

MEAP Edition
Manning Early Access Program

Software Engineering for Data Scientists

Version 2

Copyright 2023 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://www.manning.com/
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

welcome
Thank you for purchasing the MEAP for Software Engineering for Data Scientists. This book is written for readers
looking to learn how to apply software engineering concepts to data science.

The book is split into four parts:

In addition to the direct topics we cover in the book, you’ll also get hands-on experience with the code examples.
The code examples in the book are meant to be runnable on your own with downloadable datasets, and you’ll find
corresponding files available in the Github repository. Besides the examples laid out in the book, you’ll also find
Practice on your own sections at the end of most chapters so that you can delve further into the material in a
practical way.

The book covers an extensive set of topics, and I hope you find it helpful in your technical journey. If you have any
questions, comments, or suggestions, please share them in Manning’s liveBook Discussion forum.

— Andrew Treadway

Part 1 – Getting started

This part will cover topics such as source control, exception handling, better structuring your code,
object-oriented programming (OOP) for data science, and monitoring the progress of your code
(such as model training or data extraction)

Part 2 – Scaling

Part 2 covers scaling your code effectively. For example – how do you deal with larger datasets?
We’ll cover both the computational and memory components of scaling

Part 3 – Scheduling, testing, and deployment into production

Part 3 details how to rigorously test your code, protecting your credentials (for example when
connecting to a database to query data, scheduling models and data pipelines to run automatically,
and packaging data analytics code into a portable library that can be shared with and downloaded
by others

Part 4 – Monitoring your data processing and modeling code

Lastly, Part 4 will teach you how to effectively monitor your code in production. This is especially
relevant when you deploy a machine learning model to make predictions on a recurring or
automated basis. We’ll cover logging, automated reporting, and how to build dashboards with
Python.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

brief contents

 1 Introducing software engineering principles

 2 Source control for data scientists

 3 How to write robust code

 4 Object-oriented programming for data scientists

 5 Creating progress bars and time-outs in Python

 6 Making your code faster and more efficient

 7 Memory management with Python

 8 Scaling Python code – Alternatives to pandas

 9 Making your code production-ready

10 Testing pipeline

11 How to auto-schedule your Python code

12 How to package your code

PART 1: GETTING STARTED

PART 2: SCALING PYTHON

PART 3: EVERYTHING YOU NEED TO PUT PYTHON IN PRODUCTION

APPENDIXES

A Setting up your environment for this book

B Setting up SQLite

13 Reporting and logging with Python

14 Intro to web development and dashboarding for data science

PART 4: MONITORING YOUR PYTHON CODE

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1
This chapter covers

Suppose you’re working on a project with several others (could be data scientists, software
engineers, etc.). How do you handle modifying the same code files? What about testing out new
features or modeling techniques? What’s the best way to track these experiments or to revert
changes? Often times, data scientists will use tools like Jupyter Notebook (a software tool that
for writing code and viewing its results in a single integrated environment). Because Jupyter
Notebook allows for easy viewing of code results (such as showing charts or other visuals, for
example), it’s a popular tool for data scientists. However, working on these files cannotebook
often get messy quickly (you may hear the term). This is generally because part ofspaghetti code
being a data is experimentation and exploration - trying out various ideas, creatingscientist
visualizations, and searching for answers in data. Applying software engineering principles, such
as reducing redundancies, making code more readable, or using object-oriented programming (a
topic we’ll introduce later), can vastly improve your workflow even if your direct involvement
with software engineers is limited. These principles make your code easier to maintain and to
understand (especially if you’re looking at it some length of time after you’re written it).

Additionally, being able to pass your code to someone else (like a software engineer, or even
another data scientist) can be very important when it comes to getting your code or model to be
used by others. Having messy code spread across Jupyter Notebook files, or perhaps scattered
across several programming languages or tools makes transitioning a code base to someone else

Introducing engineering principles

What data scientists need to know about software engineering
Why data pipelines are important
How machine learning (ML) pipelines are used
Putting models into production

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

much more painful and frustrating. It can also cost more time and resources in order to re-write a
data scientist’s code into something that is more readable, maintainable, and able to be put into
production. Having a greater ability to think like a software engineer can greatly help a data
scientist minimize these frustrations.

The diagram in Figure 1.1 shows an example of a codebase where a data scientist’s code may be
scattered across several notebooks, potentially in multiple languages. This lack of a cohesive
structure makes it much more difficult to integrate the code (for example, a model) into another
codebase. We’ll revisit this diagram later in the chapter within an updated, improved codebase
example.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

2

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 1.1 For data scientists, the state of their codebase is often a scattered collection of files. These
might be across multiple languages, like Python or R. The code within each file might also have little
structure, forming what is commonly known as spaghetti code.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

3

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Better-structured code to minimize errors (both in terms of bugs in the code, but also in
terms of inputs into code functions, such as the features being fed into a model)
Collaboration among co-workers is a key part of any data science team. Software
engineering principles can and should be applied to make collaboration and working
together on the same code base seamless and effective
Scaling code to be able to process large datasets efficiently and effectively is also very
important in modern data science.
Putting models into production (as mentioned above)
Effectively testing your code to reduce future issues

Next, let’s delve into what data scientists need to know about software engineering.

1.1 What do data scientists need to know about software
engineering?
Before we go further, it may be helpful to briefly define software engineering. Software
engineering is the application of engineering principles to developing software applications. Just
like a civil engineer helps to ensure the reliability and effectiveness of bridges or other
constructs, a software engineer develops applications that are reliable, scalable, and efficient. A
few of the key principles of software engineering as applied to data science are below:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

4

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

We’ll cover each of these points in more detail in the next section. First, let’s briefly discuss the
intersection of data science and software engineering.

Josh Wills (a former director of data engineering at Slack) once said that to be a data scientist,
you need to be better at statistics than a software engineer, and better at software engineering
than a statistician. One thing is for certain - the skills that a data scientist is expected to have has
grown much over the years. This greater skillset is needed as both technology and business needs
have evolved. For example, there’s no recommending posts or videos to users if there’s no
internet. Platforms, like Facebook, TikTok, Spotify, etc. also benefit from advanced technology
and hardware available in modern times that allow them to process and train models on massive
datasets in relatively short periods of time. Models like predicting customer churn or potential
fraud are much more prevalent nowadays because more data being collected, and more
companies looking to data scientists to provide solutions for these problems.

Additionally, if you’re interviewing for a data scientist position nowadays, chances are you’ll run
into questions around programming, deploying models, and model monitoring. These are in
addition to being tested on more traditional statistics and machine learning questions. This makes
the interview process more challenging, but also creates more opportunities for those
knowledgeable in both data science and software engineering. Data scientists need to have a
solid knowledge of several areas in software engineering in their day-to-day work. For example,
one key area where software engineering comes into play is around . Theimplementation
example models we’ve mentioned so far, like recommendation systems, customer churn
prediction, or fraud models all need to be in production in order to provide value.implemented
Otherwise, those models are just existing in a data scientist’s code files, never making
predictions on new data.

Before we delve more deeply in the engineering principles mentioned above, let’s walk through
a few more examples of common issues in a data scientist’s work where software engineering
can help!

Let’s walk through a few real-life scenarios for a data scientist. These scenarios will highlight
several key issues data scientists face in their work. The motivation for walking through these
problems is to illustrate the usefulness of incorporating software engineering knowledge, which
we’ll further introduce as we go through this chapter.

Better stuctured code

We covered this point already earlier in the chapter, so we’ll just briefly rehash that improving
the structure of your code can greatly help for several key reasons, including sharing your code
with others, and integrating the code into other applications.

1.2 When do we need software engineering principles?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

5

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Improving coding collaboration

Extending on the earlier scenario, collaborating on the same code base with others is crucial
across almost any data science organization or team. Applying software engineering principles
through allows you to track code changes, revert to previous code file versions,source control
and (importantly) allows for multiple people to easily change the same code files without threat
of losing someone else’s changes. These benefits of source control can also be useful even if
you’re working a on a project alone because it makes it much easier to keep track of the changes
or experiments that you may have tried.

Figure 1.2 Collaboration is an important part of coding in many companies. Data scientists, data
engineers, and software engineers are three common roles that often interact with each other, and
share code with each other. Working effectively with a shared codebase across multiple (or many) users
is a topic we’ll delve into in the next chapter.

Scaling your code to handle more data efficiently

Another common scenario involves scaling. involves improving your code’s ability toScaling
handle larger amounts of data from both a memory perspective, as well as an efficiency point of
view. Scaling can come up in many different scenarios. For instance, even reading in a large file
might take precious time when your compute resources are constrained. Data processing and
cleaning, such as merging datasets together, transforming variables, etc. can also take up a lot of

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

6

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

time and potentially memory. Luckily, there exists many techniques for handling these problems
on a large scale, which we’ll cover in more detail later in this book. It is quite common for data
science code to be initially written inefficiently. Again, this is often because data scientists spend
a lot of time exploring data and experimentally trying out new features, models, etc. By applying
software engineering concepts and tools available, you can transform your code to run on a more
robust basis, scaling to larger numbers of observations much more efficiently.

Putting models into production to make them usable by others

Once you’ve developed a model, you need to put it to use in order to provide value for your team
or company. This is where putting your model into comes into play, which asproduction
mentioned above, essentially means scheduling your model to make predictions on a recurring
(or potentially real-time) basis. Putting code in production has long been a software engineering
task. It’s the heart of software engineering work at many different companies. For example,
software engineers are heavily involved in creating and putting apps on your phone into
production, which allows you to use the apps in the first place. The same principles behind doing
this can also be applied to data science in order to put models into production, making them
usable by others, operating anywhere from a small number of users to billions (like predicting
credit card fraud), depending on the use case.

Effectively testing code to reduce future issues

So you’ve created a model and it’s soon going to be making new predictions. Maybe it’s a model
to predict which customers are going to churn in the next month. Maybe it’s predicting how
much new insurance claims will cost. Whatever it is, how do you know the model will continue
to perform adequately? Even before that, how can you ensure the code base extracting,
processing, and inputting data into the model doesn’t fail at some point? Or how can you
mitigate the results of the code base failing? Variations of these issues are constantly faced by
software engineers with respect to code they’re writing. For example, an engineer developing a
new app for your phone is going to be concerned with making sure the app is rigorously tested to
make sure it performs like it is supposed to. Similarly, by thinking as a software engineer, you
can develop tests for your data science code to make sure it runs effectively and is able to handle
potential errors.

In Figure 1.3, we show an example of inputting features into a customer churn prediction model.
Here, we might add tests to ensure the inputs to the model, like customer age or number of
transactions over last 30 days, are valid values within pre-defined ranges.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

7

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 1.3 This snapshot shows a sample of tests that could be performed when deploying a customer
churn model. For example, if the model has two inputs - customer age and number of transactions over
the last 30 days, we could perform checks to make sure those inputs values are within set ranges prior
to inputting into the model.

Let’s summarize these principles in a table.

Next, let’s go through a sample data science workflow using a specific example. This will help to
tie the above scenarios to a common data science use case.

Engineering
principle

Advantages

Better structured
code

Makes code more easily integratable, easier to maintain, and helps improve coding collaboration.

Improving code
collaboration

In addition to better structured code, we can use additional tools - such as source control - to make it
easy to work together on the same codebase across many users or teams.

Scaling your code Making your code robust enough to handle large volumes of data and generalizable enough to deal
with new variations of inputs, data, or various errors that may occur.

Deploying models
into production

Make the application of your code usable or accessible by others. This can be anything from a
customer churn model making predictions to an app on your phone tracking your fitness goals.

Effective testing Any model or application that will be handling data or being used by others needs to be rigorously
tested to ensure it can handle potential issues.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

8

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Suppose you’re working for an e-commerce company and you want to predict whether a
customer will churn in the next 30 days. Oftentimes, a data scientist working on a problem like
this would roughly follow these steps:

Gather data
Data can be collected in several ways:

Writing SQL to extract data from various tables / databases (MySQL, SQL Server, etc.).
Scraping data from documents (e.g. CSV, excel files, or even PDF / Word documents in
some cases)
Extracting data from webpages or through web APIs

Exploratory data analysis (EDA) / data validation
EDA involves steps like checking the distributions of key variables, investigating missing
values, looking at correlation plots, and checking descriptive statistics (such as the
median values for numeric variables or most common value for categorical features).
Data validation might involve checking the results of EDA against domain knowledge or
across multiple data sources to ensure that the data is accurate and reasonable to use for
analysis and modeling.

Data cleaning
Data cleaning involves minimizing the number of issues in a dataset, including the
following:

Replacing missing values
Removing highly correlated variables
Treating highly skewed variables (potentially transforming certain features)
Dealing with an imbalanced dataset (think about predicting ad clicks, for example, where
the vast majority of users never click on an ad)

Feature engineering
Feature engineering is the process of developing new features from existing variables.
This is generally done in an effort to improve model performance. For example, certain
machine learning models will perform better when the inputs follow a normal
distribution, so there are existing techniques that make these transformations. In other
instances, feature engineering is absolutely necessary to get anything useful out of a
variable. This is typical of date variables, for instance. For example, in the credit fraud
use case, transaction date could be a raw variable, but cannot be input directly into a
machine learning model. Instead, we parse out new features, such as the day of the week,
hour of the day, month, etc.

Model training
Model training involves inputting data into machine learning algorithms like logistic
regression, random forests, etc. so that the algorithm can learn the patterns in the data in
order to be able to make predictions on new data. This process may involve testing out
several different models, performing fine-tuning the parameters of the models, and
perhaps selecting a subset of the more important features relevant to a model.

1.2.1 Sample data science workflow

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

9

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

be used to assess performance, such as accuracy (number of examples where the model
was correct / total number of predictions) or correlation score (sometimes used to
evaluate models outputting a continuous prediction).

Model evaluation
Model evaluation is a key component where data scientists need to check how well the
model performs. This is usually done by evaluating the model on a fresh, or hold-out,
dataset that was not used for model development. There are a variety of metrics that may

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

10

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 1.4 A sample data science workflow, as described above. Data science workflows involve key
steps like gathering data, exploring and cleaning the data, feature engineering, and model
development. The model evaluation piece is also a highly important step, that we will cover in detail
when we discuss model monitoring later in this book.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

11

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

How do we allow easier coding collaboration between data scientists, data engineers,
software engineers, and whomever else may be working on the project?

While data scientists ultimately use data to perform analysis and modeling, data
engineers are more heavily involved in creating new tables, managing databases, and
developing workflows that bring data from some source (like raw logging on a website)
to a more easily ingestible place where data scientists can query a table - or small number
of tables - in order to get the data needed for modeling or analysis. Software engineers, as
mentioned above, help to create reliable applications that might be used either by internal
employees or external consumers. These three roles often work closely together, and their
exact responsibilities may overlap depending on different companies.

How do we use the developed model to predict churn for customers on an ongoing basis?
We can think of this question as an extension of the last point in our data science
workflow concerning model evaluation. Once we’re satisfied with a model’s
performance, how do we go from a trained model to one that is making predictions on a
regular cadence? This heavily involves one of the main topics of this book, which is
putting models into production.

How can we have fresh data ready for the model to use in production?
This question is partially related to the first piece of the data science workflow -

1.2.2 How does software engineering come into the picture?
The process above presents several potential problems from a software engineering perspective.

gathering data. Essentially, ensuring fresh data is available in production involves
automating the gathering data process and hardening it to reduce the possibility of errors
or data issues.

How do we handle invalid inputs into the model or other errors?
Handling invalid inputs into the model is often needed once the model is developed and
ready to be deployed into production. In a production environment with new data coming
in, we may need to create checks like making sure the data types of each feature input is
correct (for example, no character inputs when a numeric value is expected) or that
numeric values are in an expected range (such as avoiding negative values when a
positive number is expected). Other types of errors may also occur in the workflow above
when we are automating those steps for fresh incoming data. For instance, whatever code
is being used to extract the new data may fail or some reason (such as the server hosting a
database going down), so you could develop logic to retry running the code after a few
minutes.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

12

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

How can we effectively monitor the model’s performance once it’s making predictions
on a recurring basis?

Model monitoring can be thought of as an extension of the model evaluation step in our
data science workflow above. Effective monitoring of a model is necessary to ensure
confidence in a model’s performance over time. The exact way we monitor a model will
depend upon what the model is actually doing. In our example above, we would know
after 30 days whether a customer actually churned. We could use this to then chart the
accuracy of the model over time, along with other metrics like precision and recall
(which may actually be more important depending on the balance of the dataset). These
metrics can be tracked using a dashboard. Additionally, we might monitor information
like the distributions of the features in the model. This can help to debug potential issues,
such as dips in model performance. We will discuss Python tools for introductory web
development and dashboarding later in this book.

Do we need to re-train the model on an ongoing schedule?
Re-training a model on a recurring cadence is tied to the performance of the model over
time. The short response to this question is…it depends. If the model performance is
dropping a week after you’ve trained it, then you might need to re-train the model
frequently (or consider different features). If the model performance is stable over time,
you might not need to re-train the model very often, though it’s a must to monitor the
model to ensure it is meeting the standards expected.

How can we scale the model to millions of users?
Scaling can be a fairly in-depth topic, but we can broadly think of it in terms of memory
and efficiency. Many machine learning applications can be extremely intensive in terms
of both CPU (or GPU) cycles, as well as memory. Enabling ML and data workflows to
handle larger-scale data is an important task, and one that is likely to grow in importance
as datasets get larger and more diverse. Scaling code is heavily a software engineering
topic. When applied to data science, it can involve areas like parallelizing code or using
advanced data structures.

We will dive into more detailed approaches to each of these concerns in later chapters, but for
now let’s introduce a few summary points. Broadly speaking, software engineering provides
solutions to these issues. Software engineering helps to fortify our modeling code to reduce
errors and increase reliability. It can integrate a model trained in a data scientist’s development
environment into a robust application making predictions on millions of observations.
There are a few software engineering concepts we can apply to make our data science workflow
more robust and to handle these issues.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

13

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Source control
Source control (sometimes called) refers to a set of practices to manageversion control
and monitor changes to a collection of code files.

Exception handling
Exception handling involves developing logic to handle errors or cases where a piece of
code may fail. For instance, this would come up in the example mentioned earlier where
a section of code retrieving data from a database might fail and exception handling logic
could be implemented to retry retrieving the data after several minutes. A few examples
of exception handling can be seen in Figure 1.5.

Figure 1.5 Exception handling can take many forms. A few examples are shown in this figure. For
example, we may need to query data on a regular basis for model training (for instance, updating the
customer churn model). What happens if the query returns zero rows one day? There could be multiple
solutions, but one could be sending an alert/email to an oncall data scientist (or engineer) about the
problem. Or what if you’re scraping data from a collection of webpages and a request fails due to a
non-existing webpage? We might want to skip over the webpage without ending the program in error.
We’ll delve into exception handling more fully in Chapter Three.

Putting a model into production
As mentioned earlier, putting a model in involves enabling the model to makeproduction
predictions on an automated basis, perhaps on a recurring schedule or in real-time.

Object-oriented programming (OOP)
©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

14

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Object-oriented programming (OOP) is a type of coding paradigm that revolves around
 which have corresponding functions and features known as . To take aobjects attributes

real-life analogy, consider a car as an . A car has many attributes like a make andobject
model, color, number of doors, etc. It also has associated functions, such as , starting

, , etc.stopping driving
Automated testing

Automated testing refers to rigorously checking each component of code that will need to
run in production to ensure there are no issues - all in an as automated a way as possible.
This might involve validating a model’s predictions on test inputs, for example.

Scale
Scale generally refers to data size and is usually thought of in terms of memory or
efficiency. Larger scale problems might have millions (or billions) of observations and
thousands of columns.

These software engineering concepts are not utilized in a vacuum. Any ML model or data
science workflow (even basic analysis) involves data. Where do we get the data from? How do
we make sure the data source and any aggregations, data merging, or pre-processing done prior
to being ingested by a model is reliable? The key idea is to construct a data pipeline, which we’ll
introduce shortly. Another key concept when it comes to deploying machine learning models is a
machine learning pipeline, which we’ll discuss after data pipelines. Before we dive into data
pipelines, however, let’s summarize what we’ve learned in this section.

Software engineering involves applying to software in order toengineering principles
make it more scalable, reliable, and efficient. These same principles can also be applied
to make data science applications have improved reliability, able to scale to larger
datasets, and more efficient.
These principles include well-structured code, which helps make debugging and
collaboration much easier. They also involve dealing with larger and larger datasets in a
world where data is continually growing. Depending on your data science application,
engineering principles can also be applied to put your code into production (such as a
model that can run on millions - even billions - of observations).
A typical data science workflow involves several steps, including gathering data, data
cleaning, and model training / evaluation.
There are several key components of software engineering that can enhance the data
science workflow. These include exception handling, source control, object-oriented
programming (OOP), and scale (among others).

Now, let’s dive into data pipelines!

A data pipeline is a set of actions to process data. Processing data means any action taken to a
collection of data such as the following:

Extracting the data from some source (database, webpage, set of documents, etc.)
Merging and aggregating features (i.e. columns) of data from different sources (e.g.
customer-level vs. transaction-level data)

1.3 What are the components of a data pipeline?

Logging a model’s predictions to a new table

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

15

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

In the workplace, data pipelines are often created by data engineers. However, depending on a
company’s structure, data scientists may also write data pipelines. In general, if you’re a data
scientist, it’s recommended to know about data pipelines and understand the source of the data
you’re using for your modeling or analysis projects. This is important for several reasons, but
especially because it helps you to build confidence in knowing where the data you’re using is
coming from. Software engineers can also be involved in data pipelines. For example, at tech
companies, it is common for software engineers to write the code that logs data from a particular
web application (a simple example would be logging whether someone clicks on an ad).

Data pipelines are necessary because they ensure that data is served reliably for a variety of data
science applications. Even if you’re working on an insight analysis, rather than a model, for
example, you need to be able to retrieve reliable data. Data pipelines are used in these cases to
bring data from between different tables and sources. They can also be used for logging data,
such as storing predictions from a model.

Sometimes you may see data pipelines referred in the context of reporting and analytics, as well,
in addition to being used for machine learning models. The main summary point to keep in mind
is that data pipelines are ultimately used to flow data from a source (or collection of sources) into
finalized outputs, usually in the form of structured tables with collections of rows and columns.
The exact application of ultimately using the data can vary. Let’s give a real-world example of a
data pipeline.

Taking the example mentioned earlier, suppose you’re building a model to predict whether an
e-commerce customer will churn in the next 30 days. Sample inputs into the model might
include:

Total amount of transactions over last 3 months
Number of times customer logged onto the e-commerce website
Length of time since customer first registered
Number of times customer has deactivated account in last 12 months

The data points above may be derived from several different tables. Let’s list those out below:

Table 1.1 Transaction table

1.3.1 Real-world example: Building a model to predict customer churn

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

16

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Table 1.3 Customer information table (e.g. dim_customers)

In order to train a model in the first place, we need to have a method of combining and
aggregating the data inputs we need from the above tables. This process might involve multiple
sources of data and in some cases, may involve using various languages or frameworks. A
common language used in extracting data from tabular sources is SQL. SQL, or Structured

, is basically a programming language designed to extract data from databases.Query Language

The final dataset may include additional pre-processing and feature engineering prior to the
actual model development. Depending on the setup, some of these components may be handled
in the data pipeline or in the modeling code component, which we’ll cover next. For instance,
suppose that a person’s age is being used as a feature in predicting customer churn. Rather than
inputting age directly into a model, we might want to apply a transformation to age, like
bucketing it into different groups (for instance, under 18, 18 - 24, 25 - 30, 31 - 40, etc.). This
bucketing could be handled directly in a data pipeline by creating a table that has a column (

) with those categories, or it could be handled after the data (including the agebucketed_age
variable) has been passed to the model, with some pre-processing code to create that bucketed
feature prior to inputting it into a model.

Table 1.2 Login record table

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

17

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 1.6 An example flow of data from several source tables to a final output dataset used for
predicting customer churn.

Now that we’ve covered the flow of data from several potential sources to a finalized dataset,
what happens to the data? This is where machine learning pipelines come into the picture, as we
will discuss next.

A machine learning pipeline is essentially a setup for automating and hardening a workflow to
deploy a machine learning (ML) model. In this context, an ML pipeline can be thought of as an
extension of (or encompassing) a data pipeline. A data pipeline is necessary to have a scheduled
and fortified (minimizing errors) workflow for providing the data for an ML model. The rest of
the ML pipeline feeds the data into an algorithm (think random forest, logistic regression, etc.).
We can break the model structure component into several sub-components, which we break out
below. Before we dive into the details, let’s take a look at an overview of an ML pipeline, as you
can see in the below diagram. Here, we show how an ML pipeline is connected to a data
pipeline. All ML pipelines start with and depend upon data. This data typically comes as the
result of a data pipeline. Additionally, the data must undergo processing, such as createing new
features for a machine learning model, selecting which features to use in a model, evaluation of a
model’s performance, and more.

1.4 Deploying models with machine learning pipelines

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

18

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 1.7 A sample workflow of a machine learning pipeline extending from a data pipeline. This
diagram shows an outline of a typical machine learning pipeline. Keep in mind that the starting point is
data. Data is always needed for any machine learning pipeline. The final part is monitoring the model to
validate its performance on an ongoing basis. These and the in-between components are covered in
detail below.

Now, let’s dive into the details of the ML pipline components displayed above.

Data ingestion involves ingesting the data needed for the machine learning model. This data can
be ingested from the last step of a corresponding data pipeline, which outputs a table with the
columns needed for the model. There are a variety of ways the data ingestion component can be
setup, including fetching features from a (think of a key-value store has a fastkey-value store
lookup table to map a key - such as a customer ID - to a set of features for that customer, such as
age or account history information), writing SQL to pull the needed data, and many more, which
will be further discussed later in this book. Once data is ingested, there may be additional
processing that needs to be done prior to using the data for model training. We’ll explain what
this processing involves next.

1.4.1 Data ingestion

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

19

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Pre-processing, broadly speaking, involves performing any additional cleaning or feature
engineering prior to model training. For example, the cleaning component might involve
replacing missing values or capping outliers. As stated earlier, feature engineering could be
implemented in the data pipeline by creating the new features directly into table columns, which
are ingested by a model. Alternatively, feature engineering could be done as part of the
pre-processing step after the data has already been extracted. When the pre-processing step is
complete, the next component involves training a model on the data.

There are two main types of model training when it comes to ML pipelines, regardless of the
type of model you’re using.

Train a model once, and use the static model for fetching predictions on an ongoing basis.
This type of model structure is useful in cases where the data does not change very
rapidly. For instance, building a model to predict insurance claim cost from the time a
claim is filed might be an example where the underlying data doesn’t change from week
to week (the relationship of the variables in the model vs. actual claim cost could be
relatively static for shorter durations), but rather it might only need to be updated every
6-12 months.

Re-train the model on a periodic basis, such as monthly, weekly, or even more frequently
if needed. This setup is useful when the performance of the model drops by a
high-enough margin over shorter time periods to warrant updating it on an ongoing basis.
This is related to the topic of model monitoring, which we’ll cover in a later chapter. An
example of this might be a recommendation system, for instance, where new and more
varied types of content are frequently being made available, and the relationships
between the inputs and the target that is being predicted changes fairly rapidly, requiring
more frequent re-training.

After a model is trained, we need to evaluate the performance of the model. The main reason for
this is that is we need to be confident that the model is performing adequately for our standards,
which we’ll discuss next.

1.4.2 Pre-processing

1.4.3 Model training

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

20

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Model evaluation comes after a model has been trained on a dataset. There may be a variety of
evaluation metrics and breakdowns to help ensure confidence in the model performance. The
evaluation of the model will often be monitored on an ongoing basis. For instance, in the
customer churn example, we should be able find out in the available data whether a customer
actually churned i.e. whether our model prediction was correct. This ground truth could be
compared to our model prediction to calculate metrics like precision or recall. In this case,

 would be the proportion of cases where the model predicted a customer would churnprecision
and that the model was successful in that prediction. would be the proportion of customersRecall
that actually churned which were successfully captured by the model. The model monitoring
component may consist of dashboards and potentially a notification system to alert if the
performance of the model drops by a significant amount. Model evaluation is highly important to
any business use case because if a model is not performing adequately, then it could end up
costing a company money, wasting resources, or having a negative impact on customers relying
on the model predictions (such as credit card users depending on accurate predictions preventing
malicious actors from secretly using their credit).

Once we are confident in a model’s performance, it is time for putting the model into production
order to make predictions on an ongoing basis.

On the model prediction side, there are also two main model structures (again, this is regardless
of the underlying model being used).

Real-time models
Real-time models return predictions in real-time. Predicting whether a credit card
transaction is fraudulent is a high-impact example where a real-time model can be
critical. These predictions are often fetched via an API call, which we’ll discuss in more
detail later in this book.

Offline models
Offline models make predictions on a basis, such as daily, weekly, hourly, etc.scheduled
Our example of predicting customer churn could potentially be an offline model, running
daily.

After the model is deployed and able to make predictions on new data, it is important to monitor
the model’s performance on an ongoing basis. This allows us to be alerted if there are any issues
that arise in terms of the model’s performance or changes in the data being used for the model.

Before we go into model monitoring, let’s summarize a few examples based on real-time vs.
offline prediction and recurring training vs. single (or infrequent) model training.

1.4.4 Model evaluation

1.4.5 Model prediction / deployment

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

21

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Now, let’s discuss model monitoring.

As just mentioned, it is important to monitor a model in order to ensure its performance is
adequate. This was briefly discussed earlier in the chapter, and to re-iterate, usually involves
tracking model performance metrics and potentially feature distributions.

Before we close out the chapter, let’s revisit Figure 1. Since we now know about data pipelines
and ML pipelines, we can think about restructuring the scattered notebooks/files shown in Figure
1 into a more sequential collection of files. Ideally, these would be standardized across languages
as much as possible (for example, keeping code files only in Python rather than across Python,
R, Julia, etc.). For example, this might look like the following table:

This tables show a few sample code files corresponding to different steps in the ML pipeline.
There could be additional code files as well. For example - feature engineering might be divided
into several components in different files. We’ll go further into the possible structure of files in
the data science workflow when we get to Chapter Three. Now, let’s close out this chapter with a
summary of what we’ve we covered.

Model prediction Training frequency Prediction type

Customer churn Evaluate based on need, but potentially monthly, or every
several months

Offline - update model prediction
based on data ingested each day

Ad click prediction Patterns related to ad clicks can change very fast, so training
might be done on a weekly, daily, or even real-time basis

Real-time

Credit card fraud
prediction

The factors used to identify fraud may change relatively
rapidly, so training frequency should account for this

Real-time

Property insurance
claim cost

Potentially every few months unless there are major changes
that will impact the model’s predictive power

Offline - update predictions with
new information daily

Music genre prediction
(for example, Spotify)

Depending on how often new genres are added, this could be
every few weeks/months or on more frequent basis

Could be real-time or offline

1.4.6 Model monitoring

Sample file name Description

1_fetch_dataset.py Python script to extract data needed for model training

2_clean_dataset.py A Python file to clean the raw dataset

3_feature_engineering.py Perform feature engineering, such as calculating number of transactions over last 30
days

4_feature_selection.py Reduce the features to only those needed

5_train_model.py Train the model and store the model object

6_generate_evaluation_metrics.py Generate a collection of evaluation metrics to measure the model’s performance

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

22

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Data scientists need software engineering concepts in order to make code easier to
maintain, allow for more seamless collaboration, implement models into production,
scaling, and rigorously testing your code.
Data pipelines are used for merging, aggregating, and extracting data from some
underlying source into a final output (typically a table or collection of tables).
Machine learning (ML) pipelines are used to deploy machine learning models to make
predictions on an automated basis. This might be making predictions in real-time or
recurring on a schedule, such as daily or weekly predictions.
Key software engineering concepts that are used in fortifying data pipelines and ML
pipelines include source control, object-oriented programming, scale, and exception
handling.
Putting a model in production requires fortification of code like handling errors /
exceptions, scaling as necessary, and structuring code to be more readable and allow for
easier collaboration

1.5 Summary
In this chapter, we discussed data pipelines, ML pipelines, and provided an overview of putting
models into production.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

23

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

2
This chapter covers

In the last chapter, we introduced several key software engineering concepts that will improve
your life as a data scientist. These included:

Source control
Exception handling
Putting a model into production
Object-oriented programming (OOP)
Automated testing
Scale

In this chapter, we’re going to delve deeper into the first of these - namely, .source control
Source control (also called) is basically a way of tracking changes to a codebase.version control
As the number and size of codebases has grown indescribably over the years, the need for
monitoring code changes, and making it easier for various developers to collaborate is absolutely
crucial. Because software engineering has existed longer than modern data science, source
control has been a software engineering concept longer than a data science one. However, as
we’ll demonstrate in this chapter, source control is an important tool to learn for any data
scientist. Before we delve into using source control for data science, however, let’s discuss how

Source control for data scientists

What is source control
Why do data scientists need to know source control
What is git
What are the main git commands you need to know as a data scientist

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

24

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

source control fits into the picture of applying software engineering to data science. Recall in the
last chapter, we discussed several key concepts of software engineering, such as better structured
code, object-oriented programming, exception handling, etc.

Source control can (and should) be used from the very beginning and throughout a project. That
project could be a purely software engineering application, a data science project, or some
combination. For example, the project could be developing a new machine learning model, like
our example in the last chapter around predicting customer churn. It could also be a purely
engineering project, like code to create a new app for your phone. There is a consistent theme
between source control, better structured code, and object-oriented programming (explained in a
later chapter) in that each of these software engineering concepts make collaboration between
developers (or) much easier. This chapter will focus specifically on commondata scientists
software for using source control.

Next, let’s explore how source control will help you in your projects. Going back to the customer
churn example from the first chapter, suppose you and a colleague are working on a data science
project together to predict whether a customer will churn. To make this concrete, we will use the
customer churn dataset available from Kaggle here:

. This dataset involveswww.kaggle.com/competitions/customer-churn-prediction-2020/data
predicting whether a customer from a Telecom company will churn. The workflow of this project
can be structured similarly to the data science life cycle that we discussed in the first chapter. As
a refresher, we’ve repeated the chapter one diagram showing the combined data pipeline/ML
pipeline view in Figure 2.1.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

25

https://www.kaggle.com/competitions/customer-churn-prediction-2020/data
http://www.kaggle.com/competitions/customer-churn-prediction-2020/data
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.1 Adding to what we covered in the previous chapter, we can use source code at almost any
step of of a data pipeline or ML pipeline. This is especially useful when multiple coworkers are
collaborating together on the same codebase, but can also be helpful for tracking changes in a
codebase even if you are the only one working on it.

In the following steps, we tie the pipeline components to our specific Kaggle dataset:

Gathering data
Fetch the data needed to build the customer churn model. In the Kaggle dataset we’ll be
using, this includes information like length of account (account age), number of day calls,
area code, etc.

Exploratory data analysis (EDA) / data validation
Analyzing the data for patterns, distributions, correlations, missing values, etc. For
example, what’s the proportion of churn to non-churn? What’s the association with total
day minutes used (total_day_minutes) and churn? Etc.

Data cleaning
Handle issues, such as missing values, outliers, dirty data, etc.

Feature engineering
Create new features for the models you both will build. For example, you could create a
new feature based on the average total day charge for the state the user resides in.

Model training
Develop models, such as logistic regression or random forest to predict churn.

Model evaluation.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

26

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Evaluate the performance of the models. Since churn vs. non-churn is a classification
problem, we might use metrics like precision or recall here.

Model deployment
Make the finalized model accessible to others. For this case, that might mean prioritizing
individuals predicted to churn for marketing or lower price incentives.

Each of these steps might involve collaboration between you and your colleague. Consider a few
example scenarios:

When gathering data, you might write code to extract data from the last year. Your
colleague, wishing to get more data, modifies the codebase to extract data from the last
three years.
Your colleague adds code that creates several visualizations of the data, like the
distribution of daytime calls. You find a bug in your colleague’s code and want to correct
it, so you modify the shared codebase.
The two of you are working on cleaning the data. One colleague adds code to replace
missing values and handle outliers. The other one realizes that one of the fields has a mix
of numeric and string values, and writes code to clean this issue. Both sets of changes go
into the same file.
One of you works on developing an logistic regression model, while the other wants to
try out a random forest. But you both want to share code with each other and potentially
make modifications (like use different parameters or features)

Source control makes these types of collaborations much easier and trackable. Next, let’s dive
into how source control would help you and your colleague in this situation, or in general for any
data science project you may work on.

Source control, as mentioned above, is a system for tracking code changes across a collection of
users (though that collection of users could also just be a single individual). Source control has
long been used by software engineers, though as we’ll see below is also invaluable for data
scientists, as well. When speaking about source control, you’ll often encounter the term

 (or for short). A repository is simply a collection of files, often hosted on arepository repo
remote server. Typically, the source control workflow involves multiple people contributing to
the same repository. Each person will download a copy of the repository’s codebase to a local
directory. By , we mean whatever server or personal environment someone is using tolocal
create and write new code files. You may hear the term to refer your copy of thelocal repository
collection of files. A developer can then make whatever changes needed to the codebase, such as
creating new files (like a new Python script, for example) or modifying existing files. After
changes are made, the updates can be pushed to the repository so that other users can download
the most up-to-date code. Additionally, any changes pushed to the remote repository can be
tracked, so that you can trace who made particular changes.

2.1 What is source control?

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

27

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.2 Source control enables easier coding collaboration between different developers of the same
codebase, often stored on a shared remote repository

An alternative to using source control would be to simply use a shared network directory where
different developers could add or modify files to a centralized location. However, this has several
key problems:

How do we track changes based by different users? In other words, how can I easily tell
who made what change? With the methodology above, this is very difficult.
Difficult to revert changes. This can be especially important in cases where a new change
causes an issue, like an app to crash, for instance.
Easy to overwrite others' changes.
Merging changes from different users working on the same code file is a challenge

Taking our customer churn dataset example, suppose you write code that creates a
collection of new features for the churn model. Your colleague wants to modify the same
code file(s) that you created. This process is called . Let’s look at an examplemerging
below.

Merging example:

Data scientist (DS) #1 changes

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

28

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 2.1 DS #1 creates a new Python file

Import pandas package

Calculate the median account length by state

Data scientist (DS) #2 changes

Listing 2.2 DS #2 modifies the same file DS #1 created.

Import pandas package

Calculate the median account length by state

Calculate the median day minutes by state

In the first code snippet, DS #1 creates a code file that calculates median account length values
by state. Another data scientist (DS #2) changes the code to calculate median total daytime
minutes by state (adding an extra line of code). DS #2 can now merge the changes made into a
shared repository where DS #1 can downloaded DS #1’s contributions. Now, let’s move into
how source control helps with the above-mentioned problems.

Broadly speaking, source control offers many benefits, including:

Tracking who changed what. Source control makes it easy to track who created or
modified any file in a repository.
Undoing changes to the repository is straightforward. Depending on the specific software
you’re using for source control, this may even be as simple as executing one line of code
to revert the changes.
Provides a system for merging changes together from multiple users.
Provides a backup for the codebase. This can be useful even if you’re the only person
contributing code. It’s all too easy to accidentally overwrite a file or potentially lose work
if a system crashes. Source control helps to mitigate these issues, in addition to delivering
the benefits listed above.
Code consistency. Too often, different members of a team may follow various styles or
have different sets of functions, which may perform overlapping or similar actions.
Source control allows for easier code-sharing among team members, enabling greater
consistency in the codebase used across team members.

import pandas as pd

p50_account_length_by_state = train.groupby("state").\
 median()["account_length"]

import pandas as pd

p50_account_length_by_state = train.groupby("state").\
 median()["account_length"]

p50_day_minutes_by_state = train.groupby("state").\
 median()["total_day_minutes"]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

29

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The benefits of using source control can be applied to any codebase, regardless of the
application, environment, company, etc. Though source control has long been used by software
engineers, it is also an important tool for data scientists to learn, as we’ll explain below.

As data science projects scale in terms of the code base, as well as the number of people working
together on the code, source control is crucial in keeping track of all the changes that are made.
Almost any software engineer should be familiar with using source control for projects.
However, with data science, there can be a tendency to write . This phrasespaghetti code
generally refers to code that is disorganized, contains redundancies, and is difficult to track
changes or contributions from different people working on the code base. A core reason for this
is that data science tends to be more experimental in the way code is written vs. pure software
engineering. For example, when you’re working on a project to develop a model, you might try
out various combinations of features, different treatments of the data (like replacing missing
values, capping outliers, etc.), or different types of models. Source control offers several benefits
for this type of scenario:

Easily track any experimental changes done by either an individual or a group of data
scientists working on the same project
Enables data scientists, software engineers, data engineers, etc. to modify the same code
base in parallel, without fear of overwriting anyone’s changes
Allows for more easily packaging of the code base and hand-off to software engineers.
This can be very important for putting models, data pipelines, etc. into production
Makes it easier to merge changes to the same underlying files

To make the concept of source control less abstract, let’s use a concrete example of a version
control software called .Git

Git is an open source version control tool, which is also freely available. is the softwareGit
behind popular sites like and . Because it is free and open source, in addition toGithub Gitlab
being straightforward to use, Git is popular not only for software engineers, but is also used for
many data science projects. We will be using git throughout this book for version control, so we
will give an overview of how git works in the following sections.

Git can be used via the command line (terminal) or through a UI, like Github’s web UI
(SourceTree and GitKraken are other UI’s for Git). We can think of a typical Git workflow as
shown in the below diagram.

2.2 Why do data scientists need to know source control?

2.3 Introducing git

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

30

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.3 This diagram is an extension of the one shown earlier. Developers push and pull code to and
from, respectively, a remote repository. Each user must first commit his or her code to a local repository
before pushing the code to the remote repo.

Next, let’s get hands-on experience using Git so that this workflow will become more clear.

Installing Git

If you’re using a Mac, Git comes pre-installed. On Windows, you’ll need to install Git. A
common way to get Git setup on Windows is to go to Git’s website () and downloadgit-scm.com/
the installer for Windows.

Once you have Git installed, you can get started with it by opening a terminal. Any Git command
you use will be comprised of followed by some keyword or other parameters. Our firstgit
example of this is using Git to download a remote repo for the first time.

Downloading a repository

To download an existing remote repository, we can use the command, like this:git clone

Listing 2.3 git clone command

 is a command to download a remote repository to local storage.git clone

In this command, we just need to write followed by the URL of the repository we wantgit clone
to download. For example, suppose you want to download the popular Python libraryrequests
repository from Github. On Github, you can find the link you need to use by going to the repo’s

2.3.1 Basic git commands

git clone [URL of repository]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

31

https://git-scm.com/
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

main page on Github.

Figure 2.4 Snapshot of Github repo page.

Clicking on should bring up a view like below, where you can see and copy the Code HTTPS
URL (in this case).github.com/psf/requests.git

Figure 2.5 Snapshot of Github repo page.

Next, you can download the contents of the repo like this:

Listing 2.4 git clone command

Using here to download (or) a repository from Githubgit clone clone

A benefit of using is that it automatically links to the downloaded repo to being trackedgit clone

git clone https://github.com/kennethreitz-archive/requests3.git

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

32

https://github.com/psf/requests.git
https://github.com/kennethreitz-archive/requests3.git
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

by git for you. For example, running the above command will download a folder (in this case,
called requests3) from the Github repository. But now, any changes you make in this folder will
be automatically tracked. For example, let’s suppose we create a new file within the downloaded
directory called . Then, running in the terminal shows the followingtest_file.txt git status
message:

Figure 2.6 Running ls -a in the terminal will show the newly created hidden git files

From this message we can see that there is one file (the one we just created) that is currently
untracked. Additionally, we can see our local repository is up-to-date with the remote repository
on Github. This means no else has made any changes to the remote repository since we’ve
downloaded the local repository.

git clone is a useful command when there’s an already-existing remote repository that you’re
planing to modify. However, what if a remote repository doesn’t exist? That’s where git init
comes in handy, which we’ll discuss next.

Downloading the repo for this book!

Now that we walked through how to clone the repository for a sample repo, let’s download the
repo for this book!

Listing 2.5 git clone command

Using here to download the repository for this bookgit clone

Now, you should have all the files from the book’s repository in whatever directory you selected
in your computer.

Creating a new repository

What if you want to version control a local collection of files? For instance, let’s go through how
we created the book repository in the first place. To start with, we will use the command.git init
If you enter in the terminal, a new local repository will be created in the current workinggit init

2.4 Git workflow from scratch

git clone https://github.com/atreadw1492/software_engineering_for_data_scientists.git

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

33

https://github.com/atreadw1492/software_engineering_for_data_scientists.git
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

directory. As an example, if you’re currently in the /this/is/an/example/folder, simply running git
 will create a local repository in /this/is/an/example/folder.init

Listing 2.6 is a command to create a new local repositorygit init

Use git init to create a new local repository

To create a repository in another folder, you just need to specify the name of the that directory,
like in the example below, where we create a repository in /some/other/folder.

Listing 2.7 Use to create a new repository in another foldergit init [directory name]

Running git init /some/other/folder will create a new local repository in
/some/other/folder

When you use the command, git will create several hidden files in the input directory. Ifgit init
you’re using a Mac or Linux, you can see this by running in the terminal. Similarly, you canls -a
use the same command in Bash on Windows, as well.

Figure 2.7 Running ls -a in the terminal will show the newly created hidden git files

git init can be run in a directory either before or after you’ve created files that you want to
backup via version control. Let’s suppose you’ve already setup a collection of sub-directories
and files corresponding to what you can see in this book’s remote repository.

ch2/…
ch3/…
ch4/…
Etc.

Next, we need to tell git to track the files we’ve created. We can do that easily enough by
running The period at the end of this line tells git to track of the files within thegit add . all
directory.

Listing 2.8 Use to tell Git to track all files that were changedgit add .

Now, we can our changes. This means that we want to save a snapshot of our changes.commit
We do this by writing followed by a message that is associated with the commit. Togit commit

git init

git init /some/other/folder

git add .

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

34

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

specify the message, you need to type the parameter followed by the message in quotes.-m

Listing 2.9 git commit saves the changes you’ve made as a snapshot of the repo. The
parameter -m is used to include a message / description for the commit.

Running this git commit command will save the changes we’ve made to the repo
(in this case, creating the 1_process_data.py file)

Now that we’ve committed our changes, we need to create a remote repository in order to upload
our committed changes. This remote repository will be where other users can download or view
your changes.

There’s several sites for hosting remote repositories, but a popular one (as mentioned above) is
Github. To create a remote repo on Github, you should be able to follow these steps:

Create a Github account if you don’t already have one
On most Github pages, you should see a plus sign that you can click to create a new repo

Figure 2.8 To create a new repo on Github, look for the plus sign (top right corner of the webpage) to
click and create a new repo.

git commit -m "upload initial set of files"

2.4.1 Uploading local repository changes to a remote repository

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

35

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

if is the name of your local folder, then you could alsosample_data_science_project
name your repository . For the book’s codebase, oursample_data_science_project
repository name is .software_engineering_for_data_scientists
Next, you’re ready to push the local repository to the remote one you just created.

To actually push your local repository to the one on Github, you can run a command similar to
this:

Listing 2.10 Use _git remote add origin [remote repo URL] to enable pushing your changes
to a remote repository.

Running this command will allow us to push our changes to the remote repo at this
URL: github.com/USERNAME/sample_data_science_project.git

USERNAME will be replaced with your username, while will besample_data_science_project
replaced with whatever name you choose for the repository (like

, for example).software_engineering_for_data_scientists

Next, run the line below to tell git that you want to use the main branch. Usually, the main
branch is called or . This branch should be considered the . In othermaster main source of truth
words, there might be other branches that deal with experimental code (for instance, feature_x
branch), but the main branch should use code that has closer to being production-ready, or at
least passed off to software engineers for production. In some cases, if the codebase is small, or
there are only a few contributers, you might decide to just use a single main branch. However, as
codebases get larger, and more people get involved in contributing code to the repository, then
creating separate branches can help keep the main branch clean from messy code thatspaghetti
frequently changes.

Listing 2.11 git branch -M main tells Git that you want to use the main branch when you
push or pull changes.

Tell git that you want to use the main branch

Lastly, you can run to push your local repo changes to the remotegit push -u origin main
repository. After running this line, you should be able to see the changes in the remote
repository.

Listing 2.12 git push -u origin main will push your local changes to the remote repo.

Push the changes in the local repo to the main remote repository

git remote add origin https://github.com/USERNAME/sample_data_science_project.git

git branch -M main

git push -u origin main

Give a name to your new repository. It’s recommended that this name matches the name
of the folder you’re storing the local copies of the files you’re dealing with. For example,

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

36

https://github.com/USERNAME/sample_data_science_project.git
https://github.com/USERNAME/sample_data_science_project.git
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

As you and your potential colleagues make changes to the same repo, it is convenient to be able
to easily tell who made which changes. Fortunately, there’s a straightfoward way to do this,
which we’ll cover next.

Modifying a Git repo

Let’s suppose now that we want to add a new file to our working directory called
. This file could be a Python script that reads in data from a database and1_process_data.py

performs basic processing / cleaning of the data. As a naming convention, we might add "1_" to
the front of the script name in order to convey that this is the first script in a collection of
potential files that needs to be run. For now, though, let’s suppose we’ve just created this

 file. In order to backup our new file via git’s source control system, we’ll1_process_data.py
need to the file (more on this in just a moment). First, however, let’s run . Thiscommit git status
command, as described above, is a simple way of checking what files have been modified or
created, but are not currently being tracked in git’s version control system.

Listing 2.13 Use to check the status of the current directory, which will show anygit status
files that have been created or modified, but not yet committed.

Running git status will tell you what files have been created or modified, but not
yet committed

Figure 2.9 Running git status shows what files, if any, are not currently being tracked via git

Next, let’s tell Git to track our new file, . Again, we can do that easily enough1_process_data.py
by running to add all changed/new files for tracking.git add .

Listing 2.14 Use to tell git to track a specific file. In this case, we willgit add [file_name]
track our new file, 1_process_data.py.

Add 1_process_data.py to a staging area so that we can track its changes

git status

git add 1_process_data.py

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

37

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

You can also add multiple files by running the command separately. For example, aftergit add
running the command above, you could run and Git will prepare git add 2_generate_features.py

 to be committed. This sample file is available in the Git repo, along with 2_generate_features.py
, so that you can practice on your own.1_process_data.py

Now, we can our new file. The -m parameter adds a message in the commit providing acommit
short description.

Listing 2.15 git commit saves the changes you’ve made as a snapshot of the repo. The
parameter -m is used to include a message / description for the commit.

Running this git commit command will save the changes we’ve made to the repo
(in this case, creating the 1_process_data.py file)

Lastly, we can push the changes to our remote repo.

Listing 2.16 git push -u origin main will push your local changes to the remote repo.

Push the changes in the local repo to the main remote repository

Next, let’s a take a look at how we can see who made commits.

We stated previously that Git helps with tracking who made specific changes. To actually see
who made specific changes, you can run the command.git log

Listing 2.17 git log will print out what commits have been made in the repo.

Print a log of what commits have been made in the repo

Figure 2.10 Running git log will show the commit history for the repo

git commit -m "create 1_process_data.py for processing data"

git push -u origin main

2.4.2 How to see who made commits

git log

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

38

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The long combination of digits and characters after is the commit hash ID. It’s a uniquecommit
identifier for a specific commit. You can also see the contents of the commit (the actual code
change) by using , followed by the a hash commit ID.git show

Listing 2.18 Use to see the contents of a commitgit show

Print the contents of a specific commit

Figure 2.11 Running git show will show the contents of a specific commit, as can be seen in thie
example snapshot.

In this case, doesn’t display any code because our sample file we created was empty.git show
But, let’s suppose we have created and committed another file for feature creation. If we run git

 for this other commit, we might get something like the snapshot below showing lines ofshow
code that have been added to a file.

git show 2793446df81f27980c4bbbf96ede45ce929a5c93

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

39

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.12 This time git show displays the code changes to a specific file

In addition to committing your own changes, it is important to be able to get the latest updates
from the remote repository. Let’s dive into how to get the latest changes from the remote
repository next!

As you collaborate on your data science project, it’s important to keep up to date with the latest
code changes. For example, a member of your team might add a new file for cleaning a
collection of features. To get the latest changes, you can use the command. willgit pull git pull
fetch the remote changes and automatically try to merge them with your local repository. If there
are no conflicts between the remote repo and your own, Git will merge the remote repository’s
updates into your local repo. However, if there are conflicts, they will need to be handled
separately, as we’ll discuss in the next section.

Listing 2.19 Use the git pull command to get the latest changes from a repo

Use to get the latest changes from a repository.git pull

In the above command, refers the remote repository (you can think of it as the origin original
repo). Alternatively, you can just run , which will pull the changes from the same remotegit pull
repository by default.

Listing 2.20 We can also omit the "origin" snippet in our previous git pull command.

2.5 Getting the latest changes from a remote repository

git pull origin

git pull

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

40

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Use to get the latest changes from a repository.git pull

Next, let’s show how to deal with conflicts that can arise when merging.

Let’s go back to our example of two data scientists (you are your colleague) working on the
customer churn project. What happens if you and your colleague make changes to the exact same
line of code in the same file? This can lead to a conflict. Let’s walk through an example.

Conflict example

Suppose the 1_process_data.py file mentioned previously contains a simple Python function, like
this:

Listing 2.21 Sample Python function to demonstrate what happens when two users update
the same line of code

Create a function to read data from a file

Let’s say that you change the name of the function to . However, your colleagueread_file
changed the name to in a local repo and then pushed those changes to the remoteread_info
repository that both of you are working with. In this case, running will result in an errorgit pull
message that looks like this:

Listing 2.22 Run git diff to show the conflict differences between your repo vs. the remote
one.

Merge conflict message

2.6 Conflicts and merging changes from different users

def read_data(file_name):

 df = pd.read_csv(file_name)

 return df

Automatic merge failed; fix conflicts and then commit the result.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

41

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.
2.

Listing 2.23 Run git diff to show the conflict differences between your repo vs. the remote
one.

A printout of the conflict differences between the local vs. remote repo

In this case, there’s two main options.

Keep the remote changes
Keep your local changes

We describe how to handle these options next.

Keeping remote changes

To keep the remote changes, you can simply change the line of code causing the conflict, then
commit your changes. In this case, that means changing the function name to match what is in
the remote repo: . Then, you can simply commit your changes like before, and run read_info git

 again.pull

Alternatively, you can run a shortcut command if you want to keep all the changes from the
remote repo that conflict with your own. To do this, you can use the command, likegit checkout
below. The parameter tells Git you want to keep the remote changes. Secondly, we--theirs
specify the name of the file with conflicted changes that we want to maintain as the remote
changes.

Listing 2.24 Use git checkout --theirs to keep remote changes

Keep the remote changes

As mentioned above, keeping remote changes is one option of dealing with conflicts. Another
option is to keep the local changes, which we cover next.

Keeping local changes

Similar to keeping all remote changes for a file, you can run the below command to keep the

diff --cc 3_sample_file.py
index 48eb46a,43e4e41..0000000
--- a/3_sample_file.py
+++ b/3_sample_file.py
@@@ -1,4 -1,4 +1,8 @@@
++<<<<<<< HEAD
+def read_data(file_name):
++=======
+ def read_info(file_name):
++>>>>>>> c4fa0bff6539ee4182f2dc296a47fe1de51fbac2

git checkout --theirs 1_process_data.py

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

42

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

local changes. Here, we just need to put in the name of the file containing the changes we want
to keep (in this case,).1_process_data.py

Listing 2.25 Use git checkout --ours to keep your local changes

git checkout --ours will keep the local changes

Now, let’s talk about . Suppose that you want to try out a rules-based model forbranching
predicting customer churn, but your colleague wants to test out a random forest approach. This
can be a useful scenario to use . Think about as different snapshots of thebranching branches
same codebase that can be worked on in parallel. Branching is usually used when you want to
test out changes to a codebase without pushing them to the main () branch. In oursource of truth
example, you might create a new branch to work on the rules-based model, while your colleague
uses a different branch to test out a random forest approach. Ultimately, the two of you might
decide to go with the random forest approach. In this case, you can use (discussed ingit merge
the next section) to merge your random forest branch into the main branch.

Now, let’s talk more about branches and how to work with them using Git.

As mentioned earlier, a is essentially a snapshot of a codebase. A repository might havebranch
multiple snapshots (branches). There’s several ways to think about using branches.

Using the main branch as the final source of truth. Whenever you’re confident in the
changes you want to make and persist, push them to the main branch. Otherwise, you can
create separate branches to experiment and test out code.
Potentially split development vs. main. The development branch can act as the branch
that is mostly used when you and your potential colleagues are working together on your
data science project. For example, if you’re developing a new model, you might have
separate code files for ingesting data, performing data cleaning and processing, feature
engineering, and separate scripts for testing out different models. Once a model is
finalized, you can push the finalized codebase to the main branch, where you might work
with software engineers to put your model into production.
In other cases, using just a single main branch can work as well. This can be the case if
only a few people are working together and decide that using a single branch works for
their particular use case. It can also be the case that if you’re working in an environment
where only production-code is pushed to a repository, it might make sense to use just a
single main branch.
Ultimately, the decision on how to use branches is up you, the team you work with, or the
company you work for

2.7 How to work with branches in Git

git checkout --ours 1_process_data.py

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

43

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.13 Branching can be thought of as having different snapshots of the same codebase. Each
branch might have its own alternate set of changes. However, each branch can ultimately be merged
back together, or back into the single main branch.

Now, let’s cover a few Git commands related to branching.

There’s several Git commands related to branching. Firstly, if you want to confirm what branch
you’re currently working with, you can use the command. This command will printgit branch
out all the branches in your local repository. An asterisk will be printed next to the branch that is
currently active (the branch you’re currently working with).

Listing 2.26 git branch command

Use git branch to check what branch you’re currently working with and to see the
branches in your local repo.

The result of running the command is below. In this case, the result shows we’re on the main
branch.

2.7.1 Git commands for branches

git branch

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

44

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

To see all branches - including remote ones, you can add the -a parameter to the command
above.

Listing 2.27 git branch -a command

Use git branch -a to list all branches (including remote)

Again, the result shows the main branch, along with the remote main branch.

Creating a new branch

If we create a new branch, we’ll be able to see that one in our list of branches, as well. To create
a new branch, use the command, followed by the name you want to give to the newgit branch
branch.

Listing 2.28 git branch [new_branch_name] command

Use git branch [new_branch_name] to create a new branch

For example, to create a new branch to handle the rules based model (which can be called
), you can type the below command into the terminal.rules_based_model

Listing 2.29 git branch allows you to create new branches by specifying the name of the
branch you want to create (in this example, rules_based_model)

Create a new branch called rules_based_model

Switching to a new branch

You can switch to a different branch by entering followed by the name of the branchgit checkout
you want. Let’s switch to the new branch we just created.

Listing 2.30 git checkout [different branch] will switch to a different branch so any commits
you make will be made to this branch

* main

git branch -a

* main
remotes/origin/main

git branch [new_branch_name]

git branch rules_based_model

git checkout rules_based_model

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

45

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Use git checkout [diferent branch] to switch to a different branch

Running again will now show two branches, with an asterisk next to git branch
, telling us that is the current branch we are working with.rules_based_model

Pushing changes to a new branch

Now that is checked out, any changes you commit will be reflected only torules_based_model
that this branch, and not the main branch (or any other branch for that matter).

Since we created a new branch locally, but the same branch doesn’t exist in the remote
repository, we need to add extra parameters to before we push any changes to the remotegit push
repo.

Let’s suppose, for example, that we created a new file called .3_churn_rules_based_model.py
This file can be found in the ch2 directory in the book’s Github repo.

Listing 2.31 git push --set-upstream origin rules_based_model will push the changes made
to the rules_based_model branch. When using git push on a new branch for the first time,
we need to add the extra parameter --set-upstream origin so that the remote repository will
now reflect the new branch.

Add --set-upstream origin rules_based_model to the git push command so that git
knows we want to push our changes to the rules_based_model branch

In the above command, we’re essentially telling Git to create the new branch in the remote
repository and to push any changes that were made from the local branch () torules_based_model
the new remote one.

In Github, you can see the new branch by clicking on the dropdown box labeled :main

Figure 2.14 Any Github repo should show the name of the active branch - in this case, the main branch.

Once you click on the dropdown box, you should see other available branches (if indeed, there
are other branches):

main
* rules_based_model

git push --set-upstream origin rules_based_model

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

46

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.15 Clicking on the main dropdown box will show any other available branches, like the
rules-based model branch.

Now, let’s walk through how to merge our two branches - main and rules_based_model.

Merging two branches

As mentioned above, branches are often used for fixing bugs for or testing out experiments, like
new features or models. Take our previous example where we created a new branch called

. Let’s suppose we are satisfied with our code changes for this branch and werules_based_model
want to merge it back to the main branch. Git makes this fairly straightforward.

First, switch back to the main branch by using .git checkout

Listing 2.32 Running git checkout main will switch us back to the main branch

Switch back to the main branch

Second, use the command to merge the branch into the maingit merge rules_based_model
branch. If there are no conflicts, the merge will be automatic. If there are conflicts, you will have
to manually resolve them just like we did above.

git checkout main

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

47

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 2.33 When in the main branch, we can use git merge rules_based_model to merge
the rules_based_model branch into the main branch.

Merge the changes from the rules_based_model branch into the main branch

Next, let’s summarize the primary Git commands we’ve learned.

That covers the Git section. To summarize Git commands, remember this workflow and the
corresponding diagram below:

Use git clone to download an existing repository.
Use git init to initialize a new repository (#1 in the below diagram)
Use git add to add changed files to a staging area, ready to be committed (between points
#3 and #4 in the diagram)
Use git commit to create new milestones in your code’s life cycle (after adding changes
to the staging area in #4)
Use git push to submit local repo changes to a remote repository (changes are pushed to
the remote repo - diagram point #5)
Use git pull to download and merge the most up-to-date code in the remote repository
with your local repository (#6)
With different branches, you can use the git merge command to merge one branch into
another

git merge rules_based_model

2.7.2 Summarizing Git commands

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

48

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.16 This diagram shows a sample Git workflow from using git init to initialize a new local repo,
to git push to update a remote repository with local changes, and git pull to get the latest updates from
the remote repo.

As you practice using Git, it may be helpful to use a cheatsheet at first. A sample one can be
found on Github’s site here: .education.github.com/git-cheat-sheet-education.pdf

Now that’ve summarized the Git workflow, let’s cover a few best practices for using source
control.

Let’s go through a few best practices when it comes to source control. These apply no matter
what type of version control software you’re using.

It’s a good idea to start using version control early on in your project. That means even if
you’ve only created one file with a few lines of code.
Commit your code often. code means to send the code’s latest changes to aCommiting
repository, generally hosted on a remote server such that multiple (or potentially many)
people can access, download the latest code base, or make commits themselves. Usually
committing code daily is a good practice, though you can commit your code even more
frequently, as well.
Whenver you commit your code, you should include a brief message describing what
changes have been made. We’ll explain later in this chapter how to do this.

2.7.3 Best practices for using source control

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

49

https://education.github.com/git-cheat-sheet-education.pdf
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

changes have been made. We’ll explain later in this chapter how to do this.
Have a consistent policy around . A in source control terminology refersbranches branch
to a copy of a codebase. We’ll talk more about branches later, but for now, when we say

, we’re referring to having an understanding among the contributors toconsistent policy
the repository how branches will be used. This will become more clear in the section on
branches below.

In the next section, we will cover a way to compare the diffs between two Jupyter Notebook
files.

Jupyter Notebook is a popular tool for data scientists because it integrates coding with being able
to visualize the results of code, such as plots or tables, all in one seamless environment. While
you can commit Jupyter Notebook files, just like most other files, it can be more difficult to
handle merge conflicts when two users modify the same notebook. This is because Jupyter
Notebook files are more complex than simple Python files or R files (these are not much
different than plain text files). Jupyter Notebook files are comprised of HTML, markdown,
source code, and potentially images all embedded inside JSON. Thus, trying to programmatically
identify the differences between files using Git is quite challenging. However, there are a few
alternatives to easily identify the differences between two Jupyter Notebook files. One
alternative is a Python package called , which we’ll dive into next.nbdime

nbdime can be installed using pip.

Listing 2.34 Use pip to install the nbdime library

Install the nbdime library

Next, let’s take a look at two sample notebook files. These files are both available in the ch2
folder in the book’s repo. In the first file below, we import a few packages and create a simple
function for cleaning data. The second snapshot shows essentially the same file, but with an extra
line of code normalizing an input dataset.

2.8 Comparing Jupyter Notebook files with nbdime

2.8.1 Using the nbdime package

pip install nbdime

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

50

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.17 Sample file with a simple Python function

create_plots.ipynb

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

51

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 2.18 A slight modification of the above file, with an extra line of code

Now, let’s use to show the difference between the two notebook files. From the terminal,nbdime
you just need to type followed by the names of the two files (see below).nbdime

Listing 2.35 Use nbdime to show the difference between two notebook files

Print out the difference between the clean_data and clean_data_v2 notebooks

Running the above command will generate the following output:

nbdime diff clean_data.ipynb clean_data_v2.ipynb

create_plots_v2.ipynb

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

52

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

In summary, using can be a great way to identify the differences between two Jupyternbdime
Notebook files. Once you figure out the differences, you can make adjustments as necessary to
one or both files.

In this chapter, we discussed source control, Git, common Git commands a data scientist should
know, and nbdime.

Source control enables easier collaboration between different developers (like data
scientists) of the same codebase.
Git is a popular open-source version control software, commonly used by data scientists
and software engineers
To push local changes to a remote repository, you will generally use git add / commit /
push as the workflow.
Branches provide a way of having multiple snapshots of the same repository. They are
commonly used to test out experimental features.
The nbdime Python library can be used to easily check the differences between two
Jupyter Notebook files.

Now that you’ve read the chapter, try going through a few git exercises on your own!

Can you initialize a local repo?
After initialization, can you push the changes to a remote repo?
Practice with the git add command. Can you change multiple files, but only commit one?
How’s your merge handling? Try creating a conflict (or work with a friend to make
changes that conflict). Can you keep your local changes? Keep only the remote changes?

2.9 Summary

2.10 Practice on your own

--- create_data.ipynb 2022-06-11 19:38:52.936719
+++ create_data_v2.ipynb 2022-06-11 19:43:30.380621
replaced /cells/1/execution_count:
- 3
+ 1

modified /cells/3/source:
@@ -3,6 +3,9 @@ def clean_data(df):

fill missing values with zero
df = df.fillna(0)

+ # normalize data
+ df = (df - df.min()) / (df.max() - df.min())
+

return data frame
return df

deleted /cells/4-5:
- code cell:
- code cell:

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

53

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

3
This chapter covers

These topics are important for several reasons:

They are useful (and can be necessary) components of implementing code in production,
including machine learning models, data pipelines, or other analytics tools that you may
work on as a data scientist
Regardless of whether you’re putting code in production, these topics can make your life
easier. For example, what if you’re scraping data from various webpages, and you need a
way to keep going in case you run into an error? What if you want to easily integrate
your code with a separate collection of code files and functions? After this chapter, you’ll
be covered on how to handle these situations.
Building on a theme from the first two chapters, several of these topics help make
collaboration easier - whether that’s between data scientists, data scientists and software
engineers, or essentially any developer.

Let’s consider how these topics fit into the broader scope of this book.

Error / exception handling
Errors happen in code all the time. Invalid inputs, network failure, memory issues, etc.
There are many types of errors. Some are fatal and require stopping code execution
entirely, while others can (and should) be handled differently in order to avoid a
disruption (such as an application going down, or more simply a loop of API requests
failing). An important point to emphasize here is that these issues can occur regardless of
whether you are putting code into production. Now, if you are deploying code into

How to write robust code

Types of errors in Python
How to effectively handle exceptions
Restricting function input data types
Making your code cleaner

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

54

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

production (such as a machine learning model or data pipeline), then there are specific
types of errors you may have to be prepared for, and the handling for these will have to
be implemented into the codebase being pushed into production. If you are coding on
your own without any need of deploying code into production, you may still have to deal
with error handling, like deciding what to do when requesting data from a collection of
webpages fails for a particular webpage (we’ll see an example of this later in the
chapter). Being able to handle errors properly is easier when you’re familiar with the
main types of errors that can occur - a topic we will cover first.

Cleaner code
Having code means to make your code easy to read, more easily portable (forclean
example, someone else can easily move or integrate blocks of code from your codebase
to a new codebase without breaking anything), and providing a clear understanding of the
purpose for each variable, function, file, etc. This idea is especially useful when it comes
to collaboration and maintenance of your code. When working on the same codebase
with others (see the previous chapter), having clean, easy-to-read code is essential to
making your life and the lives of your co-workers easier. One example of cleaner code is
being more explicit about the inputs into functions (such as the data types), which is an
area we’ll tackle in this chapter

Using our customer churn dataset, the table in Table 3.1 shows how these issues can appear in a
specific dataset we are already familiar with.

Oftentimes, in a data scientist workflow, you may have a collection of notebook files (Jupyter
Notebook). These may not handle various errors that could arise (like network request failure or
a database going down preventing you from being able to read data). They may also be difficult
to read, and not easily portable to someone else that wants to use your code. This can especially
be the case when you’re trying to put the code you have across notebook files into production.
But it also can be the case when you’re working with your co-workers and you want to be able to
easily share code with other. In the last chapter, we talked about using and asGit source control
a method of enhancing collaboration between different data scientists, developers, or software
engineers. As a next step, we need to learn how to make our code more modular, cleaner, and
easier to maintain, along with being able to automatically handle many issues when they arise.
The below diagram shows an overview of the process of creating code.modular

Table 3.1 Below are a few examples using the customer churn dataset of issues you’llm
learn to handle in this chapter.
High-level problem Customer churn example issue

Exception handling Error reading customer churn data from database

Repetitive code Generate the same evaluation metrics from multiple
models predicting customer churn

Restricting function inputs Making it clear what the data types should be for function
inputs, like creating a function to cap the outliers for various
columns in the customer churn dataset

Standardizing code formatting When writing code to process the customer churn dataset,
you want to make your code clean and easy to understand.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

55

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Modular code is code that is broken into multiple files (and multiple functions) for different
tasks, incorporating exception-handling logic, and potentially setting timeouts for model
training.

As we go through this chapter, these topics will become more clear, and you’ll see hands-on
examples of how to deal with them.

In the diagram below, we provide a hint of how modular code could be used. For example, recall
the ML pipelines we discussed in chapter one. There are several sequential steps in these
pipelines, like processing data, feature engineering, model training, etc. Taking our previous
example of predicting customer churn, our modular file structure might look like this:

Figure 3.1 The above diagram demonstrates how we might organize a sequence of modular files, each
performing a separate task as part of an overall goal - in this case, implementing a machine learning
model.

Each file covers a particular step in the ML pipeline sequence. We could potentially break these
further down as well. For instance, in a more complex pipeline, you may have data being
consumed from several different sources, such databases, unstructured documents, image data,
etc. Depending on the complexity of the features being used and the scope of the code required
for extraction, you might split split this code into multiple files in order to have a better

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

56

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

organized structure. Converting a long Python file working on many tasks in the ML pipeline
into a sequence of organized Python files makes the codebase much more easily maintainable
and less prone to bugs. This is true regardless of whether you’re working on an ML pipeline or
even a data science application at all, which is why this concept of modularity is also frequently
found in software engineering.

Additionally, we may have to incorporate logic to handle errors that may arise. These errors may
include:

Network requests failing
Database errors (unable to connect to a database or a database query returning zero
records)
Mathematical operation errors (division by zero, for instance)
Using a package on an unsupported operating system

We can also add logic to set timeouts for code execution, like model training. These topics will
be covered in detail as we go through this chapter and the next.

Next, let’s talk about improving the structure of your code. This will prove important as you we
walk through making your code more modular and (later in the chapter) how to handle errors
effectively.

As mentioned earlier in the book, it is often natural for data scientists to write , orspaghetti code
code that is relatively disorganized, less structured, and sometimes inefficient. This is often
because data scientists write code in an exploratory or experimental manner, testing out features,
exploring datasets, etc. However, this often creates quite a headache when passing your code to
someone else (like a software engineer, for example). In this section, we’re going to walk
through a few key points to help you avoid . First, let’s give a brief summary ofspaghetti code
those points.

Use a standardized style guide, such as PEP8 or Google’s Python Style Guide to make
your code more easily readable by others
Don’t repeat yourself (DRY) is a key software engineering principle to use, which
basically means avoiding redundant code (more on this later)
Modularize your code

We’ll explore each of these points in detail in the following sections.

3.1 Improving the structure of your code

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

57

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

PEP8 is a set of standards for how to style your Python code (see Python’s official website for
the full guidelines:). This style guide is good practice for putting yourpeps.python.org/pep-0008/
code in a state that is more easily digestible by others. Google’s Python Style Guide (available
on Google’s Github repo:) is another similar stylisticgoogle.github.io/styleguide/pyguide.html
guide that also provides recommendations on how to style your code. Both of these involve a
wide collection of standards, so we’ll stick with covering a few key points in this section. The
short summary is that both of these guidelines provide recommendations for how to style your
code. your code refers how you structure your code in terms of importing packages,Styling
variable names, the way you write common blocks of code (such as if-else statements), and
more. Popular IDEs like VS Code and PyCharm often have styling recommendations built-in.
We’re going to cover a few key styling examples below, but you can search online for the PEP8
standards or the Google Style Guide to learn more.

A few of the key styling standards that we’re going to delve into involve:

Importing packages
Avoiding compound statements
Naming conventions
Avoiding builtin functions or keywords as variable names
Why to avoid global variables

In the below sections, we’re going to start with a poorly-written snippet of code, discuss the
code’s issues, and then provide alternative ways of styling your code that are more line with the
styling guidelines mentioned above.

Example of a poorly written script

Suppose that you want to write a piece of code to process the customer churn data. We’ll start by
writing a short snippet that handles reading in the data, replacing missing values with the
median, and taking a sample of the data. The below snippet of code shows an example of a
poorly-written way of performing these tasks. You can find this same script in the directorych3
in the book’s Github repository (look for the file named). Now,1_process_data_before_fix.py
let’s dive into the issues present in this code and how to fix them!

3.1.1 PEP8 standards

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

58

https://peps.python.org/pep-0008/
https://google.github.io/styleguide/pyguide.html
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.1 Poorly written code example

Importing multiple packages on same line (don’t do this)

Defining a constant with all lowercase letters (don’t do this)

Defining function with all uppercase letters (don’t do this)

Using a global variable (don’t do this)

Read in data

Replace missing values with median

Get a sample of the data frame, df

For the first issue, let’s discuss package imports.

Importing packages

Many Python scripts start by importing packages. PEP8 standards say that each package import
should be done on a separate line. This makes it clear what libraries are being used in the script.

Listing 3.2 When importing packages, it’s good practice to put each package import on a
separate line

Example of importing multiple packages on the same line (don’t do this)

Separating out package imports onto different lines (do this)

Additionally, there may be common aliases used in package imports. While using package
aliases are not an official part of the above-mentioned style guidelines, using common aliases
(like for or for) can help avoid confusion. You can typically find thepd pandas np numpy
common alias used for a specific package by looking through that package’s documentation.

import pandas, numpy

num_states = 50

def PROCESSDATA(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if int > 0: df = df.sample(int)

Don't multiple import packages on the same line
import pandas as pd, numpy as np

Instead, separate the package imports onto multiple lines
import pandas as pd
import numpy as np

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

59

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Next, let’s discuss the formatting of the if-else clause in our example code snippet.

Avoiding compound statements

Compound statements are lines of code that have multiple statements on a single line.

For instance, taking the from our snippet, we’re using a function from to apply aif clause numpy
logarithm transformation to the variable if the value is greater than zero. This codenum_orders
has both the condition and the corresponding logic when the condition is satisfied on theif if
same line. A better approach is to separate these into multiple lines for better readability. This
alternative is shown below.

Listing 3.3 It’s a good practice to split compound statements into multiple lines. This
makes your code more easily readable by others.

If statement in a single line (don’t do this)

Better to separate the if statement into two lines instead

Next, let’s talk about naming conventions when it comes to writing your code.

Naming conventions

PEP8 offers several standards for naming constants, variables, functions, etc.

Constants should be defined using in all upper-case letters. Example: SPEED_LIMIT =
.55

Variables should typically be defined in all lower-case letters. Example: num_orders =
.10

Similarly, functions should typically be created using all lower-case letters. Example:
.process_data

Keeping with our example, suppose that the num_states variable is actually a constant that will
not change in value throughout our script. Maintaining the guidelines we just described, we can
simply change the name of this constant to be in all uppercase letters.

if int > 0: df = df.sample(int)

if int > 0:
 df = df.sample(int)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

60

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.4 Be clear with how you’re defining constants, variables, and functions. Following
the PEP8 guidelines helps to make these common programming constructs more
standardized across any code you or your co-workers may write.

Defining a constant with all lowercase letters (don’t do this)

Creating a constant with all uppercase letters (better to do this)

Similarly, we should keep function names with the style guidelines by changing the
 function to all lower-case. We can also add an underescore for improvedPROCESSDATA

readability.

Listing 3.5 Be clear with how you’re defining constants, variables, and functions. Following
the PEP8 guidelines helps to make these common programming constructs more
standardized across any code you or your co-workers may write.

Original function named in uppercase letters (against PEP8 standards)

Replacement function named in lowercase letters (more standard formatting)

Now, let’s discuss using builtin functions / keywords as variable names.

Never use a builtin function or keyword as a variable name

Another common styling tip is - .never use a builtin function or keyword as a variable name

In our function above, we use as a parameter, which is also a keyword inprocess_data int

Original
num_states = 50

Updated
NUM_STORES = 50

def PROCESSDATA(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if int > 0:
 df = df.sample(int)

def process_data(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if int > 0:
 df = df.sample(int)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

61

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Python. Let’s replace this parameter name to both avoid this issue and it to make it more clear
the purpose of the parameter.

Listing 3.6 Never use a builtin function or keyword as a variable name.

Original function definition using the keyword int as a parameter (should not use
builtin names or keywords as function parameters or variable names)

Body of the original function

Replacement function definition, which uses num_samples as a parameter instead
of the builtin keyword, int

Body of the replacement function (currently same as the original, but we will work
on updating this below)

The difference between the two versions of our function comes in the first line ofprocess_data
each function definition by changing to .int num_samples

vs.

As an extra example, another common scenario where a keyword is often used as a variable
name is the builtin function to keep track of a sum total. We can fix this issue by replacing sum

 with another variable name, like .sum total

def process_data(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 df = df.sample(int)

def process_data(file_name, num_samples):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if num_samples > 0:
 df = df.sample(num_samples)

def process_data(file_name, int):

def process_data(file_name, num_samples):

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

62

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.7 It’s not uncommon to see the keyword used as a variable name. However,sum
since is a Python keyword, this is not a good practice.sum

Original code using keyword sum as a variable

Replacement code using an alternative variable name (total, in this case)

Next, let’s cover .global variables

Avoid global variables

Global variables are variables that are from any other scope. In other words, a visible global
 can be referenced anywhere in the code file that it is defined, regardless of whether it’svariable

defined in a function, class (we’ll define in another chapter), or outside of either. The useclasses
of global variables should generally be minimized. The reason for this is that global variables can
have unintended when writing code. At a high level, the term has anside effects side effect
official meaning in computer science (and software engineering) that refers to situations where a
function modifies a variable outside of its environment. In other words, if a function modifies a
variable that was originally defined outside of the function, this would be an example of a side

. These can make your code more difficult to debug, harder to understand, andeffect side effects
less portable. , however, are not bad and are generally fine to be used. AsGlobal constants
mentioned above, however, constants should typically be defined in all upper-case letters to
distinguish them from variables.

Global variables are defined using the keyword, like we’ve done in our global process_data
function. Placing this keyword in front of the variable makes this variable accessibleglobal df
from outside of the function, so we could potentially call or manipulate thisprocess_data
variable anywhere else in the code after it is defined. As mentioned, having isglobal variables
considered bad practice from a styling perspective because they can make your code messier and
more difficult to debug. In our example, we can avoid the use of a global variable, by using the

 statement instead. This way, our function simply returns the data frame, .return process_data df

sum = 0
for i in range(5):
 sum += i

total = 0
for i in range(5):
 total += i

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

63

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.8 Global variables should generally be avoided in your code.

Original function name definition

Use a global variable to define a data frame, df (avoid global variables)

Reading / processing dataset

New function name definition (same as original, as we just stop using a global
variable)

Same code as original function, except no longer relying on a global variable

Return the data frame (better to do this rather than use a global variable)

To double check our understanding, let’s cover another example with global variables. In the
below snippet, we’ve defined a variable named . However, we use the num_orders global
keyword inside of the function in order toupdate_orders

Listing 3.9 Try to minimize the use of global variables in your code. This code snippet is an
example of using a function to modify a global variable, when a better alternative is to pass
a parameter to the function instead.

Example defining a global variable outside of a function

Define function named update_orders

Use the global keyword to reference the globally-defined num_orders variable

def process_data(file_name, num_samples):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if num_samples > 0:
 df = df.sample(num_samples)

def process_data(file_name, num_samples):

 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if num_samples > 0:
 df = df.sample(num_samples)

 return df

num_orders = 5

def update_orders():

 global num_orders

 num_orders += 1

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

64

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Modify the value of num_orders (will be globally changed)

Instead of doing the above, we can pass a parameter to our function, like below. Now, with our
updated function below, we could just copy-and-paste this function somehwere else, or import it
into another script easily. The original method of using a global variable would not work unless
we also moved / imported the global definition of to the other script. If you createnum_orders
many global variables, you can see how this can cause confusion, issues in portability, or
difficulties in maintenance of your code.

Listing 3.10 In this example, we update the above function to use a parameter instead of a
global variable.

Modify function to include num_orders as a parameter instead of a global variable

Update value of num_orders within the update_orders function

Return the updated value of num_orders

There are other tips we will discuss for avoiding global variables when we cover object-oriented
programming in a future chapter. To be clear, however, are generally fine to useglobal constants
in your code. Since Python doesn’t have a keyword to define constants, like some otherconstant
languages, you can define a global constant the same way that you define a global variable,
except that, as mentioned earlier, you should use all caps when defining your global consants
(e.g. MY_CONSTANT = 5).

As mentioned earlier, there are quite a few styling standards that can be applied to your code.
You can always check out more by searching for the PEP8 or Google Python Style Guide
standards. Additionally, as we’ll cover below, there are automated ways to check the styling of
your code!

It might be difficult to always keep in mind a set of standards when it comes to writing code.
That’s why the library (see) was created! This Python packagepylint pylint.pycqa.org/en/latest/
will automatically check your code for potential issues that go against common styling standards.
This Python library will perform automated styling checks against your code. In general, a linter
is a tool that makes stylistic checks against your code (hence, the name). To get startedpylint
with , you’ll need to install it using pip:pylint

def update_orders(num_orders):

 num_orders += 1

 return num_order

3.1.2 Using pylint to automatically check the formatting and style of your code

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

65

https://pylint.pycqa.org/en/latest/
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.11 Use pip to install the pylint library

Install pylint using pip

Let’s take the example code we went through above and use on the sample file to see whatpylint
happens.

Listing 3.12 Below is the same poorly-written script from above, which we will use with
pylint.

Importing multiple packages on same line (don’t do this)

Defining a constant with all lowercase letters (don’t do this)

Defining function with all uppercase letters (don’t do this)

Using a global variable (don’t do this)

Read in data

Replace missing values with median. Get a sample of the

data frame, df

Next, to use for our example script, you can open up the terminal (or command line) andpylint
execute followed by the name of the script (in this case,):pylint 1_process_data_before_fix.py

Listing 3.13 To run pylint on our script, we just need to execute pylint followed by the name
of the script in the terminal.

Example running pylint on our script

Running the above command will generate the following output in this case. Notice how issues
we discussed earlier to avoid are present in the output, such as re-defining a built-in function and

pip install pylint

import pandas as pd, numpy as np

num_states = 50

if int > 0: trans_orders = np.log(int)

def PROCESSDATA(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if int > 0: df = df.sample(int)

pylint ch3/1_process_data_before_fix.py

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

66

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

having multiple imports on the same line. In this example, since we’re not even using those
imports, will also provide alerts of the libraries not being used. As can be seen in thepylint
output below, will also show the line numbers corresponding to the stylistic violations topylint
help you quickly know where to make changes. An example of not being quite perfect ispylint
that it interprets the variable as a constant (which is not the case). However, does pickdf pylint
up on the issue that is defined globally.df

Listing 3.14 Notice how pylint generates several issues, such as multiple imports in the
same line and re-defining the built-in function, int.

While is certainly useful in identifying potential styling issues in your code, it doesn’tpylint
perform automated changes. There are, however, several Python packages available for
attempting to make automated changes - including () and autopep8 pypi.org/project/autopep8/

 (). In the next section, we’ll cover an example using the yapf github.com/google/yapf autopep8
package.

To get started with , we can again install it using pip:autopep8

Listing 3.15 Use pip to install autopep8

Install autopep8 package

autopep8 is used similarly to via the terminal. To make automated changes to your code,pylint
you need to run followed by the parameter and the name of the file (autopep8 in-place

).sample_bad_program.py

************* Module 1_process_data_before_fix
ch3/1_process_data_before_fix.py:12:0: C0304: Final newline missing (missing-final-newline)
ch3/1_process_data_before_fix.py:1:0: C0103: Module name "1_process_data_before_fix" doesn't

conform to snake_case naming style (invalid-name)
ch3/1_process_data_before_fix.py:1:0: C0114: Missing module docstring (missing-module-docstring)
ch3/1_process_data_before_fix.py:1:0: C0410: Multiple imports on one line (pandas, numpy)

(multiple-imports)
ch3/1_process_data_before_fix.py:3:0: C0103: Constant name "num_states" doesn't conform to

UPPER_CASE naming style (invalid-name)
ch3/1_process_data_before_fix.py:5:27: W0622: Redefining built-in 'int' (redefined-builtin)
ch3/1_process_data_before_fix.py:5:0: C0103: Function name "PROCESSDATA" doesn't conform to

snake_case naming style (invalid-name)
ch3/1_process_data_before_fix.py:5:0: C0116: Missing function or method docstring

(missing-function-docstring)
ch3/1_process_data_before_fix.py:7:4: W0601: Global variable 'df' undefined at the module level

(global-variable-undefined)
ch3/1_process_data_before_fix.py:7:4: C0103: Constant name "df" doesn't conform to UPPER_CASE

naming style (invalid-name)
ch3/1_process_data_before_fix.py:12:16: C0321: More than one statement on a single line

(multiple-statements)
ch3/1_process_data_before_fix.py:1:0: W0611: Unused numpy imported as np (unused-import)

3.1.3 Auto-formatting your code to meet styling guidelines

pip install autopep8

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

67

https://pypi.org/project/autopep8/
https://github.com/google/yapf
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.16 Below we use autopep8 to auto-format our code

Example of using autopep8 to auto-format code

In our case, the auto-changes will reformat the package imports and will separate the statementif
into multiple lines. However, the naming convention for our function and the global variable df
are not automatically changed.

Updated script:

Listing 3.17 Our updated script can be seen below, after applying autopep8.

Import packages (now on separate lines)

Create (global) variable, num_orders (currently unchanged)

Define function name (unchanged)

Reference global variable, df (unchanged)

Read in data

Replace missing values with median. Get a sample of the

data frame, df

If you’re not comfortable using to auto-format your code, you can always use toautopep8 pylint
perform the automated checks, and then manually make the changes yourself.

As mentioned earlier, there is a principle in software engineering known as , meaning DRY Don’t
. Avoiding repetitive code is beneficial no matter what situation you’re in. It savesrepeat yourself

time for you and can make your code more digestible. A key way to avoid repetitive code is to
use functions to organize code. Let’s go through a few examples.

3.2 Avoiding repetitive code

autopep8 --in-place ch3/1_process_data_before_fix.py

import pandas as pd
import numpy as np

num_states = 50

def PROCESSDATA(file_name, int):

 global df
 df = pd.read_csv(file_name)

 df = df.fillna(df.median())

 if int > 0:
df = df.sample(int)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

68

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Replacing missing values in a data frame

In our first example, there are several lines of code involved in replacing individual column
missing values with the corresponding column medians. This can be simplified by using just a
single method in on the dataset, rather than on each individual column (providedfillna pandas
that each column’s set of missing values just need to be replaced with its corresponding median).
This is a simple way of understanding the functionality of , one of the most commonpandas
Python packages for data wrangling and analysis. The single line of code at the bottom of this
snippet performs the same job as the other lines of code put together. To try this code out for
yourself, you can see the script in the ch3 directory.simplify_imputation.py

Listing 3.18 Replacing missing values on a Python dataset (data frame) can be done using
the fillna method. This method can be applied to an entire data frame at once, or
potentially a column at a time.

Import pandas package

Read in the customer churn data

Replacing missing values in each column one at a time can involve many lines of
code

Using a single line of code to replace missing values, saving potentially many lines
of code

Another common example of repetitive code in data science comes up with generating metrics
for models, which we’ll cover next.

Generate metrics for multiple classification models

When developing a model, it’s common for data scientists to try out several different methods or
models. For instance, if you’re building a model to predict customer churn (like our working
example), you might try out logistic regression, random forest, gradient boosting, etc. For each

import pandas as pd

customer_data = pd.read_csv("train.csv")

customer_data["total_day_minutes"] = customer_data["total_day_minutes"].\
fillna(customer_data.total_day_minutes.median())

customer_data["total_day_calls"] = customer_data["total_day_calls"].\
fillna(customer_data.total_day_calls.median())

customer_data["total_day_charge"] = customer_data["total_day_charge"].\
fillna(customer_data.total_day_charge.median())

customer_data["total_eve_minutes"] = customer_data["total_eve_minutes"].\
fillna(customer_data.total_eve_minutes.median())

customer_data = customer_data.fillna(customer_data.median())

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

69

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

of these, you might want to print out evaluation metrics to compare the performance of each
model. One way to do this to manually write the performance checks for each model, like below.
As you can see, the code below is quite repetitive. Essentially, we are performing the same
operations for each model - random forest, logistic regression, and gradient boosting. A better
alternative would be to create a single function that can be applied toward any of the models.
Let’s show how to do this next.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

70

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.19 Example code generating evaluation metrics for a collection of models. This
code is highly repetitive, which is a sign we should use functions to make our code more
clear and less redundant. For this example, we are just using default hyperparameters for
the models, but you could also have a process that tunes the parameters for each model
as well. This code snippet is available in the ch3 Python file
generate_model_metrics_without_function.py.

from sklearn import metrics
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd

customer_data = pd.read_csv("../data/customer_churn_data.csv")

train_data,test_data = train_test_split(customer_data,
train_size = 0.7,
random_state = 0)

feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"]

train_features = train_data[feature_list]
test_features = test_data[test_list]

train_labels = train_data.churn.map(lambda key: 1 if key == "yes" else 0)
test_labels = test_data.churn.map(lambda key: 1 if key == "yes" else 0)

forest_model = RandomForestClassifier(random_state = 0).fit(train_features,
train_labels)

logit_model = LogisticRegression().fit(train_features, train_labels)

boosting_model = GradientBoostingClassifier().fit(train_features, train_labels)

train_pred = forest_model.predict(train_features)
test_pred = forest_model.predict(test_features)

print("Train Precision = ", metrics.precision_score(train_labels, train_pred))
print("Train Recall = ", metrics.precision_score(train_labels, train_pred))
print("Train Accuracy = ", metrics.accuracy_score(train_labels, train_pred))

print("Train Precision = ", metrics.precision_score(test_labels, test_pred))
print("Train Recall = ", metrics.precision_score(test_labels, test_pred))
print("Train Accuracy = ", metrics.accuracy_score(test_labels, test_pred))

train_pred = logit_model.predict(train_features)
test_pred = logit_model.predict(test_features)

print("Train Precision = ", metrics.precision_score(train_labels, train_pred))
print("Train Recall = ", metrics.precision_score(train_labels, train_pred))
print("Train Accuracy = ", metrics.accuracy_score(train_labels, train_pred))

print("Train Precision = ", metrics.precision_score(test_labels, test_pred))
print("Train Recall = ", metrics.precision_score(test_labels, test_pred))
print("Train Accuracy = ", metrics.accuracy_score(test_labels, test_pred))

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

71

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

print("Train Precision = ", metrics.precision_score(test_labels, test_pred))
print("Train Recall = ", metrics.precision_score(test_labels, test_pred))
print("Train Accuracy = ", metrics.accuracy_score(test_labels, test_pred))

print("Train Precision = ", metrics.precision_score(train_labels, train_pred))
print("Train Recall = ", metrics.precision_score(train_labels, train_pred))
print("Train Accuracy = ", metrics.accuracy_score(train_labels, train_pred))

 train_pred = boosting_model.predict(train_features)
test_pred = boosting_model.predict(test_features)

Import needed libraries

Read in the customer churn dataset

Split the data into train/test

Create list of sample features from our dataset.

Get subset of columns we need for model features

Map the labels to 1/0 format

Train random forest model

Train logistic regression model

Train gradient boosting model

Get model predictions using random forest (RF)

Get precision / recall / accuracy for train dataset (RF)

Get precision / recall / accuracy for test dataset (RF)

Get model predictions using logistic regression (LR)

Get precision / recall / accuracy for train dataset (LR)

Get precision / recall / accuracy for test dataset (LR)

Get model predictions using gradient boosting (GBM)

Get precision / recall / accuracy for train dataset (GBM)

Get precision / recall / accuracy for test dataset (GBM)

Now, let’s build a function to help reduce the amount of code we write. Here, the function will
take a model object as input, along with the training / testing features and labels. Setting up the
function this way allows us to easily adjust the training / testing sets (like if we wanted to get the
performance of a subset of the testing set, for instance). This way, the function will be able to
handle essentially any classification model. That means if we add new models, our function
should be able to handle those as well. Once we’ve developed the function, we can either write a
single line of code for each model to output the metrics, or we can use a for loop to iterate over
each of the possible models we have (see the code below). You can run this code snippet for
yourself by checking out the generate_model_metrics_using_function.py file in the ch3
directory.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

72

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.20 This code snippet shows how we can create a helper function to get the
performance metrics for any of the classification models we’re testing.

Import needed libraries

from sklearn import metrics
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
import pandas as pd

def get_metrics(model, train_features, test_features,
train_labels, test_labels):

 train_pred = model.predict(train_features)
 test_pred = model.predict(test_features)

 print("Printing metrics summary...")

 print("Train Precision = ", metrics.precision_score(train_labels, train_pred))
 print("Train Recall = ", metrics.precision_score(train_labels, train_pred))
 print("Train Accuracy = ", metrics.accuracy_score(train_labels, train_pred))

 print("Test Precision = ", metrics.precision_score(test_labels, test_pred))
 print("Test Recall = ", metrics.precision_score(test_labels, test_pred))
 print("Test Accuracy = ", metrics.accuracy_score(test_labels, test_pred))

 return "...Metrics summary complete"

customer_data = pd.read_csv("../data/customer_churn_data.csv")

train_data,test_data = train_test_split(customer_data,
train_size = 0.7,
random_state = 0)

feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"]

train_features = train_data[feature_list]
test_features = test_data[feature_list]

train_labels = train_data.churn.map(lambda key: 1 if key == "yes" else 0)
test_labels = test_data.churn.map(lambda key: 1 if key == "yes" else 0)

forest_model = RandomForestClassifier(random_state = 0).fit(train_features,
train_labels)

logit_model = LogisticRegression().fit(train_features, train_labels)

boosting_model = GradientBoostingClassifier().fit(train_features, train_labels)

get_metrics(forest_model, train_features, test_features,
train_labels, train_features)

get_metrics(logit_model, train_features, test_features,
train_labels, train_features)

get_metrics(boosting_model, train_features, test_features,
train_labels, train_features)

for model in [forest_model, logit_model, boosting_model]:
 get_metrics(model, train_features, test_features,

train_labels, train_features)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

73

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.

Create a function to handle getting metrics from any classification model. This
corresponds to converting code in sections #10 - #18 in the earlier repetitive code
into a function.

Get model predictions within the function

Optional line to print start of metrics summary

Get the train model metrics

Get the test model metrics

Optional line to notify user that metrics summary is complete

Read in the customer churn dataset

Split the data into train/test

Create list of sample features from our dataset.

Get subset of columns we need for model features

Map the labels to 1/0 format

Train random forest model

Train logistic regression model

Train gradient boosting model

Here, we can call our function to get the metric results for each model.

As another alternative, we could use a for loop to avoid writing out get_metrics(…)
for each model.

Next, let’s talk about long if-else blocks and how to avoid them.

Avoiding long if-else blocks

A common scenario where code can get very redundant is when it comes to if-else blocks. A
common example of this is the problem of mapping a day index to the corresponding day of the
week. Operations like this are common in data wrangling scenarios. One way to handle this is
with a series of if-else statements, like below. However, this is has two major drawbacks:

It’s difficult to read, and will become even less readable as more if-else statements are
added (imagine if we had 20, 30, 40 or more if-else statements)
It’s easy to make a typo or other mistake, causing you headaches as you try to debug the
code

The code snippet in Listing 3.21 shows an example of this issue. The corresponding code file for
this snippet is called in the book repo’s ch3 directory.if_statements_long_sequence.py

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

74

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.21 This example shows a series of if-else statements to map the day-index of the
week to its corresponding name.

Long sequence of if-else statements

Since the previous example has several issues, what’s the solution? An alternative to using a
large collection of if-else statements is to use a dictionary instead. Recall that a Python dictionary
works as a key-value lookup. Here, the keys of the dictionary are the day-indexes of the week -
1, 2, 3, …​, 7 and the values are the day-names of the week - Sunday, Monday, …​, Saturday. We
simply need to create the lookup dictionary, and then we can pass the day-index to this
dictionary to get the mapped value (day-name of the week in this case). A similar concept could
be used in almost any situation where you need to map some variable (a) to another value. Inkey
our example in Listing 3.22, this cuts the code down to two lines, and makes it very clear what’s
happening. The shortened code can be found in ch3’s .replacing_if_else_with_dict.py

Listing 3.22 Instead of a series of if-else statements, we can just use a dictionary as a
key-value lookup.

Replace the if-else statements above with a dictionary

Reference the new dictionary to map a day index to its name

Avoiding redundant code, making clear the data types expected for functions, and following
standard formatting guidelines all make your code more readable, digestable, and easily portable.
Another aspect to add is the concept of , a similar extension to the conceptcode modularization
of functions. We’ll explain what is and how it works next.modularization

if day_index = 1:
 day = "Sunday"
else if day_index = 2:
 day = "Monday"
else if day_index = 3:
 day = "Tuesday"
else if day_index = 4:
 day = "Wednesday"
else if day_index = 5:
 day = "Thursday"
else if day_index = 6:
 day = "Friday"
else if day_index = 7:
 day = "Saturday"
else:
 pass

days_of_week = {1 : "Sunday", 2: "Monday", 3: "Tuesday", 4: "Wednesday",
 5: "Thursday", 6: "Friday", 7: "Saturday"}

day = days_of_week[day_index]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

75

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Modularizing your code is also a good way of making your codebase better structured and easier
to understand. essentially means to break your code into blocks such that eachModularization
block revolves around completing a particular task. This is highly related to the concept of using
functions to avoid repetitive code that we discussed in the previous section. However, we can
also take it a step further. Instead of just functions, modularization can also mean organizing
code into separate files based on the tasks blocks of code are performing. For example,

Use indexes to mark the order each file should be run. Example:
1 - process_data.py
2 - feature_engineering.py
3 - train_ml_model.py
4 - generate_evaluation_metrics.py
Etc.

One advantage of having separate functions for different tasks is that it makes those blocks of
code more easily portable. For example, in the below snippet of code, we’ve defined several
functions for processing and cleaning data, such as reading in a file and capping outliers. There
could potentially be many other functions, as needed, depending on the range of cleaning needed
for your use case. Here, we have a separate function for reading the data, a function for capping
outliers, and a function that works as a higher-level function that calls other functions.

3.2.1 Modularizing your code

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

76

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.23 It’s a good idea to break your code execution workflow into multiple functions
(or multiple files). This helps improvve portability, readability, and if you’re pushing code
into production, these concepts will greatly help reduce any need for code refactoring by
software engineers to get incorporate your code into a production pipeline (like the
machine learning pipelines or data pipelines that we covered in the first chapter). This
listing’s code can be found in the code_modularization_example.py file from ch3.

Import packages

Function to read data from an input CSV file name

Function to cap outliers in a column.

Main function handle cleaning dataset

Code within this block will only be executed if this script is run directly, allowing
the functions defined in the script to be easily imported to other code files without
executing this block of code.

import pandas as pd

def read_data(file_name):

 df = pd.read_csv(file_name)
 return df

def cap_outliers(feature, upper_percentile, lower_percentile):

 # get the lower and upper thresholds based on the input percentiles
 lower_thresh = feature.quantile(lower_percentile)
 upper_thresh = feature.quantile(upper_percentile)

 # cap any outliers at the lower / upper threshold bounds
 feature = feature.map(lambda val: \
 lower_thresh if val < lower_thresh \
 else upper_thresh if val > upper_thresh \
 else val)

 return feature

def clean_data(df):

 df = df.fillna(df.median(numeric_only=True))

 for col in df.columns:
 df[col] = cap_outliers(df[col], upper_percentile, lower_percentile)

 # additional cleaning...
 # [code block]

 return df

if __name__ == "__main__":

 customer_data = read_data("customer_data.csv")

 cleaned_data = clean_data(customer_data)

 # additional code
 # [code block]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

77

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Notice how we add an extra line in our script:

This line of code may seem mysterious at first, but it turns out to be very useful. Suppose, for
example, that the script we created in Listing 3.23 is called .code_modularization_example.py
Now, since we’ve added in this line of code, we can import any of the functions (or all of them)
from the script without executing the code block within this statement’s indention. This makes it
easy to use functions from other scripts (modules) you create without needing to execute all of
the code in the script.

To import a function from our new script, we can write the code in Line 1 from Listing 3.24.

Listing 3.24 Example of importing a function from a script and using it to clean the
customer churn dataset. You can run this code for youself from the call_clean_function.py
file in ch3.

Import the clean_data function we created into a new script, along with the pandas
library

Read in the customer churn data

Call the clean_data function on the customer churn dataset

So far we’ve tackled several styling issues and how to deal with them in your code. Next, we’re
going to talk about another aspect of clean code, which is making it clear what the expected
inputs and outputs of your functions are.

Unlike languages like Java or C++, Python doesn’t require you to specify the data type of a
variable when it’s being defined. This also allows you to easily re-define a variable to have a
completely different data type. While this flexibility can be very convenient, it can also make it
more difficult to understand what certain parameters should be when reading through someone
else’s code. Luckily, more recent versions of Python allow you to provide for thetype hints
parameters in a function that you define. Let’s start an example with a simple function that
doesn’t specify data types. In the below snippet, we’ve defined a function to add two numbers.
However, technically this code could take two strings as inputs and would concatenate those
inputs together without throwing an error.

3.3 Restricting inputs to functions

if __name__ == "__main__":

from code_modularization_example import clean_data
import pandas as pd

customer_data = pd.read_csv("../data/customer_churn_data.csv")

customer_data = clean_data(customer_data)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

78

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.25 Specifying parameter data types in a function

Example of a function without typing hints, where two strings could be passed
instead of two numeric values

The result of running add("x", "y")

To specify data types for the parameters, we just need to add a colon (:), followed by the data
type to each parameter. For example, below we specify the parameter to be an integer bya
writing . We can also specify the output to be an integer, as well, by appending to thea:int → int
first line of the function definition. Note that this does not absolutely restrict the data types of the
function, but it does provide an easy-to-read hint of what the data types be.should

Listing 3.26 Specifying data types in function parameters can be done by adding a colon
followed by the needed data type for each parameter. The expected output data type can
be implied using the symbol followed by the desired output type. Try out this code for
yourself in the add_function_with_type_hints.py file from ch3.

Update our function definition to include type hints

Additionally, we can add extra logic to check the data types. Here, we use Python’s built-in
 function to check whether the given inputs are actually integers. takes twoisinstance isinstance

parameters - the variable you want to check and the corresponding data type that you want to
match the variable’s actual data type against. Here, the function will return True if is an inta
(likewise for the check on).b

The purpose of using is to directly return whether a data type meets someisinstance
specification. In other words, providing the data type hints doesn’t actually restrict the parameter
inputs. For example, even though we specify that and should be integers, nothing in the codea b
actually you from inputting non-integer values. However, we force a check againstprevents can
the parameter types that validates whether the parameter types are indeed integers. To do this, we
use . If running returns False, we can raise a TypeError that alerts the userisinstance isinstance
that the inputs must be integers.

def add(a, b):

 return a + b

add("x", "y")
"xy"

def add(a:int, b:int) -> int:

 return a + b

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

79

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.27 Use isinstance to check whether a variable has a specific data type. The
updated function can also be found in the add_function_with_type_hints.py file.

Define add function with type hints

Raise an error if the inputs are not integers

Return the sum of the two inputs

Using the above coding paradigm can be especially useful if a function has many parameters.
This may happen, for instance, if you’re creating a function to handle fetching model predictions
and you want to make it clear what the model input data types should be. Let’s walk through an
example like this. In the below code, we’re inputting a collection of features into a function that
will then process those features and input them into a model to get predictions. However, by
looking at this function definition, how can you tell the correct data types for the input
parameters? For example, is customer_age numeric or a bucketed-categorical variable ("young
adult" vs. "retired" etc. rather than 18 vs. 60 etc.)? The same question could be applied to the
other input features. Like above, we can make the expected data types clear by adding them to
the function definition.

Listing 3.28 Creating a function without specifying the parameters

Define function with several parameters, but no type hints

Placeholder for a code block within the function

Now, let’s add the expected parameter types to our sample function. Like above, we just add the
expected parameter type for each individual parameter, separating each parameter from its
expected type using a colon.

def add_v2(a:int, b:int) -> int:

 if not isinstance(a, int) and not isinstance(b, int):
 raise TypeError("Inputs must be integers")

 return a + b

define function without expected parameter data types
def get_model_predictions(days_since_registration,
 days_since_last_order,
 num_orders_last_90_days,
 customer_age,
 avg_order_last_90_days,
 num_logins_last_30_days,
):

 # [code block here]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

80

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.29 Specifying data types in function parameters

Define function with several parameters (using type hints this time)

Placeholder for a code block within the function

Next, let’s revisit the earlier example on modularizing our code into functions. This time, we’ll
add in type hints.

Adding type hints to our modularized code

Copying our earlier example, we can now add type hints to the functions for reading and
cleaning data, and capping outliers. Note how in the update code, we specify the following:

The function takes a single string as input and returns a pandas data frame (read_data
).pd.DataFrame

cap_outliers takes a pandas Series (), and two float parameters (pd.Series
 and) as inputs, while returning a pandas Seriesupper_percentile lower_percentile

The function takes as input and returns a pandas data frame.clean_data

add expected parameter data types
in this case, customer_age may be input as a categorical feature
def get_model_predictions(days_since_registration:int,
 days_since_last_order:int,
 num_orders_last_90_days:int,
 customer_age:str,
 avg_order_last_90_days:int,
 num_logins_last_30_days:int,
)->int:

 # [code block here]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

81

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.30 The below code is a copy of our earlier example in Listing 3.23, except now we
add in type hints for each function. This code is also available in the
code_modularization_with_type_hints.py file from ch3.

Import packages

Function to read data from an input CSV file name

Function to cap outliers in a column.

Main function handle cleaning dataset

Code within this block will only be executed if this script is run directly, allowing
the functions defined in the script to be easily imported to other code files without
executing this block of code.

That covers going through data type specifications. Next, let’s summarize what we’ve learned

import pandas as pd

def read_data(file_name: str) -> pd.DataFrame:

 df = pd.read_csv(file_name)
 return df

def cap_outliers(feature:pd.Series, upper_percentile: float,
 lower_percentile: float) -> pd.Series:

 # get the lower and upper thresholds based on the input percentiles
 lower_thresh = feature.quantile(lower_percentile)
 upper_thresh = feature.quantile(upper_percentile)

 # cap any outliers at the lower / upper threshold bounds
 feature = feature.map(lambda val: \
 lower_thresh if val < lower_thresh \
 else upper_thresh if val > upper_thresh \
 else val)

 return feature

def clean_data(df: pd.DataFrame, upper_percentile: float,
 lower_percentile: float) -> pd.DataFrame:

 df = df.fillna(df.median(numeric_only=True))

 for col in df.columns:
 df[col] = cap_outliers(df[col], upper_percentile, lower_percentile)

 # additional cleaning...
 # [code block]

 return df

if __name__ == "__main__":

 customer_data = read_data("customer_data.csv")

 cleaned_data = clean_data(customer_data)

 # additional code
 # [code block]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

82

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

about developing clean code.

In the above sections, we’ve covered several key points (also summarized in the diagram below)
to get your code into a cleaner, more modular, state:

Follow guidelines such as PEP8 or the Google Python Style Guide and have a policy to
enforce these to make collaboration easier, your code more readable, and easily portable.
Avoid redundant code by using functions, dictionaries to replace long if-else statements,
and paying close attention when you’re repeating code.
Make your code modular by breaking tasks into functions or multiple files if needed. This
is especially useful when it comes to deploying code into production as it makes code
much more portable, but it also useful in making your own code easier to maintain or
understand months in the future.
Use tools like pylint or autopep8 to automatically find styling issues in your code (or
automatically correct them in the case of autopep8)

Table 3.2 shows a summary table of the main points around ensuring you have clean, modular
code.

Now that we’ve covered how to make your code cleaner and more modular, let’s dive into how
to automatically handle errors in your coding applications, and how to raise your own errors.
Having clean, modular code is one step to making your code more portable and less error-prone,
but inevitably errors will arise in your code. For example, you may try to connect to a database,
but the connection fails, or you may try to scrape data from a webpage that doesn’t exist, and you
need a way to handle the issue so your code workflow continues to run. We will tackle these
types of issues in the next section.

3.4 Clean code summary

Table 3.2 This table shows a summary of the clean code topics, including reducingm
repetitive code, avoiding long sequences of if-else statements, and splitting package
imports onto multiple lines.
Example style to avoid Style to use instead

Lots of repetitive code Create new function(s)

Long sequence of if-else statements Use a dictionary

import pandas as pd,sys,pyodbc Separate multiple imports into different lines

def list(…) Don’t use builtin keywords or function names as variable
names

File with thousands of lines of code Separate into multiple files

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

83

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Exception handling is the process of adding logic to your code that takes care of errors or
warnings that may occur. For example, if your code makes a request to extract data from a
webpage, and the request fails, how should your code proceed? Or if a function receives
unexpected inputs, what should happen? These questions are ones we need to consider before
putting our code in production, but as alluded to above, can also be very useful in everyday
coding. Before we can talk about how to errors in Python, we need to cover the various handle

 of errors you may encounter. Understanding the types of errors you can encounter will helptypes
you in your decision-making around how to treat different errors that may arise. Let’s discuss the
main types of errors in Python next.

There’s quite a few possible error types available in Python. We won’t cover all of them here,
but will stick with covering several common ones, starting with (TypeError). To get atype errors
full list of exceptions, you can check out Python’s exceptions documentation on Python’s official
website ().docs.python.org/3/library/exceptions.html

TypeError

One of the most common types of errors is a TypeError. A TypeError occurs when Python
expects a certain data type, but gets another. For example, running the below code will result in a
TypeError because Python expects numeric inputs when dividing two values.

Listing 3.31 A TypeError occurs when an unexpected data type is used for a particular
operation, such as attempting to divide two strings.

Attempt to divide two strings

Error message that gets printed when trying to divide the two strings

IndexError

Another type of error is an IndexError. An IndexError occurs when an invalid index is referenced
in a sequential object, like a list or tuple. Let’s create a small list and try to reference an invalid
index. Recall that Python is zero-indexed, meaning that in our 3-element list below, the last valid
index is 2.

3.5 How to implement exception handling in Python

3.5.1 What types of errors can we get in Python?

"a" / "b"

Result of running above line of code:
TypeError: unsupported operand type(s) for /: 'str' and 'str'

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

84

https://docs.python.org/3/library/exceptions.html
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.32 An IndexError occurs when an invalid index is referenced, often in a list or
tuple

Define a sample list

Attempt to reference an invalid index in the list

IndexError message that results from trying to reference an invalid index

NameError

Another common type of error is a NameError. This error occurs when you reference a
non-existent variable name. For instance, if you reference the variable , but haven’ttest
previously defined , then Python will throw a NameError.test

Listing 3.33 NameErrors occur when an undefined variable is referenced because Python
doesn’t recognize the variable name.

Try to print the value of a non-existent variable

NameError message when attempting the above

KeyError

A KeyError occurs when you try to reference a non-existent key in a dictionary. Suppose, for
example, we have a dictionary like below storing basic customer information, such as customer
ID, credit score, and age.

Listing 3.34 Below we create a simple dictionary, which we’ll use to demonstrate a
KeyError further below.

Example of a dictionary

sample_customer_states = ["OH", "PA", "NY"]

now, try to reference an invalid index
sample_customer_states[3]

Result of running above line of code:
IndexError: list index out of range

print(test)

Result of running above line of code:
NameError: name 'test' is not defined

customer_info = {"customer_id": 12345,
 "state": "OH",
 "area_code": "area_code_415",
 }

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

85

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

If we try to reference a non-existent key, we will get a KeyError. Below, we try to reference
"customer_balance", which is an invalid key.

Listing 3.35 KeyErrors occur when an invalid (non-existent) key is referenced in a dictionary

Try to reference a non-existent key

KeyError messsage from trying to reference the non-existent key

SyntaxError

Syntax errors (SyntaxError) occur when improper syntax is attempted to be executed. For
example, if we execute a single line of code containing a quotation mark, Python will return a
syntax error (because this is invalid syntax).

Listing 3.36 SyntaxErrors occur when you attempt to execute invalid syntax.

Example of code that will result in a SyntaxError

SyntaxError message that gets printed from running the above code

ImportError

Import errors (ImportError) occur when you try to import a package or module that doesn’t exist.
This can happen if you haven’t installed the package / module on the machine you’re using, or if
it just doesn’t exist at all. In the code snippet below, we try to import from ,doesnt_exist pandas
resulting in an ImportError.

Listing 3.37 ImportErrors occur when you attempt to import a non-existent package (or an
existing package that hasn’t been downloaded).

Attempt to import a package that doesn’t exist

ImportError message you’ll get from running the above code

customer_info["number_customer_service_calls"]

Running the above snippet will result in the KeyError below:
KeyError: 'account_balance'

Executing a line of code with a single quotation mark is invalid,
resulting in an error
'

Running the above snippet will result in the SyntaxError below:
SyntaxError: EOL while scanning string literal

Try to import doesnt_exist from the pandas library
from pandas import doesnt_exist

Running the above snippet will result in the ImportError below:
ImportError: cannot import name 'doesnt_exist' from 'pandas'

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

86

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

AssertionError

An AssertionError is a type of error raised by an statement. An statement isassert assert
basically a statement that checks whether a condition is true and raises an error when the
condition is false. We’re going to describe statements in more detail in the next section, soassert
for now we’ll just show a brief example.

Listing 3.38 An AssertError occurs via the assert statement

Define two vaiables, num1 and num2

Test whether num1 is equal to num2

Since num1 doesn’t equal num2, an AssertionError will be printed out

Table 3.3 shows a summary of the common error types that we covered above.

Asserting whether num1 is equal to num2 will return
an error since num1 != num2
num1 = 5
num2 = 10

assert num1 == num2

Running the above snippet will result in the AssertionError below:

AssertionError Traceback (most recent call last)
<ipython-input-52-b36f64ef1bf0> in <module>
2 num2 = 10
3
----> 4 assert num1 == num2

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

87

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Now that we’ve covered a few common types of errors, let’s walk through how to handle them
when they arise in your code.

To handle errors that may arise in your code, it’s general practice to use code blocks.try/except
Before we explain that these code blocks mean, let’s setup an example where it would be useful
to have a try/except block. In the following example, we will use the package toyahoo_fin
extract stock price data. Error handling is a common need when dealing with network-related
operations, such as downloading data from various webpages. For this reason, we will focus our
first example on using error handling to deal with issues that may occur when downloading
external data from webpages.

Firsly, you can install using pip:yahoo_fin

Listing 3.39 Use pip to install yahoo_fin

Install the yahoo_fin library

To make sure the package is working properly, you can try downloading data from a known
stock ticker, like "AMZN", for instance. To do that, we’ll use the module available in stock_info

. From this module, we’ll use the method to download the historical priceyahoo_fin get_data

Table 3.3 There are many different error types in Python. A few of the most common onesm
are summarized in this table.
Error type Description Example cause of error

AssertionError Generated from the assert statement
when a given condition is false.

assert 1 == 0

ImportError Occurs when you try to import a
package that doesn’t exist or can’t be
found

import invalid_library

IndexError Generated when you reference an
invalid index for an array-type object,
like a list or tuple

sample_list = [1, 2, 3] #
print(sample_list[10])

KeyError Occurs when reference a non-existent
key in a dictionary

sample_dict = {"a": 5, "b":10} #
sample_dict["c"]

NameError Generated when you reference a
variable that hasn’t been defined

print(sample_undefined_variable)

SyntaxErrror Occurs when you try to execute code
with invalid syntax

'test # error because Python would
expect a quotation mark on both sides
of 'test'

TypeErrror Occurs when you use an invalid data
type, such as trying to multiply two
strings

"a" * "b"

3.5.2 Using try/except to bypass errors

pip install yahoo_fin

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

88

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

data for AMZN. Running this line of code should return a few thousand rows of data (each row
corresponding to an individual day’s stock price).

Listing 3.40 Test to make sure yahoo_fin is working by downloading data for AMZN. This
code is available in the test_yahoo_fin.py file from ch3.

Import the stock_info module from yahoo_fin

Test downloading stock price data

Print the first few records of the stock price history

Figure 3.2 This snapshot shows the first few records of running the above code.

Now that we’ve tested out , let’s use it in the code below to download historical priceyahoo_fin
data for a collection of stock tickers. However, if you run this snippet of code, you will run into
an because one of the elements in the ticker list is not a valid stock symbol (theAssertionError
one named)."not_a_real_ticker"

In our code below, we are using a Python dictionary to store the stock price data so that each
ticker will map to it’s corresponding downloaded data frame (similar to our AMZN snapshot
above). Because is a fake ticker, we will get an error from the library when wenot_a_real_ticker
try to download data from this invalid stock symbol. The error is shown below the code snippet
(in this case, we get an stating that no data was found for this symbol).AssertionError

from yahoo_fin import stock_info as si

download data for AMZN
amzn_data = si.get_data("AMZN")

show the first few result records
amzn_data.head()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

89

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.41 In this example, we download stock price data based on a collection of stock
ticker symbols (plus a fake one). The code will fail when it hits the invalid ticker, without
downloading the data from the tickers remaining after the invalid one. You can try running
this code yourself using the download_tech_stock_prices_without_error_handling.py file.
Just remember that you should expect an error when running this code!

Import the stock_info module from yahoo_fin

Define list of stock tickers

Attempt to download the price data for each stock ticker

Running the above code will generate the following error:

Ideally, we’d like to be able run the above code and at least pull the data for any valid ticker we
have, while tracking the tickers that failed so that we might investigate those further. This is
where the clause comes in. The code below shows how to implement the try/except try/except
clause. Note that instead of directly calling the function to download price data, we add the try:
statement above. Adding this line of code tells Python that we want to attempt to run the
following code within the indention - in this case, the line of code setting equalall_data[ticker]
to the result of downloading the price data for that ticker. However, if there is an ,AssertionError
like we saw above, then the clause will this error, and proceed with the code withinexcept catch
the block, rather than generating an error and stopping code execution. Within the exception

 block, we add a piece of code to append the failed ticker to the list so that weexception failures
can later see which tickers failed to retrieve data.

We can also add a print statement to log each attempted download. The print statement will print
out a success message if the download was succesful - otherwise, it will print a failure message.

from yahoo_fin import stock_info as si

tickers = ["amzn", "meta", "goog",
 "not_a_real_ticker", "msft", "aapl", "nflx"]

all_data = {}
for ticker in tickers:
 all_data[ticker] = si.get_data(ticker)

AssertionError: {'chart': {'result': None, 'error': {'code': 'Not Found',
'description': 'No data found, symbol may be delisted'}}}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

90

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.42 This time we use a try/except block to handle the AssertionError that arises
when an invalid stock ticker is passed to the web request. The exception block here will
bypass the error, tracking the stock ticker in a failures list, and the code execution will
proceed to the next ticker in the list (rather than exiting the loop with an error). You can run
this code yourself using ch3’s download_tech_stock_prices_including_error_handling.py
file.

Create an empty dictionary to store the price data for each stock ticker

Create an empty list to store any tickers that cause a failure

Loop through each ticker

For each ticker, try to download its price data

If the download fails, append the failed ticker to the failures list and continue in the
loop

Running this code will generate the following output showing each stock symbol that was
successfully downloaded and the one () that failed.not_a_real_ticker

Additionally, the list will contain the fake ticker since it was not able to be downloaded.failures

Figure 3.3 Printing out the failures list will show the fake ticker since it was not able to be downloaded.

What if we want to protect our code execution against any type of error, rather than just assertion

all_data = {}
failures = []

for ticker in tickers:

 try:
 all_data[ticker] = si.get_data(ticker)
 print(ticker + " downloaded SUCESSFULLY")
 except AssertionError:
 failures.append(ticker)
 print(ticker + " download FAILED")

amzn downloaded SUCESSFULLY
meta downloaded SUCESSFULLY
goog downloaded SUCESSFULLY
not_a_real_ticker download FAILED
msft downloaded SUCESSFULLY
aapl downloaded SUCESSFULLY
nflx downloaded SUCESSFULLY

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

91

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

errors? You can do this easily enough by tweaking the exception clause, like the example below.
Notice how we change to . By making this change, any error will getAssertionError Exception
caught by the clause, and the code within the clause will then be executed. This isexcept except
useful when you’re not sure what type of errors you may encounter, and you just want to protect
against any error.

Listing 3.43 We can change AssertionError to Exception to catch any type of error.

Create an empty dictionary to store the price data for each stock ticker

Create an empty list to store any tickers that cause a failure

Loop through each ticker

For each ticker, try to download its price data

If the download fails, append the failed ticker to the failures list and continue in the
loop. This time, we catch any type of exception, rather than just AssertionErrors.

What if we want to execute a piece of code regardless of whether the code within the blocktry
succeeded or failed? That’s where the statement comes in, which we’ll cover next.finally

The clausefinally

In addition to and , we can also add a clause. The purpose of the clause istry except finally finally
to execute code regardless of whether the code in the clause succeeded. To reiterate, the codetry
block within the clause will only be executed in case the code block within the clauseexcept try
fails. In the clause, however, the code will execute regardless of whether the code in the finally

 clause executed without error. Let’s add a clause to our above example.try finally

Listing 3.44 Here, we add a finally block to go along with the try/except blocks. Code within
a finally clause is executed regardless of whether an error occurs within the try block.

all_data = {}
failures = []

for ticker in tickers:

 try:
 all_data[ticker] = si.get_data(ticker)
 except Exception:
 failures.append(ticker)

all_data = {}
failures = []

for ticker in tickers:

 try:
 all_data[ticker] = si.get_data(ticker)
 except Exception:
 failures.append(ticker)
 finally:
 print(ticker)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

92

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Create an empty dictionary to store the price data for each stock ticker

Create an empty list to store any tickers that cause a failure

Loop through each ticker

For each ticker, try to download its price data

If the download fails, append the failed ticker to the failures list and continue in the
loop. This time, we catch any type of exception, rather than just AssertionErrors.

Add a finally statement where the code block gets executed regardless of whether
the code in the try block succeeded

Getting the error type from Exception

Before we close out this section, let’s consider the above code snippet where we use toException
catch any type of error that may occur. It might be useful to know what types of errors are
occurring, while still having the flexibility to keep attempting our code on multiple tickers. We
can figure this out by modifying our code like this:

Listing 3.45 Below, we tweak our code to record the type of error that occurs whenever an
exception is raised. This code is available in the
download_stock_prices_try_except_finally.py file from ch3.

Create an empty dictionary to store the price data for each stock ticker

Create an empty list to store any tickers that cause a failure

Loop through each ticker

For each ticker, try to download its price data

This time, if a download fails, we map each failed ticker to its corresponding error
(stored in the dictionary)failures

Add a finally statement where the code block gets executed regardless of whether
the code in the try block succeeded

Note that we change to be a dict which maps each failed ticker to its corresponding error.failures
To get the type of error that occurs, we modify the clause to include :except as error

all_data = {}
failures = {}

for ticker in tickers:

 try:
 all_data[ticker] = si.get_data(ticker)
 except Exception as error:
 failures[ticker] = type(error)
 finally:
 print(ticker)

exception Exception as error

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

93

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Doing this allows us to capture the type of error by passing to Python’s function. Forerror type
example, we can see the failed tickers with their corresponding errors by simply printing out the

 dictionary:failures

Printing out the dictionary will return the following:

Now, let’s summarize the error handling workflow.

Error handling workflow summary The below workflow shows a summary of the
try/except/finally logic we walked through above.

Figure 3.4 A workflow of the try/except/finally logic showing how code within the try block is executed.
If this code fails, the exception block will be triggered to run. In either case, the finally clause will run
either after the exception clause, or directly after the try clause if the exception clause is never triggered
(no error occurs).

Let’s summarize what’ve we learned so far in error handling:

Handling potential errors that can arise in code is generally done via try/except/finally
blocks.

print(failures)

{"not_a_real_ticker": <class 'AssertionError'>}

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

94

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The clause attempts to execute a block of code.try
If the code in the clause fails with an error, the code in the clause will then betry except
executed. This is in contrast to the code stopping completely.
The clause can be used to execute a block of code that will run regardless offinally
whether the code within the block succeeded or failed.try

Now that we know how to use the try / except / finally logic to handle errors that may arise, how
do we go about raising error messages of our own? Let’s delve into this question in the next
section!

In addition to handling errors that may occur when executing code, it is also possible (and
sometimes desirable) to raise errors or to stop execution of code. For example, suppose you’re
writing code to extract data from a database, followed by processing the data (cleaning, creating
new features, etc.). What happens if you extract data from the database, but no records are
returned? In this case, you might want to immediately stop code execution immediately, rather
than using additional compute resources and time running code when needed data doesn’t exist.
This might be especially helpful, for instance, if you have a collection of code files (or even just
additional code in the same file) that would be executed, depending on non-empty data.

Let’s suppose you’re working with a database called using the code below. Thiscustomers.db
sample database might include a collection of weather-related data. The data that we want is in a
table called . This table has historical information about daily temperatures,weather_data
rainfall, wind, humidity, etc. In Python, we can retrieve data from this table using the pyodbc
package. This package allows you to open a connection to a database, which we can use to
retrieve data. To do that, we use the method. This method takes a pyodbc.connect connection

 containing several components of information. Firstly, we specify the , whichstring driver
corresponds to the type of database system we’re connecting to (in this case that’s SQLlite, but
could potentially be SQL Server, MySQL, Oracle, etc.). Next, we speccify the server name
where the database resides. Thirdly, we specify the name of the database (). Lastly,weather.db
we state that this connection should be a , which means the connection willtrusted connection
automatically use the system credentials (your system username and password) rather than
specifying them manually in the connection string.

Once we’ve created the connection, we have a function that reads data from the customer_data
table using (pandas.read_sql pd.read_sql). This method simply takes the connection object

) and a SQL query as inputs. It runs the SQL code and returns the result as a data frame in(_conn
Python. There might also be additional code, such as cleaning, handling missing values, outliers,
etc. What if the query returns zero records? In this case, we might want to stop any further code
execution and alert the user that no records were returned. This process of alerting the user can
be referred to as an error.raising

3.5.3 How to raise errors

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

95

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.46 The sample code below is retrieving data from a database table and then
performing some additional processing. To execute this code yourself, you’ll need to setup
your own SQLite database. For instructions on how to do this, see the Appendix. The code
in this listing is available in the ch3 file
read_from_customer_database_without_errror_handling.py.

Example code pulling data from the customer churn data (stored as a database
table)

Open connection to a database

Define function to read / process data from a database table

To stop code execution when no results are returned, and to provide a custom error message, we
can use the statement. This statement works by using the keyword followed by araise raise
specific type of error (like Exception, AssertionError, KeyError, etc.) and custom error message.
For instance, in the example below, we modify our above code to use the statement. Thisraise
example raises an error with the message " " if the queried datasetException Empty data returned
has zero rows returned. An error, as mentioned earlier, represents a general type ofException
error. We could potentially use an if we generally expect non-zero rows to beAssertionError
returned.

import pandas as pd
import pyodbc

conn = pyodbc.connect("DRIVER={SQLite3 ODBC Driver};SERVER=remotehost123;" \
 "DATABASE=customers.db;Trusted_connection=yes")

def process_data(conn = conn):

 customer_key_features = pd.read_sql(conn,
 """SELECT churn,
 total_day_charge,
 total_intl_minutes,
 number_customer_service_calls
 FROM customer_data""")

 [...additional code]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

96

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.47 Modify process_data function to raise an Exception error if no rows are
returned. This updated script is named
read_from_customer_database_using_error_handling.py in the ch3 directory.

Import packages

Open connection to a database

Extract data from the weather database

Use the statement to stop code execution and provide a custom error messageraise
if no rows are returned

Placeholder for additional code

Next, let’s compare using the statement as an alternative to what we just covered with the assert
 statement.raise

The assert statement

Another way to raise errors is via the statement. This statement specifically raises anassert
AssertionError if the condition in the statement is not met. For example, we can modify our code
snippet from above to use the statement. A benefit of using is that it simplifies theassert assert
validation check we want to perform. On the other hand, statements will always return anassert
AssertionError if the condition fails. This makes it less flexible than the statement,assert raise
which can be used to return any type of Python error. If there isn’t a particular type of error that
you want to return, then it is generally safe to use either or . Otherwise, it is is betterassert raise
to use the statement.raise

import pandas as pd
import pyodbc

conn = pyodbc.connect("DRIVER={SQLite3 ODBC Driver};SERVER=remotehost123;" \
 "DATABASE=customers.db;Trusted_connection=yes")

def process_data(conn = conn):

 customer_key_features = pd.read_sql(conn,
 """SELECT churn,
 total_day_charge,
 total_intl_minutes,
 number_customer_service_calls
 FROM customer_data""")

 # if zero rows are returned, raise an Exception
 if customer_key_features.shape[0] == 0:
 raise Exception("Empty data returned")

 [...additional code]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

97

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.48 In this listing, we modify the earlier code to use an assert statement that
checks for whether non-zero rows are returned from the customer data table.. This code is
available in the read_from_customer_database_with_assert.py ch3 file.

Define functionprocess_data

Extract data from weather database

If no rows are returned, raise an AssertionError

Placeholder for additional code

To add a custom error message using the statement, you just need to add the messageassert
following the assert condition, followed by a comma. Let’s modify our above example to use a
custom error message.

Listing 3.49 Below, we can modify our previous example to also generate a custom error
message in the event that no data is returned via the query. The code file for this snippet is
called custom_assert_message.py and is in the ch3 directory.

Define the functionprocess_data

Extract data from the weather database

If no rows are returned, raise an AssertionError with a custom message

Placeholder for additional code

def process_data():

 customer_key_features = pd.read_sql(conn,
 """SELECT churn,
 total_day_charge,
 total_intl_minutes,
 number_customer_service_calls
 FROM customer_data""")

 assert customer_key_features.shape[0] > 0

 [...additional code]

def process_data(conn):

 # read weather data from database table
 customer_key_features = pd.read_sql(conn,
 """SELECT churn,
 total_day_charge,
 total_intl_minutes,
 number_customer_service_calls
 FROM customer_data""")

 # if zero rows are returned, raise an AssertionError
 # (this time with a custom error message)
 assert weather_data.shape[0] > 0, "Empty data returned"

 [...additional code]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

98

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The below snapshot summarizes our use case here with the statement.assert

Figure 3.5 This workflow shows an example of how we might use the assert statement, similar to our
example above. We could for example, have a sequence of files that need to be executed. However, if
the data extraction process returns zero records, then none of the remaining files need to run, so we can
add an assert statement to stop any remaining code execution on the spot.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

99

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

That covers statements. Before we close out this chapter, let’s walk Now, let’s summarizeassert
what we’ve learned this chapter.

An additional (and important) part of making your code more robust is to document your code.
While writing comments like this

can be useful one-liners, there are a few other techniques for documenting your code that come
in handy.

In Python, a is a way of documenting functions, packages, classes (covered in a futuredocstring
chapter), or other sections of code. Docstrings are created by adding text between a pair of triple
quotation marks. Let’s revisit the earlier code modularization example by adding a docstring to
our function.read_data

Listing 3.50 This code snippet modifies the read_data function we created earlier by
adding a docstring. This docstring explains the inputs to the function (in this case, that’s
just the input file name), what the function does, and the object that’s returned (the data
frame created from reading the source dataset).

3.6 Documentation

read in data

3.6.1 Using docstrings

def read_data(file_name: str) -> pd.DataFrame:

 """Inputs:
file_name: str

Takes a file name as input and reads in data from the file.
Returns a data frame (pd.DataFrame)

 """

 df = pd.read_csv(file_name)
 return df

Create read_data function (with a docstring this time)

We can extend this docstring idea to our other functions in the code_modularization example.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

100

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 3.51 Extending on the earlier code modularization example, we can now add
docstrings to each our functions.

import pandas as pd

def read_data(file_name: str) -> pd.DataFrame:

 """Inputs:
file_name: str

Takes a file name as input and reads in data from the file.
Returns a data frame (pd.DataFrame)

 """

 df = pd.read_csv(file_name)
 return df

def cap_outliers(feature:pd.Series, upper_percentile: float,
lower_percentile: float) -> pd.Series:

"""Inputs:
feature: pd.Series \n
upper_percentile: float \n
lower_percentile: float \n

Takes a file name as input and reads in data from the file.
Returns a pandas Series (pd.Series)

"""

 # get the lower and upper thresholds based on the input percentiles
 lower_thresh = feature.quantile(lower_percentile)
 upper_thresh = feature.quantile(upper_percentile)

 # cap any outliers at the lower / upper threshold bounds
 feature = feature.map(lambda val: \

lower_thresh if val < lower_thresh \
else upper_thresh if val > upper_thresh \
else val)

 return feature

def clean_data(df: pd.DataFrame, upper_percentile: float,
lower_percentile: float) -> pd.DataFrame:

"""Inputs:
df: pd.DataFrame \n
upper_percentile: float \n
lower_percentile: float \n

Cleans an input data frame, including replacing missing values and
capping outliers.

Returns the processed data frame after cleaning.
"""

 df = df.fillna(df.median(numeric_only=True))

 for col in df.columns:
df[col] = cap_outliers(df[col], upper_percentile, lower_percentile)

 # additional cleaning...
 # [code block]

 return df

if __name__ == "__main__": ©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

101

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Import packages

Function to read data from an input CSV file name

Function to cap outliers in a column.

Main function handle cleaning dataset

Code within this block will only be executed if this script is run directly, allowing
the functions defined in the script to be easily imported to other code files without
executing this block of code.

Once you’ve added docstrings to your code, it’s possible to auto-create an HTML file using a
Python package called . Let’s cover pdoc next.pdoc

pdoc is a great Python library for auto-creating HTML documentation files. pdoc uses docstrings
along with the code itself to create the documentation file. No knowledge of HTML is required!
Let’s use pdoc to create an HTML documentation file based on our updated script,
code_modularization_with_docstrings.py. Again, this file is available in the book repo’s ch3
directory.

Before we use pdoc, we need to install it using pip:

Listing 3.52 Use pip to install pdoc

Install pdoc

Now that we have pdoc installed, we can test it out! pdoc can be used directly from the command
line. If you have the book repository downloaded on your machine, you can go to the ch3
directory on the command line. From this directory, we can run the following line of code on the
command line:

Listing 3.53 This code snippet will create an HTML file documenting the input file -
code_modularization_with_docstrings.py.

Create an HTML file that documents the Python script
code_modularization_with_docstrings.py

Running this command will create a new subdirectory called (also available in the Githubhtml

 # additional code
 # [code block]

3.6.2 Using pdoc to auto-create documentation

pip install pdoc

pdoc --html code_modularization_with_docstrings.py

if __name__ == "__main__":

 customer_data = read_data("customer_data.csv")

 cleaned_data = clean_data(customer_data)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

102

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

repo). Within this folder, you’ll find a file called code_modularization_with_docstrings.html.
This is the new documentation file. Figure 3.6 shows a partial view of the documentation. For
the full view, you can open up the file in a web browser.

Figure 3.6 This snapshot shows part of the documentation generated by pdoc. In this view, we can see
the function definition for cap_outliers and its corresponding docstring.

The full file shows the following for each function:

Function parameters
Full function code
The docstring defined within each function

That covers pdoc. Now, let’s summarize the topics we’ve covered in this chapter.

In this chapter, we covered several key topics that help to bridge the gap between data science
and software engineering:

PEP8 and the Google Style Guideline provide outlines for how to best style your code.
Type hints can be used to provide a developer hints as to what the data types should be
for a given function. Use to diretly return whether a variable has a specifiedisinstance
data type.
Think before you write repetitive code. As alternatives to redundant code, consider
writing functions, using builtin methods (like the pandas fillna method), or utilizing
dictionaries to replace long if-else blocks.
Use to handle errors that occur in your code, and to add logic thattry/except/finally
allows your code to continue executing past errors that arise.
Use or to alert the user of an error and stop execution of a code fileraise assert
immediately
Utilize the pdoc library to auto-create documentation for your code.

3.7 Summary

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

103

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.

3.

4.

In this section, spend some time practicing the contents of this chapter on your own.

Suppose you have a function called create_plots, taking a pandas data frame, a plot type
(specified by an integer), and a color (red, orange, yellow, etc.). The output is a list. How
could you specify the input data types when defining this function? See this reference:

 for a list of common data types inwww.w3schools.com/python/python_datatypes.asp
Python.
Now, add logic to your function so that if an incorrect data type is entered, the function
will raise an error before attempting any code execution.
Look up one of the free APIs here: , and use one ofgithub.com/public-apis/public-apis
them in a loop to collect data. Then, add try/except to your code to handle any error that
may occur. For example, similar to our stock tickers example earlier, you can test what
happens you have invalid inputs and how to handle them using the examples in this
chapter as a reference.
Can you refactor the following code snippet to follow standards similar to those covered
in this chapter?

3.8 Practice on your own

import sklearn, os, math

INDEX = 5
for i in range(10):
 INDEX += i

INDEX = math.log(INDEX)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

104

https://www.w3schools.com/python/python_datatypes.asp
https://github.com/public-apis/public-apis
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

4
This chapter covers:

In this chapter, we’re going to introduce object-oriented programming (OOP) for data scientists.
Object-oriented programming (OOP) can be a confusing and abstract topic, especially if you’re
reading about it for the first time. For software engineers, OOP is common practice. Data
scientists, however, tend to have less exposure to OOP, which is one of the motivations for this
chapter. Building on the material we’ve covered so far, OOP allows for better structure and
adaptive flexibility in your code. In a nutshell, OOP also makes your code more easily portable,
meaning that rather than having convoluted notebooks of code, you have a codebase that easily
be integrated somewhere else. This saves time for you as a data scientist, as well time for others
working with your code. It’s also useful when you’re putting your code into production.

So, what exactly OOP? First things first, object-oriented programming (OOP) refers to ais
coding paradigm that revolves around and . For now, you can loosely think of a objects classes

 as a collection of functions and attributes (data). A common analogy in the physical worldclass
is a car. A car has a set of functions, like driving, parking, or backing up. It also has a set of
attributes (sometimes called fields), such as make, model, or color. An is an instance ofobject
class, just like a Dodge Charger is an instance (or type) of car. As we’ll see in the next several
sections, applying these concepts to programming can help create better structured and more
flexible code.

Object-oriented programming for data
scientists

Introducing object-oriented programming (OOP) for data scientists
Creating your own classes
Defining class methods

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

105

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Combine functions with data
Classes combine functions with data so that only those functions can directly access the
data

More easily create new Python libraries

Now, let’s dive in by formally introducing and .classes objects

As mentioned above, a is essentially a collection of functions and attributes. The functionsclass
within a class are typically called (we’ll dig more into methods shortly). In data sciencemethods
and coding, an example of a class could be a classifier (a random forest, for example), such as a
decision tree. The model class might have attributes:

Number of trees
Number of features to use for each split
Max depth of each tree

The classifier will also have functions:

Train (train model)
Predict (get predictions)

4.1 Introducing classes and objects

Improves the structure and flexibility of code
Makes your code more easily portable

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

106

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 4.1 This diagram shows a commonly used class in Python’s core machine learning library
(scikit-learn). This class represents a random forest classifier. We can create an object of this class,
which corresponds to a specific random forest model. Like the random forest algorithm itself, we need
to input parameters (number of trees, max depth, etc.). These parameters form the attributes of the
random forest model object. Additionally, the object has methods for training and predicting.

In fact, Python’s scikit-learn library is structured like this, where each of the popular machine
learning algorithms form various classes (see Figure 5.2). Classes allow for better organizational
structure. Consider how in the previous chapter, we discussed how functions can help you to
avoid repetitive code. As a codebase gets more complex, with a high number of lines of code or
many functions, classes are a next step in better organizing those functions. Additionally,
creating classes can make your code more easily portable.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

107

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 4.2 Python’s scikit-learn library has many classes, including the examples shown in this figure.
The examples in this figure each correspond to types of machine learning models.

Next, let’s walk through how you may be using object-oriented programming without realizing
it!

Python is full of objects. Let’s suppose you define a variable called . Below, we’vesample_num
set to be equal to the number 5. By doing this, we’ve actually created an .sample_num object
Why? Because is an of the (or) class. If we had set it equal to 10sample_num instance integer int
or 20 etc. our variable would be another of the class.instance int

Listing 4.1 Define an integer, called sample_num.

Now, let’s look at a more data science specific example. If you’re a data scientist using Python,
you’ve most likely used packages like pandas or scikit-learn. These packages are also full of
object-oriented concepts. For example, as mentioned above, you can think of a random forest
classifier in terms of objects and classes.

For example, below we import the class from scikit-learn. Secondly, weRandomForestClassifier

4.1.1 You’re using OOP without knowing it…

sample_num = 5

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

108

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

define an of this class, which we call . This object takes several attributes:object forest_model

n_estimators
max_depth
max_features
random_state

Listing 4.2 This code creates a RandomForestClassifier object and specifies several key
parameters, including the number of trees (n_estimators = 100) and max_depth.

Import the RandomForestClassifier class

Create a new RandomForestClassifier object

Additionally, the class has several methods, which we can use for ourRandomForestClassifier
object. For example, we could use our object to train the random forest model:

Listing 4.3 Example of training a random forest model using scikit-learn.

Train random forest model

In addition to methods, our random forest object also has instance variables. Instance variables
are variables that are attached to a specific object of a class. These instance variables generally
correspond to the of an object. Often times, they are initially defined as inputs whenattributes
creating an object.

In our example, the values we chose for n_estimators, max_depth, max_features, and
random_state correspond to instance variable values for the object. You canforest_model
reference these variables using dot notation, like below. By here, we mean thedot notation
object name followed by a period (dot), and followed in turn by the name of the instance variable
you want to reference. To get the value of max_features, for example, you would write the code
in Listing 5.4:

Listing 4.4 Reference the max_features attributes of our forest_model object

Get the value of max_features from our forest_model object

from sklearn.ensemble import RandomForestClassifier

forest_model = RandomForestClassifier(n_estimators = 100,
max_depth = 4,
max_features = "sqrt",
random_state = 0)

forest_model.train(X, y)

forest_model.max_features

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

109

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Similarly, you could get the values of other instance variables like this:

Listing 4.5 Reference the max_features attributes of our forest_model object

Get the value of n_estimators

Get the value of max_depth

In the example we’ve just walked through, we used a class that already exists from scikit-learn.
Now, let’s walk through how to create your own classes in Python!new

Classes in Python can be created using the keyword. It is common practice (think PEP8class
from Chapter 3) to name a class starting with an uppercase letter. This helps to distinguish
classes from functions when they are referenced at various points in your code. Additionally,
styling standards recommend using (in other words, avoiding underscores) for thecamelcase
class name. To create our first class, let’s first recall a few lines of code from earlier in this book.

In Listing 4.10, we have a few lines of code that are similar to what we’ve shown in previous
chapters. This code reads in the customer churn dataset that we’ve grown familiar with. It then
splits the dataset into train vs. test. Additionally, the code reduces the train and test datasets
down to a subset of input columns. Instead of rewriting this code everytime we want to use the
customer churn dataset, let’s create a class that handles the initial processing of the data. We can
also add in additional methods.

Read in the customer churn dataset

Split the data into train/test

Create list of sample features from our dataset.

Get subset of columns we need for model features

4.2 Creating a class in Python

forest_model.n_estimators

forest_model.max_depth

customer_data = pd.read_csv("../data/customer_churn_data.csv")

train_data,test_data = train_test_split(customer_data,
train_size = 0.7,
random_state = 0)

feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"]

train_features = train_data[feature_list]
test_features = test_data[feature_list]

train_labels = train_data.churn.map(lambda key: 1 if key == "yes" else 0)
test_labels = test_data.churn.map(lambda key: 1 if key == "yes" else 0)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

110

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Map the labels to 1/0 format

In Listing 4.6, we define a class called . Let’s break down what’s going on in theCustomerData
code:

First, we define the class name ()CustomerData
Second, we define a method. The constructor method is a special methodconstructor
(function) that is always called whenever a new object (or instance) of the class is
created. Generally, the purpose of the constructor method is to instantiate variables that
can be accessed by other methods in the class. The constructor method is always created
using a double underscore, followed by the keyword , and again followed by a doubleinit
underscore. This can be seen in Listing 4.6.
Thirdly, within the constructor method, we define a collection of .instance variables
These are the variables noted by the keyword , followed by a variable name. isself self
Python’s way of referencing an object, or instance, of a class. It allows you to access
variables or methods attached to a class. In our example, that means accessing variables
like customer_data or train_data, which are defined within the constructor method. These
variables can be accessed by other methods in our same class (which we’ll see in a later
example shortly). You’ll also notice how we input as a parameter into the constructorself
method. This will be the case for any method we add to our class. Again, this allows us to
reference any variables we’ve created that are attached to the class.

Listing 4.6 In this code, we create an initial class called CustomerData. Currently, the class
handles reading in data from the customer churn dataset, splitting the data into train/test,
and initial pre-processing of the data. This code can be found in the first_class.py file in the
ch4 directory.

import pandas as pd
from sklearn.model_selection import train_test_split

class CustomerData:

 def __init__(self,
feature_list: list):

self.customer_data = pd.read_csv("../data/customer_churn_data.csv")

self.train_data,self.test_data = train_test_split(self.customer_data,
train_size = 0.7,
random_state = 0)

self.train_data = self.train_data.reset_index(drop = True)
self.test_data = self.test_data.reset_index(drop = True)

self.feature_list = feature_list

self.train_features = self.train_data[feature_list]
self.test_features = self.test_data[feature_list]

self.train_labels = self.train_data.churn.map(lambda key: 1 if key == "yes" else 0)
self.test_labels = self.test_data.churn.map(lambda key: 1 if key == "yes" else 0)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

111

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Define the class name as CustomerData

Define the constructor method

Read in the customer churn dataset

Split the data into train/test

Reset the indexes of the train/test datasets

Create list of sample features from our dataset

Get subset of columns we need for model features

Map the labels to 1/0 format

Before we add more methods to our class, let’s first consider that we can improve our class by
making it more generalizable. For example, instead of hard coding the customer churn dataset,
we can pass a data file as a parameter to the constructor method, allowing this class to be used
for dataset, rather than just the example one we’re working with. Additionally, we’ll need toany
update the logic currently processing the label, as well (section 9 in Listing 4.6).

The updated code is in Listing 4.7.

Import packages

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

112

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.7 This code generalizes our initial class to handle inputting and processing any
dataset (assuming a binary target variable). This code is available in the
generalized_dataset_class.py file from the ch4 directory.

Import packages

Define the class name as DataSet

Define the constructor method

Read in the customer churn dataset

Split the data into train/test

Reset the indexes of the train/test datasets

Create list of sample features from our dataset

Get subset of columns we need for model features

Map the labels to 1/0 format

Next, how do we create a new object from our class? Let’s do that in Listing 4.8. To create a new
object, we need to use the variable name DataSet (the name our class), and input the required
parameters that were defined in the constructor method.

import pandas as pd
from sklearn.model_selection import train_test_split

class DataSet:

 def __init__(self,
feature_list: list,
file_name: str,
label_col: str,
pos_category: str):

self.customer_data = pd.read_csv(file_name)

self.train_data,self.test_data = train_test_split(self.customer_data,
train_size = 0.7,
random_state = 0)

self.train_data = self.train_data.reset_index(drop = True)
self.test_data = self.test_data.reset_index(drop = True)

self.feature_list = feature_list

self.train_features = self.train_data[feature_list]
self.test_features = self.test_data[feature_list]

self.train_labels = self.train_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

self.test_labels = self.test_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

113

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.8 This code creates a new object of our DataSet class, called customer_obj.

Create a new object, or instance, of our DataSet class

Now, we can reference attributes of our class. For example, if you want to access the train_data
variable we define within the constructor method, you just need to use dot notation, like Listing
4.9.

Listing 4.9 Access the train_data variable that was defined when we created the instance
of our DataSet class.

Access the train_data variable from our object

Any other attribute of the object can be accessed the same way - using the object name, followed
by a dot, then followed by the name of the attribute.

In the next section, let’s add methods to our class!

Now, let’s add a new method to our class. This method will create visuals of the input features.

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "../data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"
)

customer_obj.train_data

4.2.1 Creating your own methods

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

114

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.10 This code adds a new method (called get_summary_plots) to our class. This
method will generate a histogram of each input feature in the feature_list variable.

Import packages

Define the class name as DataSet

Define the constructor method

Read in the customer churn dataset

Split the data into train/test

Reset the indexes of the train/test datasets

Create list of sample features from our dataset

Get subset of columns we need for model features

Map the labels to 1/0 format

import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

class DataSet:

 def __init__(self,
feature_list: list,
file_name: str,
label_col: str,
pos_category: str):

self.customer_data = pd.read_csv(file_name)

self.train_data,self.test_data = train_test_split(self.customer_data,
train_size = 0.7,
random_state = 0)

self.train_data = self.train_data.reset_index(drop = True)
self.test_data = self.test_data.reset_index(drop = True)

self.feature_list = feature_list

self.train_features = self.train_data[feature_list]
self.test_features = self.test_data[feature_list]

self.train_labels = self.train_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

self.test_labels = self.test_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

 def get_summary_plots(self):

for feature in self.feature_list:
self.train_data[feature].hist()
plt.title(feature)
plt.show()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

115

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Add a function (method) to generate summary (histogram) plots of each input
feature

We can call our new method using dot notation, similar to how we access attributes of our
object. See Listing 4.11 for an example.

Listing 4.11 This code adds a new method (called get_summary_plots) to our class. This
method will generate a histogram of each input feature in the feature_list variable.

The snapshot in Figure 4.3 shows an example of one of the plots that is generated by running the
code in Listing 4.11.

Figure 4.3 This snapshot is an example of one of the exhibits generated by calling the
get_summary_plots method.

Now, let’s add another method. This time, our method will generate evaluation metrics for a
model that predicts the target label of an input dataset. For now, our evaluation metrics will just
print out the precision based on the train and test datasets against the input prediction labels.
When you practice on your own, you can add in additional metrics.

customer_obj.get_summary_plots()

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

116

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.12 Now, we add in a new method for our class that calculates evaluation metrics
(currently, precision) based on input prediction columns. This code is available in the
dataset_class_final.py file from the ch4 directory.

Import packages

Define the class name as DataSet

Define the constructor method

Read in the customer churn dataset

import pandas as pd
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

class DataSet:

 def __init__(self,
feature_list: list,
file_name: str,
label_col: str,
pos_category: str):

self.customer_data = pd.read_csv(file_name)

self.train_data,self.test_data = train_test_split(self.customer_data,
train_size = 0.7,
random_state = 0)

self.train_data = self.train_data.reset_index(drop = True)
self.test_data = self.test_data.reset_index(drop = True)

self.feature_list = feature_list

self.train_features = self.train_data[feature_list]
self.test_features = self.test_data[feature_list]

self.train_labels = self.train_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

self.test_labels = self.test_data[label_col].\
map(lambda key: 1 if key == pos_category

else 0)

 def get_summary_plots(self):

for feature in self.feature_list:
self.train_data[feature].hist()
plt.title(feature)
plt.show()

 def get_model_metrics(self, train_pred: pd.Series, test_pred: pd.Series):

print("Train precision = ",
metrics.precision_score(self.train_labels,

train_pred))

print("Test precision = ",
metrics.precision_score(self.test_labels,

test_pred))

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

117

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Split the data into train/test

Reset the indexes of the train/test datasets

Create list of sample features from our dataset

Get subset of columns we need for model features

Map the labels to 1/0 format

Add a function (method) to generate summary (histogram) plots of each input
feature

Create a method that generates evaluation metrics

To call our method, let’s create a simple rules-based prediction that predicts whether a customer
in our dataset will churn. This rules-based prediction will be based on the values of two columns
in the dataset - high_service_calls and has_international_plan.

First, we create a new column called based on the value of the numberhigh_service_calls
of customer service calls.
Second, we create a column called , which is just a numeric, 1/0,has_international_plan
indicator version of the international_plan column.
Third, we use the created columns to create a separate column called , whichrules_pred
gives a 1/0 prediction of whether a given customer will churn.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

118

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.13 Call the new method by creating a simple prediction for customer churn.

Create an indicator for customer having a high number of customer service calls
(train set)

Create an indicator for customer having an international plan (train set)

Create rules-based prediction (test set)

Create an indicator for customer having a high number of customer service calls
(test set)

Create an indicator for customer having an international plan (test set)

Create rules-based prediction (test set)

The result of running this code will print the following:

customer_obj.\
train_data["high_service_calls"] = customer_obj.\
train_data.number_customer_service_calls.map(lambda val: 1 if val > 3 else 0)

customer_obj.\
train_data["has_international_plan"] = customer_obj.\
 train_data.international_plan.map(lambda val: 1 if val == "yes" else 0)

customer_obj.train_data["rules_pred"] = [max(calls, plan) for calls,plan in
zip(customer_obj.\

train_data.high_service_calls,
customer_obj.train_data.\

has_international_plan)]

customer_obj.\
test_data["high_service_calls"] = customer_obj.\
test_data.number_customer_service_calls.map(lambda val: 1 if val > 3 else 0)

customer_obj.\
test_data["has_international_plan"] = customer_obj.\
 test_data.international_plan.map(lambda val: 1 if val == "yes" else 0)

customer_obj.test_data["rules_pred"] = [max(calls, plan) for calls,plan in
zip(customer_obj.\

test_data.high_service_calls,
customer_obj.test_data.\

has_international_plan)]

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "../data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"

)

customer_obj.get_model_metrics(customer_obj.train_data.rules_pred,
customer_obj.test_data.rules_pred)

Train precision = 0.44129554655870445
Test precision = 0.458128078817734

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

119

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.
2.

While the precision results are low because we are only using a simple rules-based model, you
can try to improve this result by building a better model in the Practice on your Own section.

That wraps up covering our initial class example. Next, let’s walk through another OOP example
where we will build a class to help us perform hyperparameter tuning.

Let’s suppose that we wanted to create a web application where a user can do the following:

Upload a dataset
Select a machine learning model (random forest, gradient boosting, etc.) to use the
dataset for training

For example, if you were dealing with the customer churn dataset with this application, you
would be able to upload the dataset, select random forest, and train the model to predict whether
a customer will churn. We’re going to cover how to build lightweight web applications in a later
chapter, so for now let’s focus on the idea of writing a program that will take a dataset and model
type as input, while returning a trained model. Additionally, for our model, we want to be able to
automatically perform hyperparameter tuning to get an optimized model for the one selected.

4.2.2 Creating a new ML model class

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

120

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 4.4 This is a overview summary of what we’re looking to do in the current section. The goal is to
create a new class that can handle training a model on a dataset and getting the optimized
hyperparameters, while allowing the user to pick what type of model to use.

Let’s break this problem into a few steps.

1) Create class that performs hyperparameter tuning for a random forest

In the first step, let’s create a class that trains a specific model (random forest), and then we’ll
follow this up by generalizing the class to handle other models.

Our code to do this is in Listing 5.16.

First, we start by importing the RandomizedSearchCV class from scikit-learn. This class
is often used for hyperparmater tuning to select the optimized parameters for machine
learning models.
Second, we define a new class called .RandomForestModel

Within this class, we first create the init method. As above, this takes the inputs to our
class. This time, the inputs will be the values we need to pass to ultimately train the
random forest model with hyperparameter tuning. This includes a dictionary of
hyperparameters, the number of jobs we want to run in parallel, the metric used for
evaluation in the tuning, number of iterations to test out various combinations of
parameters, and a random state value to ensure repeatable results.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

121

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Next, we define a method called tune. This method serves as a wrapper function to
handle the hyperparameter tuning piece. It takes the inputs to the class and trains an
optimized model based on the hyperparameter grid that is input to the class.
Lastly, we create a method to handle fetching predictions for the trained model.

Listing 4.14 In this code, we create a new class that can handle hyperparameter tuning for
a random forest.

Import the RandomizedSearchCV class

Define the new class name as RandomForestModel

Create the methodinit

Store the inputs to the class as instance variables

Define the tune method

Create an object of the RandomizedSearchCV class to handle searching for the
optimal hyperparameters.

Use this object to get the optimized model

Implement a predict method to handle getting predictions from the model

Next, let’s test out our class. To do this, we’re going to use the customer churn dataset.

from sklearn.model_selection import RandomizedSearchCV

class RandomForestModel:

 def __init__(self, parameters, n_jobs, scoring, n_iter, random_state):

self.parameters = parameters
self.n_jobs = n_jobs
self.scoring = scoring
self.n_iter = n_iter
self.random_state = random_state

 def tune(self, X_features, y):

self.clf = RandomizedSearchCV(RandomForestClassifier(),
self.parameters,
n_jobs=self.n_jobs,
scoring = self.scoring,
n_iter = self.n_iter,
random_state = self.random_state)

self.clf.fit(X_features, y)

 def predict(self, X_features):

return self.clf.predict(X_features)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

122

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.15 This code uses the random forest-based class that we defined in Listing 4.14
to run hyperparameter tuning and train a random forest model on the customer churn
dataset.

Import packages

Get the customer churn processed data

Define hyperparameter search grid

Create a RandomForestModel object

Run the hyperparameter tuning process

For a combined view of the code implementing the RandomForestModel class and testing it out,
you can check out the file in the ch4 directory.rf_class_example.py

After running the code in the previous listing, we can see the optimal hyperparameters selected
by running the code in Listing 4.16.

Listing 4.16 Examine the optimized hyperparameters.

Get the best hyperparameters found

For example, the result of Listing 4.16 may look like this:

from sklearn.ensemble import RandomForestClassifier
from dataset_class_final import DataSet

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "../data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"
)

parameters = {"max_depth":range(2, 6),
"min_samples_leaf": range(5, 55, 5),
"min_samples_split": range(10, 110, 5),
"max_features": [2, 3],
"n_estimators": [50, 100, 150, 200]}

forest = RandomForestModel(parameters = parameters,
n_jobs = 4,
scoring = "roc_auc",
n_iter = 10,
random_state = 0)

forest.tune(customer_obj.train_features, customer_obj.train_labels)

forest.clf.best_estimator_

RandomForestClassifier(max_depth=3, max_features=3, min_samples_leaf=5,
min_samples_split=80, n_estimators=200)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

123

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

We could also use the result to get model predictions for a dataset.

Listing 4.17 Now, we can get the predictions on the train and test sets.

Get the train set predictions

Get the test set predictions

Now that we’ve created and used a class to perform hyperparameter tuning for a random forest,
let’s generalize this to handle other machine learning models.

2) Generalize class to handle other ML models

The code structure we have so far for our class is not much different than what we need to handle
other models.

First, we will change the class name from RandomForestModel to MlModel since we
will be creating a class that can handle multiple ML models
Second, we add an extra input to the new class called . This input willml_model
correspond to the type of model that the user will be able to input. For example, this
could be the RandomForestClassifier(). Or, it could be RandomForestRegressor() or
GradientBoostingClassifier() etc.
Third, we replace the RandomForestClassifier() input in section 6 of the code for the
class (see Listing 4.14) with , again corresponding to the type of model thatself.ml_model
you want to use

train_pred = forest.predict(customer_obj.train_features)

test_pred = forest.predict(customer_obj.test_features)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

124

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.18 In this code, we make a few minor adjustments to our previous class in order
to make it handle a variety of machine learning models available in scikit-learn. This code
is available in the ml_model.py file from the ch4 directory.

Import the RandomizedSearchCV class

Define the new class name as MlModel (rather than RandomForestModel)

Create the methodinit

Store the inputs to the class as instance variables

Define the tune method

Create an object of the RandomizedSearchCV class to handle searching for the
optimal hyperparameters. This time, the code should be able to handle most
supervised ML models in scikit-learn.

Use this object to get the optimized model

Implement a predict method to handle getting predictions from the model

Now, we can repeat a similar process to earlier, and create objects for our new class. To repeat
the hyperparameter tuning of the random forest, we can write the code in Listing 4.20. In this
case, we just modify the previous code to use MlModel rather than RandomForestModel, and
then input RandomForestModel() as an extra parameter into our object.forest

from sklearn.model_selection import RandomizedSearchCV

class MlModel:

 def __init__(self,
ml_model,
parameters,
n_jobs,
scoring,
n_iter,
random_state):

self.parameters = parameters
self.n_jobs = n_jobs
self.scoring = scoring
self.n_iter = n_iter
self.random_state = random_state
self.ml_model = ml_model

 def tune(self, X_features, y):

self.clf = RandomizedSearchCV(self.ml_model,
self.parameters,
n_jobs=self.n_jobs,
scoring = self.scoring,
n_iter = self.n_iter,
random_state = self.random_state)

self.clf.fit(X_features, y)

 def predict(self, X_features):

return self.clf.predict(X_features)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

125

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.19 This code is essentially a repeat of our earlier code to get an optimized
random forest model, except now we use the more generalized MlModel class rather than
the RandomForestModel class.

Define a hyperparameter search grid

Create a MlModel object using a random forest

Get an optimized trained model

To use a different model type, like GradientBoostingClassifier, for instance, we just need to
change the hyperparameters and tweak the object definition to use that model type rather than a
random forest.

As you can see, our code is very similar to the previous examples, with two primary differences.
First, we modify the hyperparameter search grid to be line with gradient boosting models (for
example, including learning rate as one of the hyperparameters). Secondly, we directly specify
that we want to use the GradientBoostingClassifier model class from scikit-learn, rather than a
random forest.

parameters = {"max_depth":range(2, 6),
"min_samples_leaf": range(5, 55, 5),
"min_samples_split": range(10, 110, 5),
"max_features": [2, 3],
"n_estimators": [50, 100, 150, 200]}

forest = MlModel(ml_model = RandomForestClassifier(),
parameters = parameters,
n_jobs = 4,
scoring = "roc_auc",
n_iter = 10,
random_state = 0)

forest.tune(customer_obj.train_features, customer_obj.train_labels)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

126

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 4.20 This code is essentially a repeat of our earlier code to get an optimized
random forest model, except now we use the more generalized MlModel class rather than
the RandomForestModel class.

Import the GradientBoostingClassifier class

Define a hyperparameter search grid

Create a RandomForestModel object

Get an optimized trained model

As one additional point, note that the class we’ve created not only handles classification models,
but could also handle regression models. For example, if you wanted to use the
RandomForestRegressor (random forest regression) model class from scikit-learn, you could
easily do that using the code we have here. To illustrate this, here’s what that would look like
(assuming we have a new dataset and continuous label):

Listing 4.21 Now, we just modify our code to use the RandomForestRegressor instead. The
rest of the code is essentially identical to when we used the RandomForestClassifier. The
new_train_data and new_train_label variables represent a new training set with a different
training label.

from sklearn.ensemble import GradientBoostingClassifier

parameters = {"max_depth":range(2, 6),
"min_samples_leaf": range(5, 55, 5),
"min_samples_split": range(10, 110, 5),
"subsample":[0.6, 0.7, 0.8],
"max_features": [2, 3],
"n_estimators": [50, 100, 150, 200],
"learning_rate": [0.1, 0.2, 0.3]}

gbm = MLmodel(ml_model = GradientBoostingClassifier(),
parameters = parameters,
n_jobs = 4,
scoring = "roc_auc",
n_iter = 10,
random_state = 0)

gbm.tune(customer_obj.train_features, customer_obj.train_labels)

parameters = {"max_depth":range(2, 6),
"min_samples_leaf": range(5, 55, 5),
"min_samples_split": range(10, 110, 5),
"max_features": [2, 3, 4, 5, 6],
"n_estimators": [50, 100, 150, 200]}

forest_regressor = MlModel(ml_model = RandomForestRegressor(),
parameters = parameters,
n_jobs = 4,
scoring = "roc_auc",
n_iter = 10,
random_state = 0)

forest_regressor.tune(new_train_data, new_train_label)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

127

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.
2.

3.

4.

Define a hyperparameter search grid

Create an MlModel object using RandomForestRegressor

Get an optimized trained model

That’s covers object-oriented programming for now. There’s more to OOP, and we’ll get more
practice with it in future chapters.

In this chapter, we introduced object-oriented programming and discussed how it can be used for
data science.

Object-oriented programming is all around you in Python. Everything is an object.
A class is a collection of functions and variables together.
An object is an instance of a class. For example, the integer 10 is an instance of the
integer class.
Methods are basically functions defined inside of classes.
Instance variables are variables (attributes) attached to an object of a class. They can take
different values depending on different objects of and inputs for the same class.

Can you add additional ML evaluation metrics to the DataSet class we defined earlier?
Can you train a better customer churn prediction model than the rules-based one we did
earlier? Feel free to explore additional features available in the dataset. Then, use the
more robust metrics method you created in step 1 to evaluate the new model.
Can you modify the MlModel class to also handle automatically splitting an input dataset
into train / test? How would you make the train and test sets accessible to the user after
inputting a dataset?
Can you add a new method (or multiple methods) to MlModel to create visualizations of
an input dataset?

4.3 Summary

4.4 Practice on your own

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

128

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

5
This chapter covers:

The purpose of this chapter is to serve as a key foundation for the next several chapters on
scaling. We defined scaling back in Chapter 1, and will visit it in more detail next chapter. For
now, consider of the components within scaling is to deal with larger amounts of data from an
efficiency (less time) perspective. If you’ve been working in data science for some time, you’re
well aware some types of code execution (such as model training or data extraction) can take a
long time. For example, maybe you’re training a machine learning model on a dataset. How long
do you have to wait? A few seconds? Minutes? Hours? Without a progress bar, it may be
difficult to know. Or what if you’re scraping weather data from a collection of hundreds or
thousands of locations? How would you know if your code became stuck or was still
progressing? Having a way to monitor the progress of the running code or stopping long-running
code automatically once a time limit is reached can very useful in these situations. For example,
you might want to use a progress bar to track as you loop through this collection of
weather-related webpages to extract data. Or you might want to know how far long the training
has come when training an ML model.

Let’s discuss how these topics fit into the bigger picture of this book.

Progress bars are invaluable tools for letting you know how far along a piece of code has
executed. This can be helpful if you’re not sure how long code will run so that you’re not
in the dark while it is executing. Python has several packages available to create progress
bars, including tqdm and progressbar2. We’ll be delving into the tqdm library shortly.

Creating progress bars and time-outs in
Python

How to create a progress bar to monitor code execution (such as time-consuming
loops)
How to monitor the progress of training machine learning (ML) models
How to create a timer to auto-stop long-running code

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

129

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

You’re training a machine learning model (like predicting customer churn), and you’re
uncertain how long it will take given your dataset. Having a progress monitor in this
situation can help you know whether you should expect to wait only seconds, hours, or
somewhere in between.
You may have code running for a long period of time and you want to add a time-out in
case it runs past a certain point. This could be useful in variety of situations, such as
avoiding have code run for too long in a production setting or simply if you’re testing out
training a model and you want to check if it will complete in under a specified time
frame. For this, you can use a handy package called stopit, which we’ll explain in more
detail later in this chapter.

These issues correspond to the diagram in Figure 5.1. These items have something in common -
they all deal with an efficiency-related issue. Being able to better monitor the progress of your
code will be valuable once we are working through examples of improving the runtime of your
code (see the next chapter, for instance).

Figure 5.1 This diagram shows three common problems you may encounter in your data science work,
and the Python packages we can use to solve them. In the next few sections, we’ll explain what these
packages do, and how to use them to monitor code progress and to auto-stop long-running code.

In the next few sections, we’ll cover the issues and proposed solutions in the above diagram.
First, let’s start with the package for creating progress bars in Python.tqdm

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

130

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The package is a popular Python library for creating progress bars on executing code. tqdm tqdm
can be useful when you’re interesting in monitoring how far along you are when running code.
For example, suppose you build a tool to download data from a collection of webpages.
Depending on the number of webpages, this process might take a while. will tell youtqdm
exactly how many iterations you’ve completed (and how many are left). Without further ado,
let’s get started!

You can install , like the other libraries mentioned in this chapter, using pip:tqdm

Listing 5.1 Install tqdm using pip

Install the tqdm library

The main way is used involves iterations, like . After running tqdm for loops from tqdm import
, we just need to wrap the keyword around the that we are looping over. Let’stqdm tqdm iterable

extend an example from Chapter 3 where we downloaded stock price data. This time, though,
we’ll use tqdm to monitor the progress of the downloads.

Listing 5.2 Use tqdm to monitor the progress of download data from a sequence of
webpages

Import needed libraries

Initialize ticker list

Create empty dictionary to store price data

Create an empty list to store any tickers that cause a failure

Loop through each ticker in our list, using tqdm to create a progress bar

5.1 Creating progress bars and timing Python processes

pip install tqdm

from tqdm import tqdm
from yahoo_fin import stock_info as si

tickers = ["amzn", "meta", "goog",
"not_a_real_ticker", "msft", "aapl", "nflx"]

all_data = {}
failures = []

for ticker in tqdm(tickers):
 try:

all_data[ticker] = si.get_data(ticker)

 except Exception:
failures.append(ticker)
print(ticker)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

131

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Try to download the stock price history for each ticker

If a request fails, add the ticker to the failures list, and print failed ticker

If you execute the above code in a terminal, or in some other environment (like a notebook or
IDE), you should see a progress bar being printed out, like below, which shows the total number
of iterations we covered and the amount of time it took to handle going through them (just one
second in this case).

Figure 5.2 Example of a complete progress bar being printed using tqdm

Part way through the code execution, you’ll see output like below, which shows how far long
we’ve come - in this case, the progress bar tells us we’ve covered the first 4 iterations out of 7 in
total.

Figure 5.3 Example of a partially complete progress bar being printed using tqdm

tqdm can also be used in list comprehensions or dictionary comprehensions, as well. Recall that a
list comprehension is a compact way of executing a for loop inside of a list (and likewise, a
dictionary comprehension is a compact way of using a for loop to create a new dict). The result
is a new list (or dict in the case of a dictionary comprehension).

For example, we could run the following code using a to get the evaluationlist comprehension
metrics for each model. Here, we’re calculating common classification metrics, like precision
and recall. The list comprehension creates the list of evaluation metrics by using a for loop over
each model. Much of the code below is similar to what we saw in Chapter Three examples,
except now we are modifying the code to use a list comprehension and tqdm.

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

132

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 5.3 Here, we use tqdm to monitor the progress of getting evaluation metrics for
each model. This makes use of tqdm’s ability to monitor the progress of list
comprehensions. The code for this example is available in the
tqdm_with_list_comprehension_file.py file in the ch5 directory. Make sure to run this code
from the parent directory (as you can see based on the code snippets in this listing).

List of models - random forest, logistic regression, and boosting model

Define get_metrics function to calculate precision / recall / accuracy for an input
model and train / test datasets

Get an object to store customer churn-related data

Train random forest model

from sklearn import metrics
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.linear_model import LogisticRegression
from tqdm import tqdm
from ch4.dataset_class_final import DataSet

def get_metrics(model, train_features, test_features,
train_labels, test_labels):

 train_pred = model.predict(train_features)
 test_pred = model.predict(test_features)

 train_precision = metrics.precision_score(train_labels, train_pred)
 train_recall = metrics.recall_score(train_labels, train_pred)
 train_accuracy = metrics.accuracy_score(train_labels, train_pred)

 test_precision = metrics.precision_score(test_labels, test_pred)
 test_recall = metrics.recall_score(test_labels, test_pred)
 test_accuracy = metrics.accuracy_score(test_labels, test_pred)

 return train_precision, train_recall, train_accuracy,
test_precision, test_recall, test_accuracy

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"

)

forest_model = RandomForestClassifier(random_state = 0).fit(customer_obj.train_features,
customer_obj.train_labels)

logit_model = LogisticRegression().fit(customer_obj.train_features, customer_obj.train_labels)

boosting_model = GradientBoostingClassifier().fit(customer_obj.train_features,

customer_obj.train_labels)

model_list = [forest_model, logit_model, boosting_model]

all_metrics = [get_metrics(model,
customer_obj.train_features,
customer_obj.test_features,
customer_obj.train_labels, customer_obj.test_labels)
for model in tqdm(model_list)]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

133

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Train logistic regression model

Train gradient boosting model

Create list of trained models

Get and store the metrics for each model in a list, timing the progress to get the
metrics for each model.

The result of running the code in Listing 5.3 will generate a progress bar like that in Figure 5.4:

Figure 5.4 Example of a tqdm progress bar from executing a list comprehension.

That covers . In summary, allows us to easily create progress bars to monitor how longtqdm tqdm
it is taking for our code to execute. Next, let’s discuss how to monitor the progress of ML model
training.

While is great for monitoring the progress of iterating over loops, it’s also a common desiretqdm
to monitor the progress of an ML model being trained. Luckily, several types of models available
in Python’s scikit-learn library do allow for this. Let’s walk through an example using a gradient
boosting model (GBM). We’ll use the customer churn dataset we’re already familiar with from
previous examples.

Listing 5.4 The code below trains a GBM model on the customer churn dataset.

Import packages

Get an object to store customer churn-related data

Create a GBM object

Train the GBM model

5.2 Monitoring the progress of training ML models

from sklearn.ensemble import GradientBoostingClassifier
from ch4.dataset_class_final import DataSet

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"

)

gbm_model = GradientBoostingClassifier(learning_rate = 0.1,
n_estimators = 300,
subsample = 0.7,
min_samples_split = 40,
max_depth = 3)

gbm_model.fit(customer_obj.train_features, customer_obj.train_labels)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

134

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The issue with the code we have above is that the model will train without giving us any progress
update while training. Fortunately, there’s a simple fix to this. All we need to do is to add an
extra parameter called to the object.verbose GradientBoostingClassifier

Listing 5.5 This code is almost exactly the same as above, except now we add the verbose
= 1 argument to the GradientBoostingClassifier object. This will print out a progress log as
the model trains.

Create a gradient boosting model object (this time, we add the verbose parameter)

Train GBM model on the dataset

Now, if we run the above block of code, a progress log will be generated, like in Figure 4.5. To
run the full code for yourself, check the script available in the ch5train_gbm_model.py
directory.

gbm_model = GradientBoostingClassifier(learning_rate = 0.1,
n_estimators = 300,
subsample = 0.7,
min_samples_split = 40,
max_depth = 3,
verbose = 1)

gbm_model.fit(customer_obj.train_features, customer_obj.train_labels)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

135

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 5.5 Sample output from training the GBM model using the verbose argument set equal to 1

This log will print out as the model is training. In this case, since we are using GBM, the log
prints out as iterations in the model complete (as each tree finishes training).

The option is available for several other model types, as well. To know if a scikit-learnverbose
model supports the argument for progress monitoring, you can check out that model’sverbose
documentation on scikit-learn’s website. For example, if you wanted to monitor the progress of a
random forest model, you could do it like this:

Listing 5.6 Use the verbose option to monitor the progress of a random forest model in
sklearn

Import the RandomForestClassifer

Create random forest model object

from sklearn.ensemble import RandomForestClassifier

forest_model = RandomForestClassifier(verbose = 1,
random_state = 0,
n_estimators = 500)

forest_model.fit(customer_obj.train_features, customer_obj.train_labels)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

136

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Train random forest model on the data

Running the code in Listing 5.6 will generate the output in Figure 5.6:

Figure 5.6 Sample output from training the random forest model using the verbose argument

The above examples cover monitoring the progress of training a model. However, what about
hyperparameter tuning? Hyperparameter tuning is a common process in machine learning. In the
next section, we’ll cover how to monitor the progress of hyperparameter tuning.

A related area in machine learning where having a progress monitor is useful involves
hyperparameter tuning. Recall that tuning hyperparameters is analogous to tuning a radio to have
optimal signal. Hyperparameter tuning, such as selecting the number of iterations or max depth
of a tree in GBM, is used to optimize the hyperparameters for optimal model performance. This
process can also take a long time, depending on the size of your dataset and scope of the tuning
involved. Python’s scikit-learn library also offers the ability to monitor the progress of
hyperparameter tuning. Extending on our example from above, let’s use the same dataset for
tuning our GBM model.

First, we will start by importing , which will randomly select combinationsRandomizedSearchCV
of parameters from the grid we create and use them to train the model. For large datasets and
search grids, randomized search is much faster than a standard grid search. For our purposes
here, you could potentially use either a randomized search or standard grid search (you can
create a progress bar for either). In our RandomizedSearchCV object, we specify several
components:

The model we want to use for hyperparameter tuning (in this case, the
)GradientBoostingClassifier

The search grid, parameters
n_jobs = the number of cores on our computer we want to use in parallel while running
the search
The metric we used to determine the model (in this case, ROC-AUC)optimal
The number of iterations - or of parameters we want to try out (200 in ourcombinations
example)
The random_state, which is a typical parameter for setting the random seed
The same verbose argument from above (set equal to 1 in this example)

Again, setting in our example will print out the progress of the hyperparameterverbose = 1
tuning.

5.2.1 Monitoring hyperparameter tuning

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

137

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 5.7 Use the verbose argument to monitor the progress of the hyperparameter
tuning process.

Import packages

Get an object to store customer churn-related data

Setup hyperparameter tuning grid

Specify parameters to conduct the randomized search, including setting verbose =
1

Launch the hyperparameter tuning

Running the code in Listing 5.7 with our parameter will generate the output in Figureverbose
5.7:

Figure 5.7 This snapshot shows the output of using the verbose parameter when conducting
hyperparameter tuning. Notice how it culminates with displaying the total amount of time taken to run
the hyperparameter search.

from sklearn.model_selection import RandomizedSearchCV
from sklearn.ensemble import GradientBoostingClassifier
from ch4.dataset_class_final import DataSet

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"

)

parameters = {"max_depth":range(2, 8),
"min_samples_leaf": range(5, 55, 5),
"min_samples_split": range(10, 110, 5),
"max_features": [2, 3],
"n_estimators": [100, 150, 200, 250, 300, 350, 400]}

clf = RandomizedSearchCV(GradientBoostingClassifier(),
parameters,
n_jobs=4,
scoring = "roc_auc",
n_iter = 200,
random_state = 0,
verbose = 1)

clf.fit(train_features, train_labels)

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

138

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

If we remove the argument, nothing will be printed.verbose

Thus far, we’ve covered:

How to create progress bars in loops
How to monitor model training progress
How to monitor the progress of hyperparamter tuning

Next, let’s talk about how to automatically code execution once it has been running beyondstop
a timeout period.

What if you have code which may run for a long time, but you want to stop it in case it goes past
a certain duration? This is where the package comes in handy. The library allowsstopit stopit
you to specify a time-out limit for code execution. This can be useful in many cases, including
when you’re deploying code into production or when you just want to test running your code and
you’re not sure whether it will take a long time (where is defined by your particular uselong
case). For example, in a production setting, you might need to fetch a model prediction in a
low-latency amount of time, so you could set a timeout on how long it takes. Or, if you might
want to set a limit on how long it takes to train a given model in order to better spend your time
on another method or make changes to the current training process.

To start using , you first need to install it using pip.stopit

Listing 5.8 Run pip install stopit to setup the stopit package

Install the stopit library using pip

Once you’ve installed , you’re ready to start using it for your tasks! Let’s go through a fewstopit
examples.

Example 1) Set a time-out on a loop

A common example where running code might take longer than desired is when looping over a
collection of values or performing a series of tasks over a loop. Let’s start with a simple example
of iterating over the integers between 1 and 100 million. To set a timeout limit, we will use the
ThreadingTimeout method available in . The only parameter we need to give this method isstopit
the number of seconds that we want to set as the timeout period. In this first case, we’ll use 5
seconds as the timeout. The code that we want to execute within this timeout limit will go inside

5.3 How to auto-stop long-running code

pip install stopit

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

139

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.

3.

of the block. Once you execute the code below, any code within the block will startwith with
executing, but will stop once the timeout limit of 5 seconds has been reached. If you want to set a
higher limit, you just need to change 5 to another value, like 30 seconds, 60 seconds, etc.

The variable we created in the code snippet below stores the of the codecontext_manager state
execution. We can check whether context_manger.state = context_manager.EXECUTED. If this
condition holds, then our desired code block finished executing before the timeout limit.
Otherwise, the code did not finish before the timeout was reached. In the second case, we could
print a message to the user stating that the code did not finish, or potentially return an error
message saying the same.

Listing 5.9 Use stopit to limit how much time a for loop takes to execute. This code is
available in the ch5/stopit_for_loop.py file.

Import the stopit package

Create a block containing the code we want to have a timeout for.with

Check whether code finished running in under 5 seconds.

Print message or log error if the code execution timed out before finishing.

The essential workflow when using stopit is similar across many applications. As we went
through above in the first example, the general workflow goes like this:

Create a block using the method. This method takes the numberwith ThreadingTimeout
of seconds you want to use as a time limit
Check whether the code within the block completed successfully (this is in sectionwith
three above)
If the code did not finish, alert the user (this can be printing a message or raising an error)

Putting the workflow into code looks like below (similar to our first example). The two main
pieces that will change depending on your scenario are the code block within the block andwith

import stopit

with stopit.ThreadingTimeout(5) as context_manager:

 # sample code we want to run...
 for i in range(10**8):

i = i * 2

if context_manager.state == context_manager.EXECUTED:
 print("COMPLETE...")

elif context_manager.state == context_manager.TIMED_OUT:
 print("DID NOT FINISH...")

 # or raise an error if desired
 raise AssertionError("DID NOT FINISH")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

140

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

the NUM_SECONDS value, representing the number of seconds you want to use for the time
limit.

Listing 5.10 The code sample below shows a skeleton of how to use stopit to set time
limits for your code.

Import the stopit package

Create a block containing the code we want to have a timeout for.with

Check whether code finished running in under 5 seconds.

Print message or log error if the code execution timed out before finishing.

Next, let’s set a timeout for reading data from a database!

Example 2) Set a time-out on reading data from a database

Now, what if we change our above example to read in data from a database? This could be useful
if we want our code to be able to read in data within a given timeframe. Again, this could be
useful in both production and non-production settings, such as enforcing a timeout on reading in
data needed for model predictions in real-time application, or just wanting a limit on how long it
takes to get data in case there are issues with the database. Let’s suppose our timeout limit in this
case will be 5 minutes.

import stopit

with stopit.ThreadingTimeout(NUM_SECONDS) as context_manager:

 [CODE BLOCK HERE]

if context_manager.state == context_manager.EXECUTED:
 print("COMPLETE...")

elif context_manager.state == context_manager.TIMED_OUT:
 print("DID NOT FINISH...")

 # or raise an error if desired
 raise AssertionError("DID NOT FINISH")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

141

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 5.11 Using a timeout limit to read data from a database can be done similarly to
our above example. Essentially, we’re changing the contents of the code going into our with
statement block to reflect pulling data from a database table. Check the code out for
yourself in the ch5/stopit_read_from_database.py file.

Import needed packages

Connect to sample database

Use block containing the timer to run a query, pulling data from a database.with

Check whether the data extraction finished successfully

Raise an error if the code times out before finishing

Next, let’s cover an example of using a time-out when training a machine learning model.

Example 3) Set a time-out on training a machine learning model

In the below example, we use to set a timeout limit for training a random forest model. Thestopit
principle here is the same as the above examples. Effectively, we just need to replace the code
within the same block with the new code to train the random forest model.with

import stopit
import pandas as pd
import pyodbc

conn = pyodbc.connect("DRIVER={SQLite3 ODBC Driver};SERVER=localhost;" \
"DATABASE=customers.db;Trusted_connection=yes")

with stopit.ThreadingTimeout(300) as context_manager:

 customer_key_features = pd.read_sql(conn,
"""SELECT churn,

total_day_charge,
total_intl_minutes,
number_customer_service_calls

FROM customer_data""")

Did code finish running in under 300 seconds (5 minutes)?
if context_manager.state == context_manager.EXECUTED:
 print("FINISHED READING DATA...")

Did code timeout?
elif context_manager.state == context_manager.TIMED_OUT:
 raise Exception("DID NOT FINISH READING DATA WITHIN TIME LIMIT")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

142

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 5.12 Using a timeout limit when training a machine learning model. Run the code
for yourself using the ch5/stopit_train_model.py file.

Import packages

Get an object to store customer churn-related data

Set a timeout on training a random forest model

Print success message if model finished training under the time limit.

Raise an error if the model did not finish training before the timeout

Let’s go through one more example with . This time, we’re going to show a way of settingstopit
a timeout without using a block.with

Example 4) Using decorators

All of the examples above place the code we want to set a timeout limit for the inside of a with
 block. However, it’s also possible to set a timeout limit when defining a function. Thestatment

key to doing this is to using an advanced concept called a . can be adecorator Decorators
confusing and fairly extensive topic, so we’re just going to provide a highlighted view of them
here. Essentially, think of a decorator as a statement written on the line above a function
definition that modifies the inputs to the function. That sounds…​abstract. Alright, then - let’s do
an example using the package. Then, we’ll explain why using a decorator with stopit canstopit
be beneficial.

First, we need to import the method, which we’ll import simply as threading_timeoutable
. Then, we add this method as a to a function that trains the random foresttimeoutable decorator

model on the training dataset (similar to above except now we’re just wrapping the model

import stopit
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

with stopit.ThreadingTimeout(180) as context_manager:

 forest_model = RandomForestClassifier(n_estimators = 500).\
fit(customer_obj.train_features,

customer_obj.train_labels)

Did code finish running in under 180 seconds (3 minutes)?
if context_manager.state == context_manager.EXECUTED:
 print("FINISHED TRAINING MODEL...")

Did code timeout?
elif context_manager.state == context_manager.TIMED_OUT:

 # or raise an error if desired
 raise AssertionError("DID NOT FINISH MODEL TRAINING WITHIN TIME LIMIT")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

143

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

training code inside a function). The decorator is specified by the symbol in the line@
immediately above the function definition. As mentioned above, decorators modify the inputs of
a function. In this case, our function - , takes a single input, the training dataset.train_model
However, adding this decorator allows us to call the same function with two inputs. The first
input will be the number of seconds we want to set as a timeout limit, while the second
parameter is the same input as the original function (the training dataset). Below, we set a
timeout limit of 300 seconds, similar to the earlier example.

Listing 5.13 This listing’s code uses a timeout limit whenever the train_model function is
called. Try the code out for yourself in the ch5/stopit_with_decorator.py file.

Import packages

Define function with decorator that trains a random forest model, while allowing
for a timeout limit

Create object storing customer churn-related data

Set a timeout on training a random forest model

Print success message if model finished training under the time limit

Raise an error if the model did not finish training before the timeout

Placeholder for additional code block

from stopit import threading_timeoutable as timeoutable
from sklearn.ensemble import RandomForestClassifier
from ch4.dataset_class_final import DataSet

@timeoutable()
def train_model(features, labels):

 forest_model = RandomForestClassifier(n_estimators = 500).fit(features,
labels)

 return forest_model

customer_obj = DataSet(feature_list = ["total_day_minutes", "total_day_calls",
"number_customer_service_calls"],
file_name = "data/customer_churn_data.csv",
label_col = "churn",
pos_category = "yes"

)

forest_model = train_model(timeout = 180,
features = train_features,
labels = train_labels)

Did code finish running in under 180 seconds (3 minutes)?
if forest_model:
 print("FINISHED TRAINING MODEL...")

Did code timeout?
else:

 raise AssertionError("DID NOT FINISH MODEL TRAINING WITHIN TIME LIMIT")

[Additional code block...]

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

144

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.
2.
3.

If the model doesn’t finish executing before the timeout limit, then will be set to Python’s model
 value because the function never returns the trained model object. Thus, we can raise anNone

error when this occurs, stating that the model did not complete training before the time limit was
up (like below).

A key reason why using a decorator instead of the block approach is beneficial is this waywith
provides you with more flexibility and portability in your code. Using the decorator approach
allows you to easily add an additional parameter to any function you create in order to time its
execution. These are useful benefits from a software engineering perspective because they make
your code more generalizable. However, a potential downside could be if your codebase doesn’t
already make use of decorators, this approach could become less clear for those less familiar vs.
just using a block.with

Now, let’s summarize the workflow using decorators:stopit

Import the threading_timeoutable method from stopit
Add the method to whatever function you want to modify to have a time limit
Check if the function returns a value. If it doesn’t, then the timeout limit was reached

Again, we can view this summary in terms of code like below (similar to our above example). To
use decorators in your code, you should be able to follow a similar code flow to thestopit
skeleton below. The main differences will be the function definition and the value of
NUM_SECONDS for the timeout limit.

Listing 5.14 Using a timeout limit whenever a specific function is called

Make needed imports

Add a decorator to our sample function. The decorator allows us to then pass a
time limit parameter into the function

Create wrapper function to train a random forest model

AssertionError: DID NOT FINISH MODEL TRAINING WITHIN TIME LIMIT

from stopit import threading_timeoutable as timeoutable

@timeoutable()
def sample_function(parameter1, parameter2, parameter3, ...):

 [CODE BLOCK HERE]

model = sample_function(timeout = NUM_SECONDS,
parameter1,
parameter2,
parameter3,
...)

if not model:
 raise AssertionError("Timeout error")

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

145

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.

3.

4.

Call a function with the timeout limit passed as an extra parameter. Replace
NUM_SECONDS with whatever value you want for the timeout limit (for
instance, 100, 200, etc.)

Raise an error if the model did not finish training under the time limit

That covers the package! Now, let’s recap what we covered this chapter.stopit

In this chapter we covered monitoring the progress of loops, model training, and auto-stopping
code based on a pre-defined timer.

tqdm is a Python package that lets you generate progress bars to monitor code execution.
The library is useful in monitoring the progress of loops, such as for loops or listtqdm
comprehensions.
Use scikit-learn’s verbose argument to monitor the progress of model training, such as
monitoring the progress of a random forest model.
The library can be used to set timeout limits for your code execution.stopit
Decorators allow you to alter a function without directly modifying its code. Use 's stopit

 method to set a timeout limit for any function’s execution.threading_timeoutable

Download the Spotify hit zip file from Kaggle (
). This filewww.kaggle.com/datasets/theoverman/the-spotify-hit-predictor-dataset

contains a collection of datasets across multiple song-release decades (90s, 00s, 10s, etc).
Use tqdm to monitor the progress of reading each in as part of a loop.
Using the Spotify dataset file dataset-of-00s.csv (from the zip file you downloaded in
step 1), can you monitor the progress of tuning the hyperparameters for a random forest
model? The label of the dataset is in the column.target
Can you set a timeout of 5 minutes for the hyperparameter tuning process using a with
block?
Can you repeat #3 using a decorator instead?

5.4 Summary

5.5 Practice on your own

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

146

https://www.kaggle.com/datasets/theoverman/the-spotify-hit-predictor-dataset
http://www.kaggle.com/datasets/theoverman/the-spotify-hit-predictor-dataset
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

6

1.

2.

This chapter covers

Scalability of a codebase is essentially the ability of the code to handle large amounts of data or
requests. For example, scaling a web application means being able to handle a large amount of
user traffic. This might mean going from hundreds of users to millions (or even billions) of users.

In data science, scaling is often important as well. For data science, scaling usually refers to one
of two main components:

Optimizing code to run faster in order to handle a large number of operations in a shorter
period of time
Handling large datasets, including cleaning, feature engineering, and building models
when your dataset may not fit in memory (or consumes a high amount of existing
memory)

This chapter will focus on the first of these points, while the second point will be delved into
during the next chapter. Optimizing code to run faster becomes more and more important as the
data size grows. There are many possibilities where this issue involving data size arises,
including:

Writing code to scrape text from a large collection of raw files (for example, image files)
Feature engineering – creating a new column (or collection of columns) in a large dataset

Making your code faster and more efficient

What is scaling
How to understand why your code is running slowly
How to make code faster with parallelization, including vectorization and
multiprocessing
What is caching and how can it help you improve computational efficiency
Making use of Python’s data structures to optimize your code

147

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

based on other column values. Additionally, data analysis of large datasets, such as
generating a correlation matrix, can take much longer with a sizable dataset than with a
small one
Fetching predictions from a trained ML model. Though computing predictions from an
ML model is generally much faster than training a model, being able to fetch predictions
in very low latency can be crucial to the user’s experience (think what would happen if
YouTube’s recommended video list took 20 seconds to load, for instance)
Downloading data or files from a large number of URLs

For a specific example, let’s consider the dataset, which is available at this URL: artists
. This datasetwww.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks

contains several features related to artists, such as follower counts. Suppose we want to do an
analysis on the data to figure out which artists are in the 99.9%-tile for follower counts. Let’s
break down the computational process for tackling this task.

Calculate the 99.9%-tile of the follower counts
Iterate over each artist, comparing an artist’s follower count to the 99.9%-tile threshold.
If the follower count is above the threshold, output the artist name (for example, print the
artist name or append the name to the list of high-follower artists)

There are several ways to approach this problem programmatically, but they vary widely in
terms of computational speed. In the next section of this chapter, we will walk through three
methods to tackle this example, starting with the computationally slowest approach.

Since this chapter is focused primarily on computational efficiency, we will use this example
(and others throughout this chapter) to show how to find the slow-running points in your code.

Before we do that, however, let’s briefly discuss computational efficiency in a computer science
context. From a computer science viewpoint, computational efficiency is often expressed in big

 notation. For example, the expression O(N) means that an expression requires N operations.O
Considering the artists dataset - if we already know the 99.9%-tile follower count, then, it
requires N iterations to check whether a given artist has a follower count greater than this
threshold where N is equal to the number of artists. In notation, the computationalbig O
efficiency (also called) is O(n). To compute the 99.9%-tile requires sorting thetime complexity
follower counts, which has a time complexity of O(n*log(n)) (it’s beyond the scope of this book
to prove this, but suffice to say the most optimal sorting algorithms are O(n*log(n))). Thinking
of your code in terms of time complexity can be helpful when identifying points in your code
that are inefficient or slow-performing. Later in this chapter, we’ll delve into a Python package
that can help find these slow-performing points in your code automatically.

Note: Throughout this chapter, we will give sample runtimes for examples we walk through.
One additional point to keep in mind throughout this chapter is that whenever a time taken to
complete is given for a piece of code, keep in mind that the exact runtime will vary between
different machines, and you may get slightly different runtimes when you run the code for

148

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks
http://www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

yourself. The examples in this chapter are mostly run on a Mac with 8GB of RAM and 4 CPU
cores.

In the first section of this chapter, we will walk through an example of a piece of code that takes
quite a while to run. This code is optimized. We will go through how to figure out the slownot
points of the code, and to improve its runtime efficiency (in other words, make the code run
faster). For this example, we’ll be using a new dataset called , which is available in theartists.csv
book repo’s data directory. You can also access the dataset from this URL:

.www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks

In a previous chapter, we discussed how it is important to avoid repeating yourself in code. For
example, if you’re writing similar code over and over again, it’s probably beneficial to look into
using a function or potentially a class. This principle also applies . For instance,computationally
if you’re using a loop, you should make sure that you are not repeating the same exact
computations over and over again. Let’s look at an example.

In the code in Listing 6.1, we make use of the artists dataset. After reading in this dataset, we
loop through the rows of the data and print out each artist name that has a follower count above
the 99.9%-tile. Running the code in Listing 6.1 times out after 60 seconds (due to using the stopit
package). After 60 seconds, only around 2000 iterations are completed out of over 1.1 million!
This is incredibly slow, and it would take quite a bit of time to finish if we allowed the code to
continue.

Listing 6.1 The code in this listing is available in the dont_repeat_yourself_bad_version.py
file.

6.1 Slow code walk through

6.1.1 Don’t repeat yourself (DRY)

import pandas as pd
from tqdm import tqdm
import stopit

artists = pd.read_csv("data/artists.csv")

with stopit.ThreadingTimeout(60) as context_manager:

 for index in tqdm(range(artists.shape[0])):

 if artists.followers[index] > artists.followers.quantile(.999):
 print(artists.name[index])

if context_manager.state == context_manager.EXECUTED:
 print("FINISHED...")

elif context_manager.state == context_manager.TIMED_OUT:

 print("DID NOT FINISH WITHIN TIME LIMIT")

149

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://www.kaggle.com/datasets/yamaerenay/spotify-dataset-19212020-600k-tracks
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Import packages

Read in the artists data

Using a timeout limit of 60 seconds, loop through the each row of the artists
dataset. If an artist’s follower count is greater than the 99.9%-tile, then print the
artist’s name.

Print a completion message if the loop finishes

If the loop did not complete, print a message stating this

Next, let’s discuss how to use a profiling tool to analyze your code for computational efficiency.
This will help us to speed up the example in Listing 6.1.

One of the main ways to improve the efficiency of your code is to understand what lines or
sections of your code are causing your code to run slower. Luckily, there are several Python
packages available for this. Let’s walk through a popular one called (see itsline-profiler
documentation here:). You can install this library using pip (seegithub.com/pyutils/line_profiler
Listing 6.2).

Listing 6.2 Install the line-profiler package

Install line-profiler

line-profiler will calculate the compute time for each line of code in a function. Let’s use
line-profiler on the file (available in the ch6dont_repeat_yourself_function_bad_version.py
directory).

6.1.2 Line profiler

pip install line-profiler

150

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://github.com/pyutils/line_profiler
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 6.3 The code here is similar to the code in Listing 6.1, except we wrap the code to
get the artists with high follower counts in a function and add a decorator. This decorator,
named profile, will be accessible if we analyze the code via a command in the terminal
(provided you’ve downloaded line-profiler). The decorator will allow line-profiler to analyze
the speed of your code.

Import packages

Read in the artists file

Add the profile decorator

Create a function to check which artists have high follower counts

Call the function to print out artists with high follower counts

line-profiler can be run from the command line (terminal), as can be seen in Listing 6.4. To do
this, we use the command, followed by the name of the input Python file. The kernprof kernprof
command should be available after installation. Additionally, we need to add to the top@profile
of the function that we want to profile (as we did in Listing 6.3).

import pandas as pd
from tqdm import tqdm
import stopit

artists = pd.read_csv("data/artists.csv")

add a profile decorator so we can use the line-profiler package to analyze
the computational speed
@profile
def get_artists_with_high_followers(artists = artists):

 # wrap the previous code we wrote in a function
 # Set a 60-second timeout
 with stopit.ThreadingTimeout(60) as context_manager:

Loop through each artist
for index in tqdm(range(artists.shape[0])):

Check whether the artist's follower count is greater than the
99%-tile. This calculates the 99.9%-tile in each iteration!
if artists.followers[index] > artists.followers.quantile(.999):

print(artists.name[index])

 if context_manager.state == context_manager.EXECUTED:
print("FINISHED...")

 elif context_manager.state == context_manager.TIMED_OUT:

print("DID NOT FINISH WITHIN TIME LIMIT")

get_artists_with_high_followers(artists = artists)

151

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 6.4 Using the kernprof command, we generate a binary file containing the compute
profile of the input script - dont_repeat_yourself_function_bad_version.py.

Generate a profile binary file

After the binary file is generated, you can print a more easily viewable version using the
command in Listing 6.5:

Listing 6.5 Running this command will print a readble output to the terminal summarizing
time spent by line.

Print a readable version of the binary file created in the previous step

The output of running the command in Listing 6.5 is shown below.

Based on the output, we can see:

Hits = Number of times this line was run
Time = How much time (in microseconds) spent on each line in total (across all
executions of that line)
Per Hit = Amount of time (again, in microseconds) per hit (on average per each time the
line was executed)
% Time = The percentage of time consumed by the line of code across all executions of
the line

kernprof -l ch6/dont_repeat_yourself_function_bad_version.py

python -m line_profiler dont_repeat_yourself_function_bad_version.py.lprof

Line # Hits Time Per Hit % Time Line Contents
==

9
 10

def get_artists_with_high_followers(artists = artists):
 11
 12 1 256.0 256.0 0.0

with stopit.ThreadingTimeout(60) as context_manager:
 13
 14 1949 332082.0 170.4 0.6

for index in tqdm(range(artists.shape[0])):
 15
 16 1948 59637641.0 30614.8 99.4

if artists.followers[index] > artists.followers.quantile(.999):
 17 print(artists.name[index])
 18
 19
 20 1 4.0 4.0 0.0

if context_manager.state == context_manager.EXECUTED:
 21 print("FINISHED...")
 22
 23 1 1.0 1.0 0.0

elif context_manager.state == context_manager.TIMED_OUT:
 24
 25 1 55.0 55.0 0.0 print("DID NOT FINISH WITHIN TIME LIMIT")

152

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Line Contents = The associated line of code

For our example, 99.4% of the time spent executing the function is on the line calculating the
99.9%-tile value (note: the exact percentage will vary between different machines)! This is an
immediate giveaway that this line of code needs to be optimized if possible. Let’s make an
attempt to speed up our code example in Listing 6.6.

In contrast to Listing 6.1, Listing 6.6 achieves the same original goal, but completes in around 11
seconds! The only change we make is to calculate the 99.9%-tile just once and store this value as
a variable called . Then, we just reference this variable within the for loop.high_followers

Listing 6.6 The code in this listing is available in the
dont_repeat_your_self_better_version.py file from the ch6 directory.

Import packages

Read in the artists data

Using a timeout limit of 60 seconds, loop through the each row of the artists
dataset. If an artist’s follower count is greater than the 99.9%-tile (calculating the
percentile value only once this time), then print the artist’s name.

Print a completion message if the loop finishes

…Otherwise, print a message stating the loop did completenot

This code is optimal. In fact we can do quite a bit better. Next, we’ll discuss how tostill not
further improve the speed of this code.

import pandas as pd
from tqdm import tqdm
import stopit

artists = pd.read_csv("data/artists.csv")

with stopit.ThreadingTimeout(60) as context_manager:

 high_followers = artists.followers.quantile(.999)
 for index in tqdm(range(artists.shape[0])):

 if artists.followers[index] > high_followers:
 print(artists.name[index])

if context_manager.state == context_manager.EXECUTED:
 print("FINISHED...")

elif context_manager.state == context_manager.TIMED_OUT:

 print("DID NOT FINISH WITHIN TIME LIMIT")

153

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Let’s continue the earlier example of identifying artists with high follower counts. As mentioned,
we can still do better than the second improved version.

The code in Listing 6.7 completes our task in ~0.21 seconds (this is printed in Line 7), which is
still much faster than Listing 6.6, and significantly faster than the first version we tried in Listing
6.1 (or Listing 6.3). In this case, we still use a loop to print out the name of each
high-follower-count artist, but avoid using a loop to get the collection of such artists. We get this
collection of artists using pandas to directly filter the source dataset. Then, we cycle through each
of the artists, printing out their names. Alternatively, we could also avoid printing out the names,
and just keep the result as a pandas Series or list. This would be even faster than printing out
each name, and would avoid using a loop all together.

Listing 6.7 In this listing, we improve upon the previous versions of this code (Listings 6.1 /
6.3 and 6.6). This version also calculates the 99.9%-tile of the follower counts just once,
similar to Listing 6.6. Then, we use pandas to filter the artists dataset based on this value,
rather than looping through each artist sequentially (resulting in a much faster code
execution for the same task).

Import packages

Read in the artists data

6.1.3 Reducing loops

import pandas as pd
import stopit
import time

artists = pd.read_csv("data/artists.csv")

def get_artists_with_high_followers(artists = artists):

 with stopit.ThreadingTimeout(60) as context_manager:

 top_percentile = artists.followers.quantile(.999)
 names = artists[artists.followers > top_percentile].name

 for name in names:
 print(name)

 if context_manager.state == context_manager.EXECUTED:
 print("FINISHED...")

 elif context_manager.state == context_manager.TIMED_OUT:

 print("DID NOT FINISH WITHIN TIME LIMIT")

start = time.time()
get_artists_with_high_followers(artists = artists)
end = time.time()
print(end - start)

154

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Create function that use pandas to filter the dataset for artists above the 99.9%-tile
in followers. Then, print each artist name.

Print a completion message if the loop finishes

…Otherwise, print a message stating the loop did completenot

Call the created function (get_artists_with_high_followers)

Print the time it takes to execute the function in step 6

Listing 6.7 is much faster than using a for loop in part because pandas data frames using NumPy
arrays under the hood to store columns. We’ll discuss more about NumPy arrays later during this
chapter.

For now, let’s delve into parallelization and how it can help us greatly speed up a variety of
different tasks.

Another way to improve the computational efficiency of your code is to use parallelization.
 essentially means to break a problem into sub-problems that can be executedParallelization

simultaneously. There are many examples where parallelization can be useful:

Downloading a collection of files
Training ML models. A random forest, for example, is readily parallelizable because
each tree in the forest is independent of each other tree. This means multiple trees can be
constructed simultaneously. Additionally, using a grid search to find optimal
hyperparameters is another example where parallelization could greatly speed up the
process.
Scraping text from a set of files
Performing operations across entire columns in a dataset at once. This can be useful, for
instance, when you are creating new features in a dataset based on existing variables.

Let’s contrast using parallelization versus using parallelization. Taking the first example ofnot
downloading a collection of files - imagine we want to download 1500 files. If you don’t use
parallelization, your code would download each file in a sequence, one at a time. An individual
file in the sequence cannot be downloaded until the files prior to it in the sequence have already
been downloaded. A visualization of this idea is in Figure 6.1.

Figure 6.1 This is an example of downloading a collection of files without using parallelization. In this
setting, you would sequentially download each file one at a time.

6.2 Parallelization

155

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

In contrast, using parallelization allows you to split this task into multiple download operations
occurring simultaneously. Figure 6.2 shows an example of what this would look like.

Figure 6.2 This view shows an example of a parallelization workflow for downloading the same example
1500 files. Here, we can split up the downloads into separate workflows that occur at the same time.
The benefit is that the original task of getting all of the files downloaded occurs much faster because
multiple file downloads occur simultanaouesly in parallel.

Parallelization comes in several primary forms:

Vectorization
Vectorization involves operating on a collection of values at once, rather than processing
values one element at a time. We’ll walk through an example further below.

Multiprocessing
A is an intance of an application or program. refers to runningprocess Multiprocessing
multiple instances of the same application or program. In the case of Python, this means
running multiple Python instances to accomplish a given task faster.

Multithreading
A is a sub-unit within a process. means having multiple threadsthread Multithreading
operating at the same time, while sharing resources from the same process.

Asynchronous programming
Asynchronous programming involves initiating events that run separately (in the
background) apart from the primary application.

We will tackle each of these in turn in the next few sections. First, let’s start with vectorization.

Vectorization is type of programming where operations are applied across entire arrays at once,
rather than individually one element at a time. This allows for a type of parallelization, which
can often speed up your code.

6.2.1 Vectorization

156

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

A diagram showing vectorization at work is shown in Figure 6.3. In this diagram, we have two
arrays - one storing the integers 1 - 5, and the second one storing the integers 6 - 10. With
vectorization, we can apply mathematical operators, like addition, and pairwise add the two
arrays in a single step. This avoids the use of a loop, and results in much faster code for large
collections of values.

Figure 6.3 Example of using vectorization to pairwise add two arrays

A simple example of vectorization can be shown using Python’s NumPy package.

For example, in NumPy we can create two arrays and then perform operations like addition,
multiplication, etc. An example of creating NumPy arrays is shown in Listing 6.8.

Listing 6.8 The code here creates two NumPy arrays, which are vectorizable.

Import NumPy

Create two sample NumPy arrays

import numpy as np

sample_nums1 = np.arange(1, 6)
sample_nums2 = np.arange(6, 11)

157

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Next, we can add, multiply, or subtract these arrays (see Listing 6.9). Notice how we don’t need
to loop through each element of the two arrays, but instead we can use a single "+", "*", or "-"
operator to perform the operation we want between the arrays. This operation is then performed
pairwise between the arrays. operations between two arrays mean that the resultantPairwise
array will have the same dimensions as the two arrays and the same operation is applied between
the first elements of each array, between the second elements of each array, between the third
elements of each array, and so on. See Listing 6.9 and the resulting output for performing
pairwise addition.

Listing 6.9 This code snippets here show examples of how to perform math operations
between two NumPy arrays using vectorization.

Add the arrays

Multiply the arrays

Subtract the arrays

For example, when adding the two arrays, the result would look like this:

Before we delve into a more advanced usage of vectorization, let’s start with another example of
sub-optimal code and then show we can optimize it using vectorization.

In the sub-optimal example, we’ll be using the apply method from pandas.

Avoiding pandas apply

The apply method in pandas is commonly used. However, it can be quite slow for medium to
larger datasets. The apply method works by executing a function to every row in a data frame. It
executes each iteration sequentially, and each function call requires several steps under the hood,
such as storing local variables within each function call, executing the function, and performing
cleanup (for instance, removing memory allocation for variables defined within the function).
This causes apply to perform slowly when executed across a high number of observations.
Additionally, the apply method has extra overhead under the hood that makes processing slower
- often slower than using a list comprehension, for instance.

Running the code in listing 6.10 takes ~27 seconds (this time may be different from your
computer) to create the field. That’s quite a bit of time just to create ahigh_followers_has_genre

sample_nums1 + sample_nums2

sample_nums1 * sample_nums2

sample_nums1 - sample_nums2

array([7, 9, 11, 13, 15])

158

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

single field.

Listing 6.10 This code uses the pandas apply function to create a new column called
high_followers_has_genre.

Import packages

Read in the artists dataset

Create a new field called high_followers_has_genre (using apply)

Print the time taken to compute the high_followers_has_genre field

Using a list comprehension instead

In contrast, we can create the field in ~0.781 seconds using a list comprehension (see Listing
6.11). In this case, we loop over the followers and genres fields simultaneously (using Python’s

 function) and check the needed criteria.zip

Listing 6.11 The code in this listing also creates the high_followers_has_genre field, but
does so using a list comprehension. This results in a much faster computation than the
previous version using the apply method.

Import packages

Read in the artists dataset

Create a new field called high_followers_has_genre (using a list comprehension)

Next, let’s further improve the speed of calculating usinghigh_followers_has_genre
vectorization!

Numpy’s vectorize method

import pandas as pd
import time

artists = pd.read_csv("data/artists.csv")

start = time.time()
artists["high_followers_has_genre"] = artists.\
 apply(lambda df: 1 if df.followers > 10
 and len(df.genres) > 0 else 0 ,
 axis = 1)
end = time.time()
print(end - start)

import pandas as pd
import time

artists = pd.read_csv("data/artists.csv")

artists["high_followers_has_genre"] = [1 if followers > 10 and len(genres) > 0
 else 0
 for followers, genres in
 zip(artists.followers, artists.genres)]

159

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Another way to improve the speed is to use numpy’s method. This method converts avectorize
function to a vectorizable function so that it can be applied across an entire array (or data frame
column) at once.

Listing 6.12 Instead of using apply, we can use NumPy’s vectorize method to vectorize a
function that creates the new column for artists having a follower count greater than 10
and also having genres associated with them in the dataset.

Import packages

Read in the artists dataset

Create a new field called high_followers_has_genre (using a list comprehension)

Vectorize the create_follower_genre_feature function

Apply the now vectorized function to create a new column called
high_followers_has_genre

Table 6.1 summarizes the runtimes for each method by varying the number of rows we read in
from the artists dataset. As you can see in the table, the difference between the methods becomes
more and more noticable as the number of rows grows.

import pandas as pd
import time
import numpy as np

artists = pd.read_csv("data/artists.csv")

def create_follower_genre_feature(followers, genres):
 return 1 if followers > 10 and len(genres) > 0 else 0

vec_create_follower_genre_feature = np.vectorize(create_follower_genre_feature)

artists["high_followers_has_genre"] = vec_create_follower_genre_feature(artists.followers,
 artists.genres)

160

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

That’s all for vectorization. Let’s continue our parallelization discussion by delving into
multiprocessing next.

As mentioned at the start of the Parallelization section, multiprocessing involves launching
multiple instances of Python to tackle a task simultaneously.

One of the most common Python packages for multiprocessing is the library.multiprocessing
Before you get started setting up a parallelized job, it’s a good idea to check how many CPUs are
available on your computer (or server). You can do this using multiprocessing’s cpu_count
method, like in Listing 6.13. The number of processes you run in parallel is limited by the
number of CPUs you have available.

Listing 6.13 To check the number of CPUs the computer/server you’re using has, just
import the cpu_count function from multiprocessing. Calling this function will tell you the
number of CPUs you have.

import the cpu_count method

Use cpu_count to get the number of CPUs

Table 6.1 This table summarizes the runtimes of each of the methods discussed in thism
section to create the high_followers_has_genre column. We also test the runtime by
varying number of rows for reference.
Method Number of rows Time (seconds)

Apply method 1000 0.03

Apply method 10,000 0.23

Apply method 100,000 1.74

Apply method 1,000,000 17.88

Apply method Full dataset (1.16M rows) 22.17

List comprehension 1000 0.002

List comprehension 10,000 0.008

List comprehension 100,000 0.069

List comprehension 1,000,000 0.582

List comprehension Full dataset (1.16M rows) 0.740

Vectorization 1000 0.002

Vectorization 10000 0.004

Vectorization 100,000 0.029

Vectorization 1,000,000 0.249

Vectorization Full dataset (1.16M rows) 0.301

6.2.2 Multiprocessing

from multiprocessing import cpu_count

cpu_count()

161

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

For the next example, we’ll be scraping text from a collection of images (this process is known
as OCR, or Optical Character Recognition). We’ll be using a dataset available here:

.expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/

Before we use multiprocessing to parallelize this task, let’s tackle this usingwithout
parallelization. To scrape the text, we will use the package. This is a popular Pythonpytesseract
library for scraping text from images. To install this package, you’ll need to follow the steps at
this link: . This includes installing the library using pip, as you canpypi.org/project/pytesseract/
see in Listing 6.14 (you’ll also need to separately install Tesseract, as referenced in the previous
link).

Listing 6.14 Use pip to install pytesseract

Install the pytesseract library

Now that we have pytesseract installed, we can write the code in Listing 6.15 to scrape the text
from the collection of images in our example. This takes ~185 seconds to run.

Listing 6.15 This code uses pytesseract to scrape text from a collection of images.

Import packages

Get list image of files

Create a function to scrape text from a single file

Scrape text from each file, storing the text in the file.

Now, let’s use the multiprocessing library to parallelize the OCR task. In Listing 6.16, we start

pip install pytesseract

import cv2
import pytesseract
import pathlib
import time

path = pathlib.Path("data/large-receipt-image-dataset-SRD")
files = list(path.rglob("*"))
files = [str(file) for file in files if ".jpg" in file.name]

def scrape_text(file):

 image = cv2.imread(file)

 return pytesseract.image_to_string(image)

start = time.time()
all_text = [scrape_text(file) for file in files]
end = time.time()
print(end - start)

162

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://expressexpense.com/blog/free-receipt-images-ocr-machine-learning-dataset/
https://pypi.org/project/pytesseract/
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

by replicating the code in Listing 6.12. Instead, of using a single process to handle the OCR task,
we use the Pool class available in multiprocessing to setup a pool of Python processes. The input
number three into the Pool class means we will create a pool of three Python processes. Next, we
use to apply the scrape_text function to each element in the files list. Lastly, we shutpool.map
down the Python processes by running . If you’re running on certain operatingpool.close()
systems, like Windows, you’ll need to add the line. To make your codeif == " ":name main
more easily portable between different operating systems, you should add this line and your
program should work correctly regardless of the operating system someone is using to execute
the code. In a previous chapter, we mentioned that this line is used so that any code within this
block will not be run if the module is imported by another module. However, setting up a Pool
object will import the module within which that object is defined. The result of this is to
recursively keep creating new processes - that is, unless we use the _if == " " block toname main
make sure that only the set number of processes (in this case, three) are created. Even if you’re
not on Windows, it’s still a good idea to use this structure as it allows for better generalizability
across different operating systems (including Linux, for instance).

Running the code in Listing 6.16 takes ~91 seconds, which is less than half the time it takes to
achieve the same result in Listing 6.15 (we saved ~94 seconds). Consider we are only looping
over 200 image files. If we were looping over thousands or millions, the time difference between
using multiprocesing vs. not would become very large.

Listing 6.16 Similar to Listing 6.15, this code also uses pytesseract to scrape text from a
collection of images. In this example, however, we use Python’s multiprocessing package
to parallelize the text scraping, resulting in the code running in roughly half the time!

Import packages needed

import cv2
import pytesseract
import pathlib
from multiprocessing import Pool
import time

path = pathlib.Path("data/large-receipt-image-dataset-SRD")
files = list(path.rglob("*"))
files = [str(file) for file in files if ".jpg" in file.name]

def scrape_text(file):

 image = cv2.imread(file)

 return pytesseract.image_to_string(image)

if __name__ == "__main__":
 start = time.time()
 cores_pool = Pool(3)
 cores_pool.map(scrape_text, files)
 cores_pool.close()
 end = time.time()
 print(end - start)

163

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Get list of files we want to scrape text from

Create a function called scrape_text that scrapes the text from a single input file

Make sure we don’t setup recursively parallel processes

Open three parallel processes

Scrape text from each file using the three parallel processes

Close the parallel processes

Print the number of seconds it takes to scrape the text from each file

The diagram in Figure 6.4 summarizes how multiprocessing works with the Pool.map method.

Figure 6.4 This diagram visualizes how Python’s multiprocessing package creates separate Python
processes to tackle the OCR task, followed by combining the results from each individual process. The
result of doing this for the OCR task is much faster than using just a single process.

Now that we’ve covered a simpler case of scraping data in parallel, let’s discuss how we can
train ML models with parallelization!

164

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Parallelization can also be used when training an ML model. For example, using the artists
dataset, we can build a model to predict an artist’s popularity score based on the number of
followers and genres associated with the artist.

First, let’s train a random forest model using just a single process. After that, we’ll show the
speed difference using parallelization.

Listing 6.17 This code trains a simple random forest model on the artists dataset. Here
we’re predicting the artist popularity using the follower count and associated genres the
artist has.

Import packages

Read in the artists dataset

Remove missing values from the dataset

Get the number of genres for each artist

Define the feature list

Create the random forest object using a single process (signified by n_jobs = 1)

Train the random forest model

Running this code takes ~172.4 seconds. Next, let’s use parallelization to speed up the model
training. To do that, we just need to increase the value of n_jobs. For example, let’s change it to
3 (alternatively, you could also change the value to -1, which will be evaluated as one less than
the number of cores on your machine). Again, just like in multiprocessing, you generally don’t
want to use a higher value than the number of CPUs available on your machine.

6.2.3 Training ML models with parallelization

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import time

artists = pd.read_csv("data/artists.csv")

artists = artists.dropna().reset_index(drop = True)

artists['num_genres'] = artists.genres.map(len)

features = ["followers", "num_genres"]

start = time.time()
forest_model = RandomForestRegressor(n_estimators = 300,
 min_samples_split = 40,
 max_depth = 3,
 verbose = 1,
 n_jobs = 1
)

forest_model.fit(artists[features], artists.popularity)
end = time.time()
print(end - start)

165

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

The parallelized model training code is available in the train_ml_model_parallel.py file in the
book’s ch6 directory.

Listing 6.18 This code modifies the previous listing just by increase the number of cores
used to 3.

Import packages

Read in the artists dataset

Remove missing values from the dataset

Get the number of genres for each artist

Define the feature list

Create the random forest object using three processes (signified by n_jobs = 3)

Train the random forest model

The updated code takes ~106.8 seconds, which is quite an improvement versus the previous
version! Another aspect of training ML models is performing hyperparameter tuning. Let’s cover
how to parallelize hyperparamter tuning next.

Hyperparameter tuning in parallel

Parallelization can also be used when doing hyperparameter tuning. In fact, we’ve already seen
this in Chapter 4 (Section 2.2).

Using the class we defined in that section, we can use parallelization to find theMlModel
optimal hyperparameters when training a random forest model on the artists dataset. We’ll stick

import pandas as pd
from sklearn.ensemble import RandomForestRegressor
import time

artists = pd.read_csv("data/artists.csv")

artists = artists.dropna().reset_index(drop = True)

artists['num_genres'] = artists.genres.map(len)

features = ["followers", "num_genres"]

start = time.time()
forest_model = RandomForestRegressor(n_estimators = 300,
 min_samples_split = 40,
 max_depth = 3,
 verbose = 1,
 n_jobs = 3
)

forest_model.fit(artists[features], artists.popularity)
end = time.time()
print(end - start)

166

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

with a few of the most common hyperparameters for random forests, like the number of
estimators, max depth of each tree, and minimum samples needed per tree split. The code to
implement this parallelized hyperparameter search is in Listing 6.19. You can also find the code
in the file in the ch6 directory.parallelize_hyperparameter_tuning.py

Listing 6.19 This code setups up a hyperparameter search grid, and then uses the MlModel
class we defined back in Chapter 4 (Section 2.2) to search for the optimal
hyperparameters based on the input grid and the artists dataset.

Import packages

Setup a hyperparameter search grid

Create an MlModel object to handle performing the hyperparameter tuning. Note,
we specify n_jobs = 3 to denote the number of cores we want to use in parallel

Read in the artists dataset

Filter out missing rows

Get the number of genres for each artist

Define the input features to the model

Run the hyperparameter search

Print the runtime of the search

Table 6.2 shows estimated runtimes using varying number of cores (just changing the n_jobs

from ch4.ml_model import MlModel
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
import pandas as pd
import time

parameters = {"n_estimators": (50, 100, 150, 200),
 "max_depth": (1, 2),
 "min_samples_split": (100, 250, 500, 750, 1000)
 }

forest = MlModel(ml_model = RandomForestRegressor(),
 parameters = parameters,
 n_jobs = 1,
 scoring = "neg_mean_squared_error",
 n_iter = 5,
 random_state = 0)

artists = pd.read_csv("data/artists.csv")

artists = artists.dropna().reset_index(drop = True)

artists['num_genres'] = artists.genres.map(len)
features = ["followers", "num_genres"]

start = time.time()
forest.tune(artists[features], artists.popularity)
end = time.time()
print("Completed in ", end - start, " seconds")

167

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

parameter to be 1, 2, or 3) in Listing 6.19’s code. To re-iterate, the exact runtimes will vary
depending on your machine specifications and other applications that may be running on your
computer. We can get an estimate from this table, though, that using 3 cores versus just 1 can
save at least half the runtime.

Next, let’s walk through how to use caching to speed up operations when the same computation
is needed multiple (or many) times..

There is sometimes a tradeoff between computational efficiency and memory. Imagine you have
a function that will repeatedly be called. As a specific example, suppose you’ve deployed a
machine learning model, like the random forest we just trained on the artists dataset. In computer
science, there is a concept known as memoization (note:). not memorization Memoization
essentially means to store previous function call results in order to return the results for the same
inputs faster. For our example, let’s suppose you want to build a web application that allows
users to check predictions for particular artists. The application might be used to check how
predictions might change with various inputs.

An example of a cache can be seen in the diagram in Figure 6.5.

6.3 Caching

Table 6.2 This table summarizes the runtimes for performing the hyperparameter searchm
using varying number of cores.
Number of cores Runtime (seconds)

1 678.4

2 561.3

3 291.4

168

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 6.5 Example of a complete progress bar being printed using tqdm

Let’s implement a cache for the random forest artists model. To do that, we can make use of
Python’s package. This package is part of Python’s standard library, so it should befunctools
available by default when you install Python.

To create the cache, we’ll start by importing the method from functools. Next, thelru_cache
only piece we need to add is a decorator with this method name on top of the function that for
which we want to enable caching. In this case, we create a function that handles taking a tuple of
inputs, and return the model prediction. In the Practice on your Own section, you’ll get a chance
to generalize this function to work for almost any supervised ML model.

After implementing the cache, we create a test tuple for inputs to the model, and then fetch the
predictions twice. The first time will be the first time we make the predictions call for this input
value, while in the second time the function will be able to find the result in the cache.

The in lru_cache stands for . This is a special and very common type oflru Least Recently Used
cache that will store up to N items in the cache. If more than N items are added to the cache, the
least recently used result will be cast out of the cache to make room for the next new function
call result. By default, lru_cache doesn’t have a max limit size. This means, in theory, you could
continue adding many, many result to the cache. However, this may not be optimal as your cache

169

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

can consume more and more memory as it gets larger. We’ll address this issue in just a moment -
for now, let’s run the code to see what the performance difference is between making a function
call on the same inputs for the first time vs. being able to fetch the results from the cache.

Listing 6.20 This code is available as part of cache_ml_model_call.py in the ch6 directory.
To create the cache, we just need to add the lru_cache method as a decorator to the
function that we want to cache. Next, we write the function we’re caching (in this case, a
function that fetches model predictions). Lastly, we time the difference between running
the model to get the prediction vs. fetching it from the cache (after it’s available).

Import the lru_cache method from functools

Add the lru_cache method to get_model_predictions

Define the get_model_predictions function to fetch predictions from the random
forest model

Define a sample inputs tuple

Get the model prediction for the sample inputs tuple

Repeat, except now the result should be available in the cache

Running the code prints the following results:

Fetching the result from the cache is more than 600x times faster than calculating the result from
the random forest directly! Again, the exact timing result will vary depending on your machine
specifications, but this is a significant difference.

Now, what if we wanted to limit the size of the cache? This might be useful to mitigate memory

from functools import lru_cache

@lru_cache
def get_model_predictions(model, inputs):

 formatted_inputs = pd.DataFrame.from_dict({"followers": inputs[0],
 "num_genres": inputs[1]}, orient = "index").transpose()

 return model.predict(formatted_inputs)

inputs = (2, 4)

start = time.time()
get_model_predictions(forest_model, inputs)
end = time.time()
print("Model predictions runtime (w/o) cache: ", end - start)

start = time.time()
get_model_predictions(forest_model, inputs)
end = time.time()
print("Model predictions runtime (w/) cache: ", end - start)

Model predictions runtime (w/o) cache: 0.07513427734375
Model predictions runtime (w/) cache: 0.00012421607971191406

170

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

consumption if we expect the cache to grow to a large size based on many inputs.

Limiting the max size is as simple as passing an extra parameter to the lru_cache decorator. Just
change the line:

to include the max size you want.

For example, if we want to set the limit to be 10, just specify maxsize = 10 as a parameter in
lru_cache. Setting the cache size varies on several factors. Generally, you’ll want to balance it
with the memory consumption (using a cache size of 1 will take far less memory than amillion
cache size of 1) and the average speed it takes to get a result from the function that cachesbillion
previous results.

Now that we’ve finished discussing caching, let’s discuss how several of Python’s data structures
relate to computational efficiency.

Before we close out this chapter, let’s briefly walk through how using the right data structures
can help speed up certain tasks, such as searching for a value. We’ll be focusing on the following
data structures:

Sets
Priority Queues
NumPy arrays

Let’s start by discussing how sets can improve your computational efficiency.

Both sets and dictionaries allow for efficient lookups. In computational efficiency theory, we
would say that they each allow for (or O(1)) lookups. If you have a set with 100 millionconstant
elements, and you want to check whether an element exists in the set, you can get your answer in
a fraction of a second. In contrast, if you have a with 100 million elements, Python will checklist
through every element in the list to compare whether it matches the element you are searching
for. This means there are up to 100 million different comparison operations occurring under the
hood. To see what the time difference looks like between checking whether a value exists in a
list vs. set, let’s do a quick test in Python.

In Listing 6.22, we create a sample list with 100 million elements. Then, we do a single check to
determine whether a value exists in the list. Lastly, we print out the time it takes to do this.

6.4 Data structures at scale

@lru_cache

@lru_cache(maxsize = 10)

6.4.1 Sets

171

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 6.21 This code creates a sample list with 100 million values. Then, it checks
whether a sample value exists within the list, printing out the time it takes to perform the
check.

Import the time package

Create a list with 100 million values

Check if the number 1000 is in the created list

Print the time it takes to perform the check

Running the code in Listing 6.22 takes ~0.003479 seconds, as can be seen in the printout:

In contrast, we can check whether the same value exists in a set of the same 100 million
numbers. The code for this is in Listing 6.23.

Listing 6.22 This code creates a set of the same 100 million integers from Listing 6.22.
Then, it checks whether a value exists in this set (also printing out the time it takes to
perfrom this lookup).

Import the time package

Create a set with 100 million values

Check if the number 1000 is in the created set

Print the time it takes to perform the check

Running this listing’s code prints out the following:

Taking ~0.0004377 seconds, this result is almost 8 times faster than the previous version using a

import time

nums_list = list(range(100000000))

start = time.time()
print(1000 in nums_list)
end = time.time()
print(end - start)

0.00347900390625

import time

nums_set = set(range(100000000))

start = time.time()
print(1000 in nums_set)
end = time.time()
print(end - start)

0.00043773651123046875

172

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

list. If you have to repeatedly check whether a value exists in a static collection of items, then
using a set is generally a much better option than a list.

Next, let’s discuss priority queues.

A queue is a data structure, perhaps less known in data science, but common in software
engineering. A queue offers the FIFO (first-in, first out principle). In other words, if you remove
an element from the queue (called the queue), the earliest entrant to the queue will getpopping
removed.

One of the key reasons queues as a data structure are used is for their computational efficiency. If
you append a new value to a queue or remove (pop) a value from the queue, it takes just a single
operation (O(1) time). As a comparison, a list with 100 million values would take approximately
100 million operations to insert a value at the beginning of the list because each element in the
list would need to be shifted over by one. More generally N operations would be required for a
list with N elements.

A is a special type of queue that arranges elements based on their priority. If youpriority queue
remove, or , an element from the queue, the value that is removed has the highest priority ofpop
the values in the queue. There are many real-world examples of priority queues. Below, we
highlight a few examples that correspond to data science applications.

Prioritizing comments on a live video. A live stream may have many comments coming
in during the broadcast, and prioritizing them based on relevance, likelihood of being
spam, etc. could be useful. NLP (Natural Language Processing)-based models might be
useful to make these assessments. The models could output a priority score associated
with each comment. Then, a process that makes the comments visible could use the
priority queue in showing the highest priority comments.
Handling customer complaints. Consider the customer churn scenario. If we had
additional data around customer complaints (such as audio or text), we could develop a
model that scores complaints as they come in (real-time), and stores the priorities along
with the complaints in a priority queue.
Showing popular songs on a music streaming platform could potentially use a priority
queue as well. For example, you could prioritize songs based on predicted attributes
related to the songs, such as their categories, and current popularity/relevance. There
could potentially be priority scores associated with the songs based on analysis or models
related to the music, artists, location, or other factors.

Priority queues can be created in Python using the Queue package. A quick example is in Listing
6.23. In this example, we start by importing the queue package (which should come by default
with most Python installations). Next, we create the priority queue. Then, we use the methodput
to add elements to the queue.

6.4.2 Priority Queues

173

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 6.23 This code is available in the queue_example.py file in the ch6 book directory.
The code handles creating a queue, plus adding a few elements to the queue.

Import the queue package

Create a priority queue

Add elements into the priority queue with their respective priorities

We can retrieve values from the queue one at a time using the method. Running this methodget
will return the item with the highest priority. Since we are storing tuples in the queues, the first
element of the queue will correspond to how each item is ranked. In this case, the first element of
each item in the queue is the score we assign to each complaint. The highest priority complaint is
the item with the lowest score. Since, we assigned the worst complaint the lowest score (in this
case, 10), that complaint will get retrieved first.

Listing 6.24 This code runs the get method to retrieve the highest-priority item from the
queue.

Use the get method to retrieve the highest priority element from the queue.

The result of running this code is below:

So far we’ve covered sets and priority queues. Another popular data structure, and one that
we’ve already touched upon, is the NumPy array. In the next section, let’s recap why NumPy
arrays are useful and how they help with computational speed.

We already talked about NumPy arrays briefly earlier in this chapter. Just to re-emphasize,
NumPy arrays inherently use vectorization, so mathematical operations can be much faster than
using lists.

As an additional example, let’s time how long it takes to do pairwise addition across elements of
two standard lists vs. NumPy arrays (see Listing 6.25).

import queue

complaints = queue.PriorityQueue()

complaints.put((30, "Price is too high"))
complaints.put((10,
 "Service is terrible! I'm definitely not renewing my account!"))
complaints.put((20, "Not sure if I want to renew my account"))

complaints.get()

(10, "Service is terrible! I'm definitely not renewing my account!")

6.4.3 NumPy arrays

174

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 6.25 This code times doing pairwise addition across values in two sample lists vs.
the same values in two NumPy arrays.

Import packages

Create two sample lists, each with 1 million integers

Pairwise add the elements of the two sample lists

Create two sample arrays, each with 1 million integers

Add the two arrays together (using vectorization)

Printing out the time results after running Listing 6.25 shows that the NumPy approach is about
5x faster (on average) than using lists! Feel free to run the code to see for yourself. Simalarly, for
other operations, such as multiplication, division, etc. NumPy arrays will be much faster than
standard lists.

To learn more about NumPy, check out Manning’s ,Data Processing Tools with NumPy
available here: .www.manning.com/liveproject/data-processing-tools-with-numpy

Now, let’s briefly point out a few items we haven’t yet discussed concerning computational
efficiency.

import numpy as np
import time

sample_list1 = list(range(1000000))
sample_list2 = list(range(1000000))

start = time.time()
combined_sum = [num1 + num2 for num1, num2 in zip(sample_list1, sample_list2)]
end = time.time()
print("Pairwise list addition takes ", end - start, " seconds")

sample_array1 = np.arange(1000000)
sample_array2 = np.arange(1000000)

start = time.time()
combined_sum = sample_array1 + sample_array2
end = time.time()
print("Pairwise NumPy array addition takes ", end - start, " seconds")

Pairwise list addition takes 0.09517073631286621 seconds
Pairwise NumPy array addition takes 0.019664764404296875 seconds

175

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://www.manning.com/liveproject/data-processing-tools-with-numpy
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

There’s a few points concerning computational efficiency that we haven’t addressed yet, but
these will be covered in the next two chapters. In the next chapter we’ll be delving into memory
management. A key point involving computational efficiency that we haven’t fully gone into yet
is improving computational efficiency in situations that also directly involve memory
mangagement. An example of this could be reading or processing a large dataset - perhaps one
that doesn’t fit in memory or consumes most of the memory available. Handling datasets too
large for memory will be covered in Chapter 7. Beyond these concerns, most of what we covered
in this chapter involved using pandas, NumPy, or other standard Python packages. There are also
alternatives to these that we will walk through in Chapter 8. The alternative packages, such as
Dask or Modin, can also be used to improve the computational speed of tasks in Python.

That’s all for this chapter. Next, let’s summarize what’ve learned.

In this chapter we covered the DRY principle, profiling for computational inefficiencies,
vectorization, multiprocessing, parallelization in training ML models and hyperparameter tuning,
caching, and utilizing better data structures for computational efficiency.

The DRY principle means - don’t repeat yourself. If your code is taking a long time to
run, make sure you are not repeatedly doing the same computations. You can use the
line-profiler package to quickly spot which points in your code are taking the longest to
execute. Additionally, you can think of your code in terms of its time complexity in order
to more easily think about how to improve its efficiency for your own specific usecases.
Vectorization is a method for applying operations across entire arrays at once. You can
use NumPy’s vectorization method to speed up tasks, such as performing operations
across multiple columns in a data frame (as a faster alternative to using the pandas apply
method).
Multiprocessing means to run multiple instances of an application (for instance, Python)
to hopefully accomplish a task faster. Python’s multiprocessing package utilizes this
paradigm to run multiple Python processes in parallel, which can often result in faster
runtimes for various tasks (such as data collection, for instance).
Caching can be a useful way to trade memory for computational efficiency. You can use
caching to store a function call’s results (such as an ML model’s predictions).
If you need to repeatedly lookup whether a value exists in a collection, then it is much
more computiontally faster to use sets rather than lists. Sets have an O(1) lookup runtime
versus lists, which have an O(n) runtime.
Priority queues can be used to store values by their priority, where priority can be defined
by the user - most important customer complaints, most useful comments on a livestream,
etc. Fetching the item with the highest priority can also be done in O(1) time. This means
priority queues are very efficient in terms of figuring out what value has the highest
prioity.
Using the right data structures can be helpful for computational efficiency. For example,
searching for a value in a set is much faster than a list for a large collection of values.

6.5 What’s next for computational efficiency?

6.6 Summary

176

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.

3.

4.

Try implementing a cache from scratch yourself. The cache could be an LRU cache or
another type of cache. Test your cache to get predictions with the model we trained
earlier.
Can you do more complex NumPy vectorization tasks with arrays? Try timing them, and
then implementing versions of your code using lists. What’s the compute time
difference?
Time how long it takes to find all the artist names in the artists dataset that start with the
letters a, e, i, o, or u. Try doing this with a list and with a set for comparison.
Test doing hyperparameter tuning with different values for n_jobs. You can use the class
we created in chapter 4 to handle hyperparamter tuning. Try out the class using the artists
dataset that was introduced in this chapter. What’s the compute time for each value you
try?

6.7 Practice on your own

177

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

7
This chapter covers

For this chapter, our primary dataset will be the ad clicks dataset available at this link:
. The training dataset available here haswww.kaggle.com/competitions/avazu-ctr-prediction/data

over 40 million rows. Many of the techniques we will discuss in this chapter are also applicable
for even larger datasets, such as ones in the billions of rows.

In Chapter 6 (Section 1.1.2), we covered using to profile your code forline-profiler
computational speed / efficiency issues. This helped us to easily identify what points in our code
are taking the longest to run. We’re going to get started in this chapter by discussing memory
profiling, which is a similar mechanism for identifying what points in your code cause the
highest amount of memory consumption.

A is a tool that allows you to identify how much memory is being consumed inmemory profiler
various actions in your code. Similar to what we covered in the last chapter around
computational profiling, we can perform an analagous check for memory.

Python has several packages that offer memory profiling. These libraries cover various tasks,
such as line-by-line profiling similar to line-profiler or calculating how much memory different

Memory management with Python

How to profile your code for memory usage and issues
Handling and consuming large datasets
Optimizing data types for memory
Training an ML model when your data doesn’t fit in memory
Making use of Python’s data structures for memory efficiency

7.1 Memory profiler

178

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://www.kaggle.com/competitions/avazu-ctr-prediction/data
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

data types are consuming. First, let’s discuss the package. We’ll cover this library firstguppy
because it provides a simple, but useful way to figure out your memory consumption by data
type. This doesn’t require running your code, as a line-by-line profiler does, so it can be a quick
way to identify if you’re taking up more memory than you may have realized. For example,
using this package lets you easily see how much memory all of the data frames in your current
Python session are consuming.

We can install the Python 3 specific version (there is still a Python 2 version available, but it is
highly recommended to use the Python 3 version) of guppy using pip (see Listing 7.1).

Listing 7.1 Use pip to install the guppy package. Make sure to specify guppy3 to get the
Python 3 version.

Install guppy

To see how much memory each data type your Python session is using, we can use the code in
Listing 7.2. In the code, we start by importing the hpy method from guppy. The methodhpy
gives you access to the heap, where is an area where memory is stored and can be referenced by
Python. This allows us to generate the memory usage by each data type currently in use during
our Python session.

Listing 7.2 Use guppy to check the memory consumption by kind of object (where "kind" is
a data type or class).

Import the hpy method from the guppy package

Create a a heapy (hpy) object

Using the heapy object to get the memory consumption of each data type currently
in memory

An example printout of running the code in Listing 7.2 is below:

7.1.1 High-level memory summaries with guppy

pip install guppy3

from guppy import hpy

data_type_summary = hpy()

print(data_type_summary.heap())

179

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.
2.

3.

The results in this view are sorted by memory consumption, with all data frames currently in
memory (in this example) taking up 4786211179 bytes (or over 4GB). We can see that this
accounts for 73% of memory consumption. Running this code yourself will result in a different
output depending on whatever objects you currently have in memory. The printout is limited to
the top ten classes or data types by memory consumption, but you can easily see more by
following the instructions at the bottom of the printout (type and enter). Using guppy to_.more
generate the memory consumption view can be useful to get a high-level understanding where
the memory usage is coming from.

To get a line-by-line analysis of your memory consumption, we can use the memory-profiler
package. Let’s discuss this library next!

The memory-profiler package works similarly to the line-profiler library that was discussed in
Chapter 6 (Section 1.1.2). To get started, let’s install memory-profiler using pip:

Listing 7.3 Install memory-profiler using pip.

Use pip to install memory-profiler

We can use memory-profiler very similarly to line-profiler. First, we just need to add the
 decorator above any function we want to profile. Then, we will run our code from the@profile

terminal using the profiler.

In Listing 7.4, we present a problem of handling a large dataset. In this code snippet, we perform
the following general steps:

Read in the full ads dataset (with over 40 million rows and 25 columns)
Do basic feature engineering to get one-hot-encoded columns for the site_category field,
and combine this with the banner_pos column to get the input features for a model to
predict ad clicks
Train a logistic regression model on the dataset and return this ad-click model as the

Partition of a set of 910281 objects. Total size = 6532736502 bytes.
 Index Count % Size % Cumulative % Kind (class / dict of class)
 0 23 0 4786211179 73 4786211179 73 pandas.core.frame.DataFrame
 1 370 0 1310176775 20 6096387954 93 numpy.ndarray
 2 32 0 324541602 5 6420929556 98 pandas.core.series.Series
 3 378435 42 44166696 1 6465096252 99 str
 4 159387 18 12246376 0 6477342628 99 tuple
 5 44322 5 7967590 0 6485310218 99 types.CodeType
 6 89041 10 7721792 0 6493032010 99 bytes
 7 41079 5 5586744 0 6498618754 99 function
 8 16178 2 5110360 0 6503729114 100 dict (no owner)
 9 5093 1 5026016 0 6508755130 100 type
<2360 more rows. Type e.g. '_.more' to view.>

7.1.2 Analyzing your memory consumption line by line with memory-profiler

pip install memory-profiler

180

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

3.

output of a function

The code in Listing 7.4 is available in the train_model_without_optimization.py file in the ch7
directory.

Listing 7.4 This code is a simple example of reading in a sample of the ads data, and then
return a filtered version of the dataset (where the field, click = 0). We use the @profile
decorator above the function so that memory-profiler will profile this function when calling
the library from the terminal.

Import packages

Add the @profile decorator so that memory-profiler will include this function’s
execution when it profiles this Python script

Define the train_logit_model function to read in a file, get needed features, and
input those features into training a logistic regression model

Read in the ads dataset

Narrow down the dataset to the input features for the model

One-hot encode the site_category variable and combine the encoded columns with
the banner_pos feature

Create an object to handle training the logistic regression model

Train the logistic regression model

Return the model object

Call the train_logit_model function using the ads data file

import pandas as pd
from sklearn.linear_model import LogisticRegression
import time

@profile
def train_logit_model(filename: str):

 ad_frame = pd.read_csv(filename)
 print("Finished reading dataset...\n\n")

 input_features = ad_frame[["site_category", "banner_pos"]]

 final_features = pd.concat([pd.get_dummies(input_features.site_category),
 ad_frame.banner_pos])

 logit_model = LogisticRegression(random_state = 0)

 print("Start training...\n\n")
 logit_model.fit(ad_frame[final_features], ad_frame.click)

 return logit_model

start = time.time()
logit_model = train_logit_model("data/ads_train_data.csv")
end = time.time()
print("Finsihed running in ", end - start, " seconds")

181

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Print the time in seconds it takes to execute the function

Now, we can profile the code in Listing 7.4 by running the command in Listing 7.5.

Warning: running this code may take ~2-3 hours to run depending on your machine
specifications. If you’d like to try it out on a smaller dataset, you can replace

 with ch7/train_model_without_optimization.py
 file instead.ch7/sample_train_model_without_optimization.py

Listing 7.5 This code executes memory-profiler on our example script from Listing 7.4.

Run memory-profiler on our example script

The result of running Listing 7.5 should generate the following output:

Let’s break down the output:

Line 6 corresponds to the @profile decorator. Using this decorator consumes around
119MB of memory. This can be seen under the Increment column.
Reading the ads dataset consumes ~1774 MB in Line 9. The cumulative memory at this
point is 1893 MB (under the Mem Usage column).
Creating the input_features data frame adds an extra ~779 MB of memory
The peak memory usage hit during the function call is ~3384 MB (by Line 22), or ~3 GB

Given the amount of time it takes to run the code in Listing 7.4 (as mentioned, this can be 2-3
hours depending on our machine specifications), and the peak memory usage of over 3 GB - how
can we do better? In the next few sections, we’ll delve into various ways to reduce memory

python -m memory_profiler ch7/train_model_without_optimization.py

Line # Mem usage Increment Occurrences Line Contents
===
 6 119.098 MiB 119.098 MiB 1 @profile
 7 def train_logit_model(filename: str):
 8
 9 1893.219 MiB 1774.121 MiB 1 ad_frame = pd.read_csv(filename)
 10 1893.414 MiB 0.195 MiB 1 print("Finished reading dataset...\n\n")
 11
 12 2672.891 MiB 779.477 MiB 1

 input_features = ad_frame[["site_category", "banner_pos"]]
 13
 14 2477.320 MiB -836.914 MiB 3

 final_features = pd.concat([pd.get_dummies(input_features.site_category),
 15 2477.320 MiB 0.008 MiB 2

 ad_frame.banner_pos], axis = 1)
 16
 17
 18 1836.211 MiB -641.109 MiB 1

 logit_model = LogisticRegression(random_state = 0)
 19 1836.219 MiB 0.008 MiB 1 print("Start training...\n\n")
 20 3383.680 MiB 1547.461 MiB 1 logit_model.fit(final_features, ad_frame.click)
 21
 22 3383.727 MiB 0.047 MiB 1 return logit_model

182

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

consumption. Let’s start by talking about how to handle processing larger datasets in Python.
This will allow us to process the full ads dataset, with over 40 million rows, while utilizing less
memory and speeding up the operations of reading in the dataset, performing feature
engineering, and training a model. The techniques we cover will also be able to scale to even
larger datasets (hundreds of millions or billions of rows).

A common way to deal with large datasets is to utilize chunking or sampling to reduce the
amount of data consumed at once. means to break a dataset into pieces (chunks) soChunking
that each individual chunk can be processed separately. This can be especially helpful if your
memory resources are limited and you’re dealing with a large (potentially larger-than-memory)
dataset. The idea of how this works is summarized in Figure 7.1.

Figure 7.1 This is an example of a workflow utilizing chunking where we split a large dataset into
chunks. Each chunk is read in, processed, and potentially even input into a training model separately.

Now, let’s discuss how we can use pandas to read from a large CSV file (including one too large
to fit in memory) using chunks.

In this section we will discuss a simple way of using pandas to process datasets that are too large
to fit into memory. We can do that using . For example, suppose we want to get a samplechunks
of the 40-million row ad clicks dataset. Pandas has a useful parameter called , whichchunksize
we can use to read in N rows at a time, where N is equal to the number of rows you want to read
in at one time. For example, let’s write a snippet of code to read in the first million rows of the
dataset (see Listing 7.6). Running the code in Listing 7.6 takes about ~0.1 seconds.

7.2 Sampling and chunking large datasets

7.2.1 Reading from a large CSV file using chunks

183

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.6 The code reads in the first million rows the ad clicks dataset. By specifying
chunksize = 1000000, everytime we call the get_chunk method, we will fetch the next
million rows of the dataset.

Import packages

Read in the first 1 million rows of the ad clicks dataset

A visualization of the chunking process for the ads dataset is in Figure 7.2. This visual shows
how we break the ads file into chunks of 1 million rows, reading in the data, one chunk at a time.

import pandas as pd
import time

start = time.time()
ad_data = pd.read_csv("data/ads_train_data.csv",
 chunksize=1000000)

ad_data.get_chunk()

end = time.time()
print(end - start)

184

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Figure 7.2 Similar to Figure 7.1, this views summarizes the chunking process for the ads file. For now,
this allows us to read in the file one chunk at a time. In Section 1.4, we will expand the example to
include processing the data and training a model using the chunks.

An important point to keep in mind for the example in Listing 7.6 is that this same principle of
chunking will scale regardless of whether your dataset is in the tens of millions of rows, or even
tens of of rows.billions

Now that we’ve covered one key way of reading in data from a large file, let’s discuss how to
randomly select data from a large dataset (using the ads dataset as our example).

One drawback with the chunking example we just went through is that the selection is not
random. Randomizing data is often crucial for training machine learning models. In our next
example, we’ll randomly sample from the ads dataset.

The code in Listing 7.7 reads a randomized sample of 10% of the ads dataset, while avoiding
ever reading the full dataset into memory.

7.2.2 Random selection

185

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.7 The code randomly samples 10% of the ads dataset without ever reading the
full dataset into memory.

Import packages

Define the get_random_sample function, taking a filename and sample rate as
parameters

Count the number of rows in the ads dataset

Compute the number of random samples we want to get based on the number of
rows in the dataset and the input sample rate

Randomly sample row indices to skip when importing the dataset

Read in the ads dataset, while skipping the rows specified in the previous step

Call get_random_sample to get a randomized sample containing 10% of the ads
dataset

Currently, running the code in Listing 7.8. takes over two minutes (exact time may vary
depending on your machine specifications). We’ll discuss how to reduce this time further in the
next chapter when we cover alternatives to pandas.

Before we move into other ways of reducing memory, let’s briefly discuss how you can use
chunking when reading data from a database.

import pandas as pd
import random
import time

def get_random_sample(filename: str, sample_rate: float):

 total_rows = sum(1 for line in open(filename)) - 1

 num_samples = round(total_rows * sample_rate)

 skip = sorted(random.sample(range(1, total_rows + 1),
 total_rows - num_samples))

 return pd.read_csv(filename, skiprows=skip)

start = time.time()
sampled_data = get_random_sample("data/ads_train_data.csv", 0.1)
end = time.time()
print("Read in dataset in ", end - start, " seconds")

186

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Using chunks works well if your data is stored in a CSV format. However, it is also a very
common need to extract data from databases. We can also use chunking to avoid reading too
much data into memory at once. For example, suppose the ads dataset is stored in a SQLlite
database table called (see Appendix for how to setup this database). The databasecore_ads_data
could simply be called . We can use the pandas method to ingest the data in chunksads read_sql
from this database table. The example would look like the code in Listing 7.8.

Listing 7.8 The code reads the ads data from a SQLlite database.

Import packages

Connect to SQLite database

Read in the first million rows of the ads data from the SQLite database

Next, let’s discuss how to reduce memory consumption by using optimal data types for your
dataset.

The data type of individual columns in a pandas data frame can have a significant impact on the
amount of memory used to store a column’s values. Before we delve into checking memory
usage for data frames or columns, let’s do a quick review of how to check the data type of
individual columns in a pandas data frame.

Pandas has a method called that can be used to check the data type of each of thedtypes
variables in a data frame. The code in this listing is available in check_data_types_of_df.py file
in the ch7 directory, but is also shown in Listing 7.9.

7.3 Optimizing data types for memory

7.2.3 Chunking when reading from a database

import pandas as pd
import pyodbc

conn = pyodbc.connect("DRIVER={SQLite3 ODBC Driver};SERVER=localhost;" \
 "DATABASE=ads.db;Trusted_connection=yes")

ads_data = pd.read_sql(conn, """SELECT click,
 site_category,
 banner_pos
 FROM core_ads_data
 """,
 chunksize = 1000000)

7.3.1 Checking data types

187

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.9 This code reads in the first million rows of the ad dataset. Then, it checks the
data type for each column in the data frame.

Import the pandas package

Read in the first chunk (containing one million rows)

Get the data types of all columns in the dataset

The result of running this code will print the following:

Now, let’s walk through how to check the memory usage of data frames and individual columns.

You can see the memory usage of a data frame using the method. This can bememory_usage
seen in Listing 7.10.

import pandas as pd

ad_data = pd.read_csv("data/ads_train_data.csv", chunksize=1000000)

ad_frame = ad_data.get_chunk()

print(ad_frame.dtypes)

id float64
click int64
hour int64
C1 int64
banner_pos int64
site_id object
site_domain object
site_category object
app_id object
app_domain object
app_category object
device_id object
device_ip object
device_model object
device_type int64
device_conn_type int64
C14 int64
C15 int64
C16 int64
C17 int64
C18 int64
C19 int64
C20 int64
C21 int64

7.3.2 How to check the memory usage of a data frame

188

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.10 The code reads in the first million rows of the ads dataset, followed by
checking the memory usage of the data frame.

Import pandas

Read in the first million rows of the ads dataset

Print the memory usage of each column in the dataset

Running the code in Listing 7.10 will print out the following:

This output shows the number of bytes used in memory for each column in the dataset. If we
compare this view vs. the earlier one showing the data type of each column, we can see that the
variables with the data type consume the most memory. As we’ll see later in this section,object
we can often save a large chunk of memory by converting these columns to other dataobject
types if possible.

Now, let’s show how to check the memory usage of individual columns, rather than the entire
data frame at once.

import pandas as pd

ad_data = pd.read_csv("data/ads_train_data.csv", chunksize=1000000)

ad_frame = ad_data.get_chunk()

print(ad_frame.memory_usage(deep = True))

Index 128
id 8000000
click 8000000
hour 8000000
C1 8000000
banner_pos 8000000
site_id 65000000
site_domain 65000000
site_category 65000000
app_id 65000000
app_domain 65000000
app_category 65000000
device_id 65000000
device_ip 65000000
device_model 65000000
device_type 8000000
device_conn_type 8000000
C14 8000000
C15 8000000
C16 8000000
C17 8000000
C18 8000000
C19 8000000
C20 8000000
C21 8000000

189

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

In the code in Listing 7.11, we check the memory usage of just the banner_pos column in the ads
dataset.

Listing 7.11 The code reads in the ads dataset, followed by checking the memory usage of
the banner_pos column.

Import pandas

Read in first million rows of the ads dataset

Print the memory usage of the banner_pos column

Running Listing 7.11 will show the following:

This means the single banner_pos column consumes around 8MB of memory! Now, let’s explain
how to convert numeric columns to be more efficient.

The result of running the previous listing shows the banner_pos column consumes around
8000000 bytes, or roughly 8 bytes per element in the column.

Next, let’s convert the banner_pos column to be int8 (see Listing 7.12). The max value of an int8
value can be 255. Because int8 variables have a smaller numeric range than int64 (or int16,
int32, etc.), they consume less memory than these other int-based data types. In our example,
banner_pos is a binary variable, so having a max possible value of 255 isn’t an issue. Next, we
can check the updated memory usage - again, using the method. The result ofmemory_usage
converting this column to int8 shows the memory consumption at closer to 1000000 bytes, or
approximately 1/8 the previous memory usage! That’s a significant savings and we’re only
dealing with one column here. We can apply optimizations to other columns in our dataset, as
well.

7.3.3 How to check the memory usage of a column

import pandas as pd

ad_data = pd.read_csv("data/train", chunksize=1000000)

ad_frame = ad_data.get_chunk()

print(ad_frame.banner_pos.memory_usage(deep = True))

8000128

7.3.4 Converting numeric data types to be more memory-efficient

190

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.12 This code converts the banner_pos column to the int8 data type. Then, we
check the memory usage of the banner_pos variable with the new data type.

Import NumPy

Convert banner_pos to an int8 data type.

Print out the update memory usage of the banner_pos column.

Since we know how to handle optimizing numeric data types now, let’s go through an analogous
example for text columns.

One of the largest consumers of memory can be string fields in a data frame. Pandas may show
these columns as data types. If a string field is representing a categorical variable, thenobject
you can often save memory by converting the column to a pandas type.Categorical

In Listing 7.13, we check the memory usage of the site_category field. The result is roughly
65MB.

Listing 7.13 The code here checks the memory usage of the site_category feature.

Get the memory bytes used to store the site_category feature

Now, let’s convert the site_category field to a categorical variable. After doing this (in Listing
7.14), the updated memory usage is only ~1MB. This means the previous data type version of
this column was consuming ~65-times the amount of memory vs. after the update!

Listing 7.14 This code converts the site_category feature to a category (categorical) data
type. Then, we check the updated memory used to store the variable.

Convert the site_category column to be a category data type

Check the memory usage of the site_category variable after the data type
conversion

import numpy as np

ad_frame["banner_pos"] = ad_frame["banner_pos"].astype(np.int8)

print(ad_frame.banner_pos.memory_usage(deep=True))

7.3.5 Category data type

print(ad_frame.site_category.memory_usage(deep = True))

ad_frame["site_category"] = ad_frame.site_category.astype("category")

print(ad_frame.site_category.memory_usage(deep = True))

191

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Next, let’s discuss how to use sparse data types.

Pandas also offers a sparse data type that allows for more optimal memory usage when a data
frame or column is comprised mostly of a single value. For example, a column would be mostly
zeros or mostly have missing values. Using a sparse data type compresses the memory needed
for such columns.

In Listing 7.15 (also available in the convert_column_to_sparse_dtype.py file), we create a new
column called click_pos_interaction, which equals 1 when both the and fieldsclick banner_pos
are 1 - otherwise, it equals 0. This field is largely zero (~96% for the first chunk of ads data).

Listing 7.15 This code creates a new column called click_pos_interactions, based on the
click and banner_pos fields. This column is mostly zero, which means we can compress the
memory usage using the SparseDtype option available in pandas. After we’ve created the
column, we convert it to this sparse data type, and compare the memory usage before and
after.

Import packages

Create a new column based on the click and banner_pos columns

Print the memory usage used by the new column

Convert the column to a SparseDtype

Print the memory usage used after transforming the new column to a SparseDtype

The result of running Listing 7.15 is shown below:

As you can see, the memory consumption after transforming the new feature to a sparse data
type is almost 16-times less than what is was before!

7.3.6 Sparse data type

import pandas as pd
import numpy as np

ad_frame['click_pos_interaction'] = ad_frame.click * ad_frame.banner_pos

num_bytes = ad_frame.click_pos_interaction.memory_usage(deep = True)
print(f"Bytes used before transformation: {num_bytes}")

ad_frame['click_pos_interaction'] = ad_frame.click_pos_interaction.\
 astype(pd.SparseDtype("float", 0))

num_bytes = ad_frame.click_pos_interaction.memory_usage(deep = True)
print(f"Bytes after before transformation: {num_bytes}")

Bytes used before transformation: 8000128
Bytes after before transformation: 508556

192

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Next, let’s discuss how to specify data types when reading in a dataset.

In the previous examples, we assumed we’ve already read in a dataset and modified the data
types of specific columns. It’s also possible to specify the data types directly when reading a
dataset into Python. This avoids consuming initial additional memory when importing the
dataset. This will be especially useful if you already know the proper data types for the fields you
want. Let’s walk through an example using the ads dataset.

Listing 7.16 This code is available in the specify_data_type_reading_file.py file in the ch7
directory. It reads in the first million rows of the ads dataset, while specifying the data
types of a few features. Then, it prints the memory usage of each column in the dataset.

Import packages

Read in the first million rows of the ads dataset, specifying the data types for a few
features

Print the memory usage for each column in the dataset

Next, let’s summarize data types and memory consumption.

Table 7.1 shows a summary of when to use specific data types for optimizing memory
consumption. For example (as discussed in this section), if you have a column that has a discrete
collection of categories, it will be beneficial to convert the column to a data type, rathercategory
than the data type.object

7.3.7 Specifying data types when reading in a dataset

import pandas as pd
import numpy as np

ad_data = pd.read_csv("/Users/amily/Downloads/avazu-ctr-prediction/train",
 chunksize=1000000,
 dtype = {"site_category": "category",
 "banner_pos": np.int8,
 "click": np.int8})

ad_frame = ad_data.get_chunk()

print(ad_frame.memory_usage(deep = True))

7.3.8 Summary of data types and memory

193

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

That covers optimizing for data types. Beyond data types, another way to save memory is to
directly limit the columns in your dataset when reading it in. Let’s cover this in the next section.

One fairly easy, but important, way to limit memory is to restrict the columns in the dataset you
read in when importing a dataset. Often, if you’re processing or performing analysis on a dataset,
it may have additional columns that you care less about. Fortunately, pandas has a built-in
parameter in the method to handle this. See Listing 7.17 for an initial example. Thisread_csv
code snippet combines reading in a subset of columns with Listing 7.16 showing how to specify
data types when ingesting a dataset. Notice this example is similar to the earlier Listing 7.4. That
listing uses the same columns we read in now to train a logistic regression model. The key
differences are that Listing 7.17 reads in the few columns we need (click, site_category, andonly
banner_pos) and specifies the data types of those fields on ingestion to reduce the memory
footprint.

Listing 7.17 Available in the limit_columns_example.py file in the ch7 directory, this code
reads in the first million rows of the ads dataset, but only includes four sample columns.

Import pandas

Read in the first million rows of the ads dataset, while limiting to only four rows.

Next, let’s walk through a sample workflow that combines a few of the techniques we’ve
covered in this chapter. This workflow will essentially convert Listing 7.4 into a workflow using

Table 7.1 This table summarizes a few key data types and when to use them form
improving memory performance.
Data type When to use

category Column contains a set of discrete categories

SparseDtype Column is mostly one value. Can be mostly zeros, NA
values, or any other arbitrary value as long as it is mostly
that value

int8, int16, int32 Depends on the range of your numeric field. int8 ranges
between -128 and +127 (2^8 - 1). int16 ranges between
-32768 and +32767 (2^16 - 1). int32 ranges between
-2,147,483,648 and +2,147,483,647 (2^32 - 1)

7.3.9 Limiting number of columns

import pandas as pd

ad_data = pd.read_csv("data/ads_train_data.csv",
 chunksize=1000000,
 usecols = ["click", "site_category", "banner_pos"],
 dtype = {"site_category": "category",
 "banner_pos": np.int8,
 "click": np.int8})

ad_frame = ad_data.get_chunk()

194

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

chunks, much less peak memory usage, and computes in a much faster time (read on to see the
difference!). After we walk through this workflow, we’ll re-run memory-profiler to contrast the
difference in memory usage vs. the original task of reading in the ads dataset, encoding the
site_category field, and training a logistic regression model.

Thus far, we’ve discussed limiting rows and columns, as well as optimizing for data types to
limit the memory consumption. While each of these methods are great for reducing memory,
what would a workflow look like after we’ve followed these techniques to get a dataset? As
we’ve already discussed in earlier chapters around data and ML pipelines, we would also need to
be able to clean the data, perform feature engineering, and train a model, as a few examples.
Let’s walk through this process in the next few sub-sections. We will focus on the following
tasks:

Cleaning and feature engineering for large datasets
Training an ML model when your data doesn’t fit into memory

For these examples, we will focus on the original task in Listing 7.4 to extract a few features
from the ads dataset and train a model.

Let’s start by discussing doing cleaning and feature engineering on the ads dataset.

Consider the problem of training a logistic regression model to predict ad clicks using our ads
dataset. When working with a larger dataset, it’s usually better to start on the simpler side - so
let’s do this by using just two variables from our dataset. We did this already in Listing 7.4.
However, in that code listing, we still read in the full ads dataset, and didn’t perform any
memory optimizations.

In Listing 7.18, we create a function called that handles reading in the ads dataset,process_df
chunk by chunk. It reads in the three specific columns we need - click (the label), site_category,
and banner_pos.

7.4 Processing workflow for individual chunks of data

7.4.1 Cleaning and feature engineering for big datasets

195

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.18 This code processes the ads dataset chunk by chunk. Currently, the processing
involves one-hot encoding the site_category field and combining it with the banner_pos
variable. These will be used later in the chpater to train a model on the ads data.

Import packages

Define the process_df function

For now, set the filename to point to the ads CSV file, and specify the columns we
want to include when reading in the file.

Open the iterator connection to the ads file

Iterate over each chunk in the ads data file

Create a data frame consisting the banner_pos column and the one-hot encoded
features from the site_category column

Call the process_df function

Currently, the function in this listing doesn’t actually return anything. It just sets up a loop to go
through each chunk of the ads dataset, one-hot encoding the site_category field and combining it
with banner_pos. This gets the input features for each chunk. In the next section, we will add a
piece of code to train the ad-click prediction model chunk by chunk.

In this section, we will use scikit-learn’s SGDClassifier class to train a logistic regression model
on the ads dataset, one chunk at a time. This method allows for . Recall thatpartial fitting
because logistic regression is an iterative method that can optimize its objective function (log
loss) using stochastic gradient descent (the in SGDClassifier), this means we can train aSGD
model on sequential batches of data. There are several types of ML models that can operate on
batches of data, including:

import pandas as pd
from tqdm import tqdm

def process_df():

 filename = "data/ads_train_data.csv"
 fields = ["click", "site_category", "banner_pos"]

 ad_data = pd.read_csv(filename,
 chunksize=1000000,
 usecols = fields)

 for ad_frame in tqdm(ad_data):
 features = pd.concat([ad_frame["banner_pos"],
 pd.get_dummies(ad_frame.site_category,
 prefix = "site_category")],
 axis = 1)

process_df()

7.4.2 Training a logistic regression model when the data doesn’t fit in memory

196

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Logistic regression
SVM (Support Vector Machine)
Perceptron algorithm
K-means (using a different class called). See this link for moreMiniBatchKMeans
details: .scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html

Now, let’s use SGDClassifier to train a logistic regression model on the ads dataset. To use
SGDClassifier for other types of models, you can check out the scikit-learn documentation for it
here: .scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Training a logistic regression model for the ads dataset

To start, we’ll write our code specifically for the ads dataset, and then in the immediate next
example, we’ll generalize our code to handle other datasets. The goal of the logistic regression
model is to predict whether an ad will be clicked by a user.

Our initial code to train the model is in Listing 7.19.

197

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.19 The code in this listing trains a logistic regression model on the ads dataset.
For now, we narrow the list of variables we’re using to two inputs (site_category and
banner_pos), along with the label (click) that indicates whether an ad click occurred.

Import packages

Define train_model function

Define the filename and fields we want associated with the ads data

Open iterator connection to the ads dataset

Create an SGDClassifier object, which we will use to train the model

import pandas as pd
from tqdm import tqdm
from sklearn.linear_model import SGDClassifier

def train_model():

 filename = "data/ads_train_data.csv"
 inputs = ["click", "site_category", "banner_pos"]

 ad_data = pd.read_csv(filename,
 chunksize=1000000,
 usecols = inputs)

 sgd_model = SGDClassifier(random_state = 0,
 loss = "log")

 fields = []
 for ad_frame in tqdm(ad_data):

 features = pd.concat([ad_frame["banner_pos"],
 pd.get_dummies(ad_frame.site_category,
 prefix = "site_category")],
 axis = 1)

 if not fields:

 top_site_categories = set(ad_frame.site_category.value_counts().\
 head().index.tolist())

 fields = [field for field in features.columns.tolist()
 if "site_category" in field]

 fields = [field for field in fields
 if "site_category_" + field in top_site_categories]

 fields.append("banner_pos")

 sgd_model.partial_fit(features[fields],
 ad_frame.click,
 classes = (0, 1))

 return sgd_model

sgd_model = train_model()

198

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Create empty list to store features that will be input into the model. The original
variable, site_category, will been to be one-hot encoded.

Iterate over each chunk associated with the ads dataset

Encode site_category, and combine it with the banner_pos variable into a data
frame.

Check if fields is empty. If so, then we’re dealing with the first chunk.

Get the top 5 most frequent site categories

Get the encoded site_category feature names (corresponding to the categories
within the original site_category column)

Filter the list in step 12 to just the top 5 encoded site categories

Add the banner_pos to the list of fields

Train the logistic regression model (using partial_fit)

Return the trained model

Train the logistic regression model, and store it as a variable called sgd_model

Now, let’s generalize the code in Listing 7.19 to handle any arbitrary dataset.

Generalize the model framework to an arbitrary dataset

In Listing 7.20, we modify our code to use a class that takes a filename as input, along with
several other parameters such as what numeric and categorical signals you wish to include when
reading/processing the dataset. In part 6 of the code, we add the decorator so that you canprofile
use memory-profiler on the main method that handles reading in, processing, and training the
logistic regression model on the ads dataset. The full code is available in the
ch7/sgd_model_chunking.py file.

199

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.20 The code in this listing trains a logistic regression model on the ads dataset.
For now, we narrow the list of variables we’re using to two inputs (site_category and
banner_pos), along with the label (click) that indicates whether an ad click occurred.

import pandas as pd
from tqdm import tqdm
from sklearn.linear_model import SGDClassifier

class Chunk_pipeline:

 def __init__(self, filename: str, label: str,
 numeric_signals: list, cat_signals: list,
 chunksize: int):
 self.filename = filename
 self.label = label
 self.numeric_signals = numeric_signals
 self.cat_signals = cat_signals
 self.keep_cols = [self.label] + self.numeric_signals + self.cat_signals
 self.chunksize = chunksize

 def get_chunks(self):
 return pd.read_csv(self.filename,
 chunksize=self.chunksize,
 usecols = self.keep_cols)

 @profile
 def train_model(self):

 data_chunks = self.get_chunks()

 self.sgd_model = SGDClassifier(random_state = 0,
 loss = "log")

 keep_fields = []
 for frame in tqdm(data_chunks):

 features = pd.concat([frame[self.numeric_signals],
 pd.get_dummies(frame[self.cat_signals])],
 axis = 1)

 if not keep_fields:

 for signal in self.cat_signals:
 top_categories = set(frame[signal].value_counts().\
 head(5).index.tolist())

 fields = [field for field in features.columns.tolist()
 if field in top_categories]

 keep_fields.extend(fields)

 keep_fields.extend(self.numeric_signals)

 self.sgd_model.partial_fit(features[keep_fields],
 frame[self.label],
 classes = (0, 1))

pipeline = Chunk_pipeline(filename = "data/ads_train_data.csv",
 label = "click",
 numeric_signals=["banner_pos"],
 cat_signals=["site_category"],
 chunksize=1000000)
pipeline.train_model()

200

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Import packages

Define the Chunk_pipeline class

Define the constructor method, allowing users to select a filename, what numeric
and categorical signals they want,

Define a collection of instance variables that can be accessed by other methods in
the class

Create an method to get an iterator of data chunks for the input dataset

Define a method to train a logistic regression model, chunk by chunk. Currently,
this includes the profile decorator. If you don’t plan to use memory-profiler, you
can remove or comment out this line.

Call the method defined in step 5 to get an iterator for the data chunks associated
with the input dataset

Create an SGDClassifier object we’ll use to train the model

Define a list called keep_fields that will store the finalized features used in the
model

Iterate over each data chunk

Combine the numeric signals with the one-hot encoded categorical signals into a
data frame

Check if keep_fields is empty. If so, then it means we’re in the first iteration of the
loop (the first chunk)

One-hot encode each categorical variable. For this version, we will keep the
one-hot encoded columns corresponding to the top 5 categories for each categorial
variable

Add the numeric signals to the list of fields we’ll be using as inputs to the model

Train the logistic regression model (using partial_fit).

Create an object of the Chunk_pipeline class. Use the ads dataset as the data input,
while specifying the signals, label, and chunksize we want to use

Train the model

Now, let’s use memory-profiler on our updated code from Listing 7.20. Using memory-profiler
here will show us the updated memory performance (how much memory is used per line in the
code, as well as peak memory usage). We can use this to compare Listing 7.20 to Listing 7.4,
which was our initial attempt at using the ads dataset to train a model.

Running memory-profiler on the updated workflow

The command to run memory-profiler on our updated script is in Listing 7.21.

201

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.21 This code runs memory-profiler on the sgd_model_chunking script.

Run memory-profiler on the sgd_model_chunking.py file

Running memory-profiler on the code from Listing 7.20 shows a peak memory usage of 267MB
(see line 57 below). In contrast, Listing 7.4 had a peak memory usage of 3384MB! Additionally,
we used to monitor the progress of looping through each chunk. The entire process oftqdm
reading in each chunk, creating the features we needed, and training the model took around 70
seconds (1 minute, 10 seconds)! This is in comparison to over 2 hours in Listing 7.4!

python -m memory_profiler ch7/sgd_model_chunking.py

202

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Now, let’s walk through a few additional ways of optimizing for memory in your code.

In this section we will introduce three additional ways to save memory in Python:

Avoiding creating extraneous variables
Staying away from gloabl variables

7.5 Additional tips for saving memory with Pandas and Python

41it [01:10, 1.73s/it]
Filename: ch7/sgd_model_chunking.py

Line # Mem usage Increment Occurrences Line Contents
===
 24 119.312 MiB 119.312 MiB 1 @profile
 25 def train_model(self):
 26
 27 122.910 MiB 3.598 MiB 1 data_chunks = self.get_chunks()
 28
 29 122.918 MiB 0.008 MiB 2 sgd_model = SGDClassifier(random_state = 0,
 30 122.910 MiB 0.000 MiB 1 loss = "log")
 31
 32
 33 122.918 MiB 0.000 MiB 1 keep_fields = []
 34 215.691 MiB -4141.797 MiB 42 for frame in tqdm(data_chunks):
 35
 36 264.207 MiB -6364.523 MiB 123

 features = pd.concat([frame[self.numeric_signals],
 37 264.207 MiB -2056.062 MiB 41

 pd.get_dummies(frame[self.cat_signals])],
 38 264.207 MiB -2152.941 MiB 41 axis = 1)
 39
 40
 41 263.707 MiB -2172.930 MiB 41 if not keep_fields:
 42
 43 231.133 MiB 0.000 MiB 2 for signal in self.cat_signals:
 44 230.820 MiB -0.312 MiB 1

 top_categories = set(frame[signal].value_counts().\
 45

 head().index.tolist())
 46
 47
 48 230.820 MiB 0.000 MiB 25

 fields = [field for field in features.columns.tolist()
 49 230.820 MiB 0.000 MiB 22

 if field in top_categories]
 50
 51
 52 230.820 MiB 0.000 MiB 1 keep_fields.extend(fields)
 53
 54 230.820 MiB -0.312 MiB 1

 keep_fields.extend(self.numeric_signals)
 55
 56
 57 267.277 MiB -4161.613 MiB 82

 sgd_model.partial_fit(features[keep_fields],
 58 263.707 MiB -2292.168 MiB 41

 frame[self.label],
 59 263.707 MiB -2152.926 MiB 41

 classes = (0, 1))
 60
 61
 62 150.895 MiB -64.797 MiB 1 self.sgd_model = sgd_model

203

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Comparing NumPy arrays vs. lists for memory usage
Alternatives to pandas

Let’s get started by discussing the effect of unnecessary variables on memory.

Creating unnecessary variables can take up wasted memory. Let’s walk through an example
using a sampled version of the ads dataset. In Listing 7.22, we create a function that does the
following:

Reads in the sampled ads file and stores the data into a variable called ad_frame
Creates a new data frame (called) to store only the records where the ad was non_clicks

 clickednot
Returns the non_clicks data frame

Listing 7.22 This code (available in the ch7/get_non_clicks_not_optimized.py file) reads in
the sampled ads dataset, filters it down to non-clicks only, and returns a data frame storing
the non-click observations.

Import the pandas package

Add the @profile decorator so that memory-profiler will include this function’s
execution when it profiles this Python script

Define the get_non_clicks function, which takes a filename as input

Read in the sampled ads dataset (consisting of 1 million rows)

Filter the dataset to only non-clicks (this time we redefine the same variable,
)ad_frame

Return the non-clicks, filtered dataset

Call the get_non_clicks function

Now, let’s run memory-profiler on Listing 7.22 so we can see how much memory is used in our
 function.get_non_clicks

7.5.1 Avoid creating extraneous variables

import pandas as pd

@profile
def get_non_clicks(filename: str):

 ad_frame = pd.read_csv(filename)

 non_clicks = ad_frame[ad_frame.click == 0]

 return non_clicks

get_non_clicks("data/ads_data_sample.csv")

204

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.23 Running the command in this listing executes memory-profiler on the code in
Listing 7.22.

Run memory-profiler on the code file associated with Listing 7.22.

The result of memory-profiler is below:

Based on the results, we can see that executing the function has a peak memoryget_non_clicks
usage of ~607MB.

Our updated code (in Listing 7.24) is almost identical to Listing 7.22, except now we replace
 with in line 5.non_clicks ad_frame

Listing 7.24 This code (available in the ch7/get_non_clicks_improved.py file) is an
almost-duplicate of Listing 7.22. The only difference is in line 5 where we replace
non_clicks with ad_frame when creating the filtered-down dataset.

Import the pandas package

Add the @profile decorator so that memory-profiler will include this function’s
execution when it profiles this Python script

Define the get_non_clicks function, which takes a filename as input

Read in the sampled ads dataset (consisting of 1 million rows)

Filter the dataset to only non-clicks (this time we redefine the same variable,
)ad_frame

Return the non-clicks, filtered dataset

python -m memory_profiler ch7/get_non_clicks_not_optimized.py

Line # Mem usage Increment Occurrences Line Contents
===
 4 88.648 MiB 88.648 MiB 1 @profile
 5 def get_non_clicks(filename: str):
 6
 7 458.305 MiB 369.656 MiB 1 ad_frame = pd.read_csv(filename)
 8
 9 607.348 MiB 149.043 MiB 1 non_clicks = ad_frame[ad_frame.click == 0]
 10
 11 607.348 MiB 0.000 MiB 1 return non_clicks

import pandas as pd

@profile
def get_non_clicks(filename: str):

 ad_frame = pd.read_csv(filename)

 ad_frame = ad_frame[ad_frame.click == 0]

 return ad_frame

get_non_clicks("data/ads_data_sample.csv")

205

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Call the get_non_clicks function

Now, let’s use memory-profiler again, but this time we will profile the updated get_non_clicks
function. This will help us compare the memory usage between the two versions of

. Running the code in Listing 7.24 through memory-profiler prints the followingget_non_clicks
output:

As you can see (Line 11), this reduces the peak memory usage of the function byget_non_clicks
around 30MB.

In general, if you create a variable and then no longer need it (or only use it once), then you
should consider modifying your code to either avoid using the variable or minimizing its
memory consumption if possible. Now, let’s revisit global variables.

In Chapter 3, we discussed how it is generally better to avoid using global variables unless
necessary (for example, when creating a constant). Global variables will consume memory until
your program execution is complete. This means using global variables can also be worse in
terms of memory consumption. Keeping with the ads dataset, it is better to use functions or
potentially classes to handle data processing, for example. This way, we can avoid allocating
memory for global variables.

Next, let’s walk through the memory usage of NumPy arrays vs. lists.

NumPy arrays are not only more computationally efficient than standard Python lists, they can
also save memory resources. Let’s take a look at the example in Listing 7.25. Here, we create a
list of 100 million integers and a NumPy array of the same 100 million integers.

Line # Mem usage Increment Occurrences Line Contents
===
 4 88.602 MiB 88.602 MiB 1 @profile
 5 def get_non_clicks(filename: str):
 6
 7 458.211 MiB 369.609 MiB 1 ad_frame = pd.read_csv(filename)
 8
 9 576.723 MiB 118.512 MiB 1 ad_frame = ad_frame[ad_frame.click == 0]
 10
 11 576.723 MiB 0.000 MiB 1 return ad_frame

7.5.2 Avoiding global variables

7.5.3 NumPy arrays vs. Lists

206

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

Listing 7.25 The code here generates a list of 100 million integers and an array of the
same 100 million integers. We will use this to compare how much memory creating this
list consumes vs. a NumPy array.

Import NumPy

Create a function that returns a list with number of integerslimit

Create a function that returns a NumPy array with number of integerslimit

Set a limit threshold

Call create_list

Call create_array

Now, let’s compare the memory usage of creating the NumPy array vs. the list in order to see
how NumPy arrays can be more memory-efficient than lists. In Listing 7.26 we run
memory-profiler on the code from Listing 7.25.

Listing 7.26 Executing the command here will run memory-profiler on the
list_vs_array_compare.py file.

The results of the running memory-profiler are below:

import numpy as np

@profile
def create_list(limit):

 return list(range(limit))

@profile
def create_array(limit):

 return np.arange(limit)

limit = 100000000
create_list(limit)
create_array(limit)

python -m memory_profiler ch7/list_vs_array_compare.py

207

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

As you can see, creating the list uses roughly twice as much memory as creating the NumPy
array! In general, NumPy arrays will be more memory-efficient that lists, particular when the
number of values being stored is large. The reason for the memory savings is that NumPy arrays
only store homogenous values (the elements must be of the same data type, unlike lists) and the
values are stored in memory in a continuous block. In Table 7.2, we summarize the memory
usage of the code in Listing 7.25 with varying values for the variable (the size of the list orlimit
array). These values may vary slightly depending on your machine specifications, but the general
trend should be the same - as a list gets larger, it becomes more and more memory-efficient to
use a NumPy array if you need to store the values in memory.

Lastly, let’s briefly introduce alternatives to pandas, which will be covered in more detail during
the next chapter.

Line # Mem usage Increment Occurrences Line Contents
===
 4 55.840 MiB 55.840 MiB 1 @profile
 5 def create_list(limit):
 6
 7 1686.543 MiB 1630.703 MiB 1 return list(range(limit))

Filename: ch7/list_vs_array_compare.py

Line # Mem usage Increment Occurrences Line Contents
===
 9 61.137 MiB 61.137 MiB 1 @profile
 10 def create_array(limit):
 11
 12 824.078 MiB 762.941 MiB 1 return np.arange(limit)

Table 7.2 This table compares the memory usage (in MB) between lists and NumPym
arrays based on the number of integers stored in each.
Size of list/array List memory usage (MB) Array memory usage (MB)

100,000 59 57

1,000,000 94 66

10,000,000 442 135

100,000,000 1687 824

208

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

1.

2.
3.

In the next chapter, we’re going to cover alternatives to pandas. Pandas is a powerful package,
and in this chapter we discussed several ways to optimize it for better memory consumption.
However, there are alternatives which can more robustly handle large sets of data, depending on
your machine specifications. For example, the Dask package is a popular alternative that can
parallelize many operations in pandas. Another possibility is the modin library, which has very
similar syntax to pandas, but allows for parallelization under the hood. An older library (older in
2023!) is PySpark, which leverages the Spark ecosystem to handle huge datasets. We’ll discuss
each of these in turn during the next chapter.

Now, let’s summarize what we’ve learned this chapter.

In this chapter, we covered:

Guppy and memory-profiler are two examples of profilers to analyze your memory
usage. Additionally, we used the pandas builtin method memory_usage to check the
memory consumption of data frames and individual columns.
Use chunking or sampling (rows or columns) to reduce the amount of memory consumed
at once
Choosing the right data types can have a significant impact on memory, especially when
you have a large number of observations or large number of columns with suboptimal
data types.
Utilize scikit-learn’s partial_fit functionality to train a logistic regression model in chunks
Avoid creating unneeded variables - particularly global variables - that take up wasted
space.

Can you add a method to the Chunk_pipeline class that calculates evaluation metrics for
the model?
Run memory-profiler on the new method. How does it perform?
Add additional feature engineering steps to the chunking workflow for the ads dataset.
How do these extra features affect your memory consumption?

7.6 Summary

7.7 Practice on your own

7.5.4 Alternatives to pandas

209

©Manning Publications Co. To comment go to liveBook
https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

https://livebook.manning.com/book/software-engineering-for-data-scientists/discussion

	Software Engineering for Data Scientists MEAP V02
	Copyright
	welcome
	brief contents
	Chapter 1: Introducing engineering principles
	1.1 What do data scientists need to know about software engineering?
	1.2 When do we need software engineering principles?
	1.2.1 Sample data science workflow
	1.2.2 How does software engineering come into the picture?

	1.3 What are the components of a data pipeline?
	1.3.1 Real-world example: Building a model to predict customer churn

	1.4 Deploying models with machine learning pipelines
	1.4.1 Data ingestion
	1.4.2 Pre-processing
	1.4.3 Model training
	1.4.4 Model evaluation
	1.4.5 Model prediction / deployment
	1.4.6 Model monitoring

	1.5 Summary

	Chapter 2: Source control for data scientists
	2.1 What is source control?
	2.2 Why do data scientists need to know source control?
	2.3 Introducing git
	2.3.1 Basic git commands

	2.4 Git workflow from scratch
	2.4.1 Uploading local repository changes to a remote repository
	2.4.2 How to see who made commits

	2.5 Getting the latest changes from a remote repository
	2.6 Conflicts and merging changes from different users
	2.7 How to work with branches in Git
	2.7.1 Git commands for branches
	2.7.2 Summarizing Git commands
	2.7.3 Best practices for using source control

	2.8 Comparing Jupyter Notebook files with nbdime
	2.8.1 Using the nbdime package

	2.9 Summary
	2.10 Practice on your own

	Chapter 3: How to write robust code
	3.1 Improving the structure of your code
	3.1.1 PEP8 standards
	3.1.2 Using pylint to automatically check the formatting and style of your code
	3.1.3 Auto-formatting your code to meet styling guidelines

	3.2 Avoiding repetitive code
	3.2.1 Modularizing your code

	3.3 Restricting inputs to functions
	3.4 Clean code summary
	3.5 How to implement exception handling in Python
	3.5.1 What types of errors can we get in Python?
	3.5.2 Using try/except to bypass errors
	3.5.3 How to raise errors

	3.6 Documentation
	3.6.1 Using docstrings
	3.6.2 Using pdoc to auto-create documentation

	3.7 Summary
	3.8 Practice on your own

	Chapter 4: Object-oriented programming for data scientists
	4.1 Introducing classes and objects
	4.1.1 You’re using OOP without knowing it…​

	4.2 Creating a class in Python
	4.2.1 Creating your own methods
	4.2.2 Creating a new ML model class

	4.3 Summary
	4.4 Practice on your own

	Chapter 5: Creating progress bars and time-outs in Python
	5.1 Creating progress bars and timing Python processes
	5.2 Monitoring the progress of training ML models
	5.2.1 Monitoring hyperparameter tuning

	5.3 How to auto-stop long-running code
	5.4 Summary
	5.5 Practice on your own

	Chapter 6: Making your code faster and more efficient
	6.1 Slow code walk through
	6.1.1 Don’t repeat yourself (DRY)
	6.1.2 Line profiler
	6.1.3 Reducing loops

	6.2 Parallelization
	6.2.1 Vectorization
	6.2.2 Multiprocessing
	6.2.3 Training ML models with parallelization

	6.3 Caching
	6.4 Data structures at scale
	6.4.1 Sets
	6.4.2 Priority Queues
	6.4.3 NumPy arrays

	6.5 What’s next for computational efficiency?
	6.6 Summary
	6.7 Practice on your own

	Chapter 7: Memory management with Python
	7.1 Memory profiler
	7.1.1 High-level memory summaries with guppy
	7.1.2 Analyzing your memory consumption line by line with memory-profiler

	7.2 Sampling and chunking large datasets
	7.2.1 Reading from a large CSV file using chunks
	7.2.2 Random selection
	7.2.3 Chunking when reading from a database

	7.3 Optimizing data types for memory
	7.3.1 Checking data types
	7.3.2 How to check the memory usage of a data frame
	7.3.3 How to check the memory usage of a column
	7.3.4 Converting numeric data types to be more memory-efficient
	7.3.5 Category data type
	7.3.6 Sparse data type
	7.3.7 Specifying data types when reading in a dataset
	7.3.8 Summary of data types and memory
	7.3.9 Limiting number of columns

	7.4 Processing workflow for individual chunks of data
	7.4.1 Cleaning and feature engineering for big datasets
	7.4.2 Training a logistic regression model when the data doesn’t fit in memory

	7.5 Additional tips for saving memory with Pandas and Python
	7.5.1 Avoid creating extraneous variables
	7.5.2 Avoiding global variables
	7.5.3 NumPy arrays vs. Lists
	7.5.4 Alternatives to pandas

	7.6 Summary
	7.7 Practice on your own

