estimates 
are recorded and we wait long enough for the event to occur, was it clear 
whether the original estimate was correct or the discrete event occurred or 
not? For example, if we say we lost reputation from a breach, how do we 
know that, and how did we actually validate—even approximately—the 
magnitude of the event as originally estimated?

Even if judgments of cybersecurity risk assessments were unambiguous 
and faithfully recorded, the delay of the feedback alone presents a major 
obstacle to learning. For example, suppose we have an event we assess as 
having a 10% chance of occurrence per year. We are considering a control 
to reduce this risk but have uncertainty about the control. If this control 
works, it doesn’t eliminate the chance of the event, but it should reduce 
the annual likelihood of this event by half. Let’s say the estimates so far are 
based on a lot of industry data except for whether the control will even 
work at all in our environment. To keep it simple, we’ll assume that it either 
works or doesn’t and we judge that there is a 50/50 chance the control 
will work and reduce the chance of occurrence by half (down to 5%). If it 
doesn’t work, then the annual likelihood is still 10%.

If we observe this system long enough, we can update our judgment 
about whether the control is working. If we could observe this system over 
a very long time and maybe in a large number of organizations, we could 
detect a difference between a 10% and 5% annual probability faster. But 
suppose we limit our observations to the experience of one manager or risk 
analyst in one organization. If it doesn’t happen in the first five years, that 
tells us very little about whether the control is working. That could easily 
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be the same outcome if the control were effective or if the control were 
no better than wearing your lucky socks to work. In Chapter 8, we discuss 
Bayesian methods, which could be applied to solve this. For now, we’ll just 
tell you the answer. If we don’t observe the event after eight years, we can 
adjust our probability that the control is effective from 50% to just 60%. In 
other words, it could still easily be the case that the control was ineffective 
but we were just a bit lucky. If we waited 16 years and the event has not 
yet occurred, we would still only be 70% certain the control is working, and 
if we waited 30 years, it rises to about 84%. Even to learn at this slow rate 
assumes the original forecast was recalled accurately. How many of your 
forecasts from five years ago do you recall accurately today? How many did 
you even document?

Risk management also lacks another required component for learning. 
Kahneman and others pointed out that learning must be based on a “high 
validity” environment. This refers to the predictability of a system. In an 
environment where the outcomes are mostly random, learning becomes 
much more difficult. For example, you can watch a roulette table or coin 
flipping for many decades and not get any better at predicting outcomes. 
This would be a “low validity” environment. On the other hand, if you are 
watching moves in a chess game for that long, you will probably get better 
at estimating who will win well before the game ends. Risk management, 
by its nature, involves randomness and, consequently, it becomes very hard 
to learn from experience.

In cybersecurity, like many other fields, we cannot assume learning 
happens without deliberate processes to make sure that is the case. These 
findings are obvious to researchers such as Meehl:

The human brain is a relatively inefficient device for noticing, selecting,  
categorizing, recording, retaining, retrieving, and manipulating informa
tion for inferential purposes. Why should we be surprised at this?19

This does not mean that experts know very little about their fields. 
They have a lot of detailed technical knowledge. The performance of 
experts in the research mentioned so far relates only to the estimation of 
quantities based on subjective inferences from recalled experience. The 
problem is that experts often seem to conflate the knowledge of a vast 
set of details in their field with their skill at forecasting uncertain future 
events. A cybersecurity expert can become well versed in technical details 
such as conducting penetration tests, using encryption tools, setting up 
firewalls, using various types of cybersecurity software, and much more—
and still be unable to realistically assess their own skills at forecasting 
future events.
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Tools for Improving the Human Component

The research reviewed up to this point might make it look like there is little 
room for the expert in assessing risks. We are not making that case at all. 
When we can make sound mathematical models based on objective obser-
vations and historical data, we should do that. Still, we acknowledge that 
there are several tasks still left to the expert. The expert is a component of 
risk analysis we cannot remove but we can improve.

The expert must help define the problem in the first place. He or she 
must assess situations where the data is ambiguous or where conditions do 
not fit neatly into existing statistical data. The expert also must propose the 
solutions that must be tested.

In fact, our goal is to elevate the expert. We want to treat the cybersecu-
rity expert as part of the risk assessment system. Like a race car or athlete, 
they need to be monitored and fine-tuned for maximum performance. The 
expert is really a type of measurement instrument that can be “calibrated” 
to improve its output.

It is also worth noting that none of the challenges we are about to list 
are unique to the cybersecurity profession, but that profession does have 
some characteristics that put it among a set of professions susceptible to 
“uncalibrated” judgment. Cybersecurity can borrow from other, very techni-
cal engineering fields reliant on expert judgment that have specific methods 
in place to track and calibrate the judgments of experts. The Nuclear Regu-
latory Commission (NRC), for example, recognizes the need for expert input 
during several steps in the risk assessment process. An NRC report on the 
use and elicitation of expert judgment stated the following:

Expert judgments are both valid in their own right and comparable to 
other data. All data are imperfect representations of reality. The validity 
of expert judgment data, like any data, can vary based on the proce-
dures used to collect it. So-called “hard” data, such as data taken from 
instruments, cannot be considered to be perfect because of problems 
such as random noise, equipment malfunction, operator interference, 
data selection, or data interpretation. The validity of all data varies. 
The validity of expert judgment depends heavily on the quality of the 
expert’s cognitive representation of the domain and ability to express 
knowledge. The elicitation of expert judgment is a form of data collec-
tion that can be scrutinized; the use of the judgments can, and should, 
also be scrutinized.20

We agree. We must scrutinize the expert as we would any other meas-
urement instrument. We consider the cybersecurity expert to be an essential 
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and ultimately irreplaceable component of any risk analysis. Even as new 
data sources emerge that will allow even more quantitative analysis of risks, 
cybersecurity will continue to rely on cybersecurity experts for the foresee-
able future. It is because of the key role trained experts will have that we 
need to take special notice of their performance at various critical tasks. And 
just as we would not rely on only a measurement instrument to measure its 
own accuracy, we cannot rely on the experts themselves to evaluate their 
own performance.

As we did earlier, we will begin by looking at existing research on the 
topic. We want to consider the tools that experts use and whether they actu-
ally help or harm the value of their judgment.

The Subjective Probability Component

A critical component of risk analysis is cybersecurity experts’ assessment of 
the likelihoods of events, such as cybersecurity breaches, and the potential 
costs if those events occur. Whether they are using explicit probabilities 
or nonquantitative verbal scales, they need to judge whether one kind of 
threat is more likely than another. Since we will probably have to rely on the 
expert at some level for this task, we need to consider how the experts’ skill 
at this task can be measured and what those measurements show.

This is a well-documented area of research based on recorded judg-
ments of experts and nonexperts in many different fields. Every study takes 
a similar approach. Large numbers of estimates are collected from individu-
als and then compared to observed outcomes. The findings are conclusive 
and repeated by every study that looks at this issue:

■■ Without training or other controls, almost all of us would assign prob-
abilities that deviate significantly from observed outcomes (e.g., of all 
the times we say we are 90% confident, the predicted outcome happens 
much less frequently than 90% of the time).

■■ There are methods, including training, that greatly improve the ability 
of experts to estimate subjective probabilities (e.g., when they say they 
are 90% confident, they turn out to be right about 90% of the time).

One example related to research in a different profession, that of cor-
porate chief financial officer (CFO), illustrates the typical findings of these 
studies. Researchers in a 2010 study at the National Bureau of Economic 
Research asked CFOs to provide estimates of the annual returns on the 
S&P 500.21 These estimates were in the form of ranges—given as a lower 
bound and an upper bound—of values that were wide enough that the CFO 
believed they had an 80% chance that the range would contain the correct  
answer. We can refer to these as 80% confidence intervals (CI).22 By simply wait-
ing, it was easy to confirm what the actual return was over a given period 
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of time. Although the CFOs were extremely experienced and well educated 
for their positions, their 80% CIs actually contained the true answers only 
33% of the time. They believed that they provided ranges that would not 
contain the correct answer only 20% of the time, but in fact the answers 
were outside of their bounds 67% of the time. This is a rate of “surprise” 
much higher than they expected.

This is a measure of overconfidence. The confidence of experts, in this 
case expressed in the width of an 80% CI, contained the correct answer 
much less often than the experts expected. In other words, they did not 
have the 80% chance they thought they had of the stated interval contain-
ing the eventually observed value. Unfortunately, this phenomenon is not 
limited to CFOs. Several studies over the last several decades confirm that 
overconfidence is a pervasive characteristic of nearly all of us. Calibrated 
probability assessments have been an area of investigation since the 1970s 
by a large body of published research, led at first by Daniel Kahneman 
and Amos Tversky.23 Their research showed that almost all people in many 
different professions are about as overconfident as the previously men-
tioned CFOs.

This research is not purely academic. It affects real-world judgments and 
affects actions taken to solve real problems. One of the authors (Hubbard) 
has had the opportunity over the last 20 years to collect one of the largest 
data sets regarding this phenomenon. Hubbard has tested and trained over 
2,000 individuals from several different industries, professions, and levels of 
management. As mentioned earlier, over 150 of the subjects in these stud-
ies were specifically in the field of cybersecurity at the time of this writing.

To measure how well experts assigned subjective probabilities, Hubbard 
gave them a series of tests similar to those in most other studies. In an initial 
benchmark test (conducted before any training meant to improve estima-
tion skills), Hubbard would ask the participants their 90% CIs for estimates 
of general trivia knowledge (e.g., when was Isaac Newton born, how many 
meters tall is the Empire State Building, etc.). Most individuals provided 
ranges that only contained about 40% to 50% of the correct answers, similar 
to what the previously mentioned researchers had observed.24

Overconfidence is also observed when applying probabilities to dis-
crete events—such as whether a cyberattack will result in a major data 
breach this year. Of course, the outcome of a single event is generally not 
a good indicator of how realistic a previously stated probability happens to 
be. If we say that an event is 25% likely to occur by the end of next year, 
whether it happens or not is not proof the probability was unrealistic. But 
if we track a number of experts making many probability assessments, then 
we can compare expectations to observations in a more valid manner.

Suppose, for example, a group of experts gives 1,000 estimates of prob-
abilities of specifically defined events. These could be data breaches of a 
certain minimum size occurring during a defined period, the probability of 
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loss greater than $10 million, and so on. Suppose for 100 of those estimates 
they said they were 90% certain of the outcome. Then the stated outcome 
should have happened about 90 out of 100 times. We would expect some 
variation just due to random luck, but we can compute (as we will show 
later) how much random error is acceptable. On the other hand, if they 
are right only 65 out of 100 times they said they were 90% confident, that 
result is a lot worse than what we would expect by just bad luck (if only 
bad luck were at play, there is only a 1  in 68.9 billion chance that they 
would be wrong that often). So the much more likely explanation would 
be that the experts are simply applying far too high a probability to events 
they should be less certain about. Fortunately, other researchers have run 
experiments showing that experts can be trained to be better at estimating 
probabilities by applying a battery of estimation tests, giving the experts a 
lot of quick, repetitive, clear feedback along with training in techniques for 
improving subjective probabilities.25 In short, researchers discovered that 
assessing uncertainty is a general skill that can be taught with a measurable 
improvement. That is, when calibrated cybersecurity experts say they are 
85% confident that a major data breach will occur in their industry in the 
next 12 months, there really is an 85% chance it will occur.

Again, the breadth of different people that have been measured on this 
“component” includes not just CFOs but also physicians, engineers, intel-
ligence analysts, students, scientists, project managers, and many more. So 
it is reasonable to say that these observations probably apply to everyone. 
Remember, just in case someone was to try to make the case that cybersecu-
rity experts were different from all the other fields that have been measured, 
Hubbard’s data does include over 150 cybersecurity experts from many 
industries. They do about as poorly as any other profession on the first test. 
We also observe that they improve dramatically during the training, just like 
those in every other field Hubbard has tested, and about the same share 
succeed in becoming calibrated by the end of the training (85% to 90% of 
experts become calibrated).

In Chapter 7, we will describe this training and its effects in more detail. 
We will explain how you can calibrate yourself with some practice and how 
you can measure your performance over time. This skill will be a starting 
point for developing more advanced quantitative models.

The Expert Consistency Component

Ultimately, testing subjective probabilities for calibration relative to over-
confidence means waiting for observed outcomes to materialize. But 
another type of calibration can be observed very quickly and easily with-
out necessarily waiting for the predicted outcomes to happen or not: we 
can measure the consistency of the expert. That is, independent of whether 
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the judgment was accurate, we should also expect the expert to give the 
same answer consistently when given the exact same situation. Of course, 
consistent answers do not mean the answers are any good, but we know 
that two contradictory answers cannot both be correct. The amount of 
inconsistency must be at least a lower bound for estimation error. In one 
extreme, if “experts” give wildly different answers every time they look at 
the exact same issue, then this would be indistinguishable from someone 
who ignores the information they are given and randomly picks estimates 
from slips of paper in a bowl. We don’t have to wait for predicted events to 
occur in order to evaluate the consistency of that expert. Likewise, even if 
researchers are perfectly consistent with their own previous judgments but 
give very different answers than other experts, again, we at least know they 
can’t all be right (of course they could all be wrong). Fortunately, these 
components of expert performance have also been measured at length. 
Researchers in the 1960s have given names to both of these measures of 
consistency:26

■■ Stability: an expert’s agreement with their own previous judgment of 
the identical situation (same expert, same data, different time);

■■ Consensus: an expert’s agreement with other experts (same data, dif-
ferent experts).

In more recent work, Daniel Kahneman summarized research in this 
area in his book Noise: A Flaw in Human Judgment.27 He refers to the lack 
of stability as “occasion noise,” and he splits the lack of consensus into 
“level noise” and “pattern noise,” but otherwise the concepts and findings 
are consistent with the earlier research.

In every field tested so far, it has been observed that experts are highly 
inconsistent—both in stability and consensus—in virtually every area of 
judgment. This inconsistency applies whether it relates to project managers 
estimating costs, physicians diagnosing patients, or cybersecurity experts 
evaluating risks.

In an early twentieth-century example of this expert consistency meas-
urement, researchers gave several radiologists a stack of 96 x-rays of stom-
ach ulcers.28 Each radiologist was asked to judge whether the ulcer was a 
malignant tumor. A week later the same radiologists were given another set 
of 96 x-rays to assess. Unbeknownst to the radiologists, they were actually 
the same x-rays as before but in a different order. Researchers found that 
radiologists changed their answers 23% of the time.

If we ask an expert in such a situation whether the arbitrary order of the 
list should have any bearing on their judgments, they would all agree that it 
should not. And yet the research tells us that the arbitrary order of lists like 
this actually does affect their judgments.
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A particular source of inconsistency appears in another common type 
of judgment. When estimating numbers, the expert can be influenced by 
an effect known as “anchoring.” Simply thinking of one number affects 
the value of a subsequent estimate even on a completely unrelated issue. 
Researchers showed how using arbitrary values, such as one’s Social Secu-
rity number or a randomly generated number, affects subsequent estimates 
of, for instance, the number of doctors in an area or the price of things on 
eBay.29,30

Why shouldn’t random, irrelevant factors like anchoring also affect the 
judgment of cybersecurity experts? We’ve had a lot of opportunity to gather 
information on that point, and a summary of this data follows:

■■ In multiple separate projects by the time of this writing, Hubbard and 
his staff calibrated over 150 cybersecurity experts from over 20 organi-
zations and asked them to estimate the probabilities of various types 
of cybersecurity events. The projects were for clients from six different 
industries: oil and gas, banking, higher education, insurance, retail, and 
health care. Each of these experts had previously completed calibrated 
probability-assessment training.

■■ Each expert was given some descriptive data for 80 to 200 different sys-
tems or threat scenarios in the organization. The types of scenarios and 
the data provided varied among the clients, but it could include infor-
mation about the type of data at risk, the operating systems involved, 
types of existing controls, the types and numbers of users, and so on.

■■ For each of these systems, scenarios, or controls, each expert was asked 
to assess the probabilities of up to six different types of events includ-
ing confidentiality breaches, unauthorized editing of data, unauthorized 
transfer of funds, theft of intellectual property, availability outages, and 
how much a control might reduce a likelihood or impact.

■■ In total, for all of the experts surveyed assessing between two and 
six probabilities for each of 80 to 200 situations, we have more than 
60,000 individual assessments of probabilities.

What the experts were not told at the time they were providing these 
estimates is that the list they were given included some duplicate pairs of 
scenarios. In other words, the data provided for the system in the ninth row 
of the list might be identical to the data provided in the ninety-fifth row, the 
eleventh might be the same as the eighty-first, and so on. Each expert had 
several duplicates in the list, totaling over 3,700 duplicate pairs by the time 
of this writing.

To measure inconsistency, we simply needed to compare the first esti-
mate the expert provided with their second estimate for the identical sce-
nario. Figure  4.1 shows how the first and second estimates of identical 
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scenarios compare. To better display the concentration of a large number of 
points in the same locations of this chart, we added a bit of random noise 
around each point so that they don’t all plot directly on top of one another. 
But the noise added is very small compared to the overall effect, and the 
noise is only for the display of this chart (it is not used in the statistical 
analysis of the results).

What we observe is that 26% of the time, there was a difference greater 
than 10 percentage points between the first and second estimate—for exam-
ple, the first estimate was 15% and the second was 26%. Some differences 
were much more extreme. There were even 2.7% where the difference was 
greater than 50 percentage points. See Figure 4.2 for a summary of these 
response inconsistencies.

As inconsistent as this may seem, it’s actually worse than it looks. We 
have to compare this inconsistency to the “discrimination” of the expert. 
That is, how much do the experts’ responses vary for a given type of event? 
The probabilities estimated varied substantially by the type of risk being 
assessed. For example, availability risk (a system going down) was gener-
ally given probabilities that were higher than an integrity risk where some-
one could actually steal funds with unauthorized transactions. If all of the 
responses of the expert only varied between, say, 2% and 15% for a given 
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type of risk (say, the chance of a major data breach), then a 5 or 10 percent-
age point inconsistency would make up a large part of how much the judge 
varied their answers.

Consistency is partly a measure of how diligently the expert is consider-
ing each scenario. For some of the experts, the inconsistency accounted for 
most of the discrimination. Note that if inconsistency equaled discrimination, 
this would be what we would observe if an expert were just picking prob-
abilities at random regardless of the information provided. In our surveys, 
most judges appeared to at least try to carefully consider the responses with 
the information provided. Still, we see that inconsistency accounts for at least 
21% of discrimination. That is a significant portion of the expert’s judgment 
reflecting nothing more than personal inconsistency.

We should note that a small percentage of the duplicates were discov-
ered by the participants. Some would send an email saying, “I think there 
is an error in your survey. These two rows have identical data.” But nobody 
who found a duplicate found more than two, and most people discovered 
none. More importantly, the discovery of some duplicates by the estima-
tors would only serve to reduce the observed inconsistency. The fact that 
they happened to notice some duplicates means that their consistency was 
measured to be higher than it otherwise would have been. In other words, 
inconsistency is at least as high as we show, not lower.

Fortunately, we can also show that this inconsistency can be reduced, 
and this will result in improved estimates. We can statistically “smooth” the 
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inconsistencies of experts using mathematical methods that reduce esti-
mation error of experts. The authors have had the opportunity to apply 
these methods specifically in cybersecurity (the inconsistency data shown in  
Figure 4.1 were from real-world projects where we applied these methods). 
We will describe these methods in more detail later in the book.

The Collaboration Component

We just saw that there is a lot of data about subjective judgments of indi-
vidual experts, but there is also interesting research about how to combine 
the judgments of many experts. Perhaps the most common method of com-
bining expert judgments is sometimes referred to in the US military as the 
“BOGSAT” method—that is, the “Bunch of Guys Sitting Around Talking” 
method (excuse the gender specificity). The experts meet in a room and 
talk about how likely an event would be, or what its impact would be if it 
occurred, until they reach a consensus (or at least until remaining objections 
have quieted down).

We can apply different mathematical methods for combining judgments 
and different ways to allow for interaction among the experts. So as we’ve 
done with the other component tests, we ask whether some methods are 
shown to measurably outperform others.

Some research, for example, shows that the random stability inconsist-
encies of individuals can be reduced by simply averaging several individu-
als together.31 Instead of meeting in the same room and attempting to reach 
consensus as a group, each expert produces their own estimate indepen-
dently, and their estimates are averaged together.

This approach and some of the research behind it were explained in 
the book The Wisdom of Crowds by James Surowiecki.32 Surowiecki also 
described several other collaboration methods, such as “prediction mar-
kets,”33 which show a measurable improvement over the estimates of indi-
vidual experts.

The same data that allowed Hubbard Decision Research to measure 
expert stability was also able to measure consensus. If judges were simply 
personally inconsistent—that is, they had low stability—we would expect 
disagreements between judges solely due to random personal inconsist-
ency. However, the actual total disagreement between experts was more 
than could be accounted for by stability alone. In addition to being person-
ally inconsistent, experts in the same organization also had systemic disa-
greements with each other about the importance of various factors and the 
overall risk of cybersecurity attacks.

It is interesting to note, however, that cybersecurity experts at a particu-
lar organization provided responses that were somewhat correlated with 
their peers at the same organization. One expert may have estimated the 
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probability of an event to be consistently higher than their peers, but the 
same information that caused them to increase or decrease a probability 
also had the same effect on other experts. At least they were more or less 
in agreement “directionally.” So we do not observe that different experts 
behave as if they were just randomly picking answers. They agree with each 
other to some degree and, as the previous research shows, they can predict 
outcomes better if we can average several experts together.

In addition to simple averaging of multiple experts, there are some 
powerful methods that outperform averaging. In Chapter 7, we will discuss 
other various methods for combining estimates from multiple experts. Some 
“expert aggregation” methods are consistently better than averaging and 
even better than the best individual expert.

The Decomposition Component

We have already seen that experts don’t perform as well as statistical mod-
els based on objective, historical data. But what about quantitative models 
that are still based on subjective estimates? Is it possible for experts to build 
models, using only their current knowledge, that outperform how they 
would have done without the quantitative models? The research says yes.

From the 1970s to the 1990s, decision science researchers Donald G. 
MacGregor and J. Scott Armstrong, both separately and together, conducted 
experiments about how much estimates can be improved by decomposi-
tion.34 For their various experiments, they recruited hundreds of subjects 
to evaluate the difficulty of estimates such as the circumference of a given 
coin or the number of pairs of men’s pants made in the United States per 
year. Some of the subjects were asked to directly estimate these quantities, 
while a second group was instead asked to estimate decomposed variables, 
which were then used to estimate the original quantity. For example, for 
the question about pants, the second group would estimate the US popula-
tion of men, the number of pairs of pants men buy per year, the percent-
age of pants made overseas, and so on. Then the first group’s estimate 
(made without the benefit of decomposition) was compared to that of the 
second group.

Armstrong and MacGregor found that decomposition didn’t help much 
if the estimates of the first group already had relatively little error—like 
estimating the circumference of a US 50-cent coin in inches. But where the 
error of the first group was high—as they were with estimates for men’s 
pants manufactured in the United States, or the total number of auto acci-
dents per year—then decomposition was a huge benefit. They found that 
for the most uncertain variables, a simple decomposition—none of which 
was more than five variables—reduced error by a factor of as much as 10 or 
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even 100. Imagine if this were a real-world decision with big uncertainties. 
Decomposition itself is certainly worth the time.

Doing the math explicitly, even if the inputs themselves were subjective 
estimates, removes a source of error. If we want to estimate the monetary 
impact of a denial-of-service attack on a given system, we can estimate the 
duration, the number of people affected, and the cost per unit of time per 
person affected. Once we have these estimates, however, we shouldn’t then 
just estimate the product of these values—we should compute the product. 
Since, as we have shown earlier, we tend to make several errors of intuition 
around such calculations, we would be better off just doing the math in 
plain sight. It seemed obvious to many of the researchers that we are better 
off doing whatever math we would have done in our heads explicitly. As 
Meehl mentioned in one of his papers:

“Surely, we all know that the human brain is poor at weighting and 
computing. When you check out at a supermarket, you don’t eyeball 
the heap of purchases and say to the clerk, ‘Well it looks to me as if it’s 
about $17.00 worth; what do you think?’ The clerk adds it up.”35

Still, not all decompositions are as informative. It is possible to “over-
decompose” a problem.36 The reason we decompose is that we have less 
uncertainty about some things than we do others, and we can compute 
the latter based on the former. If, however, we do not have less uncer-
tainty about the variables we decompose the problem into, then we may 
not be gaining ground. In fact, a bad decomposition could make things 
worse. In Chapter 6, we will discuss what we call “uninformative decom-
positions” in more detail. Even assuming your decompositions are useful 
to you, there are several decomposition strategies to choose from, and we 
will start with no particular position about which of these decompositions 
are more informative. The best decomposition method may vary from one 
organization to the next as the information they have varies. But, as we will 
see in Chapter 6, there are some hard mathematical rules about whether a 
decomposition actually reduces uncertainty. We should use these rules as 
well as empirically measured performance to determine the best method of 
decomposition for a given organization.

Summary and Next Steps

“In my experience …” is generally the start of a sentence that should be 
considered with caution, especially when applied to evaluating the expert 
themselves. There are reasons why our experiences, even when they add up 
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to many decades, may not be a trustworthy source of information on some 
topics. Because of the analysis placebo, we cannot evaluate ourselves in esti-
mation tasks simply by whether we feel better about it. Evaluating experts 
and the methods they use will require that we look at the scientific research 
behind them. And the research clearly points to the following conclusions:

1.	Wherever possible, explicit, quantitative models based on objective his-
torical data are preferred. The role of experts primarily would be to 
design and set up these models instead of being responsible for indi-
vidual estimates.

2.	Where we need to estimate probabilities and other quantities, experts 
can be trained to provide subjective probabilities that can be compared 
to observed reality.

3.	The inconsistency of experts can be moderated with mathematical 
and collaborative methods to get an improvement in estimates. When 
using multiple experts, even simple averages of experts appear to be an 
improvement over individual experts.

4.	Decomposition improves estimates, especially when faced with very 
high uncertainty. Models that force calculations to be explicit instead 
of “in the head” of the expert avoid many of the inference errors that 
experts tend to make.

In this chapter, our measurements of different risk assessment methods 
have focused on previously published scientific research into individual 
components of risk assessment processes, including alternative tools for 
estimating probabilities (using experts or algorithms), how to control for 
inconsistencies, how to collaborate, and the effects of decomposition. We 
have focused entirely on components where we have research showing 
how alternative methods measurably improve results.

Every component of the methods we introduced in Chapter  3, and 
everything we introduce from this point forward, will be guided by this 
research. We are adopting no method component that doesn’t have some 
research supporting it. Just as importantly, we are adopting no methods that 
have been shown to add error. The importance of cybersecurity risk assess-
ment requires that we must continue to seek improvements in our methods. 
We must persist in the kind of skepticism that forces us to ask, “How do 
I know this works?”

Later, we will describe how to go beyond existing research to track your 
own data in a statistically sound manner that can further reduce uncertainty 
and allow you to continuously improve your risk assessment methods. In 
the next chapter we will continue with a component-level analysis based 
on existing research, but we will focus on those methods that either show 



The Single Most Important Measurement in Cybersecurity	 97

no improvement—or even make things worse. We need to do this because 
these components are actually part of the most widely used methods and 
standards in cybersecurity. So it is time we addressed these issues head 
on, along with responding to common objections to using the quantitative 
methods we just recommended.
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CHAPTER 5

We are ultimately trying to move cybersecurity in the direction of more 
quantitative risk assessment methods. The previous chapters showed 

that there are several methods that are both practical (the authors have used 
these methods in actual cybersecurity environments) and have evidence of 
measurably improving risk assessments. We offered an extremely simple 
method based on a one-for-one substitution of the components of a risk 
matrix. Anyone who has the technical skills to work in cybersecurity cer-
tainly has the skills to implement that solution. Once an analyst becomes 
familiar with the basics, he or she can build on the foundation we’ve pro-
vided with our methods in later chapters.

But regardless of the evidence shown so far, we expect to see resist-
ance to many of the concepts shown. There will be sacred cows, red her-
rings, black swans, and a few other zoologically themed metaphors related 
to arguments against the use of quantitative methods. In this chapter we 
will address each of these issues. We have to warn you in advance: This 
chapter is long, and it will often feel like we are belaboring a point beyond 
what it deserves. But we need to systematically address each of these  
arguments and thoroughly make our case in a manner as airtight as the 
evidence allows.

Scanning the Landscape: A Survey of Cybersecurity Professionals

In preparation for making this comprehensive case, we wanted to under-
stand something about the backgrounds and opinions that the cybersecurity 
industry had about many of the points we are making. We wanted to know 

Risk Matrices, Lie Factors, 
Misconceptions, and Other Obstacles 

to Measuring Risk
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the level of acceptance of current methods and perceptions about quan-
titative methods. So we asked 171 cybersecurity specialists from a variety 
of backgrounds and industries to answer some questions about statistics 
and the use of quantitative methods in cybersecurity. Survey participants 
were recruited from multiple information security–related groups including 
the Society for Information Risk Assessment (SIRA), ISACA, and three of 
the largest discussion groups on LinkedIn. There were a total of 63 ques-
tions covering topics such as personal background, their organizations, and 
breaches experienced. The survey also included questions related to the 
use of quantitative methods in cybersecurity and a quiz containing basic 
statistics-literacy questions.

Part of the survey contained a set of 18 questions we referred to as 
Attitudes Toward Quantitative Methods (ATQM). These helped us assess 
the opinions of cybersecurity experts as being more supportive of the use 
of quantitative methods or more skeptical. Within the ATQM, we had two 
subsets. Some of the questions (seven, to be exact) had responses that 
were clearly more “anti-quantitative,” such as, “Information security is too 
complex to model with quantitative methods.” These questions made much 
sharper distinctions between supporters and opponents of quantitative 
methods. Other questions were about attitudes that were not directly anti-
quantitative but indicated an acceptance of the value of nonquantitative 
methods—for example, “Ordinal scales help develop consensus for action.” 
Table 5.1 shows a few examples from each group of ATQM questions.

TABLE 5.1  Selected Examples of Survey Questions About Attitudes toward  
Quantitative Methods

Statement from Survey
Percent Agreeing

(Positive Responses/Number Responding)

Ordinal scales must be used because  
probabilistic methods are not  
possible in cybersecurity.

18%
(28/154)

Probabilistic methods are impractical  
because probabilities need exact  
data to be computed and we don’t  
have exact data.

23%
(37/158)

Quantitative methods don’t apply in  
situations where there are human  
agents who act unpredictably.

12%
(19/158)

Commonly used ordinal scales help  
us develop consensus for action.

64%
(99/154)
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We found it encouraging that most who work in cybersecurity (86%) 
are generally accepting of more quantitative methods based on probabilis-
tic models; that is, they answered more of the “opinions about quantitative 
methods” in a way that supported quantitative methods. For example, most 
(75%) agreed with the statement “Cybersecurity should eventually adopt 
a more sophisticated probabilistic approach based on actuarial methods 
where it has not already done so.”

However, only 32% were always supportive of quantitative methods (i.e.,  
68% disagreed with some of the statements preferring quantitative methods 
to softer methods). Even those who support more quantitative methods see 
value in the continued use of softer methods. For example, 64% agreed with 
the statement “Commonly used ordinal scales help us develop consensus 
for action,” and 61% stated that they use risk matrices. There is even a small 
but significant minority (8.3%) who tended to be more anti-quantitative than 
pro-quantitative. This is a concern because vocal minorities can at least slow 
an adoption of quantitative methods (the authors have seen some cases of 
this). And even the majority who are generally accepting of quantitative may 
be slow to adopt better methods only because it seems a bit too challeng-
ing to change or because current methods are perceived as adequate even 
if flawed.

Of course, any survey that relies on voluntary responses could have 
a selection bias, but it would not be clear whether such a selection bias 
would be more “pro-” or “anti-”quantitative. Still, the level of acceptance 
of quantitative methods was on the high end of what we expected. Some 
readers may already question the methods, sample size, and so on, but 
the statistical significance—and the academic research credentials of the 
Hubbard Decision Research staff who analyzed the results—will be dis-
cussed shortly.

If you personally have reservations about moving cybersecurity risk 
assessment in the direction of quantitative methods, see if your specific 
reservation is discussed in this chapter and consider the counterargument. 
If you are a fan of quantitative methods and we are preaching to the choir, 
then familiarize yourself with this chapter so that you might be better able 
to respond to these objections when you hear them.

At first glance, the arguments against the use of quantitative methods 
seem to be many and varied, but we make the case that these points all 
boil down to a few basic types of fallacies. We will start by investigating a 
collection of methods that are currently the most popular in cybersecurity 
risk assessments: the ordinal scales on a risk matrix. Once we can shine a 
light on the problems with these techniques and objections, we hope we 
can move past this to implement mathematically sound risk assessment in a 
field that needs it badly.
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What Color Is Your Risk? The Ubiquitous—and Risky—Risk Matrix

Any cybersecurity expert will recognize and likely embrace the common 
risk matrix, which is based on ordinal scales. In fact, based on our experi-
ence, most executives will laud the risk matrix as “best practice.” As men-
tioned in Chapter 1, these scales represent both likelihood and impact, not 
in probabilistic or monetary terms but in ordinal scales. The scales might be 
represented with labels such as low, medium, or high, or they might be rep-
resented as numbers on a scale of, say, 1 to 5. For example, a likelihood and 
impact might be represented as a 3 and a 4, respectively, and the resulting 
risk might be categorized as “medium.” These scales are then usually plotted 
onto a two-dimensional matrix where the regions of the matrix are further 
categorized into “low” to “high” risk or perhaps given colors (“green” is low 
risk, while “red” is high). In some cases, ordinal scales are used without a 
risk matrix. Perhaps several ordinal scales are added together in an overall 
risk score, as is the case with OWASP’s risk rating methodology.1 (Note: 
OWASP, like many frameworks, has great controls recommendations, but a 
controls checklist does not equate to a risk management methodology.) The 
scales focus on attributes that might indicate risk (such as “ease of discov-
ery” or “regulatory impact”). Then these scores are categorized still further 
into high, medium, and low risk just like a risk matrix.

As mentioned in Chapter 2, ordinal scales are not in themselves neces-
sarily a violation of measurement theory or statistics. They do have legiti-
mate applications. But are they substitutions for ratio scales of probability 
and impact? Meaning, are they some form of vague stand-in for probabili-
ties, as have already been used in insurance, decision science, statistics, 
and many other areas? Should substituting ordinal scales such as “high” 
or “medium” for more quantitative measures strike us as just as odd as an 
engineer saying the mass of a component on an airplane is “medium,” or an 
accountant reporting that revenue was “high” or a “4” on a scale of 5?

These are important questions because risk matrices using ordinal 
scales to represent likelihood and impact are common in cybersecurity. In 
the survey we found that 61% of organizations use some form of the risk 
matrix, and 79% use ordinal scales to assess and communicate risks. Even 
partial use of some of the statistical methods, for which we provided so 
much evidence of their effectiveness in Chapter 4, are much less common. 
For example, only 13% of respondents say they use Monte Carlo simula-
tions, and 14% say they use some form of Bayesian methods (although 
both of these are actually much more common responses than the authors 
expected).

Some form of these ordinal scales are promoted by just about every 
standards organization, consulting group, and security technology vendor 
that covers cybersecurity. Dozens if not hundreds of firms help organizations 
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implement methods or software tools that utilize some form of scores and 
risk matrices. The International Organization for Standardization (ISO) 
standard 31010 states that the risk map (what Table A.1 of the standard 
refers to as a “consequence/probability matrix”) is “strongly applicable” for 
risk identification.2

Clearly, these methods are deeply intertwined in the ecosystem of 
cybersecurity. However, as widely used as these scales are in cybersecurity, 
there is not a single study indicating that the use of such methods actually 
helps reduce risk. Nor is there even a study that merely shows that individual 
judgment is improved in any way over expert intuition alone. Granted, there 
are a lot of advocates of such methods. But advocates, no matter how vocal, 
should be considered cautiously given the research about the possibility of 
analysis placebo effects mentioned in Chapter 4.

On the other hand, several studies show that the types of scales used 
in these risk matrices can make the judgment of an expert worse by intro-
ducing sources of error that did not exist in the experts’ intuition alone. In 
fact, we believe that these methods are like throwing rocket fuel on a fire. 
We have enough uncertainty in battling hard-to-detect threats; why make it 
worse by abstracting away data through questionable scales?

In the book The Failure of Risk Management, Hubbard spends an entire 
chapter reviewing the research about the problems with scores. Subsequent 
editions of his book How to Measure Anything added more sources as new 
studies finding problems with these scales were identified. To help make 
this issue clear we will use the same approach used in Chapter 4. That is, we 
will look at research regarding three key components of the issue:

■■ The Psychology of Scales: The psychological research behind how we 
use verbal scales such as “unlikely” to “likely” to evaluate the likelihood 
of an event, and how arbitrary features of verbal or numeric (e.g., 1–5) 
ordinal scales affect our choices.

■■ Math and the Risk Matrix: The mathematical problems associated with 
attempting to do math with ordinal scales or presenting them on a 
risk matrix.

■■ How These Issues Combine: Each of the two issues above is bad enough, 
but we will show some research that shows what happens when we 
consider these effects together.

The Psychology of Scales and the Illusion of Communication

Ordinal scales are widely used because of their simplicity, but the psy-
chology of how they are actually used is not quite so simple. The human 
expert using a scale has to be thought of as a kind of instrument. The 
instrument can have surprising behaviors and the conditions that elicit these 
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behaviors should be investigated. As we did in earlier component analysis, 
we resort to research in other fields when research in cybersecurity specifi-
cally is lacking.

One component of risk scales that has been researched is how we use 
words to describe likelihoods. Researchers such as the psychologist David 
Budescu published findings about how differently people will interpret 
terms that are meant to convey likelihood such as “unlikely” or “extremely 
likely.” This ambiguity obviously would allow for at least some different 
interpretations, but Budescu wondered how varied those interpretations 
might be. He had subjects in his experiment read phrases from the Intergov-
ernmental Policy on Climate Change (IPCC) report. Budescu would give his 
survey subjects a phrase from the IPCC report, which included one of seven 
probability categories (e.g., “It is very likely that hot extremes, heat waves, 
and heavy precipitation events will continue to become more frequent”). 
Budescu found that individuals varied greatly by how much they inter-
preted the probability implied by the phrase. For example, Budescu finds 
that “Very likely” could mean anything from 43% to 99%, and “Unlikely” 
could mean as low as 8% or as high as 66% depending on whom you ask.3

The subjects in Budescu’s study were 223 students and faculty of the 
University of Illinois, not professionals charged with interpreting that kind 
of research. So, we might wonder if these findings would not apply to an 
audience that is more skilled in the topic areas. Fortunately, there is also 
supporting research in the field of intelligence analysis—a field cybersecu-
rity analysts might appreciate as being more relevant to their profession.

One of these supporting studies was conducted by Sherman Kent, a 
Yale history professor and a pioneering CIA analyst who is often referred 
to as “the father of intelligence analysis.” Kent asked 23 NATO officers to 
evaluate similar probability statements.4 Similar to what Budescu found for 
“Very likely,” CIA researchers found that the phrase “Highly likely” evoked 
interpretations ranging from 50% to nearly 100%. Likewise, Kent’s findings 
for “Unlikely” were not inconsistent with Budescu’s, since the responses var-
ied from 5% to 35%. Figure 5.1 shows the range of responses to a few of the 
terms covered in Kent’s study as they were reported in the book Psychology 
of Intelligence Analysis by Richard Heuer.5

In 2022, Seiersen conducted the same exercise as Kent. In this case, 
just over 100 security executives from leading organizations were asked to 
assess the same probability statements. As you can see from Figure 5.2, the 
results are considerably worse than those found in Figure 5.1.

In our survey, 28% of cybersecurity professionals reported that they use 
verbal or ordinal scales where the probability they are meant to represent 
is not even defined. However, some scale users attempt to manage this 
ambiguity by offering specific definitions for each point. For example, “Very 
unlikely” can be defined as a probability of less than 10%. (In fact, this is 
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what NIST 800–30 does).6 In our survey, 63% of respondents who use ordi-
nal scales indicated that they use verbal or numbered ordinal scales where 
the probabilities are defined in this way. However, Budescu finds that offer-
ing these definitions doesn’t help, either.

Highly Likely

Likely

Probable

Unlikely

10% 20% 30% 40% 50% 60% 70% 80% 90%

FIGURE 5.1  Variations of NATO Officers’ Interpretations of Probability Phrases
Source: Adapted from Heuer 1999.
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Even in situations where each of the verbal scales was assigned specific 
probability ranges (e.g., “Very likely” was defined as “Greater than 90%” and 
“Very unlikely” was defined as “Less than 10%”), these rules were violated 
over half the time. In other words, even when participants were told exactly 
what the terms meant, they interpreted the terms in the context of the state-
ment they were presented in. In that way, the phrase “Very likely” meant 
something different to the subjects when it was in the context of tempera-
ture extremes, glaciers melting, or sea level rise.

Table 5.2 shows how widely the subjects in Budescu’s study interpreted 
these verbal scales even when they were given specific directions regard-
ing what they meant. It appears that about half of respondents ignored 
the guidelines (perhaps the term “guideline” itself invited too much inter-
pretation).

Some of the more extreme results beg for further explanation. In the 
case of “very unlikely” we see a remarkable range of 3–75%. The 75% isn’t 
just a single outlier, either, since two-thirds of the respondents violated 
the guideline (meaning they interpreted it to mean something greater than 
10%). How could this be? Budescu found very little relationship between 
the subjects’ probability interpretations and their predisposition on climate 
research (i.e., they did not simply put higher probabilities on events if they 
indicated more concern about climate research). But he did point out that 
the ambiguity of some of the statements might have had some bearing on 

TABLE 5.2  Variance in Understanding Selected Common Terms Used to Express 
Uncertainty in the IPCC Report

Examples of  
Some Likelihood 
Terms Used in  
the Report

IPCC  
Guidelines  
for 
Meaning

Minimum  
of All  
Responses

Maximum  
of All  
Responses

Percentage 
of Responses 
That Violated 
Guidelines

Very likely More than 
90%

43% 99% 58%

Likely Between 
66% to 90%

45% 84% 46%

Unlikely Between 
10% and 
33%

8% 66% 43%

Very unlikely Less than 
10%

3% 75% 67%

Source: Adapted from [3].



Risk Matrices, Lie Factors, Misconceptions, and Other Obstacles to Measuring Risk	 109

responses. If the statement was about the likelihood of “heat extremes,” the 
user may have included uncertainty about the meaning of “heat extremes” 
when they assessed a probability.

Hubbard has another potential explanation. Anecdotally, he has observed 
conversations about risks with clients where something was judged “highly 
likely” in part because of the impact it would have. Of course, impact and 
likelihood are supposed to be judged separately, but managers and analysts 
have been heard making statements like “A 10% chance per year is far too 
high for such a big event, so I think of 10% as highly likely.” This is purely 
anecdotal, of course, and we don’t rely on these sorts of observations—the 
data from Budescu and Kent is sufficient to detect the problem. But in terms 
of potential explanations, the fact that such statements have been observed 
at least introduces a possibility: Some users of these terms are attempting 
to combine likelihood, impact, and their own aversion to risk in highly ad 
hoc ways. These users require methods that unpack these distinct concepts.

Furthermore, to adequately define a probability of an event, we can’t 
exclude the time period it is meant to cover. If, for example, we say that 
an event is 10% likely, do we mean there is a 10% chance of it happen-
ing sometime next year or sometime in the next decade? Obviously, these 
would be very different estimates. How is it that management or analysts 
could come to agree on these points when they haven’t even specified such 
a basic unit of measure in risk?

All these factors together combine to create what Budescu refers to as 
the “illusion of communication.” Individuals may believe they are communi-
cating risks when they have very different understandings of what is being 
said. They may believe they have come to an agreement when they all say 
that one risk is “medium” and another is “high.” And even when specific 
numbers are presented for probabilities, the listener or the presenter may 
conflate their own risk tolerance with the assessment of probability, or they 
may be assuming that the probability is for an event over a longer time 
period than someone else is assuming it to be.

So far, we have only discussed the psychology of how people inter-
pret ambiguous terminology in regard to risk, but that is not the end of it. 
Separate from the use of nonquantitative labels for probabilities or the con-
sequences of other ambiguities, there are some curious human behaviors 
that arise in their responses to subjective ordinal scales in general. Relatively 
arbitrary features of the scale have a much larger effect on judgment than 
the users would expect.

For example, Craig Fox of UCLA co-authored several studies showing  
that arbitrary features of how scales are partitioned have unexpected effects 
on responses, regardless of how precisely individual values are defined.7 
On a scale of 1 to 5, the value of “1” will be chosen more often than if 
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it were a scale of 1 to 10, even if “1” is defined identically in both (e.g., 
“1” could mean an outage duration of less than 10 minutes or a breach 
resulting in less than $100,000  in losses). In addition, there is plenty of 
research showing how other arbitrary features of scales affect response 
behavior in ways that are unexpected and larger than you might think. 
These include whether ordinal numbers are provided in addition to verbal 
scales or instead of them,8 or how the direction of the scale (5 is high or 5 
is low) affects responses.9

There are several risk matrix standards that apply a verbal description of 
a likelihood and provide a specific quantity or interval it should represent. 
For example, one common method defines one of the likelihood catego-
ries as “Has been heard of in the industry” or “Happens frequently in the 
organization” to refer to the risk of a specific event for a particular asset. In 
addition, a specific quality like 10% or maybe a range of 2% to 20% is given 
as an additional guideline. This just confuses things further.

Hubbard is often asked to evaluate existing risk management methods 
in organizations both inside and outside of cybersecurity, some of which 
use risk matrices like this. He observes that in the petroleum industry or util-
ities where he has seen this method, the phrase “Has been heard of” might 
refer to the past 10 or 20 years or longer, and it could mean it happened 
once or a few times among some number of assets, such as oil refineries 
or power plants. Also, if the event happened once in the last five years, it 
matters whether that was once among 10 similar facilities in the industry or 
thousands.

Depending on how these terms are interpreted and how many exam-
ples of that type of asset exist in the industry, Laplace’s rule of succession 
(from Chapter 2) might show a likelihood of less than one in a thousand 
per year for a given asset or more than one in ten per year. Hubbard found 
that, invariably, different managers in the same organization made different 
assumptions about what “Has been heard of in the industry” meant. Some 
said they paid no attention to the quantity and only used the verbal descrip-
tion for guidance, while others assumed that everyone used the quantities. 
In large organizations, different risks for different assets were evaluated by 
different individuals. So whichever risks made the “Top 10” was mostly a 
function of which individuals judged them.

The possibilities of varied interpretations are fairly standard consid-
erations in the field of psychometrics and survey design. Surveys are 
designed with various sorts of controls and item testing so that the effects 
of some biases can be estimated. These are referred to as “artifacts” of the 
survey and can then be ignored when drawing conclusions from it. But 
we see no evidence that any of these considerations are ever entertained 
in the development of risk scales. We need to consider the psychology  
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of how we assess risks and how we use these tools. As Richard Heuer 
urged, this cannot be taken for granted.

Intelligence analysts should be self-conscious about their reasoning pro-
cess. They should think about how they make judgments and reach con-
clusions, not just about the judgments and conclusions themselves.

—Richards J. Heuer Jr., Psychology of Intelligence Analysis

How the Risk Matrix Doesn’t Add Up

At first glance, the math behind a risk score or risk matrix could hardly 
be simpler. But, as with the psychology of scales, further investigation 
reveals new concerns. This may seem like a bit of esoterica, but, just as with 
every other component of risk analysis, the scale of the problem means we 
shouldn’t leave such a widely used tool unexamined.

Perhaps nobody has spent more time on this topic than Tony Cox, 
PhD, an MIT-trained risk expert. He has written extensively about the prob-
lems that ordinal scales introduce in risk assessment and how those scales 
are then converted into a risk matrix (which is then often converted into 
regions of “low” to “high” risk). He investigates all the less-than-obvious 
consequences of various forms of ordinal scales and risk matrices and how 
they can lead to decision-making error.10

One such error is what he refers to as “range compression.” Range com-
pression is a sort of extreme rounding error introduced by how continuous 
values like probability and impact are reduced to a single ordinal value. No 
matter how the buckets of continuous quantities are partitioned into ordinal 
values, choices have to be made that undermine the value of the exercise. 
For example, the upper end of impact may be defined as “losses of $10 mil-
lion or more” so that $10 million and $100 million are in the same bucket. 
To adjust for this, either the $10 million must be increased—which means 
the ranges in the lower categories also must be widened—or the number of 
categories must be increased.

Range compression is further exacerbated when two ordinal scales are 
combined onto a matrix. Cox shows how this can result in two very dif-
ferent risks being plotted in the same cell (i.e., the position at a given row 
and column in a matrix) and how a higher-risk cell can contain a risk that 
is lower than a risk in a low-risk cell. To see this, consider the risk matrix 
shown in Table 5.3. It is drawn from an actual risk matrix example pro-
moted by a major consulting organization.

First, let’s look at how two very different risks can end up in the same 
cell. We’ll plot two risks in the “Seldom” likelihood category, which ranges 
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from “greater than 1% and up to 25%” to the maximum loss category, 
“$10 million or more.” The two risks are:

■■ Risk A: likelihood is 2%, impact is $10 million;
■■ Risk B: likelihood is 20%, impact is $100 million.

With this information Cox computes the “expected loss” (probability-
weighted loss), just as an actuary would do for many types of risks. He  
compares the products of the likelihoods and impacts of the risks: $200,000 
for risk A (2% × $10 million) and $20 million for risk B (20% × $100 mil-
lion). In other words, to an actuary, risk B would be considered to have 
100 times the risk of risk A. Yet these two very different risks would actu-
ally be plotted in the same cell (that is, same row, same column) on a 
risk matrix!

Next, let’s look at how Cox shows that two very different risks can be 
plotted in cells that are the opposite order by expected loss. Again, this 
relies on the fact that in order to map continuous values with wide ranges to 
discrete bins, some “bins” on the likelihood and impact axes have to contain 
wide ranges of values. Here are another two risks:

■■ Risk A: Likelihood is 50%, impact is $9 million;
■■ Risk B: Likelihood is 60%, impact is $2 million.

In this case, risk A has an expected loss of $4.5 million, and risk B has 
an expected loss of $1.2 million. Yet, if we followed the rules of this matrix, 

TABLE 5.3  Risk Matrix Example to Illustrate Range Compression Problems

Impact

Negligible Minor Moderate Critical Catastrophic

 
 
<$10K

 
$10K  
to
<$100K

$100K  
to <$1 
million

$1  
million  
to <$10  
million

  
≥$10  
million

Likelihood Frequent 99%+ Medium Medium High High High
Likely >50%–99% Medium Medium Medium High High
Occasional >25%–50% Low Medium Medium Medium High
Seldom >1%–25% Low Low Medium Medium Medium

Improbable ≤1% Low Low Low Medium Medium
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risk B is considered a “High” risk, and risk A is only “Medium.” This is what 
is called a “rank reversal” and it is not just an academic problem. Hubbard 
has been asked to audit risk management methods in many industries both 
within and outside of cybersecurity and he finds many examples of rank 
reversal among actual risks identified by organizations. Cox says that these 
properties combine to make a risk matrix literally “worse than useless.” As 
remarkable as this sounds, he argues (and demonstrates) it could even be 
worse than randomly prioritized risks.

Some might argue that this is a straw man argument because we don’t 
usually have the specific probabilities and impacts used in these exam-
ples. We only have vague ideas of the ranges, they might argue. But the 
ambiguity hides problems instead of facilitating the lack of information. 
Cox also points out that risk matrices ignore factors such as correlations 
between events. He stated in an interview with this book’s authors that 
“it is traditional to completely ignore correlations between vulnerability, 
consequence, and threat. Yet, the correlations can completely change the 
implications for risk management.”

Like the authors, Cox sees the potential for conflation of computed 
risks and risk tolerance: “The risk attitude used in assessing uncertain con-
sequences is never revealed in conjunction with the risk matrix. But without 
knowing that, there is no way to decipher what the ratings are intended 
to mean, or how they might change if someone with a different risk atti-
tude were to do the ratings. The assessments shown in the matrix reflect 
an unknown mixture of factual and subjective components.” He asks what 
seems like a basic question: “The problem arises when you ask, ‘What did I 
just see?’ when looking at a score or matrix.”

The reader could make the case that this is just a feature of this par-
ticular risk matrix, and a different matrix with different categories wouldn’t 
have this problem. Actually, there will still be examples of inconsisten-
cies like this regardless of how the ranges are defined for impact and 
likelihood. Cox himself even worked on how some of these issues can 
be avoided—but only some. Cox’s “risk matrix theorem” shows how cer-
tain rules and arrangements of categories can at least lead to a weakly 
consistent matrix. He defines “weakly consistent” in a very specific way 
and never concedes that a matrix could be entirely consistent. In short, 
matrices are ambiguity amplifiers. Cox summarizes his position for us by 
saying, “Simply on theoretical grounds there is no unambiguous way of 
coming up with such ratings in a risk matrix when the underlying severi-
ties are uncertain.”

Other scoring methods don’t necessarily rely on risk matrices. As men-
tioned earlier, methods such as OWASP simply add up multiple ordinal 
scales to get to an overall risk score. We also noted that this method and 
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others like it in security are used in various scoring systems including  
the Common Vulnerability Scoring System (CVSS), the Common Weakness 
Scoring System (CWSS), and the Common Configuration Scoring System 
(CCSS). All of these scoring systems do improper math on nonmathematical 
objects for the purpose of aggregating some concept of risk. These wouldn’t 
have the same problems as a risk matrix, but they introduce others—such 
as the mathematical no-no of applying operations like addition and multi-
plication to ordinal scales. As the authors have stated it in presentations on 
this topic, it is like saying “Birds times Orange plus Fish times Green equals 
High.” And, of course, methods like those used in the CVSS would share 
the same problems of scale-response psychology (discussed earlier) as any 
risk matrix.

Amplifying Effects: More Studies Against the Risk Matrix  
(as If We Needed More)

The effects mentioned so far are compounding, meaning they work together 
to make risk management even more difficult than they could individually. 
Work from multiple sources has been done that shows the harm of combin-
ing scales and risk matrices.

In 2008 and 2009, Hubbard collected data from five different organiza-
tions regarding cybersecurity risks. Each provided separate responses from 
multiple individuals, with each individual providing dozens of scores for 
various risks. In total, there were a little over 2,000 individual responses. 
Hubbard found that the responses were highly clustered—about 76% of 
responses fell within just two values on the scale (a 3 or 4 on a 5-point 
scale). That is, most of the responses really boiled down to a decision 
between two specific values on the 5-point scale. What was meant to be 
a 5 × 5 matrix was mostly a 2 × 2 matrix. The net effect of the clustering 
was an even lower resolution—that is, an even bigger rounding error and 
even less information. Combined with the other research, Hubbard sus-
pected this clustering could only exacerbate the problems found in the 
earlier research.

Hubbard teamed up with psychologist Dylan Evans to publish these 
findings in the IBM Journal of Research & Development. Evans is an experi-
enced researcher and professor who had also researched the effects of pla-
cebos and their use in clinical drug trials. Their paper, which was published 
in 2010, presented a comprehensive review of the literature up to that point 
and combined those findings with Hubbard’s observations from his collec-
tion of ordinal-scale responses. In short, the paper concluded:

The problem discussed in this paper is serious. The fact that simple 
scoring methods are easy to use, combined with the difficulty and time 
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delay in tracking results with respect to reality, means that the prolif-
eration of such methods may well be due entirely to their perceived 
benefits and yet have no objective value.11

Another more recent and (as Hubbard is happy to concede) even more 
comprehensive investigation, using psychological literature, theoretical 
issues, and original data, found similar results. In Economics & Management 
journal of the Society of Petroleum Engineers, authors Philip Thomas, Rei-
dar Bratvold, and J. Eric Bickel reviewed 30 different papers that described 
various risk matrices, mostly used in the oil and gas industry. In addition to 
providing a comprehensive review of all the literature (including Budescu, 
Cox, Hubbard and Evans, and many more), the authors also examined the 
effect of changing the design of the risk matrix and the ranking of various 
risks, and then measured how risk matrices distort data.12

Leveraging Cox’s findings, Thomas and his colleagues showed how the 
designs of these various risk matrices affected the rankings of risks in a way 
the matrices’ designers probably did not anticipate. For example, 5 of the  
30 risk matrix designs they investigated reversed the score—that is, 1 was high 
impact or likelihood instead of 5. These matrices would then multiply the 
likelihood and impact scores just as many of the other matrices did, but the 
lower product was considered high risk. The designers of these methods may 
have thought this was an arbitrary choice that would have no consequence 
for the risk rankings. Actually, it changed them a lot. Thomas also looked at 
how various methods of categorizing likelihood and impact into a few dis-
crete ordinal values (such as defining “Unlikely” as 1% to 25% or moderate 
impact as $100,000 to $1 million) modified risk rankings. Again, they found 
that these arbitrary design choices had a significant impact on ranking risks.

Thomas and colleagues also estimated a “lie factor” for each of several 
types of risk matrices. The lie factor is a measure defined by Edward Tufte 
and Peter Graves-Morris in 1983 based on how much data is distorted in 
a chart by misleading features of the chart, intentional or otherwise.13 This 
is effectively a variation on the “range compression” that Cox examined in 
detail. Using a particular method for computing the lie factor, they found that 
the ratio of distortions of data averaged across the various risk matrix designs 
was in excess of 100. To get a sense of what a lie factor of 100 means, con-
sider that when Edward Tufte explained this method, he used an example 
that he classified as a “whopping lie”—it had a lie factor of 14.8.

Thomas found that any design of a risk matrix had “gross inconsistencies 
and arbitrariness” embedded within it. Their conclusion is consistent with 
the conclusions of everyone who has seriously researched risk matrices:

How can it be argued that a method that distorts the information under-
lying an engineering decision in non-uniform and uncontrolled ways 
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is an industry best practice? The burden of proof is squarely on the 
shoulders of those who would recommend the use of such methods to 
prove that the obvious inconsistencies do not impair decision making, 
much less improve it, as is often claimed.

They presented these findings in a webinar that was part of Stanford’s Stra-
tegic Decision and Risk Management lecture series. To drive home their 
finding, one of the PowerPoint slides in their presentations contained a 
large rectangular space titled “Heat Map Theory and Empirical Testing” (see 
Figure 5.3). Showing a little humor combined with a lot of seriousness, the 
rectangle was empty.

Again, if you are wondering whether these findings must somehow 
be limited to the oil and gas industry (the target audience of the journal 
where this research was published), consider the NASA example briefly 
mentioned in Chapter 4. Recall that the research showed how Monte Carlo 
and statistical regression–based methods performed compared to “softer” 
methods. The softer method referred to was actually NASA’s own version 
of the 5 × 5 risk matrix. The mission scientists and engineers arguably had 
a subject-matter advantage over the accountants—and yet, the accountants 
using Monte Carlo simulations and historical data were better at forecasting 
than the scientists and engineers using a risk matrix.

Last, these scales do not account in any way for the limitations of 
expert judgment as described in Chapter 4. The errors of the experts are 
simply further exacerbated by the additional errors introduced by the scales 
and matrices themselves. We agree with the solution proposed by Thomas, 
Bickel and Bratvold. There is no need for cybersecurity (or other areas of 
risk analysis that also use risk matrices) to reinvent well-established quan-
titative methods used in many equally complex problems. Thomas et al. 
recommend proper decision-analysis tools that use explicit probabilities 

Heat Map Theory and Empirical Testing

FIGURE 5.3  Heat Map Theory and Empirical Testing
Source: Adapted from [12].
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to represent uncertainty. They compare RMs (risk matrices) to decision 
analysis in this way:

[T]he processes and tools drawn from decision analysis are consist-
ent, do not carry the inherent flaws of the RMs, and provide clarity 
and transparency to the decision-making situation. Our best chance 
for providing high-quality risk-management decisions is to apply the 
well-developed and consistent set of processes and tools embodied in 
decision science.

To make this distinction clear, just compare the risk matrix to the loss 
exceedance curve presented in Chapter 3. Recall that the LEC captures all 
uncertainty about impact regardless of how wide the range might be, and 
that the risk tolerance curve provides an explicit record of how much risk 
an organization’s management accepts. So how does the risk matrix allow 
for more uncertainty about impact if impact doesn’t neatly fit in one cat-
egory? How does the risk matrix unambiguously capture the risk tolerance 
of management in a way that allows for clear evaluation of options?

Like the authors of this book, Thomas, Bratvold, and Bickel state 
what should now be the obvious conclusion for anyone who considers all 
the research:

Given these problems, it seems clear that RMs should not be used for 
decisions of any consequence.

Hopefully, that settles that.

Exsupero Ursus and Other Fallacies

You might have heard the old joke about two hikers getting ready for a 
walk into the woods. (If you have heard it—probably many times—thanks 
in advance for your indulgence, but there is a point.) One hiker is wearing 
his running shoes instead of his regular hiking boots. The other asks, “Is 
there something wrong with your regular boots?” to which the first hiker 
responds, “No, I just heard there were bears in the woods today. I wore 
these shoes so I could run faster.”

His friend, confused, reminds him, “But you know you can’t out-
run a bear.”

The hiker with the running shoes replies, “I don’t have to outrun a bear. 
I just have to outrun you.”

This old (and admittedly tired) joke is the basis for the name of a 
particular fallacy when it comes to evaluating models or decision-making 
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methods of any kind. We call it the Exsupero Ursus fallacy—or, if you can 
do without the hokey pseudo-scholarly Latin term we just made up with 
Google Translate, you can call it the “beat the bear” fallacy. The basis of this 
fallacy goes something like this: If there is a single example of one method 
failing in some way or even having a minor weakness, we default to another 
method without ever investigating whether the alternative method has even 
more weaknesses and an even worse track record.

We get many opportunities to meet managers and executives who have 
difficulty believing that quantitative models could possibly be an improve-
ment over expert intuition or qualitative methods. One such person was 
an operational risk officer who challenged quantitative methods by asking, 
“How can you possibly model all the factors?” Of course, models never 
model or even attempt to model “all” the factors. The risk officer was com-
mitting the Exsupero Ursus fallacy. Does he believe that when he uses his 
own judgment or a softer score-based method that he is capturing liter-
ally all the factors? Of course not. He was simply comparing the quantita-
tive method to some ideal that apparently captures all possible factors as 
opposed to comparing quantitative method to the actual alternatives: his 
own judgment or other methods he preferred.

Remember, the reason we are promoting the quantitative methods men-
tioned in this book is that we can point to specific research showing that 
they are superior - that is, measurably superior - to specific alternatives like 
expert intuition. As the great statistician George Box is often quoted as say-
ing, “All models are wrong, but some are useful.” And to take it further, the 
research clearly shows that some models are measurably more useful than 
others. That is, they predict observed results better and are more likely to 
lead to preferred outcomes. When someone points out a shortcoming of 
any model, the same standard must then be applied to the proposed alter-
native to that model. The first model may have error, but if the alternative 
has even more error, then you stick with the first.

What we’ve been calling the Exsupero Ursus Fallacy for years is related 
to what some researchers call the “Algorithm Aversion.”14 Berkeley Dietvorst  
at the University of Chicago along with Joseph P. Simmons and Cade Massey  
from Wharton conducted experiments where subjects were asked to make 
estimates related to the performance of graduate students based on under-
graduate performance data and the ranking of airport traffic by state based 
on various other demographic and economic data. The subject could choose 
whether they were going to use an algorithm to generate their estimates or 
rely on human judgment. They were rewarded for accurate estimates, so 
they were incentivized to choose which approach would be more accurate. 
In some cases, they were shown performance data for the humans, the 
algorithms, or both before they had to choose which to rely on for their own 
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estimates. Some were shown no previous performance data on the algo-
rithms of humans.

Averaged across multiple experiments, 62 percent chose the algorithms 
when shown no data on past performance or only the data on humans. But 
for those who were shown data on past performance of algorithms, those 
who chose the algorithms dropped by almost half (down to 32 percent), 
even though the human estimates had more error than the algorithms. In 
all the experiments, the subjects who chose the algorithms made more 
money than those who didn’t. The researchers concluded that many sub-
jects were just more intolerant of error from algorithms than error from 
humans. In other words, they had a double standard. They expected better 
performance from algorithms, but when they saw the algorithms had any 
error, they rejected the algorithms in favor of the clearly inferior alterna-
tive. Algorithm aversion research is confirmation of the pervasiveness of 
the Exsupero Ursus fallacy. This fundamental fallacy seems to be behind 
several arguments against the use of quantitative, probabilistic methods. We 
only need to list a few, and you will see how each of the objections can be 
countered with the same response.

Beliefs about the Feasibility of Quantitative Methods: A Hard Truth

Some cybersecurity experts in the survey (18%) said they agreed with the 
statement “Ordinal scales must be used because probabilistic methods are 
not possible in cybersecurity.” This can be disproven by virtue of the fact 
that every method we discuss in this book has already been used in real 
organizations many times. Holding a belief that these methods are not prac-
tical is sort of like telling an airline pilot that commercial flight isn’t practical. 
So where does this resistance really come from?

Our survey indicated one potential reason behind that position: statisti-
cal literacy is strongly correlated with acceptance of quantitative methods. 
One set of questions in the survey tested for basic understanding of statisti-
cal and probabilistic concepts. We found that those who thought quantita-
tive methods were impractical or saw other obstacles to using quantitative 
methods were much more likely to perform poorly on statistical literacy.

The statistical literacy section of the survey had 10 questions related to 
basic statistical literacy. Many of those survey items were based on questions 
that had been used in other surveys on statistical literacy by Kahneman and 
others. Some of the questions involved common misunderstandings of cor-
relation, sample size, inferences from limited data, the meaning of “statisti-
cally significant,” and basic probabilities (see example in Table 5.4).

For further details, we put the entire survey report available for down-
load on www.howtomeasureanything.com/cybersecurity.

http://www.howtomeasureanything.com/cybersecurity


120	 Why Cybersecurity Needs Better Measurements for Risk

We then compared stats literacy to the attitudes regarding the seven 
strongly anti-quantitative questions in the ATQM section of the survey.  
A summary of the relationship between stats literacy and positive attitudes 
toward the use of quantitative methods is shown in Figure 5.4.

Note that a rating in the “Median or Lower” group on pro-quant attitude 
doesn’t necessarily mean they were generally against quantitative meth-
ods. Most people were quite supportive of quantitative methods, and so 
the median number of supportive responses is still more supportive than 

TABLE 5.4  Example Stats Literacy Question

Assume the probability of an event, X, occurring in your firm sometime in 2016 
is 20%. The probability of this event goes to 70% if threat T exists. There is a 
10% probability that threat T exists. Which of the following statements is true?

A. �If the threat T does not exist, the probability of the event X must be less 
than 20%.*

B. If the event X does not occur, then T does not exist.

C. �Given that the event X occurs, the probability that threat T exists must be 
greater than 50%.

D. There is insufficient information to answer the question.

E. I don't know.

*Correct answer. (Chapter 8 covers the relevant rules—specifically rule 6.)
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not, although it shows more reservations about quantitative methods than 
those who had more than the median number of pro-quant responses. For 
stats literacy, however, a median score (3 out of 10) was about how well 
someone would do if they were guessing (given the number of choices 
per question, randomly choosing any answer other than “I don’t know” 
would produce 2.3 correct out of 10, on average). Those who did signifi-
cantly worse were not just guessing; they frequently believed in common 
misconceptions.

As Figure  5.4 shows, those who scored above the median on stats 
literacy were much more likely to be above the median on “pro-quant” 
attitudes; likewise, those who were pro-quant were more likely to be stats 
literate. This is true even for what may seem like a small number of ques-
tions in this quiz.

Given the number of questions and the number of potential choices 
per question, we can apply certain statistical tests. We find that—when 
we do the math—the relationship between stats literacy and pro-stats atti-
tudes is statistically significant even with the small number of questions per 
respondent. (For the particularly stats-literate among the readers, these find-
ings have a P-value of less than 0.01.) The survey also provided some other 
interesting observations. Here are a few of them:

■■ The most anti-quantitative quartile of subjects (the bottom 25%) were 
twice as likely to simply skip the stats literacy quiz as those who were 
in the most pro-quant quartile.

■■ More experience in cybersecurity was associated with positive atti-
tudes toward quantitative methods. It also appears that those who had 
even tried quantitative methods, such as Monte Carlo simulations, were 
much more likely to be pro-quantitative. We found that 23% of the more 
pro-quant group had tried Monte Carlo simulations, while only 4% of 
the anti-quantitative group had done so. We aren’t saying that the pro-
quantitative disposition drove the desire to try Monte Carlo simulations 
or that trying Monte Carlo made them pro-quantitative. But the associa-
tion is strong.

■■ Those who performed the worst on the stats literacy quiz were more 
likely to overestimate their skills in statistics. This is consistent with a 
phenomenon known as the Dunning-Kruger effect.15 That is, there is 
a tendency for people who perform poorly on any test (driving, basic 
logic, etc.) to believe they are better than they are at the measured 
task. In our survey we found that 63% of individuals with below-
average statistics literacy wrongly identified themselves as having 
average or above-average proficiency in statistics. So those who are 
performing poorly on stats literacy won’t usually know they have 
misconceptions.
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All this just confirms with empirical analysis the suspicions we’ve had 
based on multiple anecdotal observations. Those who believe quantitative 
methods are impractical in cybersecurity are not saying so because they 
know more about cybersecurity but because they know less about quanti-
tative methods. If you think that you understand quantitative probabilistic 
methods but do not agree that these methods are feasible in cybersecurity, 
don’t shoot the messenger. We’re just reporting the observation. For those 
of you in the majority who believe better methods are feasible and are sup-
portive of exploring them, we don’t mean to preach to the choir. Perhaps 
you can use this information to diagnose internal resistance and possibly 
influence future training and hiring decisions to address unfamiliarity with 
quantitative methods in cybersecurity.

It may be a hard pill to swallow for some, but the conclusion from our 
survey is as unavoidable as it is harsh. Cybersecurity is a critically important 
topic of growing concern and we don’t have the luxury of pulling punches 
when solving this problem. As we argued in Chapter 4 as well as earlier in 
this chapter, all models should be critically evaluated, including quantitative 
solutions, so it is not our objective to browbeat these voices into silence. 
But blanket objections to quantitative methods need to be recognized as 
nothing more than stats-phobia—born of stats illiteracy.

Since the first edition of this book, we have gotten some emails on this 
point and we will continue to get them with this edition. But the math is 
sound and the arguments against the conclusion will contain critical flaws 
(we know this because we have already seen many of them). The person 
at Hubbard Decision Research who assisted with this analysis was one of 
HDR’s senior quantitative analysts, Jim Clinton. He has a PhD in cognitive 
psychology and has published scientific research specializing in the appli-
cation of advanced statistical methods to experimental psychology. So, yes, 
he knows what he is doing when he is assessing the statistical validity of a 
survey. We mention this in anticipation of objections to the survey methods, 
the number and type of questions we used, and the overall statistical signifi-
cance. The methods, the sample size, and the correct answers to the stats 
literacy questions are all quite sound. But we know from past experience 
and the results of this survey that there will be some people who—based on 
an incorrect belief of their understanding of statistical methods—presume 
that because the findings contradict the math they do in their heads, it must 
be the survey that was wrong. It’s not. We didn’t do the math in our heads. 
We did the actual math. Now let’s continue.

Same Fallacy: More Forms

The 29% who agreed with the statement “Ordinal scales or qualitative meth-
ods alleviate the problems with quantitative methods” were committing a 
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type of Exsupero Ursus fallacy. The thinking here is that because quantita-
tive methods are imperfect, we must use the alternative, which somehow 
corrects for these errors. But what is this alleged mechanism of correction? 
From what we see of the research previously presented, not only do ordinal 
scales and risk matrices not correct for the errors of quantitative methods, 
they add errors of their own.

Again, we believe we should always ask tough questions of any method, 
including quantitative ones, and we’ve attempted to address this by citing 
overwhelming research to make our point. But we also apply the same 
skepticism to the preferred, softer alternatives promoted by so many stand-
ards organizations and consulting firms. We cited research that consistently 
finds flaws in these methods and finds a relative advantage in quantitative  
methods. 

“Probabilistic methods are impractical because probabilities need exact 
data to be computed and we don’t have exact data” is a related and com-
mon objection to the use of statistics in many fields, not just cybersecurity. 
In our survey, 23% of respondents agreed with the statement. Yet, as we 
mentioned in Chapter 2, you have more data than you think and need less 
than you think, if you are resourceful in gathering data and if you actually 
do the math with the little data you may have. The Exsupero Ursus fallacy 
here, again, is that the alternative to the proposed quantitative method 
somehow alleviates the lack of data. On the contrary, it appears ordinal 
scales and expert intuition may be useful in obfuscating the lack of data 
because they gloss over the entire issue. Again, the previous research 
shows that ordinal scales and risk matrices might actually add error—that 
is, they literally reduce the limited information available to the intuition of 
the person using them.

Fortunately, like the other anti-quant-attitude questions, most respond-
ents disagreed. They are more willing than not to try better methods. How-
ever, 23% is a significant portion of cybersecurity professionals who have a 
fundamental misunderstanding of why probabilistic methods are used. One 
of those who agreed with the statement wrote the following in an open-
ended response section of the survey:

The problem I have always had with quantifying a security risk is that 
when you have a vulnerability, say, an unpatched server, there is such 
a wide range of things that could happen if that was to be exploited  
. . . So, what does it mean to go to your board and say, well, this could 
result in a loss in the range of $0–$500 million?

Before we respond, know that this is not a personal attack on anyone—
not the person who graciously participated in our survey or anyone else 
who agrees with the statement. But we aren’t helping cybersecurity by not 
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providing an honest evaluation of the claim. We respect this claim enough 
to say it deserves a response. So here we go.

Of course, such losses are at least possible for organizations that are 
large enough, since we know of losses about that size that have happened 
in business. So, if this is the “possibility range,” then why not make the 
upper bound a billion dollars or more? But clearly these outcomes are not 
all equally likely. In contrast, a probability distribution communicates the 
probabilities of various outcomes. We suspect that this analyst has more 
information than this or could at least gather more information.

If that enormous range really is the extent of uncertainty about this 
loss, and if everything in that range was equally likely, how does the ana-
lyst propose that, say, a conventional risk matrix would have alleviated that 
uncertainty? Of course, it would not. It would simply have glossed over the 
uncertainty. (In fact, the analyst probably would have plotted this risk in a 
single cell of the matrix, even though the stated range would have spanned 
most or all of the impact categories.)

Another interesting question is that if this were really the level of uncer-
tainty about potential losses, then what steps is the analyst taking to reduce 
that uncertainty by at least some amount? Surely, any risk with such a wide 
range of uncertainties would merit further investigation. Or does this analyst 
plan on simply continuing to hide this major uncertainty from the board by 
using ambiguous risk terminology? Remember from Chapter 2 that it is in 
precisely these cases of extreme uncertainty where uncertainty reduction 
is both easier and most valuable. We have already presented research on 
how decomposing a wide range like that (by thinking through estimates of 
individual consequences and running a simulation to add them up) is likely 
to reduce uncertainty.

Those who agree with the statement that probabilistic methods need 
exact data misunderstand a basic point in probabilistic methods. We use 
quantitative, probabilistic methods specifically because we lack perfect infor-
mation, not in spite of it. If we had perfect information, we would not need 
probabilistic models at all. Remember, nothing we are proposing in this 
book is something the authors and other colleagues haven’t done many 
times in many environments. We have presented wide ranges many times 
to upper management in many firms, and we find they appreciate explicit 
statements of uncertainty.

We can make a similar response to the concern that cybersecurity is too 
complex to model quantitatively or that quantitative methods don’t apply 
where human opponents are involved. Just like the previous questions, 
we have to ask exactly how risk matrices and risk scores alleviate these 
issues. If it is too complex to model quantitatively, how do we propose 
that a nonquantitative solution addresses this complexity? Remember, no 
matter how complex a system is, if you are making even purely subjec-
tive judgments about the system, you are modeling it. The Exsupero Ursus 
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fallacy (i.e., it’s not a perfect method; it failed once before, so I can’t use it) 
still depends on failing to apply the same standard to the alternatives to 
probabilistic methods.

Many experts make an incorrect assumption that the more complex 
the problem, the worse quantitative methods will do compared to human 
experts. Yet, the findings of Meehl and Tetlock (reviewed in Chapter  4) 
show that as problems get more complex, the human experts are not doing 
better compared to even naive statistical models. So the complexity of the 
world we model is common to both quantitative and nonquantitative mod-
els. But, unlike the risk matrix and ordinal scales, the components of even a 
simplified quantitative method hold up to scientific scrutiny.

Christopher “Kip” Bohn, an experienced actuarial consultant, runs into 
this same objection and has the same reaction we do. Bohn has done a 
wide variety of risk analysis in many fields and is one of a growing rank 
of actuaries who have been working on underwriting cybersecurity risks 
using the quantitative tools of analytics. He describes his response in an 
interview:

In every single presentation I give in analytics I have a slide regarding 
how to respond to people who say you can’t model that. Of course, 
they are actually building a model in their head when they make a deci-
sion. I tell them, “We just want the model out of your head.”

Well said, Kip. Complexity, the lack of data, unpredictable human actors, 
and rapidly changing technology are often used as excuses for not adopt-
ing more quantitative methods. Ironically, the de facto solution is often to 
somehow deal with these issues in the undocumented and uncalculated 
intuition of the expert. If a problem is extremely complex, that’s exactly the 
time to avoid trying to do it in your head. Aerodynamic simulations and 
power plant monitoring are also complex. But that is exactly why engineers 
don’t do that analysis their heads. Cybersecurity will deal with multiple, 
interacting systems and controls and multiple types of losses. Some of these 
systems will have different types of losses than others, and some events 
are more likely than others. Then you have to roll it up into a portfolio to 
determine overall risk. It’s not particularly hard math (especially since we 
are providing spreadsheets for just about every calculation we talk about), 
but you still don’t want to do that math in your head.

So whenever you hear such an objection, just ask, “But how does your 
current method (risk matrix, ordinal scores, gut feel, etc.) alleviate this 
shortcoming?” It only feels like the issue is addressed in softer methods 
because the softer methods never force you to deal with it. And if you are 
uncertain—even as uncertain as the $0 to $500 million impact range men-
tioned earlier—then you can specifically state that uncertainty and prioritize 
your security controls accordingly.
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The Target Breach as a Counter to Exsupero Ursus

A final objection we will mention related to Exsupero Ursus is that there 
are numerous examples of quantitative methods failing, and it is therefore 
argued that they should be avoided. The idea is that events such as the 2008 
financial crisis, the 2010 Deepwater Horizon rig explosion and oil leak in the 
Gulf of Mexico, the 2011 Fukushima Nuclear Power Plant disaster in Japan, 
the COVID pandemic of 2020 to 2022 and other events indicated the failure 
of quantitative methods. There are several problems with this objection, 
which Hubbard also discusses in The Failure of Risk Management, but we 
will summarize a couple of them.

First, the anecdotes presume that an actual quantitative method was 
being used instead of intuition and if intuition were used it somehow would 
have averted the disaster. There is no basis for this claim, and there is actu-
ally evidence that the opposite is true. For example, greed and incentives 
created and then obscured the risks of investments, and in some cases (such 
as the AIG crisis) it was in fact the lack of actuarially sound analysis by regu-
lators and auditors that allowed these systems to flourish.

The second problem with this objection is that they are selected anec-
dotes. How many examples of failures are there from methods based on pure 
intuition or soft methods? Even if these were legitimate examples of actual 
quantitative-method failure (the authors would concede there are many), 
we still come back to how to avoid the basic fallacy we are discussing—that 
is, we need to compare them to the failure rate of nonquantitative methods. 
The fact is there are also many failures where nonquantitative methods 
were used in decision making. Indeed, how well did judgment and intui-
tion perform in the financial crisis, the design of the Fukushima plant, or the 
management of Deepwater Horizon?

The massive data breach of the retailer Target in 2013 is a case in point. 
This breach is well known in the cybersecurity community, but perhaps 
what is less widely known are the methods Target used and failed to use 
to assess its risks. Hubbard and Seiersen interviewed a source who was 
employed by Target up to about a year before the event. According to our 
source, Target was about as far from a quantitative solution to cyber risks 
as any organization could be. Even though there were attempts to intro-
duce more quantitative methods, several people were entrenched in using 
a method based on assessing risks based on verbal “high, medium, and 
low” labels. There were executives who believed quantitative methods to 
be too complex and that they required too much time. They actually took 
the trouble to create a list of reasons against using quantitative methods—
the items on the list that we know about are those very objections we have 
been refuting in this chapter. (We were told that since the breach, there has 
been a significant change in cybersecurity leadership.)
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Eventually the company recognized that credit card records of as many 
as 70 million people had been breached. The combined settlements to Mas-
ter Card and Visa exceeded $100 million.16 Now, if we believed anecdotes 
were a sufficient basis for a comparison of methods, then we could defi-
nitely spend the time to find more examples. After all, were Anthem, Sony, 
Home Depot, the US federal government, and other organizations that were 
hit by major cyberattacks using probabilistic methods instead of scales and 
risk matrices? We doubt it.

Of course, selected anecdotes are not the way to support the claim 
about which method is better. As we have done so far, the only way to 
properly avoid the Exsupero Ursus fallacy is to look at large sets, chosen in 
an unbiased manner, and systematically compare failures of both methods. 
Even if one method has failures, it should be preferred over a method that 
has even more. The research we presented so far (see the endnotes for this 
chapter and Chapter 4) supports the claim that quantitative methods outper-
form human expert intuition and humans using scales or risk matrices. The 
only research available on risk matrices, on the other hand, supports the 
claim that risk matrices do no good at all and may even do harm.

Communication and Consensus Objections

Last, there are objections that are neither strictly Exsupero Ursus fallacies 
nor based on misconceptions about quantitative methods such as the belief 
that we need perfect data. Some objections boil down to the presumption 
of other conveniences, such as the idea that nonquantitative methods are 
better because they are easier to explain and, therefore, easier to agree with 
and act on. In the survey, we saw that 31% of respondents agreed with the 
statement “Ordinal scales used in most information risk assessments are 
better than quantitative because they are easy to understand and explain.” 
Also, a majority (64%) agreed with “Commonly used ordinal scales help us 
develop consensus for action.”

Yet, as we saw with Budescu’s research, seeming easy to understand 
and explain may just involve glossing over important content with ambigu-
ous terms. We would argue that Budescu’s “illusion of communication” may 
make someone think they have explained something, the explanation of 
which another someone believed they understood, and that they all agreed 
in the end. The authors have had multiple opportunities in many different 
types of firms to explain various quantitative methods to executive-level 
management—including in situations where we were told that the execu-
tives would not understand it. However, we find far fewer situations where 
people fail to understand it than some other people would have us believe. 
It seems we are often warned by one group that another group will not 
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understand something quantitative (rarely does anyone admit they them-
selves don’t understand it).

We propose the possibility that if a cybersecurity analyst says that some-
one else won’t understand it, the problem might be their own understand-
ing of it. We are told that management won’t get “theoretical” methods 
(even though every method we talk about here has been used on practical 
problems with senior management). So we find that calling probabilistic 
methods theoretical really just means “I don’t understand it” and perhaps 
“I feel threatened by it.” Hopefully, the example of the simple one-for-one 
substitution model in Chapter 3 can help address this hurdle. We made that 
approach as simple as possible while still using methods that show a meas-
urable improvement and producing actionable output.

Although a majority in the survey believed ordinal scales helped build 
consensus, we propose that if communication is an illusion as Budescu 
shows, then consensus is also an illusion. The appearance of consensus 
may feel satisfying but, as we stated in Chapter 1, we think it is important 
whether the risk assessment method actually works in a way that has 
been measured. Perhaps the management at Target felt that what they 
were doing was “working” because they believed risk was being com-
municated and that when they came to a consensus, they all understood 
what they were agreeing with. If the risk assessment itself is based on 
flawed methods, a little dissent should probably be preferable over illu-
sory consensus.

Conclusion

Obstacles to the use of better quantitative methods have to be recognized 
as simply being misunderstandings based on common fallacies. Now let’s 
summarize:

■■ Nothing is gained by the use of the popular scales and matrices. They 
avoid none of the issues offered as a challenge to more quantitative 
methods (complexity of cybersecurity, human agents, changing tech-
nology, etc.). In fact, they introduce vagueness of communication 
and just plain bad math. They must be abandoned in all forms of 
risk analysis.

■■ There is nothing modeled with the qualitative scales that can’t be mod-
eled with quantitative, probabilistic methods, even if we use only the 
same source of data as most qualitative methods (i.e., the cybersecurity 
expert). These methods show a measurable improvement based on 
previous research. Their performance can also be measured after imple-
mentation since we can use standard statistical methods to compare 
their risk assessments to observed reality.
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■■ Quantitative models have been implemented in many real environ-
ments. Dismissing these methods as “theoretical” is just a way of saying 
that they seem threatening to the person who used that label.

Cybersecurity has grown too important to simply leave to methods that 
the reader—after this extensive argument—should now recognize as obvi-
ously flawed. Businesses and governments can no longer afford the mis-
conceptions that keep them from adopting methods that work. We’ve spent 
quite a lot of text on this topic, so we appreciate your patience if you made 
it this far. We have cited a lot of sources on every point we make, but we 
thought we would end this chapter with one more voice of agreement from 
a leader in the cybersecurity field, Jack Jones. As well as graciously provid-
ing the foreword for this edition, Jack wrote the following section as a final 
word on the topic so we can get on to describing better methods.

Building Acceptance for Better Methods

By Jack Jones

Jack Jones has worked in the information security field for over three 
decades and has a decade of experience as a CISO. He is also the creator 
of the Factor Analysis of Information Risk (FAIR) framework.

Although almost everyone will agree that quantification and metrics 
in general are a good thing, the topic of quantifying risk in the informa-
tion security realm can generate significant debate and even hostility. 
Many people simply don’t believe it’s possible or practical. That being 
the case, why bother trying to quantify risk? Why not just avoid the fire-
fights and stick to counting vulnerabilities, awareness levels, and attacks 
against the organization? The reason is context. In other words, those 
and all of the other information security landscape elements you might 
choose to measure are only meaningful in how they affect risk (i.e., the 
frequency and magnitude of loss).

Inertia against risk quantification can be especially strong when 
you’re dealing with information security professionals and auditors who 
have built their careers and reputations by thinking and acting in a 
certain way, particularly when their approach is common throughout 
the industry and its limitations aren’t widely recognized. It’s made even 
stronger when you include misconceptions regarding quantification, 
and, worse yet, when fundamental nomenclature isn’t normalized (e.g., 
terms like “risk” don’t mean the same thing to everyone). Successfully 
overcoming this inertia requires a combination of tactics.

(Continued )
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Education—Normalize and Demystify

Education regarding risk quantification has at least a couple of dimen-
sions, including:

Getting everyone on the same page regarding a meaningful definition 
for “risk” (hint—control deficiencies and threats aren’t risks). With-
out this foundation in place, everything else will remain a struggle 
and likely not succeed. It can help to keep in mind that at the end 
of the day, the purpose of information security is to manage how 
often loss occurs and how bad it is when it does occur.

Helping people to understand that quantification is not rocket science 
and does not require an advanced mathematics degree. In fact, 
when approached properly, it is intuitive, conceptually simple, and 
pragmatic. That said, quantification does require critical thinking, 
which can be a challenge because many people in our profession 
haven’t done a lot of critical thinking over the years when it comes 
to risk measurement. Wet fingers in the air predominate. This isn’t 
an indictment of their intelligence or innate capability for critical 
thinking, but it is an indictment of the methods our profession has 
relied on so heavily (e.g., checklist frameworks and ordinal “risk” 
ratings, to name two).

Small Wins, Fast

One of the big concerns many people have is that risk quantification 
will require too much work. The best way to disprove that misper-
ception is to start out by analyzing smaller, more digestible problems. 
Instead of trying to measure something amorphous like “the risk of 
cloud computing,” measure more tightly defined issues like “the risk 
associated with a particular cloud provider’s service going down due to 
a cyberattack.” These clearer, less ambiguous scenarios are much faster 
and easier to analyze, and can be used to quickly demonstrate the prag-
matic value of quantitative risk analysis.

A series of these small analyses can also demonstrate how rapidly 
input data can become reusable from analysis to analysis, which can 
further accelerate results and efficiency.

Leverage Quants

Many organizations of any size will have business functions that spe-
cialize in quantification. Examples include some of the more mature 
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CHAPTER 6

The everyday meanings of most terms contain ambiguities signifi-
cant enough to render them inadequate for careful decision analysis.

—Ron Howard, Father of Decision Analysis1

Recall the cybersecurity analyst mentioned in Chapter 5 whose estimate 
of a loss was “$0 to $500 million” and who worried how upper man-

agement would react to such an uninformative range. Of course, if such 
extreme losses really were a concern, it would be wrong to hide it from 
upper management. Fortunately, there is an alternative: just decompose it. 
Surely such a risk would justify at least a little more analysis.

Impact usually starts out as a list of unidentified and undefined out-
comes. Refining this is just a matter of understanding the object of measure-
ment as discussed in Chapter 2. That is, we have to figure out what we are 
measuring by defining it better. In this chapter, we discuss how to break 
up an ambiguous pile of outcomes into at least a few major categories 
of impacts.

In Chapter 3 we showed how to make a simple quantitative model that 
simply makes exact replacements for steps in the familiar risk matrix but 
does so using quantitative methods. This is a very simple baseline, which 
we can make more detailed through decomposition. In Chapter 4 we dis-
cussed research showing how decomposition of an uncertainty especially 
helps when the uncertainty is particularly great—as is usually the case in 
cybersecurity. Now, we will exploit the benefits of decomposition by show-
ing how the simple model in Chapter 3 could be given more detail.

Decompose It
Unpacking the Details
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Decomposing the Simple One-for-One Substitution Model

Every row in our simple model shown in Chapter 3 (Table 3.2) had only 
two inputs: a probability of an event and a range of a loss. Both the event 
probability and the range of the loss could be decomposed further. We can 
say, for example, that if an event occurs, we can assess the probability of the 
type of event (was it a sensitive data breach, denial of service, etc.?). Given 
this information, we could further modify a probability. We can also break 
the impact down into several types of costs: legal fees, breach investigation 
costs, downtime, and so on. Each of these costs can be computed based 
on other inputs that are simpler and less abstract than some aggregate 
total impact.

Now let’s add a bit more detail as an example of how you could use 
further decomposition to add value.

Just a Little More Decomposition for Impact

A simple decomposition strategy for impact that many in cybersecurity are 
already familiar with is confidentiality, integrity, and availability, or “C, I, 
and A.” As you probably know, “confidentiality” refers to the improper dis-
closure of information. This could be a breach of millions of records, or it 
could mean stealing corporate secrets and intellectual property. “Integrity” 
means modifying the data or behavior of a system, which could result in 
improper financial transactions, damaging equipment, misrouting logistics, 
and so on. Lastly, “availability” refers to some sort of system outage resulting 
in a loss of productivity, sales, or other costs of interference with business 
processes. We aren’t necessarily endorsing this approach for everyone, but 
many analysts in cybersecurity find that these decompositions make good 
use of how they think about the problem.

Let’s simplify it even further in the way we’ve seen one company do it 
by combining confidentiality and integrity. Perhaps we believe availability 
losses were fairly common compared to others and that estimating avail-
ability lends itself to using other information we know about the system, 
such as the types of business processes the system supports, how many 
users it has, how it might affect productivity, and whether it could impact 
sales while it is unavailable. In Table 6.1, we show how this small amount 
of additional decomposition could look if we added it to the spreadsheet 
shown in the one-for-one substitution model shown in Chapter 3.

To save room, we are only showing here the impact decomposi-
tion for two types of impact. Each of these impact types would have its 
own annual probability and there would be formulas for combining all 
of these inputs. To see the entire spreadsheet, including how we deter-
mined which of these impacts occurred for how the costs are added up, just 



Decompose It	 137

go to the full spreadsheet example at www.howtomeasureanything.com/ 
cybersecurity. In addition to the original model shown in Chapter 3, you will 
also see this one and some other variations on decomposition.

The next steps in this decomposition are to determine whether confi-
dentiality and integrity losses occurred, whether availability losses occurred, 
or both. When availability losses are experienced, that loss is computed 
by multiplying the hours of outage duration times the cost per hour of the  
outage. Any confidentiality losses are added in.

Just as we did in the simpler model in Chapter 3, we generate thou-
sands of values for each row. In each random trial we determine the type 
of event and its cost. The entire list of event costs are totaled for each of 
the thousands of trials, and a loss exceedance curve is generated. As before, 
each row could have a proposed control, which would reduce the likelihood 
and perhaps impact of the event (these reductions can also be randomly 
selected from defined ranges).

If an event is an attack on a given system, we would know something 
about how that system is used in the organization. For example, we would 
usually have a rough idea of how many users a system has—whether they 
would be completely unproductive without a system or whether they could 
work around it for a while—and whether the system impacts sales or other 
operations. And many organizations have had some experience with system 
outages that would give them a basis for estimating something about how 
long the outage could last. We could decompose confidentiality further by 
estimating the number of records compromised and then estimate the costs 
as a function of records lost. We could also separate the costs of internal 

TABLE 6.1  Example of Slightly More Decomposition of Impacts (see spreadsheet 
for entire set of columns)

Event

Confidentiality and Integrity 
90% Confidence Interval 

($000)
Availability 90% Confidence  

Intervals

Lower Bound
Upper 
Bound

Duration of  
Outage (hours)

Cost per Hour 
($000)

Lower 
Bound

Upper 
Bound

Lower 
Bound

Upper 
Bound

AA $50 $50 0.25 4 $2 $10

AB $100 $10,000 0.25 8 $1 $10

AC $200 $25,000 0.25 12 $40 $200

AD $100 $15,000 0.25 2 $2 $10

AE $250 $30,000 1 24 $5 $50

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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response, lost revenue as a function of duration of the outage, and even 
human safety where appropriate. You should choose the decomposition 
that you find more convenient and realistic to assess. There are many more 
ways to decompose impacts, and some decompositions of probabilities will 
be addressed in later chapters.

Now that you can see how decomposition works in general, let’s dis-
cuss a few other strategies we could have used. If you want to decompose 
your model using a wider variety of probability distributions, see details on 
a list of distributions in Appendix A. And, of course, you can download an 
entire spreadsheet from www.howtomeasureanything.com/cybersecurity,  
which contains all of these random probability distributions written in native 
(i.e., without VBA macros or add-ins) MS Excel.

A Few Decomposition Strategies to Consider

We labeled each row in the simulation shown in Table  6.1 as an event. 
However, in practice you will need to define an event more specifically and, 
for that, there are multiple choices. Think of the things you would normally 
have plotted on a risk matrix. If you had 20 things plotted on a risk matrix, 
were they 20 applications? Were they 20 categories of threats? Were they 
business units of the organization or types of users?

It appears that most users of the risk matrix method start with an 
application-oriented decomposition. That is, when they plotted something 
on a risk matrix, they were thinking of an application. This is a perfectly 
legitimate place to start. Again, we have no particular position on the method 
of decomposition until we have evidence saying that some are better and 
others are worse. But out of convenience and familiarity, our simple model 
in Chapter 3 starts with the application-based approach to decomposing the 
problem. If you prefer to think of the list of risks as being individual threat 
sources, vulnerabilities, or something else, then you should have no prob-
lem extrapolating the approach we describe here to your preferred model.

Once you have defined what your rows in the table represent, then 
your next question is how detailed you want the decomposition in each 
row to be. In each decomposition, you should try to leverage things you 
know—we can call them observables. Table 6.2 has a few more examples.

If we modeled even some of these details, we may still have a wide 
range, but we can at least say something about the relative likelihood of 
various outcomes. The cybersecurity professional who thought that a range 
for a loss was zero to a half-billion dollars was simply not considering what  
can be inferred from what is known rather than dwelling on all that isn’t 
known. A little bit of decomposition would indicate that not all the values 
in that huge range are equally likely. You will probably be able to go to the 
board with at least a bit more information about a potential loss than a flat 
uniform distribution of $0 to $500 million or more.

http://www.howtomeasureanything.com/cybersecurity
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TABLE 6.2  A Few More Examples of Potential Decompositions

Estimated Range
Knowledge Leveraged (Either You Know Them or Can 
Find Out, Even If It Is Also Just Another 90% CI)

Financial theft You generally know whether a system even handles 
financial transactions. So some of the time the impact 
of financial theft will be zero or, if not zero, you can 
estimate the limit of the financial exposure in the 
system.

System outages You can estimate how many users a system has, how critical 
it is to their work, and whether outages affect sales or other 
operations with a financial impact. You may even have 
some historical data about the duration of outages once 
they occur.

Investigation and 
remediation 
costs

IT often has some experience with estimating how many 
people work on fixing a problem, how long it takes them 
to fix it, and how much their time is worth. You may 
even have knowledge about how these costs may differ 
depending on the type of event.

Intellectual 
property (IP)

You can find out whether a given system has sensitive 
corporate secrets or IP. If it has IP, you can ask management 
what the consequences would be if the IP were 
compromised.

Notification 
and credit 
monitoring

Again, you at least know whether a system has this kind of 
exposure. If the event involves a data breach of personal 
information, paying for notification and credit monitoring 
services can be directly priced on a per-record basis.

Legal liabilities 
and fines

You know whether a system has regulatory requirements. 
There isn’t much in the way of legal liabilities and fines that 
doesn’t have some publicly available precedent on which to 
base an estimate.

Other interference 
with operations

Does the system control some factory process that could be 
shut down? Does the system control health and safety in 
some way that can be compromised?

Reputation You probably have some idea of whether a system 
even has the potential for a major reputation cost 
(e.g., whether it has customer data or whether it has 
sensitive internal communications). Once you establish 
that, reputation impact can be decomposed further 
(addressed again later in this chapter).
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Remember, the reason you do this is to evaluate alternatives. You 
need to be able to discriminate among different risk mitigation strate-
gies. Even if your range was that wide and everything in the range were 
equally likely, it is certainly not the case that every system in the list has a 
range that wide, and knowing which do would be helpful. You know that 
some systems have more users than others, some systems handle personal 
health information (PHI) or payment card industry (PCI) data, and some 
do not, some systems are accessed by vendors, and so on. All this is use-
ful information in prioritizing action even though you will never remove 
all uncertainty.

This list just gives you a few more ideas of elements into which you 
could decompose your model. So far we’ve focused on decomposing impact 
more than likelihood because impact seems a bit more concrete for most 
people. But we can also decompose likelihood. Chapters 8 and 9 will focus 
on how that can be done. We will also discuss how to tackle one of the 
more difficult cost estimations—reputation loss—later in this chapter.

More Decomposition Guidelines: Clear, Observable, Useful

When someone is estimating the impact of a particular cybersecurity breach 
on a particular system, perhaps they are thinking, “Hmm, there would at 
least be an outage for a few minutes if not an hour or more. There are 300 
users, most of which would be affected. They process orders and help with 
customer service. So the impact would be more than just paying wages for 
people unable to work. The real loss would be loss of sales. I think I recall 
that sales processed per hour are around $50,000 to $200,000, but that 
can change seasonally. Some percentage of those who couldn’t get service 
might just call back later, but some we would lose for good. Then there 
would be some emergency remediation costs. So I’m estimating a 90% CI of 
a loss per incident of $1,000 to $2,000,000.”

We all probably realize that we may not have perfect performance 
when recalling data and doing a lot of arithmetic in our heads (and imagine 
how much harder it gets when that math involves probability distributions 
of different shapes). So we shouldn’t be that surprised that the researchers 
we mentioned back in Chapter 4 (Armstrong and MacGregor) found that we 
are better off decomposing the problem and doing the math in plain sight. If 
you find yourself making these calculations in your head, stop, decompose, 
and (just like in school) show your math.

We expect a lot of variation in decomposition strategies based on 
desired granularity and differences in the information analysts will have  
about their organizations. Yet there are principles of decomposition that can 
apply to anyone. Our task here is to determine how to further decompose 
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the problem so that, regardless of your industry or the uniqueness of your 
firm, your decomposition actually improves your estimations of risk.

This is an important task because some decomposition strategies are 
better than others. Even though there is research that highly uncertain quan-
tities can be better estimated by decomposition, there is also research that 
identifies conditions under which decomposition does not help. We need 
to learn how to tell the difference. If the decomposition does not help, 
then we are better off leaving the estimate at a more aggregated level. As 
one research paper put it, decompositions done “at the expense of concep-
tual simplicity may lead to inferences of lower quality than those of direct, 
unaided judgments.”2

Decision Analysis: An Overview of How to Think about a Problem

A good background for thinking about decomposition strategies is the work 
of Ron Howard, who is generally credited for coining of the term “decision 
analysis” in 1966.3 Howard and others inspired by his work were applying 
the somewhat abstract areas of decision theory and probability theory to 
practical decision problems dealing with uncertainties. They also realized 
that many of the challenges in real decisions were not purely mathemati-
cal. Indeed, they saw that decision makers often failed to even adequately 
define what the problem was. As Ron Howard put it, we need to “transform 
confusion into clarity of thought and action.”4

Howard prescribes three prerequisites for doing the math in decision 
analysis. He stipulates that the decision and the factors we identify to inform 
the decision must be clear, observable, and useful.

■■ Clear: Everybody knows what you mean. You know what you mean.
■■ Observable: What do you see when you see more of it? This doesn’t 
mean you will necessarily have already observed it but it is at least pos-
sible to observe and you will know it when you see it.

■■ Useful: It has to matter to some decision. What would you do differently 
if you knew this? Many things we choose to measure in security seem to 
have no bearing on the decision we actually need to make.

All of these conditions are often taken for granted, but if we start sys-
tematically considering each of these points on every decomposition, we 
may choose some different strategies. Suppose, for example, you wanted to 
decompose your risks in such a way that you had to evaluate a threat actor’s 
“skill level.” This is one of the “threat factors” in the OWASP standard, and 
we have seen homegrown variations on this approach. We will assume you 
have already accepted the arguments in previous chapters and decided to 
abandon the ordinal scale proposed by OWASP and others and that you are 
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looking for a quantitative decomposition about a threat actor’s skill level. So 
now apply Howard’s tests to this factor.

The Clear, Observable, and Useful Test Applied to  “Threat Actor 
Skill Level”

■■ Clear: Can you define what you mean by “skill level”? Is this really an 
unambiguous unit of measure or even a clearly defined discrete state? 
Does saying, “We define ‘average’ threat as being better than an amateur 
but worse than a well-funded nation state actor” really help?

■■ Observable: How would you even detect this? What basis do you have 
to say that skill levels of some threats are higher or lower than others?

■■ Useful: Even if you had unambiguous definitions for this, and even if 
you could observe it in some way, how would the information have 
bearing on some action in your firm?

We aren’t saying threat skill level is necessarily a bad part of a strategy 
for decomposing risk. Perhaps you have defined skill level unambiguously 
by specifying the types of methods employed. Perhaps you can observe the 
frequency of these types of attacks, and perhaps you have access to threat 
intelligence that tells you about the existence of new attacks you haven’t 
seen yet. Perhaps knowing this information causes you to change your esti-
mates of the likelihood of a particular system being breached, which might 
inform what controls should be implemented or even the overall cyberse-
curity budget. If this is the case, then you have met the conditions of clear, 
observable, and useful. But when this is not the case—which seems to be 
very often—evaluations of skill level are pure speculation and add no value 
to the decision-making process.

Avoiding Over-Decomposition

The threat skill level example just mentioned may or may not be a good 
decomposition depending on your situation. If it meets Howard’s crite-
ria and it actually reduces your uncertainty, then we call it an informative 
decomposition. If not, then the decomposition is uninformative, and you 
are better off sticking with a simpler model.

Imagine someone standing in front of you holding a crate. The crate is 
about 2 feet wide and a foot high and deep. They ask you to provide a 90% 
CI on the weight of the crate simply by looking at it. You can tell they’re 
not a professional weightlifter, so you can see this crate can’t weigh, say, 
350 pounds. You also see that they lean a bit backward to balance their 
weight as they hold it. And you see that they’re shifting uncomfortably. In 
the end, you say your 90% CI is 20 to 100 pounds. This strikes you as a 
wide range, so you attempt to decompose this problem by estimating the 
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number of items in the crate and the weight per item. Or perhaps there are 
different categories of items in the crate, so you estimate the number of 
categories of items, the number in each category, and the weight per item 
in that category. Would your estimate be better? Actually, it could easily 
be worse. What you have done is decomposed the problem into multiple 
purely speculative estimates that you then use to try to do some math. This 
would be an example of an uninformative decomposition.

The difference between this and an informative decomposition is 
whether or not you are describing the problem in terms of quantities you 
are more familiar with than the original problem. An informative decompo-
sition would be decompositions that use specific knowledge that the cyber-
security expert has about their environment. For example, the cybersecurity 
expert can get detailed knowledge about the types of systems in their 
organization and the types of records stored on them. They would have or 
could acquire details about internal business processes so they could esti-
mate the impacts of denial of service attacks. They understand what types 
of controls they currently have in place. Decompositions of cybersecurity 
risks that leverage this specific knowledge are more likely to be helpful.

However, suppose a cybersecurity expert attempts to build a model 
where they find themselves estimating the number and skill level of state-
sponsored attackers or even the hacker group Anonymous (about which, as 
the name implies, it would be very hard to estimate any details). Would this 
actually constitute a reduction in uncertainty relative to where they started?

Decompositions should be less abstract to the expert than the aggre-
gated amount. If you find yourself decomposing a dollar impact into fac-
tors such as threat skill level, then you should have less uncertainty about 
the new factors than you did about the original, direct estimate of mon-
etary loss.

If decomposition causes you to widen a range, that might be informa-
tive if it makes you question the assumptions of your previous range. For 
example, suppose we need to estimate the impact of a system availability 
risk where an application used in some key process—let’s say order taking—
would be unavailable for some period of time. And suppose that we initially 
estimated this impact to be $150,000 to $7 million. Perhaps we consider that 
to be too uncertain for our needs, so we decide to decompose this further 
into the duration of an outage and the cost per hour of an outage. Suppose 
further that we estimated the duration of the outage to be 15 minutes to 
4 hours and the cost per hour of the outage to be $200,000 to $5 million. 
Let’s also state that these are lognormal distributions for each (as discussed 
in Chapter 3, this often applies where the value can’t be less than zero but 
could be very large). Have we reduced uncertainty? Surprisingly, no—not 
if what we mean by “uncertainty reduction” is a narrower range. The 90% 
CI for the product of these two lognormal distributions is about $100,000 
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to $8 million—wider than the initial 90% CI of $150,000 to $7,000,000. But 
even though the range isn’t strictly narrower, you might think it was useful 
because you realize it is probably more realistic than the initial range.

Now, just a note in case you thought that to get the range of the prod-
uct you multiply the lower bounds together and then multiply the upper 
bounds together: That’s not how the math works when you are generat-
ing two independent random variables. Doing it that way would produce 
a range of $50,000 to $20  million (0.25 hours times $200,000 per hour 
for the lower bound and 4 hours times $5 million per hour for the upper 
bound). This answer could only be correct if the two variables are perfectly 
correlated—which they obviously would not be.

So decomposition might be useful just as a reality check against your 
initial range. This can also come up when you start running simulations on 
lots of events that are added up into a portfolio-level risk, as the spreadsheet 
shown in Table 6.1 does. When analysts are estimating a large number of 
individual events, it may not be apparent to them what the consequences for 
their individual estimates are at a portfolio level. In one case we observed 
that subject matter experts were estimating individual event probabilities at 
somewhere between 2% and 35% for about a hundred individual events. 
When this was done they realized that the simulation indicated they were 
having a dozen or so significant events per year. A manager pointed out 
that the risks didn’t seem realistic because none of those events had been 
observed even once in the last five years. The estimates would only make 
sense if the subject matter experts had reason to believe there would be 
a huge uptick in these event frequencies (it was over a couple of years 
ago, and we can confirm that this is not what happened). But, instead, the 
estimators decided to rethink what the probabilities should be so that they 
didn’t contrast so sharply with observed reality.

A Summary of Some Decomposition Rules

The lessons in these examples can be summarized in two fundamental 
decomposition rules:

■■ Decomposition Rule #1: Decompositions should leverage what you are 
better at estimating or data you can obtain (i.e., don’t decompose into 
quantities that are even more speculative than the first).

■■ Decomposition Rule #2: Check your decomposition against a directly 
estimated range with a simulation, as we just did in the outage example. 
You might decide to toss the decomposition if it produces results you 
think are absurd, or you might decide your original range is the one 
that needs updating.
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These two simple rules have some specific mathematical consequences. 
In order to ensure that your decomposition strategy is informative—that is, 
results in less uncertainty than you had before—consider the following:

■■ If you are expecting to reduce uncertainty by multiplying together two 
decomposed variables, then the decomposed variables need to not only 
have less uncertainty than the initial range but often a lot less. As a rule of 
thumb, the ratios of the upper and lower bounds for the decomposed vari-
ables should be a lot less than a third the width of the ratio of upper and 
lower bounds of the original range. For the case in the previous section, the 
ratio of bounds of the original range was about 47 ($7 million/$150,000), 
while the other two ranges had ratios of bounds of 16 and 25, respectively.

■■ If most of the uncertainty is in one variable, then the ratio of the upper 
and lower bounds of the decomposed variable must be less than that of 
the original variable. For example, suppose you initially estimated that 
the cost of an outage for one system was $1 million to $5 million. If the 
major source of uncertainty about this cost is the duration of an outage, 
the upper/lower bound ratio of the duration must be less than the upper/
lower bound ratio of the original estimate (5 to 1). If the range of the dura-
tion doesn’t have a lower ratio of upper/lower bounds, then you haven’t 
added information with the decomposition. If you have reason to believe 
your original range, then just use that. Otherwise, perhaps your original 
range was just too narrow, and you should go with the decomposition.

■■ In some cases the variables you multiply together are related in a way 
that eliminates the value of decomposition unless you also make a 
model of the relationship. For example, suppose you need to multiply 
A and B to get C. Suppose that when A is large, B is small, and when 
B is large, A is small. If we estimate separate, independent ranges for A 
and B, the range for the product C can be greatly overstated. This might 
be the case for the duration and cost per hour of an outage. That is, 
the more critical a system, the faster you would work to get them back 
online. If you decompose these, you should also model the inverse 
relationship. Otherwise, just provide a single overall range for the cost 
of the impact instead of decomposing it.

■■ If you have enough empirical data to estimate a distribution, then you 
probably won’t get much benefit from further decomposition.

A Hard Decomposition: Reputation Damage

In the survey we mentioned in Chapter 5, some cybersecurity professionals 
(14%) agreed with the statement, “There is no way to calculate a range of 
the intangible effects of major risks like damage to reputation.” Although a 
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majority disagree with the statement and there is a lot of discussion about it, 
we have seen few attempts to model this in the cybersecurity industry. Both 
authors have seen cybersecurity articles and attended conferences where 
this is routinely given as an example of a very hard measurement problem. 
Therefore, we decided to drill down on this particular loss in more detail as 
an example of how even this seemingly intangible issue can be addressed 
through effective decomposition. Reputation, after all, seems to be the loss 
category cybersecurity professionals resort to when they want to create the 
most FUD. It comes across as an unbearable loss. But let’s ask the ques-
tion we asked in Chapter 2 regarding the object of measurement, or in this 
chapter regarding Howard’s observability criterion: What do we see when 
we see a loss of reputation?

The first reaction many in private industry would have is that the 
observed quantity would be a long-term loss of sales. Then they may also 
say that stock prices would go down. Of course, the two are related. If 
investors (especially the institutional investors who consider the math 
on the effect of sales on market valuation) believed that sales would be 
reduced, then we would see stock prices drop for that reason alone. So, if 
we could observe changes in sales or stock prices just after major cyberse-
curity events, that would be a way to detect the effect of loss of reputation 
or at least the effects that would have any bearing on our decisions.

It does seem reasonable to presume a relationship between a major 
data breach and a loss of reputation resulting in changes in sales, stock 
prices, or both. If we go back to events before the first edition of this 
book, we find articles published in the trade press and broader media that 
implied such a direct relationship between the breach and reputation. One 
such article about the 2013 Target data breach was titled “Target Says Data 
Breach Hurt Sales, Image; Final Toll Isn’t Clear.”5 Forbes published an article 
in September 2014 by the Wall Street analysis firm Trefis, which noted that 
Target’s stock fell 14% in the two-month period after the breach, implying 
the two are connected.6 In that article, Trefis cited the Poneman Institute, a 
major cybersecurity research service using mostly survey-based data, which 
anticipated a 6% “churn” of customers after a major data breach. Looking at 
this information alone, it seems safe to say that a major data breach means 
a significant loss of sales and market valuation.

The analysis behind these earlier headlines simply assumed that any 
negative change was due to the breach. Of course, even if there was no 
relationship between stock market prices and major breaches, the stock 
price would still go down half the time. The question journalists need to  
ask is whether the change is more than we would expect given historical 
volatility. We also need to consider general trends in the stock market. A 
general downturn in the market would explain a drop in price if it hap-
pened to be timed near the date of the breach.
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Multiple studies before 2008 showed very little impact on stock prices, 
but breaches in those days were not as big as later events.7,8,9 In the first 
edition of this book, we looked at major breaches between 2007 and 2016, 
including T.J. Maxx, Anthem, Target, Home Depot, and JC Penny, and we 
still found no relationship compared to previous volatility and other adjust-
ments for the stock market. Even Target’s 14% price drop was within the 
volatility of a difficult year for the firm.

We also looked at revenue details in the quarterly reports for all of 
those retailers, and again, we saw no discernable effect. T.J. Maxx’s fore-
casted $1.7 billion loss of revenue never materialized in the quarterly sales 
report.10 Also, recall that a survey of shoppers indicated Target would lose 
6% of its customers. If Target lost customers at that time, it wasn’t appar-
ent in the quarterly reported revenue. Apparently, people don’t actually 
always do what they say they would do in surveys. This is not inconsistent 
with the fact that what people say on a survey about their value of pri-
vacy and security does not appear to model what they actually do, as one 
Australian study shows.11 So we shouldn’t rely on that method to estimate 
losses, either.

We only looked into a few major retailers, but other researchers at the 
time backed up this observation with data from a much larger number of 
organizations. In March 2015, another analysis by Trefis also pointed out 
that overall changes in retail foot traffic at the time and competitive posi-
tions explain the changes or lack of changes in Target and Home Depot.12,13 
Marshall Kuypers, who at the time was working on his management sci-
ence and engineering PhD at Stanford, focused his study on this issues. He 
explained that, up to that point in time, all academic research “consistently 
found little evidence that the two are related” and that “signals dissipate 
quickly and the statistically significant correlation disappears after roughly 
three days.”

Now that we have seen even larger breaches than what we saw by the 
time the first edition was published, do we see any change to these find-
ings? Yes. Another look at more recent events and more recent academic 
research does show that there is a direct market response to major events—
but only for some companies.

To see whether there were any new and obvious relationships between 
attacks—including data breaches and other malware—we collected just 
a few examples of reported breaches and other attacks since 2016. We 
included the SolarWinds and Merck attacks mentioned in Chapter 1. Just 
these few anecdotes show that for some firms a major data breach really 
does result in a big drop in stock prices. And that drop appears to be a 
long-term loss of shareholder value. In Figure 6.1 we show how stock prices 
changed before and after cyberattacks at Adobe, Marriott, First American 
Financial Corporation, Merck, Equifax, and SolarWinds.
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Figure  6.1 shows stock price as a ratio of the price just before the 
announcement of the attack, relative to the time of the attack. On the hori-
zontal axis, the “0” refers to the last price before the attack was publicly 
disclosed, and at that point in time the price is shown as a “1.” These nor-
malized prices are adjusted further to remove trends in the broader stock 
market based on the S&P 500. This ensures that the changes we see don’t 
just reflect a big change in the stock market that happened to be about the 
same time as the cyberattack.

As you can see from the chart, the stock prices of some firms don’t seem 
to be affected much or at all by the cyberattack. Adobe, with the smallest 
data breach shown in the chart at 7.5 million records, actually seems to have 
a stock price increase after the event. (This data is from the most recent 
Adobe attack. There was a much larger attack on Adobe in 2013.) Likewise, 
Marriott seemed to be unfazed. The Merck attack, for which Chubb was 
ordered to cover the claimed loss of $1.4 billion, seems to have a remark-
ably steady stock price in this time period. Remember, this attack involved 
the malicious encryption of data, including important intellectual property 
and operational systems, on thousands of computers. And yet it would be 
hard to discern any sell-off by Merck investors from this data.

CapitalOne and First American Financial did have a temporary down-
turn at the point of public disclosure. In the case of CapitalOne, the change 
was about the size of the biggest drops you would expect to see two or 
three times a year in their historical data—a significant but not extremely 
rare change. Both stocks mostly recovered in 60 days. There may be some 
detectable long-term effect if we looked at a large sample of companies with 
such a method. Some research shows that a buy-and-hold strategy of stocks 
involved in a major data breach had returns lower than market returns.14

Although the study was published in 2020, it only looked at breaches 
between 2003 and 2014. That study also did not differentiate what data was 
breached or the industry of the company breached. Even with our small 
sample, it appears this is an important consideration. Only two of the firms 
shown, SolarWinds and Equifax, clearly showed a major drop in stock price 
that was the day of or the day after the announcement of the attack and 
much more than any recent volatility. This is a change far larger than any 
normal fluctuation even over several years. Even if major market trends such 
as a recession would cause such an event, we’ve adjusted for that in the 
data. These large sell-offs were a direct result of the cyberattacks.

Why do we see such a different market response to cyberattacks? Solar-
Winds and Equifax both provide critical services that rely on confidence in 
their products and data. These firms may be held to higher standards by the 
market than manufacturers or fast food chains.

Instead of relying on just a few anecdotes, we need to look at 
larger studies of many organizations and cyberattacks. One of the most 
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comprehensive studies we’ve seen on this issue was published in 2021.15 
This study is a useful source for computing data breach frequency 
because it counts the breaches by year and by industry type. Also, it  
shows that there is a detectable drop in market value of a firm under 
certain conditions. Here, we will summarize from all this research the key 
factors that seem to drive the stock price consequences of a data breach.

■■ The type of firm and the type of products attacked: If the Merck attack 
happened to a cloud provider, the shareholder value losses would have 
been much more significant. If the SolarWinds hack did not involve their 
software but their customer database, it is doubtful they would have 
seen anything like the stock price loss they experienced.

■■ The type of data lost: Personal financial data appears to affect stock 
prices. Other personal information, not so much.

■■ Frequency of attacks: If there is a second attack in the same year, it will 
have a bigger effect on stock prices.

■■ Responsiveness: If there is a delay in detection or a delay in reporting or 
inaction at the board level, there will be a bigger impact.

In summary, reputation damage might affect stock price depending on 
the expectations and trust of the market. If the conditions listed above don’t 
apply, you are better off using a different method than stock price drops to 
assess reputation damage. That’s our next topic.

Another Way to Model Reputation Damage: Penance Projects

We aren’t saying major data breaches are without costs. There are real costs 
associated with them, but we need to think about how to model them dif-
ferently than with vague references to reputation. If you think your risks 
are more like Adobe’s, Merck’s, or Marriot’s and less like SolarWinds’ and 
Equifax’s, then you need a different approach than just a drop in stock price 
to model impact on reputation. For example, instead of stock price drops or 
loss of revenue, management at Home Depot reported other losses in the 
form of expenses dealing with the event, including “legal help, credit card 
fraud, and card re-issuance costs going forward.”16

Note that legal liabilities like what Home Depot faced are usually con-
sidered separately from reputation damage and there is now quite a lot of 
data on that point. Regulatory fines and Advisen data have been collected 
now for years. Even the European Union’s General Data Protection Regula-
tion (GDPR)—which was enacted just as the first edition of this book was 
released—now has thousands of fines in publicly available databases.

Costs, other than stock price drops and legal liabilities may be more 
realistically modeled as “penance projects.” Penance projects are expenses 
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incurred to limit the long-term impact of loss of reputation. In other words, 
companies appear to engage in efforts to control damage to reputation 
instead of bearing what could otherwise be much greater damage. The 
effect these efforts have on reducing the real loss to reputation seem to be 
enough that the impact seems hard to detect in sales or stock prices. These 
efforts include the following:

■■ Major new investments in cybersecurity systems and policies to correct 
cybersecurity weaknesses.

■■ Replacing a lot of upper management responsible for cybersecurity. 
(It may be scapegoating, but it may be necessary for the purpose of 
addressing reputation.)

■■ A major public relations push to convince customers and shareholders 
the problem is being addressed. (This helps get the message out that 
the efforts of the preceding bullet points will solve the problem.)

■■ Marketing and advertising campaigns (separate from getting the word 
out about how the problem has been confidently addressed) to offset 
potential losses in business.

For most organizations that aren’t in the types of services Equifax or 
SolarWinds provide, these damage-control efforts to limit reputation effects 
appear to be the real costs here—not so much reputation damage itself. Each 
of these are conveniently concrete measures for which we have multiple 
historical examples. Of course, if you really do believe that there are other 
costs to reputation damage, you should model them. But what does reputa-
tion damage really mean to a business other than legal liabilities if you can’t 
detect impacts on either sales or stock prices? For example, employee turno-
ver might be an arguable loss. Just be sure you have an empirical basis for 
your claim. Otherwise, it might be simpler to stick with the penance project 
cost strategy.

So if we spend a little more time and effort in analysis, it should be 
possible to tease out reasonable estimates even for something that seems as 
intangible as reputation loss.

Conclusion

A little decomposition can be very helpful up to a point. To that end, we 
showed a simple additional decomposition that you can use to build on 
the example in Chapter 3. We also mentioned a downloadable spreadsheet 
example and the descriptions of distributions in Appendix A to give you a 
few tools to help with this decomposition.
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We talked about how some decompositions might be uninformative. 
We need to decompose in a way that leverages our actual knowledge—
however limited our knowledge is, there are a few things we do know—and 
not speculation upon speculation. Test your decompositions with a simula-
tion and compare them to your original estimate before the decomposition. 
This will show if you learned anything or show if you should actually make 
your range wider. We tackled a particularly difficult impact to quantify—loss 
of reputation—and showed how even that has concrete, observable conse-
quences that can be estimated.

So far, we haven’t spent any time on decomposing the likelihood of an 
event other than to identify likelihoods for two types of events (availability 
vs. confidentiality and integrity). This is often a bigger source of uncertainty 
for the analyst and anxiety for management than impact. Fortunately, that, 
too, can be decomposed. We will review how to do that later in Part II.

We also need to discuss where these initial estimates of ranges and 
probabilities can come from. As we discussed in earlier chapters, the same 
expert who was previously assigning arbitrary scores to a risk matrix can 
also be taught to assign subjective probabilities in a way that itself has 
a measurable performance improvement. Then those initial uncertainties 
can be updated with some very useful mathematical methods even when 
it seems like data is sparse. These topics will be dealt with in the next 
two chapters, “Calibrated Estimates” and “Reducing Uncertainty with Bayes-
ian Methods.”
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CHAPTER 7

The most important questions of life are indeed, for the most part, 
really only problems of probability.

—Pierre-Simon Laplace, Théorie Analytique  
des Probabilités, 18121

The method described so far requires the subjective evaluation of quan-
titative probabilities. For example, the cybersecurity expert will need to 

assess a probability that an event will occur or how much will be lost if it 
does. This meets some resistance. Some cybersecurity experts, many of whom 
seem to have no issue with assigning a “medium” or a “2” to a likelihood, 
will often wonder how it is possible to subjectively assess a quantitative 
probability of an event. Of course, it is legitimate to ask whether subjective 
probabilities can be valid. Fortunately, as mentioned in Chapter 5, much 
research has already been done on this point, and two findings are clear: 
(1) Most people are bad at assigning probabilities, but (2) most people can 
be trained to be very good at it.

Yes, the validity of subjective estimates of probability can be and has 
been objectively measured (ironically, perhaps to some). To deny this is a 
rejection of scientifically validated facts. A cybersecurity expert can learn 
how to express their uncertainty with a subjective—but quantitative—
expression of uncertainty. In this chapter we will introduce the basic idea of 
using subjective estimates of probabilities. We will also show how your skill 
at doing this can be measured and improved with practice.

This chapter is largely duplicated from the calibration chapter in the 
previous book How to Measure Anything: Finding the Value of “Intangibles” 
in Business. If the reader is already familiar with the discussion of calibrated 

Calibrated Estimates
How Much Do You Know Now?
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probability assessments in that book, then this chapter can be skipped or 
just quickly reviewed.

Introduction to Subjective Probability

In the simplest method we have described so far, there are two types of 
probability assignments. One type applies to discrete either/or events such 
as whether there will be a major breach of customer credit card informa-
tion by a retailer. The other type applies to ranges of values, such as how 
much will be lost in sales if there is a major breach of customer credit card 
information. These two types of probability assignments are summarized in 
Table 7.1.

In Chapter  3 we used both of these methods to express uncertainty 
about a cybersecurity event. Whether an event occurred in the first place 
was a type of discrete event. We assigned a probability (1%, 15%, etc.) to 
the event occurring within a given period of time. The monetary impact of 
that event was represented as a range.

Of course, we can make lots of combinations of these two basic 
forms of distributions. We can have discrete events with more than just 
two outcomes, and we can have hybrids of discrete and continuous dis-
tributions. We can even construct a continuous distribution from a large 
number of binary distributions. In practice, however, this simple distinc-
tion is useful.

In order to express our uncertainty about continuous value, we think 
of it as a range of probable quantities. As noted in Chapter 3, a range that 
has a particular chance of containing the correct answer is called in statis-
tics a confidence interval (CI). A 90% CI is a range that has a 90% chance 
of containing the correct answer. We applied this method to represent  
the uncertainty of a loss from a breach or other cybersecurity event. You 
may have computed these values with all sorts of sophisticated statistical 
inference methods, but you may have picked values based just on your 
experience. Either way, the values are a reflection of your uncertainty about 
this quantity.

You can also use probabilities to describe your uncertainty about spe-
cific future events which are not a continuous value but either happen or 
not, such as whether customer payment card information, personal health 
information, or other personal information will be stolen from the hack 
of a particular system. You may determine that there is a 2% chance of a 
data breach in the next 12 months large enough to warrant some public 
announcement. (Note that when putting probabilities on future events, we 
must always state the period of time or the probability is meaningless.)
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If this event does not occur, was the probability “right”? Clearly with a 
probability that is much less than 50% we weren’t expecting the event to 
occur, anyway. But a single event doesn’t determine whether a stated prob-
ability was right or wrong. We can only look at a number of data points. We 
can ask, “Of the large number of events we assigned a 5% probability to for 
a given year, did about 5% actually occur?” Likewise, where we thought an 
event was 20% or 1% likely in that same time period, did the event occur 
20% or 1% of the time, respectively?

Unfortunately, as we mentioned in Chapter 4, extensive studies have 
shown that very few people are naturally calibrated estimators. Calibrated 
probability assessments were an area of research in decision psychol-
ogy in the 1970s and 1980s and up to very recently. Leading researchers  
in this area have been Daniel Kahneman, winner of the 2002  Nobel 
Prize in Economic Sciences, and his colleague Amos Tversky.2 Decision 
psychology concerns itself with how people actually make decisions, 
however irrational, in contrast to many of the “management science”  

TABLE 7.1  Two Types of Subjective Probability Assignments Used in the Simple 
One-for-One Substitution Model (from Chapter 3)

Type of Probability 
Distribution Description Examples

Discrete binary 
(aka Bernoulli)

An either/or type of 
event, it happens or 
doesn’t, expressed 
as a probability the 
event will occur

■■ A coin flip
■■ A data breach happens in  
a given time period

■■ A system goes down
■■ “There is a 5% chance next 
year of a data breach of PHI 
that will be required to be 
reported on the HHS website.”

Continuous A quantity with a range 
of possible values, 
expressed as a range 
with a probability 
of containing the 
answer.

■■ The size of a future 
data breach

■■ The duration of a future 
system outage

■■ The change in sales due to 
a past data breach (a past 
event, but the actual value 
was difficult to pin down)

■■ “There is a 90% probability 
that the duration of a  
system outage is between  
30 minutes and 4 hours.”



158	 Evolving the Model of Cybersecurity Risk

or “quantitative analysis” methods taught in business schools, which focus 
on how to work out “optimal” decisions in specific, well-defined problems. 
This research shows that almost everyone tends to be biased either toward  
“overconfidence” or “underconfidence” about their estimates, the vast majority 
being overconfident (see inset, “Two Extremes of Subjective Confidence”). 
Putting odds on uncertain events or ranges on uncertain quantities is not a 
skill that arises automatically from experience or intuition.

Fortunately, some of the work by other researchers shows that bet-
ter estimates are attainable when estimators have been trained to reduce 
their personal estimating biases.3 Researchers discovered that odds makers 
and bookies were generally better at assessing the odds of events than, 
say, executives. They also made some disturbing discoveries about how 
bad physicians are at putting odds on unknowns such as the chance that 
a tumor is malignant or that a chest pain is a heart attack. They reasoned 
that this variation among different professions shows that putting odds on 
uncertain things must be a learned skill.

Researchers learned how experts can measure whether they are sys-
tematically underconfident, overconfident, or have other biases about 
their estimates. Once people conduct this self-assessment, they can learn 
several techniques for improving estimates and measuring the improve-
ment. In short, researchers discovered that assessing uncertainty is a gen-
eral skill that can be taught with a measurable improvement. That is, when 
calibrated cybersecurity experts say they are 95% confident that a system 
will not be breached, there really is a 95% chance the system will not 
be breached.

As mentioned earlier, there are competing philosophies over the defi-
nition, and both sides of the debate include many of the greatest minds 
in math, statistics, and science. We won’t go into detail here about that 

Two Extremes of Subjective Confidence

Overconfidence: When an individual routinely overstates knowledge 
and is correct less often than he or she expects. For example, when 
asked to make estimates with a 90% CI, many fewer than 90% of the 
true answers fall within the estimated ranges.

Underconfidence: When an individual routinely understates knowl-
edge and is correct much more often than he or she expects. For exam-
ple, when asked to make estimates with a 90% CI, many more than 90% 
of the true answers fall within the estimated ranges.
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debate but if you want to read about it, see the original How to Measure 
Anything book, especially the third edition. The case Hubbard makes in that 
book—which merely repeats the same arguments already made by great 
scientists and mathematicians such as L. J. Savage, Edwin T. Jaynes, and 
Harold Jefferies—is that the subjectivist view of probability is actually the 
only one that can possibly apply in real-world decision making. We should 
also note that the term “CI” can also stand for “confidence interval” and the 
difference between that and credible interval comes up in this debate. For 
your convenience, we have summarized part of this ongoing (and probably 
not ending soon) debate in the “Purely Philosophical Interlude” section in 
this chapter.

Calibration Exercise

Let’s benchmark how good you are at quantifying your own uncertainty by 
taking a short quiz. Table 7.2 contains ten 90% CI questions and ten binary 
(i.e., true/false) questions. Unless you are a Jeopardy grand champion, you 
probably will not know all of these general knowledge questions with cer-
tainty (although some are very simple). But they are all questions you prob-
ably have some idea about. These are similar to the exercises Hubbard gives 
attendees in his workshops and seminars. The only difference is that the 
tests he gives have more questions of each type, and he presents several 
tests with feedback after each test. This calibration training generally takes 
about half a day.

But even with this small sample, we will be able to detect some impor-
tant aspects of your skills. More important, the exercise should get you to 
think about the fact that your current state of uncertainty is itself something 
you can quantify.

Table 7.2 contains 10 of each of these two types of questions.

1.	90% confidence interval (CI). For each of the 90% CI questions, provide 
both an upper bound and a lower bound. Remember that the range 
should be wide enough that you believe there is a 90% chance that the 
answer will be between your bounds.

2.	Binary. Answer whether each of the statements is true or false, and 
then circle the probability that reflects how confident you are in your 
answer. For example, if you are absolutely certain in your answer, 
you should say you have a 100% chance of getting the answer right. 
If you have no idea whatsoever, then your chance should be the 
same as a coin flip (50%). Otherwise, it is one of the values between 
50% and 100%.
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Table 7.2  Sample Calibration Test

90% CI

# Question Lower Bound Upper Bound

1 In 1938, a British steam  
locomotive set a new speed 
record by going how fast  
in kilometers/hour?

2 In what year did Sir Isaac  
Newton publish the Universal  
Laws of Gravitation?

3 How many centimeters long is a  
typical business card?

4 The Internet (then called  
“Arpanet”) was established  
as a military communications 
system in what year?

5 In what year was William  
Shakespeare born?

6 What is the air distance between  
New York and Los Angeles  
in miles?

7 What percentage of a square  
could be covered by a circle  
of the same width?

8 How old was Charlie Chaplin  
when he died?

9 What is the weight, in kilograms,  
of the first edition of How to  
Measure Anything?

10 The TV show Gilligan’s Island  
first aired on what date?

Statement
Answer 
(True/False)

Confidence That You  
Are Correct (Circle One)

1 The ancient Romans were 
conquered by the ancient 
Greeks.

50% 60% 70% 80% 90% 
100%

2 There is no species of three 
humped camels.

50% 60% 70% 80% 90% 
100%

3 A gallon of oil weighs less than a 
gallon of water.

50% 60% 70% 80% 90% 
100%
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Of course, you could just look up the answers to any of these questions, 
but we are using this as an exercise to see how well you estimate things 
you can’t just look up (e.g., how long a system will be down next year or 
whether one of the systems in your firm will experience a data breach).

Important hint: The questions vary in difficulty. Some will seem easy 
while others may seem too difficult to answer. But no matter how difficult 
the question seems, you still know something about it. Focus on what 
you do know. For the range questions, you know of some bounds beyond 
which the answer would seem absurd (e.g., you probably know Newton 
wasn’t alive in ancient Greece or in the twentieth century). Similarly, for the 
binary questions, even though you aren’t certain, you have some opinion, 
at least, about which answer is more likely. Also, keep in mind that if you 
are unfamiliar with some of the units (kilograms, miles, etc.) or the topic in 
general, you can still answer. You will just have more uncertainty.

After you’ve finished, but before you look up the answers, try a small 
experiment to test if the ranges you gave really reflect your 90% CI. Con-
sider one of the 90% CI questions, let’s say the one about when Newton 
published the Universal Laws of Gravitation. Suppose you were offered a 
chance to win $1,000 in one of these two ways:

A.	You win $1,000 if the true year of publication of Newton’s book turns 
out to be between the dates you gave for the upper and lower bound. 
If not, you win nothing.

4 Mars is always farther away  
from Earth than Venus.

50% 60% 70% 80% 90% 
100%

5 The Boston Red Sox won the  
first World Series.

50% 60% 70% 80% 90% 
100%

6 Napoleon was born on the  
island of Corsica.

50% 60% 70% 80% 90% 
100%

7 “M” is one of the three most 
commonly used letters.

50% 60% 70% 80% 90% 
100%

8 In 2002, the price of the average 
new desktop computer 
purchased was under $1,500.

50% 60% 70% 80% 90% 
100%

9 Lyndon B. Johnson was a  
governor before becoming  
vice president.

50% 60% 70% 80% 90% 
100%

10 A kilogram is more than a pound. 50% 60% 70% 80% 
90% 100%

Table 7.2  (continued)

Statement
Answer 
(True/False)

Confidence That You  
Are Correct (Circle One)
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B.	You spin a dial divided into two unequal “pie slices,” one comprising 
90% of the dial and the other just 10%. If the dial lands on the large 
slice, you win $1,000. If it lands on the small slice, you win nothing 
(i.e., there is a 90% chance you win $1,000). (See Figure 7.1.)

Which do you prefer? The dial has a stated chance of 90% that you win 
$1,000 and a 10% chance that you win nothing. If you are like most people 
(about 80%), you prefer to spin the dial. But why would that be? The only 
explanation is that you think the dial has a higher chance of a payoff. The 
conclusion we have to draw is that the 90% CI you first estimated is really 
not your 90% CI. It might be your 50%, 65%, or 80% CI, but it can’t be your 
90% CI. We say, then, that your initial estimate was probably overconfident. 
You express your uncertainty in a way that indicates you have less uncer-
tainty than you really have.

An equally undesirable outcome is to prefer option A, where you win 
$1,000 if the correct answer is within your range. This means that you 
think there is more than a 90% chance your range contains the answer, 
even though you are representing yourself as being merely 90% confident 
in the range. In other words, this is usually the choice of the underconfi-
dent person.

The only desirable answer you can give is if you set your range just 
right so that you would be indifferent between options A and B. This means 
that you believe you have a 90% chance—not more and not less—that the 
answer is within your range. For an overconfident person (i.e., most of us),  
making these two choices equivalent means increasing the width of the 
range until options A and B are considered equally valuable. For the under-
confident person, the range should be narrower than first estimated.

Win
0

Option B:

Spin the Dial!

FIGURE 7.1  Spin to Win
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You can apply the same test, of course, to the binary questions. Let’s 
say you were 80% confident about your answer to the question about Napo-
leon’s birthplace. Again, you give yourself a choice between betting on your 
answer being correct or spinning the dial. In this case, however, the dial 
pays off 80% of the time. If you prefer to spin the dial, you are probably 
less than 80% confident in your answer. Now let’s suppose we change the 
payoff odds on the dial to 70%. If you then consider spinning the dial just 
as good (no better or worse) as betting on your answer, then you should 
say that you are really about 70% confident that your answer to the ques-
tion is correct.

In Hubbard’s calibration training classes, he has been calling this the 
“equivalent bet test.” (Some examples in the decision psychology literature 
refer to this as an “equivalent urn,” involving drawing random lots from an 
urn.) As the name implies, it tests to see whether you are really 90% con-
fident in a range by comparing it to a bet that you should consider to be 
equivalent. Research indicates that even just pretending to bet money sig-
nificantly improves a person’s ability to assess odds.4 In fact, actually betting 
money turns out to be only slightly better than pretending to bet.

Methods such as the equivalent bet test help estimators give more real-
istic assessments of their uncertainty. People who are very good at assessing 
their uncertainty (i.e., they are right 80% of the time they say they are 80% 
confident, etc.) are called “calibrated.” There are a few other simple meth-
ods for improving your calibration, but first, let’s see how you did on the 
test. The answers are shown at the end of this chapter after the citations.

To see how calibrated you are, we need to compare your expected 
results to your actual results. Since the range questions you answered were 
asking for a 90% CI, you are, in effect, saying that you expect 9 out of 10 of 
the true answers to be within your ranges. We need only to compare how 
many answers were actually within your stated ranges to your expected 
number, 9. If expectations closely match outcomes, then you may be well 
calibrated. This very small sample is not, of course, conclusive for one indi-
vidual. But since tests like this have been given to well over 2,000 people, a 
pattern can be seen even with only this many questions.

Figure 7.2 shows the actual and expected distribution of answers that 
were within the stated CI on 10-question tests (the data in this figure actu-
ally shows results from multiple variations of the 10-question tests, and 
results are similar across all versions). If the entire set of respondents were 
perfectly calibrated, we would expect most respondents (75%) to get 8, 9, 
or 10 of the 10 answers within their stated 90% CIs. This is literally the dis-
tribution we would expect if we rolled a 10-sided die 10 times, counted up 
the number of times the result was 9 or less, and repeated that a thousand 
times. But instead we see that most people are providing ranges that are 
more like a 40% or 60% CI, not a 90% CI. Those who happened to get 8 or 
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more answers within their stated ranges are mathematically consistent with 
an uncalibrated but lucky “upper tail” of the uncalibrated population, not a 
group of people who were already calibrated when they took the first test.

The expected outcome for your answers to the true/false questions, 
however, is not a fixed number since your confidence could be different for 
each answer. For each of the answers, you said you were between 50% and 
100% confident. If you said you were 100% confident on all 10 questions, 
you are expecting to get all 10 correct. If you were only 50% confident on 
each question (i.e., you thought your odds were no better than a coin flip), 
you expected to get about half of them right. To compute the expected 
outcome, convert each of the percentages you circled to a decimal (i.e., 
0.5, 0.6, 0.7, 0.8, 0.9, 1, and add them up. Let’s say your confidence in your 
answers was 1, 0.5, 0.9, 0.6, 0.7, 0.8, 0.8, 1, 0.9, and 0.7, totaling to 7.9.  
This means your “expected” number of correct questions, also known as  
the “probability weighted average”, was 7.9. If you are like most people, the 
number of questions you answered correctly was less than the number you 
expected to answer correctly. This is a very small number of questions for 
measuring your skill at assessing your uncertainty, but most people are so 
overconfident that even this small number can be illuminating.

One way to frame the performance on a test like this is to determine 
how likely it would be for a person who really was calibrated (i.e., each 90% 
CI really had a 90% chance of containing the real value) to get the observed 

Actual
Distribution
of Scores
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Expected Distribution
of Scores Assuming
Perfect Calibration 
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Number of Answers Within
10 Stated 90% CI

7 8 9 10

FIGURE 7.2  Distribution of Answers within 90% CI for 10-Question Calibration Test



Calibrated Estimates	 165

result. A calculation would show that for such a calibrated person, there is 
only a 1 in 612 chance that he or she would be so unlucky as to get only 
5 or fewer out of 10 of the 90% CIs to contain the real answers. See www 
.howtomeasureanything.com/cybersecurity for a spreadsheet example of 
this calculation and for examples of longer tests. But since over half of those 
who take these tests perform that badly (56%), we can safely conclude that 
it is systemic overconfidence and not a rash of bad luck combined with a 
small sample size. It is not just that these questions were too difficult, since 
these results reflect findings from a variety of tests with different questions 
over the past several years. Even with this small sample, if you got fewer 
than seven answers within your bounds, you are probably overconfident; 
if you got fewer than five within your bounds, you are very overconfident.

People tend to fare slightly better on the true/false tests, but, on aver-
age, they still tend to be overconfident—and overconfident by enough that 
even a small sample of 10 can usually detect it. On average, people expect 
to get 74% of true/false questions like these correct, but, in reality, answer 
just 62% of them correct. Nearly one-third of the participants expected to 
get 80% to 100% correct on 10-question true/false tests like this; of those, 
they correctly answered only 64% of the questions. Part of the reason you 
may have performed better on the true/false test is because, statistically, this 
test is less precise. (It is easier for a calibrated person to be unlucky and for 
an uncalibrated person to appear calibrated in this small sample of ques-
tions.) But if your actual number of correct questions was lower by 2.5 or 
more than the expected number, you are still probably overconfident.

More Hints for Controlling Overconfidence

The academic research so far indicates that training has a significant effect 
on calibration. We already mentioned the equivalent bet test, which allows 
us to pretend we are tying personal consequences to the outcomes. Research 
proves that another key method in calibrating a person’s ability to assess 
uncertainty is repetition with feedback. To test this, we ask participants a 
series of trivia questions similar to the quiz you just took. They give their 
answers, and then they are shown the true values, and they test again.

However, it doesn’t appear that any single method completely corrects 
for the natural overconfidence most people have. To remedy this, we com-
bined several methods and found that most people could be nearly per-
fectly calibrated.

Another one of these methods involves asking people to identify argu-
ments against each of their estimates. For example, your estimate of losses 
due to legal liabilities may be based on another example in your firm. But 

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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when you think about how varied reported losses were in other companies 
and perhaps some surprising rulings by courts, you may reassess the initial 
range. Academic researchers found that this method by itself significantly 
improves calibration.5

Hubbard also asked experts who are providing range estimates to look 
at each bound on the range as a separate “binary” question. A 90% CI inter-
val means there is a 5% chance the true value could be greater than the 
upper bound and a 5% chance it could be less than the lower bound. This 
means that estimators must be 95% sure that the true value is less than the 
upper bound. If they are not that certain, they should increase the upper 
bound until they are 95% certain. A similar test is applied to the lower 
bound. Performing this test seems to avoid the problem of anchoring, first 
mentioned in Chapter 4. Recall that anchoring is the observation that once 
we have a number stuck in our head, our other estimates tend to gravitate 
toward it. Some estimators say that when they provide ranges, they think 
of a single number and then add or subtract an “error” to generate their 
range. This might seem reasonable, but it actually tends to cause estimators 
to produce overconfident ranges (i.e., ranges that are too narrow). Looking 
at each bound alone as a separate binary question of “Are you 95% sure it 
is over/under this amount?” cures our tendency to anchor.

You can also force your natural anchoring tendency to work the other 
way. Instead of starting with a point estimate and then making it into a 
range, start with an absurdly wide range and then start eliminating the 
values you know to be extremely unlikely. If you have no idea how much 
losses from a breach of intellectual property (IP) data might be, start with a 
range of $100 to $10 billion. Then you realize that if IP is lost, there will at 
least be an effort at evaluating the loss so you raise the lower bound. You 
also recognize that the value of IP can’t exceed all profits from the given 
product and new technology reduces the longevity of IP, so perhaps you 
lower the upper bound. And keep narrowing it from there as you eliminate 
absurd values.

We sometimes call this the “absurdity test.” It reframes the question 
from “What do I think this value could be?” to “What values do I know to 
be ridiculous?” We look for answers that are obviously absurd and then 
eliminate them until we get to answers that are still unlikely but not entirely 
implausible. This is the edge of our knowledge about that quantity.

After a few calibration tests and practice with methods such as listing 
pros and cons, using the equivalent bet and anti-anchoring, estimators learn 
to fine-tune their “probability senses.” Most people get nearly perfectly cali-
brated after just a half-day of training. Most important, even though subjects 
may have been training on general trivia, the calibration skill transfers to 
any area of estimation.
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We’ve provided additional calibration tests of each type—ranges and 
binary—on this book’s website at www.howtomeasureanything.com/
cybersecurity. Using these tests, try applying the methods summarized in 
Table 7.3 to improve your calibration.

Conceptual Obstacles to Calibration

The methods just mentioned don’t help if someone has irrational ideas 
about calibration or probabilities in general. While most people in 
decision-making positions seem to have or are able to learn useful ideas 
about probabilities, some have surprising misconceptions about these 
issues. We addressed some general conceptual obstacles in Chapter  5, 
but let’s focus a bit further on misconceptions about the use of subjective 
probabilities. Here are some comments Hubbard received while taking 
groups of people through calibration training or eliciting calibrated esti-
mates after training:

■■ “My 90% confidence can’t have a 90% chance of being right because 
a subjective 90% confidence will never have the same chance as an 
objective 90%.”

■■ “This is my 90% confidence interval, but I have absolutely no idea if 
that is right.”

■■ “We couldn’t possibly estimate this. We have no idea.”
■■ “If we don’t know the exact answer, we can never know the odds.”

TABLE 7.3  Methods to Improve Your Probability Calibration

Repetition and feedback. Take several tests in succession, assessing how well 
you did after each one and attempting to improve your performance on the 
next one.

Equivalent bets. For each estimate, set up the equivalent bet to test if that 
range or probability really reflects your uncertainty.

Consider two pros and two cons. Think of at least two reasons why you should 
be confident in your assessment and two reasons you could be wrong.

Avoid anchoring. Think of range questions as two separate binary questions of 
the form “Are you 95% certain that the true value is over/under (pick one) 
the lower/upper (pick one) bound?”

Reverse the anchoring effect. Start with extremely wide ranges and narrow 
them with the “absurdity test” as you eliminate highly unlikely values.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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The first statement was made by a chemical engineer and is indicative 
of the problem some others initially have with calibration. As long as he sees 
his subjective probability as inferior to objective probability, he won’t get 
calibrated. However, after a few calibration exercises, he did find that he 
could subjectively apply odds that were correct as often as the odds implied; 
in other words, his 90% CIs contained the correct answers 90% of the time.

The rest of the objections are fairly similar. They are all based in part 
on the idea that not knowing exact quantities is the same as knowing noth-
ing of any value. And, again, note that none of these types of objections 
would be answered in any way at all by substituting subjective—but clearly 
defined—probabilities and ranges with the ambiguous language of “high” 
or “medium” likelihood or loss. Whatever the challenges of using calibrated 
probability assessments might be, we can’t help them by avoiding the issue 
with language that introduces further imprecision.

Even calibrated experts will initially need some coaching to overcome 
these misconceptions. The following example is based on a conversation 
Hubbard Decision Research had with the information security staff at the US 
Department of Veterans Affairs (first mentioned in Chapter 2) back in 2000. 
The expert initially gave no range at all and instead insisted that it could 
never be estimated. He went from saying he knew “nothing” about a vari-
able to later conceding that he actually is very certain about some bounds.

Analyst: If your systems are being brought down by a computer virus, 
how long does the downtime last? As always, all I need is a 90% 
credible interval.

Security Expert: We would have no way of knowing that. Sometimes we were 
down for a short period, sometimes a long one. We don’t really 
track it in detail because the priority is always getting the sys-
tem back up, not documenting the event.

Analyst: Of course you can’t know it exactly. That’s why we only put a 
range on it, not an exact number. But what would be the long-
est downtime you ever had?

Security Expert: I don’t know, it varied so much…

Analyst: Were you ever down for more than two entire workdays?

Security Expert: No, never two whole days.

Analyst: Ever more than a day?

Security Expert: I’m not sure … probably.

Analyst: We are looking for your 90% CI of a future downtime. If you 
consider all the downtimes you’ve had due to a virus, are they 
usually more than a day?

Security Expert: I see what you mean. I would say the average is usually less 
than a day.
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Analyst: So your upper bound for an event would be … ?

Security Expert: Okay, I think almost all system outages would be resolved in  
24 hours.

Analyst: Great. Now let’s consider the lower bound. How small could  
it be?

Security Expert: Some events are corrected in a couple of hours. Some take  
longer.

Analyst: Okay, but does a system ever get back online in less than an  
hour?

Security Expert: I suppose it has taken less than 30 minutes at times.

Analyst: Good. So your 90% CI for the duration of a single outage is 
30 minutes to 24 hours?

Security Expert: Yes, but I suppose a system could be out for three days.

Analyst: Sure. That’s why we call it a 90% CI. We allow for a 5% chance it 
is below the lower bound and a 5% chance it is above the upper 
bound. In our simulations, we will get values below 30 minutes 
or greater than 24 hours a total of 1 in 10 times. Depending on 
the distribution we choose, we could get durations of a few days 
on rare occasions.

Security Expert: Then I would say that sounds about right.

This is a typical conversation for a number of highly uncertain quanti-
ties. Initially the experts resist giving any range at all, perhaps because they 
have been taught that in business, the lack of an exact number is the same 
as knowing nothing, or perhaps because they will be “held accountable for 
a number.” But the lack of having an exact number is not the same as know-
ing nothing. The security expert knew that it is definitely not true that most 
outages would be solved in less than 30 minutes or that most would last 
longer than a week. He at least knew those were rarer extremes. He was 
uncertain, of course, but the uncertainty was not boundless.

This example is one reason we don’t like to use the word “assumption” 
in our analysis. An assumption is a statement we treat as true for the sake 
of argument, regardless of whether it is true. Assumptions are necessary 
if you have to use deterministic accounting methods with exact points as 
values. You could never know an exact point with certainty, so any such 
value must be an assumption. But if you are allowed to model your uncer-
tainty with ranges and probabilities, you do not have to state something 
you don’t know for a fact. If you are uncertain, your ranges and assigned 
probabilities should reflect that. If you have “no idea” that a narrow range 
is correct, you simply widen it until it reflects what you do know.
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It is easy to get lost in how much you don’t know about a problem and 
forget that there are still some things you do know. There is literally nothing 
we will ever need to measure where our only bounds are negative infinity 
to positive infinity.

The dialog is an example of the absurdity tests in the reverse-anchoring 
approach we mentioned earlier. We apply it whenever we get the “There 
is no way I could know that” response or the “Here’s my range, but it’s 
a guess” response. No matter how little experts think they know about a 
quantity, it always turns out that there are still values they know are absurd. 
Again, the point at which a value ceases to be absurd and starts to become 
unlikely but somewhat plausible is the edge of their uncertainty about the 
quantity. As a final test, we give them an equivalent bet to see if the result-
ing range is really a 90% CI.

You will likely encounter more conceptual objections as you implement 
more quantitative methods that will rely, at some point, on subjective esti-
mates of probabilities. As the survey in Chapter 5 showed, curious disposi-
tions about the use of probabilities seem to affect some small percentage 
of professionals in cybersecurity. One more example of this observed by 
Hubbard is the case where the expert responded that every event was 100% 
likely. His own colleagues argued with him regarding what seemed like an 
obviously absurd position. He responded that he needed to act as if each 
of these events was going to happen. His colleagues sitting next to him 
pointed out that if that were the case, he would have to treat every event as 
equally likely, and since his resources were limited, he would have to assign 
them arbitrarily. He seemed to be conflating the likelihood of the event with 
risk tolerance and what to do about it.

A Purely Philosophical Interlude

Does 90% Confidence Mean 90% Probability?

All possible definitions of probability fall short of the actual practice.
—William Feller, American mathematician6

It is unanimously agreed that statistics depends somehow on prob-
ability. But, as to what probability is and how it is connected with 
statistics, there has seldom been such complete disagreement and 
breakdown of communication since the Tower of Babel.

—L. J. Savage, American mathematician7
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Throughout this book, we will refer to a 90% CI as a range of 
values (indicated by an upper and lower bound) that has a 90% prob-
ability of containing the true value. We will use this definition regardless 
of whether the CI was determined subjectively or—as Chapter 9 will 
show—with sample data. By doing so, we’re using a particular interpre-
tation of probability that treats it as an expression of the uncertainty or 
“degree of belief” of the person providing the estimate.

Some (not all) statistics professors hold a different interpretation 
that contradicts this. If we computed the 90% CI of, say, the estimate 
of the population of users following a security protocol correctly, to be 
25% to 40%, they would argue that it is incorrect to say there is a 90% 
probability that the true population mean is within the interval. They 
would say the true population mean is either in the range or not.

This is one aspect of what is called the “frequentist” interpretation 
of confidence intervals as opposed to what some might prefer to call 
“credible intervals.” Students and many scientists alike find this a con-
fusing position. A frequentist would argue that the term “probability” 
can apply only to events that are purely random, “strictly repeatable,” 
and have an infinite number of iterations. These are three conditions 
that, if we pin a frequentist down on the definitions, make probability 
a purely mathematical abstraction that never applies to any situation in 
practical decision making.

Most decision makers, however, behave as if they take the position 
we use in this book. They are called “subjectivists,” meaning that they 
use probabilities to describe a personal state of uncertainty, whether 
or not it meets criteria such as being “purely random.” This position 
is also sometimes called the Bayesian interpretation (although this in-
terpretation and the Bayes formula we will discuss in Chapter 8 often 
have nothing to do with each other). To a subjectivist, a probability 
merely describes what a person knows, whether or not the uncertainty 
involves a fixed fact, such as the true mean of a population, as long as 
it is unrevealed to the observer. Using probabilities as an expression of 
uncertainty is the practical approach for making risky decisions.

Suppose you and a colleague bet on how many people will lose a 
laptop next month (we’re not proposing you start such betting pools; 
this is just an example). You state your 90% CI for laptops lost is be-
tween 2 and 10 next month. Suppose you also have the choice to make 
a bet instead, on a spin of a dial where you have a 90% chance of win-
ning. Whatever bet you would be willing to make on one you would 
be willing to make on the other. Until new information, such as the true 
number of lost laptops, is revealed to you, you treat the confidence in a 

(Continued )
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The Effects of Calibration

One of the authors, Doug Hubbard, started calibrating people in 1995, 
gathering data on how well people do on trivia tests and even how well-
calibrated people do in estimating real-life uncertainties after those events 
have come to pass. The calibration methods have evolved but have been 
fairly consistent since 2001. Since then, Hubbard and his team at Hub-
bard Decision Research have trained well over 2,000 people in calibra-
tion methods and have recorded their performance, both their expected 
and actual results on several calibration tests, given one after the other 
during a half-day workshop. Each trained person responded to between 
100 and 160 practice questions, producing well over 200,000  individual 
response items.

The data gathered over these participants gave some insight into the 
aggregated data often published in various peer-reviewed scientific studies. 

confidence interval as a probability. If real money was on the line, we 
suspect an experiment involving frequentist statisticians betting on vari-
ous confidence intervals and dial-spins would show they would also 
act like subjectivists.

In many published works in the empirical sciences, physicists,8 epi-
demiologists,9 and paleobiologists10 explicitly and routinely describe a 
confidence interval as having a probability of containing the estimated 
value. Yet it appears that nobody has ever had to retract an article be-
cause of it—nor should anyone. It is important to note, however, that 
either interpretation is pure semantics and is not a function of math-
ematical fundamentals or empirical observation that can be proven true 
or false. This is why these positions are called merely “interpretations” 
and not “theorems” or “laws.”

But there is one pragmatic, measurable, real-world difference be-
tween these two interpretations: Students find the frequentist interpre-
tation much more confusing. Some statistics professors understand this 
perfectly well and therefore teach both the subjectivist and frequentist 
interpretations. Like most decision scientists, we will act as if a 90% confi-
dence interval has a 90% probability of containing the true value (and we 
never run into a mathematical paradox because of it). To us, confidence 
intervals and credible intervals have no practical difference in models of 
uncertainty. This is why we will sidestep the debate entirely and simply 
refer to credible interval or confidence interval interchangeably as a CI.

(Continued )



Calibrated Estimates	 173

The academic research usually shows aggregated results for all the partici-
pants in the research, so we can see only an average for a group. When 
Hubbard aggregated the performance of participants in the same way, he 
got a result very similar to the prior research. But because he could break 
down the data by specific subjects, he saw another interesting phenom-
enon. Hubbard observed that most perform superbly by the end of the 
training; it is a few poor performers who bring down the average.

To determine who is calibrated we have to allow for some deviation 
from the target, even for a perfectly calibrated person. Also, an uncalibrated 
person can get lucky. Accounting for this statistical error in the testing, fully 
80% of participants are ideally calibrated after the fifth calibration exercise. 
They are neither underconfident nor overconfident. Their 90% CIs have 
about a 90% chance of containing the correct answer.

Another 10% show significant improvement but don’t quite reach ideal 
calibration. And 10% show no significant improvement at all from the first 
test they take.11 The analysis shows there are different groups of perfor-
mance among the individuals, which does not fit the model of everyone 
being slightly uncalibrated. This group cannot be explained as just randomly 
unlucky participants, and those who were calibrated cannot just be a lucky 
but uncalibrated majority. Why is it that about 10% of people are apparently 
unable to improve at all in calibration training? Whatever the reason, it turns 
out not to be that relevant. Every single person we ever relied on for actual 
estimates was in the first two groups, and almost all were in the first, ide-
ally calibrated group. Those who seemed to resist any attempt at calibration 
were, even before the testing, never considered to be the relevant expert or 
decision maker for a particular problem. It may be that they were less moti-
vated, knowing their opinion would not have much bearing. Or it could be 
that those who lacked aptitude for such problems just don’t tend to advance 
to the level of the people we need for the estimates. Either way, it’s academic.

We see that training works very well for most people. But does proven 
performance in training reflect an ability to assess the odds of real-life 
uncertainties? The answer here is an unequivocal yes. Hubbard tracked 
how well-calibrated people do in real-life situations on multiple occasions, 
but one particular controlled experiment done in the IT industry still stands 
out. In 1997, Hubbard was asked to train the analysts of the IT advisory 
firm Giga Information Group (since acquired by Forrester Research, Inc.) 
in assigning odds to uncertain future events. Giga was an IT research firm 
that sold its research to other companies on a subscription basis. Giga had 
adopted the method of assigning odds to events it was predicting for clients, 
and it wanted to be sure it was performing well.

Hubbard trained 16 Giga analysts using the methods described earlier. 
At the end of the training, the analysts were given 20 specific IT industry 
predictions they would answer as true or false and to which they would 
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assign a confidence. The test was given in January 1997, and all the ques-
tions were stated as events occurring or not occurring by June 1, 1997 
(e.g., “True or false: Intel will release its 300 MHz Pentium by June 1”). As 
a control, the same list of predictions was also given to 16 of their chief 
information officer (CIO) clients at various organizations. After June 1 the 
actual outcomes could be determined. Hubbard presented the results at 
Giga World 1997, their major IT industry symposium for the year. Figure 7.3 
shows the results. Note that some participants opted not to answer all of 
the questions, so the response counts on the chart don’t add up to 320 (16 
subjects times 20 questions each) in each of the two groups.

The horizontal axis is the chance the participants gave to their predic-
tion on a particular issue being correct. The vertical axis shows how many 
of those predictions turned out to be correct. An ideally calibrated person 
should be plotted right along the dotted line. This means the person was 
right 70% of the time he or she was 70% confident in the predictions, 80% 
right when he or she was 80% confident, and so on. You see that the ana-
lysts’ results (where the points are indicated by small squares) were very 
close to the ideal confidence, mostly within allowable error. The results 
appear to deviate the most from perfect calibration at the low end of the 
scale, but this part is still within acceptable limits of error. (The accept-
able error range is wider on the left of the chart and narrows to zero at 
the right.) Of all the times participants said they were 50% confident, they 
turned out to be right about 65% of the time. This means they might have 
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known more than they let on and—only on this end of the scale—were 
a little underconfident. It’s close; these results might be due to chance. 
There is a 1% chance that 44 or more out of 68 would be right just by 
flipping a coin.

The deviation is a bit more significant—at least statistically if not  
visually—at the other end of the scale. Where the analysts indicated a high 
degree of confidence, chance alone would have allowed for only slightly 
less deviation from expected, so they are a little overconfident on that end 
of the scale. But, overall, they are very well calibrated.

In comparison, the results of clients who did not receive any calibra-
tion training (indicated by the small triangles) were very overconfident. The 
numbers next to their calibration results show that there were 58 instances 
when a particular client said he or she was 90% confident in a particular 
prediction. Of those times, the clients got less than 60% of those predic-
tions correct. Clients who said they were 100% confident in a prediction 
in 21 specific responses got only 67% of those correct. All of these results 
are consistent with what has typically been observed in a number of other 
calibration studies over the past several decades.

Equally interesting is the fact that the Giga analysts didn’t actually get 
more answers correct. (The questions were general to the IT industry, not 
focusing on analyst specialties.) They were simply more conservative—but 
not overly conservative—about when they would put high confidence on a 
prediction. Prior to the training, however, the calibration of the analysts on 
general trivia questions was just as bad as the clients were on predictions  
of actual events. The results are clear: the difference in accuracy is due 
entirely to calibration training, and the calibration training—even though it 
uses trivia questions—works for real-world predictions.

Many of Hubbard’s previous readers and clients have run their own 
calibration workshops and saw varying results depending on how closely 
they followed these recommendations. In every case where they could not 
get as many people calibrated as observed in Hubbard’s workshops, it was 
found that they did not actually try to teach all of the calibration strategies 
mentioned in Table 7.3. In particular, they did not cover the equivalent bet, 
which seems to be one of the most important calibration strategies. Those 
who followed these strategies and practiced with them on every exercise 
invariably saw results similar to those observed by Hubbard.

Motivation and experience in estimating may also be a factor. Hubbard 
usually gives his training to experienced managers and analysts, most of 
whom knew they would be called on to make real-world estimates with 
their new skills. Dale Roenigk of the University of North Carolina–Chapel 
Hill gave this same training to his students and noticed a much lower rate 
of calibration (although still a significant improvement). Unlike manag-
ers, students are rarely asked for estimates; this may have been a factor 
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in their performance. As observed in Hubbard’s own workshops, those 
who did not expect their answers to be used in the subsequent real-
world estimation tasks were almost always those who showed little or  
no improvement.

One notable exception about student performance was Ron Howard’s 
Stanford courses, where one of Hubbard’s lead analysts received his PhD 
in decision analysis. Howard asked for probability estimates for answers to 
questions. Students were rewarded the most when they were certain and 
right but heavily penalized when they were certain but wrong.

There is one other extremely important effect of calibration. In addition 
to improving one’s ability to subjectively assess odds, calibration seems to 
eliminate objections to probabilistic analysis in decision making. Prior to 
calibration training, people might feel any subjective estimate was useless. 
They might believe that the only way to know a CI is to do the math they 
vaguely remember from first-semester statistics. They may distrust proba-
bilistic analysis in general because all probabilities seem arbitrary to them. 
But it is rare for a person to offer such challenges after being calibrated. 
Apparently, the hands-on experience of being forced to assign probabilities, 
and then seeing that this was a measurable skill in which they could see 
real improvements, addresses these concerns. Although this was not an 
objective when Hubbard first started calibrating people, it became clear 
how critical this process was in getting them to accept the entire concept of 
probabilistic analysis in decision making.

Beyond Initial Calibration Training: More Methods for Improving 
Subjective Judgment

There are other methods that further improve subjective estimates even 
before empirical measurements are added. The calibration training we have 
discussed so far addresses the overconfidence bias, and it does so only 
for a single individual at a single point in time. Other issues have to do 
with tracking performance over time, reducing inconsistency, and the best 
ways of combining multiple SMEs. Some of the items we cover briefly here 
will require some additional mathematical topics to be expanded further in 
Chapter 9.

Continuous Tracking of Performance with Practice and Practical Estimates

By the time SMEs finish calibration training, we have a snapshot of their per-
formance at a single point in time. That performance measurement needs 
to be ongoing by continuously comparing estimates from SMEs to observed 
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outcomes. The challenge we face is that in risk assessment such as cyber-
security, SMEs are asked to estimate the likelihood and impact of events 
that are infrequent and may happen years after the original forecast if they 
happen at all. Even if and when they do happen, some outcomes will not 
be immediately obvious without some special measurement efforts—such 
as the long-term consequences of reputation damage. So, as mentioned in 
Chapter 4, we cannot count on our experience from these events for use-
ful feedback.

In order to track SME performance, we recommend adding “practice” 
estimates to your “practical” estimates. While practical estimates are actually 
used in your risk assessment models, practice estimates are primarily for 
tracking and continuously improving the skills of SMEs. Practice estimates 
do not have to be anything relevant to your models or even to your firm. 
They could be related to cybersecurity, but they need to be something that 
will provide quick and unambiguous feedback.

For example, a practice estimate could be about attendance at an 
upcoming cybersecurity conference, the increase in overall attacks in a 
soon-to-be-released publicly available report (e.g., Cyentia’s IRIS report or 
the Verizon DBIR), or whether someone in your entire industry will have 
a publicly reported ransomware attack in the next month. Our research 
shows that calibration training is not very dependent on the specific topic, 
so outcomes of sporting events, weather, and elections are also fair game 
for practice estimates. All of the trivia questions used in the training are 
practice estimates.

Estimate Type Description Examples

Practical Estimates used in models  
for making practical  
decisions. Feedback may 
be infrequent, delayed,  
and require special  
measurement efforts.

■■ The chance of ransomware/
yr.

■■ Regulatory fine for a data 
breach

■■ Long-term loss of market 
share

Practice Estimates used for measuring 
the performance of SMEs. 
They are topics that have 
frequent and unambiguous 
feedback. They may not 
be relevant to any decision 
and don’t necessarily have 
to be relevant to the topic 
of cybersecurity.

■■ The week-to-week increase 
of ransomware attacks in the 
VERIS database

■■ The chance a reported breach 
more than 50MM records will 
happen in the next 30 days

■■ Stock price of a particular 
cybersecurity company in 
5 days
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Both practice and practical estimates are relevant to measuring SME 
calibration performance. The only difference is that you should get a lot 
more feedback a lot sooner on practice estimates than practical estimates. 
(Hopefully, you aren’t getting a lot of feedback on your assessments of 
costly cyberattacks other than it hasn’t happened yet.) Hubbard Decision 
Research has observed that clients that continuously use calibration seem to 
stay calibrated. This could be gamified for your team.

Reducing Inconsistency

As we first mentioned in Chapter 4, most individuals are extremely incon-
sistent. Calibration training only addresses the systematic bias of overconfi-
dence but does not address random inconsistencies in SME responses. We 
just let lots of random, irrelevant, external factors affect our judgment. Recall 
that in Chapter 4, we gave cybersecurity experts long lists of scenarios to 
estimate (e.g., the probability that a particular application with particular 
attributes will be breached). We would put a few duplicate rows of data in 
a list of over a hundred scenarios where, say, the 9th row and the 87th row  
were identical scenarios. We find that often the same cybersecurity expert  
can give wildly different estimates for the exact same scenarios. Overall, 
personal inconsistency explained about 21% of variation in judgment.

There are methods we can use to reduce inconsistency. A simple 
method may be to have more than one SME independently estimate the 
same thing and average them together. Random inconsistency will tend to 
go down with estimates from more SMEs. The rate of this inconsistency of 
n SMEs relative to one SME is approximately the square root of 1/n. So two 
SMEs have 71% of the inconsistency of one SME, four SMEs have 50% of the 
inconsistency of one SME, and so on.

Inconsistency can also be reduced by having the same SME make the 
same judgments again, after several are gathered, a few days later, without 
revealing the previous judgments. Give them the judgments in a different 
order and/or present the data they are provided in a different order. They 
may modify their judgment a bit. This reduces inconsistency almost like ask-
ing a completely different SME and averaging them together.

Judgments are better and more consistent if they are based on just a 
few reality checks. For example, if 100 identified risks each have a 5% to 
20% chance of occurrence per year, then we are expecting to see several 
such events per year. If none of those events have happened in the past five 
years, then we might want to rethink our estimates (Hubbard and Seiersen 
both observed this when working together on the same project).

There are also mathematical methods for improving consistency even 
further. In fact, we can measure inconsistency and eliminate it. We will 
introduce a couple of those methods in Chapter 9.
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Aggregating Experts

While averaging estimates of many SMEs seems to provide some benefit, 
there are better methods. For about as long as there has been research 
in calibrated probability assessments there has been research into how to 
aggregate the estimates of multiple experts. One 1999 study compared the 
performance of a variety of methods dating back to 1961 (one of those was 
apparently based on a method developed by Pierre Simon Laplace).12

That study and others since have produced some interesting findings. 
First, some of the most widely used methods are among the worst perform-
ing. One of the poor performing methods was the open group discussion 
to build a consensus. Almost every client we have has stated this was their 
standard go-to method of combining multiple SME estimates. This would be 
considered a type of “behavioral” method for aggregation, and such meth-
ods were among the worst performing. Behavioral aggregation methods 
refer to how estimates are collected from a group and how they collaborate 
as opposed to algorithmic methods, which combine estimates using some 
formula. Another example of a behavioral method is the Delphi technique. 
This was also researched and, like some other behavioral methods, was 
found not to improve actual estimates.13

There are some exceptions to the performance of behavioral meth-
ods. Philip Tetlock, the decision psychology researcher first mentioned in 
Chapter 4, observed in his research that personalities mattered in team col-
laboration.14 He found that if teams consisted of “belief updaters,” that is, 
individuals who demonstrate willingness to update beliefs based on new 
information, then teams could collaborate in groups in ways that at least 
outperformed other teams of collaborators. The reader might have noticed 
in their professional experience that “belief updating” is not a universal 
human trait. Many individuals may double down on beliefs when chal-
lenged and may even become more confident in their original positions 
after a debate. Those individuals are often the most annoying sort, but they 
are also terrible forecasters.

The most interesting finding in aggregating research is that certain algo-
rithmic methods perform surprisingly well. They outperform simple averag-
ing and easily outperform the best individual expert. Some other research 
Philip Tetlock conducted showed that if two SMEs agree, and they happen 
to both agree that something is more likely than usual, then the event is 
more likely than the mere average. He calls this “extremizing” the average.15 
It may seem counterintuitive that an event should be more likely than either 
well-calibrated SME alone indicated, yet it is both consistent with empirical 
observations of the outcomes of estimates and consistent with the math-
ematical treatment of combining multiple estimates. Tetlock didn’t provide 
a specific calculation for how to extremize the average of multiple SME 
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estimates, but we will explain methods to compute the extremized value in 
Chapter 9.

All of this chapter has simply been about getting a better handle on 
your subjective estimates. But those are just a starting point in measurement. 
In the next two chapters you will see how to update these initial beliefs 
using Bayesian methods.
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CHAPTER 8

We are now in possession of proven theorems and masses of worked-
out numerical examples. As a result, the superiority of Bayesian 
methods is now a thoroughly demonstrated fact in a hundred dif-
ferent areas.

—E. T. Jaynes, Probability Theory: The Logic of Science

The previous chapter showed how the performance of subjective prob-
abilities is objectively measurable—and they have been measured 

thoroughly in published scientific literature. These subjective “prior prob-
abilities” (“priors” for short) are the starting point of all our analyses. This is 
the best way to both preserve the special knowledge and experience of the 
cybersecurity expert and produce results that are mathematically meaning-
ful and useful in simulations. Stating our current uncertainty in a quantita-
tive manner allows us to update our probabilities with new observations 
using some powerful mathematical methods.

The tools we are introducing in this chapter are part of Bayesian 
methods in probability and statistics, named after the original eighteenth-
century developer of the idea, Reverend Thomas Bayes. These have 
multiple advantages that are particularly well suited to the problems 
the cybersecurity expert faces. First, Bayesian methods exploit exist-
ing knowledge of experts. This is in contrast to conventional methods 
the reader may have been exposed to in first-semester statistics, which 
assume that literally nothing else is known about a measurement before 
the sample data was acquired. Second, because Bayesian methods use this  
prior knowledge we can make inferences from very little data. These  

Reducing Uncertainty 
with Bayesian Methods
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inferences may be just slight reductions in the cybersecurity expert’s uncer-
tainty, but they can still have a big impact on risk mitigation decisions. If 
you do have a lot of data, the Bayesian solution and the measurements from 
basic sampling methods that ignore prior knowledge will converge.

In this chapter we will introduce some of the basic Bayesian reasoning 
and how it might apply to cybersecurity. We will, for now, focus on funda-
mental mechanics to lay a foundation. The basics we are covering will be 
trivial for some. We assume nothing more than that the reader is familiar 
with basic algebra. But there is a lot of detail to cover, so, if you find this 
trivial, feel free to skim quickly. If you find it overwhelming, bear in mind 
that you still, as always, have access to the calculations done for you in our 
downloadable spreadsheet (www.howtomeasureanything.com/cybersecurity). 
If you can make it through this chapter, the reward is access to some very 
powerful tools in the next chapter.

A Brief Introduction to Bayes and Probability Theory

The claim has often been correctly made that Einstein’s equation E = mc2 
is of supreme importance because it underlies so much of physics. . . .  
I would claim that Bayes equation, or rule, is equally important because 
it describes how we ought to react to the acquisition of new information.

—Dennis V. Lindley1

We mentioned back in Chapter 2 that you probably have a lot more data 
than you think, but you probably also need less data than you think. This 
chapter is more about the latter. In cybersecurity, as in many areas, we have  
some idea of what a probability might be, but we could modify or update 
that probability if we had a little more data. For example, you will need to 
estimate the probability of a data breach and the probability of a breach 
given a new control. And you often need to do that with very little data.

It often surprises managers and technicians that we can make any progress 
at all with just a few data points. However, Bayesian methods demonstrate  
that sometimes we can just incrementally change our uncertainty even 
with a single observation. How a single observation reduces uncertainty is  
obvious in some extreme examples—such as the chance that bypassing a 
particular control is even possible is informed by observing just one such 
event. In more subtle situations, we start with a state of uncertainty (from a 
calibrated SME, of course), and we want to know how much that changes 
with very limited observations. To understand how that works, we first need 
to review some very basic rules of probability.

http://www.howtomeasureanything.com/cybersecurity
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The Language of Probabilities: A Basic Vocabulary

If we give you a little notation now, we can avoid longer and potentially more 
confusing verbal expressions. This may be trivial to some readers, but if you 
are the least bit rusty, look this over to get back up to speed on how to write 
in the language of probabilities. For now, we will just mention a few handy 
rules from probability theory. This is not the complete list of fundamental 
axioms from probability theory, and it’s definitely not a comprehensive list of 
all theorems that might be useful. But it is enough to get through this chapter.

1.	How to write “Probability.”

	P A probability of A P A has to be some value between
and i

the ( ) . ( )
,

0
1 nnclusive. 	

P A the probability of not A Read the sign as no not or( ) . , ,“ ” “ ” “ ”
“iis/will not.”

If P(MDB) is the probability of a major data breach in a given year, then 
P(∼MDB) is the probability there won’t be a major data breach.

2.	The “Something has to be true but contradictory things can’t both be 
true” rule.

The probabilities of all mutually exclusive and collectively exhaustive 
events or states must add up to 1. In probability theory, this is known 
as the Complement Rule. If there are just two possible outcomes, say A 
or not A, then:

P A P A( ) ( ) 1

For example, either there will be a major data breach or not. If we 
defined this term unambiguously (which we assume we have in this 
specific case), it has to be one or the other, and it can’t be both (i.e., we 
can’t have MDB happen and not happen).

3.	How to write the probability of “More than one thing happens.”

P(A,B) means both A and B are true. If A and B are “independent,” 
meaning the probability of one does not depend on the other, then 
P(A,B) = P(A)P(B). It must also be the case that P(A,B) = P(B,A). This is 
the “commutative property.”

4.	How to write, and compute, probability when “It depends” (conditional 
probability).

P(A|B) = conditional probability of A given B.
5.	How to decompose “More than one thing happens” into a series of 

“It depends.”

We can use rule 4 to turn a larger joint probability of two things into 
P(A,B) = P(A|B)P(B) and, if we have a joint probability of three things, 
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we can write P(A,B,C) = P(A|B,C)P(B|C)P(C) and so on. This is called 
the “chain rule.”

6.	How to add up “It can happen different ways” rule.

We can extend rule 4 to working out the probability based on all the 
conditions under which it could happen and the probabilities of each of 
those conditions. This is known as “the law of total probability.”

P A P P B P P BA|B A|~B( ) ( ) ( ) ( ) ( )

7.	How to “flip” a conditional probability: Bayes’s Rule.

We will often want to “flip” a conditional probability. That is, we might 
start out with P(A|B) but what we really want is P(B|A). These two 
things are only equal if P(A) = P(B), which is often not the case. So in 
order to flip them we have to apply Bayes’s rule, which is written as:

P P A P /P BA|B B|A( ) ( ) ( ) ( )

Sometimes the form of this is referred to as the “general” form of Bayes 
by computing P(B) according to rule 3. If we consider just two condi-
tions for P(B), then rule 4 allows us to substitute P(B) so that:

P P A P / P P A P B| A P AA|B B|A B|A( ) ( ) ( ) [ ( ) ( ) ( ) (~ )] 	

The Proof of Bayes

If you’ve absorbed all of that to the point of its being intuitive, there are 
some more concepts you can pick up if you understand where Bayes’s rule 
comes from. In each of the steps below, we will refer to how it comes from 
rules 1 through 6 above or previous steps.

Prove P(A|B) = P(A)P(B|A)/P(B):

1.	Step 1. P(A,B) = P(B,A)—rule 3, the commutative property.
2.	Step 2. P(A,B) = P(A)P(B|A)—rule 5, the chain rule.
3.	Step 3. P(B,A) = P(B)P(A|B)—from steps 1 and 2.
4.	Step 4. P(A)P(B|A) = P(B)P(A|B)—true because of 1, 2, and 3.
5.	Step 5. P(A|B) = P(A)P(B|A)P(B)—divide #4 by P(B).

Please don’t feel you need to memorize these; just understand them 
as subrules. We reference these throughout our analysis. But let’s pause to 
consider the consequences of these rules so far. We often want to work out 
the probability some hypothesis is true given some observation. Sometimes 
it is easier to work out the probability that we will observe something given 
some hypothesis is true. If we know the latter and we have a prior for the 
probability of an observation, we can compute the former.
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We can refer to the law of total probability (rule 6) to compute prob-
ability of a given observation.

P(B) = P(B|A)P(A) + P(B|~A)(1 − P(A))
If we substitute P(B) with the right-hand side of the equation above, we 

get what is called the “general form” of Bayes’s theorem.

	
P A B

P A P B A

P B A P A P B A P A
( )

( ) ( )

( ) ( ) ( ~ )( ( ))
|

|

| | 1 	

An Example from Little Data: Does Multifactor Authentication Work?

Now let’s use all of these tools in an example. The authors have run into 
many claims by cybersecurity vendors and others, which you might be 
interested in testing. In one case, we find a source that states that multifac-
tor authentication (MFA) should reduce material data breaches by 90%.2 But 
you are also reading a lot of information about how to bypass MFA.3 So, 
is MFA just a lot of hype? It seems like it should reduce risk just because it 
makes access much more difficult.

Suppose you haven’t implemented MFA yet, but you conducted a previ-
ous assessment of other industry data or calibrated estimates. Knowing that 
your firm’s size makes major breaches more likely and knowing what your 
insurer quoted you for coverage, you estimated that your chance of a breach 
was somewhere between 4% and 16% per year. Since for this example you 
are just going to use a single discrete probability, you go with a mean of 10% 
per year. You are considering a major investment in MFA to reduce risk, but 
to justify the cost you have to determine how much risk would be reduced.

Objective independent data is sparse. However, suppose you know of a 
firm similar to yours that implemented MFA across all platforms a year ago, 
and they say they haven’t had a material breach since then. Is this evidence 
that MFA is working? It’s certainly not proof it is working because, given our 
estimate above, there was a 90% chance of not having a significant breach, 
anyway. But it turns out it is evidence in the sense that the information from 
one year of no observed breaches at one organization does reduce our 
uncertainty, even if just incrementally.

The Solution

Let’s keep our current example simple and assume a simple binary out-
come: either MFA works as advertised or it does not. The articles you were 
reading raise some doubts about whether there is a chink in the MFA armor, 
but suppose you still think there is a 60% chance the claims are true. After 
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your colleague in the other firm reveals their experience with this MFA solu-
tion, you compute the updated probability that MFA really does reduce the 
chance of a material breach by 90%.

■■ The probability that MFA works (W) as advertised: P(W) = 0.6.
■■ Based on the research you performed with your own firm, independent 
articles, and other data about firms that had not yet implemented MFA, 
you estimated a chance that a material breach (B) would be realized 
without MFA. This is the same as implementing MFA that doesn’t work 
(~W): P(B|~W) = 0.1.

■■ The advertised probability of a material breach given MFA works—that 
is, it reduces the chance of a breach by 90% (i.e., just one-tenth of prob-
ability without MFA): P(B|W) = (1 − 0.9)(0.1) = 0.01.

■■ The probability there would be no breach observed in that time 
period for that firm given MFA worked: P(~B|W)  =  1  −  P(B|W)  = 
1 − 0.01 = 0.99.

■■ The total probability of a material breach using the law of total prob-
ability: P(B) = P(B|W)P(W) + P(B|~W)(1 − P(W)) = (0.01)(0.6) + (0.1)
(1 − 0.6) = 0.046.

■■ The probability of no breach would be observed: P(~B) = 1 − P(B) = 
1 − 0.046 = 0.954.

■■ The chance MFA is working given that there was no breach after one 
year of observation at one firm: P(W|~B)  =  P(W)P(~B|W)/P(~B)  = 
(0.6)(0.99)/(0.954) = 0.622642.

So just one year of observations updates our belief that MFA works 
from 60% to 62.2642%. That’s not much of a change, but we did move 
the needle. How much did it change the probability of a material breach 
if you implemented MFA? To keep the notation simple, we’ll call your 
updated belief in the chance MFA works P(W|~B) by adding an apos-
trophe P(W)’ = 0.622642. Then let’s apply the same procedure above 
with P(W)’ instead of P(W). You just need to compute P(B) = P(B|W)
P(W)’ + P(B|~W)(1 − P(W)’). You should get 0.043962. That’s not much 
less than our previous estimate of a data breach given we implemented 
MFA (previously 0.046), but it is definitely a lot less than our current 
probability 0.1 of a breach without MFA [remember, P(B|~W) is the 
same as not implementing MFA].

Adding More Observations

Now suppose you checked around further, and you found more simi-
lar firms that implemented MFA but did not yet observe a breach after 
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implementing MFA, some two or three years ago. Let’s further suppose this 
adds up to 11 more company-years of observations, 12 including the first 
company you talked to with just one year of observations. Let’s treat each 
year of observations for each firm as a separate random outcomes and as if 
they are equivalent in all other respects.

In that case, the probability that no breach is observed in a total of  
12 company-years of data is, according to rule 3, the product of all  
of those individual probabilities. Our original probability of no breach  
we get from the law of total probability was 0.954. Getting 12 random 
samples where there are no observed breaches, the updated probability is 
(0.954)12 = 0.568.

Given all this new data for breaches in firms that implemented MFA, 
how does this update our belief about whether MFA works as adver-
tised? How does it change the probability of a breach if we implement 
MFA? If you work through the example with the probability of seeing 
no breaches in 12 observed company-years, you should get a probabil-
ity that MFA works equal to 9.358% and a probability of a data breach 
after implementing MFA equal to 1.5776%. If you go to the website at 
www.howtomeasureanything.com/cybersecurity, you can see this exam-
ple worked out in detail. We also provided the assumptions behind the 
example in Chapter 4, where we worked out how long we would have 
to observe a single firm to get to various levels of confidence about a 
control working.

Now, keep in mind that after you implement MFA, more data is gath-
ered with each year of observations. If you went another year and none of 
the 12 firms observed a data breach yet, then you have 12 more company-
years of data for a total of 24 company-years. In that case, you would have 
updated your prior so that you now have a 93.66% probability MFA works 
as advertised, and your estimate for the probability of a breach the next 
year is down to 1.57%. See the same spreadsheet above for this exam-
ple as well.

A Brief Note on Priors

All the operations just described require some source of an input. In this 
example, we will be using the calibrated estimates of the CISO. Since 
the CISO is using his previous experience and his calibrated probability-
assessment skill to generate the inputs, we call them an “informative prior.” 
Again, “prior” is short for “what you already believe about something.” An 
informative prior is a fancy way for saying that your prior is generated by a 
subject matter expert who knows something, is well calibrated, and is will-
ing to state how some things are more likely than others.

http://www.howtomeasureanything.com/cybersecurity
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We could also start with an “uninformative prior.” The idea here is 
to have a prior that assumes a maximum possible level of uncertainty at 
first; any changes to that will be informed by the data. It is considered a 
more conservative starting point since it can’t be influenced by the mistaken 
beliefs of the expert—on the other hand, it can’t take into account perfectly 
legitimate beliefs, either.

It could be argued that an uninformative prior on a discrete binary 
event is 50%. There is actually a philosophical debate about this, which we 
won’t get into, but, mathematically speaking, that is the most uncertainty we 
can have in a system with only two possible states. Of course, the selection 
of a prior in either case is subjective. The uninformative prior is considered 
more conservative by some people, but it is probably also less realistic than 
the informative (i.e., you usually don’t really have zero prior information). 
Whatever the mix you have on the subjective-to-objective scale, probability 
theory can help make your reasoning far more consistent.

Other Ways Bayes Applies

Bayes and the other basic probability rules used above apply to much more 
than the one simplified problem we discussed. For many of the questions 
we need to answer, it is easier to work out the probability of a given obser-
vation given a hypothesis is true than it is to work out the probability the 
hypothesis is true given the observation. Consider the following questions.

■■ “What is the probability of a breach in my firm next year given that 
two of 20 firms in my industry reported a material breach in the last 
three years?”

Written: P(Breach|Industry Observations = 2 of 60 company years).

■■ “What is the probability of that number of breaches in my industry if the 
true frequency was 3% per firm per year?”

Written: P(Industry Observations = 2 of 60 company years|Breach 
rate=0.03).

Do you see how these are different? The first led with asking, “What 
is the probability of the event (Breach) given the evidence?” The second is 
asking, “What is the probability of observing the evidence given the fact that 
the event has occurred?” (Getting these two confused is also known as the 
“Prosecutor’s fallacy” if you want to study this further.)

This “flip” is what Bayes’s rule is all about, and we will find it becomes 
a very important foundation of reasoning under uncertainty. Bayesian prob-
ability becomes a “consistency” yardstick for measuring your beliefs about 
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some uncertain event as you get more data. In particular, it makes the pro-
cess of updating those beliefs reasonable.

Questions such as these are a particularly useful variation on a condi-
tional probability because it starts with an easier question. Specifically, if we 
knew, for example, that the chance of one random draw being a “hit” was 
0.03 per draw, then what is the chance of seeing exactly 2 “hits” out of 60 
draws? This can be easily worked out and, thanks to Bayes, we can work 
out the probability that the underlying frequency is 0.03 given those obser-
vations. Now we will get into how to work out the solution to that problem 
and a few more in the next chapter. We will discuss:

■■ How can we have uncertainty about the frequency itself?
■■ How we can update beliefs where there may be multiple events in the 
same company each year?

■■ How does this relate to Laplace’s rule of succession?
■■ How can we use this to combine—and improve—the estimates from 
multiple experts?

It may not be obvious now how the answers to all these questions 
come from the six rules of probability we discussed, but they do.
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CHAPTER 9

If one fails to specify the prior information, a problem of inference is 
just as ill-posed as if one had failed to specify the data . . . In realistic 
problems of inference, it is typical that we have cogent prior infor-
mation, highly relevant to the question being asked; to fail to take it 
into account is to commit the most obvious inconsistency of reason-
ing, and it may lead to absurd or dangerously misleading results.

—Edwin T. Jaynes

Recall that in our survey, 23% of respondents agreed with the statement 
“Probabilistic methods are impractical because probabilities need exact 

data to be computed and we don’t have exact data.” This is just a minority, 
but even those who rejected that claim probably have found themselves 
in situations where data seemed too sparse to make a useful inference. 
In fact, that may be why the majority of the survey takers also responded 
that ordinal scales have a place in measuring uncertainty. Perhaps they feel 
comfortable using wildly inexact and arbitrary values such as “high, medium, 
and low” to communicate risk while, ironically, still believing in quantita-
tive approaches. Yet someone who thoroughly believed in using quantitative 
methods would have roundly rejected ordinal scales when measuring highly 
uncertain events. When you are highly uncertain you use probabilities and 
ranges to actively communicate your uncertainty—particularly when you 
are relying on subject matter expertise. Having read the earlier research in 
this book, you know how even subjective estimates can be decomposed 
and made more consistent before any new “objective” data is applied and 
how even a single data point (such as the outcome of one penetration test) 
can be used to update that belief.

Some Powerful Methods 
Based on Bayes
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Now that we’ve laid some groundwork of Bayesian empirical methods 
with an (admittedly) oversimplified example, we can show solutions to 
slightly more advanced—and more realistic—problems.

Computing Frequencies with (Very) Few Data Points:  
The Beta Distribution

There are some slightly more elaborate derivatives of Bayes’s rule that 
should come up frequently in cybersecurity. Let’s say you are one of the 
big retailers we discussed in Chapter 6, and again we would like to assess 
the probability of a major data breach. Our new empirical data is widely 
publicized, major data breaches. Of course, you would like to leverage 
these news reports to estimate the chance that your firm would have 
such a breach.

In a perfect world, you would have the equivalent cybersecurity ver-
sion of an actuarial table as used in insurance products such as life, health, 
and property. You would have thousands of firms in your own industry 
diligently reporting data points over many decades. You would use this 
to compute a data breach “rate” or “frequency.” This is expressed as the 
percentage of firms that will have a data breach in a given year. As in insur-
ance, we would use that as a baseline for the chance of your firm having 
such an event.

If you only have publicized examples from your own industry, you may 
not have that many data points. Fortunately, we may need less data than we 
think if we use a particular statistical tool known as the “beta” distribution. 
With the beta distribution, we can make an inference about this annualized 
rate of a breach even with what seems like very little data.

So you need less data than you think and, as we first said in Chapter 2, 
you also have more data than you think. In the case of reputation loss, for 
example, saying that we lack data about major data breaches is curious 
since we actually have all the data. That is, every major, large-retail data 
breach with massive costs that has occurred was public. Many of the costs 
are, in fact, because it was widely publicized. If there was a major data 
breach that was somehow not public, then that retailer has, so far, avoided 
some or most of the main costs of a breach.

If we look at the Verizon Data Breach Investigations Report (DBIR) and 
other sources of data on breaches, we can see a number of breaches in each 
industry. But that information alone doesn’t tell us what the probability of 
a breach is for a single firm in a given industry. If there were five breaches 
in a given industry in a given year, is that five out of 20 (25%) of the indus-
try or five out of 100 (5%)? If we want to estimate the chance that a given 
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firm (yours) will have a publicized data breach in the next year, we need 
to know the size of the population those firms were drawn from, including 
those that didn’t have breaches.

Now, this is where some cybersecurity experts, who recall just enough 
stats to get it all wrong, will give up on this by saying that the few breaches 
are not “statistically significant” and that no inferences could be made. 
Others—especially those, we hope, who have read this book—will not give 
up so easily on such an important question for their organization.

Calculations with the Beta Distribution

The beta distribution is useful when you are trying to estimate a population 
proportion. A population proportion is just the share of a population that 
falls in some subset. If only 25% of employees are following a procedure 
correctly, then the “25%” refers to a population proportion. If we could 
conduct a complete census of the population, we would know the propor-
tion exactly. But you may only have access to a small sample. If we were 
only able to randomly sample, say, 10 people of a population of thousands 
of employees, would that tell us anything? This is where the beta distribu-
tion comes in. And you may be surprised to find that, according to the beta 
distribution, we may not need very many samples to tell us something we 
didn’t know already.

This would apply to many situations in cybersecurity, including the 
likelihood of a risk that relatively few organizations have experienced. 
A beta distribution has just two parameters that seem at first to be a lit-
tle abstract: alpha and beta (we will explain them shortly). In Excel we 
write this as =betadist(x,alpha,beta), where x is the population proportion 
you want to test. The formula produces the probability that the popula-
tion proportion is less than x—we call this the “cumulative probability 
function” (cpf) since for each x it gives the cumulative probability up to 
that point.

There is also an “inverse probability function” in Excel for the beta dis-
tribution, written as =beta.inv(p,alpha,beta), where p is a probability, and 
the formula returns the population proportion just high enough such that 
there is a p probability that the true population proportion is lower.

Many stats texts don’t offer a concrete way to think about what alpha 
and beta represent, yet there is an intuitive way to think about it. Just think 
of alpha and beta as “hits” and “misses” in a sample. A “hit” in a sample 
is, say, an employee following a procedure correctly and a “miss” is one 
who is not.

To compute alpha and beta from hits and misses we need to establish 
our prior probability. Again, an informative prior probability could simply 
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be a calibrated subject-matter expert (SME) estimate. They might estimate 
a 90% CI that between 10% and 40% of all staff follow this procedure cor-
rectly. But if we want to be extremely conservative, we can use what is 
called an “uninformative prior” by simply using a uniform distribution of 
0% to 100%.

In a beta distribution, we represent an uninformative uniform prior by 
setting both alpha and beta to a value of 1. Think of it as a “free hit” and 
a “free miss” you get with each beta distribution. This approach indicates 
we have almost no information about what a true population proportion 
could be. All we know is the mathematical constraint that a proportion of 
a population can’t be less than 0% and can’t exceed 100%. Note that this 
can’t be a 90% CI as the calibrated SME provided since there is no chance 
of being outside that range. It represents the minimum and maximum pos-
sible values. Other than that, we’re simply saying everything in between is 
equally likely, as shown in Figure 9.1.

Note that this figure shows the uniform distribution in the more familiar 
“probability density function” (pdf) where the area under the curve adds 
up to 1. Since the betadist() function is a cumulative probability, we have to 
slice up a bunch of increments by computing the difference between two 
cumulative probability functions close to each other. Just think of the height 
of a point on a pdf to represent the relative likelihood compared to other 
points. Recall that a normal distribution is highest in the middle. This just 
means that values near the middle of a normal distribution are more likely. 
In the case of this uniform distribution, we show that all values between the 
min and max are equally likely (i.e., it is flat).

Now, if we have a sample of some population, even a very small sam-
ple, we can update the alpha and beta with a count of hits and misses. 
Again, consider the case where we want to estimate the share of users fol-
lowing certain security procedures. We randomly sample six and find that 
only one is doing it correctly. Let’s call the one a “hit” and the remaining 
five “misses.” We simply add hits to our prior alpha and misses to our prior 
beta to get:

	 betadist x prior alpha hits prior beta misses( , , ) 	

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1

FIGURE 9.1  A Uniform Distribution (a Beta Distribution with alpha=beta=1)
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Figure 9.2 shows what a pdf would look like if we added a sample of 
six with one “hit” to our prior uniform distribution. To create this picture 
you can use the calculation below:

betadist(x+i/ prior alpha hits prior beta misses betadist2, , ) (( ,
, )

x i/
prior alpha hits prior beta misses

2

	

where “i” is the size of an increment we are using (the increment size is 
arbitrary, but the smaller you make it the finer detail you get in your pictures 
of distributions). One hit out of a sample of six gives us a 90% CI of 5.3% to 
52%. Again, you have an example in the spreadsheet in www.howtomeasure 
anything.com/cybersecurity to do this calculation.

How does the beta distribution do this? Doesn’t this contradict what 
we learned in first semester statistics about sample sizes? No. The math is 
sound. In effect, the beta distribution applies Bayes’s rule over a range of 
possible values. To see how this works, consider a trivial question such as 
“What is the probability of getting 1 hit out of 6 samples if only 1% of the 
population were following the procedure correctly?” If we assume we know 
a population proportion and we want to work out the chance of getting so 
many “hits” in a sample, we apply something called a binomial distribution.

The binomial distribution is a kind of complement to the beta dis-
tribution. In the former, you estimate the probabilities of different sam-
ple results given the population proportion. In the latter, you estimate the  
population proportion given a number of sample results. In Excel, we  
write the binomial distribution as =binomdist(hits,samplesize,probability,0). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Proportion of Users Following the Security Procedure Correctly

After a sample of 6 with 1 hit and
5 misses. (90% CI of 5.3% to 52%)

Original prior
(alpha=beta=1)

FIGURE 9.2  A Distribution Starting with a Uniform Prior and Updated with a 
Sample of 1 Hit and 5 Misses

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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(The “0” means it will produce the probability of that exact outcome, not the 
cumulative probability up to that point.)

This would give us the chance of getting the observed result (e.g., 1 out of  
6) for one possible population proportion (in this case 1%). We repeat this for 
a hypothetical population proportion of 2%, 3%, and so on up to 100%. Now 
Bayes lets us flip this into what we really want to know: “What is the probabil-
ity of X being the population proportion given that we had 1 hit out of 6?” In 
other words, the binomial distribution gave us P(observed data|proportion) 
and we flip it to P(proportion|observed data). This is a neat trick that will be 
very useful, and it is already done for us in the beta distribution.

One more thing before we move on: Does 5.3% to 52% seem like a 
wide range? Well, remember you only sampled six people. And your previ-
ous range was even wider (on a uniform distribution of 0% to 100%, a 90% 
CI is 5% to 95%). All you need to do to keep reducing the width of this 
range is to keep sampling and each sample will slightly modify your range. 
You could have gotten a distribution even if you had zero hits out of three 
samples as long as you started with a prior.

If you need another example to make this concrete, let’s consider one 
Hubbard uses in How to Measure Anything. Imagine you have an urn filled 
with red and green marbles. Let’s say you think the proportion of red mar-
bles could be anywhere between 0% and 100% (this is your prior). To 
estimate the population proportion, you sample 6 marbles, one of which 
was red. We would estimate the result as we did in the security procedure 
example above—the range would be 5.3% to 52%. The reason this range is 
wide is because we know we could have gotten 1 red out of 6 marbles from 
many possible population proportions. We could have gotten that result if 
just, say, 7% were red and we could have gotten that result if half were red.

Applying the Beta to Breaches

Imagine that every firm in your industry is randomly drawing from the 
“breach urn” every year. Some firms draw a red marble, indicating they were 
breached. But there could have been more, and there could have been less. 
You don’t really know breach frequency (i.e., the portion of marbles that 
are red). But you can use the observed breaches to estimate the proportion 
of red marbles. Note that we are making a simplifying assumption that an 
event either occurs in a given year or not. We will ignore, for now, the pos-
sibility that it could happen multiple times per year. (When the probability 
per year is less than about 10%, this assumption is not far off the mark.)

For a source of data, we could start with a list of reported breaches 
from the DBIR. However, the DBIR itself doesn’t usually tell us the size of 
the population. This is sort of like knowing there are 100 red marbles in 
the urn but without knowing the total number of marbles we can’t know 

.
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the population proportion of red marbles. However, we could still ran-
domly sample a set of marbles and just use the number of red marbles in 
that sample compared to the size of the sample instead of the unknown 
total population size. Likewise, knowing that there were X breaches in our 
industry only helps if we know the size of the industry. So we find another 
source—not the DBIR—for a list of retailers. It could be the retailers in the 
Fortune 500 or perhaps a list from a retailers association. That list should 
have nothing to do with whether an organization had a breach reported in 
the DBIR, so many of those in that list will not have been mentioned in the 
DBIR. That list is our sample (how many marbles we draw from the urn). 
Some of those, however, will be mentioned in the DBIR as having experi-
enced a breach (i.e., drawing a red marble).

Let’s say we found 60 retailers in an industry list that would be relevant to 
you. Of that sample of 60, you find that in the time period between the start 
of 2021 and the end of 2022, there were two reported major data breaches. 
Since we are estimating a per-year chance of a breach, we have to multiply 
the number of years in our data by the number of firms. To summarize:

■■ Sample Size: 120 company-years of data (60 firms × 2 years);
■■ Hits: 2 breaches in that time period;
■■ Misses: 118 company-years where there was no major breach;
■■ Alpha: prior + hits = 1 + 2 = 3;
■■ Beta: prior + misses = 1 + 118 = 119.

When we plug this into our spreadsheet we get a distribution like the 
one shown in Figure 9.3.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Annual Frequency of Reported Data Breaches

Starting with a uniform prior,
updating with a sample of 120
with 2 hits and 118 misses.

FIGURE 9.3  The Per-Year Frequency of Data Breaches in This Industry
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Think of the observed breaches as a sample of what could have hap-
pened. Just because we drew 120 marbles and two of them were red, that 
doesn’t mean that exactly 1.67% of the marbles in the urn were red. If we 
drew that from the urn, we would estimate that there is a 90% chance that 
the true population proportion of red marbles in the urn is in the range 
0.7% to 5.1%. Likewise, just because we had two breaches out of 60 firms in 
two years (120 company years) doesn’t mean we treat the per-year annual 
breach frequency as exactly 1.67%. We are only estimating the probability of 
different frequencies from a few observations. Next year we could be more 
lucky or less lucky even if the long-term frequency is no different.

Even the mean of the beta distribution isn’t exactly 1.67% since the 
mean of a beta distribution is alpha/(alpha + beta) or 2.46%. The reason 
these are different is because the beta distribution is affected by your prior. 
Even if there were no breaches, the beta would have an alpha of 1 and a 
beta of 121 (120 misses + 1 for the prior beta), giving us a mean of 0.8%.

Another handy feature of the beta distribution is how easily it is 
updated. Every year that goes by—in fact every day that goes by—either 
with or without data breaches can update the alpha and beta of a distribu-
tion of breaches in your relevant industry population. For every firm where 
an event occurred in that period we update the alpha, and for every firm 
where it didn’t occur we update the beta parameter. Even if we observe no 
events for a whole year, we still update the beta parameters and, therefore, 
our assessment of the probability of the event.

Note that you don’t have to use an uninformative prior such as a uni-
form distribution. If you have reason to believe, even before reviewing new 
data, that some frequencies are much less likely than others, then you can 
say so. You can make up a prior of any shape you like by trying different 
alphas and betas until you get the distribution you think fits your prior. You 
can start finding your prior by starting with alpha and beta equal to 1 and 
then, if you think the frequency is closer to zero, add to beta. Keep in mind 
the mean you want must be alpha/(alpha + beta). You can also add to alpha 
to move the frequency a little further away from zero. The larger the total 
alpha + beta, the narrower your range will be. Test your range by using 
the inverse probability function for beta in Excel: =beta.inv(.05,alpha,beta) 
and =beta.inv(.95,alpha,beta) will be your 90% confidence interval. After 
that, updating your distribution based on new information follows the same 
procedure—add hits to alpha and misses to beta.

The Effect of the Beta Distribution on Your Model

If we didn’t use the beta distribution and instead took the observed fre-
quency of 1.67% literally, we could be seriously underestimating risks for 
this industry. If we were drawing from an urn that we knew was exactly 
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1.67% red marbles (the rest are green), then we would still expect variation 
from draw to draw. If we drew 120 marbles, and assumed that the propor-
tion of red marbles was 1.67%, we can compute that there is only a 14% 
chance that we would draw more than three red marbles using the formula 
in Excel: 1−binomdist(3,120,.0167,1). On the other hand, if we merely had a 
90% CI that 0.7% to 5.1% are red, instead of the exact proportion of 1.67%, 
then the chance of drawing more than three red marbles increases to over 33%.

If we apply this thinking to security risks in an industry or a firm, the 
chance of multiple events increases dramatically. This could mean a higher 
chance in one year of multiple major breaches in the industry or, using 
data at the company level, multiple systems compromised out of a portfolio 
of many systems. In effect, this “rotates” our loss exceedance curve (LEC) 
counterclockwise as shown in Figure 9.4. The mean is held constant while 
the risk of more extreme losses increases. This may mean that your risk 
tolerance is now exceeded on the right end of the curve.

We believe this may be a major missing component of risk analysis in 
cybersecurity. We can realistically only treat past observations as a sample 
of possibilities and, therefore, we have to allow for the chance that we were 
just lucky in the past.

To see how we worked this out in detail, and to see how a beta distri-
bution can be used in the simple one-for-one substitution and how it might 
impact the loss exceedance curve, just download the spreadsheet for this 
chapter on the website.

A Beta Distribution Case: AllClear ID

AllClear ID, a leading firm in customer-facing breach response in the cyber-
security ecosystem, uses a beta distribution to estimate cybersecurity risks 
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using industry breach data. The company offers three solutions: AllClear 
Reserved Response™, Customer Communication services that include cus-
tomer support and notification, and Identity Protection services for consum-
ers. They handle incidents of all sizes including some of the biggest data 
breaches that have happened in recent history.

The capacity to respond to incidents is guaranteed for Reserved 
Response clients, making risk estimation critical to ensuring adequate 
resources are in place to meet service requirements. In 2015, AllClear ID 
contacted Doug Hubbard’s firm, Hubbard Decision Research, to model the 
data breach risks in all of the industries they support, including the chance 
that multiple large clients could experience breaches in overlapping periods 
of time. This model is one of the many tools used by AllClear ID in their 
risk estimation analysis.

HDR applied the beta distribution to industry breach data in the Verizon 
Data Breach Investigations Report (DBIR). There were 2,435 data breaches 
reported in the 2015 DBIR but, as we explained earlier in this chapter, this 
alone does not tell us the per-year frequency of breaches for a given num-
ber of firms. Applying the same method explained earlier, we started with a 
known list of firms from the industries AllClear ID supports. We then cross-
referenced that with the DBIR data to determine how many of those had 
breaches. In the case of one industry, there were 98 firms in the Fortune 
500 list. Of those, several had a breach in the two-year period between the 
beginning of 2014 and the end of 2015. So 98 organizations over a two-year 
period give us a total of 196 organization-years of data where there were 
“hits” and “misses” (misses are firms that did not have a breach in a year). 
Now we can estimate the probability of a breach for the Fortune 500 firms 
in that industry.

In a Monte Carlo simulation, HDR used a beta distribution to produce 
a 90% confidence interval for the annual frequency of events per client. 
If the rate of breaches is at the upper bound, then the chance of multiple 
client breaches overlapping goes up considerably. The Monte Carlo model 
showed there is a chance that the peak activity period of multiple Reserved 
Response clients would overlap. This knowledge is one input to help All-
Clear ID to plan for the resources needed to meet the needs of clients even 
though the exact number and timing of breaches cannot be known with 
certainty.

Although breaches are unpredictable events, the simulation gave us in-
valuable insight into the risks we could potentially encounter and the 
intelligence to help mitigate those risks.

—Bo Holland, Founder & CEO of AllClear ID
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Laplace and Beta

In the urn example, we were working out the CI for a population proportion 
of red marbles given a few random samples of marbles. This is analogous to 
estimating a proportion of staff using a procedure correctly. In some situa-
tions, we would like the answer to a different question: What is the chance 
that the next marble we draw will be red? Or, in the case of data breaches, 
what is the chance that your particular firm will experience a data breach 
in the next year given what we observed in many firms over multiple years?

If we knew that exactly 30% of the marbles in the urn were red, we 
would know that there is a 30% chance that the next marble we draw will be 
red. Now suppose we had two urns where one was 30% red, the other was 
10% red, and we didn’t know which urn we drew from. If we say that either 
urn is equally likely to be the one we draw from, then we compute that there 
is a 20% chance the next marble we draw from the unknown urn is red.

But suppose instead of just two possible urns, we have a continuum 
of possible population proportions, such as the urn where we drew six 
marbles, one of which was red. Recall that the beta distribution starting 
with an uninformative uniform prior tells us that our 90% CI is 5.3% to 52%. 
If you were to draw another marble from that urn, what is the chance it 
will be red?

As with the simple two-urn example, you still work out the probability 
weighted average of all the population proportions. You can imagine slicing 
up the beta distribution into each of the possible population proportions, 
multiplying each proportion times the chance of that proportion, and total-
ing all of those products. In other words, you take the chance the next mar-
ble you draw is red is equal to 0.01 times the chance the true proportion is 
1%, 0.02 times the chance the true proportion is 2%, and so on. When you 
add them all up, you get the mean of that beta distribution.

There is a much simpler way to get to the mean of a beta distribu-
tion: we just compute alpha/(alpha + beta). Recall that if we start with the 
uninformative uniform prior, we get a “free” hit and miss of 1 to start with. 
After that, we add the hits to the alpha and misses to the beta. That gives us 
(1 + hits)/(2 + hits + misses). Does that look familiar? That is Laplace’s rule 
of succession. LRS is just the mean of a beta distribution where you started 
with a very conservative prior.

Decomposing Probabilities with Many Conditions

In the Chapter 8 examples, we were using a conditional probability with just 
one condition at a time. But often we want to consider a lot more conditions 
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than that, even in the simplest models. One way to address this is to create 
what is called in Bayesian methods a “node probability table” (NPT). An 
expert is given every combination of conditions and is asked to provide a 
calibrated estimate of a probability of some defined event. Table 9.1 shows 
what just a few of the rows in such a table could look like.

The columns in Table 9.1 are just an example. We have seen companies 
also consider the type of operating system, whether software was internally 
developed, the number of users, and so on. We leave it up to you to deter-
mine the ideal considerations. They just need to be values that meet Ron 
Howard’s conditions of clear, observable, and useful (in this case, useful 
means it would cause you to change your estimate). For now, we will just 
focus on how to do the math regardless of what the indicators of risk might 
turn out to be.

Now suppose we continued the conditions (columns) on Table 9.1 to 
more than just four. Our previous modeling experience in cybersecurity at 
various firms generated 7 to 11 conditions. Each of those conditions would 
have at least two possible values (i.e., sensitive data or not), but some, as the 
example shows, could have three, four, or more. This leads to a large num-
ber of combinations of conditions. If, for example, there were just seven 
conditions, three of which had two possible values and the rest of which 
had three, then that is already 648 rows on an NPT (2 × 2 × 2 × 3 × 3 × 3 
× 3). In practice the combinations are actually much larger since there are 
often multiple conditions with four or more possible values. The models 
that have been generated at some HDR clients would have produced thou-
sands or tens of thousands of possible combinations.

Ideally, we would have data for many instances of failures. For meas-
urements we prefer more data points, but cybersecurity professionals would 
like to keep the number of breaches, denial of service, and other such 
events low. As always, if we lack the data we can go back to our SMEs, 

TABLE 9.1  A Few Rows from a (Much Larger) Node Probability Table

P(Event|A,B,C,D)  
per year with cost  
greater than $10K

A:  
Encrypted  
data

B:  
Internet  
facing

C:
Multifactor  
authentication

D:
Asset  
location

.008 Yes No No Vendor

.02 No Yes Yes Cloud

.065 No No No Internal

.025 Yes No No Cloud

.015 No Yes No Internal

.0125 No Yes Yes Cloud
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who could provide an estimate of an event given each of the conditional 
states. We could ask for the estimate of a probability given that standard 
security controls are applied, it contains PHI data, it does not use multifac-
tor authentication, and the data is kept in a domestic data center owned by 
their firm. Then they would do the next combination of conditions, and so 
on. Obviously, as we showed with the number of possible combinations of 
conditions in even a modest-sized NPT, it would be impractical for SMEs to 
estimate each probability with a typical NPT.

Fortunately, there are two useful methods for experts to fill in an entire 
NPT—no matter how large—just by estimating a limited set of condi-
tion combinations. These methods are the log odds ratio method and the 
lens method.

The One-Thing-at-a-Time Approach: The Log Odds Ratio

The log odds ratio (LOR) method provides a way for an expert to esti-
mate the effects of each condition separately and then add them up to get 
the probability based on all the conditions. An LOR of a probability P(x) 
is simply:

	 LOR P x / P xln( ( ) ( ( ))1 	

This produces a negative value when the P(x) < 0.5, a positive value 
when P(x) > 0.5, and a zero when P(x) = 0.5. (Often, we assume the log is a 
natural log “ln()” but it works in other logs, too.) Computing an LOR is use-
ful because an LOR allows you to “add up” the effects of independent differ-
ent conditions on a probability. The procedure below goes into the details 
of doing this. It gets detailed, but, as always, you can find a spreadsheet for 
this entire calculation at www.howtomeasureanything.com/cybersecurity.

1.	 Identify participating experts and calibrate them.
2.	Determine a baseline probability of a particular asset experiencing 

some defined event in a given period of time, assuming no additional 
information is available other than that it is one of your organization’s 
assets (or applications, or systems, or threats, etc., depending on the 
framework of your decomposition). This is P(Event).

Example: P(Event) per year given no other information about the 
asset is 0.02.

3.	Estimate the conditional probability of the asset having this defined 
event given that some condition had a particular value. We can write 
this as P(E|X); that is, the probability of event E, given condition X.

Example: P(Event|Sensitive Data) = 0.04

http://www.howtomeasureanything.com/cybersecurity
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4.	Estimate the conditional probability of the asset having this defined 
event given some other value to this condition. Repeat this step for 
every possible value of this condition.

Example: P(Event|No Sensitive Data) = 0.01

5.	Convert the baseline probability and each of the conditional probabili-
ties to LOR. We will write it as L(Probability).

Example:
	

LOR P Event P Event P Event /( ( )) ln( ( )) / ( ( )) ln(. . )1 02 98 	
3 89182. , 	

LOR P Event|Sensitive Data /( ( )) ln(. . ) . ,04 96 3 17805 	
. . . .and so on for each condition

6.	Compute the “delta LOR” for each condition; that is, the difference 
between the LOR with a given condition and the baseline LOR.

Example: delta LOR(Sensitive Data) = L(P(Event|Sensitive Data)) − 
LOR(P(Event)) = (−3.18) − (−3.89) = +.71.

7.	When delta LOR has been computed for all possible values of all condi-
tions, set up a spreadsheet that will look up the correct delta log odds 
for each condition when a value is chosen for that condition. When a 
set of condition values are chosen, all delta LOR for each condition are 
added to the baseline LOR to get an adjusted LOR.

Example: Adjusted LOR = −3.89 + .71 + .19 − .45 + 1.02 = −2.42.

8.	Convert the adjusted LOR back to a probability to get an adjusted 
probability.

Example: Adjusted probability = 1/(1 + 1/exp(–2.42)) = .08167.

9.	 If any condition makes the event certain or makes it impossible  
(i.e., P(Event|Condition) = either 0 or 1), then skip computing LOR 
for the condition and the delta log odds (the calculation would pro-
duce an error, anyway). Instead, you can simply apply logic that 
overrides this.

Example: If condition applies, then adjusted probability = 0.

�When the condition does not occur, compute the adjusted prob-
ability as shown in previous steps.

(Note: You might have realized that adding up LOR is the same as 
multiplying odds ratios. You could certainly just do that but LOR simplifies 
certain steps, especially in Excel.)
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Again, if someone tells you this or anything else we discuss in this book 
isn’t pragmatic, be aware that we’ve had an opportunity to apply everything 
we’ve discussed so far and many other methods in many situations, includ-
ing several in cybersecurity. When someone says this isn’t pragmatic, they 
often just mean they don’t know how to do it. So, to illustrate how it can be 
done, we will show another conversation between an analyst and a cyber-
security expert. The analyst will check the expert’s estimates for consistency 
by using the math we just showed. Of course, he is using a spreadsheet to 
do this (available on the website).

Risk analyst: As you recall, we’ve broken down our risks into 
a risk-by-asset approach. If I were to randomly 
select an asset, what is the probability of a breach 
happening next year?

Cybersecurity expert: Depends on what you mean by breach—it could 
be 100%. And there are a lot of factors that would 
influence my judgment.

Risk analyst: Yes, but let’s say all you know is that it is one of 
your assets. I just randomly picked one and didn’t 
even tell you what it was. And let’s further clarify 
that we don’t just mean a minor event where the 
only cost is a response from cybersecurity. It has to 
interfere with business in some way, cause fines, 
and potentially more—all the way up to one of the 
big breaches we just read about in the news. Let’s 
say it’s something that costs the organization at 
least $50K but possibly millions.

Cybersecurity expert: So how would I know the probability of an event 
if I don’t know anything about the asset?

Risk analyst: Well, do you think all of your assets are going to 
have a significant event of some sort next year?

Cybersecurity expert: No, I would say out of the entire portfolio of 
assets there will be some events that would result 
in losses of greater than $50,000 just if I look at 
system outages in various business units. Maybe a 
bigger breach every couple of years.

Risk analyst: Okay. Now, since we have 200 assets on our list, 
you don’t expect half of the assets to experience 
breaches at that level next year, right?

Cybersecurity expert: No. The way I’m using the term “breach” I might 
expect it to happen in 3 to 10.
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Risk analyst: Okay, then. So if I simply randomly chose an asset 
out of the list, there wouldn’t be a 10% chance of 
it having a breach. Maybe closer to 1% or 2%.

Cybersecurity expert: I see what you mean. I guess for a given asset and 
if I didn’t know anything else, I might put the prob-
ability of a breach of some significant cost at 2%.

Risk analyst: Great. Now, suppose I told you just one thing 
about this asset. Suppose I told you it con-
tained PCI data. Would that modify the risk of a 
breach at all?

Cybersecurity expert: Yes, it would. Our controls are better in those 
situations but the reward is greater for attackers.  
I might increase it to 4%.

Risk analyst: Okay. Now suppose I told you the asset did not 
have PCI data. How much would that change the 
probability?

Cybersecurity expert: I don’t think that would change my estimate.

Risk analyst: Actually, it would have to. Your “baseline” prob-
ability is 2%. You’ve described one condition 
that would increase it to 4%. To make sure this 
balances out, the opposite condition would have 
to reduce the probability so that the average still 
comes out to 2%. I’ll show you a calculation in a 
moment so you can see what I mean.

Cybersecurity expert: Okay, I think I see what you mean. Let’s call it 1%.

Risk analyst: Okay, great. Now, what percentage of all assets 
actually have PCI data?

Cybersecurity expert: We just completed an audit so we have a pretty 
good figure. It’s 20 assets out of 200.

Risk analyst: So that’s 10% of the assets we are listing. So 
in order to see if this adds up right, I have to 
compute the baseline probability based on these 
conditional probabilities and see if it agrees with 
the baseline you first gave me.

The risk analyst computes a baseline as: P(Event|PCI) × P(PCI) + P(E
vent|No PC*) × P(No PCI) = 0.013. (A spreadsheet at www.howtomeasure 
anything.com/cybersecurity will contain this calculation and the other steps 
in this interview process, including computing delta LOR.)

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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Risk analyst: So our computed baseline is a bit lower than 
what you originally had. The probabilities we 
have so far aren’t internally consistent. If we 
can make our estimates consistent, then our 
model will be better. We could say the original 
probability was wrong and we just need to 
make it 1.3%. Or we could say the conditional 
probabilities could both be a little higher or that 
the share of assets with PCI is too low. What do 
you feel makes more sense to change?

Cybersecurity expert: Well, the share of PCI assets is something we 
know pretty well now. Now that I think about 
it, maybe the conditional probability without 
PCI could be a little higher. What if we changed 
that to 1.5%?

Risk analyst: (Doing a calculation) Well, if we make it 1.8%, 
then it comes out to almost exactly 2%, just like 
your original estimate of the baseline.

Cybersecurity expert: That seems about right. But if you would have 
asked me at a different time, maybe I would 
have given a different answer.

Risk analyst: Good point. That’s why you aren’t the only 
person I’m asking. Plus when we are done with 
all of the conditions, we will show you how 
the adjusted probability is computed and then 
you might decide to reconsider some of the 
estimates. Now let’s go to the next condition. 
What if I told you that the asset in question was 
in our own data center . . .

And so on.
Some caveats on the use of LOR. It is a very good estimate of the prob-

ability given all conditions if the conditions are independent of each other. 
That is, they are not correlated and don’t have complex interactions with 
each other. This is often not the case. It may be the case, for example, that 
some conditions have a much bigger or much smaller effect given the state 
of other conditions. The simplest solution to apply is that if you think condi-
tions A and B are highly correlated, toss one of them. Alternatively, simply 
reduce the expected effects of each condition (that is, make the conditional 
probability closer to the baseline). Check that the cumulative effect of sev-
eral conditions doesn’t produce more extreme results (probabilities that are 
too high or too low) than you would expect.
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The Lens Method: A Model of an Expert that Improves on the Expert

We have another very useful way to fill in a large NPT by sampling some 
of the combinations of conditions and having our SMEs estimate each of 
those entire combinations. This approach requires that we build a type 
of statistical model that is based purely on emulating the judgments of 
the experts—not by using historical data. Curiously, the model of the 
experts seems to be better at forecasting and estimating than the experts 
themselves.

This involves using “regression” methods. Discussing regression meth-
ods in enough detail to be useful is outside the scope of this book, so we 
make the following suggestion: if you are not familiar with regression meth-
ods, then stick with the LOR method explained above. If you already under-
stand regression methods, then we believe we can describe this approach 
in just enough detail that you can figure it out without requiring that we go 
into the mechanics.

With that caveat in mind, let’s provide a little background. This method 
dates back to the 1950s, when a decision psychology researcher named 
Egon Brunswik wanted to measure expert decisions statistically. Most of 
his colleagues were interested in the hidden decision-making process that 
experts went through. Brunswik was more interested in describing the deci-
sions they actually made. He said of decision psychologists: “We should 
be less like geologists and more like cartographers.” In other words, they 
should simply map what can be observed externally and not be concerned 
with what he considered hidden internal processes.

This became known as the “lens model.” The models he and subse-
quent researchers created were shown to outperform human experts in 
various topics such as the chance of repayment of bank loans, movement of 
stock prices, medical prognosis, graduate student performance, and more. 
Hubbard has also had the chance to apply this to forecasting box office 
receipts of new movies and battlefield logistics. Both Hubbard and Seiersen 
have now had many opportunities to use this in cybersecurity. In each case, 
the model was at least as good as human experts, and in almost all cases, it 
was a significant improvement.

As discussed back in Chapter 4, human experts can be influenced by 
a variety of irrelevant factors yet still maintain the illusion of learning and 
expertise. The linear model of the expert’s evaluation, however, gives per-
fectly consistent valuations. Like LOR, the lens model does this by removing 
the error of judge inconsistency from the evaluations. Unlike LOR, it doesn’t 
explicitly try to elicit the estimation rules for each variable from the experts. 
Instead, we simply observe the judgments of the experts given all variables 
and try to infer the rules statistically.
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The seven-step process is simple enough. We’ve modified it somewhat 
from Brunswik’s original approach to account for some other methods 
we’ve learned about since Brunswik first developed this approach (e.g., 
calibration of probabilities). Again, we are providing just enough informa-
tion here so that someone familiar with different regression methods could 
figure out how this is done.

1.	 Identify the experts who will participate and calibrate them.
2.	Ask them to identify a list of factors relevant to the particular item they 

will be estimating (e.g., the factors we showed in the NPT), but keep it 
down to 10 or fewer factors.

3.	Generate a set of scenarios using a combination of values for each 
of the factors just identified—they can be based on real examples or 
purely hypothetical. Make 50 to 200 scenarios for each of the judges you 
are surveying. Each of these will be a sample in your regression model.

4.	Ask the experts to provide the relevant estimate for each scenario described.
5.	Aggregate the estimates of the experts. Simple averaging will suffice 

(however, a method discussed later in this chapter is better).
6.	Perform a regression analysis using the average of expert estimates as 

the dependent variable and the inputs provided to the experts as the 
independent variable. Depending on the input variables used, you may 
need to codify the inputs or use multinomial regression methods. Since 
in this case you are estimating a probability, regression methods may 
apply. (This is technical language, but if you know regression methods, 
you know what this means.)

7.	The best-fit formula for the regression becomes the lens model.

When you have completed the procedure above, you will be able to 
produce a chart like the one shown in Figure 9.5. This shows the regression 
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model estimate of average expert judgment versus the average of expert 
judgments themselves for each of the scenarios. You can see that the model, 
of course, doesn’t exactly match the expert judgments, but it is close. In fact, 
if you compare this to the measure of expert inconsistency, you will usually 
find that most of the deviation of the model from expert judgments is due 
to expert inconsistency.

That means the lens model would agree even better if only the experts 
were more consistent. This inconsistency is eliminated by the lens method. 
If you decided to tackle the lens method, the model you just produced is 
actually better than a single expert in several ways. It is actually an emula-
tion of the average of your best calibrated experts if they were perfectly 
consistent.

To estimate inconsistency we can use the “duplicate pair” method we 
showed back in Chapter 4 on several conditions instead of asking experts 
for the effect of individual conditions. For example, the seventh scenario 
in the list may be identical to the twenty-ninth scenario in the list. After 
looking at a couple of dozen scenarios, experts will forget that they already 
answered the same situation and often will give a slightly different answer. 
Thoughtful experts are fairly consistent in their evaluation of scenarios. Still, 
as we showed in Chapter 4, inconsistency accounts for about 21% of the 
total variation in expert judgments (the remaining 79% due to the data the 
experts were provided to base their judgments on). This inconsistency is 
completely removed by the lens method.

Comparing the Lens Method and LOR

There are pros and cons to these two methods of decomposing multiple 
conditions in an estimate of likelihood:

1.	LOR takes (a little) less time. The lens method requires experts to 
answer a large number of samples in order to make it possible to build 
a regression model.

2.	The lens method can pick up on more complex interactions between 
variables. The experts’ responses could indicate that some variables 
only matter if other variables have a particular value.

3.	LOR is a bit simpler. The lens method depends on building a regres-
sion model that predicts the judgments of experts well. While Excel has 
tools to simplify this, actually building a good regression often requires 
several approaches. Perhaps you should make it a nonlinear model by 
having two variables show a compounding effect. Perhaps you should 
combine some of the discrete values of a variable (e.g., does “server 
location” really need to differentiate domestic managed by us, domes-
tic managed by third party, or foreign instead of “we manage it” and 
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“somebody else manages it”?). This is not technically difficult, especially 
for people who may have the background for this, but it can still be a 
bit time consuming.

4.	The LOR tends to give much more variation in estimates than the lens 
method. The experts will sometimes be surprised how the effects of 
multiple conditions quickly add up to make an estimated likelihood 
approaching the extremes of 0 or 1. When the same expert estimates like-
lihoods in a lens method, they will tend to vary their answers a lot less. 
Perhaps the expert is underestimating the cumulative effect of independ-
ent variables in the LOR method, or perhaps they are being too cautious 
in modifying their estimates based on the information they are given for 
the lens method. It will be up to you to decide which is more realistic.

5.	Both methods help reduce inconsistency, but the lens method provides 
a more convenient way to measure it. As mentioned earlier, measuring 
inconsistency is useful because we know that this error is eliminated 
by the quantitative model and, if we eliminate it, we can estimate how 
much error was reduced. Since the lens method requires multiple esti-
mates (at least dozens), inconsistency can be easily estimated with the 
duplicate pair method.

The bottom line is that if you are looking for a quick solution, use the 
LOR method for decomposing probabilities based on multiple conditions. 
However, it is important to check how much the answers vary when you 
change conditions between two extremes (one where all conditions are set 
to values that increase likelihood, and one where all conditions are set to 
values that decrease likelihood). If the extremes seem entirely unrealistic, 
then you might consider reducing the estimates of effects of individual vari-
ables, as mentioned earlier.

There is some evidence that people tend to overreact to signals when 
there are several signals, especially when they are highly correlated. One 
study calls this a “correlation neglect” when considering conditional proba
bilities.1 If two signals A and B are perfectly correlated (i.e., if you tell me the 
value for one, I know exactly the value for the other), then you don’t need 
to know both A and B to estimate some probability X: P(X|A,B) = P(X|A) 
= P(X|B). However, even when someone is told that A and B are highly 
correlated, they tend to view them as independent (and therefore reinforc-
ing) signals, and they will overreact when estimating the new conditional 
probability of X. As we mentioned with LOR earlier, if you suspect two con-
ditions are highly correlated, the simplest fix is to just not use one of them.

Still, even when we use the lens method, we have found it useful to 
start with LOR just to get the cybersecurity experts to start thinking how 
knowledge of individual conditions can modify their probabilities. It also 
helps to eliminate some conditions the experts originally thought might be 
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informative. For example, suppose we are in a workshop and the cyber-
security team is listing conditions they think could be informative for an 
estimate in a lens model.

One of the participants in a workshop might say they think the type of 
operating system an asset uses could inform the probability of a breach of 
the data on that asset. To test this, we employ the LOR process described 
earlier by asking how much the experts would change the baseline prob-
ability (the probability of a cybersecurity event given no information about 
the asset other than it was one of their own) if they were told that the 
operating system was Linux and then what they would change it to if they 
were told the operating system was Microsoft. They might realize that this 
information would not have caused them to modify the baseline probability. 
If so, then we can eliminate it from the lens model.

Both the lens and LOR methods raise interesting conceptual obstacles 
for some experts. They may lack confidence in the process because they 
have a misunderstanding of how it works. We do not find that most experts 
we have worked with will have an objection to the process based on one of 
these misconceptions, but some will. If we know how to address them, then 
we can help them better understand why their input is needed.

Let’s consider the following reaction: “With the lens method, I feel like 
I am picking answers at random.” If this were the case for most people, we 
would not see the data that we see. If people estimating probabilities used 
in the lens method truly were picking values at random, then we would be 
unable to find correlations that are as strong as we typically find in these 
models. It would also be a mystery as to why experts—who have plenty of 
disagreement—actually agree as much as they do.

Clearly, different experts working independently who were picking 
estimates at random would not agree with each other about how much 
one condition or another changes the likelihood of an event. And yet we 
do observe some level of agreement, and the level is far beyond what 
could be explained by chance. So the expert who has this concern may 
be expressing that when he or she is faced with individual situations, he 
or she could have estimated a 5% chance or perhaps 2% or 8%. This is no 
doubt true. The individual choice seems like you could have estimated a 
slightly different value and still be satisfied. But, of course, the lens method 
does not depend on a single estimate or even a single expert. When a large 
number of data points are brought together, a pattern inevitably forms, 
even when the experts felt they had some randomness in their responses 
for individual cases.

We may also hear the reaction, “These variables alone tell me nothing. I 
need a lot more information to make an estimate.” Whether answering how 
a single condition can change a probability for a LOR method or answering 
how estimates changed based on multiple (but still just a few) conditions, 
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some experts will object that without knowing more—indeed, some will 
say without knowing everything—they cannot provide an estimate. In other 
words, “Knowing how frequent patches are made will only tell me some-
thing about a probability if I also know several other [usually unidentified 
and endless] things.” This can’t be true, and it can be disproven mathemati-
cally using the law of total probability.

There is a more formal version of this proof in the original How to 
Measure Anything, but for now, just know that this position isn’t math-
ematically logical. Another problem with this position is that we know 
relatively simple models will turn out to be decent predictors of expert 
judgment. Often, we even end up eliminating one or more variables from 
a model because they turned out to be unnecessary to predict the expert’s 
judgment. This means that a variable the experts at one point thought was 
something they considered in their judgments does not appear to have any 
bearing on their judgment at all. They just discovered what we called in 
previous chapters an “uninformative decomposition.” We all tend to imag-
ine that our subjective judgments are a result of fairly elaborate and delib-
erate processing of options. A more realistic description of our judgment 
is more like a small set of variables in a very simple set of rules added to 
a lot of noise and error.

As with other methods we mention, you can get some help with LOR 
and lens with spreadsheets provided at www.howtomeasureanything.com/
cybersecurity.

LOR from Other Cyber Professionals

Hubbard and Seiersen have produced several lens models to estimate cyber-
security risks in multiple organizations. When we combine our findings, we 
can see some simple rules of thumb that you might use in the interim until 
you have time to build a more complete model.

As the examples above showed, we decomposed the entire organ-
ization into some set of subsystems. The subsystems could be critical 
applications or a broader definition of hundreds or thousands of infor-
mation assets including specific servers. Or the decomposition could be 
less granular by defining subsystems as a dozen or so large areas of the 
network or even departments within the hierarchy of the organization. 
Usually, though, we see some definition of information asset used as the 
subsystem.

We can compute a naive probability that a given subsystem, such as 
an application, would be compromised in the next year. If you believe 
the chance that your firm—the system—will be breached next year is 10% 
and you decompose the system into 20 subsystems, we could start with a 
baseline for each subsystem of 0.5% per year. That is pretty close, but if we 

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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wanted to be a bit closer, we would compute the subsystem breach rate 
per year as

P(subsystem breach per year) = 1 − (1 − P(system breach))^(1/number 
of subsystems).

In this case we would get 1 − (1 − 0.1)^(1/20) = 0.525%. If you decided 
on a very granular model with hundreds or thousands of subsystems, you 
would get a tiny probability per subsystem even if the probability per year 
of a breach for the system is large.

Then you can start to differentiate those subsystems with the attributes 
you know about your environment. When we look at all of the lens models 
we’ve done so far, we notice some pretty consistent patterns. Our clients 
identify different predictive attributes to determine the risks, and they esti-
mate the effects of those attributes differently, but there are five attributes 
that most have identified as relevant and which also have significant effects 
on their judgement. They are multifactor authentication, encryption, num-
ber of users, whether an asset is Internet-facing, and the physical location of 
an asset. Table 9.2 shows the LOR adjustments for each of these attributes.

In other words, if we are using this to work out the effects of MFA on 
the event probability of a given subsystem, MFA will have a LOR of 2.2 less 
than not having MFA. If a subsystem with MFA had a 1% chance per year 
of being breached, then a subsystem without MFA would have to have a 
chance of being breached closer to 8.4%.

We would have to also check this with our law of total probability 
against naive baseline for a given subsystem based on the overall system 
probability and the number of subsystems. If 40% of our subsystems had 

TABLE 9.2  LOR Effect of Five Major Subsystem Attributes and Proportions within 
the System Based on Client Surveys

Attribute

Approximate Median  
LOR Difference from  
Previous Lens Surveys

Avg. Proportion of  
Subsystems in Client  
Data w/Stated Attribute

Multifactor authentication  
implemented

−2.2 51%

Data encrypted −2.2 48%

High user count (10,000+  
vs. under 100)

+1.5 62%

Secured/internal physical  
location vs. external  
vendor hosted

−1.7 70%

Internet-facing +2.8 47%
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MFA, then we would have to ensure that 0.4 × 0.01 + (1 − 0.4) × 0.084 was 
equal to our baseline. If not, we may need to modify our baseline, our share 
of subsystems with MFA, or how much MFA changes the probability of the 
event. The share of subsystems with that control can usually be measured 
exactly by auditing the environment, so it may need to stay fixed. You may 
consider changing how big of a difference the control makes between hav-
ing that control and not having it, as expressed by the Table 9.2. It is, after 
all, only based on a small sample of very different firms.

Modifying the baseline may make sense if you believe that your use of 
MFA and other controls was very different than the industry. We provided 
the average from our clients of the share of subsystems with each attribute 
in case that has some bearing on how you think your firm compares to 
industry data.

Once you compute relevant probabilities in your environment, you may 
notice that the attribute values of the big five make a smaller difference than 
you would have imagined otherwise. MFA reduces the probability of a suc-
cessful breach by a lot but not by a factor of 100 as some vendors might 
claim. Encrypting data has about the same effect. The calibrated SMEs who 
provided these estimates were simply being realistic. There are a lot of ways 
even encrypted, MFA-protected data could still be breached even if only by 
human error.

We can also model uncertainty around all of this data. Each conditional 
probability can be modeled with a beta distribution to represent our uncer-
tainty about the effect of each attribute on subsystem risk. You can go to the 
book website to download a spreadsheet that can help you with checking 
whether the values you choose are internally consistent.

An LOR for Aggregating Experts

When we discussed calibrating experts in Chapter  7, we mentioned that 
there are some ways to combine multiple expert estimates that outperform 
the best individual. Methods which use algorithms to do this depend on 
putting multiple independent estimates from SMEs into a formula that com-
putes a new value. A simple algorithmic approach is averaging the expert 
estimates, but we can do better. One of the best approaches uses Bayesian 
methods to treat additional estimates from SMEs as updates to previous 
estimates. Usually, we think of using empirical observations for Bayesian 
updates of priors. But, in a way, additional SME estimates are adding new 
information because their knowledge is at least somewhat complementary.

Each SME is adding new information to the group as long as two con-
ditions are met. First, their answers are correlated to actual outcomes (e.g., 
they know something about their field and don’t just guess randomly). Sec-
ond, SMEs’ estimates are not highly correlated to each other. If two SMEs 
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were highly correlated to each other, you could always accurately estimate 
the second SME’s estimate from the first SME’s estimate in which case the 
second person added no information. If SMEs are highly correlated, the best 
estimate will be closer to the average estimate.

Hubbard Decision Research has a database of hundreds of thousands 
of estimates from thousands of SMEs who have gone through calibration 
training, and some of them are tracked in real-world estimates after training 
is completed. This provides a lot of data about how to adjust SME estimates 
and combine them based on how correlated they are, and we can fine-tune 
this based on different categories of estimates. HDR uses a hybrid Bayesian 
method along with some machine learning to find the best algorithms for 
combining SMEs.

But you can use a quick method for combining just two SMEs. Keeping 
the number of SMEs this low reduces the problems introduced by SME cor-
relation. So you don’t need to try to gather enough data to determine how 
correlated teams of SMEs may be.

1.	Produce a list of events to estimate. The more, the better. You may ask 
for annual breach probabilities for each department, business critical 
application, vendor, or other asset. Ask for probabilities of various sorts 
of events and attack vectors, such as ransomware and denial of service.

2.	Recruit the best two SMEs. They are not only your most knowledgeable 
but were the best performers in calibration tests.

3.	Ask each SME to provide a list of probability estimates for each event 
in the list you provided.

4.	Convert all the probabilities each SME provided to a “log odds ratio”: 
ln(p/(1 − p)).

5.	For each SME, average the LOR of all estimates. This will produce a SME 
average. We’ll call this “SMEAvgL.”

6.	For each estimate, average the LOR from each SME to produce an event 
average. This is “EventAvgL.”

7.	Average all LORs for all events from all SMEs to get global LOR, “GAvg.”
8.	For each event compute the extreme combined LOR, “ECLOR.”

ECLOR=GAvg + sum(EventAvgL) − sum(SMEAvg).

9.	Convert this back to an extreme combined probability, ECP and Event 
Average Probability, EventAvgP.

10.	Compute ECP  =  1/(1  +  1/exp(ECLOR)) and EventAvgP  =  1/(1  +  1/
exp(EventAvgL)).

11.	Your combined estimate will be somewhere between the ECP and 
EventAvgP. If you think the experts are highly correlated, then the final 
probability of an event will be closer to the event average probability. 
If you think the SMEs are highly independent thinkers, then the final 
probability will be closer to the extreme combined probability.
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As with many other methods in this book, you can also find a spread-
sheet for computing all of these steps by going to www.howtomeasure 
anything.com/cybersecurity.

Reducing Uncertainty Further and When to Do It

We don’t have to rely on calibrated estimates and subjective decomposi-
tions alone. Ultimately, we want to inform estimates with empirical data. 
For example, conditional probabilities can be computed based on historical 
data. Also, the beta distribution and other methods for computing condi-
tional probabilities can be combined in interesting ways. We can even make 
rational decisions about when to dive deeper based on the economic value 
of the information.

Estimating the Value of Information for Cybersecurity: A Very Simple Primer

Hubbard’s first book, How to Measure Anything, gets into a lot more detail 
about how to compute the value of information than we will cover here. 
But there are some simple rules of thumb that still apply and a procedure 
we can use in a lot of situations specific to cybersecurity.

Information has value because we make decisions with economic 
consequences under a state of uncertainty. That is, we have a cost of 
being wrong and a chance of being wrong. The product of the chance of 
being wrong and the cost of being wrong is called the expected oppor-
tunity loss (EOL). In decision analysis, the value of information is just a 
reduction in EOL. If we eliminate uncertainty, EOL goes to zero and the 
difference in EOL is the entire EOL value. We also call this the expected 
value of perfect information (EVPI). We cannot usually eliminate uncer-
tainty, but the EVPI provides a useful upper limit for what additional 
information might be worth. If the EVPI is only $100, then it’s probably 
not worth your time for any amount of uncertainty reduction. If the EVPI 
is $1 million, then reducing uncertainty is a good bet even if you can 
reduce it only by half for a cost of $20,000 (the cost could simply be your 
effort in the analysis).

In cybersecurity, the value of information will always be related to deci-
sions you could make to reduce this risk. You will have decisions about 
whether to implement certain controls, and those controls cost money. If 
you choose to implement a control, the “cost of being wrong” is spending 
money that turns out you didn’t need to spend on the control. If you reject 
the control, the cost of being wrong is the cost of experiencing the event 
the control would have avoided.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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In www.howtomeasureanything.com/cybersecurity we have also pro-
vided a spreadsheet for computing the value of information. Table  9.3 
shows how values in the spreadsheet’s payoff table would be structured. 
Note that we’ve taken a very simple example here by assuming that the pro-
posed control eliminates the possibility of the event. But if we wanted, we 
could make this a bit more elaborate and consider the possibility that the 
event still happens (presumably with a reduced likelihood and/or impact) 
if the control is put in place.

The calculation is simple. Based on the probability of an event, the cost 
of the control, and the cost of an event without the control, we compute an 
EOL for each strategy—implementing or not implementing the control. That 
is, based on the strategy you choose, we simply compute the cost of being 
wrong and the chance of being wrong for each strategy.

You can try various combinations of conditional probabilities, costs of 
events, and costs of controls in the spreadsheet. But it still comes down to 
this: if you reject a control, the value of information could be as high as the 
chance of the event times the cost of the event. If you accept a control, then 
the cost of being wrong is the chance the event won’t occur times the cost 
of the control. So the bigger the cost of the control, the bigger the event it is 
meant to mitigate, and the more uncertainty you have about the event, the 
higher the value of additional information.

Using Data to Derive Conditional Probabilities

Let’s suppose we’ve built a model, computed information values, and deter-
mined that further measurements were needed. Specifically, we determined 
that we needed to reduce our uncertainty about how some factor in cyber-
security changes the likelihood of some security event. You have gathered 
some sample data—perhaps within your own firm or perhaps by looking 
at industry data—and you organized it as shown in Table 9.4. We can call 
the occurrence of the event Y and the condition you are looking at X. Using 
this, we can compute the conditional probability P(Y|X) by dividing the 
number of rows where Y = Yes and X = No by the total number of rows 

TABLE 9.3  Cybersecurity Control Payoff Table

Event Didn’t Occur Event Occurs

Decided to implement  
the control

The cost of the control The cost of the control

Decided against the 
control

Zero The cost of the event

http://www.howtomeasureanything.com/cybersecurity
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where X = No. That is, P(Y|X) = (count of Y and X)/count of X (as shown 
in rule 4—the “it depends” rule—in Chapter 8).

This could be a list of servers for each year showing whether some 
event of interest occurred on that server and, say, whether it was located 
offshore or perhaps the type of operating system it had. Or perhaps we 
wanted to estimate the probability of a botnet infestation on a server based 
on some continuous value such as the amount of traffic a server gets. (One 
of our guest contributors, Sam Savage, has shown an example of this in 
Appendix B.)

If you are handy with pivot tables in Excel, you could do this analysis 
without too much trouble. But we propose an even easier analytical method 
using the Excel function =countifs(); the countifs() formula counts the rows 
in a table where a set of conditions are met. If we count the rows where 
both columns are equal to “1,” we have the number of times both the event 
and the condition occurred. This is different from “countif()” (without the 
“s”), which only counts the number in a given range that meet one crite-
rion. Countifs(), on the other hand, can have multiple ranges and multiple 
criteria. We need both to compute a conditional probability from a set of 
historical data.

Counting just the number of 1’s in the second column gives us all of 
the situations where the condition applies regardless of whether the secu-
rity event occurred. So to compute the conditional probability of an event 
given a condition, P(Event|Condition), in Table 9.4 we use the following 
calculation:

	 countifs column A column B /countif column B( , , , ) ( , ?“ ” “ ” “ ”1 1 1 )) 	

(Note, where we say “column A” or “column B” insert the range where 
your data resides in Excel.)

TABLE 9.4  Table of Joint Occurrences of an Event and a Condition

Defined Security Event  
Occurred on This Server

A Stated Condition Exists on  
That Server

1 0

1 1

0 0

0 1

1 1

1 1

0 1
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Now you are empirically estimating a conditional probability. Again, 
we’ve provided a spreadsheet on the website to show how to do this. There 
is quite a lot of interesting analysis you can do with this approach once you 
get handy with it.

We’ve already put as many detailed statistical methods into this book 
as we think most cybersecurity experts would want to deal with—but the 
reader could go much further if motivated to do so. Instead of loading more 
methods at this point, let’s just paint a picture of where you could go from 
here if you feel you are mastering the methods discussed so far.

First, we can combine what we’ve talked about in much more elaborate 
and informative ways. For example, instead of using calibrated estimates as 
inputs for the LOR method, we can use conditional probabilities computed 
from data in this way as inputs. As with LOR before, as long as the condi-
tions are independent, we can add up the conditional probability with a 
large number of conditions.

We can also leverage the beta distribution with the empirically derived 
conditional probability using the data in Table 9.4. If we are using simple 
binary outcomes (Y) and conditions (X), we can think of them as “hits” and 
“misses.” For example, you could have a data center where you have layers 
of controls in place from the network on the host: network firewalls, host 
firewalls, network intrusion prevention systems, and host intrusion preven-
tion. Lots of investments either way. Suppose we define the outcome vari-
able “Y” as “security incident.” This is very general, but it could be malware, 
hacking, denial of service, and so on. X, of course, represents the “condi-
tions” we just articulated in terms of layers of controls.

If we count 31 cases where Y and X occur together (security event and 
controls in place) and 52 total cases of X, then we can estimate the con-
ditional probability with the beta distribution using 31 hits and 21 misses, 
added to your prior. This allows us to think of our data, again, as just a 
sample of possibilities and not a reflection of the exact proportion. (More 
specifically to our example case, we can start forecasting what our controls 
are saying about the probability of having security incidents.) Instead of 
adding LORs for fixed conditional probabilities, we randomly draw from 
a beta distribution and compute the LOR on that output. (This will also 
have the effect of rotating your LEC in a way that increases the chance of 
extreme losses.)

Think about how handy this can be if you deal with multiple massive 
data centers that are deployed globally. You would want to have a sense of 
the probability of incidents in light of controls. It’s an easy step then to deter-
mine EVPI in relationship to making a potential strategic change in defenses 
in light of the simple sample data. Again, you have more data than you think!

Once again, we have provided the spreadsheets at www.howtomeasure 
anything.com/cybersecurity for detailed examples.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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Size as a Baseline Source

In the first edition of this book, we referred to some 2015 research about 
breach rates conducted by Vivosecurity, Inc. using data from the US Depart-
ment of Health and Human Services Breach Portal website (aka the HHS 
“Wall of Shame”). The HHS Breach Portal2 shows PHI record breaches of 
500 records or more. Combined with publicly available data about the num-
ber of employees for each firm and firms not listed in the site, Vivosecurity 
estimated the rate of data breaches as of 2015 appears to be about a 14% 
chance per 10,000 employees per year (this is higher than data on major 
data breaches since it includes breaches as small as 500 records). This was 
up slightly from about 10% in 2012.

This relationship between size and breach risk continues since that 
study. Hubbard Decision Research collected data from publicly available 
lists of reported data breaches and employee count of Fortune 1000 com-
panies. Our data focuses on breaches that made the news, which were 
always much larger than the 500 record threshold of the HHS website. 
Consequently, HDR found a much lower breach rate than Vivosecurity, by a 
factor of 10 or more, but like the Vivosecurity research found, there was still 
a strong linear relationship between staff count and breach rate.

The cybersecurity data collection firm Advisen has publicly available 
data that shows there is a direct relationship between revenue and frequency 
of breaches. In their data, a firm with between $1 million and $10 million in 
annual revenue will have about a 2% chance per year of what they define 
as an “event” and a firm with over $1 billion in revenue will probably  
have multiple events per year. Like the HHS data, Advisen data will prob-
ably be counting some smaller events than the HDR data included, and it 
includes ransomware and other events that are not counted by HHS. Using 
NAIC data about the average revenue per employee as a function of head-
count, the Advisen data implies a much higher chance per year of a data 
breach event than even the Vivosecurity data did. The Advisen data is more 
recent and includes more types of events than Vivosecurity.

Using size measured by either headcount or revenue tells us something 
about the rate of data breaches and other events. The upshot is that if you 
want to use more recent data and data for smaller and more types of events, 
you will need to consider methods that allow for multiple events per year. 
That is the topic of the next part of this chapter.

More Advanced Modeling Considerations

In the beta distribution example, we were uncertain about the true propor-
tion of some population, and we had to estimate it based on a few samples. 
The simplifying assumption was that each time period was like drawing a 
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marble from an urn. Just as the marble was either red or green, the event 
either happened or did not happen in a given year. This assumption is not 
far off the mark when the probabilities are in the single digits or less.

There are cases where we need to consider the possibility that more 
than one event could happen in a year. The VERIS database, the IRIS report, 
and Advisen database show there are real cases of the same organization 
experiencing a data breach twice or more in a single year. Even though the 
previously described methods allow for only up to one event in a given 
period, there is already a possibility of multiple events per year when we 
decomposed the system into a number of subsystems, each of which have 
a risk of an event independently of the others. While each subsystem could 
have at most one event in a year, our simple simulations can generate 
events for multiple subsystems in the system.

Still, there are situations where we may want to simulate the possibil-
ity of multiple events in a given year even for a single subsystem. For that, 
we will introduce some additional tools: the Poisson distribution and the 
gamma Poisson distribution.

The Poisson Distribution

The Poisson distribution describes situations where more than one thing can 
occur in a given interval. We can illustrate this by changing the urn example. 
Instead of randomly drawing marbles from one urn, suppose we start with 
a number of empty urns and randomly distribute marbles among them. 
Let’s say we have 100 marbles, and each marble is randomly dropped in 
an urn. Each marble drop is independent of whether a marble was already 
dropped in the same urn. In this case, we would not get exactly one marble 
in each of the 100 urns. In fact, if we repeated this experiment, we would 
find that about 37 urns were empty, on average. This is because some urns, 
by chance, would have more than one marble. About 18 would have two, 
about six would have three, and so on.

Likewise, if we say that the average frequency of an event is once per 
decade, there is a small chance that the event could happen twice in a year. 
Just think of each year as an urn that receives randomly dropped marbles 
representing data breaches or ransomware attacks.

The Poisson distribution gives us the probability for how many marbles 
(an integer value) would end up in an urn or how many events occur in a 
given period. For simulations in Excel, we had been using inverse probabil-
ity functions (norm.inv(), beta.inv(), etc.). There is no such inverse probability  
function for the Poisson distribution in Excel. But we can approximate 
it very closely by converting a time interval into much smaller intervals. 
For tiny intervals, like a millionth of a year, the chance of two or more 
events occurring in one interval is negligible but multiple intervals within a 



Some Powerful Methods Based on Bayes	 225

year can experience and event. This allows us to very closely approximate 
the inverse Poisson probability function by using the binom.inv() func-
tion in Excel.

	 Binom inv frequency/ rand. ( , , ())1000000 1000000 	

This will produce almost exactly the same output as a Poisson-distributed 
inverse probability function when there are several events per year—as 
long as it is not hundreds or thousands of events per year. (Note, again, that 
where we refer to rand(), the spreadsheet at www.howtomeasureanything 
.com/cybersecurity will actually use the HDR PRNG.)

The Gamma Distribution

Now suppose we change the example further so that we don’t actually 
know the ratio of urns to marbles. Not only do we have uncertainty about 
how many marbles end up in an urn, but that uncertainty is further com-
plicated by having uncertainty about whether there will be 50 marbles dis-
tributed among 100 urns or 200 marbles distributed among 100 urns. This 
has a significant effect on how many urns we estimate would have a larger 
number of marbles in them or, analogously, how many years will have 
multiple events.

We could use a beta distribution in the Excel formula above to repre-
sent our uncertainty about the frequency of the event. We could account 
for this uncertainty if “frequency” in the formula above was given as  
=beta.inv(rand(),alpha,beta). But there is a more mathematically flexible 
approach. Remember, the beta distribution can only produce a frequency 
between 0 and 1. Another distribution used in Bayesian methods is the 
gamma distribution. The gamma distribution can generate any value greater 
than zero, including values greater than 1. So if we wanted to say that an 
event has a frequency of 0.6 to 3.5 times per year, a gamma distribution can 
handle it. It also lends itself to belief updating just like the beta distribution 
does with hits and misses.

This can also be simulated in Excel, but we will defer that calculation 
to the downloadable spreadsheet. For now, we will show an example of 
how the gamma distribution can be used in the R programming language.

Ransomware, Baselines, and Insurance: A Case Example in R

During RSA and Blackhat in 2022, Seiersen held a series of Cyber Super-
forecasting training sessions. The majority of the attendees were Fortune 
1000 level CISOs. Their learning goals ranged from curiosity stemming from 
our books to more practical matters such as making defensible budgets and 

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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board presentations. Our focus was incorporating SME input into predictive 
cyber models. To make it extremely practical we zeroed in on ransomware 
with the objective of forecasting the likelihood of experiencing a mate-
rial event.

We consider a loss that is reported to insurance that is actually paid out 
or is part of your deductible as material. A material loss such as this is a 
surprising amount for both insured and insurer. Exceeding a limit is shock-
ing. For the insured (like the CISOs in our training) you are most concerned 
about the magnitude of limit exceedance. For example, a 20% chance of 
exceeding a limit of $100M with a 5% chance of exceeding $200M may be 
insomnia inducing. But a 3% chance of exceeding $100M with a less than 
1% chance of exceeding $200M might be acceptable—relatively speaking.

You could invest in more controls and higher limits. If you exceed your 
limit, you will find it hard to get your cyber policy renewed. The best-case 
scenario is that you get a significant rate hike with shrunken limits (aka sub-
limits). For the CISO, getting and maintaining cyber insurance supports their 
security goals. It provides a defensible rationale for security investments that 
their peers, particularly CFOs, will understand. Afterall, the CFO (or GC) is 
the one responsible for acquiring favorable insurance terms—terms they 
cannot get without evidence of solid security controls.

Seiersen asked the group what they thought the material event rate was. 
Estimates of the rate of material ransomware attacks for a single company 
varied from about once in a decade to once in 75 years with an average of 
once in 38 company-years. That is, once in 38 companies in one year, or 
once in one company over 38 years—in other words, there is a 2.6% chance 
in a given year of a firm experiencing such an event.

Then, the CISOs in the room were asked how many times they expe-
rienced a material ransomware loss in the last five years. To the surprise of 
the CISOs in the room, none raised their hand. With 10 bona fide CISOs in 
this sample for a five-year period, that comes to 50 company-years of CISO 
material ransomware experience.

This is empirical data, and it would cause us to update the original 
beliefs about rates of attacks downward. We could also add to this some 
actual claims data from a cyberinsurance company, like the one Seiersen 
works for. In the database of Resilience’s clients, Seiersen found 200 where 
they had at least one year of claims data. From those, there were four ran-
somware claims. Including the previous CISO survey, this gives us four hits 
and 246 misses out of a sample of 250. Laplace’s rule of succession would 
tell us that the chance that a given firm would experience material ransom-
ware in a given year is about 1.98%.

You may be wondering why we even care about naive beliefs when 
we already have claims data? The claims data is biased and not volumi-
nous. Material losses are rare. Also, this data is from one insurance provider 
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focused on midsized firms, it excludes some industries, and Resilience may 
be more selective in its underwriting process. Do we reject that data? No. 
We want to be resourceful with whichever data we have. The good news 
is that our CISOs’ naive forecasts and surveys may help make the data less 
biased—and vice versa.

Figure 9.6 shows the result of combining this data using the gamma 
distribution. This was developed using some code in the statistical pro-
gramming language R. The code is shown at the end of this discussion 
with comments.

The bottommost curve represents our CISOs’ beliefs about material 
ransomware arrival rates. Let’s now consider the two taller curves. The 
one farthest to the right represents our data. And the slightly narrower 
curve is the final posterior. The dotted lines represent the 90% credible 
interval for the posterior. The credible interval simply says that the rate 
has a 90% chance of being within those two values—given the current 
data and the model.

Summarizing the Model Output
■■ We credibly believe there are between 0.8 and 3 material ransomware 
events in a 100-year time frame.

■■ As a probability, our average expectation is that there is a 1.9% chance 
of experiencing a material ransomware event per year.

Posterior 90% Credible Interval

SME Prior Forecast
Data (Survey + Claims)
Posterior Rate

0.00 0.02 0.04 0.06 0.08 0.10

Yearly Rate

FIGURE 9.6  Bayesian Updating for Ransomware
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In this example, the beta distribution would give an answer that is fairly 
close to the gamma distribution because the probability is small. The R 
code uses a simulation and will have some sampling error. In this situation, 
the mean of 1.9% is pretty close to what we estimated with the simple LRS, 
but now you have another tool for those situations where you may want to 
model much more frequent events.

Now, does 1.9% seem small? Remember, this is a material ransomware 
event as we have defined it. That is different from merely experiencing 
ransomware. Also consider that there are thousands of companies around 
the world that would be subject to this. For example, what does a 1.9% 
probability mean across the Fortune 1000? And now consider how much 
real breach news with measurable impacts you actually see regarding ran-
somware and that specific population.

Ransomware is only one of dozens of perils a company faces. Each 
peril will have its own baseline probability of occurring given your data and 
model. Keep in mind that a baseline is just a starting point. After all, you 
likely have controls in place (or not) that would either mitigate or exacer-
bate this baseline.

R Code Used in the Example:

# 10 CISOs aggregate beliefs about event arrival rate: 1 in 38 years
arrival_count <- 1
arrival_years <- 38
 
# Static rate of counts over years
arrival_ratio <- arrival_count / arrival_years
 
# Length of possible arrival rate values by scaling rate by 6 
possible_length <- arrival_ratio * 3
 
# List of rates from 0 to ~0.16: .001,.002,.003 … .16
possible_arrivals = seq(0, possible_length, 0.001)
 
# Weight each possible_arrival by how close they match CISO beliefs.
prior_beliefs <- dgamma(possible_arrivals, arrival_count, arrival_years)
 
# Flesh out prior_beliefs by sampling from it 10K times
prior_samples <- sample( possible_arrivals , prob=prior_beliefs, 
                         size = 10000, replace = TRUE )
 
# Convert into 10K years of events. sims = 0,0,0,0,..1..0,0,0 etc
reps = 10000
sims = rpois(reps, prior_samples)
 
# Get prob of 1+ events by summing sims greater than 1 and div by 10K
prior_one_more <- sum(sims>= 1)/reps

# Total claims between survey and insurance (4 + 0)
claim_count <- 4
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# Claims years plus ciso years was 200 + 50 
claim_years <- 250
 
# Static material arrival rate
claims_ratio <- claim_count / claim_years
 
# Plausible_arrivals is a long list of tiny yearly rates from 0 to .16
# Each plausible_arrival is going to get weighted by the combined prior
#   and empirical data. This gets our posterior beliefs.
posterior_beliefs = dgamma(plausible_arrivals, 
                           arrival_count + claim_count, 
                           arrival_years + claim_years)
 
# Flesh out the posterior by sampling from it. 
posterior_samples <- sample( plausible_arrivals ,   
                             prob=posterior_beliefs, 
                             size = 10000, replace = TRUE )
 
 
# Now create 10K events from our posterior. Sims contains a list 
#   with many 0 and an occasional 1 or 2 as such: 0 0 0 0 0…..1…0 0 0 0 
sims = rpois(reps, posterior_samples)
 
# Probability of 1 or more events
post_one_more <- sum(sims>= 1)/reps
 
# Print out prior belief message (from previous code)
print(paste0("SME Forecast Of One Or More Events In A Year: ",   
      round(prior_one_more,3) * 100,"%"))
 
 
# Print out posterior belief message
print(paste0("Claims + SME Forecast Of One Or More Events In A Year:",  
      round(post_one_more,3) * 100,"%"))
 
# Get 95% Credible Interval
res <- qgamma(c(0.025, 0.975), arrival_count + claim_years * 
       claims_ratio, arrival_years + claim_years)
 
# Print out 95% Credible Interval Message
print(paste0("We credibly believe there is between: ", 
      round(res[1],3) * 100,
      " events in 100 years to ", round(res[2],2) * 100,
      " events in 100 years"))

Wrapping Up Bayes

These last two chapters were an introduction to some simple and then 
some slightly more advanced empirical methods using Bayes. By leveraging 
already developed spreadsheets for some of the more detailed explanations, 
we covered quite a lot of ground.
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We’ve shown how the use of Bayesian methods and its derivatives 
allow cybersecurity to update initial calibrated estimates with new informa-
tion. We’ve shown how the use of the Bayesian methods can apply to a 
simple update problem, but we’ve also shown how much more elaborate 
methods such as the beta distribution can still be practically employed by 
using existing features of Excel. We’ve shown how multiple conditions can 
be combined using LOR methods and the lens method, and we’ve shown 
how LOR and beta can be combined. We’ve also shown how these same 
methods can be used to combine the estimates of two calibrated SMEs, and 
we showed a solution using different methods in R.

You don’t have to adopt all of this at once. Take a one-step-at-a-time 
approach if necessary, and add new methods as you master them. You have 
a variety of choices for how you model something and how you leverage 
new information—all of which are surely better than guessing or using 
methods without any mathematical foundation. Now, Part III will introduce 
some additional concepts and discuss practical considerations in rolling out 
these methods in an organization.

Notes

	 1.	 Benjamin Enke and Florian Zimmermann, “Correlation Neglect in Be-
lief Formation,” Discussion Paper No. 7372 (Bonn, Germany: Institute 
for the Study of Labor, 2013), http://ftp.iza.org/dp7372.pdf.

	 2.	 US Department of Health and Human Services, Office for Civil Rights, 
Breach Portal, “Breaches Affecting 500 or More Individuals,” accessed 
March 21, 2016, https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf.

http://ftp.iza.org/dp7372.pdf
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf
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PART III

Cybersecurity Risk 
Management for the Enterprise
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CHAPTER 10

As you look to improve in any endeavor, it helps to have a view of where 
you are and a vision for where you need to go. This improvement will 

need to be continuous and will need to be measured. The requirement of 
being “continuous and measurable” was stated as one of the main outcomes 
of this how-to book. Continuous measurements that have a goal in mind are 
called “metrics.” To that end, this chapter provides an operational security-
metrics maturity model. Different from other analytics-related maturity mod-
els (yes, there are many), ours starts and ends with predictive analytics.

This chapter will begin to introduce some issues at a management and 
operations level. Richard Seiersen, the coauthor who is familiar with these 
issues, will use this chapter and the next to talk to his peers using language 
and concepts that they should be familiar with. Richard will only selectively 
introduce more technical issues to illustrate practical actions. To that end, 
we will cover the following topics:

■■ The operational security metrics maturity model: This is a maturity 
model that is a matrix of standard questions and data sources.

■■ Sparse data analytics (SDA): This is the earliest metrics stage, which 
uses quantitative techniques to model risk based on limited data. This 
can specifically be used to inform new security investments.

Toward Security Metrics Maturity

The Metrics Manifesto: Confronting Security with Data (TMM) was 
published in 2022.1 Richard states that this chapter on metrics provided 
motivation for that book. Condensed material from TMM has been 
included here to help flesh out concepts from the first edition of 
HTMA Cyber. Extensive metrics examples in code can be found at 
www.themetricsmanifesto.com.

http://www.themetricsmanifesto.com
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■■ Functional security metrics: These are subject-matter-specific metrics 
based on early security investments. Most security metrics programs 
stop at this point of maturation. The Metrics Manifesto adds predictive 
analytics to functional security metrics. Indeed, a whole framework is 
introduced called “baseline objectives and optimization measures” (aka 
BOOM). The focus here will be on the first part of the BOOM frame-
work: baseline metrics.

■■ Security data marts: This section focuses on measuring across security 
domains with larger data sets. The following chapter will focus on this topic.

■■ Prescriptive security analytics: This will be a brief discussion on an 
emerging topic in the security world. It is the amalgam of decision and 
data science. 

Introduction: Operational Security Metrics Maturity Model

Predictive analytics, machine learning, data science—choose your data 
buzzword—are all popular topics. Maturity models and frameworks for 
approaching analytics abound. Try Googling images of “analytics maturity 
models”; there are plenty of examples. Our approach (see Figure 10.1) is  
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different. We don’t require much data or capability to get started. In fact, the 
practices you learned in previous chapters shine at this early stage. They 
help define the types of investments you will need to make your program 
mature. So there is no rush to invest in a big data solution and data science. 
Don’t get us wrong—we are big advocates of using such solutions when 
warranted. But with all these “shiny” analytics concepts and technology 
comes a lot of distractions—distractions from making decisions that could 
protect you from the bad guys now. To that end, our perspective is that 
any analytic maturity model and framework worth its salt takes a decision-
first approach.

Sparse Data Analytics

N (data) is never enough because if it were “enough” you’d already be 
on to the next problem for which you need more data. Similarly, you 
never have quite enough money. But that’s another story.

—Andrew Gelmam2

You can use predictive analytics now. Meaning, you can use advanced 
techniques although your security program may be immature. All of the 
models presented in Chapters 8 and 9 fit perfectly here—they embody 
“sparse data analytics.”

Just because your ability to collect broad swaths of security evidence 
is low does not mean that you cannot update your beliefs as you get more 
data. In fact, the only data you may have is subject-matter expert beliefs 
about probable future losses. In short, doing analytics with sparse evidence 
is a mature function but is not dependent on mature security operations.

From an analytics perspective, sparse data analytics (SDA) is the exclu-
sive approach when data are scarce. You likely have not made an invest-
ment in some new security program. In fact, you may be the newly hired 
CISO tasked with investing in a security program from scratch. Therefore, 
you would use SDA to define those investments. But once your new invest-
ment (people, process, technology) is deployed, you measure it to deter-
mine its effectiveness to continually improve its operation.

Functional Security Metrics

After you have made a major investment in a new enterprise-security capa-
bility, how do you know it’s actually helping? Functional security met-
rics (FSMs) seek to optimize the effectiveness of key operational security 
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areas. There will be key performance indicators (KPIs) associated with 
operational coverage, systems configuration, and risk reduction within 
key domains. There are several security metrics books on the market that  
target this level of security measurement. One of the earliest was Andrew  
Jaquith’s Security Metrics3 (The Metrics Manifesto is a more modern treat-
ment of metrics). Jaquith’s book brought this important topic to the forefront 
and has a solid focus on what we would call “coverage and configura-
tion” metrics. Unfortunately, most companies still do not fully realize this 
level of maturity. They indeed may have tens, if not hundreds, of mil-
lions of dollars invested in security staff and technology. People, process, 
and technology for certain silo functions may in fact be optimized, but a 
view into each security domain with isometric measurement approaches is  
likely lacking.

Most organizations have some of the following functions, in some form 
of arrangement:

■■ Malware defense;
■■ Vulnerability management;
■■ Penetration testing;
■■ Application security;
■■ Network security;
■■ Security architecture;
■■ Identity and access management;
■■ Security compliance;
■■ Data loss prevention;
■■ Incident response and forensics;
■■ And many more.

Each function may have multiple enterprise and stand-alone security 
solutions. In fact, each organization ideally would have sophisticated secu-
rity metrics associated with each of their functions. These metrics would 
break out into two macro areas:

1.	Coverage and configuration metrics: These are metrics associated with 
operational effectiveness in terms of depth and breadth of enterprise 
engagement. Dimensions in this metric would include time series met-
rics associated with rate of deployment and effective configuration. Is 
the solution actually working (turned on) to specification and do you 
have evidence of that? You can buy a firewall and put it in line, but 
if its rules are set to “any:any” and you did not know it—you likely 
have failed. Is logging for key applications defined? Is logging actu-
ally occurring? If logging is occurring, are logs being consumed by 
the appropriate security tools? Are alerts for said security tools tuned 
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and correlated? What are your false positive and negative rates, and 
do you have metrics around reducing noise and increasing actual 
signal? Are you also measuring the associated workflow for handling 
these events?

2.	Mitigation metrics: These are metrics associated with the rate at which 
risk is added and removed from the organization. An example metric 
might be “Internet facing, remotely exploitable vulnerabilities must be 
remediated within one business day, with effective inline monitoring or 
mitigation established within 1 hour.”

Functional Security Metrics Applied: BOOM!

BOOM stands for “baseline objectives and optimization measurements.” It 
is the core metrics framework found in Seiersen’s recent book The Metrics 
Manifesto: Confronting Security With Data1 (TMM). BOOM metrics are a 
class of “functional security metrics.”

This section will provide an explanation and simple example of each of 
the five BOOM metrics (Figure 10.2):

1.	Burndown: The baseline rate with which risk is removed over time;
2.	Survival: The time-to-live (TTL) of risk;
3.	Arrival: The rate with which risk arrives;
4.	Wait-times: The time between risk arrivals;
5.	Escapes: The rate with which risk moves.

FIGURE 10.2  The BOOM Metrics Framework
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Our goal is to expose you to these five methods. You will also become 
more familiar with Bayesian data analysis techniques that were presented 
in earlier chapters.

Note, code and supporting functions found in this section are located 
at www.themetricsmanifesto.com. Go to the section title HTMA CyberRisk. 
Functions particular to this section are in the htmacyber_functions.R file.

Burndown Baselines

Burndown is nothing more than a ratio over time—aka a cumulative ratio. 
It’s like a batting average. The numerator is hits. The denominator is hits 
plus misses, aka total.

What might we burn down in security? The range of topics includes 
vulnerabilities, configuration items, threats, identity and access management 
issues, incident response, and more. Any SecOps topic is fair game. All you 
need is two pieces of information to start.

The first piece of information is a start date. Start dates include the time 
something was discovered, time it was entered into a ticket system, time it 
was accepted as a work item, and such. The second piece is the end date. 
That could be the date a ticket was closed, the date something is no longer 
there, the date some work item changes its state from discovered to accepted, 
etc. Most burndown metrics measure date discovered to date eliminated.

Let’s assume you are going to measure your vulnerability remediation 
burndown. (Substitute in whatever security process you like here.) In Janu-
ary you discover 100 critical vulnerabilities. In the same month you close 50. 
Your burndown rate is 50/100, or 50%. In February you discover 100 more 
and close 30 of the total remaining (i.e., from the vulns still open between 
January and February). Your cumulative burndown rate is 80/200, or 40%.

The keen reader may already see where we are going with this 
probability-wise. Indeed, this is another use case for the beta distribution.

The code below models five months of burndown, extending the first 
two months discussed above:

# Count by month of critical vuln found
vulns <- sum(100, 100, 50, 10, 20)
 
# Count of critical vulns closed each month
fixes <- sum(50, 30, 20, 30, 20)
 
# 90% CI & Median with prior of + 1
metric <- qbeta(c(.05, .5, .95), 
                vulns + 1, fixes + 1)
 
# Print out 90% CI with Median
round(metric,2)
[1] 0.61 0.65 0.69

http://www.themetricsmanifesto.com
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What if you had a KPI of 65% for your burndown rate over the last five 
months. Did you make it? Strictly speaking, not yet. There is some uncer-
tainty about what your baseline rate is. It could credibly be as low as 61% 
based on a 90% credible interval. If your KPI were 60%, you could credibly 
say you achieved your goal—for the most part.

Why does measuring this way matter? We are measuring a capability 
and how consistently it produces desired results over time. We are trying to 
be conservative. A single point and time measure will hide the truth.

Survival Baselines

Survival analysis is the statistical approach behind BOOM’s survival base-
line. Survival analysis is a big topic in epidemiology, insurance, and any 
number of fields that are concerned with how long things tend to exist. Like 
burndowns, survival analysis also depends on a start and end date—with a 
twist. Survival analysis allows you to include things that have yet to experi-
ence a “hazard.” These not-as-yet events are formally said to be censored.

Hazards cause the termination of a process. In our previous example, 
a patch terminates a vulnerability. Anti-malware can terminate malware. 
Deprovisioning a user terminates access.

In the code below we will measure the time to live of malicious (evil) 
domain access. This metric measures how fast bad domains are blocked, 
aka filtered.

Effective filtering reduces the time to live (ttl) of evil domain access. 
This metric measures the ttl of evil URLs where attempts to connect to 
the domain were made before getting blocked—meaning the domain was 
eventually put on a “blocklist,” but at least one host attempted to reach that 
domain. You can query DNS history to find evil domain access (assuming 
it’s logged). It would be a post hoc query that happens after the domain 
appears on a blocklist.

You want to record the earliest attempt to reach domains on the block-
list. You also want to record the date the domain was added to the blocklist. 
These are your first.seen and last.seen timestamps. The difference between 
those dates is the count in days, aka diff.

In the code below, any malicious domains that are active, yet not on 
the blocklist, are considered censored. Their status is marked with a 0, 
otherwise 1.

# Required Libraries
library(tidyverse)
library(survival)
library(survminer)
 
# Diff in days between access and block
diff <- c(1, 2, 5, 1, 4, 18, 4, 20, 1, 5,   
          8, 9, 5, 2, 1, 7, 12, 22, 1, 14)
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# 1 is block 0 is censored
status <- c(1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 
            0, 1, 1, 1, 1, 1, 1, 0, 1, 1)
 
# Put vector into tidy dataframe
tmm <- tibble(diff, status)
 
# Create survival object
res <- survfit(data = tmm, 
          Surv(diff, status) ~ 1)
 
# Print out survival analysis metrics
res
 
n     events  median   0.95LCL 0.95UCL 
20      17       5         2      14

We think it takes between 2 and 14 days to block previously accessed 
malicious domains. The analysis also thinks there is a 50% chance the 
rate is just as likely above or below five days (median). That tells us the 
data is skewing right and centered a bit more toward the lower end of 
the range.

We had 20 processes (n) with 17 of them experiencing a hazard. The 
analysis calls the 17 data points “events.” What happened to the three pro-
cesses that did not experience a hazard? They were censored.

Arrival Baselines

Most security measurement tends to be “shift-right.” Our first two BOOM 
metrics were like this. They focus on measuring risk cleanup “right of 
boom!” (See Figure 10.2.) For prevention we use “shift-left” measures.

An important shift-left measure is the arrival rate. It measures the rate 
with which risk materializes. Arrival rates help you discern if your preventa-
tive measures are working. If they are working, you should see a reduction 
in the rate with which risk arrives. Let’s use a concrete and vexing problem 
to explore this measure—phishing.

We are particularly concerned with the rate with which employees 
interact with phish beyond mere clicks on links. We will call this meas-
ure the phishing victim arrival rate. These most often show up in incident 
response tickets. So they should not be hard to find.

Let’s assume your company has 10,000 employees. Before doing any 
empirical measures, you and your team believe the phishing victim rate is 
roughly five arrivals a week. This is what you believe before seeing any data. 
The code below generates Figure 10.3, showing what a gamma distribution 
averaging 5 arrivals per week should look like.
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# Libraries needed for all following analysis
library(bayesAB)
library(tidyverse)
library(basetestR)
 
# See www.themetricsmanifesto.com
source(“htmacyber_functions.R”) 
 
# 5 events in 1 week
plotGamma(5,1)

You were introduced to the gamma distribution in the previous chapter. 
It’s used here as a Bayesian prior for a count model. That is a fancy way 
of saying that it captures what we believe about counts, with plenty of 
uncertainty. The rate could plausibly land somewhere between 1 and 10 
events per week.

Next, you collect three months (12 weeks) of data. And in that time you 
have 87 victims. What might your baseline rate be given this data? The fol-
lowing code generates Figure 10.4 seen below.

# A rate of 87 events in 12 weeks (87/12)
plotPoisson(87/12)
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FIGURE 10.3  Gamma Prior
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Next, let’s have the prior inform our data. Prior knowledge can help 
regulate our data when that data is sparse. The function bayesPhishArrive() 
integrates these two distributions of data together. Reminder: this function 
and others can be found in the htmacyber_functions.R file at www.the 
metricsmanifesto.com.

# Prior beliefs for 1 week and phish data for 12 weeks 
prior <- c(5,1)
data <- c(87,12)
 
# Munge beliefs and data
post_sample <- bayesPhishArrive(prior, data)
 
# CI finds the phish rate “90% credible interval”
ci(post_sample$possible_grid,method = “HDI”)
 
[5.95, 8.31]
 
# Get most “plausible” rate from all “possible” rates
get_phish_rate(post_sample)
 
7.000575

On the surface, this may not seem all that impressive. After all, 87/12 is 
an average rate of 7.25. Our updated model that considers our prior came 
up with 7. So why all the fuss?

What we really want to know is if our rate is changing for the better 
given our beliefs and small data. Let’s assume we implement a new mitigat-
ing technology. We track results for three weeks and get the following phish 
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results per week: 6, 7, 8. How does that compare to our previous data? We 
are going to use a Bayesian A/B testing approach to compare results.

# 3 Weeks of data with new mitigations (21 events)
a_phish <- c(6,7,8)
A_pois <- rpois(length(a_phish), mean(a_phish))
 
# 12 weeks of previous data (87 events)
b_phish <- c(7,12,5,9,6,8,6,5,12,0,8,9)
B_pois <- rpois(length(b_phish), mean(b_phish))
 
# Compare data with prior
AB2 <- bayesTest(A_pois, B_pois, 
                 priors = c('shape' = 5, 'rate' = 1), 
                 n_samples = 1e6, 
                 distribution = 'poisson')
 
plot(AB2)

The three weeks of new data have a mean of 7. The previous data also 
have a mean of 7 when the prior was considered. That is why the distri-
butions in Figure 10.5 overlap in the center area. But distribution A is less 
certain than B. Its tails stick out to either end. To what extent do these two 
data-generating processes produce similar results?
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Figure 10.6 tells us that nearly 50% of A overlaps with B. We can’t tell 
if the mitigation is making a difference. If we had to make a choice today, 
we would have to say the data is inconclusive. It’s largely a function of the 
data being too small.

Let’s fast-forward in time to a full twelve weeks. Here is what the data 
looks like now:

a_phish <- c(6,7,8,8,6,3,4,5,7,0,3,3)

Let’s run our analysis again. I won’t put all the code here to conserve 
space. What I will share is the final graph (Figure 10.7).
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We are starting to see a difference, but it is still inconclusive. The mean 
for A is 5 and B is 7.25. Ideally, there would be 0 overlap between the two 
data-generating processes. At least, their credible intervals would not overlap.

Our code looks for a credible difference in the underlying data-
generating process. It does that by diffing the two distributions. If they were 
exactly the same distributions of data, the diff would produce a 0.

Any differences in data would show up as either a negative or positive 
value. If all the data are different in a particular direction, meaning they 
all fall to one side or the other of zero, then we could assume the data 
generating-processes are different. Let’s see how A and B differ:

# Get summary stats from the analysis
res <- summary(AB2)
 
# Print out the difference between the distributions
res$interval$Lambda
        5%        95% 
-0.3506995  0.1140491

Notice how the difference between the two distributions straddles 
0. We have −0.35 to 0.11. Since the difference does overlap with 0, we  
are not confident that the processes are credibly different. Perhaps  
we should extend our POC of the new solution? Of course, we may want 
to move on if the vendor claimed we would see amazing results (for a 
hefty price tag).

What I want to see is a strongly negative 90% credible interval. We want 
a negative difference because we hope our new mitigation produces less 
phish victim arrivals. We want it to be “strongly negative” because we are 
hoping the new investment really works.

Wait-Time Baselines

This next BOOM metric is closely related to arrivals. It is called wait-times. 
It also goes by interarrival time in the literature. We use the two names 
interchangeably.

Wait-time is an important measure in operations management—
particularly reliability engineering. These disciplines deal with queues of 
events. Those events could occur in milliseconds to much larger time frames.

As events flow in, you are looking to measure the expected rate with 
which the next event should materialize. In this sense, interarrivals are like 
canaries in a coal mine. They can help you detect changes in your data-
generating process with a finer grain than arrivals. Let’s work through a 
useful security example.
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Assume you have some security process that produces high-risk events. 
Events occur by the day. Some days may have no events. Some days may 
have multiple. Your job is to get a baseline “between extreme event” rate. 
Once you have a baseline you can set goals for betterment.

In the example below substitute in any security topic of interest. Note: 
non_bayes_waits() and other functions can be found in the htmacyber_
functions.R file at www.themetricsmanifesto.com. Also, once we cover a 
few examples using this function, we will use a Bayesian approach that 
expands our toolset.

library(tidyverse)

# Critical events per day
waits <- c(0,4,0,3,2,3,0,5,0,0,3,3)

# Graph probability of 1 or less events
non_bayes_waits(waits, to_val = 1)

In Figure 10.8 we see that there is an 85% chance the next event will 
arrive in one day or less. There’s roughly a 100% chance a critical event  
will arrive in two days. Let’s add some more days to our events.

waits <- c(0,4,0,3,2,3,0,5,0,0,3,3,0,0,1,0,1,0,0,0)

non_bayes_waits(waits, to_val = 1)
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Notice how our rate has improved slightly. That improvement came 
from adding more days with less event frequencies. It now takes about three 
days to approach a 100% probability of experiencing the next event.

waits <- c(0,4,0,3,2,3,0,5,0,0,3,3,0,0,1,0,1,0,0,0,
           0,1,0,0,1,1,0,0,0,0,1,1,0,0,0,0,1,0,0,2,
           0,0,0,0,2,0,0,1,0,0,0,3,0,0,1,0,0,0,0,0)
non_bayes_waits(waits, to_val = 1)
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Notice all the zeroes in the last example. This creates “over-dispersion.” 
That’s fancy talk for “lots of wiggle in the data.” The current approach does 
not address over-dispersion very well. Fortunately, Bayesian approaches 
can easily capture our data’s wiggle. The functions below are also found on 
the book’s site: www.themetricsmanifesto.com.

In this example, we are going to take a slightly different route to gener-
ating our prior. This method is called empirical Bayes. It uses empirical data 
to generate our priors.

Below we have 12 days’ worth of events as our prior. Next, we have 
24 days’ worth of events. Our new bayes_waits_basic() function takes our 
data in and spits out a standard Bayesian graph.

# 12 days worth of prior events
prior <- c(1,0,0,1,0,2,0,1,1,0,0,1)
 
# 24 days of events.
waits <- c(0,4,0,3,2,3,0,5,0,0,3,3,0,0,1,0,1,0,0,0,
           0,1,0,0)
 
# A function that analyzes data and prints out results
bayes_waits_basic(prior, waits)  

This graph above shows how our prior influences our data (likelihood) 
and produces the posterior. The posterior distribution is the mathematical 
compromise between the prior and the likelihood. The two vertical lines are 
the 95% credible interval for the posterior. The interarrival rate is between 
0.5 and 1.1 portions of an event per day.

What I really want to ask is, “How long does it take for the next full 
event to arrive?” To get at this result we simulate a thousand results from the 
posterior. As you may recall, simulation selects values from the posterior in 
a quasi-random fashion. That means the results will be selected in propor-
tion to the posterior distribution.
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This type of analysis is far more intuitive. You can credibly believe an 
event will arrive within four days given our current data. And there is a 50% 
chance an event will arrive in just under a day.

Let’s pump this up with many more results. Below we have two weeks 
of days as a prior followed by a quarter’s worth of days:

prior <- c(1,0,3,0,1,0,3,1,0,1,0,0,1,2,0,
           1,0,1,0,1,0,3,0,0,1,0,3,1,0,1)
 
waits <- c(0,0,1,0,1,0,0,1,0,1,0,0,1,2,0,
           1,0,0,2,2,0,0,0,2,1,0,3,0,0,0,
           0,2,2,0,0,0,3,0,0,0,1,0,1,0,1,
           2,0,0,1,0,0,0,1,0,1,0,0,1,2,0,
           1,0,1,0,1,0,1,0,0,0,2,0,0,0,1,
           0,1,1,0,0,0,2,0,0,1,0,0,0,0,1)
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Interarrival time halved between Figures 10.13 and 10.14. That is easy 
to see. You can use this method to detect fine-grained changes. What you 
would be looking for is a consistent difference over time.

We gave arrival and interarrival rates a lot of attention. It’s a critical type 
of measurement for security. We will conclude our discussion of BOOM 
metrics with escape rates.

Escape Rates

This section focuses on escape rates. It also provides more clarity on 
empirical Bayes methods. You first encountered empirical Bayes with wait-
times above.

An escape rate is a canonical measure used in software develop-
ment. It’s the rate with which bugs escape from development into  
production. If your bug-squashing process is efficient, then escapes should 
rarely happen.

The same concept can be applied liberally to any number of security 
processes. An obvious example is vulnerabilities and configuration items 
found in staging that make their way into production. Generalizing this 
concept further you could say escapes measure the movement of risk across 
a barrier.

Preproduction to production represents a barrier. When you cross the 
barrier, you’re more exposed to loss. With that in mind, a service level 
agreement (SLA) is a barrier. A risk that lives beyond an SLA can be thought 
of as escaping. A risk mitigated within SLA is thought to be in control.
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For our use case, let’s assume you have 25 development teams in your 
org. You are looking to gauge the rate with which vulnerabilities and con-
figuration items discovered in development make their way into production. 
Some groups have been around only a few months. Many have a year or 
more of experience.

The groups with limited data can’t be trusted. It’s like a batter who has 
been up to bat only a handful of times. If he was lucky and got a bunch of 
hits, he might have a batting average over 500 or more. That average obvi-
ously won’t hold.

We adjust this rate by using an approach called empirical Bayes. It’s a 
fancy turn of phrase for a simple concept. In short, we create a special aver-
age from the long-run data. We trust the long-run data to be more reflective 
of the overarching data-generating process. This new average is used to 
update every group. Let’s see how this works.

Figures 10.16 and 10.17 hold portions of results. The first is a sample of 
groups with small data. The second set are those with larger data. Glancing 
at the total_vulns column shows the relative sizes. If you divide the prod_
vuln value by total_vulns you get the escape_avg. Figure 10.15 displays this 
average as a grey dot.
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Our empirical Bayes analysis creates the emp_bayes_avg. The black 
dots in Figure 10.15 represent this value. It balances out data that is biased 
by its small size. Small data makes for more uncertainty. The spread between 
the low_ci and high_ci values reflects our uncertainty—it’s twice as large in 
the first sample.

This wraps up our whirlwind example of functional security metrics. 
As mentioned, all the code for these samples can be found at www.the
metricsmanifesto.com.

Security Data Marts

Note: Chapter 11 is a tutorial on security data mart design. The section below 
only introduces the concept as part of the maturity model.

“Data mart” is a red flag for some analysts. It brings up images of 
bloated data warehouses and complex ETL (extraction, transformation, 
load) programs. But when we say “data mart” we are steering clear of any 
particular implementation. If you wanted our ideal definition, we would 
say it is “a subject-matter-specific, immutable, elastic, highly parallelized 
and atomic data store that easily connects with other subject data stores.” 
Enough buzzwords? Translation: super-fast in all its operations, scales with 
data growth, and easy to reason over for the end users. We would also add, 
“in the cloud.” That’s only because we are not enamored with implementa-
tion and want to get on with the business of managing security risk. The 
reality is that most readers of this book will have ready access to traditional 
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relational database management system (RDBMS) technology—even on 
their laptops.

Security data marts (SDM) metrics answer questions related to cross-
program effectiveness. Are people, process, and technology working 
together effectively to reduce risk across multiple security domains? (Note: 
When we say “security system” we typically mean the combination of peo-
ple, process, and technology.) More specifically, is your system improving 
or degrading in its ability to reduce risk over time? An example question 
could be “Are end users who operate systems with security controls XYZ 
less likely to be compromised? Or are there certain vendor controls, or 
combinations of controls, more effective than others? Is there useless redun-
dancy in these investments?” By way of example related to endpoint secu-
rity effectiveness, these types of questions could rely on data coming from 
logs such as the following:

■■ Asset management (CMDB);
■■ Software bill of materials (SBOMs);
■■ Vulnerability management;
■■ Identity and access management (IAM);
■■ Endpoint detection and response (EDR);
■■ Security information and event management (SIEM);
■■ Static/dynamic analysis (SAST/DAST);
■■ Cloud workload protection;
■■ Countless other security things (COSTs).

Other questions could include “How long is exploitable residual risk 
sitting on endpoints before discovery and prioritization for removal? Is our 
‘system’ fast enough? How fast should it be, and how much would it cost 
to achieve that rate?”

Data marts are perfect for answering questions about how long hidden 
malicious activity exists before detection. This is something security infor-
mation and event management (SIEM) solutions cannot do—although they 
can be a data source for data marts.

Eventually, and this could be a long “eventually,” security vendor sys-
tems catch up with the reality of the bad guys on your network. It could 
take moments to months if not years. For example, investments that deter-
mine the good or bad reputation of external systems get updated on the 
fly. Some of those systems may be used by bad actors as “command and 
control” servers to manage infected systems in your network. Those servers 
(our cloud services) may have existed for months before vendor acknowl-
edgment. Antivirus definitions are updated regularly as new malware is 
discovered. Malware may have been sitting on endpoints for months before 
that update. Vulnerability management systems are updated when new 
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zero-day or other vulnerabilities are discovered. Vulnerabilities can exist for 
many years before software or security vendors know about them. During 
that time, malicious actors may have been exploiting those vulnerabilities 
without your knowledge.

This whole subject of measuring residual risk is a bit of an elephant 
in the room for the cybersecurity industry. You are always exposed at any 
given point in time and your vendor solutions are by definition always 
late. Ask any security professional, and they would acknowledge this as 
an obvious non-epiphany. If it’s so obvious, then why don’t they measure 
it with the intent of improving on it? It’s readily measurable and should be 
a priority.

Measuring that exposure and investing to buy it down at the best ROI 
is a key practice in cybersecurity risk management that is facilitated by SDM 
in conjunction with what you learned in previous chapters. In Chapter 11, 
we will introduce a KPI called “survival analysis” that addresses the need 
to measure aging residual risk. But here’s a dirty little secret: if you are not 
measuring your residual exposure rate, then it’s likely getting worse. We 
need to be able to ask cross-domain questions like these if we are going to 
fight the good fight. Realize that the bad guys attack across domains. Our 
analytics must break out of functional silos to address that reality.

Prescriptive Analytics

As stated earlier, prescriptive analytics is a book-length topic in and of itself. 
Our intent here is to initialize the conversation for the security industry. Let’s 
describe prescriptive analytics by first establishing where it belongs among 
three categories of analytics:

■■ Descriptive analytics: The majority of analytics out there are descriptive. 
They are just basic aggregates such as sums and averages against cer-
tain groups of interest like month-over-month burnup and burndown 
of certain classes of risk. This is a standard descriptive analytic. Stand-
ard online analytical processing (OLAP) fares well against descriptive 
analytics. But as stated, OLAP business intelligence (BI) has not seen 
enough traction in security. Functional and SDM approaches largely 
consist of descriptive analytics except when we want to use that data to 
update our sparse analytic models’ beliefs.

■■ Predictive analytics: Predictive analytics implies predicting the future. 
But strictly speaking, that is not what is happening. You are using past 
data to make a forecast about a potential future outcome. Most security 
metrics programs don’t reach this level. Some security professionals 
and vendors may protest and say, “What about machine learning? We 
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do that!” It is here that we need to make a slight detour on the topic of 
machine learning, aka data science versus decision science.

Using machine learning techniques stands a bit apart from decision 
analysis. Indeed, finding patterns via machine learning is an increas-
ingly important practice in fighting the bad guy. As previously stated, 
vendors are late in detecting new attacks, and machine learning has 
promise in early detection of new threats. But probabilistic signals 
applied to real-time data have the potential to become “more noise” 
to prioritize. “Prioritization” means determining what next when in 
the heat of battle. That is what the “management” part of SIEM really 
means—prioritization of what to do next. In that sense, this is where 
decision analysis could also shine. (Unfortunately, the SIEM market has 
not adopted decision analysis. Instead, it retains questionable ordinal 
approaches for prioritizing incident-response activity.)

■■ Prescriptive analytics: In short, prescriptive analytics runs multiple 
models from both data and decision science realms and provides opti-
mized recommendations for decision making. When done in a big data 
and stream analytics context, these decisions can be done in real time 
and in some cases take actions on your behalf—approaching “artificial 
intelligence.”

Simply put, our model states that you start with decision analysis and 
you stick with it throughout as you increase your ingestion of empirical evi-
dence. At the prescriptive level, data science model output becomes inputs 
into decision analysis models. These models work together to propose, and 
in some cases dynamically make, decisions. Decisions can be learned and 
hence become input back into the model. An example use case for prescrip-
tive analytics would be in what we call “chasing rabbits down holes.” As 
stated, much operational security technology revolves around detect, block, 
remove, and repeat. At a high level this is how antivirus software and vari-
ous inline defenses work. But when there is a breach, or some sort of out-
break, then the troops are rallied. What about that gray area that precedes 
a breach and/or may be an indication of an ongoing breach? Meaning, you 
don’t have empirical evidence of an ongoing breach, you just have evidence 
that certain assets were compromised and now they are remediated.

For example, consider malware that was cleaned successfully, but before 
being cleaned, it was being blocked from communicating to a command-
and-control server by inline reputation services. You gather additional evi-
dence that compromised systems were attempting to send out messages 
to now blocked command-and-control servers. This has been occurring 
for months. What do you do? You have removed the malware but could 
there be an ongoing breach that you still don’t see? Or perhaps there was 
a breach that is now over that you missed? Meaning, do you start forensics 
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investigations to see if there is one or more broader malicious “campaigns” 
that are, or were, siphoning off data?

In an ideal world, where resources are unlimited, the answer would be 
“yes!” But the reality is that your incident response team is typically 100% 
allocated to following confirmed incidents as opposed to likely breaches. It 
creates a dilemma. These “possible breaches” left without follow-up could 
mature into full-blown, long-term breaches. In fact, you would likely never 
get in front of these phenomena unless you figure out a way to prioritize the 
data you have. We propose that approaches similar to the ones presented in 
Chapter 9 can be integrated near in real time into existing event detection 
systems. For example, the lens model is computationally fast by reducing 
the need for massive “node probability tables.” It’s also thoroughly Bayesian 
and can accept both empirical evidence coming directly from deterministic 
and nondeterministic (data science)-based security systems and calibrated 
beliefs from security experts. Being that it’s Bayesian, it can then be used 
for learning based on the decision outcomes of the model itself—constantly 
updating its belief about various scenario types and recommending when 
certain “gray” events should be further investigated—and going so far as 
analyzing the value of additional information.

This type of approach starts looking more and more like artificial intel-
ligence applied to the cybersecurity realm. Again, this is a big, future book-
length topic, and we only proposed to shine a light on this future direction.

Notes

	 1.	 Richard Seiersen, The Metrics Manifesto: Confronting Security With 
Data (Hoboken, NJ: Wiley, 2022).

	 2.	 Andrew Gelman, “N Is Never Large,” Statistical Modeling, Causal Infer-
ence, and Social Science (blog), July 31, 2005, http://andrewgelman 
.com/2005/07/31/n_is_never_larg/.

	 3.	 Andrew Jaquith, Security Metrics: Replacing Fear, Uncertainty, and 
Doubt (Upper Saddle River, NJ: Pearson Education, 2007).
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CHAPTER 11

In Chapter 10, we shared an operational security-metrics maturity model. 
The model started with sparse data analytics. That really is the main 

theme of this book: “How to measure and then decide on what to invest in 
when you have a lot of uncertainty caused by limited empirical data.” Chap-
ters 8 and 9 represent the main modeling techniques used in sparse data 
analytics. The goal is to make the best decision given the circumstances. 
And as you may recall, a decision is an “irrevocable allocation of resources.” 
In short, you know you’ve made a decision when you have written a check. 
Is measurement all over once you have made an investment? Certainly not!

What do you measure once you have made a decision (i.e., an invest-
ment)? You determine if your investment is meeting the performance goals 
you have set for it. For the security professional this is the realm of func-
tional security metrics. Once you have made a security investment, you 
need to measure how well that investment is doing against certain targets. 
That target is often considered a KPI. We covered advanced measurement 
techniques encompassed in the baseline objectives and optimization meas-
urements (BOOM) framework. This framework is detailed in Seiersen’s The 
Metrics Manifesto: Confronting Security With Data.

Assuming you have made a serious outlay of cash, this would war-
rant some form of continuous “automated” measurement for optimization 
purposes. Likely you may have made a number of investments that work 
together to affect one or more key risks. When it comes to integrating data 
sources for the purpose of measuring historical performance, we are now 
talking security metrics that start to look more like business intelligence 
(BI). There are many great books on business intelligence. Most of them are 
large and in some cases cover multiple volumes. So why do we need more 
on this topic, and what could we hope to achieve in just one chapter?

How Well Are My Security 
Investments Working Together?
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Specifically, we are not aware of any books that advocate BI for cyber-
security metrics. This is a profound shame. In fact, Jaquith’s book Security 
Metrics advocated against such an approach. Over 15 years ago we too 
might have held the same opinion. (Although at that time one of the authors 
was rolling out security data marts like hotcakes.)

But risks and technology have evolved, and we need to as well. Analytic 
technology has improved, both open source and commercial, and more and 
more security systems “play well with others.” Almost all enterprise security 
solutions have APIs and/or direct database connectivity to extract well-
formed and consistent data. It could not be any easier.

Our first goal is to expose and encourage the reader to investigate this 
classical form of process modeling in a modern context. To that end, Omer 
Singer, head of cybersecurity strategy at Snowflake, has generously agreed 
to share how a modern full-data stack approach can be used to address 
security BI with ease. After this section, we will dive into core “logical mod-
eling” for integrated security metrics.

Security Metrics with the Modern Data Stack

Measuring your first security KPI doesn’t require advanced analytics. Follow 
the process described in this section to quickly show the value of a data-
driven security program, and later on work your way toward data models 
and data science.

Here is a straightforward approach to creating security metrics with the 
modern data stack1 already deployed at your enterprise. That’s the popular 
term for where the data engineering team combines cloud-based solutions 
for data pipeline (ETL), data platform, and enterprise reporting (BI). How 
are security teams successfully leveraging2 this stack for security metrics?

Let’s say we’ve chosen to start with a metric for timely deprovisioning of 
terminated employees. This metric maps to the “account management” criti-
cal security control (CSC) number 5 in CIS, and it’s all the more important 
to measure because of how often this control gets violated. When my team 
started tracking this as a KPI, we learned that over 20% of employees had 
access to systems longer than allowed by policy!

To get started, we turn to the modern data stack that’s already in place 
at our company—say we have “as a service” the following layers: ETL deliv-
ered by Fivetran, data platform delivered by Snowflake, and BI delivered by 
Tableau. These components are already integrated with each other and can 
support the sources we need for this metric.

Our KPI will depend on how quickly terminated employees are pro-
cessed by IT. So we’ll enter our Workday3 and ServiceNow4 details in 
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Fivetran, which will stream updates regarding HR changes and IT ticket 
updates from those source systems to Snowflake, our data platform. Note 
that setting up a data pipeline is something that your data team regularly 
does on behalf of other departments. Follow the same process as finance, 
marketing, and sales in order to get timely support for your use case.

Speaking of use case, collecting data should always be done in service 
of answering specific questions. We want to answer the question “What per-
centage of employee terminations took too long to deprovision?” For that, 
we need to know when each termination occurs and when each depro-
visioning is completed. To help with accountability, it’ll help us to know 
when the request to deprovision was filed by HR to IT. And of course we 
need to know what is the maximum deprovisioning time allowed by our 
security policy.

So our KPI will be based on three calculations.

■■ “Time to file”: how much time passed between when the termina-
tion was recorded in the HR system and when the service ticket 
was opened.

FIGURE 11.1  The Modern Data Stack
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■■ “Time to deprovision”: how much time passed between when the ser-
vice ticket was opened and when the service ticket was closed.

■■ “Total time elapsed”: the sum of “Time to file” and “Time to deprovision.”

If our security policy expects terminated employees to be locked out 
within 24 hours, then our control effectiveness rate is based on compar-
ing the number of terminations completed on time to the total number of 
terminations.

The logic for measuring control effectiveness is one of the many things 
that your data team can help you with. They do this for other departments 
all the time, trust me.

Based on the logic we worked out for this control, we need to have the 
following fields for each termination event:

■■ Termination time (from Workday);
■■ Ticket creation time (from ServiceNow);
■■ Ticket close time (from ServiceNow);
■■ Employee ID (from both).

Let’s look at three termination records as gathered by our ETL to our 
data platform (Figure 11.2):

In the first case, the whole process wrapped up in under 24 hours. Well 
done. In the next case, HR took almost two days to file the ticket—not good. 
The third case also represents a policy violation because IT took way too 
long to work through the deprovisioning. Represented as a security metric, 
we’re looking at a 33% success rate.

All of these calculations are easily performed in SQL. Whether someone 
on the security team is comfortable with SQL or through collaboration with 
the data team, this KPI can be quickly implemented once the data is flow-
ing. To see an example of SQL code that generates this KPI, check out the 
“How to Measure Anything in Cybersecurity Risk” listing on the Snowflake 
Marketplace.

FIGURE 11.2  ETL Results
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Now that we have our query code, it’s time to visualize the results. 
We’ll want to track this KPI in the same reporting (BI) tool as the rest of 
the enterprise. In our example, that’s Tableau. None of the relevant stake-
holders from security, HR, or IT should be logging into any other tool for 
security metrics. Nor should they be emailing screenshots for that matter—
consistency in data analysis and reporting drives alignment.

As data accumulates, our analytics return results in daily or weekly 
buckets, which are reported in a line chart. That line chart will let us see 
a trend—are we getting better at deprovisioning terminated employees? A 
separate chart can show the breakdown in policy violations by responsi-
bility: HR misses vs IT misses. We should also expose a table view with 
specific case details for investigation. That way all stakeholders are clear on 
what the recent “misses” have been and who’s responsible.

The end result might look something like Figure 11.3:

These dashboards are available on the Snowflake Marketplace; access 
the free listing and use it as a template for your KPIs.

The approach described above is effective at measuring cybersecu-
rity risk in a way that drives continuous improvement. For my team, it 
meant aligning HR and IT on the need to improve their processes for timely 

FIGURE 11.3  BI End Results
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deprovisioning. And it enabled them to do it independently. Once all sides 
agreed on the data, each org could follow along in the dashboard to see 
their progress in handling termination events, without the need for meet-
ings with security to pester, plead, or threaten. The same stats were being 
tracked by the CIO and CFO and the VPs of each org took it on themselves 
to fix what needed to be fixed.

You can apply this approach to many other use cases. Depending on 
your priorities, you can set up KPI tracking for software vulnerabilities, 
cloud misconfigurations, log visibility, agent coverage, awareness training, 
phishing tests, admin access, alert volume, and triage time, just to name a 
few. And security metrics tend to share data sets so that, for example, the 
same asset inventory that supports vulnerability KPIs are helpful for track-
ing agent coverage.

It’s worth noting that security vendors are increasingly embracing the 
modern data stack. Key vendors in SIEM, GRC, cloud security, and vulner-
ability management now support data export, data sharing, or can even run 
as a “connected application” directly on your cloud data platform. These 
integrations mean that many of your datasets can be available for analysis 
off-the-shelf without the need for ETL integration. Ask your security vendors 
about their data platform integration options and how they can streamline 
your data collection process.

As you can see, it’s easier than ever to get started with security metrics. 
If you can describe your expectations of the environment, your company’s 
data stack can be used to quickly translate those expectations into automated 
queries that power near-real-time reports accessible across the enterprise. 
Once you get into the habit of starting your day with a hot cup of coffee and 
a fresh BI dashboard, you’ll wonder how you ever worked without it.

Modeling for Security Business Intelligence

Our goal in this chapter is to give a basic, intuitive explanation in terms of 
a subset of business intelligence: dimensional modeling.

Dimensional modeling is a logical approach to designing physical data 
marts. Data marts are subject-specific structures that can be connected 
together via dimensions like Legos. Thus they fit well into the operational 
security metrics domain.

Figure 11.4 is the pattern we use for most of our dimensional modeling 
efforts. Such a model is typically referred to as a “cube” of three key dimen-
sions: time, value, and risk. Most operational security measurement takes 
this form, and in fact the only thing that changes per area is the particular 
risk you are studying. Time and value end up being the consistent connec-
tive tissue that allows us to measure across (i.e. drill across) risk areas.
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Just remember that this is a quick overview of dimensional modeling. 
It’s also our hope that dimensional approaches to security metrics will grow 
over time. With the growth of cloud-based database platforms such as Snow-
flake, modern approaches such as DataVault 2.0,5 and related open source 
analytic-based applications such as Apache Superset,6 now is the right time.

Addressing BI Concerns

At the mention of BI, many readers may see images of bloated data ware-
houses with complex ETLs (extraction, transformation, and load). And 
indeed ETLs and even visualizations can take quarters to deliver value. 
That problem stems from the complexities underlying relational database 
infrastructure. It also stems from how analytic outcomes are framed. On the 
infrastructure side of things, this has largely been solved.

Most cloud providers have big data solutions. Specifically, companies 
such as Amazon, Google, and Microsoft have mature cloud database prod-
ucts that scale. (And as mentioned, companies such as Snowflake offer 
complete end-to-end specialized solutions for the use cases discussed in 
this chapter.) Even Excel can handle larger datasets and simulations as is 
seen in the tools provided on our site.

In terms of BI prejudices toward an analytic approach, you may have 
heard the following about business intelligence: “BI is like driving the busi-
ness forward by looking through the rearview mirror.” You may also hear 
things like, “Business intelligence is dead!” But to us this is like saying, 
“Descriptive analytics is dead!” or “Looking at data about things that hap-
pened in the past is dead!” What’s dead, or should be, is slow, cumbersome 
approaches to doing analytics that add no strategic value. Those who make 
those declarations are simply guilty of the “beat the bear” or “exsupero 
ursus” fallacy we mentioned in Chapter 5. Of course, all predictive analytics 
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FIGURE 11.4  The Standard Security Data Mart
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are predicated on things that happened in the past so as to forecast the 
future! In short, there is always some latency when it comes to observable 
facts that make up a predictive model.

Now that we have hopefully blown up any prejudice associated with BI, 
we can get on with the true core of this chapter: how to determine if secu-
rity investments are working well together by using dimensional modeling.

Just the Facts: What Is Dimensional Modeling, and Why Do 
I Need It?

When you are asking dimensional questions about historical facts that allow 
for both aggregation and drilling down to atomic events, then you are doing 
BI. A meta-requirement typically includes data consistency, meaning that 
the problem you are modeling requires some consistency from a time-series 
perspective: day to day, month to month, and so forth. Data consistency is 
particularly important for forensics and regulatory compliance reporting. 
This means that consistency over time cannot be ad hoc since it will be 
audited and could even support legal action.

Dimensional modeling is a logical design process for producing data 
marts. (How you physically model these things is your choice, i.e. as a big 
write-only table, as hubs and satellites [see DataVault 2.0 reference], or sets 
of write-only files in S3 buckets7—it’s dealer’s choice.) In simplified logical 
modeling we are working with two macro objects: facts and dimensions.  
A grouping of dimensions that surround a list of facts is a data mart.  
Figure 11.4 is a simple logical data mart for vulnerabilities. Note that it  
follows the same pattern from Figure 11.5. Vulnerability in this case is a 
particular risk dimension. Asset is a value dimension, value being something 
that is worth protecting. We also have a date dimension, which exists in 
almost all models.

In the middle of your dimensional tables is something called a “fact 
table.” A fact table holds pointers to the dimension tables. The fact table 
could be in the millions if not billions of rows. If your asset dimension is 
in the hundreds of thousands if not millions, and that is a reality one of the 
authors has modeled, then your fact table would certainly be in the billions. 
Do the math; there could be N vulnerabilities per asset that exist at a given 
time. Also note that we said “logical.” This is a reminder that we will not 
necessarily create physical objects like dimension tables and fact tables. 
With modern approaches, when you query against various data sources it 
may be all virtualized into one simple in-memory data object. So don’t let 
these various schemas fool you; they are just for our brains so we can get 
clear about our metrics questions.
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Conforming or shared dimensions allow you to connect data marts 
together to ask new and interesting questions. Probably the most popular 
conforming dimension is “date time.” The second most popular, at least in 
security, would be “asset.” Asset can be decomposed in a variety of man-
ners: portfolio, application, product, server, virtual server, container, micro 
service, data, and so on. An asset represents value that gets protected by 
controls, attacked by malicious threats, and used for intended purposes by 
authorized users. To that end, you will likely want to have data marts related 
to the state of vulnerabilities, configurations, and mitigation. Each of those 
data marts may share the same concept of asset. That “sharing” across secu-
rity domains is what allows us to ask both horizontal and vertical questions. 
Or, as we like to say in the BI world, conforming dimensions allow us to 
drill down and across.

In terms of a drill-across use case, let’s say you have a metric called 
“full metal jacket.” A full metal jacket, as shown in Figure 11.6, represents 
a series of macro-hardening requirements for certain classes of assets. Spe-
cifically, you have KPIs in terms of least privilege (config), patch status, 
speed of mitigations to end points, and availability of blocking controls on 
the network. This is all really control coverage metrics in relationship to 
some concept of value (asset). The simple structure below would give you 
guidance in that regard. You could determine where you have completely 
unmitigated, known-exploitable, residual risk versus what is controlled via 
configuration or mitigation.

What is missing from this model is some concept of “threat”: how well 
your macro concept of protecting value (full metal jacket) is doing against cer
tain vectors of threat. Figure 11.7 is a simple extension of the model. In this 
case, you integrate your malware-analysis data mart to your conforming data 
marts. This is simple because your malware mart conforms on asset and date.

This mart could answer hundreds if not thousands of questions about 
the value of various forms of defense against malware. For example, on the 
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mitigation dimension, you could ask questions about the performance of 
host-based versus inline defenses against spear phishing. Or, in the same 
vein, how often did application whitelisting have impact where all other con-
trols failed—that is, is there a class of malware where application whitelist-
ing is the last line of defense? (Note, application whitelisting is a control 
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that only allows approved applications to run. Thus, if something malicious 
attempts to install itself or run, in theory, the application whitelisting con-
trol would stop it.) Is it increasingly the last line of defense, meaning other 
investments are deteriorating? Or are there new strains of malware that all 
your protections are failing at finding in a timely manner, thus hinting at a 
possible new investment and/or de-investment opportunity? In short, are 
you getting the ROI on whitelisting you predicted when you modeled it as 
an investment? With models like this it becomes obvious which protections 
are underperforming, which stand out and deserve more investment, and 
which are retirement candidates, providing opportunity for new, innovative 
investments to address unmitigated growing risks.

Interestingly, in dimensional modeling, a fact in a fact table is also 
known as a “measure.” They’re called a measure because they measure a 
process at the atomic level. “Atomic” means you cannot decompose the 
event being measured any further. A typical fact in business would be 
the sale of some product such as a can of beans. The measure in this fact 
would be the sale price. You might want to know how much of a particu-
lar product you sold at a particular time and place. Additionally, you may 
want to watch its sales performance quarter by quarter. Perhaps you want 
to compare the profitability of a certain product versus another, given cer-
tain geographical markets and/or store placements, and so forth. This is all 
traditional BI.

What is a “security fact”? It is simply an event that happened. It could be 
that a firewall rule was changed, or it could be that an intrusion prevention 
system blocked a particular attack. It could be the state of a particular piece 
of software in a cloud application at a particular time. The point is that we 
are recording that an event (or state change) happened or did not happen. 
State could change by the millisecond or by the year. Because of this  
on/off metric, as opposed to a monetary measure, the security fact is said to 
be “factless.” You are essentially summing up a bunch of ones as opposed  
to dollars and cents. A fact table in the traditional sense would look some-
thing like Table 11.1 for a simple vulnerability data mart.

TABLE 11.1  A Fact Table with Multiple Vulnerabilities for One Asset at 
a Given Time

Vuln_Dim_ID Asset_Dim_ID Date_Dim_ID Event

1 43 67987 1

2 43 67987 1

3 43 67987 1

4 43 67987 1



268	 Cybersecurity Risk Management for the Enterprise

TABLE 11.3  Asset Dimension

Asset_ID IP FQDN OS Type Service Pack BuildNum

1 10.0.0.1 thing1.foo.org Win10 Laptop n/a 14257

2 10.0.0.2 thing2.foo.org Win10 Laptop n/a 14257

3 10.0.0.3 thing3.foo.org Win10 Laptop n/a 14257

4 10.0.0.4 thing4.foo.org Win10 Laptop n/a 14257

In old-school data marts the first three columns are IDs that are refer-
ences to dimensional tables. You would sum(event) based on dimensional 
criteria. While perhaps going into a little optional technical detail, Table 11.2 
is what that same data structure might look like with the IDs revolved (note 
that date is an epoch).

We have various CVEs, which is short for “common vulnerabilities and 
exposures.” The vulnerability dimension table would hold all the salient 
characteristics of the vulnerability that could additionally constrain a query. 
We have an IP address, but yet again there could be an additional 100 char-
acteristics in the asset dimension we might use for our interrogation. Last, 
there is the timestamp.

A dimension is a decomposition of something of interest. It’s a bunch 
of descriptive characteristics of some fact that allow you to ask many and 
varied questions. For example, in our asset dimension we could also have 
things such as operating system or service pack version. In fact, if storage 
is no object, you could in theory track a complete list of installed software 
and its versions related to a particular concept of asset over time. This asset 
could in turn become one or more data marts with facts that you track. You 
just need to be sure that you have an analytic that requires that level of 
decomposition. While BI is getting significantly easier, this is an area where 
useless decompositions can lead to a lot of wasted effort. Brainstorm with 
your stakeholders and shoot for agile results first. Apply the KISS principle 
(Keep it simple, stupid).

Table 11.3 is a small example of what a dimension object might look 
like; note that it could be 100 or more columns wide.

TABLE 11.2  Vulnerability Facts with Dimensional References Resolved

Vulnerability Asset Date Event

CVE-2016–0063 10.0.10.10 1455148800 1

CVE-2016–0060 10.0.10.10 1455148800 1

CVE-2016–0061 10.0.10.10 1455148800 1

CVE-2016–0973 10.0.10.10 1455148800 1

http://thing1.foo.org
http://thing2.foo.org
http://thing3.foo.org
http://thing4.foo.org
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Now that we have covered some of the very basics of dimensional 
modeling, we are going to create a dimensional model. Our goal in this 
case is to keep the explanation simple, intuitive, and nontechnical. No 
need to create the dimensional model to rule the universe that anticipates 
any and all possible questions. You can add those values as you have 
need for them.

Dimensional Modeling Use Case: Advanced Data Stealing Threats

For this use case let’s assume you developed a KPI around a new distinc-
tion you are calling “Advanced data stealing threats,” or ADST for short. 
Your definition of this threat is “malware that steals data and that your com-
mercial off-the-shelf security solutions originally miss,” meaning the ADST 
is active for some time before your investments “catch up” and stop it. Let’s 
assume you used Excel, R, or Python to do a quick analysis on a few sam-
ples of ADST over the last year. Specifically, you performed what is called a 
“survival analysis” to get the graph shown in Figure 11.8.

What is survival analysis? (See Chapter 9.) It’s the analysis of things that 
have a life span for which there is eventually some change in status inclu-
sive of end of life. While survival analysis originates in the medical sphere, 
it has application to engineering, insurance, political science, business 
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management, economics, and even security. The heart of survival analysis 
is the survival function. In our case, this ends up being a curve that maps a 
time variable to a proportion. This way we can make inferences about the 
life expectancy of certain phenomena, such as ADSTs.

Note the two instances called out, where financial impact occurred. 
For a lack of better options you decide you want to “improve the overall 
curve,” particularly in relationship to those two losses. So your KPI becomes 
“Improve on 20% of advanced threats surviving for 70 days or greater.” You 
have decided that this is something that you should be measuring closely 
for the foreseeable future. (This is indeed something we do recommend 
measuring as a fundamental security metric.)

We will need to list the “dimensions” we have and how they support 
an ADST survival analysis mart (see Table 11.4). We want to know whether 
our capabilities are effectively stopping ADST. Is there an opportunity to 
optimize a particular solution? Is one vendor outperforming others, or is 
one lagging?

TABLE 11.4  ADST Dimension Descriptions

Dimension Description

Asset An asset could be a computer, an application, a web server, a 
database, a cloud service, a portfolio, or even data. While 
it’s tempting to capture every potential jot and tittle related 
to the concept of an asset, we recommend only selecting 
a minimal subset of fields to start with. To that end, we’re 
looking to focus on the end user’s system. This is not to 
say that server-class and/or larger applications are out 
of scope over time. Therefore, this dimension will solely 
focus on desktop and laptop computers and/or any other 
systems on the network that browse, get mail, and so forth.

HTTP Blocked This is a list of all known bad-reputation sites that your 
reputation systems are aware of. At a previous engagement we 
built a dimensional table for this same purpose that tracked 
pure egress web traffic. It was well over 100 billion records. 
This sort of table that just logs endlessly and is used to create 
other dimensions is formally called a “junk dimension.” The 
idea is that you are throwing a lot of “junk” into it without 
much care.

This “junk dimension” looks backward in HTTP history to see 
when a particular asset first started attempting communication 
with a now known malicious command-and-control server.
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The data mart as shown in Figure 11.9 leverages the existing marts and 
brings in HTTP-related data from web proxies. This mart would suffice for 
complete ADST analysis.

In looking at Table 11.5, you can see how simple our fact table ends 
up being. Dimensions tend to be wide, and facts are relatively thin. Here is 
how the fact table works:

■■ If mitigation is responsible for blocking, then the mit_id field will be 
populated with the ID of the particular mitigation vendor solution that 
was responsible for thwarting the attack; otherwise it will be 0. The 
mitigation ID points back to the mitigation dimension.

■■ If malware defense is responsible for closure, then the mal_id will be 
populated with the ID for the particular piece of antimalware coming 
from the malware dimension.

■■ The http_id points to the URL for the particular command-and-
control server that the asset was attempting to talk to at the time of 
being thwarted.

Dimension Description

Vulnerability This is a standard vulnerability dimension, typically all of the 
descriptive data coming from a vulnerability management 
system. Perhaps it’s something coming from a web application 
scanner such as Burp Suite or some other form of dynamic 
analysis. One of the authors has built vulnerability dimensions 
well in excess of 50 fields.

Configuration We put this here as a loose correlation, but the reality is that this 
would be a drill-across for meta metrics. This is why there is a 
dotted line in the dimensional model in Figure 11.9. You could 
have 100–200 controls per control area be it OS, web server, 
database, and so forth. If you have 100,000 assets, and you 
track changes over time, this would certainly be in the several 
hundreds of millions of records quickly.

Mitigation This is a complete list of all dynamic blocking rules from various 
host and inline mitigating controls and when they fired in 
relationship to the ADST.

Malware A list of all malware variants that various malware systems 
are aware of. Antimalware could in theory be lumped into 
mitigations, but it is a large enough subject that it likely 
warrants its own mart.

TABLE 11.4  (continued)
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■■ date_http_start_id points to the date dimension indicating when the 
ADST was first noticed. Nine times out of ten this will require que-
rying back through HTTP logs after the mitigation system and/or  
the malware system becomes aware of the threat. This is easily 
automated, but as previously stated the logs would likely be in a big 
data system.

■■ date_http_end_id would be the same as the previous but for when the 
ADST was thwarted.

■■ asset_id points to the asset in question.
■■ vuln_id is populated if there is a correlation to a known vulnerabil-
ity. If it is the only populated ID, other than the date and asset fields, 
then it would indicate that a patch was responsible for thwarting the 
ADST instance.

TABLE 11.5  ADST Blocked Fact

mit_id mal_id http_id date_http_start_id date_http_end_id asset_id vuln_id

Mitigation
Dimension

Malware
Dimension

Bad HTTP Log

ADST Blocked
Fact

Date
Dimension

Advanced Data Stealing Threat Mart

Asset
Dimension

Config
Dimension

Vuln
Dimension

FIGURE 11.9  ADST High-Level Mart



How Well Are My Security Investments Working Together?	 273

Modeling People Processes

Dimensional models are perfect for security metrics because they are 
designed to measure processes, and security absolutely is a process. Of 
course the ADST use case is a technical process. But what if you have a need 
to measure processes that are more people based? What if the process has 
multiple gates and/or milestones? This, too, is easily modeled dimensionally. 
This particular type of model is called an “accumulating snapshot.” What 
you “accumulate” is the time that each process phase has been running.

From a security perspective this is key for measuring pre- and post-
product development, remediation activity, or both. For example, if you have 
implemented a security development lifecycle program (and we hope you 
have), then you will likely want to measure its key phases. The macro phases 
are secure by design, secure by default (development), and secure in deploy. 
And it does not matter if you are using waterfall, agile, or a mix of both that 
looks more “wagile.” You can instrument the whole process. Such instru-
mentation and measurement is key if you are operating in a continuous 
integration and continuous development (CICD) context. CICD supports an 
ongoing flow of software deploys daily. New development and remediation 
occur continuously. This is one of many functions that can and likely should 
be dimensionally modeled, measured, and optimized ad infinitum.

In Figure 11.10 we have a high-level logical accumulating snapshot for 
security remediation. It could be one large data mart across a variety of risks 
or associated with a particular risk type. For example, one of these could 
model system vulnerability remediation, perhaps another could model web 
application remediation, and so forth. The risk dimension is just a gener-
alization for any sort of vulnerability type that could be substituted here. 
“Asset” also is generalized. It could be an application, service, or perhaps 
even an OS. The remediation dimension presupposes some sort of enter-
prise ticketing system that would contain a backlog of items, including data 
on the various people involved with the remediation. Time is the most com-
plex in this case.

You can see that there are four gates that are measured and one over-
arching gate. There are well over 20 dates associated with this measurement.  
In each of the five groups there is a final field such as: “Days_Existing” 
or “Analysis_Days_Reviewing.” These are accumulators that add days by 
default while something is still open and then stop when the final data 
field for each area is filled in with a date. The accumulator makes for 
much faster queries and additional aggregates when analyzing remediation 
processes.
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This model becomes a simple template that can be reused to model a 
number of security processes with multiple steps. It leverages dimensions 
that you use to model your technical solutions as well. Thus we stay close 
to the KISS principle, agility, and reuse.

Conclusion

In this chapter we provided a very brief glimpse into a powerful logical tool for 
approaching operational security metrics: dimensional modeling. This level of 
metrics was little practiced when this book was originally published. It’s now  
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all in reach thanks to advances in cloud computing, open source develop-
ment, and comprehensive solutions such as Snowflake. We think analyzing the 
effectiveness of your investments is a close second to using predictive analyt-
ics when deciding on investments. We, in fact, would say that you are giving 
advantage to both the enemy and underperforming vendors when you don’t 
go about measuring operations this way. High-dimensional security metrics 
should become the main approach for measurement and optimization. This 
chapter attempted to explain, at a very high level, this much-needed approach 
for cybersecurity metrics. Our hope is that your interest has been piqued.

The final chapter will focus on the people side of “cybersecurity risk 
management” for the enterprise. It will outline various roles and responsi-
bilities and give perspectives for effective program management.
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CHAPTER 12

There are three general themes to this book:

1.	What measurement is;
2.	How to apply measurement;
3.	How to improve measurement.

What distinguishes this tome from its predecessors, How to Measure 
Anything: Finding the Value of “Intangibles” in Business and The Failure of 
Risk Management, is that this book is domain focused. More than that, it’s 
designed to be a road map for establishing cybersecurity risk management 
as the C-level strategic technology risk practice. To this point, we believe 
cybersecurity as an operational function should be redefined around quan-
titative risk management. This book has provided more evangelism and 
proof to that quantitative end. If you are of the mind that cybersecurity risk 
management (CSRM) should be a program as opposed to a grab bag of 
quantitative tricks, then this chapter is a high-level proposition to that end. 
We will lay out what such an organization might look like and how it could 
work alongside other technology risk functions.

Establishing the CSRM Strategic Charter

This section answers the question “What should the overarching corpo-
rate role be for CSRM?” What we are framing as the CSRM function should 
become the first gate for executive, or board-level, large-investment consid-
eration. Leaders still make the decisions, but they are using their quantita-
tive napkins to add, multiply, and divide dollars and probabilities. Ordinal 
scales and other faux risk stuff should not be accepted.

A Call to Action
How to Roll Out Cybersecurity Risk Management
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The CSRM function is a C-level function. It could be the CISO’s function, 
but we actually put this role as senior to the CISO and reporting directly to 
the CEO or board. Of course, if the CISO reports to those functions, then 
this may work, but it requires an identity shift for the CISO. “Information 
and security” are subsumed by “risk,” and that risk is exclusively understood 
as likelihood and impact in the manner an actuary would understand it. In 
terms of identity or role changes we have seen titles such as “chief tech-
nology risk officer” (CTRO) and “chief risk officer” (CRO). Unfortunately, 
the latter is typically purely financial and/or legal in function. Whatever 
the job title, it should not be placed under a CIO/CTO. That becomes the 
fox watching the henhouse. A CSRM function serves at the pleasure of the 
CEO and board and is there to protect the business from bad technology 
investments.

The charter, simply put, is as such:

■■ The CSRM function will report to the CEO and/or board of directors. The  
executive title could be CTRO, CRO, or perhaps CISO, as long as  
the role is quantitatively redefined.

■■ The CSRM function reviews all major initiatives for technology risk 
inclusive of corporate acquisitions, major investments in new enterprise 
technology, venture capital investments, and the like. “Review” means 
to quantitatively assess and forecast losses, gains, and strategic mitiga-
tions and related optimizations.

■■ The CSRM function will also be responsible for monitoring and anal-
ysis for existing controls investments. The purpose is optimization 
of technology investments in relation to probable future loss. The 
dimensional modeling practices and associated technology covered in  
Chapter 11 are key. Operationally the goal of this function is answering 
the question, “Are my investments working well together in address-
ing key risks?”

■■ The CSRM function will use proven quantitative methods inclusive of 
probabilities for likelihoods and dollars as impact to understand and 
communicate risk. Loss exceedance curves will be the medium for dis-
cussing and visualizing risks and associated mitigation investments in 
relationship to tolerance. This includes risks associated with one appli-
cation and/or a roll-up of one or more portfolios of risk.

■■ The CSRM is responsible for maintaining corporate risk tolerances 
in conjunction with the office of the CFO, general counsel, and the 
board. Specifically, risk tolerance exceedance will be the KPI used to 
manage risk.

■■ The CSRM function will be responsible for managing and monitor-
ing technology exception–management programs that violate risk 
tolerances.
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■■ The CSRM function will maintain cyberinsurance policies in conjunc-
tion with other corporate functions such as legal and finance. CSRM 
provides the main parameters that inform the insurance models.

Organizational Roles and Responsibilities for CSRM

Figure 12.1 shows an example of an organizational structure for cyberse-
curity risk. The structure is more appropriate for a large (Fortune 1000) 
organization that is managing hundreds of millions of dollars, if not many 
billions of dollars, at risk. It presupposes that technology investments are 
key strategic initiatives, which is easy enough in this day and age. It also 
presupposes that cybersecurity risks are considered a top-five, if not top-
three, board-level/CEO risk.

Quantitative Risk Analysis

The quantitative risk analysis (QRA) team consists of trained analysts with a 
great bedside manner. You could call them consultants or advisors, but the 
distinction is that they have quantitative skills. They essentially are decision 
scientists that can program and communicate clearly with subject-matter 
experts and leaders. This is a highly compensated function, typically with 
graduate work in statistics and/or a quantitative MBA. While degrees are 
nice, quantitative skill and business acumen are key. The more readily avail-
able statistics and quantitative business experts will need to work side-by-
side with security SMEs and leadership. As the reality of cybersecurity as a 
measurement discipline (as most sciences are) sets in, this role and skill set 
will be more plentiful.

Chief Technology
Risk Officer

(CTRO)

Quantitative
Risk Analysis

(QRA)

Training &
Development

Analytics
Technology

Program
Management

FIGURE 12.1  Cybersecurity Risk Management Function
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You will want the right ratio of QRAs to risk assessment engagements. 
Practically speaking, there are only so many models that can be run and main-
tained at any given time. Ratios like 10:1 in terms of new models to each QRA 
may be appropriate. It depends on the complexity of the models. Also, ongo-
ing risk tracking against tolerances is required for completed models. Enter-
prise technology of course will help in terms of scaling this out. But even with 
advanced prescriptive analytics there will be ongoing advisory work based on 
exceedance of risk tolerances. That is, if a particular portfolio of risk needs 
optimization, perhaps through acquisition of new technology and/or decom-
missioning of failing investments, that all takes time. A QRA will be involved 
in ongoing risk-framing discussions, development of models using statistics 
and statistics tools (R, Python, etc.), and coordinating with technologists in the 
organization to design and build real-time risk monitoring systems.

Training and Development

You can certainly use your QRA team to provide quantitative training mate-
rial and even actual training delivery. But the goal here is to build its DNA at 
various layers of the broader organization. This is similar to building general 
security DNA in engineering and IT teams (we assume you do this already). 
You can only hire so many QRA folks—they are rare, expensive, and prone 
to flight due to demand. You need to build tools and skills broadly if you 
are to fight the good fight with the bad guys. You will need a leader for this 
function and a content and delivery team. Using technology to deliver is key 
for large, distributed organizations.

Analytics Technology

This will be the most expensive and operationally intensive function. It 
presupposes big data, stream analytics, and cloud-deployed solutions to 
support myriad analytics outcomes. The analytics team will manage the 
movement of large swaths of data and the appropriate deployment of telem-
etry into systems. If you have any hope of implementing the practices from 
Chapter 11 in an agile manner, this is the group to do it. This group consists 
of systems engineers, big data database administrators, programmers, and 
the like. It is an optimized IT organization focused on analytic outcomes.

Program Management

When an activity involves multiple functions across multiple organizations, 
it’s a program. The CSRM function typically will be deployed to a variety of 
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organizations. The QRA team will be the technical face, but tying everything 
together—from engagement to training and development to technology—is 
a program management function. No need to go overboard on this one, but 
don’t skimp on program management; you will fail if you do.

We could have gone deep on every single role and function, building 
out various matrices, job descriptions, Gantt charts, and the like. That is 
not necessary. All the practices revealed throughout this book provide a 
glimpse into the core content of a larger cybersecurity risk management 
function. The roles and responsibilities have some flexibility. You can start 
lean-targeting one or two projects just using the spreadsheets provided. But 
if you are serious about fighting the bad guys with analytics, then you need 
a plan. Start by identifying where you are on the maturity model provided 
in the beginning of Part III. Then chart a course to build both the skills and 
organization that lead to prescriptive analytics capability. Having a plan 
removes a key roadblock to success; as Benjamin Franklin said, “Those who 
fail to plan, plan to fail!”

While there are many potential barriers to success such as failed plan-
ning, there is one institutional barrier that can obstruct quantitative analy-
sis: compliance audits. In theory, audits should help ensure the right thing 
is occurring at the right time and in the right way. To that extent, we think 
audits are fantastic. What makes compliance audits a challenge is when 
risk management functions focus on managing to an audit as opposed 
to managing to actual risks. Perhaps this is why the CEO of Target was 
shocked when they had their breach; he went on record claiming they 
were compliant to the PCI (payment card industry) standard. That is com-
pliance versus risk-management mindset, and it is a deadly error in the 
face of our foes.

What if there was an audit function that assessed—actually measured—
the effectiveness of risk management approaches? That is, would it deter-
mine the actual impact on risk reduction of soft methods versus quantitative 
methods? And what if scoring algorithms were put to the test? Of course, 
advanced methods such as Monte Carlo simulations, beta distributions, and 
the like would also need to be tested. Good! Again, we think one of the 
reasons we lose is because of untested soft methods.

There is, however, a risk that this will backfire. For example, what if 
methods that were predicated on measuring uncertainty got audited because 
they were viewed as novel, but methods using risk matrices, ordinal scales, 
and scoring systems got a pass? That would become a negative incentive to 
adopting quantitative methods. Unfortunately, this is a reality in at least one 
industry, as described hereafter. We bring it up here as an example of com-
pliance audit gone wild in a nefarious manner that could have a profound 
negative impact on cybersecurity risk management.
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Getting Audit to Audit

Audit plays a key role in ensuring quality of risk models, especially in heav-
ily regulated industries such as banking and insurance. If new quantitative 
models are developed that have any influence at all on financial transac-
tions, then audit is a necessary checkpoint to make sure that models don’t 
have unintended consequences—possibly as a result of simple errors bur-
ied in complex formulae. Such scrutiny should be applied to any model 
proposed for financial transactions and certainly for decisions regarding 
the exposure of the organization to risks such as market uncertainty and 
cyberattacks.

Auditors might get excited when they see a model that involves more 
advanced math. The auditors have been there at one point in their careers. 
It’s interesting to finally get to use something for which so much study and 
time was spent mastering. So they will eagerly dive into a model that has 
some statistics and maybe a Monte Carlo simulation—as they should. If the 
method claims to be based on some scientific research they haven’t heard 
of, they should demand to see reference to that research. If the model is 
complex enough, perhaps the audit ought to be done twice on each cal-
culation by different people. If an error is found, then any modeler whose 
primary interest is quality should happily fix it.

But even well-intentioned and qualified auditors inadvertently discour-
age the adoption of better models in decision making. In some cases the 
more sophisticated model was replacing a very soft, unscientific model. In 
fact, this is the case in every model the authors have developed and intro-
duced. The models we have developed replaced models that were based 
on the methods we have already made a case against: doing arithmetic 
with ordinal scales, using words such as “medium” as a risk assessment, 
heat maps, and so on. Yet these methods get no such scrutiny by auditors. 
If another method were introduced for cybersecurity that merely said we 
should subjectively assess likelihood and impact and then only represent 
those with subjective estimates using ambiguous scales, the auditors are not 
demanding research showing the measured performance of uncalibrated 
subjective estimates or the mathematical foundations of the method or the 
issues with using verbal scales as representations of risk.

So what happens when they audit only those methods that involve a bit 
more advanced calculations? The manager who sticks with a simple scoring 
method they just made up that day may not be scrutinized the same way as 
one who uses a more advanced method simply because it isn’t advanced. 
This creates a disincentive for seeking improvement with more quantitative 
and scientifically sound methods in risk management and decision making.

For audit to avoid this (surely unintended) disincentive for improving 
management decision making, they must start auditing the softer methods 



A Call to Action	 283

with the same diligence they would for the methods that allow them to flex 
some of their old stats education.

How Auditors Can Avoid Killing Better Methods
■■ Audit all models. All decision making is based on a model, whether that 
model is a manager’s intuition, a subjective point system, a deterministic 
cost/benefit analysis, stochastic models, or a coin flip. Don’t make the 
mistake of auditing only things that are explicitly called models in the 
organization. If a class of decisions are made by gut feel, then consider 
the vast research on intuition errors and overconfidence and demand 
to see the evidence that these challenges somehow don’t apply to this 
particular problem.

■■ Don’t make the mistake of auditing the model strictly within its context. 
For example, if a manager used a deterministic cost/benefit model in a 
spreadsheet to evaluate cybersecurity controls, don’t just check that the 
basic financial calculations are correct or ask where the inputs came 
from. Instead, start with asking whether that modeling approach really 
applies at all. Ask why they would use deterministic methods on deci-
sions that clearly rely on uncertain inputs.

■■ Just because the output of a model is ambiguous, don’t assume that you 
can’t measure performance. If the model says a risk is “medium,” you 
should ask whether medium-risk events actually occur more often than 
low-risk and less often than high-risk events. Attention is often focused 
on quantitative models because their output is unambiguous and can 
be tracked against outcomes. The very thing that makes auditors more 
drawn to investigate statistical models more than softer models is actu-
ally an advantage of the former.

■■ Ask for research backing up the relative performance of that method 
versus alternatives. If the method promotes a colored heat map, look up 
the work of Tony Cox. If it relies on verbal scales, look up the work of 
David Budescu and Richard Heuer. If they claim that the softer method 
proposed somehow avoids the problems identified by these research-
ers, the auditors should demand evidence of that.

■■ Even claims about what levels of complexity are feasible in the organi-
zation should not be taken at face value. If a simpler scoring method 
is proposed based on the belief that managers won’t understand any-
thing more complex, then demand the research behind this claim (the 
authors’ combined experience seems to contradict this).

One legitimate concern is that this might require too much of audit. 
We certainly understand they have a lot of important work to do and are 
often understaffed. But audit could at least investigate a few key methods, 
especially when they have some pseudo-math. If at least some of the softer 
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models get audited as much as the models with a little more math, organi-
zations would remove the incentive to stick with less scientifically valid 
methods just to avoid the probes of audit.

What the Cybersecurity Ecosystem Must Do to Support You

Earlier in this book we took a hard look at popular risk analysis methods 
and found them wanting. They do not add value and, in fact, apparently 
add error. Some will say that at least such methods help “start the con-
versation” about risk management, but since lots of methods can do that, 
why not choose one based on techniques that have shown a measurable 
improvement in estimates? Nor can anybody continue to support the claim 
that quantitative methods are impractical, since we’ve actually applied them 
in real environments, including Monte Carlos, Bayesian empirical methods, 
and more advanced combinations of them as discussed in Chapters 8 and 9. 
And, finally, nothing in the evidence of recent major breaches indicates that 
the existing methods were actually helping risk management at all.

But we don’t actually fault most cybersecurity professionals for adopting 
ineffectual methods. They were following the recommendations of stand-
ards organizations and following methods they’ve been trained in as part 
of recognized certification requirements. They are following the needs of 
regulatory compliance and audit in their organizations. They are using tools 
developed by any of the myriad vendors that use the softer methods. Thus, 
if we want the professionals to change, then the following must change in 
the ecosystem of cybersecurity.

1.	Standards organizations must end the promotion of risk matrices as 
a best practice and promote evidence-based (scientific) methods in 
cybersecurity risk management unless and until there is evidence to the 
contrary. We have shown that the evidence against non–evidence-based 
methods is overwhelming.

2.	To supplement the first point, standards organizations must adopt 
evidence-based as opposed to testimonial-based and committee-based 
methods of identifying best practices. Only if standards organizations 
could show empirical evidence of the effectiveness of their current 
methods sufficient to overturn the empirical evidence already against 
them (which seems unlikely given such evidence), they should rein-
state them.

3.	An organization could be formed to track and measure the performance 
of risk assessment methods themselves. This could be something mod-
eled after the NIST National Vulnerability Database—perhaps even part 
of that organization. (We would argue, after all, that the poor state of 
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risk assessment methods certainly counts as a national vulnerability.) 
Then standards organizations could adopt methods based on informed, 
evidence-based analysis of alternative methods.

4.	Certification programs that have been teaching risk matrices and ordinal 
scales must pivot to teaching both proper evidence-based methods and 
new methods as evidence is gathered (from published research and the 
efforts just mentioned).

5.	Auditors in organizations must begin applying the standards of model 
validity equally to all methods in order to avoid discouraging some of 
the best methods. When both softer methods and better quantitative 
methods are given equal scrutiny (instead of only assessing the latter 
and defaulting to the former if any problem is found), then we are con-
fident that better methods will eventually be adopted.

6.	Regulators must help lead the way. We understand that conservative 
regulators are necessarily slower to move, but they should at least start 
the process of recognizing the inadequacies of methods they currently 
consider “compliant” and encouraging better methods.

7.	Vendors, consultants, and insurance companies should seize the busi-
ness opportunities related to methods identified in this book. The survey 
mentioned in Chapter 5 indicated a high level of acceptance of quanti-
tative methods among cybersecurity practitioners. The evidence against 
some of the most popular methods and for more rigorous evidence-
based methods grows. Early promoters of methods that can show a 
measurable improvement will have an advantage. Insurance companies 
are already beginning to discover that the evidence-based methods are 
a good bet. Whether and how well an insurance customer uses such 
methods should eventually be part of the underwriting process.

Integrating CSRM with the Rest of the Enterprise

CSRM is not an island in the organization. It is only one part of risk manage-
ment and decision making. Where sound, quantitative methods are already 
established, CSRM needs to be integrated with those solutions. Where man-
agement may rely on the unscientific methods such as what we’ve discred-
ited in this book, CSRM has the opportunity to lead by example.

Enterprise Risk Management

Doug Hubbard’s second book, The Failure of Risk Management: Why It’s 
Broken and How to Fix It, mentions cybersecurity risk management but 
also covers risk management from engineering projects, financial portfo-
lios, emergency response, and so on. That book covered problems shared 
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by many areas of risk management including unjustified high confidence 
in expert intuition and unscientific methods. The risk assessment methods 
Hubbard has seen in fields outside of cybersecurity, such as oil & gas, 
aerospace, health care, and electrical utilities, are virtually indistinguishable 
from what is seen in cybersecurity. Only actuarial science and some (not all) 
areas of quantitative portfolio management seemed to be on the right track 
for adopting sound methods.

Sometimes, Hubbard Decision Research is asked to completely replace 
ERM where part of that effort included cybersecurity. There are other cases 
where the initial objective was only to develop quantitative methods for 
cybersecurity, but after seeing the improved methods, management becomes 
interested in applying that approach to all risks. This has happened more 
than once among the clients of Hubbard Decision Research. In one such 
example, described in the previously mentioned book, Hubbard’s team 
developed a cybersecurity risk management solution for a group health 
insurer and then the board of directors asked that enterprise risk manage-
ment (ERM) should also be based on quantitatively sound methods. The 
comprehensive solution included project risks, market risks, and more.

At the summary level, the ERM model looked a lot like the one-for-one 
substitution model described in Chapter 3. There were lists of events with 
assigned probabilities and ranges for potential losses. But at the next level 
of detail behind those risks, the different risk models varied structure and 
inputs. Project risk models included factors such as schedule risk, cancela-
tion, and low adoption rate. Market risks included detailed historical data 
and simulated the outcomes of various portfolio positions.

But even though the underlying details revealed very different structures 
and inputs, the outputs could all be expressed in terms of a loss exceedance 
curve, individually or all rolled up into one enterprise-wide curve.

Most firms large enough to justify someone specializing in quantitative 
risk analysis of cybersecurity may have someone in charge of ERM. If your 
ERM is not already adopting the quantitative language you are implement-
ing for cybersecurity, you should show them what ERM could look like. 
Issues with adopting quantitative methods in ERM are essentially the same 
as what we find in cybersecurity. Use the points in Chapter 4 to explain the 
problems with the methods they may be currently using and to address their 
doubts about adopting quantitative methods.

Integrated Decision Management

ERM is much broader than cybersecurity, but even ERM is only part of the 
picture. Risk is one part of decision making. In one sense, a risk manage-
ment department makes about as much sense as a left-foot shoe department.
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Decisions under uncertainty have to include uncertainty about rewards 
as well as losses. There are methods needed for the broader goal of deci-
sions under uncertainty that are not directly addressed in risk management. 
For example, the loss exceedance curve doesn’t, by itself, indicate how 
much more risk a firm would be willing to take if the potential rewards 
were higher. If ERM, including cybersecurity risk management, is supposed 
to support real decision making, then they should all be considered aspects 
of the decision analysis process in the organization.

We have mentioned the field of decision analysis multiple times in this 
book. In fact, what we referred to as “prescriptive analytics” in the previous 
chapter is just another name for the analysis we need to make better deci-
sions under uncertainty. And while prescriptive analytics may be a relatively 
new term, decision analysis is not. There is a lot we don’t have to reinvent. 
As it should do with ERM, cybersecurity will need to integrate with existing 
quantitative methods in decision making or lead by example where such 
methods are lacking.

Operations research, quantitative portfolio management, management 
science, actuarial science, decision psychology, and decision theory are a 
few of the disparate, partly overlapping fields that all attempt to improve 
decisions. An ambitious mission, beyond the scope of this book, would be 
to develop a type of “integrated decision management” (IDM) for the enter-
prise. The methods would have some differences as required by the specif-
ics of the problems they solve, but they would all be based on procedures 
that can prove a measurable improvement over existing methods. They 
would help reduce uncertainty in key decisions and make better decisions 
under whatever uncertainty must remain.

You don’t have to boil the ocean, and we aren’t suggesting you can do 
this alone. Starting on this path is beyond the responsibility and authority 
of cybersecurity and probably beyond ERM or any other single depart-
ment in the organization. Developing IDM would be piecemeal, incremen-
tally improving one area and then another after securing buy-in from other 
stakeholders. But if you build your part of this solution based on a vision of 
where the entire organization should be and even help promote the larger 
vision, then you will be an insider instead of an outsider for important deci-
sions of the organization.

Can We Avoid the Big One?

In Chapter 1 of both the current edition and the first edition of this book, 
we referred to the risk of the “Big One.” This is an extensive cyberattack 
that affects multiple large organizations, potentially across many countries. 
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It could involve, in concert, interruption of basic services, such as utilities 
and communications. This, combined with a significant reduction in trust 
in online and credit card transactions, could actually have an impact on the 
economy well beyond the costs to a single large company—even the big-
gest firms hit so far. We think this risk is at least as significant as it was in 
the first edition, if not more.

As stated earlier in this book, the nature of the security breaches such 
as those at Target, Merck, and SolarWinds indicates a combination of threats 
that, if they happened in a more coordinated manner, could produce much 
larger losses than we have seen so far. Recall that Target was attacked in 
a way that exposed a threat common to many firms: that companies and  
their vendors are connected to each other, and many of those companies 
and vendors are connected through networks to many more. Even gov-
ernment agencies are connected to these organizations in various ways. 
All of these organizations may only be one or two degrees of separation 
away from each other. If it is possible for a vendor to expose a company 
and if that vendor has many clients and those clients have many vendors, 
then we have a kind of total network risk that—while it has not yet been 
exploited—it is entirely possible it could be exploited in the future. Solar-
Winds showed how one widely used software vendor creates a shared 
risk among all of its customers. Merck showed how the attack distributed 
by SolarWinds could have been much more disruptive. The attacks on the 
Ukrainian electrical grid and the Colonial Pipeline showed how basic infra-
structure is threatened.

We said this in the first edition, and we’ll keep repeating it as long as 
necessary. Analyzing the risks of this kind of situation is far too complex to 
evaluate with existing popular methods or in the heads of any of the lead-
ing experts. Proper analysis will require real, quantitative models to com-
pute the impacts of these connections. Organizations with limited resources 
(which are, of course, all of them) will have to use evidence-based, rational 
methods to decide how to mitigate such risks. If we begin to accept that, 
then we may improve our chances of avoiding—or at least recovering more 
gracefully from—the Big One.
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APPENDIX A

This appendix describes a partial set of useful probability distributions, 
suggestions for when to use them, and how to replicate them for simu­

lations in Excel. There is also a spreadsheet on this book’s website with all 
of these distributions already set up in Excel:

www.howtomeasureanything.com/cybersecurity

Distribution Name: Triangular

Selected Distributions

90%

0 1 million 2 million 3 million 5 million4 million

FIGURE A.1  Triangular distribution

http://www.howtomeasureanything.com/cybersecurity
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Parameters:

■■ UB (Upper bound);
■■ LB (Lower bound);
■■ Mode—this may be any value between UB and LB.

Note that UB and LB are absolute outer limits—a 100% CI.
For a triangular distribution, the UB and LB represent absolute lim­

its. There is no chance that a value could be generated outside of these 
bounds. In addition to the UB and LB, this distribution also has a mode 
that can vary to any value between the UB and LB. This is sometimes use­
ful as a substitute for a lognormal, when you want to set absolute limits on 
what the values can be but you want to skew the output in a way similar 
to a lognormal. It is useful in any situation where you know of absolute 
limits but the most likely value might not be in the middle, as in the nor­
mal distribution.

■■ When to use: When you want control over where the most likely 
value is compared to the range, and when the range has absolute  
limits.

■■ Examples: Number of records lost if you think the most likely number 
is near the top of the range and yet you have a finite number of records 
you know cannot be exceeded.

■■ Excel formula:

LET rand,RAND ,IF rand Mode Min / Max Min *
Min S

( () ( ( ) ( ), , )
(

1 0
QQRT rand* Max Min * Mode Min IF rand

Mode Min / Max
( ) (

( ) (
( ) ( ) )

MMin * Max SQRT rand *
Max Min * Max Mode

), , ) (( )
) )

(
( ) ( ) )

1 0 1

Note: we use the Excel “Let” function here because the formula assumes 
the same value from the rand() function will be reused. If we used a sepa­
rate rand() function each of the times a random number is called in this 
formula, four different values would be generated and this function would 
not produce the correct triangular distribution. In the downloadable spread­
sheet, we use the HDR PRNG, which will always produce the same pseudo­
random value given the same counter values.

	 Mean LB Mode UB /: ( ) 3 	
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Distribution Name: Binary

Parameters:

■■ P (Event probability)

Note that P is between 0 and 1. It represents how frequently the simula­
tion will randomly produce an event.

Unlike the other distributions mentioned here, a discrete binary distribution 
(also known as a Bernoulli distribution) generates just two possible outcomes: 
success or failure. The probability of success is p and the probability of failure is 
q = (1 − p). For example, if success means to flip a fair coin heads up, the prob­
ability of success is p = 0.5, and the probability of failure is q = (1 − 0.5) = 0.5.

■■ When to use: This is used in either/or situations—something either hap­
pens or it doesn’t.

■■ Example: The occurrence of a data breach in a given period of time.
■■ Excel formula: =if(rand() < P,1,0)
■■ Mean: =P.

Distribution Name: Normal

.8

.6

.4

.2

0 1

FIGURE A.2  Binary distribution

90%

0 1 million 2 million 3 million 5 million4 million

FIGURE A.3  Normal distribution
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Parameters:

■■ UB (Upper bound)
■■ LB (Lower bound)

Note that LB and UB in the Excel formula below represent a 90% CI. 
There is a 5% chance of being above the UB and a 5% chance of being 
below the LB.

A normal (or Gaussian) distribution is a bell-shaped curve that is sym­
metrically distributed about the mean.

1.	Many natural phenomena follow this distribution but in some applica­
tions it will underestimate the probability of extreme events.

2.	Empirical rule: Nearly all data points (99.7%) will lie within three stand­
ard deviations of the mean.

■■ When to use: When there is equal probability of observing a result 
above or below the mean.

■■ Examples: Test scores, travel time.
■■ Excel formula: =norm.inv(rand(),(UB + LB)/2,(UB-LB)/3.29)
■■ Mean: =((UB + LB)/2)

Distribution Name: Lognormal

90%

0 1 million 2 million 3 million 5 million4 million

FIGURE A.4  Lognormal distribution
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Parameters:

■■ UB (Upper bound)
■■ LB (Lower bound)

Note that LB and UB in the Excel formula below represent a 90% CI. 
There is a 5% chance of being above the UB and a 5% chance of being 
below the LB.

The lognormal distribution is an often preferred alternative to the nor­
mal distribution when a sample can only take positive values. Consider the 
expected future value of a stock price. In the equation S

1
 = S

0
er, S

1
 is the future 

stock price, S
0
 is the present stock price, and r is the (continuously com­

pounded) expected rate of return (e is the base of the natural log, 2.71828. . .). 
The expected rate of return follows a normal distribution and may very well 
take a negative value. The future price of a stock, however, is bounded at zero. 
By taking the exponent of the normally distributed expected rate of return, 
we will generate a lognormal distribution where a negative rate may have an 
adverse effect on the future stock price, without ever leading the stock price 
below the zero bound. It also allows for the possibility of extreme values on 
the upper end and, therefore, may fit some phenomena better than a normal.

■■ When to use: To model positive values that are primarily moderate in 
scope but have potential for rare extreme events.

■■ Examples: Losses incurred by a cyberattack, the cost of a project.
■■ Excel formula: =lognorm.inv(rand(),(ln(UB) + ln(LB))/2, (ln(UB)- ln(LB))/ 
3.29)

■■ Mean: = ((ln(UB)+ln(LB))/2)

Distribution Name: Beta

α = 2    β = 5 α = 3    β = 3 α = 5    β = 2

0 .2 .4 .6 1.8

FIGURE A.5  Beta distribution
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Parameters:

■■ Alpha (1 + Number of hits)
■■ Beta (1 + Number of misses)

Beta distributions are extremely versatile. They can be used to gener­
ate values between 0 and 1 but where some values are more likely than 
others. This result can also be used in other formulas to generate any 
range of values you like. They are particularly useful when modeling the 
frequency of an event, especially when the frequency is estimated based 
on random samples of a population or historical observations. In this 
distribution it is not quite as easy as in other distributions to determine 
the parameters based only on upper and lower bounds. The only solu­
tion is iteratively trying different alpha and beta values until you get the 
90% CI you want. If alpha and beta are each greater than 1 and equal to 
each other, then it will be symmetrical, where values near 0.5 are the most 
likely and less likely further away from 0.5. The larger you make both 
alpha and beta, the narrower the distribution. If you make alpha larger 
than beta, the distribution will skew to the left, and if you make beta 
larger, it skews to the right.

To test alpha and beta, just check the UB and LB of a stated 90% 
CI by computing the fifth and ninety-fifth percentile values. That is 
betainv(.05,alpha,beta) and betainv(.95,alpha,beta). You can check that 
the mean and mode are what you expect by computing the following: 
mean = alpha/(alpha+beta), and mode (the most likely value) is mode =  
(alpha-1)/(alpha+beta-2). Or you can just use the spreadsheet at www 
.howtomeasureanything.com/cybersecurity to test the bounds, means, and 
modes from a given alpha and beta to get good approximations of what 
you are estimating.

■■ When to use: Any situation that can be characterized as a set of “hits” 
and “misses.” For each hit, increase alpha by 1. For each miss, increase 
beta by 1.

■■ Examples: Frequency of an event (such as a data breach) when the fre­
quency is less than 1 per time unit (e.g., year), proportion of employees 
following a security procedure correctly.

■■ Excel formula: =betainv(rand(),alpha,beta)
■■ Mean: =(alpha/(alpha + beta))

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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Distribution Name: Power Law

Parameters:

■■ Alpha (Shape parameter)
■■ Theta (Location parameter)

The power law is a useful distribution for describing phenomena with 
extreme, catastrophic possibilities—even more than lognormal. For events such 
as forest fires, the vast majority of occurrences are limited to an acre or less 
in scope. On rare occasions, however, a forest fire may spread over hundreds 
of acres. The “fat tail” of the power law distribution allows us to acknowledge 
the common small event, while still accounting for more extreme possibilities.

■■ When to use: When you want to make sure that catastrophic events, 
while rare, will be given nontrivial probabilities.

■■ Examples: Phenomena such as earthquakes, power outages, epidemics, 
and other types of “cascade failures” have this property.

■■ Excel formula: =(theta/rand())^alpha
■■ Mean: =(alpha*theta/(alpha-1))

90%

0 1 million 2 million 3 million 5 million4 million

FIGURE A.6  Power law distribution
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APPENDIX B
Guest Contributors

You are not alone! The number of people applying statistics to the 
security problem is increasing. More people are taking what may be 
considered sparse data and using it to make inferences about large 
risks. This is not to say big data and data science are excluded; 
rather, making actionable inferences using limited empirical data, 
beliefs, and simulations is increasingly important for informing 
strategy and even prioritizing tactical decisions. To that end, we 
have included a number of short papers from various researchers 
in industry and academia on this topic. Also, stay tuned to www 
.howtomeasureanything.com/cybersecurity, as we will be including 
more and more research like this on our book’s website.

http://www.howtomeasureanything.com/cybersecurity
http://www.howtomeasureanything.com/cybersecurity
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Decision Analysis to Support 
Ransomware Cybersecurity Risk 

Management

Robert D. Brown III, Cybersecurity Risk Management Leader, Resilience  
Insurance

Introduction 

With the exception of pure intuitionists, most decision makers understand 
that making good decisions relies on access to good information in the 
form of qualified and pedigreed measurements. To this end, Hubbard and 
Seiersen have accomplished a sizable task by demonstrating that a tractable 
pathway usually exists to quantify measures that frequently present them-
selves as very difficult to quantify or that many often assume cannot be 
quantified at all. This is commendable in itself, but the fact is that measure-
ments, regardless of how important, do little more than to satisfy curiosity 
unless they support the human effort of making decisions to achieve some 
goal or objective. Unfortunately, a significant fact will continue to frustrate 
decision makers supplied with even the best of measurements; that is, few 
measurements will ever supply such perfect precision about current and 
future conditions that the best decision pathway forward is clearly unam-
biguous. Fortunately, with the help of the science of normative decision 
analysis, we can gain decision clarity with even imperfect and uncertain 
measurements.

This essay will provide a brief, high-level overview of the guidance 
that integrates measurements of the kind Hubbard and Seiersen promote 
to support cybersecurity decision management activities, especially those 
for which intended outcomes still face a considerable amount of uncer-
tainty and risk. The example we will consider involves a CISO who wants 
to understand the decision trade-offs among the levels of cost of controls 
that can be implemented to reduce the realization of ransomware threats 
against the risk-adjusted and probable range of ransomware impacts if a 
ransomware event actually occurs. Our example will point out how to make 
a rational decision that balances the effects of imperfect measurements and 
low-probability, high-impact events.

300
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Framing the Decision 

Imagine that you are a new CISO in an organization that has grown rapidly 
over the last five years. Revenues have risen to $200 million annually. In 
the rush to grow, however, security wasn’t always a high priority. A recent 
scan of your company’s data assets revealed that approximately 30 million 
records persisted in various states of security hygiene. Given the compa-
ny’s profile in the media, the continued rising tide of ransomware attacks, 
and the potential points of unmitigated exposure, you are very concerned 
that your company will face a compromise in security that could cost mil-
lions of dollars either through extortion, penalties, and reimbursements for 
exfiltrated personally identifiable data or business disruption. Furthermore, 
although you realize that the risk and magnitude of financial loss represents 
an important metric for the company to consider, the cost is not a dedicated 
cost as it might not ever materialize. If it does materialize, however, not hav-
ing implemented reasonable controls to prevent it would be rightly viewed 
as a dereliction of duty as an information security officer. At times the market 
for security controls looks like a carnival for wares of varying quality. Know-
ing what to buy presents a difficult enough problem, but since many of the 
best-known solutions don’t come cheaply, justifying an actual dedicated 
budget for them to the CFO is fraught with even more difficulties. Certainly, 
the effort to reduce the threat deserves some allocation of resources, but it 
does not warrant the employment of all available resources to that end. The 
primary question to address is: what level of security controls, given their 
associated cost to implement, minimizes the economic value at risk to the 
organization to reduce the potential impact of ransomware attack?

Before you get started crunching numbers, you will want to map out 
an abstraction of the problem in the form of an influence diagram, as illus-
trated in Figure B.1. The diagram illustrates the essence of the problem 
to other key collaborators and stakeholders in terms of the uncertainties 
you face, decisions to be made, and their effect on the value at risk to the 
organization. As a result, you will have a registry of key uncertainties that 
put you at risk and a framework for building the financial analysis that will 
support making a final decision.

The influence diagram reflects that decision strategies are composed of 
combinations of security control levels as displayed in the table of Figure B.2.

Suppose that Decision1 is a base case reflecting the current condition 
that all controls are in an unmanaged state. Decision2 might be the most 
aggressive case with all of the controls set to their highest level. Decisions 1 
and 2 are decision strategies. You believe the combination of controls bears 
a relationship to the arrival rate of experiencing a material, reportable events  
in any year such that the higher the level of control, the lower that rate is. 
However, the cost of the chosen controls is also relevant to the decision 
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strategy, but in this case the higher the level of control, the higher the cost. 
Finally, you reflect your beliefs about the key loss impacts:

■■ The level of extortion demanded by a threat actor is proportional to 
your revenues, but the final payout would be negotiable (the bad guys 
are in business, too!).

■■ The impact of business disruption would be dependent on the duration 
of the disruption and the unit daily cost of being down.

■■ The effect of data exfiltration will be directly proportional to the num-
ber of records at risk and a unit record cost.

FIGURE B.1  Influence diagram of ransomware model

Control Managed Decision 1 Decision 2ManagedDeployed
Control Levels Decision Strategies

Attack Simulations Attack Simulations
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FIGURE B.2  Control level configurations for Decision1 and Decision2
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What You Will Need 

While this discussion relies on the use of the R programming language, you 
will be able to read along and understand the essential concepts without 
knowing anything about either programming or programming in R specifi-
cally. However, if you decide to implement the code to study it for your-
self to understand the underlying concepts, you will need to install The R 
Programming Language for Statistical Computing, a good integrated devel-
opment environment (IDE) such as RStudio, and the packages tidyverse, 
reshape2, and scales. Most of the code will rely on base R to help you 
focus more on the essential concepts rather than idiosyncrasies of specific 
packages. The full source code demonstrated here is available at the book 
website www.themetricsmanifesto.com.

Setting Up the Analysis 

We base the following set of assessments on the assumption that you have 
done your homework according to the guidance in this book to achieve 
reasonable measurements. (Note, though, that the values are chosen to 
illustrate the modeling process and insights derived from it. They do not 
necessarily reflect the results of actual research.)

	4.1.	 Arrival Rates of a Material Event: You assess the average time 
between material, reportable events to be seven years under the 
Decision1  level of controls and 35 years under Decision2. You 
model this as an Exponential(1/t) distribution, where t is the aver-
age number of years. However, you strongly suspect that the time 
between events won’t be less than 1/3 of the average you calcu-
lated from just a few data points.

	4.2.	 Costs of Controls: After conferring with several vendors and other 
CISOs, you assess the range of annual costs associated with the 
Decision2 control levels. You model these as Triangular(lb, mode, 
ub) for each year of your model.

Control
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MANAGED:Tested Backups
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FIGURE B.3  Cost of controls for Decision2

http://www.themetricsmanifesto.com
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	4.3.	  Distributions of Impact
	4.3.1.	Extortion Revenue Factor [% revenue] = Normal(mean = 

0.035, sd = 0.013)
	4.3.2.	Extortion Settlement Fraction [% demand] = Normal(mean = 

0.5, sd = 0.084)
	4.3.3.	Business Disruption Duration [days] = Lognormal(meanlog 

= log(4.5), sdlog = 0.7)
	4.3.4.	Records at Risk = min(10e9, Lognormal(meanlog = ln(30e6), 

sdlog = 0.5))
	4.3.5.	Data Exfiltration Impact Factor [$/record] = exp(−0.58 ln(R) + 

8.2 + Normal(mean = 0, sd =1.6)), where R is records at risk.1

The Decision Model Function 

The source code used to support this discussion is in the R script file “HTMA 
DA Chapter.R” and can be downloaded at www.themetricsmanifesto.com. The 
pseudocode snippet for the model function takes the following form:

Calc_Ransomware_Model <- function() {
  
  exfiltration impact = impact factor * records at 
risk * events per year
  
  extortion impact = revenue factor * annual revenue * 
settlement fraction * events per year
  
  business disruption = min(disruption duration * 
events per year, operating days) * daily revenue
  
  annual security costs = total annual cost of controls 
applied to each year
}

Business Model Insights 

When we run the model simulation and query it for results based on the 
assessments and business logic, we see that Decision1 presents a 46% chance 
of seeing one or more events over the next three years, but Decision2 

1This is based on a linear regression of log-log cost-to-records chart in the 2015 
Verizon DBIR report.

http://www.themetricsmanifesto.com
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reduces to 13%. That’s approximately equivalent to calling the outcome 
against a die with two sides to one with eight.

The 90th percentile range of the total security cost (Figure 4: Total Secu-
rity Cost) over the three years will fall between ~$4.7M and ~$5.6M with an 
average cost of ~$5.1M (solid vertical line). It’s important to observe that if 
you merely use the sum of the annual cost modes as a best guess (~$4.6M, 
the dotted vertical line) for your budget, you will face ~97% chance of a 
budget overrun.

What happens on the bad days? The following loss exceedance 
chart (Figure 5: Total Loss Impact) tells you the probability of facing loss 
impacts greater than some amount. Given your analysis, you observe 
~1% chance of exceeding $168M and $70M for Decision1 and Decision2, 
respectively. The average loss impact for Decision1 occurs at ~$30M (dot-
ted vertical red line) and Decision2 at ~$6M (solid vertical green line), 
buying an average benefit of ~$24M in avoided loss at a 370% return on 
cost of controls.

If you net the difference between the Total Security Cost distribution 
and the Total Loss Impact distributions, you score an average net total 
cost benefit of ~$19M (Figure  6: Net Total Cost chart, vertical red line), 
although you still face a 58% probability of increasing your costs overall. 
This is because control costs are dedicated but avoided loss impacts are 
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only potentially realized, and when they are realized the total cost might be 
lower than in the choice of doing nothing. As managers of risk, we need to 
bet against the possible future, and our decision-making must price in those 
potential losses.

Before evaluating the Net Total Cost, you find that the average Total 
Cost for each decision is ~$30M and ~$11M for Decision1 and Decision2, 
respectively. If all you cared about was the average, then based on this 
difference you should be inclined to accept Decision2 as the rational path 
forward. However, you might ask if any of the uncertainties would make 
you regret this choice; that is, would any of the uncertainties cause you 
to prefer Decision1 over Decision2 if they realized either extreme of their 
imputed ranges?

The tornado chart below (Figure 7) displays which uncertainties expose 
you to the most potential range of average Total Cost by decision strategy. In 
this chart, each bar shows how sensitive the average Total Costs are to 80th 
percentile swings in the uncertainties. If the bars of a particular uncertainty 
overlap, you might take the opportunity to buy more information about 
the uncertainty to reduce the ambiguity about which decision is the best 
decision, or you might buy more control over the uncertainty. In this case, 
the only two uncertainties that might be candidates for such further analy-
sis or strategic refinement are “time_between_events” and “records_at_risk” 
(which does not show overlap, but it might be close enough for concern). 
However, since “records_at_risk” is independent of the decision strategies, 
the value of information on it would be $0. The “time_between_events” 
can cause you regret, and a rough value of perfect information calcula-
tion2 shows that ~$1.2M should be the most that you should dedicate to 
gaining enough information about this uncertainty to make an unambigu-
ous decision.

Lastly, you should observe that no single control cost imposes enough 
uncertainty to make you reconsider your decision to take Decision2. The 
combination of their effects reduces the arrival rate of the material events 
enough to justify their spend.

2The details of value of information calculations are beyond the scope of this chap-
ter. Roughly described, however, it is the difference between the expected value of 
knowing the best outcome before making a decision and the decision that maximizes 
expected value before knowing the best outcome. For more details, see chapter 13: 
“Setting a Budget for Making Decisions Clearly,” in Business Case Analysis with 
R: Simulation Tutorials to Support Complex Business Decisions. (https://link.
springer.com/book/10.1007/978-1-4842-3495-2).

https://link.springer.com/book/10.1007/978-1-4842-3495-2
https://link.springer.com/book/10.1007/978-1-4842-3495-2
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Questions for Further Consideration 

Of course, this is a highly simplified model that could be extended into 
other dimensions of consideration and nuance. The immediate point is 
that important independent measurements can be integrated into a deci-
sion model that guides organizational leaders who need to measure the 
monetary value of cybersecurity and gain insights into the best way to 
allocate resources to achieve it compared to other efficient uses of the 
resources. Still, other questions remain that decision modeling can address, 
for example:

■■ What is the value of third-party insurance versus self-insuring?
■■ How much retention (i.e., deductible) would you be willing to bear 
before insurance benefits cover realized losses?

■■ What premium would you be willing to pay?
■■ How should you cover the tail risk that exceeds the loss limits of an 
insurance policy?

■■ Are there other financially feasible control combinations that achieve 
similar levels of risk reduction without imposing an unacceptable 
degree of moral hazard?
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FIGURE B.7  The Total Cost Sensitivity for each decision. The bars associated with 
each decision reflect how much the average cost of a decision can change due 
to the effect of the associated named uncertainty. Bars that overlap represent 
“critical uncertainties” worthy of refined analysis



Bayesian Networks: One Solution for 
Specific Challenges in Building ML 

Systems in Cybersecurity

Rob Mealey, Director of Data Science, Resilience Insurance

There are two concepts that help in understanding the specific data chal-
lenges faced—and constraints on—machine learning systems devel-

oped to forecast and quantify cybersecurity risk. These are applicable to 
systems that can be classified as tactical or defensive in some way—such 
as an intrusion detection prevention solution—as well as to those, such as 
in the domain of cybersecurity insurance, that can be thought of as more 
strategic, more concerned with cybersecurity risk in the context of the larger 
picture. These are the concepts of:

1.	Data scarcity, where the challenge for modeling some system is that 
for any number of reasons, there do not exist easily gathered, reliable 
datasets from which to model the relationships within the system and 
forecast future behavior of it;

2.	 Interpretability, where the constraint is that the model’s conclusions 
and forecasts must be interpretable and explainable to a human subject-
matter expert, whether for business or regulatory or any number of 
other reasons.

Data scarcity issues can take many forms. In some scientific and 
research domains, such as research around deep-sea marine biology or 
other environmental research, the issue truly is a lack of data of any kind. 
Whether the cost of data collection is prohibitive or the events being stud-
ied are sufficiently rare or difficult to observe, researchers just don’t have 
datasets of adequate size to use traditional supervised statistical or machine 
learning techniques to investigate. In cybersecurity, however, the peculiar-
ity of the data scarcity issues faced is that on the surface, there is abundant 
data. A security professional engaging in a direct assessment of the cyber 
health of an organization can access all manner of logs and configurations. 
They can, either independently or through some third-party service, get 
a pretty reliable understanding of the scope of the organization’s public-
facing assets, the technology stacks powering those assets, and even surface 
critically important vulnerabilities exposed via those assets.
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The challenge is not that it is difficult to gather an authoritative secu-
rity profile of an organization. Nor is it even a challenge to compile a large 
dataset of such profiles of lots of organizations. The difficulty is in actually 
linking those profiles at a point in time to a specific incident, in linking 
those observable factors to actual outcomes. This linkage is the key require-
ment for building a traditional supervised machine learning system. Build-
ing a dataset of this type is difficult to impossible in cybersecurity. Privacy 
concerns, business interests, and regulatory challenges make even publicly 
reported datasets difficult to utilize, and the bad actors actually driving 
the key cybersecurity risks faced by modern organizations react directly to 
attempts to reliably forecast their behavior. In both the former case of genu-
ine lack of data and in our case of lack of easily utilized data, alternative 
approaches to forecasting and quantifying risk are required.

The constraint of model interpretability is often a legal and a pri-
vacy constraint, especially in regulatory and insurance contexts. Regulators 
and business stakeholders need to be able to assess the performance of a 
system. They need to be able to interrogate what factors drive it to make 
which predictions or forecasts, for legitimate fairness and equity concerns, 
beyond any business or legal requirements. This constraint, coupled with 
the data scarcity issues, often push organizations to rely on subject-matter 
experts to assess and forecast their risk. This reliance can be either implicit 
or explicit, admitted or covert, but it is difficult to escape in the domain of 
cybersecurity. Much of the tools and techniques in this book are concerned 
with making those experts more reliable and their predictions more system-
atic and useful.

In the design of machine learning systems built to forecast cybersecu-
rity risk, it is essential to be explicit and deliberate about the reliance upon 
subject-matter experts and their forecasting ability. One must look for tools 
that enable the utilization of disparate datasets, elicited expert assessments 
of risk factors, and other types of data that also facilitate direct interrogation 
of the behavior of the system and the factors driving that behavior. One 
answer to these challenges is to combine the output of experts calibrated 
as described in these pages within a system using a class of models called 
probabilistic graphical models (PGM), of which the Bayesian network is 
the most widely known. This class of model was invented by Judea Pearl, a 
theoretical computer scientist and philosopher who used them to develop 
“a theory of causal and counterfactual inference based on structural mod-
els,” so they are purpose-built, in many ways, for use in an interpretable 
machine learning system.

The overall category of probabilistic graphical models are those that 
represent some complex probability distribution as a graph of factorized 
conditionally independent relationships that models the behavior of a sys-
tem as a whole. These relationships and the overall structure of the model 



can be established by training such a model over a dataset of reasonable 
size, surveying and incorporating the knowledge of experts, incorporating 
aggregate data, or combinations of the above. This flexibility, combined with 
the inherent strengths in interpretability and explanatory power described 
previously, makes these powerful tools for the task of reliably modeling 
cyber risk.

The key advantages that the PGM approach has are of course that they 
can incorporate expert assessments, at various levels of the model construc-
tion process, with real-world data from different sources, into a powerful, 
flexible, and useful tool to accurately forecast cyber risk. Bayesian networks 
have been or are currently being used in a wide array of cybersecurity appli-
cations, from flagging potential internal threats3 to predicting data breaches 
generally,4 and in specific industries.5 These systems are usually built using 
a combination of subject-matter expert knowledge and real-world datasets. 
The 2017 survey of applications of Bayesian Networks in cybersecurity by 
Sabarathinam Chockalingam et  al.6 is a very useful overview detailing a 
number of published approaches, along with how they’re constructed and 
the conditional probability relationships populated.

An example from Lisa De Wilde’s 2016 publication “A Bayesian Network 
Model for Predicting Data Breaches”7 illustrates the power and flexibility of 
these models. De Wilde builds an initial model structure that forecasts the 
risk of a data breach in a health care organization:

The basis variables are the forecast nodes, where the model would 
produce probabilities indicating the likelihood of a malicious action, an 
accidental action, and the resulting probability of an overall data breach. 
This general framework can then be extended and filled in with detail to 
model the likelihood of specific types of data breach, such as insider data 
breach, where the motivation and capability assessments are functions of 
measure variables that relate to job satisfaction, etc. And the capabilities and 
opportunities are derived from measures of security controls implementa-
tion, training and awareness, and other steps organizations take to protect 
their data. This model can then be used to assess the risk of individual 
organizations, given their attributes. In this case, the initial structure is built 
from expert knowledge, and the relationships are learned from both expert 
knowledge and real-world datasets from internal sources at health care 
organizations.

3A Bayesian Network Model for Predicting Insider Threats (2013).
4A Bayesian Network Model for Predicting Data Breaches (2016).
5Bayesian Network Modelling for Analysis of Data Breach in a Bank (2011).
6Bayesian Network Models in Cyber Security: A Systematic Review (2017).
7A Bayesian Network Model for Predicting Data Breaches.
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The domain of cybersecurity, both as an industry and as an area of 
research, is of course broad and diverse and the risk assessment needs and 
specific data scarcity issues vary widely in different subdomains. This is the 
distinction between tactical and strategic use cases for risk forecasting in 
cybersecurity referenced earlier. A cybersecurity insurance carrier is most 
concerned with forecasting the risk of incidents in their overall portfolio, to 
forecast and maintain their capital requirements, and to make pricing and 
other business decisions. In contrast, an intrusion detection prevention ven-
dor is most concerned with how accurately and quickly their system can 
classify activity as malicious and flag such activity up for some action. Both 
are concerned with predicting or forecasting risk, just at very different lev-
els. Another key advantage of the composable nature of graphical models 
is that it enables us to combine qualitative tactical assessments learned from 
real data, e.g., the quality of an organization’s network security, with overall 
strategic forecasting gleaned from the output of calibrated experts.

Systems built with Bayesian Network models or other classes of proba-
bilistic graphical models, such as Influence Diagrams, do come with their 
own set of unique challenges. The construction of a new model is no longer 
the work of a single data scientist working with a single dataset. It is now 
rather a labor-intensive process with data collection from various sources 
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and at various levels of granularity, with lots of potential failure points. So 
in the design of those systems, it is crucial to have lots of introspection and 
feedback loops with key stakeholders, if the system is to have any cred-
ibility or utility at all. This can have silver linings, if a team is diligent, as all 
machine learning systems decay, and often such decay is overlooked. But 
human-in-the-loop systems, if they are to be of any quality, must have dili-
gence against such decay baked into their foundations.

Other challenges are quantifying and assessing the quality of the subject-
matter experts the system relies on. The techniques in this very book are a 
wonderful foundation for addressing that challenge. Well-calibrated subject-
matter experts and well-designed tools to elicit their expert assessments 
and incorporate them with those of a large pool of experts are the key 
to building cybersecurity risk assessment systems that are truly interpret-
able, accurate, and useful. In data-scarce domains, whether those issues  
are straightforward or complex, a combination of a flexible, interpretable 
machine learning approach such as probabilistic graphical models, com-
bined with a well-calibrated, validated team of subject-matter experts is a 
powerful choice for designing and building systems to forecast risk and 
support better business decisions.
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The Flaw of Averages 
in Cyber Security

Sam Savage, PhD, founder of ProbabilityManagement.org, author of The 
Flaw of Averages: Why We Underestimate Risk in the Face of Uncertainty, 
and consulting professor at Stanford. © Copyright 2015, Sam L. Savage.

The “flaw of averages” is a set of systematic errors that occur when uncer-
tain assumptions are replaced with single “average” numbers. The most 

serious of these, known as Jensen’s inequality by mathematicians, states 
roughly that “plans based on average assumptions are wrong on average.” 
The essence of cybersecurity is the effective mitigation of uncertain adverse 
outcomes. I will describe two variants of the flaw of averages in dealing 
with the uncertainties of a hypothetical botnet threat. I will also show how 
the emerging discipline of probability management can unambiguously 
communicate and calculate these uncertainties.

Botnets

A “botnet” is a cyberattack created by malware that penetrates numerous 
computers, which may then be directed by a command-and-control server 
to form a network that carries out illegal activities. Eventually this server 
will be identified as a threat, whereupon future communication with it is 
blocked. Once the dangerous site is discovered, the communications history 
of the infected computers can pinpoint the first contact with the offending 
server and yield valuable statistics.

Suppose you have invested in two layers of network security. There is a 
60% chance that a botnet virus will be discovered by the first layer, in which 
case the time to detection averages 20 days, with a distribution as displayed 
in the left side of Figure B.9. Note that the average may be thought of as 
the balance point of the graph, marked by ∆. In the remaining 40% of cases 
the virus is not discovered until the second layer of your security system, in 
which case the average detection time is 60 days, with distribution shown 
on the right of Figure B.9.
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Window of Vulnerability for a Single Botnet

The average overall detection time of this botnet virus may be computed 
as the weighted average 60% × 20 days + 40% × 60 days = 36 days. So on 
average we are vulnerable to a single botnet for 36 days. The discipline of 
probability management1 provides additional insights by explicitly repre-
senting the entire distribution as a set of historical or simulated realizations 
called SIPs.2 Figure B.10 displays the SIPs (in this example, 10,000 simulated 
outcomes) of both distributions in Figure B.9. Performing calculations with 
SIPs (SIPmath) can be done in numerous software environments, including 
the native spreadsheet.
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Recently Microsoft Excel has become powerful enough to process SIPs 
of thousands of trials using its Data Table function.3 Figure B.11 displays 
such a SIPmath model that combines the two distributions of Figure B.9 to 
create a distribution of overall time to detection across both security layers.

This workbook takes the two SIPs of Figure B.10 as input and then per-
forms 10,000 calculations of cell C6 that randomly chooses the layer 1 dis-
tribution 60% of the time and the layer 2 SIP 40% of the time. The resulting 
distribution clearly displays the two modes of detection. Press the calculate 
key (F9 in Windows, ⌘ = on Mac) to perform a new simulation of 10,000 
trials. Note that the simulated average is very close to the theoretical value 
of 36 days, yet 36 is a very unlikely outcome of the distribution. Also note 
that because the distribution is asymmetric, the chance of vulnerability of 
less than the average of 36 days is not 50% but 63%. Experiment with the 
chance of discovery at layer 1 in cell D3 and the number of days in B11 to 
see how the distribution, average, and chance change.

The formula used for calculating the average detection time over both 
layers was technically correct in that it yielded 36 days, but it provides no 
clue about the distribution. This is what I call the weak form of the flaw of 
averages. The strong form is considerably worse, in that you don’t even get 
the right average. The model of Figure B.7 created a SIP of its own, which we 
can now use to explore the impact of multiple simultaneous botnet attacks.

Window of Vulnerability for Multiple Botnets

Suppose we put a new system online, which is immediately attacked by 
multiple viruses that all have the same distribution of detection times. Since 

FIGURE B.11  A SIPmath Excel model to calculate the overall detection 
distribution
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each virus is detected in an average of 36 days, you might think that the 
average vulnerability is again 36 days, as it was for the single virus. But it 
is not, because your system remains vulnerable until the last of the botnets 
is detected.

Figure B.12 displays the SIPs of 10 botnet detection times generated 
by the simulation of Figure B.11. They all have the same numbers, but the 
order has been scrambled in each to make them statistically independent.

These SIPs are used in the model in Figure B.13, which calculates the 
distribution of the maximum of the detection times of all botnets in cell C14. 
Note that you can adjust the number of botnets from between 1 and 10 with 
the spinner control in column E. Before experimenting with this model, 
close the model of Figure B.11, as it contains a Rand() formula, which can 
slow down the calculation.

FIGURE B.13  Simulation of multiple botnets
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Note that the average days of vulnerability increase as the number of 
simultaneous attacks goes up, and that the chance of coming in at less than 
36 days diminishes. This is an example of the strong form of the flaw of 
averages, and for 10 botnets, the average is 78 days, with a 1% chance of 
being less than 36.

Such modeling could easily be generalized to reflect different variants 
of viruses attacking at random times instead of all at once. Such insights into 
the proportion of time when you would expect your system to be vulner-
able are vital to making investment decisions involving mitigation strategies.



Password Hacking

Anton Mobley, data scientist at GE Healthcare

Major breaches causing huge financial and brand damage have occurred 
in recent years. The attackers are varied, including hacktivists, nation-

states, and cyber criminals. The targets and data types breached include 
Target and Home Depot (personal credit information), Anthem/Wellpoint 
(personal health information), the US Office of Personnel Management, 
Booz Allen Hamilton and HBGary (military and intelligence information), 
and Ashley Madison and Adult Friend Finder (private information). Malware 
and phishing attacks are typically the focus of cybersecurity professionals, 
but these breaches pose a secondary risk to enterprises due to credential 
loss. The credential databases from these breaches often find themselves 
posted on hacker forums, TOR, and torrents.

Using the 2013 Adobe breach as a case study, enterprise exposure can 
be modeled as a function of enterprise size and password policy. In Octo-
ber 20134 Adobe announced that hackers had stolen source code for major 
Adobe products and customer credentials for over 153 million users. The 
credential database became very easily accessible. Some amount of users 
in the dataset are likely made up or missing passwords, but the dataset was 
still one of the largest known credential dumps to date.

The database contained email addresses, encrypted passwords, and 
a cleartext password hint if the user chose to use one. Note that the 
passwords were not hashed or salted; they were 3DES block-encrypted. 
This implies that a key loss would compromise the entire database;  
however, the key is not publicly known as of now. Since no salt was 
used, the same password encrypts to the same encrypted password. 
The password hints were stored in cleartext, meaning that an attacker 
can aggregate on an encrypted password to get all applicable hints for 
the same password. Frequently in the database, password hints such as 
“work,” “sso,” “outlook password,” and “lotus notes password” are given, 
implying password reuse, and pivoting off the encrypted password to 
the set of applicable hints makes guessing the password trivial. Addi-
tionally, the passwords were block-encrypted, meaning that an attacker 
could breach pieces of passwords and use them to attack other users’ 
credentials in the database.
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To model enterprise exposure, we define an enterprise to be exposed 
if the following criteria are met:

1.	The password used by an employee email is the same password used 
by the employee for a critical type of work function.

2.	The password can be easily backed out of the Adobe database by 
aggregating hints on encrypted passwords.

It follows, then, that the probability of exposure for an enterprise of n 
employees can be modeled as the following assuming that employees are 
independent and that password reuse rate is independent of the employee 
password being vulnerable.

P employees exposed( )1 	
1 – (P Any employee password is reused AND same 

password is vuulnerable by hint aggregation)n

1 1– ( – ( ) (P password is reused P Single password 
is vulnerable  to hint aggregation n)) 	

Security experts have varying opinions on the rate of password reuse 
between accounts. Some studies put the rate in the 12% to 20% range,5 but a 
Princeton study using limited data put the reuse rate at 49%.6 Using previous 
results in this type of analysis, a rate of Uniform(0.15,0.25) is used for this model.

Modeling the likelihood that a single password is vulnerable to hint 
aggregation is a bit more difficult. To be able to do this, an understanding of 
how users choose passwords must be developed. Since many password leaks 
have happened in the past, we choose a former leak with minimal password 
restrictions to model the password selection space. We use the 2009 hack of 
RockYou, a company that developed plugins and widgets for social media 
sites and from which 34  million passwords were leaked. The aggregated 
password set (no user information) was taken from https://wiki.skullsecurity.
org/Passwords. The parameter for the rate at which a hint is given that breaks 
a password is chosen as 0.0001. This parameter is unknown, however; this is 
a very conservative estimate. Typically only 10 to 20 hints are needed before 
a password becomes easy to guess. This parameter is also a function of the 
number of people sharing passwords, but for simplicity the point estimate is 
used. By conditioning on the number of users that share a password and the 
RockYou password space as the probability mass function of how people 
choose passwords, we can model the single employee exposure as following:

V event a password is vulnerable to being guessed
X event that X employees share an encrypted password with thee user
N Adobe user base in breach million: ~153

P Density function for each password from the RockYou daRY tta 
breach

https://wiki.skullsecurity.org/Passwords
https://wiki.skullsecurity.org/Passwords
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h probability that a password hint is weak enough to allow thhe 
password to be guessed correctly

These results are dependent on the RockYou password space PMF. 
Taking password policy into account by taking the conditional distribution 
from RockYou that is compliant with the password policy, the initial set of 
passwords that a user will pull from comes from a much higher entropy 
distribution.

A simulation of various password policies and number of matches is 
run using replacement for the number of matches to a password to empiri-
cally estimate the cumulative distribution functions under various password 
policies. The number of vulnerable passwords—that is, passwords that have 
a weak hint associated with them, based on the number of people shar-
ing the password and the event that the password is reused—is used to  
calculate the maximum likelihood estimate and 95% CIs for the single 
employee’s rate of compromise.

Combining the reuse rate distribution with the single-employee expo-
sure distribution results in a range of outcomes (given in Figure B.14). The 
solid lines show the MLE of the probability of exposure and the dotted lines 
show the lower and upper bounds when using the 95% CI results with the 
low and high values of the reuse rate distribution.
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FIGURE B.14  Probability of compromise by company size and password policy
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This model gives an idea of the risk of compromised credentials for 
an enterprise given employee accounts and password policies. There are a 
few points that can and should be corrected to improve the fidelity of the 
model, including the following two:

1.	The password-hint reuse rate is definitely a function of password com-
plexity; that is, people who choose good passwords don’t give them 
away in hints as often, and this isn’t corrected for. Additionally, combin-
ing hints makes weak hints very valuable, and this isn’t accounted for.

2.	Forcing a password policy on a user base would likely result in a lower 
entropy distribution than the RockYou conditional distribution. For 
example, I imagine an increase in passwords that look like the fol-
lowing if a length/character type policy is implemented: P@ssw0rd123, 
pr!ncess123, and TrustNo0ne!
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How Catastrophe Modeling Can 
Be Applied to Cyber Risk

Scott Stransky, assistant vice president and principal scientist at AIR Worldwide
Tomas Girnius, PhD, manager and principal scientist at AIR Worldwide

One may wonder how a company proficient in building models to esti-
mate losses from hurricanes and other natural disasters can use their 

techniques to build a similar model for estimating losses from cyberattacks.
Hurricane Andrew spawned the catastrophe-modeling industry. 

Although catastrophe models existed before that storm in 1992, they were 
not used by decision makers, nor were they used to their full potential. 
When the storm struck south Florida, AIR issued modeled loss estimates on 
the order of $13 billion, a figure that the insurance industry scoffed at for 
being far too high. As the claims for Andrew started to pile up, 11 insurers 
went out of business, and the rest of the industry began to see the value 
in running models. The “Hurricane Andrew of Cyber” has yet to strike the 
cyber insurance industry, and when it does, those companies using models 
will be far better off than those using so-called underwriting judgment.

AIR is employing the same stochastic modeling framework (Figure B.15) 
that it has reliably used for its catastrophe model for nearly 30 years. This 
is best described by analogy to hurricane modeling. Hurricanes can be 
visualized and have been widely studied. We begin with historical data on 
hurricane events, publicly available from the National Hurricane Center and 
other sources, and determine distributions for various parameters, such as 
how many storms there will be per year, where along the coastline those 
storms will hit, how intense they will be, and so forth. We then do a Monte 
Carlo simulation using all of these distributions to develop our stochas-
tic “catalog” of events. This catalog contains 100,000 simulated hurricane 
seasons—not predicting 100,000 years into the future, but instead looking 
at plausible versions of next year’s hurricane season. For cyber, we have 
data from collaborators that will allow us to determine distributions for the 
number of attacks per year, which industries they are targeting, whether 
they are impacting larger or smaller companies, and in the case of a data 
breach, how many records have been stolen. This is in addition to informa-
tion on the type of data that tends to be affected, the types of actors doing 
the attacks, and any ramifications of the attack—for example, whether data 
is stolen, businesses experience downtime, or the companies are sued. We 
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will use this for our Monte Carlo simulation for cyber events by drawing 
from these distributions to create a catalog of events.

The next phase of the model is the vulnerability component, in which 
the catalog, together with information about the risk itself, is used to deter-
mine damage. For wind perils, we can use data from wind tunnels, compu-
tational fluid dynamics, post-disaster surveys, and engineering studies. For 
cyber, we are working with data that helps differentiate the risks between 
various industries, company sizes, company locations, and other features. 
The final step of the model is to estimate losses, including average annual 
losses, 1 in 100 losses, 1 in 250 losses—for individual accounts as well as 
entire portfolios of accounts. To do this, we need historical loss data. We 
are working with several primary insurers to get such data, in return for 
cyber-risk consulting studies and early model results. This data allows us to 
calibrate and validate the loss results that the model produces.

The recent vintage of available cyberattack data—essentially available 
for only a few years—effectively ensures the “left censoring” referred to by 
Andrew Jaquith. The extremely large number of cyber events during the 
past few years ensures that the pool of data available is not impoverished 
as a result. The large amounts of basic cyber data define the size and shape 
of the bodies of fitted statistical distributions, very much akin to traditional 
actuarial methods. That large volume of data assures that the parameters 
fitted to those distributions are sufficiently robust to allow for sampling 
from the tails. Here, catastrophe modeling diverges from traditional actuarial 
practice—it is, indeed, the occasional Monte Carlo sample from the tail of 
the distribution that results in the extreme scenarios that are the purview 

FINANCIAL

Loss
Calculation

Policy
Conditions

HAZARD

Event
Generation

Intensity
Calculation

Exposure
Information

VULNERABILITY

Damage
Estimation

FIGURE B.15  The AIR worldwide catastrophe modeling framework
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of catastrophe modeling. It is only because the body of the distribution has 
been fitted well that we have confidence in the structure of the tail. This 
addresses the issue of determining extreme individual events in the catalog.
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