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Preface

The aim of this book is to propose a new approach to analysis and con-
trol of linear time-varying (LTV) systems. More generally, systems over a
ring of operators are considered. In the approach developed here, a system
is defined in an intrinsic way, i.e., not by a particular representation (e.g., a
transfer matrix or a state-space form) but as it is actually. The system equa-
tions, derived, e.g., from the laws of physics, are gathered to form an intrinsic
mathematical object, namely a finitely presented module over a ring of oper-
ators. This module is nothing but the system equations when one takes into
account the obvious fact that there are various equivalent ways to write these
equations (in different orders, and using various variables). This is strongly
connected with the engineering point of view, according to which a system is
not a specific set of equations but an object of the material world which can
be described by equivalent sets of equations. This viewpoint allowed us to
formulate and solve efficiently several key problems of the theory of control
in the case of linear time-varying systems. For example, the better-known
control approach for LTV systems is probably gain scheduling [311], [211].
This method consists in approximating the LTV system by a finite sequence
of linear time-invariant (LTI) systems, with suitable interpolations. It works
quite well when the system coefficients are slowly varying. In a number of
applications, however, this condition does not hold. The solution proposed in
this book, based on algebraic analysis, does not require this assumption and
is therefore more efficient.

“Algebraic analysis” (a term coined by the Japanese mathematician Mikio
Sato) encompasses a variety of algebraic methods to study analytic objects.
So is an LTV system; its algebraic structure, which is hidden when, e.g., gain
scheduling is used, becomes very clear in the light of the methods presented
in this book. Our approach is also useful for mathematicians since it shows
how algebraic analysis can be applied to solve engineering problems.



VIII Preface

Prerequisites

For most parts of the book, the prerequisites include (1) that background in
algebra and analysis which is standard for people having, e.g., an engineer-
ing degree; (2) a certain knowledge of those problems and methods which
are classical in control theory. For these two points, a good understanding of
the textbook [43], by the first author, is sufficient and appropriate. Regard-
ing purely algebraic aspects, the famous textbook [224], by S. MacLane and
G. Birkhoff, can be a good complement.

Nevertheless, for a few parts of the book–such as Section 5.7–much more
prerequisites (detailed in Chapter 1) are necessary. These parts are intended
to researchers.

How to Read This Book

Chapters 1 to 4 present the mathematical background and form the first part
of the book. Mathematicians interested in applications to control theory can
directly jump to Chapter 5. This will be the exception. Most readers will
have either to do the same but come back to the suitable parts of Chapters
1-4 when necessary, or to read the book from the beginning. Both methods
can be efficient; their choice is a matter of taste and/or time. We recommend
to complete at once the reading of this Preface by that of the Introductions
of the various chapters.

In Part II, Chapter 5 presents the notion of system along with its behavior
and structural properties. In Chapter 6, stability is investigated using the
system poles. All other finite poles and zeros of an LTV system are also
defined and studied. Chapter 7 deals with the structure at infinity and the
impulsive behaviors of LTV systems.

Part III is devoted to applications in both fields of analysis and control.
Modeling items are treated in Chapters 8 and 9, while open-loop and closed-
loop control methods are presented in Chapters 10 and 11, respectively.

Some points of the classic (analytic) analysis of LTV systems are reviewed
in Chapter 12 as complements to this new approach.

Each chapter contains a number of exercises, of various levels of difficulty:
some of them are straightforward applications of the notions expounded in the
body of the text; other ones – in general more difficult – propose complements.
Hints are given when necessary.

Last, each chapter ends with historical notes.



Notation

Standard Notation

f.g.: finitely generated
f.p.: finitely presented
�: equal by definition
⊆, � : inclusion, proper inclusion
IdE : identity map of the set E
A\B : complement of B in A (B ⊆ A)
N � {0, 1, 2, ...}, N× � {1, 2, ...} : the non-negative, the natural integers
Z, Q, R, C : the integer, rational, real, complex numbers
k : R or C
T : torus R/Z
ϕ : A→ B : map ϕ with domain A and codomain B
ϕ• : x �→ ϕ (x) : the right map which to x associates ϕ (x)
•ϕ : x �→ (x)ϕ : the left map which to x associates (x)ϕ
f |A : the restriction of the map f to a subset A of its domain
Y X : set of all maps X → Y
In : identity matrix of order n
mSp : the m× p matrices over S (m rows, p columns)
ISJ , SI×J : the I×J matrices over S (I, J : possibly infinite sets of indices)
Sp � 1Sp (row), mS � mS1 (column)
IS(J) : the I × J matrices over S with finite number of nonzero columns
Matn (S) � nSn : the n× n matrices over S
diag (Δ) : matrix with zero entries except the main diagonal Δ
diag (A1, ..., An) = A1 ⊕ ...⊕An : diagonal sum of matrices
det, Tr : determinant, trace of a matrix
In : Identity matrix of order n
card : cardinal
∪ union
n! : 1× 2× ...× n(
n
p

)
: binomial coefficient n!/ (p! (n− p)!)



X Notation

sgn : signature of a permutation
λ̄ : conjugate of the complex number λ
Δij = Δj

i : Kronecker symbol

Chapter 1
∏
i∈I Xi, X

I : product, power p. 4, 9∐
i∈I Xi, X

(I) : coproduct, copower p. 5, 9
∪̇ : disjoint union p. 5
Ob (C), Mor (C) : class of all objects, of all morphisms, of C p. 6
Cop : opposite category p. 7
Y ⊆ X , X � Z : subobject, quotient object of X p. 7
Set, Mon : category of sets, of monoids p. 8
Rng, Fld : category of rings, of fields p. 8
RMod, ModR: categories of left, right R-modules p. 8
KVsp, VspK : categories of left, right K-vector spaces p. 8
Top : category of topological spaces p. 8
Ab : category of abelian groups p. 9
→̃, �: bijection or isomorphism p. , 12, 31
→, ↪→, �: morphism, monomorphism, epimorphism p. 7, 31
lim−→Fi : direct limit p. 14
lim←−Fi : inverse limit p. 16
⊕

: biproduct p. 18
im f , ker f : image, kernel of the (homo)morphism f p. 18, 31
coker f , coim f : cokernel, coimage of the morphism f p. 18
Ban, Frt : category of Banach spaces, of Fréchet spaces p. 20
HTVS : category of Hausdorff topological vector spaces p. 20
TVS, : category of topological vector spaces p. 20
LCS : category of locally convex topological vector spaces p. 20
HomC (•, •) : bifunctor Hom in the category C p. 21
A ∩B, A+B : intersection, union of two subobjects p. 25
Cco : category of coherent objects in C p. 27
Mo : opposite of the monoid M p. 28
M0, M× p. 28
U (M) : the units of M p. 29
(X)l, (X)r, (X) : left, right, two-sided ideal generated by X p. 29
�l,�r,� : left, right, two-sided ideal p. 29
Il (M), Ir (M), I(M), Iαl (M), Iαr (M), Iα (M) p. 29
Ifgl (M), Ifgr (M), Ifg (M) p. 29
Z (M) : centre of M p. 30, 49
ZM (A) ,NM (A) : centralizer, normalizer of A in M p. 30, 49
[X ] : monoid generated by X p. 30
GLn (R) : general linear group over a ring R p. 30
M/R, T /R : quotient p. 6
supp

(
(xi)i∈I

)
: support of the family (xi)i∈I p. 52
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MI : power p. 32, 94[
(ai)i∈I

]
r
,
[
(ai)i∈I

]
l
,
[
(ai)i∈I

]
: lcrm, lclm, lcm p. 34(

(ai)i∈I
)
l
,
(
(ai)i∈I

)
r
,
(
(ai)i∈I

)
: gcld, gcrd, gcd p. 34

|c| : length of c p. 36, 46, 44
a | b : a is a divisor of b p. 32
a ‖ b : a is a total divisor of b p. 35
X∗ : free monoid on X p. 36
inf, sup : greatest lower bound, least upper bound p. 37
∧, ∨ : meet, join p. 37
|S| : length of the poset S p. 39
ACC, ACCα, DCC,DCCα p. 39
0̇, 1̇ : least, greatest element p. 44
(G : 1) : order of the group G p. 48
S (E) ,Sn : symmetric group of E, of degree n p. 48
〈X〉, 〈x1, .., xn〉 : group generated by X , by x1, .., xn p. 49
H ≤ G : subgroup of G p. 49
Altn, An : alternating group of degree n p. 49
G/H , H\G : set of left, right cosets p. 49
(G : H) : index of H in G p. 50
N � G : normal subgroup of G p. 50
G/N : quotient p. 50
x ≡ x′ (modN) p. 50, 99
SLn (R) : special linear group over a commutative ring R p. 50
Lat (G) : lattice of all normal subgroups of G p. 54
|G| : length of the group G p. 55
h (G) : Hirsch number of the group G p. 55
(x, y) : commutator of x and y in a group p. 56
(H,K) : subgroup generated by the commutators of H and K p. 56
D (G) = Gd : derived group of G p. 56
Gab : abelianization of the group G p. 57
S [T] : topological space p. 59
Td [S] ,Tf [S] : discrete topology, finite topology p. 60
NX : filter of neighborhoods of zero in X p. 59
σ (X ′, X) , σ (X,X ′) : weak topologies p. 62
β (X ′, X) : strong topology p. 62
X ′β : strong dual p. 62
Xσ, X

′
σ : weak spaces p. 62

tf : transpose, or adjoint, of the continuous linear map f p. 62
Ĝ : universal covering group of the Lie group G p. 69
π1 (G): fundamental group of the Lie group G p. 69
E (X) : the space of C∞ functions on the manifold X p. 69
E ′ (X) : the space of distributions with compact support p. 70
D (X) : the space of C∞ functions with compact support p. 69
D′ (X) : the space of distributions p. 70
T � S : convolution product p. 70



XII Notation

T ∞ (G) : space of punctual distributions over G p. 72
T ∞x (G) : space of distributions with support ⊆ {x} p. 72
[X,Y ] : Lie bracket p. 72
g : Lie algebra of the Lie group G p. 72
expG : exponential p. 72
U(g) : universal enveloping algebra of g p. 74
Zk (g) : centre of U(g) p. 74
O (X) : space of analytic functions on the real manifold X p. 81
B (X) : space of hyperfunctions on X p. 81
[ϕ] = [ϕ (z)]z=x : hyperfunction p. 81
supp [ϕ] : support of the hyperfunction [ϕ] p. 76
f.p. (f) : Hadamard’s finite part of f p. 79
A (n,R), O (n,R), SO (n,R) p. 85
Sp (2n,k), Sp (2n) p. 87
Dn (g), ad, Der (g) : p. 87

Chapter 2

Ro : opposite of the ring R p. 93
charR : characteristic of the ring R p. 93
RR, RR, RRR : p. 96, 96
N � M : submodule p. 96
M[S] p. 96
RMS : (R,S)-bimodule p. 96
EndR (M) : endomorphism ring of M p. 96
[a, b] : commutator of a and b in an algebra p. 97
HomR (M,N) : module-homomorphisms M → N p. 98
N � M : submodule of M p. 100
Latl (M) : lattice of all submodules of the left module M p. 100⊕

i∈I
Mi : direct sum p. 101

[E]R : module generated by E over R p. 102
dimK (V ), dim (V ) : dimension of the K-vector space V p. 104
〈•, •〉 : duality bracket p. 106
tf : transpose of the homomorphism f p. 106
•A, A• : p. 107
AT : classical transpose of a matrix p. 108
Id : identity functor p. 108
A ≡ A′ : equivalent matrices p. 111
A ≡l A′, A ≡r A′ : left-equivalent, right-equivalent matrices p. 111
A ∼ A′ : conjugate matrices p. 111
A
⊗

RB : tensor product p. 112
a⊗ b, f ⊗ g, 1⊗ g : p. 112
M(S) : p. 113
k {t} : ring of convergent power series p. 114, 147
k ({t}) : field of fractions of k {t} p. 114



Notation XIII

E (k) : ring of entire functions p. 114, 172
M (k) : field of meromorphic functions p. 114, 172
PEN (k) : ring of N -periodic entire functions p. 115
PMN (k) : ring of N -periodic meromorphic functions p. 115
RΔ : subring of constants of R p. 116
radR : Jacobson radical of R p. 117
a b: product of the ideals a and b p. 118
SpecR : prime spectrum of R p. 119
R [X ] : polynomial ring p. 131
d◦ (a) : degree of the polynomial a p. 132
K (X) : field of rational functions p. 133
R [X ;α,Δ] ,R [X ; Δ] ,R [X ; α] : skew polynomial rings p. 135
R [∂; Δ], R [q;α] : differential and difference operator ring p. 136
R [q− 1; α,Δ] : differencing operator ring p. 136
A1 (k) : first Weyl algebra p. 137
B1 (k) : p. 137
A1c (k) : p. 140
S−1 R

(
RS−1

)
: left (right) fractions with denominator in S p. 125

Q (R) : field of fractions of the domain R p. 128
TS (M), T (M) : torsion submodule p. 129
R̂ : completion of R in the a-adic topology p. 131
A′1 (k) : p. 141
S ∗G : crossed product p. 141
R
[[
X−1;α,Δ

]]
: ring of formal skew power series p. 148

ω (a) : order of the formal power series a p. 148√
a : radical of the ideal a p. 151

N (R) : nilradical of R p. 151
AI : affine space p. 153
Za : algebraic set p. 153
Dn (R) : p. 154
En (R) : group of elementary matrices p. 154
rk (A) : rank of the matrix A p. 390, 163
AH,K : p. 157
rkR (M) , rk (M) : rank of the free R-module M p. 162
rk (f) : rank of the homomorphism f p. 162
ρ (A) : inner rank of the matrix A p. 165
H∞ : Hardy space p. 169
L (cR,R) : lattice of all right principal ideals containing cR p. 169
Rp : local ring of R at p p. 183
Ao (C) : p. 185
An (k) : n-th Weyl algebra p. 186
Bn (k) : p. 186
R 〈X〉 : free R-ring p. 185
R
[
(Xi;αi,Δi)1≤i≤n

]
: multivariate skew polynomial ring p. 185
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R
[(
Xi, X

−1
i ; αi,Δi

)
1≤i≤n

]
: multivariate Laurent polynomials p. 185

K
(
(Xi; αi,Δi)1≤i≤n

)
: multivariate rational functions p. 186

R
[[(

X−1
i ; αi,Δi

)
1≤i≤j+1

]]
: formal multivariate power series p. 186

R
(((

X−1
i ; αi,Δi

)
1≤i≤n

))
: formal multivariate Laurent series p. 186

Chapter 3

AModfg : category of finitely generated left A-modules p. 191
AModfp : category of finitely presented left A-modules p. 191
AnnR

l (S), AnnR
r (S), AnnA (S) : annihilator p. 194

i (A) : index of the matrix A p. 200
Ass (M) : prime ideals associated with M p. 208
q (p) : primary ideal with radical p p. 208⊗

R : bifunctor tensor product p. 213
ρ∗ : change of ring p. 215
ρ∗ : extension of ring induced along ρ p. 216
χ (M) : characteristic of the module M p. 240
P ∗ : adjoint of the differential operator P p. 138
pd (RM), fd (RM) : projective, flat dimension p. 242
lgldR, rgldR : left, right global dimension p. 243
gldR, wgldR : global, weak global dimension p. 243
K (R), dim (R) : Krull dimension p. 243
∗ρ : extension of ring coinduced along ρ p. 263
M ⊆e E : essential submodule of E p. 264
N ⊆s M : superfluous (or small) submodule of M p. 265

Chapter 4
L/K : extension L ⊇K p. 269
[L : K] : degree of the field extension L/K p. 270
deg . trK L : transcendence degree of L/K p. 271
[a : K] : degree of the algebraic element a over K p. 273
Gal(L/K) : Galois group of the Galois extension L/K p. 276
GalK(f) : Galois group of the polynomial f over K p. 276
ca : (α,Δ)-conjugate of a by c p. 287
Δα,Δ (a) : conjugacy class of a p. 287
fl (a) , fr (a) : left, right evaluation of f at a p. 288
Vr (f), Vl (f) : set of left, right roots of f p. 289
fΔ : minimal polynomial of the algebraic set Δ p. 292
rk (Δ) : rank of the algebraic set Δ p. 292
UnivR,UnivF : universal differential ring, field p. 302
GΔ (L/K) : group of all (K,Δ)-automorphims of L p. 302
GalΔ (L/K) : differential Galois group p. 302
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Gα (L/K) : group of all (K,α)-automorphims of L p. 305
Galα (L/K) : difference Galois group p. 305

Chapter 5

PE (I) : polynomial-exponential functions p. 325
AG : arithmetic-geometric sequences p. 326
O : monoid of Ore functions p. 327
(O) : set of Ore fields p. 327
O∞ : germs at infinity of analytic functions p. 330
S : germs at infinity of complex-valued sequences p. 331
ATMod : category of topological modules p. 372
H (B) : p. 383

Chapter 6
Om the ring of formal power series over Km p. 420
O the ring of formal power series over K p. 422
v(a) the valuation of a ∈ K p. 419
Msp the module of the poles of the system p. 427
Miz the module of the invariant zeros p. 428
Midz the module of the input-decoupling zeros p. 434
Modz the module of output-decoupling zeros p. 434
Miodz the module of input-output decoupling zeros p. 435
Mop the module of observable poles p. 436
Mhm the module of hidden modes p. 439
Mtz the module of transmission zeros p. 430
Mtp the module of transmission poles p. 430
Mbz the module of blocking zeros p. 433
deg.tr.diffKL the differential transcendence degree of the differential field

extension L/K p. 564
‖ . ‖i, ‖ . ‖ip the matrix induced norm p. 592
a(T ) full set of elementary Smith zeros of the torsion module T p. 428
A(T ) = ∪i{ΔK̂

∞(a1), ...,ΔK̂
∞(an)} where ΔK̂

∞(ai) is the conjugacy class
of ai is the conjugacy class of ai. 437

ΔǨ(γi) the conjugacy class of the pole γi. 424

Chapter 7
K,A,S : rings p. 457
B,L,Q, K̂, Ŝ, L̂ : rings p. 459
TP∞, TZ∞ : transmission poles, zeros, at infinity p. 460
c∞ (R (∂)) : content at infinity of R (∂) p. 460
ΔM (G) : MacMillan degree at infinity p. 463
SModstruc : full subcategory of SMod p. 466
C̃μ, Δ̃(μ−1), Δ̃ : p. 466
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Ẽ : endomorphism ring of Δ̃ p. 468
Δ̄(μ−1), Δ̄ : p. 472
C̄μ, Cμ : p. 473
B,Ba : p. 475
B∞ : impulsive behavior p. 475
B∞,a : autonomous impulsive behavior p. 475
M+ : impulsive system p. 475
L+ : causal Laplace transform p. 478
Z− : anticausal Z-transform p. 480
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1

Categories, Divisibility and Groups

1.1 Introduction

Here we present the general mathematical notions necessary for the sequel.
We begin with categories. For the applications to control theory, abelian
categories of modules (1.2.4.3) are the most important. Therefore, in a first
reading, beginners may limit themselves to that case. Functors (Subsect.
1.2.3) will be used throughout the book.

The section on categories is followed by three sections centered on divis-
ibility and factorization. These notions are classical in, e.g., commutative
rings, but we will constantly have to use them in the noncommutative case.
Furthermore, since they only involve multiplication –and not addition–, we
have preferred to present these notions in the framework of monoids. Our
account culminates with the presentation of unique factorization noncommu-
tative monoids.

Section 1.6 on groups is classical (apart from a few points, such as poly-
cyclic by finite groups and Dedekind groups) and is included as an introduc-
tion to Lie groups (Sect. 1.8) and to Galois theory (Chapter 4).

Theoretically, the prerequisites to Sections 1.2-1.6 are only a basic knowl-
edge of the theory of sets and of commutative rings. The case of Sections
1.7 (on topological vector spaces) and 1.8 (on Lie groups and Lie algebras)
is quite different. Section 1.7 is a summary of the basic properties of topo-
logical spaces and of topological vector spaces, and Section 1.8 is an survey
of Lie groups and Lie algebras. Both sections will probably be hard for the
non-prepared reader, but they will only be needed for Section 5.7 on topolog-
ical modules and behaviors. So, we advise the beginner to only read through
them in a first reading.

Section 1.9 is devoted to Sato’s hyperfunctions, an essential tool in alge-
braic analysis. If topological considerations are skipped, the prerequisites for
this section are a basic knowledge of the functions of the complex variable:
see ([43], sect. 12.4), and [208] for more details.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 3–90.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



4 1 Categories, Divisibility and Groups

1.2 Categories

We assume that the reader knows the bases of the Theory of Sets. Some
points of this theory are recalled below.

1.2.1 Sets

1.2.1.1 Maps

Let X,Y be two sets and let f : X → Y be a map. Two notations can be
used for f :

(i) f : x �→ fx (or f : x �→ f (x)). In what follows, such a map is called a
right map since it acts on the right. If Z is another set and g : Y −→ Z is
also a right map, then the composition

X
f−→ Y

g−→ Z (1.1)

is gf , also written g ◦ f . A right map f can be denoted by f•.
(ii) f : x �→ xf (or f : x �→ (x) f) [370], [79], [80]. Such a map is called

a left map. If both f and g are left maps, the composition (1.1) is fg, also
written f ◦ g. To avoid confusions, a left map f is denoted by •f .

Whether a map is a right or a left one is only a matter of notation. Notation
(ii) is more natural although less usual. Nevertheless, in what follows all maps
are right ones except when otherwise specified.

1.2.1.2 Products

Let (Xi)i∈I be a family of sets. The product of this family, denoted by∏
i∈I Xi, is the set of all families (xi)i∈I such that xi ∈ Xi for all i ∈ I. The

map πj :
∏
i∈I Xi → Xj defined by πj

(
(xi)i∈I

)
= xj is called the canonical

projection with index j. The axiom of choice can be stated as follows:

Axiom 1. (Zermelo’s axiom of choice). Let (Xi)i∈I be a family of nonempty
sets. There exists a family (xi)i∈I such that xi ∈ Xi for all i ∈ I (in other
words,

∏
i∈I Xi �= ∅).

If for each i ∈ I, Xi = X , then
∏
i∈I Xi =

∏
i∈I X is denoted by XI and

coincides with the set of all maps I → X . The set XI is called a power of
X . If I = {1, ..., n}, XI is also denoted by Xn and is called ”X to the power
n”.

The product of two sets X1 and X2 is denoted by X1 ×X2 and is called
the Cartesian product of X1 and X2, as is well-known.
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1.2.1.3 Disjoint Unions

Let (Xi)i∈I a family of sets.

Lemma 2. There exists a set Y with the following property: (i) Y is the
union of a family (X ′i)i∈I of pairwise disjoint sets; (ii) for each i ∈ I, there
exists a bijection βi : Xi −→ X ′i.

Proof. Let A =
⋃
i∈I Xi and i ∈ I; then x �→ (x, i) (x ∈ Xi) is a bijection

βi on Xi onto a part X ′i of A × I. Obviously, X ′i ∩X ′j if i �= j, thus the set
X =

⋃
i∈I X

′
i has the desired property.

Let ji : X ′i →
⋃
i∈I X

′
i be the inclusion and ιi = ji ◦ βi.

Definition 3. The set Y is called the disjoint union (or the sum) of the

family (Xi)i∈I ; this set is denoted by
•⋃
Xi, and ιi : Xi →

•⋃
Xi is called the

canonical injection with index i.

Let us explain the difference between the union and the disjoint union
through a simple example: let X1 = {0, 3} and X2 = {3, 7}. Then
X1 ∪ X2 = {0, 3, 7} whereas X1

∐
X2 = {(1, 0) , (1, 3), (2, 3), (2, 7)}; by an

abuse of language, the latter set is often written {0, 3, 3, 7}.

Proposition 4. If the family (Xi)i∈I is finite, then there exists a bijection

α :
∏

Xi−̃→
•⋃
Xi.

Proof. It is sufficient to consider the case when card (I) = 2. Let
α : X1 × X2 → X1∪̇X2 be given by (x1, x2) �→ {(1, x1) , (2, x2)}; α is a
bijection since its inverse is given by {(1, x1) , (2, x2)} �→ (x1, x2).

1.2.1.4 Preordered Sets

Let I be a set; 	 is an preorder relation defined over I if the following
properties hold for any elements a, b, c ∈ I: (i) if a 	 b and b 	 c, then
a 	 c; (ii) a 	 a. Then I, endowed with the preorder relation 	, is called a
preordered set .

1.2.1.5 Equivalence Relations

The notion of binary relation in a set S is classical. We write R (x, x′) to
mean that the binary relation R is satisfied by the pair (x, x′) ∈ S ×S. The
graph of R is the subset of S × S consisting of all pairs (x, x′) such that
R (x, x′) .

When R is an equivalence relation, we write x ≡ x′ (modR) to mean that
R (x, x′) ([141], sect. 4.1). The quotient set S/R is the set of all equivalence
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classes and π : S � x �→ x̄ ∈ S/R be the canonical surjection (which to x
associates its class x̄, called the canonical image of x).

Let R, T be equivalence relations in S. The equivalence relation R is said
to be finer than T , and T is said to be coarser than R, if x ≡ x′ (modR)
implies x ≡ x′ (mod T ).

Let R, T be as above. Consider the binary relation S in S/T defined
as follows: S (x̄, ȳ) if x ≡ y (modR) for any x, y ∈ S such that x ∈ x̄ and
y ∈ ȳ. This relation is well-defined (i.e., whether S (x̄, ȳ) holds only depends
on the classes x̄ and ȳ, not on the specific representatives x and y) and is an
equivalence relation in S/T .

Definition 5. The above equivalence relation S is called the quotient of T by
R and written T /R.

1.2.2 General Notions on Categories

1.2.2.1 Categories

A category C consists of
(i) a class Ob (C), the objects of C,
(ii) for each X,Y ∈ Ob(C), a set HomC (X,Y ), the morphisms (also called

arrows) f from X to Y (X is called the source of f and Y its target),
(iii) for any X,Y, Z ∈ Ob (C), the composition HomC (X,Y ) ×

HomC (Y, Z)→ HomC (X,Z).
One often writes X ∈ C instead of X ∈ Ob(C) and (when there is no

risk of confusion) f : X → Y instead of f ∈ HomC (X,X). The class of all
morphisms of C is denoted by Mor (C).

The cartesian product C1×C2 of two categories is a category constructed as
follows: its objects are the pairs (X1, X2) ∈ Ob (C1)×Ob(C2); its morphisms
are the pairs (f1, f2) of morphisms f1 : X1 → Y1, f2 : X2 → Y2 with the
composition

(f1, f2) ◦ (g1, g2) = (f1 ◦ g1, f2 ◦ g2) .

Two different notations can be used for the composition

X
f−→ Y

g−→ Z : (1.2)

either gf = g ◦ f , and then f and g are called right morphisms , or fg =
f ◦ g, and then f and g are called left morphisms ; this is consistent with
the terminology introduced for maps in (1.2.1.1). Nevertheless, a morphism
f : X → Y is not a map when X and Y are not sets. A right morphism
f can be written f•, and to avoid confusions a left morphism f is written
•f . Except when otherwise specified, all morphisms are right ones in what
follows.
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By definition of a category, the following properties hold:
The composition of morphisms is associative; for any object X , there exists

a morphism IdX , the identity of X , such that for any f : X → Y , f ◦ IdX =
IdY ◦ f = f , and IdX belongs to HomC (X,X);

HomC (X,Y ) ∩HomC (X ′, Y ′) = ∅ if (X,Y ) �= (X ′, Y ′) . (1.3)

A category C is said to be small if both Ob (C) and Mor (C) are sets, and
large otherwise.

Consider a morphism f : X → Y of a category C. For any Z ∈ C,
there exist well-defined maps g �→ fg : HomC (Z,X) −→ HomC (Z, Y ) and
g �→ gf : HomC (Y, Z) −→ HomC (X,Z); f is called a monomorphism, written
f : X ↪→ Y (resp., an epimorphism, written f : X � Y ) if the first (resp.,
the second) map is always injective. In addition, f is called an isomorphism
(written f : X−̃→Y ) if it has an inverse f−1 (such that f−1 ◦ f = IdX ,
f ◦f−1 = IdY ). An isomorphism is a bimorphism, i.e., both a monomorphism
and an epimorphism, but the converse does not hold true in general (1.2.4.2).

A category D is called a subcategory of C if Ob (D) ⊆ Ob(C) and for
any X,Y ∈ Ob (D), HomD (X,Y ) ⊆ HomC (X,Y ); the subcategory D is
full if the latter inclusion is an equality, and then D is completely deter-
mined by Ob (D). The opposite of the category C, written Cop, is defined by
Ob (Cop) = Ob (C) and HomCop (X,Y ) = HomC (Y,X); it is obtained from C
by dualization, i.e., by ”reversing the arrows”.

Let X be an object of C. The set PX of all morphisms with target X has
preorder � with u � v to mean that u factors through v (i.e., u = vu′ for
some morphism u′). Two morphisms u, v ∈ PX are called equivalent if both
u � v and v � u. Dually, the set QX of all morphisms with source X has
preorder � with f � g to mean that g factors through f (i.e., g = g′f for
some g′); f, g are called equivalent if both f � g and g � f . A subobject
of X is an equivalence class of monomorphisms belonging to PX . Thus a
representative of a subobject of X is a pair (Y, ι) such that ι : Y → X is
a monomorphism, called the canonical injection (or the inclusion) Y ↪→ X .
Dually, a factor object (or a quotient object) of X is an equivalence class
of epimorphisms belonging to QX . A representative of a factor of X is a
pair (Z,ϕ) such that ϕ : X → Z is an epimorphism, called the canonical
epimorphism X � Z. Abusing the language, the subobject (Y, ι) is denoted
by Y (Y ⊆ X), and the factor object (Z,ϕ) is denoted by Z (X � Z).

Remark 6. Let (Y, ιY ) be a representative of a subobject of X and let (Z, ιZ)
be a subobject of X (i.e., Y ⊆ X and Z ⊆ X) such that ιZ factors through ιY ,
i.e., ιZ = ιY ◦ ιZ,Y where ιZ,Y : Z ↪→ Y . Then (Z, ιZ,Y ) is a representative
of a subobject of Y and one can write Z ⊆ Y . Strictly speaking, the converse
does not hold ([148], Sect. 1.1): if (Z, ιZ,Y ) is a representative of a subobject
of Y (so that Z ⊆ Y and Y ⊆ X), then (Z, ιZ,Y ) is not a representative of a
subobject of X if X �= Y . Nevertheless, ιZ � ιY ◦ ιZ,Y is a monomorphism,
so that abusing the language, and following Mitchell ([249], Sect. I.5), one
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can write Z ⊆ X. With this loose language, the relation ⊆ becomes transitive
and in both cases Z ⊆ Y ⊆ X. Although this is not fully correct, the risk of
confusion is weak in practice.

An object I in a category C is called initial if for any object X of C there
exists a unique morphism I → X . Dually, if I is such that for any object X
of C there exists a unique morphism X → I, I is said to be terminal . As
easily seen, an initial (or terminal) object in a category C, when it exists,
is unique up to isomorphism. A zero object in C is an object which is both
initial and terminal.

1.2.2.2 Examples

(1) The category denoted by Set is defined as follows: Ob (Set) is the class
of all sets and for any X,Y ∈ Ob (Set), HomSet (X,Y ) is the set of all maps
X → Y . By a slight abuse of language, Set is called the category of sets,
although a category is characterized by both its objects and its morphisms;
here the morphisms are implied without ambiguity.

Lemma 7. The category Set is a large category.

Proof. If Ob (Set) is a set S, then the set P (S) of all parts of S belongs
to S, thus card (P (S)) ≤ card (S). But setting m = card (S), we have
card (P (S)) = 2m ([26], §III.3, Prop. 12) and m < 2m by Cantor’s theorem
([26], §III.3, Th. 2), thus we are led to a contradiction.

(2) Consider the category Mon of monoids (Subsect. 1.3.1 below): Ob (Mon)
is the class of all monoids and for any X,Y ∈ Ob (Mon), HomMon (X,Y ) is
the set of all monoid-homomorphisms X → Y .

(3) The category Grp of groups (Subsect. 1.6.1 below), the category Rng
of rings, and that Fld of fields (Sect. 2.2 below) are likewise defined. So
are also the categories RMod (resp., ModR) of left (resp., right) R-modules
and R-linear homomorphisms over a ring R, and, given a skew field K, the
categories KVsp (resp., VspK) of left (resp., right) K-vector spaces and
K-linear homomorphism (Sect. 2.2).

(4) The objects of the category Top of topological spaces (1.7.1.2) are all
topological spaces, its morphisms are the continuous maps.

A concrete category is a subcategory of Set. All the above examples are
concrete categories.

1.2.2.3 Products and Coproducts

The definition of a product in a category C (when such a product exists) is
completely similar to that in the category Set: let (Xi)i∈I be a family of
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objects in a category C. A product for this family is a family of morphisms
(πi)i∈I , πi : X → Xi with the property that for any family (αi)i∈I , αi : X ′i →
Xi there exists a unique morphism α : X ′ → X such that πiα = αi for all
i ∈ I. The object X is denoted by

∏
i∈I Xi. The morphism πi :

∏
i∈I Xi →

Xi is called the canonical projection with index i (πi is not necessarily an
epimorphism). If for each i ∈ I, Xi = X , then

∏
i∈I Xi =

∏
i∈I X is denoted

by XI which is called a power of X . If I = {1, ..., n}, XI is also denoted by
Xn and is called ”X to the power n”. The product of two objects X1 and
X2 is denoted by X1 ×X2.

Arbitrary products exist in the category Set (1.2.1.3) and, as will be seen
below, in the categories Mon, Grp, Rng, RMod and ModR. They also
exist in Top ([34], §I.4) and in many other categories.

The coproduct of a family (Xi)i∈I of objects in a category C is defined
dually to the product. Thus a coproduct for this family is a family of mor-
phisms (ιi)i∈I , ιi : Xi → X with the property that for any family (αi)i∈I ,
αi : Xi → X ′i there exists a unique morphism α : X → X ′ such that
αιi = αi for all i ∈ I. The object X is denoted by

∐
i∈I Xi. The mor-

phism ιi : Xi →
∐
i∈I Xi is called the canonical injection with index i

(ιi is not necessarily a monomorphism). If for each i ∈ I, Xi = X , then∐
i∈I Xi =

∐
i∈I X is denoted by X(I) which is called a copower of X .

Arbitrary coproducts exist in the category Set, where they are called dis-
joint unions (1.2.1.3). They also exist in the category Ab of abelian groups
(1.6.4.3) , in RMod and ModR (2.2.2.1), in Top (where a coproduct is a
disjoint union of spaces) and in Grp (Sect. 1.6, Footnote 4).

Note that the existence of products in a category does not imply in gen-
eral the existence of coproducts (for example, products, but not coproducts,
exist in Mon) and the existence of coproducts does not imply in general the
existence of products.

1.2.2.4 Generators and Cogenerators

Definition 8. (i) An object U of a category C is a generator for C if the
following condition holds: for any morphisms f1, f2 : X → Y , there exists a
morphism α : U → X such that f1α �= f2α whenever f1 �= f2.
(ii) An object W of a category C is called a cogenerator for C if it is a
generator for Cop, i.e., for any morphisms f1, f2 : X → Y , there exists a
morphism β : Y → W such that βf1 �= βf2 whenever f1 �= f2.

Lemma 9. If C has arbitrary coproducts (resp., products), U is a generator
(resp., W is a cogenerator) if, and only if every object is isomorphic to a
factor of a copower U (I) (resp., to a subobject of a power W I).

Proof. We consider generators (the proof for cogenerators is obtained by
dualization).
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(a) Let C be a category with arbitrary coproducts, let X be an object of
X , and let

I = HomC (U,X) = {α : α ∈ HomC (U,X)} .

By definition of a coproduct, we know that there exists g : U (I) → X such
that gα = α (α ∈ I) .

If g is not an epimorphism, the map

HomC (X,Y ) � f �→ fg ∈ HomC
(
U (I), Y

)

is not always injective, i.e., there exist an object Y and morphisms f1, f2 :
X → Y such that

f1g = f2g � f1 = f2.

Now, f1g = f2g means that f1α = f2α for all α : U → X. Therefore, U is
not a cogenerator.

(b) Conversely, suppose that there exists an epimorphism g : U (I) � X .
Let f1, f2 : X → Y be distinct morphisms. Since f1g �= f2g, there must exist
an index i ∈ I such that f1α �= f2α where α = gi : U → X . Therefore, U is
a cogenerator.

As will be seen (3.2.1.1), in the categories RMod and ModR, the ring R
(viewed as a module over itself) is a generator. The notion of cogenerator
plays a crucial role in this book (5.2.3.3).

1.2.3 Functors

1.2.3.1 Functors and Subfunctors

Let C,D be two categories. A functor (or, more specifically, a covariant
functor) F : C → D consists of an ”object-map” F : Ob (C)→ Ob(D) and for
all X,Y ∈ C, of an ”arrow-map”1 F : HomC (X,Y ) → HomD (F (X) ,F (Y ))
such that:

F (IdX) = IdF(X),

F (f ◦ g) = F (f) ◦ F (g)

assuming that all morphisms in both C and D are right ones or that they are
left ones.

A contravariant functor G : C → D is a covariant functor Cop → D.
Thus, as opposed to a covariant functor, a contravariant functor ”reverses
the arrows” assuming that the morphisms in both C and D are right ones or
that they are left ones:

G (IdX) = IdG(X),

G (f ◦ g) = G (g) ◦G (f) . (1.4)

1 The ”object map” and the ”arrow map” are often denoted by the same symbol.
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Remark 10. (i) If the morphisms in C are left (resp., right) ones and those
in D are right (resp., left) ones, then (1.4) is changed to

G (f ◦ g) = G (f) ◦G (g) . (1.5)

(ii) Except when otherwise stated, all functors are covariant in the sequel.
Let P be a property satisfied by certain functors. A contravariant functor
G : C → D is said to have the property P is the associated covariant functor
G : C → D has this property.

The identity functor of the category C is defined as: IdC (f) = f
(f ∈Mor (C)), IdC (X) = X (X ∈ Ob(C)). The forgetful functor U is an-
other simple example of functor: let C be a concrete category; U : C → Set
is the functor described as follows: given any object X and any morphism
f of C, U (X) is just the set of all elements belonging to X and U (f) is the
same map f , regarded just as a function between sets. Other kinds of forget-
ful functors can be considered. For example, there exists a forgetful functor
U′ : Rgn→ Ab which assigns to each ring the underlying abelian group and
to each ring-homomorphism the underlying Z-linear homomorphism.

Let F : C → D be a functor and let A be a subcategory of D such that for
any X ∈ Ob(C), F (X) ∈ Ob (A) and for any f ∈ Mor (C), F (f) ∈ Mor (A).
Consider the functor G : C → A defined by G (X) = F (X) for any X ∈
Ob (C), and G (f) = F (f) for any f ∈ Mor (C). This functor is said to be
induced by F; it is denoted by F : C → D.

Let C be a concrete category and let F be a functor C → Set. A subfunctor
of F is a functor G : C → Set such that for any object X ∈ Ob(C), G (X) ⊆
F (X) and for any morphism u : X → Y of C, G (u) : G (X) → G (Y )
coincides with F (u) in G (X).

Definition 11. Let F : C → D be a functor.

(i) F is full when for every pair of objects X,X ′ of C and for every mor-
phism g : F (X) → F (X ′) in D, there exists a morphism f : X → X ′ such
that g = F (f); F is faithful when for every pair of objects X,X ′ of C and for
every pair of morphisms f1, f2 : X → X ′, the equality F (f1) = F (f2) implies
f1 = f2; F is fully faithful when F is both full and faithful. For short, F
is faithful (resp., full, fully faithful) when its arrow-map is injective (resp.,
surjective, bijective).
(ii) F is injective (resp., surjective, bijective) if its object-map is injective
(resp., surjective, bijective).
(iii) F is an isomorphism if it is both bijective and fully faithful. An antiiso-
morphism C → D is an isomorphism Cop → D.
(iv) F is called an equivalence if there exist G : D → C such that G ◦ F
(resp., F ◦G) is naturally isomorphic to IdC (resp., IdD) (1.2.3.2). A du-
ality C → D is an equivalence Cop → D.

From the above, a subcategory D of C is full if, and only if the inclusion
functor D → C (defined in an obvious way) is full. A full subcategory D of
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a given category C is determined by specifying just the class of its objects
since its morphisms are all morphisms X → Y in C where X,Y ∈ Ob (D).

Let C1, C2,D be three categories. A functor F : C1 × C2 → D is called a
bifunctor .

1.2.3.2 Natural Transformations

Let F : C → D and G : C → D be two functors. A natural transformation
t : F→ G is a class of morphisms tA : F (A)→ G (A), one for eachA ∈ Ob (C),
such that the diagram

F (A)
F(f)−→ F (B)

↓ tA ↓ tB
G (A)

G(f)−→ G (B)

is commutative for every f : A→ B in C. A natural transformation t is also
called a morphism of functors, and a natural isomorphism or an isomorphism
of functors if each tA is an isomorphism.

A classical and important example of natural isomorphism is given in
Corollary 274 below (2.2.5.5).

1.2.3.3 Universal Element

Let C be a category and let F : C → Set be a functor.

Definition 12. A universal element (u,R) for F is a pair (u,R) consisting of
an object R ∈ Ob (C) and an element u ∈ F (R) with the following property:
for each object S ∈ Ob(C) and each element s ∈ F (S), there exists a unique
morphism h : R → S such that F (h) (u) = s. (For short, u, in place of the
pair (u,R), is called a universal element for F.) A universal problem consists
in determining a universal element.

This is depicted by the diagram below:

R u ∈ F (R)
h ↓ ↓ ↓ F (h)
S s ∈ F (S)

Theorem 13. (i) If u ∈ F (R) is a universal element for the functor F : C →
D, then for any set S ∈ Ob (C) there exists a bijection

θ : SR ∼= F (R) , h �→ F (h) (u) .

(ii) If u ∈ F (R′) and u′ ∈ F (R) are two universal elements for the
same functor F, then there exists an isomorphism β : R−̃→R′ such that
F (β) (u) = u′.
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Proof. (i): Each F (h) (u) is an element s ∈ F (S) and conversely each s ∈
F (S) is of the form F (h) (u) for a unique h ∈ SR by Definition 12.

(ii): Since u is universal, there exists h : R → R′ such that u′ = F (h) (u);
similarly, since u′ is universal, there exists h′ : R′ → R such that u =
F (h′) (u′). Therefore,

u = F (h′) (F (h) (u)) = F (h′) ◦ (F (h) (u)) = F (h′ ◦ h) (u) .

We also have u = F (IdR) (u), thus both h′ ◦ h and IdR transform u into u,
thus h′ ◦ h = IdR by universality of u. By a similar rationale, h ◦ h′ = IdR′

by universality of u′, thus h′ = h−1 and h = β is an isomorphism.

An equalizer is an example of universal element ([224], sect. III.4). Let us
define this notion without using functors, for the sake of simplicity.

Consider two morphism f, g : Y → Z and the following universal problem:
find h : X → Y such that fh = gh and for any h′ : Z ′ → Y with fh′ = gh′

there exists a unique h′′ : Z ′ → Z with hh′′ = h′.

Definition 14. The pair (h,X) is an equalizer of (f, g). This equalizer is
represented by the diagram below:

Z
h−→ Y

f,g

⇒ X, fh = gh.

An equalizer is necessarily a monomorphism. The notion of coequalizer is
defined dually, and is an epimorphism. We say that a category C has equal-
izers (resp., has coequalizers) if each pair of morphisms of C has an equalizer
(resp., a coequalizer).

In the category Set, consider f, g : Y → Z. The equalizer of (f, g) is
(X,h) where X = {y ∈ Y : f (y) = g (y)} and h : X → Y is the inclusion.
The coequalizer of (f, g) is (π,R) where π : Z → Z/R is the projection
and R is the coarsest equivalence relation whose graph contains all pairs
(f (y) , g (y)) for y ∈ Y.

1.2.3.4 Direct (or inductive) Limits

A filtering set I is a preordered set (1.2.1.4) such that every pair of elements
has an upper bound, i.e., for any two elements i, j ∈ I, there exists an element
k ∈ I (not necessarily distinct from i, j) with i 	 k and j 	 k.

Let C be a category, let (Fi)i∈I be a family of objects of C, and for each
pair (i, j) ∈ I × I such that i 	 j, let ϕij : Fi → Fj be a morphism for which

(1) ϕii = IdFi for all i ∈ I;
(2) if i 	 j 	 k, ϕik = ϕjk ◦ ϕij .

Definition 15. D =
{
Fi, ϕ

i
j

}
is a direct system in C with index set I.

(This can be represented by a commutative diagram that the reader is re-
quested to draw.) A direct system is easily shown to be a covariant functor
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C → C ([306], sect. 5.2). In the sequel, the expressions ”direct limit” and
”inductive limit” are synonymous; the corresponding notion is called ”filtrant
inductive limit” in ([183], Chap. 3).

Definition 16. Let D =
{
Fi, ϕ

i
j

}
be a direct system in C. The direct (or

inductive) limit of this system, written lim−→Fi, is (if it exists) a functor C → C
consisting of an object and a family of morphisms αi : Fi → lim−→Fi with

αi = αj ◦ ϕij such that for any object X and morphisms fi : Fi → X, there
exists a morphism β : lim−→Fi → X such that fi factors through β following
fi = β ◦ αi.
The direct limit is a universal element for the functor D (Definition 12), thus,
if it exists, it is unique up to isomorphism (Theorem 13(ii)). This is why we
have spoken of the inductive limit instead of an inductive limit.

Proposition 17. If C is a category with coequalizers and coproducts indexed
by I, every direct system indexed by I in C has a direct limit.

Proof. 1) Assume that C = Set or Top and proceed as follows: define

lim−→Fi =

(
∐

i∈I
Fi

)

/R

whereR is the equivalence relation in
∐
i∈I Fi given by xi ≡ xj (modR) (with

xi ∈ Fi, xj ∈ Fj) if for any (i, j) ∈ I × I there exists an upper bound k of i
and j such that ϕik (xi) = ϕjk (xj). One obtains from this definition canonical
morphisms αi : Fi → lim−→ Fi sending xi to its equivalence class.

2) Assume that C = Ab or, more generally, that C is an abelian category
(1.2.4.3) with arbitrary coproducts. Consider the morphisms αi defined by
the compositions below:

αi : Fi −→
(
∐

i∈I
Fi

)

−→
(
∐

i∈I
Fi

)

/

⎛

⎝
∑

i�j
im
(
ιjϕ

i
j − ιi

)
⎞

⎠

where ιi is the canonical injection Fi →
∐
i∈I Fi. The object on the right-

hand side is lim−→Fi; this object, along with the morphisms αi : Fi → lim−→Fi,

is the direct limit of the family of objects (Fi)i∈I ([148], Prop.1.8).
3) For the general case, see ([282], Chap. I, Theorem 4.1) and, for the dual

statement, ([224], sect. V.2, Theorem 1).

When a category satisfies the condition in the above proposition for every
inverse system I, it is called complete. Let us give some examples.

Example 18. Let 	 be the trivial preorder relation in I, i.e., i 	 j if, and
only if i = j. Then there is no ϕij with i �= j and xiRxj if, and only if
i = j, thus R is the equality. Therefore lim−→Fi =

∐
Fi.
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Example 19. Let I = N and (Fi) be a sequence of subsets (resp., sub-
monoids, subgroups, submodules) of a set (resp., a monoid, a group, a left
R-module) X such that Fi ⊆ Fi+1; let ϕij : Fi → Fj be the inclusion for
i ≤ j. Obviously,

{
Fi, ϕ

i
j

}
is a direct system in Set (resp., Mon, Grp,

RMod) and the object lim−→Fi is the set of classes x̄i where xi ≡ xj (modR)

if, and only if there exists k ≥ max (i, j) such that xi and xj belong to the
same set Fk. Therefore, lim−→Fi =

⋃
i≥0 Fi. This is called the directed union

of the sequence (Fi).

Example 20. Let X be a topological space, let Y be a set, let P be a nonempty
part of X, and let (Vi)i∈I be a filtering family of neighborhoods of P (such
that i 	 j if, and only if Vj ⊆ Vi). Let Fi be the set of all maps Vi → Y
and, for any pair (i, j) such that i 	 j, let ϕij : Fi → Fj be such that
for any f : Vi → Y , ϕij (f) = f |Vj

(the restriction of f to Vj). Then
D =

{
Fi, ϕ

i
j

}
is a direct system in the category C, the objects of which are

the functions defined in a neighborhood of P and the morphisms of which are
the restrictions to a neighborhood of P ; lim

−→Fi is the set of germs of maps
defined in a neighborhood of P .

A germ can also defined as an equivalent class of functions defined in a
neighborhood of P ; the equivalence relation R is defined as follows: let U
and W be two neighborhoods of P , and let f : U → Y , g : W → Y be
two functions; then f ≡ g (modR) if, and only if f and g coincide in a
neighborhood of P , and the class of f is its germ. Such a germ can be viewed–
roughly speaking – as a function f : U → Y where U is a neighborhood of P
which is ”small enough”.

If Y is a topological space, one can define germs of continuous functions;
if both X and Y are differentiable manifolds, one can define germs of C∞

functions (taking for the Vi open neighborhoods), etc.

1.2.3.5 Inverse (or projective) Limits

The definition and the construction of inverse limits is ”dual” of that of direct
limits, i.e., an inverse limit in a category C is a direct limit in the category
Cop.

The definition of an inverse system is obtained by dualizing Definition 15.
More specifically, let C be a category, let (Fi)i∈I be a family of objects of
C and for each pair (i, j) ∈ I × I such that i 	 j, let ψji : Fj → Fi be a
morphism for which

(1’) ψii = IdFi for all i ∈ I;
(2’) if i 	 j 	 k, ψki = ψji ◦ ψ

k
j .

Definition 21. I =
{
Fi, ψ

j
i

}
is an inverse system in C with index set I.

An inverse system can be proved to be a contravariant functor.
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Definition 22. Let
{
Fi, ψ

j
i

}
be an inverse system in C. The inverse limit

(also called the projective limit) of this system, written lim←−Fi, is (if it exists)
a functor C → C consisting of an object and a family of morphisms αi :
lim←− Fi → Fi with αi = ψji ◦ αj such that for any object X and morphisms
fi : X → Fi, there exists a morphism β : X → lim←− Fi such that fi factors
through β following fi = αi ◦ β.

The inverse limit is a universal element for the functor I, thus, if it exists, it
is unique up to isomorphism.

Proposition 23. If C is a category with equalizers and products indexed by
I, every inverse system indexed by I in C has an inverse limit.

Proof. Dualize the proof of Proposition 17. Let us detail the case where
C = Set (the same construction is valid when C is Mon, Grp, Rgn, RMod
or Top). For each i ∈ I, let πj :

∏
i∈I Fi → Fj be the canonical projection

with index j and define

lim←− Fi =
{
(xi) ∈

∏

i∈I Fi : xi = ψji (xj) whenever i 	 j
}

and αj : lim←− Fi → Fj as the restriction πj |Γ where Γ � lim←− Fi. One can
easily check that this construction solves the universal problem.

When a category satisfies the condition in the above proposition for every
direct system D, it is called cocomplete. Let us give some examples:

Example 24. Let 	 be the trivial preorder relation in I (Example 18).
Then lim←− Fi =

∏
i∈I Fi.

Example 25. If
{
Fi, ψ

j
i

}
is an inverse system with index I and I has a top

element ∞, then lim←−Fi = F∞.

1.2.3.6 Image and Exactness of a Functor

Let F : C → D be a functor.

Definition 26. The image of F, written F (C), is a class consisting of two
subclasses: that of all objects F (X), X ∈ Ob(C), and that of all morphisms
F (f), f ∈ Mor (C).

Lemma 27. The image F (C) is a subcategory of D if F is injective.

Proof. Let A,A′ ∈ C and f1 : A1 → A, f2 : A′ → A2 be such that F (f1)
and F (f2) are composable in D, so that F (f2) ◦ F (f1) ∈ Mor (D). This
means that F (A) = F (A′). If F is injective, this implies A = A′, thus
(since C is a category) f1 and f2 are composable, i.e., f2 ◦ f1 ∈ Mor (C), and
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F (f2) ◦ F (f1) = F (f2 ◦ f1) is a morphism of F (C). Therefore, F (C) is a
category.

Assume that C and D have finite projective (resp., inductive) limits.

Definition 28. The functor F is left (resp., right) exact if it commutes with
finite projective (resp., inductive) limits; F is exact if it is both left and right
exact. A functor which is both faithful and exact is called faithfully exact.

1.2.3.7 Adjoint Functors

Let A, C be two categories and let F : A → C, G : C → A be two functors.

Definition 29. The ordered pair (F,G) is an adjoint pair (i.e., G is a right
adjoint to F and F is a left adjoint to G) if for each A ∈ Ob (A) and C ∈
Ob (C) there is a bijection

τ = τA,C : HomC (F (A) , C)→ HomD (A,G (C))

which is natural in each variable (1.2.3.2).

The importance of this notion is due to the following theorem ([183],
Prop. 2.1.10):

Theorem 30. Let A and C be categories, and let F : A → C and G : C → A
be two functors. Assume that (F,G) is an adjoint pair.
(i) If A has direct (resp., inverse) limits indexed by a filtering set of indices I
(1.2.3.4), (1.2.3.5), then F (resp., G) commutes with direct (resp., inverse)
limits indexed by I.
(ii) In particular, if A has finite direct (resp., inverse) limits, F is right exact
(resp., G is left exact).

Remark 31. The converse of Theorem 30 holds true under certain additional
conditions, according to Freyd’s Adjoint Functor Theorem; see ([224], Sect.
5.6) for more details.

1.2.4 Abelian Categories

1.2.4.1 Additive Categories

A preadditive category is a category C in which each set HomC (X,Y ) (X ,
Y ∈ Ob (C)) is an abelian group and for which composition of morphisms is
bilinear. Let C and D be preadditive categories; then a functor F : C → D is
said to be additive if its arrow-map is Z-linear.

Lemma 32. Let C, D be two categories, the former preadditive, the latter
arbitrary, and let F : C → D be a functor. If F is faithful, then F is injec-
tive and its image F (C) is a subcategory of D. In addition, F induces an
isomorphism F : C−̃→F (C).
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Proof. For any object X ∈ C consider the zero map OX : X → X ; if
F (X) = F (X ′) (X,X ′ ∈ C), then F (OX) = F (OX′), thus OX = OX′ if F is
faithful, and this implies X = X ′ by (1.3). Therefore, F is injective, and F (C)
is a subcategory of D by Lemma 27. The induced functor F : C → F (C) is still
injective and faithful, and by construction (1.2.3.1) it is full and surjective,
thus it is an isomorphism (Definition 11(iii)).

Item (1) below is a generalization of Proposition 4; its proof is detailed in
([80], Theorem 2.1.1):

Lemma and Definition 33. (1) Let C be a preadditive category with a zero
object 0 (1.2.2.1), let (Xi)1≤i≤n be a finite family of objects of C , let X be
an object of C, and define 2n morphisms πi : X → Xi, ιi : Xi → X, such
that

πiιj = δijIdXj .

The following conditions are equivalent:
(i)
∑

1≤i≤n ιiπi = IdX .
(ii)

X =
∐

1≤i≤n
Xi

with canonical injections ιi : Xi → X .
(iii)

X =
∏

1≤i≤n
Xi

with canonical projections πi : X → Xi.
(2) When the equivalent conditions of (1) hold, (X,πi, ιi) is called a biprod-
uct of the Xi and is denoted by

X =
⊕

1≤i≤n
Xi.

An additive category is a preadditive category which has a zero object 0 and
a biproduct

⊕
of each pair of its objects.

Some additive categories have arbitrary products and coproducts, for ex-
ample RMod. But not all additive categories have arbitrary products and
coproducts, e.g., the category of finite abelian groups and Z-linear homomor-
phisms.

Let f : X → Y ; the kernel of f , denoted by ker f , is the equalizer of
(f, 0). Theforefore, ker f is a morphism κ : K → X such that f ◦ κ = 0
and every morphism α such that f ◦ α = 0 factors uniquely through κ (i.e.,
α = κ◦α′ for a unique α′); if it exists, ker f is unique up to isomorphism since
it is a universal element–and, more specifically, a universal morphism. The
cokernel of f , denoted by cokerf , is dually defined as the coequalizer of (f, 0).
Therefore, coker f is a morphism γ : Y → C such that γ ◦ f = 0 and every
morphism β such that β ◦ f = 0 factors uniquely through γ (i.e., β = β′ ◦ γ
for a unique β′); if it exists, coker f is unique up to isomorphism since it is,
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like ker f , a universal morphism. Since ker f is a monomorphism and coker f
is an epimorphism, it can be convenient to think of ker f : K ↪→ X as a
subobject of X and of coker f : Y � C as a quotient of Y . As easily seen,
ker f is the largest subobject of X annihilated by f and coker f is the largest
quotient of Y annihilating f . Assuming that ker f and coker f exist, we can
also define the image and the coimage of f , respectively written im f and
coim f , as follows:

im f = ker coker f , coim f = coker ker f . (1.6)

If they exist, im f and coim f are unique up to isomorphism and are, respec-
tively, a subobject of Y and a quotient of X .

1.2.4.2 Preabelian Categories

A preabelian category is an additive category in which each arrow has a kernel
and a cokernel (thus an image and a coimage). As easily seen, a category C
is preabelian if, and only if the opposite category Cop is preabelian too.

Consider a morphism f : X → Y . The following properties are equiva-
lent: (i) f is a monomorphism (resp., an epimorphism); (ii) ker f = 0 (resp.,
coker f = 0); (iii) coim f ∼= X (resp., im f = Y ). In addition, for any mor-
phism f : X → Y we have

ker coker ker f = ker f , coker ker coker f = coker f (1.7)

as shown below (Example 100). In particular,

im ker g = ker g, coimcokeru = cokeru. (1.8)

Therefore by (1.6) we obtain:

Lemma 34. (i) ι is a kernel if, and only if ι = im ι.
(ii) β is a cokernel if, and only if β = coimβ.
(iii) If ι = im f , then coker ι = coker f and im ι = im f = ι.

Consider the following diagram in a preabelian category, where π : X �
coim f is the canonical epimorphism and ι : im f ↪→ Y is the inclusion:

ker f κ−→ X
f−→ Y

γ−→ coker f
π ↓ ↑ ι

coim f
f̄−→ im f

Lemma 35. There exists a unique morphism f̄ : coim f → im f , called the
induced morphism, for which the above diagram is commutative.

Proof. Since f ◦κ = 0 and π = coim f = cokerκ, there exists f̃ : coim f → Y
such that f factors uniquely through π, say f = f̃ ◦ π where f̃ : coim f → Y ;
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in addition, γ ◦ f = γ ◦ f̃ ◦ π = 0 and π is an epimorphism, thus γ ◦ f̃ = 0.
Hence f̃ factors uniquely through ker γ = im f , i.e., there exists a unique
morphism f̄ : coim f → im f such that f̃ = ι ◦ f̄ where ι : im f → Y is the
inclusion.

Example 36. (1) In the category TVS of all topological vector spaces over
k (k = R or C) and k-linear continuous maps (see Subsect. 1.7.1 below), let
f : X → Y be a morphism (i.e., by definition, a k-linear continuous map).
Then ker f = f−1 ({0}), im f = f (X), coker f = Y/ im f and coim f =
X/ kerf . Consider the induced morphism f̄ : coim f → coker f . When f̄ is
an isomorphism, f is called a strict morphism; this happens if, and only if
the following equivalent conditions are satisfied ([34], n◦III.2.8):
(a) f is relatively open, i.e., the image f (U) of any open subset of X is open
in f (X);
(b) the image f (U ) of any open neighborhood of 0 in X is a neighborhood of
0 in f (X).
(2) The same holds in the category LCS of all locally convex topological k-
spaces (Subsect. 1.7.2 below), which is a full subcategory of TVS.

Example 37. (i) The category HTVS of all Hausdorff topological k-vector
spaces (k = R or C) and continuous k-linear maps is a full subcategory of
TVS. In HTVS, let f : X → Y be a morphism. Then ker f = f−1 ({0}),
im f = f (X) (where f (X) is the closure of the space f (X) in Y ), coker f =
Y/ im f and coim f = X/ ker f (see Exercise 195). When the induced mor-
phism f̄ is an isomorphism in HTVS, f is called a strict morphism.
(ii) Let HLCS be the category of Hausdorff locally convex k-spaces; HLCS
is a full subcategory of both LCS and HTVS. In HLCS, a morphism
f : X → Y is strict if, and only if the following two conditions hold ([36],
§IV.4, Prop. 2):
(c1) im tf is closed in the weak* dual X ′σ of X;
(c2) for every equicontinuous part A of X ′ included in im tf , there exists an
equicontinuous part B of Y ′ such that A = tf (B).
A continuous k-linear map f : Xσ → Yσ (where Xσ and Yσ denote the k-
spaces X and Y endowed with the weakened topologies) is a strict morphism
(and is called a weak strict morphism) if, and only if (c1) holds ([36], §II.6,
Corol. 3 of Prop. 7).
(iii) The category Frt of all Fréchet k-spaces is a full subcategory of HTVS
and the category Ban of all Banach k-spaces is a full subcategory of Frt
(see Subsect. 1.7.3 below). In Frt, the following conditions are equivalent,
according to the Banach-Schauder theorem ([36], n◦IV.4.2):
(α) f : X → Y is a strict morphism;
(β) f (X) is closed in Y ;
(γ) tf : Y ′σ → X ′σ is a strict morphism;
(δ) f is a weak strict morphism.
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Definition 38. A preabelian category is called semiabelian if for any mor-
phism f , the induced morphism f is a bimorphism (1.2.2.1).

See Exercise 196. The terminology introduced in Examples 36 and 37 is now
generalized.

Definition 39. In a preabelian category C, a morphism f is said to be strict
if the induced morphism f̄ is an isomorphism.

Remark 40. Let f : X → Y be a strict monomorphism (resp., epimorphism)
in a preabelian category C. Then f is a kernel (resp., a cokernel) of γ : Y �
coker f (resp., ι : ker f ↪→ X). (See Exercise 198.)

Definition 41. In a preabelian category C, a sequence

X1
f1−→ X2

f2−→ X3 −→ 0 (1.9)

is exact if f2 (or, more specifically, (f2, X3)) is a cokernel of f1. Dually, a
sequence

X1
f1←− X2

f2←− X3 ←− 0 (1.10)

is exact if f2 (or, more specifically, (f2, X3)) is a kernel of f1.

Left exactness and right exactness of a functor have been defined in an arbi-
trary category with finite direct and inverse limits (Definition 28). In a pre-
abelian category, these notions can be expressed in terms of exact sequences,
as shown by the theorem below ([183], proof of Prop. 8.3.18).

Theorem 42. Let C be a preabelian category.
(i) C has finite direct and inverse limits.
(ii) An additive covariant functor F is left exact if, and only if exactness of
(1.10) implies exactness of

F (X1)
F(f1)←− F (X2)

F(f2)←− F (X3)←− 0. (1.11)

Such a functor is right exact if, and only if exactness of (1.9) implies exact-
ness of

F (X1)
F(f1)−→ F (X2)

F(f2)−→ F (X3) −→ 0. (1.12)

(iii) Dually, a contravariant additive functor F is left (resp., right) exact
if, and only if exactness of (1.9) (resp., (1.10)) implies exactness of (1.11)
(resp., (1.12)).
(iv) A functor (covariant or contravariant) is exact if is both left and right
exact.

Theorem and Definition 43. Let C be an additive category.
(1) The bifunctor HomC (•, •) : C ×C → Ab (where Ab denotes the category
of abelian groups and Z-linear maps) is defined as follows:
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(i) For any object X of C, the functor AX = HomC (X, •) : C → Ab is such
that for any object Y ∈ C, AX (Y ) is the abelian group HomC (X,Y ) and for
any morphism γ : Y → Y ′ of C, AX (γ) is the left-composition by γ, i.e., for
any morphism f : X −→ Y , AX (γ) (f) = γf ;
(ii) For any object Y of C, the functor BY = HomC (•, Y ) is such that
for any object X ∈ C, BY (X) is again the abelian group HomC (X,Y )
and for any morphism α : X ′ → X, BY (α) is the right-composition by α,
i.e., for any morphism g : X −→ Y , BY (α) (g) = gα.

See the two schemes below.

Y
γ−→ Y ′

↖f ↑ AX (γ) (f)
X

X
α←− X ′

↘g ↓ BY (α) (g)

Y

(2) The functor AX = HomC (X, •) is covariant and the functor BY =
HomC (•, Y ) is contravariant. If C is preabelian, these two functors are left
exact.
(3) Assuming that C has direct and inverse limits, in particular if it has
arbitrary products (resp., coproducts), an object X is a generator (resp., a
cogenerator) in C (1.2.2.4) if, and only if the functor AX = HomC (X, •)
(resp., BX = HomC (•, X)) is faithful.

Proof. (2): See ([183], Prop. 3.3.7); see also Exercise 200. (3) is clear.

Definition 44. In a preabelian category C, an object X is called projective
if HomC (X, •) transforms epimorphisms into surjections, and injective if
HomC (•, X) transforms monomorphisms into surjections.

Lemma 45. (1) An object I is injective in a preabelian category C if, and
only if it is projective in the category Cop.
(2) Specifically,
(i) An object P is projective if, and only if, given a diagram with exact row
as shown, there exists a map P → A to make the triangle commutative.

P
↓

A −→ B −→ 0
=⇒

P
↙ ↓

A −→ B −→ 0

(ii) Dually, an object I is injective if, and only if, given a diagram with exact
row as shown, there exists a map B → I to make the triangle commutative.

0 −→ A −→ B
↓
I

=⇒
0 −→ A −→ B

↓ ↙
I
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(3) Assuming that C has coproducts (resp., products) with index set I (possibly
filtering),

P =
∐

i∈I Pi (resp., I =
∏

i∈I Ii)

is projective (resp., injective) if, and only if each Pi (resp., Ii) is projective
(resp., injective).

Proof. (1) and (2) are clear. For (3), see ([249], Chap. II, Prop. 14.3).

1.2.4.3 Abelian Categories

The proof of Item (1) below is easy:

Lemma and Definition 46. Let C be a preabelian category.
(1) The following conditions are equivalent:
(i) Every morphism is strict.
(ii) Every monomorphism is a kernel and every epimorphism is a cokernel.
(2) A preabelian category C is abelian if it satisfies the above equivalent con-
ditions.

Therefore, every abelian category is a semiabelian category (Definition 38),
but the converse does not hold.

Let f : X → Y and g : Y → Z be two morphisms in an abelian category
C and consider the following diagram:

X
f−→ Y

g−→ Z.

Lemma and Definition 47. (1) The following conditions are equivalent:
(i) im f = ker g;
(ii) coker f = coim g.
(2) The pair of composable morphisms (f, g) is said to be exact if the above
equivalent conditions are satisfied.

Proof. (1). (i)⇒(ii): If (i) holds, then ker cokerf = ker g and
coker ker coker f = coker ker g = coim g, thus (ii) holds by (1.7).

(ii)⇒(i): If (ii) holds, then coker f = coker ker g and ker coker f =
ker coker ker g, thus (i) holds by (1.7).

Consider the following sequence of composable morphisms in an abelian
category:

... −→ Xn−1
fn−→ Xn

fn+1−→ Xn+1 −→ ... (n ≥ 1)

Definition 48. (i) The above sequence is said to be exact at Xn if (fn, fn+1)
is exact, and it is said to be exact if each adjacent pair of morphisms is exact.
(ii) Then, if n = 4 and X0 = X4 = 0, this sequence is called a short exact
sequence.
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(iii) A sequence

X
f−→ Y

g−→ Z

is called inexact if im f �= ker g.

Proposition 49. (1) A functor F between abelian categories is faithful if,
and only if it preserves inexact sequences.
(2) An object X is projective (resp., injective) in an abelian category C if,
and only if the functor HomC (X, •) (resp., HomC (•, X)) is exact.

Proof. (1): See ([80], Proposition 2.2.6). (2): See ([249], Sect. II.14).

As easily shown, the categories RMod and ModR (detailed in Sect. 3.2
below) are abelian and can be considered as the ”paradigms” of all abelian
categories due to the following theorem, sometimes called the Full Embedding
Theorem ([249], Chap. VI, Theorem 7.2), and stated below without proof:

Theorem 50. (Freyd-Mitchell theorem). If C is a small abelian category,
then there exist a ring R and a fully faithful exact functor F : C → RMod
(Definitions 11 & 28). Therefore, C is equivalent to a fully abelian subcategory
of RMod.

The above theorem can be used to generalize some results, classical in the
category RMod, to any small abelian category. So are the Five lemma, the
Snake lemma and the Nine lemma (also called the 3×3 lemma): see Exercise
201, as well as Exercise 674 and Theorem 644(ii) below.

We can now establish Noether’s isomorphism theorems which are very
important for the sequel. For this we need the notion of lattice, detailed a
little further (Definition 108(i)).

Lemma 51. Let X be an object of an abelian category C. The family of all
subobjects of X is a lattice.

Proof. (i) Let ((A, ιA) , (B, ιB)) be a pair of subobjects of X of a category C
”having pullbacks”, e.g., an abelian category. As shown in ([224], Sect. V.7),
there exists a subobject (C, ιC) of X such that

ιC � ιA, ιC � ιB

and whenever (D, ιD) is a subobject of X such that

ιD � ιA, ιD � ιB ,

then ιD � ιC . The subobject (C, ιC) is called the greatest lower bound, or
meet, of ((A, ιA) , (B, ιB)), and is denoted by

(C, ιC) = (A, ιA) ∧ (B, ιB) ;
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C is also called (abusing the language) the intersection of A and B, and is
denoted as

C = A ∩B. (1.13)

(ii) If C is an ”exact category”–a stronger condition than having pullbacks
([249], Sect. I.15)–, then, as shown in ([249], Chap. I, Corol. 15.3), every pair
of subobjects ((A, ιA) , (B, ιB)) of the same object X has a least upper bound,
also called their joint, and denoted by

(D, ιD) = (A, ιA) ∨ (B, ιB) ;

D is also called (abusing the language) the union of A and B, (written D
= A ∪ B). In particular, dualizing (i) in an abelian category C, every pair
of factor objects has a greatest lower bound, and since ker and coker are
order-reversing and inverses of each other (Example 100 below), every pair
of subobjects has a least upper bound.

The above can be generalized in an obvious way, defining the union and the
intersection of an arbitrary family of subobjects of X ∈ C (although they do
not necessarily exist). In an abelian category, it is often convenient to denote
the union of A and B as a sum, i.e.,

D = A+ B. (1.14)

Theorem 52. (Noether’s isomorphism theorems in an abelian category). In
an abelian category C, the following hold:
(1) Let f : X → Y . Then

X/ kerf ∼= im f

(first isomorphism).
(2) Let X ∈ C and Y, Z ⊆ X . Then

Y/ (Y ∩ Z) ∼= (Y + Z) /Z

(second isomorphism).
(3) Let X ∈ C and Z ⊆ Y ⊆ X. Then

X/Y ∼= (X/Z) / (Y/Z)

(third isomorphism).

Proof. (1) is obvious, whereas (2) and (3) are consequences of the Nine
lemma: see ([127], Sect. 2.66) or ([249], Sect. I.16).

The proof of Item (2) below is left to the reader (it is detailed in [80], Corol.
2.1.5):
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Lemma and Definition 53. In an abelian category C, consider a short ex-
act sequence

0 −→ X ′ ι−→ X
ϕ−→ X ′′ −→ 0. (1.15)

(1) X is called an extension of X ′ by X ′′, and (X ′, ι) = kerϕ, (X ′′, ϕ) =
coker ι.
(2) The following conditions are equivalent:
(i) ι is a section, i.e., there exists a morphism ρ : X → X ′ such that ρι =
IdX′ . (Then, ρ is a retraction associated with ι.)
(ii) ϕ is a retraction, i.e., there exists σ : X ′′ → X such that ϕσ = IdX′′ .
(Then, σ is a section associated with ϕ.)
(iii) X ∼= X ′

⊕
X ′′ with canonical injections ι, σ and canonical projections

ρ, ϕ.
(3) When the equivalent conditions of (2) hold, the short exact sequence (1.15)
is said to be split.

Theorem 54. Let C be an abelian category.
(1) Let P be an object of C. The following conditions are equivalent:
(i) P is projective.
(ii) Every short exact sequence

0 −→ A
ι−→ B

ϕ−→ P −→ 0

with P in the third place splits.
(2) Dually, let I be an object of C. The following conditions are equivalent:
(i) I is injective.
(ii) Every short exact sequence

0 −→ I
ι−→ B

ϕ−→ C −→ 0

with I in the first place splits.

Proof. This theorem is proved in ([80], Theorems 2.2.8 & 2.2.9) using a
direct approach. One can also proceed as follows: deduce (1) from Theorem
50 and Theorem 573 below; then deduce (2) from (1) by duality.

1.2.4.4 Grothendieck Categories

A Grothendieck category is an abelian category with a generator and arbitrary
coproducts, for which the following condition holds (Grothendieck’s AB5 ax-
iom [148]): if A ∈ C, (Ai)i∈I is a directed increasing family of subobjects of
A, and B ⊆ A, then

∑
i∈I (Ai ∩B) =

(∑
i∈I Ai

)
∩B.



1.3 Monoids 27

Definition 55. Let C be a Grothendieck category.
(i) An object A of C is said to be of finite type if for each directed increasing
family (Ai)i∈I of subobjects of A with

∑
i∈I Ai = A, there exists an index

j ∈ I such that Aj = A.
(ii) An object A of C is called coherent if (a) it is of finite type and (b) for
each morphism f : B → A with B of finite type, ker f is also of finite type.
The full subcategory of C, the objects of which are coherent, is denoted by
Coh (C).

1.3 Monoids

The reader already knows (at least) two examples of monoids. One of them
is the set N � {0, 1, 2, ...} of all nonnegative integers, endowed with the usual
multiplication. . The other one is the set N× � {1, 2, ...} of all natural
integers, again endowed with the usual multiplication. In these monoids, the
bases of arithmetic can be developed: one can define the notions of multiple
and of divisor of a number, of greatest common multiple and least common
divisor of several numbers, etc. If xy = xz in N×, then y = z. This does not
hold in N � {0, 1, 2, ...} since x can be zero.

These simple examples are generalized in the sequel.

1.3.1 Monoids and Cancellation Monoids

1.3.1.1 Basic Notions

Definition 56. A monoid is a set M equipped with an associative internal
law � for which M has a unit element (i.e., an element e such that x � e =
x = e � x for any x ∈M); e is also called the neutral element of the internal
law �.

The unit element of a monoid is unique. Indeed, if e, e′ are unit elements,
we have e = e � e′ = e′.

Definition 57. (i) A cancellation monoid M is a monoid with the following
property: for any x, y, z ∈M, x � y = x � z or y � x = z � x implies y = z.
(ii) A monoid M is said to be commutative if x� y = y � x for any x, y ∈M.

Remark 58. In everything that follows, a monoid (as well as a group, a ring,
etc.) is possibly noncommutative except when otherwise stated. Nevertheless,
to avoid confusions, a skew field is called a division ring, as usual in English,
and a field is a commutative division ring. See Definition 226 below.

The internal law of a monoid M is often denoted as a multiplication (i.e.,
x � y is denoted by x y or x.y) and the unit element by 1. Then, given two
subsets A and B of M, AB is the set of all elements a b, a ∈ A, b ∈ B.
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When there is no risk of confusion, the internal law of a commutative
monoid M may be written additively (i.e., x�y is written x+y) and the unit
element is then denoted by 0 (called the zero element); in this case A + B
(A,B ⊆M) is the set of all elements a + b, a ∈ A, b ∈ B.

Definition 59. The opposite of a monoid M, written Mop, is the set M
endowed with the internal law (x, y) �→ x . y � y x.

When a monoid M is commutative, the distinction between M and its op-
posite is irrelevant.

1.3.1.2 Rigid Monoids

Definition 60. A cancellation monoid M is said to be rigid if whenever
a b′ = b a′ (a, b, a′, b′ ∈M), there exists z ∈ M such that either a = b z or
b = a z.

See Exercise 203.

1.3.1.3 Zero in a Multiplicative Monoid

Definition 61. A zero of a monoid M (multiplicatively noted) is an element
denoted by 0 such that for any elements x, y ∈M, x 0 = 0 y = 0. If a monoid
M has a zero, it is called a monoid with zero.

A zero of a monoid with zero is unique. If M is a monoid without zero, one
can prove that one zero can be added to M, yielding a monoid with zero
denoted by M0.

Notation 62. For any monoid M, one sets M× = (M ∪ {0}) \ {0}.
A monoid with zero is not a cancellation monoid; if M is a monoid with zero,
M× is a submonoid without zero and can be a cancellation monoid.

1.3.2 Ideals a Monoid, and Other Notions

1.3.2.1 Submonoids, Ideals and Units

Definition 63. (i) A submonoid H of a monoid M is a set H ⊆ M, con-
taining the unit element 1, and such that x y ∈ H whenever x, y ∈ H. A
submonoid of M is proper if it is different from M.
(ii) A left (resp., right) ideal in M is a nonempty set a ⊆ M such that
M a = a (resp., aM = a); a two-sided ideal is a left ideal which is a right
ideal. An ideal means a two-sided ideal, except when otherwise stated. A left
(resp., right, two-sided) ideal in M is proper if it is different from M.
(iii) Let a ∈ M; the left (resp., right) principal ideal generated by a is the
set M a (resp., aM). The principal ideal generated by a (i.e., M aM) is
denoted by (a).
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(iv) An element x ∈M is left- (resp., right-) invertible if there exists y ∈M
such that y x = 1 (resp., x y = 1).
(v) A unit of a monoid M is an element u which is invertible, i.e., both left-
and right-invertible; the set of units of M is denoted by U (M) (an element
which is not a unit is a nonunit).
(vi) Two elements a and b are said to be associated if a = u b v for some
u, v ∈ U (M); if u = 1 (resp., v = 1), a and b are right- (resp., left-)
associated.

An element u ∈ M is a unit if, and only if there exist v, w ∈ M such that
v u = uw = 1; thus v uw = v = w, i.e., the left- and the right-inverse of a
unit u coincide and are denoted by u−1; U (M) is a group.

Definition 63(iii) can be generalized as follows: let X be a subset of a
monoid M; the intersection of all left ideals containing X is the smallest left
ideal containing X ; it is called the left ideal generated by X and written (X)l.
This definition holds with left and right interchanged and the right (resp.,
two-sided) ideal generated by X is denoted by (X)r (resp., (X)). If X is a
finite set, the left, right and two-sided ideals generated by X are said to be
finitely generated.

Notation 64. (i) a �l M (resp., a �r M, a � M) means that a is a left
(resp., right, two-sided) ideal in the monoid M.
(ii) The set of all left (resp., right, two-sided) ideals in the monoid M is
denoted by Il (M) (resp., Ir (M), I(M)).
(iii) Let α be a cardinal; the set of all left (resp., right, two-sided) ideals in
M generated by a set with cardinal α is denoted by Iαl (M) (resp., Iαr (M),
Iα (M)).
(iv) The set of all left (resp., right, two-sided) finitely generated ideals in M
is denoted by Ifgl (M) (resp., Ifgr (M), Ifg (M)).

From the above, the set of all principal left (resp., right, two-sided) ideals in
M is I1l (M) (resp., I1r (M), I1 (M)).

Lemma 65. Let c, c′ be elements of a cancellation monoid M. Then cM =
c′M if, and only if c and c′ are right-associated.

Proof. If cM = c′M, there exists u, v ∈M such that c = c′ u and c′ = c v.
Therefore, c = c v u and c′ = c′ u v; as a result, v u = u v = 1 which implies
that u is a unit with inverse v. The converse is obvious.

Definition 66. Let M be a monoid.
(i) A left (resp., right, two-sided) ideal m in M is maximal if it is a maximal
element of the set of all proper left (resp., right, two-sided) ideals in M
ordered by inclusion.
(ii) A left (resp., right, two-sided) principal ideal m in M is maximal if it
is a maximal element of the set of all proper left (resp., right, two-sided)
principal ideals in M ordered by inclusion.
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1.3.2.2 Centralizer and Normalizer

Definition 67. Two elements x, y of a monoid M are said to commute if
x y = y x. The set Z (M) consisting those elements c which commute with
all elements of M is called the centre of M and an element of Z (M) is said
to be central.

More general, let A ⊆M.

Definition 68. (i) An element x ∈M is said to centralize A if x commutes
with all elements of A. The set of all x ∈M which centralize A is called the
centralizer of A in M and is denoted by ZM (A).
(ii) An element x ∈ M is said to normalize A if xA = Ax. The set of all
x ∈M which normalize A is called the normalizer of A in M and is denoted
by NM (A).

1.3.2.3 Generator of a Monoid

Definition 69. Let X ⊆ M where M is a monoid; the submonoid of M
generated by X, written [X ], is the smallest monoid containing X, i.e., the
intersection of all monoids containing X; X is called a generator (or a set
of generators) of [X ]. The monoid M is said to be finitely generated if it is
generated by finitely many elements.

An element x belongs to [X ] if, and only if x can be written as a product of
a finite number of elements of X (with the empty product equal to 1).

Example 70. Consider the set N � {0, 1, 2, ...} of all non-negative integers
(endowed with the multiplication) ; the set N× � {1, 2, ...} of all natural
integers is a cancellation monoid and U (N) = U (N×) = {1}. In addition,
N× is generated by the set of primes.

Example 71. The set Matn (R) = nRn of all square matrices of order n ≥ 1
with entries in a ring R, endowed with the multiplication of matrices, is a
monoid with zero. The units of Matn (R) are the invertible matrices (with
inverse in Matn (R)); they form the general linear group of the square matri-
ces of order n over R, denoted by GLn (R). If n > 1, Matn (R) is noncom-
mutative (even if R is commutative) and Matn (R)× is not a cancellation
monoid.

1.3.3 Homomorphisms; Quotient Monoids

1.3.3.1 Homomorphisms

Let C be a concrete category, e.g., the category of monoids (resp., of groups,
of rings). A morphism of C is called a monoid-homomorphism (resp., a



1.3 Monoids 31

group-homomorphism, a ring-homomorphism). (The expressions monoid-
morphism, group-morphism, ring-morphism, etc., are also widely used in the
mathematical community, and sound more modern. But, as pointed out by
Godement [141], they do not make sense from the etymological point of view.
Indeed, the word homomorphism is based on the greek roots óμo –the same–
and μoρϕή –shape; thus a homomorphism is a structure-preserving map, and
”homo” should not be removed. Likewise, the expression ”morphism” is
open to criticism in the theory of categories, but too widely accepted to be
changed.) Similar expressions are used for monomorphisms, epimorphisms,
and isomorphisms of C. More specifically, in the category Mon (1.2.2.2),
we have the following:

Definition 72. Let M and N be two monoids.
(i) A map f : M→ N is a monoid-homomorphism if f (a b) = f (a) f (b) for
any a, b ∈M, and f (1) = 1. This homomorphism is called a monomorphism
(resp., an epimorphism, an isomorphism) if it is injective (resp., surjective,
bijective), and it is then denoted as f : M ↪→ N (resp., f : M � N, f :
M−̃→N). An endomorphism of M is a monoid-homomorphism M → M
and an automorphism of M is an endomorphism which is an isomorphism.
(ii) If there exists an isomorphism f : M−̃→N, the monoids M and N are
said to be isomorphic (written M ∼= N).
(iii) The image of a homomorphism f : M → N is im f � f (M) and its
kernel is ker f � f−1 ({1}) = {x ∈M : f (x) = 1}.
The proof of the following result is easy:

Proposition 73. Let f : M→ N be monoid-homomorphism.
(i) im f and ker f are submonoids of N and M, respectively;
(ii) M is isomorphic to im f if, and only if f is a monomorphism.

Remark 74. By Proposition 73(ii), a monoid-monomorphism f is also
called an embedding since, through f , M is embedded in N (by identifying
M and f (M)).

1.3.3.2 Quotient Monoids

Let R be an equivalence relation in the monoid M (1.2.1.5).

Definition 75. R is said to be compatible with the monoid structure of M if
the relations x ≡ x′ (modR) and y ≡ y′ (modR) imply x y ≡ x′ y′ (modR).

The proof of the following lemma is easy and left to the reader:

Lemma 76. Let R be an equivalence relation in a monoid M. The following
conditions are equivalent:
(i) R is compatible with the monoid structure of M;
(ii) M/R is a monoid (called the quotient monoid of M by R) endowed with
the internal law given by: π (x) π (y) = π (x y) for any x, y ∈M, where π is
the canonical projection.
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Since π is obviously a monoid-epimorphism, we are led to the following:

Definition 77. The above map π is called the canonical epimorphism.

The following result can be easily proved ([26], n◦II.6.7; [27], n◦I.1.6). Item
(ii) is connected with Noether’s third isomorphism theorem (Theorem 52(3)):

Lemma 78. Let R be an equivalence relation in M, compatible with the
monoid structure of M.
(i) An equivalence relation S in M/R is compatible with the monoid struc-
ture of M/R if, and only if S is of the form T /R where T is an equivalence
relation in M, compatible with the monoid structure of M, and such that R
is finer than T .
(ii) Then, the canonical epimorphism M/T � (M/R) / (T /R) is a monoid-
isomorphism.

Let M and N be two monoids and let f : M→ N be a homomorphism. It is
easily seen that the binary relationR defined in M as:R (x, y) if f (x) = f (y),
is an equivalence relation which is compatible with the monoid structure of
M. In addition, one can readily establish Item (1) below:

Lemma and Definition 79. (1) There exists a unique homomorphism f̄ :
M/R→ im f such that f̄ (x̄) = f (x) for any x ∈ x̄, and f̄ is an isomorphism.
(2) The isomorphism f̄ is said to be induced by f (with respect to R).

1.3.4 Products of Monoids

Let (Mi)i∈I be a family of monoids. Its product is the set of all families
(xi)i∈I , xi ∈Mi, and is denoted by

∏
i∈I Mi as in Subsect. 1.2.1.

If Mi = M for all i ∈ I, then
∏
i∈I Mi is denoted by MI .

1.4 Divisibility

1.4.1 Divisors and Multiples

1.4.1.1 Divisors and Multiples: Definitions

Let M be a monoid.

Definition 80. (1) Let a ∈ M and b ∈ M; a is said to left-divide b (or to
be a left-divisor of b), and b is said to be a right-multiple of a, if there exists
c ∈M× such that b = ac. Corresponding definitions hold with left and right
interchanged.
(2) If a both left- and right-divides b, it is said to divide b (or to be a divisor
of b), written a | b, and b is said to be a multiple of a.

Clearly, a ∈ M is a left-divisor of b ∈ M if, and only if bM ⊆ aM; any
element right-associated with a is also a left-divisor of b. Assuming that M
is a monoid with zero, a ∈M is a left-divisor of 0 if, and only if 0 ∈ aM×.
0 is a divisor of itself.
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1.4.1.2 Least Common Multiples and Greatest Common Divisors

Let (ai)i∈I be a nonempty family of elements of M.

Definition 81. (1) An element b ∈M is said to be a common right multiple
of (ai)i∈I if it is a right-multiple of ai for all i ∈ I, i.e.,

bM ⊆
⋂
i∈I aiM;

b is said to be a least common right multiple (lcrm) of (ai)i∈I if (i) it is a
common right multiple of that family and (ii) every common right multiple
of (ai)i∈I is a right multiple of b, i.e., for any b′ ∈ M such that b′M ⊆⋂
i∈I ai M,

b′M ⊆ bM ⊆
⋂
i∈I ai M.

(2) An element b ∈M is said to be a common left divisor of (ai)i∈I if it is
a left-divisor of ai for all i ∈ I, i.e.,

⋃
i∈I aiM ⊆ bM;

b is said to be a greatest common left divisor (gcld) of (ai)i∈I if (i) it is
a common left divisor of that family and (ii) every common left divisor of
(ai)i∈I is a left divisor of b, i.e., for any b′ ∈M such that

⋃
i∈I ai M ⊆ b′M,

⋃
i∈I aiM ⊆ bM ⊆ b′M.

Corresponding definitions hold with left and right interchanged; least common
left multiples (lclm′s) and greatest common right divisors (gcrd′s) are defined
in this way.
(3) An element b ∈ M is said to be a greatest common divisor (gcd) of
(ai)i∈I if it is both a gcld and a gcrd of that family; similarly, b is said to be
a least common multiple (lcm) of (ai)i∈I if if it is both an lclm and an lcrm
of that family.

lcrm′s, gcld′s, lcm′s or gcd′s of a family or of a pair of elements do not exist
in an arbitrary monoid: see Proposition 123, Theorem 131 and Remark 132
below.

Proposition 82. In a cancellation monoid, the lcrm (resp., the lclm) and
the gcld (resp., the gcrd) of a nonempty family of elements, if they exist, are
unique up to right- (resp., left-) associates.

Proof. Let M be a cancellation monoid and b, b′ be lcrm′s or gcld′s of a
family of elements. Then bM = b′M, thus b and b′ are right-associated by
Lemma 65.

In a cancellation monoid, let (ai)i∈I be a family of elements; an lcrm (resp.,
lclm, lcm) of this family is denoted (if it exists) by

[
(ai)i∈I

]
r

(resp.,
[
(ai)i∈I

]
l
,
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[
(ai)i∈I

]
) and a gcld (resp., gcrd, gcd) by

(
(ai)i∈I

)
l

(resp.,
(
(ai)i∈I

)
r
,(

(ai)i∈I
)
) when this notation does not cause confusions.

1.4.2 Regular Elements and Total Divisibility

1.4.2.1 Regular and Invariant Elements; Atoms

Definition 83. (i) If a ∈ M is not a left-divisor of 0 (Definition 80), it is
called right-regular (a left-regular element is likewise defined), and regular if
it is both left- and right-regular.
(ii) An atom (also called an irreducible element) is a regular element which
is a nonunit and cannot be written as the product of two nonunits.

Let a ∈ M. If a can be expressed as a finite product of atoms, this factor-
ization of a is said to be complete and a is said to be atomic.

Lemma 84. Let M be a monoid and let c ∈ M be a regular element. The
following conditions are equivalent:
(i) c is an atom.
(ii) Mc is a maximal left principal ideal in M (Definition 66).
(iii) cM is a maximal right principal ideal in M.

Proof. (i)⇒(ii): Assume that (ii) does not hold. Then there exists a proper
left ideal M b such that M c � M b. Therefore, c ∈ M b, and there exists
a ∈ M such that c = ab. Since M c �= M b, a is a nonunit, and since
M b �= M, b is a nonunit too. Therefore, (i) does not hold.

(ii)⇒(i): Assume that (i) does not hold. Then c = ab where a and b are
nonunits. Then M c �M b �M, and (ii) does not hold.

Likewise, (i)⇔(iii).

Definition 85. (i) A monoid M is said to be atomic if all elements of M×

are regular and atomic.
(ii) An element c of a monoid M is invariant if (a) it is regular and (b)
cM = M c.

If c is invariant, it is clear that: (i) cM = M c = M cM; (ii) any associate of
c is invariant.

Lemma 86. Let c be an invariant element of a monoid M.
(i) The set of left-multiples of c coincides with the set of its right-multiples.
(ii) If M is a cancellation monoid, the set of left-divisors of c coincides with
the set of its right-divisors.

Proof. (i) : If a = b c, there exists b′ such that b c = c b′, thus a = c b′.
(ii) : Let c = a b. There exists b′ such that c b = b′ c, thus a b b = b′ a b

whence a b = b′ a since M is a cancellation monoid. Therefore, c = b′ a.
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Definition 87. If all elements of a monoid M are invariant, M is called an
invariant monoid.

According to the definitions, a commutative monoid M is invariant if, and
only if all its elements are regular. The following is obvious:

Lemma 88. Let M be a monoid such that any element c of M satisfies
Property (b) in Definition 85 (this includes the case of invariant monoids
and of commutative monoids). The following conditions are equivalent for
an ideal a: (i) a �l M; (ii) a �r M; (iii) a � M.

According to the above lemma, if M is an invariant monoid or a commutative
monoid, it is useless to specify whether an ideal in M is a left, a right or a
two-sided ideal.

1.4.2.2 Total Divisibility

Let M be a cancellation monoid.

Definition 89. Let a, b ∈ M; a is said to be a total divisor of b (written
a ‖ b) if there exists an invariant element c such that a | c and c | b.
The following is clear:

Proposition 90. (i) If a ‖ b and b ‖ d, then a ‖ d. (ii) c ‖ c if, and only if
c is an invariant element.

By the above proposition, a ‖ b is a preorder relation but not an order
relation, except if the monoid M is invariant.

1.4.3 Conical Monoids

Definition 91. A monoid M is said to be conical if U (M) = {1}.
Let M be an invariant monoid.

Consider the following equivalence relation A in M: x ≡ y (modA) if x
and y are associated (Definition 63(vi)).

Lemma 92. The equivalence relation A is compatible with the monoid struc-
ture of M.

Proof. According to Definition 75, we have to show that if a ≡ a′ and b ≡ b′,
then a b ≡ a′ b′. Let a′ = u a v �= 0 and b′ = u′ b v′ �= 0 where u, v, u′, v′ are
units; then a′ b′ = u a v u′ b v′. Since a is invariant, there exists v′′ ∈ M×

such that a v = v′′ a, thus a = v′′ a v1 where v1 = v−1 is a unit. We have
a v1 = v′1 a, therefore a = v′′ v′1 a, and since a is regular, 1 = v′′ v′1, thus v′′ is a
unit. Similarly, u′ b = b u′′ where u′′ is a unit. Therefore, a′ b′ = u v′′ a b u′′ v′

and a′ b′ ≡ a b.

The quotient M/R is denoted by M/U (M). The only unit of M/U (M) is
1. Therefore, M/U (M) is a conical monoid.
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Definition 93. Let M be an invariant monoid; M/U (M) is the conical
monoid associated with M.

Example 94. The set Z× of all integers except zero, with the usual mul-
tiplication, is a commutative monoid whose all elements are regular. Two
elements a, b of Z× are associated if, and only if a = ±b. The conical monoid
associated with Z is isomorphic to (and is identified with) N× (Example 70).

1.4.4 Free Monoids

Let X be a set and let X∗ be the set of all finite sequences of elements of
X (called words on X); any element of X∗ can be written w = (xi)1≤i≤n ,
xi ∈ X ; the empty word is written 1. The length of w (written |w|) is n
(thus, |1| = 0). The multiplication in X∗ is defined by juxtaposition: let
v = (xi)n+1≤i≤n+m; then w v = (xi)1≤i≤n+m. It is easily verified that the
multiplication is associative and that the unit element of X∗ is 1, thus X∗ is
a monoid. An atom of X∗ is a word of length 1.

Definition 95. X∗ is the free monoid on X.

Assuming that the free monoid X∗ is commutative, every element w of X∗

can be written
w =

∏

1≤i≤|w|
xi, xi ∈ X

and this factorization is unique in the following sense: if

w =
∏

1≤i≤|w|
yi, yi ∈ X

then there exists a permutation i �→ i′ of E = {1, ..., |w|} (i.e., a bijection
E → E) for which yi = xi′ . This generalizes the unique decomposition of a
natural integer into prime factors (see Subsect. 1.5.6).

1.5 Ordered Sets and Lattices

1.5.1 Posets

1.5.1.1 Basic Notions

Let S be a set; 	 is an order relation defined over S if (i) it is a preorder
relation (1.2.1.4) and (ii) if a 	 b and b 	 a, then a = b. If in addition 	
is such that (iii) for any elements a, b ∈ S, either a 	 b or b 	 a, then 	 is
called a total order relation.

A poset (S,	) is a set S equipped with an order relation 	; (S,	) is
denoted by S when there is no confusion; a ≺ b means a 	 b and a �= b.
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1.5.1.2 Divisibility Monoids

Definition 96. A left-divisibility monoid is a monoid M which is a poset
and in which a 	 b means that M b ⊆ M a. The corresponding definition
holds with left and right interchanged. A left- and right-divisibility monoid
is a divisibility monoid.

Let M be an invariant monoid. Then the following properties are equivalent:

(i) M b ⊆M a,
(ii) bM ⊆ aM,
(iii) M bM ⊆M aM,
(iv) a | b,
(v) a ‖ b.

Lemma 97. If M is an invariant cancellation monoid, the conical monoid
M/U (M) associated with M is a divisibility monoid.

Proof. Let a, b ∈M be such that a | b and b | a, e.g., b = a q and a = b q′.
Therefore a = a q q′, thus q q′ = 1 and q, q′ are units. As a result, a and b
are associated and ā = b̄ (where x̄ is the canonical image of x in M/U (M)),
i.e., divisibility is an order relation in M/U (M).

1.5.2 Bounds and Chains

1.5.2.1 Bounds and Isotone Maps

The facts below are detailed in [225] and [18].
An element m of a poset S is said to be maximal if a ∈ S and m 	 a

implies m = a. Let P ⊆ S; by the greatest (resp., smallest) element of P one
means an element m ∈ P (necessarily unique if it exists) such that a 	 m
(resp., m 	 a) for all a ∈ P ; an element m ∈ S is called an upper bound
(resp., a lower bound) of P if a 	 m (resp., m 	 a) for all a ∈ P . The least
upper bound (resp., the greatest lower bound) of P , if it exists, is the greatest
among all lower bounds (resp., the smallest among all upper bounds) of P
and is denoted by supP (resp., inf P ). If P = {a, b}, inf (a, b) and sup (a, b)
are also denoted by a ∧ b and a ∨ b, and called meet and join, respectively.
The element a is said to cover b if b ≺ a and there exists no element x such
that b ≺ x ≺ b.

Let S, T be two posets; a map ϕ : S → T is said to be order-preserving
(or isotone) if ϕ (a) 	 ϕ (b) for any a, b ∈ S such that a 	 b. (An isotone
map is a morphism in the category of posets.) The relation a 	 b (a, b ∈ S)
is also written b � a; � is an order relation over the set S and is called the
converse of 	. The poset (S,�) is called the dual of (S,	) and is denoted
by S̆. An isotone map ϕ : S → T̆ , viewed as a map S → T , is order-reversing
(or antitone). The map ϕ : S → S̆ such that ϕ (x) = x for any x ∈ S is called
the dualization of S; by dualization, a∧ b is changed to a∨ b and conversely.
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The definition of a Galois connection is very useful:

Definition 98. An isotone (resp., antitone) Galois connection between two
posets (S,	) and (P,	) consists of two isotone (resp., antitone) functions
f : S → P and g : P → S such that

y 	 f (x)⇐⇒ x 	 g (y) (x ∈ S, y ∈ P ) . (1.16)

In what follows, all Galois connections are antitone.

The term ”Galois connection” comes from Galois’ theory: see Remark 726
below (Subsect. 4.2.2).

Denote f by x �→ x⊥ (x ∈ S) and g by y �→ y⊥ (y ∈ P ) (the risk of
confusion is weak). Then (1.16) takes the form

y 	 x⊥ ⇐⇒ x 	 y⊥ (x ∈ S, y ∈ P ) . (1.17)

Proposition 99. Consider two maps S � x �→ x⊥ ∈ P and P � y �→ y⊥ ∈ S.
(1) If these maps form a Galois connection, the following properties hold for
all x ∈ S, y ∈ P :
(i) x 	 x⊥⊥, y 	 y⊥⊥;
(ii) x⊥ = x⊥⊥⊥, y⊥ = y⊥⊥⊥.
(2) Conversely, if (i) holds for all x ∈ S, y ∈ P , then these two maps form
a Galois connection.

Proof. (1). By symmetry, it is sufficient to prove the properties for the
variable x.

(i): Let y = x⊥; then y 	 x⊥ and x 	 y⊥ = x⊥⊥.
(ii): From the above inequality we deduce that x⊥⊥⊥ 	 x⊥ since f = (•)⊥

is antitone; in addition, replacing y by x⊥ in the second inequality of (i) we
get x⊥ 	 x⊥⊥⊥, thus x⊥ = x⊥⊥⊥.

(2). Assume that (i) holds for all x ∈ S, y ∈ P . Then whenever y 	 x⊥,
one obtains y⊥ � x⊥⊥ � x, and by symmetry the maps considered form a
Galois connection.

Example 100. Let C be a preabelian category, let X ∈ C, and consider the
preordered sets PX and QX in (1.2.2.1). Choose a kernel for each u ∈ PX
and a cokernel for each g ∈ QX . Then

u � ker g ⇔ ug = 0⇔ cokeru � g

which means that the functions

ker : QX → PX , coker : PX → QX

constitute a Galois connection. This proves (1.7).
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1.5.2.2 Chains and Intervals

A chain C of a poset S is a totally ordered subset of S, and its length is
|C| � card (C)− 1 (assuming that C is nonempty). The length of S (written
|S|) is the least upper bound of the lengths of its chains. Let C = {x0, ..., xm}
be a chain of S, of finite length |C| = m; a refinement C′ of C is a chain of
finite length such that C ⊆ C′ and C,C′ have the same end-points (i.e., x0

and xm); this refinement is proper if C �= C ′. The chain C = {x0, ..., xm}
is said to be connected if xi covers xi−1, 1 ≤ i ≤ m, i.e., if it has no proper
refinements , i.e., if it is maximal between its two end-points (see Example
111 below).

Let a, b ∈ S; the interval [a, b] is the set of all elements x such that a 	
x 	 b (this interval if empty if the relation a 	 b is not satisfied). An interval
is not a chain in general (see Example 111 below).

A poset S is said to be well-ordered if every nonempty subset of S has a
least element.

1.5.3 Ascending and Descending Chain Conditions

1.5.3.1 Noetherian Posets, and Artinian Posets

Definition 101. A poset S satisfies the ascending chain condition (ACC),
or is Noetherian, when every nonempty subset of S has a maximal element.
It satisfies the descending chain condition (DCC), or is Artinian, when its
dual S̆ satisfies ACC.

Let M be a monoid and consider the sets Il (M) and Iαl (M) for some cardinal
α (Notation 64). These sets are posets ordered by inclusion.

Definition 102. (i) The monoid M is said to satisfy left ACC (resp., ACCα)
if Il (M) (resp., Iαl (M)) satisfies ACC. This definition holds with ACC
replaced by DCC, and with left replaced by right or two-sided (mutatis
mutandis).
(ii) The monoid M is said to be left Noetherian (resp., Artinian) if it satis-
fies left ACC (resp., DCC); this definition holds with left replaced by right
or two-sided.

Proposition 103. Let M be a cancellable monoid. If M satisfies left and
right ACC1, it is atomic.

Proof. Let c ∈M. Then cM �= M if, and only if c is a nonunit by Lemma
65, and in this case by right ACC1 there exists a maximal principal right ideal
p1 M such that cM ⊆ p1 M �M. This means that c = p1 c1 and p1 is an
atom. Therefore, M c = M p1 c1 and since c and c1 are not left-associated,
M c �M c1 by Lemma 65. Continuing in this way, we get a strictly ascending
chain of principal left ideals
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M c �M c1 �M c2 � ...

which must terminate by left ACC1. Therefore, every element of M is either
a unit or a finite product of atoms, i.e., M is atomic.

Lemma 104. A subset C of a poset S is well-ordered if, and only if it is an
Artinian chain.

Proof. Let C ⊆ S be well-ordered and a, b ∈ C (assuming that C is
nonempty). The set {a, b} has a least element, therefore a ≺ b or a = b or
b ≺ a, i.e., C is a chain. Let X be a subset of C; X has a least element, thus
C satisfies DCC. Conversely, an Artinian chain is obviously well-ordered.

The following result is less obvious:

Proposition 105. Let S be a poset. The following properties are equivalent:
(i) S is Noetherian; (ii) every chain of S̆ is well-ordered; (iii) every well-
ordered subset of S is finite.

Proof. We will prove that (i)⇒(ii)⇒(iii)⇒(i).
(iii)⇒(i): If (i) fails, then S contains a nonempty subset X which does not

have a maximal element. Let x1 ∈ X ; since x1 is not maximal, there exists
x2 ∈ X such that x2 � x1, etc., so that there exists an infinite ascending
chain x1 ≺ x2 ≺ ... and (iii) fails.

(ii)⇒(iii): If (iii) fails, S contains a well-ordered subset C which is infinite;
C is an Artinian chain by Lemma 104. Let C = {x0, x1, ..} with

x0 ≺ x1 ≺ ...

This set does not have a maximal element, thus it is not well-ordered in S̆
and (ii) fails.

(i)⇒(ii): If (ii) fails, some chain C̆ of S̆ is not well-ordered, therefore some
subchain does not have a least element and S̆ does not satisfy DCC, i.e., S
is not Noetherian and (i) fails.

Corollary 106. A chain is finite if, and only if it is both Artinian and
Noetherian.

Proof. Let C be an Artinian chain; it is well-ordered by Lemma 104 and by
Proposition 105 it is finite. The converse is obvious.

1.5.3.2 Zorn’s Lemma

A poset S is said to be inductively ordered if every chain of S has an upper
bound. As shown in, e.g., ([307], Theorem A.4), the following is equivalent
to Zermelo’s axiom of choice (Axiom 1):

Lemma 107. (Zorn’s lemma). Every nonempty inductively ordered set has
a maximal element.
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1.5.4 Lattices

1.5.4.1 Definition and General Properties

Definition 108. (i) A lattice L is a poset in which each pair (a, b) has a
least upper bound a ∨ b and a greatest lower bound a ∧ b.
(ii) A sublattice N of L is a set N ⊆ L which is a lattice for the same
ordering.
(iii) A complete lattice is a poset in which each family (ai)i∈I has a least
upper bound

∨
i ai and a greatest lower bound

∧
ai.

As easily shown (see, e.g., [225], Chap. XIV, or [79], Sect. 3.1), in any lattice
L, the following modular inequality is satisfied:

a ∨ (b ∧ c) 	 (a ∨ b) ∧ c for all a, b, c ∈ L such that a 	 c, (1.18)

as well as the following distributivity inequalities:

a ∨ (b ∧ c) 	 (a ∨ b) ∧ (a ∨ c) , (1.19)
a ∧ (b ∨ c) � (a ∧ b) ∨ (a ∧ c) (1.20)

for all a, b, c ∈ L. In addition, if (1.19) is an equality, then so is (1.20) and
conversely, and then the first equality in (1.18) is an equality.

An interval and a chain of a lattice are sublattices.

Example 109. Let M be a monoid; the sets Il (M), Ir (M) and I(M) of all
left, right and two-sided ideals in M, respectively (Notation 64), are complete
lattices.

Consider for example Il (M). If (ai) be a family of left ideals in the monoid
M, then

⋂
ai is the largest left ideal included in all ai, i.e.,

⋂
i ai =

∧
i ai.

The union
⋃
i ai is not a left ideal but the left ideal generated by

⋃
i ai is the

smallest left ideal containing all ai, i.e., is equal to
∨
i ai.

1.5.4.2 Modular Lattices, and Distributive Lattices

Definition 110. (i) A lattice L is modular if the first inequality of (1.18) is
an equality.
(ii) A lattice L is distributive if (1.19) (or equivalently (1.20)) is an equality.

From the above, a distributive lattice is modular, but the converse is not true
in general. A chain of an ordered set is a distributive lattice. A sublattice of
a modular (resp., distributive) lattice is modular (resp., distributive). The
dual L̆ of a lattice L is a lattice; it is modular (resp., distributive) if L is.

Example 111. In Examples 70 & 94, N× with the usual divisibility is a
commutative divisibility monoid; a ∧ b is the greatest common divisor (a, b)
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of a and b and a∨ b is the least common multiple [a, b] of a and b. We have
(a ∨ b) = (a) ∩ (b).2 Obviously, b covers a if, and only if a | b and b/a is a
prime; therefore, a subset {x0, ..., xm} is a connected chain if, and only if for
1 ≤ i ≤ m, xi = pi xi−1 where pi is a prime.

Let a =
∏
i p
αi
i , b =

∏
i p
βi
i and c =

∏
i p
γi
i (αi, βi, γi ∈ N) be the de-

compositions of a, b and c into prime factors. Then b ∧ c =
∏
i p

inf(βi,γi)
i ,

a∨b =
∏
i p

sup(αi,βi)
i and a∨ (b ∧ c) =

∏
i p
δi

i where δi = sup (αi, inf (βi, γi));
similarly, (a ∨ b) ∧ (a ∨ c) =

∏
i p
εi
i where εi = inf (sup (αi, βi) , sup (αi, γi)).

One easily checks that δi = εi is the median of the three integers αi, βi, γi.
As a result, N×, with the usual divisibility, is a distributive lattice.

Take a natural number, for example 18; the interval [1, 18] (in the sense of
divisibility) is the set of all divisors of 18, i.e., 1, 2, 3, 6, 9, 18. The maximal
(i.e., connected) chains with end-points 1, 18 are {1, 2, 6, 18}, {1, 3, 6, 18} and
{1, 3, 9, 18}; notice that they have the same length (a fact which is explained in
a more general context by Theorem 117 and clarified by Example 118 below)
which is 3, the number of prime factors of 18 (counted according to their
multiplicities). Note that (a ∨ b) (a ∧ b) =

∏
i p

sup(αi,βi)+inf(αi,βi)
i = a b.

1.5.4.3 Lattice-Homomorphisms

Let L, M be two lattices and ϕ : L→M .

Definition 112. (i) ϕ is a lattice-homomorphism if ϕ (a ∨ b) = ϕ (a) ∨
ϕ (b) and ϕ (a ∧ b) = ϕ (a) ∧ ϕ (b) for any a, b ∈ L. (ii) ϕ is a
lattice-monomorphism (resp., -epimorphism, -isomorphism) if it is a lattice-
homomorphism and if it is injective (resp., surjective, bijective). (iii) ϕ is
a lattice-antiisomorphism if ϕ is a bijection and ϕ (a ∨ b) = ϕ (a) ∧ ϕ (b),
ϕ (a ∧ b) = ϕ (a) ∨ ϕ (b) for any a, b ∈ L.

A lattice-homomorphism (i.e., a morphism in the category of lattices) is iso-
tone but the converse is not true in general (in other words, the category of
lattices is not a full subcategory of the category of posets). However, one
can prove the following ([18], Sect. II.3):

Lemma 113. A map ϕ : L→M is an isotone bijection with isotone inverse
if, and only if it is a lattice-isomorphism.

Corollary 114. Let M be a modular lattice and a, b ∈M . The map x �→ a∧x
is a lattice-isomorphism ϕa : [b, a ∨ b] �→ [a ∧ b, a] with inverse ψb : y �→ b∨y.

Proof. The map ϕa is obviously isotone. Let x ∈ [b, a ∨ b]; then
ψb (ϕa (x)) = b ∨ (a ∧ x) = (b ∨ a) ∧ x (since M is modular) and

2 In the dual lattice, a∨ b is changed to a∧ b and then this equality takes the more
appealing form (a ∧ b) = (a) ∩ (b). The reader should have in mind that the
symbols ∨ and ∧ are interchanged when passing from a lattice to its dual.
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(b ∨ a) ∧ x = x since x 	 b ∨ a. Therefore, ϕa is bijective, and by Lemma
113 it is a lattice-isomorphism.

Definition 115. (1) In a modular lattice, two intervals related as in Corol-
lary 114 are perspective (or relatively transposed).
(2) Two intervals [a, b] and [a∗, b∗] are projective if there exists a finite se-
quence of intervals [ak, bk], 0 ≤ k ≤ n, such that (i) [a0, b0] = [a, b], (ii)
[an, bn] = [a∗, b∗], (iii) [ak−1, bk−1] and [ak, bk] are perspective, 1 ≤ k ≤ n.
(3) Two finite chains with the same end-points are isomorphic if their in-
tervals can be paired off in such a way that the corresponding intervals are
projective.

Perspectivity and projectivity are equivalence relations in the set of intervals
of a modular lattice and isomorphy is an equivalence relation in the set of its
chains.

1.5.5 Four Theorems in Modular Lattices

1.5.5.1 Refinements of Chains and Maximal Chains

By Corollary 114 and Definition 115, in a modular lattice two perspective
intervals have the same length, as well as two projective intervals or two
isomorphic chains. The following result is proved in [76]:

Theorem 116. (Schreier refinement theorem). In a modular lattice, two
finite chains between the same end-points have refinements which are
isomorphic.

In a modular lattice L any two maximal chains between the same end-points
have the same length, as specified below:

Theorem 117. (Jordan-Hölder-Dedekind theorem). In a modular lattice
of finite length, any chain can be refined to a maximal chain, and any two
maximal chains between the same end-points are isomorphic.

Proof. See ([225], Sect. XIV.5).

Example 118. Consider in Example 111 the two maximal chains {1, 3, 6, 18}
and {1, 3, 9, 18}; the sublattice consisting of these two chains is represented
below.

18
↗ ↖

6 9
↖ ↗

3
↑
1
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Projective (and, more specifically in this case, perspective) intervals are par-
allel arrows: [6, 18] in the first chain and [3, 9] in the second are perspective
since [6, 18] = ψ6 ([[3, 9]]) (with a = 9, b = 6); [3, 6] in the first chain and
[9, 18] in the second are perspective since [9, 18] = ψ9 ([[3, 6]]) (with a = 6,
b = 9). Finally, [1, 3] in the first chain and [1, 3] in the second are perspective
(with a = 1, b = 3). Therefore, these two maximal chains are isomorphic.
This rationale still holds in the general case and can be used to prove by
induction the Jordan-Hölder-Dedekind theorem.

1.5.5.2 Join- and Meet-Irreducibility, Independence, and
Irredundancy

A lattice L of finite length has a least and a greatest element respectively
denoted by 0̇ and 1̇.

Definition 119. Let L be a modular lattice having a least element 0̇.
(i) The length of an element c (written |c|) is

∣∣[0̇, c
]∣∣.

(ii) c ∈ L is said to be join-irreducible if |c| = 1.

Dualizing this definition, we get:

Definition 120. Let L be a modular lattice having a greatest element 1̇. An
element a ∈ L is said to be meet-irreducible if

∣
∣[a, 1̇
]∣∣ = 1.

Thus, an element c ∈ L\
{
1̇
}

is meet-irreducible if, and only if whenever
a, b ∈ L are such that a � c, b � c and a ∧ b = c, then necessarily a = c or
b = c.

If
∣∣[0̇, c
]∣∣ is infinite, so is |c|; otherwise, |c| is the length of any max-

imal chain between 0̇ and c by the Jordan-Hölder-Dedekind theorem
(Theorem 117).

Example 121. (i) The length of any element x > 0 in the totally ordered set
Q+ = {x ∈ Q : x ≥ 0} (with the usual ordering) is ℵ0 (where ℵ0 denotes the
cardinal of any infinite countable set).
(ii) The length of any element x > 0 in the totally ordered set R+ =
{x ∈ R : x ≥ 0} (with the usual ordering) is ℵ = 2ℵ0 (i.e., the cardinal of
the real line R) by Cantor’s theorem ([79], Prop. 1.1.5).
(iii) Let n be a natural integer (Examples 70 & 111); its length is the num-
ber of prime factors of n (counted according to their multiplicities) and n is
join-irreducible if, and only if it is prime.

Definition 122. Let L be a modular lattice having a least element 0̇.
(i) Let a1, ..., an be elements �= 0̇ and of finite length; they are said to be
independent if ∣

∣∣
∣
∣
∨

1≤i≤n
ai

∣
∣∣
∣
∣
=
∑

1≤i≤n
|ai| .
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(ii) A finite decomposition a =
∨

1≤i≤n
ai is said to be irredundant if no ai can

be omitted.

Some of the results in Example 111 can be generalized. The following is
clear:

Proposition 123. Let M be an invariant cancellation monoid, M/U (M)
the conical monoid associated with M and π : M � M/U (M) the canon-
ical epimorphism (Definition 93). By Lemma 97, M/U (M) is a divisi-
bility monoid. Assuming that M/U (M) is a lattice, for any a, b ∈ M,
∅ �= π−1

(
ā ∧ b̄
)

= gcd (a, b) and ∅ �= π−1
(
ā ∨ b̄
)

= lcm (a, b) (where
gcd (a, b) and lcm (a, b) respectively denote the set of all gcd′ s and of all
lcm′ s of (a, b)).

If the monoid M/U (M) is a modular lattice, the notions of atom and of join-
irreducible element are closely connected: the least element of M/U (M) is
0̇ = 1. An element a ∈M is an atom if, and only if a = bc implies that b or
c is a unit; this is equivalent to the following property: ā = b̄ c̄ implies that
b̄ = 1 or c̄ = 1, i.e., ā is join-irreducible (denoting by x̄ the canonical image
of x in M/U (M)). To summarize:

Proposition 124. An element a of an invariant monoid M such that
M/U (M) is a modular lattice is an atom if, and only if its canonical image
ā is join-irreducible.

1.5.5.3 Decompositions of an Element

The two theorems below are proved in [18], [76].

Theorem 125. (Krull-Schmidt theorem). In a modular lattice L with least
element 0̇, let a �= 0̇ be an element of finite length and

a =
∨

1≤i≤n
ai =

∨

1≤i≤m
bi

be two representations of a as a join of independent elements. Then n = m
and for some permutation i �→ i′ of {1, 2, ..., n},

[
0̇, ai
]

is projective with[
0̇, bi′
]
. If L is distributive, projectivity can be replaced by equality: ai = bi′.

Theorem 126. (Kurosh-Ore theorem). In a modular lattice L with least
element 0̇, let c �= 0̇ be an element of finite length and

c =
∨

1≤i≤n
pi =

∨

1≤i≤m
qi

be two irredundant decompositions of c into join-irreducible elements. Then
n = m = |c| and for some permutation i �→ i′ of {1, 2, ..., n} one can substitute
in the first decomposition any pi by qi′ ; in addition, if L is distributive, then
pi = qi′ .
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Example 127. Consider the distributive lattice N× with the usual divisibility
(Examples 70, 111 & 121(iii)). The numbers a1, ..., an are independent if,
and only if they are pairwise coprime3. A number a is join-irreducible if, and
only if it is prime. By Theorem 125, if a natural number can be expressed
as the product of n pairwise coprime factors, this representation is unique;
for example, 4 × 9 × 5 is the only decomposition of 180 as the product of
pairwise coprime nonunit factors. Theorem 126 expresses the uniqueness of
the decomposition of a number ≥ 2 into prime factors, e.g., 180 = 22×32×5
and the length of 180 is 2 + 2 + 1 = 5.

1.5.6 Unique Factorization Monoids

1.5.6.1 General UF-Monoids

Let M be a cancellation monoid.

Definition 128. A prime in M is an invariant nonunit p such that p | a b
(a, b ∈M) implies p | a or p | b.

Lemma 129. Every prime in M is an atom.

Proof. If p = a b is prime, then p | a or p | b, e.g., a = p q (Lemma 86),
therefore p = p q b, thus 1 = q b since M is a cancellation monoid, and b is a
unit.

The converse of Lemma 129 is false in general ([77], Sect. 3.1); it holds true
in unique factorization monoids.

Let S, A be equivalence relations in M where A is defined as in Lemma
92, is finer than S in the general case, and is equal to S if M is invariant
(and in particular if M is commutative). The following definition is taken
from [74].

Definition 130. A cancellation monoid M is an S-unique factorization
monoid (an S-UF-monoid, for short, and a UF-monoid if S = A) if it is
atomic and such that any two complete factorizations (i.e., factorizations
into atoms) of an element c are isomorphic in the sense that (i) they have
the same length r, say

c = a1...ar = b1...br

and (ii) there is a permutation i �→ i′ such that ai ≡ bi′ (modS).

1.5.6.2 Invariant UF-Monoids

If M is an invariant cancellation monoid, S = A is compatible with the
monoid structure of M according to Lemma 92 and the quotient monoid
M/U (M) is conical. The following is proved in ([77], Sect. 3.1):
3 Coprime is synonymous with relatively prime.
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Theorem 131. For any invariant cancellation monoid M the following con-
ditions are equivalent:

(i) M is a UF-monoid;
(ii) M/U (M) is free commutative (Definition 95);
(iii) M satisfies ACC1 and any two elements have a gcd;
(iv) M satisfies ACC1 and any two elements have an lcm;
(v) M satisfies ACC1 and the intersection of any two principal ideals is prin-
cipal;
(vi) M is atomic and every atom of M is prime.

Remark 132. (a) Let M be an invariant UF-monoid; the gcd and the lcm of
two elements of the conical monoid M/U (M) can be calculated as in Example
111. Therefore:
(i) M/U (M) is a distributive lattice, and Theorems 125 & 126 apply to that
case; by Theorem 126 and Definition 130, for any a ∈M, |a| = |ā|.
(ii) Setting d̄ = gcd

(
ā, b̄
)

and m̄ = lcm
(
ā, b̄
)
, we have d̄ m̄ = ā b̄ and for any

m ∈ m̄, M m = M a ∩M b.
(b) One can prove the following ([77], Sect. 3.1, Exercises 7 & 8): if two
elements of an invariant cancellation monoid have an lcm, they have a gcd
but the converse is false in general. However, any pair of elements has an
lcm if, and only if any pair of elements has a gcd.

By Remark 132 one is led to the following

Definition 133. An invariant cancellation monoid in which any pair of ele-
ments has a gcd is called a GCD invariant cancellation monoid.

Corollary 134. Any invariant UF-monoid is a GCD invariant cancellation
monoid.

1.5.6.3 Unique Factorization of Invariant Elements

Let M be a monoid and let I (M) be the set of all invariant elements of M;
I is obviously an invariant monoid and, assuming that it is cancellable, the
notion of prime can be defined in I using Definition 128. Let us call such
a prime an I-prime. Since a prime in M belongs to I, every prime is an
I-prime but not conversely in general. Similarly, an I-atom can be defined
and every atom is an I-atom but not conversely in general. Last, M is said
to have unique factorization of invariant elements (or I-unique factorization)
if I (M) is a UF-monoid.
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1.6 Groups

1.6.1 Groups and Their Generators

1.6.1.1 Basic Notions

A group G is a monoid in which each element is invertible, i.e., is a unit.
As already seen (1.3.2.1), the inverse of an element x is unique and written
x−1. In the remainder of this section, G is a group. Its cardinal is called the
order of G, written (G : 1).

Example 135. The set of permutations of a set E (i.e., of bijections E →
E), endowed with the composition of maps, is a group, called the symmetric
group of E, and denoted by S (E). If E = {1, ..., n}, S (E) is denoted by Sn

and is called the symmetric group of degree n; as easily shown by induction,
(Sn : 1) = n!.

Example 136. As already mentioned in Example 71, the set GLn (R) of all
invertible n × n matrices over a ring R, endowed with the multiplication of
matrices, is the general linear group of the matrices of order n over R. If
n > 1, this group is noncommutative, even if R is commutative.

If G is commutative and additively noted, the inverse of x is called its opposite
and is written −x. A commutative group is called an abelian group.

1.6.1.2 Generators of a Group

One defines a generator X of a group G in the same way as a generator of
a monoid (Definition 69). Let X ⊆ G; then the subgroup of G generated
by X is denoted by 〈X〉. If X is finite, the group 〈X〉 is said to be finitely
generated. For any nonempty part Y of G, let Y −1 �

{
y−1 : y ∈ Y

}
. The

following lemma is proved in ([27], n◦I.4.3):

Lemma 137. (i) If X is nonempty, 〈X〉 =
[
[X ] ∪

[
X−1
]]

(where [X ] is the
monoid generated by X).
(ii) Let f : G → G′ be a group-homomorphism and X ⊆ G; then f (〈X〉) =
〈f (X)〉.

Definition 138. A group G is said to be cyclic if it is generated by a single
element, i.e., if there exists an element x such that G = 〈x〉.

The proposition below is obvious:

Proposition 139. A group G is cyclic if, and only if there exists an element
x ∈ G such that G = {xn : n ∈ Z}. A cyclic group is abelian.
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1.6.2 Subgroups

1.6.2.1 Basic Notions

A subgroup H of G is a submonoid of G such that if x ∈ H , then x−1 ∈ H .
We write H ≤ G to mean that H is a subgroup of the group G.

The kernel of a group-homomorphism f : G → G′ is ker f � f−1 ({1}) =
{x ∈ G : f (x) = 1}. Its image is im f � f (G) = {f (x) : x ∈ G}.

The proof of the following is straightforward:

Proposition 140. Let f : G→ G′ be a group-homomorphism;
(i) im f ≤ G′ and ker f ≤ G;
(ii) f is an epimorphism if, and only if im f = G′;
(iii) f is a monomorphism if, and only if ker f = {1}.

Let H ≤ G and x ∈ G; we set xH � {x y : y ∈ H} and H x � {y x : y ∈ H}.

Example 141. An even (resp., odd) permutation of E = {1, ..., n} is one
that can be produced by an even (resp., odd) number of exchanges of two
elements (these exchanges are called transpositions). The subset Altn (also
denoted by An) of Sn consisting of all even permutations of E is a subgroup
of Sn, called the alternating group of degree n. Let sgn : Sn → {−1, 1} be
defined by sgn (σ) = 1 if σ is even and sgn (σ) = −1 if σ is odd. The map
sgn is called the signature and it is a group-epimorphism; its kernel is Altn.
Obviously, sgn (σ) = sgn

(
σ−1
)
.

The centre Z (G) is the set of all elements of g ∈ G such that x g = g x for
any x ∈ G. The centralizer ZG (A) and the normalizer NG (A) of a part A
of G are defined as in Definition 68.

1.6.2.2 Index of a Subgroup

Let H ≤ G and consider the relation Rl,H defined in G as follows: Rl,H (x, y)
if y−1 x ∈ H . As easily seen, Rl,H is an equivalence relation and x ≡
y (modRl,H) if, and only if x ∈ y H . The subset yH of G is called a left
coset of H in G and y is called a representative of that coset; yH is the
equivalence class of y (modRl,H) and y �→ yH is the canonical surjection.
The map x �→ y x is a bijection H−̃→yH , thus card (y H) = card (H).

Similarly, consider the relation Rr,H defined in G as: Rr,H (x, y) if x y−1 ∈
H , i.e., x ∈ H y. The subset H y of G is called a right coset of H in G and,
by the same rationale as above, card (H y) = card (H).

The set of left (resp., right) cosets xH (resp., H x) (x ∈ H) is denoted by
G/H (resp., H\G).

Since two different left (resp., right) cosets have no element in common, G
is the disjoint union of all left (resp., right) cosets of H in G. From the above,
the number of left cosets of H in G is equal to the number of right cosets
in G. This number is called the index of H in G and is denoted by (G : H).
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Let (G : 1) and (H : 1) be the orders of G and H, respectively (1.6.1.1); we
have the equality

(G : 1) = (G : H) (H : 1) , (1.21)

called Lagrange’s theorem. More generally, if H,K are subgroups of G such
that K ⊆ H, then

(G : K) = (G : H) (H : K) .

By (1.21), (G : H) | (G : 1) and (H : 1) | (G : 1), if all these cardinals are
finite.

1.6.3 Normal Subgroups and Quotient Groups

Let R be an equivalence relation in G. According to Lemma 76, G/R is
a monoid if, and only if R is compatible with the monoid structure of G
(Definition 75). More specifically, we have the following ([27], n◦I.4.4):

Lemma and Definition 142. (1) The following conditions are equivalent:
(i) R is compatible with the monoid structure of G;
(ii) G/R is a group;
(iii) N � {y ∈ G : y ≡ 1 (modR)} is a subgroup of G such that xN = N x
for any x ∈ G.
(2) The subgroup N of G is said to be normal (written N � G) if the above
equivalent conditions hold.
If N � G, the quotient group G/R (where R is the equivalence relation
in G defined by x ≡ x′ (modR) if xx′−1 ∈ N) is denoted by G/N . This
equivalence relation is also written x ≡ x′ (modN).

If G is an abelian group, any subgroup of G is normal.

Remark 143. (i) If H � G and K � H, then K is a subgroup of G but is
not necessarily normal ([27], §I.5, Exercise 10).
(ii) If H � G, K � G and K ⊆ H , then K � H ([206], Sect. I.3).
(iii) Let G,G′ be groups and f : G → G′; then–as easily shown–ker f � G
but the subgroup im f of G′ is generally not normal in G′.
(iv) {1} � G and G/ {1} = G; G � G and G/G = {1}.
(v) A group G, every subgroup of which is normal, is called a Dedekind group
[155]. For example, the quaternion group is a non-abelian Dedekind group
([27], §I.6, Exercise 4), i.e., a Hamiltonian group.

Example 144. Let R be a commutative ring and consider the monoid
Matn (R) (Example 71). The map det : Matn (R) → R is a monoid-
homomorphism since det (X Y ) = det (X) det (Y ). The general linear group
GLn (R) (Example 136) is the set of all matrices A ∈ Matn (R) such that
det (A) is a unit (see Subsect. 2.11.1 below). Let SLn (R) be the subset of
GLn (R) consisting of all matrices A such that det (A) = 1. Obviously,
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SLn (R) � GLn (R); SLn (R) is called the special linear group of the square
matrices of order n over R. A matrix X ∈ SLn (R) is said to be unimodular
([27], n◦III.8.3). (Note that according to many authors, especially in applied
mathematics, the set of unimodular matrices of order n over R is GLn (R).)

1.6.4 Induced Homomorphism, and Isomorphism
Theorems

1.6.4.1 Induced Homomorphism

Theorem and Definition 145. Let G,G′ be two groups, N � G, N ′ � G′

and f : G→ G′.

(1) The following properties are equivalent:
(a) f (N) ≤ N ′;
(b) there exists a unique group-homomorphism f̄ : G/N → G′/N ′ such that
the diagram below is commutative

G
f−→ G′

↓ π ↓ π′

G/N
f̄−→ G′/N ′

where π : G � G/N and π′ : G′ � G′/N ′ are the canonical epimorphisms.
(2) When f̄ : G/N → G′/N ′ exists, ker f̄ = π

(
f−1 (N ′)

)
and im f̄ =

π′ (f (G)).
(3) Therefore, f̄ is a monomorphism (resp., an epimorphism) if, and only if
f−1 (N ′) ≤ N (resp., G′ = N ′. im f). If N ′ ≤ im f, then f is a monomor-
phism if, and only if f (N) = N ′.
(4) The homomorphism f̄ is said to be induced by f (with respect to N and
N ′–in this order).

Proof. (1) (a)⇒(b): Assuming that (a) holds true, let x, x′ ∈ G be such
that xx′

−1 ∈ N . Then, f (x) f (x′)−1 = f
(
xx′−1

)
∈ N ′, thus π′ (f (x))

only depends on π (x) for any x ∈ G. Let f̄ : π (x) �→ π′ (f (x)); it is easy
to check that f̄ is a group-homomorphism. (b)⇒(a): If (b) holds true, let
x ∈ N , i.e., such that π (x) = 1; then π′ (f (x)) = f̄ (1) = 1, i.e., f (x) ∈ N ′.
(2) x̄ ∈ ker f̄ if, and only if π′ (f (x)) = 1 for all x ∈ G such that π (x) = x̄,
and π′ (f (x)) = 1 if, and only if f (x) ∈ N ′, i.e., x ∈ f−1 (N ′); therefore,
x̄ ∈ ker f̄ if, and only if x̄ ∈ π

(
f−1 (N ′)

)
. The equality im f̄ = π′ (f (G)) is

obvious.
(3) (A) By (2), ker f̄ = {1} if, and only if f−1 (N ′) ≤ N.
(B) If N ′ ≤ im f, then f

(
f−1 (N ′)

)
= N ′ and the above condition is

equivalent to N ′ ≤ f (N). By Property (a) this is equivalent to N ′ = f (N) .
(C) Last, by (2), f̄ is an epimorphism if, and only if π′ (im f) = π′ (G′) ,
and this happens if, and only if for every x′ ∈ G′, there exist x ∈ G and
y′ ∈ N ′ such that x′ (f (g))−1 = y′, i.e., x′ = y′f (g) . This means that
G′ = N ′. im f.
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1.6.4.2 Noether’s Isomorphism Theorems

The categoryGrp is not abelian, thusTheorem52cannot be applied. Noether’s
isomorphism theorems for groups take the following form ([27], n◦I.4.6):

Theorem 146. (Noether’s isomorphism theorems for groups).
(1) Let G, G′ be groups and f : G→ G′ a group-homomorphism. Then

G/ ker f ∼= im f (1.22)

(first isomorphism).
(2) Let G be a group and N � G. For any subgroup G′ of G, G′N is a
subgroup of G and N � G′N , G′ ∩N � G′; in addition,

(G′N) /N ∼= G′/ (G′ ∩N) (1.23)

(second isomorphism).
(3) Let G′ ≤ G and N � G be such that G′ ≥ N ; then G′/N � G/N if, and
only if G′ � G and then

G/G′ ∼= (G/N) / (G′/N) (1.24)

(third isomorphism).

1.6.4.3 Other Isomorphisms

Theorem 147. (i) (Correspondence theorem). Let G be a group and N �
G. The map G′ → G′/N is a one-to-one correspondence between the sub-
groups of G which contain N and the subgroups of G/N , given by G′ → π (G′)
where π : G � G/N is the canonical epimorphism.
(ii) Let (Gi)i∈I be a family of groups and, for each i ∈ I, Ni � Gi. Then∏
i∈I Ni �

∏
i∈I Gi and

(∏
i∈I Gi

)
/
(∏

i∈I Ni

) ∼=
∏
i∈I (Gi/Ni) . (1.25)

Proof. The proof of (i) is easy. Let us prove (ii): Let πi : Gi � Gi/Ni be
the canonical epimorphism and ψ :

∏
i∈I Gi →

∏
i∈I (Gi/Ni) be the map

defined by ψ
(
(xi)i∈I

)
= (πi (xi))i∈I ; obviously, ψ is an epimorphism and

kerψ =
∏
i∈I Ni. Thus (1.25) is a consequence of (1.22).

The proof of Item (3) below is similar to that of Theorem 147(ii).

Lemma and Definition 148. (1) Let (Gi)i∈I be a family of abelian groups
and let x = (xi)i∈I be an element of

∏
i∈I Gi. The set J ⊆ I consisting of

all indices i for which xi �= 0 is called the support of x and is denoted by
suppx. If suppx is finite, the family x is said to be finitely supported.



1.6 Groups 53

(2) The coproduct
∐
i∈I Gi of the family (Gi)i∈I is the subgroup of

∏
i∈I Gi

consisting of all finitely supported elements4.
(3) If Ni � Gi for each i ∈ I, then

∐
i∈I Ni �

∐
i∈I Gi and

(∐
i∈I Gi

)
/
(∐

i∈I Ni

) ∼=
∐
i∈I (Gi/Ni) . (1.26)

1.6.5 Simple Groups, and Cyclic Groups

Definition 149. A group G is said to be simple if the only normal subgroups
of G are G and {1}.

Lemma 150. (i) A cyclic group of finite order a (a �= 0) is isomorphic to
Z/aZ and a cyclic group of infinite order is isomorphic to Z.
(ii) The group Z is not simple.

Proof. (i): Let x be a generator of G. According to Proposition 139, G =
{xn : n ∈ Z}. The map f : Z � n �→ xn ∈ G is a group-epimorphism, thus
G ∼= Z/ ker f by Theorem 146(1), and N ∼= ker f is a subgroup of Z. If
N = {0}, G ∼= Z. If N �= {0}, let a be the smallest element > 0 of N . As
easily seen, N = aZ.

(ii): 2Z is a normal subgroup of Z.

Proposition 151. Every quotient of Z/aZ (a �= 0) is isomorphic to Z/bZ
where b | a; conversely, if b | a, then Z/bZ is isomorphic to a quotient of
Z/aZ.

Proof. By Theorem 147(i), a subgroup of Z/aZ is of the form N/aZ where
N � Z and N ⊇ aZ, thus N = cZ where c | a. Let a = c b and consider the
left multiplication by c, written c• : x + bZ �→ c x + c bZ. This map is an
isomorphism Z/bZ−̃→cZ/aZ. Conversely, if b | a, Z/bZ ∼= (Z/aZ) / (bZ/aZ)
according to Theorem 146(3).

Corollary 152. (i) The group Z/pZ is simple if, and only if p is prime.
(ii) Every abelian simple group is cyclic of prime order.

Proof. (i) is a consequence of Proposition 151.
(ii): If G is abelian and simple, let 1 �= g ∈ G. Then 〈g〉 is normal (since

G is abelian) and 〈g〉 �= {1}, thus 〈g〉 = G and G is cyclic. Therefore, there
exists n ∈ N such that G ∼= Z/nZ by Lemma 150 and n > 0 since Z is not
simple. By (i), n is a prime.

4 The coproduct of a family of noncommutative groups can also be defined. This
coproduct is a free product – a notion which is not needed in this book and which
is explained in, e.g., ([27], n◦I.7.3).
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1.6.6 The Lattice of Normal Subgroups

1.6.6.1 The Complete Modular Lattice of Normal Subgroups

The following is proved in ([225], Sect. XIV.4):

Lemma 153. The set Lat (G) of all normal subgroups of G, ordered by
inclusion, is a complete modular lattice where for any H,K ∈ Lat (G),
H K = H ∨ K and H ∩ K = H ∧ K. The set of all subgroups of G, or-
dered by inclusion, is a complete lattice with the same definition of the meet
and the join.

Let S, T ∈ Lat (G) and consider the diamond below, where S ∨ T = S T and
S ∧ T = S ∩ T :

S ∨ T
↗ ↖

S T
↖ ↗

S ∧ T

(1.27)

The sides of the diamond are the parallel intervals [S, S ∨ T ] and [S ∧ T, T ],
as well as [S ∧ T, S] and [T, S ∨ T ]. According to Definition 115, parallel
intervals are perspective, and according to Noether’s second isomorphism
theorem (Theorem 146(2)) they yield isomorphisms (S T ) /S ∼= T/ (S ∩ T )
and (S T ) /T ∼= S/ (S ∩ T ). Thus, perspectivity yields isomorphism, and by
induction so does projectivity. We have obtained the following result:

Lemma 154. (Diamond lemma). In the modular lattice Lat (G), projective
intervals [K,H ] and [K ′, H ′] (K � H, K ′ � H ′), correspond to isomorphic
quotients H/K ∼= H ′/K ′.

Based on the two above lemmas, let us translate the terminology of lattices
into that of groups:

Definition 155. (1) A chain (of length r) in Lat (G) with end-points G and
{1} is of the form

G = G0 � G1 � ... � Gr = {1} (1.28)

and is called an invariant chain of G.
(2) A normal chain (of length r) of G is a chain of the form (1.28) such that
Gi+1 � Gi for any i ∈ {1, ..., r − 1} and it is written (Gi)0≤i≤r; then, each
quotient Gi/Gi+1 is called a factor of G.

According to Remark 143, every invariant chain is a normal chain but the
converse does not hold.

Consider a second normal chain of G :

G = H0 � H1 � ... � Hs = {1} . (1.29)
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Definition 156. The normal chains (1.28) and (1.29) are said to be iso-
morphic if there exists a permutation i �→ i′ of {0, ..., r − 1} such that
Gi/Gi+1

∼= Hi′/Hi′+1.

1.6.6.2 Schreier-Zassenhaus Theorem and Jordan-Hölder
Theorem

The theorem below is a consequence of the Schreier refinement theorem (The-
orem 116) and of the Diamond Lemma (Lemma 154):

Theorem 157. (Schreier-Zassenhaus theorem). Any two normal chains of
G have isomorphic refinements.

Remark 158. Strictly speaking, Theorem 157 is a consequence of the proof
(not given above) of Theorem 116, not of its statement, since the subgroups Gi
and Hi in the normal towers (1.28) and (1.29) do not all belong to Lat (G)
when these towers are not invariant. For further details, see, e.g., ([155],
Theorems 8.4.2 & 8.4.3).

Let Σ be a normal chain of G.

Definition 159. Σ is called a Jordan-Hölder series of G if every refinement
of Σ is equal to Σ.

As easily shown ([27], §I.4, Prop. 9), the normal chain (1.28) is a Jordan-
Hölder series of G if, and only if every quotient Gi/Gi+1 is a simple group.
The following result is a consequence of the Jordan-Hölder-Dedekind theorem
(Theorem 117) or more specifically of its proof: see Remark 158.

Lemma and Definition 160. (1) ( Jordan-Hölder theorem). Any two
Jordan-Hölder series of G are isomorphic.
(2) If (1.28) is a Jordan-Hölder series of G, then the length of G is |G| = r;
if G has no Jordan-Hölder series, then |G| = +∞. A group G is simple if,
and only if |G| = 1.

1.6.6.3 Polycyclic by Finite Groups

Definition 161. (i) A group G is called polycyclic (resp., polycyclic by
finite) if there exists a finite normal chain (1.28) such that each factor
Gi/Gi+1, i ∈ {0, ..., r − 1}, is infinite cyclic (resp., either infinite cyclic or
finite).
(ii) The Hirsch number h (G) of the polycyclic by finite group G is equal to
the number of infinite cyclic factors of the normal chain (1.28).

If G is polycyclic by finite, it is easy to show that, by choosing a different
chain if necessary, one can arrange that the only finite factor, if any, is the
first, G0/G1. Then, h (G) = r if G is polycyclic and h (G) = r− 1 otherwise.
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Example 162. (1) An infinite cyclic subgroup of the additive group Rn is
isomorphic to Z.
(2) A polycyclic subgroup of the additive group Rn is a finitely generated
additive subgroup of Rn, i.e., a subgroup of the form

∑
1≤i≤r aiZ where ai ∈

Rn and the ai (1 ≤ i ≤ r) are R-linearly independent. See ([313], Sect. 4.1)
for more details.
(3) A subgroup of a Dedekind group (Remark 143(v)) is finitely generated if,
and only if it is polycyclic by finite.

1.6.7 Commutators, and Derived Group

1.6.7.1 Commutators

Definition 163. Let x, y ∈ G. The commutator of x and y, written (x, y),
is the element x−1 y−1 x y of G.

Lemma 164. (i) For any x, y ∈ G, x y = y x (x, y).
(ii) The elements x, y commute (i.e., x y = y x) if, and only if (x, y) = 1.
(iii) Let f : G → G′ be a group-homomorphism; then for any x, y ∈ G,
f ((x, y)) = (f (x) , f (y)).

Proof. (i) and (iii) are clear and (ii) is an obvious consequence of (i).

Notation 165. Let H,K be subgroups of G; the subgroup of G generated by
the commutators of h and k (h ∈ H , k ∈ K) is denoted by (H,K).

1.6.7.2 Derived Group

Definition 166. The derived group of G (also called the commutator group
of G, and written D (G) or Gd) is the subgroup generated by the commutators
of all elements of G.

According to Lemma 164(ii), D (G) = {1} if, and only if G is abelian.

Lemma 167. Let f : G→ G′ be a group-homomorphism. Then f (D (G)) ⊆
D (G′) and if f is surjective, so is its restriction f |D(G) → D (G′).

Proof. f (D (G)) ⊆ D (G′) by lemma 164(iii) and if f is surjective, the
image by f of the set of commutators of G is the set of commutators of G′.
The result is now a consequence of Lemma 137.

Theorem 168. (i) D (G) � G and G/D (G) is abelian.
(ii) Let π : G → G/D (G) be the canonical epimorphism; for every abelian
group G′ and every group-homomorphism f : G → G′, there exists a unique
homomorphism f̄ : G/D (G)→ G′ such that f = f̄ ◦ π.
(iii) Let H be a subgroup of G; the following conditions are equivalent: (a)
D (G) ⊆ H ; (b) H � G and G/H is abelian.
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Proof. (i): Consider π : G � π (D (G)) = {1}; since D (G) =
kerπ, D (G) � G by Remark 143(iii). In addition, by Lemma 167,
im π|D(G) = D (π (D (G))) = D (G/D (G)); since im π|D(G) ⊆ imπ = {1},
D (G/D (G)) = {1} and G/D (G) is abelian.

(ii) is a consequence of Theorem 145, and f̄ is the homomorphism induced
by D (G) and D (G′) = {1} (Theorem and Definition 145).

(iii): (a)⇒(b) by Theorem 146(2) and (b)⇒(a) by Theorem 145.

Corollary 169. Let R be a commutative ring; consider the general linear
group GLn (R) and the special linear group SLn (R) (Example 144). Then
D (GLn (R)) ⊆ SLn (R).

Proof. Denoting by U (R) is the group of units of R, the
map det : GLn (R) → U (R) is a group-homomorphism. Since
det (diag (1, ..., 1, u)) = u, det is a group-epimorphism and SLn (R) = ker det.
By Theorem 146(1), GLn (R) /SLn (R) ∼= U (R) and U (R) is commutative
since so is R, thus D (GLn (R)) ⊆ SLn (R) by Theorem 168.

Definition 170. Let G be a group; then the abelian group Gab � G/D (G) is
called the abelianization of G.

1.6.8 Solvable Groups

Let G be a group, G(1) � D (G) and, for any k ≥ 1, G(k+1) = D
(
G(k)
)
. We

can form the so-called derived series of G:

G � G(1) � ... � G(k) � ...

which terminates when we reach a group G(s) which is perfect , i.e., such that
G(s) = D

(
G(s)
)
.

Definition 171. The group G is said to be solvable (or soluble) if G(s) =
{1}.

The following result is proved in ([27], n◦I.6.4):

Theorem 172. Let G be a group of finite length. The following conditions
are equivalent:

(i) G is solvable;
(ii) G has a normal chain (Hi)0≤i≤s whose all factors Hi/Hi+1

(0 ≤ i ≤ s− 1) are abelian.
(iii) Considering a Jordan-Hölder series (Gi)0≤i≤n of G, all factors Gi/Gi+1

(0 ≤ i ≤ n− 1) are abelian cyclic of prime order.

Example 173. The symmetric group Sn is solvable for n ≤ 4 and insolvable
for n ≥ 5 since for those values of n, Altn is simple ([79], Sect. 7.11).
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1.6.9 Action of a Group on a Set

1.6.9.1 Action, Orbit and Stabilizer

Let G be a group and let S be a set. An action of G on S is a group-
homomorphism π : G → S (S) (Example 135). Let g ∈ G and x ∈ S; the
element y = π (g) (x) ∈ S is denoted by g . x in what follows.

The orbit of x ∈ S under G (also called the G-orbit of x) is G . x �
{g . x : g ∈ G}. Two different orbits are necessarily disjoint, thus S =⋃
i∈I G . xi where I is some indexing set and the xi are the elements of distinct

orbits.
The stabilizer of x ∈ S is the subset Gx of G such that Gx . x = {x}; Gx is

a subgroup of G. Let (G : Gx) be the index of Gx. As easily seen, (G : Gx) =
card (G . x). Therefore, if S is finite, we have the orbit decomposition formula

card (S) =
∑

i∈I
(G : Gxi) . (1.30)

1.6.9.2 Homogeneous Spaces

Let x ∈ S and consider the map hx : G→ G . x : g �→ g . x. This map can be
decomposed as follows:

G
πx−→ G/Gx

ϕx−→ G . x

where G/Gx is the set of left cosets g Gx of Gx in G (1.6.2.2), πx is the
canonical surjection g �→ g Gx and ϕx is the canonical bijection g Gx �→ g x.

The action of G on S is said to be transitive (resp., simply transitive) if
for any x ∈ S, the map G → S : x �→ g . x is surjective (resp., bijective).
If the action of G on S is transitive, the set S consists of only one orbit
(i.e., S = G . x for any x ∈ S) and is said to be homogeneous . Then ϕx
is a bijection G/Gx−̃→S. Conversely, if H is any subgroup of G, then G
transitively acts on G/H in an obvious way, thus the set of left cosets G/H
is homogeneous. A similar rationale holds for right cosets.

1.7 Digression 1: Topological Vector Spaces

1.7.1 Topological Vector Spaces

We assume that the reader has a basic knowledge of general topology and of
topological vector spaces (see, e.g., [339], Part I, Chap. 1-6). Let us recall
some basic facts.
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1.7.1.1 Filters and Nets

Let S be a nonempty set. A filter Φ on S is a set of parts of S with the
following properties: (a) ∅ /∈ Φ, (b) if two parts P,Q of S are such that P ∈ Φ
and Q ⊇ P , then Q ∈ Φ, (c) if P,Q ∈ Φ, then P ∩ Q ∈ Φ. If Φ,Φ′ are two
filters on S, Φ′ is said to be finer than Φ if Φ ⊆ Φ′. Let B be a set of parts
of S; B is called a base of the filter Φ if Φ is the set of all parts of S which
contain a set belonging to B. A set B of parts of S is a base of filter on S if,
and only if (a’) if P,Q ∈ B, then there exists R ∈ B such that P ∩ Q ⊇ R,
(b’) B �= ∅, (c’) ∅ /∈ B.

To a filter Φ on S one can associate a net (also called a generalized se-
quence) in S as follows: let I be a filtering index set (1.2.3.4) and let (Bi)i∈I
be a direct system of elements of Φ (for inclusion), such that B = (Bi)i∈I
is a base of Φ. Choose in each Bi an element xi using the axiom of choice
(Axiom 1). Then (xi)i∈I is a net in S, said to be associated to B (or to Φ).
If B is countable, then one can assume that I = N without loss of generality,
and every net associated to B is a sequence.

Conversely, let (xi)i∈I be a net in S, and for every i ∈ I, let Bi =
{xk : k 	 i}. Then B = (Bi)i∈I is a base of filter on S (called the elementary
base of filter associated with the net (xi)i∈I).

1.7.1.2 Topological Spaces

Consider a topology T on a set S. The set S, endowed with the topology
T, is often denoted by S [T] for the sake of clarity. When speaking of the
topological space S, the topology T is understood. A topological space S [T]
(or the topology T) is Hausdorff if whenever x1, x2 ∈ S are such that x1 �=
x2, there exist neighborhoods N1, N2 of x1 and x2 respectively, such that
N1 ∩N2 = ∅. The set of all neighborhoods of x ∈ S is a filter NS (x).

A filter Φ on S [T] is said to converge to x ∈ S (written limΦ = x) if Φ
is finer than NS (x). Let B be a base of the filter Φ; B is said to converge
to x (written limB = x) if so does Φ, i.e., if for every neighborhood N of
x there exists a part P ∈ B such that P ⊆ N . A net (xi)i∈I in S is said
to converge to x (written lim

I
xi = x) if so does the elementary base of filter

(Bi)i∈I associated with the net (xi)i∈I , i.e., for every neighborhood N of x,
there exists i ∈ I such that xk ∈ N for all k 	 i.

The proof of the following is easy [96].

Proposition 174. Let S [T] be a topological space, let x ∈ S, and let Φ be a
filter on S.

(1) The following conditions are equivalent:
(i) limΦ = x;
(ii) lim B = x, where B is any base of the filter Φ;
(iii) there exists a base B of the filter Φ such that lim B = x;
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(iv) every net (xi)i∈I associated to Φ converges to x.
(2) Let T be Hausdorff. If limΦ = x and limΦ = y, then x = y.

For the use of filters and nets to characterize limits of functions, see Exercise
209. Let S [T] be a topological space, let M ⊆ S and let ι : M ↪→ X be
the inclusion; the topology TM induced by T on M is the coarsest topology
which makes ι continuous. The open sets in the topology TM are the sets
A ∩M where A is open in T.

Let us give three simple examples of topologies.
The discrete topology on S is the topology Td [S] in which each subset of

S is open. Assuming that S is nonempty, let x ∈ S; a net (xi)i∈I of elements
of S converges toward x in Td [S] if, and only if there exists i0 ∈ I such that
xi = x whenever i � i0.

The finite topology will be used in the sequel (Remark 728). Let X,Y be
nonempty sets, let Y X be the set of all mappings X → Y , and let S ⊆ Y X be
nonempty. The finite topology on S is the topology Tf [S] defined as follows:
let f ∈ S; a base of the filter of neighborhoods of f consists of all subsets of
the form

N (f ; g, x1, ..., xn) = {g ∈ S : g (xi) = f (xi) , 1 ≤ i ≤ n}

where {xi : 1 ≤ i ≤ n} is a finite set of elements of X . Assuming that S
is finite, the topologies Tf [S] and Td [S] coincide, and they are the unique
Hausdorff topology on S; in this topology, each part of S is both open and
closed, and S is compact.

The trivial topology on S is the topology Tt [S] in which the only open
subsets are S and ∅.

Let T,T′ be topologies on a set S. For any x ∈ S, let NS (x) (resp.,N ′S (x))
be the filter of neighborhoods of x in the topology T (resp., T′). Then T is
said to be finer than T′, and T′ is said to be coarser than T, if for any x ∈ S,
N ′S (x) ⊆ NS (x) . The finest (resp., coarsest) topology on S is Td [S] (resp.,
Tt [S]). The topology Td [S] is Hausdorff, whereas Tt [S] is not if S has more
that one element.

1.7.1.3 Topological Vector Spaces

Let K be a division ring (Definition 226 below). A vector space over K
(2.2.4.4) is called a K-space, for short. The topology T of a topological left
vector space X over a valued non-discrete division ring K is defined by its
filter NX of neighborhoods of zero.

Let X [T] be a topological vector space (TVS), let A ⊆ X and let Φ be a
filter on A. The filter Φ on A is called a Cauchy filter if for every N ∈ NX ,
there exists M ∈ Φ such that M −M ⊆ N . To a Cauchy filter Φ on A ⊆ X
one can associate as in (1.7.1.1) a net (xi)i∈I , called a Cauchy net, i.e., a net
(xi)i∈I such that for any U ∈ NX , there exists i0 ∈ I for which xi1 −xi2 ∈ U
whenever i1, i2 � i0.
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Let M be a subspace of the TVS X and let ϕ : X � X/M be the canonical
surjection; the quotient topology on X/M is the finest topology on X/M which
makes ϕ continuous.

Let A,B be two subsets of X ; A is said to absorb B if there exists α > 0
such that λA ⊇ B for every λ ∈ K such that |λ| ≥ α. A subset B of X is
called bounded if it is absorbed by every neighborhood of zero. A set A ⊆ X
is called absorbing (resp., bornivorous) if it absorbs all finite (resp., bounded)
subsets of X .

A precompact set in a TVS (in particular, a relatively compact set in a
Hausdorff TVS) is bounded but the converse does not hold in general.

A TVS X [T] is semicomplete (resp., complete) if every Cauchy sequence
in (resp., every Cauchy filter on) X [T] converges. Thus, every complete TVS
is semicomplete. A Cauchy sequence is bounded, but a Cauchy filter is not
so in general ([316], Subsect. I.5.1, Corol. 3).

A TVS X [T] is metrizable if, and only if it is Hausdorff and NX has
a countable base. A metrizable TVS is semicomplete if, and only if it is
complete.

1.7.2 Locally Convex Topological Vector Spaces

1.7.2.1 Seminorms

A TVS X over k = R or C is called a locally convex topological vector space
(or a locally convex space, or an LCS, for short) if its topology T is locally
convex, i.e., if T is defined by a family of seminorms (pi)i∈I ; this means that
the sets p−1

i ({λ}), i ∈ I, λ > 0, form a base of the filter NX of neighborhoods
of zero. The topology T is called the initial topology of X .

In everything that follows, all TVSs are LCSs.

1.7.2.2 Duality

(I) Consider two k-spaces X,Y and a bilinear form

〈−,−〉 : X × Y → k.

The spaces X,Y are said to be in duality (or to form a dual system)
with respect to 〈−,−〉. The weak topology σ (Y,X) on Y defined by this
duality is the coarsest topology which makes continuous all linear forms
〈x, •〉 : y �→ 〈x, y〉 (x ∈ X). Therefore, a net (yi)i∈I in Y converges to 0 ∈ Y
in the topology σ (Y,X) if (〈x, yi〉)i∈I converges to 0 ∈ k for all x ∈ X .
The weak topology σ (Y,X) is locally convex. The weak topology σ (X,Y )
on X is defined similarly. The LCS Y [σ (Y,X)] is Hausdorff if, and only if the
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bilinear form 〈−,−〉 is separated at Y , i.e., when the following condition holds
true: 〈x, y〉 = 0 for all x ∈ X implies y = 0. The dual system (X,Y ) (where
〈−,−〉 is understood) is called separated if 〈−,−〉 is separated at both X
and Y .

(II) Consider an LCS X [T]. Its topological dual X ′ consists of all contin-
uous linear forms x′ : X → k, and x′ (x) is denoted by 〈x, x′〉. A subset A
of X ′ is called equicontinuous if for every V ∈ Nk (where Nk is the filter of
neighborhoods of zero in k), there exists U ∈ NX such that x′ (U) ⊆ V for
all x′ ∈ A.

The canonical bilinear form

〈−,−〉 : X ×X ′ → k (1.31)

is called the duality bracket . The two k-spaces X,X ′ form a dual system with
respect to the duality bracket, thus (I) applies; this dual system (X,X ′) is
always separated at X ′. The topology σ (X ′, X) is called the weak* topology
of X ′ and X ′ [σ (X ′, X)] is called the weak* dual of X [T]; σ (X ′, X) is the
topology of uniform convergence on all finite parts of X . If X [T] is Hausdorff,
then the dual system (X,X ′) is separated ([36], n◦II.6.1).

One can also define on X ′ the topology of uniform convergence on all
bounded parts of X [T]; this topology is denoted by β (X ′, X), and is called
the strong topology of X ′. The space X ′ [β (X ′, X)] is called the strong dual
of X [T] and is denoted by X ′β. This LCS is Hausdorff.

The weakened topology on X is the topology σ (X,X ′). Note that 〈x, •〉
belongs to the algebraic dual X ′∗ of X ′ (see Subsect. 2.2.5 below). The k-
space X (resp., X ′) endowed with the topology σ (X,X ′) (resp., σ (X ′, X))
is denoted by Xσ (resp., X ′σ). Every bounded set in Xσ is bounded in X [T]
([36], §III.5, Corol. 3 of Theorem 2).

Assume that X [T] is Hausdorff. Then, as a consequence of the Hahn-
Banach theorem ([36], §II.4, Corol. 1 of Prop. 2) the map x �→ 〈x, •〉 is
injective, so that X can be embedded in X ′∗, identifying x with 〈x, •〉.

1.7.2.3 Transpose of a Continuous Linear Map

Let X [T1] , Y [T2] be two LCSs and f : X → Y be a k-linear map; f is
called weakly continuous if it continuous from Xσ to Yσ. This happens if,
and only if there exists a map (necessarily unique, k-linear and continuous)
tf : Y ′σ → X ′σ such that 〈f (x) , y′〉 = 〈x,t f (y′)〉 for all x ∈ X , y′ ∈ Y ′. This
map tf is called the transpose, or the adjoint , of f . If f : X [T1] → Y [T2]
is continuous, then f is weakly continuous.

If X [T1] and Y [T2] are Hausdorff, then (X ′σ)
′ = X , (Y ′σ)

′ = Y and ttf = f .



1.7 Digression 1: Topological Vector Spaces 63

1.7.3 Special Classes of Topological Vector Spaces

1.7.3.1 Fréchet Spaces, Banach Spaces, and Hilbert Spaces

Consider an LCS X [T], and assume that T is Hausdorff. The following
conditions are equivalent:

(a) the filter NX has a countable base;
(b) T is defined by a sequence (pn)n∈N

of seminorms;
(c) X [T] is metrizable.
An LCS is called a Fréchet space if it is metrizable and complete. Let X

and Y be two Fréchet spaces and f : X → Y be linear, continuous and bijec-
tive; according to the Banach inverse mapping theorem, f is an isomorphism.

A Banach space is a complete normed vector space. Therefore, every
Banach space is a Fréchet space.

Consider a k-space X and a non-negative Hermitian form 〈•, •〉X : X ×
X → k. As a consequence of the Cauchy-Schwarz inequality, this form is
nondegenerate if, and only if it is positive definite, i.e., 〈x, x〉X > 0 whenever
x �= 0 ([36], n◦V.1.2). The k-space X is called a pre-Hilbert space if it
is endowed with a nondegenerate Hermitian form 〈•, •〉X . Such a space is
canonically endowed with the norm ‖x‖X =

√
〈x, x〉X . A complete pre-

Hilbert space is called a Hilbert space. Therefore, every Hilbert space is a
Banach space. Note that 〈•, •〉X is k-linear with respect to the first variable
(i.e., 〈λx, y〉 = λ 〈x, y〉 for all λ ∈ k) and k-antilinear with respect to the
second variable (i.e., 〈x, λy〉 = λ̄ 〈x, y〉, where λ̄ is the conjugate of λ). When
k = R, λ̄ = λ and 〈•, •〉X is R-bilinear.

1.7.3.2 Bidual, and Reflexive LCSs

The bidual of an LCS X [T] is the dual of the strong dual of X [T], i.e., it is
the space X ′′ = X ′ [β (X ′, X)]′. When X is Hausdorff, there exists a k-linear
monomorphism X ↪→ X ′′. The bidual X ′′ can be endowed with the strong
topology β (X ′′, X ′). The LCS X [T] is called semireflexive if X coincides
with X ′′, and X [T] is called reflexive if it coincides with X ′′ [β (X ′′, X ′)], i.e.,
with its strong bidual. A Hilbert space is reflexive.

The weak dual of X [T] is the LCS X ′ [σ (X ′, X ′′)]. If X is Hausdorff,
σ (X ′, X ′′) is finer than σ (X ′, X), and these topologies coincides if, and only if
X = X ′′, i.e., if X [T] is semireflexive. Then, the weak* dual X ′ [σ (X ′, X)] =
X ′σ of X [T] coincides with the weak dual X ′ [σ (X ′, X ′′)].

Remark 175. Let us emphasize that two situations must be distinguished:

(I) Two k-spaces X,Y are given (without topology) along with a bilinear form

〈−,−〉 : X × Y → k

with respect to which (X,Y ) is a dual system. Then σ (X,Y ) (resp., σ (Y,X))
is the weak topology on X (resp., Y ) defined by the duality.



64 1 Categories, Divisibility and Groups

(II) An LCS X [T] is given. Then X and the topological dual X ′ of X [T],
along with the duality bracket, form a dual system separated at X ′. The
topology σ (X,X ′) is coarser than T and is called the weakened topology on
X. The topology σ (X ′, X) is coarser than the strong topology β (X ′, X) and
is called the weak* topology on X ′. The dual of X ′β is the bidual X ′′, and
the topology σ (X ′, X ′′) is called the weak topology on X ′.
Therefore, the expression weak topology on X ′ may have two different mean-
ings, depending on the context.

1.7.3.3 Barreled Spaces, Bornological Spaces, and Montel Spaces

Consider an LCS X [T]. A set A ⊆ X is called balanced if for any λ ∈ k
such that |λ| ≤ 1, λA ⊆ A. A disk in X [T] is a part A which is convex
and balanced. A disk is a barrel if it is absorbing. Let (pi)i∈I be a family of
seminorms which defines the topology T. Each set p−1

i ({λ}), i ∈ I, λ > 0, is
a barrel, but this does not imply that each barrel is a neighborhood of zero
in general. We have the following ([36], n◦III.4.1 and §III.2; [190], 21.2(2)):

Lemma and Definition 176. (1) The following conditions are equivalent:
(i) every barrel of X [T] is a neighborhood of zero;
(ii) every bounded part of X ′σ is equicontinuous;
(iii) the topology T coincides with the strong topology β (X,X ′).
(2) The LCS X [T] is called barreled if the above equivalent conditions are
satisfied.
(3) The LCS X [T] is called bornological if every bornivorous disk is a neigh-
borhood of zero.

A Fréchet space is barreled. Every product of barreled spaces is barreled
([36], §IV.2, Corol. of Prop. 15). Obviously, an LCS is reflexive if, and only
if it is both semireflexive and barreled.

A metrizable LCS is bornological ([36], §III.2, Prop. 2). A countable prod-
uct of bornological spaces is bornological ([190], 28.4(4)). The strong dual
of a bornological space is complete ([36], §III.3, Corol. 1 of Prop. 12). The
strong dual X [T]′β of a metrizable LCS X [T] is bornological if, and only if
X [T] is barreled ([149], Chap. 4, Part 3, Sect. 4, Corol. 2 of Theorem 6), and
this happens if, and only if X [T]′β is barreled ([316], Chap. IV, 6.6).

A bornological semicomplete LCS is barreled ([36], §III.4, Corol. 2 of The-
orem 2).

An LCS X [T] is called a Montel space if it is Hausdorff, barreled, and if
every bounded part is relatively compact. A Montel space is reflexive and
the strong dual of a Montel space is again a Montel space ([36], n◦IV.2.5).
Every product of Montel spaces is a Montel space ([190], 27.2(4)). Montel
spaces enjoy the following important property:
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Theorem 177. Let X [T] be a Montel space and let (xi)i∈I be a net which
converges to x in Xσ.

(i) Assume that there exists i0 ∈ I such that the set {xi : i � i0} is bounded
in X [T]. Then (xi)i∈I converges to x in X [T].
(ii) If I = N, then the set {xn : n ∈ N} is bounded.
(iii) If Y is a closed subspace of X [T], then Y , endowed with the topology TY
induced by T, is again a Montel space.

Proof. (i): See ([36], §IV.2, Prop. 8).
(ii): Since (xn) converges to x in Xσ, it is a Cauchy sequence in that space,

therefore the set {xn : n ∈ N} is bounded in Xσ (Subsect. 1.7.1), thus in X [T]
(1.7.2.2).

(iii): Let B be a closed bounded part of Y [TY ]. Then B is again closed
and bounded in X [T], thus it is compact.

An LCS which is both a Fréchet space and a Montel space is called Fréchet-
Montel .

1.7.3.4 Inductive Limits

Let I be a filtering set and let
{
Xi [Ti] , ϕij

}
be a direct system with index

set I in the category LCS (Definition 15 and Example 36(2)). The inductive
limit lim−→Xi [Ti] is defined as usual (Definition 16) and is an LCS X [T→].

Every inductive limit of barreled (resp., bornological) spaces is barreled
(resp., bornological) ([36], §III.4, Corol. 3 of Prop. 3; Sect. III.2, Example 2).

Definition 178. Let (Xn) be strictly increasing sequence of k-spaces and
X =

⋃
nXn. Assume that each Xn is endowed with a locally convex topology

Tn such Tn+1 induces Tn on Xn Then X [T→] = lim−→Xn [Tn] is called the

strict inductive limit of the sequence of LCSs (Xn [Tn]).

Theorem 179. Let X [T→] be the strict inductive limit of the sequence
(Xn [Tn]).

(1) The following properties hold:
(i) for each n, T→ induces Tn on Xn;
(ii) if each Tn is Hausdorff (resp., complete), then T→ is Hausdorff (resp.,
complete).
(2) Assume that for each n, Xn is closed in Xn+1 [Tn+1]. Then:
(i’) each Xn is closed in X [T→];
(ii’) a subset B of X [T→] is bounded if, and only if B lies in some Xn [Tn]
and is bounded there;
(iii’) if each Xn [Tn] is a Montel space, so is X [T→].
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Proof. See ([36], §II.4, Prop. 9), ([190], 19.4(4)) and ([36], n◦IV.2.5,
Example 3).

Corollary 180. Let X [T→] be an (LF) (resp., (LFM)) space, i.e., the
strict inductive limit of a sequence (Xn [Tn]) of Fréchet (resp., Fréchet-
Montel) spaces. Then X [T→] is Hausdorff, complete, bornological and bar-
reled (resp., both barreled and Montel).

Proof. Since Xn [Tn] ↪→ Xn+1 [Tn+1] and Xn [Tn] is complete, Xn [Tn] is
closed in Xn+1 [Tn+1] ([34], §II.3, Prop. 8). The result follows from the
above.

Fréchet-Schwartz spaces and Dual Fréchet-Schwartz spaces (also called, re-
spectively, (FS) spaces and (DFS) spaces, for short) can be defined as follows
([250], Def. A.4.1):

Definition 181. (1) An LCS space E is (FS) if there exists a decreasing
sequence of Banach spaces

E1
ρ21←− E2 ←− . . . ←− Ej

ρj+1
j←− Ej+1 ←− . . .

such that all linear maps ρj+1
j : Ej+1 → Ej are compact (i.e., there exists a

neighborhood Vj+1 of 0 in Ej+1 whose image by ρj+1
j is relatively compact in

Ej ; this implies that ρj+1
j is continuous) and

E = lim←−Ej =
⋂

j≥1

Ej .

(2) An LCS space E is (DFS) if there exists an increasing sequence of Banach
spaces

E1
ρ12−→ E2 −→ . . . −→ Ej

ρj
j+1−→ Ej+1 −→ . . .

such that all maps ρj+1
j are compact and

E = lim−→Ej =
⋃

j≥1

Ej .

An (FS) space can also defined to be an LCS which is both Fréchet and
Schwartz, but will not detail the notion of Schwartz space. This notion and
the following result are due to Grothendieck [147] (see, also, [149], Chap. 4,
Part 4):
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Theorem 182. (1) An LCS space is (DFS) if, and only if it is the strong
dual of an (FS)-space. Conversely, an LCS space is (FS) if, and only if it
is the strong dual of a (DFS)-space.
(2) (FS) spaces and (DFS) spaces are Montel, bornological and complete.
An inductive limit of a sequence of (DFS) spaces is a (DFS) space; dually,
a projective limit of a sequence of (FS) spaces is an (FS) space.

1.7.3.5 Examples

Let Ω be an open subset of kn (k = R or C) . In what follows, all functions
are C-valued, except when otherwise specified.

(1) Let E (Ω) = C∞ (Ω) be the C-vector space of all indefinitely differ-
entiable functions on Ω. For any multi-index α = (α1, ..., αn) ∈ Nn, any
ϕ ∈ E (Ω) and any x ∈ Ω, we set

|α| =
∑

1≤i≤n
αi, Dαϕ =

∂|α|ϕ
∂α1
1 ...∂αn

n
. (1.32)

For every integer k > 0, let Kk be the compact set ‖x‖ ≤ k and let

pk,m (ϕ) = sup
x∈Kk∩Ω
|α|≤m

|Dαϕ (x)| .

The topology T∞c of E (Ω) is defined by the seminorms pk,m and is easily seen
to be Hausdorff. Since {pk,m} is countable, T∞c is metrizable (1.7.3.1). One
can check that E (Ω) [T∞c ] is complete ([36], n◦III.1.7, Example b)), thus is a
Fréchet space. More specifically, E (Ω) [T∞c ] is a Fréchet-Montel space ([36],
n◦IV.2.5, Example 4) and a . Its dual E ′ (Ω) is the space of distributions
with compact support included in Ω. The strong dual E ′β (Ω) is a complete
bornological Montel space.

(2) Let D (Ω) = C∞0 (Ω) be the C-vector space of all indefinitely differen-
tiable functions with compact support included in Ω. Let K ⊆ Ω be compact
and let DK (Ω) be the subspace of D (Ω) consisting of those functions, the
support of which is included in K; DK (Ω) is endowed with the topology
T∞K induced by the above topology T∞c . As easily seen, DK (Ω) is closed in
E (Ω) [T∞c ], thus is a Fréchet space. If K � K ′, then DK (Ω) � DK′ (Ω).
Let (Kk)k>0 be a strictly increasing sequence of compact sets, the interiors of
which form a covering of Ω. Since

⋃
k>0DKk

(Ω) = D (Ω), one can define on
D (Ω) the topology T∞→, strict inductive limit of the topologies T∞Kk

. Then
D (Ω) [T∞→] is the strict inductive limit of a sequence of Fréchet-Montel spaces.
By Corollary 180, D (Ω) [T∞→] is a complete bornological Montel space. The
topology T∞→ is not metrizable. The dual of D (Ω) [T∞→] is the space D′ (Ω) of
all distributions on Ω. The strong dual D′β (Ω) is a complete Montel space.
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(3) Let α = (α1, ..., αn) ∈ Nn be a multi-index and z = (z1, ..., zn) ∈ kn.
We set

α! =
∏

1≤i≤n
αi!, zα =

∏
1≤j≤n z

αj

j .

Consider a function f : Ω → C. This function is called analytic in Ω if each
point w ∈ U has an open neighborhood U ⊆ Ω such that f has a power series
expansion

f (z) =
∑

α

aα (z − w)α (1.33)

(aν ∈ C) which converges for all z ∈ U . Then f ∈ E (Ω) and (1.33) is the
Taylor expansion of f at the point w, i.e.,

aα =
1
α!
Dαf (w) .

The function f is said to have a zero at w if f (w) = a|0| = 0, and

ω (f ;w) = min {|α| : aα �= 0}

is called the total order of f at w. (If n = 1, the total order is called the
order.) Obviously, the analytic function f has a zero at w if, and only if
ω (f ;w) > 0.

When k = R, the space of analytic functions in Ω is denoted by Cω (Ω) ,
and a function f ∈ Cω (Ω) is said to be of class Cω, or to be real analytic.
For any nonnegative integer p, Cp (Ω) � C∞ (Ω) � Cω (Ω) , and this leads
to the following convention:

p <∞ < ω, ∀p ∈ N.
When k = C, an analytic function in Ω called complex analytic or holo-
morphic. The space of holomorphic functions in Ω is denoted by O (Ω).
According to the Cauchy-Riemann criterion, O (Ω) = C∞ (Ω) = C1 (Ω).

On the spaceO (Ω) , the topology T∞c and the topology T0
c = Tc of uniform

convergence on compact subsets of Ω coincide ([339], Chap. 10, Example
II). Thus, let Kk be the compact set ‖x‖ ≤ k (where k ∈ N) and for any
ϕ ∈ O (Ω) , let

pk (ϕ) = sup
x∈Kk∩Ω

|ϕ (x)| .

The topology Tc of O (Ω) is defined by the seminorms pk (ϕ). The LCS
O (Ω) [Tc] = O (Ω) [T∞c ] is a closed subspace of E (Ω) [T∞c ], as a consequence
of the Cauchy-Riemann equations. Since E (Ω) [T∞c ] is a Fréchet space, so is
O (Ω) [T∞c ]. Likewise, since E (Ω) [T∞c ] is a Montel space, so is O (Ω) [Tc] .
(This is Montel’s theorem when n = 1 and Vitali’s theorem when n > 1.)
Therefore, O (Ω) [Tc] is a Fréchet-Montel space. (This is not valid in the case
of real analytic functions.)
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Let K be a compact subset of Cn and let O (K) be the space of germs of
analytic functions defined in an open neighborhood of K in Cn. Let (Un)n∈N

be a base of the filter consisting of all open neighborhoods of K in C (with
Un+1 � Un for each n). Then

O (K) = lim−→O (Un)

The topology Tn is not induced on O (Un) by Tn+1 ([339], Exercise 13.7) thus
the above limit is not strict. Nevertheless, O (K) is a (DFS) space ([250],
Theorem 1.5.5).

Interesting complements on Fréchet-Schwartz (FS ) spaces and their duals
((DFS) spaces) can be found in the appendix of [250].

1.8 Digression 2: Manifolds and Lie Groups

The short presentation given below without proofs can be completed by [315].
Recall that k = R or C.

1.8.1 Lie Groups

1.8.1.1 Manifolds

A locally finite-dimensional k-analytic manifold X is a topological space
together with a collection of pairs (Ui, ϕi) where each Ui is an open sub-
set of X , ϕi is an homeomorphism Ui → ϕi (Ui) ⊆ kn(i) (where n (i)
is a nonnegative integer depending on i), {Ui} is a covering of X and
ϕj ◦ ϕ−1

i : ϕi (Ui ∩ Uj) → ϕj (Ui ∩ Uj) is analytic for each pair of indices
i, j. Each pair (Ui, ϕi) is called a chart; if a ∈ Ui, (Ui, ϕi) is called a chart
at a, and if in addition ϕi (a) = 0, then the chart (Ui, ϕi) is said to be cen-
tered at a. If the integer n (i) is independent of i, the manifold X is called
pure and n (i) = n is called its dimension. In what follows, every manifold
X is k-analytic, locally finite-dimentional and countable at infinity , i.e., X
is the directed union of a sequence (Kj) of compact subsets (Example 19)5.
Let X,Y be two manifolds. Then a map f : X → Y is said to be of class
Cr (r ∈ N ∪ {∞, ω}) if for any charts (U,ϕ) of X and (V, ψ) of Y such that
f (U) ⊆ V , the map

ψ ◦ (f |U ) ◦ ϕ−1 : ϕ (U)→ ψ (V )

is of class Cr.
A path in X is a continuous map p : [a, b]→ X where [a, b] is an interval of

R. Such a path is said to be closed if p (a) = p (b). Two paths p, q : [a, b]→
X are homotopic if there exists a continuous map F : [a, b] × [α, β] → X

5 It is sufficient to assume that X is k-analytic and paracompact ([34], n◦I.9.10).



70 1 Categories, Divisibility and Groups

such that F (t, α) = p (t) and F (β, t) = q (t) for any t ∈ [a, b]. A path-
connected manifold is said to be simply connected if every closed path p is
homotopic with one single point (i.e., with the constant path [a, b] �→ p (a))
([92], (16.27.5)).

Let (V, ξ) be a chart of X , let Ω = ξ (V ) ⊆ kn, and let f : V → C be
a function of class Cr. There exists a uniquely defined Cr map φ : Ω → k
such that f (x) = φ (ξ1 (x) , ..., ξn (x)) where the analytic maps ξi are the
local coordinates (which can also be considered as variables). Generalizing
(1.32), for any multi-index α = (α1, ..., αn) ∈ Nn such that |α| ≤ r and any
x ∈ V , we set

∂|α|

∂ξα
=

∂|α|

∂ξα1
1 ...∂ξαn

n

, Dα
ξ f (x) =

∂
|α|
φ

∂ξα
(ξ (x)) .

1.8.1.2 Lie Groups

A k-Lie group G is a k-manifold which is a group (multiplicatively noted in
general, with unit element denoted by 1 or e, and additively noted if G is
abelian, with zero element 0) such that the map G×G � (x, y) �→ x−1y ∈ G
is analytic. A Lie group is a pure manifold.

According to E. Cartan’s theorem ([92], (19.10.1)), a subgroup H of a Lie
group G is again a Lie group if, and only if H is closed in G.

The universal covering of a connected k-Lie group G is a simply con-
nected k-Lie group G̃ along with an analytic epimorphism ρ : G̃ � G which
is locally injective; G̃ is unique up to isomorphism and ρ is called the canon-
ical projection ([92], (16.30.1)). Therefore, G ∼= G̃/ ker ρ; ker ρ is a discrete
commutative subgroup of G̃, denoted by π1 (G) and called the fundamental
group of G ([92], (16.30.2)). The Lie group G is simply connected if, and
only if π1 (G) = {1} ([92], (16.27.5)).

In particular, let G be a connected commutative k-Lie group. Then G̃
can be identified with kn and G ∼= kn/D where D is a discrete subgroup of
kn ([38], n◦III.6, Prop. 11; [92], (19.17.1)). If k = R, then D ∼= 0 × Zq and
G ∼= Rp×Tq where T is the torus R/Z. The commutative groups of the form

Rm × Tq × Zs × Φ,

where Φ is a finite group, are real Lie groups which are called elementary .
Every real commutative Lie group generated by a compact neighborhood of
0 is isomorphic to a group of this form ([51], n◦5.1). Every simply connected
real Lie group is isomorphic to Rm for some integer m ≥ 0.

1.8.1.3 Distributions

Let X be a k-manifold and let E (X) be the space of all C∞ functions X → C,
endowed with the topology T∞c of compact convergence of a function and of
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all its derivatives ([92], (17.3.1)). When X is an open subset of kn, E (X) [T∞c ]
is the LCS E (Ω) [T∞c ] already studied in (1.7.3.5). By definition, a sequence
(ϕn) of elements of E (X) converges to 0 in the topology T∞c if for any compact
set K ⊆ X , any chart (V, ξ) of X such that K ∩ V �= ∅, any integer p > 0
and any multi-index α ∈ Nn such that |α| ≤ p, the restrictions Dα

ξ ϕ |K∩V
converge uniformly to zero. The topological vector space E (X) [T∞c ] is, like
E (Ω) [T∞c ], a Fréchet-Montel space. The space E ′ (X) of all continuous linear
forms E (X) → C is the space of distributions with compact support ⊆ X .
The strong dual E ′β (X) is Hausdorff, complete, and is a bornological Montel
space.

The space D (X) is the subspace of E (X) consisting of those functions
which have a compact support. This space is endowed with the topology
T∞→, strict inductive limit of the topologies T∞Kk

of Fréchet-Montel spaces
defined as in (1.7.3.5). Therefore, D (X) [T∞→] is a complete bornological
Montel space, and its dual D′ (X) is the space of all distributions on X ([92],
(17.3.1)); the strong dual D′β (X) of D (X) [T→] is a complete Montel space.

For any T ∈ E ′ (X) (resp., T ∈ D′ (X)) and ϕ ∈ E (X) (resp., ϕ ∈ D (X)),
T (ϕ) is written 〈ϕ, T 〉 where 〈−,−〉 is the duality bracket (see (1.31)). With
a slight abuse of notation ([92], (17.3.8)), 〈ϕ, T 〉 is also written

∫

X

dT (x)ϕ (x) =
∫

X

ϕ (x) dT (x) . (1.34)

Let (V, ξ) be a chart centered at a ∈ X , and let T ∈ E ′ (X) (resp., T ∈
D′ (X)); the restriction T |V is the linear form ϕ �→ T (ϕ), ϕ ∈ E (V ) (resp.,
ϕ ∈ D (V )), and its derivative with multi-index α is expressed in function of
(V, ξ) by

〈
ϕ,Dα

ξ T
〉

= (−1)|α|
〈
Dα
ξ ϕ, T

〉
.

The above holds when X is a k-Lie group G. Let T, S ∈ E ′ (G); their con-
volution product T �S ∈ E ′ (G) is the linear form E (G) � ϕ �→ 〈ϕm, T ⊗ S〉 ∈
C where m is the map (x, y) �→ xy. By (1.34), this can also be written ([92],
(14.5.4), (17.10.3))

∫

G

ϕd (T � S) =
∫

G

(∫

G

ϕ (xy) dT (x)
)
dS (y)

=
∫

G

dS (y)
∫

G

dT (x)ϕ (xy) .

Let a ∈ G and let δa : ϕ �→ ϕ (a) be the Dirac distribution at point a. From
the above,

Dα
ξ ϕ (a) = (−1)|α|

〈
ϕ,Dα

ξ δa
〉
, (1.35)

〈ϕ, δa � S〉 = 〈ϕ (a•) , S〉 , 〈ϕ, T � δa〉 = 〈ϕ (•a) , T 〉 (1.36)

where ϕ (a•) and ϕ (•a) respectively denote the maps x �→ ϕ (ax) and x �→
ϕ (xa).



72 1 Categories, Divisibility and Groups

A C-algebra A is a C-vector space along with a bilinear map A×A→ A :
(a, b) �→ a b (called the internal law of A); the general definition of an algebra
over a commutative ring is given in (2.2.2.3) below. A C-algebra A is called
a convolution algebra when its internal law is the convolution product.

The pair (E ′ (G) , �) is an associative convolution algebra with unit element
δe, and is commutative if, and only if G is commutative too. This ring is an
integral domain in the classical case G = Rn according to the Paley-Wiener-
Schwartz theorem ([92], 22.18.7), but not in general. For example, let T be
the torus R/Z and let C be a nonzero constant; then 0 �= C ∈ E ′ (T), δ̇0 �= 0
and δ̇0 � C = 0.

1.8.1.4 Convolution of Functions and Distributions

Let μ = dx be a left Haar measure on G ([92], Sect. 14.1). Every left Haar
measure on the Lie group G is of the form aμ, a ∈ C. The Haar measure
μ = dx is chosen once for all in the sequel, and when G = Rn or Cn ∼= R2n,
dx is the Lebesgue measure. Let f be a function defined μ-almost everywhere
on G; we will abuse the language as in ([339], p. 102) and ([308], p. 67), and
make no distinction between a function f , defined μ-almost everywhere on G,
and its class (modμ). This class consists of all functions g, defined μ-almost
everywhere on G, and such that ([92], Sect. 13.6)

μ (G\ {x ∈ G : f (x) = g (x)}) = 0.

For any function f ∈ E (G) consider the distribution T = fdx. The support
of T is not compact in general but for any S ∈ E ′ (G), the convolution
products T �S and S � T exist and are absolutely continuous with respect to
dx, with density function g (resp., h) belonging to E (G). Identifying f � S
with g and S � f with h one obtains ([92], (14.8.2), (14.8.4))

(S � f) (a) =
∫

G
f
(
s−1a
)
dS (s) , (f � S) (a) =

∫
G
f
(
as−1
)
Δ
(
s−1
)
dS (s)
(1.37)

where Δ is the modular function which is positive ([92], Sect. XIV.3) and
analytic ([38], §III.3, Prop. 56). The convolution product � : E ′ (G) ×
E (G)→ E (G) is separately weakly∗ continuous ([51], Chap. I, Prop. 1;2). In
particular,

δa � f = f
(
a−1•
)
, f � δa = Δ

(
a−1
)
f
(
•a−1
)

The operator f (•) �→ f (a•) (resp., f (•) �→ f (•a) is the left (resp., right)
shift denoted by γ

(
a−1
)

(resp., δ (a)) ([92], (14.1.1). Let a ∈ G, let (V, ξ)
be a chart centered at e, and let f ∈ E (G); as easily shown, for any x ∈ aV ,

Dα
ξ δa � f (x) = Dα

ξ f
(
a−1x
)
.
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Denoting by T ∞x (G) the C-vector space consisting of all distributions
with support included in {x} (x ∈ G) and by T ∞ (G) the C-vector space
consisting of all punctual distributions (i.e., all distributions with finite sup-
port), T ∞e (G) and T ∞ (G) are subalgebras of (E ′ (G) , �), and T ∞ (G) is
commutative if, and only if G is commutative too. In addition,

T ∞ (G) =
⊕

x∈G T ∞x (G) (1.38)

and T ∞x (G) = δx � T ∞e (G) = T ∞e (G) � δx ([38], n◦III.3.1).

1.8.2 Lie Algebra of a Lie Group

1.8.2.1 General Case

Let g � Te (G) be the tangent space of G at e and let n be the dimension
of the pure k-manifold G. Consider the n first order elementary differential
operators

Xi = ∂i |e : f → Dα
ξ f (e) , αj = δij i, j ∈ {1, ..., n}

(where δij is the Kronecker symbol and (V, ξ) is a chart centered at e) and
set X = (X1, ..., Xn); X is a k-basis of g. By (1.35), for any i ∈ {1, ..., n} ,
Xi can be identified with the distribution (−1)|α|Dα

ξ δe where α ∈ Nn is the
above multi-index; then g is identified with the k-vector space consisting of
all distributions of order 1 with support included in {e}. By ([92], (17.14.2)),
for any Y, Z ∈ g,

[Y, Z] � Y � Z − Z � Y ∈ g

and the bilinear map [•, •] : g×g→ g is a Lie bracket , i.e., for any X,Y, Z ∈ g,

[X,Y ] = − [Y,X ]

(skew-symmetry) and the following Jacobi identity is satisfied:

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X,Y ]] = 0;

g, endowed with this bracket, is a k-algebra, called the Lie algebra of G ([92],
(19.3.3)).

All elements of the form eA, A ∈ g (where eA is defined by its usual power
series expansion) belong to G; in addition, there exist an open neighborhood
V of 0 in g and an open neighborhood W of {e} in G such that expG : A �→ eA

is a diffeomorphism of V onto W .
Two Lie groups G,H are locally isomorphic if, and only if their Lie algebras

g, h are isomorphic. The latter condition is necessary and sufficient for G,H
to be isomorphic if these Lie groups are simply connected ([92], (19.7.7)). In
particular, since a Lie group G and its universal covering group G̃ are locally
isomorphic, they have the same Lie algebra.
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As a consequence of Levi’s theorem, every finite-dimensional k-Lie algebra
is isomorphic to the Lie algebra of a k-Lie group ([92], (21.23.4)). If H is a
Lie subgroup of a Lie group G, then the Lie algebra h of H is a subalgebra
of the Lie algebra g of G ([92], (19.4.3)). Conversely, to every subalgebra
h of the Lie algebra g of a Lie group G, there canonically corresponds one
connected Lie group H ”embedded in G”, having h for its Lie algebra ([92],
(19.7.4)).

1.8.2.2 Classical Groups

The general linear group GLn (R) is endowed with the topology induced by
the canonical topology of Matn (R). The classical groups are the closed
subgroups of GLn (R). According to Cartan’s theorem, a classical group is a
real Lie group. In particular, a real linear algebraic group, i.e., a subgroup of
GLn (R) defined by algebraic equations (see Subsect. 2.10.1 below for more
details) is a classical group, thus a Lie group.

For example, the group O (n,R) of all real orthogonal matrices of order n
is a real linear algebraic group since S ∈ GLn (R) belongs to O (n,R) if, and
only if S satisfies the algebraic equation ST S = In, where ST is the classical
transpose of S (Definition 271); therefore, O (n,R) is a Lie group, called the
orthogonal group.

Let G be a classical group; then, g is a subalgebra of Matn (R). The Lie
bracket [A,B] � AB − BA (A,B ∈ g) is sometimes called the commutator
of A and B (not to be confused with the notion introduced in Definition
163): see (2.2.2.3) below. The Lie algebra g can be calculated as follows:
it consists of those elements A ∈ Matn (R) such that In + εA ∈ G when
ε→ 0+, neglecting the terms of second order in ε.

1.8.2.3 Classification of Lie Algebras and Lie Groups

An ideal of g is a k-vector space a ⊆ g such that [g, a] ⊆ a. The Lie algebra
g is called

• simple if it is noncommutative and if its only proper ideal is {0},
• semisimple if its only abelian ideal is {0},
• nilpotent if there exists a finite decreasing sequence of ideals (gi)0≤i≤p such

that g0 = g, gp = {0} with [g, gi] ⊆ gi+1 (0 ≤ i ≤ p− 1),
• solvable if there exists a sequence

g0 = g � g1 � ... � gn = {0} (1.39)
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of Lie subalgebras such that gi is a one-codimensional ideal in gi−1, 1 ≤
i ≤ n ([38], §I.5, Prop. 2).

All nilpotent Lie algebras are solvable. See in Exercise 216 another charac-
terization of nilpotent Lie algebras and solvable Lie algebras.

Assuming that the Lie group G is connected, it is called semisimple (resp.,
nilpotent, solvable) if its Lie algebra is semisimple (resp., nilpotent, solvable).
A Lie group is solvable if, and only if the underlying group is solvable (Sub-
sect. 1.6.8): see ([92], (19.12.3)).

1.8.3 The Universal Enveloping Algebra, and Its
Centre

1.8.3.1 General Universal Enveloping Algebra

Given any associative k-algebra A, one can endow A with a k-Lie algebra
structure by defining the Lie bracket [a, b] = ab − ba (a, b ∈ A) (i.e., the
commutator of a and b). A representation of g is defined to be a k-Lie algebra
morphism from g to such A. There exists an associative k-algebra Uk (g)
together with a representation θ : g →Uk (g) with the following universal
property: for any associative k-algebra representation ϕ : g→ A, there exists
a unique k-algebra morphism ψ : Uk (g)→ A such that ψθ = ϕ. Thus Uk (g)
is unique up to isomorphism and is called the universal enveloping algebra of
g. Consider the standard monomials

{Xi1Xi2 ...Xin : ij ∈ {1, ..., n} , i1 ≤ ... ≤ in} .

According to the Poincaré-Birkhoff-Witt theorem, these standard monomials
form a k-basis of Uk (g); as proved in ([247], §1.7), Uk (g) is a skew polyno-
mial ring (Subsect. 2.7.4 below) and a noncommutative Noetherian domain
(Subsect. 2.4.4 below).

The centre Zk (g) of Uk (g) is a commutative domain. If g is semisimple,
then Zk (g) is the polynomial ring k [y1, ..., yr] where r <∞ is the ”rank” of
g ([94], 1.9.8, 7.3.8), thus Zk (g) is Noetherian by Theorem 352 below. The
case of solvable Lie algebras is quite different since there exists a nilpotent Lie
algebra g of dimension 45 such that Zk (g) is not Noetherian ([94], §4.9.20).

1.8.3.2 The Borel Epimorphism

If g is the Lie algebra of a Lie group G, then Uk (g) is isomorphic to, and
identified with, T ∞e (G). The dual U∗k (g) � Homk (Uk (g) ,k) is isomorphic
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to the power series ring k [[x]], x = (xi)1≤i≤n, and according to E. Borel’s
theorem ([339], Theorem 38.1), there exists a canonical epimorphism

E (G) � U∗k (g) : f �→
∑

α∈Nn

1
α!

(Xαf)xα,

called the Borel epimorphism.

1.8.3.3 Invariant and Bi-invariant Differential Operators

Assume that the k-Lie group G is connected and let P : E (G) → E (G) be
a differential operator ([92], Sect. XVII.13). Such an operator is called left-
(resp., right-) invariant if for any a ∈ G and ϕ ∈ E (G),

P ϕ = γ (a)
(
P γ
(
a−1
)
ϕ
)

(resp., P ϕ = δ (a)
(
P δ
(
a−1
)
ϕ
)
).

For short, a differential operator is called invariant when it is left-invariant,
and bi-invariant when it is both left- and right-invariant. The algebra of all
invariant (resp., bi-invariant) differential operators is identified with Uk (g)
(resp., with Zk (g)) ([92], (19.3.1), (23.36.6)).

1.9 Digression 3: Hyperfunctions

1.9.1 Hyperfunctions on an Open Subset of the Real
Line

We consider hyperfunctions on a nonempty open subset Ω of the real line.
Let U be an open subset of C. The set of all analytic functions in U (resp., Ω)
is denoted by O (U) (resp., O (Ω)); this is a C-space. Thus, in this section,
the space of real analytic functions on Ω is denoted by O (Ω) instead of
Cω (Ω).

A complex neighborhood of Ω is defined as an open subset U of C which
contains Ω as a relatively closed subset. The set of all complex neighborhoods
of Ω is denoted by U (Ω); this is a filtering set for the inclusion (1.2.3.4).

The set U\Ω is open in C for U\Ω is open in U and U is open in C. In
addition, U\Ω = U+ ∪ U− where U± = {z ∈ U : ± Im z > 0}. The open sets
U+ and U− are disjoint, thus every function ϕ ∈ O (U\Ω) can be uniquely
written into the form ϕ+ − ϕ− where ϕ± ∈ O (U±).

Let ϕ ∈ O (U); then ϕ
∣
∣
U\Ω ∈ O (U\Ω) and according to the analytic con-

tinuation principle ([208], Sect. III.1, Theorem 1.2), ϕ is the unique analytic
continuation of ϕ

∣
∣
U\Ω to U . Thus O (U) can be embedded in O (U\Ω) and

the quotient O (U\Ω) /O (U ) is a C-space.
Let U1, U2 ∈ U (Ω), U1 ⊆ U2. The embedding O (U2\Ω) ↪→

O (U1\Ω) is the restriction ι : f �−→ f
∣
∣O(U1\Ω) . Then ι (O (U2)) =

O (U1) and by Theorem and Definition 145 the induced map ῑ :
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O (U2\Ω) /O (U2) → O (U1\Ω) /O (U1) exists and is injective. Therefore,
both {O (U) : U ∈ U (Ω)} and {O (U\Ω) /O (U) : U ∈ U (Ω)} are direct sys-
tems of C-vector spaces with index set U (Ω) (Definition 15).

By Definition 16,
O (Ω) = lim−→

U∈U(Ω)

O (U ) ,

and we are led to the following.

Definition 183. The C-space of hyperfunctions on Ω is

B (Ω) = lim−→
U∈U(Ω)

O (U\Ω) /O (U ) .

Let U ∈ U (Ω) and ϕ ∈ O (U\Ω). The canonical image of ϕ in B (Ω) is
denoted by [ϕ]. By construction, the map O (U\Ω) � ϕ �→ [ϕ] ∈ B (Ω) is
C-linear. The derivative of order k of [ϕ] is defined by [ϕ](k) =

[
ϕ(k)
]
. Let

ϕ ∈ O (U\Ω); then [ϕ] = 0 if, and only if ϕ has an analytic continuation to
an open set U ′ ∈ U (Ω).

Abusing the language, one can write [ϕ] (x) = ϕ (x + i0) − ϕ (x− i0) =
[ϕ (z)]z=x where the ”boundary values” ϕ (x± i0) ∈ B (Ω) are defined by

ϕ (x+ i0) = [ε (z)ϕ (z)]z=x , ϕ (x− i0) = − [ε̄ (z)ϕ (z)]z=x ,

ε (z) =
{

1
0 , ε̄ (z) = ε (−z) =

{
0 (Im z > 0)
1 (Im z < 0) .

Let ψ ∈ O (Ω). Then there exists U ∈ U (Ω) such that ψ has an analytic
continuation to U ([92], (9.4.5)), denoted by ψ (z); this continuation of ψ
to U is unique. Let [ϕ] ∈ B (Ω); then the product [ϕ] ψ is defined by:
[ϕ] ψ = [(ϕψ) (z)]z=x ∈ B (Ω). Therefore, B (Ω) is endowed with a structure
of O (Ω)-module (see Subsect. 2.2.2 below).

Define 1 ∈ B (Ω) by 1 = [ε (z)]z=x. The map O (Ω) � ψ �→ 1ψ ∈ B (Ω)
is easily seen to be injective (using the analytic continuation principle), thus
determines an embedding O (Ω) ↪→ B (Ω).

If Ω′ is an open subset of Ω and [ϕ] ∈ B (Ω), we define the restriction
[ϕ] |Ω′ as follows:

[ϕ] |Ω′ = [ϕ |Ω′ ] .

In addition, one can prove that every [ϕ′] ∈ B (Ω′) can be expressed in that
way, i.e., the following holds:

Theorem 184. The canonical ”restriction map” ρΩΩ′ : B (Ω) → B (Ω′) is
surjective.

In other words, the hyperfunctions on Ω form a flabby sheaf of vector
spaces ([184], Theorem 1.3.1; [140], Subsect. II.1.3)); this is a key property
of hyperfunctions, which is not shared by distributions. The support of the
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hyperfunction [ϕ] ∈ B (Ω), denoted by supp [ϕ], is defined as the smallest
closed set F ⊆ Ω such that [ϕ]

∣
∣
Ω\F = 0.

The following will play an important role in the sequel:

Theorem and Definition 185. Let

P

(
x,

d

dx

)
=

m∑

i=0

ai (x)
di

d xi
, am �= 0

be a nonzero linear differential operator (see Subsect. 2.7.2 below) with real
analytic coefficients on a nonempty open interval Ω of R.

(i) This operator P
(
x, d

dx

)
: B (Ω) → B (Ω) (where B (Ω) is the space of

hyperfunctions on Ω) is surjective (Sato’s theorem).
(ii) Let

kerB(Ω) (P•) �
{
f ∈ B (Ω) : P

(
x,

d

dx

)
f = 0

}
.

Then
dimC kerB(Ω) (P•) = m+

∑

x∈Ω
ordxam

where ordxam is the order of the zero at x of the leading coefficient am
(1.7.3.5). If ordxam > 0, the point x is called singular.

In addition, the following conditions are equivalent:

(a) am (x) �= 0 for all x ∈ Ω;
(b) kerB(Ω) (P•) ⊆ O (Ω);
(c) P

(
x, d

dx

)
f ∈ O (Ω) implies f ∈ O (Ω).

Assume that the point x is singular and consider the highest convex polyhedron
under the m + 1 points

(j, ordxaj) , 0 ≤ j ≤ m,

called the Newton polygon ([286], Sect. 3.3). The largest slope σx of this
polyhedron is called the nonregularity of the singular point x. The singu-
lar point x is called determined if σx ≤ 1. The following conditions are
equivalent:

(a’) σx ≤ 1 for all x ∈ Ω;
(b’) kerB(Ω) (P•) ⊆ D′ (Ω);
(c’) P

(
x, d

dx

)
f ∈ D′ (Ω) implies f ∈ D′ (Ω).

(Komatsu’s theorem).

Proof. See ([184], Theorems 1.3.2, 1.3.6 and 1.3.7; [250], Theorem 3.9.5).
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1.9.2 Examples of Hyperfunctions

In the examples below, Ω is a bounded open interval of R.

1.9.2.1 The Dirac Hyperfunction

Let x ∈ Ω and consider the hyperfunction δ̆x �
[

1
2πi(x−z)

]
. Let ψ ∈ O (Ω)

and let V be a simply connected open subset of U such that Ω ⊆ V (1.8.1.1).
The hyperfunction δ̆x acts on ψ in the following way:

〈
ψ, δ̆x

〉
� −
∮

∂V

1
2πi (x− z)

ψ (z) dz

where ∂V is the boundary of V ; ∂V is assumed to be canonically oriented
and to be a closed path of class C1. By the Cauchy theorem ([92], (9.9.1)),〈
ψ, δ̆x

〉
= ψ (x) = 〈ψ, δx〉 where δx is the Dirac distribution at x. Thus δ̆x

is called the Dirac hyperfunction at x.

1.9.2.2 Hyperfunction Defined by a Distribution

More generally, let T ∈ E ′ (Ω), U ∈ U (Ω), and let ϕT ∈ O (U\Ω) be defined
by

ϕT (z) =
1

2πi

∫

Ω

1
x− z

dT (x)

with the notation of (1.34). Then T̆ = [ϕT ] is called the hyperfunction
associated with T . As above, let ψ ∈ O (Ω), extended to U (assuming that
U is sufficiently small) and let T̆ act on ψ according to

〈
ψ, T̆
〉

= −
∮

∂V

ϕT (z) ψ (z)dz. (1.40)

We obtain
〈
ψ, T̆
〉

= −
∫

Ω

dT (x)
1

2πi

∮

∂V

1
x− z

ψ (z) dz

=
∫

Ω

ψ (x) dT (x) = 〈ψ, T 〉 . (1.41)

We have the following:

Theorem 186. There exists an embedding

E ′ (Ω)→ B (Ω) : T �→ T̆ (1.42)

such that supp T̆ = suppT. Therefore, E ′ (Ω) is identified with a subspace of
B (Ω) .
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Proof. The map E ′ (Ω) � T �→ T̆ ∈ B (Ω) is obviously C-linear. Let P (Ω)
be the space of all polynomial functions in Ω; P (Ω) is dense in E (Ω) ([339],
Chap. 15, Corollary 4 of Theorem 15.3). Since P (Ω) ⊆ O (Ω) ⊆ E (Ω),
O (Ω) is dense in E (Ω), therefore the map (1.42) is injective. See ([250],
Prop. 3.9.1) for the statement about supports.

1.9.2.3 Hadamard’s Finite Parts

Let f be a meromorphic function in a complex neighborhood U of an open
subset Ω of R, and assume that the poles of f all lie in Ω. Then Hadamard’s
finite part of f is defined by

f.p. (f (x)) =
1
2
{f (x + i0) + f (x− i0)}

([184], Example 1.2.9). This is a distribution ([322], Sect. 2.2, Example 2).

1.9.3 General Hyperfunctions

1.9.3.1 Compactly Supported Hyperfunctions

Let K be a compact subset of R, let O (K) be the space of germs of analytic
functions defined in an open neighborhood of K in C, and let BK (Ω) be
the space of all hyperfunctions with support ⊆ K and defined in a real open
neighborhood Ω of K . The expression (1.40) can be generalized, setting

〈ψ, u〉 = −
∮

∂V

ϕ (z) ψ (z)dz.

where u = [ϕ] . With the notation in (1.41) we obtain

u (ψ) = 〈ψ, u〉 =
∫

Ω

f (x) ψ (x) dx (1.43)

where u = [ϕ] and ψ ∈ O (Ω). This leads to the following:

Theorem 187. (Köthe’s duality theorem.) The spaces BK (Ω) and O′ (K)
are topologically isomorphic – thus identified. They are (FS) spaces, thus
Fréchet-Montel spaces (1.7.3.4).

Proof. The topological isomorphism BK (Ω) ∼= O (K)′β can be viewed as
a consequence of (1.43) [188]. Since O (K) is a (DFS) space (1.7.3.5),
O (K)′β is an (FS) space, thus a Fréchet-Montel space (Theorem 182).
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1.9.3.2 Generalization

Let O (Cn) be the space of entire functions in Cn, endowed with the topology
of uniform convergence on the compact subsets of Cn. We know that O (Cn)
is a Fréchet-Montel space (1.7.3.5).

Definition 188. (i) The elements of the dual space O′ (Cn) are called ana-
lytic functionals.
(ii) An analytic functional u is said to be carried by the compact set K � Cn

if for every neighborhood ω of K, there is a real constant Cω ≥ 0 such that

|u (ϕ)| ≤ Cω sup
ω
|ϕ| . (1.44)

Let u ∈ O′ (Cn) ; since u is continuous on O (Cn) , for every compact set
ω � Cn, there exists Cω ≥ 0 such that (1.44) holds, which implies that u
has some compact carrier K. In general, there does not exist a carrier which
is contained in all others and that we could call the support of u. The case
of a real analytic functionals (i.e., of continuous linear forms on a space of
real analytic functions) is quite different, since we have the following ([162],
Theorems 9.1.2, 9.1.6 and 9.1.8):

Theorem 189. (i) If u ∈ O′ (Rn) is carried by the compact set K � Rn,
then u (ψ) can be defined for every ψ which is analytic just in a neighborhood
of K, so that the space of all such real analytic functionals can be identified
with O′ (K) .
(ii) If u ∈ O′ (Rn) , then there is a smallest compact set K � Rn such that
u ∈ O′ (K) , and K is called the support of u.
(iii) If K1, ...,Kr are compact subsets of Rn, K =

⋃
1≤i≤rKi and u ∈ O′ (K) ,

then one can find uj ∈ O′ (Kj) (1 ≤ j ≤ r) so that

u =
∑

1≤i≤r
uj.

One can now define hyperfunctions in Rn in such a way that they are locally
equivalent to real analytic functionals with compact support in Rn.

Lemma and Definition 190. (1) If X � Rn is open and bounded, let

B (X) = O′
(
X̄
)
/O′ (∂X)

where X̄ is the closure of X and ∂X = X̄\X is the boundary of X.
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(i) If u, v ∈ O′
(
X̄
)

and u − v ∈ O′ (∂X) , then X ∩ suppu = X ∩ supp v.
Therefore, X ∩ suppu only depends of the class u• of u in B (X).
(ii) If Y ⊆ X � Rn are open and bounded, then for every u ∈ O′

(
X̄
)

one
can find v ∈ O′

(
Ȳ
)

such that Y ∩ supp (u− v) = ∅. The class u• of u in
B (X) is uniquely determined by the class v• of y in B (Y ) .
(2) The above C-space B (X) is called the space of hyperfunctions on X ;
the set X ∩ suppu (which is relatively closed in X) is called the support of
u• ∈ B (X) and is denoted by suppu•. The hyperfunction v• ∈ B (Y ) (as
defined in (ii) above) is called the restriction of u• to Y and is denoted by
u• |Y .

Proof. (i): We have supp (u− v) ⊆ ∂X , thus

suppu ⊆ supp v ∪ supp (u− v) ⊆ supp v ∪ ∂X.

Likewise, supp v ⊆ suppu ∪ ∂X. It follows that X ∩ suppu = X ∩ supp v.
(ii): We have X̄ = Ȳ ∪X\Y . By Theorem 189(iii), there are v ∈ O′

(
Ȳ
)

and w ∈ O′
(
X\Y
)

such that u = v+w. Thus w = u−v and suppw ⊆ X\Y ,
therefore suppw ∩ Y = ∅.

Theorem 191. (i) The elements with compact support in B (X) can be iden-
tified with the elements of O′ (Rn) having support in X.
(ii) There exists an embedding D′ (X) ↪→ B (X) which preserves supports,
thus D′ (X) is identified with a subspace of B (X) .

Proof. (i): Let u ∈ O′
(
X̄
)

and assume that the class u• of u in B (X) has a
compact support K � X. Then suppu ⊆ K ∪ ∂X , and by Theorem 189(iii)
there are u1 ∈ O′ (K) , u2 ∈ O′ (∂X) such that u = u1 +u2. Since K and ∂X
are disjoint, this decomposition is unique, and we have u• = u•1. The map
O′ (K) � u1 → u• ∈ B (X) (where u• is compactly supported) is injective.

(ii): This generalization of Theorem 186 is proved in ([162], p. 337) and
([351], Theorem 4.2).

Let now X be a real analytic manifold. Using analytic charts, the space
Cω (X) = O (X) has been defined (1.8.1.1). The space B (X) of hyperfunc-
tions on X is defined similarly, and we have the following, which generalizes
Theorem 184:

Theorem 192. If X is a real analytic manifold and Y is an open subset of
X, then every u ∈ B (Y ) is the restriction to Y of a hyperfunction v ∈ B (X)
with support included in Ȳ .

1.9.4 Hyperfunctions Which Are Not Distributions

Let Ω be an open bounded subset of the real line. From the above, D′ (Ω) ⊆
B (Ω), and this inclusion is strict (i.e., D′ (Ω) � B (Ω)) since, if ϕ ∈ O (U\Ω)
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has an essential singularity at a point of Ω (e.g., ϕ (z) = e1/z when 0 ∈ Ω),
then [ϕ] ∈ B (Ω) \D′ (Ω). For example, e1/z =

∑
n≥0 z

−n/n! can be viewed
as defining a ”distribution of infinite order” with support {0} (Exercise 217),
whereas all Schwartz’s distributions are of finite order at each point ([322],
Sect. III.7, Theorem XXVI, and Sect. III.8, Theorem XXXII).

1.10 Exercises

Exercise 193. Let (Xi)i∈I be a family of sets and F =
∏
i∈I (•)Xi the functor

Set→ Set defined as follows: for any sets S, T

F (S) =
∏
i∈I S

Xi =
{
(fi)i∈I ; fi : Xi → S

}
;

for any τ : S → T , F (τ ) : F (S)→ F (T ) is the family of maps

(τ ◦ fi)i∈I ∈
∏
i∈I T

Xi .

(i) Prove that
∐
i∈I Xi is a universal element for F. (ii) Prove that for any

set S,
S
∐

Xi ∼=
∏

SXi

under the bijection h �→ (h ◦ ιi)i∈I . (Hint: for (ii), use Theorem 13(i). The
solution can be found in ([224], Sect. III.3).)

Exercise 194. Let F : C → D be a functor. F is called essentially surjective
(or dense) if for each Y ∈ D there exists X ∈ C and an isomorphism F (X) ∼=
Y . Prove that F is an equivalence of categories (Definition 11(iv)) if, and
only if it is fully faithful and essentially surjective. (Hint: the solution can
be found in ([224], Sect. IV.4).)

Exercise 195. In the category HTVS (Example 37), let f : X → Y be a
morphism. Prove that ker f = f−1 ({0}), im f = f (X), cokerf = Y/ im f
and coim f = X/ kerf .

Exercise 196. Prove the following:

(i) The category Grp is not preadditive.
(ii) The categories TVS and HTVS (Examples 37 and 36) are semiabelian
categories but are not abelian. The same holds for the categories LCS, Frt
and Ban.
(iii) The category Ab of Abelian groups is abelian.
(Hint: to prove that Ban is not an abelian category, use the following
fact: there exist Banach spaces X,Y and a continuous injective linear map
f : X ↪→ Y , the image of which is dense and non-closed; for exam-
ple, X = C0 ([0, 1]), the space of continuous real-valued functions on [0, 1],
Y = L1 ([0, 1]), the space of Lebesgue classes of integrable real-valued func-
tions on [0, 1]–each space endowed with its usual norm– and f is the inclusion
([92], (13.11.6)).)
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Exercise 197. (i) Let C be a category and let f be a morphism of C. Verify
that f is a monomorphism in C if, and only if it is an epimorphism in Cop.
(ii) Let C be a category and let D be a subcategory of C. Show that if a
morphism f of D is a monomorphism (resp., an epimorphism) in C, then it
is a monomorphism (resp., an epimorphism) in D.
(iii) Show that in the categories Set, RMod and Grp, a morphism is monic
(resp., epic) if, and only if it is injective (resp., surjective) as a function on
sets.
(iv) Show that in the category Ban there exist epimorphisms which are not
surjective. (Hint: use the hint of Exercise 196.)

Exercise 198. In a preabelian category C, let f : X → Y .

(i) Prove the statement in Remark 40.
(ii) Assuming that f is a strict bimorphism, prove that f is an isomorphism.

Exercise 199. (1) Consider the following exact sequences in an abelian
category C:

0 −→ N
ι−→M, (1.45)

N
ϕ−→M −→ 0, (1.46)

0 −→ N
ψ−→M −→ 0. (1.47)

Show that in (1.45), ι is a monomorphism, in (1.46), ϕ is an epimorphism,
and in (1.47), ψ is an isomorphism.
(2) Let f : M → N be morphism, (K, ι) = ker f and (Q,ϕ) = coker f . Verify
that the following sequence is exact:

0 −→ K
ι−→M

f−→ N
ϕ−→ Q −→ 0.

Consider the case when M ⊆ N and f is the inclusion M ↪→ N .

Exercise 200. (i) Prove Theorem and Definition 43(2) when C is abelian.
(Hint: use Proposition 549 below.)
(ii) Assuming that the additive category C has products and coproducts in-
dexed by the set I (possibly filtering), prove that there exist canonical isomor-
phisms

HomC
(∐

i∈I Xi, Y
) ∼=
∏
i∈I HomC (Xi, Y ) ,

HomC
(
X,
∏
i∈I Yi

) ∼=
∏
i∈I HomC (X,Yi) .

(iii) When I is arbitrary, prove that the functor AX = HomC (X, •) (resp.,
BY = HomC (•, Y )) is faithful if, and only if X a generator (resp., Y is a
cogenerator) of C.
Exercise 201. (i) Let C be a small abelian category. Prove that there exists
a ring R such that C is (isomorphic to) an exact full subcategory of RMod.
(Hint: use Theorem 50, Lemma 32 and Definition 28(ii).)
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(ii) The Five lemma, the Nine lemma and the Snake lemma in the category
RMod can be found in many classical books, e.g., [206], [306], [141] and [31].
Using Theorem 50, state and prove these lemmas in abelian categories.

Exercise 202. (1) In an abelian category, prove that a morphism α is a
monomorphism (resp., an epimorphism) if, and only if α = ker cokerα (resp.,
α = coker kerα).
(2) Is this correct in any semiabelian category? (Hint: give counterexamples.)

Exercise 203. Let X be an indeterminate and M = {Xn : n ∈ N}, endowed
with the multiplication. Prove that M is a rigid cancellation monoid.

Exercise 204. Prove that any well-ordered poset is totally ordered. Is the
converse true? (Hint: consider the interval [0,+∞) of the real line endowed
with its usual order.)

Exercise 205. Let G be a group and A ⊆ G. (i) Prove that ZG (A) and
NG (A) are subgroups of G and that ZG (A) � NG (A). (ii) If A is a subgroup
of G, prove that NG (A) is the largest subgroup of G containing A in which
A is normal.

Exercise 206. Let G be a group. For any x, y ∈ G, set xy = y−1 x y. The
map Int (y) : x �→ xy is called the inner automorphism induced by y. Con-
sider the map Int : G → Aut (G) (where Aut (G) is the group of automor-
phisms of G) and prove that (i) ker Int = Z (G) and (ii) im Int is a normal
subgroup of Aut (G).

Exercise 207. (i) Prove that Altn � Sn, where Altn is the alternating group
of degree n (Example 141), and that the order of Altn is n!/2. (Hint: use the
fact that Altn = ker sgn, Lagrange’s theorem, and the appropriate isomor-
phism theorem.) (ii) Prove that the odd permutations of Sn form a coset Ωn
of Altn in Sn, not a group, and that cardΩn = n!/2.

Exercise 208. Let S be a set and let G be a group which transitively acts
on S.

(i) Prove that card (S) | (G : 1) if these cardinals are finite.
(ii) Assuming that G is a topological group ([34], n◦III.1.1), S is a topological
space and the map G×S → S is continuous, show that the bijection G/Gx →
S (1.6.9.1) is continuous when G/Gx is endowed with the quotient topology
([34], n◦III.2.5).
(Hint: for (i), use the orbit decomposition formula and Lagrange’s theorem.)

Remark: If G is a Lie group, X is a manifold and the map G×X → X is
C∞, one can prove that the bijection G/Gx → S is a diffeomorphism ([92],
(16.10.8)).



86 1 Categories, Divisibility and Groups

Exercise 209. Let S1 [T1] and S2 [T2] be topological spaces and let f : S1 →
S2 be a map.

(i) Let Φ be a filter on S1. Check that f (Φ) is a base of filter on S2.
(ii) Let x ∈ S1, let Φ be the filter of neighborhoods of x, and let y ∈ S2.
Check that lim

t→x f (t) = y if, and only if lim f (Φ) = y. Express this condition
using nets.
(iii) Assume that f is continuous at a ∈ S1 and let Φ be a filter on S1 such
that limΦ = a. Show that lim f (Φ) = f (a) .
(iv) Conversely, assume that for every filter Φ on S1 such that limΦ = a,
one has lim f (Φ) = f (a). Show that f is continuous at a.

Exercise 210. (i) Consider the set A (n,R) of all matrices of the form
[
U τ
0 1

]
(1.48)

where U ∈ GLn (R) and τ ∈ Rn. Show that A (n,R) is a closed subgroup of
GLn+1 (R) (called the affine group of Rn), thus a Lie group.
(ii) Let SO (n,R) be the kernel in the orthogonal group O (n,R) of the group-
homomorphism det, i.e.

SO (n,R) = {A ∈ O (n,R) : det (A) = 1} .

Show that SO (n,R) is a normal subgroup of O (n,R) and a closed subgroup of
SLn (R) (it is called the special orthogonal group, or the group of rotations,
of Rn). Is SO (n,R) normal in SLn (R) ? (Hint: give a counterexample when
n = 2.)
(iii) Let SE (n,R) be the subset of A (n,R) consisting of all matrices of the
form (1.48) where U ∈ SO (n,R) and τ ∈ Rn. Prove that SE (n,R) is a
closed subgroup of SLn+1 (R) (it is called the special Euclidean group of Rn).
(iv) The action of A (n,R) on the points of Rn is given by

[
U τ
0 1

]
x = U x + τ .

How can the induced action of SE (n,R) on the points of Rn be physically
interpreted when n = 2 or 3?

Exercise 211. (i) Verify that Matn (R), equipped with the bracket [•, •] where
[A,B] is the commutator of A and B, is a Lie algebra, i.e., check that the
Jacobi identity holds. This Lie algebra is denoted by gln (R).
(ii) Prove that gln (R) is the Lie algebra of GLn (R).

Exercise 212. (i) Prove that the Lie algebra so (n,R) of SO (n,R) consists
of all skew-symmetric matrices belonging to Matn (R) (i.e., of those matrices
A such that AT + A = 0). (Exercises 210 and 211.)
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(ii) Conversely, verify that for any skew-symmetric matrix A ∈ Matn (R),
eA ∈ SO (n,R).
(iii) Show that any matrix belonging to SO (2,R) is of the form eA, A ∈

so (2,R). (Hint: first calculate by induction the powers of A =
[

0 θ
−θ 0

]
.)

(iv) Show that for any n ≥ 2, any matrix B belonging to SO (n,R) is of
the form eA, A ∈ so (n,R). (Hint: first prove that there exists a matrix
P ∈ GLn (R) such that P−1 B P = diag (B1, ..., Bk), Bj ∈ SO (2,R) for all
j ∈ {1, ..., k}.)

Exercise 213. (i) Prove that for any M ∈ Matn (R), det
(
eA
)

= eTr(A).
(Hint: reduce A to its Jordan canonical form.)
(ii) Prove that the Lie algebra sln (R) of SLn (R) consists of all matrices
A ∈ Matn (R) such that Tr (A) = 0.
(iii) Check that for any matrix A ∈ sln (R), eA ∈ SLn (R).
(iv) Show that diag (λ, 1/λ) ∈ SL2 (R) cannot be represented in the form eA,
A ∈ sl2 (R), if λ < 0 and λ �= −1.

(v) Set A =
[

0 2π
2π 0

]
∈ sl2 (R) and prove that eA = I2 = e0. The Lie

group SLn (R) can be proved to be connected; deduce from (iv) and (v) that
expG : g→ G, where G is a general connected Lie group, is neither injective
nor surjective in general.
(vi) As easily shown (see, e.g., [34], §III.2, Prop. 6), a connected topological
group is generated by any open neighborhood of its unit element e. Deduce
from this result that a connected Lie group G is generated by im (expG).
(vii) Prove that Z (SL2 (R)) = {I2,−I2} and that SL2 (R) / ± I2 is simple.
(The last point is proved in ([206], Sect. XIII.8.)
(viii) Poincaré’s half plane P+ is defined by P+ = {z ∈ C : Im z > 0}. The
group SL2 (R) acts on P+ as follows:

[
a b
c d

]
. z =

a z + b

c z + d
= f (z) .

(a) Prove that P+ is invariant by SL2 (R), and that the action of SL2 (R) on
P+ is transitive (Subsect. 1.6.9) and continuous. (b) Prove that the set con-
sisting of all above functions f , endowed with the composition of functions,
is a group-isomorphic to SL2 (R) /± I2. (c) Prove that the stabilizer of i is
SO (2,R) (Exercise 212). (d) Show using Exercise 208(ii) that the homoge-
neous spaces P+ and SL2 (R) / SO (2,R) can be algebraically and topologically
identified .

Exercise 214. Prove that the Lie algebra se (n,R) of SE (n,R) consists of

all matrices
[
Ω ν
0 0

]
, Ω ∈ so (n,R), ν ∈ Rn (Exercises 210, 211 and 212).

Physical interpretation of those matrices when n = 2 or 3?
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Exercise 215. Let

J =
[

0 In
−In 0

]
.

A matrix S ∈ Matn (k) (k = R or C) is said to be symplectic if ST J S =
J ; the set of all symplectic matrices belonging to Mat2n (k) is denoted by
Sp (2n,k).

(i) Prove that Sp (2n,k) is a linear algebraic group over k (Subsect. 2.10.1);
Sp (2n,k) is called the symplectic group of degree 2n over k.
(ii) Prove that if λ ∈ C is an eigenvalue of S ∈ Sp (2n,k), then so are 1/λ,
λ̄ and 1/λ̄ too.
(iii) Deduce from the above that Sp (2n,k) is a subgroup of SL2n (k). (Hint:
recall that detS is the product of all eigenvalues of S, repeated according to
their algebraic multiplicities ([28], n◦VII.5.5).)
(iv) A matrix H ∈ Mat2n (R) is said to be Hamiltonian (resp., skew-
Hamiltonian) if (J H)T = J H (resp., (J H)T = −J H). Show that
the square of a Hamiltonian matrix is skew-Hamiltonian and that if S ∈
Sp (2n,R) and H is Hamiltonian (resp., skew-Hamiltonian), then S−1 H S is
Hamiltonian (resp., skew-Hamiltonian).
(v) Show that if H is Hamiltonian, then eH is symplectic. (Hint: calculate
by induction the n first terms the power series expansion of ST J S where
S = eH .)
(vi) The set of all Hamiltonian matrices belonging to Mat2n (R) is denoted by
Sp (2n). Show that Sp (2n) is the Lie algebra of Sp (2n,R) (Exercise 211).

Exercise 216. (1) Let a, b be ideals in a Lie algebra g. Check that g/a is a
Lie algebra and that a + b and a ∩ b are ideals in g.
(2) The ideal [g, g] in a Lie algebra g is denoted by D (g) and is called
the derived algebra of g. By induction, one defines D1 (g) = D (g) and
Dn (g) = D

(
Dn−1 (g)

)
for n > 1. Check the following:

(i) D (g) is the largest ideal a in g such that g/a is commutative.
(ii) The Lie algebra g is solvable if, and only if there exists n > 1 such that
Dn (g) = 0.
(3) Let g1 = [g, g] and gn =

[
g, gn−1

]
for n > 1. Check that for any n > 1,

gn is an ideal in g and that g is nilpotent if, and only if there exists n > 1
such that gn = 0.
(4) For any X ∈ g, consider the map ad (X) : Y �→ [X,Y ].
(i) Verify that ad (X) is the inner derivation induced by −X (see Definition
287 below).
(ii) Let Der (g) be the set of all derivations of g, i.e., of all linear transfor-
mations δ which satisfy δ [X,Y ] = [δX, Y ] + [X, δY ]. Prove that Der (g) is
a Lie algebra, that ad : g → Der (g) is a Lie group homomorphism, and that
for any derivation δ ∈ Der (g), [δ, ad (X)] = ad (δX) . The map ad is called
the adjoint map of g.
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Exercise 217. (i) Show that the derivative of order n ≥ 0 of the Dirac hy-
perfunction is given by

δ
(n)
0 =

[
(−1)n+1

n!
2πi

z−(n+1)

]

and that the ”Heaviside hyperfunction” (corresponding to the classical Heav-
iside function [43]) is given by

Υ (z) =
[
−1
2πi

ln (−z)
]
.

(ii) Show that ϕ (z) = e1/z determines a hyperfunction [ϕ] which is the sum
of a series involving the Dirac hyperfunction and all its derivatives, and that
supp [ϕ] = {0}.
(iii) Let ψ ∈ O (R); calculate 〈ψ, [ϕ]〉 when ϕ (z) = e1/z.

1.11 Notes

This chapter gathers, for the reader’s convenience, classical notions and re-
sults which can be found in several references, especially [18], [27] [76], [77],
[80], [183], [224] [225] and [249].

For an (almost) exhaustive presentation of categories we refer the reader
to MacLane’s classical book [224]. The evolution of the theory of categories
(founded by Eilenberg and MacLane in 1942) is well described in the appendix
of Freyd’s book [127] and in the historical notes of MacLane’s monographs
[223], [224]. MacLane told Freyd that the word category goes back to Kant,
but Kant himself took this term from Aristotle (Organon, Book I). The
notion of generator and the dual notion of cogenerator (1.2.2.4) are due
to Grothendieck ([148], Sect. I.9). Abelian categories were introduced by
Buchsbaum ([55]; [59], Appendix), who called them exact categories, and
Grothendieck [148] gave them their definitive name. Preabelian categories
and semiabelian categories were defined by Popescu ([282], Sect. 2.1) and by
Rump [311], respectively. Lemma 51 is due to Freyd ([127], Sect. 2.1) and
Lemma 27 to Mitchell ([249], Sect. II.10). Theorem 54 in abelian categories
is due to Buchsbaum ([55], Part III, Proposition 2.2). Direct proofs of the
Nine lemma and of the Snake lemma in abelian categories (Exercise 201) can
be found in ([224], Sect. VIII.4).

Divisibility, ordering and lattices are detailed in various references, among
which Birkhoff’s monograph [18]. The notion of unique factorization monoid
is due to Cohn [74].

Our short presentation of groups is based on classical textbooks. Poly-
cyclic by finite groups and are well described in [247], and Dedekind groups
in Hall’s monograph [155].
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General topology, topological vector spaces, Lie groups and Lie algebras
are detailed in the classical Bourbaki’s and Dieudonné’s treatises [34], [36],
[38], [92], and universal enveloping algebras in Dixmier’s monograph [94].

Hyperfunctions were introduced by K. Sato [314] as both the boundary
values of analytic functions and as cohomology classes (the last point is not
treated in this book). They play a key role in the theory of D-modules
and in Microlocal Analysis. The theory of hyperfunctions with application
to systems of partial differential equations is nicely expounded in several
books, among which [250], [184], and in Hörmander’s treatise [162]. Detailed
historical notes can be found in [184]. The space of hyperfunctions with
compact support is endowed with a good topological structure, as shown by
Theorem 187. The case of noncompactly supported hyperfunctions is quite
different [182]. The definition of general hyperfunctions in Subsect. 1.9.3 is
due to Martineau [245] (see also [351]) and our account is mainly based on
([162], Chap. IX).
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Rings and Modules

2.1 Introduction

Section 2.2 contains present basic facts on rings and modules. Bimodules are
also introduced, for they are very useful to study the properties of modules
of homomorphisms and of tensor products.

Differential rings are introduced in Section 2.3.1. General derivatives are
considered to cover the case of continous-time systems and that of discrete-
time systems. Consider for example a system with polynomial coefficients
with respect to time, i.e., with coefficients belonging to K = C [t], the ring
of polynomials with complex coefficients and indeterminate t. In case of
”continuous-time”, this ring is equipped with the usual derivative δ = d/dt;
δ is called an ”outer derivation”, and (K, δ) is a differential ring. In case of
”discrete-time”, the same ring K = C [t] is equipped with the shift α : a (t) �→
a (t+ 1) and (K,α) is a difference ring. In the latter case, one can slightly
change the formulation and replace the shift α by the ”discrete derivative”
α−1, which is called an ”inner derivation”. In both cases, K, endowed with
the derivative under consideration, is a generalized differential ring.

Most properties of rings are inherited from the properties of their ideals.
Therefore, ideals in rings are studied in Section 2.4. In particular, the notion
of Noetherian ring is introduced.

The study of skew polynomial rings is divided into two parts. The first one
is the subject of Section 2.7; the second one, which needs a wider background,
is given in Section 4.3 (Chapter 4). Consider the continuous-time single-
input-single-output (SISO) system

a (∂) y = b (∂)u

where u and y denote, e.g., the input and the output, respectively; ∂ is the
derivative and a (∂) , b (∂) are differential operators which act on the variables
y and u. One can write

a (∂) =
∑

0≤i≤n ai∂
n−i, a0 �= 0, ai ∈ K (1 ≤ i ≤ n) .

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 91–187.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011



92 2 Rings and Modules

Consider a coefficient a ∈ K and a variable x. According to the Leibniz rule,

∂ (ax) = a (∂x) +
(
aδ
)
x (2.1)

where aδ = δ (a) = da/dt. Since (2.1) is valid for any variable x, one can
write ∂a = a∂ + aδ, i.e.,

∂a− a∂ = aδ.

The above differential operators form a ring which is isomorphic to the ”skew
polynomial ring” consisting of all polynomials with coefficients in K, with
indeterminate X , and endowed with the ”commutation rule”

Xa− aX = aδ; (2.2)

this ring is denoted by K [X, δ]. The commutation rule (2.2) shows that
Xa �= aX , except if aδ = 0, i.e., a is a constant. Skew polynomials are of a
paramount importance for the study of LTV systems.

Rings and fields of fractions are studied in Section 2.5. In the commutative
case, these notions are classical [43], but the noncommutative case involves
the so-called Ore condition.

The theory of rings of fractions makes it possible to pass from skew poly-
nomials to skew Laurent polynomials in Section 2.8. This is very important
for the study of discrete-time LTV systems.

Local rings and power series rings are studied Sections 2.6 and 2.9, respec-
tively. They are needed for the study of the structure at infinity of LTV
systems (Chapter 7).

The three following sections present notions which are necessary for the
study of matrices with entries in a noncommutative ring or in a skew field. In
particular, determinants, which are classical for square matrices with entries
in a commutative ring, cannot be defined for square matrices with entries
in a noncommutative ring. This is connected with the fact that there does
not exist a unique notion of rank for a matrix with entries in a noncommu-
tative ring (Section 2.12). Nevertheless, J. Dieudonné defined a notion of
determinant for a square matrix with entries in a skew field (Section 2.11).

The chapter ends with Section 2.13, where specific (noncommutative)
rings, such as GCD domains, unique factorization domains, Bézout domains,
Dedekind domains, principal ideal domains, and Euclidean domains, are pre-
sented. The relations between most (not all) kinds of rings studied is this
book are summarized in the table below, where → means ”is more restric-
tive than” and where ED, PID, UFD, GCD, EDR, GCD, EDR, BD, CSD,
SD, NR, CR are used for Euclidean domain, principal ideal domain, unique
factorization domain, GCD domain, elementary divisor ring (without zerodi-
visor), Bézout domain, coherent Sylvester domain, Sylvester domain, Noethe-
rian ring, and coherent ring, respectively.
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UFD → GCD
↗ ↑ ↖

ED → PID → EDR → BD → CSD → SD
↘ ↓ ↙

NR → CR

2.2 Rings and Modules

2.2.1 Rings, Ideals and Division Rings

2.2.1.1 Rings and Ideals

Definition 218. A ring is a nonempty set R endowed with an addition + and
a multiplication . with the following properties: (i) (R,+) is an abelian group,
additively noted; (ii) (R, .) is a monoid; (iii) the following distributivity law
holds: for any x, y, z ∈ R,

(x+ y) z = x z + y z, z (x + y) = z x + z y. (2.3)

The first identity is called left-distributivity (of multiplication with respect to
addition), the second one right-distributivity. As easily shown, 0 x = x 0 = 0
for any x ∈ R.

The ring (R,+, .) (written R, for short) is said to be commutative if (R, .)
is a commutative monoid.

Definition 219. The opposite of a ring R, written Rop, is the ring such that
(i) the abelian group (Rop,+) coincides with (R,+); (ii) the monoid (Rop, .)
is the opposite of (R, .) (Definition 59).

Remark 220. (a) According to Definition 218, any ring has a unit element
1 (and 1 = 0 if R = {0}).
(b) If (R,+, .) satisfies properties (ii) and (i’): (R,+) is a commutative
monoid (with unit element 0), then (R,+, .) is called a dioid; this dioid is
left- (resp., right-) distributive if the first (resp., the second) identity of (2.3)
holds, and distributive if it is both left- and right-distributive [144]. If the
monoid (R, .) is commutative, the dioid (R,+, .) is said to be commutative
too.

Definition 221. Let R be a nonzero ring.

(i) The characteristic of R, denoted by charR, is the least integer n ≥ 0 such
that n 1 = 0.
(ii) If the ring R is commutative, it is called perfect if it is of characteristic
zero, or if it is of characteristic p > 0 and the map a �→ ap is bijective.
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The notions introduced in Definitions 63, 67 and 68 can be extended to the
case of a ring R, and Notation 64 as well. The details are left to the reader.
Let us recall that an ideal means a two-sided ideal, except when otherwise
stated. The product of a family (Ri)i∈I of rings and the ring RI are defined
as in Subsect. 1.3.4 with obvious changes. The following is obvious:

Proposition 222. Let (xλ)λ∈Λ be a family of elements of the ring R, let
X = {xλ : λ ∈ Λ}, and let a (resp., b) be the set of all elements of the form∑

λ∈Λ
aλ xλ where aλ ∈ R and aλ = 0 for all but a finite number of indices

(resp.,
∑

λ∈Λ
aλ xλ bλ where aλ, bλ ∈ R and aλ bλ = 0 for all but a finite number

of indices). Then a is the left ideal generated by the set X (i.e., a = (X)l)
and b is the ideal generated by the set X (i.e., b = (X)).

The zero ideal and the zero ring are written 0. In the context of rings,
Definition 149 is changed to the following one:

Definition 223. A ring R is simple if it has no proper nonzero ideal.

The notions below are very useful:

Definition 224. (i) A ring R is a domain (also called an integral ring, or
an entire ring) if R �= {0} and (R×, .) is a cancellation monoid.
(ii) A ring R is said to be atomic if R �= {0} and the monoid (R×,×) is
atomic (Definition 85(i)).

In many references, e.g., [306], a domain is always assumed to be commu-
tative; in the present book we will specify in such a case: a commutative
domain.

Lemma 225. (i) A ring R is a domain if, and only if R �= {0} and all ele-
ments of R× are regular.
(ii) If a ring R is atomic, it is a domain.
(iii) If a ring R is a domain, charR is a prime.

Proof. (i) and (ii) are clear. (iii): see ([79], Sect. 4.1 and Sect. 4.5,
Exercise 1).

2.2.1.2 Division Rings

Definition 226. A division ring (also called a skew field) is a ring K �= 0
such that every element of K× is a unit. A field is a commutative division
ring (Remark 58).

Theorem 227. Let R be a ring.

(1) The following conditions are equivalent:
(i) R is a division ring;
(ii) R �= 0 and this ring has no proper nonzero left nor right ideal.
(2) A division ring is a domain.
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Proof. (1) (i)⇒(ii): If R is a division ring, R �= 0. Let 0 �= a be a left ideal
in R and 0 �= a ∈ a; for any x ∈ R, x =

(
xa−1

)
a ∈ a, thus a = R.

(ii)⇒(i): If (ii) holds, let 0 �= x ∈ R; since Rx �= 0, Rx = R and x
is left-invertible, i.e., there exists x′ ∈ R such that x′ x = 1. The above
can be applied to x′ and there exists x′′ ∈ R such that x′′ x′ = 1. We get
x′′ = x′′ 1 = x′′ x′ x = 1 x = x, thus xx′ = 1 and x is a unit.

(2) is clear.

By Theorem 227, any division ring is a simple nonzero ring. If a ring is
commutative, it is a division ring if, and only if it is nonzero and simple; this
does not hold true in the noncommutative case. The centre of a division ring
is a field, as easily seen.

2.2.2 Modules and Algebras

2.2.2.1 Modules

Let R be a ring.

Definition 228. A nonempty set M is called a left R-module if the following
conditions hold:
(i) M is an abelian group (additively noted);
(ii) there exists an action R×M →M : (a, x) �→ a x (Subsect. 1.6.9) which
is bilinear and such that

(a b) x = a (b x) , 1 x = x

for any a, b ∈ R and x ∈M .

If the above action is denoted by (a, x) �→ xa, with x (a b) = (xa) b for any
a, b ∈ R and x ∈M , then M is called a right R-module.

Proposition 229. A right R-module has a canonical structure of left Rop-
module, setting

a . x = xa (a ∈ R, x ∈M) . (2.4)

In other words, the category ModR of right R-modules coincides with the
category RopMod of left Rop-modules.

Proof. We then have by Definitions 59 and 219, for any a, b ∈ R and x ∈M ,

x (a b) = (xa) b = b . (xa) = b . (a . x) = (b . a) . x.

When a ring R is commutative, it is irrelevant to distinguished between left
and right modules. In the sequel, ”an R-module”, without any additional
specification, means indifferently a left or a right R-module.

A nonempty set M is an abelian group if, and only if it is a Z-module.
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Let M be an R-module. A submodule N of M is an R-module such that
N ⊆ M . We write N � M to mean that N is a submodule of M . This
submodule is said to be proper if it is different from M (Definition 63(i)).

A left (resp., right) ideal a in R is nothing but a left (resp., right) R-
module a ⊆ R. In particular, the ring R can be considered as a left (resp.,
right) module over itself and is then denoted by RR (resp., RR).

Let (Mi)i∈I be a family of left (resp., right) R-modules. The product∏
i∈I Mi of the sets Mi (1.2.1.2) has an obvious structure of left (resp. right)

R-module. The coproduct
∐
i∈I Mi is the submodule of

∏
i∈I Mi consisting

of all finitely supported elements (see Lemma and Definition 148(2)). If
Mi = RR (resp., RR) for all i ∈ I, then

∏
i∈I Mi is denoted by RRI (resp.,

RI
R) and

∐
i∈I Mi is denoted by RR(I) (resp., R(I)

R ).
Let •πi :

∏
i∈I Mi → Mi be the canonical projection and •ιi : Mi →∐

i∈I Mi be the canonical injection (1.2.1.1). For any x ∈
∐
i∈I Mi, we have

x =
∑

i∈I
xπiιi. (2.5)

Let T be a ring, let S be a subring of T, and let M be a T-module. M can
be considered as a module over S; this module is written M[S] and is said to
be obtained from M by restriction of the ring of scalars .

2.2.2.2 Bimodules

Let R and S be two rings and let M be an abelian group, additively noted;
M is called an (R,S)-bimodule (written RMS) if (i) it is a left R-module
and a right S-module and (ii) the following compatibility condition holds: for
any r ∈ R, s ∈ S and x ∈M ,

r (x s) = (r x) s.

Since by Proposition 229 a right S-module has a canonical structure of left
Sop-module, both r ∈ R and s ∈ S can be written on the left of x ∈M when
this is useful.

Example 230. (i) The ring R can be considered as an (R,R)-bimodule, then
denoted by RRR.
(ii) Let M be a left R-module, let E = EndR (M) be the endomorphism ring
of M , i.e., the set of all left R-linear maps •e : M → M , endowed with the
addition and the composition of maps (E is obviously a ring). For any r ∈ R
and •e ∈ E, (λx) e = λ (xe), thus the compatibility condition holds and M is
an (R,E)-bimodule.
(iii) If R is commutative and M is a left R-module, M is canonically
endowed with a structure of right R-module, and M is clearly an (R,R)-
bimodule.
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2.2.2.3 Algebras

Let R be a commutative ring. An R-module A is an R-algebra if it is
endowed with a bilinear map A × A → A : (a, b) �→ a b. All algebras
considered in the sequel are associative, i.e., (a b) c = a (b c) for any a, b, c ∈
A. The commutator of two elements a, b ∈ A is [a, b] � a b− b a. When R
is a field, [•, •] is a Lie bracket.

An algebra A is said to by unitary if it possesses a unit element (often
denoted by 1); then, A is a ring. Conversely, let A be a ring and let ρ : R→ A
be a ring-homomorphism such that ρ (R) ⊆ Z (A) (where Z (A) is the centre
of A). Then, A may be viewed as an R-module, defining the action of R on
A by the map (r, a) �→ ρ (r) a (r ∈ R, a ∈ A); thus A is an associative and
unitary R-algebra. An algebra A is commutative if, and only if [a, b] = 0 for
all a, b ∈ A.

As easily seen, Matn (R) and GLn (R) are unitary R-algebras with unit
element In (Example 71). Every ring R is both a Z-algebra and a Z (R)-
algebra.

2.2.3 Homomorphisms and Quotients

2.2.3.1 Homomorphisms

A ring-homomorphism is a morphism in the category Rgn (1.2.2.2). More
specifically:

Definition 231. A ring-homomorphism R→ R′ (where R and R′ are rings)
is an additive group-homomorphism (R,+) → (R′,+) which is a monoid-
homomorphism (R, .)→ (R′, .).

The kernel of a ring-homomorphism f : R → R′ is f−1 ({0}); the following
is clear:

Lemma 232. (i) ker f is an ideal in R; (ii) im f is a subring of R′.

Definition 233. (i) Let M,N be right R-modules. A map f : M → N is a
module-homomorphism (or is said to be R-linear) if it is an additive group-
homomorphism x �→ fx (thus a right map (1.2.1.3)) such that f (x r) =
(fx) r for all r ∈ R and x ∈M .
(ii) A homomorphism of left R-modules f : M → N is likewise defined but
for convenience such a homomorphism is a left map x �→ xf (1.2.1.3). The
R-linearity is then expressed by r xf = (r x) f for all r ∈ R and x ∈M .

Let A, A′ be two R-algebras where R is a commutative ring.

Definition 234. A right map f : A→ A′ is an algebra-homomorphism if it
is a module-homomorphism such that f (x y) = f (x) f (y) for any x, y ∈ A.
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It is also useful for the sequel to define the notion of (R,S)-bimodule-
homomorphism:

Definition 235. Let M and N be (R,S)-bimodules. A map f : M → N
is an (R,S)-bimodule-homomorphism if it is additive and for any r ∈ R,
x ∈M , s ∈ S, r xf = (r x) f and f (x s) = fx s (where xf = fx).

A module-homomorphism f : M → N is a monomorphism (Definition 72) if,
and only if ker f = 0 (where 0 denotes the submodule of M consisting of 0
alone).

Let M and N be two left (or right) R-modules. The set of all module-
homomorphisms f : M → N is denoted by HomR (M,N). As easily seen,
HomR (M,N) is an abelian group, i.e., a Z-module. To express the general
structure of HomR (M,N), it is convenient to consider a left R-module as
an (R,Z)-bimodule and a right T-module as a (Z,T)-bimodule. Then all
situations are gathered in the following theorem:

Theorem 236. Let R, S, T and U be rings.

(i) If M is an (R,S)-bimodule (written RMS) and N an (R,T)-bimodule
(written RNT), then HomR (M,N) has a canonical structure of (S,T)-
bimodule (written S HomR (RMS,R NT)T) by defining for any •f : M → N ,
s ∈ S and t ∈ T

f t : x �→ (xf) t, s f : x �→ (x s) f. (2.6)

(ii) If M is an (R,T)-bimodule (written RMT) and N an (U,T)-bimodule
(written UNT), then HomT (M,N) has a canonical structure of (U,R)-
bimodule (written U HomR (RMT,U NT)R) by defining for any f• : M → N ,
r ∈ R and u ∈ U

u f : x �→ u (fx) , f r : x �→ f (r x) . (2.7)

Proof. (i): The maps f t and s f are obviously left R-module homo-
morphisms. In addition, x (s (f t)) = (x s) (f t) = x (s f) t, therefore
s (f t) = (s f) t and the bimodule property holds. The proof of (ii) is
similar.

Definition 237. Let R be a ring, u a unit in R. The automorphism
x �→ u−1 xu (x ∈ R) is said to be inner, induced by u (Exercise 206). An
automorphism which is not inner is said to be outer.

2.2.3.2 Quotient Rings

According to Definition 75, a relation R is compatible with the ring struc-
ture of R if x ≡ x′(modR) and y ≡ y′(modR) implies the two following
conditions: (i) x+ y ≡ y+ y′(modR); (ii) x y ≡ x′ y′(modR). The following
result is classical ([27], n◦I.8.7) and its proof is easy:
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Lemma 238. A relation R is compatible with the ring structure of R if, and
only if there exists an ideal a in R such that x ≡ x′(modR) is equivalent to
x− x′ ∈ a.

Notation 239. The equivalence relation x ≡ x′(modR) is written x ≡
x′(mod a) (Lemma and Definition 142(2)).

By Lemma 76, we obtain the following.

Proposition 240. A ring R′ is a quotient of a ring R if, and only if there
exists an ideal a in R such that R′ = R/a.

Theorems 145, 146 and 147 can be extended to the case of rings, chang-
ing ”subgroup” to ”one-sided ideal” (i.e., left ideal or right ideal), ”normal
subgroup” to ”ideal” and multiplication to addition.

Let a and b be two ideals in the ring R. The product a b is the ideal
generated by all products a b, a ∈ a, b ∈ b (see Definition 295 below for more
details). We have the following.

Theorem 241. Let R be a ring and a be an ideal in R.

(i) Every left (resp., right, two-sided) ideal in R/a can be written in a unique
way in the form b/a where b is a left (resp., right, two-sided) ideal in R such
that b ⊇ a.
(ii) Let b be an ideal in R; then

b/a b ∼= R/a.

Proof. (i): Let •π : R � R/a be the canonical epimorphism and consider
the case of left ideals. Let I be a left ideal in R/a and b = Iπ−1. Then, b is
a left ideal in R, b ⊇ a and bπ = b/a, thus I = b/a. The converse is obvious.

(ii): The map •ϕ : R/a → b/a b given by (x + a)ϕ = x b + a b is an
isomorphism.

The following result is a straightforward consequence of Theorems 227 &
241(i):

Corollary 242. Let R be a ring and a be a two-sided ideal in R. The quo-
tient ring R/a is a division ring if, and only if a is a maximal left (or right)
ideal in R.

2.2.3.3 Quotient Modules

Let R be a ring, let M be a left R-module and let R be an equivalence
relation in M . According to Definition 75, R is compatible with the module
structure of M if, and only if whenever x ≡ x′(modR) and y ≡ y′(modR),
the two following conditions hold: (i) x + y ≡ y + y′(modR); (ii) for any
λ ∈ R, λ x ≡ λ x′(modR). The proof of the following result is similar to
that of Lemma 238:



100 2 Rings and Modules

Lemma 243. A relation R is compatible with the module structure of the
left R-module M if, and only if there exists a submodule N of M (written
N � M) such that x ≡ x′(modR) is equivalent to x− x′ ∈ N .

The proof of the following result is straightforward:

Theorem 244. (i) The set Latl (M) of all submodules of a left R-module
M , ordered by inclusion, is a complete modular lattice where for any N,N ′ ∈
Latl (M), N + N ′ = N ∨N ′ and N ∩N ′ = N ∧N ′.
(ii) The statements of the isomorphism theorems in Subsect. 1.6.4 still hold,
replacing throughout ”group” by ”module”, ”normal subgroup” by ”submod-
ule”, and the multiplicative notation by the additive one.

Without changing the notation, Noether’s isomorphism theorems in abelian
categories (Theorem 52) are valid (1.2.4.3). With the notation in Theorem
244, the second one takes the following form:

Let M be a left R-module and let S, T ∈ Latl (M). Then

(S + T ) /T ∼= S/ (S ∩ T ) , (S + T ) /S ∼= T/ (S ∩ T ) .

Let S, T be as above and consider the diamond (1.27), where S ∨ T = S + T
and S ∧ T = S ∩ T . As in (1.6.6.1), projectivity yields isomorphism and
the ”diamond lemma” (Lemma 154) can be stated as follows: in the modular
lattice Latl (M), projective intervals [K,H ] and [K ′, H ′] (K � H, K ′ � H ′)
correspond to isomorphic quotients H/K ∼= H ′/K ′. In particular:

Corollary 245. Let N � M and N ′ � M ; then projective intervals [N,M ]
and [N ′,M ] in Latl (M) correspond to isomorphic quotients M/N ∼= M/N ′.

2.2.4 Free Modules and Vector Spaces

2.2.4.1 Direct Sum of Submodules

Lemma 246. Let (Mi)i∈I be a family of left R-modules, let M be a left R-
module, and let •fi : Mi → M be a module-homomorphism for each i ∈ I.
There exists a unique R-module-homomorphism •f :

∏
i∈I Mi → M such

that for all i ∈ I,
ιi ◦ f = fi (2.8)

where •ιi : Mi →
∐
i∈I Mi is the canonical injection.

Proof. If f exists, we have by (2.5) xf =
∑
i∈I xπifi for all x ∈

∏
i∈I Mi,

thus f is unique. Conversely, the above module-homomorphism satisfies
(2.8).
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Definition 247. Let M be an R-module, let (Mi)i∈I be a family of submod-
ules of M and let fi : Mi ↪→M be the inclusion. The module-homomorphism
f given by (2.8) is called the canonical homomorphism.

Let (Mi)i∈I be a family of submodules of an R-module E. The sum Σ of this
family, written

∑
i∈I Mi, consists of all elements of the form

∑
i∈I xi where

xi ∈Mi and xi = 0 for all but a finite set of indices; Σ is a submodule of E.

Definition 248. The sum Σ is said to be direct if the canonical homomor-
phism f :

∐
i∈I Mi → Σ is an isomorphism.

The above direct sum is denoted by
⊕

i∈I
Mi. The proof of the following result

is easy:

Proposition 249. Let (Mi)i∈I be a family of submodules of an R-module E.
The following conditions are equivalent:

(i) The sum
∑
i∈I Mi is direct;

(ii) The relation
∑
i∈I xi = 0, where xi ∈Mi for all i ∈ I, implies xi = 0 for

all i;
(iii) For any j ∈ I, Mj ∩

(∑
i�=jMi

)
= 0;

(iv) Any element x ∈
∑

i∈I Mi can be expressed in a unique way in the form
x =
∑

i∈I xi where xi ∈Mi for all i ∈ I.

The element xi ∈Mi of Condition (iv) above is called the component of x in
Mi.

Remark 250. Let (Mi)1≤i≤n be a finite family of R-modules. From Propo-
sition 4, the product

∏
1≤i≤nMi and the coproduct

∐
1≤i≤nMi are eas-

ily seen to be isomorphic, thus they are a biproduct (1.2.4.1) denoted by⊕
1≤i≤nMi. This biproduct is also isomorphic to, thus is identified with, the

sum S =
∑

1≤i≤nMi when the Mi (1 ≤ i ≤ n) are submodules of a module
M ; the sum S is direct. Therefore, the ambiguity of the notation

⊕
1≤i≤nMi

does not cause confusions in practice.

Lemma and Definition 148(3) takes the following form: let (Mi)i∈I be a family
of R-modules and for each i ∈ I, let Ni � Mi. Then

(⊕
i∈I Ni

)
�
(⊕

i∈I Mi

)

and there exists a canonical isomorphism

⊕

i∈I
(Mi/Ni) −̃→

(
⊕

i∈I
Mi

)
/

(
⊕

i∈I
Ni

)
. (2.9)

2.2.4.2 Direct Summands

Definition 251. Let E be an R-module and let M � E; M is called a direct
summand of E if there exists N � E such that E = M ⊕N .
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Assuming that M is a direct summand of E, i.e., E = M ⊕ N , we have by
(2.9) E/M ∼= (M/M)⊕N , and since M/M = 0,

(M ⊕N) /M ∼= N . (2.10)

Definition 252. An R-module E is decomposable if it has proper direct
summands (i.e., direct summands different from E and 0) and indecompos-
able otherwise.

2.2.4.3 Bases and Free Modules

Definition 253. Let (ei)i∈I be a family of elements of a left R-module M .

(i) (ei)i∈I (or the set E = {ei : i ∈ I}) is free or R-linearly independent if
the equality

∑
i∈I λi ei = 0 (where (λi)i∈I is a family elements of R with

finite support) implies λi = 0 for all i; it is non-free or R-linearly dependent
otherwise.
(ii) (ei)i∈I is a generating family of M (and E = {ei : i ∈ I} is a generating
set of M , written M = [E]R) if every element of M can be expressed as
a left R-linear combination of the ei, i.e., for every m ∈ M there exists a
family (λi)i∈I of elements of R, with finite support, such that m =

∑
i∈I λi ei.

Then, M is said to be generated by the family (ei)i∈I .
(iii) (ei)i∈I is a basis of M if it is both a free and a generating family of all
elements of M .
(iv) An R-module M is free if it has a basis.

If M = [E]R and card (E) is finite, M is said to be finitely generated (f.g.,
for short). The proof of the following is easy and left to the reader:

Lemma 254. Let M be a left R-module. The following conditions are
equivalent:

(i) M is free;
(ii) there exists a family (ei)i∈I such that every element of M can be expressed
in a unique way as a left R-linear combination of the ei;
(iii) there exist a set of indices I and a module-isomorphism RR(I)→̃M .

Lemma and Definition 255. Let (εi)i∈I be the family of elements of RR(I)

defined by εk = (1) ιk where •ιk : RR ↪→ RR(I) is the canonical injection
with index k ∈ I (1.2.1.3). The family (εi)i∈I is a basis of RR(I), called the
canonical basis.

When this does not generate confusion, the free left module RR(I) is written
R(I). If a free module M has a finite basis, M is said to be finite free. The
canonical basis of the finite free module Rn is the basis (εi)1≤i≤n such that

εi = (0, ..., 0, 1, 0, ..., 0)

where the 1 is the ith component.
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Let (ei)i∈I be a basis of a free left R-module M and m =
∑
i∈I λi ei; the

element λi is called the component of m ∈M in the basis (ei)i∈I .

Theorem 256. Let M be an R-module, let Γ be a generating set of M , and
let F ⊆ Γ be a free subset of M . The set F of all free sets S such that
F ⊆ S ⊆ Γ has a maximal element Φ.

Proof. First, a set S ⊆ M is free if, and only if every finite subset of S is
free. Let (Li)i∈I be a chain of F ordered by inclusion, let L =

⋃
i∈I Li,

and let a1, ..., an be elements of L. There exists i ∈ I such that a1, ..., an
belong to Li, thus {a1, ..., an} is free and L is free, i.e., L is the great-
est element element of (Li)i∈I . Therefore, F is inductively ordered
(1.5.3.2) and, according to Zorn’s lemma (Lemma 107), F has a maximal
element Φ.

Theorem 257. Let R be a ring, let M and N be left R-modules, and let
•f : M → N be a homomorphism.

(i) If ker f and im f are finitely generated, so is M .
(ii) If ker f ∼= Rn and im f ∼= Rm, then M ∼= Rn+m.

Proof. (i): Let (ai)1≤i≤n be a generating family of kerf and let (bj)1≤j≤m
be a generating family of im f . Let an+1, ..., an+m be elements of M such
that an+jf = bj (1 ≤ j ≤ m). For any element x ∈ M , there exists a finite
family (λn+j)1≤j≤m of elements of R such that xf =

∑
1≤j≤m λn+j bj, thus

xf =
(∑

1≤j≤n λj an+j

)
f . Therefore, x =

∑
1≤j≤n λj an+j + y where y ∈

ker f . In addition, there exists a finite family (λi)1≤i≤n of elements of R
such that y =

∑
1≤i≤n λi ai, thus x =

∑
1≤i≤n+m λi ai.

(ii): Let us assume that (ai)1≤i≤n is free in ker f and (bj)1≤j≤m is free
in im f . If x = 0, we have xf = 0, thus λn+j = 0 (1 ≤ j ≤ m); in addition,
we have y = 0, thus λi = 0 (1 ≤ i ≤ n). Therefore, (ai)1≤i≤n+m is a basis
of M .

2.2.4.4 Vector Spaces

Definition 258. If K is a division ring, a left (resp., right) K-module is
called a left (resp., right) K-vector space.

Lemma 259. Let (ai)i∈I be a free family of elements of a K-vector space V ;
if b ∈ V does not belong to the subspace W generated by (ai)i∈I , the subset
of V consisting of all ai, i ∈ I, and of b, is free.

Proof. Assuming that there exists a relation

μ b+
∑
i∈I λi ai = 0, μ ∈K, λi ∈ K,
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where (λi)i∈I has a finite support, either μ �= 0 and b ∈ W (by left-dividing
the above equality by μ) or μ = 0 and

∑
i∈I λi ai = 0. Both cases are

impossible.

Corollary and Definition 260. (1) Let Γ be a generating set of a K-vector
space V and let F ⊆ Γ be a free subset of V ; there exists a basis B of V such
that F ⊆ B ⊆ Γ .
(2) The cardinal of B is called the dimension of the K-vector space V (written
dimK (V ), or dim (V ) when there is no confusion).

Proof. (1) By Theorem 256, the set F of all free sets S such that F ⊆ S ⊆ Γ
has a maximal element Φ. By Lemma 259, the subspace of V generated by
Φ is V , thus Φ is a basis B.

(2) is justified by Theorem 405 below.

Taking F = ∅ and Γ = M in Corollary and Definition 260 we obtain the
following.

Theorem 261. Let K be a division ring and let V be a K-vector space.
Then:

(i) V is free;
(ii) if N � V , N is a direct summand.

2.2.4.5 Matrix of a Homomorphism of Free Modules

Lemma 262. Let R be a ring, let M be a free left R-module with basis
(αi)i∈I , let N be a left R-module and let (ηi)i∈I be a family of elements
of N .

(i) The exists a unique R-linear homomorphism •f : M → N such that

αif = ηi, i ∈ I.

(ii) f is a monomorphism (resp., an epimorphism) if, and only if (ηi)i∈I is
a free (resp., generating ) family of N .

Proof. (i): Let x ∈ M ; then by Lemma 254 the exists a unique family
(λi)i∈I of elements of R, with finite support, such that x =

∑
i∈I λi αi, thus

xf =
∑
i∈I λi ηi.

(ii): f is a monomorphism if, and only if xf = 0 implies x = 0, i.e., (ηi)i∈I
is a free family; f is an epimorphism if, and only if for any element y of N
there exists x ∈ M such that y = xf , i.e., (ηi)i∈I is a generating family
of N .
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Item (1) below is an obvious consequence of Lemmas 254 and 262:

Lemma and Definition 263. (1) Let •f : M → N be R-linear. Assuming
that N is free with basis

(
βj
)
j∈J , for any i ∈ I there exists a unique family

(aij)j∈J of IR, with finite support, such that

αif =
∑

j∈J
aij βj. (2.11)

(2) The above matrix A = (aij)(i,j)∈I×J ∈ IR(J) is the called the matrix of
the homomorphism •f in the bases (αi)i∈I and

(
βj
)
j∈J . (Since the entries

aij of A belong to R, A is called a matrix over R.)

Remark 264. (i) In the above definition, M and N are left free R-modules,
thus their elements are represented by rows in the bases (αi)i∈I and

(
βj
)
j∈J ;

in particular, αi and βj are represented by the rows
[
(δij)j∈I

]
and
[
(δji)i∈J

]
,

respectively, where δij is the Kronecker index. The homomorphism •f is
represented by the right-multiplication by the matrix A ∈ IR(J), written •A,
i.e.,

y = xA (2.12)

where x and y are the rows representing x and xf , respectively (see the proof
of Lemma 262). Assuming that I and J are finite, say I = {1, ..., n} and
J = {1, ...,m}, we have x ∈ Rn, y ∈ Rm, A ∈ nRm, and (2.12) can be
explicitly written

yi =
∑

1≤j≤n
xj aij (1 ≤ i ≤ m) . (2.13)

(ii) If M and N are right free R-modules (or if R is commutative), as in
most textbooks on Algebra, the elements of these modules are represented by
columns in bases of these modules ([141], Sect. 12.3). Our notation is the
one chosen by most (if not all) people working on ”D-modules” (see, e.g.,
[320], [181]) for reasons which will become clear in the sequel.

Let M , N , Q be free left R-modules with bases (αi)i∈I ,
(
βj
)
j∈J and (γk)k∈K ,

respectively. Let •f : M → N and •g : N → Q be R-linear maps. Let x
be an element of M , represented by the row x ∈ R(I) in the basis (αi)i∈I ,
let y = xf ∈ N be represented by the row y ∈ R(J) in the basis

(
βj
)
j∈J ,

and let z = yg be represented by the row z ∈ R(K) in the basis (γk)k∈K ;
in addition, let A ∈ IR(J) be the matrix representing f in the bases (αi)i∈I
and
(
βj
)
j∈J , and let B ∈ JR(K) be the matrix representing g in the bases

(
βj
)
j∈J and (γk)k∈K . We have z = y B, y = xA, thus z = xAB where

AB ∈ IR(K). Therefore, we have the following.

Proposition 265. With the above notation, f ◦g is represented by the matrix
AB in the bases (αi)i∈I and (γk)k∈K .
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For short:
Mat (f ◦ g) = Mat (f) Mat (g) . (2.14)

2.2.5 Duality

2.2.5.1 Dual of a Module

Let R be a ring and let M be a left R-module. Its dual , written M∗, is
the right R-module HomR (M,RRR) (Theorem 236(i)). For any x∗ ∈ M∗

and x ∈ M , the element x∗ (x) is denoted by 〈x, x∗〉. The R-bilinear map
〈•, •〉 : M ×M∗ → RRR is called the duality bracket . Do not confuse these
algebraic notions with those in Example 36, where topology and continuity
are involved.

If R is noncommutative, M∗ cannot be endowed with a structure of left
R-module: if we define λ x∗ by 〈x, λ x∗〉 = λ 〈x, x∗〉, then the reader can
easily check that λ x∗ is not R-linear, thus does not belong to M∗.

2.2.5.2 Transpose of a Homomorphism

Let R be a ring, let M and N be two left R-modules, and let •f : M → N
be a homomorphism. For any •y∗ ∈ N∗, f ◦ y∗ ∈M∗, thus one can define a
homomorphism tf : N∗ →M∗ by tf (y∗) = f ◦ y∗; tf is called the transpose
of f (and should not be confused with the transpose, or adjoint, of a linear
continuous map in Example 36(2)). Using the duality bracket, we can write
〈(x) f, y∗〉 = 〈x,t f (y∗)〉 or more simply

〈xf, y∗〉 = 〈x, tfy∗〉 (2.15)

for all x ∈M , y∗ ∈ N∗.
The transposition •f �→ tf• is R-linear, i.e., additive and such that

t (f λ) = (tf) λ for any f ∈ HomR (M,N) and λ ∈ R. In addition, if
•f : M → N and •g : N → Q are homomorphisms, we have, for any x ∈ M
and z ∈ Q∗,

〈xf ◦ g, z∗〉 =
〈
xf,t gz∗

〉
=
〈
x,t f ◦ tgz∗

〉
, therefore

t (f ◦ g) = tf ◦ tg. (2.16)

The above formula may look unfamiliar. The skew formula t (f ◦ g) = tg◦ tf
holds true when both a linear map and its transpose are right (or left) ones.
Here the identity (2.16) holds true because if f : M → N is a left (resp.,
right) linear map, i.e., if M and N are left (resp., right) R-modules, then the
transpose tf : N∗ →M∗ is a right (resp., left) linear map since the duals N∗

and M∗ are right (resp., left) R-modules.
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2.2.5.3 Dual of a Free Module

Let M be a finite free left R-module with basis (αi)1≤i≤n. Define α∗i ∈M∗

by 〈αj , α∗i 〉 = δij (1 ≤ i ≤ n, 1 ≤ j ≤ n).

Theorem 266. M∗ is a free right R-module with basis (α∗i )1≤i≤n.

Proof. For any x∗ ∈M∗, let θ (x∗) ∈ nR be the column with entries 〈αi, x∗〉
(1 ≤ i ≤ n). By Lemma 262, θ : M∗ → nR is a bijection. It is obviously Z-
linear and θ (x∗ λ) = θ (x∗) λ for any λ ∈ R, thus θ is an isomorphism of right
R-modules. Finally, θ (α∗i ) = ε∗i where (ε∗i )1≤i≤n is the canonical basis of nR,
i.e., ε∗i is the column whose all entries are zero except the jth one which is 1.

Definition 267. (α∗i )1≤i≤n is the dual basis of (αi)1≤i≤n.

Using this notion, we see by (2.11) that A = (aij) is the matrix of f : M → N
if, and only if (2.2.4.3)

〈
αif, β

∗
j

〉
= aij (1 ≤ i ≤ n, 1 ≤ j ≤ n) . (2.17)

The following result is an obvious consequence of Theorem 266:

Corollary 268. Let R be a ring; (Rn)∗ ∼= nR and (nR)∗ ∼= Rn.

Note that the first (resp., second) isomorphism is an isomorphism of right
(resp., left) R-modules.

2.2.5.4 Transpose of a Matrix

One way to define the transpose of a matrix is the following: let M and N be
finite free left R-modules, the first one with basis (αi)1≤i≤n and the second
one with basis

(
βj
)
1≤j≤m, let •f : M → N be a homomorphism and let

A = (aij) ∈ nRm be its matrix in the above bases, i.e., αif =
∑

1≤j≤m aij βj
according to Lemma and Definition 263. The following definition sounds
classical and reasonable:

Definition 269. The abstract transpose of the matrix A is the matrix rep-
resenting tf in the dual bases

(
β∗j
)
1≤j≤m and (α∗i )1≤i≤n of N∗ and M∗.

In accordance with Definition 263, the transpose of A is the matrix
(
a′ij
)

belonging to nRm such that tf
(
β∗j
)

=
∑

1≤i≤n a
′
ijα
∗
i , thus

〈
αi,

t f
(
β∗j
)〉

=
a′ij . By (2.17), a′ij = aij (due to the notation in Definition 233), which makes
the ”abstract transpose” of a matrix in Definition 269 an irrelevant notion.

Remark 270. (i) Let M and N be free left R-modules with bases (αj)1≤j≤n
and (βi)1≤i≤m respectively, and let A ∈ nRm be the matrix representing



108 2 Rings and Modules

f : M → N in those bases when the elements of M and N are represented
by rows (so that •f is identified with •A). Representing the elements of the
dual free right R-modules N∗ and M∗ by columns in the dual bases (β∗i )1≤i≤m
and
(
α∗j
)
1≤j≤n,

tf : N∗ → M∗ is identified with the left-multiplication by
the matrix A (written A•). The equality (2.15) takes the very attractive form

〈xA, y∗〉 = 〈x,A y∗〉 . (2.18)

(ii) In most references, e.g., [77], the transpose of a matrix A = (aij) is
defined as the matrix (aji). Assume that A represents a homomorphism of
right free R-modules f : N → M in bases of N and M (Remark 264(ii));
then tf : M∗ → N∗ is a homomorphism of left free R-modules which can
be viewed as a homomorphism of right free Rop-modules by Proposition 229,
where Rop is the opposite ring. Then tf is represented in the dual bases by
the matrix AT = (aji), defined over Rop. In particular, a product (AB)T

must be calculated using the rule (2.4) ([141], §16, Theorem 4).

According to Remark 270(ii), the following definition is useful:

Definition 271. The classical transpose (or the transpose, for short) of a
matrix A = (aij) ∈ nRm is the matrix AT = (aji) ∈ n (Rop)m.

2.2.5.5 Bidual

Let R be a ring, let M be a left R-module, and let M∗ be its dual. The bidual
of M , denoted by M∗∗, is the left R-module HomR (M∗,RRR) (Theorem
236(i)). For any x ∈M , let 〈x, •〉 : M∗ → RRR be given by 〈x, •〉 = 〈x, x∗〉.
As easily seen, 〈x, •〉 ∈M∗∗ and the map M →M∗∗ : x �→ 〈x, •〉 is R-linear.

Definition 272. The above R-linear map x �→ 〈x, •〉 is the canonical map
M →M∗∗.

Theorem 273. If the module M is finite free, the canonical map M →M∗∗

is an isomorphism of left R-modules.

Proof. Let (αi)1≤i≤n be a basis of M and let (α∗i )1≤i≤n be its dual basis in
M∗. Set βi = αiψ (1 ≤ i ≤ n) where •ψ is the canonical map; it is easy to
check that (βi)1≤i≤n is the dual basis of (α∗i )1≤i≤n in M∗∗.

More specifically, let C be the category of finite free left R-modules and let
tM : M → M∗∗ be defined as x �→ 〈x, •〉; consider the ”identity functor”
F = Id defined by Id (M) = M for any M ∈ Ob (C) and Id (f) = f for any
morphism f : M → N ; let G be the functor (•)∗∗ defined by G (M) = M∗∗ for
any M ∈ Ob (C) and G (f) = ttf–the bitranspose of f–for any f : M → N .
Then t is a natural transformation (1.2.3.2). By Theorem 273, we have the
following.

Corollary 274. The natural transformation t is a natural isomorphism.



2.2 Rings and Modules 109

2.2.5.6 Orthogonal

Let R be a ring, let M be a left R-module and let S be a subset of M . The
orthogonal of S, denoted by S0, is the subset of M∗ consisting of all linear
forms x∗ such that 〈x, x∗〉 = 0 for all x ∈ S; then S0 is a submodule of the
right R-module M∗.

Remark 275. Let N � M .

(i) Obviously, N ⊆ N00, but one can have N �= N00 even if M is finite free
([27], §II.2, Exercise 9(b)).
(ii) However, if K is a division ring, then N = N00 even if N is not finite-
dimensional ([27], §II.7, Theorem 7).
(iii) The map (•)0 from the submodules of M to those of M∗ and conversely,
is a Galois connection (Definition 98), thus the properties in Proposition 99
hold true.

Proposition 276. Let M,N be left R-modules and let •f : M → N be R-
linear. Then (im f)0 = ker (tf) .

Proof. By (2.15), (im f)0 consists of all y∗ ∈ N∗ such that 〈x,t f (y∗)〉 = 0
for all x ∈M ; thus y∗ ∈ (im f)0 if, and only if tf (y∗) = 0, i.e., y∗ ∈ ker (tf) .

Corollary 277. Let •f : M → N be R-linear.

(1) Of the following, (i)⇒(ii)⇒(iii):
(i) f is left-invertible;
(ii) f is an epimorphism;
(iii) tf is a monomorphism.
(2) In addition:
(i) f is left- (resp., right-) invertible if, and only if tf is left- (resp., right-)
invertible;
(ii) if f an isomorphism with inverse g = f−1, then tf is an isomorphism
with inverse tg.

Proof. (1) (i)⇒(ii): If there exists •g : N → M such that gf = IdN , let
y ∈ N and x = yg; then y = xgf = xf . (ii)⇒(iii): If im f = N , then
ker (tf) = (im f)0 = 0.

Both statements of (2) are obvious consequences of (2.16).

Remark 278. Of the conditions in Corollary 277(1), (ii)�(i) in general, as
shown by Proposition 572 below. Regarding Condition (2)(ii), there exists an
R-linear map f : M → N such that tf is an isomorphism and f is neither
injective nor surjective ([27], §II.2, Exercise 10); this also proves that of the
conditions in (1), (iii)�(ii).
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Corollary 279. Let M and N be finite free left R-modules, let •f : M → N
be R-linear and let S be the matrix of f in bases of M and N , so that •f = •S
in these bases. Let tf : N∗ → M∗ be identified with S• in the dual bases
(Remark 270(i)). Of the following,

(i)⇔ (ii)⇔ (iii)⇒ (iv)⇒ (v)⇔ (vi)⇔ (vii):

(i) S is left-invertible;
(ii) S• is left-invertible;
(iii) •S is left-invertible;
(iv) •S is surjective;
(v) S• is injective;
(vi) the columns of S are right R-linearly independent;
(vii) S is right-regular.
If R is a division ring, then all the above conditions are equivalent.
If R is an arbitrary ring, then (v)�(iv)�(iii).
Considering right modules, the above holds, interchanging respectively left
and right, columns and rows, •S and S•.

Proof. (i)⇔(ii)⇔(iii) is clear from the equalities (TS) • = (T•) ◦ (S•) and
• (TS) = (•T ) ◦ (•S).

(iii)⇒(iv)⇒(v) by Corollary 277(1).
(vii) means that for any column y of appropriate length, S y = 0 implies

y = 0, thus (vii)⇔(vi)⇔(v).
If R is a division ring, then (vii)⇒(i) (see Proposition 420 below).
If R is arbitrary, (iv)�(iii) by Proposition 572 below and (v)�(iv) by

Remark 278.

2.2.6 Change of Basis

2.2.6.1 The Change of Basis Matrix

Let M be a finite free left R-module, and let (αi)1≤i≤n, (βi)1≤i≤n be two
bases of M , with the same cardinal. Let us identify these bases with the
columns α and β with entries αi and βi, respectively (1 ≤ i ≤ n). Consider
f = IdM : (M,β) → (M,α) and let P = (pij) be the matrix (necessarily
invertible, i.e., belonging to GLn (R)) of f . For each index i, βif = αi, thus
by Lemma and Definition 263, βi =

∑
1≤i≤n pij αi. This can also be written

β = P α. (2.19)

Let x ∈ M , and let xα, xβ be the rows representing x in the bases α and
β, respectively. Then, x = xα α = xβ β, therefore by (2.19), xβ P α = xα α,
and

xα = xβ P . (2.20)
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2.2.6.2 Change of Basis in the Dual

Let M∗ be the dual of M , and let (α∗i )1≤i≤n, (β∗i )1≤i≤n be the dual bases of
(αi)1≤i≤n and (βi)1≤i≤n, respectively. Since M∗ is a right R-module, let us
identify (α∗i )1≤i≤n and (β∗i )1≤i≤n with the rows α∗ and β∗ with entries α∗i
and β∗i , respectively (1 ≤ i ≤ n). The rows α∗ and β∗ can also be considered
as morphisms of left R-modules M → Mn. Let x = xα α = xβ β ∈ M ; we
have (x)α∗ = xα and (x)β∗ = xβ . By (2.20), (x)α∗ = (x) β∗ P , therefore

α∗ = β∗ P . (2.21)

Let x∗ ∈ M∗, and let x∗α, x∗β be the columns representing x∗ in the bases
α∗ and β∗, respectively. Then, x∗ = α∗ x∗α = β∗ x∗β , therefore by (2.21),
β∗ P x∗α = β∗ x∗β , and

x∗β = P x∗α. (2.22)

Note the similarity between (2.19) and (2.22), and between (2.20) and (2.21).

2.2.6.3 Effect on the Matrix of a Homomorphism

Let M,N be two finite free left R-modules and f : M → N . Assume
that M has bases α = (αi)1≤i≤n, α′ = (α′i)1≤i≤n, and that N has bases
β = (βi)1≤i≤m, β′ =

(
β′i
)
1≤i≤m. Let A (resp., A′) be the matrix of f in

the bases α, β (resp., α′, β′). Let x ∈ M , y = x f ∈ N , and let x, y (resp.,
x′, y′) be the rows representing x, y in the bases α, β (resp., α′, β′). We
have y = xA, y′ = x′A′. Let P (resp., Q) be the change of basis matrix
from α to α′ (resp., β to β′). By (2.20), x = x′ P, y = y′Q. Therefore,
y′ = y Q−1 = xAQ−1 = x′ P AQ−1, thus

A′ = P AQ−1 . (2.23)

Definition 280. (i) The matrices A, A′ ∈ nRm are said to be equivalent
(written A ≡ A′) if there exist matrices P ∈ GLn (R) and Q ∈ GLm (R)
such that (2.23) holds.
(ii) If Q = Im (resp., P = In), then A and A′ are said to be left- (resp.,
right-) equivalent (written A ≡l A′ (resp., A ≡r A′).
(iii) If n = m, A, A′ ∈ Matn (R) are said to be conjugate or similar-square
(written A ∼ A′) if there exists a matrix P ∈ GLn (R) such that A′ =
P AP−1, i.e., if A and A′ represent the same endomorphism f : M →M .
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2.2.7 Tensor Products

2.2.7.1 General Definition

Let R be a ring, let A be a right R-module, let B be a left R-module and
let G be an abelian group.

Definition 281. A right function f : A × B → G is said to be R-biadditive
if (i) it is Z-bilinear and (ii) for any (a, b) ∈ A × B and r ∈ R, f (a r, b) =
f (a, r b).

Consider the following diagram:

A×B
h−→ C

f ↘ ↙ f ′

G

The problem to be solved here is to find an abelian group C and an R-
biadditive map h : A × B → C such that for any abelian G and every
R-biadditive map f : A × B → G, there exists a unique Z-linear map f ′ :
C → G making the diagram commute. This is a universal problem (1.2.3.3);
therefore, assuming that two abelian groups C1 and C2 are solutions to this
problem, they are isomorphic (Theorem 13(ii)) and are identified. One can
prove that a solution to this problem actually exists ([306], Theorem 1.4);
it is called the tensor product of A and B over R and denoted by A

⊗
R B.

The R-biadditive map h : A × B → A
⊗

R B is denoted by ⊗. A typical
element of A

⊗
R B has the form

∑
i ai⊗ bi, ai ∈ A, bi ∈ B, where the family

(ai ⊗ bi) has a finite support.
The proof of Item (1) below is easy:

Lemma and Definition 282. (1) Let f• : A → A′ be a homomorphism of
right R-modules and •g : B → B′ be a homomorphism of left R-modules.
There exists a unique additive right map h : A

⊗
R B → A′

⊗
R B′ with

h (a⊗ b) �→ fa⊗ bg.
(2) The above map is denoted by f ⊗ g and is called the tensor product of f
and g. The tensor product IdA ⊗ g is usually denoted by 1⊗ g when there is
no confusion.

To express the general structure of a tensor product, it is convenient to con-
sider a left R-module as an (R,Z)-bimodule and a right T-module as a
(Z,T)-bimodule (2.2.3.1). Then all situations are gathered in the following
result (the proof of which is straightforward):

Theorem 283. If A is an (R,S)-bimodule (written RAS) and B is an (S,T)-
bimodule (written SBT), then A

⊗
SB is an (R,T)-bimodule and the follow-

ing identities hold (with an obvious notation)

r (a⊗ b) t = (r a)⊗ (b t) , a⊗ (s b) = (a s)⊗ b,
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the last equality resulting from the S-biadditivity. Considering also bimodules
RA
′
S, SB

′
T, an (R,S)-bimodule homomorphism f : RAS → RA

′
S and an

(S,T)-bimodule homomorphism g : SBT → SB
′
T, then f ⊗ g is an (R,T)-

bimodule homomorphism.

Let us state the Adjoint Isomorphism Theorem:

Theorem 284. Let R,S,T,U be rings.

(i) In the situation RAS, SBT and RCU, there exists a canonical (T,U)-
bimodule isomorphism

τ : HomR (A
⊗

SB,C) −̃→HomS (B,HomR (A,C)) .

(ii) In the situation RAS, SBT and UCT, there exists a canonical (U,R)-
bimodule isomorphism

τ ′ : HomT (A
⊗

SB,C) −̃→HomS (A,HomT (B,C))

Proof. Let us prove (i) (the proof of (ii) is similar). We know that A
⊗

S B
is an (R,T)-bimodule (Theorem 283) and that HomR (A,C) is an (S,U)-
bimodule (Theorem 236(i)), thus both sides make sense and are (T,U)-
bimodules (Theorem 236(i)). If •f : A

⊗
S B → C is R-linear, for each

b ∈ B define •fb : A → C by afb = (a⊗ b) f ; fb is R-linear, thus consider
•f̄ : B → HomR (A,C) such that bf̄ = fb. The map f̄ is additive and for
any s ∈ S,

(a) (s b) f̄ = (a⊗ s b) f = (a s⊗ b) f = (a s) fb = a (sfb)

(the last equality by Theorem 236(i)), thus (s b) f̄ = s
(
bf̄
)
, and f̄ is

S-linear, i.e., f̄ ∈ HomS (B,HomR (A,C)). Since (a) (b) f̄ = (a⊗ b) f , the
map τ : f �→ f̄ is easily seen to be a (T,U)-bimodule homomorphism.
To prove that it is an isomorphism, it remains to show that it has an
inverse. Let •g : B → HomR (A,C) be S-linear; the map (a, b) �→ (a) (b) g
is S-biadditive since for any s ∈ S, (a) (s b) g = (a s) (b) g, therefore there
exists •g̃ ∈ HomR (A

⊗
S B,C) such that (a) (b) g = (a⊗ b) g̃.

2.2.7.2 Extension of the Ring of Scalars

Item (1) below is a consequence of Theorem 283:

Lemma and Definition 285. (1) Let R, S be two rings such that S is a
right R-module, and let M be a left R-module (i.e., consider the situation
SR, RM). Then S

⊗
R M is a left S-module.

(2) The above left S-module S
⊗

R M is said to be obtained from M by ex-
tension of the ring of scalars and is denoted by M(S). The R-linear map
M → S

⊗
R M given by x �→ 1⊗ x is called the canonical map.

This definition is generalized in Subsect. 3.4.2 below.
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2.3 Generalized Differential Rings

2.3.1 Differential Rings

A differential ring is a ring R endowed with a derivation δ : a �→ aδ (a ∈ R),
i.e., an additive map from R to R such that (a b)δ = aδ b+a bδ for all a, b ∈ R.

The ring k [t] of all polynomials in the indeterminate t with coefficients in
k = R or C, endowed with the usual derivative δ = d/dt, is a typical example
of commutative differential ring. The ring Matn (k [t]) of all square matrices
of order n with entries in k [t] is a noncommutative differential ring for n > 1.

A constant in a differential ring is an element a such that aδ = 0. The
constants of a differential ring form a subring, called the subring of constants.
For example, the subring of constants of k [t] is k.

A differential division ring (resp., a differential field) is a differential ring
which is a division ring (resp., a field).

The following rings (or fields), equipped with the usual derivative, are
typical examples of differential rings (or fields):

• The ring k [t] .
• The field k (t) of all rational functions with coefficients in k = R or C.
• The ring R = k {t} of convergent power series in the variable t with coef-

ficients in k (2.9.1.1).
• The field k ({t}) of fractions of k {t}, i.e., the field consisting of all elements

f/g, f ∈ k {t}, g ∈ k {t}×.
• The ring E (k) of all entire functions in k, i.e., of all power series

∑
n≥0 ant

n

with infinite convergence radius. (Recall that when k = C, E (k) = O (k);
more generally, the space O (kn) of all analytic functions in kn coincides
with E (kn) when k = C. This does not hold when k = R: see [92], (9.9.6).)

• The field M (k) of meromorphic functions on k, i.e., the field of fractions
of E (k).

Note that E (k) � k {t} andM (k) � k ({t}).

2.3.2 Difference Rings

A difference ring is a ring R endowed with a shift operator α : a �→ aα

(a ∈ R) which is an endomorphism of R. A constant in a difference ring is
an element a such that aα = a and the set of all constants of R is a subring,
called the subring of constants. A difference ring which is a field is called a
difference field .

The following rings (or fields), equipped with the shift-forward operator
a (t) �→ a (t + 1), are typical examples of difference rings (or fields), and α
is an automorphism of these difference rings (or fields), with inverse a (t) �→
a (t− 1) .
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• The ring k [t].
• The field k (t).
• The ring E (k).
• The field M (k).

Let α be the above shift and let N ∈ N×. A function f is said to be N -periodic
(N ∈ N×) if fαN

= f .
The subring of E (k) consisting of all N -periodic entire functions is de-

noted by PEN (k) and the subfield of M (k) consisting of all N -periodic
meromorphic functions is denoted by PMN (k). The rings PEN (k) and
PMN (k), endowed with the shift α, are a difference ring and a difference
field, respectively, and for N = 1 they are rings of constants.

Definition 286. A difference ring consisting of N -periodic functions is called
an N -periodic difference ring.

2.3.3 General Derivations

Consider one of the above difference rings and let aδ = aα − a. Then δ is
the differencing operator a (t) �→ a (t+ 1)− a (t) . We have

(ab)δ = (ab)α − ab = aα (bα − b) + (aα − a) b
= aαbδ + aδb.

We are led to the following general definition:

Definition 287. (i) Let R be a ring and let α, β be endomorphisms of R.
An (α,β)-derivation is an additive map δ : R→ R such that

(a b)δ = aα bδ + aδ bβ (2.24)

for any a, b ∈ R. (An (α,β)-derivation is also called a pseudo-derivation
with respect to (α,β) [54].)
(ii) A (1, 1)-derivation is called a derivation and an (α,1)-derivation is called
an α-derivation.
(iii) An (α,β)-derivation is said to be inner (induced by m ∈ R) if aδ =
aαm−maβ for all a ∈ R; a derivation which is not inner is said to be outer.
(iv) A ring (resp., a division ring, a field) endowed with an α-derivation δ
is a generalized differential ring (resp., division ring, field).

The reader can check that an (α,β)-derivation and a (β,α)-derivation are
related as follows:

Proposition 288. An (α,β)-derivation of the ring R is a (β,α)-derivation
of the opposite ring Rop.
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Note that
1α = 1β = 1, 1δ = 0, (2.25)

the first equality because α and β are ring-homomorphisms, the second one
by taking a = b = 1 in (2.24).

A constant of a generalized differential ring R is an element c such that
cα = cβ = c and cδ = 0 [54].1 The set of all constants of R is a subring,
called the subring of constants of R. If R is a division ring (resp., a field),
the subring of constants of R is a division subring (resp., a subfield) (Exercise
477), called the division subring of constants (resp., the subfield of constants).

From the above, a (usual) differential ring is a generalized differential ring
whose derivation is a (1, 1)-derivation (outer if it is nonzero) and a difference
ring is isomorphic to a generalized differential ring whose derivation is an
inner α-derivation (induced by 1). The following is clear:

Lemma 289. Let R be a difference ring with shift α, assumed to be an au-
tomorphism, and consider the following conditions:

(i) R is N -periodic;
(ii) αN = 1;
(iii) the automorphism αN is inner.
Conditions (i) and (ii) are equivalent and imply (iii). These three conditions
are equivalent if R is commutative.

In the sequel, all (α,β)-derivations δ considered on a ring R are such that
cδ = 0 implies cα = cβ = c. For such derivations, the definition of a constant
is simpler and coincides with that given in ([77], Sect. 0.8):

Definition 290. The subring of constants of R is the subring of R, denoted
by Rδ, consisting of all elements c such that cδ = 0.

2.4 Ideals in Rings

2.4.1 Maximal Ideals

2.4.1.1 Krull’s Theorem

The following result ([27], §I.8, Theorem 1) is a consequence of Zorn’s Lemma
(Lemma 107) and is generalized in Proposition 533 below.

Theorem 291. (Krull’s theorem). Let R be a ring and a �= R be a left
(resp., right, two-sided) ideal in R. There exists a maximal left (resp., right,
two-sided) ideal m in R containing a.

1 For some authors, a constant is just an element c such that cδ = 0 ([77],
Sect. 0.8).
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2.4.1.2 Jacobson Radical

Lemma 292. Let R �= {0} be a ring; an element x belongs to a maximal left
(resp., right, two-sided) ideal if, and only if x is not left-invertible (resp.,
right-invertible, invertible).

Proof. (1) If x belongs to a left ideal a �= R, then Rx ⊆ a and x is not
left-invertible since otherwise Rx = R. Similarly, if x belongs to an ideal
a �= R, then (x) ⊆ a and x is not invertible since otherwise (x) = R. (2)
If x is not left-invertible, then Rx � R and by Theorem 291 there exists a
maximal left ideal m ⊇ Rx. Similarly, if x is not invertible, then (x) � R
and by Theorem 291 there exists a maximal ideal m ⊇ (x).

Item (1) below is proved in ([198], §4):

Theorem and Definition 293. Let R be a ring and ∅ �= J ⊆ R.

(1) The following conditions are equivalent:
(i) J is the intersection of all maximal left ideals in R;
(ii) An element x belongs to J if, and only if for any y ∈ R, 1− y x is left-
invertible;
(iii) An element x belongs to J if, and only if for any y, z ∈ R, 1− y x z is a
unit;
(iv) J is the only maximal ideal a such that 1− x is a unit for any x ∈ a;
(v) J is the intersection of all maximal right ideals in R.
(2) The ideal satisfying the above equivalent conditions is called the Jacobson
radical of R, and is denoted by radR.
(3) If radR = {0}, R is called radical-free.

2.4.2 Lattices, and Products of Ideals

2.4.2.1 Lattices of Ideals

The following lemma is consistent with Example 109 but gives a more precise
description of the lattices of ideals in a ring.

Lemma 294. Let (ai)i∈I be a family of left (resp., right, two-sided) ideals
in R.

(i)
⋂
i∈I ai is a left (resp., right, two-sided) ideal in R.

(ii) So is also the set consisting of all elements of the form
∑

i ai where ai ∈ ai
for any i and ai is equal to zero for all but a finite number of indices. This set
is denoted by

∑
i ai and is called the sum of the left (resp., right, two-sided)

ideals ai. (Il (R) ,+), (Ir (R) ,+) and (I (R) ,+) are commutative monoids
(additively noted) with unit element (0) .



118 2 Rings and Modules

(iii) The sets Il (R), Ir (R), I(R), Ifgl (R), Ifgr (R) and Ifg (R), ordered
by inclusion, are lattices (Definition 108(iii)), Il (R), Ir (R), I(R) are com-
plete, I(R) and Ifg (R) are modular. The greatest lower bound of (ai)i∈I is∧
i∈I ai =

⋂
i∈I ai and its least upper bound is

∨
i∈I ai =

∑
i ai.

Proof. (i) and (ii) are obvious; (iii) as well, except the fact that I(R) and
Ifg (R) are a modular lattices. This point is a consequence of Lemma 153.

2.4.2.2 Products of Ideals

Definition 295. Let R be a ring, and let a, b be left, right, or two-sided
ideals in R. The product a b is the abelian subgroup of (R,+) consisting of
all elements of the form

∑
k ak bk where ak ∈ a, bk ∈ b and ak bk = 0 for all

but a finite number of indices.

Lemma 296. If a�lR (resp., b �r R) then a b �l R (resp., a b �r R).

Proof. Let a �l R, x ∈ R and
∑
k ak bk ∈ a b. Then x

∑
k ak bk =∑

k (xak) bk ∈ a b since xak ∈ a.

Theorem 297. (i) (I (R) ,+,×) is a distributive dioid with zero element (0)
and unit element R (Remark 220(b)); it is commutative if so is R.
(ii) Let a, b � R; then a b ⊆ a ∩ b.
(iii) Let a1,..., an be ideals in R such that ai + aj = R for i �= j; then

⋂

1≤i≤n
ai =

∑

σ∈Sn

aσ(1)...aσ(n);

in particular, if R is commutative, then
⋂

1≤i≤n
ai = a1...an.

Proof. (i): We already know that (I (R) ,+) is a commutative monoid with
unit element (0) (Lemma 294). It is easy to check that the multiplication
of ideals is associative and distributive with respect to the addition of those
ideals. Last, for any a � R, aR = R a = a. (ii) is obvious and (iii) is proved
in ([27], §I.8, Prop. 7).

2.4.3 Prime Ideals, and Completely Prime Ideals

2.4.3.1 Prime Ideals

In noncommutative rings, prime ideals are defined as follows ([198],
Definition (10.1)):

Definition 298. An ideal p � R is said to be prime if p �= R and for a � R,
b � R,

a b ⊆ p implies that a ⊆ p or b ⊆ p.
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Prime ideals can be characterized as follows:

Lemma 299. For an ideal p � R, the following conditions are equivalent:

(i) p is prime;
(ii) For a, b ∈ R, (a) (b) ⊆ p implies that a ∈ p or b ∈ p;
(iii) For a, b ∈ R, aR b ⊆ p implies that a ∈ p or b ∈ p;
(iv) For a �l R, b �l R, a b ⊆ p implies that a ⊆ p or b ⊆ p;
(iv’) For a �r R, b �r R, a b ⊆ p implies that a ⊆ p or b ⊆ p.

Proof. Obviously, (i)⇒(ii)⇒(iii) and (iv)⇒(i). Let us prove that (iii)⇒(iv):
Assume that a �l R, b �l R, a b ⊆ p and a � p. Let a ∈ a, a /∈ p and b ∈ b;
then aR b ⊆ p, thus b ∈ p and b ⊆ p.

Definition 300. The set of all prime ideals in R is denoted by SpecR and
is called the prime spectrum of R.

2.4.3.2 Completely Prime Ideals

Definition 301. An ideal p � R is said to be completely prime if R/p is a
domain.

Note that (0)� R is a completely prime ideal if, and only if R is a domain.

Lemma 302. For p � R, the following properties are equivalent:

(i) p is completely prime;
(ii) p �= R, and for a, b ∈ R, a b ∈ p implies that a ∈ p or b ∈ p;
(iii) p �= R, and for a, b ∈ R, a ∈ R\p and b ∈ R\p implies that a b ∈ R\p.

Proof. Obviously, (ii)⇔(iii). (i)⇒(ii): Let π : R→ R\p be the canonical
epimorphism and assume that R/p is a domain. If a b ∈ p, then π (a) π (b) =
π (a b) = 0, thus π (a) = 0 or π (b) = 0, i.e., a ∈ p or b ∈ p and (ii) holds.
The converse is similar.

The following is a consequence of Lemmas 299 and 302:

Proposition 303. If p � R is completely prime, it is prime. The converse
holds true if R is commutative.

If (R×,×) is a cancellation monoid, i.e., if R is a domain, we have the fol-
lowing.

Definition 304. An element p �= 0 is said to be a prime in R if it is a prime
in the monoid (R×,×) (Definition 128).

Theorem 305. Let R be a domain and 0 �= p ∈ R be such that pR = R p.
The following properties are equivalent:

(i) p is a prime in R;
(ii) The principal ideal (p) is completely prime.
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Proof. We know that for any c ∈ R, p | c if, and only if c ∈ (p); in other
words, c /∈ (p) if, and only if p 	 c. By Definition 128, the invariant element
p is a prime if, and only if p 	 a and p 	 b implies p 	 a b. By Lemma 302, this
means that (p) is completely prime.

Proposition 306. Let R be a ring and let m � R. If m is a maximal ideal,
then m is completely prime.

Proof. Let a ∈ R\m and b ∈ R\m; then (a) + m = R = (b) + m, thus

R = ((a) + m) ((b) + m) = (a) (b) + m,

therefore (a) (b) � m which proves that a b ∈ R\m, and m is completely
prime by Lemma 302.

2.4.4 Artinian Rings, Noetherian Rings, and
Semisimple Rings

Definition 307. Let A be a ring. A left A-module M is said to be Artinian
(resp., Noetherian) if every nonempty set of submodules of M , ordered by
inclusion, is Artinian (resp., Noetherian) (Definition 101). This definition
is still valid with left changed to right.

Definition 308. (i) A ring R is said to be left (resp., right) Noetherian if
the lattice Il (R) (resp., Ir (R)) is left (resp., right) Noetherian (Definition
102 and Example 109).
(ii) A ring R is said to be Noetherian if it is both left and right Noetherian.
(Statement (i) can also be expressed as follows: a ring R is left (resp., right)
Noetherian if it satisfies left (resp., right) ACC.)
(iii) Left Artinian, right Artinian and Artinian rings are likewise defined.
A ring R is left (resp., right) Artinian if it satisfied left (resp., right) DCC
(Definition 102).

Notice that a ring A is left Artinian (resp., Noetherian) if, and only if the
left A-module AA is Artinian (resp., Noetherian).

The following result is proved in ([225], Sect. XI.1) and ([29], §VIII.2):

Lemma 309. Let A be a ring.

(i) Let M be a left A-module; then M is Noetherian if, and only if every
submodule of M is f.g.
(ii) Let M be a left A-module and let N � M ; then M is Artinian (resp.,
Noetherian) if, and only if both N and M/N are Artinian (resp., Noethe-
rian).
(iii) Every finite product of left Artinian (resp., Noetherian) modules is left
Artinian (resp., Noetherian); in particular, if A is a left Artinian (resp.,
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Noetherian) ring, then every finite free left A-module is Artinian (resp.,
Noetherian).

In the above statements, left can be changed to right.

The following is a consequence of Lemma 309.

Proposition 310. Let A be a ring. The following conditions are equivalent:

(i) the ring A is left Artinian (resp., Noetherian);
(ii) every finitely generated left A-module is Artinian (resp., Noetherian).
In the above statements, left can be changed to right.

Lemma 311. Let R be a ring. The following conditions are equivalent:

(i) R is left Noetherian;
(ii) The lattice Ifgl (R) is Noetherian;
(iii) Every left ideal in R is finitely generated.

Proof. (i)⇒(ii) and (iii)⇒(i) are obvious. To prove that (ii)⇒(iii), assume
that (iii) fails. There exists an infinite sequence (xi)i∈N

of elements of R
such that (x0)l � (x0, x1)l � ... � (x0, x1, ..., xn)l � .... Therefore, (ii) fails.

Theorem 312. (Hopkins-Levitzki theorem). A left (resp., right) Artinian
ring is left (resp., right) Noetherian.

Proof. See ([247], 0.1.13).

The above statement is not correct if modules are considered in place of rings
([198], §1). The definition below is connected with the definition of a simple
Lie algebra and of a semisimple Lie algebra (1.8.2.3).

Definition 313. Let R be a ring and let M be a left R-module.

(i) M is called a simple (or irreducible) R-module if M �= 0 and M has no
R-submodule other than 0 and M .
(ii) M is called a semisimple (or completely reducible) R-module if every
R-submodule of M is a direct summand of M .

Definition 314. Let R be a ring. A left (or right) R-module M is said to
be of finite length if it has a Jordan-Hölder series (Definition 159), i.e., if
there exists a chain

M = N0 � N1 � ... � Ns = {0}

of submodules, such that each quotient Ni/Ni+1 (0 ≤ i ≤ s− 1) is simple
(Definition 313(i)). Then the integer s – which is well-defined by the Jordan-
Hölder-Dedekind theorem (Theorem 117) – is called the length of M .
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The following is easily proved ([29], §VIII.1, Prop. 3):

Theorem 315. Let R be a ring and let M be a left (or right) R-module.
Then M is of finite length if, and only if M is both Artinian and Noetherian.

Proposition 316. Let R be a ring and M a left R-module. The following
conditions are equivalent:

(i) M is semisimple;
(ii) M is the direct sum of a family of simple modules;
(iii) M is the sum of a family of simple submodules.

Proof. See ([198], §2, Theorem (2.4)).

Items (1) and (2) below are proved in ([198], Theorem (2.5) and Corol. (2.6),
(3.7)).

Lemma and Definition 317. Let R be a ring.

(1) The following conditions are equivalent:
(i) all left R-modules are semisimple;
(ii) all finitely generated left R-modules are semisimple;
(iii) the left R-module RR is semisimple;
(iv) the right R-module RR is semisimple;
(v) all short exact sequences of left R-modules split (Definition 53(3)).
(2) The ring R is called semisimple if the above equivalent conditions are
satisfied.
(3) A semisimple ring is Artinian (thus Noetherian), and a division ring is
semisimple.

The notion of semisimplicity is left/right symmetric.

Remark 318. (i) The zero module is semisimple but not simple. A simple
module is semisimple.
(ii) A commutative ring R is simple (Definition 223) if, and only if the
module RR is simple. This does not hold true if R is noncommutative.
(iii) A simple ring is (left) semisimple if, and only if, it is left Artinian ([198],
Theorem (3.10)). Note that in Bourbaki ([29], §5), all simple modules are
assumed to be semisimple (or equivalenly Artinian).

2.4.5 Prime Rings, and Semiprime Rings

Item (1) below is proved in ([247], 0.2.3):

Lemma and Definition 319. Let R be a ring.

(1) The following conditions are equivalent:
(i) if 0 �= a, b ∈ R, then aRb �= 0;
(ii) if 0 �= a, b �l R, then ab �= 0;
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(iii) if 0 �= a, b �r R, then ab �= 0;
(iv) if 0 �= a, b � R, then ab �= 0.
(2) The ring R is said to be prime if the above equivalent conditions are
satisfied.

Definition 320. Let R be a ring and let a be a left, right or two-sided ideal
in R; a is called nilpotent if there exists a positive integer n such that an = 0.

Item (1) below is proved in ([247], 0.2.7):

Lemma and Definition 321. Let R be a ring.

(1) The following conditions are equivalent:
(i) R has no nonzero nilpotent left ideal;
(ii) R has no nonzero nilpotent right ideal;
(iii) R has no nonzero nilpotent ideal.
(2) The ring R is said to be semiprime if the above equivalent conditions are
satisfied.

The following is clear:

Lemma 322. A domain is a prime ring; conversely, a prime commutative
ring is a domain. A prime ring is semiprime.

2.5 Rings of Fractions

2.5.1 The Commutative Case

Let R be a commutative ring and let S be a nonempty subset of R. Our aim is
to construct a ring S−1R of fractions r/s (r ∈ R, s ∈ S) such that all elements
of S are units of S−1R and there exists a canonical ring-homomorphism
λS : R→ S−1R.

Suppose that we have succeeded to construct S−1R. Consider two frac-
tions r/s and r′/s′. To compare them, they must be reduced to the
same denominator d ∈ S, therefore there must exist q, q′ ∈ R× such that
d = q s = q′ s′. Then, for the two above fractions to be equal one must have
q r = q′ r′. Thus, consider the following relation R1 in R× S :

(r, s)R1(r′, s′)⇔ q r = q′ r′ and q s = q′ s′ ∈ S for some q, q′ ∈ R.

From the above,
r/s = r′/s′ ⇒ (r, s)R1(r′, s′).

Now, choosing q = t s′ and q′ = t s for some t ∈ S, we have obviously
q s = q′ s′ ∈ S provided that S is a multiplicative set , i.e., s s′ ∈ S whenever
s, s′ ∈ S. Then, q r = q′ r′ if, and only if t (s′ r − s r′) = 0. Consider the
following relation R2 in R× S:
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(r, s)R2(r′, s′)⇔ t (s′ r − s r′) = 0 for some t ∈ S.

If 0 ∈ S, then (r, s)R2(0, 1) for any r ∈ R and s ∈ S, thus (R× S) /R2 =
{0} and this case is trivial. To avoid it, we suppose that 0 /∈ S and, for
convenience, that 1 ∈ S. Then, S is a submonoid of (R×, .).

Definition 323. Let R′ be a ring and let S be a submonoid of (R×, .). A
ring-homomorphism μ : R → R′ is S-inverting if it maps the elements of S
to units of R′.

Theorem 324. Let S be a submonoid of (R×,×).

(i) The relation R2 defined above is an equivalence relation in R× S;
(ii) Denote by r/s the class of (r, s) (modR2). The set S−1R � (R× S) /R2

is a ring with the addition and the multiplication of fractions defined as usual,
with 0/1 as zero and 1/1 as unit element;
(iii) Consider the canonical ring-homomorphism λS : R→S−1R given by
r �→ r/1. Then

kerλS = {r ∈ R : t r = 0 for some t ∈ S} ;

(iv) λS is S-inverting;
(v) For every S-inverting ring-homomorphism μ : R → R′, there exists a
unique ring-homomorphism μ′ : S−1R→ R′ such that μ = μ′◦λS; moreover,
this property determines S−1R up to isomorphism.

Proof. The proof of (i) and (ii) is straightforward. (iii): r/1 = 0 if, and
only if (r, 1)R2(0, 1), i.e., t r = 0 for some t ∈ S. (iv): If r ∈ S, then r/s is
invertible with inverse s/r. (v) is proved in ([79], Sect. 10.3).

Remark 325. (i) A unit of S−1R is not necessarily of the form r/s, r, s ∈ S.
Consider for example R = Z and S = 2Z×, the set of nonzero squares of Z.
Then 2/4 ∈ S−1R and (2/4) (2/1) = 4/4 = 1/1, thus 2/4 is a unit of S−1R.
(ii) By Properties (iv) and (v) in Theorem 324, the homomorphism λS is said
to be universal S-inverting. Let μ : R→ R′ be universal S-inverting. There
exists a unique ring-homomorphism λ′S : R′ → S−1R such that λS = λ′S ◦ μ;
therefore μ′ ◦ λ′S = IdR′ , λ′S ◦ μ′ = IdS−1R, and μ′ is an isomorphism with
inverse λ′S : R′−̃→S−1R; identifying R′ with S−1R, λS and μ are identified.
The homomorphism λS is a universal morphism and, as such, is ”essentially
unique” (Theorem 13(ii)).
(iii) The ring R can be embedded in S−1R (identifying R with λS (R) ⊆
S−1R) if, and only if λS is a ring-monomorphism; this happens if, and only
if all elements of S are regular according to Property (iii).
(iv) The set R× is multiplicative, and F = (R×)−1 R is called the total ring
of fractions of R. Every non-zero divisor in F is a unit. If all elements of
R× are regular, i.e., if R is a commutative domain, then F is the field of
fractions of R.
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Example 326. Consider the ring of polynomials R [X ] (where X is a central
indeterminate). The set S =

{
Xk : k ≥ 0

}
is a submonoid of

(
R [X ]× , .

)

and S−1R [X ] = R
[
X,X−1

]
is called the ring of Laurent polynomials with

central indeterminate X and coefficients in R. The elements of R
[
X,X−1

]

can be uniquely written in the form

m∑

i=n

fiX
i, n,m ∈ Z, m ≥ n.

2.5.2 The Noncommutative Case

2.5.2.1 Ore’s Construction

If R is a noncommutative ring, the above relation R2 is no longer an equiva-
lence relation. In addition, left fractions (of the form s−1 r) must be distin-
guished from right ones (of the form r s−1). In what follows, some hints are
given about the construction of a ring S−1 R of left fractions (written r/s)
with denominator in a set S ⊆ R×. The construction of a ring RS−1 of
right fractions is similar (with obvious changes).

Definition 327. Let S be a submonoid of (R×,×);
(i) S is a left Ore set if S r ∩R s �= ∅ for all r ∈ R, s ∈ S.
(ii) S is a left denominator set if it is a left Ore set and the following condition
holds: for each r ∈ R, s ∈ S, if r s = 0, then t r = 0 for some t ∈ S. (The
latter condition is automatically satisfied if all elements of S are left-regular.)

Theorem 328. (1) Let S ⊆ R× be a left denominator set.
(i) The relation R1 defined in Subsect. 2.5.1 is an equivalence relation in
R× S;
(ii) Denote by r/s the class of (r, s) (modR1). Two fractions r/s and r′/s′

can be brought to a common denominator. Then, the addition in the quotient
set S−1 R � (R× S) /R1 is defined by the rule

r/s+ r′/s = (r + r′) /s.

The multiplication is defined as follows: let r/s, r′/s′ ∈ S−1 R; since S r ∩
R s′ �= ∅, there exist s′1 ∈ S, r′1 ∈ R such that s′1 r = r′1 s

′, and then

(r/s) (r′/s′) = (r′1 r
′) / (s′1 s) . (2.26)

Endowed with this addition and this multiplication, S−1 R is a ring with 0/1
as zero element and 1/1 as unit element.
(iii) Statements (iii)-(v) of Theorem 324 are still valid and Remark 325(iii)
as well.
(2) Conversely, if a ring of left fractions S−1 R exists, S is a left denominator
set.
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Proof. The proof of (1) and (2) are similar to the proofs given in ([80], Sect.
7.1) and ([247], §2.1), respectively. Let us detail some points. Regarding
(1)(ii), it has been shown above that if (r, s)R1(r′, s′), the fractions r/s and
r′/s′ can be brought to a common denominator d = q s = q′ s′. Consider two
fractions r/s = r s−1 and r′/s′ = r′ s′−1; since S is a left Ore set, there exist
s′1 ∈ S, r′1 ∈ R such that s′1 r = r′1 s

′. Therefore,
(
s−1 r
) (

s′−1 r′
)

= s−1 s′−1
1 s′1 r s

′−1 r′ = s−1 s′−1
1 r′1 s

′ s′−1 r′

= (s′1 s)
−1 (r′1 r

′)

and (2.26) is obtained. Let us determine kerλS where λS : R → S−1 R is
the canonical ring-homomorphism; an element r1 ∈ R is such that λS (r) = 0
if, and only if ((r, 1)R1(0, 1)), i.e., t r = 0 for some t ∈ S, as claimed.

Statement (1)(ii) of Theorem 328 implies that if S is a left denominator set,
two elements s, s′ of S have a common left multiple d ∈ S. By induction one
obtains the following.

Corollary 329. Let S ⊆ R× be a left denominator set.

(i) Let s1, ..., sn be elements of S; these elements have a common left multiple
belonging to S.
(ii) Any finite set of S−1 R can be brought to a common denominator.

Let a �l R and S be a left denominator set. Obviously, S−1a �
{x/s : x ∈ a, s ∈ S} is a left ideal in S−1R. The proof of the following result
is straightforward:

Proposition 330. The map ψS : Il (R) → Il
(
S−1R

)
given by ψS (a) =

S−1a is both a lattice- and a dioid-homomorphism, i.e., if a, b �l R,

S−1 (a + b) = S−1a + S−1b, S−1 (a ∩ b) = S−1a ∩ S−1b,

S−1 (a b) = S−1aS−1b.

Definition 331. An ideal b �l R is said to be saturated for the left denom-
inator set S if r ∈ b whenever s r ∈ b, s ∈ S, r ∈ R.

Theorem 332. Let S ⊆ R× be a left denominator set. For any b′ �l S
−1R,

write ϕS (b′) = λ−1
S (b′). The following properties hold:

(i) If b′ �l S
−1R, then ϕS (b′) �l R and S−1ϕS (b′) = b′.

(ii) If b′ �r S
−1R, then ϕS (b′) �r R.

(iii) If b �l R is saturated for S, then ϕS
(
S−1b

)
= b.

(iv) If R is left Noetherian, so is S−1R.
(v) If b � R and either R is commutative or S−1R is left Noetherian, then
S−1b � S−1R.
(vi) If R is Noetherian or commutative, the map ψS : p �→ S−1p is an iso-
tone (for inclusion) bijection from the set of all prime (resp., maximal) ideals
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p � R such that p ∩ S = ∅ onto the set of all prime (resp., maximal) ideals
p′ � S−1R, and the inverse of ψS is given by p′ �→ ϕS (p′).
(vii) Let b′ � S−1R, b = ϕS (b′) and π : R � R/b be the canonical epimor-
phism. There exists a canonical isomorphism

(
S−1R

)
/b′ ∼= (π (S))−1 (R/b).

(viii) If S ⊆ R× is a left and right denominator set, the ring of left fractions
S−1R coincides with the ring of right fractions RS−1.
(ix) If R is a domain, then S−1R is again a domain.

Proof. See ([247], 2.1.16) and ([31], §II.2, Prop. 11).

2.5.2.2 Goldie’s Theorem

Theorem 333. (Goldie’s theorem). Let R be a semiprime left (resp., right)
Noetherian ring (Subsect. 2.4.5 & 2.4.4) and let CR (0) be the set of all regular
elements of R.
(i) R can be embedded in the ring Q of left (resp., right) fractions CR (0)−1 R
(resp., R CR (0)−1) which is semisimple.
(ii) Furthermore, R is prime if, and only if Q is simple.

Proof. (i) Assume R is semiprime left Noetherian. By ([247], 2.3.6), CR (0) is
a left Ore set, thus is a left denominator set (Definition 327(ii)). By Theorem
328, R can be embedded in the ring of left fractions Q = CR (0)−1 R. The
ring Q is semisimple by ([247], 2.3.6). The same holds with left changed to
right.

(ii): see ([247], 2.3.6).

Remark 334. (1) The above theorem can be improved, using the notion of
Goldie ring ([247], §2.3). We do not detail this notion in the general case,
for the following statement will be sufficient:
A ring R is semiprime left (resp., right) Goldie if, and only if Condition (i)
in Theorem 333 holds.
For any ring R,

left (resp., right) Noetherian =⇒ left (resp., right) Goldie

and a Goldie ring is a ring which is both left and right Goldie.
(2) If a ring R is semiprime left (resp., right) Goldie, then the set of all
left-regular (resp., right-regular) elements of R coincides with the set CR (0)
of all regular elements of R ([199], Prop. (11.4)).

2.5.3 Ore Domains

Definition 335. (i) A ring R is a left Ore domain if it is a domain and R×

is a left Ore set. A right Ore domain is likewise defined.
(ii) An Ore domain is a left Ore domain which is a right Ore domain.
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The following result is an obvious consequence of Theorem 328 and of the
definitions.

Theorem 336. Let R be a domain.

(1) The following conditions are equivalent:
(i) R is a left Ore domain;
(ii) R× is a left denominator set;
(iii) R a ∩R b �= 0 for all a, b ∈ R×.
(iv) R can be embedded in the division ring R×−1 R, called the division ring
of left fractions of R.
(2) Assuming that the above conditions hold, the embedding λ : R ↪→ R×−1 R
is universal R×-inverting. If R is an Ore domain, its division ring of left
fractions and its division ring of right fractions coincide; they are called the
division ring of fractions of R and are denoted by Q (R).
(3) Any commutative domain is an Ore domain.
(4) Any Ore domain is semiprime Goldie (Remark 334(1)).

Theorem 337. A domain either is a left Ore domain or it contains free
left ideals of infinite rank (see Definition 407 below). In particular, any left
Noetherian domain is a left Ore domain.

Proof. Assuming that the domain R is not a left Ore domain, there exist
a, b ∈ R× such that R a∩R b = 0. Therefore, R a∩R a bi ⊆ R a∩R b = 0 for
any i ≥ 1, and for any n > m, R a bm ∩R a bn = 0 since the latter equality is
equivalent to R a∩R a bn−m = 0. Let an =

∑
0≤i≤nR a bi �l R. This sum is

direct, i.e., an =
⊕

0≤i≤nR a bi. We have R ∼= R a bi under the isomorphism
x ˜�→xa bi, thus an is free of rank n. Since an � an+1, lim−→an =

⋃
n≥0 an is

free of infinite rank (Example 19).

The following definition will be useful in the sequel (a more general framework
is considered in [247], 3.1.11):

Definition 338. Let R be a left Ore domain with division ring of left frac-
tions K. A fractional left ideal b is a submodule of the left R-module K such
that there exists c ∈ R× for which c b ⊆ R. In a similar fashion fractional
right ideals and fractional ideals are defined.

2.5.4 Modules over Rings of Fractions

Let R be a ring, let M be a left R-module, let S ⊆ R× be a left denominator
set and let K = S−1 R; K is a right R-module, thus the tensor product
M(K) � K

⊗
R M is a left K-module (2.2.7.2).

Theorem and Definition 339. (i) The left K-module M(K) can be de-
scribed as the set of formal products s−1 x (s ∈ S, x ∈ M) subject to the
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relations s−1 x = s′−1 x′ if, and only if there exist q, q′ ∈ R× such that
q x = q′ x′ and q s = q′ s′ ∈ S.
(ii) The kernel of the Z-linear canonical map M →M(K) given by x �→ 1⊗x
is the submodule TS (M) of M consisting of all x ∈M for which there exists
t ∈ S such that t x = 0 (TS (M) is called the torsion submodule of M with
respect to S). If M = TS (M), then M is called a torsion module with
respect to S.
(iii) Let M be a torsion module with respect to S; then any quotient M/N
(N � M) is torsion with respect to S.
(iv) Assuming that R is a domain, let (ai)i∈I be a family of elements of
M . If (ai)i∈I is free (over R), then (1⊗ ai)i∈I is free (over K = S−1 R).
In particular, if M is free with basis (ai)i∈I , then M(K) is free with basis
(1⊗ ai)i∈I .
(v) Let R be a left Ore domain and let M be a left R-module. The torsion
submodule of M with respect to R× is called the torsion submodule of M ,
and is denoted by T (M). If M = T (M), then M is called a torsion module.

Proof. (i): Let (ai)i∈I be a generating family of M . Any element of M(K)

has the form y =
∑

i∈I s
−1
i ri ⊗ ai where the families (si)i∈I , (ri)i∈I of S

and R, respectively, have a finite support, and xj ∈ M . Let s ∈ S be a left
multiple of the elements si (Corollary 329), i.e., s = qi si. Then

y =
∑

i∈I
s−1 qi ri ⊗ ai = s−1∑

i∈I
qi ri ai = s−1 x

where x ∈M . Let p = s−1 x and p′ = s′−1 x′ be two elements of M(K); there
exist q, q′ ∈ R× such that q s = q s′ = d ∈ S (Corollary 329), thus d p = q x,
d p′ = q x′; therefore, p = p′ if, and only if q x = q x′ and q s = q s′ ∈ S.

(ii): Since s is a unit of K, p = 0 if, and only if s p = 0 = 1−1 0; this
equality holds if, and only if there exists q ∈ R× such that q s x = 0 and
q s ∈ S; setting t = q s, we see that p = 0 if, and only if t x = 0 for some
t ∈ S.

(iii): Let M be such that for any x ∈ M there exists t ∈ S such that
t x = 0, and let •ϕ : M � M/N be the canonical epimorphism. Then
t (x)ϕ = (t x)ϕ = 0.

(iv): If (ai)i∈I is a free family of M and the above element y of M(K) is
zero, there exists t ∈ S ⊆ R× such that t x = 0, thus

∑
i∈I t qi ri ai = 0 and

t qi ri = 0 for all i ∈ I; therefore, ri = 0 for all i ∈ I and (1⊗ ai)i∈I is a free
family of M(K).

Corollary and Definition 340. 340(1) Let R be a ring, let M be a left
R-module, let S ⊆ R× be a left denominator set, let K = S−1 R and let
M(K) � K

⊗
R M ; then M/TS (M) ∼= Mτ where •τ : M → M(K) is the

canonical map.
(2) In particular, if TS (M) = 0, τ is an embedding. In that case, M is said
to be S-torsion-free, and torsion-free if R is a left Ore domain and S = R×.



130 2 Rings and Modules

Item (1) below is a consequence of Theorem and Definition 339:

Corollary and Definition 341. Let R be a left Ore domain and let M be
a left R-module.

(1) Then:
(i) if M is free, it is torsion-free;
(ii) the dimension of the left K-vector space K ⊗R M (see Definition 407
below) equals the cardinal of a maximal R-linearly independent subset of M
(Theorem 256).
(2) The above cardinal is called the rank of the module M .

To complement the above result, let us state the following, due to Gentile
([136], Prop. 4.1):

Proposition 342. Let R be a left Ore domain. Every finitely generated
torsion-free left R-module is embeddable in a finite free left R-module if, and
only if R is an Ore domain.

2.6 Local Rings

2.6.1 Definition of a Local Ring

Lemma and Definition 343. Let R �= {0} be a ring.

(1) The following conditions are equivalent:
(i) R has a unique maximal left ideal;
(ii) R has a unique maximal right ideal;
(iii) R/ radR is a division ring;
(iv) R\U (R) is an ideal.
(2) A ring R �= {0} is local if the above equivalent conditions hold. Then
the division ring R/ radR is called the residue class division ring of R (and
its residue class field if R is commutative).

Proof. (1) (i)⇒(iii) by Theorem 227(1) and (iii)⇒(i) by Corollary 242.
Therefore, (ii)⇔(iii) by symmetry. (iii)⇒(iv): By Lemma 292, any x /∈ radR
is a unit, thus R\U (R) = radR which is an ideal.

Example 344. A division ring K is a local ring (and its residue class divi-
sion ring is K).

2.6.2 Characterization of a Local Ring; Local
Homomorphism

Proposition 345. Let R �= {0} be a ring. Then R is local if, and only if
radR = R\U (R).



2.7 Skew Polynomials: Elementary Properties 131

Proof. If R is local, then radR = R\U (R), as shown in the proof of
Lemma 343(1). Conversely, if R �= {0} is a ring such that radR = R\U (R),
radR is the unique maximal left ideal of R and R is local.

Definition 346. Let o, o′ be two local rings; a ring-homomorphism f : o→ o′

is said to be local if f (rad o) ⊆ rad o′.

2.6.3 a-Adic Completion

Let R be a ring and a be an ideal in R. By Theorem 241(ii),

R/an ∼= a/an+1 ⊆ R/an+1 (n ≥ 1)

therefore,
R/a ↪→ R/a2 ↪→ ... ↪→ R/an ↪→ ... (2.27)

Let A = {an : n ≥ 1}; A is a base of a filter F which is a fundamental system
of neighborhoods of zero in a topology T such that (R, T ) is a topological
ring ([34], n◦III.6.3, Example 3).

Definition 347. The above topology T is called the a-adic topology, and a is
called a defining ideal of that topology.

A sequence (ai) of R is Cauchy in the a-adic topology if for any natural
integer n, there exists a natural integer k such that ai − aj ∈ an for i, j ≥ k.
The completion R̂ of R can be defined with respect to the a-adic topology if
the latter is Hausdorff, i.e., ⋂

n≥1

an = 0. (2.28)

Then, there exists a canonical embedding ι : R ↪→ R̂.

Remark 348. Consider the inverse system
{
Fi, ψ

j
i

}
(Definition 21) where

Fi = R/ai and ψji : Fj → Fi is the map x+aj �→ x+ai for i ≤ j (this map is
that induced by IdR with respect to aj and ai (Theorem and Definition 145)).
Assuming that (2.28) holds, R̂ = lim←−Fi.

2.7 Skew Polynomials: Elementary Properties

2.7.1 Polynomials in a Central Indeterminate

The definition of the ring R [X ] of all polynomials with indeterminate X
and coefficients in a commutative ring R is classical. The same definition
holds when R is any ring (not necessarily commutative) and X is a central
indeterminate, i.e., an indeterminate which commutes with all elements of
R: then any element f (X) of R [X ] can be uniquely written in the form
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f (X) =
∑

0≤i≤n
fiX

n−i, fi ∈ R (2.29)

where f0 �= 0 if f (X) �= 0.

Definition 349. (i) The term fnX
0 is called the constant term of f = f (X)

and it is identified with fn ∈ R. The term of degree i of f (i ∈ N) is fn−iX i.
The degree of f �= 0 is n and is denoted by d◦ (f); if f = 0, d◦ (f) � −∞.
The term f0 X

n is called the leading term of f and f0 is called the leading
coefficient of f . A polynomial whose leading coefficient is equal to 1 is said
to be monic.
(ii) Assuming that R is commutative, let L be a unitary R-algebra; an ele-
ment a ∈ L is called a root of the polynomial f (X) if f (a) = 0.
(iii) Let K be a division ring; a polynomial f (X) ∈ K [X ] (with central in-
determinate X) is said to be irreducible if it has degree ≥ 1 and it cannot be
written as a product g (X)h (X) with g, h ∈ K [X ] and both g, h /∈ K.

Remark 350. (i) A polynomial f (X) ∈ K [X ] (where K is a field) is irre-
ducible if, and only if the ideal (f) is maximal in the ring K [X ]; by Proposi-
tion 459 below, this holds true if, and only if f (X) is a prime in the principal
ideal domain K [X ].
(ii) If the ring R is a domain, so is R [X ].
(iii) The definition of a root of a polynomial can be extended in an obvi-
ous way to the case of a multivariate polynomial (see Exercise 493 for the
definition of this expression).

Let R be a commutative ring. The derivative of a polynomial

f (X) = f0 X
n + f1 X

n−1 + ... + fn ∈ R [X ] (2.30)

(f0 �= 0) is defined as

f ′ (X) = n f0 X
n−1 + (n− 1) f1 X

n−2 + ... + fn−1. (2.31)

Lemma 351. Let R be a commutative ring, f (X) ∈ R [X ] a polynomial of
positive degree and α a root of f . The following conditions are equivalent:
(i) the root α is simple;
(ii) f ′ (α) �= 0.

Proof. Let α be a root of f of order n. We have f (X) = (X − α)n g (X)
where g ∈ R [X ] is such that g (α) �= 0, thus

f ′ (X) = n (X − α)n−1 g (X) + (X − α)n g′ (X) .

Therefore, f ′ (α) = n 0n−1 g (α). If n = 1, then f ′ (α) = g (α) �= 0; if n > 1,
then f ′ (α) = 0.
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The following result is well-known and is generalized below (Theorem 358).

Theorem 352. (Hilbert’s basis theorem). Let R be a left (resp., right)
Noetherian ring. Then the polynomial ring R [X ] in the central indeter-
minate X is again left (resp., right) Noetherian.

Let K be a field. The field of fractions of K [X ], i.e., the field consisting of all
elements of the form g (X) /f (X), g (X) ∈ K [X ], f (X) = K [X ]×, is called
the field of rational functions in the indeterminate X with coefficients in K
and denoted by K (X).

Since g (X) /f (X) remains unchanged when both g (X) and f (X) are di-
vided by the leading coefficient of f (X), the denominator f (X) of a rational
function g (X) /f (X) can be assumed to be monic without loss of generality.

2.7.2 Differential Operators

Let us detail the hints given about skew polynomials in Section 2.1. Consider
a differential ring R, e.g., C [t] endowed with the usual derivative δ = d/dt,
and the ring of polynomials R [X ]. The underlying additive group of this
ring is denoted by R [X ]+. Let this group be acting on, e.g., the space of
functions E (R) (1.7.3.5) as follows:

(i) To a ∈ R, we associate the left multiplication by a, i.e., the operator
a• : f �→ a f ;

(ii) To the indeterminate X we associate the derivation ∂ : f �→ ∂f �
df/dt.

The derivation ∂ is the extension to E (R) of the derivation δ defined in R.
We have according to the Leibniz rule: ∂ (a f) = a ∂f + aδ f .

Coming back to the indeterminate X , (ii) yields (X a) f =
(
aX + aδ

)
f

and we obtain the commutation rule (2.2) which determines the left multipli-
cation of an element of R by X as a function of the right multiplication; by
induction this rule determines a ring structure for R [X ]+. The ring obtained
in this way is denoted by R [X ; δ] and is called a ring of skew polynomials.
By (2.2), the ring R [X ; δ] is noncommutative except if R is a commutative
ring of constants.

The space E (R) has now an obvious structure of R [X, δ]-module, and so
do as well the space of polynomial functions C [t], the space of distributions
D′ (R) (1.7.3.5) and the space of hyperfunctions B (R) (Sect. 1.9).

In what follows, the coefficients of R [X ; δ] are written on the left, i.e., an
element of this ring is of the form (2.29).

By (i), (ii) we associate to the skew polynomial ring R [X, δ] the ring of
linear differential operators R [∂, δ]. These two rings are isomorphic, thus
can be identified when this is useful.

If R is a ring of constants, R [∂, δ] is a ring of linear differential operators
with constant coefficients ; then, one can set δ = 0 and R [∂, 0] is written R [∂]
(note that δ = 0 does not imply ∂ = 0!).
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2.7.3 Difference Operators

The statements in Subsect. 2.7.2 can be repeated almost word-for-word in
the case of difference operators. Recall that k = R or C.

Let kZ be the k-vector space consisting of all sequences f : Z→ k. Con-
sider a difference ring R, e.g., k [t] endowed with the shift-forward operator
α : a (t) �→ a (t + 1). Let the additive group R [Y ]+ be acting on kZ as
follows:

(i) To a ∈ k we associate the left multiplication by a, i.e., the operator
a• : f �→ a f ;

(ii) To the indeterminate X we associate the shift-forward operator q :
f �→ qf where qf (t) � f (t + 1).

Let a ∈ R and f ∈ kZ; we have q (a f) = aα q f and q is the extension to kZ

of the shift α defined in R. Coming back to the indeterminate Y , (ii) yields
(Y a) f = (aα Y ) f and we obtain the ”commutation rule”

Y a = aα Y. (2.32)

This rule determines a ring structure for R [Y ]+ and the ring obtained in this
way is denoted by R [Y ;α]; it is noncommutative except if R is a commutative
ring of constants.

By (i), (ii) we associate to the skew polynomial ring R [Y ;α] the ring of
linear difference operators R [q; α]. These two rings are isomorphic, thus can
be identified.

The space kZ has an obvious structure of left R [q; α]-module, and so does
as well, e.g., the subspace k(Z) of kZ consisting of those sequences which have
a finite support.

2.7.4 General Skew Polynomials

2.7.4.1 Introduction

Let R [q;α] be a ring of difference operators and let R [Y ;α] be the associated
skew polynomial ring. Set X = Y − 1. By (2.32), Y a = aα Y , therefore
X a = aα X − a = aα X − aα + aα − a, i.e.,

X a = aα X + aδ . (2.33)

When α = 1, (2.33) reduces to the commutation rule (2.2).

2.7.4.2 Skew Polynomials

The general commutation rule (2.33) is considered in the sequel.
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Definition 353. A left skew polynomial (over a differential ring R, endowed
with an α-derivation δ) is an element written in a unique way in the form
(2.29) where an is nonzero if a (X) �= 0. Definition 349 is still valid.

A right skew polynomial and the degree of such a polynomial can be de-
fined similarly, writing the coefficients on the right of the powers of the
indeterminate.

Denote by R [X ; α, δ]l (resp., R [X ;α, δ]r) the set of all left (resp., right)
skew polynomials as defined above. Obviously, R [X ; α, δ]l and R [X ;α, δ]r
are additive groups.

Proposition 354. (i) R [X ; α, δ]l is a ring and if f, g ∈ R [X ; α, δ]l, then
d◦ (f − g) ≤ max {d◦ (f) , d◦ (g)} with equality if d◦ (f) �= d◦ (g). In addition,
R [X ;α, δ]r ⊆ R [X ; α, δ]l.
(ii) Let α be a monomorphism. (a) The degree of f ∈ R [X ;α, δ]r is the same
as that of f considered as an element of R [X ; α, δ]l. (b) If in addition R
is a domain, R [X ; α, δ]l is again a domain and for any f, g ∈ R [X ;α, δ]×l ,
d◦ (f g) = d◦ (f) + d◦ (g). (c) If R is of characteristic zero, R [X ;α, δ]l is
again of characteristic zero.
(iii) If α is an automorphism, R [X ;α, δ]r = R [X ;α, δ]l.

Proof. (i): Let f (X) be given by (2.29) and g (X) =
∑m

i=0 giX
m−i where

f0 �= 0 and g0 �= 0. By the distributivity law, the product f (X) g (X) is a sum
of products fiXn−i gj Xm−j which can expressed as elements of R [X ; α, δ]l
using (2.33). The relation d◦ (f − g) ≤ max {d◦ (f) , d◦ (g)} is obvious and
the corresponding equality as well when d◦ (f) �= d◦ (g). Using (2.33), one
can put an element of R [X ;α, δ]r in the form of an element of R [X ; α, δ]l.

(ii): (a) and (c) are clear. Let us prove (b). Let f (X) and g (X) be as
above. The leading term of f (X) g (X) is f0 g

αn+m

0 Xn+m since gαn+m

0 �= 0
(because α is a monomorphism) which implies that f0 g

αn+m

0 �= 0 (because
R is a domain).

(iii) is easy: see ([77], Sect. 0.10, Prop. 10.2).

In everything that follows, α is an automorphism of the ring R, thus
R [X ;α, δ]r is a ring which coincides with R [X ; α, δ]l; these two rings are
denoted by R [X ; α, δ].

If α = 1, R [X ; α, δ] is denoted by R [X ; δ]. If δ = 0, R [X ; α, δ] is
denoted by R [X ; α].

When considering skew polynomials associated with (usual) differential
operators, α = 1 and δ is an outer derivation except if it is zero; identifying
the indeterminate X with the derivation ∂, the ring of skew polynomials
R [X ; δ] is identified with the ring of linear differential operators R [∂; δ]
(with δ = ∂|R).

When considering skew polynomials associated with difference operators
one can proceed in two equivalent ways: (i) Associating the indeterminate Y
with the shift operator q, δ = 0 and the ring of skew polynomials R [Y ;α] is
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identified with the ring of linear difference operators R [q;α] (with α = q|R).
(ii) On changing the indeterminate Y to X = Y − 1, X is associated with
the differencing operator ∂ = q − 1 and δ is the inner α-derivation induced
by 1; the ring of skew polynomials R [X ;α, δ] is identified with R [∂;α, δ],
called the ring of linear differencing operators . The above is summarized in
the following definition:

Definition 355. Let R be a ring, α an automorphism and δ an α-derivation
of R. Consider the skew polynomial ring R [X ;α, δ] and let ∂ be the opera-
tor defined as the action of X on any R [X ; α, δ]-module. Then R [∂; α, δ] is
called a ring of linear generalized differential operators and δ = ∂|R. Con-
sider the following cases: (i) α = 1 or (ii) δ is the inner α-derivation induced
by 1.

In case (i), R [∂; 1, δ] = R [∂; δ] is a ring of linear differential operators.
In case (ii), R [∂;α, δ] is a ring of linear differencing operators and R [q;α],
where q = ∂+1, is a ring of linear difference operators; in addition, α = q|R.

When R is a field K, cases (i) and (ii) of the above definition are essentially
the only ones to be considered. Indeed:

Lemma 356. Let K be a field. If α �= 1, every α-derivation δ of K is inner;
in addition, K [X ;α, δ] is isomorphic to K [Y ; α] where Y = (aα − a)X+aδ

and a is any element of K such that a �= aα. Therefore, if δ is an outer
α-derivation of K, then α = 1.

Proof. Let Y = X a − aX and let c ∈ K. Then

Y c = X ca− aX c =
(
cα X + cδ

)
a− a

(
cα X + cδ

)
= cαY

and Y = (aα − a)X + aδ. If α �= 1, one can prove that δ is inner using the
Skolem-Noether theorem ([78], Sect. 2.1, Exercise 3).

Let R be a left Ore domain, K its division ring of left fractions, α an auto-
morphism and δ an α-derivation of R. Setting F = K (X ; α, δ) we have

R [X ; α, δ] ⊆ K [X ;α, δ] ⊆ F.

Any element u ∈ F is of the form g−1 f where f, g ∈ K [X ;α, δ], g �= 0. On
bringing the coefficients of f and g to a common left denominator (Corollary
329), we can write f = c−1 f1, g = c−1 g1 where f1, g1 ∈ R [X ;α, δ]. There-
fore, u = g−1

1 f1 which proves that F is the division ring of left fractions of
R [X ;α, δ]. In addition,

R [X ;α, δ] ⊆ F.

The following is now a consequence of Theorem 336:

Theorem 357. Let R be a left Ore domain, α an automorphism and δ an
α-derivation of R, and let K be the division ring of left fractions of R. The
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skew polynomial ring R [X ;α, δ] is again a left Ore domain and the set of
nonzero elements forms a left denominator set of this ring. The division ring
of left fractions of R [X ;α, δ] is K (X ;α, δ). If R is of characteristic zero,
then R [X ;α, δ] is again of characteristic zero.

2.7.4.3 Extension of Hilbert’s Basis Theorem

Theorem 358. Let R be a left (resp., right) Noetherian ring, α an auto-
morphism and δ an α-derivation of R. Then the skew polynomial ring
A = R [X ; α, δ] is again left (resp., right) Noetherian.

Proof. Assume that R is right Noetherian and consider A as a left skew
polynomial ring. If A is not right Noetherian there exists a right ideal a in
A which is not f.g. by Lemma 311. Let f1 ∈ a be a skew polynomial of least
degree; given f1, ..., fk ∈ a we take fk+1 in a\ (f1, ..., fk)r of least degree.
Since a in A is not f.g. we obtain an infinite sequence f1, f2, ... Let ni and ai
be the degree and the leading coefficient of fi, respectively; then ni ≤ ni+1.
We claim that a1 R � a1 R+a2 R � ... is an infinite chain, which contradicts
the fact that R is right Noetherian. Indeed, assume that the above chain
is not infinite; then there exists k ≥ 1 such that ak+1 R ⊆ a1 R + ...+akR
and there exist elements bj ∈ R (1 ≤ j ≤ k) such that ak+1 =

∑
1≤j≤k aj bj .

Therefore,

g = fk+1 −
∑

1≤j≤k fj b
α−nj

j Xnk+1−nj ∈ a\ (f1, ..., fk)r

and d◦ (g) < d◦ (fk+1), a contradiction.

When R = k [t], the ring R [∂; δ] ∼= k [t] [X ; δ] = k [t] [X ; 1, δ] (δ = d/dt) is
called the first Weyl algebra over k, denoted by A1 (k); when R = k (t), the
ring R [∂; δ] ∼= k (t) [X ; δ] = k (t) [X ; 1, δ] (δ = d/dt) is denoted by B1 (k).
By Proposition 354(ii) and Theorem 358 we have the following.

Corollary 359. The rings A1 (k) and B1 (k) are Noetherian domains.

2.7.4.4 Transpose (or adjoint) of a Generalized Linear
Differential Operator

(I) Consider a q× p matrix P , the entries of which belong to a ring of partial
differential operators A = K [∂1, ..., ∂n; δ1, ..., δn] where K is both a com-
mutative k-algebra and a differential ring, such as in Exercise 493, where
αk = 1, ∂k the usual derivative with respect to the kth variable (1 ≤ k ≤ n)
and δk = ∂k |K . Let Ω be an open subset of Rn and let T (Ω) be a space
of test functions in Ω. Assume that these test functions are C∞ and that
T (Ω) is a Hausdorff LCS. Let T ′ (Ω) be the dual of T (Ω).
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Assume P• is a weakly* continuous linear map pT ′ (Ω) → qT ′ (Ω). The
transpose tP• of P• is the weakly continuous linear map qT (Ω) →pT (Ω)
defined by

〈ψ, P T 〉 =
〈
tP ψ, T

〉
(2.34)

for all T ∈ pT ′ (Ω), ψ ∈ qT (Ω) (1.7.2.3). In (2.34) all maps are right ones
(1.2.1.1). As in Subsect. 2.2.5, this equality becomes simpler when denoting
the transpose of (P•) by the left map (•P ). Then, indeed, (2.34) becomes

〈ψ, P T 〉 = 〈ψP, T 〉 (2.35)

for all T ∈ pT ′ (Ω), ψ ∈ T (Ω)q. Recall that t (tP ) = P .
(II) A similar rationale makes sense with spaces of multi-indexed sequences

s and s′ in duality with respect to the duality bracket

〈s, s′〉 =
∑

m∈Zn

s (m) s′ (m) .

(III) To treat the general case, one must change the above ring of
differential operators A to the ring of generalized differential operators
K
[
(∂k;αk, δk)1≤k≤n

]
(Exercise 493). Assuming that αk is an automorphism

of K with inverse βk, the commutation rule

∂ka = aαk∂k + aδk (2.36)

yields
a (−∂k) = (−∂k) aβk + aβkδk . (2.37)

Lemma and Definition 360. (1) The adjoint map is ad : (P•) �→ (•P ).
(2) The differential operator (tP•) = (•P ) is called transpose, or, by abuse
of language, the adjoint of the linear differential operator (P•) and is also
denoted by (P ∗•) = ad (P•).
(3) The adjoint map ad : (P•) �→ (P ∗•) is determined by the following con-
ditions:
(i) ad (P ) = QT where Qij = ad (Pij);
(ii) for any L,M ∈ A, ad (LM) = ad (M) ad (L).
(iii) for any a ∈ K, ad (a) = a;
(iv) ad (∂k) = −∂k (1 ≤ k ≤ n);
(v) ad (αk) = βk (thus ad (βk) = αk) (1 ≤ k ≤ n).
(vi) ad (δk) = βkδk (1 ≤ k ≤ n).

Proof. (3) is an obvious consequence of (1).

Remark 361. Consider a ring of difference operators K
[
(qk; αk)1≤k≤n

]
.

The commutation rule reduces to

qk a = aαk qk,
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therefore Item (iv) of Lemma and Definition 360(3) must be changed to
(iv’) ad (qk) = qk (1 ≤ k ≤ n),
whereas (v) must be left unchanged and (vi) must be removed.

2.7.5 Simplicity of Some Skew Polynomial Rings

Let R be a ring, α an endomorphism and δ an α-derivation of R. A subset
S of R is said to be α-invariant (resp., δ-invariant) if aα ∈ S (resp., aδ ∈ S)
for any a ∈ S. We study below the simplicity of a skew polynomial ring
in the case of an outer derivation (for the case of an inner derivation, see
Subsect. 2.8.3).

Theorem 362. Let R be a ring and let A = R [X, δ]. (i) If A is simple,
then R has no proper nonzero δ-invariant ideal and δ is an outer derivation
of R. (ii) If R is a Q-algebra, the converse holds.

Proof. (i): Consider the inner α-derivation δ induced by m, i.e., δ : a �→
aαm −ma; then for any a ∈ R, X a = aα X + aδ = aα (X + m)−ma and

Y a = aα Y where Y = X + m. (2.38)

Here, α = 1, thus A ∼= R [Y ] is not simple. If R has a proper nonzero
δ-invariant ideal a, then A a = aA � A is an ideal in A and this ring is not
simple.
(ii): Suppose the necessary condition holds and that 0 �= a � A. Let an be
the set of leading coefficients of all left polynomials belonging to a and whose
degree is ≤ n; {an : n ∈ N} is called the set of leading ideals of a. Obviously,
an � R is δ-invariant. Choose the least n with an �= 0; by assumption,
an = R, thus 1 ∈ an. If n = 0, then a = A as required. If n > 0, there exists
a monic left polynomial

f = Xn + an−1 X
n−1 + ... + a0 ∈ a.

For any a ∈ R,

f a− a f =
(
an−1 a− a an−1 − n aδ

)
Xn−1 + ...

and n is a unit since R is a Q-algebra (so that any element of R can be
multiplied by 1/n). The minimality of n shows that

an−1 a − a an−1 − n aδ = 0

thus
δ : a �→ (an−1 a− a an−1) /n

is an inner derivation of R, a contradiction. Therefore, a = A and A is
simple.



140 2 Rings and Modules

The following corollary is obvious:

Corollary 363. Let R be a simple ring (e.g., a division ring) and let A =
R [X, δ].

(i) If A is simple, then δ is an outer derivation of R.
(ii) If R is a Q-algebra, the converse holds.

Corollary 364. The rings A1 (k) and B1 (k) are simple.

Proof. Let R = k [t] or k (t). Since δ = d/dt is an outer derivation of R,
it remains to prove that R has no proper nonzero δ-invariant ideal. This is
obvious when R = k (t) which is a field. Consider the case R = k [t] and
assume that there exists a nonzero proper ideal a � R which is δ-invariant.
Let f ∈ a× with leading term f0 t

n, f0 ∈ k. We have fδn

= n! f0. Therefore,
n! f0 ∈ a and since n! f0 is a unit of R, a = R, a contradiction.

Let R = k {t} be the ring of convergent power series in the variable t with
coefficients in k (2.9.1.1). Then R [X, δ] is denoted by A1c (k). The proof
of the following is left to the reader:

Corollary 365. The ring A1c (k) = R [X, δ] is (like A1 (k) and B1 (k)) a
simple Noetherian domain.

See complements in Theorem 734.

2.8 Skew Laurent Polynomials, and Rational Functions

2.8.1 Skew Laurent Polynomials

Let R be a ring, α an automorphism and δ an α-derivation of R (Subsect.
2.3.3). Consider the skew polynomial ring R [X ;α, δ] (2.7.4.2). The monoid
S = {Xn : n ≥ 0} is a left and right Ore set since for any r ∈ R and s ∈ S,
0 r = 0 s = 0 and r 0 = s 0 = 0; moreover, S is a left and right denominator
set since all elements of S are regular. Therefore, one can form the ring
of fractions S−1R = RS−1, called the ring of skew Laurent polynomials
denoted by R

[
X,X−1;α, δ

]
(and by R

[
X,X−1; δ

]
if α = 1).

Similarly, if δ is inner, induced by m ∈ R, i.e., aδ = aαm−ma, the monoid
T = {Y n : n ≥ 0} where Y = X + m is a left and right denominator set by
(2.38), and one can form the ring of skew Laurent polynomials T−1R [Y ;α]
denoted by R

[
Y, Y −1;α

]
.

The theorem below is obtained by the same rationale as Theorem 357:

Theorem 366. Let R be a left Ore domain, α an automorphism and δ an
α-derivation of R, and let K be the division ring of left fractions of R. The
ring of skew Laurent polynomials R

[
X,X−1; α, δ

]
is again a left Ore domain

and the set of nonzero elements forms a left denominator set of this ring. The
division ring of left fractions of R

[
X,X−1;α, δ

]
is K (X ; α, δ). If R is of

characteristic zero, then R
[
X,X−1; α, δ

]
is again of characteristic zero.
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2.8.2 Division Ring of Skew Rational Functions

(i) Let K be a division ring, α an automorphism and δ an α-derivation of
K. By Theorem 358, K [X ;α, δ] is a Noetherian domain, thus it is an Ore
domain by Theorem 337. Its quotient division ring is denoted by K (X ;α, δ)
and is called the division ring of rational functions (generated by K and the
indeterminate X).

2.8.3 Simplicity of Some Skew Laurent Polynomial
Rings

The proof of the following result is similar to that of Theorem 362; see ([247],
1.8.5) for the details.

Theorem 367. Let R be a ring, α an automorphism of R and T =
R
[
X,X−1; α

]
. Then T is simple if, and only if R has no nonzero proper α-

invariant ideal (Subsect. 2.7.5) and no power of α is an inner automorphism
of R.

Corollary 368. Let R be a simple ring (e.g., a division ring), α an auto-
morphism of R and T = R

[
X,X−1; α

]
. Then T is simple if, and only if

no power of α is an inner automorphism of R.

Example 369. Let R ⊆M (k) and let α be the usual shift. By Lemma 289,
αN is inner if, and only if R is N -periodic. Therefore:

(i) the ring A′1 (k) � k [t]
[
X,X−1;α

]
is simple;

(ii) the ring R
[
X,X−1; α

]
, where R = PMN (k) (Subsect. 2.3.2), is not

simple.

2.8.4 Crossed Products

2.8.4.1 The General Case

The general notion of crossed product is defined as follows ([247], 1.5.8):

Definition 370. Let T be a ring, let S be a subring of T and let G be a
group; let Ḡ = {ϕ (g) ; g ∈ G} be a set of units of T such that ϕ : G → Ḡ is
a bijection and

(i) T is a free right S-module with basis Ḡ;
(ii) for all g1, g2 ∈ G, ḡ1 S = S ḡ1 and ḡ1 ḡ2 S = g1 g2 S.
Then T is called a crossed product of S by G, and is denoted by S ∗G.

For all g ∈ G, ḡ S = S ḡ, thus each ḡ normalizes S (Definition 68) and induces
an endomorphism σg of S, such that s ḡ = ḡ σg (s).
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Lemma 371. The endomorphism σg is a group-automorphism.

Proof. Assuming that σg (s1) = σg (s2), we have s1 ḡ = s2 ḡ, thus s1 = s2

by right-multiplying this equality by ḡ−1; this proves that σg is a monomor-
phism. In addition, for any s ∈ S, s = σg (s1) where s1 = ḡ s ḡ−1, thus σg is
an epimorphism.

Theorem 372. Let S be a left (resp., right) Noetherian domain of charac-
teristic zero and G a polycyclic by finite group (Definition 161). Then S ∗G
is a semiprime left (resp., right) Noetherian ring, and a left (resp., right)
Noetherian domain if G is polycyclic.

Proof. Since S is left (resp., right) Noetherian and G polycyclic by finite,
S ∗G is left (resp., right) Noetherian by ([247], 1.5.12). Consider the normal
chain (1.28) where Gi/Gi+1 is infinite cyclic (thus isomorphic to Z) for i ∈
{1, ..., r − 1}, and infinite cyclic (resp., either infinite cyclic or finite) if G is
polycyclic (resp., polycyclic by finite).

(a) The ring S ∗ Z is isomorphic to a skew Laurent polynomial ring
S
[
X,X−1; σ

]
where σ is an automorphism of S ([247], Proposition 1.5.11),

thus it is an integral domain of characteristic zero by Theorem 366.
(b) For i ∈ {1, ..., r − 1}, S ∗ Gi ∼= (S ∗Gi+1) ∗ Z is an integral domain

of characteristic zero by induction. This is still true for i ∈ {0, ..., r − 1} if
G0/G1 is infinite cyclic, i.e., if G is polycyclic.

(c) If G0/G1 is finite, then S∗G = S∗G0
∼= (S ∗G1)∗(G0/G1) is semiprime

by ([247], Proposition 10.5.11).

Let M be a left T-module, consider the left S-module M[S] obtained by
restriction of the ring of scalars and consider the left S-module

M[S] ∗G � T
⊗

S M[S] =
∑
g∈G ḡ M[S].

(Lemma and Definition 285).

Theorem 373. The functor C = (•)[S] ∗ G : TMod→ SMod is faithful
exact.

Proof. The functor F can be decomposed as

TMod
ρ∗−→ SMod

T
⊗

S
−

−→ SMod.

where ρ∗ : TMod
ρ∗−→ SMod is the restriction of the ring of scalars. This

functor is faithful exact (see Subsect. 3.4.2 below) and so is the functor
T
⊗

S− too since T is a free, thus faithfully flat, S-module (3.5.3.3).

Corollary 374. (i) Of the sequences below, the first is exact in TMod if,
and only if so is the second in SMod:
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N
f−→M

g−→ Q, F (N)
F(f)−→ F (M)

F(f)−→ F (M) .

(ii) If (ai)i∈I is a generating (resp., free) family of a left T-module M , then
(ḡ ai)(g,i)∈G×I is a generating (resp., free) family of the left S-module F (M).
(iii) If (Mi)1≤i≤n is a finite family of left T-modules and M =

⊕
1≤i≤nMi,

then F (M) =
⊕

1≤i≤n F (Mi).
(iv) A left T-module M is free if, and only if so is the left S-module F (M).
In addition, F (M) is finite free if, and only if M is finite free and G is finite.

Proof. (i): If the first sequence is exact, so is the second by exactness of the
functor F. Conversely, if the first sequence is inexact, so is the second one
since F if faithful (Proposition 49).

(ii): Consider an element x =
∑
g∈G ḡ xg of M[S] ∗ G (where all elements

of this sum are zero except a finite number of them). Assume that (ai)i∈I is
generating in M ; since xg ∈M , there exists for each g ∈ G a family (λgi)i∈I
of elements of T, with finite support, such that xg =

∑
i λgi ai. Each λgi can

be expressed as
∑

g′ μgig′ ḡ
′, where

(
μgig′
)
g′∈G is a family of elements of S

with finite support, therefore

x =
∑

g,i,g′ ḡ μgig′ ḡ
′ ai =

∑
g,i,g′ σg

(
μgig′
)
g g′ ai, (2.39)

and g g′ = g′′ ∈ G, therefore
(
g′′ ai
)
(g′′,i)∈G×I is generating in M[S] ∗G.

If (ai)i∈I is free in M and the expression (2.39) is zero, we have∑
g,i,g′ σg

(
μgig′
)
g g′ = 0 for all i ∈ I, thus μgig′ = 0 for all (g, i, g′) ∈

G×I×G and – with the above notation –
(
g′′ ai
)
(g′′,i)∈G×I is free in M[S]∗G.

See also [27], §II.1, Prop. 25.
(iii) is a straightforward consequence of Theorem 373 (see Definition 28).
(iv) Consider the two sequences below:

0 −→ T(I) −→M −→ 0, 0 −→ F
(
T(I)
)
−→ F (M) −→ 0.

By (i), the first sequence is exact (i.e., M ∼= T(I)) if, and only if so is the
second (i.e., F (M) ∼= F

(
T(I)
)
), and by (ii) F

(
T(I)
) ∼= S(G×I).

In the sequel, the group G is finite with order N , i.e., G =
{
1, g, ..., gN−1

}
;

then T is called a finite normalizing extension of S.

2.8.4.2 Periodic Skew Laurent Polynomials

Our aim is now to study T = R
[
X,X−1; α

]
when there exists a natural

integer N such that αN is an inner automorphism of R. Then for any
r ∈ R, rαN

= u−1 r u for some unit u of R.
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Proposition 375. Let α be as above. Then T = R
[
X,X−1;α

]
is a crossed

product S ∗ G where S = R
[
Y, Y −1

]
, the Laurent polynomial ring in the

central indeterminate Y = uXN , and G is cyclic of order N .

Proof. For any r ∈ R, Y r = uXNr = u rαN

XN = u u−1 r uXN = r Y ,
thus the indeterminate Y is central. Let G be a cyclic group of order n
and let g be a generator of G; then G =

{
1, g, ..., gN−1

}
. Set ϕ

(
gi
)

= X i;
then Ḡ is a set of units of T which is a free left and right S-module with
basis Ḡ.

Let f (X) =
∑

0≤i≤N−1 fj (Y ) Xj ∈ T, let eN (X) be the column with ith
entry X i−1 (1 ≤ i ≤ N) and write

f (X) =
[
f0 (Y ) f1 (Y ) . . . fN−1 (Y )

]
eN (X) (2.40)

where (fi (Y ))0≤i≤N−1 ∈ SN . Since X is a unit of T and XN = u−1Y , (2.40)
is equivalent to

X f (X) =
[
u−1Y fα

N−1 (Y ) fα
0 (Y ) . . . fα

N−2 (Y )
]
eN (X) .

This equality can be again left-multiplied by X , etc., and by induction, it is
easily shown that (2.40) is equivalent to

eN (X)⊗ f (X) = f̃ (Y ) eN (X) (2.41)

where ⊗ is the Kronecker (or tensor) product, i.e., eN (X) ⊗ f (X) is the
column with ith entry X i−1f (X) (1 ≤ i ≤ N) and where f̃ (Y ) ∈ MatN (S)
is given by

f̃ (Y ) =

⎡

⎢
⎢⎢
⎢
⎢
⎣

f0 f1 · · · fN−2 fN−1

u−1Y fα
N−1 fα

0 · · · fα
N−3 fα

N−2

. . . . . . . . .
u−1Y fαN−2

2 u−1Y fαN−2

3 fαN−2

0 fαN−2

1

u−1Y fαN−1

1 u−1Y fαN−1

2 · · · u−1Y fαN−1

N−1 fαN−1

0

⎤

⎥
⎥⎥
⎥
⎥
⎦
.

By inspection we see that

f̃ (Y )α PN (Y ) = PN (Y ) f̃ (Y ) (2.42)

where P (Y ) =
[

0 IN−1

u−1Y 0

]
. Conversely, let f̃ (Y ) ∈ MatN (S) be a ma-

trix satisfying (2.42), let
[
f0 · · · fN−1

]
be its first row and let f (X) =

∑
0≤i≤N−1 fj (Y ) Xj. Then, the entries of the jth row of f̃ (Y ) are the com-

ponents of Xj f (X) in the basis
(
X i
)
0≤i≤N−1

.
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Let MT be the subring of MatN (S) consisting of all matrices satisfying
(2.42).

Proposition 376. The map τ : T →MT defined by τ (f (X)) = f̃ (Y ) is a
ring-isomorphism.

Proof. From the above, τ : T→MT is surjective; in addition, it is obviously
Z-linear and injective. Let f, g ∈ T; we have

eN (X)⊗ f (X) g (X) = f̃ (Y ) eN (X) g (X) = f̃ (Y ) g̃ (Y ) eN (X) ,

therefore τ (f g)=τ (f) τ (g) which proves that τ is a ring-homomorphism.

The S-module C (M) = M[S] ∗ G is generated by the entries of the column
eN (X)⊗ x, x ∈M[S]. Consider a T-linear relation x �→ f (X)x in M ; then
we have

eN (X)⊗ f (X)x = f̃ (Y ) eN (X)⊗ x.

This is expressed in the following proposition:

Proposition 377. The diagram below is commutative.

M
f(X)•−→ M

eN ⊗ • ↓ ↓ eN ⊗ •
M[S] ∗G

f̃(Y )•−→ M[S] ∗G

where eN = eN (X).

Note also the following.

Corollary 378. (i) Assuming that R is a commutative integral domain, so
is again S; for any skew Laurent polynomial 0 �= f (X) ∈ T, the S-module
spanned by the entries of eN (X)⊗f (X) is of rank N , thus the rank of f̃ (Y )
over S is equal to N , and

det
(
f̃ (Y )

)
�= 0

(see Theorem 400 in Subsect. 2.11.1 below).
(ii) By Proposition 376,

f (X) = (X − a1) ... (X − an) implies f̃ (X) = ˜(X − a1)... ˜(X − an).

(iii) Consider the polynomial f (X) = X − a ∈ T. Assuming that R is
commutative,
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f̃ (Y ) =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−a 1 0 · · · 0

0 −aα . . . . . .
...

...
. . . . . . . . . 0

0
. . . . . . 1

Y 0 · · · 0 −aαN−1

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

, thus

det
(
f̃ (Y )

)
= Y −

∏

0≤i≤N−1

aαi

.

Theorem 379. Assume that R is a commutative domain, let M ∈ TMod
and let M̃ = C (M) (where C : TMod→ SMod is the functor in Theorem
373). Then, M is torsion if, and only if M̃ is torsion.

Proof. Let M ∈ TMod be a nonzero torsion module. Thus every nonzero
element m of M is torsion over T, and there exists 0 �= f (X) ∈ T such that
f (X)m = 0. Then, C ([m]T) = [m̃]S where m̃ = eN (X) ⊗m is such that
f̃ (Y ) m̃ = 0. Let F be the field of fractions of the commutative domain S. By
Corollary 378, f̃ (Y ) is invertible over F, therefore F

⊗
S [m̃]S = 0, and [m̃]S

is torsion by Theorem and Definition 339(ii). Since M̃ = C (M) is generated
by the entries of the elements m̃ (m ∈M) , we have M̃ =

∑
m∈M [m̃]S ;

theferore,
F
⊗

S M̃ =
∑
m∈M F

⊗
S [m̃]S = 0

and M̃ is torsion.
Conversely, if m is not torsion, i.e. if m is free, then [m]T is free (with

basis {m}), and so is [m̃]S by Corollary 374(ii). Therefore, if M ∈ TMod is
not torsion, neither is M̃ = C (M).

2.9 Rings of Power Series

2.9.1 Formal Power Series

2.9.1.1 The Commutative Case

Let R be a ring and consider the ring of polynomials R [X ]. The ideal
a = (X) in R [X ] is two-sided and condition (2.28) holds. The completion of
R [X ] with respect to the (X)-adic topology is the ring R [[X ]] of all formal
power series in the central indeterminate X with coefficients in R; an element
of this ring is of the form

a =
∑

i≥0

aiX
i, ai ∈ R (2.43)

without condition of convergence, i.e.,
∑

i≥0 aiX
i is nothing but a notation

for the sequence (ai)i∈N
. The set of all these formal power series is denoted
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by R [[X ]]. This set has an obvious structure of abelian group additively
noted. If b =

∑
i≥0 biX

i, the product c = a b is defined as c =
∑
i≥0 ciX

i

where ci =
∑

j+k=i

aj bk. Then, R [[X ]] is endowed with a ring structure.

When R = k (k = R or C) one can also define the subring k {X} of k [[X ]]
consisting of all convergent power series, i.e., of those power series which have
a positive convergence radius. Specifically, an element a (X) ∈ k [[X ]] belongs
to k {X} if there exists ρ > 0 such that a (x) converges for all x ∈ k such
that |x| < ρ (and the convergence radius of a (X) is inf ρ among those ρ for
which this property holds).

2.9.1.2 Skew Power Series

Let R be a ring, α an automorphism and δ be an α-derivation of R. One
can consider the skew polynomial ring R [X ; α, δ]l (2.7.4.2), but its (X)-
completion cannot be defined if δ �= 0 since, due to the commutation rule
(2.33), the left ideal (X)l and the right ideal (X)r in R [X ; α, δ]l do not
coincide (in the case δ = 0, see [80], Sect. 7.3). However, setting Z = X−1,
(2.33) yields (left and right multiplying this equality by Z)

aZ = Z aα + Z aδ Z. (2.44)

Therefore,

aZ = Z aα + Z2 aα δ + Z2 aδ2
Z = Z aα + Z2 aα δ + Z3 aα δ2

+ Z3 aδ3
Z

and by induction we obtain

aZ =
∑

i≥1

Zi aα δi−1
; (2.45)

in addition, for any n ≥ 0,

aZn =
∑

i≥n
Zi aγi , aγn = aαn

. (2.46)

Consider the abelian group R [[Z; α, δ]]+ consisting of all elements of the
form

a (Z) =
∑

i≥0

ai Z
i. (2.47)

Using (2.45), two elements of R [[Z; α, δ]]+ can be multiplied and the result
belongs to R [[Z; α, δ]]+; in addition, the above element a (Z) can be put into
the form

a (Z) =
∑

i≥0

Zi a′i (2.48)
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where a′0 = a0, a′1 = aα
1 , etc. Therefore, R [[Z; α, δ]]+ is endowed with a

ring structure. This ring, denoted by R
[[
X−1; α, δ

]]
, is called the ring of

formal skew power series in the indeterminate X−1.
Consider the element a = a (Z) defined by (2.47) (with the coefficients on

the left of the powers of the indeterminate Z = X−1) and, assuming that
a �= 0, let

ω (a) = inf {i ∈ N : ai �= 0} .

Consider now a = a (Z) in the form (2.48) (with the coefficients on the
right of the powers of the indeterminate). By (2.46), the coefficient of lowest
degree is a′n = aαn

n . Conversely, if a′n is the coefficient of lowest degree of a
defined by (2.48), the coefficient of lowest degree of a in the form (2.47) is
an = a′α

−n

n . Therefore, we also have

ω (a) = inf {i ∈ N : a′i �= 0} .

Definition 380. If a �= 0, the order of this formal power series is ω (a),
whereas ω (0) � +∞. The constant term of a is a0.

From the above,

ω (a+ b) ≥ inf {ω (a) , ω (b)} with equality if ω (a) �= ω (b) ,
ω (a b) ≥ ω (a) + ω (b) with equality if R is a domain.

Theorem 381. (i) The ring S = R
[[
X−1; α, δ

]]
is Hausdorff and complete

in the
(
X−1
)
-adic topology.

(ii) The units in S are the formal power series whose constant term is a unit
in R.
(iii) If R is a domain, so is S.
(iv) If R is left (resp., right) Noetherian, then S is again left (resp., right)
Noetherian.

Proof. (i): The topological ring S is obviously Hausdorff. Let (an) be a
Cauchy sequence in S, i.e., given a power Zk there exists N ∈ N such that
for all n,m ≥ N , an − am ∈

(
Zk
)
. Let

∑
0≤i≤k−1 bi Z

i be a representative
of an and am in S/

(
Zk
)
. Obviously, (an) converges to

∑
i≥0 bi Z

i in the
(Z)-adic topology, thus S is complete.

(ii): Consider a given by (2.47). If a0 is a unit in R, then a can be written
in the form a0 (1− Y ), the inverse of which is

∑
i≥0 Y

i a−1
0 ∈ S, thus a is a

unit of S. Conversely, if a is a unit of S with inverse b, the constant terms
a0 and b0 of a and b are such that a0 b0 = 1, thus a0 is a unit.

(iii): Let a, b ∈ S×, with the coefficients written on the right and with term
of lowest degree Zn an and Zm bm respectively. By (2.46), the term of lowest
degree of a b (with the coefficients written on the right) is Zn+m aαm

n bm �= 0,
thus S is a domain.
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The proof of (iv) is the quite similar to that of Theorem 358: one has
only to replace everywhere in that proof the polynomials of lowest degree by
the power series of highest order (for more details when α = 1 and δ = 0,
see [206], Theorem 9.4; the proof of that theorem is easily adapted to the
general case).

Remark 382. The power series rings k [[X ]] and k {X} are local Noetherian
domains, and even local principal ideal domains (see Subsect. 2.13.5). In-
deed, let S be any of these rings; any nonzero element of S is of the form
Xn υ where υ is a unit, thus every nonzero ideal in S is of the form (Xn)
which is a principal ideal, thus S is a principal ideal domain. In addition,
(X) is the only maximal ideal in S, thus this ring is local.

Theorem 383. Let o be a local ring, α an automorphism and δ an α-
derivation of o; then the ring S = o

[[
X−1; α, δ

]]
is local, the canonical

injection o ↪→ S is a local homomorphism and the corresponding injection of
the residue class division rings is an isomorphism. The maximal ideal in S
is (m, a) where m is the maximal ideal in o and a =

(
X−1
)
.

Proof. This is an easy generalization of ([31], n◦II.3.1, Example 2.

Corollary 384. Let K be a division ring, α an automorphism and δ an α-
derivation of K; then S = K

[[
X−1;α, δ

]]
is a local Noetherian domain with

residue class division ring K. All ideals in S are two-sided and of the form
(X−n) and every element of S is of the form υ X−n = X−n υ′ where υ, υ′

are units.

2.9.2 Formal Skew Laurent Series

Let R be a ring, α an automorphism and δ an α-derivation of R; consider
the ring of formal skew power series S = R

[[
X−1; α, δ

]]
(2.9.1.2). As

easily seen, the monoid D = {X−n;n ≥ 1} is a left and right denominator
set (Subsect. 2.8.1). Therefore, the rings of fractions D−1 S and SD−1 exist
an coincide by Theorem 332(viii). This ring is denoted by R

((
X−1;α, δ

))

and is called the ring of formal skew Laurent series in the indeterminate
X−1.

Any element of R
((
X−1;α, δ

))
is of the form

a =
∑

i≥ν
ai Z

i

where Z = X−1 and aν �= 0 if a �= 0. The order ω (a) of a is defined as in
Subsect. 2.9.1 for a formal power series (except that ω (a) ∈ Z∪ {−∞}) and
has the same properties.
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Theorem 385. (i) If R is left (resp., right) Noetherian, then L =
R
((
X−1;α, δ

))
is again left (resp., right) Noetherian.

(ii) If R is a domain, L is again a domain.
(iii) Let A = R [X ;α, δ] and B = R

[
X,X−1;α, δ

]
(Subsect. 2.8.1); there

exist embeddings A ↪→ B ↪→ L. If R is a Noetherian domain, all these rings
are again Noetherian domains.
(iv) If R is a division ring, then L is the division ring of fractions Q (S) of
S.
(v) Let A = R [X ;α, δ]. If R is an Ore domain with division ring of fractions
K, let Q = K (X ;α, δ) , S = R

[[
X−1;α, δ

]]
, Ŝ = K

[[
X−1;α, δ

]]
and

L̂ = K
((
X−1; α, δ

))
; there exist embeddings A ↪→ Q ↪→ L̂ and S ↪→ Ŝ ↪→ L̂.

Proof. (i), (ii): Assume that R is left Noetherian (resp., is a domain); then
so is L by Theorem 332(iv)&(ix) and Theorem 381.

(iii) is clear from Subsect. 2.8.1; indeed, A is the additive subgroup of B
consisting of those Laurent polynomials, all terms of which only contain non-
negative powers of X . The additive group monomorphism A ↪→ B is also a
ring monomorphism. In addition, the embedding B ↪→ L is obvious.

(iv): If R is a division ring and S � a �= 0, one can write a = aν Z
ν (1− b)

where ω (b) > 0, thus a is invertible over L with inverse
∑

j≥0 b
j Z−ν a−1

ν .
(v): We know that A can be embedded in its division ring of fractions

Q = Q (A) = K (X ;α, δ) (Theorem 357). Consider a left fraction

f (X) = D−1 (X)N (X) ∈K (X ;α, δ)

where

D (X) = Xn +
∑n

i=1 X
i di = Xn

(
1− E

(
X−1
))

,

E
(
X−1
)

= −
∑n
i=1 X

−i di.

The polynomial N (X) is embedded in L̂ in an obvious way, and so is also

D−1 (X) =
(∑

0≤i≤∞ E
(
X−1
)i)

X−n.

The rest is clear.

2.10 Some Linear Groups

2.10.1 Linear Algebraic Groups

2.10.1.1 Linear Groups

A matrix group over a ring R is a subgroup of the general linear group
GLn (R) (Example 71). A linear group is a group that is isomorphic to a
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matrix group. In the sequel, the terms linear group and matrix group are
considered synonymous.

Let us give some examples: if R is commutative, the special linear group
SLn (R) (Example 144) is a linear group over R. The affine group A (n,R),
the special Euclidean group SE (n,R), the orthogonal group O (n,R) and the
special orthogonal group SO (n,R) are real linear groups (Exercise 210).

2.10.1.2 Algebraic Sets, Varieties, and Linear Algebraic Groups

When speaking about linear algebraic group, some elementary facts of Alge-
braic Geometry cannot be completely avoided. We begin with the traditional
presentation. Let K be an algebraically closed field (see Definition 703(i) be-
low). In the present context, the space Kn is called the affine n-space over
K and is denoted by An

K, or An when K is understood. Let S be a subset

of R = K [X ]
(
X = (Xi)1≤i≤n

)
and let a be the ideal in R generated by S.

By a zero of S in An we mean a common root in An of all P ∈ S (Remark
350(iii)). Let ZS be the set of all these zeros; as easily seen, ZS = Za. The
following is taken from ([156], Chap. I.):

Definition 386. (i) The set Za ⊆ An is called an affine algebraic set (or an
algebraic set, for short).
(ii) We define the Zariski topology on An taking the open subsets to be the
complements of the algebraic sets. (The reader may check that this is indeed
a topology, which is not Hausdorff.)
(iii) An (affine) algebraic variety V is an irreducible Zariski-closed set in An

endowed with the induced topology. (A nonempty subset Y of a topological
space X is irreducible if it cannot be expressed as the union of two proper
closed subsets of X.)
(iv) Let f = g/h ∈ K (X) and let U be an open subset of an algebraic variety
V ⊆ An. If h (x) �= 0 for all x ∈ U , then the function f : U → K is called
regular on U .
(v) Let V,W be two algebraic varieties and let ϕ : V → W be continuous
(for the Zariski topology); ϕ is called a morphism of varieties if for every
open subset U ⊆ W and every regular function f : W → K, the function
f ◦ ϕ : ϕ−1 (U)→ K is regular.

The following is useful for the sequel:

Theorem and Definition 387. Let R be a commutative ring.

(i) Let a be an ideal in R. The radical of a, denoted by
√

a, is the set of all
x ∈ R such that xn ∈ a for some natural integer n.
(ii)
√

a is the intersection of all prime ideals in R containing a (Definition
298), thus is an ideal in R. In particular, N (R) =

√
0 (the intersection of

all prime ideals in R) is an ideal, called the nilradical of R, and consisting of
all nilpotent elements of R (i.e., of those elements x for which there exists a
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natural integer m such that xm = 0); N (R) is a proper ideal, for 1 /∈ N (R).
The ring R is called reduced if N (R) = {0}.
(iii) An ideal a in R is called a radical ideal if a =

√
a. By (ii), a prime

ideal is a radical ideal.
(iv) Let K be an algebraically closed field and R = K [X1, ..., Xn].
(a) Let a be an ideal in R and f ∈ R a polynomial vanishing at all points
of Za. Then fm ∈ a for some integer m > 0 (Hilbert’s Nullstellensatz).
(b)
√

a coincides with the intersection of all maximal ideals in R containing
a. (c) In particular, the Jacobson ideal radR (Theorem and Definition 293)
coincides with N (R).

Proof. (i): See ([79], p. 353). (ii): The intersection of all prime ideals in R
is the nilradical of R by ([79], Prop. 10.2.9). (iv): (a) is proved in ([206],
Chap. IX, Theorem 1.5). (b) is proved in ([198], (5.4)) and (c) is an obvious
consequence of (b) and (ii).

Remark 388. Let R be a reduced ring. Then the total ring of fractions of
R (Remark 325(iv)) is again reduced.

For any subset Y ⊆ An, define the ideal I (Y ) of Y in R = K [X ](
X = (Xi)1≤i≤n

)
according to

I (Y ) = {P ∈ K [X ] : P (x) = 0 for all x ∈ Y } .

Recall that the field K is algebraically closed.

Corollary and Definition 389. (1) There exists a bijective antitone (for
inclusion) Galois connection between the algebraic sets in An and the radical
ideals in R, given by

Y �→ I (Y ) , a �→ Za.

Furthermore, an algebraic set is irreducible (i.e., is an affine algebraic vari-
ety) if, and only if its ideal is a prime ideal.
(2) If a is any ideal in R, then I (Za) =

√
a.

(3) Let Y be an algebraic set. The ring R (Y ) � R/I (Y ) is called the (affine)
coordinate ring of Y . Consider the polynomial functions P : An → K : x �→
P (x) (P (X) ∈K [X ]) and their restrictions P |Y ; identify two such restric-
tions if they agree at all points x ∈ Y . The set of functions obtained in this
way is a ring isomorphic to R (Y ). The ring R (Y ) is reduced.
(4) If Y is an algebraic variety, then R (Y ) is an integral domain.

Proof. (1): See ([156], Sect. I.1, Corol. 1.4).
(2) is a reformulation of the Nullstellensatz.
(3) is easy ([105], Sect. 1.6).
(4) is a consequence of Proposition 303.



2.10 Some Linear Groups 153

Let G be an algebraic set over an algebraically closed field K. It is an
affine algebraic group (or simply an algebraic group) if it is endowed with a
group structure. Not all algebraic groups are linear group ([187], Sect. VI.1).
Nevertheless, all algebraic groups are linear groups in the sequel, thus are
linear algebraic groups. A morphism of linear algebraic groups is a morphism
of algebraic varieties which is a morphism of groups. This completely defines
the category of linear algebraic groups.

2.10.1.3 Functorial Approach

Some hints must be given about the generalization of the above notions in
the context of modern Algebraic Geometry [150]. Let R be a commutative
ring and let I be a set of indices; for any commutative R-algebra A, consider
the space AI (A) � AI . Define the covariant functor AI with object map
A �→ AI (A) and arrow map ϕ �→ ϕI where ϕ : A → A′ is any R-linear
homomorphism and ϕI is the map A � a �→ ϕI (a) ∈ A′I ; this functor AI is
called the affine space of dimension card (I) over R.

Let S be a subset of R [X ]
(
X = (Xi)i∈I

)
and let a be the ideal in R [X ]

generated by S. For any commutative R-algebra A , there exists a homomor-
phism ρ of commutative rings R → A and to each P ∈ S there corresponds
a polynomial PA, the coefficients of which are the images under ρ of the co-
efficients of P . Let SA be the set of all PA (P ∈ S). By a zero of S in AI we
now mean a common root in AI of all PA ∈ SA. Let ZS (A) be the set of all
these zeros; again, ZS (A) = Za (A). The functor Za from the category of
all commutative rings to the category of sets is a subfunctor of AI (1.2.3.1),
called an algebraic set over R in AI .

Likewise, let (Pβ)β∈B be a family of elements of R
[
(Xij)1≤i≤n,1≤j≤n

]
.

Given a commutative R-algebra A, let G (A) be the subset of Matn (A) con-
sisting of all matrices M = (mij) such that Pβ

(
(mij)1≤i≤n,1≤j≤n

)
= 0 for

all β ∈ B. If for any R-algebra A, G (A) is a subgroup of the general linear
group GLn (A), the family (Pβ)β∈B is said to define the linear algebraic group
G over R ([327], Chap. I, Def. 4), ([206], Chap. XIII, Exercise 30).

If G is an algebraic group over k, then G (k) is closed in GLn (k) endowed
with the topology induced by the canonical topology of Matn (k), thus it is a
Lie group by Cartan’s theorem (1.8.1.2). More general, let G be an algebraic
group over a commutative ring R and let A be the set of all R-algebras A.
Let (H (A))A∈A be a family such that each H (A) is a subgroup of G (A).
Then H is an algebraic subgroup of G (written H ≤ G) if for all A ∈ A, H (A)
is Zariski-closed in G (A) (and in that case, H is said to be Zariski-closed in
G). Let H ≤ G; H is said to be normal in G (written H � G) if for all A ∈ A,
H (A) � G (A).



154 2 Rings and Modules

2.10.1.4 The Linear Group Dn (R)

Let R be a ring. The set of all diagonal matrices of the form D (u) =
diag (1, 1, ..., 1, u) where u is a unit of R is a subgroup Dn (R) of
GLn (R) since D (u)D (v) = D (u v), and

Dn (R) ∼= U (R) .

As easily shown, the linear group Dn (R) is not a normal subgroup of
GLn (R).

2.10.2 Elementary Matrices

Let n > 1 and let Eij ∈ GLn (R) be the matrix defined for i �= j as follows: all
entries of Eij are zero except the (i, j) entry which is equal to 1. In addition,
for any λ ∈ R, let Bij (λ) = In + λEij . As easily shown,

Bij (λ)Bij (μ) = Bij (λ+ μ) , B−1
ij (λ) = Bij (−λ) (2.49)

Definition 390. The above matrix Bij (λ) is called an elementary matrix.
The multiplicative group generated by all elementary matrices belonging to
GLn (R) is denoted by En (R) and is called the group of elementary matrices
of order n.

Obviously, En (R) ≤ GLn (R), and moreover En (R) ≤ SLn (R) if R is com-
mutative.

2.10.3 Elementary Operations

(i) The right multiplication of A ∈ mRp by an elementary matrix Bij (λ) ∈
Ep (R) corresponds to the operation of replacing the jth column Aj of A by
Aj + Ai λ (first kind of elementary operations on the columns).

(ii) The right multiplication of A by diag (1, ..., 1, u, 1, ...1) where the unit
u occurs at the ith place corresponds to the operation of right-multiplying
the column Ai by u (second kind of elementary operations on the columns).

(iii) The right multiplication of A by a permutation matrix corresponds
to the operation of interchanging two columns (third kind of elementary
operations on the columns).

Three kinds of elementary operations on the rows are likewise defined
(changing right to left everywhere).

Remark 391. Elementary operations of kind (i), but not those of kind (ii)
or (iii), correspond to multiplications by elementary matrices. Elementary
operations of kind (iii) are combinations of elementary operations of kind (i)
and of elementary operations of kind (ii).
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2.10.4 Reduction of a Matrix to an Equivalent
Diagonal Form

Let K be a division ring and A ∈ mKp. The following proposition is proved
by induction ([27], §II.10, Prop. 14):

Theorem and Definition 392. (i) There exist matrices P ∈ Em (K) and
Q ∈ Ep (K) such that

P AQ−1 = diag (1, ..., 1, δr, 0, ...0) , δr �= 0

and r ∈ N is determined by A.
(ii) The above integer r is the rank of A, written r = rk (A).

2.10.5 Structure of GLn (K) and of En (K)

For n = 1, we set E1 (K) = D (K×), i.e., the derived group of the multiplica-
tive group K× (Definition 166).

Proposition 393. Let n be any positive integer and K be a division ring.
The following properties hold:

(i) GLn (K) = Dn (K) En (K) = En (K) Dn (K);
(ii) if K is commutative, SLn (K) = En (K);
(iii) En (K) � GLn (K) and GLn (K) /En (K) is abelian.

Proof. The case n = 1 is trivial, thus assume n > 1.
(i) is a straightforward consequence of Theorem and Definition 392 and

(ii) is readily obtained from (i).
(iii): The first statement is proved if we show that for every Bij (λ) ∈

En (K) and every P ∈ GLn (K), P−1Bij (λ)P ∈ En (K). By Proposition
393(i), it is sufficient to prove this property for every P ∈ Dn (K), i.e., of the
form D (u). This is easy and left to the reader.

By (i), the second statement is proved if we show that D (u)D (v) ≡
D (v)D (u) (mod En (K)), i.e., using a finite number of operations of the
first kind on the rows and the columns, D (u)D (v) can be transformed into
D (v)D (u). It is sufficient to consider the case n = 2. As easily seen,
diag (u, v) ≡ diag (1, v u) (mod E2 (K)) and diag (1, u v) = D (u) D (v).

Remark 394. (a) Proposition 393(i) means that for any n ≥ 1, any matrix
Q ∈ GLn (K) can be written as a finite product E of matrices belonging to
En (K) left- or right-multiplied by a matrix D (u) ∈ Dn (K).
(b) Statements (i) and (ii) of Proposition 393 are still valid when K is an
Euclidean domain (see Remark 660 below).
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Lemma 395. Let n > 1 and let Bij (λ) ∈ En (K), λ �= 0; there exists a
matrix P ∈ GLn (K) such that

P Bij (λ) P−1 = B21 (1) . (2.50)

Proof. Consider the automorphism u of Kn defined as follows: let x ∈ Kn,
x = (x1, ..., xn). In the canonical basis of Kn, x is represented by the row
x =
[
x1 ... xn

]
and u is the map x �→ xBij (λ) . Consider the new basis

of Kn defined as follows: in this basis, x is represented by the row y =[
y1 ... yn

]
where y1 = xj + xi λ, y2 = xi and for k ∈ {3, ..., n}, yk = xl,

l ∈ {1, ..., n} \ {i, j} where the map k �→ l is isotone. In this basis, u is the
map

y �→ y B21 (1) . (2.51)

This yields (2.50) where P ∈ GLn (K) is the change of basis matrix (Subsect.
2.2.6).

Lemma 396. For any n ≥ 1, D (GLn (K)) = En (K) if K �= Z/2Z.

Proof. See, e.g., ([80], Prop. 9.2.4).

2.11 Determinants

2.11.1 Commutative Case

Let R be a commutative ring. All facts below are classical ([27], §III.8),
([206], Sect. XIII.4) and are stated without proof. Recall that AT denotes
the classical transpose of the matrix A (Definition 271).

2.11.1.1 Definition of a Determinant

Lemma and Definition 397. (i) There exists a unique monoid-
homomorphism det : (Matn (R) ,×) → (R,×) such that Matn (R) �
A �→ det (A) is an n-linear alternating form with respect to the columns of
the matrix A.
(ii) The map Matn (R) � A �→ det (A) is an n-linear alternating form with
respect to the rows of A, and det (A) = det

(
AT
)
.

(iii) The map det is the determinant.
(iv) The following equalities hold, setting A = (aij):

det (A) =
∑

σ∈Sn

sgn (σ)
∏

1≤i≤n
aσ(i),i =

∑

σ∈Sn

sgn (σ)
∏

1≤i≤n
ai,σ(i).
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2.11.1.2 Expansions

Let H,K be subsets of I � {1, ..., n} having the same cardinal p. Then AH,K
denotes the submatrix of A obtained by deleting those rows and columns
whose indices do not belong to H and K, respectively; det (AH,K) is called
the minor with set of indices H,K of the matrix A and card (H) = card (K)
is called the order of this minor.

For any subset K of I, let K ′ � I\K and let ρK,K′ � (−1)ν where ν is the
number of pairs (k, k′) ∈ K ×K ′ such that k > k′. In addition, let H ⊆ I,
let p = card (H) and let Fp (I) be the set of all subsets of I with p elements.
The determinant of A can be calculated using the Laplace expansion:

det (A) =
∑

R∈Fp(I)

ρH,H′ ρR,R′ det (AR,H) det (AR′,H′ ) . (2.52)

With H = {j}, we have p = 1; AR,H is an entry aij of A, AR′,H′ is the minor
mij of order n− 1 obtained by deleting the row of index i and the column of
index j, and ρH,H′ ρR,R′ = (−1)i+j . Let

αij � (−1)i+j mij ,

called the cofactor of aij ; since det (A) = det
(
AT
)
, (2.52) yields

det (A) =
∑

1≤i≤n
aij αij =

∑

1≤j≤n
aij αij

(expansion of det (A) according to the jth column, then according to the ith
row). Let α be the matrix with entries αij . Its classical transpose αT is
called the classical adjoint or the adjugate of A ([225], Sect. IX.2) and

αT A = AαT = det (A) . (2.53)

2.11.1.3 Cramer’s Rule

Theorem 398. Let A1, ..., An, B and x =
[
x1 ... xn

]T be elements of nR
such that

Ax = B (2.54)

where A is the matrix with columns Aj (1 ≤ j ≤ n). For each i we have

det (A) xi = det (A1, ..., Ai−1, B,Ai+1, ..., An) (2.55)

and the system of n equalities (2.55) (1 ≤ i ≤ n) is equivalent to (2.54) if
det (A) is a regular element of R (”Cramer’s rule”).
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2.11.1.4 Linear Independence and Invertibility

The definition below is valid when R is a noncommutative ring:

Definition 399. The rows Ai• (1 ≤ i ≤ n) of a matrix A ∈ Matn (R) are
said to be left R-linearly independent if

∑

1≤i≤n
riAi• = 0 (ri ∈ R) implies that ri = 0 for all i.

The columns Aj (1 ≤ j ≤ n) of A are said to be right R-linearly independent
if ∑

1≤j≤n
Aj rj = 0 (rj ∈ R) implies that rj = 0 for all j.

In the following theorem, the ring R is commutative.

Theorem 400. Let A ∈Matn (R).

(1) The following properties are equivalent:
(i) the rows of A are left R-linearly independent;
(ii) the columns of A are right R-linearly independent;
(iii) A is regular (in the monoid Matn (R));
(iv) det (A) is a regular element of R.
(2) The following properties are equivalent:
(i’) A is left-invertible in Matn (R);
(ii’) A is right-invertible in Matn (R);
(iii’) A ∈ GLn (R), i.e., A is invertible;
(iv’) det (A) is a unit of R.

2.11.1.5 Determinant of a Composed Matrix

Proposition 401. Let

A =
[
X Y
Z T

]

where X and T are square.
(i) If Z = 0 or Y = 0, then

det (A) = det (X) det (T ) .

(ii) If X is invertible, then

det (A) = det (X) det
(
T − Z X−1 Y

)
. (2.56)

2.11.2 Noncommutative Case

One cannot properly define the determinant of a square matrix over a non-
commutative ring. The definition the determinant of a square matrix over a
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noncommutative division ring K is due to Dieudonné [91]. It is the solution
of an universal problem:

2.11.2.1 Definition of the Dieudonné Determinant

Recall that K× = K\ {0} is a multiplicative group and that for any group G,
Gab denotes the abelianization of G× (Definition 170), i.e., Gab = G/D (G) .

Lemma and Definition 402. (1) There exists a unique group-
homomorphism Δn : GLn (K) → K×ab which is universal for homo-
morphisms into abelian groups (Definition 12). Moreover, if K �= Z/2Z,
GLn (K)ab ∼= Dn (K)ab ∼= K×ab.
(2) Let K̄ � K×ab0 = K×ab ∪ {0}. The Dieudonné determinant of a matrix
A ∈ Matn (K), denoted by det (A), is the element of K̄ defined as follows: if
A ∈ GLn (K), det (A) = Δn (K); if A /∈ GLn (K) (i.e., if A is singular, or
equivalently non-regular), det (A) = 0.

Proof. (1). (a) If K = Z/2Z, K is commutative and this case has already
been treated.

(b) Let us assume that K �= Z/2Z. Since K× ∼= Dn (K) under the iso-
morphism

u ˜�→ diag (1, ..., 1, u) , u ∈ K×,

D (ū) = diag (1, ..., 1, ū) is the canonical image of D (u) = diag (1, ..., 1, u)
in Dn (K)ab, and K×ab ∼= Dn (K)ab. By Proposition 393(i), for any matrix
A ∈ GLn (K), there exist a matrix D (u) ∈ Dn (K) and a matrix E ∈ En (K)
such that A = D (u) E. Therefore, denoting by A and D (u) the classes
(mod En (K)) of A and D (u) respectively, A = D (u). In addition, by Lemma
396,

GLn (K)ab = GLn (K) /En (K) , (2.57)

thus D (u) = D (ū) and the group-homomorphism we are looking for is

Δn : GLn (K) � A �→ ū ∈ K×ab.

This is an epimorphism since Δn (diag (1, ..., 1, u)) = ū. Therefore, ac-
cording to Theorem 168(ii) there exists a unique group-epimorphism Δ̄n :
GLn (K)ab → K×ab such that Δn = Δ̄n ◦ π where

π : GLn (K) � GLn (K)ab

is the canonical epimorphism. By Proposition 393 and Noether’s second
isomorphism theorem (Theorem 146(2)),

GLn (K)ab = Dn (K) En (K) /En (K) ∼= Dn (K) / (Dn (K) ∩ En (K)) ,

Dn (K) / (Dn (K) ∩ En (K)) = Dn (K)ab .
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Therefore, Δ̄n is the isomorphism

GLn (K)ab � A = D (u) = D (ū) �→ ū ∈ K×ab
(
u ∈ K×

)
.

(c) Let Γ be an abelian group (multiplicatively noted) and let
f : GLn (K) → Γ be a group-homomorphism. By Theorem 168(ii)
there exists a unique homomorphism f̄ : GLn (K)ab → Γ such that f = f̄ ◦π.
Since GLn (K)ab ∼= K×ab, the group-homomorphism Δn : GLn (K) → K×ab

is universal for homomorphisms into abelian groups. The universality of Δn

proves its uniqueness.

2.11.2.2 Properties of the Dieudonné Determinant

In what follows, the canonical image of any element a ∈ K× in K×ab is
denoted by ā; the canonical image 0̄ of 0 ∈ K in K̄ is identified with 0,
thus 0 ā = ā 0 = 0. When the division ring K is a field, K̄ = K, thus the
Dieudonné determinant and the usual determinant coincide.

Theorem 403. Let A ∈Matn (K) where K is a division ring.

(i) det (AB) = det (A) det (B) .
(ii) If K �= Z/2Z,2 then for any integer n ≥ 1 the sequence

1 −→ En (K) −→ GLn (K) det−→ K×ab −→ 1 (2.58)

is exact. In particular, the determinant is unchanged by elementary row or
column operations of the first kind.
(iii) If the row Ai• is changed to λAi•, det (A) is multiplied by λ̄.
(iv) If two rows Ai• and Aj• (i �= j) are interchanged, det (A) is multiplied
by −1.
(v) The statement of Proposition 401 is still valid.
(vi) Statement (iii) is valid if columns are considered in place of rows, pro-
vided that the multiplications by the elements of K or K̄ are done on the
right.
(vii) The statement of Theorem 400 is still valid (with R changed to K and
noticing that the regular elements, the units and the nonzero elements of K
coincide).

Proof. (i) is a consequence of the definition.
(ii): By Lemma and Definition 402(1), GLn (K)ab ∼= K×ab, thus the exact-

ness of the sequence (2.58) is a consequence of (2.57).
(iii): Let A = D (u) E, E ∈ En (K); changing the row Ai• to λAi•, one

obtains a matrix A′ which can be put into the form D (λ u) E′, E′ ∈ En (K).
(iv): See Remark 391.

2 This assumption can be removed ([80], Theorem 9.2.6).
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(v): Obviously, det (X ⊕ I) = det (X), therefore by (i),

det (X ⊕ T ) = det ((X ⊕ I) (I ⊕ T )) = det (X) det (T ) .

Let

A =
[
X Y
0 T

]
or A =

[
X 0
Z T

]
.

If X and Y are regular, A ≡ X ⊕ T (modEn (K)), thus det (A) =
det (X) det (T ); this is still true if X or T is singular since then so is A.
Last, if X is invertible,

[
I 0

−Z X−1 I

] [
X Y
Z T

]
=
[
X Y
0 T − Z X−1 Y

]

and one obtains (2.56).
(vi) is a straightforward consequence of Proposition 393(i).
(vii): (1) If the rows of A are left R-linearly dependent, there exists

a relation
∑

1≤i≤n λiAi• = 0 (λi ∈ K) and at least one coefficient λi is
nonzero, say λ1 �= 0; then A1• +

∑
2≤i≤n μiAi• = 0 where μi = λ−1

1 λi.
Since det (A) is unchanged when A1• is changed to A1• +μi Ai• (2 ≤ i ≤ n),
det (A) = det (A′) where A′ is a matrix whose first row is zero, thus
det (A) = 0 and A /∈ GLn (K). Conversely, if the rows of A are left
R-linearly independent, rkA = n (Theorem and Definition 392) and
A ∈ GLn (K). A similar rationale can be done for the columns. (2) If
A,B ∈ Matn (K) are such that AB = In, then det (A) det (B) = 1, thus
det (A) �= 0 and det (B) �= 0, therefore A and B belong to GLn (K).

2.11.2.3 Cramer’s Rule

Let A1, ..., An, B and x be as in Theorem 398 but where R is a division ring
K, and consider equation (2.54). According to this equation, the matrix

A′ = (A1, ..., Ai−1, B,Ai+1, ..., An)

is obtained by right-multiplying the column Ai by xi and then adding to this
column all columns of the form Aj xj (1 ≤ j ≤ n, j �= i). By Theorem 403,

det (A) x̄i = det (A1, ..., Ai−1, B,Ai+1, ..., An) (2.59)

which is identical to Cramer’s rule (2.55) when K is commutative. When K
is noncommutative, (2.59) gives those indices i for which xi = 0 and, for the
other indices, the class x̄i of xi in Kab.
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2.11.2.4 Specificity of the Dieudonné Determinant

The map Matn (K) � A �→ det (A) ∈ K̄ is not n-linear with respect to the
rows nor of the columns of the matrix A if the division ring K is noncommu-
tative. This is due to the fact that K̄ is not endowed with an addition +
such that (i)

(
K̄,+
)

is an abelian group and (ii) the distributivity property
holds true ([6], Sect. IV.1). In addition, det (A) is a rational function–not a
polynomial function–of the entries of A: see Exercise 480.

2.11.3 Invariant Basis Number

Let R be a ring and let •f : M → N be a module-isomorphism where M and
N are left free modules such that M ∼= Rn, N ∼= Rm; assume that n ≥ m,
without loss of generality since if m ≥ n we replace f by f−1. Let (εi)1≤i≤n
be a basis of M and (ωj)1≤j≤m be a basis of N (Lemma 254). Let A ∈
nRm be the matrix of f in those bases. Considering the equation y = xf ,
let Y be the row representing y in the basis (ωj)1≤j≤m, and let X be the
row representing x in the basis (εi)1≤i≤n. The ”matrix form” of the above
equation is

Y = X A.

which is equivalent to [
Y 0
]

= X Ã (2.60)

where Ã =
[
A 0
]
∈Matm (R) has n−m zero columns. Since f is a monomor-

phism, given any Y ∈ Rm, (2.60) uniquely determines X ∈ Rn. Let us as-
sume that the ring R is commutative or that it is a division ring. According
to Theorems 400 & 403(vii), det

(
Ã
)
�= 0, but this is impossible if n �= m.

Definition 404. A ring R is said to have invariant basis number (IBN) if
Rn is not isomorphic to Rm when n �= m.

We have obtained the following.

Theorem 405. A commutative ring and a division ring have IBN.

Remark 406. (i) Let R be a ring (not necessarily commutative) and M a
free module with infinite basis B. One can prove that for any basis B′ of M ,
card (B′) = card (B) ([27], §II.1, Corol. 2 of Prop. 23).
(ii) There exist noncommutative rings which do not have IBN ([79], Sect.
4.6, Exercise 2; [111]).

Definition 407. Let R be a ring having IBN, let M be a free R-module and
let B be a basis of M .

(i) card (B) is called the rank of the free module M (written rkR (M), or
rk (M) when there is no confusion).
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(ii) Let K be a division ring, let V and W be left K-vector spaces and let
f : V → W be a K-linear map. The rank of f , denoted by rk (f), is the
dimension of im f .

Let f be as in Definition 407(ii); as a consequence of Theorem 257, we have
the classical identity

rk (f) + dim (ker f) = dim (V ) . (2.61)

In addition, choosing bases in V and W , let A be the matrix representing f
in these bases; then rk (f) = rk (A), as is well-known (see, e.g., [141], Sect.
19.8, Theorem 14).

Item (1) below is a consequence of Theorem 339(iii) and Remark 406(i):

Theorem and Definition 408. Let R be a left Ore domain and let K be
its division ring of left fractions.

(1) Then R has IBN and for any free left R-module M , rk (M) =
dim
(
M(K)

)
.

(2) More generally, let M be a left R-module. Then dim
(
M(K)

)
is called the

rank of M (over R) and is denoted by rkR (M), or by rk (M) when there is
no confusion.

2.12 Rank of a Matrix

2.12.1 Outer Rank

Let R be an Ore domain and let A ∈ nRm. Embedding R into K = Q (R),
A can be viewed as an element of nKm. The rank of this matrix (i.e., the
rank of A over K) is called the outer rank (or the rank, for short) of A, and
is denoted by rk (A).

Theorem 409. (i) rk (A) is the dimension of the left K-vector space gener-
ated by the rows of A.
(ii) rk (A) is the dimension of the right K-vector space generated by the
columns of A.
(iii) rk (A) is equal to the maximum of the orders of the invertible submatri-
ces of A.
(iv) rk (A) is equal to the maximum of the orders of the square submatrices
with R-linearly independent rows (or columns).
(v) The following property, called Sylvester’s law of nullity, holds: if A ∈
mRn and B ∈ nRp are such that AB = 0, then n ≥ rk (A) + rk (B) .
(vi) For any A ∈ mRn, B ∈ nRp,

rk (A) + rk (B)− n ≤ rk (AB) ≤ min {rk (A) , rk (B)}

and the left inequality is still called Sylvester’s law of nullity.
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Proof. (i)-(iii) and (v), (vi) are classical: see ([141], Subsect. 19.9) and
Exercise 482. (iv) is a consequence of (iii) and of Proposition 341(ii).

2.12.2 Inner Rank

2.12.2.1 Semifirs

There exists a class of rings, larger than that of division rings, for which an
identity similar to (2.61) holds.

Lemma and Definition 410. Let R be a nonzero ring and n ≥ 1.

(1) The following conditions are equivalent:
(i) every n-generated (i.e., generated by at most n elements) left ideal in R
is free, as left R-module, of unique rank;
(ii) every n-generated submodule of a free left R-module is free and Rn has
unique rank;
(iii) every n-generated right ideal in R is free, as right R-module, of unique
rank.
(iv) every n-generated submodule of a free right R-module is free and nR has
unique rank;
(v) for any matrix A ∈ qRk (q ≤ n), there exists an invertible matrix U such

that U A =
[
T
0

]
where the rows of T are left R-linearly independent.

(2) The ring R is called an n-fir if the above equivalent conditions are satis-
fied.
(3) A ring which is an n-fir for all n ≥ 1 is called a semifir.

Proof. (1). See ([77], Sect. 1.1, Theorem 1.1) and ([80], Sect. 8.7,
Theorem 8.7.1).

Note that an n-fir is an n′-fir for all n′ ≤ n; a 1-fir is just a domain. A ring R
is a semifir if, and only if R has IBN and every finitely generated left ideal is
free (equivalently, every finitely generated right ideal is free). A division ring
is a semifir, thus the following result, which is a consequence of Theorem 257
and of Lemma and Definition 410(1)(ii), generalizes (2.61) (see Proposition
413(3) below):

Proposition 411. Let R be a semifir, let M be a finite free left R-module,
let N be a free left R-module and let f : M → N be an R-linear map. Then

rk (im f) + rk (ker f) = rk (M) .

Assuming that N is finite free, let A ∈ nRm be the matrix representing f in
bases of M and N . As easily seen, rk (im f) is equal to the rank of the free
left R-module generated by the rows of A, thus it is called the row-rank of
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A and is denoted by ρr (A). Similarly, rk (tf) is equal to the rank of the free
right R-module generated by the columns of A, thus it is called the column-
rank of A and is denoted by ρc (A). However, ρr (A) and ρc (A) are unrelated
over an arbitrary semifir.

2.12.2.2 Inner Rank

The following notion is left-right symmetric and valid over an arbitrary ring:

Definition 412. Let R be a ring and A ∈ nRm.

(i) The inner rank of A, written ρ (A), is the least integer r such that

A = BC where B ∈ nRr and C ∈ rRm (2.62)

(and ρ (0) = 0).
(ii) Any factorization such as (2.62) where r = ρ (A) is called a minimal
factorization of A.

The following properties of the inner rank are easily proved:

Proposition 413. Let R be a ring and let A ∈ nRm.

(1) The following inequalities hold:
(i)

ρ (A) ≤ min {n,m} , ρ (A⊕B) ≤ ρ (A) + ρ (B) ,
ρ (AB) ≤ min {ρ (A) , ρ (B)} .

(ii) if A′ and A′′ have the same number of rows,

ρ
([
A′ A′′

])
≥ max {ρ (A′) , ρ (A′′)} .

(2) If R is a semifir, then

ρ (A) ≤ min {ρr (A) , ρc (A)} .

(3) If R is an Ore domain, then

rk (A) ≤ ρ (A)

with equality if R is a division ring.

See Theorem 418 and Corollary 442 below.

Definition 414. (i) Let R be a ring; a matrix A ∈ nRm is left- (resp., right-)
full if ρ (A) = n (resp., ρ (A) = m); a matrix A ∈Matn (R) is said to be full
if ρ (A) = n.
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(ii) A ring R is said to be rank-stable if the set of full matrices over R is
closed under products (when defined) and diagonal sums.

Theorem 415. Let R be a rank-stable ring. Then the following properties
hold:

(i) R is a domain;
(ii) ρ (In) = n and R has IBN;
(iii) the inner rank of a matrix over R is the maximum of the orders of its
full submatrices.

Proof. (i) Let 0 �= a, b ∈ R. Then a and b are full, thus so is a b, hence
a b �= 0.

(ii) Since In = 1 ⊕ ... ⊕ 1 (n terms) and ρ (1) = 1, ρ (In) = n. Let •f :
Rn−̃→Rm be represented by the matrix A in the canonical bases and •g =
f−1 be represented by the matrix B in the same bases. Then f◦g = IdRn and
g◦f = IdRm are represented by In and Im, respectively. Therefore, AB = In
and BA = Im; by the first equality, n = ρ (AB) ≤ min {ρ (A) , ρ (B)} ≤
min {n,m} (Proposition 413(1)), thus n ≤ m; by the second equality, m ≤ n,
thus n = m.

(iii) is proved by induction in [89] (this statement is consistent with that
of Theorem 409(iii) when R is a division ring).

2.12.2.3 Sylvester Domains

Definition 416. A ring R is called a Sylvester domain if Sylvester’s law of
nullity holds for the inner rank, i.e., whenever two matrices A ∈ mRn and
B ∈ nRp are such that AB = 0, then n ≥ ρ (A) + ρ (B).

Proposition 417. (i) Sylvester’s law of nullity is equivalent to the following:
for any A ∈ mRn and B ∈ nRp,

ρ (A) + ρ (B)− n ≤ ρ (AB) .

(ii) A Sylvester domain is a rank-stable ring.
(iii) A semifir is a Sylvester domain.

Proof. (i) Assuming that Sylvester’s law of nullity holds in the form given
in Definition 416, let AB = P Q be a minimal factorization, so that Q has
ρ (AB) rows and

[
A P
]
[
B
−Q

]
= 0.

Therefore, n + ρ (AB) ≥ ρ
([
A P
])

+ ρ

([
B
−Q

])
≥ ρ (A) + ρ (B). The

converse is obvious.
(ii) Let R be a Sylvester domain and A,B ∈ Matn (R) be full matrices.

Then ρ (AB) = n by by (i) and Proposition 413(1), therefore the set of full
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matrices over R is closed under products when defined. Let A ∈ Matn (R)
and B ∈ Matm (R); by suitably partitioning a minimal factorization of A⊕B
we have [

A 0
0 B

]
=
[
P
P ′

] [
Q Q′

]

where the number of columns of P is ρ (A⊕B). Since P Q′ = 0, we have
by Sylvester’s law of nullity ρ (A⊕B) ≥ ρ (P ) + ρ (Q′) ≥ ρ (P Q) + ρ (P ′Q′)
(Proposition 413(1)) and P Q = A, P ′Q′ = B, thus ρ (A⊕B) ≥ ρ (A) +
ρ (B) ≥ ρ (A ⊕B) (Proposition 413(1)).

(iii) is proved in ([77], Sect. 5.5, Prop. 5.1).

Theorem 418. Let R be an Ore domain. The following properties are
equivalent:

(i) R is a Sylvester domain;
(ii) every full matrix is left-regular;
(iii) the outer rank and the inner rank of a matrix over R coincide.
In statement (ii), left can be changed to right.

Proof. (i)⇒(ii): Let A ∈ Matn (R) be a full matrix (i.e., ρ (A) = n) and
assume that A is not left-regular, i.e., there exists a nonzero matrix X ∈
Matn (R) such that X A = 0. Then ρ (A) + ρ (X) > n and R is not a
Sylvester domain.

(ii)⇒(iii): Let us assume that every full matrix is left-regular. Let A ∈
Matn (R) be full; then it is left-regular over R and it remains left-regular
over K = Q(R), thus invertible over K (Theorem 403(vii)). Conversely,
if A ∈ Matn (R) is invertible over K, then rk (A) = n and A is full by
Proposition 413(3). Since the set of all invertible matrices over K is closed
under products (when defined) and diagonal sums, R is a rank-stable ring.
Therefore, for any matrix B ∈nRp, ρ (B) is the maximum of the orders of
the full submatrices of B. This number is rk (B) by Theorem 409(iii).

(iii)⇒(i) is an obvious consequence of Theorem 409(iv).

2.12.3 Invertibility, Primeness, and Fullness

Let R be a ring.

Definition 419. A matrix A ∈mRn is left-prime if in any equation A =
P Q, where P is square, P necessarily has a right inverse. A right-prime
matrix is defined correspondingly. A square matrix A ∈ Matn (R) is prime
if it is both left- and right-prime.

Proposition 420. (i) For a matrix A ∈ mRn, we have the implication

right-invertible⇒ left-prime

which is an equivalence for A ∈Matn (R).
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(ii) If R is weakly finite (Exercise 481(2)) we have for a matrix A ∈ mRn

the implication
left-prime⇒ left-full.

(iii) If R is a Sylvester domain, we have for a matrix A ∈ mRn the implica-
tion

left-full⇒ left-regular.

(iv) If R is a division ring, we have for a matrix A ∈ mRn the implication

left-regular⇒ right-invertible.

The above still holds true with ”left” and ”right” interchanged.

Proof. (i) If there exists B ∈nRm such that AB = Im and A = P Q, where
P ∈ Matm (R), then P (QB) = Im and P is right-invertible, which proves
the implication of (i). If A ∈ Matn (R) is left-prime, we have the equation
A = P Q with Q = In, thus P = A is right-invertible.

(ii) Assuming that R is weakly finite, if A ∈mRn is not left-full, we can
write A = P1 Q1, P1 ∈ mRr, Q1 ∈ rRn, r < m. Then A can be written in
the form P Q where P =

[
P1 0
]

is square and has m− r zero columns, thus
P is not invertible and not right-invertible (Exercise 481(2)). Hence A is not
left-prime.

(iii) Assuming that R is a Sylvester domain and that A ∈mRn is not left-
regular, let C ∈pRm be a nonzero matrix such that C A = 0. By Sylvester’s
law of nullity (Definition 416), m ≥ ρ (C) + ρ (A) with ρ (C) > 0, thus
ρ (A) < m and A is not left-full, which proves (iii).

(iv) is an easy consequence of Theorem and Definition 392.

Note that Sylvester domains are very special rings (see Theorem 634 and
Exercise 697 below).

2.13 Specific Rings

2.13.1 GCD Domains

2.13.1.1 The Commutative Case

Definition 421. A commutative domain R is called a GCD domain if the
monoid (R×,×) is a GCD cancellation monoid (Definition 133).

Note that (R×,×) is an invariant cancellation monoid. A commutative do-
main R is a GCD domain if, and only if the following equivalent conditions
are satisfied (Remark 132(b) and Definition 133):

(i) Any pair of nonzero elements has a gcd.
(ii) Any pair of nonzero elements has an lcm.
(iii) The set of all principal ideals in R is a lattice.
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Let c ∈ R× and let L ((c) ,R) be the set of all principal ideals containing
(c). If (iii) holds, L ((c) ,R) is a lattice, included in the lattice Lat (R) of
all submodules of the R-module RR which is modular (Theorem 244), thus
L ((c) ,R) is a modular lattice too. Therefore, (iii) is equivalent to

(iv) For any c ∈ R×, L ((c) ,R) is a modular lattice.

Example 422. The Hardy space H∞, widely used in robustness theory, was
proved to be both a GCD domain [334] and a Sylvester domain [288].

2.13.1.2 The Noncommutative Case

In the noncommutative case, the above is generalized as follows:

Definition 423. A domain R is a left (resp., right) GCD domain if for any
c ∈ R× the set L (R c,R) (resp., L (cR,R)) of all principal left (resp., right)
ideals in R containing R c (resp., cR) is a modular lattice for the inclusion.
A GCD domain is a left GCD domain which is a right GCD domain.

The following result is proved in Subsect. 3.2.4 below (see Corollary 521):

Lemma and Definition 424. Let R be a ring and let a, b be regular
elements of R.

(1) The following conditions are equivalent:
(i) R/aR ∼= R/bR;
(ii) R/R a ∼= R/R b.
(2) The regular elements a and b are said to be similar if they satisfy the
above equivalent conditions.

Obviously, if two regular elements a, b ∈ R are associates, they are similar,
and the converse holds true when the ring R is commutative (Exercise 485).

Consider two factorizations of c ∈ R× :

c = q1...qr, (2.63)
c = q′1...q

′
s. (2.64)

Definition 425. The factorizations (2.63), (2.64) are said to be isomorphic
if the corresponding chains are isomorphic in the modular lattice L (cR,R)
(Definition 115(3)).

By Corollary 245, we have the following.

Corollary 426. The factorizations (2.63), (2.64) are isomorphic if, and only
if r = s and there is a permutation i→ i′ of {1, ..., r} such that qi is similar
to q′i′ .

Note that if a factor qi is a unit, qi and q′i′ are similar to 1, therefore one can
assume that all factors in the factorizations (2.63), (2.64) are nonunits. Such
factorizations are said to be proper .
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Definition 427. A Schreier ring is a domain in which any two factorizations
of a nonzero element have isomorphic proper refinements.

In a right GCD domain, L (cR,R) is a modular lattice, thus the following is
a consequence of the Schreier refinement theorem (Theorem 116):

Corollary 428. A right GCD domain is a Schreier ring. (The converse does
not hold [72].)

2.13.2 Unique Factorization Domains

2.13.2.1 The Commutative Case

Definition 429. A commutative domain R is said to be a unique factor-
ization domain (UFD, for short) if the monoid (R×, .) is a UF-monoid
(Definition 130).

By Theorem 131 and Lemma 129, a commutative unique factorization domain
is a GCD domain and an element p of a unique factorization domain is a prime
(Definition 304) if, and only if it is an atom.

Definition 430. Let R be a domain. A system of representatives of atoms in
R is a family (pα)α∈A of atoms in R such that every atom in R is associated
with one (and only one) pα.

Let (pα)α∈A be a system of representatives of atoms in a commutative domain
R. According to Definition 130, R is a unique factorization domain if, and
only if every nonzero element x ∈ R can be written, in a unique way, in the
form

x = u
∏

α
pnα
α (2.65)

where u is a unit and nα ∈ N is zero for all but a finite number of indices.
Let y = v

∏

α
pmα
α be another element of R. Then

gcd (x, y) = U (R)
∏

α
pinf(nα,mα)
α , lcm (x, y) = U (R)

∏

α
psup(nα,mα)
α .

The Hardy space H∞ (Example 422) is not a unique factorization domain.
An important result about commutative UFDs is due to Gauss ([206],

Sect. IV.2):

Theorem 431. (Gauss’ theorem). Let R be a commutative UFD; the ring
R [X ] is again a UFD.

Let us also state without proof the following result about the irreducibility
of a polynomial in R [X ] ([206], Sect. IV.3):
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Proposition 432. (Eisenstein’s Criterion). Let R be a commutative UFD,
let K be its field of fractions and let f (X) = f0 X

n+ ...+ fn be a polynomial
of degree n ≥ 1 in R [X ]. Let p be a prime in R and assume:

f0 �≡ 0 (mod p) , fi ≡ 0 (mod p) for all i ∈ {1, ..., n} ,
fn �≡ 0

(
mod p2

)
.

Then, f (X) is irreducible in K [X ].

2.13.2.2 The Noncommutative Case

Lemma and Definition 433. Let R be a domain (not necessarily
commutative).

(1) The following conditions are equivalent:
(i) (R×, .) is an S-unique factorization monoid (Definition 130) where the
equivalence relation S is similarity.
(ii) R is a GCD domain and is atomic (Definition 224(ii)).
(iii) For any c ∈ R×, the set L (cR,R) of all principal right ideals containing
cR is a modular lattice of finite length.
(2) The domain R is called a unique factorization domain if the above equiv-
alent conditions are satisfied.

Proof. (1). (i)⇔(ii) and (ii)⇒(iii) are clear. (iii)⇒(ii) is a consequence of
the Jordan-Hölder-Dedekind theorem (Theorem 117).

Corollary 434. A GCD domain which satisfies left and right ACC1 is a
unique factorization domain. In particular, a GCD domain which is Noethe-
rian is a unique factorization domain.

Proof. This is a consequence of Lemma and Definition 433, Proposition 103
and Definition 308.

2.13.2.3 Rigid Unique Factorization Domains

A domain R is said to be rigid if the cancellation monoid (R×, .) is rigid
(Definition 60). The following is clear:

Lemma 435. For a domain R, the following conditions are equivalent:

(i) R is rigid;
(ii) whenever c = a b′ = b a′ ∈ R×, aR ⊆ bR or bR ⊆ aR;
(iii) for any c ∈ R×, the lattice L (cR,R) is a chain.

Lemma and Definition 436. Let R be a ring.

(1) The following conditions are equivalent:
(i) R is an atomic rigid domain.
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(ii) R is a unique factorization domain such that for any c ∈ R×, the set
L (cR,R) is a chain.
(iii) For any c ∈ R×, the set L (cR,R) is a chain of finite length.
(2) The ring R is called a rigid unique factorization domain if the above
equivalent conditions are satisfied.

In a rigid UFD, let us consider two complete factorizations (2.63) , (2.64) of
an element c �= 0 (Definition 130). We have r = s and for all i ∈ {1, ...r},
qi is associated with q′i (whereas in a general UFD, we have r = s and there
exists a permutation i→ i′ of {1, ...r} such that qi is similar to q′i′).

A rigid unique factorization domain can be characterized by the following
result ([77], Sect. 3.4, Corol. 4.8):

Proposition 437. A ring is a rigid UFD if, and only if it is an atomic 2-fir
(Lemma and Definition 410(2)) and a local ring.

2.13.3 Bézout Domains

2.13.3.1 Definition and Example

Definition 438. A ring R is called a left (resp., right) Bézout domain if
it is a domain and every finitely generated left (resp., right) ideal in R is
principal. A Bézout domain is a left Bézout domain which is a right Bézout
domain.

Example 439. Let Ω be an open connected subset of the complex plane and
let O (Ω) be the ring of all analytic (or, equivalently, holomorphic) functions
in Ω. The ring O (Ω) is a Bézout domain ([308], Theorem 15.15).
This can be easily proved when Ω = C (O (C) is the ring of all entire functions
in C). Indeed, consider an ideal a = (f1, ..., fn) of O (C) generated by a finite
number of functions f1, ...fn. By Weierstrass’ factorization theorem ([308],
Theorem 15.10), there exists a sequence (aj)j∈N

of isolated points of C, n
functions g1, ..., gn ∈ O (C) and non-negative integers nij (1 ≤ i ≤ n, j ∈ N)
such that

fi (z) =
+∞∏

j=0

(z − aj)
nij egi(z)

where nij > 0 if aj is a zero of order nij of fi. Therefore setting ni =
inf {nij , 1 ≤ j ≤ n}, a = (f) where f (z) =

∏+∞
j=0 (z − aj)

ni . Note that an
element of O (C) is a unit if, and only if it has no zero.

Example 440. In [137], the ring H = Q (R [s, es, e−s]) ∩ O (C) was intro-
duced for the study of linear delay-differential systems and proved to be a
commutative Bézout domain.
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2.13.3.2 Properties

Proposition 441. For a ring R, the following conditions are equivalent:

(i) R is a left Bézout domain.
(ii) R is both a semifir and a left Ore domain.
(iii) R is both a 2-fir and a left Ore domain.
The above still holds with left everywhere changed to right.

Proof. (i)⇒(ii): Let R be left Bézout domain and let a �= 0 be a f.g. left
ideal in R. Then a is a left principal ideal, i.e., there exists 0 �= a ∈ R such
that a = R a; thus x �→ xa is an R-linear isomorphism RR−̃→a and a is
free of rank 1; therefore R is a semifir. Let us assume that R is not an Ore
domain. Then the f.g. ideal an in the proof of Theorem 337 is free of rank
n, a contradiction.

(ii)⇒(i): Let R be a semifir and let a, b ∈ R×; the left ideal R a ∩ R b
is free of finite rank by Lemma and Definition 410(1) and R a ∩ R b ⊆ R a
which is of rank 1. If R is a left Ore domain, this implies that R a ∩R b is
of rank 1 by Theorem and Definition 408, thus there exists c ∈ R× such that
R a ∩R b = R c.

(ii)⇔(iii): See ([77], Sect. 1.1, Prop. 1.7).

Corollary 442. Let R be a Bézout domain and let A be a matrix over R;
then rk (A) = ρ (A) = ρr (A) = ρc (A).

Proof. The first equality is a consequence of Theorem 418, Proposition
417(iii) and Proposition 441. For the two last equalities, see ([77], Sect. 5.4,
Prop. 4.4).

2.13.3.3 Multiples and Divisors in Bézout Domains

Theorem 443. Let R be a right Bézout domain and let a, b ∈ R×; then a, b
have a lcrm c and a gcld d (Definition 81) characterized up to right associates
by the relations cR = aR ∩ bR and dR = aR + bR.

Proof. (a) By Proposition 441 and its proof, there exists c ∈ R× such that
cR = aR ∩ bR. We have c ∈ aR and c ∈ bR, thus c is a common right
multiple of (a, b). If c′ is a common right multiple of (a, b), then there exist
x, y ∈ R× such that c′ = a x = b y, thus c′R ⊆ a xR ⊆ aR and similarly
cR ⊆ bR, thus c′R ⊆ cR and c′ is a right multiple of c, thus c and its
right-associates are the lcrms of (a, b).

(b) There exists d ∈ R× such that dR = aR + bR. We have aR ⊆ dR
and bR ⊆ dR, thus d is a common left divisor of (a, b). If d′ is a common
left divisor of (a, b), there exist x′, y′ ∈ R× such that a = d′ x′ and
b = d′ y′, thus for any u, v ∈ R, a u + b v = d′ (x′ u + y′ v) ∈ d′R; therefore,
aR + bR ⊆ d′R, hence d ∈ d′R and d′ is a left-divisor of d. It follows that
d and its right-associates are gclds of (a, b).
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Corollary 444. Let R be a right Bézout domain and c ∈ R×; then the set
L (cR,R) of all right principal ideals containing cR is a modular lattice.

Proof. Let a, b ∈ R be such that cR ⊆ aR and cR ⊆ bR. Then
cR ⊆ aR∩ bR, cR ⊆ aR + bR, thus both aR∩ bR and aR + bR belong
to L (cR,R) by Theorem 443 which proves that L (cR,R) is a lattice. In
addition, L (cR,R) is included in the lattice Latr (RR) of all submodules of
the right R-module RR which is modular (Theorem 244), thus L (cR,R) is
a modular lattice.

Corollary 445. A right Bézout domain is a right GCD domain.

Proof. This is a consequence of Corollary 444 and of Definition 423.

Let us state without proof the following result about (two-sided) Bézout
domains ([70], Theorem 4.2):

Proposition 446. A domain R is a Bézout domain if, and only if the sum
of any two principal right ideals or of any two principal left ideals is again
principal.

The invariant elements (Definition 85(ii)) play an important role in the study
of Bézout domains due to the following result:

Lemma 447. Let R be weakly finite ring (Exercise 481) and let a �= 0 be a
principal left ideal which is a principal right ideal. Then a = R aR where a
is an invariant element of R .

Proof. We have a = R a = a′R; let u, v ∈ R× be such that a = u a′ and
a′ = a v. We have a′ ∈ R a′ = aR, thus a′ v ∈ aR = R a′ and there exists
u′ ∈ R× such that a′ v = u′ a′, hence a′ = u a′ v = u u′ c′ and u u′ = 1.
Therefore, u is right-invertible over R, thus it is invertible since R is weakly
finite (Exercise 481(iv)), i.e., u is a unit. By symmetry, v is a unit too.

2.13.4 Dedekind Domains

2.13.4.1 Commutative Case

Lemma and Definition 448. Let R be a commutative domain and let K
be its field of fractions.

(1) Let x ∈K. The following conditions are equivalent:
(i) There exists a f.g. nonzero R-module M such that xM ⊆M .
(ii) The element x satisfies an equation

xn + an−1 x
n−1 + ... + a0 = 0 (2.66)
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where ai ∈ R (0 ≤ i ≤ n− 1) and n ≥ 1. (Such an equation is called an
integral equation over R.)
(2) An element x ∈ K satisfying the above equivalent conditions is said to be
integral over R.
(3) The domain R is said to be integrally closed if every element of K,
integral over R, belongs to R.

Proof. (1) (ii)⇒(i): Let M be the R-module generated 1, x,..., xn−1. If (ii)
holds, then (i) holds too.

(i)⇒(ii): Assume there exists M = [v1, ..., vn]R such that xM ⊆ M and
M �= 0. Then each x vi (1 ≤ i ≤ n) is an R-linear combination of the
vj (1 ≤ j ≤ n), i.e., there exists a matrix A = (aij) such that v x = v A
where v =

[
v1 · · · vn

]
. Therefore, v (x In −A) = 0 and v �= 0, thus

det (x In − A) = 0 by Theorem 400(3), and x satisfies an integral equation
over R.

The following is easily proved ([207], Sect. 1.2, Prop. 7):

Proposition 449. Every commutative unique factorization domain is inte-
grally closed.

Definition 450. A commutative Dedekind domain is a Noetherian domain,
integrally closed, in which every non-zero prime ideal is maximal.

The main property of commutative Dedekind domains is expressed in the
theorem below (see [306], Theorem 4.24, and [207], Sect. 1.6):

Theorem 451. Let R be a commutative domain. The following conditions
are equivalent:

(i) R is a Dedekind domain.
(ii) Every nonzero ideal a in R is invertible, i.e., there exists a fractional
ideal b (Definition 338) such that a b = b a = R.
(iii) Every ideal in R can be factored into prime ideals, and the nonzero
fractional ideals form a group under multiplication.

Let P be the set of all nonzero prime ideals in a commutative Dedekind
domain R. According to Condition (iii) of the above theorem, every fractional
ideal b in R can be uniquely written in the form

b =
∏

p∈P

pn(p;b) (2.67)

where all but a finite number of the integers n (p; b) are zero. The above
fractional ideal b is an ideal if, and only if all numbers n (p; b) are ≥ 0.

2.13.4.2 Noncommutative Dedekind Domains

Let R be a left Ore domain and let K be its division ring of left fractions.
The following is consistent with the definition given in Theorem 451(ii):
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Definition 452. A left ideal a in R is called invertible if there exist elements
q1, ..., qn in K and a1, ..., an in a such that a qi ⊆ R and

∑
1≤i≤n qi ai = 1.

An invertible right ideal is likewise defined.

One can prove the following ([136], Corol. 3.1):

Lemma 453. Let R be a left Ore domain. If a left ideal a in R is invertible,
it is finitely generated. Therefore, if all nonzero left ideals in R are invertible,
R is left Noetherian.

We are now led to the following.

Definition 454. A left Dedekind domain is a left Ore domain in which all
nonzero left ideals are invertible. A right Dedekind domain is likewise defined
and a noncommutative Dedekind domain is a left Dedekind domain which is
a right Dedekind domain.

Noncommutative Dedekind domains play an important role in Systems The-
ory due to the following result, stated here without proof (see [247], 7.11.2):

Theorem 455. Let R be a commutative Dedekind domain and let S =
R [X ; δ] or S = R

[
X,X−1; α

]
(Subsect. 2.7.2 & 2.8.1). Then S is a non-

commutative Dedekind domain if, and only if S is simple.

The following consequence is clear:

Corollary 456. The rings A1 (k), B1 (k) and A1c (k) (Subsect. 2.7.5) are
noncommutative Dedekind domains. So is also the ring A′1 (k) (Example
369).

Last, let us state the following without proof (see [247], 5.7.7):

Proposition 457. Let R be a Dedekind domain. Then, every left (or right)
ideal in R is generated by two elements.

More specifically, let a be a left (resp., right) ideal in R. If a is essential
(see, below, Exercise 692), then there exists a left (resp., right) essential ideal
b such that a⊕ b ∼= R2 and a has two generators. If a is non-essential, then
there exists a left (resp., right) non-essential ideal b such that a⊕ b ∼= R and
a is principal.

2.13.5 Principal Ideal Domains

Definition 458. A ring R is a principal left ideal ring if every left ideal in
R is principal. A principal ideal ring is a principal left ideal ring which is a
principal right ideal ring.
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We know that in any domain R, an invariant element p is a prime if, and
only if the principal ideal (p) is completely prime (Theorem 305) and this
holds true if (p) is a maximal ideal (Proposition 306). Conversely, we have
the following (which is generalized in Theorem 586(3) below).

Proposition 459. Let R be a principal ideal domain and let p be an invari-
ant element of R. Then p is a prime in R if, and only if (p) is a maximal
ideal.

Proof. Let p be a prime and assume that there exists a proper ideal a such
that (p) � a. There exist an invariant element a of R which is a nonunit
and such that a = (a) = R a = R aR, and a nonzero nonunit b, such that
p = a b (Lemma 86). Thus, R a b = R aR b = (a) (b) = (p) whereas a /∈ (p)
and b /∈ (p), thus (p) is not a prime ideal (Lemma 299(ii)), a contradiction.

The following is clear:

Proposition 460. Let R be a ring. Then R is a principal ideal domain if,
and only if R is both a Bézout domain and a Noetherian ring.

Corollary 461. A principal ideal domain is atomic (Definition 224(ii)).

Proof. Let R be a principal ideal domain. By Proposition 460, R is
Noetherian, thus it satisfies left and right ACC (Definition 308) and since
every left or right ideal in R is principal, R satisfies left and right ACC1

(Definition 102 and Notation 64(ii)). Since R is a domain, the monoid
(R×,×) is cancellable, thus it is atomic (Proposition 103) and so is R too.

Theorem 462. Let R be a ring. Of the following, (i)⇔(ii)⇔(iii)⇒(iv); if
R is commutative, (iv)⇒(i):

(i) R is a principal ideal domain;
(ii) R is both a Bézout domain and a UFD.
(iii) R is an atomic Bézout domain.
(iv) R is is both a Dedekind domain and a UFD.

Proof. (i)⇒(ii)⇒(iii)⇒(iv): We know that a principal ideal domain is a
Bézout domain, thus it is a GCD domain (Corollary 445). Since it is atomic
by Corollary 461, it is a unique factorization domain (Lemma and Definition
433). In addition, it is obviously a Dedekind domain.

(iii)⇒(ii)⇒(i): A unique factorization domain is atomic, and one can easily
prove that a ring is a principal ideal domain if, and only if it is an atomic
Bézout domain ([77], Sect. 3.3, Exercise 14).

Assuming that R is commutative and (iv) holds, let p be a nonzero prime
ideal in R and let 0 �= x ∈ p be of the form (2.65). By Lemma 299, there
exists an index α such that pα ∈ p, thus (pα) ⊆ p and (pα) is a prime ideal
by Theorem 305, thus is maximal by Definition 450; therefore, (pα) = p and
p is a principal ideal. So is every ideal in R by Theorem 451.
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Lemma 463. Let R be a left principal ideal ring and let S be a left denomi-
nator set; then T = S−1 R is again a left principal ideal ring.

Proof. Let b′ �l S−1R; by Theorem 332(i), ϕS (b′) �l R and
S−1ϕS (b′) = b′; ϕS (b′) is a left principal ideal in R, i.e., there exists
r ∈ R such that ϕS (b′) = R a. Therefore, b′ = S−1ϕS (b′) = T (a/1) is a
left principal ideal in T.

Theorem 464. Let K be a division ring, α an automorphism and δ an α-
derivation of K. The ring of skew power series S = K

[[
X−1;α, δ

]]
is

a principal ideal domain and is local with Jacobson radical
(
X−1
)
; every

element of S is of the form υX−n = X−n υ′ where υ, υ′ are units; the (two-
sided) ideals, left ideals and right ideals of S coincide and are all (X−n),
n ≥ 0. The ring S is a rigid UFD.

Proof. This is a consequence of Corollary 384, of Proposition 437 and of
Theorem 462.

Remark 465. Let R = Z
[√
−5
]

be the ring consisting of all elements of the
form a +

√
−5b, a, b ∈ Z. One can prove that (i) R is a Dedekind domain,

(ii) 1 +
√
−5, 1 −

√
−5, 2 and 3 are primes in R ([313], Sect. 3.4). Since(

1 +
√
−5
) (

1−
√
−5
)

= 2 × 3, R is not a UFD, thus it is not a principal
ideal domain.

Let R be a commutative principal ideal domain and let p ∈ R be a prime.
Set R

(
pi
)

= R/
(
pi
)

(i ≥ 1). We have by Theorem 241(iii) R
(
pi
) ∼=

(p) /
(
pi+1
)
⊆ R

(
pn+1
)
. Therefore, the sequence

(
R
(
pi
))

is a direct sys-
tem (Example 19) and

R (p∞) � lim−→ R
(
pi
)
.

This construction is not the same as that in Remark 348.

2.13.6 Euclidean Domains

2.13.6.1 Definitions and Properties

(i) A domain R is said to be left Euclidean if there exists a function θ : R→
N ∪ {−∞}, called a left Euclidean function, such that:

(E1) θ (0) = −∞.
(E2) For any a, b ∈ R×, θ(a b) ≥ θ(a) > −∞.
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(E3) For any a ∈ R and b ∈ R×, there exists q, r ∈ R such that

a = q b+ r, θ (r) < θ (b) , (2.68)

called the left division algorithm.
(ii) The above holds with left changed throughout to right, a and b inter-

changed in (E2), and (2.68) replaced by the right division algorithm

a = b q + r, θ (r) < θ (b) . (2.69)

The elements q and r of (2.68) (resp., (2.69)) are called a quotient and a
remainder of the right (resp., left) division of a by b (notice that using the
left division algorithm, one right divides a by b!).

(iii) An Euclidean domain is a left Euclidean domain which is a right
Euclidean domain.

(iv) A left Euclidean domain R is said to be strongly Euclidean if the left
Euclidean function θ satisfies the following condition:

(E2’) For any a, b ∈ R×, θ (a − b) ≤ max {θ (a) , θ (b)} and θ (a b) = θ (a)+
θ (b).

Obviously, (E2’) implies (E2). In addition, we have the following.

Lemma 466. (i) In an Euclidean domain, θ (b) ≥ θ (1) if b ∈ R×, and
θ (b) = θ (1) if, and only if b is a unit.
(ii) Condition (E3) is equivalent to the following:
(E3’) For any a, b ∈ R such that b �= 0 and θ(a) ≥ θ(b), there exists c ∈ R
such that

θ (a − c b) < θ (a) .

(iii) In a left Euclidean domain R, the remainder r in the division (2.68)
is unique if, and only if R is strongly Euclidean, and then the quotient q is
unique too.

Proof. (i) Let b ∈ R×; then θ (b) = θ (1 b) ≥ θ (1) by (E1) and (E2). If
u is a unit, there exists u′ such that 1 = u u′, thus θ (1) ≥ θ (u) by (E1)
and (E2), thus θ (u) = θ (1). Conversely, let b be such that θ (b) = θ (1);
right-dividing 1 by b we obtain 1 = q b+ r with θ (r) < θ (1), thus r = 0, and
1 = q b; left-dividing 1 by b we obtain by the same rationale q′ ∈ R such that
1 = b q′, thus b is both left- and right-invertible, i.e., is a unit (1.3.2.1).

(ii) If (E3) holds, then (E3’) follows by taking c = q. Conversely, if (E3’)
holds and a, b ∈ R, b �= 0, choose q ∈ R such that θ (a− q b) takes its least
value. If θ (a− q b) ≥ θ (b), then by (E3’) there exists c ∈ R such that
θ (a − q b− c b) < θ (a− q b), a contradiction. Therefore, θ (a− q b) < θ (b)
and (E3) is satisfied with r = a− q b.

The proof of (iii) is easy ([77], Sect. 2.1, Prop. 1.3).

Using the above lemma, it is easy to prove the following (see, e.g., [80],
Theorem 7.3.3):
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Theorem 467. Let K be a division ring, α an automorphism and δ an α-
derivation of K. Then K [X ;α, δ] is a strongly Euclidean domain with Eu-
clidean function the degree (2.7.4.2).

In a general left (or right) Euclidean domain, θ (a) is often called the degree
of a, abusing the language.

Theorem 468. A left (resp., right) Euclidean domain is a principal left
(resp., right) ideal domain.

Proof. Let a �= 0 be a left ideal in a left Euclidean domain R with left
Euclidean function θ. Let b be an element of a such that θ (b) is the smallest
element of the set {θ (x) : x ∈ a, θ (x) ≥ θ (1)} ⊆ N. Let a �= 0 be an
element of a. By the left division algorithm (E3), we find q, r ∈ R such that
a = q b+ r and θ (r) < θ (b). Since r = a− q b, necessarily r ∈ a. Therefore,
θ (r) = −∞ and r = 0, thus a = R b and R is a principal left ideal domain.

2.13.6.2 Calculation of a gcrd and of an lclm

Euclid’s algorithm takes the following form in a left Euclidean domain:

Theorem 469. In a left Euclidean domain R, let a, b be nonzero elements
and consider the following algorithm where a1 = a and a2 = b :

a1 = q1 a2 + a3

...

ai = qi ai+1 + ai+2 (2.70)
...

where (2.70) is the right Euclidean division of ai by ai+1. There exists a
natural integer n such that an �= 0 and the remainder an+1 is zero; an is a
gcrd of a, b.

Proof. (1) Since θ (ai+2) < θ (ai+1) and θ (a2) is finite, there exists n such
that an+1 = 0.

(2) Thus, an−1 = qn−1 an and an right-divides an−1. Since

an−2 = qn−2 an−1 + an,

an right-divides an−2 too and successively one sees than an right-divides all
an−i (1 ≤ i ≤ n− 1), thus an right-divides a and b.

(3) If an element c right-divides a = a1 and b = a2, it right-divides
a3 = a1 − q1 a2. Continuing this process, one sees that c right-divides all ai
(1 ≤ i ≤ n), thus an is a gcrd of a, b.
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Our aim is now to calculate an lclm in a left Euclidean domain. We know that
an lclm of a nonzero finite family (ai)1≤i≤n is an element a ∈ R×, uniquely
determined up to left associates, such that

R a =
⋂

1≤i≤n
R ai.

(Definition 81 and Theorem 443). The following recursive formula is obvious:

[a1, ..., an]l = υ [[a1, ..., an−1]l , an]l

where υ is a unit. Write
a ≡ c (mod b) (2.71)

(a, b, c ∈ R) when b right-divides a− c.

Lemma 470. When (2.71) holds, then there exists a unit υ such that

[a, b]l = υ [c, b]l c
−1 a. (2.72)

Proof. Let m = [a, b]l. Then one must have m = b1 a and b1 is an element
of lowest degree such that b1 a is right-divisible by b. By (2.71), there exists
q ∈ R such that a = q b + c, thus m = b1 (q b + c) and the product b1 c must
be right-divisible by b. The lowest degree of b1 is therefore obtained when
there exists a unit υ such that b1 c = υ [c, b]l, which yields (2.72).

Theorem 471. Let a, b ∈ R (where R is a left Euclidean domain) and con-
sider the algorithm in Theorem 469. Then [a, b]l = [a1, a2]l is given by

[a1, a2]l = υ an−1 a
−1
n an−2 a

−1
n−1...an−i a

−1
i ...a2 a

−1
3 a1 (2.73)

where υ is a unit.

Proof. By (2.72),

[ai+1, ai]l = υi [ai+2, ai+1]l a
−1
i+2 ai, 1 ≤ i ≤ n− 2.

Therefore,

[an−1, an−2]l = υn−2 an−1 a
−1
n an−2,

[an−2, an−3]l = υn−3 υn−2 an−1 a
−1
n an−2 a

−1
n−1 an−3

and one finally obtains (2.73).

2.14 Exercises

Exercise 472. Let K be a division ring and V a left K-vector space. Prove
that any subspace of V is a direct summand.
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Exercise 473. Let R be a ring and let (Mi)i∈I be a family of left R-modules.
Prove that

(⊕
i∈I Mi

)∗ ∼=
∏
i∈I M

∗
i and

(∏
i∈I Mi

)∗ ∼=
⊕

i∈I M
∗
i .

Exercise 474. Prove that (Z/pZ)
⊗

Z
(Z/qZ) = 0 for any primes p �= q.

(Hint: write the Bézout identity.) Prove that (Q/Z)
⊗

Z
(Q/Z) = 0.

Exercise 475. (i) Let R be a commutative ring, Ei (1 ≤ i ≤ n) be R-modules
and x∗i ∈ E∗i . Prove that

x∗1 ⊗ ...⊗ x∗n

coincides with the map
∏

1≤i≤nEi � (x1, ..., xn) �→
∏

1≤i≤n 〈x∗i , xi〉 .

(ii) Assuming that each module Ei is finite free, let (eji)1≤j≤ni
be the canon-

ical basis of Ei (1 ≤ i ≤ n) and
(
e∗ji
)
1≤j≤ni

be the dual basis. Prove that

(
e∗j11 ⊗ ...⊗ e∗jnn

)
1≤ji≤ni

is a basis of E∗1⊗ ...⊗E∗n which is, therefore, a finite free R-module. Calculate
its rank (Subsect. 2.11.3).
(iii) Let E1, E2, F1, F2 be finite free R-modules. Check that the map

HomR (E1, F1)×HomR (E2, F2) → HomR (E1 ⊗ E2, F1 ⊗ F2) :
(u1, u2) �→ u1 ⊗ u2

is bilinear. Using bases, prove that this map is an isomorphism. Then, prove
that this isomorphism is canonical.
(iv) Prove that there exist canonical isomorphisms

E∗1 ⊗ E∗2 ∼= (E1 ⊗ E2)
∗
, E∗ ⊗ F ∼= HomR (E,F ) ,

generalize the former isomorphism to the case of n modules and make the
latter isomorphism explicit.

Exercise 476. Let M,N be left A-modules and assume that the ring A is
an R-algebra (where R is a commutative ring). Prove that HomA (M,N) is
an R-module.

Exercise 477. Let K be a division ring, α an automorphism and δ an α-
derivation of K.

(i) Prove that for any a ∈ K×, a−δ = −a−α aδ a−1 (where a−δ �
(
a−1
)δ,

a−α �
(
a−1
)α

).
(ii) Prove that the subring of constants of K is a division subring.

Exercise 478. Let R be a commutative ring, let p be a prime ideal in R
and let S = R\p. (i) Prove that S = R\p is a submonoid of (R×,×) and
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that the ring Rp = S−1 R is local with radRp = pRp, the ideal generated
by the canonical image of p in Rp. (ii) Prove that the residue class field
of Rp is canonically isomorphic to the field of fractions of R/p. (Hint: use
Proposition 303, Lemma 302 and Theorem 332.) The ring Rp is called the
local ring of R at p.

Exercise 479. Let R be a ring and let p be an ideal in R. Prove that p ∈
SpecR if, and only if R/p is a prime ring.

Exercise 480. Let K be a division ring.

(1) Let A ∈ Mat2 (K) be the matrix
[
a b
c d

]
. (i) If a �= 0, show that det (A) =

ad− aca−1b. (ii) If a = 0, show that det (A) = −cb.
(2) Show that det (A) is not a polynomial function of the entries of A if K
is noncommutative.

Exercise 481. Let R be a ring.

(1) Prove that R has IBN if, and only if for any integers n,m, if A ∈ nRm,
B ∈ mRn and AB = In, BA = Im, then n = m.
(2) A ring R is said to be weakly finite [79] (or stably finite [199]) if for
any n ≥ 1, each generating set of n elements of Rn is free. The following
conditions are equivalent ([79], Prop. 4.6.6; [199], Prop. 1.7): (i) R is weakly
finite; (ii) for any n, if an R-module H is such that Rn ∼= H ⊕ Rn, then
H = 0; (iii) for any n, any epimorphism Rn � Rn is an isomorphism; (iv)
for any n, if A,B ∈Matn (R) are such that AB = In, then BA = In (thus a
square matrix which is left- or right-invertible is invertible). Prove that any
non-trivial weakly finite ring has IBN. (Hint: if IBN fails, then Rn ∼= Rm

for some n,m such that m > n and Rn ∼= Rm−n ⊕Rn.)
(3) Prove that a semifir is a weakly finite ring. (Hint: use Proposition 411.)
(4) Prove that a (left or right) Ore domain is weakly finite. (Hint: use
(2)(iv).)
(5) Prove that a commutative ring is weakly finite. (Hint: use determinants.)

Exercise 482. Let K be a division ring, and let A ∈ mKn, B ∈ nKp. (i)
Prove that rk (AB) ≤ min {rk (A) , rk (B)}. (ii) Prove the following, called
Sylvester’s law of nullity: if AB = 0, then n ≥ rk (A) + rk (B). (iii) Show
that Sylvester’s law of nullity holds in the following form: for any A ∈ mKn,
B ∈ nKp, rk (A)+rk (B)−n ≤ rk (AB). (Hint: use Theorem and Definition
392.)

Exercise 483. (i) Let R be a semifir, let M ∼= Rn and let N be a submodule
of M . Prove that if N is a direct summand of M (2.2.4.1), then rk

(
N0
)

=
n − rk (N ). (ii) Let K be a division ring, let V and W be left K-vector
spaces such that dim (V ) < +∞, and let f : V → W be a K-linear map.
Using (i), (2.61), Proposition 276 and Exercise 472, prove that dim (im f) =
dim (im tf).
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Exercise 484. Show that a domain with left and right ACC1 is atomic and,
conversely, that a unique factorization domain has left and right ACC1.

Exercise 485. Let R be a commutative domain. Prove that two regular el-
ements a, b ∈ R are similar (Lemma and Definition 424) if, and only if they
are associates.

Exercise 486. A left free ideal ring (or left fir, for short), is a ring R in
which all left ideals are free of unique rank, as left R-modules.
Prove that the following conditions are equivalent: (i) R is a left fir and a left
Ore domain; (ii) R is a principal left ideal domain; (iii) R is a left Noetherian
left fir; (iv) R is a left Bézout domain with left ACC1.

Exercise 487. An integral domain R is said to have distributive factor lat-
tice if for any c ∈ R×, the lattice L (cR,R) is distributive ([77], Chap. IV).
Prove that (i) this notion is left-right symmetric and that (ii) any ring with
distributive factor lattice is a 2-fir (Lemma and Definition 410). (Hint: for
(i), use Lemma and Definition 424.)

Exercise 488. Let R be a left GCD domain which is a left Ore domain, and
let Q = Q(R) be the division ring of left fractions of R. Define (and prove
the existence of) a least common left denominator of two elements a, b ∈ Q.
To what extent is that element unique?

Exercise 489. (i) Prove that the ring Z is an Euclidean domain with Eu-
clidean function n �→ |n| if n �= 0, but that it is not strongly Euclidean.
(ii) Let K be a field. Prove that the polynomial ring K [X ] is a commutative
strongly Euclidean with Euclidean function f (X) �→ d◦ (f (X)).

Exercise 490. Let R be a commutative domain and let Q be its field of
fractions.

(i) Prove that the following conditions are equivalent: (a) Given two elements,
one divides the other; (b) x ∈ Q\R ⇒ x−1 ∈ R; (c) the set of all principal
ideals in R is totally ordered by inclusion; (d) the set of all ideals in R
is totally ordered by inclusion. (Hint: (c)⇒(d) is proved in ([31], §VI.1,
Theorem 1).)
A commutative domain for which these equivalent conditions hold is called a
valuation domain.
(ii) Let K be a field and let T be an indeterminate. Prove that K [[T ]] is a
valuation domain.
(iii) Prove that a valuation domain is local and integrally closed.

Exercise 491. Let R be a left Dedekind domain.

(i) Let S be a left denominator set; prove that S−1 R is again a left Dedekind
domain.
(ii) Assuming that R is commutative, let a =

∏
pm(p), b =

∏
pn(p) be two

ideals in R, where each p is a prime ideal (see (2.67)). Prove that
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a b =
∏

pm(p)+n(p), a : b � a b−1=
∏

pm(p)−n(p),

a + b =
∏

pmin(m(p),n(p)), a ∩ b =
∏

pmax(m(p),n(p)).

Exercise 492. Let Ω be a nonempty interval of R and let R (Ω) be the
largest ring of rational functions analytic in Ω, i.e., R (Ω) = C (t) ∩ O (Ω)
(Example 439).

(i) Prove that R (Ω) is a commutative principal ideal domain and that its
primes are (up to associates) the X − λ, λ ∈ Ω.
(ii) Prove that the ring Ao (C) = R (Ω) [X ; δ] � A1 (C) is a simple noncom-
mutative Dedekind domain.

Exercise 493. Let R be a ring and let X = (X1, ..., Xn) be a finite sequence
of indeterminates. When these indeterminates are independent but commute
with the elements of R, one can form the free R-ring S generated by X over R
and denoted by R 〈X〉 ([199], (1.2)). When in addition the indeterminates
Xi pairwise commute, S is called the multivariate (univariate when n =
1) polynomial ring generated by X over R and is denoted by R [X ]. This
construction is generalized below: for 1 ≤ i ≤ n, let αi be an automorphism
and δi an αi-derivation of R with commutation rule Xi a = aαi Xi + aδi .

(i) Show that the indeterminates Xi and Xj commute if, and only if Xαi
j =

Xj, Xδi
j = 0, i �= j, and that this implies αiαj = αj αi, δi δj = δj δi and

αj δi = δi αj. These conditions are assumed to be satisfied in the sequel.
(ii) Prove that δi is an αi-derivation of R [Xj ; αj , δj ] (i �= j) and, by
induction, define the iterated skew multivariate polynomial ring A =
R [X1, ..., Xn; α1, ...αn, δ1, ..., δn] (written R

[
(Xi; αi, δi)1≤i≤n

]
, for short)

using the relation (for 1 ≤ j ≤ n− 1)

R
[
(Xi; αi, δi)1≤i≤j+1

]
= R
[
(Xi; αi, δi)1≤i≤j

]
[Xj+1; αj+1, δj+1] .

If αi = 1 and δi = 0 (1 ≤ i ≤ n), the indeterminates Xi are called central.
Why?
(iii) Let a =

∑

ν∈Nn

aν X
ν ∈ S where ν = (ν1, ..., νn) ∈ Nn, Xν =

∏

0∈i≤n
Xνi

i ;

setting |ν| =
∑

1≤i≤n νi, the terms of degree n of a (n ∈ N) are the terms
aν X

ν such that |ν| = n, the degree of a �= 0 is the highest |ν| such that
aν �= 0 and is denoted by d◦ (a), and d◦ (0) � −∞. If |ν| = d◦ (a), the term
aν X

ν is called a leading term of a and aν is called a leading coefficient
of a.

Prove that d◦ (a− b) ≤ max {d◦ (a) , d◦ (b)} with equality if d◦ (a) �= d◦ (b)
and that d◦ (a b) ≤ d◦ (a) + d◦ (b) with equality if R is a domain.
(iv) If R be a left (resp., right) Noetherian domain, prove that the skew poly-
nomial ring A is again a left (resp., right) Noetherian domain. (Hint: use
(iii) and Theorem 358).
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(v) If R = k [x1, ..., xn], αi = 1 and δi = ∂/∂xi, then R
[
(∂i; αi, δi)1≤i≤n

]

(where ∂i extends δi) is denoted by An (k) and is called the nth Weyl algebra
over k; if R = k (x1, ..., xn), then R

[
(∂i; αi, δi)1≤i≤n

]
is denoted by Bn (k).

Prove that the rings An (k) and Bn (k) are Noetherian domains (generaliza-
tion of Corollary 359).
(vi) If R is a Q-algebra, prove that the ring R

[
(Xi; δi)1≤i≤n

]
is simple if,

and only if for any i ∈ {1, ..., n}, (a) R has no proper nonzero δi-invariant
ideal, and (b) δi is an outer derivation of Aj = R [Xj ; δj ], j ∈ {1, ..., n},
j �= i. (Hint: use Theorem 362.) Deduce that the rings An (k) and Bn (k)
are simple.
(vii) Prove that the monoid S =

{
Xk1

1 ...Xkn
n : ki ≥ 0 (1 ≤ i ≤ n)

}
is

a left and right denominator set of A, and form the skew multi-
variate Laurent polynomial ring T = S−1R = RS−1, denoted by
R
[(
Xi, X

−1
i ; αi, δi

)
1≤i≤n

]
. Write the general form of an element of this

ring. If R is a left (resp., right) Noetherian ring, prove that T is left (resp.,
right) Noetherian, and that if R is a domain, T is again a domain.
(viii) Let R be an Ore domain, let K be its division ring of fractions,
and let F = K

(
(Xi; αi, δi)1≤i≤n

)
be the division ring of fractions of

K
[
(Xi; αi, δi)1≤i≤n

]
. Prove that F is the division ring of fractions of A

and of T.
(ix) Prove that the ring R

[(
Xi, X

−1
i ; αi

)
1≤i≤n

]
is simple if, and only if for

any i ∈ {1, ..., n}, (a) R has no proper nonzero αi-invariant ideal, and (b)
no power of αi is an inner derivation of R. (Hint: use Theorem 367).
(x) Show how one can form the iterated formal skew multivariate power se-
ries ring S = R

[[(
X−1
i ; αi, δi

)
1≤i≤n

]]
, and show that Theorem 383 can be

generalized to this ring.
(xi) Similarly, construct the formal skew multivariate Laurent series ring
L = R

(((
X−1
i ; αi, δi

)
1≤i≤n

))
and check that Theorem 385 can be general-

ized to this case.

2.15 Notes

The main references for this chapter are [77] and [247] but other ones, es-
pecially [27], [31], [79], [80] and [198], have also been useful to establish the
text. Skew polynomials were introduced by Segre, van der Waerden and, in
their general form, by Ore [265]. The theory of rings of fractions (Sect. 2.5)
was mainly established by Ore [264] and Goldie [142].

Theorem 372 is taken from Bourlès and Oberst [47]. Proposition 376 has
been proved by El Mrabet and Bourlès [108] but the connection between
this result and crossed products, as well as Proposition 377, are new. Our
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presentation of Dieudonné determinants (Subsect. 2.11.2) is essentially based
on the original paper [91] and on ([6], Chapter IV). Linear algebraic groups
over a field are extensively studied in Borel’s monograph [23].

Everett [111] was the first to construct examples of finite free modules hav-
ing bases of different sizes. Cohn introduced n-firs, semifirs and firs (Lemma
and Definition 410, and Exercise 486) [71], and the notion of full matrix [73].
The term ”rank-stable ring” has been introduced here to simplify the presen-
tation. Our presentation of Sylvester domains is mainly based on the original
paper of Dicks and Sontag [89] and on ([77], Sect. 5.5 & 5.6). Our presen-
tation of GCD domains and unique factorization domains is based of Cohn’s
papers [70], [74]. Proposition 446 was independently obtained by Cohn [70]
and Amitsur. Dedekind domains (and the notions of ideal, fractional ideal
and module as well) were first defined by Dedekind shortly before the end of
the 19th century to improve Kummer’s theory of ideal factors (dating back
to 1847 and created to partially prove Fermat’s Last Theorem [98]); in 1927,
E. Noether, who also discovered Noetherian rings and modules, gave the ax-
iomatic characterization of Dedekind domains in Definition 450, which is still
the most useful in Number Theory (see the historical notes of [31] and [165]);
Definition 454 of a noncommutative Dedekind domain is based on that given
by Goldie [143] (improving Robson’s definition [297]) and on a result due to
Gentile [136]. Goldie’s original definition [143] is given in Subsect. 3.5.1 be-
low (see the necessary and sufficient condition in Theorem 586). Definition
454 of a Dedekind domain, valid in the noncommutative case, is that given
by Cartan and Eilenberg [59]. Theorem 469 can be traced back to Euclid
(Elements, Book VII) whereas Theorem 471 is a slight generalization of a re-
sult due to Ore ([265], Sect. I.2, Theorem 8). The notion of valuation domain
(Exercise 490) is due to Krull [195].

The Bézout domainH in Example 440 was introduced by Glüsing-Lüerssen
[137] for the study of linear delay-differential systems, as said in the text; a
similar ring, which is also a Bézout domain, was introduced with the same
aim by Loiseau [221]. Exercise 492(i)&(ii) is taken from Fröhler and Oberst
[129]. Exercise 493 proposes a quite natural extension (detailed in, e.g.,
[66]) of skew polynomial rings, skew Laurent polynomial rings, formal skew
power series rings and formal skew Laurent series rings to the case of several
indeterminates.
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Homological Algebra

3.1 Introduction

In this chapter, we continue the study of modules. Let A be a ring. A left
A-module M is said to be finitely presented if it is generated by a set of
variables w1, ..., wk satisfying an equation of the form

Rw = 0 (3.1)

where R is a q × k matrix with entries in A and w =
[
w1 · · · wk

]T . Such
a module (denoted by M = [w]A) is said to be defined by generators – the
variables wi (1 ≤ i ≤ k) – and relations – the q equalities Ri w = 0, where
Ri is the ith row of the matrix R. If A is a ring of differential operators,
e.g., A = K [∂, δ], K = C [t], then (3.1) is the equation of an LTV system.
If M ′ is a second left A-module generated by a set of variables w1, ..., w

′
k′

satisfying an equation R′w′ = 0, where w′ =
[
w1 · · · w′k′

]T and R′ is a q′×k′
matrix with entries in A, and if M ∼= M ′, then M and M ′ are identified and
the matrices M,M ′ are called left-similar. Presentations and similarity are
studied in Section 3.2.

A module is said to be cyclic if it is generated by one element. As will be
seen in Subsection 3.6.2, any finitely generated module over a principal ideal
domain is isomorphic to a direct sum of cyclic modules. Cyclic modules are
studied in Section 3.3.

In Section 3.4, the most important functors in the categories of modules
are studied. They include the tensor product, the functor Hom, and related
functors. The importance of the functor Hom for the study of linear systems
is further detailed in the Introduction of Chapter 5 (and, more technically,
in Subsection 3.4.3).

The homological properties of certain modules are studied in Section 3.5.
At this stage, it is probably useful to indicate the etymology of the word
”homology”. As already said (1.3.3.1), óμo means the same; λóγoσ can be
translated by word or views. In algebraic topology, integration along two

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 189–268.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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paths in the complex plane yield the same result if these paths belong to the
same homology class; in that case, óμo+λóγoσ means agreeing, as emphasized
by Rotman [306]. Homological algebra is the branch of mathematics which
studies homology in a general algebraic setting (following H. Cartan and S.
Eilenberg [59]). Several fundamental notions for the study of linear systems
are detailed in Section 3.5, especially that of injective cogenerator.

Last, Section 3.6 is devoted to study of the structure of finitely presented
modules over specific noncommutative rings, especially Bézout domains, prin-
cipal ideal domains, and Dedekind domains.

The table in Section 2.1 can be completed by that below, where PID,
BD, and SD have already been defined, and where PFR, HR, SFID, SSFID,
OD, DD, and ND mean projective free ring, Hermite ring, stably-free ideal
domain, semistably-free ideal domain, Ore domain, Dedekind domain, and
Noetherian domain, respectively.

PID → BD → SD → PFR → HR
↓ ↓

SFID → SSFID → OD
↘ ↑

DD → ND

3.2 Presentations and Similarity

3.2.1 Presentation of a Module

3.2.1.1 Quotient Modules

Let A be a ring.

Theorem 494. Every left A-module M is isomorphic to the quotient of a
free left A-module, which is finite if M is finitely generated. Therefore, A is
a projective generator in the category AMod.

Proof. Let M be a left A-module M and let (ηi)i∈K be a generating family
of M (M is f.g. if, and only if one can take card (K) < +∞). By Lemma
262 there exists a unique A-linear epimorphism •α : A(K) → M such that
εiα = ηi where (εi)i∈K is the canonical basis of A(K) (Lemma and Definition
255). By Noether’s first isomorphism theorem (Theorem 52(1)), the following
diagram is commutative

A(K) α−→ M −→ 0

↓ ϕ
ψ

↗
A(K)/ kerα
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where ϕ is the canonical epimorphism A(K) � A(K)/ kerα and ψ is an
isomorphism. Therefore, A is a generator in AMod (1.2.2.4). The functor
HomA (A, •) is exact, thus A is projective in AMod (Proposition 49(2)).

The above theorem can be depicted by the exact sequence

kerα ι−→ A(K) α−→M −→ 0 (3.2)

where ι is the inclusion.

3.2.1.2 Finitely Generated and Finitely Presented Modules

Let
(
μj
)
j∈Q be a generating family of kerα; there exists by Lemma 262 a

unique A-linear epimorphism •β : A(Q) → kerα such that ζjβ = μj where(
ζj
)
j∈Q is the canonical basis of A(Q). Let •f = β ◦ i : A(Q) → A(K) where

•i : kerα ↪→ A(K) is the inclusion. This yields the exact sequence

A(Q) •f−→ A(K) •α−→M −→ 0. (3.3)

Definition 495. The exact sequence (3.3) is called a presentation of the
module M .

Notice that M = coker f (1.2.4.1). By Theorem 494, the module M is
finitely generated if, and only if there exists a presentation of M such as
(3.3) with card (K) = k, a natural number. If there exists a presentation of
M such as (3.3) with card (Q) = q, a natural number, M is said to be finitely
related .

Definition 496. The left A-module M is said to be finitely presented ( f.p.,
for short) if it is both finitely generated and finitely related, i.e., it has a
presentation of the form

Aq •f−→ Ak •α−→M −→ 0. (3.4)

Notation 497. In what follows, AModfg (resp., AModfp) denotes the full
subcategory of AMod, the objects of which are finitely generated (resp.,
finitely presented).

Lemma 498. Let A be a ring and consider the exact sequence of left A-
modules

0 −→ N −→M −→ P −→ 0.

(i) If N and P are finitely generated, so is M .
(ii) If P is finitely presented and M is finitely generated, N is finitely gen-
erated
(iii) If M is finitely presented, N is finitely generated if, and only if P is
finitely presented.
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Proof. (i): See ([27], §II.1, Corol. 5 of Prop. 9). (ii): See ([31], §I.2,
Lemma 9).

(iii): Identifying P with M/N , let M = F/K where F = Ak and
K = (Aq) f is f.g., and let N = G/K where K � G � F (Theo-
rem 147(i)). Obviously, N is f.g. if, and only if G is f.g. too; since
M/N = (F/K) / (G/K) ∼= F/G according to Noether’s third isomorphism
theorem (Theorem 52(3)), this is the condition for P = M/N to be f.p.

Theorem 499. Let A be a left Noetherian ring or a semifir; then every
finitely generated left A-module is finitely presented.

Proof. Let A be a ring and let M be a f.g. left A-module. We have the
exact sequence (3.2) where card (K) = k, a natural number, and kerα � Ak.
(1) If A is left Noetherian, Ak is a left Noetherian A-module by Lemma
309(iii), thus kerα is f.g. and M is finitely presented. (2) If A is a semifir,
kerα is finite free by Lemma and Definition 410(iv), thus M is finitely
presented.

3.2.1.3 Generalization

Let C be an additive category (1.2.4.1), let U be an object of C and let
A � HomC (U,U) be the ring of all left endomorphisms of U . Then, for
any object N of C, the abelian group HomC (U,N) of all left morphisms
•g : U → N is a left A-module via composition of morphisms. Let I be a
set of indices, arbitrary if C has arbitrary coproducts and finite otherwise.

Definition 500. An object M of C is said to be U -generated if M is a factor
of U (I), and U -finitely generated (U -f.g.) if I is finite.

Note that all objects of C are U -generated if, and only if U is a generator
(1.2.2.4).

Example 501. Let R be a ring and let C be the category RMod of left R-
modules with its left morphisms x �→ (x) f = xf . Then U � R is a projective
generator and the map

A � HomR (R,R)→ R, f �→ (1) f ,

is a ring-isomorphism with inverse r �→ •r. We identify A and R, and with
this identification

HomR (R,M )→M : g �→ (1) g

is a canonical isomorphism of left A-modules which is again an identification.

Let us assume that the category C is preabelian (1.2.4.2) and consider a
subobject N of U (I) (viewed as an object of C such that N ⊆ U (I) according
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to Remark 6); let ι : N ↪→ U (I) be the inclusion, and consider the associ-
ated factor object M = coker ι (also written M = U (I)/N) defined by the
canonical exact sequence of left morphisms

N
•ι−→ U (I) •ϕ−→M −→ 0. (3.5)

Definition 502. The above object M = coker ι = U (I)/N is called a U -
cokernel.

If the category C is not abelian, a U -generated object need not be a U -cokernel
(see Example 503(i) below).

Example 503. (i) Let C be the category LCS (Example 36), and let U and
M be objects of C such that there exists an integer k > 0 and a continuous
linear surjection ϕ : Uk � M . Let ϕind : Uk/N → M be the induced linear
bijection (Theorem 52(1)). Then ϕind is continuous (Subsect. 1.7.1) but ϕ−1

ind

is not continuous in general (since ϕ need not be a strict morphism), thus M
and Uk/N cannot be identified. In other words, M is U -finitely generated
but is not a U -cokernel.
(ii) Let ϕ and ϕind be as above when C is the category Frt (Example 37).
According to the Banach inverse mapping theorem (1.7.3.1), ϕind is an iso-
morphism, thus every U -finitely generated object is a U -cokernel.

Lemma and Definition 504. Let C be a preabelian category and U be an
object of C.
(i) An object M ∈ C is called U -finitely presented (U -f.p.) if there exists an
exact sequence

Uq
•f−→ Uk •ϕ−→M −→ 0. (3.6)

(ii) In that case, M = coker ι where ι � im f , and ι = im ι = kerϕ.

Proof. (ii): In this proof, all morphisms are right ones. We have ϕ = coker f ;
therefore, setting ι = im f we obtain im ι = im f by Lemma 34(iii). There-
fore, by (1.6), (1.7), im ι = ker coker ι, and

coker ι = coker im f = coker ker cokerf = coker f.

This yields im ι = ker coker f = kerϕ.

3.2.2 Coherent Modules, and Coherent Rings

3.2.2.1 Annihilators

The following will be useful:

Definition 505. Let A be a ring and let N be a left (resp., right) A-module.
(i) The annihilator of a nonempty part S of N in A is the subset A of
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A consisting of all elements r such that r S = 0 (resp., S r = 0). This
set A is denoted by AnnA

l (S) (resp., AnnA
r (S)), and by AnnA (S) if A is

commutative.
(ii) Conversely, let S′ be a nonempty part of A; the annihilator of S′ in N
is the subset A′ of N consisting of all elements n ∈ N such that S′ n = 0
(resp., nS′ = 0). This set is denoted by AnnNr (S ′) (resp., AnnNl (S ′)).

As easily seen, AnnA
l (S) (resp., AnnA

r (S)) is a left (resp., right) ideal in A
and AnnNr (S′) (resp., AnnNl (S ′)) is a submodule of the left (resp., right)
A-module N . In addition, we have the following.

Lemma 506. Let A be a ring and let M be a left (resp., right) A-module;
then AnnA

l (M) (resp., AnnA
r (M)) is an ideal in A.

Proof. Let λ ∈ AnnA
l (M); this means that λm = 0 for any m ∈ M .

Now, μm ∈ M for any μ ∈ A whenever m ∈ M , which implies that
λ (μm) = (λμ)m = 0, thus λμ ∈ AnnA

l (M). Therefore, AnnA
l (M) is a

right ideal in A; since it is a left ideal (as already said), it is an ideal in A.

3.2.2.2 Coherent Modules, and Coherent Rings

Definition 507. (i) Let A be a ring. A left (resp., right) A-module M is
coherent if it is f.g. and every f.g. submodule of M is finitely presented.
(ii) A ring A is left (resp., right) coherent if every finitely generated left
(resp., right) ideal in A is finitely presented. A coherent ring is a ring which
is both left and right coherent.

Let us gather in the two following lemmas some results about coherent mod-
ules and rings.

Lemma 508. Let A be a ring and let M be a left A-module.

(1) The following conditions are equivalent:
(i) M is coherent;
(ii) M is f.g., and for any integer n ≥ 0, the kernel of any homomorphism
of left modules An →M is f.g.;
(iii) M is f.g., and for any f.g. left module N and any f : N → M , ker f is
f.g.
(2) If M is coherent and N � M is f.g., then N is again coherent.
(3) The ring A is left coherent if, and only if the left A-module AA is co-
herent.
(4) Let

0 −→M1 −→M2 −→M3 −→ 0

be an exact sequence of left A-modules. If two of these modules are coherent,
so is the third. In addition, if M2 is coherent and M1 is f.g., then M3 is
coherent.
(5) Any finite direct sum of left coherent modules is left coherent.
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Proof. We only prove (1) since the proof of the other parts is given in ([77],
Theorem A.6), ([199], §4G), and ([31], §II.2, Exercise 11).

(i)⇒(ii): Let M be left coherent, thus f.g., and let •f : An → M . Then
im f is f.g., thus im f is f.p. Let •g : An � im f be the epimorphism such
that (x) g = (x) f for all x ∈ An. We obtain the short exact sequence of left
morphisms

0 −→ ker f •ι−→ An •g−→ im f −→ 0

where im f is f.p. and An is f.g., thus kerf is f.g.
(ii)⇒(iii): Assume that (ii) holds and let N be f.g. Let f : N → M .

There exist a positive integer n and an epimorphism •ϕ : An � N . Consider
ϕf : An →M . Then kerϕf is f.g., say generated by κ1, ..., κm, and ker f is
generated by (κ1)ϕ, ..., (κm)ϕ.

(iii)⇒(ii) is clear.
(ii)⇒(i): Assume that (ii) holds and let N � M be f.g. Let •ϕ : An � N

and let f : An � M be the map such that (x)ϕ = (x) f for all x ∈ An.
Then kerϕ = ker f is f.g., therefore there exist a positive integer q and an
epimorphism •ψ : Aq � kerϕ. Let •g : Aq → An be such that (y) g = (y)ψ
for all y ∈ Aq. The sequence of left morphisms

Aq •g−→ An •ϕ−→ N −→ 0

is exact and is a finite presentation of N .

Lemma 509. Let A be a ring; the following conditions are equivalent:

(i) A is right coherent;
(ii) every finitely generated submodule of a free right A-module is finitely
presented;
(iii) the right annihilator of any row vector over A is finitely generated, i.e.,
given u ∈ An, if uB = 0 for some B ∈ nAI , then there exists C ∈ nAr, D ∈
rAI such that B = C D, uC = 0;
(iv) every finitely presented right A-module is coherent;
(v) every f.g. right ideal a in A is finitely related (thus finitely presented);
(vi) for any a ∈ A, the right annihilator of a is f.g., and the intersection of
any two f.g. right ideals in A is f.g.;
(vii) for any integer n ≥ 0, the kernel of any homomorphism of right modules
An → A is finitely generated.

Proof. (i)⇔(ii)⇔(iii)⇔(iv)⇔(v)⇔(vi): see ([77], Theorem A.6), ([199], §4G),
and ([31], §II.2, Exercise 11).

(i)⇔(vii) is easily deduced from Lemma 508(1).

The reason why coherent modules are important is clear from the following
theorem (see also Theorem 612 below).
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Theorem 510. Let A be a left (resp., right) coherent ring. Then the category
AModfp (resp., ModfpA ) of finitely presented left (resp., right) A-modules
is an abelian full subcategory of all left (resp., right) A-modules.

Proof. (1). a) Let A be any ring. The category AModfp of finitely presented
left A-modules is obviously preadditive. If M and N are finitely presented
A-modules, so is M ⊕ N ∼= M × N , thus AModfp is additive (since the
module 0 is an object of AModfp).

b) Assuming that A is left coherent, let M,Q ∈ AModfp and •f : M → Q;
then im f is a f.g. submodule of Q, thus im f is finitely presented by Lemma
509(iv). By Lemma 498(iii) with N = ker f and P = im f ∼= M/ ker f , ker f
is finitely presented. Therefore AModfp has kernels. We have the short
exact sequence

0 −→ im f −→ N −→ N/ im f −→ 0

where N is finitely presented and im f is f.g., thus coker f ∼= N/ im f is
finitely presented by Lemma 498(iii), and AModfp has cokernels. This
proves that AModfp is preabelian. Since AModfp is a subcategory of the
abelian category AMod, AModfp is abelian.

Proposition 511. A left Noetherian ring and a semifir are left coherent.

Proof. Let A be a ring.
(1) Assuming that A is left Noetherian, let M be a finitely presented left

A-module and let N � M ; since M is Noetherian by Proposition 310, N is
f.g., therefore N is finitely presented by Theorem 499, thus M is coherent,
and A is left coherent by Lemma 509.

(2) Assuming that A is a semifir, consider a f.g. left ideal a; by Lemma
410(i), a is finite free, say of rank k, and has a presentation

0 −→ Ak −→ a −→ 0,

thus A is left coherent by Definition 507(i).

3.2.3 The Matrix of a Module

3.2.3.1 Definition

Let A be a ring, let •f : A(Q) → A(K) be an A-linear homomorphism,
where Q and K are sets of indices, and let R = (rij) be the matrix of f
in the canonical bases (ζi)i∈Q and (εj)j∈K of A(Q) and A(K), respectively
(Lemma and Definition 263); in addition, let •ϕ : A(K) � coker f be the
canonical epimorphism, let wj = εjϕ and let M = imϕ. Then M = [w]A
where w � (wj)j∈K and kerϕ = im f , thus the sequence (3.3) is exact.
Every module over A is isomorphic to a module constructed in that way
(Definition 495).
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Identifying •f with •R, the right-multiplication by R (Remark 264), im f
is the left A-module generated by the rows of R. The row of R with index i is
ςiR =

∑
j∈K rij εj ; its canonical image in coker f is zero, thus

∑
j∈I rij wj =

0, and since this holds for all i ∈ Q we obtain the equation (3.1). This
equation gathers all relations existing between the generators wj of M , thus
it characterizes the module M = [w]A; therefore it is an equation of M
in the generators wj (j ∈ K). This equation is not unique; indeed, assume
that Q = {1, ..., q} and choose another basis in Aq; then we obtain another
equation

R′w = 0

in the same generators, where R′ is left-associated with R (Definition 63),
i.e., R′ = U R for some U ∈ GLq (A). Nevertheless, M is determined up to
isomorphism by the matrix R in equation (3.1) as M = cokerA (•R).

Definition 512. (1) The above matrix R ∈ QA(K) is called a matrix of
definition of the module M = cokerA (•R).
(2) The module M = [w]A characterized by (3.1) is said to be defined by
generators and relations.

Recall that (3.1) defines a cokernel, not a kernel (however, see Subsect. 3.4.3
below). In usual cases, the module M under consideration is finitely pre-
sented, i.e., Q = {1, ..., q}, K = {1, ..., k} and R ∈ qAk.

3.2.3.2 Generalization

The situation is that in (3.2.1.3) when C is a preabelian category. Let •ιqj :
U ↪→ U q be the jth injection and •πki : Uk � U the ith projection. There ex-
ists a canonical isomorphism A-linear isomorphism HomC

(
U q, Uk

)
−̃→ qAk

given by
•f �→ (Rij)i,j , Rij � ιqi fπ

k
j , f =

∑

i,j
πqiRijι

k
j .

The matrix R = (Rij)i,j ∈ qAk is written Mat (f). Let •f : U q → Uk and
•g : Uk → U l. Then, Mat (fg) = Mat (f)Mat (g) . Let M be an object of C
and x ∈ HomC (M,U q) = HomC (M,U)q; then x = (xi)1≤i≤q is denoted by a
row with entries xi (1 ≤ i ≤ q) and

xf =

(
∑

1≤i≤q
xiRij

)

1≤j≤k
∈ HomC

(
M,Uk

)
= HomC (M,U)k

is the row xR, thus the left morphism •f is identified with the right multi-
plication •R by the matrix R = Mat (f).
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3.2.3.3 Some Properties

Item (1) of Definition 513 below generalizes that given in Corollary 340 and
coincides with it when A is a left Ore domain:

Definition 513. Let A be a ring and M a left A-module.

(1) M is torsion-free if AnnMr (a) = 0 whenever a ∈ A is right regular, i.e.,
AnnA

r (a) = 0.
(2) M is torsionless if it can be embedded in some direct product AI .

We have the following.

Theorem 514. Let A be a ring, consider the sequence (3.7) below where
R1 ∈qAk, R2 ∈ kAr, and set M1 = cokerA (•R1).

Aq •R1−→ Ak •R2−→ Ar → 0. (3.7)

(i) The following conditions are equivalent: (a) the sequence (3.7) is exact
at Ar; (b) •R2 is left-invertible; (c) the algebraic transpose R2• of •R2 is
left-invertible; (d) the matrix R2 is left-invertible over A.
(ii) Given R2 ∈kAr, if A is a left coherent ring, then there exist a natural
integer q and a matrix R1 ∈qAk such that the sequence (3.7) is exact at Ak.
(iii) Given R1 ∈qAk, there exists a matrix R2 ∈ kAr such that the sequence
(3.7) is exact (resp., exact at Ak) if, and only if M1

∼= Ar (resp., there exists
an embedding M1 ↪→ Ar, i.e., Condition (F) in Proposition 516(iv) below is
satisfied).

Proof. (i) Obviously, (b)⇔(c)⇔(d)⇒(a). If (a) holds, Ak/ kerA (•R2) ∼= Ar

by Noether’s first isomorphism theorem, thus kerA (•R2) is a direct summand
of Ak and since •R2 is surjective, it is left-invertible (see Proposition 572
below).

(ii): If A is left coherent, then kerA (•R2) ⊆ Ak is finitely generated by
Theorem 510. Consider a matrix R1, the rows of which form a finite generator
of kerA (•R2); then the sequence (3.7) is exact at Ak.

(iii): (a) If the sequence (3.7) is exact at Ak, there exists an induced map
(•R2)ind : M1 → Ar which is an embedding.

(b) Conversely, consider the exact sequence

Aq •R1−→ Ak ϕ1−→M1 → 0. (3.8)

If there exists an embedding •ι : M1 ↪→ Ar, set •R2 = •ϕ1ι : Ak → Ar.
Then the sequence (3.7) is exact at Ak.

(c) Assume M1
∼= Ar. Then the above monomorphism •ι : M1 ↪→ Ar is

an isomorphism, thus •R2 = •ϕ1ι : Ak → Ar is an epimorphism and the
sequence (3.7) is exact.

(d) Conversely, if the sequence (3.7) is exact, the monomorphism (•R2)ind
is an isomorphism, thus M1

∼= Ar.
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Remark 515. (a) The case when Aq, Ak and Ar are changed to A(Q), A(K)

and A(R), respectively, where Q, K and R are arbitrary sets of indices, can
also be considered; it is simpler and left to the reader.
(b) The matrix R1 (resp., the map •R1) in Theorem 514(ii) is called a syzygy
of the matrix R2 (resp., the map •R2).

For a module, torsion-freeness, torsionlessness and being embeddable in a free
module are closely connected, as shown by Proposition 342, and as proved
below.

Proposition 516. Let A be a ring and M a left A-module.

(i) If M is free, it is both torsion-free and torsionless.
(ii) If M torsion-free (resp., torsionless) and N � M , then N is torsion-free
(resp., torsionless).
(iii) If M is torsionless, then M is torsion-free.
(iv) Denote by (F) the following condition:
(F) There exists an embedding M ↪→ Ar for some integer r ≥ 1.
(a) Condition (F) holds if, and only if M is torsionless and has finite uniform
dimension (3.5.5.1).
(b) If the ring A is semiprime Goldie and M is f.g., Condition (F) holds if,
and only if M is torsion-free (see Proposition 342).
(c) If the ring A is right-coherent and M is f.p., Condition (F) holds if, and
only if M is torsionless.
(v) In particular, if A is semiprime Goldie and M is f.g. torsion-free, then
M is torsionless.

Proof. (i) and (ii) are clear.
(iii): Assume that M � AI and let w = (bi)i∈I ∈ M . If aw = 0, then

a bi = 0 for all i ∈ I. If AnnA
r (a) = 0, this implies bi = 0 for all i ∈ I, thus

w = 0; therefore, M is torsion-free.
(iv)(a),(b): see ([247], 3.4.3, 3.4.7).
(iv)(c): If M1 = M is f.p., there exists an exact sequence such as (3.8). If

M1 is torsionless, there exists an embedding ε : M1 ↪→ AI for some set of
indices I. Set •τ = •ϕ1 ε : Ak → AI ; for any x ∈ Ak, xτ can be written
xT where the matrix T ∈ kAI has possibly infinitely many columns. The
sequence

Aq •R1−→ Ak •T−→ AI (3.9)

is exact, thus R1 T = 0. If A is right coherent, there exists a natural integer r
and matrices R2 ∈ kAr, D ∈ rAI such that R1R2 = 0, T = R2D by Lemma
509(iii), and the exactness of the sequence (3.9) at Ak implies that of the
sequence (3.7) at Ak, thus there exists an embedding M1 ↪→ Ar by Theorem
514(iii).

(v) is an obvious consequence of (iv).
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3.2.4 Similar Matrices

Given a finitely presented module M over a ring A, it is important to char-
acterize all matrices determining M up to isomorphism.

Let M = cokerA (•R); all matrices R′ we are looking for are those for
which cokerA (•R) ∼= cokerA (•R′). The definition below is a generalization
of Definition 424(2):

Definition 517. Two matrices R, R′ are left-similar if the left A-modules
they define are isomorphic. Right-similar matrices are defined correspond-
ingly, and two matrices R, R′ are called similar (written R * R′) if they are
left- and right-similar.

In many textbooks, two square matrices are called similar when they are
conjugate (or similar-square): see Definition 280(iii) and Exercise 679. Let
us further study the conditions under which two matrices are left-similar. To
obtain explicit conditions, the ring A is assumed to be weakly finite (Exercise
481(2)); this is not a strong assumption. Consider a relation

[
R′ −T ′

]
[
T
R

]
= 0 (3.10)

between matrices.

Definition 518. (i) The relation (3.10) is called right-comaximal if[
R′ −T ′

]
is right-invertible, i.e., if there is a pair (X,Y ) such that the fol-

lowing Bézout identity holds:

R′X − T ′ Y = I. (3.11)

Then the pair (R′, T ′)) is called right-comaximal, or strongly left-coprime.
(ii) The pair (R′, T ′) is said to be left-coprime if the matrix A′ =

[
R′ −T ′

]

is left-prime (Definition 419).

(iii) The relation (3.10) is called left-comaximal if
[
T
R

]
is left-invertible, i.e.,

there exists a pair (X ′, Y ′) such that

X ′R− Y ′ T = I. (3.12)

Then the pair (R, T )) is called left-comaximal, or strongly right coprime.

(iv) The pair (R, T ) is right-coprime pair if the matrix
[
T
R

]
is right-prime.

(v) The relation (3.10) is comaximal if it is both right- and left-comaximal.
This relation is coprime if (R′, T ′) is left-coprime and (R, T ) is right-coprime.

The index of a matrix R ∈ qAk is i (R) = k − q. A relation (3.10) is said to
be proper if R,R′ (or equivalently T, T ′) have the same index.
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Definition 519. Let A be a weakly finite ring and let R ∈ qAk, R′ ∈ q′Ak′ be
two matrices having the same index; R and R′ are said to be stably associated

if there exists a (q′ + k)× (q + k′) matrix
[
R′ −T ′
∗ ∗

]
with inverse of the form

[
∗ T
∗ R

]
.

Theorem 520. Let A be a weakly finite ring and let R ∈ qAk, R′ ∈ q′Ak′ .

(1) Of the following, (a) and (b) are equivalent and imply (c) and (d):
(a) R and R′ are stably associated;
(b) R and R′ satisfy a proper comaximal relation (3.10);
(c) R and R′ are left-similar;

(d) setting S′ =
[
R′ −T ′

]
and S =

[
T
R

]
the sequence

•S′
−→ Ak′+q •S−→ (3.13)

is exact and the pair (R, T ) is strongly right-coprime.
(2) If R and R′ are left-regular, then Conditions (a), (b) and (c) are
equivalent.

Proof. (b)⇒(a): Assuming that (b) holds, we have (3.11) and (3.12); setting

M =
[

R′ −T ′
−Y ′ X ′

]
, N =

[
X T
Y R

]

we obtain M N =
[
I 0
∗ I

]
� J ; the matrix J is invertible, thus M and N are

left- and right-invertible (Exercise 481(2)(iv)), therefore those matrices are
invertible (1.3.2.1) and (a) holds.

(a)⇒(b) is obvious.
For the other statements regarding Conditions (a), (b) and (c), see ([77],

Sect. 0.6, Th. 6.2).
(b)⇒(d): Assume that (b) holds; then we have obviously imA (•S′) �

kerA (•S), thus it remains to prove that kerA (•S) � imA (•S′). We have
M N J−1 = I, thus N J−1 M = I (since A is weakly finite) and J−1 is of the

form
[
I 0
Z I

]
. Let

[
x y
]
∈ kerA (•S); then an easy calculation shows that

[
x y
]
N J−1M = z S′

with z = xX + y Y . Therefore,
[
x y
]
∈ imA (•S′).

See complements in Corollary 847 below. Due to the symmetry of Condition
(a) above, we have the following.

Corollary 521. If R ∈ Matq (A) and R′ ∈ Matq′ (A) are regular matrices,
then R and R′ are left- (or right-) similar if, and only if they are similar.
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Definition 522. Over a ring A, a pair (A,B) of matrices is said to be co-
maximally transposable if there exists matrices A′, B′ over A such that
AB = B′A′ is a proper comaximal relation.

The following result is proved in ([77], Sect. 3.4, Lemma 3.4):

Proposition 523. Let A be a weakly finite ring. If a pair (A,B) of matrices
over A is comaximally transposable, then there exist matrices X,Y over A
such that the following Bézout identity holds:

X A−B Y = I. (3.14)

Conversely, if A is a semifir (or more general, an Hermite ring: see Definition
579 below) and there exist matrices X,Y such that (3.14) holds, then the pair
(A,B) is comaximally transposable.

3.2.5 Similarity over Bézout Domains

Let A be a right Bézout domain and a, a′ be nonzero elements of A. Since
A is weakly finite (Exercise 481), a and a′ are similar if, and only if there
exists a proper comaximal relation

(
a′ −b′

)
(
b
a

)
= 0 (3.15)

(Theorem 520 and Corollary 521).

Theorem 524. The elements a and a′ are similar if, and only if there exists
b ∈ A× such that (a, b) is right-coprime and a′ = u [a, b]l b

−1 where u is a
unit.

Proof. Recall that [a, b]l is a least common left multiple of a and b, uniquely
determined up to left associates (Proposition 82). Since A is a right Bézout
domain, a pair (a′, b′) of elements of A is strongly left-coprime if, and only
if it is left-coprime by Theorem 443 (see also Lemma 650 below). Assuming
that the relation (3.15) holds with (a, b) right-coprime, then

a′b = b′ a, a′ = (b′ a) b−1. (3.16)

The element b′ a is a left-multiple of a and by the first equality of (3.16) it
is a left-multiple of b. Conversely, if b′ a is a left-multiple of b, then (3.16)
holds. Let c ∈ A× and let b′ be such that b′ a = u [a, b]l; let b′′ = c b′ and let
a′′ be such that a′′b = b′′a. From the above, a′ b = b′ a and a′′ = b′′ a b−1 =
c b′ a b−1 = c a′, thus [

a′′ −b′′
]

= c
[
a′ −b′

]
.

Therefore, the relation (3.15) is comaximal if, and only if c is a unit.
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3.3 Cyclic Modules

3.3.1 Cyclic Modules over a General Ring

3.3.1.1 Cyclic Modules

Definition 525. A left A-module C is said to be cyclic if it is generated by
one element.

Proposition 526. (i) A left A-module C is cyclic, generated by m, if, and
only C ∼= A/a where a = AnnA

l (m).
(ii) C ∼= A if, and only if a = {0}.
(iii) Let S ⊆ A× be a left denominator set; then S−1C = 0 if S∩a �= ∅ (i.e.,
S meets a).

Proof. (i): Let C be a cyclic module with generator m, i.e., C = [m]A,
and let a = AnnA

l (m). Let •α : A � C be the epimorphism defined by
(1)α = m. Since kerα = a, there exists by Noether’s first isomorphism
theorem (Theorem 52(1)) an isomorphism C ∼= A/a. Conversely, let a be
a left ideal in A; then the quotient A/a is cyclic, generated by (1)ϕ where
ϕ : A � A/a is the canonical epimorphism. (ii) is obvious.

(iii): If S meets a, there exists s ∈ S ∩ a; since s is a unit of S−1A,
1/1 ∈ S−1a, thus S−1a = S−1A and

(
S−1A

)
/
(
S−1a

)
= S−1 (A/a) = 0.

Corollary 527. Let A be a left Ore domain and let C ∼= A/a be a cyclic left
A-module.

(1) The following conditions are equivalent:
(i) a �= {0};
(ii) the module C is torsion;
(iii) C � A.
(2) If A is a left Bézout domain, then there exists a ∈ A such that C ∼=
A/A a, and a �= 0 if, and only if C is torsion.

Proof. It remains to prove (2). Let a be a left ideal in A such that C ∼= A/a.
Since A is a semifir, the f.g. module C is finitely presented by Theorem 499.
We have the short exact sequence

0 −→ a −→ A −→ C −→ 0

thus a is f.g. by Lemma 498(ii), and there exists a ∈ A such that a = A a by
Definition 438. The rest is clear.

Regarding quotients of cyclic modules, we have the following.
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Proposition 528. Let A be a ring.

(i) Every quotient of a cyclic module is cyclic.
(ii) If a, b ∈ A and b is left-regular (Definition 83), then A/A a ∼= A b/A a b,
and this is a direct summand of A/A a b if, and only if there exist x, y ∈ A
such that

xa− b y = 1. (3.17)

Moreover, in that case we have

A /A a b ∼= A/A a⊕A/A b.

(iii) Every submodule M of a cyclic left A-module C ∼= A/c (where c is a left
ideal) is cyclic and isomorphic to a module b/c where b is a left ideal such
that c ⊆ b. If A is a left Bézout domain and M �= 0, c = A c, b = A b and
b/c ∼= A/A a where c = a b.
(iv) A left A-module M is simple if, and only if M ∼= A/m where m is a
maximal left ideal.

Proof. (i): Let C be a cyclic left A-module with generator m and let D be
a quotient of C. Let •ϕ : C � D be the canonical epimorphism. Then D is
generated by mϕ, thus is cyclic.

(ii): See ([77], Sect. 3.6, Lemma 6.7).
(iii): Let c = AnnA

l (m) and let M be a submodule of C = [m]A. By
Proposition 526, there exists an isomorphism •ψ : C−̃→A/c, thus (M)ψ is a
submodule of A/c. By Theorem 147(i) there exists a left ideal b such that
c ⊆ b and (M)ψ = b/c. If A is a left Bézout domain and M �= 0, b and
c are left principal ideals, i.e., c = A c and b = A b where b �= 0 (Corollary
527(2)); since c ⊆ b, c ∈ A b and there exists a such that c = a b. Then
A b/A a b ∼= A/A a by (ii).

(iv): A simple left A-module is obviously cyclic, thus isomorphic to A/m
for some left ideal m. By (iii), A/m is simple if, and only if m is a maximal
left ideal.

Corollary 529. Let A be a semifir and let a, b ∈ A×. The following condi-
tions are equivalent:

(i) A/A a⊕A/A b is cyclic;
(ii) A/A a ⊕A/A b ∼= A/A a b;
(iii) the pair (a, b) is strongly right-coprime.

Proof. Let a, a′ be similar. Then A/A a′ ⊕A/A b ∼= A/A a ⊕A/A b. By
Proposition 528(ii), A/A a ∼= A b/A a b and the latter module is a direct
summand of A/A a b if, and only if there exist x, y such that (3.17) holds,
and then A/A a b ∼= A/A a ⊕ A/A b. By Proposition 523, there exist x, y
such that (3.17) holds if, and only if (a, b) is comaximally transposable,
say a b = b′ a′ is a proper comaximal relation and (a′, b) is strongly right-
coprime. Conversely, if (a′, b) is strongly right-coprime, there exists a proper
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comaximal relation a b = b′ a′. In the above a and a′ can be anywhere
interchanged.

3.3.1.2 Decomposable Elements

Theorem and Definition 530. Let A be a left Bézout domain and let c ∈
A×.

(i) The element c is said to be left-decomposable if there exist a1, a2 ∈ A
such that

A c = A a1 ∩A a2, A c �= A a1,A a2, (3.18)

i.e., c = b2 a1 = b1 a2 where a1, a2, b1, b2 are nonunits and c is an lclm of the
pair (a1, a2) (Theorem 443); c is left-decomposable if, and only if A/A c is
an irredundant subdirect sum of two torsion cyclic modules:

A/A c ↪→ A/A a1 ⊕A/A a2. (3.19)

A right-decomposable element is likewise defined and an element which is
not left- (resp., right-) decomposable is said to be left- (resp., right-) inde-
composable.
(ii) The element c is said to be decomposable if (3.18) holds with (a1, a2)
right-coprime, i.e.,

A a1 + A a2 = A (3.20)

(and indecomposable otherwise); c is decomposable if, and only if

A/A c ∼= A/A a1 ⊕A/A a2,

where both A/A a1,A/A a2 �= 0 or A/A c = 0.
(iii) Therefore, c ∈ A× is (left, right) decomposable if, and only if every
element similar to it is (left, right) decomposable too.

Proof. (i): All A-linear left maps A→ A × A are of the form •fλ : x �→
(λx, λx) (λ ∈ A). By Theorem and Definition 145, there exists an A-linear
map •f̄λ : A/A c → (A×A) / (A a1 ×A a2) induced by fλ with respect
to A c and A a1 ×A a2 if, and only if (λA c) × (λA c) ⊆ A a1 ×A a2, i.e.,
λA c ⊆ A a1 ∩ A a2. This implies A c ⊆ A a1 ∩ A a2, thus the weakest
condition is obtained with λ = 1. The left A-module (A×A) / (A a1 ×A a2)
can be identified with A/A a1 ⊕A/A a2 by (2.9). The induced map •f̄1 is
injective if, and only if

(
(A a1 ×A a2) f−1

1

)
π = 0 where •π : A � A/A c is

the canonical epimorphism; this condition is equivalent to A a1∩A a2 ⊆ A c.
To summarize, A c = A a1 ∩A a2 if, and only if there exists an embedding
(3.19). This embedding induces an irredundant subdirect sum if, and only if
A c �= A a1,A a2.



206 3 Homological Algebra

(ii): The map •π is surjective if, and only if for any element ȳ ∈
A/A a1 ⊕ A/A a2, there exists x ∈ A such that ȳ = (x)π. Set ȳ =
(y1 + A a1, y2 + A a2); we have ȳ = (x) π if, and only if x ∈ (y1 + A a1) ∩
(y2 + A a2). This intersection is nonempty if, and only if there exist α1, α2 ∈
A such that y1 + α1 a1 = y2 + α2 a2, or equivalently α1 a1 − α2 a2 = y2 − y1.
This Bézout equation has a solution (α1, α2) for arbitrary y1, y2 if, and only
if (3.20) holds.

(iii) is clear.

3.3.1.3 Simple Modules

Let us further study simple modules (Definition 313(i)).

Definition 531. Let A be a ring. A submodule of a left A-module M is
maximal if it is maximal in the set of all proper submodules of M .

Proposition 532. Let A be a left principal ideal domain.

(i) A left A-module S is simple if, and only if S ∼= A/A c where c is an atom
(Definition 83(ii)).
(ii) If A is commutative, an A-module S is simple if, and only if S ∼= A/A p
where p is a prime (Definitions 128 and 304).

Proof. This is a consequence of Lemma 84, and of Propositions 459 &
528(iv).

Proposition 533. Let M be a nonzero finitely generated left A-module.

(i) Let L be a proper submodule of M . There exists a maximal submodule of
M containing L.
(ii) M has a simple quotient.

Proof. (i): Let M be the set of all proper submodules of M containing L
and let us show that M is inductively ordered by inclusion (1.5.3.2). Let
C be a chain of M, N be the union of all modules belonging to C and G
a finite generator of M ; if N = M , then each element g of G belongs to
a module Pg ∈ C, thus G belongs to P =

∑
g∈G Pg, a contradiction since

P ∈ C. Therefore, according to Zorn’s lemma (Lemma 107), M has a maximal
element N .

(ii): By (i) with L = 0, M has a maximal submodule N . Then S = M/N
is simple by Theorem 147(i).

Definition 534. Let (Si)i∈I be a nonempty family of simple left A-modules.
This family is called a representative system of simple left A-modules if (i)
Si �= Sj for i �= j, and (ii) for any simple left A-module S, there exists one
index i ∈ I and an isomorphism S ∼= Si.
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3.3.2 Cyclic Modules over Principal Ideal Domains

3.3.2.1 Bounded Elements and Bounded Modules

Definition 535. (i) A left A-module M is said to be bounded if there exists
a regular element c of A such that c ∈ AnnA

l (M); then, the two-sided ideal
AnnA

l (M) is called the bound of M .
(ii) An element a in a ring A is said to be left (resp., right) bounded if the
left (resp., right) cyclic A-module A/A a (resp., A/aA) is bounded; a ∈ A
is said to be bounded if it is both left and right bounded.

First note that if a is a unit in any ring A, then A/A a = A/aA = 0,
thus a is bounded and AnnA

l (A/A a) = AnnA
r (A/aA) = A. If a = 0,

A/A a = A/aA = A and a is unbounded.
Assuming that the ring A is a principal ideal domain and that a ∈ A× is

left (resp., right) bounded, AnnA
l (A/A a) = A a∗lA (resp., AnnA

r (A/aA) =
A a∗rA) where a∗l (resp., a∗r) is an invariant element (Lemma 447). We have
the following.

Proposition 536. Let A be a principal ideal domain and a ∈ A×.

(i) AnnA
l (A/A a) = AnnA

r (A/aA), thus a is left (or right) bounded if, and
only if a is bounded; then a∗l and a∗r are associates.
(ii) If a is bounded, let n = AnnA

l (A/A a) �= 0; one has n = A a∗ where a∗

is an invariant element in A, unique up to associates and called the least
bound of a; a∗ is also the least bound of any element similar to a, and it is
both a left multiple and a right multiple of a.
(iii) If A is commutative, a is bounded.

Proof. (i) and (ii): see ([77], Sect. 6.4). (iii): If A is commutative, then
a ∈ AnnA

l (A/aA).

Definition 537. Let a and b be nonzero elements of a principal ideal domain
A; a and b are said to be totally coprime if no nonunit factor of a is similar
to a factor of b.

Lemma 538. Let a and u be nonzero elements of a principal ideal domain
A; if a is bounded and totally coprime to u, there is a comaximal relation

a u = u1 a1 (3.21)

and hence
A/A a u ∼= A/A a⊕A/Au. (3.22)

Proof. If we can find a relation (3.21) where a1 is totally coprime to u and u1

is totally coprime to a, then the relation
[
a −u1

]
[
u
a1

]
is comaximal (3.2.4.1)

by Theorem 443 and the decomposition (3.22) holds by Corollary 529.
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Let a∗ be the least bound of a; by Proposition 536(ii), there exists a′

such that a∗ = a′ a. Then a′ a u = a∗ u = u0 a
∗ since a∗ is invariant. Let

a′ u1 = u0 b be an lcrm of a′ and u0. Since a′ a u and u0 a
∗ are common right

multiples of a′ and u0, there exists a1 such that a∗ = b a1 and a u = u1 a1

(Definition 81(1)). By Theorem 462 and Lemma 433, u1 is similar to a right
factor of u0 and so totally coprime to a, while a1 is a factor of a∗ and so
totally coprime to u. Therefore we have obtained the required relation and
(3.22) holds.

3.3.2.2 Totally Unbounded Elements

Definition 539. Let A be a ring; an element a ∈ A is totally unbounded if
it has no bounded factors apart from units.

Note that a unit is totally unbounded.

Lemma 540. Let A be a simple ring. Then every nonunit in A is totally
unbounded.

Proof. Let a ∈ A be a nonunit. Since n = AnnA
l (A/A a) is a two-sided

ideal (Lemma 506), n = 0 or n = A. In the second case, A/A a = 0, thus a
is a unit, a contradiction. Therefore, any nonunit in A is unbounded, hence
any element of A is totally unbounded.

3.3.2.3 Primary Decomposition

First, let us consider the primary decomposition in a commutative Noetherian
ring. The following is classical and can be found in, e.g., ([31], §§IV.1, IV.2).

Lemma and Definition 541. Let A be commutative ring.

(1) An ideal q in A is said to be primary if whenever a, b ∈ A are such that
ab ∈ q and a /∈ q, then bn ∈ q for some n ≥ 1.
(2) If q is a primary ideal, its radical

√
q (Theorem and Definition 387(i)) is

a prime ideal p, and q (denoted by q (p)) is said to be p-primary.
(3) Let M be an A-module and let p be a prime ideal in A. The following
conditions are equivalent:
(i) There exists x ∈M such that p = AnnA (x).
(ii) There exists a submodule N of M such that N ∼= A/p.
When the above equivalent conditions hold, the prime ideal p is said to be
associated with M . The set of all prime ideals associated with M is denoted
by Ass (M).
(4) If the ring A is Noetherian and the A-module M is f.g., then Ass (M) is
finite.
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Theorem 542. (Lasker-Noether theorem.) Let A be commutative Noethe-
rian ring and.

(i) Every ideal a in A can be written as an intersection

a =
⋂

p∈Ass(A/a)

q (p) ;

which is the ”primary decomposition” of a, or more specifically the ”reduced
primary decomposition” of a, since that decomposition is irredundant.
(ii) Let Ass (A/a) = {p1, ..., pr} and let qi = q (pi) (1 ≤ i ≤ r). There exists
an embedding

A/a ↪→
⊕

1≤i≤r
A/qi.

Proof. (i): See ([31], §IV.2, Theorem 1).
The proof of (ii) is similar to that of Theorem and Definition 530(i). Let

f• : A→
∏

1≤i≤r
A : x �→ (x, ..., x) .

Since a ⊆
⋂

1≤i≤r qi, there exists an A-linear map

f̄• : A/a→
(∏

1≤i≤r A
)
/
(∏

1≤i≤r qi

)

induced by f with respect to a and
∏

1≤i≤r qi (Theorem 145). Then, ker f̄ =

π
(
f−1
(∏

1≤i≤r qi

))
where π : A→ A/a is the canonical epimorphism, i.e.,

ker f̄ =
(⋂

1≤≤r qi

)
/a = 0,

thus f̄ is injective. Last,
(∏

1≤i≤r A
)
/
(∏

1≤i≤r qi

)
∼=
⊕

1≤i≤r
A/qi

by (2.9).

Although the above primary decomposition is reduced, it is in general non-
unique ([31], §IV.2, Exercise 24(c)). With additional conditions on the pri-
mary ideals, a canonical primary decomposition can be obtained, which is
unique ([31], §IV.2, Exercise 4).

Let A be a principal ideal domain (not necessarily commutative). The
following is obtained from Lemma 538 by induction ([77], Sect. 6.4, Theorem
4.5; [78], Sect. 1.5, Theorem 1.5.5):

Lemma and Definition 543. (1) An element a of A is such that the left
ideal A a has a decomposition
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A a = A q1 ∩ ... ∩A qk ∩Au (3.23)

where each qi is a product of similar bounded atoms, while atoms in different
q′s are dissimilar and u is totally unbounded. Moreover, the qi and u are
unique up to left associates, (3.23) gives rise to a direct sum decomposition

A/A a ∼= A/A q1 ⊕ ...⊕A/A qk ⊕A/Au, (3.24)

and k = 0 (i.e., A/A a ∼= A/Au) if A is simple.
(2) As in Lemma and Definition 541, the ideals A qi (1 ≤ i ≤ k) are called
primary. As is Theorem 542, (3.23) (resp., (3.24)) is called the primary
decomposition of A a (resp., A/A a).

Remark 544. (i) If A is any simple ring (not necessarily a principal ideal
domain), the statement of the above theorem is still valid by Lemma 540.
(ii) If A is commutative, then u is a unit by Proposition 536(iii) and for
each i ∈ {1, ..., k}, their exists a prime pi and an integer ni ≥ 1 such that
A qi = A pni

i (Exercise 485). Thus A qi is a primary ideal and (3.23) (resp.,
(3.24)) is the primary decomposition of A a (resp., A/A a) given by the
Lasker-Noether theorem. In addition, each qi (1 ≤ i ≤ k) is left- and right-
indecomposable in the sense of Definition 530.
(iii) When A is noncommutative, neither u nor the qi are in general in-
decomposable in the sense of Definition 530. Thus we will be led to study
irredundant decompositions.

Remark 544(ii) can be generalized as follows ([78], Proposition 1.5.6):

Corollary 545. Let A be a principal ideal domain. Then a bounded inde-
composable element is a product of similar atoms and has a bound of the form
pn, where p is an I-atom (1.5.6.3). Two bounded indecomposable elements
have the same bound if, and only if they are similar.

Proof. This is a consequence of Lemma and Definition 543 when
A/Au = 0.

3.3.2.4 Irredundant Decomposition and Complete Direct
Decomposition

Let A be a principal ideal domain and c ∈ A×.
(1) Since L (cA,A) is a modular lattice of finite length, one may consider

by the Kurosh-Ore Theorem (Theorem 126) an irredundant decomposition
of cA (Definition 122)

cA = a1 A ∩ ... ∩ ar A (3.25)

where each ai is indecomposable (Definition 530). Considering a second
irredundant decomposition of cA



3.4 Functors in Categories of Modules 211

cA = b1 A ∩ ... ∩ bsA (3.26)

where each bi is indecomposable, then (by the Kurosh-Ore theorem) r = s
and there exists a permutation i �→ i′ of {1, ...r} such that one can substitute
in the decomposition (3.25) any ai by bi′ .

(2) Consider a decomposition such as (3.25) where for each index i,

aiA �= A, aiA+

(
⋂

j �=i
aj A

)

= A.

Such a decomposition is called a complete direct decomposition of cA. By
Theorem and Definition 530, the complete direct decomposition (3.25) of cA
corresponds to the direct sum representation

A/cA ∼= A/a1 A⊕ ...⊕A/ar A.

Consider another complete direct decompositions (3.26) of cA; by the Krull-
Schmidt theorem (Theorem 125), r = s and there exists a permutation i �→ i′

of {1, ...r} such that ai and bi′ are similar (since projectivity corresponds to
similarity by Corollary 245). Any complete direct decomposition can be
refined to an irredundant decomposition but an irredundant decomposition
is not a complete direct decomposition in general.

Example 546. (Example 127 cont’d). The following decompositions of 180Z
are irredundant and complete direct: 180Z = ±4Z±9Z±5Z. They correspond
to the direct sum decompositions

Z/180Z ∼= Z/ (±4Z)⊕Z/ (±9Z)⊕Z/ (±5Z) .

3.4 Functors in Categories of Modules

All functors below are additive functors between categories of modules. Left
exact, right exact and exact functors have already been defined in general
categories (1.2.3.6) and in preabelian ones (Theorem 42). Recall that the
category AMod is abelian.

3.4.1
⊗

and Hom

3.4.1.1 A
⊗

S − and HomA (A, •)

Consider an (A,S)-bimodule A; the functor F = A
⊗

S− : SMod→ AMod
is defined as follows: for any left S-module B, F (B) is the left A-module
A
⊗

S B (Theorem 283); for any homomorphism of left S-module •β : B →
B′, F (β) is the left A-module homomorphism 1⊗β where 1 = IdA (Lemma
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and Definition 282). As easily seen, F
(
β ◦ β′

)
= F (β) ◦ F

(
β′
)
, thus the

functor A
⊗

S− is covariant.
The functor G = HomA (A, •) : AMod→ SMod is the covariant functor

defined in Theorem and Definition 43 (see also Theorem 236). For any left
A-module C, G (C) is the left S-module HomA (A,C) and for any homomor-
phism of left A-module •γ : C → C′, G (γ) is the right-composition by γ, as
depicted by the commutative diagram below:

A
•f−→ C

•G (γ) (f) ↘ ↓ •γ

C′

(3.27)

By the Adjoint Isomorphism Theorem (Theorem 284(i)),

(A
⊗

S−,HomA (A, •)) is an adjoint pair.

Therefore, the following is a consequence of Theorem 30:

Proposition 547. (1) The functor A
⊗

S− has the following properties:
(i) A

⊗
S− is right exact and commutes with direct limits:

A
⊗

S lim−→Bi ∼= lim−→A
⊗

S Bi;

(ii) in particular,

A
⊗

S

(∐

i
Bi

)
∼=
∐

i
(A
⊗

SBi)

(Example 18).
(2) The functor HomA (A, •) has the following properties:
(i’) HomA (A, •) is left exact and commutes with inverse limits:

HomA

(
A,
(
lim←− Ci

))
∼= lim←− (HomA (A,Ci))

and if (Ci) is a family of (A,T)-bimodules, this is an isomorphism of (S,T)-
bimodules;
(ii’) in particular,

HomA

(
A,
(∏

i
Ci

))
∼=
∏

i
(HomA (A,Ci))

(Example 24).

Remark 548. (i) A
⊗

S− is not left exact (Exercise 680).
(ii) A

⊗
S

∏
iBi �

∏
iA
⊗

S Bi in general ([306], Exercise 2.25).
(iii) HomA (A,

∐
i Ci) �

∐
i HomA (A,Ci) and HomA (A,

∐
iCi) �∏

i HomA (A,Ci) in general ([306], Exercises 2.18 & 2.19).
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3.4.1.2 −⊗S B and HomT (B, •)

Assuming that B is an (S,T)-bimodule, the functor F′ = −
⊗

SB : ModS →
ModT is defined as follows: for any right S-module A, F′ (A) is the right T-
module A

⊗
SB (Theorem 283); for any homomorphism of right S-modules

α : A → A′, F′ (α) is the homomorphism of right T-modules α ⊗ 1 where
1 = IdB (Lemma and Definition 282). This functor is covariant.

Therefore, two functors can be defined from
⊗

S: A
⊗

S− (3.4.1.1) and
−
⊗

SB that we are now considering;
⊗

S is a bifunctor (1.2.3.1).
The functor G′ = HomT (B, •) : ModT →ModS is defined as follows: for

any right T-module C, G′ (C) is the right S-module HomT (B,C) (Theorem
236(ii)); for any homomorphism of right T-modules γ• : C → C′, G′ (γ) • is
the left-composition by γ. This functor is covariant.

By the Adjoint Isomorphism Theorem (Theorem 284(ii)),

(−
⊗

SB,HomT (B, •)) is an adjoint pair.

The above has consequences similar to those in Proposition 547 and are not
repeated here.

3.4.1.3 HomA (•, C)

Let C be a left A-module and consider the functor Ḡ = HomA (•, C) defined
as follows: for any left A-module A, Ḡ (A) is the abelian group HomA (A,C);
for any for any homomorphism of left A-module •α : A′ → A, Ḡ (α) is
the left-composition by α, as depicted by the commutative diagram below
(obtained from (3.27) by reversing the arrows).

C
•g←− A

•Ḡ (α) (g) ↖ ↑ •α
A′

Since the functor G is covariant, the functor Ḡ is contravariant (Theorem
and Definition 43 and Exercise 200). To detail this point, consider the com-
mutative diagram below:

C
ϕ

↗ ↑
g

↖
A

α−→ A′ α′
−→ A”
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The vertical arrow is ϕ′ = α′ ◦ g = Ḡ (α′) (g), therefore

ϕ = α ◦ ϕ′ = Ḡ (α) (ϕ′) = Ḡ (α) ◦ Ḡ (α′) (g) .

In addition, ϕ = (α ◦ α′) ◦ g = Ḡ (α ◦ α′) (g), hence

Ḡ (α ◦ α′) = Ḡ (α) ◦ Ḡ (α′)

which proves that the functor Ḡ = HomA (A, •) is contravariant since it
transforms left morphisms •α into right morphisms Ḡ (α) • (Remark 10).

Let C = AMod. From the above, the contravariant functor Ḡ =
HomA (•, C) : C → Ab uniquely defines a covariant functor G =
HomA (C, •) : Cop → Ab, which has been already studied (3.4.1.1). We
know that G is left exact, therefore so is Ḡ. Let us summarize the obtained
results:

Proposition 549. The functor HomA (•, C) has the following properties:

(i)
HomA

(
lim−→Ai, C

)
∼= lim←− HomA (Ai, C) ,

and if (Ai) is a family of (A,S)-bimodules and C is an (A,T)-bimodule, this
is an isomorphism of (S,T)-bimodules;
(ii) in particular,

HomA

((∐

i
Ai

)
, C
)
∼=
∏

i
(HomA (Ai, C)) ;

(iii) HomA (•, C) is contravariant left exact from AMod to ModE where
E =EndA (C), the endomorphism ring of C.

Proof. Due to the importance of (iii) for the sequel, let us give a direct proof
of this result:

(1) Consider the exact sequence (1.9) and let us show that the sequence
(1.11), where F = HomA (•, C), is exact. First recall that for every left
morphism •f : X → Y , F (f) is a right morphism.

(i) F (•f2) is a monomorphism: if •ε : X3 → C is such that (F (f2)) (ε) = 0,
one has (y) (f2 ◦ ε) = 0 for any y ∈ X2 ; as f2 is an epimorphism, this implies
ε = 0.

(ii) imF (•f2) ⊆ kerF (•f1) : let •γ : X2 → C be such that γ ∈ im F (f2).
There exists ε : X3 → C such that γ = (F (f2)) (ε) = f2 ◦ ε ; therefore,
(F (f1)) (γ) = f1 ◦ f2 ◦ ε = 0 since f1 ◦ f2 = 0.

(iii) kerF (•f1) ⊆ im F (•f2): let •γ : X2 → C be such that γ ∈ kerF (f1),
i.e., (F (f1)) (γ) = f1 ◦ γ = 0. Let y ∈ ker f2; as ker f2 = im f1, there exists
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x ∈ X1 such that y = (x) f1, thus (y) γ = (x) (f1 ◦ γ) = 0, hence
ker f2 ⊆ ker γ. Let us identify X3 with X2/ ker f2 and f2 with the canonical
epimorphism. Let γ̄ : X2/ kerf2 → C be the induced homomorphism with re-
spect to ker f2 and 0 (Theorem 145). One obtains γ = (F (f2)) (γ̄) ∈ im F (f2).
This proves that the covariant functor HomA (•, C) : AMod → Ab is left
exact.

(2) We know that C is an (A,E)-bimodule (Example 230(ii)), thus for any
left A-module M , HomA (M,C) has a canonical structure of (Z,E)-bimodule
(Theorem 236(i)), i.e., of right E-module. Therefore, HomA (•, C) is a
functor AMod→ModE.

Remark 550. If A is commutative, then for any A-modules A and C,
HomA (A,C) is an A-module by Example 230(iii).

3.4.2 Restriction and Extension of the Ring of
Scalars

3.4.2.1 Change-of-Rings Functor

Let A and S be two rings and let ρ : A → S be a ring-homomorphism.
The change-of-ring functor is the functor ρ∗ : SMod → AMod defined as
follows: every left S-module M is endowed with a structure of left A-module
by setting

r .m = ρ (r) m for any m ∈M and r ∈ A;

and then every S-linear map •f : M → N becomes an A-linear map since

(r .m) f = (ρ (r) m) f = ρ (r) (m) f = r . (m) f.

The functor ρ∗ is obviously covariant and the following holds:

Theorem 551. (i) The functor ρ∗ is faithful exact and every generating fam-
ily of ρ∗ (M) (M ∈ SMod) is a generating family of M .
(ii) If (Mi)i∈I is a family of left S-modules, then

ρ∗ (
∏
iMi) =

∏
i ρ∗ (Mi) , ρ∗ (

⊕
iMi) =

⊕
i ρ∗ (Mi) .

(iii) If ρ is surjective, then the functor ρ∗ is full and every generating family
of M (M ∈ SMod) is a generating family of ρ∗ (M).
(iv) If ρ is injective, then every free family in M (M ∈ SMod) is free in
ρ∗ (M).
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Proof. (i): For any S-linear map f : M → N , f and ρ∗ (f) are equal as
functions, thus the arrow map of ρ∗ is injective and ρ∗ is faithful. In addition,
ρ∗ (f) has the same kernel and image as does f , thus ρ∗ is exact.

(ii)-(iv) are clear (see [27], §II.1, Prop. 24).

In particular, if A ⊆ S and ρ is the inclusion, ρ∗ is the restriction of the ring
of scalars (2.2.2.1).

3.4.2.2 Extension of the Ring of Scalars

Let ρ : A → S be a ring-homomorphism and ρ∗ : ModS→ModA the
change-of-ring functor. Then, setting

s ρ (r) = s . r for any s ∈ S and r ∈ A (3.28)

ρ∗ (SSS) is an (S,A)-bimodule with the following compatibility condition
(2.2.2.2) holding true:

s′ (s . r) = s′ (s ρ (r)) = (s′ s) ρ (r) = (s′ s) . r

for any s, s′ ∈ S, r ∈ A. Let M be a left A-module; then ρ∗ (SSS)
⊗

A M
has a canonical structure of left S-module (Theorem 283) and is denoted
by ρ∗ (M) = (S)M . The definition below is a generalization of Lemma and
Definition 285(2):

Definition 552. The left S-module ρ∗ (M) = (S)M is called the induced ex-
tension of M along ρ.

Item (1) below is a consequence of Theorem 284(i); its proof is detailed in
([27], §II.5, Prop. 1):

Theorem and Definition 553. (1) Let M be a left A-module; the left map
•ϕM : M → ρ∗ (ρ∗ (M)) given by x �→ 1⊗ x is A-linear and the set (M)ϕM
is a generator of the S-module ρ∗ (M). In addition, for any left S-module
N and any A-linear map •f : M → ρ∗ (M), there exists one S-linear map
•f̄ : ρ∗ (M)→ N such that (1⊗ x) f̄ = xf for any x ∈M .
(2) The A-linear map ϕM : M → ρ∗ (ρ∗ (M)) is called the canonical map
(see Lemma and Definition 285(2)).

By (3.28), for any x ∈M and r ∈ A,

(r x)ϕM = 1⊗ (r x) = (1 . r)⊗ x = ρ (r) (1⊗ x) = ρ (r) (x)ϕM = r . (x)ϕM .
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Corollary 554. Let M,M ′ be left A-modules. For any A-linear map •u :
M →M ′, v = 1S⊗u is the unique S-linear map making the following diagram
commute:

M
ϕM−→ ρ∗ (M)

↓ u ↓ v
M ′

ϕM′−→ ρ∗ (M ′)

Proof. Apply Theorem and Definition 553 to the A-linear map u ◦ ϕM′ :
M → ρ∗ (M ′).

Let us denote by ρ∗ (u) the above map v. We see that ρ∗ is a functor
AMod → SMod, called the ”extension of the ring of scalars induced along
ρ” . By Proposition 547, we have the following.

Proposition 555. The functor ρ∗ is covariant and
(i) ρ∗ is right exact and commutes with direct limits: ρ∗

(
lim−→Mi

)
∼=

lim−→ρ∗ (Mi);

(ii) in particular, ρ∗ (
∐
iMi) ∼=

∐
i ρ
∗ (Mi).

Corollary 556. Let M be a free left A-module with basis (ai)i∈I . Then:

(i) ρ∗ (M) is a free left S-module with basis ((ai)ϕM )i∈I (where ϕM is the
canonical map);
(ii) if ρ is a monomorphism, so is ϕM .

Proof. (i): We have M =
∐
iA ai, thus by Proposition 555(ii), ρ∗ (M) ∼=∐

i ρ
∗ (A ai) and ρ∗ (A ai) = S (ai)ϕM .

(ii): Let (ri)i∈I be a family of elements of A with finite support; then
(∑

i∈I ri ai
)
ϕM =

∑
i∈I ρ (ri) ai.

Let
(∑

i∈I ri ai
)
ϕM = 0; then ρ (ri) = 0 for all i, thus ri = 0 if ρ is a

monomorphism.

3.4.2.3 Relation with the Restriction of the Ring of Scalars

The reader should not believe that ρ∗ is the inverse of ρ∗. Rather,

Proposition 557. (ρ∗, ρ∗) is an adjoint pair of functors.

Proof. Consider two modules AM , SN . Then by the Adjoint Isomorphism
Theorem (Theorem 284(i)),

HomS (ρ∗ (M) , N) ∼= HomA (M,ρ∗ (N)) .
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Since the functor ρ∗ is exact, it is not surprising–according to Freyd’s Adjoint
Functor Theorem (Remark 31)–that it has both a right and a left adjoint:
see Exercise 686.

Let N be a left S-module, let M = ρ∗ (N) and let f = IdM . By Theorem
and Definition 553 there exists one S-linear map f̄ : ρ∗ (ρ∗ (N)) → N such
that (1⊗ x) f̄ = x for any x ∈ N (since the sets N and M coincide). Setting
f̄ = ψN , this yields (1⊗ x)ψN = x for any x ∈ N ; therefore, (s⊗ x)ψN = s x
for any s ∈ S (ψN , which is S-linear, should not confused with ϕM which is
A-linear). The following is proved in ([27], §II.5, Prop. 5).

Proposition 558. Let M be a left A-module and N a left S-module. The
composed maps

ρ∗ (M)
ρ∗(ϕM )−→ ρ∗ (ρ∗ (ρ∗ (M)))

ψρ∗(M)−→ ρ∗ (M) (3.29)

ρ∗ (N)
ϕρ∗(N)−→ ρ∗ (ρ∗ (ρ∗ (N)))

ρ∗(ψN )−→ ρ∗ (N) (3.30)

respectively coincide with Idρ∗(M) and Idρ∗(N).

Corollary 559. The maps ρ∗ (ϕM ) : ρ∗ (M)→ ρ∗ (ρ∗ (ρ∗ (M))) and ϕρ∗(N) :
ρ∗ (N) → ρ∗ (ρ∗ (ρ∗ (N))) are respectively an S-linear monomorphism and
an A-linear monomorphism; they identify ρ∗ (M) with a direct summand
of ρ∗ (ρ∗ (ρ∗ (M))) and ρ∗ (N) with a direct summand of ρ∗ (ρ∗ (ρ∗ (N))),
respectively.

Proof. This is an obvious consequence of Lemma 571 below.

Remark 560. Let M be a left A-module and let ρ : A → S a ring-
homomorphism.

(i) In general, the canonical map ϕM : M → ρ∗ (ρ∗ (M)) is not an embedding.
For example, let A be a left Ore domain, let M �= 0 be a torsion A-module
and let ρ : A→ Q (A); then ρ∗ (M) = 0 (Theorem 339), thus ρ∗ (ρ∗ (M)) = 0
and M � ρ∗ (ρ∗ (M)).
(ii) ϕM is an embedding in the following cases: (a) there exists a left S-module
N such that M = ρ∗ (N) (Corollary 559); (b) ρ is a monomorphism and M
is torsionless (see Exercise 685).
(iii) Let M ∼=

⊕
i∈I Mi. By Proposition 555(ii) and Theorem 551(ii),

ρ∗ (ρ∗ (M)) ∼=
⊕

i∈I ρ∗ (ρ∗ (Mi)) .



3.4 Functors in Categories of Modules 219

3.4.3 Relation between Kernels and Cokernels

3.4.3.1 Kernels

Let A be a ring, let R ∈ QA(K) be a matrix with entries in A (where Q
and K are sets of indices) and let W be a left A-module. Let R• denote the
left-multiplication by R and consider the kernel

kerW (R•) �
{
w ∈ KW : Rw = 0

}
. (3.31)

Example 561. To clarify ideas, consider the case when A = A1 (C), the
first Weyl algebra over C (2.7.4.3) and K = {1, ..., k}; then W = E (R) –
as defined in (1.7.3.5) – is an A-module, Rw = 0 is a system of k differ-
ential equations, and the kernel kerW (R•) is the set of all columns w ∈ kW
satisfying this system of differential equations.

Consider the covariant functor EK : AMod→ Ens defined as follows: (a) for
any W1 ∈ AMod, EK (W1) is the set KW1 =

∏
i∈K W1; (b) for any A-linear

homomorphism •g : W1 →W2, •EK (g) : KW1 → KW2 is the function which
to the column w ∈ KW1 associates the column wEK (g) ∈ KW2 with entries
wig (i ∈ K).

Lemma 562. There exists a functor

KR : W → kerW (R•)

which is a subfunctor of EK (1.2.3.6).

Proof. We have KR (W ) ⊆ EK (W ) for any W ∈ AMod; in addition, for
any A-linear left homomorphism •g : W1 →W2 and any w ∈ KW1 such that
Rw = 0, we have RwEK (g) = 0.

The study of the kernel (3.31) can be divided into two parts:

(1) The study of the functor KR, independently of a specific embedding
kerW (R•) ↪→ KW .

(2) The study of the properties of a specific embedding kerW (R•) ↪→ KW
once the properties of the functor KR are known.

Example 563. (Example 561 cont’d). Part (1) only depends on the matrix
R. Part (2) is related to the space in which the solutions are sought: depend-
ing on whether they are calculated in the space of functions E (R) (1.7.3.5), or
in the space of distributions D′ (R), different results can be obtained. All these
spaces have an obvious structure of A1 (C)-module, as already seen (Subsect.
2.7.2), and of Ao (C)-module as well, where Ao (C) is the ring of differential
operators in Exercise 492.
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Consider the equation (3.1) with R = t − a, where a ∈ R and t − a is
considered as an element of A1 (C) or of Ao (C).

(a) If W = E (R), then the set of solutions is B = kerW ((t− a) •) = {0}.
(b) If W = D′ (R) then the set of solutions is B = {λ δa : λ ∈ C}, where δa
is the Dirac distribution.

3.4.3.2 The Functor KN

Regarding the above Part (1), two matrices R1 and R2 are considered ”equiv-
alent” if the associated functors KR1 and KR2 are isomorphic (1.2.3.2). A

functor KR (where R ∈ QA(K)) is left unchanged if R is changed into
[
R
R′

]

where the rows of R′ are left A-linear combinations of the rows of R. There-
fore, KR only depends on the left A-module N =

(
AQ
)
R � A(K); this

functor KR and this module N are respectively denoted by KN and imA (•R)
in the sequel; therefore,

kerW (R•) = KN (W )

which means that

kerW (R•) =
{
w ∈ KW : rw = 0, ∀r ∈ N

}
(3.32)

where N = imA (•R).
For any w ∈ KW , consider the left map •tKW (w) : A(K) � r �→ rw ∈ W ;

the elements of the endomorphism ring E of W can be extended to KW ,
acting component-wise, and then we have the following.

Lemma 564. The right map tKW • : w �→ tKW (w) is a canonical E-linear
isomorphism KW −̃→HomA

(
A(K),W

)
.

Proof. For any w ∈ KW , tKW (w) ∈ HomA

(
A(K),W

)
and the map tKW is

E-linear. Let (εj)j∈K be the canonical basis of A(K); then εj w = wj , where
wj is the entry with index j of the column w. Therefore, the E-linear map
tKW is a canonical isomorphism.

Consider the left A-module M = A(K)/N where N = imA (•R) (i.e., M =
cokerA (•R)). Let τK,NW be the restriction of tKW to kerW (R•).
Theorem 565. The map

τK,NW : KN (W )→ HomA

(
A(K)/N,W

)

is an E-linear isomorphism; furthermore,

τK,N : KN → HomA

(
A(K)/N, •

)

is a natural isomorphism.
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Proof. By (3.32), tKW (KN (W )) is the set of all A-linear homomor-
phisms g : A(K) → W which vanish on N . This set is a right E-
module and by Noether’s first isomorphism theorem (Theorem 52(1)),
tKW (KN (W )) ∼= HomA

(
A(K)/N,W

)
. The naturality of τK,N is obvious

(1.2.3.2).

Remark 566. (1) By Theorem 565, the functors KN and HomA

(
A(K)/N, •

)

are identified.
(2) Once again, recall the following:
(i) M = cokerA (•R) is generated by the components wi of w such that (3.1)
holds, i.e., M = [w]A (Definition 253(ii)).
(ii) B = kerW (R•) is defined by (3.31).
We use bold letters for the elements of B to distinguish them from the ”ab-
stract variable” w which generates M . Formally, w and w satisfy the same
equation.

3.4.3.3 From Cokernels to Kernels

Conversely, let M be a left A-module and let R ∈ QA(K) be a matrix of
definition of M (Definition 512), i.e., M = cokerA (•R) = A(K)/N where
N = imA (•R). The sequence

0←−M
ϕ←− A(K) •R←− A(Q) (3.33)

is exact, where ϕ : A(K) � A(K)/N is the canonical epimorphism. Let W be
a left A-module; as shown by Lemma 564, there exists a canonical E-linear
isomorphism

tKW : KW −̃→HomA

(
A(K),W

)
, tKW : w �→ tKW (w)

where tKW (w) : A(K) � r �→ rw ∈ W for any w ∈ KW .

The contravariant functor BW = HomA (•,W ) : AMod → EMod is left
exact (Proposition 549), thus the exact sequence (3.33) yields the exact
sequence

0 −→ BW (M)
BW (ϕ)−→ BW

(
A(K)

)
BW (•R)−→ BW

(
A(Q)
)
.

Let uKW : HomA

(
A(K),W

)
→ KW and υK,NW : HomA (M,W ) → kerW (R•)

be the inverse of tKW and τK,NW , respectively. By Lemma 564 and The-
orem 565, uKW and υK,NW are canonical E-linear isomorphisms which de-
termine natural isomorphisms uK : HomA

(
A(K), •

)
−̃→ (•)(K) and τK,N :

HomA (M, •) −̃→KN , and we have the following commutative diagram
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0 −→ BW (M)
BW (ϕ)−→ BW

(
A(K)

) BW (•R)−→ BW

(
A(Q)
)

↓ υK,NW ↓ uKW ↓ uQW
0 −→ kerW (R•) ιKW−→ KW

R•−→ QW

where both rows are exact sequences, ιKW is the canonical injection, and R•
is the left multiplication by R (3.4.1.3). Therefore, we have the following.

Corollary 567. (1) Applying the functor BW = HomA (•,W ) to the exact
sequence (3.33) one obtains the exact sequence

0 −→ kerW (R•) ιKW−→ KW
R•−→ QW

up to canonical E-linear isomorphisms.
(2) The two right E-modules BW (cokerA (•R)) � HomA (cokerA (•R) ,W )
and kerW (R•) are canonically isomorphic and identified.
(3) Let M1 and M2 be two left A-modules such that there exists an A-
linear isomorphism ϕ : M1−̃→M2. Then BW (ϕ) is an E-linear isomorphism
BW (M2) −̃→BW (M1).

Proof. Only (3) remains to be proved. Let •ϕ : M1−̃→M2 be an A-linear
isomorphism and ϕ̃ = BW (ϕ) : HomA (M2,W ) → HomA (M1,W ); ϕ̃ is
defined by ϕ̃ (f) = ϕf for any •f : M2 → W . The map ϕ̃• is E-linear since
it is additive and for any α̃ : W →W , ϕ̃ (fα̃) = ϕfα̃ = ϕ̃ (f) α̃. In addition,
ϕ̃• is bijective with inverse g �→ ϕ−1g (where •g : M1 → W ).

3.4.3.4 Generalization

The situation is now that in (3.2.1.3) when C is a preabelian category. Let W
be an object of C and let E = EndC (W ) (where EndC (W ) = HomC (W,W )).
Then for any object M of C, the abelian group HomC (M,W ) of all left
morphisms •f : M →W is a right E-module via composition of morphisms.
In addition, the abelian group HomC (U,W ) is an (A,E)-bimodule (2.2.2.2).

let M be the U -cokernel defined by the exact sequence of left morphisms
(3.5). Let BW be the functor HomC (•,W )–a notation which is consistent
with that in Example 43 and in (3.4.3.3). The functor BW is contravariant
left exact (Example 43(2)), thus one obtains from (3.5) the exact sequence
of right morphisms

0 −→ BW (M)
BW (ϕ)−→ BW

(
U (I)
)

BW (ι)−→ BW (N) . (3.34)

Set
N⊥ �

{
w ∈ HomC

(
U (I),W

)
: ιw = 0

}
. (3.35)

Item (1) below generalizes Corollary 567(1),(2).
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Lemma and Definition 568. (1) There exists a canonical E-linear isomor-
phism

σ : HomC (M,W ) −̃→N⊥ : ŵ �→ w

given by w = ϕŵ: see below.

N
ι−→ U (I) ϕ−→ M −→ 0

↘w ↓ ŵ
W

(2) The right E-module N⊥ is called the W -kernel associated with the U -
cokernel M .

Proof. First note that there exists a canonical isomorphism
HomC

(
U (I),W

) ∼= I HomC (U,W ) (Exercise 200), thus these two right
E-modules are identified. The kernel kerBW (ι) is the largest subobject of
BW

(
U (I)
)

= I HomC (U,W ) annihilated by BW (ι) : w �→ ιw (1.2.4.1),
thus N⊥ is a representative of kerBW (ι). So is also BW (M) since (3.34)
is exact. The isomorphism σ : ŵ �→ ϕŵ is canonical and E-linear.

Conversely, let B ⊆ HomC
(
U (I),W

)
and consider the object

B⊥ �
⋂

w∈B

kerw = ker
(
(w)w∈B : U (I) −→WB

)
⊆ U (I). (3.36)

For any U -cokernel M (i.e., for any M such as in (3.5)) and B = N⊥ defined
by (3.35) we define the canonical (left) morphism

•φM � (ŵ)w∈B : M −→WB; (3.37)

we have by Lemma and Definition 568 ϕφM = (w)w∈B, thus by (3.36)

ker (•ϕφM ) = B⊥. (3.38)

Lemma 569. The two maps (•)⊥ : N �→ N⊥ and B �→ B⊥ constitute a
Galois connection (for the inclusion).

Proof. (i) Let N1 ⊆ N2 and let ι1 : N1 ↪→ U (I) be the inclusion. For any
w ∈ N⊥2 , ι1w = 0, thus N⊥2 ⊆ N⊥1 . Similarly, B⊥2 ⊆ B⊥1 whenever B1 ⊆ B2.

(ii) We have also to prove that

N ⊆ N⊥⊥, B ⊆ B⊥⊥.

We have N ⊆ kerϕ ⊆ kerϕφM = N⊥⊥ and the proof of the second inclusion
is similar.

Remark 570. Let D be a full subcategory of C.
(i) For any W ∈ C, consider the functor BW : Dop → Ab :

M �→ BW (M) , •ϕ �→ BW (ϕ) : •f �→ •ϕf
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where •ϕ ∈ HomD (M1,M2) and •f ∈ HomC (M2,W ) . This functor is co-
variant, and all functors BW (W ∈ C) are called representable ([150], section
0.1.1). The notion of representable functor (not fully detailed here) is fun-
damental is the theory of categories [183].
(ii) Let •g : W1 → W2 be a morphism of C. For any M ∈ D and any •ϕ ∈
HomC (M,W1) = BW1 (M) , we have •gϕ ∈ HomC (M,W2) = BW2 (M) .
Let Bg : HomC (M,W1) → HomC (M,W2) be the map •ϕ �→ •gϕ. Let
Hom (D,Ab)rep be the category whose objects are the representable functors
BW and whose morphisms are the morphisms of functors Bg (1.2.3.2) . Do-
ing so, we get a canonical covariant functor

B : Dop → Hom (D,Ab)rep :

M �→ HomC (M, •) : W �→ HomC (M,W ) , •ϕ �→ B• (•ϕ) : (•g �→ •gϕ) .

This functor is an isomorphism ([150], (0.1.1.7), (0.1.1.8)) which makes it
possible to identify Hom(D,Ab)rep with Dop. Roughly speaking, this means
that the study of all behaviors BW (M) (when M varies among all objects of
C, i.e., all signal spaces) and all relations between them, is equivalent to the
study of all objects M ∈ Dop and all relations between them.
(iii) Let W ∈ C be given. The functor BW : Dop → Ab is not faithful in
general. See Corollary and Definition 822 below.

3.5 Homological Properties of Certain Modules

3.5.1 Projective Modules

3.5.1.1 Split Exact Sequences

Lemma and Definition 53 can be completed as follows: ([27], §II.1, Prop. 15):

Lemma 571. Let A be a ring and consider the short exact sequence of A-
modules

0 −→M
•f−→ E

•ϕ−→ N −→ 0. (3.39)

(1) The following conditions are equivalent:
(i) the short exact sequence (3.39) is split;
(ii) the submodule im f of E is a direct summand;
(iii) there exists a linear retraction •r : E → M associated with •f (such
that •fr = IdM );
(iv) there exists a linear section •s : N → E associated with •ϕ (such that
•sϕ = IdE).
(2) Then, f + s : M ⊕N → E (given by

(m,n) (f + s) = mf + ns,

m ∈M,n ∈ N) is an isomorphism.
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We have the following ([27], §II.1, Corol. 1 & 2 of Prop. 15):

Proposition 572. Let M,N be left A-modules and •f : M → N .

(i) f is left-invertible (or a retraction, i.e., there exists a section •g : N →M
such that •gf = IdM ) if, and only if f is surjective and ker f is a direct
summand. Then, im g ⊕ ker f = M .
(ii) f is right-invertible (or a section, i.e., there exists a retraction •h : M →
N such that •fh = IdN ) if, and only if f is injective and im f is a direct
summand. Then, im f ⊕ kerh = N.

Proof. (i) For f to be left-invertible, f must be surjective (Corollary 277); (i)
is a consequence of Lemma 571 with ϕ and r changed to f and g, respectively.

(ii) For f to be right-invertible, f must be injective; (ii) is a consequence
of Lemma 571 with r changed to h.

Note that a linear left map is a retraction (resp., a section) if, and only if it
is left- (resp., right-) invertible. A linear right map is a retraction (resp., a
section) if, and only if it is right- (resp., left-) invertible.

3.5.1.2 Projective Modules and Torsion-Free Modules

A left A-module P is called projective if it is a projective object in the
category AMod (Definition 44), and finite projective if it is both finitely
generated and projective. Theorem 54 holds true as well as the following.

Theorem 573. The following conditions are equivalent:

(i) P is projective;
(ii) any short exact sequence

0 −→M
f−→ E

ϕ−→ P −→ 0 (3.40)

is split (thus P is isomorphic to a direct summand of E);
(iii) P is a direct summand of a free module.

Proof. (i)⇒(ii): Consider the diagram below

P
ε↙ ↓ ν

0 −→ M
f−→ E

u−→ P −→ 0

where the vertical arrow is ν = IdP , the horizontal row is a short exact
sequence, M = keru and f is the inclusion.

If (i) holds, there exists ε : P → E such that u ◦ ε = IdP (assuming that
all modules and all maps are right ones). Therefore, the exact sequence is
split by Lemma and Definition 53.



226 3 Homological Algebra

(ii)⇒(iii): Let P be any module. By Theorem 494, there exists a free
module E such that the sequence (3.40) is exact, where ϕ is the canonical
epimorphism and M , f have the above meaning. If (ii) holds, P is isomorphic
to a direct summand P ′ of E by Lemma 571.

(iii)⇒(i) by Theorem 54.

Proposition 574. (i) A projective module P is finitely generated if, and only
if it is the direct summand of a finite free module F ; then F = P ⊕Q where
Q is finitely generated and projective.
(ii) A free module is projective.
(iii) Every module is isomorphic to a quotient of a projective module.

Proof. (i): See the proof of the implication (ii)⇒(iii) of Theorem 573. (ii) is
a consequence of Theorem 573(iii), whereas (iii) is a consequence of (ii) and
of Theorem 494.

It is easy to find examples showing that the converse of Statement (ii) above
does not hold (Exercise 681). The following is a consequence of Proposition
516 and Theorem 573(iii):

Corollary 575. A projective module is both torsion-free and torsionless.

3.5.1.3 Presentation of a Projective Module

Lemma and Definition 576. (1) A left A-module P is projective if, and
only if there exists a family (pi) of elements of P and a family (•ϕi) of A-
linear morphisms P → A such that for any p ∈ P,

p =
∑

i
(pϕi) pi (3.41)

where pϕi = 0 for all but a finite number of indices.
(2) A family (pi) as above is called a projective basis of P .

Proof. (1): Let •ψ : A(I) � P . By Theorem 573, P is projective if, and
only if there exists a section •ϕ : P → A(I) associated with ψ, i.e., such that
•ϕψ = IdP . Let (εi) be the canonical basis of A(I) and pi = (εi)ψ; as easily
shown, (3.41) holds for any p ∈ P and pϕi = 0 for all but a finite number of
indices.

Note that a projective basis is not a basis in the sense of Definition 253(iii).

Proposition 577. (i) Every finitely generated projective module is finitely
presented.
(ii) Let P = cokerA (•R) where R ∈ qAk. Then P is projective if, and only
if there exists S ∈ kAq such that R = RS R.
(iii) Let P = cokerA (•R) where R ∈ qAk is left-regular. Then P is projective
if, and only if R is right-invertible.
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Proof. (i): Let P be a f.g. projective module. There exists by Theorem 494
a finite free module F such that the following sequence is exact:

F
g−→ P −→ 0.

Therefore we have the short exact sequence

0 −→ K
ι−→ F

g−→ P −→ 0

where K = ker g and ι is the inclusion. This exact sequence is split by
Theorem 573, thus F = K ⊕ P ′ where P ′ ∼= F/K ∼= P . This proves that
K ∼= F/P ′ is f.g., thus P is finitely related, hence finitely presented.

(ii): See ([30], §X.2, Prop. 6). (iii): Since R is left-regular, P is presented
by a short exact sequence

0 −→ Aq •R−→ Ak ϕ−→ P −→ 0. (3.42)

By Theorem 573, if P is projective, then (3.42) is split. Therefore, by Lemma
571, imA (•R) is a direct summand of Ak, thus •R is right-invertible by
Proposition 572, and so is the matrix R. Conversely, if R is right-invertible,
•R is right-invertible too, i.e., is a section. By Lemma and Definition
53(2), there exists an isomorphism •ψ : Ak−̃→P ⊕ Aq, therefore P is a
direct summand of the finite free module

(
Ak
)
ψ, and P is projective by

Proposition 574(i).

3.5.1.4 Stably-Free Modules

Definition 578. Let A be a ring with IBN and let P be a left A-module; P is
said to be stably-free of rank r ≥ 0 if P ⊕Aq ∼= Aq+r for some non-negative
integer q.

Obviously, every finite free module is stably-free and every stably-free module
is finitely generated projective. These notions do not coincide in general.

Definition 579. Let A ring be a ring with IBN.

(i) A is called projective-free if every finitely generated projective module is
free.
(ii) A is called an Hermite ring if any stably-free module is free.

Note that these two notions are left/right symmetric.

Theorem 580. (1) The following implications hold true for a ring A:

semifir⇒ projective-free⇒ Hermite

(2) A local ring is projective-free (see also Theorem 634 below).

Proof. (1) Recall that a semifir has IBN (2.12.2.1). Let A be a ring with
IBN and F a finite free left A-module.
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If M � F is projective, it is f.g. (Proposition 574(ii)), thus M is free if A
is a semifir (Lemma 410) which proves the first implication.

If M � F is stably-free, it is projective, thus it is free if A is projective-free,
which proves the second implication.

(2): See [176] or ([77], Sect. 0.5, Corol. 5.5).

Other important examples of projective-free rings are given in the theorem
below which gives positive answers to the so-called Serre’s conjecture and
some of its generalizations. Items (i) and (ii) are proved in ([200], Sect. V.2,
Theorem 2.9; Sect. VIII.7, p. 334-335; Sect. V.4, Corol. 4.10); Item (iii) is
proved in ([81], Theorem 7).

Theorem 581. Let X = (X1, ..., Xn) and Y = (Y1, ..., Ym) be finite se-
quences (possibly empty) of indeterminates and Y ±1 denote the sequence(
Y1, ..., Ym, Y

−1
1 , ..., Y −1

m

)
. The following rings are projective-free:

(i) K [X ] if K is a field (Quillen-Suslin theorem) or, more generally, if K is a
commutative Bézout domain or a valuation domain of finite Krull dimension
(Exercise 490 and Subsect. 3.5.5 below);
(ii) K

[
X,Y ±1

]
if K is a field;

(iii) A [[T ]] if A is a projective-free ring and T is a finite sequence of central
indeterminates (Exercise 493).

Remark 582. Let K be a division ring, n ≥ 2 and S = K [X1, ..., Xn] where
the indeterminates X1, ..., Xn are central. Then S has a stably-free non-free
right ideal if, and only if K is not a field ([247], 11.2.9).

Theorem 583. Let A be a ring with IBN and let P be a left A-module. The
following conditions are equivalent:

(i) P is stably-free with P ⊕Aq ∼= Ak;
(ii) P ∼= cokerf for some split monomorphism f : Aq ↪→ Ak;
(iii) the matrix Bézout equation

RX = Iq (3.43)

has a solution X, where R is the matrix of f in the canonical bases of Aq

and Ak, i.e., R is right-invertible.

Proof. (i)⇒(ii): Let F = P ⊕Aq be a free module of rank n and let •ψ :
F −̃→Ak. Let •ι : Aq ↪→ F be the inclusion, let •π : P ⊕Aq � P be the
projection and consider the commutative diagram below

0 −→ Aq ι−→ F
π−→ P −→ 0

f ↘ ↓ ψ ↗ ϕ
Ak

where the row is a split exact sequence. Since •f = •ιψ and ι is split, so is
f too and we get the following split exact sequence:
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0 −→ Aq f−→ Ak ϕ−→ P −→ 0. (3.44)

(ii)⇒(i): Assuming that P is presented by the split exact sequence (3.44), we
have Ak ∼= (Aq) f ⊕ P and (Aq) f ∼= Aq , thus (i) holds.

(ii)⇔(iii): We know from Lemma 571(1) that •f : Aq ↪→ Ak is split if,
and only if f is right-invertible, i.e., there exists •g : Ak → Aq such that
f ◦ g = IdAq . By (2.14), this is equivalent to (3.43) where X is the matrix
of g in the canonical bases of Aq and Ak.

3.5.1.5 Projective Ideals

The following is easily deduced from Lemma 576(1); see ([59], Sect. 7.3, Prop.
3.2) and ([136], Prop. 3.1 and Corol. 3.1) for more details:

Proposition 584. Let A be a left Ore domain.

(i) A nonzero left ideal in A is projective if, and only if it is invertible (Def-
inition 452).
(ii) Such an ideal is finitely generated.

Definition 585. A ring A is left hereditary if every left ideal in A is projec-
tive. A right hereditary ring is likewise defined and a ring is called hereditary
if it is both left and right hereditary.

Theorem 586. (1) A ring A is a left Dedekind domain if, and only if it is
a left Ore domain which is left hereditary.
(2) Let A be a left hereditary ring. If M is a submodule of a free left A-
module F , then M is a direct sum of modules isomorphic to left ideals in A.
(3) Let A be a hereditary Noetherian prime ring; then any nonzero prime
ideal in A is maximal.

Proof. (1) is a consequence of Proposition 584(i). (2): See ([28], §VII.3,
Theorem 1). (3): See ([247], 5.6.2).

See Exercise 688.

3.5.2 Injective Modules

3.5.2.1 Definition and Consequences

An A-module I is injective in the category C = AMod if, and only if it is
projective in the category Cop (Lemma 45). Theorem 54 holds and most (but
not all) properties of injective modules can be obtained by dualizing those of
projective modules. The following is a consequence of Theorem 573:
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Theorem 587. The following conditions are equivalent:

(i) I is injective;
(ii) any short exact sequence

0←−M
g←− E

i←− I ←− 0 (3.45)

is split.

Note that Theorem 573(iii) has no analogous. The ”dual” of Proposition
574(i) is given below:

Proposition 588. Let I =
∏
j∈J Ij ; then I is injective if, and only if every

Ij (j ∈ J) is injective. In particular, every summand of an injective module
is injective.

Theorem 589. Let A be a ring. The following conditions are equivalent:

(i) A is semisimple;
(ii) all left A-modules are projective;
(iii) all right A-modules are injective.
In the above statements, left can be changed to right.

Proof. This is a straightforward consequence of Definitions 313 & 317(2),
and of Theorems 573 & 588.

The following, which is connected with Proposition 588, involves the notion of
indecomposable submodule (Definition 252) and is proved in ([199], Theorem
(3.48)).

Theorem 590. Let A be a ring. The following conditions are equivalent:

(i) A is left Noetherian;
(ii) any injective left module I is a direct sum of indecomposable (injective)
submodules Ij (j ∈ J).

3.5.2.2 Baer Criterion and Fundamental Principle

The following result, called the Baer criterion, is very useful to check if a
module is injective. It is a consequence of Zorn’s lemma: see ([30], §X.1,
Prop. 10).

Criterion 591 A left A-module I is injective if, and only if every homo-
morphism f : a→ I, where a is a left ideal of A, can be extended to AA.

Corollary and Definition 592. (1) Let A be a ring and W a left A-
module. The following conditions are equivalent:
(i) W is injective;
(ii) the module W satisfies the ”fundamental principle” defined as follows: if
a sequence

A(N) •R1−→ A(Q) •R2−→ A(K) (3.46)
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is exact
(
R2 ∈ QA(K), R1 ∈ NA(Q)

)
, where N , Q and K are arbitrary sets

of indices then so are the transformed sequences

HomA

(
A(K),W

) BW (•R2)−→ HomA

(
A(Q),W

) BW (•R1)−→ HomA

(
A(N),W

)

+ + +
KW

R2•−→ QW
R1•−→ NW

where BW = HomA (•,W ) and the vertical arrows are canonical isomor-
phisms.
(2) If A is left Noetherian, the above still holds with the arbitrary sets of
indices N , Q and K replaced by finite arbitrary sets of indices {1, ..., n},
{1, ..., q} and {1, ..., k}, respectively.

Proof. (1). (i)⇒(ii) is obvious since (i) means that the functor BW is exact
(Definition 44); the isomorphisms between the first row and the second one
have been established in Lemma 564.

(ii)⇒(i): Let a be a left ideal in A. According to the Baer criterion,
W is injective if, and only if the restriction map W ∼= HomA (A,W ) →
HomA (a,W ) : w �→ (a �→ aw) is surjective. Let (aj)j∈Q be a generating
family of a and let R2 be the column with entries aj (j ∈ Q). Let (rl)l∈N
be a generating family of kerA (•R2) � A(Q) and let R1 be the matrix with
rows rl (l ∈ N). Then R1 ∈ NA(Q) and the sequence (3.46) is exact (with
K = {1}); since imA (•R2) = a, the sequence

A(N) •R1−→ A(Q) (•R2)ind−→ a −→ 0 (3.47)

is also exact, where (•R2)ind is the map from A(Q) to a induced by •R2. The
fundamental principle implies the exact sequence

W
R2•−→ QW

R1•−→ NW. (3.48)

The exact sequence (3.47) yields cokerA (•R1) = a, thus kerW (R1•) =
HomA (a,W ) by Corollary 567; therefore, the exact sequence (3.48) yields
imW R2• = HomA (a,W ) and (R2•)ind : W � Hom(a,W ) is the desired
epimorphism.

(2). If A is left Noetherian, a is f.g. (Lemma 311), thus Q is finite, say
Q = {1, ..., q}; kerA (•R2) is also f.g. since cokerA (•R2) is f.p. (Lemma
498(ii)), thus N is finite, say N = {1, ..., n}.

Remark 593. Let us clarify the meaning of the fundamental principle: let
y ∈ QW and consider the equation

R2 x = y (3.49)
(
R2 ∈ (Q)AK , x ∈ KW

)
.
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(i) Let R1 ∈ (N)AQ be such that the sequence (3.46) is exact. This implies
R1 R2 = 0, thus (3.49) implies the compatibility condition

R1 y = 0. (3.50)

(ii) Conversely, assume that the fundamental principle holds and that y ∈
QW satisfies the compatibility condition (3.50), i.e., y ∈ kerW (R1•). Then,
y ∈ imW (R2•) and there exists a solution x ∈ KW to (3.49).

A coproduct of injective A-modules is not injective in general, as shown by
the following ([306], Theorem 4.9):

Theorem 594. The conditions below are equivalent for a ring A:

(i) A is left Noetherian;
(ii) every direct limit of injective left A-modules is injective.
(iii) every coproduct of injective left A-modules is injective.

3.5.2.3 Divisible Modules

Let A be a ring, let M be a left A-module, let m ∈M and let a ∈ A.

Definition 595. The element m is said to be divisible by a if m ∈ aM , i.e.,
there exists m′ ∈M such that m = am′.

If m ∈ M is divisible by a ∈ A, then AnnA
l (a) ⊆ AnnA

l (m) (where a is
considered as an element of the left A-module AA), but the converse does not
hold true in general. Note that if r a = 0 and m ∈ aM , then rm ∈ r aM = 0,
hence aM ⊆ AnnMr

(
AnnA

l (a)
)
.

Definition 596. The left A-module M is said to be divisible if m ∈ M is
divisible by a ∈ A whenever AnnA

l (a) ⊆ AnnA
l (m).

Theorem 597. For a left A-module M , the following properties are
equivalent:

(i) M is divisible;
(ii) for any a ∈ A, AnnMr

(
AnnA

l (a)
)

= aM ;
(iii) for any principal left ideal a = A a, any homomorphism f : a→M can
be extended to AA.

Proof. (i)⇔(ii): Assuming that (i) holds, we have to prove that
AnnMr

(
AnnA

l (a)
)
⊆ aM . Let m ∈ AnnMr

(
AnnA

l (a)
)
; then AnnA

l (a) ⊆
AnnA

l (m), thus m is divisible by a and m ∈ aM . The converse is obvious.
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(i)⇒(iii): Let •f : A a → M and m = (a) f . If r ∈ AnnA
l (a), then

(r a) f = r (a) f = rm = 0, thus r ∈ AnnA
l (m) and we have AnnA

l (a) ⊆
AnnA

l (m). If (i) holds, there exists m′ ∈ M such that m = am′. Let f̃ :
AA→M be given by (1) f̃ = m′; then (a) f̃ = m and f̃ extends f to AA.

(iii)⇒(ii): Assuming that (iii) holds, we have to prove that
AnnMr

(
AnnA

l (a)
)
⊆ aM . Let m ∈ AnnMr

(
AnnA

l (a)
)

and let f : A a→M

be given by (r a) f = rm; f is a homomorphism of left A-module. By
(iii), there exists f̃ : AA → M which extends f . Let m′ = (1) f̃ ; then
m = (a) f̃ = am′.

Proposition 598. (i) If a left A-module I is injective, it is divisible.
(ii) All divisible left A-modules are injective, if, and only if A is left-
hereditary (Definition 585). In particular, if A is a left Dedekind domain,
then a left A-module is divisible if, and only if it is injective.

Proof. (i) is an obvious consequence of Theorem 597.
(ii) is proved in ([199], Corollary (3.23)). If A is a left Dedekind domain,

we know from Theorem 586 that it is left hereditary.

See Exercise 690.

3.5.2.4 Injective Hull

Dualizing Proposition 574(iii) one obtains the following.

Theorem 599. Let A be a ring; every left A-module M can be embedded in
an injective left A-module.

The injective hull we are now looking for is, roughly speaking, the smallest
injective module in which a given module can be embedded. More specifically,
it is (if it exists) a solution to the universal problem described below:

Theorem and Definition 600. Let A be a ring and let M be a left
A-module.

(1) There exists a left A-module E (M) with the following properties:
(i) E (M) is injective and there is an embedding M ↪→ E (M) ;
(ii) for any injective module I such that there is an embedding M ↪→ I, there
is an embedding E (M) ↪→ I as shown in the commutative diagram below
where all lines are exact sequences.

0 0
↓ ↙

0 −→ M −→ E (M)
↓ ↙
I
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(2) Such a module E (M) is unique up to isomorphism fixing M pointwise,
and is called the injective hull of M .

Proof. (1): See Exercise 692. (2): By Theorem 13, a solution to the above
universal problem is unique up to isomorphism.

Let A be a ring. By Lemma 153, the set Il (A) of all left ideals in A is
a complete modular lattice. Therefore, a left ideal c �= A in A is meet-
irreducible if, and only if whenever two left ideals a, b in A are such that
a ⊇ c, b ⊇ c and a ∩ b = c, then necessarily a = c or b = c (1.5.5.2).

Lemma 601. Let A be a ring and let c be a left ideal in A.

(i) If c is a maximal left ideal, then c is a meet-irreducible left ideal.
(ii) If A is commutative and p is a prime ideal (2.4.3.1), then p is meet-
irreducible.
(iii) If A is a commutative Noetherian ring, and if q is a meet-irreducible
ideal in A, then q is primary (E. Noether’s theorem). In addition, E (A/q) ∼=
E
(
A/
√

q
)
.

(iv) If A is left principal ideal domain, then the following conditions are
equivalent:
(a) c = R c is meet-irreducible;
(b) if a, b ∈ A are such that c = [a, b]l (with the notation from (1.4.1.2)),
then c = u a or c = u′ b where u and u′ are units.

Proof. (i) and (iv) are clear.
(ii): Assume that p is a prime ideal and let a, b be ideals such that a, b ⊇ p

and a ∩ b = p. Then ab ⊆ p by Theorem 297(i), therefore a ⊆ p or b ⊆ p,
and p is a meet-irreducible ideal.

(iii): For a proof of E. Noether’s theorem, see, e.g., ([269], Lemma 28.6).
For the other statement, see ([199], §3, Exercise 40A).

The following is proved in, e.g., ([199], Theorem (3.52)).

Lemma 602. For a left injective left A-module I, the following conditions
are equivalent:

(i) I is indecomposable;
(ii) I ∼= E (A/c) for some meet-irreducible left-ideal c in A.

Let us consider two important examples of injective hulls:

Proposition 603. Let A be a commutative principal ideal domain, let p ∈
A× be a prime, let A

(
pi
)

� A/A pi and let A (p∞) = lim−→A
(
pi
)

(Subsect.

2.13.5); then A (p∞) is the injective hull of A
(
pi
)

for any i ≥ 1.

Proof. (1) By definition of A (p∞), A
(
pi
)
⊆ A (p∞) for any i ≥ 1.

(2) Let us show that A (p∞) is divisible: let 0 �= x ∈ A (p∞) and 0 �= r ∈ A;
let i be the least positive integer for which x ∈ A

(
pi
)

and write r = pkq
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where k is a natural integer and q ∈ A is not divisible by p. There exists
y ∈ A

(
pi+k
)

such that x = pky and then pmy = 0 if m = i + k. Since pm

and q are coprime, there exist elements u, v ∈ A such that u pm + v q = 1
(Bézout identity). Therefore, x = v q x, thus x = pkv q y = r z with z = v y.

(3) Therefore, A (p∞) is injective by Proposition 598(ii).
(4) The class 1 +

(
pi
)
∈ A
(
pi
)

is identified with p +
(
pi+1
)
∈ A
(
pi+1
)

for any i ≥ 1 under multiplication by p (Theorem 241(ii)), thus a di-
visible module containing 1 +

(
pi
)

must contain 1 +
(
pi+1
)
. Therefore,

E
(
A
(
pi
))
⊇ A

(
pi+1
)
, and by induction E

(
A
(
pi
))
⊇ A (p∞). Thus

E
(
A
(
pi
))

= A (p∞).

Example 604. Let A be a commutative domain and let K be its field of
fractions; then E (AA) = K. Indeed, (i) K is a torsion-free divisible A-
module, thus it is injective (Exercise 690); (ii) if A ⊆ S � K and S is
injective, S is divisible, thus for any n ∈ S, d ∈ A×, there exists m ∈ S such
that n = dm, therefore the A×−1 S ⊆ S; since K ⊆ A×−1 S, K = S.

3.5.3 Flat Modules

3.5.3.1 Flat Modules

Definition 605. A right A-module U is flat if the functor U
⊗

A− is exact
(in the category AMod).

Since the functor U
⊗

A− is always right exact (Proposition 547(1)), the
right A-module U is flat if, and only if whenever A ↪→ B is an embedding in
AMod, so is U

⊗
A A→ U

⊗
A B in the category Ab of Abelian groups.

The following is often useful ([80], theorem 4.6.2; [77], Appendix):

Lemma 606. For a right A-module U , the following conditions are
equivalent:

(i) U is flat;
(ii) whenever

u c = 0 where u ∈ Un, c ∈ nA,

there exists B ∈ mAn and x ∈ Um such that

u = xB, B c = 0;

(iii) for any f.g. left ideal a of A the map U⊗a→ U , induced by the inclusion
a ⊆ A, is injective, so that U ⊗ a ∼= Ua;
(iv) as (iii) but for any left ideal (not necessarily f.g.);
(v) every f.g. submodule of U is contained in a flat submodule.

Let us clarify the above condition (ii): it means that solutions in U of a
linear equation with coefficients in A (u c = 0) can be expressed as linear
combinations with coefficients in U (u = xB) of solutions in A (B c = 0).
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The right A-module AA is obviously flat. As easily seen, a direct sum
U =

⊕
i Ui is flat if, and only if each Ui is flat. Therefore, any free right

A-module is flat and more generally:

Corollary 607. (i) For any right (or left) A-module,

projective =⇒ flat =⇒ torsion-free.

(ii) A finitely related right A-module is flat if, and only if it is projective.
(iii) A right A-module U is flat if, and only if it is a direct limit of f.g. free
modules.
(iv) If

{
Mi, ϕ

i
j

}
is a direct system of right A-modules with filtering index set

I (Definition 15) and each module Mi is flat, then the right A-module lim−→Mi

is flat.
(v) Assuming that A is semiprime Goldie, a right A-module M is torsion-free
if, and only if it is embeddable in a flat module.

Proof. (i) is clear; see ([199], (4.3), (4.18)) for more details. For (ii), see ([80],
Corol. 4.6.4); for (iii) and (iv), see ([199], Theorem 4.34 and Proposition 4.4,
respectively).

(v): If there is an embedding M ↪→ F where F is flat, then M is torsion-
free by (i) and Proposition 516(ii). Conversely, a torsion-free module M is
the directed union of a family (Mi)i∈I of f.g. torsion-free modules Mi, i.e.,
M =

⋃
i∈I Mi. By Proposition 516(iv), for each index i ∈ I there exists a

finite free right module Fi such that Mi ⊆ Fi. Therefore, M ⊆ F where
F =
⋃
i∈I Fi is flat by (iii).

The following result, proved in ([30], §X.1, Prop. 11) involves flatness and
injectivity.

Proposition 608. Let A, S be rings, let I be a left A-module and let U be
an (A,S)-bimodule. If I is injective and U is a flat right S-module, then the
left S-module HomA (U, I) (Theorem 236(i)) is injective.

Theorem 609. Let A be a ring and let S ⊆ A× be a left denominator set
(Definition 327); then the right A-module K = S−1 A is flat.

Proof. We will prove that Condition (ii) in Lemma 606 holds true. Suppose
0 = u c =

∑
ui ci where ci ∈ A and ui ∈ S−1 A. Since there are finitely

many ui, they can be brought to a common denominator (Corollary 329),
i.e., ui = s−1bi, s ∈ S, bi ∈ A. Then

∑
bi ci = 0, i.e., b c = 0, and u = s−1b

as desired.

Corollary 610. Let A be a right Noetherian domain which is a left Ore
domain, and let R ∈ qAk. Let N � Ak be the left A-module imA (R•)
and let N0 � kA be the right A-module orthogonal to N (2.2.5.6). Let
{s1, ..., sr} be a generator of N0 and let S ∈ kAr be the matrix with columns
s1, ..., sr.



3.5 Homological Properties of Certain Modules 237

(i) The sequence

0 −→ imA (•R) ι−→ kerA (•S) −→ kerA (•S) / imA (•R) −→ 0 (3.51)

is exact, where ι is the inclusion, and the module kerA (•S) / imA (•R) is
torsion.
(ii) Let M = cokerA (R•) and let T (M) be the torsion submodule of M ; then
kerA (•S) / imA (•R) = T (M). In particular, imA (•R) = kerA (•S) if, and
only if, M is torsion-free.

Proof. (i): The right A-module N0 is f.g. since A is right Noetherian. The
sequence (3.51) is exact, for N00 = kerA (•S). Let K be the division ring of
left fractions of A, and let N̂ = K

⊗

A
N , N̂00 = K

⊗

A
N00. We know

that N̂00 = N̂ (Remark 275), therefore

K
⊗

A
(kerA (•S) / imA (•R)) = 0,

thus kerA (•S) / imA (•R) is torsion by Theorem and Definition 339(ii).
(ii) From the above equality, kerA (•S) / imA (•R) ⊆ T (M). Conversely,

let r ∈ Ak be such that a r ∈ N for some a ∈ A×. This means that a r̄ = 0
where r̄ is the canonical image of r in M = Ak/ imA (•R), i.e., r̄ ∈ T (M).
Then, for any r′ ∈ N0, 〈a r, r′〉 = a 〈r, r′〉 = 0, thus 〈r, r′〉 = 0 since A is a
domain. Therefore, r ∈ N00, and r̄ ∈ N00/N .

The following is similar to Corollary and Definition 592:

Proposition 611. (1) Let A be a ring and let U be a right A-module. The
following conditions are equivalent:
(i) U is flat;
(ii) For an arbitrary exact sequence of the form

A(N) •f−→ A(Q) •g−→ A(K),

the transformed sequence (by the functor U
⊗

A−)

U (N) IdU⊗f−→ U (Q) IdU⊗g−→ U (K)

is again exact.
(2) If A is left Noetherian, the above still holds with the arbitrary sets of
indices N , Q and K replaced by finite arbitrary sets of indices {1, ..., n},
{1, ..., q} and {1, ..., k}, respectively.

Proof. This is a generalization, based on ([59], Chap. I, Prop. 2.5), of ([266],
Part I, Sect. I.3, Prop. 5), where A is assumed to be commutative and
Noetherian. This generalization is a good exercise.

Theorem 612. Let
{
Ai, ϕ

i
j

}
be a direct system of right coherent rings with

filtering index set I, such that Aj is a flat right Ai-module whenever i 
 j.
Then A = lim−→Ai is right coherent.
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Proof. The ring A is a flat right Ai-module for each i ∈ I by Corollary
607(iv). Let a be a f.g. right ideal in A. By definition of the inductive limit
(Definition 16), there exists an index i ∈ I and a f.g. right ideal ai in Ai such
that

a = A ai ∼= A
⊗

Ai

ai.

Since Ai is right coherent, ai is a f.p. right ideal in Ai (Lemma 509), thus
a is a f.p. right ideal in A by Proposition 611, therefore the ring A is right
coherent.

See Exercises 688 and 696.

3.5.3.2 Faithful Modules

With the notation in Definition 505 we have the following.

Definition 613. (i) A left A-module U is faithful if AnnA
l (U) = 0.

(ii) U is completely faithful if every nonzero quotient of U is faithful.

For example, the R [∂]-module E (R) (where ∂ = d/dt) is easily seen to be
faithful.

3.5.3.3 Faithfully Flat Modules

Lemma and Definition 614. (1) For a right A-module U , the following
conditions are equivalent:

(i) a sequence
N ′ v−→ N

w−→ N ′′

of left A-modules is exact if, and only if the sequence

U
⊗

A N ′ 1⊗v−→ U
⊗

A N
1⊗w−→ U

⊗
A N ′′

is exact;
(ii) U is flat, and for any left A-module N , U

⊗
AN = 0 =⇒ N = 0;

(iii) U is flat, and for any homomorphism of left A-modules v : N ′ → N ,
IdU ⊗ v = 0 =⇒ v = 0;
(iv) U is flat, and for any maximal left ideal m of A, Um �= U ;
(v) the functor U

⊗
A− is faithful exact.

(2) A right A-module U is said to be faithfully flat if the above equivalent
conditions hold.

Proof. The equivalences (i)⇔(ii)⇔(iii)⇔(iv) are proved in ([31], n◦I.3.1).
(i)⇔(v): (i) holds if, and only if the functor U

⊗
A− is exact (by Theorem

42) and faithful (by Proposition 49).
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Proposition 615. A faithfully flat module is both faithful and flat.

Proof. Let U be faithfully flat and a ∈ A be such that xa = 0 for all x ∈ U .
The map v : A→ A defined by v (b) = ba is such that for any y ∈ U , b ∈ A,
(IdU ⊗ v) (y ⊗ b) = y⊗ ba = yb⊗ a = x⊗ a where x = yb, thus IdU ⊗ v = 0.
Therefore, v = 0 by Lemma and Definition 614(iii), thus v (1) = a = 0, and
U is faithful.

The converse of the above statement does not hold: there exist faithful pro-
jective modules which are not faithfully flat ([199], p. 150).

Corollary 616. Let U, V be two right A-modules.

(i) If U is flat and V is faithfully flat, then U ⊕ V is faithfully flat.
(ii) If U �= 0 is free, it is faithfully flat.

Proof. (i): As already said, U ⊕ V is flat, and it is faithfully flat by Lemma
and Definition 614(iv). Since AA is obviously faithfully flat, (ii) is a
consequence of (i).

3.5.4 Resolutions

3.5.4.1 Left Resolutions and Right Resolutions

Let M be an A-module and consider exact sequences

−→ ... −→ En −→ ... −→ E0 −→M −→ 0, (3.52)
←− ...←− En ←− ...←− E0 ←−M ←− 0. (3.53)

Definition 617. (i) The exact sequence (3.52) (resp., (3.53)) is called a left
(resp., right) resolution of M .
(ii) If En �= 0 and Ei = 0 for all i ≥ n, then the left resolution (3.52) is said
to be of length n. Likewise, if En �= 0 and Ei = 0 for all i ≥ n, then the
right resolution (3.53) is said to be of length n.
(iii) If in the left resolution (3.52) , each Ei is free (resp., projective, flat),
then this resolution is called free (resp., projective, flat).
(iv) If in the right resolution (3.53), each Ei is injective, then this resolution
is called injective.
(v) If the left resolution (3.52) is free of finite length and if each Ei is of
finite rank, then this resolution is called finite free.

Theorem 618. Let M be an A-module.

(i) The module M has free, projective, flat and injective resolutions.
(ii) If the ring A is left (resp. right) Noetherian and M is f.g. left (resp.
right) A-module, then M has a finite free resolution.
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Proof. (i): (1) We know that M is a quotient of a free module E0, i.e. the
sequence

E0 −→M −→ 0

is exact (Theorem 494). Then, there exists a presentation of M , thus there
exists a free module F1 such that the sequence

E1 −→ E0 −→M −→ 0

is exact (see (3.3)). This rationale can be continued, and by induction M is
shown to have a free presentation.

(2) By Proposition 574(ii) and Corollary 607(i), a free presentation is both
a projective and a flat presentation.

(3) The projective resolution (3.52) of M in the category ModAop is an
injective resolution of M in the category AMod by Proposition 229 and
Lemma 45.

(ii): See the proof of Theorem 499.

More generally, let C be an abelian category.

Lemma and Definition 619. (1) The following conditions are equivalent:
(i) For every object M there exists a projective object P0 and an epimorphism

P0 −→M −→ 0.

(ii) Every object M has a projective resolution (3.52) .
When the above equivalent conditions hold, the category C is said to have
enough projectives.
(2) Dually, the following conditions are equivalent:
(i’) For every object M there exists an injective object I0 and a monomor-
phism

I0 ←−M ←− 0.

(ii’) Every object M has an injective resolution (3.53).
When the above equivalent conditions hold, the category C is said to have
enough injectives.

Therefore, according to Theorem 618, the category AMod has both enough
projectives and enough injectives. More general, the following can be proved
([148], Theorem 1.10.1):

Theorem 620. A Grothendieck category (1.2.4.4) has enough injectives.

See Exercise 676.



3.5 Homological Properties of Certain Modules 241

3.5.4.2 Characteristic of a Module

Let M be an A-module which has a finite free resolution

0 −→ Fn −→ ... −→ F0 −→M −→ 0 (3.54)

Definition 621. If A has IBN, the Euler characteristic of M is

χ (M) =
∑

0≤i≤n (−1)i rk (Fi) .

The Euler characteristic χ (M) is well-defined (i.e., independent of the finite
free resolution of M) according to Schanuel’s lemma ([199], §5A).

Consider a module with finite free resolution of length ≤ 1, i.e., having a
presentation of the form

0 −→ Aq •R−→ Ak −→M −→ 0. (3.55)

Then χ (M) = k− q = i (R), the index of R (3.2.4.1). This happens for f.g.
modules over semifirs:

Lemma 622. Let A be a semifir and M a f.g. left A-module. Then M has
a finite free resolution of length ≤ 1.

Proof. The f.g. module M is finitely presented by Theorem 499, thus there
exists a matrix A ∈ pAk such that M ∼= cokerA (•A). There exists by

Lemma and Definition 410 an invertible matrix U such that U A =
[
R
0

]

where the q rows of R (q ≤ p) are left A-linearly independent, i.e., •R is
injective (Corollary 279). Then (3.55) is a presentation of M .

3.5.4.3 Presentation of a Stably-Free Module

Corollary 623. Let A be a ring with IBN and let P be a left A-module. The
following conditions are equivalent:

(i) P is stably-free;
(ii) P ∼= cokerA (•R) where R is a right-invertible;
(iii) P is projective and has finite free resolution of length ≤ 1 (Definition
621);
(iv) P is projective and has finite free resolution.

Proof. (i)⇔(ii)⇔(iii) is an obvious consequence of Theorem 583.
(iii)⇒(iv) and the converse is easily shown by induction (see, e.g., [278],

Chap. II, Prop. 2.36).
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3.5.4.4 Presentation of a Free Module

Let A be a weakly finite ring (Exercise 481) and let R ∈ qAk, k ≥ q.

Definition 624. The matrix R is said to be completable there exists a matrix

R′ ∈ k−qAk such that
[
R
R′

]
is invertible.

If a left A-module F is free of rank k− q, it is stably-free of rank k− q, thus
by Corollary 623 it has a matrix of definition which is right-invertible.

Remark 625. (i) The above does not mean that any matrix of definition
of a finite free (or stably-free) module is right-invertible. For example, the
Z-module with matrix of definition

[
1 0
0 0

]

is free of rank 1.
(ii) Any completable matrix is right-invertible.

Theorem 626. Let F be a left A-module and let R ∈ qAk be a right-
invertible matrix of definition of F . The module F is free of rank k − q
if, and only if R is completable.

Proof. (i) Assuming that R is completable, there exists
[
X X ′

]
∈ GLk (A)

such that [
R
R′

]
[
X X ′

]
=
[
Iq 0
0 Ik−q

]
(3.56)

thus R
[
X X ′

]
=
[
Iq 0k−q

]
. We have F ∼= [w]A where w is only submitted

to the relation Rw = 0 (Subsect. 3.2.3). Let v =
[
X X ′

]
w; then we have

again F ∼= [v]A and v is only submitted to
[
Iq 0k−q

]
v = 0, i.e., v1 =

... = vq = 0. Setting v′ = (vi)q+1≤i≤k we obtain F ∼= [v′]A and since the
components of v′ are submitted to no relation, F ∼= Ak−q.

(ii) Conversely, let F ∼= Ak−q with right-invertible matrix of definition R.
We have a split exact sequence

0 −→ Aq •R−→ Ak •ϕ−→ F −→ 0;

where •ϕ has a left-inverse •ρ (Lemma 571(1)). Choosing a basis ξ in F , let
X ′ and R′ be the matrices of ϕ and ρ, respectively, in the canonical basis of
Ak and in ξ. We have the equalities (3.43), R′X ′ = Ik−q (since ρ ◦ ϕ = IF )
and RX ′ = 0 since (•R,ϕ) is exact. Therefore,

[
R
R′

]
[
X X ′

]
=
[
Iq 0
∗ Ik−q

]
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and
[
R
R′

]
is invertible (see the proof of the part (b)⇒(a) of Theorem 520).

Notice that the relation (3.56) contains two Bézout equations.

3.5.5 Dimension

3.5.5.1 Introduction

Several kinds of dimensions are defined for a ring (and also for a module),
among which the uniform dimension (also called the Goldie dimension), the
Krull dimension and the global dimension. A Goldie ring–and in particular
a Noetherian ring–has finite uniform dimension ([247], 2.3.1); Goldie showed
that a domain A has uniform dimension 1 if, and only if it is an Ore domain,
and has infinite uniform dimension otherwise ([199], (10.22)). The Krull
dimension and the global dimension can be viewed as measures how far a ring
is from being Artinian and semisimple, respectively. Due to the limitation
of space, only the global dimension (both the usual one and the weak one),
and the Krull dimension in the commutative case, are detailed in the sequel;
some hints are given about the right Krull dimension of noncommutative
rings (when it exists).

3.5.5.2 Projective, Injective and Flat Dimensions

Definition 627. Let M be a left A-module. The projective (resp., flat, in-
jective) dimension of M , denoted by pd (AM) (resp., fd (AM) , id (AM)), is
defined as the shortest length of a projective (resp., flat, injective) resolution
of M and as +∞ if M has no projective (resp., flat, injective) resolution of
finite length.

A left A-module M is such that pd (AM) = 0 (resp., fd (AM) = 0,
id (AM) = 0) if, and only if M is projective (resp., flat, injective). If M has
a finite free resolution of length ≤ n, then pd (AM) ≤ n since a projective
module is free. The converse holds if M is f.g. and the ring A is both Noethe-
rian and projective-free (Definition 579). In addition, as shown in ([306],
Lemma 9.40):

Lemma 628. If a module M has a projective resolution (3.52) in which each
Ei is stably-free, then M has a finite free resolution of length ≤ n+ 1.

3.5.5.3 Global Dimension and Krull Dimension

Theorem and Definition 629. (1) The following quantities are equal
([306], Chap. 9) and are called the left global dimension of A, which is de-
noted by lgldA:
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(i) sup {pd (AM) : M ∈ AMod}
(ii) sup {id (AM) : M ∈ AMod}

(2) The right global dimension of A, denoted by rgldA, is likewise defined.
(3) The following quantities are equal ([306], Chap. 9) and are called the
weak (or flat) global dimension of A, written wgldA:

(i) sup {fd (AM) : M ∈ AMod}
(ii) sup {fd (MA) : M ∈ModA}

(4) A ring A is called left (resp., right) regular if pd (M) < ∞ for all
finitely generated modules M ∈ AMod (resp., M ∈ ModA). In particu-
lar, if lgldA <∞ (resp., rgldA <∞), then A is left (resp., right) regular.
(5) If A �= 0 is commutative ring, its Krull dimension (or simply its dimen-
sion), denoted by K (A) (or by dim (A)) is the supremum of the lengths of
all chains of prime ideals p0  ...  pd in A (Subsect. 1.5.2 & 2.4.3) and is
equal to a non-negative integer or +∞.

Remark 630. (i) We have given in (5) above the classical definition of the
Krull dimension of a commutative ring ([32], n◦VIII.1.3). This definition
can be extended (in a non obvious way) to noncommutative rings, for which
the left Krull dimension and the right one (when they exist) must be distin-
guished; the latter is always denoted by K (A). See ([247], 6.2.2) for more
details.
(ii) If X is a topological space, its dimension dimX is defined to be −1 if
X = ∅ and otherwise to be the supremum of all integers n such that there
exists a chain Z0 ⊆ Z1 ⊆ ... ⊆ Zn of distinct irreducible closed subsets of X
(Definition 386(iii)). One can prove ([156], Sect. I.1, Prop 1.7) that if Y is
an algebraic set, then dim Y coincides with the Krull dimension of the affine
coordinate ring A (Y ) (Corollary and Definition 389(3)).

The following result involves faithfully flat ring extensions (3.5.3.3) and the
Krull dimension. It is proved in, e.g., ([32], §VIII.2, Prop. 2).

Proposition 631. Let A,B be commutative rings such that A ⊆ B and the
A-module B is faithfully flat. Then

dim (B) ≥ dim (A) + inf
m∈S

dim (B/mB) (3.57)

where S is the set of all maximal ideals in A. Furthermore, if the rings A,B
are local Noetherian, then (3.57) is an equality.

If A �= 0 is a commutative Noetherian ring, any chain of prime ideals in A
has finite length, but this does not imply K (A) <∞ ([32], §VIII.1, Exercise
13). The following, is classical ([247], Sect. 7.1):
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Theorem and Definition 632. (1) For any ring A,

wgldA ≤ sup {lgldA, rgldA} .

(2) If A is left Noetherian, then

wgldA = lgldA.

(3) If A is Noetherian, then

wgldA = lgldA = rgldA,

and this common value, called the global dimension of A, is denoted by gldA.

Lemma 633. Let A be a nonzero ring.

(i) gldA = 0 if, and only if A is semisimple.
(ii) rgldA = 1 if, and only if A is right-hereditary.
(iii) If A is commutative, K (A) = 0 if, and only if every prime ideal is
maximal. In particular, if A is commutative and Noetherian, K (A) = 0 if,
and only if A is Artinian (Subsect. 2.4.4); if A is a commutative domain,
K (A) = 0 if, and only if A is a field.
(iv) If A is a hereditary Noetherian prime ring (Definitions 319 & 585), then
K (A) ≤ 1. In particular, if A is a Dedekind domain, then K (A) ≤ 1; more
specifically, a commutative domain A is a Dedekind domain if, and only if
K (A) ≤ 1 and A is integrally closed (Lemma and Definition 448).
(v) If A is commutative, Noetherian and regular, then K (A) = gldA.
(vi) If A is commutative and local, then gldA < ∞ if, and only if A is
regular.

Proof. (i) is a consequence of Theorem 589. (ii): See ([30], §X.8, Prop.
7). (iii): See ([32], n◦VIII.1.3, Example 1). (iv): See ([247], 6.2.8) and
([32], n◦VIII.1.3, Example 2). (v): See ([199], (5.94)). (vi): See ([105],
Theorem 19.12).

Sylvester domains (Definition 416) can be characterized using the global di-
mension, as shown by the following, stated without proof (see [14], [89]):

Theorem 634. Let A be a ring.
(i) Assume that A is Noetherian domain. Then, A is a Sylvester domain if,
and only if gldA ≤ 2 and A is projective-free.
(ii) Assume that A is an Ore domain. Then A is a Sylvester domain if, and
only if gldA ≤ 2 and every flat module is a directed union of free submodules.

The following gathers useful results (see [247], 7.4.3, 7.5.3, 7.5.5, 6.5.4, 6.9.24).

Theorem 635. (1) Let A be a ring, let S be a right denominator set (Defini-
tion 327) and let Q = AS−1. Then rgldQ ≤ rgldA and wgldQ ≤wgldA.



246 3 Homological Algebra

(2) Let A be a ring, α an automorphism and δ a derivation or an α-
derivation.
(i) rgldA ≤ rgldA [X ;α, δ] ≤ rgldA + 1 if rgldA < +∞;
(ii) rgldA ≤ rgldA

[
X,X−1;α

]
≤ rgldA + 1;

(iii) rgldA [X ;α] = rgldA + 1;
(iv) rgldA

[
X,X−1

]
= rgldA + 1;

(v) rgldA [[X ;α]] = rgldA + 1 if A is Noetherian;
(vi) rgldA [X ; α, δ] = rgldA

[
X,X−1;α

]
= 1 if A is semisimple;

(vii) if A is Noetherian commutative with gldA = d < ∞, let S be ei-
ther A [X ; δ] or A

[
X,X−1;α

]
and suppose S is a simple ring. Then

rgldS = sup {1, d} .
(3) If A is a right Noetherian ring, then its right Krull dimension K (A) ex-
ists and (i)-(v) of Item (2) hold true with the right global dimension changed
to the right Krull dimension. In addition,
(vi’) K (A [X ; α, δ]) = K

(
A
[
X,X−1;α

])
= 1 if A is right Artinian;

(vii’) if A is Noetherian commutative, not Artinian, let S be a simple ring
as in (vii) above; then K (S) = K (A) .

Theorem 636. (i) (Hilbert’s theorem on syzygies). Let A be a commutative
ring; then

gldA [X1, ..., Xn] = gldA+n

and the same holds with the Krull dimension if A is Noetherian.
(ii) Let An (k) (k = R or C) be the nth Weyl algebra (Exercise 493(v)); then

gldAn (k) = K (An (k)) = n.

(iii) Let A be a Q-algebra (resp., a right Noetherian ring) and S = A ∗G be
the crossed product of A by a polycyclic by cyclic group G with Hirsch number
h (Definition 161). Then rgldS ≤ rgldA + h (resp., K (S) ≤ K (A) + h).

Proof. (i) is a consequence of Theorem 635. (ii) and (iii): see ([247], 7.5.8,
7.5.6, 6.6.15, 6.5.5).

In connection with Hilbert’s theorem on syzygies, and using the notions of
filtration and grading (not presented in this book), one obtains Item (1)
below, proved in ([247], 12.3.3).

Theorem 637. (1) Let R be a right Noetherian ring such that every cyclic
module has finite projective dimension, and such that f.g. projective right R-
modules are all stably-free. Let S be one of the following rings:
(i) R ∗G where the group G is polycyclic;
(ii) R [X ; α, δ] where α is an automorphism;
(iii) R

[
X,X−1;α

]
where α is an automorphism.

Then every f.g. projective right S-module is stably-free.
(2) The above also holds true when S is one of the following rings:
(iv) A1 (k), the first Weyl algebra;
(v) A1c (k) (Corollary 365);



3.5 Homological Properties of Certain Modules 247

(vi) A′1 (k) (Example 369);
(vii) Ao (C) (Exercise 492);
(viii) An (k), the nth Weyl algebra (Exercise 493(v)).

Proof. (2): Over A1 (k), A1c (k) and Ao (C), every f.g. projective right
S-module is stably-free by (1)(ii) since k [t], k {t} (2.9.1.1) and R (Ω)
(Exercise 492) are principal ideal domains. The rings A′1 (k) and An (k)
enjoy the same property, the former by (iii), the latter by induction from (iv)
and (ii).

3.5.6 Cogenerators

3.5.6.1 Basic Properties

Generators (resp., cogenerators) have been defined in a category C hav-
ing arbitrary products (resp., coproducts) (1.2.2.4), and are characterized
by Theorem 43(3) when C is additive: for any objects U and W of C,
AU = HomC (U, •) (resp., BW (•) = HomC (•,W )) is a covariant (resp., con-
travariant) functor C → Ab, and U is a generator (resp., W is a cogenerator)
in C if, and only if AU (resp., BW (•)) is faithful. This applies to the cate-
gory AMod (where A is any ring) since AMod has arbitrary products and
coproducts and is abelian. See Example 501.

Theorem 638. (1) For a left A-module W , the following properties are
equivalent:
(i) W is a cogenerator;
(ii) for any nonzero homomorphism of left A-modules •f : X1 → X2, there
exists •g : X2 →W such that •fg �= 0;
(iii) for any X ∈ AMod and 0 �= x ∈ X, there exists •g : X →W such that
(x) g �= 0;
(iv) any X ∈ AMod can be embedded in some product W I =

∏
iW ;

(v) for every simple left A-module S, W contains a copy of E (S) (the injec-
tive hull of S).
(2) If W is a cogenerator and W � V , then V is a cogenerator.

Proof. (1) (i)⇔(ii) by Definition 8 and (i)⇔(iv) by Lemma 9.
(ii)⇒(iii): Let •f : A→ X be defined by (1) f = x �= 0 and take •g : X →

W such that •fg �= 0. Then (x) g = (1) (fg) �= 0.
(iii)⇒(iv): For any 0 �= x ∈ X , let πx : X → W such that (x) πx �= 0.

Then π = (πx)x�=0 is an embedding X ↪→
∏
x�=0W .

(2) is a consequence of (1).
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Corollary 639. Any cogenerator W ∈ AMod is faithful.

Proof. Let λ ∈ A be such that λW = 0 and consider (by the above
property (iv)) an embedding AA ↪→W I . Then λAA = 0 and in particular
λ1 = λ = 0.

Definition 640. Let A be a ring and X ∈ AMod. The module X is said
to be finitely cogenerated if whenever there exist a family (Wi)i∈I of left A-
modules and an embedding X ↪→

∏
i∈I Wi, there exists already an embedding

X ↪→
∏
i∈J Wi for some finite subset J ⊆ I.

The following is proved in ([199], (19.1), (19.4)), and can be viewed as the
”dual” of Lemma 311.

Proposition 641. A module X ∈ AMod is Artinian if, and only if every
quotient of X is finitely cogenerated.

Theorem 642. Let W be an injective left A-module. The following condi-
tions are equivalent:

(i) W is cogenerator;
(ii) HomA (S,W ) �= 0 for every simple left A-module S;
(iii) for every simple left A-module S, there exists a set of indices I and an
embedding S ↪→W I .

Proof. (i)⇒(ii) and (i)⇒(iii) are obvious.
(ii)⇒(i): Let X be a left A-module and 0 �= x ∈ X . The submodule Ax

of X has a simple quotient S (Proposition 533(ii)); if HomA (S,W ) �= 0, then
HomA (Ax,W ) �= 0 and there exists f : Ax → W which is nonzero. Since
W is injective, f can be extended to a nonzero homomorphism g : X →W .

(iii)⇒(i) is a consequence of Theorem 638(1). Indeed, if S embeds in W I ,
so does E (S) since W I is injective by Proposition 588. Therefore, W I is a
cogenerator, and so is W .

Corollary and Definition 643. (i) Let (Si)i∈I be a representative system
of simple left A-modules (Definition 534). Then W0 =

⊕
i∈I E (Si) is a co-

generator, called the canonical cogenerator of AMod, and W0 is injective if
A is left-Noetherian.
(ii) A left A-module W is a cogenerator if, and only if there exists an em-
bedding W0 ↪→ W .
(iii) In particular, E (W0) is an injective cogenerator.

Proof. (i) is an obvious consequence of Theorems 642(ii) & 594(iii).
(ii): If there exists an embedding W0 ↪→ W , then W is a cogenerator by

Theorem 638(2). Conversely, let W be a cogenerator. By Theorem 642(ii),
we may assume that E (Si) ⊆ W for all i ∈ I (recall that E (Si) is defined
up to isomorphism). Since Si � Sj for i �= j, the sum

∑
i∈I Si is direct and
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so is the sum
∑
i∈I E (Si) by Exercise 692(v), therefore W contains a copy

of W0.
(iii): The module W0 is not necessarily injective, but by Theorem and

Definition 600 there exists an embedding W0 ↪→ E (W0). By (ii), E (W0) is
an injective cogenerator.

The reason why injective cogenerators are important is explained by the
following.

Theorem 644. (i) Let A be any ring and let Mi (1 ≤ i ≤ 3) and W be left
A-modules. Assume that W is an injective cogenerator. Then the sequence

M1
•α−→M2

•β−→M3 (3.58)

is exact in AMod if, and only if the sequence

BW (M1)
BW (α)•←− BW (M2)

BW (β)•←− BW (M3) (3.59)

is exact in Ab (and in the category ModE as well, where E = EndA (W )).
(ii) Let C be an abelian category with arbitrary products and let E �
HomC (W,W ). Then for any object M of C, the abelian group HomC (M,W )
of all left morphisms •f : M → W is a right E-module via composition of
morphisms, and the above correspondence is still valid between C and ModE.
Therefore, the object W is an injective cogenerator if, and only if the functor
BW is faithfully exact.

Proof. (i) The ”only if” part is obvious since W is injective. Let us prove
the ”if” part and assume that (3.59) is exact.

(1) Suppose that imα � kerβ and let b ∈ imα\ kerβ. Then (b)β �= 0,
and since W is a cogenerator there exists (by Theorem 638(iii)) a map •f :
M3 → W such that (b)βf �= 0. In addition there exists a ∈ M1 such that
b = (a)α, therefore (a)αβf �= 0. This implies αβf �= 0, i.e., BW (αβ) (f) �=
0. Therefore, BW (αβ) = BW (α) ◦BW (β) �= 0, a contradiction.

(2) Suppose that imα � kerβ and let b ∈ kerβ\ imα. Then, b̄ �= 0, where
b̄ is the canonical image of b̄ in M2/ imα. Since W is a cogenerator, there
exists •f : M2/ imα→ W such that

(
b̄
)
f �= 0. Let •g : M2 →W be defined

by the composition below

M2
•ϕ−→M2/ imα

•f−→W

where •ϕ is the canonical epimorphism. Then (b) g �= 0. But BW (α) (g) =
•αg = 0 since (imα) g = 0, therefore g ∈ kerBW (α) = imBW (β), and
there exists •h ∈ BW (M3) such that g = BW (β) (h) = βh. Since b ∈ kerβ,
(b) g = (b)βh = 0, a contradiction.

(ii) is deduced from (i) using the Freyd-Mitchell theorem (Theorem 50).

Remark 645. Consider in ModE an exact sequence

BW (M1)
λ•←− BW (M2)

μ•←− BW (M3) .
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There does not necessarily exist in AMod an exact sequence (3.58), even if
W is an injective cogenerator, for BW (AMod) is not necessarily a full sub-
category of ModE. See the notion of large injective cogenerator in (5.3.2.2)
below.

3.5.6.2 Construction of Cogenerators

The general result given below is often useful ([30], §X.1, Prop. 13):

Theorem 646. Let A, S be rings, U a left A-module which is injective co-
generator and let P be an (A,S)-bimodule. If P is faithfully flat over S, then
the left S-module HomA (P,U) is an injective cogenerator.

Proof. We already know that HomA (P,U) is an injective left S-module
(Proposition 608). Let S be a simple left S-module; then, according to the
Adjoint Isomorphism theorem (Theorem 284), we have the isomorphism of
Abelian groups

HomA (S,HomA (P,U)) ∼= HomS (P
⊗

A S,U) .

Since P is faithfully flat and S �= 0, P
⊗

A S �= 0 by Lemma and Defi-
nition 614(ii), thus HomS (P

⊗
A S,U) �= 0 since U is cogenerator. Thus

HomA (S,HomA (P,U)) �= 0 and HomA (P,U) is cogenerator by Theorem
642(i).

Corollary 647. Let A, S be rings, let U be a left A-module which is an
injective cogenerator and let ρ : A→ S be a ring-homomorphism. Using the
change-of-ring functor (3.4.2.1), the (S,S)-bimodule SSS is endowed with
an obvious structure of (A,S)-bimodule, setting r . s s′ = ρ (r) s s′ for any
r ∈ A and s, s′ ∈ S. Then the left S-module HomA (S, U) is an injective
cogenerator.

Proof. This is a consequence of Theorem 646 since the right S-module SS

is faithfully flat (Corollary 616).

Corollary 648. Let K be a field and let S be a unitary K-algebra (2.2.2.3).
Then the S-module S∗ � HomK (S,K) is a left and right injective
cogenerator.

Proof. The K-vector space K is an injective K-module by the Baer Criterion
(Criterion 591). The only maximal ideal of K is 0, thus KKK = K/0 is
the only simple K-module, and HomK (K,K) ∼= K �= 0, thus KKK is an
injective cogenerator. Therefore the S-module S∗ is a left and right injective
cogenerator by Corollary 647 (with A = K and U = KKK).
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3.6 Modules over Specific Rings

3.6.1 Modules over Bézout Domains

3.6.1.1 Matrices over Bézout Domains

In what follows, diag (a1, ..., an) denotes any q×k matrix with min (q, k) = n,
a1, ..., an on the main diagonal (from top to down) and 0s elsewhere. If A is
a Bézout domain, the notion of rank of a matrix over A is not ambiguous by
Corollary 442.

By Lemma and Definition 410, a matrix A over a semifir is left-equivalent

(Definition 280) to a matrix
[
T
0

]
where the rows of T are left A-linearly

independent. By symmetry, A is right-equivalent to a matrix
[
T 0
]

where
the columns of T are right A-linearly independent.

More precision can be given over a Bézout domain. For this, elementary
operations on the rows and on the columns are necessary (Subsect. 2.10.3)
and secondary operations on the rows and on the columns as well (see below).

Definition 649. A secondary operation on the rows (resp., on the columns)
consists in left- (resp., right-) multiplying two rows (resp., two columns) by
an invertible 2× 2 matrix.

Lemma 650. Let A be a domain. An arbitrary row
(
a b
)

(a, b ∈ A) is
right-equivalent to a diagonal form

(
d 0
)

if, and only if A is a right Bézout
domain. Then, d is a gcld of a and b.

Proof. (i) Let A be a right Bézout domain, let
(
a b
)

be a row over A and let
d be a gcld of a and b (Theorem 443). Then a = d a′, b = d b′ where (a′, b′) is
strongly left-coprime, i.e.,

(
a′ b′
)

is right-invertible. Therefore,
(
a′ b′
)

can
be completed to an invertible matrix Q−1. This yields

(
a′ b′
)
Q =

(
1 0
)
.

Left-multiplying this expression by d, one obtains
(
a b
)
Q =
(
d 0
)
. (3.60)

(ii) Conversely, assume that for any row
(
a b
)
, there exists Q such that

(3.60) holds. Then d ∈ aA + bA, and
(
a b
)

=
(
d 0
)
Q−1, therefore

a, b ∈ dA. It follows that aA + bA = dA. By induction, every f.g. right
ideal in A is principal, thus A is a right Bézout domain.

Corollary and Definition 651. (1) Let A be a left (resp., right) Bézout
domain and A ∈ qAk. Then A is left (resp., right) equivalent to an upper
(resp., a lower) triangular matrix T , called a left (resp., right) Hermite form
of A.
(2) If A is a Bézout domain, there exists a permutation matrix P such that

the left (resp., right) Hermite form of AP (resp., P A) is
[
T1 0
0 0

]
where

T1 ∈Matr (A) is upper (resp., lower) triangular of rank r.
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Proof. (1) Assume that A is a right Bézout domain. If the ith row of
A is nonzero, one can bring a nonzero element ai in the (i, i) position in
A using elementary operations of the third kind on the columns (Subsect.
2.10.3). Then, using secondary operations on the columns, one can replace
successively ai,i by a gcld of the pair (ai,i, a1,i+1) and a1,i+1 by 0, then the
new ai,i by a gcld of the pair (ai,i, ai,i+2) and ai,i+2 by 0, etc. Doing this for
all nonzero rows, a lower triangular matrix is obtained.

(2) There exists a permutation matrix P such that P A =
[
A1

0

]
where

no row of A1 is zero. The left Hermite form of P A is
[
T1 0
0 0

]
where

T1 ∈ Matr (A) is upper triangular and no diagonal element of T1 is zero.
Since A is an Ore domain, rk (T1) = r.

Definition 652. (1) Let A be a ring, A ∈ nAm and B ∈ nAp two matrices
over A with the same number of rows.
(i) A matrix L ∈ Matn (A) is a common left divisor of A,B if L is a left
divisor of

[
A B
]
, i.e., there exists a matrix

[
A′ B′

]
over A such that

[
A B
]

= L
[
A′ B′

]
.

(ii) A matrix L ∈ Matn (A) is a greatest common left divisor (gcld) of A,B
if (a) L is a common divisor of A,B, (b) every common left divisor of A,B
is a left divisor of L.
(2) A common right divisor and a greatest common right divisor (gcrd) of
two matrices with the same number of columns are likewise defined (see
Definition 81).

Theorem 653. Let A be a Bézout domain, let A ∈ nAm, let B ∈ nAp and
let r = rk

[
A B
]
.

(i) A and B have a gcld L ∈ nAr, of rank r, such that
[
A B
]
≡r
[
L 0
]
.

(ii) If r = n, then L is unique up to right-equivalence.
(iii) A and B are left-coprime if, and only if they are strongly left-coprime.
Similar properties hold for two matrices A ∈ mAn and B ∈ pAn, and left
and right interchanged.

Proof. (i) Let r = rk
[
A B
]
. By Corollary and Definition 651 there exist a

permutation matrix P ∈ GLn (A), a matrix Q ∈ GLk (A) (k = m + p) and
an upper triangular matrix T ∈ nAr of rank r, such that

P
[
A B
]
Q−1 =

[
T 0
]
.

Therefore, [
A B
]

= P−1T
[
In 0
]
Q



3.6 Modules over Specific Rings 253

i.e., [
A B
]
≡r
[
L 0
]
, L = P−1T,

thus L ∈ nAr is a gcld of A,B and rk (L) = r.
(ii) If L,L′ are two gclds of A,B, L′ left-divides L and there exists a

matrix C ∈ Matn (A) such that L = L′ C. Likewise there exists a matrix
C′ ∈ Matn (A) such that L′ = LC ′. Therefore, L (In − C′C) = 0 and since
rk (L) = n, this implies C′ C = In. Since A is weakly finite (Exercise 481),
C′ and C are invertible, thus L ≡r L′.

(iii) is a consequence of (i), taking L = In.

3.6.1.2 Modules over Bézout Domains

Theorem 654. Let A be a Bézout domain and let M be a f.g. left A-module.
Then there exists a finite free left A-module Φ such that

M = T (M)⊕ Φ (3.61)

where T (M) is the torsion submodule of M (Definition 339(v)). The module
module Φ is uniquely defined up to isomorphism, since Φ ∼= M/T (M), and
rk (Φ) = rk (M) (Definition 408).
In particular, if the f.g. left A-module is torsion-free, then M = Φ is free.

Proof. Since A is a semifir, the f.g. module M is finitely presented (Theorem
499). Let R ∈ qAk be a nonzero matrix of definition of the k-generated
module M . Then there exist by Corollary 651 invertible matrices P and Q
such that

P−1 RQ =
[
T1 0
0 0

]
, T1 ∈ Matr (A) , rk (T1) = r (3.62)

and M ∼= cokerA

[
T1 0
0 0

]
� M ′. Let m =

[
m′

m′′

]
be a column of generators

of M ′ where m′ and m′′ have respectively r and k− r elements. An equation
of the module M ′ is (see (3.1))

[
T1 0
]
m = 0, (3.63)

thus a presentation of M is

0 −→ Ar •R′
−→ Ak −→M −→ 0

where R′ =
[
T1 0
]
; this is a finite free resolution of length 1. In addition,

(3.63) is equivalent to T1m
′ = 0. Therefore, M ′ = [m]A = [m′]A ⊕ [m′′]A

where [m′]A = cokerA (•T1) and [m′′]A = Ak−r. By Theorem and Definition
339, the module cokerA (•T1) is torsion. Therefore, (3.61) holds and by (2.10),
Φ ∼= M/T (M).
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The above shows that a f.g. left A-module M (where A is a Bézout domain)
is free if, and only if M ∼= cokerA (•R) where R is right-equivalent to a matrix[
Ir 0
]
∈ rAk; then, M ∼= Ak−r.

3.6.2 Modules over Principal Ideal Domains

3.6.2.1 Diagonal Reduction and Elementary Divisor Rings

Lemma and Definition 655. (i) A matrix R ∈ qAk admits diagonal re-
duction if

R ≡ diag (e1, ..., er, 0, ..., 0) , ei ‖ ei+1, er �= 0

(see Definition 89). Let M = cokerA (•R); then M = T (M)⊕Φ where Φ is
finite free with rkΦ = rkM and

T (M) ∼=
⊕

1≤i≤r A/A ei. (3.64)

(ii) If the elements ei are uniquely determined up to similarity, then
diag (e1, ..., er, 0, ..., 0) is called the Smith normal form of R, and the ele-
ments ei (1 ≤ i ≤ r) are called the nonzero invariant factors of R or of M ;
R and M are said to have rk (M) zero invariant factors. (When A is non-
commutative, the above normal form is often called the Jacobson-Teichmüller
normal form of R, but we will keep the name Smith form, for the sake of sim-
plicity.) When the ring A is simple, then ei = 1 for all i ∈ {1, ..., r − 1} and
the Smith normal form of R is diag (1, ..., 1, er, 0, ..., 0).
(iii) A domain A is called an elementary divisor ring if every finite matrix
over A admits diagonal reduction.

More general elementary divisor rings, which can have zerodivisors, were
defined by Kaplansky [175].

Theorem 656. A domain A is an elementary divisor ring if, and only if
(i) it is a Bézout domain and (ii) all 2 × 2 matrices over A admit diagonal
reduction.

Proof. The necessary condition is a consequence of Lemma 650. Let us prove
the sufficient condition. Let A ∈ qAk, 3 ≥ q ≥ k (without loss of generality)
and let us proceed by induction. The induction assumption is that diagonal
reduction is possible for smaller q, and for a given q for smaller k.

Let A =
[
A1

A2

]
where A1 is the first row of A. We can find invertible

matrices P1, Q1 such that P1A2Q1 = diag (b1, ..., bq−1) = B, bi ‖ bi+1 if
bi+1 �= 0, hence

C =
[

1 0
0 P1

] [
A1

A2

]
Q1 =

[
A1Q1

B

]
.
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Let C =
[
C1

C2

]
where C1 consists of the first two rows of C. We can find

invertible matrices P2, Q2 such that P2 C1 Q2 = diag (e1, e
′
1) = C, e1 ‖ e′1 if

e′1 �= 0, hence

F =
[
P2 0
0 Iq−2

] [
E1

E2

]
Q2 =

[
C
D

]

where D = E2 Q2. Now, e1 is a total divisor of all entries of E1, thus e1 ‖ b1;
likewise b1 is a total divisor of all entries of D, thus e1 is a total divisor of all
entries of F . Using elementary operations to sweep out the first column of
F we reach [

e1 0
0 G

]

where e1 is a total divisor of all entries of G. Applying induction to G we
obtain the complete reduction.

Corollary 657. Let A be a commutative domain; A is an elementary di-
visor ring if, and only if (i) A is a commutative Bézout domain, and (ii)
if for any a, b, c ∈ A such that (a, b, c) = 1, there exist p, q ∈ A such that
(p a, p b+ q c) = 1 (with the notation after Proposition 82).

Proof. (1) We know that (i) is necessary. (2) Let us prove the necessity of
(ii). Let

A =
[
a b
0 c

]
(3.65)

where (a, b, c) = 1 and assume P AQ effects the diagonal reduction of A.

Then P AQ = diag (υ, e) where υ is a unit. Setting P =
[
p ∗
q ∗

]
, Q =

[
x y
∗ ∗

]
,

we obtain p a x + p b y + q c y = υ, whence (p a, p b + q c) = 1.
(3) Let us prove the sufficiency of (i), (ii). By (i) and Lemma 650, we may

assume A of the form (3.65). Assuming (p a, p b+ q c) = 1, then (p, q) = 1

and there exists an invertible matrix P =
[
p q
∗ ∗

]
which yields

P A =
[
p a p b + q c
∗ ∗

]
≡
[

1 0
0 ∗

]
.

The Bézout domain in Example 440 was proved in [137] to be an elementary
divisor ring which is not a principal ideal domain. So is also the ring in
Example 439 (see Exercise 698). No example of commutative domain Bézout
which is not an elementary divisor ring is presently known.
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3.6.2.2 The Case of Principal Ideal Domains

Theorem 658. A principal ideal domain A is an elementary divi-
sor ring and every nonzero matrix A over A has diagonal reduction
diag (e1, ..., er, 0, ..., 0) , er �= 0, where the elements ei (1 ≤ i ≤ r) are uniquely
determined up to similarity.

Proof. By Theorem 656, it is sufficient to prove that any 2×2 matrix A over
A has diagonal reduction.

(1) If A = 0, there is nothing to prove. If not, bring a nonzero element in
position (1,1). Since A is atomic (Corollary 461), the length |a11| (Definition
119) of a11 is finite. By Lemma 650, A can be transformed, using a secondary
column operation, into a form where the first row is

[
a11 0

]
with a new

a11, the length of which is not greater than the length of the old a11. The
same process can be applied to the first column of A, using a secondary row
operation, and the element in position (2,1) becomes zero. Doing this, the
element in position (1,2) may again become nonzero, but, as easily seen, this
can happen only if the old a21 is not a right-multiple of the old a11, and
then |a11| is reduced. Therefore, after a finite number of steps, A becomes
diagonal, say diag (a1, a2).

(2) For any x, y ∈ A,
[

1 x
0 1

] [
a1 0
0 a2

] [
y 1
1 0

]
=
[
a′1 a1

a2 0

]
.

where a′1 = a1y + xa2 ∈ a1A + Aa2. We have a1A + Aa2  a1A except if
Aa2 ⊆ a1A, i.e., if the following condition (C) holds: A a2A ⊆ a1A.

(a) Condition (C) holds if, and only if a1 | c | a2 where c is an invariant
generator of the ideal A a2A (Lemma 447), and this is equivalent to a1 ‖ a2.

(b) If Condition (C) does not hold, one can choose x, y such that a1 = a′1q1,
for some nonunit q1. Then, |a′1| < |a1|.

Therefore, by iterating the whole process, |a1| can be diminished until
a1 ‖ a2 and, as a result, any 2× 2 matrix over A has diagonal reduction.

The proof of the uniqueness of the diagonal elements ei up to similarity
([77], Sect. 8.2, Theorem 2.4) is based on the lemma below which is proved
in ([77], Sect. 8.2, Corol. 2.5).

Lemma 659. Over a principal ideal domain A, finitely generated modules
can be cancelled, i.e., if

M ⊕N ∼= M ⊕N ′,

where M,N,N ′ are f.g., then N ∼= N ′.

Remark 660. (i) To our knowledge, the statement of Lemma 659 is no
longer valid if A is only assumed to be a Bézout domain or even an ele-
mentary divisor ring. Indeed, for the proof of ([77], Sect. 8.2, Corol. 2.5) to
be correct, A must be atomic (see [77], Sect. 3.6, Theorem 6.3).
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(ii) The diagonal reduction is obtained using elementary and secondary op-
erations on the rows and the columns. If A is an Euclidean domain, the
diminution the length |a11| can be replaced by the diminution of the degree
θ (a11) using the Euclidean algorithm, and for this secondary operations are
unnecessary. Therefore, if A is a commutative Euclidean domain, SLn (A)
(Example 144) is generated by all elementary matrices (Subsect. 2.10.2), i.e.,
SLn (A) = En (A), and GLn (A) = Dn (A) En (A) = En (A)Dn (A) (see
Proposition 393(i)).

Based on the above lemma, the following is proved in ([43], Lemma 560 and
Proposition 561):

Corollary 661. Let A be a principal ideal domain, let M be a f.g. left A-
module and let F be a free submodule of M .

(i) There exists a maximal free submodule ΦF of M containing F and M =
T (M)⊕ ΦF .
(ii) Let N � M ; there exists a free submodule ΦN of M such that M =
T (M)⊕ΦN and N = T (N)⊕(ΦN ∩N). If Φ′N is another free submodule of
M such that M = T (M)⊕ Φ′N and N = T (N)⊕ (Φ′N ∩N), then Φ′N ∼= ΦN
and Φ′N/ (Φ′N ∩N) ∼= ΦN/ (ΦN ∩N).

The diagonal reduction in Theorem 658 yields the following decomposition
of M = cokerA (•R) into cyclic modules:

M ∼=
⊕

1≤i≤r A/A ei
⊕k−r

A (3.66)

and the condition that ei ‖ ei+1 (1 ≤ i ≤ r − 1) ensures that this decompo-
sition has as few terms as possible provided that the zero modules A/A ei
where ei is a unit are removed ([77], Sect. 8.2, Exercise 3). Now, considering
the primary decomposition of each nonzero cyclic torsion module (Lemma
and Definition 543) we obtain the following.

Theorem and Definition 662. Let A be a principal ideal domain and let
T be a finitely generated torsion left module over A.

(1) Then
T ∼=
⊕

1≤i≤mA/A qi
⊕

A/Au (3.67)

where each qi is a product of pairwise similar bounded atoms, while u is totally
unbounded. If A is simple, T ∼= A/Au; if M is bounded, A/Au = 0.
(2) The similarity classes of the elements qi (or, abusing the language, the
ideals A qi, or the elements of these ideals, one for each ideal, taking into
account multiplicities) are called the elementary divisors of T (and of any
matrix of definition of T ).
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Proof. (1) is easily deduced from Theorem 658 when T is bounded, and
one is led to consider the case m = 0. Then by (3.66) and (3.24) , T ∼=⊕

1≤i≤r A/Aui where ui ‖ ui+1 and each ui (1 ≤ i ≤ r) is a unit or is totally
unbounded; thus ui is a unit for 1 ≤ i ≤ r − 1 and T ∼= A/Aur.

The integer k− r in (3.66) is called the multiplicity of the elementary divisor
0 of M ([28], §VII.4, Definition 4).

Corollary 663. Let T1, T2 be two f.g. torsion A-modules.

(i) Let ε (Ti) be the set of elementary divisors of Ti (i = 1, 2). Then,

ε (T1 ⊕ T2) = ε (T1) ∪̇ε (T2)

where ∪̇ is the disjoint union (1.2.1.3).
(ii) Let T2 � T1, and let eij (1 ≤ i ≤ r) be the invariant factors of Tj
(j = 1, 2). There exist elements e′i2 such that ei1 = ei2 e

′
i2 for each i ∈

{1, ..., r}, and
T1/T2

∼=
⊕

1≤i≤r A/A e′i2.

Proof. (i) is clear by (3.67).
(ii): We have by (3.64), for j = 1, 2,

Tj =
⊕

1≤i≤r Cij , Cij ∼= A/A eij .

Since T2 � T1, we have Ci2 � Ci1 (1 ≤ i ≤ r). Therefore, by Proposition 528,
there exists for each i an element e′i2 such that ei1 = ei2 e

′
i2. In addition, by

(2.9),
T1/T2

∼=
⊕

1≤i≤r Ci1/Ci2

and by Noether’s third isomorphism theorem (Theorem 52(3)),

Ci1/Ci2 ∼= A/A e′i2.

3.6.3 Modules over Dedekind Domains

Finitely generated modules over Dedekind domains have properties similar
to those of modules over principal ideal domains. First, such a module is the
direct sum of a torsion module of finite length (Theorem and Definition 160)
and of a torsion-free module. Second, this torsion-free module is the direct
sum of a finite free module and of an ideal. More specifically (see [247], 5.7.4,
5.7.8, 5.7.12, 5.7.17, [31], §6.4, Prop. 23, and Proposition 457):

Theorem 664. (1) Let A be a hereditary Noetherian prime ring and let M
be a f.g. left A-module. Then

M = T (M)⊕ P

where T (M) has finite length and P ∼= M/T (M) is projective.
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(2) If A is a Dedekind domain (not necessarily commutative), then

P ∼= An ⊕ I

for some n and some left ideal I in A (generated by two elements according
to Proposition 457) and T (M) is a direct sum of cyclic submodules, i.e.

T (M) ∼=
⊕

1≤i≤r A/ai

where each ai (1 ≤ i ≤ r) is a nonzero left ideal generated by two elements. If
A is simple non-Artinian, then T (M) is cyclic (i.e., r = 1) and completely
faithful.
(3) If A is a commutative Dedekind domain, then there exist two finite
families (ni)i∈I and (pi)i∈I where the n′is are positive integers and the p′is
are nonzero prime ideals in A, such that

T (M) ∼=
⊕

i∈I A/pni
i ;

these families are unique up to a permutation of I.

Remark 665. (i) Over the Dedekind domains A1 (k), A1c (k), A′1 (k) (where
k = R or C) and Ao (C), every f.g. torsion-free module is projective by The-
orem 664, thus is stably-free by Theorem 637(i).
(ii) Let A be the nth Weyl Algebra An (k) , n ≥ 1 (Exercise 493(v)). As
shown by Stafford [336], every f.g. left A-module is isomorphic to N ⊕ As

for some integer s ≥ 0, where N is a module generated by two elements, and
every stably-free An (k)-module of rank ≥ 2 is free.
(iii) Over a commutative Dedekind domain, all stably-free modules are free
([247], 11.1.5); in other words, all commutative Dedekind domains are Her-
mite rings (Definition 579(ii)).

Item (i) of the above remark leads to the following.

Lemma and Definition 666. Let A be a ring and consider the following
conditions.

(i) Every left or right ideal in A is stably-free.
(ii) Every f.g. torsion-free A-module is stably-free.
(iii) Every f.g. left or right ideal in A is stably-free.
(1) If A is a Noetherian domain, then (i)⇔(ii)⇔(iii). If these equivalent
conditions hold, A is called a stably-free ideal domain.
(2) If A is an Ore domain, then (ii)⇔(iii). If these equivalent conditions
hold, A is called a semistably-free ideal domain.

Proof. (1) (ii)⇒(i): Assume that (ii) holds and let I be a left ideal in A.
Then I is a f.g. torsion-free module, therefore it is stably-free.

(i)⇒(ii): Assume that (i) holds and let P be a f.g. torsion-free A-module.
Since every left or right ideal is projective, A is a Dedekind domain by The-
orem 586. Therefore, by Theorem 664, P ∼= An ⊕ I where I is a left ideal.
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Since I is stably-free, say of rank r ≥ 0, there exists an integer q ≥ 0 such
that I ⊕Aq ∼= Aq+r. Therefore, P ⊕Aq ∼= An+q+r and P is stably-free of
rank n + r. (i)⇔(iii) is clear.

(2) (ii)⇒(iii) is clear.
(iii)⇒(ii): If (iii) holds, A is semihereditary (Exercise 688). Let P be a

torsion-free left A-module. Since A is an Ore domain, there exists an integer
n > 0 and an embedding P ↪→ An (Proposition 342). Therefore, there exists
a finite sequence of f.g. left ideals (Ii)1≤i≤k such that P ∼=

⊕k
i=1 Ii ([199],

Theorem (2.29)). For every index i ∈ {1, ..., k}, Ii is stably-free, therefore
there exist non-negative integers qi and ri such that Ii ⊕Aqi ∼= Aqi+ri . As
a consequence,

P ⊕Aq ∼= Aq+r

where q =
∑

1≤i≤k qi and r =
∑

1≤i≤k ri, and P is stably-free.

All stably-free ideal domains are Dedekind domains. The Dedekind domains
A1 (k), A1c (k), A′1 (k) and Ao (C) are all stably-free ideal domains. All
Bézout domains are semistably-free ideal domains. A Bézout domain is a
stably-free ideal domain if, and only if it is a principal ideal domain.

3.7 Coprime Factorizations of Matrices

In what follows, R is an Ore domain and F = Q (R) is its division ring of
fractions.

3.7.1 Left-Coprime Factorizations and
Right-Coprime Factorizations

Definition 667. Let G ∈ pFm.

(i) The matrix G is said to have a left-coprime factorization (Dl, Nl) over R
if Dl ∈Matp (R) is invertible over F, Nl ∈ pRm, the pair (Dl, Nl) is strongly
left-coprime over R (Definition 518(i)), and G = D−1

l Nl.
(ii) A right-coprime factorization (Dr, Nr) of G over R is likewise defined.

Lemma 668. Let f ∈ F, f = a−1b. Then f has a left-coprime factorization
over A if, and only if the right ideal generated by a and b is principal.

Proof. ”if” Assume aR + bR = cR. Then there exist d, n, x, y in R such
that a = cd, b = cn, c = ax + by. Since a �= 0, we have c, d �= 0. Then
f = (cd)−1

cn = d−1n. In addition, c = cdx + cny, therefore dx + ny = 1,
and (d, n) is a left-coprime factorization of f .

”only if” Suppose (d, n) is a left-coprime factorization of f and let x, y ∈ R
be such that nx + dy = 1. Let r = ad−1. We have

r = ad−1 (nx + dy) = a
(
d−1nx + y

)
= a
(
a−1bx + y

)
= bx + ay ∈ R.
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Therefore, a = rd, b = rn and ax + by = r. As a result, aR + bR = cR is a
principal right ideal.

Lemma 669. The following conditions are equivalent:

(i) Every f ∈ F has a left-coprime factorization over R.
(ii) Every f ∈ F has a right-coprime factorization over R.
(iii) R is a Bézout domain.

Proof. The ring R is an Ore domain, therefore, according to Proposition 441,
R is a Bézout domain if, and only if every pair of elements in R generates
a principal right ideal. By Lemma 668, (i)⇔(iii). Therefore, (ii)⇔(iii) by
symmetry.

Let M(F) be the set of all matrices of finite size with entries in F.

Theorem 670. The following conditions are equivalent:

(i) Every G ∈M(F) has a left-coprime factorization over R.
(ii) Every G ∈M(F) has a right-coprime factorization over R.
(iii) R is a Bézout domain.

Proof. By Lemma 669, (i)⇒(iiii) and (ii)⇒(iii).
(iii)⇒(i): Assume that (iii) holds and let G ∈ pFm. Put G = (gij). By

Corollary 329, there exist d ∈ R× and Ñ ∈ pRm such that G = d−1Ñ . By
Theorem 653, the matrix

[
dIp Ñ

]
has a gcld L ∈ Matp (R) such that

[
dIp Ñ

]
≡r
[
L 0
]

and since the matrix in the left-hand side is of rank p over R, we have
L ∈ GLp (F). Let Dl = L−1dIp and Nl = L−1Ñ . Then G = D−1

l Nl

and (Dl, Nl) is strongly left-coprime over R, thus (Dl, Nl) is a left-coprime
factorization of G, and (i) holds.

By symmetry, (iii)⇒(ii).

3.7.2 Doubly Coprime Factorizations

Lemma 671. Let G ∈ pFm.

(1) The following conditions are equivalent:
(i) G admits both a left-coprime factorization (Dl, Nl) and a right-coprime
factorization (Dr, Nr) where Dl ∈ Matp (R) , Dr ∈ Matm (R), Nl, Nr ∈
pRm.
(ii) G = D−1

l Nl = NrD
−1
r and
[
∗ ∗
Dl Nl

] [
−Nr ∗
Dr ∗

]
= I

where the asterisks denote submatrices with entries in R.
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(2) When (ii) holds, then the pairs (Dl, Nl) , (Dr, Nr) (in this order) are
called a doubly coprime factorization of G over R.

Proof. (1): see ([354], Sect. 4.1, Theorem 60), the proof of which is still
valid without any change.

Proposition 672. If (Dl, Nl) , (Dr, Nr) is a doubly coprime factorization
of G ∈ pFm, then cokerR (•Dl) ∼= cokerR (•Dr) and cokerR (•Nl) ∼=
cokerR (•Nr) .

Proof. If (Dl, Nl) , (Dr, Nr) is a doubly coprime factorization of G, then
Dl and Dr are stably associated (Definition 519), therefore they are left-
similar by Theorem 520. Likewise, Nl and Nr are stably associated, thus
left-similar.

The following is proved in ([354], Sect. 8.1, Theorem 66) when R is commu-
tative, but the same rationale as in proof of the cited theorem is still valid in
the general case (see Exercise 683).

Theorem 673. The following conditions are equivalent:

(i) R is an Hermite ring.
(ii) If G ∈M(F) admits a left-coprime factorization, then it admits a right-
coprime factorization, thus a doubly coprime factorization.
(iii) Same statement as (ii) with left and right interchanged.

3.8 Exercises

Exercise 674. In an abelian category C, consider the diagram below

0 −→ N
α−→ M
↑ β
P

where the first row is an exact sequence and imβ ⊆ imα. Assuming that all
morphisms are right ones (1.2.2.1), prove that there exists γ : P → N such
that β = αγ. (Hint: assume that C = AMod and then use the Freyd-Mitchell
Full Embedding Theorem (Theorem 50). In AMod, show that γ = ᾱ−1β̄
where ᾱ : N → imα and β̄ : M → imα are the maps induced by α and β,
respectively.)

Exercise 675. Let A be a ring. Prove the following:

(i) A submodule N of Ak is of the form Aq R for some matrix R ∈ qAk if,
and only if the f.g. M = Ak/N is f.p.
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(ii) Every submodule N of Ak is of the form Aq R for some matrix R ∈ qAk

if, and only if A is Noetherian.

Exercise 676. Let A be a ring.

(i) Show that the category C = AMod is a Grothendieck category (1.2.4.4).
(ii) Show that a left A-module is f.g. (resp., coherent) if, and only if it is of
finite type (resp., coherent) in C (Definition 55).

Exercise 677. Let R be an Ore domain.

(i) Prove that R is a left coherent Sylvester domain if, and only if for any
integer q ≥ 1 and any column Γ ∈ qR, the left annihilator of Γ is free.
(ii) Let S ⊆ R× be a denominator set. Prove that if R is a left coherent
Sylvester domain, so is again S−1R.

Exercise 678. Prove the following:

(i) M is torsionless if, and only if the canonical map ψ : M →M∗∗ (Defini-
tion 272) is injective.
(ii) Any product or any direct sum of torsionless modules is again torsionless.

Exercise 679. Let A be a ring and let A,A′ ∈Matn (A). Prove that if A,A′

are conjugate (Subsect. 2.2.6), they are similar (Definition 517).

Exercise 680. Let A = Z/2Z, let B = B′ = Z2, let (ε1, ε2) be the canonical
basis of the free Z-module Z2 and let β : B → B′ be the map defined by
β (ε1) = ε1 + ε2 and β (ε2) = ε1 − ε2. (i) Prove that kerβ = 0. (ii) Prove
that (1⊗ β) (ε1 − ε2) = 0 where 1 = IdA.

Exercise 681. (i) Using the Bézout identity, prove that Z = 2Z + 3Z and
using Theorem 241 show that Z/ (6) ∼= Z/ (2)⊕ Z/ (3). (ii) Set A = Z/ (6);
prove that any nonzero free A-module has at least 6 elements. (iii) Show
that Z/ (2) is a projective A-module but not a free one.

Exercise 682. Let A be a fir (Exercise 486), let F be a free left A-module
and let M a submodule of F . Prove that M is free. (Hint: use Theorem
586(2).)

Exercise 683. Let A be a ring with IBN. A row r = (ri) ∈ Ak is said to be
unimodular if there exist bi ∈ A (1 ≤ i ≤ k) such that

∑
1≤i≤r ri bi = 1; A

is said to have the unimodular extension property if every unimodular row
is the first row of a matrix A ∈ GLk (A).
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(1) Prove that of the following, (a) and (b) are equivalent and imply (c): (a) A
is Hermite; (b) every right-invertible matrix R ∈ qAk (q ≤ k) is completable;
(c) A has the unimodular extension property.
(2) Moreover, prove that if A is commutative, (c) is equivalent to (a) and
(b). (Hint: for (1), first show that any Hermite ring is weakly finite; then
apply Theorem 499. For (2), proceed by induction using determinants ([206],
Sect. XXI.3, Th. 3.6).)
(3) Detail the proof of Theorem 673.

Exercise 684. Let ρ : A → S be a ring-homomorphism and let M be a left
S-module. Let (αi)i∈I be a generating family (resp., a free family, a basis)
of the left A-module AS and let (aj)j∈J be a generating family (resp., a free
family, a basis) of the S-module M . Prove that (αi aj)(i,j)∈I×J is a generating
family (resp.,–when ρ is injective–a free family, a basis) of the left A-module
ρ∗ (M).

Exercise 685. Let r = (ri)i∈I be a family of elements of a ring A, let ρ :
A → S be a ring-homomorphism and let ϕAI : AI → ρ∗

(
ρ∗
(
AI
))

be the
canonical map. Check that ϕAI (r) = (ρ (ri))i∈I and deduce from this equality
that Remark 560(ii)(b) holds true.

Exercise 686. Let ρ : A → S be a ring-homomorphism, and for any left
A-module M set ∗ρ (M) � HomR (ρ∗ (S) ,M).
Prove that ∗ρ is a functor AMod → SMod and that (∗ρ, ρ∗) is an adjoint
pair of functors. (The module ∗ρ (M) is called the coinduced extension of M
along ρ. For more details regarding the functor ∗ρ, see ([80], Prop. 2.3.5).)

Exercise 687. Let ρ : A → S be a ring-homomorphism and let P be a
projective left A-module. Prove that the left S-module ρ∗ (P ) is projective and
that if ρ is a monomorphism, so is the canonical map ϕP : P → ρ∗ (ρ∗ (P )).
(Hint: use Corollary 556.)

Exercise 688. A ring A is called left semihereditary if every f.g. left ideal
in A is projective. A semihereditary commutative domain is called a Prüfer
domain.

(i) Prove that a ring A is left semihereditary if, and only if all torsionless
right A-modules are flat. If such a ring A is a left Ore domain, then a right
A-module is flat if, and only if it is torsion-free.
Prove that a left semihereditary ring is left coherent.
(ii) Show that a ring A is a left Dedekind domain if, and only if A is left
Noetherian domain which is left semihereditary.
(iii) Let A be a left Dedekind domain. Deduce from (i) and Proposition
516(v) that for a f.g. right A-module M , torsion-free ⇐⇒ torsionless ⇐⇒
flat.
(iv) Prove that every valuation domain (Exercise 490) is a Prüfer domain.
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(v) Let A be a Prüfer domain. Prove that an A-module is flat if, and only
if it is torsion-free.
(vi) Let A be a commutative domain and assume that all torsion-free A-
modules are flat; show that A is a Prüfer domain. Prove that the same holds
if torsion-free is changed to torsionless.
Hint: for (i), (v) and (vi), see ([136], Note after Prop. 3.2) and ([199], (4.67),
(4.20), (4.69)).

Exercise 689. Let A ⊆ S be left Ore domains, let ρ : A ↪→ S be the inclusion
and let T be a torsion left A-module.

(i) Prove that ρ∗ (T ) is again torsion.
(ii) If A and S are commutative, prove that ρ∗ (ρ∗ (T )) is torsion too.
(Hint: for (i), use Theorem 339(ii); for (ii), write any x ∈ ρ∗ (T ) in the
form

∑
1≤i≤n λi ⊗ xi, λi ∈ S, xi ∈ T , and left-multiply this expression by∏

1≤i≤n μi where for each i, 0 �= μi ∈ A is such that μi xi = 0.)

Exercise 690. Let A be a left Ore domain and let M be a torsion-free A-
module (Definition 513). Prove that M is injective if, and only if it is di-
visible. (Hint: let a be a nonzero left ideal in A and let f : a→M ; for any
0 �= a ∈ a, there exists ma ∈ M such (a) f = ama. Let 0 �= b ∈ a and let
u, v ∈ A, u �= 0, be such that u a = v b; form the product u ama and show
that ma = mb = m. Deduce that f can be extended to AA and use the Baer
Criterion.)

Exercise 691. Let A be a commutative domain. Prove that (i) every quo-
tient of a divisible A-module is divisible; (ii) all products and all coproducts of
divisible A-modules are divisible. (Hint: since A is a commutative domain,
the condition for an A-module M to be divisible reduces to M = aM for any
0 �= a ∈ A.)

Exercise 692. Let A be a ring and let M be a left A-module. A left A-
module E ⊇M is said to be an essential extension of M (or M is said to be
an essential submodule of E, written M ⊆e E) if every nonzero submodule
of E intersects M nontrivially.

(i) Prove that M ⊆e E if, and only if for any 0 �= a ∈ E, there exits r ∈ A
such that 0 �= r a ∈ M ; deduce from this necessary and sufficient condition
that the relation ⊆e is transitive.
(ii) Prove that a left A-module M is injective if, and only if it has no proper
essential extension.
(Hint: Assuming that M is injective and that E is a proper extension of M ,
show using Theorem 587(iii) that E = M⊕N where N �= 0 and conclude that
M �e E. Conversely, if M has no proper essential extension, embed M in
an injective module I (Theorem 599) and using Zorn’s lemma (Lemma 107)
show that there exists a submodule S ⊆ I maximal with respect to the property
that S ∩M = 0; denoting by ϕ : I � I/S the canonical epimorphism, show
that ϕ (M) ⊆e I/S, I = M ⊕ S and that M is injective by Proposition 588.)
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(iii) Show any module M has a maximal essential extension.
(Hint: Fix an injective module I ⊇M and consider any family F of essential
extensions of M in I ordered by inclusion; show using (i) that F is inductively
ordered and that any maximal element E of F is a maximal essential extension
of M .)
(iv) Show that the following are equivalent: (a) E is maximal essential over
M ; (b) E is injective, and is essential over M ; (c) E is an injective hull of
M .
(v) Let U be a module that contains a direct sum

⊕
α Vα. (a) Let Vα ⊆e

Eα ⊆ U for every α. Show that the sum
∑

αEα is direct. (b) Deduce from
the above that the sum

∑
αE (Vα) is direct.

Exercise 693. The notion of projective cover is obtained from that of in-
jective hull by ”dualizing” it, i.e., reversing the arrows. (Note that, contrary
to injective hulls, projective covers do not always exist: see ([198], §24). A
ring over which all modules have projective covers is said to be perfect; this
is not the same notion as in Definition 221(ii).)

(i) Detail the notion of projective cover and specify in what sense a projective
cover, when it exists, is uniquely defined.
(ii) Let M be a left A-module and let N � M . The submodule N is said
to be superfluous, or small (written N ⊆s M) if, whenever L � M with
L + N = M , then L = M . Let P be a projective module and let ε : P � M
be an epimorphism; prove that P is a projective cover of M if, and only if
ker ε is superfluous.

Exercise 694. Let K be a field and let X = (Xi) be an infinite family of
indeterminates. Prove that A = K [X ] is a coherent domain but is not
Noetherian. (Hint: use Theorem 612.)

Exercise 695. Let A be a simple ring and let U be a nonzero left A-module.
Prove that U is completely faithful (Definition 613(ii)).

Exercise 696. Let A be a ring, let S ⊆ A× be a left denominator set and
let (3.52) be a free (resp., projective, flat) resolution of length ≤ n of the left
A-module M . Prove that

0 −→ S−1Fn −→ ... −→ S−1F0 −→ S−1M −→ 0

is a free (resp., projective, flat) resolution of length ≤ n of the left S−1A-
module S−1M .

Exercise 697. (i) Prove that k [X1, ..., Xn] (k = R or C) is a Sylvester do-
main if, and only if n ≤ 2.
(ii) Prove that B1 (k) is a Sylvester domain but that the first Weyl algebra
A1 (k) is not a Sylvester domain.
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Exercise 698. A commutative ring A is called adequate if every f.g. ideal
in A is principal and the following condition holds: for any a, c ∈ A with
a �= 0, there exist r, s such that a = r s with (r, c) = 1 and (s′, c) �= 1 for any
nonunit divisor s′ of s.

(i) Prove that a commutative domain which is adequate is an elementary
divisor ring.
(ii) Prove that the commutative domain in Example 439 is adequate, thus is
an elementary divisor ring, but is not a principal ideal domain. (Hint: for
(i), use Corollary 657. Considering a, b, c such that (a, b, c) = 1 and a �= 0,
show that there exists q such that (a, b + q c = 1).)

3.9 Notes

The functors
⊗

and Hom are also denoted by Tor0 and Ext0, respectively.
Torn and Extn (n ≥ 1) are their ”derived functors”. According to MacLane
[223], Torn and Extn (n ≥ 0) are the subject of Homological Algebra, thus
our account, where the use of derived functors is avoided, is very basic. Those
functors, as well as lim−→ and lim←−, were first introduced in the context of Alge-
braic Topology [104].

Coherent rings and coherent sheaves of rings were introduced by Serre
[324] and further studied by Chase [62]. Proposition 342 and Exercise 690
are due to Gentile [136]. Theorem 514 and Proposition 516 are taken from
Bourlès and Oberst [47]. The part of Theorem 520 involving Conditions (a),
(b) and (c) goes back to Fitting [113] (see also [77], Sect. 0.6, Th. 6.2); that
involving Condition (d) is new, to our knowledge. Proposition 536 is due to
Bowtell and Cohn [53]; the proof of Lemma 538 is taken from [78].

The key role played by the functor KN (3.4.3.2) was pointed out by
Grothendieck and Dieudonné [150] in the context of Algebraic Geome-
try. Corollary 567 and the identification of HomA (cokerA (•R) ,W ) with
kerW (R•), which play a crucial role in Algebraic Systems Theory, are due to
Malgrange [232].

Hermite rings were introduced by Lissner [219] (this term has a quite
different meaning in Kaplansky’s classical paper [175] where ”left Hermite
domain” means ”left Bézout domain” in the present terminology). In 1955,
Serre wondered whether K [X1, ..., Xn] is projective-free when K is a field.
A positive answer to that question was given independently by Quillen and
Suslin in January 1976 [290], [337]. A nice presentation of the main results
related to this question is proposed in [200]. The notion of injective module
(as well as Theorem 599) is due to Baer [9], that of injective hull to Eckmann
and Schopf [97] (but the term ”injective hull” to Rosenberg and Zelinsky
[300]), and the dual notion of projective cover (Exercise 693) essentially to
Bass [12] who also introduced the notion of torsionless module (Definition
513(2)). Injective and projective resolutions play a key role in Homological
Algebra (see [59] in the context of modules and [148], [134] in the context of
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abelian categories). An extensive study of finite free resolutions can be found
in Northcott [256].

The first book where the notions of hereditary ring (Definition 585) and
of semi-hereditary ring (Exercise 688) were presented is that of Cartan and
Eilenberg [59]; the result in Exercise 688(i) is due to Chase [62]. Definitions
513 and 595 of a torsion-free module and of a divisible module, respectively,
are more general than Levy’s usual definitions [215] and are due to Lam [199].
Flat modules were introduced by Serre [325]. Corollary 610 is extracted
from Pillai and Shankar [275]. The global dimension and the weak global
dimension were defined and studied by Cartan and Eilenberg [59]. The Krull
dimension of Noetherian commutative domains was introduced by Krull (in
1938) in the case of local rings and shortly after by Zariski without this
restriction; this notion was extended to noncommutative rings by Gabriel in
1962. The characterization of Sylvester domains in Theorem 634 is due to
Bedoya and Lewin [14] and to Dicks and Sontag [89].

The equivalence between injectivity and the fundamental principle (Corol-
lary and Definition 592) was established in the Noetherian case by Mal-
grange [232]. Ehrenpreis [101] announced that the fundamental principle
holds true when A is the ring of linear partial differential operators with
constant coefficients C [∂1, ..., ∂n] and W is a space of entire functions in Cn

that satisfy a condition of bounded growth at infinity; see also Ehrenpreis’
and Palomodov’s monographs ([102], Sect. IV.2), ([266], Sect. IV.5). The va-
lidity of the fundamental principle was established by Malgrange [231] when
A = C [∂1, ..., ∂n] and W = E (Cn), the space of indefinitely differentiable
functions in Cn. Theorems 638 and 642 on cogenerators are classical ([199],
§19).

The theory of finitely generated modules over principal ideal domains goes
back essentially to Frobenius (around 1879) in the commutative case and
to van der Waerden, Wedderburn, Jacobson and Teichmüller (in the years
1932-1937) in the noncommutative case. Nakayama [254] established in 1938
the uniqueness result in Theorem 658. Corollary 663 is taken from Bourlès
and Fliess [44], with slight modifications, and Corollary 661 is new. The
structure of finitely generated modules over Bézout domains and elementary
divisor rings was clarified essentially by Kaplansky [175], and by Larsen et al.
[209]. That of finitely generated modules over Dedekind domains was made
explicit by Steinitz (in 1912) in the commutative case, and by Eisenbud and
Robson [106], [107] (in 1970) in the noncommutative case. Stafford’s theorem
(Remark 665(ii)) has been generalized by Quadrat and Roberts [289]. Lemma
and Definition 666 is new.

Or account on coprime factorization of matrices is an easy generalization
of Vidyasagar’s presentation [354] where commutative rings are considered.
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Galois Theory and Skew Polynomials

4.1 Introduction

Let K be a field, and let f (X) ∈ K [X ] be a polynomial with coefficients in
K. In general, the equation f (x) = 0 has solutions in an extension of K, not
in K itself. For example, if K = Q, the equation x2 + 2 = 0 has no solution
in Q, it has in C its full set of solutions

{
i
√

2,−i
√

2
}
, and these solutions

are already in the extension Q
(
i,
√

2
)
� C of Q. The study of algebraic field

extensions is the Galois theory, recalled in Section 4.2.
Let δ = d/dt and consider the differential field (K, δ). Let f (X) ∈

K [X ; δ]. The solutions of the differential equation f (∂) y = 0 are closely
connected with the roots of the skew polynomial f (X). These roots must
be properly defined. All these points are treated in Section 4.3.

So, given a skew polynomial f (X) ∈ K [X ; δ], we want to determine a
field extension of K in which the differential equation f (∂) y = 0 has a full
set of solutions. Equivalently, we want to determine a field extension of K
in which the skew polynomial f (X) has a full set of roots. This problem
can be solved, and the method to do it constitutes the Picard-Vessiot theory,
also called the differential Galois theory. It is expounded in Section 4.4. The
case when δ is an inner derivation (corresponding to discrete-time systems)
is more difficult, for a ring extension (not a field extension) is then needed.
This is explained in Subsect. 4.4.3.

4.2 Field Extensions

4.2.1 Algebraic Field Extensions

4.2.1.1 Extensions of Rings and Fields

Definition 699. (i) Let K be a ring. A ring extension of K is a ring L such
that K ⊆ L; such an extension is written L/K.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 269–308.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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(ii) Let K ⊆ L be fields; then L/K is called a field extension, and it is said
to be simple if L = K (a) where a ∈ L, i.e., if L is generated by a single
element a over K.

For example, let Q be the field of rational numbers; then Q(π) is the smallest
field containing both Q and π = 3.141592..., i.e., Q(π) = {N (π) /D (π) :
N,D ∈ Q (X)}.1 The extension Q(π)/Q is simple.

Definition 700. (i) Let L/K and L′/K be two ring extensions. A K-
homomorphism L → L′ is a homomorphism L → M which leaves fixed all
elements of K.
(ii) Let L/K be a field extension. The dimension of the K-vector space L
is denoted by [L : K] and called the degree of the extension L/K. This
extension is finite if [L : K] is finite.

As easily shown, we have the following:

Proposition 701. (i) Let K ⊆ L ⊆ M be fields such that both [L : K] and
[M : L] are finite. Then [M : K] = [M : L] [L : K].
(ii) More specifially, let (ui)1≤i≤n be a basis of the K-vector space L and let
(vj)1≤j≤m be a basis of the L-vector space M. Then (uivj)1≤i≤n,1≤j≤m is a
basis of the K-vector space M.

The following is proved in, e.g., ([28], §V.6, Corol. 2 of Theorem 1):

Theorem 702. (Dedekind’s theorem). Let L/K, L′/K be two field exten-
sions. If [L : K] is finite, the number n of distinct K-homomorphisms L→ L′

is upper bounded by [L : K].

As shown below (Theorem 725), if L = L′ and L/K is a Galois extension,
then n = [L : K].

4.2.1.2 Algebraic and Transcendental Elements

Definition 703. (i) A field K is said to be algebraically closed when every
non constant polynomial in K[X ] has a root in K.
(ii) Let L/K be a field extension. A family (ai)i∈I of elements of L is called
algebraically free over K if for a polynomial f ∈ K[(Xi)i∈I ], f ((ai)) = 0
is equivalent to f = 0. An element of L which is algebraically free over K
is called transcendental. If a ∈ L is not transcendental over K, it is called
algebraic.
(iii) A field extension L/K is said to be algebraic if every element of L is
algebraic over K; a field extension which is not algebraic is called transcen-
dental.
1 D (π) cannot be zero, for π is a transcendental number, as proved by Lindemann

in 1882.
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(iv) A field extension L/K is called an algebraic closure of K if L/K is both
algebraic and algebraically closed. If the field extension L/K is such that
every element of L which is not in K is transcendental over K, then K is
called algebraically closed in L ([82], p. 4).
(v) Let L/K be a field extension. A part B of L is called a transcendence
basis of L (over K) if B is algebraically free over K and L is algebraic over
K (B). A field extension L/K is called purely transcendental or pure if it
is of the form L = K (B) where B is a transcendence basis of L over K.

The following can be found in ([28], §V.14, Theorems 1 & 3, Definition 4 and
Prop. 14).

Theorem and Definition 704. (1) (Steinitz’ theorem). Every field exten-
sion L/K has a transcendence basis over K. In other words, every field ex-
tension is an algebraic extension of a pure extension.
(2) Any two transcendence bases over K of a field extension L/K have
the same cardinal, called the transcendence degree of L/K and denoted by
deg . trK L.
(3) Let B = (xi)i∈I be a transcendence basis of the pure extension L/K.
Then L ∼= K

(
(Xi)i∈I

)
.

For example,
√

2 is algebraic over Q (since it is a root of the polynomial
X2 − 2) whereas π is not ([206], Appendix 1). Therefore, Q

(√
2
)

is an al-
gebraic (simple) field extension of Q whereas the field extension Q (π) /Q is
pure (with deg . trQQ (π) = 1). The field extension Q

(√
2, π
)
/Q is tran-

scendental, so is also the field extension Q
(√

2, π
)
/Q
(√

2
)
, but the field

extension Q
(√

2, π
)
/Q (π) is algebraic. Let us detail this point: we have

Q
(√

2, π
)

= Q
(√

2
)
(π) and π is transcendental over Q, thus it is transcen-

dental over any algebraic field extension of Q and in particular over Q
(√

2
)
.

We also have Q
(√

2, π
)

= Q (π)
(√

2
)

and
√

2 is algebraic over Q, thus over
any field extension of Q and in particular over Q (π).

4.2.1.3 Splitting Fields

Definition 705. Let f [X ] ∈ K [X ] be a polynomial of degree n ≥ 1; f (X)
is said to split into linear factors if there exist a1, ..., an ∈K (not necessarily
distinct) such that

f (X) = c (X − a1) ... (X − an)

where c = f0 ∈ K.

Lemma 706. Let K be a field and let f [X ] ∈ K [X ] be a polynomial of degree
n ≥ 0. Then f has at most n distinct roots in K, and a is a root of f in K
if, and only if X − a divides f (X).
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Proof. The degree is an Euclidean function over K [X ] (Exercise 489), thus
one can find q, r ∈ K [X ] such that

f (X) = q (X) (X − a) + r (X)

with d◦ (r) < 1, i.e., r ∈ K. Thus f (a) = 0 if, and only if r = 0, i.e., X − a
divides f (X). If a1, ..., am are distinct roots of f (X) in K, then by induction
we see that the product

p (X) = (X − a1) ... (X − am)

divides f (X) and since d◦ (p) = m we have m ≤ n.

An irreducible polynomial (Definition 349(iii)) does not necessary reduce to
one linear factor. For example, f (X) = X2 − 2 is irreducible in Q [X ].
Embedding K = Q in the algebraic extension L = Q

(√
2
)
, f (X) splits into

linear factors in L[X ], since f (X) =
(
X −

√
2
) (

X +
√

2
)
.

Theorem 707. (Kronecker’s theorem). Let f [X ] ∈ K [X ] be a polynomial
of positive degree. There is a simple extension L/K such that f has a root
in L.

Proof. The polynomial f is a product of irreducible polynomials, thus one
can assume that f is irreducible without loss of generality. Then the ideal
(f) is maximal in K [X ] by Remark 350(i), and L � K [X ] / (f) is a field by
Proposition 459. Let ι : K ↪→ R be the inclusion, let ϕ : R � R/ (f) be the
canonical epimorphism and let a = ϕ (X). We have f (a) = 0. Identifying
K and ι (K), let y ∈ K×; since ϕ is a K-algebra homomorphism, we have
ϕ (y)ϕ

(
y−1
)

= 1, thus ϕ (y) �= 0. Therefore, ϕ |K is injective and K can
be identified with ϕ (K). Thus L is a field extension of K and there exists
a ∈ L such that f (a) = 0.

By Theorem 707, one can split any polynomial of degree n > 2 into one linear
factor and a polynomial of degree n − 1. Therefore, by induction one can
split any polynomial of positive degree into linear factors; thus we are led
to define a splitting field of a polynomial or, more generally, of a family of
polynomials:

Definition 708. Let (fi)i∈I be a family of polynomials over K. A splitting
field of (fi)i∈I over K is an extension field L/K such that every fi splits into
linear factors in L[X ] and L is generated over K by

⋃
i∈I Ri where Ri is the

set of roots in L of the polynomial fi.

Consider the following example: let f (X) =
(
X2 + 1

) (
X2 − 2

)2 over Q.
This polynomial is not irreducible since it is the product of the three irre-
ducible polynomials X2 + 1, X2 − 2, X2 − 2. A splitting field of X2 − 2
is L1 = Q

(√
2
)
, as already seen, and L1

∼= Q/
(
X2 − 2

)
(where ∼= is a K-

isomorphism, as all isomorphisms below). The polynomial X2 + 1 does not
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split into linear factors over L1, but it does over L = L1/
(
X2 + 1

) ∼= L1 (i)
(i �

√
−1) which is a field extension of L1. We have L ∼= Q

(√
2
)
(i) =

Q
(√

2, i
)

= Q (i)
(√

2
)
, which shows that the field extension L/Q can be

constructed in a different order: one can first construct the splitting field
L2 = Q (i) of X2 +1 and then the field extension L2/

(
X2 − 2

) ∼= L2

(√
2
)

=
L, which is a splitting field of X2−2. The field L is a splitting field of f (X)
since over L,

f (X) = (X − i) (X + i)
(
X −

√
2
)2 (

X +
√

2
)2

.

Remark 709. The polynomial f (X) also splits into linear factors over, say,
Q
(√

2, i,
√

3
)

which is called a splitting field of f (X) by certain authors who
specify that Q

(√
2, i
)

is a minimal splitting field of f (X). Our terminology
is that of Bourbaki [28], where a splitting field of a polynomial is a minimal
field extension over which this polynomial splits into linear factors.

Generalizing the rationale in the above example, we obtain the following
result ([28], §V.4.2, Corol. of Prop. 5):

Proposition 710. Let K be a field and let (fi)i∈I be a family of polynomials
of positive degree over K. Then (fi)i∈I admits a splitting field over K and
any two splitting fields of (fi)i∈I are K-isomorphic.

Since all splitting fields of a given family of polynomials of positive degree
are K-isomorphic, they can be identified. Applying Proposition 710 to the
family of all polynomials of positive degree over K, we obtain :

Theorem 711. (Steinitz’ theorem). Let K be a field. There exists an alge-
braic closure of K; if Ω and Ω′ are two algebraic closures of K, there exists
a K-isomorphism Ω ∼= Ω′.

4.2.1.4 Minimal Polynomials and Normal Extensions

Let K be a field and let A = {ai : 1 ≤ i ≤ n} be a finite set of algebraic
elements over K (Definition 703(ii)). The set I of all polynomials g ∈ K [X ]
such that each ai (1 ≤ i ≤ n) is a root of g is a nonzero ideal of K [X ], and
since K [X ] is a principal ideal domain (Theorem 468), there exists a unique
monic polynomial fA such that I = (fA). This polynomial is obviously
irreducible.

Definition 712. The above polynomial fA is the minimal polynomial of the
set A. If A = {a}, then fA is denoted by fa and d◦ (fa) is called the degree
of a (written [a : K]).

Note that [a : K] = [K (a) : K], as shown by the proof of Kronecker’s theorem
(Theorem 707).
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Let a be algebraic over K, let fa be its minimal polynomial and let a1, ..., ak
be the distinct roots of fa in an algebraic closure Ω of K; there exists one
index i for which ai = a. By Lemma 706, k ≤ [a : K], and as shown
below (Corollary 721(ii)), k = [a : K] if K is perfect (Definition 221(ii)).
Setting σi (x) = x for any x ∈ K and σi (a) = ai, i ∈ {1, ..., k}, the k
maps σi are distinct K-monomorphisms K (a) ↪→ Ω. Considering the field
L = K (a1, ..., ak), we see that each σi is a K-automorphism of L.

Definition 713. The elements ai ∈ Ω (1 ≤ i ≤ k) are the conjugates of a
over K in Ω.

We have proved the following.

Proposition 714. Let a be algebraic over K and let k be the number
of distinct roots of its minimal polynomial. There exist k distinct K-
monomorphisms σi : K (a) ↪→ Ω and the σi (a) (1 ≤ i ≤ k) are the conjugates
of a over K; in addition, there are k K-automorphisms L−̃→L, where L is
the field generated over K by all conjugates of a, and these automorphisms
are the above σi.

Item (1) below is proved in ([206], Sect. V.3, Theorem 3.3).

Lemma and Definition 715. Let K be a field, Ω an algebraic closure of K
and L/K be an algebraic extension such that L ⊆ Ω.

(1) The three conditions below are equivalent:
(i) every K-monomorphism L ↪→ Ω induces a K-automorphism of L;
(ii) L is the splitting field of a family of polynomials in K [X ];
(iii) every irreducible polynomial of K [X ] which has a root in L splits into
linear factors in K.
(2) An algebraic field extension L/K is said to be normal if it satisfies the
above equivalent conditions.

Example 716. (i) Both algebraic field extensions Q
(√

2
)
/Q and Q (i) /Q

are normal of degree 2, the former because it is the splitting field of X2 − 2,
the latter for a similar reason.
(ii) The algebraic extension Q

(√
2, i
)
/Q is normal, since it is the splitting

field of
(
X2 − 2

) (
X2 + 1

)
. In addition,

[
Q
(√

2, i
)

: Q
]

=
[
Q
(√

2, i
)

: Q
(√

2
)] [

Q
(√

2
)

: Q
]

(Proposition 701(i)), thus the extension Q
(√

2, i
)
/Q is of degree 4.

(iii) The algebraic field extension Q (α) /Q, where α = 3
√

2, is not normal
since the complex roots of X3 − 2 do not all belong to it. We have indeed

X3 − 2 = (X − α) (X − ωα)
(
X − ω2α

)
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where ω =
(
−1 + i

√
3
)
/2. The extension Q (α, ωα) /Q is the splitting field

of X3 − 2, by Proposition 701(ii) we have Q (α, ωα) = Q (α, ω), thus the
extension Q (α, ω) /Q is normal. We have by Proposition 701(i)

[Q (α, ω) : Q] = [Q (α, ω) : Q (α)] [Q (α) : Q]

and [Q (α, ω) : Q (α)] = 2, [Q (α) : Q] = 3. See Exercise 796.

4.2.1.5 Separable Extensions

Definition 717. Let K be a field and Ω/K an algebraically closed extension.

(i) A polynomial f (X) ∈ K [X ] is separable if it has no multiple roots in Ω.
(ii) An element a ∈ Ω is separable if it is algebraic over K and its minimal
polynomial over K is separable.
(iii) A finite field extension L/K is separable if every element of L is sepa-
rable over K. An arbitrary field extension L/K is separable if every finitely
generated subextension L′/K, K ⊆ L′ ⊆ L, is separable.
(iv) Let A be a K-algebra; A is called separable (over K) if for every field
extension L/K, the algebra L

⊗
K A is radical-free (Theorem and Definition

293(3)).

Proposition 718. Let K be a perfect field (Definition 221(ii)). Then every
algebraic field extension of K is separable over K.

Proof. In the present proof, we assume for simplicity that charK = 0. Let
L/K be an algebraic field extension, let a ∈ L and let f (X) be the min-
imal polynomial of a. If a is a multiple root of f (X), then f ′ (a) = 0 by
Lemma 351. Therefore, according to Definition 712, either f (X) | f ′ (X)
or f ′ (X) = 0. The former case is impossible since d◦ (f ′ (X)) < d◦ (f (X)).
Assuming that f (X) is given by (2.30) with f0 = 1 and n ≥ 1, then f ′ (X)
is given by (2.31). If f ′ (X) = 0, then nXn−1 = 0, thus n 1 = 0 and this is
impossible.

The Theorem of the primitive element below is proved in ([206], Sect. V.4,
Theorem 4.6):

Theorem 719. If L/K is a finite separable extension, then there exists an
element β ∈ L, called a primitive element, such that L = K (β).

For example, let K = Q and let L be the field generated over K by the
elements e2πki/8, 1 ≤ k ≤ 7. As easily seen, e2πki/8 is a primitive element
of L/K if, and only if k is odd. More general, one can show that e2πki/p

is a primitive element of the field generated over Q by the elements e2πki/p

(1 ≤ k ≤ p− 1) if, and only if k and p are coprime ([28], §V.11, Prop. 3).
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4.2.2 Galois Field Extensions

4.2.2.1 Galois Theory

Definition 720. Let K be a field. A Galois field extension L/K is an al-
gebraic extension which is both normal and separable. The Galois group
of such an extension L/K, denoted by Gal(L/K), is the group of all K-
automorphisms of L.

In the sequel, all fields are perfect (but the proofs are given only for fields of
characteristic zero) and except when otherwise stated all Galois extensions
are finite (Definition 700(ii)). By Theorem 702, Gal(L/K) is finite and we
have the following.

Corollary 721. (i) An algebraic extension L/K is Galois if, and only if it
is normal.
(ii) An irreducible polynomial is separable.

Proof. (i) is a consequence of Proposition 718. To prove (ii), let g ∈ K [X ] be
a non-separable polynomial. Then, g has a multiple root a in an algebraically
closed field extension Ω/K and g is a multiple of the minimal polynomial fa
of a. The proof of Proposition 718 shows that a is a simple root of fa, thus
there exists a polynomial h of positive degree such that g = fa h. Since both
g and fa belong to K [X ], so does h, and g is not irreducible.

The converse of Statement (ii) of Corollary 721 does not hold. For example,(
X2 − 1

) (
X2 − 2

)
is separable but not irreducible over Q [X ]. Let K be a

field and f ∈K[X ] a separable polynomial over K.

Definition 722. Let R be the set of roots of f in an algebraically closed field
extension Ω/K. Then Gal(K (R) /K) is called a Galois group of f over K.

As stated in Proposition 710, every two splitting fields L and M of f are K-
isomorphic. Let u : L−̃→M be a K-isomorphism. The map s �→ u ◦ s ◦ u−1

from Gal(L/K) to Gal(M/K) is an isomorphism. The splitting fields as well
as the Galois groups of a given polynomial are thus unique up to isomorphism
and one can speak about ”the” splitting field and ”the” Galois group of f
over K. The latter is a group of permutations of the roots of f by Proposition
714, and is denoted by GalK(f). With the notation in Definition 722, let
S (R) be the symmetric group of R (Example 135). There exists by Lemma
715 and Corollary 721(i) an embedding ι : GalK(f) ↪→ S (R). Thus GalK(f)
can be identified with ι (GalK(f)) � Γ ⊆ S (R).

Remark 723. Γ is a subgroup of S (R) which does not coincide with S (R)
in general. For example, if f has a root r ∈ K, then r is a fixed point of all
u ∈ GalK (f), thus Γ � S (R). This is not the only case when the inclusion
Γ ⊂ S (R) is strict (Exercise 799).
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The proof of the following is easy ([28], n◦V.10.2):

Proposition 724. Let x, y ∈ R, where R is as in Definition 722.

(a) The following conditions are equivalent:
(i) x and y are conjugate over K;
(ii) x and y belong to the same orbit of Γ (1.6.9.1);
(iii) x and y are roots of the same irreducible factor of f .
(b) In particular, f is irreducible if, and only if R �= ∅ and Γ acts transitively
on R (1.6.9.2).

Let L/K be a (finite) Galois extension. For any subgroup H of Gal(L/K), let
LH be the subfield of L consisting of all elements x such that u (x) = x for all
u ∈ H . For any field M such that K ⊆M ⊆ L, let G (L/M) be the set of all
automorphisms u ∈ Gal(L/K) such that u (x) = x for all x ∈M. Let F(L)
be the set of all subfields M of L as considered above and let G(Gal(L/K))
the set of all subgroups of Gal(L/K); F(L) and G(Gal(L/K)) are lattices
ordered by inclusion (Exercise 798 and Lemma 153). The following is proved
in ([28], n◦V.10.7).

Theorem 725. (Fundamental theorem of the Galois theory).
(i) There exists a lattice-antiisomorphism G(Gal(L/K))→ F(L) (Definition
112) given by

H �→ LH

with inverse
M �→ G (L/M) .

In addition

(G (L/M) : 1) = [L : M] ; (Gal(L/K) : G (L/M)) = [M : K] (4.1)

(with the notation from (1.6.2.2)).
(ii) Let M ∈ F(L). The extension M/K is Galois if, and only if G (L/M)
is a normal subgroup of Gal(L/K), and then

G (L/M) = Gal(L/M). (4.2)

When M/K is Galois, the restriction to M of an automorphism u ∈
Gal(L/K) is an automorphism uM of M and the restriction ρM : u �→ uM

is such that ker ρM = Gal(L/M), im ρM = Gal(M/K), thus it induces an
isomorphism

Gal(L/K)/Gal(L/M)−̃→Gal(M/K). (4.3)

Remark 726. (i) The above lattice-antiisomorphism is a special case of Ga-
lois connection (Definition 98).
(ii) The equalities (4.1) are called Artin’s theorem.
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Let us consider an illustrating example:

Example 727. The polynomial f (X) = X4−3 is irreducible over K = Q, as
shown by Eisenstein’s Criterion (Proposition 432). The four roots of f (X)
over C are r, i r,−r,−i r where r = 4

√
3 and i =

√
−1. The splitting field of

f (X) is N = Q (r, i) = Q (r) (i). We have [Q (r) : Q] = 4 since a basis of the
Q-vector space Q (r) is

{
1, r, r3, r3

}
; and [Q (r, i) : Q (r)] = 2 since a basis of

the Q (r)-vector space Q (r, i) is {1, i}. Therefore, [Q (r, i) : Q] = 8 (Propo-
sition 701) and by (4.2) and the first equality of (4.1) with M = K = Q,
N = Q (r, i), we have (Gal(Q (r, i) /Q) : 1) = 8. A Q-automorphism τ of
N is determined by τ (r) and τ (i). Consider the extension Q (r, i) /Q (r)
of degree 2. The two Q (r)-automorphisms of Q (r, i) are τ : i �→ −i and
τ0 = Id, thus (〈τ〉 : 1) = 2. The four Q (i)-automorphisms of Q (r, i) are
σ : r �→ i r and its powers σ0 = Id, σ2, σ3, thus (〈σ〉 : 1) = 4. Let us
check that we have found all elements of Q (r, i): according to Noether’s sec-
ond isomorphism theorem (Theorem 146(2)), we have 〈τ〉 ∼= 〈σ, τ 〉 / 〈σ〉 thus
by Lagrange’s theorem (1.21), (〈σ, τ 〉 : 1) = (〈τ 〉 : 1) (〈σ〉 : 1) = 8 = (G : 1),
therefore G = 〈σ, τ〉. Combining all these Q-automorphisms, the eight el-
ements of Gal(Q (r, i) /Q) are obtained, as shown in the table below where
1 = IdG :

1 σ σ2 σ3 τ σ ◦ τ σ2 ◦ τ σ3 ◦ τ
image of r r i r −r −i r r i r −r −i r
image of i i i i i −i −i −i −i

Consider now the subgroups of G = Gal(Q (r, i) /Q). Let H1 ={
1, σ, σ2, σ3

}
= 〈σ〉 and H2 =

{
1, σ2
}

=
〈
σ2
〉
. The automorphisms be-

longing to H1 and H2 are Q (i)-automorphisms and we have the decreasing
chain of subgroups

G ⊇ H1 ⊇ H2 ⊇ 1

which corresponds through the Galois connection to the increasing chain of
field extensions

Q ⊆ Q (i) ⊆ Q
(
i,
√

3
)
⊆ Q (i, r)

obtained by successively adding the roots of the polynomials X2 + 1, X2 − 3,
X2 −

√
3.

Remark 728. Consider an infinite Galois extension L/K.

(i) This extension can be put into the form of a directed union of finite Galois
extensions Mi/K (Example 19), i.e., L = lim−→Mi.

(ii) Let us endow each finite Galois group Gal(Mi/K) with the finite topology
(1.7.1.2). Then Gal(Mi/K) becomes a topological group which is compact
and totally discontinuous, i.e., the connected component of the unit element
1 is {1} ([34], n◦I.11.5).
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(iv) The Galois group Gal(L/K) is identified with the projective limit
lim←−Gal(Mi/K) of the topological groups Gal(Mi/K) ([28], §V.10, Prop. 4);

the topology of Gal(L/K) is called the profinite topology (also called the
Krull topology). The topological group Gal(L/K) is again compact and to-
tally discontinuous. In the statement of Theorem 725, G(Gal(L/K)) must
be replaced by the set of all closed subgroups of Gal(L/K), and (4.3) is an
isomorphism of topological groups ([28], n◦V.10.7).

4.2.2.2 Solvability by Radicals

The explicit formula to calculate the roots of a general polynomial of degree 2
using a square root is classical. Similar (although more complicated) formulas
are also existing to calculate the roots of general polynomials of degree 3 and
4 using cubic and quartic roots. Abel showed in 1826 that such a formula
(using also quintic roots) cannot exist to calculate the roots of a general
polynomial of degree 5. But to make Abel’s theorem clear, Galois’ theory is
needed.

Definition 729. Let K be a field of characteristic zero.

(i) A radical extension of K is a simple extension K (α) /K where α is a root
of a binomial equation irreducible over K

Xn − a = 0, a ∈ K.

(ii) An algebraic equation f (X) = 0 is solvable by radicals over K if there
exists a finite tower of radical extensions

K = K0 � ... �Kr

(called a root tower for f over K) such that f (X) splits into linear factors
in Kr.

Theorem 730. (Galois’ theorem). Let K be a field of characteristic zero.
An equation f (X) = 0 is solvable by radicals over K if, and only if the Galois
group of f (X) over K is solvable (Definition 171).

A proof of the above theorem is given in, e.g., ([79], Theorem 7.11.1). For
any n ≥ 1 there exists an irreducible polynomial fn (X) ∈ Q [X ] of degree n,
the Galois group of which is Sn ([79], Theorem 7.11.4). By Example 173 and
Theorem 730 we obtain Abel’s theorem: for any n ≥ 5, the algebraic equation
fn (X) = 0 is not solvable by radicals over Q.
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4.3 Skew Polynomials and Related Notions

4.3.1 Skew Polynomial Rings

4.3.1.1 Further Properties of Skew Polynomial Rings

The rings of skew polynomial rings in one indeterminate and the associated
rings of generalized differential operators (Definition 355) have been intro-
duced in Subsect. 2.7. Let us consider a skew polynomial ring R = K [X ; α, δ]
where K ⊇ Q is a division ring, α is an automorphism and δ is an α-
derivation of K. The following is a generalization of the result to be proved
in Exercise 489(ii):

Theorem 731. The skew polynomial ring R = K [X ; α, δ] is a strongly Eu-
clidean domain.

Proof. We know that R is a domain and that the degree d◦ of a skew
polynomial (Definitions 349 and 353) is a function θ which satisfies con-
ditions (E1) and (E2’) in (2.13.6.1) (Proposition 354). Let us show that
d◦ satisfies (E3’). Consider the nonzero left differential polynomials f (X)
defined by (2.29) (with R changed to K) and g (X) =

∑m
i=0 giX

m−i, where
f0 �= 0, g0 �= 0 and m ≤ n. Then d◦

(
f − f0 g

−1
0 g Xn−m) < d◦ (f). Thus

(E3’) is satisfied and R is a left strongly Euclidean domain. By symmetry,
R is right strongly Euclidean too.

Corollary 732. The ring of skew Laurent polynomials T = K
[
X,X−1;α, δ

]

(where α is an automorphism and δ is an α-derivation of K) is a principal
ideal domain.

Proof. By Theorems 468 and 731, R = K [X ; α, δ] is a principal ideal do-
main. In addition, T = S−1R where S is the left and right denominator
set {Xn;n ≥ 1} (Subsect. 2.8.1). Therefore, T is a principal ideal ring by
Lemma 463 and is a domain by Theorem 332(ix).

The proof of the following result is easy ([77], Sect. 8.3, Prop. 3.2 and
Corol. 3.3):

Lemma 733. Let f =
∑n
i=0 aiX

n−i ∈ R, a0 = 1. This element f is in-
variant in R (Definition 85) if, and only if Conditions (i) and (ii) below are
satisfied:

(i) f c = cαn

f for all c ∈ K,
(ii) f X = (X + a1 − aα

1 ) f .

Theorem 734. (i) If δ is outer and α = 1, the invariant elements of R =
K [X ; α, δ] are the units.
(ii) If δ is inner, induced by 1 and no power of α is an inner automorphism
of R, then the invariant elements of R are 1, the powers of Y = X + 1 and
their associates.
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(iii) If δ is inner, induced by 1 and N ≥ 1 is the least integer such that αN

is an inner automorphism of R (induced by the unit u), then the invariant
elements are the polynomials of the form

f = Y n
∑

0≤i≤k
bi
(
u Y N

)k−i
(4.4)

and their associates, where Y = X + 1 and the coefficients bi are constant
and central.

Proof. (i) is an obvious consequence of Corollary 363 since by hypothesis
K ⊇ Q.

(ii): By Corollary 368, if f is an invariant element of R, necessarily it is
associated with 1 or a power of Y = X + 1. Conversely, if f = Y n (n ≥ 0),
then Conditions (i) and (ii) in Lemma 733 are obviously satisfied, thus f is
an invariant element of R.

(iii): We know that u Y N is central in K [Y ; α] (Proposition 375); thus, if
f given by (4.4) where the coefficients bi are constant and central, Conditions
(i) and (ii) in Lemma 733 are satisfied. Conversely, it is easy to check that if
these two conditions are satisfied, then f is necessarily of the form (4.4) with
bi constant and central. (Note that the indeterminate Y has not the same
meaning here as in Proposition 375.)

In particular, the ring B1 (k) (2.7.4.3) is a strongly Euclidean domain (thus
a principal ideal domain) and is simple.

4.3.1.2 Companion Matrix

Recall that the action of the indeterminate X on any R-module is the op-
erator denoted by ∂, that ∂ is an extension of the α-derivation δ, and that
K [∂;α, δ] is a called a ring of generalized differential operators (Definition
355). Let f (X) = Xn+ a1 X

n−1 + ...+ an be an element of R×. The cyclic
left R-module M = R/R f is generated by an element y (i.e., M = [y]R)
submitted to the only relation

(
∂n + a1 ∂

n−1 + ... + an
)
y = 0.

Set x1 = ∂n−1 y, ..., xn = y, let x be the column with entries xi (1 ≤ i ≤ n)
and [x]R be the left R-module generated by (xi)1≤i≤n. We have obviously
M = [x]R where x is submitted to the only relation

∂ x = Cf x, Cf =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

−a1 −a2 · · · · · · −an
1 0 · · · · · · 0

0
. . . . . .

...
...

. . . . . .
...

0 · · · 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

; (4.5)
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Cf ∈ Matn (K) is called a companion matrix of the polynomial f (X).
Therefore,

M ∼= cokerR (• (∂ In − Cf )) ;

by Definition 517, Theorem 520 and Corollary 521 we have the following.

Proposition 735. The polynomial f (X) and the matrix X In−Cf are sim-
ilar or, equivalently, stably associated.

Let V be the left R-module M = [y]R considered as a left K-vector space.
Obviously, (xi)1≤i≤n is a basis of V and it is generated over R by the unique
element y as follows: xn = y, xn−1 = ∂ y, ..., x1 = ∂n−1 y. This leads to the
following

Lemma and Definition 736. (1) The above basis (xi)1≤i≤n of V is said to
be cyclic.
(2) Let A ∈Matn (K). The following conditions are equivalent:
(i) A is similar to a companion matrix;
(ii) cokerR (• (∂ In −A)) is a cyclic R-module.
When these equivalent conditions hold, the matrix A is said to be cyclic.

4.3.2 Pseudo-linear Transformations

4.3.2.1 A General Definition

Let R = K [∂; α, δ], let M be a left R-module and let V = M[K] be the left
K-vector space obtained by restriction of the ring of scalars (3.4.2.1). For
any v1, v2 ∈M and any λ ∈ K, we have by (2.33)

∂ (v1 + v2) = ∂ v1 + ∂ v2,

∂ (λ v1) = λα ∂ v1 + λδ v1.

Let θ• be the restriction of ∂ to the K-vector space V . We obtain from the
above equations

θ (v1 + v2) = θ (v1) + θ (v2) , (4.6)
θ (λ v1) = λα θ (v1) + λδ v1. (4.7)

By (4.6), the map θ : V → V is additive but by (4.7) it is not K-linear,
except if α = 1 and δ = 0, i.e., R = K [X ] (therefore, it would be misleading
to denote θ as left map). We are led to the following

Definition 737. The above map θ is called the pseudo-linear transformation
(PLT, for short) induced by ∂ on V .

A left eigenvalue and an eigenvector of a PLT θ : V → V are defined as
follows [214], [204]:
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Definition 738. Let λ ∈ K and let v ∈ V ×; λ is a left eigenvalue of θ and
v is an eigenvector associated with λ if θ (v) = λ v.

Remark 739. A right eigenvalue λ and an associated eigenvector can also
be defined; the latter is a nonzero element v of a right K-vector space, such
that θ (v) = v λ.

4.3.2.2 PLTs in the Finite-Dimensional Case

Theorem 740. The finitely generated left R-module M is torsion if, and
only if the left K-vector space V = M[K] is finite-dimensional. Then, con-
sidering the decomposition (3.66) of M into a direct sum of cyclic modules
(with r = k), dimK V =

∑
1≤i≤k d

◦ (ei).

Proof. If M is not torsion, there exists an R-independent element m ∈ M ,
i.e., an element for which there does not exist a nonzero skew polynomial
f (X) ∈ R such that f (∂) m = 0 (Theorem and Definition 339). Therefore,(
∂im
)
i≥0

is an infinite sequence of left K-independent elements, and V is
infinite-dimensional.

Conversely, if M is torsion, then by (3.66), M =
⊕

1≤i≤rMi, Mi
∼= R/Rei,

ei �= 0. Therefore by Theorem 551(ii),

M[K] =
⊕

1≤i≤rMi[K]. (4.8)

Let N = Mi, let f = ei and let n = d◦ (f); then N = [x]R where x sat-
isfies (4.5). Therefore, the components of ∂ x belong to [x]K (i.e., to the
left K-vector space generated by the components of x) and by induction
so do the components of ∂j x for all j ≥ 0. Thus N[K] = [x]K is finite-
dimensional. Since the components of x are left K-linearly independent,
(xj)1≤i≤n is a basis of N[K] and dimK N[K] = d◦ (f). With the original no-
tation, dimK Mi[K] = d◦ (ei). By (4.8), V = M[K] is finite-dimensional and
dimK V =

∑
1≤i≤k d

◦ (ei).

Let (xi)1≤i≤n be a basis of the left K-vector space V = M[K]. There exist
elements aij ∈K (1 ≤ i ≤ n, 1 ≤ j ≤ n) such that

θ (xi) =
∑

1≤j≤n
aij xj .

Let yi = θ (xi). Denoting by x and y the columns with entries xi and yi,
respectively, and by A the matrix (aij), we obtain

y = Ax. (4.9)

The following definition is consistent with Definition 263, although θ is not
K-linear:
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Definition 741. The matrix A ∈ Matn (K) is called the matrix of the PLT
θ in the basis x.

Let v ∈ V , let vi ∈ K (1 ≤ i ≤ n) be the components of v in the basis x and
let v be the row

[
v1 · · · vn

]
, so that v = v x. Identifying v and v in the

basis x, V is identified with Kn. Let w = θ (v). We have

w = θ

(
∑

1≤i≤n
vi xi

)

=
∑

1≤i≤n
θ (vi xi) =

∑

1≤i≤n

(
vα
i θ (xi) + vδ

i xi
)

=
[
vα
1 . . . vα

n

]
Ax +

[
vδ
1 . . . vδ

n

]
x.

We have obtained the following

Lemma 742. In the basis x, θ is the map v �→ vα A+ vδ.

4.3.2.3 Change of Basis

Let y = (yi)1≤i≤n be a second basis of V and let P ∈ GLn (K) the change of
basis matrix from x to y, i.e., the matrix of the map IdV : (V, y) → (V, x).
By (4.9) (which is valid since IdV is linear, thus pseudo-linear), we obtain

y = P x.

Let v ∈ V and let vx, vy be the rows representing v in the bases x and y,
respectively. We have v = vx x = vy y = vy P x, therefore

vx = vy P (4.10)

which is consistent with (2.20).
Let A and B be the matrices of the PLT θ in the bases x and y, respectively,

and let w = θ (v). By Lemma 742 and by (4.10) we have

wx = vα
x A + vδ

x, wy = vα
y B + vδ

y , wx = wy P (4.11)

therefore (using the expression in Lemma 742)

wy P = (vy P )α
A + (vy P )δ = vα

y

(
Pα A + P δ

)
+ vδ

y P .

Right-multiplying this expression by P−1 and using the second equality of
(4.11) we obtain

B =
(
Pα A + P δ

)
P−1. (4.12)

The following is a generalization of Definition 280(iii):

Definition 743. Two matrices A,B ∈ Matn (K) are said to be (α, δ)-
conjugate if there exists a matrix P ∈ GLn (K) such that A and B are related
by (4.12). More specifically, B is called the (α, δ)-conjugate of A by P .
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Indeed, conjugacy in Definition 280(iii) corresponds to (1, 0)-conjugacy in
Definition 743. The following is now clear:

Theorem 744. (i) Two matrices A,B ∈ Matn (K) are (α, δ)-conjugate if,
and only if they represent (in different bases) the same PLT.
(ii) (α, δ)-conjugacy is an equivalence relation.

Let f, g be two nonzero monic polynomials in R = K [X ; α, δ], and let M =
R/R f , N = R/R g. If M ∼= N , then d◦ (f) = d◦ (g) by Theorem 740. As
already seen (Proposition 735 and Definition 737), the companion matrix Cf
represents the PLT θ induced by ∂ in M considered as a K-vector space, and
by definition M ∼= N if, and only if f and g are similar (Definition 517). We
have therefore the following by Theorem 744:

Lemma 745. Two monic polynomials f, g are similar if, and only if their
companion matrices are (α, δ)-conjugate.

The above can be applied to two polynomials p (X) and X − a in R =
K [X ; α, δ]. The companion matrices of X − a and X − b are a and b,
respectively, thus by Lemma 745 we obtain:

Corollary 746. Two polynomials p (X) and X − a in R = K [X ; α, δ] are
similar if, and only if p (X) = c (X − b) where c ∈ K× and a, b are (α, δ)-

conjugate (written a
(α,δ)∼ b).

Definition 747. Let F be a division ring such that F ⊆ K.

(i) A PLT θ is said to be algebraic over F if there exist an integer n > 1 and
elements a0, a1, ..., an ∈ F× such that a0 θ

n + a1 θ
n−1 + ... + an I = 0. This

expression is denoted by f (θ) where f (X) =
∑

0≤i≤n aiX
n−i. A square

matrix A over K is called algebraic over F if it is the matrix of an algebraic
PLT over F.
(ii) A PLT θ is said to be totally transcendental over F if f (θ) is non-singular
for any polynomial f (X) ∈ F [X ]×. A square matrix A over K is called
totally transcendental over F if it is the matrix of a totally transcendental
PLT over F.

4.3.3 Jordan Canonical Form

4.3.3.1 Diagonal Decomposition

Consider the ”classical case” α = 1, δ = 0; then R = K [X ] where X is a
central indeterminate, and F is assumed to be the centre of K. Identifying R
with K [∂], let M be a left R-module and let V = M[K]; the PLT θ = ∂ |V is
K-linear (4.3.2.1), and V is finite-dimensional if, and only if M = T is torsion
(Theorem 740). Then (3.67) holds and in the suitable basis, the matrix A of
θ is of the form
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A = A1 ⊕ ...⊕Am ⊕ U

where each submatrix is cyclic (Lemma and Definition 736(2)). One can
prove that for each i ∈ {1, ...,m}, Ai is algebraic over F (with a single elemen-
tary divisor qi ∈ F [X ], by construction), and that U is totally transcendental
over F ([78], Sect. 8.3).

4.3.3.2 Case of a Totally Transcendental Matrix

Assume that A is totally transcendental, i.e., A = U . Item (2) below is
proved in ([78], Theorem 5.5.5).

Corollary and Definition 748. (1) Let K be a division ring with central
subfield F; K is said to be matrix-homogeneous over F if K has a skew field
extension L/K (Definition 699(i)) such that any two matrices over K, of the
same size and totally transcendental over F, are conjugate.
(2) Every skew field K with central subfield F has a skew field extension L
which is matrix-homogeneous over F.

Corollary 749. Let A ∈ Matn (K) be totally transcendental over F and let
λ ∈ L be a transcendental element over F. Then A and λIn are conjugate,
i.e., there exists a matrix P ∈ GLn (L) such that P AP−1 = λIn.

4.3.3.3 Case of an Algebraic Matrix

Consider an algebraic cyclic matrix A with a single elementary divisor q. The
following can be deduced from Corollary 545 (see [78], Prop. 8.3.5):

Lemma 750. Assume that the centre F of K is perfect and that K contains
an algebraic closure Ω of F. Then every indecomposable bounded polynomial
over K is similar to a polynomial of the form (X − α)n, α ∈ Ω.

If the assumptions of the above lemma are satisfied, q (X) is of the form
(X − α)n. Let w be a generator of R/R q ∼= cokerR (• (∂ In −A)), so that
q w = (∂ − α)nw = 0, set xi = (∂ − α)i w (1 ≤ i ≤ n) and let x be the column
with entries xi. Then (∂ In − Jn (α)) x = 0 where Jn (α) is the Jordan block
of order n

Jn (α) =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

α 1 0 0 . . . 0
0 α 1 . . . 0

0
1 0

0 0 . . . α 1
0 0 . . . 0 α

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

and we obtain the following by Corollary 521 and Exercise 679:

Corollary 751. (i) The matrix A is conjugate to Jn (α). (ii) q (A) = 0
(Cayley-Hamilton theorem).
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From the above corollary, one can deduce the ”classical form” of the Cayley-
Hamilton theorem when K is a field. The statement below shows that it is
sufficient to assume that K is a commutative ring ([141], §35, Theorem 1):

Theorem 752. (Cayley-Hamilton theorem). Let K be a commutative ring,
let A ∈ Matn (K), and let

p (X) = det (X In − A) = Xn + p1 X
n−1 + ... + pn

be the characteristic polynomial of A. Then p1 = Tr (A), the trace of A,
pn = det (A), and for each i ∈ {1, ..., n}, pi is a polynomial function of the
entries of A, with coefficients belonging to Z. In addition,

p (A) = 0

where p (A) � An + p1 A
n−1 + ... + pn In.

4.3.3.4 General Case

When K is a skew field with perfect centre F, we can extend K so as to
contain an algebraic closure Ω of F as well as an element λ transcendental
over F. Let L/K be such a skew field extension. The following is now
obvious:

Theorem 753. (Jordan theorem). Every square matrix of order n over L
is conjugate to a matrix with the following Jordan canonical form:

Jr1 (α1)⊕ ...⊕ Jrm (αm)⊕ λIs

where αi ∈ Ω and
∑

1≤i≤m ri + s = n.

4.3.4 Roots of a Skew Polynomial

4.3.4.1 Evaluations of a Skew Polynomial

Let K be a division ring, α an automorphism and δ an α-derivation of K.
When necessary to avoid confusions, the automorphism α and the derivation
δ are respectively written α : a �→ α (a) and δ : a �→ δ (a) in the sequel.
Following the notation in ([201], end of Sect 2), the (α, δ)-conjugate of a ∈ K
by c ∈ K× is denoted by ca. By (4.12) ,

ca = α (c) a c−1 + δ (c) c−1. (4.13)

Definition 754. (i) The set {ca : c ∈ K×} is called the (α, δ)-conjugacy
class of a in K and is denoted by Δα,δ (a).
(ii) Let c ∈ K×; then c0 = δ (c) c−1 is called the logarithmic derivative of
c ∈K×.
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If (α, δ) = (IdK, 0), then

Δα,δ (a) =
{
c a c−1 : c ∈ K×

}
=
{
Int (c) (a) : c ∈ K×

}

(Exercise 206); if in addition K is a field, then Δα,δ (a) = {a}. The following
will be useful in the sequel ([201], Prop. 2.9), ([88], Example 2.2):

Lemma 755. For any a, b ∈ K such that b− a �= 0 and c, d ∈ K×

d (ca) = dca, (4.14)
(X − ca) c = α (c) (X − a) , (4.15)

(
X − b−ab

)
(X − a) =

(
X − a−ba

)
(X − b) . (4.16)

Proof. Apply the commutation rule (2.33); all expressions are readily ob-
tained after some algebra.

We know that the skew polynomial ring R = K [X ;α, δ] is a strongly Eu-
clidean domain with Euclidean function θ (f) = d◦ (f) (Theorem 731). Let
f ∈ R×, let a ∈ K and let us right-divide f (X) by X − a. We obtain

f (X) = q (X) (X − a) + r

where r ∈ K since d◦ (r) < 1. If R = K [X ] where K is a field, we have
r = f (a), the ”evaluation” of f at a. In the general case we are led to the
following

Definition 756. The right-evaluation of f (X) ∈ R at a ∈ K is the above
element r ∈ K, and is denoted by fr (a). The left-evaluation of f (X) at
a ∈ K is likewise defined and denoted by fl (a).

The right evaluation fr (a) is made explicit below ([201], [88]).

Lemma 757. (1) Assume that f (X) is written in the form a left skew poly-
nomial

f (X) =
∑

0≤i≤n
fn−iX i, f0 �= 0

(Definition 353) and define

N0 (a) = 1,
Nk+1 (a) = α (Nk (a)) a + δ (Nk (a)) .

Then,
fr (a) =

∑

0≤i≤n
fn−iNi (a) . (4.17)

(2) The terms Ni (a) can be expressed as

Ni (a) = X i
r (a) , i ≥ 0, a ∈K, (4.18)
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so that (4.17) takes the following appealing form:

fr (a) =
∑

0≤i≤n
fn−iX i

r (a) . (4.19)

Note that if K is a field and α = IdK, δ = 0, then Ni (a) = ai and (4.17)
is the usual expression of f (a). If f (X) is given in the form of a right
skew polynomial, it is possible to convert this form into that of a left skew
polynomial (Proposition 354(iii)) and then to apply formula (4.17).

The right evaluation of the product of two skew polynomials at a point
a ∈ K is given by the following

Lemma 758. For any f, g ∈K [X ;α, δ] and a ∈K,

(f g)r (a) =
{

0 if gr (a) = 0,
fr
(
gr(a)a

)
gr (a) if gr (a) �= 0.

Proof. (1) If gr (a) = 0, X − a right-divides g (X), thus it right-divides
f (X) g (X) and (f g)r (a) = 0.

(2) Assuming that c � gr (a) �= 0, write g (X) = q1 (X) (X − a)+ c, b = ca
and f (X) = q2 (X) (X − b) + fr (b). We obtain

f (X) g (X) = f (X) q1 (X) (X − a) + q2 (X) α (c) (X − a) + fr (b) c.

4.3.4.2 Roots of a Skew Polynomial

Definition 759. An element a ∈ K is said to be a left (resp., right) root of
a nonzero polynomial f ∈ K [X ; α, δ] if fl (a) = 0 (resp., fr (a) = 0). The
set of left (resp., right) roots of f in K is denoted by Vl (f) (resp., Vr (f)).

Lemma 760. Let a ∈ K and let f ∈ R× where R = K [X ;α, δ]. If a is a
left (resp., right) root of f , so is any element of Δα,δ (a).

Proof. We have fr (a) = 0 if, and only if the canonical image (f)ϕa of f in the
left R-module R/R (X − a) is zero. For any element b ∈ Δα,δ (a) there exists
an isomorphism •ψ : R/R (X − a) −̃→R/R (X − b). Therefore, (f)ϕb = 0
where ϕb = ϕa ◦ ψ is the canonical epimorphism R � R/R (X − b). For a
left root, the proof is similar.

Consider a matrix A ∈ Matn (K). The following definition is classical ([77],
Sect. 8.5):

Definition 761. Let λ ∈ K and let v ∈ nK (resp., v ∈ Kn); λ is a left (resp.,
right) eigenvalue of A and v is a left (resp., right) eigenvector associated with
λ if v A = λ v (resp., Av = v λ).

Proposition 762. The left (resp., right) roots of a monic skew polynomial
f ∈ R× coincide with the (α, δ)-conjugates of the left (resp., right) eigenval-
ues of its companion matrix Cf .
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Proof. (1): Let us consider the case of left roots and left eigenvalues. By
Proposition 735, cokerR (• (∂ In − Cf )) ∼= R/Rf . Let V be the left R-
module M = R/R f considered as a left K-vector space of dimension n =
d◦ (f) (Theorem 740). We know that Cf represents the PLT θ = ∂ |V in
a cyclic basis of V (Definition 736); the explicit relation between θ and Cf
is given by Lemma 742. Let v̄ ∈ V × be such that θ (v̄) = a v̄. We have
(∂ − a) v̄ = 0 in R/R f and v̄ is the canonical image of an element v ∈ R;
this polynomial v = v (X) can be chosen of degree ≤ n− 1 by the Euclidean
algorithm, and the above equality yields (∂ − a) v ∈ R f . Therefore, there
exists μ ∈ K× such that (X − a) v (X) = μf (X), i.e., μ−1 (X − a) v (X) =
f (X). Therefore,

(
X −α−1(μ−1) a

)
left-divides f (X) by (4.15). Conversely,

if
(
X −α−1(μ−1) a

)
left-divides f (X), then (∂ − a) v ∈ R f and (∂ − a) v̄ =

0, i.e., θ (v̄) = a v̄.
(2): In the case of right roots and right eigenvalues, one must consider the

PLT associated with the right multiplication by ∂; a right eigenvalue and a
right eigenvector are defined in a obvious way for such a PLT [204].

Theorem 763. Let f ∈ K [X ; α, δ] be a skew polynomial of degree n ≥ 1.

(i) The right roots of f lie in at most n conjugacy classes.
(ii) Assuming that f splits into linear factors, i.e.,

f (X) = b (X − c1) ... (X − cn) , b �= 0, (4.20)

then any right root of f is (α, δ)-conjugate to one of the ci.

Proof. (i): Let us proceed by induction: the case n = 1 is trivial.
Assume that statement (i) holds true for some n ≥ 1, let f be a polynomial

of degree n + 1 and let an, an+1 be two right roots of f . Then f (X) =
g (X) (X − an+1) where d◦ (g) = n. By Lemma 758, an is (α, δ)-conjugate
to a right root of g, thus there exist at most n conjugacy classes Δ1, ..., Δn

and an index k ∈ {1, ..., n} such that an ∈ Δk, and (i) is proved.
(ii): The ring R = K [X ; α, δ] is a unique factorization domain (Theo-

rems 731, 468 and 462), thus L (f R,R) is a modular lattice of finite length
(Lemma and Definition 433). By the factorization (4.20),

f R � b (X − c1) ... (X − cn−1) R � ... � b (X − c1) R

is a maximal chain in the lattice L (f R,R). Let a be a right root of f ; then
X − a is an atomic factor of f and by the Jordan-Hölder-Dedekind theorem
(Theorem 117), X − a is similar to one of the factors X − ci (Corollary 426).

By Corollary 746, a
(α,δ)∼ ci.
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Corollary 764. Let f ∈ R (R = K [X ;α, δ]) be a skew polynomial of degree
n ≥ 1 and assume that

f (X) = (X − c1)
d1 ... (X − cm)dm

where the d′is are positive integers and the c′is are elements of K which are
pairwise non-conjugated. Then,

R
Rf
∼=
⊕

1≤i≤m

R

R (X − ci)
di
.

Proof. If cm is not conjugated with cj for 1 ≤ j ≤ m − 1, then cm is not a
left root of

fm−1 (X) = (X − c1)
d1 ... (X − cm−1)

dm−1

by Theorem 763, therefore (X − cm)dm and fm−1 (X) are left-coprime. By
Corollary 529,

R
Rf
∼=

R
Rfm−1

⊕ R

R (X − cm)dm
.

One can continue this rationale in an obvious way, and establish the result
by induction.

4.3.4.3 gcrd and lclm of Skew Polynomials

Let R = K [X ;α, δ] and let (fi)1≤i≤n be a finite family of elements of R×.
There exists a unique monic skew polynomial which is a gcrd (resp., an
lclm) of (fi)1≤i≤n. This skew polynomial is denoted by (f1, ..., fn)r (resp.,
[f1, ..., fn]l) and is called the gcrd (resp., the lclm) of (fi)1≤i≤n. The gcrd
and the lclm of two nonzero skew polynomials are given by Theorems 469
and 471. One can easily check the following ([204], Remark 4.5):

[f,X − a]l =

{
f if fr (a) = 0,(

X − fr(a)
a
)
f if fr (a) �= 0. (4.21)

In particular, (4.16) is the lclm of X − a and X − b.

4.3.4.4 Wedderburn Polynomials

The classical definition of an algebraic set (Definition 386) has been general-
ized in [203] as follows:

Definition 765. A set Δ ⊆ K is (α, δ)-algebraic if there exists a nonzero
skew polynomial f ∈ K [X ; α, δ] such that Δ ⊆ Vr (f).

Let Δ be an (α, δ)-algebraic subset of K. The set S of all skew polynomials
vanishing on Δ is a nonzero left ideal of R = K [X ; α, δ]; since this ring is a
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principal ideal domain, there exists a unique monic polynomial fΔ such that
S = R fΔ.

Definition 766. The above monic polynomial fΔ is called the minimal poly-
nomial of Δ; d◦ (fΔ) is called the rank of Δ and is denoted by rk (Δ).

Let Δ = {ai : 1 ≤ i ≤ n}. Obviously, fΔ is characterized by

fΔ = [X − ai : 1 ≤ i ≤ n]l .

Definition 767. (i) The algebraic set Δ = {ai : 1 ≤ i ≤ n} is P-independent
if rk (Δ) = n.
(ii) A skew polynomial f ∈ R is said to be a Wedderburn polynomial (or a
W-polynomial, for short) if it is the minimal polynomial of an (α, δ)-algebraic
subset of K.

According to the definition, a polynomial f ∈ R of degree n has at most
n P-independent right roots. If f ∈ R is the minimal polynomial of an
(α, δ)-algebraic set Δ = {a1, ..., an} ⊆ K, then we have the complete direct
decomposition (3.3.2.2)

R f =
⋂

1≤i≤n
R (X − ai) ,

which yields the direct sum representation

R/R f ∼=
⊕

1≤i≤n
R/R (X − ai) .

The following is proved in [203] and is clear from the above:

Proposition 768. Let f ∈ R be a monic polynomial of degree n ≥ 1. The
following conditions are equivalent:

(i) f is a W-polynomial;
(ii) rk (Vr (f)) = n;
(iii) for any g ∈ R, Vr (f) ⊆ Vr (g) =⇒ g ∈ R f ;
(iv) the companion matrix Cf of f is (α, δ)-conjugate (Definition 743) to a
diagonal matrix.

4.3.5 Vandermonde, Wronskian, and Casoratian
Matrices

Vandermonde matrices over commutative rings and Wronskian matrices over
commutative differential rings are classical, respectively in linear algebra
([27], n◦III.8.6, Example 1) and in the theory of linear differential equations
([37], n◦IV.2.7). There exists a connection between these matrices when they
are defined over a generalized differential division ring ([197], Epilogue). Let
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K be a division ring, let A ⊇ K be a commutative ring or an Ore domain
endowed with an automorphism α and an α-derivation δ, let a1, ..., an be el-
ements of K, let y1, ..., yn be elements of A, let a = (ai)1≤i≤n, y = (yi)1≤i≤n
and R = K [X ; α, δ]. The indeterminate X is identified with the derivation
operator ∂ and the right evaluation X i

r (a) = Ni (a) (Lemma 757) is denoted
by ∂ir (a) for any a ∈ K and any integer i ≥ 0.

Lemma and Definition 769. (1) The Vandermonde matrix V (a) and the
Wronskian matrix W (y) are respectively

V (a) =

⎡

⎢
⎢
⎢
⎣

1 1 . . . 1
∂r (a1) ∂r (a2) . . . ∂r (an)

...
...

...
∂n−1
r (a1) ∂n−1

r (a2) . . . ∂n−1
r (an)

⎤

⎥
⎥
⎥
⎦
,

W (y) =

⎡

⎢
⎢
⎢
⎣

y1 y2 . . . yn
yδ
1 yδ

2 . . . yδ
n

...
...

...
yδn−1

1 yδn−1

2 . . . yδn−1

n

⎤

⎥
⎥
⎥
⎦
.

If δ is an inner derivation induced by 1, then the Wronskian matrix W (y) is
left-equivalent to the Casoratian matrix

C (y) =

⎡

⎢
⎢
⎢
⎣

y1 y2 . . . yn
yα
1 yα

2 . . . yα
n

...
...

...
yαn−1

1 yαn−1

2 . . . yαn−1

n

⎤

⎥
⎥
⎥
⎦
.

(the words Wronskian and Casoratian refer to the mathematicians Wronski
and Casorati, respectively).
(2) If A is a division ring, the following equality holds:

W (y) = V (y0) diag (y1, ..., yn) (4.22)

where y0 is the finite sequence of logarithmic derivatives (yi0)1≤i≤n (Defini-
tion 754(ii)).

Proof. (1) If δ = α− 1, then W (y) is easily shown to be left-equivalent to
C (y) using elementary row operations of the first kind.

(2) By definition of yi0, yδ
i = yi0 yi = ai yi where ai = yi0. By Lemma

757, this implies yδj

i = Nj (ai) yi for any natural integer j, and this can be
written yδj

i = ∂jr (ai) yi with the above notation.

Theorem 770. (1) Let Δ = {a1, ..., an} ⊆ K. The set Δ is P-independent
if, and only if V (a) is invertible, where a = (ai)1≤i≤n.
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(2) Let f ∈ R. The following conditions are equivalent:
(i) f is a W-polynomial (Definition 767) and f = fΔ where Δ = {a1, ..., an};
(ii) there exists a P-independent set Δ = {a1, ..., an} ⊆K such that f = fΔ;
(iii) the companion matrix Cf of f is (α, δ)-conjugate to the diagonal matrix
diag (a) � diag (a1, ..., an), and more specifically

Cf V (a) = V (a)α diag (a) + V (a)δ
.

(3) Of the following, (iv) implies (v); in addition, if A is a division ring,
then (iv) and (v) are equivalent:
(iv) the matrix W (y) is regular (Theorem 400, Lemma and Definition
402(2));
(v) the elements y1, ..., yn are right linearly independent over the subring of
constants Aδ of A (Definition 290).
(4) Suppose (ii) holds, A is a division ring and for each i ∈ {1, ..., n} there
exists yi ∈ A× such that yi0 = ai. Then (iv) holds.

Proof. (1) is proved in ([204], Lemma 5.6).
(2): (i)⇔(ii) by Definition 767(ii) and (ii)⇔(iii) by ([204], Theorem 5.7).
(3): (iv)⇒(v): Assume y1, ..., yn are right linearly dependent over Aδ. Then

there exist c1, ..., cn in Aδ, not all zero, and such that
∑

1≤i≤n yi ci = 0. This
implies

∑
1≤i≤n ∂

jyi ci = 0 for all j ∈ {0, ..., n− 1}. Therefore, W (y) c = 0
where c is the column with entries ci, and W (y) is singular.

(v)⇒(iv) when A is a division ring: see ([201], Theorem 4.9), replacing K
by A.

(4) is a consequence of (4.22).

4.3.6 Solutions of Differential Operators

Let M be a left R-module, let V = M[K] be the left K-vector space obtained
from M by restriction of the ring of scalars, and let f ∈ R. Let θ : V → V
be the PLT defined by ∂ (4.3.2.1) and for simplicity write θ = ∂; then it is no
longer necessary to distinguish between M and V . When M is a ring A ⊇ K
such as in Subsect. 4.3.5, and then ∂ = δ.

Lemma and Definition 771. (i) An element y ∈M is called a solution of
the differential operator f (∂) if f (∂) y = 0. Then, f is called a left annihi-
lator of y, i.e., f ∈ AnnR

l (y).
(ii) The set of all solutions of f ∈ R is a right Kδ-vector space (Definition
290).
(iii) If f, g ∈ R and y is a solution of g, then y is a solution of fg. Therefore,
if y ∈ M is such that AnnR

l (y) �= 0, there exists a unique monic polynomial
of least degree f ∈ R× such that f (∂) y = 0. This polynomial is called the
minimal annihilator of y over K.
(iv) Let y ∈ M be such that AnnR

l (y) �= 0 and let fy be its minimal annihi-
lator; then AnnR

l (y) = R fy.
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Proof. (ii) and (iii) are clear.
(iv): Let g ∈ AnnR

l (y) and let g = a fy + r be the right Euclidean division
of g by fy, where d◦ (r) < d◦ (fy). Then g (∂) v = a (∂) fy (∂) y + r (∂) y =
r (∂) y, thus r (∂) y = 0, and r ∈ AnnR

l (y). Since fy is of minimal degree
among all polynomials belonging to AnnR

l (y), this proves that r = 0; there-
fore, AnnR

l (y) ⊆ R fy. The converse is obvious.

Consider now a left eigenvalue λ of the PLT θ and an associated eigenvector
y (Definition 738). Since θ = ∂ |V , the equality θ (v) = λ y is equivalent to
(∂ − λ) y = 0, i.e., ∂ − λ ∈ AnnR

l (y).

Lemma and Definition 772. (1) An element y ∈M for which there exists
λ ∈ K such that (∂ − λ) y = 0 is said to be δ-hyperexponential over K.
(2) If f ∈ R× is such that f (∂) has a nonzero δ-hyperexponential solution
y in a left R-module M , then f has a right root λ ∈ K which is uniquely
determined by y.
(3) If M is a ring A, the above element λ is denoted by y0, and this extends
Definition 754(ii).
(4) The δ-hyperexponential elements of the left R-module M form a right
Kδ-vector space. Suppose M = A as in (3) and K is a field; then the
δ-hyperexponential elements of A over K form a subring of A, called the
δ-hyperexponential subring of A.

Proof. (2): Let y ∈ M× be a δ-hyperexponential solution of f (∂). There
exists λ ∈ K such that (∂ − λ) y = 0. Clearly, ∂−λ is the minimal annihilator
of y, thus f ∈ R (∂ − λ), and the element λ is uniquely determined by y, by
Lemma and Definition 771.

(3): If M is a ring A, then ∂ = δ as already said, and λ is such that
yδ = λ y.

The first part of (4) is clear. For the second one, let y, z ∈ A be δ-
hyperexponential elements over K. There exist a, b ∈ K such that yδ = a y,
zδ = b z, thus (yz)δ = yαzδ + yδz. If δ is outer, then α = 1 by Lemma
356, thus (yz)δ = (a + b) yz and yz is δ-hyperexponential since a + b ∈ K.
If δ is inner, say induced by m ∈ K, then yδ = (yα − y)m. If m = 0,
then δ = 0 and yz is 0-hyperexponential since so are y and z. If m �= 0,
yα = yδ/m+y and (yz)δ = (ab/m+ a+ b) yz, thus yz is δ-hyperexponential
since ab/m + a+ b ∈ K.

Example 773. (1) Let K = C and δ be the usual derivation d/dt. Consider
the ring of differential operators R = C [d/dt] and the C-vector space A gen-
erated by all exponential t �→ eλt (λ ∈ C). Obviously, A is both an R-module
and a ring, and it is d/dt-hyperexponential. Thus the exponentials are the
d/dt-hyperexponential elements over C.
(2) Let K be as above and let δ be the inner derivation q − 1 where q = α
is the shift-forward operator (Subsect. 2.7.3). Consider the ring of differ-
encing operators R = C [q− 1] and the C-vector space A generated by all
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geometric sequences n �→ λn (λ ∈ C). Likewise, A is both an R-module and
a ring, and it is (q− 1)-hyperexponential. Thus the geometric sequences are
the (q− 1)-hyperexponential elements over C.
(3) Let K = C (n) and let δ = q− 1. Consider the sequences (yn) such that
(yn+1/yn) belongs to C (n). These sequences, called hypergeometric, are the
(q− 1)-hyperexponential elements over C (n).
(4) Similarly, let K = C (t), let δ = d/dt, and consider all complex functions
f such that ḟ/f ∈ C (t) (where ḟ = df/dt). These functions, called hyper-
exponential ([85], Sect. 20.2), are the d/dt-hyperexponential elements over
C (t).

Corollary 774. (i) With the notation in Lemma and Definition 772(3), the
Wronskian in Theorem and Definition 769 still makes sense and the equality
(4.22) holds.
(ii) Assuming that the ring A is commutative and Aδ = Kδ, let H be the set
of all δ-hyperexponential elements of A, let yi ∈ H, let ai = yi0 (1 ≤ i ≤ n),
let Δ = {a1, ..., an} ⊆ K and let f = fΔ ∈ R. Then K ⊆ H ⊆ A are
Kδ-algebras and each of the conditions (i)-(iv) of Theorem 770 is equivalent
to:
(v’) the elements y1, ..., yn are linearly independent over Kδ.

Proof. (i) is clear. (ii): Since A is commutative, K is a field, and Kδ is
again a field (Exercise 477). Therefore, K ⊆ H ⊆ A are Kδ-algebras by
Lemma and Definition 772(4). Furthermore, of the conditions of Theorem
770, (i)⇔(ii)⇔(iii)⇒(iv)⇔(v’) by the proof of that theorem. If (v’) holds,
then V (a) is regular by (4.22), thus V (a) is invertible, and (i) holds.

4.4 Picard-Vessiot Extensions

4.4.1 General Notions

Let K be a field of characteristic zero and assume that K is either a differential
field with (outer) derivation δ (Subsect. 2.3) or a difference field with shift
operator α (Subsect. 2.3.2); recall that α is an automorphism. Consider an
equation

∂ x = Ax, A ∈ Matn (K) (4.23)

where ∂ is an extension of δ in the differential case. In the difference case, ∂
is an extension of α− 1; setting ∂ = q− 1 where q is an extension of α, and
(4.23) is equivalent to

qx = B x, B = A− In. (4.24)

Let C be the subfield of constants of K (Exercise 477) and assume that C is
algebraically closed. In general, the equation (4.23) does not have a full set
of solutions in a power of K, i.e., there does not exist a matrix Y ∈ GLn (K)
such that ∂ Y = AY .
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Example 775. (i) In the differential case, let K = C, n = 1 and let A =
a �= 0. The solutions of (4.23) are of the form t �→ λ eat (λ ∈ C) and the
only solution in C is zero.
(ii) In the difference case, let K = C, n = 1 and let B = b �= 0. The solutions
of (4.24) are of the form k �→ λ bk and the only solution in C is zero.

Therefore, it is necessary to properly extend K in order to find all the solu-
tions of (4.23) or of (4.24). The proof of Item (iii) below is easy and left to
the reader.

Lemma and Definition 776. (i) Let (A, δA) and (B, δB) be differential
rings (Subsect. 2.3.1). A ring-homomorphism σ : A → B is called a mor-
phism of differential rings if for any x ∈ A, σ (x)δB = σ

(
xδA
)
. The category

of differential rings is defined in this way.
The category of difference rings is likewise defined: if (A,αA) and (B,αB)

are difference rings (Subsect. 2.3.2) where αA is a shift of A and αB is a
shift of B, a ring-homomorphism σ : A → B is a morphism of difference
rings if for any x ∈ A, σ (x)αB = σ (xαA).
(ii) A differential ideal in a differential ring (A, δA) is an ideal a such that
aδA ∈ a whenever a ∈ a.

A difference ideal in a difference ring (A,αA) is an ideal a such that
aαA ∈ a whenever a ∈ a.
(iii) If (A, δA) and (B, δB) are two differential rings such that B ⊆ A
and δA |B = δB, then (A, δA) is called an extension of (B, δB), written
(A, δA) ≥ (B, δB).

An extension of difference ring is likewise defined (and denoted).
(iii) Let A be a differential (resp., difference) ring and let a be a differential
(resp., difference) ideal in A. Then A/a is again a differential (resp., dif-
ference) ring.
(iv) A differential (resp., difference) ring A is called simple if it has no
nonzero proper differential (resp., difference) ideal.

Given a differential (resp., difference) field K, the first question is whether
there exists a differential (resp., difference) field or ring L extending K.

Lemma 777. (A) Let L/K be a field extension, let (xi)i∈I be a transcen-
dence basis of L over K (Definition 703(v)) and let (ui)i∈I be a family of
elements of L.
(i) Let δ be a derivation of K; there exists a unique derivation δ̄ of L ex-
tending δ and such that xδ̄

i = ui for all i ∈ I.
(ii) Let α be a shift of K and assume that the family (ui)i∈I is algebraically
free over K (Definition 703(i)). There exists a shift ᾱ of L extending α and
such that xᾱ

i = ui for all i ∈ I in the two following cases: (a) the extension
L/K is purely transcendental (then, ᾱ is unique); L/K is a Galois extension
of a purely transcendental extension. (Recall that, according to Steinitz’ theo-
rem in Theorem and Definition 704(1), a field extension of K is an algebraic
extension of a purely transcendental extension.)
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(B) Let X = (Xij)1≤i≤n,1≤j≤n be a family of n2 indeterminates, let L1 =
K [X ], let S ⊆ L1 be a multiplicative set, let L = L1 S

−1 and let A,B ∈
GLn (K). There exists a unique derivation δ̄ (resp., a shift ᾱ) of L which
extends δ (resp., α) and is such that X δ̄ = AX (resp., Xᾱ = BX).

Proof. (A) (i) and (ii)(a): It is sufficient to consider simple field extensions
(Definition 699(ii)) since finite extensions are then treated by induction, and
general extensions using Zorn’s lemma ([28], §V.16, Prop. 4). We proceed in
two steps, denoted below by (1) and (2).

(1) Consider a simple purely transcendental extension L = K (x). Then
L ∼= K (X) (Theorem and Definition 704(3)) and the elements of L are of
the form y = f (x) /g (x), f, g ∈ K [X ], g (x) �= 0.

In the differential case, let xδ̄ = u; then yδ̄ is uniquely determined by

yδ̄ = (f ′ (x) g (x)− f (x) g′ (x))u/g (x)2

where f ′ (X) and g′ (X) are the derivatives of f (X) and g (X), defined ac-
cording to (2.31).

In the difference case, let xᾱ = u and, for any polynomial h (X) =∑n
i=0 hiX

i, set hα (X) =
∑n
i=0 h

α
i X i. If u is transcendent, gα (u) �= 0,

yᾱ is uniquely determined by

yᾱ = fα (u) /gα (u)

and ᾱ is obviously an automorphism of L.
(2) Consider a simple algebraic field extension L/K, say L = K (y), and

let g (X) ∈ K [X ] be the minimal polynomial of y (Definition 712). Set
g (X) =

∑
0≤i≤n aiX

i, gδ (X) =
∑

0≤i≤n a
δ
i X

i and, as above, let g′ (X)
be the derivative of g (X). Since g (y) = 0 and δ is a derivation (Defi-
nition 287(ii)), one must have gδ (y) + g′ (y) yδ̄ = 0. The extension L/K
is separable (Proposition 718), thus g′ (y) �= 0 by Lemma 351, therefore
yδ̄ = −gδ (y) /g′ (y). This proves that δ̄ exists and is uniquely determined.

(ii)(b): Consider a Galois extension L/K, K � L. Let Ω be an algebraic
closure of K, g (X) ∈ K (X) an irreducible polynomial and y1, ..., yn the
roots of g (X) in Ω. These roots are distinct (Corollary 721), thus so are
the roots y̌1, ..., y̌n of gα (X) in Ω. The extension L1 = K (y1, ..., yn) is the
splitting field of g (X) and L ⊇ L1 ⊇ K by Lemma and Definition 715.
Let σ ∈ Gal(L1/K) and ᾱ be the field morphism such that ᾱ |K = α and
yᾱ
i = y̌σ(i); then ᾱ is an extension of α to L1 and is an automorphism of L1.

As above, α can be extended to L, first by induction and then by applying
Zorn’s lemma.

(B) Set X δ̄ = AX (resp., Xᾱ = BX). Then, δ̄ (resp., ᾱ) is an exten-
sion of δ (resp., α) to L1; δ̄ can be extended to L using the expression in
Exercise 477(i), and ᾱ can be extended to L according to (x/s)ᾱ = xᾱ/sᾱ

(x ∈ L1, s ∈ S). As easily seen, ᾱ is an automorphism of L.
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A crucial point when constructing extensions of differential (or difference)
fields is to avoid introducing new constants.

Example 778. Consider the differential equation in Example 775(i), let ea :
t �→ ea t and K = C (ea). Consider the ring A = K [Y ] and the differential
ideal a in A generated by ∂ Y − Y . Let y be the canonical image of Y in
A/a and let L be the quotient field of A/a. Denoting by ȧ the derivative of
any element a ∈ L, one has ẏ − y = 0. Let c = y/ea. Then c �= K (for
0 �= y /∈K) and ċ = (ẏ ea − y ėa) /e2a = 0, thus c is a ”new constant”.

Lemma 779. Let A be a commutative ring and let N (A) be the nilradical
of A (Theorem and Definition 387(ii)).

(i) Let α be an automorphism of A and assume that A is a simple difference
ring (Lemma and Definition 776(iii)); then the ring A is reduced and its
subring of constants is a field C.
(ii) Let δ be a derivation of A and assume that A is a simple differential
ring of characteristic zero. Then A is an integral domain and its quotient
field Q (A) is a differential field.

Proof. (i): (a) Let N (A) be the nilradical of A, let x ∈ N (A) and let n be
the least positive integer such that xn = 0. Then, 0 = (xn)σ = (xσ)n, thus
xσ ∈ N (A) and N (A) is a difference ideal. The difference ring A is simple
and N (A) �= A, therefore N (A) = 0 and A is reduced.

(b) Let c be a constant. Then cA is a nonzero difference ideal, therefore
cA = A and there exists d ∈ A such that c d = 1. So, both c and d are units
in A, and d = 1/c is a constant for dα = 1/cα = 1/c = d. This proves that
the subring of constants is a field.

(ii): (a) First, let us prove that every zerodivisor is nilpotent. Let a ∈
A\N (A); the set

I = {b ∈ A : an b = 0 for some n > 0}

is an ideal in A. Let b ∈ I and let n > 0 be such that an b = 0; therefore
an+1 b = 0 and

(
an+1 b

)δ = 0, thus (n + 1) aδ an b+ an+1 bδ = 0. Therefore,
an+1 bδ = 0 and bδ ∈ I. As a result, I is a differential ideal. Since 1 /∈ I, I
is a proper ideal. Since A is simple, I = 0, thus a is a nonzerodivisor.

(b) As above, let x ∈ N (R) and let n be the least positive integer such
that xn = 0. This implies nxn−1 xδ = 0, therefore xn−1 xδ = 0 since
charA = 0. Therefore, xδ is a zerodivisor, thus xδ ∈ N (A) by (a). This
proves that N (A) is a differential ideal, and it is proper, thus N (A) = 0
since A is a simple differential ring. By (a), A has no nonzero zerodivisor,
i.e., A is an integral domain.

Remark 780. As shown below, a ”suitable” field extension always exists for
a differential field, but not for a difference field. Consider the difference
equation
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α (y) = −y (4.25)

(where α (y) is written for yα, for the sake of clarity), and let us look for a
full set of solutions in a difference field K with algebraically closed subfield of
constants C. This set is necessarily a C-vector space of dimension 1. Let
x be a nonzero solution. Then α

(
x2
)

= α (x)2 = (−x)2 = x2, therefore
x2 ∈ C. Since C is algebraically closed, x ∈ C, thus α (x) = x and by (4.25)
x = −x, a contradiction.

4.4.2 Differential Galois Theory

4.4.2.1 Picard-Vessiot Differential Fields

In what follows, K is a differential field of characteristic zero with derivation
δ, the subfield of constants Kδ = C of K is algebraically closed and R =
K [X ; δ]. Let

(
A, δ̄
)

be a differential ring such that
(
A, δ̄
)
≥ (K, δ).

Lemma and Definition 781. (1) Let f ∈ R× be such that d◦f = n.
(i) The equation f (∂) y = 0 is equivalent to (4.23) where A = Cf ∈ Matn (K)
is the companion matrix (4.5) of the polynomial f .
(ii) Let V = {y ∈ A : f (∂) y = 0}, i.e., the set of solutions of the differential
operator f (∂) where ∂ = δ̄; V is a C-vector space.
(iii) f is said to have a full set of solutions in A if dimC (V ) = n.
(2) Let A ∈Matn (K).
(iv) A fundamental matrix of A over A (if any) is a matrix Y ∈ GLn (A)
such that Y δ̄ = AY .
(v) There exists f ∈ R× which is similar to X In−A, i.e., R/Rf ∼= T where
T = cokerA (• (X In − A)).
(vi) The C-vector space V defined in (ii) is isomorphic to BL (T ) =
HomR (T,K) (Corollary 567(2)).
(vii) The following conditions are equivalent:
(a) f has a full set of solutions V in A;
(b) any matrix A which is δ-conjugate to the companion matrix Cf has a
fundamental matrix Y over A.
(c) dimC BL (T ) = n.

Proof. (i) is clear and (ii) is a consequence of Lemma and Definition 771(ii).
(v): Since charK = 0, K is easily seen to be a Q-algebra ([141], Sect. 30.6,

Remark 1); by Corollary 363 the ring R is simple, therefore ∂In−A is cyclic
and similar to a companion matrix Cf (Lemma and Definition 736(2)).

(vi): Let E be the endomorphism ring of the differential ring L. The
field C can be identified with a subring of E since for any c ∈ C, the map
•c : K → K : x �→ x c belongs to E, and •c = •c′ implies c = c′. Since
the right E-modules V and BL (T ) are isomorphic (Corollary 567(3)), the
C-vector spaces V and BL (T ) are again isomorphic (by restriction of the
ring of scalars). (vii) is a consequence of (vi).
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Theorem and Definition 782. Let f ∈ R×.

(1) The differential ring
(
A, δ̄
)
≥ (K, δ) is called Picard-Vessiot for f (or

for any matrix A ∈ Matn (K) conjugate to the companion matrix Cf of f)
if:
(i)
(
A, δ̄
)

is a simple differential ring;
(ii) there exists for the matrix A a fundamental solution matrix Y over A;
(iii) A is generated over K by the entries yij of Y and (detY )−1 (written

A = K
[
yij , (detY )−1

]
).

(2) If the differential ring
(
A, δ̄
)
≥ (K, δ) is Picard-Vessiot, then A is a

commutative domain; in addition, the subring of constants of both A and its
field of fractions L = Q(A) coincide with C (”no new constants”).
(3) There exists a Picard-Vessiot ring A for f or for any matrix A ∈
Matn (K), and any two Picard-Vessiot rings for f or for A are isomorphic
differential rings.
(4) Let A be as in (3). The field L = Q(A) is called the Picard-Vessiot dif-
ferential field of f or A, and is unique up to differential isomorphism (Lemma
and Definition 776(i)). The derivation of L induced by δ̄ (see Exercise 477)
is again denoted by δ.
(5) The above Picard-Vessiot field L can be characterized as follows:
(i) the subfields of constants Lδ and Kδ = C coincide;
(ii) there exists Y ∈ GLn (L) such that Y δ = AY ;
(iii) L = K (yij).

Proof. (2): If
(
A, δ̄
)

is Picard-Vessiot over (K, δ), it is a simple differential
ring finitely generated over K, thus its is a domain (Lemma 779(ii)) and its
subring of constants is C ([286], Sect. 1.3, Lemma 1.15). Therefore, A has a
field of fractions L = Q (A) and the subfield of fractions of L is again C.

(3): Let Z = (zij) be an n × n matrix with entries zij algebraically inde-
pendent over K. By Lemma 777(B), we can extend uniquely δ to K [zij ] by

Z δ̄ = AZ, and then to A0 = K
[
zij , (detZ)−1

]
. By Zorn’s lemma, there

exists a maximal differential ideal m in A0. The quotient A = A0/m is a
simple differential ring. For each pair (i, j) of indices, let yij be the canonical

image of zij in A; then Y δ̄ = AY and A = K
[
yij , (detY )−1

]
, thus A is a

Picard-Vessiot ring for A. The existence of a differential isomorphism be-
tween two Picard-Vessiot rings for the same equation is proved in [226] and
[286].

(5): See ([226], Definition 3.2).

Let (fi)i∈I be a family of elements of R×. One can define the Picard-Vessiot
differential ring of that family; this is the smallest differential ring which
contains the Picard-Vessiot ring of each fi. When (fi)i∈I is the family of
all elements of R×, the corresponding Picard-Vessiot ring is called universal .
One can prove that a universal Picard-Vessiot differential ring exists and is
unique up to K-linear differential isomorphism ([286], Chap. 10); it is denoted



302 4 Galois Theory and Skew Polynomials

by UnivR. It has no zero divisor and the field of constants of its field of
fractions is again Kδ = C.

Corollary and Definition 783. The field of fractions UnivF of UnivR ex-
ists and is unique up to K-linear differential isomorphism. Its subfield of
constants is Kδ = C. The differential field UnivF is called universal.

The notion of universal differential field corresponds, in the context of Dif-
ferential Algebra, to the notion of algebraically closed field in the context of
(usual) Algebra.

4.4.2.2 Galois Correspondence

Lemma and Definition 784. (i) Let L ⊇K and L′⊇ K be differential
fields (with the same derivation δ to simplify the notation). A morphism
of differential fields L → L′ which leaves fixed all elements of K is called a
(K, δ)–homomorphism, in accordance with Definition 700.
(ii) The set of all (K, δ)-automorphisms of the differential field (L, δ) is a
group denoted by AutK,δ (L) = Gδ (L/K).
(iii) If L/K is a Picard-Vessiot field extension, Gδ (L/K) is called the dif-
ferential Galois group of (L, δ) over (K, δ) and is denoted by Galδ (L/K).
(iv) Galδ (L/K) has a canonical structure of linear algebraic group.

Proof. (iv): Let L/K and Y ∈ GLn (L) be respectively a Picard-Vessiot field
extension and a fundamental solution matrix for A ∈Matn (K). Then

Galδ (L/K) = {M ∈ GLn (C) : q (Y M) = 0 for all q ∈ p} (4.26)

where p is the annihilator ideal in K [xij ] defined by

p = {q ∈ K [xij ] : q (Y ) = 0}

([226], Corol. 4.10). Since K [xij ] is Noetherian (Exercise 493(iv)), the ideal
p is finitely generated, and Galδ (L/K) consists of a Zariski-closed subgroup
of GLn (C), thus is a linear algebraic group G (Subsect. 2.10.1).

The following, proved in ([226], Theorem 6.5), is an extension of the funda-
mental theorem of the finite Galois theory (Theorem 725) in the context of
differential algebra:

Theorem 785. (Fundamental theorem of differential Galois theory). Let
L/K be a finite Picard-Vessiot field extension (with derivative δ). Then and
there is a lattice-antiisomorphism between differential fields (E, δ) such that
K ⊆ E ⊆ L and Zariski-closed subgroups H of Galδ (L/K) given by

H �→ LH
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with inverse
M �→ Gδ (L/M)

(with the same meaning as in Theorem 725). The extension M/K is Picard-
Vessiot if, and only if Gδ (L/M) is a normal subgroup of Galδ (L/K) and
then

Gδ (L/M) = Galδ(L/M).

When M/K is Galois, the restriction to M of a differential automorphism
u ∈ Galδ(L/K) is a differential automorphism uM of M and the restriction
ρM : u �→ uM is such that ker ρM = Galδ(L/M), im ρM = Galδ(M/K), thus
it induces an isomorphism of algebraic groups

Galδ(L/K)/Galδ(L/M)−̃→Galδ(M/K).

Example 786. In what follows, K = C (t) and δ = d/dt.

(1) Let f (∂) = ∂−a ∈ K [∂] and let a ∈ C×. The solution space is V = C y,
y = ea t, thus the Picard-Vessiot field for f is K (y). By (4.26),

Galδ(L/K) =
{
m ∈ GL1 (C) : (d/dt− a)

(
ea tm = 0

)}
= GL1 (C) = C×.

(2) Let f (∂) = ∂2+ 1
t
∂. The solution space is V = C⊕C y, y = ln (t). Let us

regard Galδ(L/K) as a subgroup of GL (V ). A basis of the C-vector space V
is B = {1, y}. Let σ ∈ Galδ(L/K) ⊆ GL (V ) and let us determine the action
of σ on V . Since K is fixed, σ (1) = 1 and σ

(
yδ
)

= σ (1/t) = 1/t = yδ.
In addition, σ

(
yδ
)

= σ (y)δ, thus σ (y)δ = yδ. Therefore, d/dt (σ (y)− y) =
0, hence σ (y) − y = c ∈ C. Therefore, Galδ(L/K) is isomorphic to the
translation group of C, i.e., to C itself. The matrix of the above element

σ in the basis B is
[

1 c
0 1

]
∈ GL2 (C). The group consisting of all matrices

[
1 c
0 1

]
, c ∈ C, is denoted by T (2, 1;C); it defines the algebraic group T (2, 1)

(2.10.1.3).

The following is closely connected with Remark 728:

Remark 787. Let L ⊇ K be a directed union of finite Picard-Vessiot exten-
sions. Then the group Galδ (L/K) of all differential K-automorphisms of
L has a canonical structure of linear proalgebraic group (i.e., of projective
limit of linear algebraic groups). Changing finite to infinite and algebraic
to proalgebraic in the statement of Theorem 785, this statement is again
valid.
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4.4.3 Difference Galois Theory

4.4.3.1 Picard-Vessiot Difference Rings

As shown through Remark 780, the Picard-Vessiot theory of differential fields
cannot be simply translated into the frame of difference fields since there exist
difference equations for which a Picard-Vessiot field cannot be obtained. In
the remainder of this subsection, K is a difference field (with automorphism
α) with algebraically closed subfield of constants C.

Theorem and Definition 788. Consider the difference equation (4.24)
where B ∈Matn (K).

(i) There exist a ring A ⊇ K and an automorphism ᾱ of A, extending α,
with the following properties:
(a) A, endowed with the automorphism ᾱ, is a simple difference ring;
(b) there exists a fundamental matrix X ∈ GLn (A) for (4.24) (i.e.,qX =
BX), such that A = K

[
X,det (X)−1

]
.

(ii) The difference ring (A, ᾱ) is called a Picard-Vessiot ring for (4.24). For
the sake of simplicity, ᾱ is again denoted by α in the sequel.
(iii) A Picard-Vessiot ring for (4.24) is unique up to difference isomorphism
(Lemma and Definition 776(i)).
(iv) The total ring of fractions (Remark 325(iv)) L of the above Picard-
Vessiot ring is called the total Picard-Vessiot ring of the equation (4.24).
(v) The above total Picard-Vessiot ring L ⊇ K is characterized up to differ-
ence isomorphism by the following conditions:
(a) L is reduced and every every regular element of L is invertible;
(b) the subring of constants of L is C;
(c) there exists a fundamental matrix X ∈ GLn (L) for (4.24);
(d) L is minimal with respect to (a), (b) and (c).

Proof. The proof of (i) is quite similar to that of Theorem and Definition
782(3), using Lemma 777(B). (iii) and (v) are proved in ([285], Prop.1.9
and 1.23).

Remark 789. For certain kinds of difference equations, a total Picard-
Vessiot difference field can be obtained [126]. Especially:

(i) for the first order difference equation α (y) = a y when there is no nonzero
solution to α (y) = an y, n > 1 ([126], Prop. 6). (The example in Remark
780 is not of this kind.)
(ii) for the second order difference equation α2 (y) = aα (y) + b y when the
only nonzero solution to α (y) = bn y is obtained for n = 0 and is a constant
([126], Theorem 11).
(iii) for the second order difference equation α2 (y) = −α (y)− b (t) y when
K = C (t) and b (t) ∈ C [t] is monic of degree one ([126], Theorem 12).
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4.4.3.2 Galois Correspondence

The following is analogous to Lemma and Definition 784 ([285], Sect. 1.2).

Lemma and Definition 790. (i) Let L ⊇K be difference rings (endowed
with an automorphism ᾱ which extends α, and which is still denoted by α to
simplify the notation). A morphism of difference rings L → L which leaves
fixed all elements of K is called a (K,α)-endomorphism.
(ii) The set of all (K,α)-automorphisms of the difference ring (L,α) is a
group denoted by AutK,α (L) = Gα (L/K).
(iii) If L/K is a total Picard-Vessiot ring over K, Gα (L/K) is called the
difference Galois group of (L,α) over (K,α) and is denoted by Galα (L/K).
(iv) Galα (L/K) has a canonical structure of linear algebraic group G.

The following is proved in ([285], Theorem 1.29 and Corol. 1.30).

Theorem 791. (Fundamental theorem of difference Galois theory). Let
L/K be a total Picard-Vessiot ring over K, and let Gα (L/K) be its differ-
ence Galois group. Let F be the set F of difference rings with K ⊆ F ⊆ L,
and such that every regular element of F is a unit of F. Let G denote the
set of algebraic subgroups of Galα (L/K).

(i) For any F ∈ F , the subgroup Gα (L/F) ≤ Galα (L/K) consisting of the
elements of Galα (L/K) which fix all elements of F pointwise, belongs to G.
(ii) For any H ∈ G, the subring LH of L consisting of all elements x ∈ L
such that u (x) = x for all u ∈ H, belongs to F .
(iii) There exists a lattice-antiisomorphism G→ F given by

H �→ LH

with inverse
F �→ Gα (L/F) .

(iv) Let H ∈ G; then H � Galα (L/K) if, and only if the difference ring
F = LH has the property that for every z ∈ F\K there exists a (K,α)–
automorphism σ such that σ (z) �= z. When this happens,

Gα (L/F) ∼= Galα (L/K) /H.

4.5 Exercises

Exercise 792. Prove that every algebraically closed field K is infinite.
(Hint: assuming that K is finite, consider the polynomial f (X) = 1 +∏
a∈K (X − a).)
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Exercise 793. Find the minimum polynomial over Q of (i) (1 + i) /
√

2; (ii)
i+
√

2; (iii) e2πi/3 + 2.

Exercise 794. Prove that if α is transcendental over K, then [K (α) : K] =
+∞ and that K (α) ∼= K (X).

Exercise 795. Find the degrees of the algebraic field extensions: Q
(√

7
)
/Q

and Q
(√

5,
√

7,
√

35
)
/Q.

Exercise 796. Show that extension Q
(

4
√

2
)

is not normal. Let α =
√

2,
L = Q (α) and M = L (

√
α). Check that both extensions M/L and L/Q are

normal and deduce that a tower of normal extensions need not be normal.

Exercise 797. Prove that the subgroups H1 and H2 of G in Example 727
are normal. What can you conclude?

Exercise 798. Prove that the set denoted by F(L) in Theorem 725 is a lat-
tice; specify the meet and the join of two elements of F(L).

Exercise 799. Let f ∈K [X ] be a polynomial of degree n ≥ 1.

(i) Prove that (GalK (f) : 1) | k! | n! where k is the number of distinct roots
of f .
(ii) If f is irreducible, prove that n | (GalK (f) : 1).
(iii) Show that in Example 727, Γ � S (R) (with the notation in Remark
723).
(Hint: for (i), use Remark 723, Example 135 and Lagrange’s theorem (1.21);
for (ii), use Proposition 724(b) and Exercise 208.)

Exercise 800. Determine the lattice of all subgroups of G in Example 727.
(This exercise is solved in [206], Sect. VI.2, Example 3.)

Exercise 801. Let

A =

⎡

⎢
⎢
⎢⎢
⎣

0 0 0 0 1
1 0 0 1 1
−1 1 0 −1 0
0 0 0 0 −1
0 0 0 0 0

⎤

⎥
⎥
⎥⎥
⎦
.

Prove that the set of elementary divisors of X I5−A is
{
X2, X3

}
and deter-

mine the Jordan canonical form of A.

Exercise 802. Prove the following for any a ∈ K and b, c ∈ K× (with the
notation in (4.3.4.1)):

(i) Nn (ca) c =
∑

1≤i≤n fn−i (c)Ni (a);
(ii) Nn+1 (c) = Nn (cc) c;
(iii) b0− c0 = α (c)

(
c−1b0
)
c−1.
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Exercise 803. Let (K, δ) be a differential field, let (L, δ) ≥ (K, δ) be a uni-
versal differential field (Corollary and Definition 783), and let α ∈ L×. Re-
call that α is called an exponential (resp., a primitive) over K if there exists
a ∈ K such that δα = aα (resp., δα = a). If α is an exponential or a
primitive over K, prove that K (α) is a Picard-Vessiot extension of K.

Exercise 804. Let (K, δ) be a differential field with algebraically closed field
of constants C, and let L ⊇ K be a finite Galois extension. Prove that L is
a Picard-Vessiot extension of K. (Hint: first use Lemma 777(A) to extend
δ; then show that the subfield of constants of (L, δ) is again C. See [226],
Lemma 3.19 and Prop. 3.20 for more details.)

4.6 Notes

The modern presentation of the finite Galois theory is due to Artin [7] who
showed the advantage of going down from a field to its subfields, instead of
going up from a field to its extensions as in the classical approach. Nev-
ertheless, the so-called Artin’s theorem (4.1) goes back to Dedekind who
established this result before 1894. The infinite Galois theory (Remark 728)
is due to Krull [194] who introduced for this purpose the profinite topology
([28], Chap. V), ([79], Chap. 11), ([206], Chap. VI). The Galois theory was
extended to division rings by E. Noether, N. Jacobson, and H. Cartan [58]
(see [78] for an up-to-date presentation).

Theorem 734 is due to Jacobson [168] who also introduced the notion of
pseudo-linear transformation [167]. Definitions 747(i) & 761 of an algebraic
PLT and of left eigenvalues and eigenvectors are due to Leroy [214]; they gen-
eralize Cohn’s definitions given in [75] when α = 1, δ = 0. The definition and
the existence of a matrix-homogeneous division ring (Theorem and Definition
748) were stated and established in [75]. Theorem 753 was obtained by Sizer
in his Ph.D. thesis [332]. The definitions of the left (resp., right) evaluation
and of the left (resp., right) root of a skew polynomial (Definitions 756 and
759), as well as Lemma 758, are due to Lam and Leroy [201], [202]. Lemma
745 and Proposition 762 were established by Lam et al. [204]. The equalities
in Exercise 802 are proved in [201]. Theorem 763 is classical (see [197], The-
orem 4); our proof is that given by Cohn ([77], Chap. 8, Theorem 6.1). The
notion of P-independence (Definition 767(i)) was introduced by Lam [197]
in the case of a zero derivation δ, and then generalized by Lam and Leroy
[203]. Definition 767(ii) is a generalization, given in [203], of Wedderburn’s
original definition [357] of a polynomial f ∈ K [X ] (where K is a division
ring with centre F and X is a central indeterminate) which is the minimal
polynomial over F of an element a algebraic over F. Lemma and Definition
769 was established (in collaboration with Leroy) in the Epilogue of Lam’s
paper [197]. General hyperexponential solutions have been considered by
Abramov [2] (see also [54]).
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The modern theory of Picard-Vessiot differential fields is essentially due to
Kolchin [187], one of the fathers–with Ritt [294]–of Differential Algebra. In
particular, Kolchin emphasized the importance of extending differential fields
without adding new constants. Picard-Vessiot differential field extensions
are also nicely expounded in Magid [226] and in van der Put and Singer
[286]. The latter account is an important contribution for its clarity and
the algorithms presented. R.M. Cohn [82] noticed that Difference Algebra is
more complicated than Differential Algebra. This was confirmed by Franke
[126], who showed that severe restrictions must be made on a linear difference
equation for a Picard-Vessiot difference field to exist for that equation. Van
der Put and Singer [285] eventually established a theory of Picard-Vessiot
difference rings.
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5

Systems and Behaviors: A General
Setting

5.1 Introduction

Historically, a linear system was first considered as a ”black box”, excited by
inputs, generating outputs, and characterized by a transfer matrix [22]. In
1960, Kalman founded the theory of state-space systems [171], inaugurating
the era of ”modern control theory”. This approach is however limited by
several facts.

1◦ Multidimensional systems do not have a state-space representation, ex-
cept in very peculiar cases. Regarding this point, Rosenbrock representations
[301] are more general.

2◦ As emphasized by Willems [360], [361], in many applications it is not
appropriate to a priori distinguish inputs and outputs among all system
variables.

Therefore, the general representation of a linear system is of the form

Rw = 0 (5.1)

where R is a q × k matrix with entries in a ring of operators A and

w =
[
w1 · · · wk

]T . (5.2)

Equation (5.1) is identical to (3.1) and, therefore, can be viewed as the equa-
tion of a finitely presented (f.p.) left A-module M . As shown in (3.4.3.2), the
matrix R is not an intrinsic object, as opposed to the module M . Therefore,
following Kashiwara ([181], Definition 1.1.1) and – in the context of Auto-
matic Control – Fliess [115], one is led to define a (linear) system as a finitely
presented A-module.

In practice, the variables w1, ..., wk must belong to a well-defined space
of functions (or distributions, hyperfunctions, etc.). Let W be such a space
which is also a left A-module. The object kerW (R•) defined by (3.32) is
called the W -behavior associated with M , and is denoted by BW (M). In the

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 311–401.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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behavioral theory, first developed by Willems, BW (M) plays a preeminent
role.

We already know that there are connections between M and BW (M).
First, as shown in (3.4.3.3), BW (M) is deduced from M using the functor
BW = HomA (•,W ). Conversely, M is uniquely determined by BW (M) if
the functor BW is faithful, i.e., if W is a cogenerator (Theorem and Definition
43(3)). If W is an injective cogenerator, then the correspondence between
M and BW (M) is even stronger (Theorem 644). This shows that in the
”post-modern control theory” expounded in the present book, homological
algebra cannot be avoided (at least at the basic level of Chapter 3).

For certain problems, such as those in Section 5.7 below, the above al-
gebraic considerations are not sufficient. Topological properties must also
be taken into account; then, the calculations can no longer be made in an
abelian category such as AMod, but in a category which is only semiabelian
(Definition 38). In addition, for the above-mentioned problems, the classical
notion of cogenerator is too restrictive. This motivates the generalizations
in Section 5.3 below.

5.2 The Module-Theoretic Setting

In what follows, A is a ring of operators. Let us detail the introduction in
Subsect. 5.1 and review some important points of Chapter 3 in the context
of systems theory.

5.2.1 Linear Systems

Definition 805. A linear system M over A is a finitely presented (f.p.) left
A-module.

By Definition 496, there exists a matrix R ∈ qAk such that the sequence

Aq •R−→ Ak •α−→M −→ 0 (5.3)

is exact, where •α is the canonical epimorphism. Therefore,

M = imA (•α) ∼= Ak/ kerA (•α)

according to Noether’s first isomorphism theorem (Theorem 52(1)). Since
kerA (•α) = imA (•R) , we obtain

M ∼= Ak/ imA (•R) � cokerA (•R) .

Consider another exact sequence

Aq′ •R′
−→ Ak •α′

−→M ′ −→ 0.
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Then M ′ ∼= cokerA (•R′), therefore, according to Definition 517, the following
conditions are equivalent:

(i) M ∼= M ′;
(ii) cokerA (•R) ∼= cokerA (•R′) ;
(iii) R and R′ are left-similar.

Let (εi)1≤i≤k be the canonical basis of Ak and wi the canonical image of
εi in M, i.e., wi = (εi)α = εi + imA (•R). Consider the finite sequence of
generators w defined by (5.2). As shown in (3.2.3.1), M = [w]A where the
finite sequence of generators w is only subject to the relation (5.1). According
to Definition 512, this module M = [w]A is said to be defined by generators
and relations : the generators are the elements wi; the relations are the q rows
of equation (5.1)). The free module Ak (resp., Aq) is sometimes called the
module of generators (resp., of relations).

Example 806. Let A be the first Weyl algebra A1 (C) (2.7.4.3) and consider
the equation over A (

t∂2 + 1
)
y = (1 + t)u. (5.4)

This equation represents a linear system with time-varying coefficients, and
more specifically with coefficients in C [t]. To see this, consider the exact
sequence

A •R−→ A2 −→M −→ 0

where R =
[ (
t∂2 + 1

)
− (1 + t)

]
. Let (e) be the canonical basis of A (i.e.,

e = 1) and let (ε1, ε2) be the canonical basis of A2. The left A-module M is
generated by the canonical images ε̄1 = y and ε̄2 = u in A2/ imA (•R). Since
eR =

(
t∂2 + 1

)
ε1 − (1 + t) ε2 ∈ imA (•R), the generators y and u satisfy

(5.4), i.e., M = [y, u]A where y and u are only submitted to the relation
(5.4). This is a typical example of the above construction.

5.2.2 Behaviors

Let W be a left A-module and consider the functor BW = HomA (•,W )
from the category AMod to the category ModE where E = EndA (W ) is
the endomorphism ring of W . The functor BW is contravariant left exact
(Proposition 549(iii)), therefore the exact sequence (5.3) yields the exact
sequence

BW (Aq)
BW (•R)←− BW

(
Ak
) BW (•α)←− BW (M)←− 0.

We have the canonical isomorphisms BW

(
Ak
) ∼= kW and BW (Aq) ∼= qW .

Therefore, the following identifications are made (Corollary 567):

BW

(
Ak
)

= kW, BW (Aq) = qW,
BW (•α) = ι•, BW (•R) = R•,

BW (M) = kerW (R•) .



314 5 Systems and Behaviors: A General Setting

Summing up, using the functor BW , one passes from M = cokerA (•R) to
BW (M) = kerW (R•) .

This can also be expressed as follows: let N = imA (•R) � Ak. Then:

(i) M = Ak/N ;
(ii) BW (M) = N⊥ �

{
w ∈ kW : rw = 0, ∀r ∈ N

}
.

Recall that:

(a) the elements of Ak (thus those of N) are rows with k entries in A;
(b) the elements of kW (thus those of N⊥) are columns of k entries in W .

Definition 807. The right E-module BW (M) = N⊥ is the W -behavior as-
sociated with the linear system M . The elements of B are called trajectories.

Setting BW (M) = B we obtain (in accordance with (3.32))

B =
{
w ∈ kW : Rw = 0

}
� kerW (R•) . (5.5)

Note that the equation
Rw = 0 (5.6)

which defines BW (M) looks like (5.1) but must not be confused with it (see
Remark 566). The W -behavior BW (M) is the set of all solutions in kW
of (5.6) . The set BW (M) is a right E-module, thus an abelian group, and
if A is an R-algebra (where R is a commutative ring), then BW (M) is an
R-module (Exercise 476).

Example 808. Let W be, e.g., the space E (R) (1.7.3.5). The W -behavior
associated with the linear system in Example 806 is

BW (M) =
{[

y
u

]
∈ 2W :

(
t∂2 + 1

)
y = (1 + t)u

}
.

Example 809. Let A = C [∂] where ∂ = d/dt is the usual derivative and
consider the system M defined by ẏ = y (i.e., M = cokerA (∂ − 1)).

(a) Let W = E (R). Then

BW (M) =
{
y : t �→ Aet, A ∈ C

}
.

(b) Let W = C [t] . Then
BW (M) = {0} .

5.2.3 The Connection between Systems and Behaviors

5.2.3.1 Passage from M to BW (M)

Let M and W be given. We have M = cokerA (•R) = Ak/N, N =
imA (•R) . Then we can calculate BW (M) = HomA (M,W ). We have
indeed BW (M) = N⊥ = kerW (R•) .
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5.2.3.2 The Fundamental Galois Connection

Let B = BW (M) ⊆ kW be given. Consider

B⊥ �
{
r ∈ Ak : rw = 0, ∀w ∈ B

}
.

Proposition 810. The Galois connection in Lemma 569 induces a Galois
connection

Sk ←→ S⊥k : N �→ N⊥, B �→ B⊥

where Sk is the set of all f.g. submodules of Ak and S⊥k =
{
N⊥ : N ∈ S

}
.

Proof. By Lemma 569, the above correspondence is a Galois connection with

Sk =
{
N � Ak : Ak/N is f.p.

}
.

We have the short exact sequence

0 −→ N −→ Ak −→ Ak/N −→ 0,

therefore, by Lemma 498, Ak/N is f.p. if, and only if N is f.g.

By Proposition 810 and Proposition 99(ii), we have for any N ∈ Sk and any
B ∈ S⊥k

N � N⊥⊥ and B � B⊥⊥.

These inclusions need not be equalities. In Example 809,

N = C [∂] (∂ − 1) , B = N⊥ = 0,
N⊥⊥ = C [∂] , B⊥⊥ = N⊥⊥⊥ = 0.

Remark 811. A submodule N of Ak is said to be W -closed if N = N⊥⊥.

We will now give a sufficient condition for any f.g. submodule of Ak to be
W -closed.

5.2.3.3 Passage from BW (M) to M

Theorem 812. Let W be a cogenerator (Subsect. 3.5.6). Then:

(i) The map M �→ BW (M)
(
M ∈ AModfp

)
is one-to-one.

(ii) For any N ∈ Sk, N = N⊥⊥, i.e., the Galois connection in Proposition
810 is bijective.
(iii) Let R ∈ qAk and R′ ∈ q′Ak. Then kerW (R′•) ⊆ kerW (R•) if, and
only if there exists a matrix X ∈ qAq′ such that R = X R′. In particular,
kerW (R′•) = kerW (R•), if, and only if q = q′ and there exists X ∈ GLq (R)
such that R = X R′ (”quasi-uniqueness of the matrix of definition”).
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Proof. (i): If W is a cogenerator, the functor BW is faithful (Theorem and
Definition 43(3)), thus it is injective (Lemma 32).

(ii): We know that N � N⊥⊥. Let us prove the reverse inclusion by
contradiction. If m ∈ Ak does not belong to N , let m̄ = m + N ∈ Ak/N .
Then m̄ �= 0 and by Theorem 638, there exists η̄ : Ak/N → W such that
η̄ (m) �= 0. By Theorem and Definition 145, the A-homomorphism η̄ is
induced by an A-homomorphism η : Ak → W such that η (N) = 0, i.e.
η ∈ N⊥. As η (m) �= 0, m /∈ N⊥⊥.

(iii): Let N = imA (•R) and N ′ = imA (•R′) ⊆ Ak. If N ′⊥ � N⊥, then
N⊥⊥ � N ′⊥⊥. By (i), N = N⊥⊥ and N ′ = N ′⊥⊥, thus N � N ′, i.e.
imA (•R) � imA (•R′). Now, •R′ is an epimorphism Aq′ → imA (•R′) and
the free module Aq′ is projective (Proposition 574(ii)), therefore there exists
an A-homomorphism •X : Aq′ → Aq such that R = X R′ (Lemma 45(2)).

The rest is clear.

5.2.4 The Categorical Point of View

Recall that A is a ring of operators and that E = EndA (W ) .

Lemma and Definition 813. (i) The category Sys of systems over the ring
of operators A is the category AModfp of finitely presented left A-modules.1

(ii) The class of W -behaviors is Beh = BW (Sys).
(iii) If W is a cogenerator, then Beh is a subcategory of ModE and Sysop ∼=
Beh.
(iv) Let M1,M2 ∈ Sys. Then BW (M1)⊕BW (M2) ∈ Beh. If M1 � M2,
then BW (M2/M1) � BW (M2) is an element of Beh, called a subbehavior
of BW (M2).
(v) Assume that A is left coherent ring; then Sys is an abelian category. If
in addition W ∈ AMod is a cogenerator, then Beh is an abelian category
too.

Proof. (iii) is a consequence of Lemma 32.
(iv): The functor BW is left exact (Theorem and Definition 43), therefore

BW (M1 ⊕M2) ∼= BW (M1)⊕BW (M2)

where the isomorphism is canonical, thus is an identification.
In addition, if M1 � M2, then canonical exact sequence

0 −→M1
•ι−→M2

•ϕ−→M2/M1 −→ 0

where ι is the inclusion and ϕ is the canonical epimorphism, yields the exact
sequence of right morphisms
1 Sys reads Sys (Gothic).
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BW (M1)
BW (ι)←− BW (M2)

BW (ϕ)←− BW (M2/M1)←− 0

where the canonical monomorphism BW (ϕ) is identified with the inclusion.
(v) is a consequence of Theorem 510 and of (ii).

5.2.5 The Use of Large Cogenerators

Neither Theorem 644 nor Lemma and Definition 813 allow us to specify when
the category Beh of behaviors is a full subcategory of ModE (Remark 645).
This leads us to consider the notion of large cogenerator :

Definition 814. A module W ∈ AMod is called a large cogenerator if it is
a cogenerator and for every M ∈ AModfg, there exists a finite set of indices
J and an embedding M ↪→ W J .

The following is a useful characterization of injective large cogenerators in
the Noetherian case:

Theorem 815. Let A be a left Noetherian ring and W ∈ AMod be an in-
jective module.

(1) Of the following, (i)⇔(ii)⇒(iii):
(i) W is a large cogenerator.
(ii) for any meet-irreducible left ideal c in A (3.5.2.4), there exist a positive
integer k and an embedding A/c ↪→ W k.
(iii) W is a cogenerator.
(2) If A is commutative, then (i)⇔(ii)⇔(iv) where (iv) is the following:
(iv) for any prime ideal c ∈ Spec A (2.4.3.2), there exist a positive integer k
and an embedding A/c ↪→W k.
(3) If A is a Dedekind domain (not necessarily commutative) for which there
exist a positive integer n and an embedding A ↪→Wn, then (i)⇔(ii)⇔(iii).

Proof. (1). (i)⇒(ii) is clear since c is f.g. by the Noetherian assumption
(Lemma 311), and (ii)⇒(iii) is obvious.

(ii)⇒(i): Let M be a f.g. left A-module with injective envelope E (M), and
consider the decomposition of E (M) into a direct sum of indecomposable
injective modules Ei (Theorem 590):

E (M) =
⊕

i∈I
Ei.

For every i ∈ I, Ei ∩M �= 0 since M ⊆e E (M) (Exercise 692), therefore
I is finite since M is f.g. By Lemma 602, for every i ∈ I, there exists
a meet-irreducible left ideal ci such that Ei ∼= A/ci. If (ii) holds, there exists a
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positive integer ki and an embedding •ιi : A/ci ↪→W ki . Since W is injective,
so is also W ki , and ιi can be extended to an A-linear map

•fi : E (A/ci)→W ki .

Then, kerfi∩A/ci = ker ιi = 0. Therefore, ker fi = 0 since A/ci ⊆e E (A/ci)
(Exercise 692), and E (A/ci) ↪→ W ki . As a result,

M ⊆ E (M) ∼=
⊕

i∈I
Ei ↪→ W k, k =

∑
i∈I ki,

and (i) holds.
(2) is an obvious consequence of the above and of Lemma 601(iii).
(3). (iii)⇒(i): Assume that (iii) holds, and let c be a nonzero left ideal

in A. The quotient module A/c is torsion, thus it is of finite length by
Theorem 664; therefore, the module A/c is Artinian by Theorem 315, thus
it is finitely cogenerated by Proposition 641, and (i) holds.

Example 816. Let K be a field and let S be a unitary K-algebra, finitely
generated over K. Then the S-module S∗ � HomK (S,K) is a left and
right large injective cogenerator. See ([258], (3.15)) and ([199], (19.31)).
Compare with Corollary 648.

Theorem 817. (i) Let W be a large injective cogenerator. Then Beh ∼=
Sysop is a full subcategory of ModE.
(ii) In addition, assume that the ring A is left Noetherian. Then Beh is the
full subcategory of ModE, the objects of which are f.g. submodules of powers
nW (n ∈ N). The minimal number of E-generators of BW (M) (M ∈ Sys)
coincides with the minimal number m for which there exists an embedding
M ↪→ mW .

Proof. (i): (1) Since W is a cogenerator, Beh ∼= Sysop is a subcategory of
ModE by Lemma and Definition 813(ii).

(2) Let us prove that when W is a large injective cogenerator, the functor
BW : Sys → ModE is full. Let N,M ∈ Sys and let f• : BW (N) →
BW (M) be an E-linear right morphism. Since W is a large cogenerator,
there exists a finite set of indices I and a monomorphism •α : N ↪→ W I .
Consider the short exact sequence

0 −→ N
•α−→W I •ϕ−→W I/ im (•α) −→ 0

where •ϕ is the canonical epimorphism. The module W I/ imα ∈ AMod is
not f.g. in general, but since W is a cogenerator, there exists a set of indices
J (possibly infinite) and an embedding •ι : W I/ imα ↪→W J . Let •β = •ϕι :
W I → W J ; then •αβ = (•αϕ) • ι = 0, therefore kerβ = kerϕ = imα, and
the sequence

0 −→ N
•α−→W I •β−→W J (5.7)
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is exact. Let •πi : W I � W be the canonical projection with index i ∈ I
(1.2.1.2), and let •αi = •πiα. By Exercise 200(i), since I is finite,

HomA

(
∏

i∈I
Wi,
∏

j∈J
Wj

)
∼=
∏

i,j
HomA (Wi,Wj)

where Wi = Wj = W . Let •σi : Wi ↪→ W I be the canonical injection with
index i (1.2.1.3) and let •λj : W J � W be the canonical projection with
index j; in addition, let

•βij = •σiβλj : Wi →Wj .

The equality •αβ = 0 is equivalent to
∑

i∈I
αiβij = 0, j ∈ J.

Since f• : BW (N) → BW (M) is a homomorphism of right E-modules,
αi ∈ BW (N) and βij ∈ E, the above equality yields

0 = f

(
∑

i∈I
αiβij

)
=
∑

i∈I
f (αi)βij , j ∈ J.

Let
•α′ =

∑

i∈I
f (αi)σi : M →W I .

From the above, for all j ∈ J,

α′βλj =
∑

i∈I
f (αi)σiβλj =

∑

i∈I
f (αi)βij = 0,

therefore α′β = 0, i.e., imα′ ⊆ kerβ = imα. Since the sequence (5.7) is
exact, there exists γ : M → N such that

γα = α′ (5.8)

(Exercise 674). Let us show that f = BW (γ). Since α =
∑

i∈I
αiσi, (5.8) is

equivalent to ∑

i∈I
γαiσi =

∑

i∈I
f (αi)σi,

i.e., to γαi = f (αi) for all i ∈ I. Let •δ : N → W . We obtain the diagram
below, the row of which is an exact sequence:

0 −→ N
α−→ W I

δ ↓
W
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Since W is injective, there exists a morphism •ε : W I →W such that αε = δ.
Let εi = σiε (i ∈ I). Then

f (δ) = f (αε) = f

(
∑

i∈I
αiσiε

)
= f

(
∑

i∈I
αiεi

)
=
∑

i∈I
f (αi) εi =

∑

i∈I
γαiεi

= γδ = BW (γ) (δ) ,

therefore f = BW (γ) as desired. This means that BW : Sys → ModE is
full.

(ii): If A is left Noetherian, then Sys = AModfg and one can conclude
as in ([257], Prop. 3.3) and ([259], Lemma 2.8).

Remark 818. Statement (iii) in Lemma and Definition 813 and Statement
(i) in Theorem 817 still hold if Sys is changed to any full subcategory D of
AModfg and Beh is changed to BW (D).

5.3 Generalization of the Module-Theoretic Setting

The results in Section 5.2 are now generalized using the theory of categories.
This section can be skipped in a first reading, especially by the readers who
are not interested in the application in Section 5.7.

5.3.1 Generalized Systems and Associated Behaviors

Let C a preabelian category and U,W be objects of C. The two definitions
below are generalizations of Definitions 805 and 807.

Definition 819. (i) A U -system M is a f.g. U -cokernel (Definitions 500 and
502), i.e., and object M defined by a canonical exact sequence

N
•ι−→ Uk

•ϕ−→M −→ 0 (5.9)

where N ⊆ Uk. This means that M = coker ι = Uk/N .
(ii) The above U -system M is called finitely presented (f.p.) if the object M
is U -finitely presented, i.e., if there exists an exact sequence (3.6):

Uq
•R−→ Uk •ϕ−→M −→ 0. (5.10)

Definition 820. The W -behavior B associated with the U -system M defined
by (5.9) is the W -kernel associated with the U -cokernel M , i.e., the right E-
module (where E = EndC (W )) defined as

B = N⊥ �
{
w ∈ HomC

(
Uk,W

)
: ιw = 0

}
(5.11)

where ι : N ↪→ Uk is the inclusion.
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5.3.2 Further Study of Cogenerators

5.3.2.1 Cogenerators for a Subcategory

We will define the notion of a cogenerator for a subcategory of an additive
category.

Lemma 821. Let C be an additive category with arbitrary products, let M
and W be objects of C, and consider the canonical morphism

•φM � (ŵ)ŵ∈HomC(M,W ) : M →WHomC(M,W ).

(1) The following conditions are equivalent:
(i) φM is a monomorphism;
(ii) There exists a monomorphism M ↪→W J for some set of indices J ;
(iii) For every object M1 of C, the arrow map

BW : HomC (M1,M ) �→ HomE (BW (M) ,BW (M1))

is injective.
(2) If U is a generator, the above conditions are equivalent to:
(iv) For any nonzero morphism •h : U →M , there exists •β : M →W with
•hβ �= 0.

Proof. (1). (i)⇒(ii): This is clear (take J = HomC (M,W )). (ii)⇒(iii):
Let •f : M1 → M and •η =

(
•ηj
)
i∈J : M ↪→ W J . If BW (f) = 0, then

BW (f)
(
ηj
)

= •fηj = 0 for all j ∈ J , thus •fη = 0 and since •η is a
monomorphism, this implies f = 0. (iii)⇒(i): By (3.37), BW (f) = 0 if, and
only if fφM = 0; thus, if BW is injective, then φM is a monomorphism.

(2). Assume that U is a generator. (ii)⇒(iv): Let •η =
(
•ηj
)
j∈J : M ↪→

W J and •h : U →M , h �= 0. Then •hη �= 0, thus there exists j ∈ J such that
hηj �= 0 and we have found β = ηj : M →W such that •hβ �= 0. (iv)⇒(iii):
Let •f : M1 → M be such that BW (f) = 0, thus BW (f) (β) = fβ = 0 for
any •β : M → W . If f �= 0, there exists •h1 : U → M1 such that h1f �= 0
whereas h1fβ = 0, i.e., hβ = 0 with h = h1f �= 0, and (iv) does not hold.

Item (ii) below is a consequence of Lemma 32:

Corollary and Definition 822. (i) Let C be an additive category with arbi-
trary products. An object W ∈ C is called a cogenerator for a full subcategory
D of C if the conditions of Lemma 821(1) are satisfied for all objects M ∈ D.
(ii) Then BW (D) is a subcategory of ModE and the faithful functor BW

induces an isomorphism BW : Dop−̃→BW (D).

When taking D = C, one meets the classical definition of a cogenerator again.
Item (ii) above generalizes Lemma and Definition 813. The following is a
generalization of Corollary 639.
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Lemma 823. Let D be a full subcategory of the additive category C, let W ∈ C
be a cogenerator for D, let U ∈ D and let A � HomC (U,U). Then BW (U)
is a faithful left A-module (Definition 613(i)).

Proof. By Lemma 821(1)(iii), the map

BW : A→ HomE (BW (U) ,BW (U)) , a �→ a•

(where a• is the left composition by a) is injective, thus, if a is nonzero,
a• and aBW (U ) are again nonzero, which implies that the left A-module
BW (U) is faithful.

Remark 824. In the situation of Corollary and Definition 822, an object
W ∈ C is called a weak injective cogenerator for D if the functor BW :
Dop →ModE is faithfully exact [49].

The notation of (3.4.3.4) is used in the following.

Theorem 825. Let C be a semiabelian category (Definition 38) and let
U,W ∈ C.
(1) Let I be a set of indices, let N ⊆ U (I), let ι : N ↪→ U (I) be the inclusion
and let M = U (I)/N be a U -cokernel. The conditions in Lemma 821(1) are
equivalent to:
(v) im ι = N⊥⊥.
(2) Let D be a full subcategory of C, and let SD

(
U (I)
)

be the set of all N ⊆
U (I) such that U (I)/N ∈ D and ι : N ↪→ U (I) is a strict morphism (Definition
39); in addition, let SD

(
U (I)
)⊥

be the set of all N⊥, N ∈ SD
(
U (I)
)
. If

W ∈ C is a cogenerator for D, the Galois connection in Lemma 569 induces
a Galois connection

SD
(
U (I)
)
←→ SD

(
U (I)
)⊥

: N �→ N⊥, B �→ B⊥

which is bijective.

Proof. (1). (i)⇒(v): By (3.38), ker (•ϕφM ) = N⊥⊥. If (i) holds, then
N⊥⊥ = kerϕ = ker coker ι = im ι. (v)⇒(i): If (v) holds, then kerϕ =
ker (ϕφM ), hence also by (1.6), (1.7)

coim (ϕφM ) = coimϕ = coker ker coker ι = coker ι = ϕ.

The canonical decomposition of ϕφM yields ϕφM = coim (ϕφM ) g = ϕg, thus
φM = g which is a monomorphism since C is semiabelian.

(2). If ι : N ↪→ U (I) is strict, then ι = im ι by Remark 40 and Lemma 34,
and by (v), N = N⊥⊥ since W is a cogenerator for D, hence N = B⊥ where
B = N⊥; thus the map SD

(
U (I)
)
� N �→ N⊥ ∈ SD

(
U (I)
)⊥

is bijective with
inverse B �→ B⊥.

Item (2) of Theorem 825 is a generalization of Proposition 810.
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In everything that follows, we make the following

Assumption 826. C is a semiabelian category and D is a full subcategory of
C, all objects of which are f.g. U -cokernels. The two E-modules in Lemma
and Definition 568(1) are identified under σ (this is a generalization of the
identification in Corollary 567(2)).

Consider a finitely presented U -system M , defined by the exact sequence
(5.10). The W -behavior B � N⊥, identified with BW (M), is obtained by
applying the functor BW to (5.10) which yields the exact sequence of right
morphisms

0 −→ BW (M)
BW (ϕ)−→ BW

(
Uk
) BW (•R)−→ BW (U q)

with the canonical E-linear isomorphisms BW

(
Uk
) ∼= kW and

BW (U q) ∼=qW ; BW (•R) is identified with the left multiplication by R,
written R•, and BW (ϕ) with the inclusion BW (M) ↪→kW . We obtain
the following, which is a generalization of Theorem 812:

Theorem 827. Let Mi = coker (•Ri) be finitely presented U -systems(
Ri ∈ qiAk

)
and Ni = im (•Ri) (i = 1, 2), and let D be a full subcategory

of C, all objects of which are finitely presented U -systems.

(i) If there exists a matrix X ∈ q1Aq2 such that R1 = X R2, then
kerW (R2•) ⊆ kerW (R1•).
(ii) The converse of (i) holds true if M2 ∈ D, U is projective in C and W ∈ C
is a cogenerator for D.
(iii) In particular, if U is projective in C , kerW (R2•) = kerW (R1•), M2 ∈ D
and W ∈ C is a cogenerator for D, then there exists an invertible matrix X
over A such that R1 = X R2 (”quasi-uniqueness of the matrix of definition”).
(iv) If U is a generator and the converse of (i) holds true whenever M2 ∈ D,
then W ∈ C is a cogenerator for D.

Proof. (i) is obvious. (ii): Since C is semiabelian, the morphism •Ri can
be factored as •Ri = βiωi where •βi : Uqi � Ni is an epimorphism and
ωi : Ni ↪→ Uk is the inclusion. We have N⊥2 ⊆ N⊥1 , thus N1 ⊆ N⊥⊥1 ⊆
N⊥⊥2 by Lemma 569, and N⊥⊥2 = N2 by Theorem 638(1) and Lemma and
Definition 504(ii). Since N1 ⊆ N2, let ι : N1 ↪→ N2 be the inclusion. We
have •R1 = γω2 with γ = β1ι : U q1 → N2. Since U is projective, so is U q1

too and there exists •ξ : U q1 → Uq2 such that γ = ξβ2, thus γω2 = ξβ2ω2,
i.e., •R1 = ξR2. Therefore, R1 = X R2 where X = Mat (ξ).

(iii) is an obvious consequence of (ii). (iv): Since U is a generator there is
an epimorphism f = (•Ri)i∈I : U (I) � N⊥⊥2 where

•Ri : U
ιi
↪→ U (I)

f
� N⊥⊥2 ↪→ Uk
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i.e., Ri ∈ Ak, im (•Ri) ⊆ N⊥⊥2 . Then,

kerW (R2•) = N⊥2 = N⊥⊥⊥2 ⊆ im (•Ri)⊥ = kerW (Ri•) .

If the converse of (i) holds, there are rows Xi ∈ Aq2 with Ri = XiR2 and
therefore im (•Ri) ⊆ im (•R2) = N2, hence f = (•Ri)i∈I : U (I) → N2 and
im f ⊆ N2. Since N⊥⊥2 is a kernel and f : U (I) � N⊥⊥2 , we have N⊥⊥2 = im f
and thus also N⊥⊥2 ⊆ N2; finally, N⊥⊥2 = N2, thus W is a cogenerator for D
by Theorem 638(1).

We are also led to the following generalization of Lemma and Definition 813:

Lemma and Definition 828. (i) The category Sys of U -systems is the
above category D.
(ii) The class of associated W -behaviors is Beh = BW (Sys). If W ∈ C is a
cogenerator for Sys, then Beh is a subcategory of ModE and Sysop ∼= Beh.
(iii) Assume that the category Sys is additive and let M1,M2 ∈ Sys. Then
BW (M1) ⊕BW (M2) ∈ Beh. If in addition Sys is abelian and M1 ⊆ M2,
then BW (M2/M1) ⊆ BW (M2) is an element of Beh, called a subbehavior
of BW (M2).

5.3.2.2 Large Cogenerators

The notion of large cogenerator can be generalized as follows:

Definition 829. Let C be an additive category with arbitrary products and
coproducts (1.2.4.1) and let U,W be objects of C. Assume that U is a gen-
erator and that W is a cogenerator (1.2.2.4). The object W is called a large
cogenerator in C if for every (U -)finitely generated object M , there exists a
finite set of indices J and an embedding M ↪→ W J .

Theorem 817(i) is then generalized as follows (with the same proof):

Theorem 830. Let C and U be as in Definition 829, let D be a full
subcategory of C, all objects of which are (U -)finitely generated, and let
A � HomC (U,U). Let W be a large injective cogenerator in C and let
E � HomC (W,W ). Then BW (D) ∼= Dop is a full subcategory of ModE.

5.4 Examples of Linear Systems

5.4.1 LTI Systems

The most simple linear systems are the linear time-invariant (LTI) systems.
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5.4.1.1 Continuous-Time Case

In the continuous-time case, the appropriate ring of operators for the defini-
tion of LTI systems is A = C [∂] (∂ = d/dt), i.e., the ring of linear differential
operators with constant coefficients (Subsect. 2.7.2). We know that A is
a commutative strongly Euclidean domain (Exercise 489(ii)), thus A is a
commutative principal ideal domain (Theorem 468).

The primes in A are the linear polynomials pa = ∂ − a (a ∈ C), thus
every simple A-module is of the form Sa = A (pa) whose injective hull is
E (Sa) = A (p∞a ) by Proposition 603. Therefore the canonical cogenerator
of AMod is W0 =

⊕
a∈C

A (p∞a ) (Corollary and Definition 643), and W0

is injective by Corollary and Definition 643(i) since A is Noetherian. By
definition of E (Sa), there exists an embedding Sa ↪→ E (Sa), thus there
exists an embedding

Sa ↪→W0. (5.12)

For any a ∈ C and n ≥ 1, let Cn,a be the C-vector space generated by the n
functions

t �→ tk−1 ea t (1 ≤ k ≤ n)

defined in a nonempty open interval I of the real line; Cn,a is an A-module
since ∂ is an endomorphism of Cn,a. Consider the map

ψ : A→ Cn,a : r (∂) �→ r (∂) tn−1 ea t

(with a slight abuse of notation); it is an A-linear epimorphism and kerψ =
A pna (i.e., AnnA (Cn,a) = A pna : see Definition 505). Therefore, Cn,a ∼=
A (pna) by Noether’s first isomorphism theorem (Theorem 52(1)), thus

W0
∼=
∑

n≥1, a∈C

Cn,a =
⊕

a∈C

C [t] ea t � PE (I) .

The space PE (I), called the space of polynomial-exponential functions, is
identified with the canonical (injective) cogenerator W0.

Let O (I) (resp., C∞ (I), D′ (I)) be the space of complex-valued analytic
functions (resp., indefinitely differentiable functions, distributions) on the
interval I. We have with the usual identifications

PE (I) � O (I) � C∞ (I) � D′ (I)

and by Corollary and Definition 643(ii), all the above spaces (which
are A-modules) are cogenerators. Let W be any of the three spaces
O (I) , C∞ (I) and D′ (I).

Let p (∂) ∈ A be a nonzero differential operator and consider the equation

p (∂)y = u (t) , t ∈ I (5.13)
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where u is given. As is well known ([37], n◦IV.2.3 and IV.2.8; [322], p. 213),
for any u ∈ W , there exists y ∈ W for which (5.13) holds. In other words,
W is divisible. Therefore, W is injective by Proposition 598(ii).

Consider the differential equation (5.13) with u = 0. Every solution y
belongs to PE (I) ([37], n◦IV.2.8). Let f ∈ W\PE (I). Then, for any p (∂) ∈
A, p (∂) f is nonzero. The map

ιf : A→W : p (∂) �−→ p (∂) f (5.14)

is A-linear and ker ιf = {0}. Therefore, ιf is an embedding. In addition,
by (5.12), for any a ∈ C there exists an embedding Sa ↪→ W . By Theorem
815(3) we obtain the following (with the above notation).

Theorem 831. W is a large injective cogenerator.

Remark 832. The statement of the above theorem is still valid when ”con-
tinuous multidimensional systems”, also called ”continuous nD systems” are
considered, i.e., when A = C [∂1, ..., ∂n] (∂i = ∂/∂xi), and when I is changed
to a nonempty open subset Ω of Rn [258]. The proof of this result is however
much more difficult.

5.4.1.2 Discrete-Time Case

In the discrete-time case, the suitable ring of operators for the definition of
LTI systems is A = C [q] where q is the shift-forward operator, i.e., the ring
of linear difference operators with constant coefficients (Subsect. 2.7.3). As
above, A is a commutative strongly Euclidean domain, thus is a commutative
principal ideal domain.

The primes in A are the linear polynomials pa = q − a (a ∈ C) and the
rationale in (5.4.1.1) can be repeated.

For any a ∈ C and n ≥ 1, let Cn,a be the C-vector space generated by the
n sequences k �→

(
j+k−1
j

)
ak (1 ≤ j ≤ n) where

(
n
p

)
is the binomial coefficient.

We have again AnnA (Cn,a) = A pna , thus the canonical cogenerator of AMod
is

W0
∼=
∑

n≥1, a∈C

Cn,a � AG

where AG is the space of arithmetic-geometric sequences. This is a injective
cogenerator. So is CN too since AG � CN and CN is divisible. In addition,
CN can be embedded in CZ which is again divisible.

Let p (q) ∈ A. Then, every solution to p (q)y = 0 belongs to AG. We
can deduce as above the following.

Theorem 833. CN and CZ are large injective cogenerators.
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Remark 834. The statement of the above theorem is still valid when consid-
ering ”discrete multidimensional systems”, also called ”discrete nD systems”
are considered, i.e., when A = C [q1, ...,qn]

qi : a (x) = a (x1, ..., xi, ..., xn) �→ a (x1, ..., xi−1, xi + 1, xi+1, ..., xn)

and when CN (resp., CZ) is changed to (Cn)N (resp., (Cn)Z) [258].

5.4.2 LTV Systems (1)

In this subsection, we consider linear time-varying (LTV) systems with coef-
ficients in a field. LTV systems with coefficients in a ring are studied in the
next subsection.

5.4.2.1 Ore Fields

The following will be useful:

Lemma and Definition 835. (1) Let A ∈ R and let g : [A,+∞) be a
complex-valued function. The function g is called moderate (or hypoex-
ponential) if for every α > 0,

lim
t→+∞ e−αtg (t) = 0.

(2) Let f be a real-valued analytic function defined in a neighborhood of +∞
in R, for which the following conditions hold

lim
t→+∞ f (t) = +∞, ḟ (t) > 0 in a neighborhood of +∞, lim

t→+∞
ḟ (t)
f (t)

= 0.

Then f is moderate.
(3) A function f as above is called an Ore function. The set of all Ore func-
tions, endowed with the multiplication, is a commutative cancellable monoid
O with the following properties:
(i) If f ∈ O, then for any real a > 0, fa ∈ O.
(ii) If f, g ∈ O and the function t �→ ġ is bounded in a neighborhood of +∞,
then f ◦ g ∈ O.

(iii) If f ∈ O and g ∈ C (f) , then g is moderate and lim
t→+∞

ġ(t)
g(t) = 0. If

g ∈ R (f) , then g (t) has a constant sign as t→ +∞.
(4) (i) A complex (resp., real) Ore field is a field C (f) (resp., R (f)) where
f ∈ O.
(ii) The set of all complex (resp., real) Ore fields is denoted by C (O) (resp.,
R (O)), and O � R (O) � C (O) .
(iii) Let f ∈ O and n ≥ 1 be an integer. Then C

(
f1/n
)
⊇ C (f) .

(5) If f belongs to an Ore field, there exists A ∈ R such that f ∈ O((A,+∞)),
thus f is a representative of a germ f ∈ O∞.



328 5 Systems and Behaviors: A General Setting

Proof. (2) We have ḟ (t) /f (t) → 0+ as t → +∞. Therefore, for any ε > 0,
there exists a real A such that for any t ≥ A, ḟ (t) /f (t) ≤ ε. Therefore, there
exists a constant c > 0 such that ln (f (t)) ≤ εt + c, whenever t ≥ A, i.e.,

f (t) ≤ γeεt.

where γ = ec. Given α > 0, choose ε ∈ (0, α) . The above inequality implies

e−αtf (t) ≤ γe(ε−α)t

and e(ε−α)t → 0 as t→ +∞.
(3) If f, g ∈ O, then fg ∈ O, as easily seen, thus (O, .) is obviously a

commutative cancellable monoid.
(i) is easily proved.
(ii): Let f, g ∈ O where t �→ ġ (t) is bounded in a neighborhood of +∞.

Then lim
t→+∞ (f ◦ g) (t) = +∞ and d/dt (f ◦ g) (t) = ḟ (g (t)) ġ (t) > 0 in a

neighborhood of +∞. Last,

d/dt (f ◦ g) (t)
(f ◦ g) (t)

=
ḟ (g (t))
f (g (t))

ġ (t)→ 0.

(iii): Let f ∈ O and g ∈ C (f). The case where g is a constant is trivial,
thus let us assume that g is not a constant. There exist finite set of indices
I and J and complex numbers ai, bj (i ∈ I, j ∈ J), not necessarily distinct,
such that

g =

∏
j∈J (f − bj)
∏
i∈I (f − ai)

and the above rational function is irreducible. Taking the logarithmic deriva-
tive,

ġ

g
=
∑

j∈J
ḟ

f − bj
−
∑

i∈I
ḟ

f − ai
.

Therefore, lim
t→+∞ ġ (t) /g (t) = 0. In addition,

ġ

g
=

ḟ

f

⎛

⎝
∑

j∈J

+∞∑

m=0

(
bj
f

)m
−
∑

i∈I

+∞∑

n=0

(
ai
f

)n
⎞

⎠ .

The right-hand member of this equality is nonzero (for g is not a constant),
therefore there exist numbers c, d ∈ R× and integers k, l ≥ 0 such that

ġ

g
=

ḟ

f

((
c

fk
+ o

(
1
fk

))
+ i

(
d

f l
+ o

(
1
f l

)))
.
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where o
(

1
fk

)
and o

(
1
f l

)
are real-valued functions such that fko

(
1
fk

)
and

f lo
(

1
fl

)
tend to zero as t → +∞. Thus therefore, Re (ġ (t) /g (t)) → 0 and

Im (ġ (t) /g (t)) → 0 as t → +∞, therefore ġ (t) /g (t) → 0 as t → +∞. In
addition, the two functions Re (ġ/g) and Im (ġ/g) have a constant sign in a
neighborhood of +∞. By ([37], n◦V.3.4, Prop. 7),

∫
Re (ġ (t) /g (t)) dt = o (t)

and
∫

Im (ġ (t) /g (t)) dt = o (t) as t→ +∞, thus

ln |g (t)| =
∫
ġ (t) /g (t) dt = o (t)

and one concludes as in (2).
The second assertion is clear.
(4) (ii): The inclusion O ⊆ C (O) is obvious. Let f ∈ O; then 1/f /∈ O.
(iii) is clear.

Example 836. (a) The function t �→ t belongs to O.
(b) The function t �→ ln (t) belongs to O.
(c) By (a), (b) and property (i), for any reals a > 0 and b > 0, the function
t �→ ta (ln (t))b belongs to O.
(d) By (b) and property (ii), the nth iterate ln(n) = ln ◦...◦ln (n terms, n ≥ 1)
belongs to O.

See Exercise 934.

5.4.2.2 Continuous-Time Case (1)

Consider a differential field K equipped with the usual derivative δ = d/dt
(Subsect. 2.3.1). Then the ring of linear differential operators A = K [∂; δ]
(where ∂ is an extension of δ) is a principal ideal domain by Theorem 731.
The linear systems defined over A are LTV continuous-time systems with
coefficients in K. Consider the following cases:

(a) K = C (t) .
(b) K is an Ore field (Lemma and Definition 835(3)).
(c) K is the field of meromorphic functions on the real line.

Cases (b) and (c) both include case (a), but there is no connection between
cases (b) and (c).

In cases (a) or (c), consider the left A-module Ed consisting of all complex-
valued functions f for which there exists a discrete subset Sf of R (depending
on f) such that f is defined and indefinitely differentiable in R\Sf . This set
is a the union of a countable family of open nonempty intervals Ii.

(1) Let us prove that Ed is injective. By Proposition 598(ii), we have
only to prove that Ed is divisible. Let p (∂) ∈ A× be a linear differential
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operator. We have to show that for any u ∈ Ed, there exists y ∈ Ed such
that p (∂)y = u. Write

p (∂) = ∂n + a1 ∂
n−1 + ... + an (5.15)

and let St = Su∪Sa where Sa is the set of all poles of the coefficients a1, ..., an
which belong to the real line; St is still a discrete set. It remains to show
that the differential equation p (∂)y = u has a solution y ∈ Ed in any open
nonempty interval I ⊆ R\St; but since u and all coefficients ai (1 ≤ i ≤ n) are
C∞ in I, this differential equation has a C∞ solution in I ([92], Sect. X.8).

(2) Let us prove that Ed is a cogenerator. By Theorem 642(i), we have
to prove that HomA (S, Ed) �= 0 for every simple left A-module S. By
Proposition 532(i), any simple left A-module S is of the form S ∼= A/A c
where c = c (∂) is an atom in A (thus c �= 0). By Corollary 567,
HomA (S, Ed) = HomA (cokerA (•c) , Ed) is identified with

kerEd
(c•) = {y ∈ Ed : c (∂)y = 0} .

Let Sa be the discrete set as defined above, and let be I any open nonempty
interval such that I ⊆ R\Sa. Since the coefficients of the differential operator
c (∂) are C∞ in I, the equation c (∂) y = 0 has a nonzero C∞ solution in that
interval, and Ed is a cogenerator. Therefore, we have obtained the following.

Theorem 837. Ed is an injective cogenerator.

Whether Ed is a large cogenerator is an open question.

5.4.2.3 Continuous-Time Case (2)

We consider again the problem in (5.4.2.2) but with a different signal space.
Assume that K is an Ore field (case (b)) and that A = K [∂; δ]. Let O∞
be the space of germs of analytic functions defined in an open connected
neighborhood of +∞ in R, i.e., in an interval I of the form (A,+∞) for A
large enough (Example 20).

(1) Let us prove that O∞ is injective, or equivalently that O∞ is divisible.
Let p (∂) ∈ A× be a linear differential operator. We have to show that for
any u ∈ O∞, there exists y ∈ O∞ such that p (∂)y = u. Let A ∈ R; if A is
large enough, all coefficients of p (∂) (which are functions K � pi : t �→ pi (t))
are defined and analytic in I = (A,+∞). Let u ∈ W , i.e., u ∈ O (J) where
J = (B,+∞) and B ≥ A is ”large enough”; consider the differential equation
p (∂)y = u (t), t ∈ J . This equation has a solution y ∈ O (J) (Theorem and
Definition 185(ii)), thus O∞ is divisible.

(2) By the same rationale as in (5.4.2.2), O∞ is a cogenerator.
(3) Consider the analytic function f ∈ O (R) defined (up a multiplicative

constant) by
f (t) = e

∫
etdt.
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As easily shown, as t→ +∞,

f (n) (t)
f (t)

∼ en t.

Assume that there exists a nonzero linear differential operator p (∂), of the
form (5.15) with ai ∈ K, such that p (∂) f (t) = 0, t ∈ (A,+∞) , where A is
large enough for all coefficients ai to be analytic in I = (A,+∞). Then,

f (n) (t)
f (t)

+ a1 (t)
f (n−1) (t)

f (t)
+ ... + an (t) = 0, t ∈ I.

By Lemma and Definition 835(2, iii), the left-hand member of the above
equality is equivalent to f (n)(t)

f(t) ∼ en t as t→ +∞, a contradiction. Therefore,
the map ιf defined as in (5.14) is an embedding A ↪→ O∞, and by Theorem
815(3) we obtain the following.

Theorem 838. O∞ is a large injective cogenerator.

5.4.2.4 Discrete-Time Case

Let K = R (t). Equipped with the usual shift-forward operator α, K is a
difference field (Subsect. 2.3.2), thus the ring of linear difference operators
A = K [q;α] (where q is an extension of α) is a principal ideal domain by
Theorem 731. Let us study linear systems defined over A, i.e., LTV discrete-
time systems with coefficients in K.

Let S∞ be the space of germs of all complex-valued sequences defined in
a neighborhood of +∞ in Z, i.e., of all complex-valued sequences (xn)n≥N
defined for N large enough. This space S∞ is easily seen to be a left A-
module.

(1) Let us prove that S∞ is divisible, thus injective. Let p (q) ∈ A× be
a linear difference operator. We have to show that for any u ∈ S∞, there
exists y ∈ S∞ such that p (q)y = u. Let N be a natural integer; if N is
large enough, all coefficients of p (X) (which are functions K � pi : t �→ pi (t))
are defined for any t ≥ N . Let u ∈ S∞, i.e., u = (un)n≥N where N is
”large enough”; consider the difference equation (p (q)y)n = un, n ≥ N . By
induction, this equation has a solution (yn)n≥N . Therefore, S∞ is divisible.

(2) By the same rationale as in (5.4.2.2), S∞ is a cogenerator.
(3) Let a > 1 and consider the sequence (zn)n≥N defined by

zn = a
n(n+1)

2 .

For any k ≥ 0,
zN+k

zN
= akN+

k(k−1)
2
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and by the same rationale as in (5.4.2.3), the only difference operator p (q) ∈
A such that p (q) z (n) = 0 (n ≥ N), is zero. This implies that the A-linear
map

ιz : A→ S∞ : p (q) �→ p (q) z

is an embedding. By Theorem 815(3) we obtain the following.

Theorem 839. S∞ is a large injective cogenerator.

5.4.3 LTV Systems (2)

Let A be the first Weyl algebra A1 (C) (2.7.4.3), or the ring Ao (C) in Exer-
cise 492 with Ω = R. In both cases, the ring of linear differential operators
A is a noncommutative Dedekind domain, and is a good candidate for the
definition of an LTV system with coefficients in a ring (in the continuous-time
case).

5.4.3.1 Difficulties with Classical Signal Spaces

(i) Let a ∈ R and consider the module M = A/A (t− a) �= 0. The only
solution of (5.11) with R = t− a is zero in E (R) (Example 563(a)), therefore
the left A-module E (R) is not a cogenerator by Theorem and Definition 43(3)
and Lemma 32.

Consider the module M = A/A
(
t3∂ + 2

)
�= 0 (∂ = d/dt). The only

solution of (5.6) with R = t3∂ + 2 can be shown to be zero in D′ (R) ([322],
(V,6;15)), therefore the left A-module D′ (R) is not a cogenerator.

(ii) Consider the differential equation

P (∂)y = ϕ, ∂ = d/dt (5.16)

where P (∂) = −
(
1− t2

)2
∂+2t ∈ A and ϕ ∈ E (R) ↪→ D′ (R) is the function

defined by

ϕ (t) =

{
e1/(t2−1), |t| < 1

0, |t| ≥ 1.

The differential operator P is a continuous linear map D′ (R) −→ D′ (R),
thus its adjoint P ∗ is a continuous linear map D (R) −→ D (R). By Lemma
and Definition 360, P ∗ =

(
1− t2

)2
∂+2t. As easily checked, P ∗ϕ = 0. Thus,

if (5.16) has a solution T ∈ D′ (R), i.e., if P T = ϕ, then

0 = 〈P ∗ϕ,T〉 = 〈ϕ, P T〉 = 〈ϕ,ϕ〉 =
∫
|ϕ (t)|2 dt > 0,

a contradiction. This proves that (5.16) has no solution in D′ (R), hence
the A-module D′ (R) is not divisible, and hence not injective. Neither is the
A-module E (R).
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The above shows that the classical signal spaces E (R) and D′ (R) are not
appropriate, and that a larger space is necessary.

5.4.3.2 The Use of Hyperfunctions

The A-module B (R) is divisible by Sato’s theorem (Theorem and Definition
185(i)), hence injective by Proposition 598. The following shows the impor-
tance of hyperfunctions for the study of linear systems with time-varying
coefficients.

Theorem 840. The left Ao (C)-module B (R) is a large injective cogenerator.

Proof. (1) We have already seen that the left A-module B (R) is injective.
(2) We have to show that B (R) is a cogenerator. By Theorem 642,

B (R) has this property if, and only if for any simple left Ao (C)-module
S, HomA (S,B (R)) �= 0. By Proposition 528, S ∼= Ao (C) /m where m is
a maximal left ideal. By Proposition 457, m is a principal left ideal, i.e.,
m = Ao (C) c where, by Lemma 84, c is an atom. Two cases must be consid-
ered: (a) d◦ (c) > 0, (b) d◦ (c) = 0. In the latter case, c (∂) must have a real
singular point, for if d◦ (c) = 0 and c has no real singular point, c is a unit
in Ao (C), thus is not an atom. Therefore, according to Komatzu’s theorem
(Theorem and Definition 185(ii)),

kerB(R) (c•) = {f ∈ B (R) : c (∂) f} �= 0,

and B (R) is an injective cogenerator.
(3) According to Theorem 815(3), to prove that B (R) is a large cogenera-

tor, it remains to show that there exist a positive integer n and an embedding
Ao (C) ↪→ B (R)n. Let a ∈ R and let ϕ ∈ O (C\R) be the analytic function
defined by

ϕ (z) =
1

sin 1
z−a

.

Consider the hyperfunction f = [ϕ] (Subsect. 1.9.1) and let p (∂) ∈ Ao (C). If
p (∂) �= 0, one can choose b > a such that the leading coefficient of p (∂) has
no zero in the interval (a, b). Then, any solution to the equation p (∂)y = 0
is analytic on (a, b) (Theorem and Definition 185(ii)). Since f is singular at
a+ 1

nπ for any positive integer n, the only differential operator p (∂) ∈ Ao (C)
such that p (∂) f = 0 is zero, therefore the map Ao (C) → B (R) : p (∂) �→
p (∂) f is an embedding.

Part (2) of the above proof is not valid if Ao (C) is replaced by A1 (C). See
Exercise 939.
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5.5 Linear Systems, Behaviors, and Their Relations

5.5.1 Relations between Behaviors

Let A be a ring of operators. Consider a relation of the form (3.10), i.e.,

[
R′ −T ′

]
[
T
R

]
= 0 (5.17)

between finite matrices over A, let W ∈ AMod be an injective module, and
let E = EndA (W ).

5.5.1.1 Subbehaviors and Quotient Behaviors

Assume that T is square and invertible. Let M ′ = [w′]A = [T w′]A be the
left A-module defined up to isomorphism by the equation R′ T w′ = 0, i.e.,
T ′Rw′ = 0 which is equivalent to

{
T ′ v′ = 0
v′ = Rw′. (5.18)

We have M ′ ∼= cokerA (•R′); setting N ′ = [v′]A we have N ′ � M ′ and
w′ is only submitted to the relation T ′w′ = 0, thus N ′ ∼= coker •T ′. Let
M = M ′/N ′. Denoting by wi the canonical image of w′i in M ′/N ′, we have
M = [w]A and (5.18) shows that w is only submitted to the relation Rw = 0,
therefore M ∼= cokerA (•R). This proves the following.

Proposition 841. (i) Under the above assumptions, the relation (5.17)
yields the short exact sequence

0 −→ cokerA (•T ′) −→ cokerA (•R′) −→ cokerA (•R) −→ 0. (5.19)

involving linear systems over A; therefore, there exists an isomorphism of
left A-modules

cokerA (•R) ∼= cokerA (•R′) / cokerA (•T ′) .

(ii) The sequence

0 −→ kerW (R•) −→ kerW (R′•) −→ kerW (T ′•) −→ 0 (5.20)

is exact; therefore, the exists an isomorphism of right E-modules

kerW (T ′•) ∼= kerW (R′•) / kerW (R•) .

Corollary 842. Assume that the ring A is weakly finite, that (5.17) holds
and that both matrices R and R′ belong to qAk and are left-regular. Then
the following conditions are equivalent:
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(i) R and R′ are equivalent (Definition 280(i));
(ii) cokerA (•R) ∼= cokerA (•R′);
(iii) kerW (R•) ∼= kerW (R′•).

Proof. (i)⇔(ii): By Proposition 841, cokerA (•R) ∼= cokerA (•R′) if, and
only if cokerA (•T ′) = 0, i.e., T ′ is left-invertible. Since T ′ is square, T ′ is
left-invertible if, and only if T ′ ∈ GLq (A) (Exercise 481(2)).

(ii)⇔(iii) is a consequence of the injectivity of W .

5.5.1.2 General Relations

By Proposition 841, there exist an embedding cokerA (•R′) ↪→ cokerA (•T ′R)
and an epimorphism cokerA (•T ′R) � cokerA (•R). The composition of
these two maps is studied in the sequel.

Proposition 843. (i) There exists a left A-linear homomorphism

τ : cokerA (•R′)→ cokerA (•R) .

(ii) Therefore there exists a right E-linear homomorphism

BW (τ) : kerW (R•)→ kerW (R′•) .

Proof. (i): Consider the following commutative diagram with exact rows

Aq′ •R′
−→ Ak′ ϕ′

−→ M ′ −→ 0
•T ′ ↓ •T ↓ τ ↓
Aq •R−→ Ak ϕ−→ M −→ 0

where M ′ = cokerA (•R′) and M = cokerA (•R). By (5.17), imA (•R′T ) =
imA (•T ′R) ⊆ imA (•R). Therefore there exists a map •τ : M ′ →M induced
by •T with respect to imA (•R′) and imA (•R) (Theorem 145).

(ii): Applying the functor BW to the above diagram, one obtains the com-
mutative diagram with exact rows

q′W
R′•←− k′W

BW (ϕ′)
←− BW (M ′) ←− 0

T ′• ↑ T• ↑ BW (τ ) ↑
qW

R•←− kW
BW (ϕ)←− BW (M) ←− 0

Remark 844. The homomorphism τ can be made more explicit. We have

•ϕ′τ = •Tϕ.

Let (ε′i)1≤i≤k′ and (εi)1≤i≤k be the canonical bases of Ak′ and Ak, respectively,
let w′i = (ε′i)ϕ

′ (1 ≤ i ≤ k′), and let wi = (εi)ϕ (1 ≤ i ≤ k). We have

ε′iϕ
′τ = ε′iTϕ (1 ≤ i ≤ k′)
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and •T is the map ε′i �→
∑

1≤j≤k tij εj, where T is the matrix with entries tij
(Lemma and Definition 263). Therefore,

(w′i) τ =
∑

1≤j≤k tij wj (1 ≤ i ≤ k′) .

This can be written
(w′) τ = T w (5.21)

where w′ and w are the columns with entries w′i and wi, respectively, and
where τ acts on w′ component-wise.

Proposition 845. The following conditions are equivalent:

(i) (R, T ) is strongly right-coprime;
(ii) the induced map τ is an epimorphism cokerA (•R′) � cokerA (•R);
(iii) BW (τ) is an embedding kerW (R•) ↪→ kerW (R′•), and

X � T
{
w ∈ kW : Rw = 0

}
⊆
{
w′ ∈ k′W : R′w′ = 0

}
.

If A is left Noetherian and AW is a large injective cogenerator, then X is a
W -behavior.

Proof. (i)⇔(ii): By Theorem 145, im τ = (imA (•T ))ϕ; therefore, τ is an
epimorphism if, and only if for any y ∈ Ak, there exists y′ ∈ Ak′ such that
y′ T − y ∈ imA (•R), i.e., y′ T − xR = y for some x ∈ Aq . This equality can
be written

[
y′ −x

] [T
R

]
= y

and this equality can be satisfied for any y and some y′, x if, and only if
(R, T ) is strongly right-coprime.

(ii)⇔(iii): Clearly, BW (τ) is an embedding ι : kerW (R•) ↪→ kerW (R′•).
In addition, (T•) ◦BW (ϕ) = BW (ϕ′) ◦ ι, thus

(T•) ◦BW (ϕ) (kerW (R•)) = BW (ϕ′) ◦ ι (kerW (R•)) .

We have
(T•) ◦BW (ϕ) (kerW (R•)) = X

and ι (kerW (R•)) ⊆ kerW (R′•). Last, BW (ϕ′) is the inclusion
kerW (R′•) ↪→ k′W .

The last statement is a consequence of Theorem 817(ii). Indeed,
kerW (R•) is a f.g. E-submodule of kW , thus so is T kerW (R•).

Assume that the ring A is left coherent. Then by Theorem 514(ii), given two
matrices R ∈ qAk and T ∈ k′Ak, there exist matrices R′ ∈ q′Ak′ and T ′ ∈
q′Aq such that the sequence

•S′
−→ Ak′+q •S−→ (5.22)
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is exact with
S =
[
T
R

]
, S′ =

[
R′ −T ′

]
. (5.23)

Proposition 846. Assume that the sequence (5.22) is exact. Then:

(i) the induced map τ is a monomorphism cokerA (•R′) ↪→ cokerA (•R).
(ii) therefore, BW (τ) is an epimorphism kerW (R•) � kerW (R′•), and

T
{
w ∈ kW : Rw = 0

}
=
{
w′ ∈ k′W : R′w′ = 0

}
.

Proof. (i): By Theorem 145, ker τ =
(
(imA (•R))

(
•T−1

))
ϕ′ where •ϕ′ is

the canonical epimorphism Ak′ � Ak′/ imA (•R′). An element ȳ′ belongs to(
(imA (•R))

(
•T−1

))
ϕ′ if, and only if ȳ′ = y′ϕ′ where y′T = xR for some x ∈

Aq ; this equality can be written
[
y′ −x

]
S = 0, i.e.,

[
y′ −x

]
∈ kerA (•S).

If kerA (•S) = imA (•S′), there exists x′ ∈ Aq′ such that y′ = x′ R′ and
x = x′ T ′; then y′ ∈ imA (•R′), thus ȳ′ = 0 and ker τ = 0 as desired.

(ii) is now clear.

The following is now obvious from Theorem 520 and the above.

Corollary 847. (i) If the sequence (5.22) is exact and (R, T ) is strongly
right-coprime, then R and R′ are left-similar and the induced map τ in
Proposition 843(i) is an isomorphism cokerA (•R′) −̃→ cokerA (•R) (or equiv-
alently, BW (τ ) is an isomorphism kerW (R•) −̃→ kerW (R′•)).
(ii) Conversely, if R and R′ are left-regular and left-similar, then they satisfy
a proper comaximal relation (5.17); the sequence (5.22) is exact and (R, T ) is
strongly right-coprime (which implies that τ and BW (τ) are isomorphisms).
(iii) To summarize, over a weakly finite ring, conditions (a), (b), (c) and (d)
of Theorem 520 are related as follows:

(a) ⇐⇒ (b)
⇓ ⇓
(c) ⇐⇒ (d)

and all these conditions are equivalent if both R and R′ are left-regular. The
latter condition can be assumed to be satisfied without loss of generality over
a Bézout domain by Corollary and Definition 651.

Remark 848. Assume that τ is an isomorphism. By (5.17), R′ T = T ′R
and by (5.1), R′ T w = 0, therefore by (5.21), R′ (w′) τ = 0. Since
M ′ = cokerA (•R′) is defined by the equation R′w′ = 0, w′ and (w′) τ can be
identified. Then by (5.21) ,

w′ = T w.

5.5.1.3 Elimination Problem

Proposition 846 can be applied to the elimination problem. Let R1 ∈
qAk, R2 ∈ qAl, and consider
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Y =
{
w ∈ kW, ∃z ∈ lW : R1w = R2z

}

where W ∈ AMod is injective. As recalled above, if the ring A is left
coherent, there exists a finite matrix T ′ over A such that the sequence (5.24)
below is exact.

Corollary 849. Assume that there exists a finite matrix T ′ over A such that
the sequence

•T ′
−→ Aq

•R2−→ (5.24)

is exact. Then Y is a W -behavior, and more specifically

Y =
{
w ∈ kW : T ′R1w = 0

}
.

Proof. Set R =
[
R1 −R2

]
∈ qAk+l and let T =

[
Ik 0
]
∈ kAk+l. Then

Y = T kerW (R•). Let S and S′ be given by (5.23). The relation (5.10) is
equivalent to

R′ = T R1, T ′R2 = 0,

and the sequence (5.22) is exact if, and only if R′ = T R1 and the sequence
(5.24) is exact.

5.5.1.4 Autonomy

Let A be a left Ore domain, let W ∈ AMod be a ”signal space”, assumed to
be injective, and let E = EndA (W ). Let M be a linear system over A (i.e.,
M ∈ Sys where Sys = AModfp) and let B = BW (M) be the associated W -
behavior (thus, B ∈ Beh where Beh=BW (Sys) is a subcategory of ModE).

Lemma and Definition 850. (1) Of the following, (i)⇒(ii)⇒(iii). If W is
an injective cogenerator, then (ii)⇒(i). If W is a large injective cogenerator,
then (iii)⇒(ii).

(i) M is not a torsion module.
(ii) There exists in the category Beh an exact sequence.

B
π−→W −→ 0 (5.25)

and then π (B) ⊆ W is called a free variable generated by B (do not confuse
with a free element in a module).
(iii) There exists in ModE an exact sequence (5.25).
(2) The behavior B is called nonautonomous if (ii) holds, and autonomous
otherwise, i.e., when B does not generate any free variable.
(3) Assume that W is an injective cogenerator.
(iv) B is autonomous if, and only if M is a torsion module.
(v) There exists a short exact sequence

0 −→ Bc −→ B −→ Ba −→ 0 (5.26)
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where Ba = BW (T (M)) ∼= B/Bc is autonomous. If T (M) is f.g. (in
particular, if the module M is Noetherian, or if A is a Bézout domain), then
M/T (M) is finitely presented –thus is a linear system, i.e. an object of Sys–,
and Bc = BW (M/T (M)) is the largest nonautonomous subbehavior of B.

Proof. (1) (i)⇒(ii): Assume that M is not torsion, and let x ∈ M be a free
element (Definition 253(i); Theorem and Definition 339). Define •α : A →
M : a �→ a x. Then kerα = 0, i.e., the sequence

0 −→ A •α−→M (5.27)

is exact. Since W is injective, the functor BW (•) is exact, therefore the
sequence (5.25) is exact with π = BW (α), and B is nonautonomous.

(ii)⇒(iii) is clear. Assume that (ii) holds and that W is an injective
cogenerator. There exists an E-linear map π = BW (α) : B → W such
that the sequence (5.25) is exact. Therefore, the sequence (5.27) is exact by
Theorem 644, and (i) holds.

Assume that (iii) holds and that W is a large injective cogenerator. Then
Beh is a full subcategory of ModE by Theorem 817(i), thus there exists an
A-linear map •α : A→M such that π = BW (α), and (ii) holds.

(3) (iv) is a consequence of (1). (v): Consider the exact sequence

0 −→ T (M) −→M −→M/T (M) −→ 0.

If M is Noetherian, then T (M) � M is f.g., and the same holds if A is a
Bézout domain by Theorem 654. If T (M) � M is f.g., then M/T (M) is
f.p. by Lemma 498(iii). The rest is clear.

5.5.2 Control Systems

5.5.2.1 The Definition of a Control System

Consider a linear system M over a ring A (Definition 805). To control that
system, it is necessary to distinguish its input variables ui (1 ≤ i ≤ m) and
its output variables yi (1 ≤ i ≤ p) among all its variables wj (1 ≤ j ≤ k).
The finite sequences u = (ui)1≤i≤m and y = (yi)1≤i≤p are identified with the
columns with entries ui and yi, respectively.

(1) Our first requirement is that the input variables can be freely chosen.
To clarify this, consider a signal space W ∈ AMod which is an injective co-
generator (such a signal space is not necessarily ”classical”, but by Corollary
and Definition 643(iii), we know that it always exists). That the input vari-
ables can be freely chosen means that there exists an isomorphism of right
E-modules (where E = EndA (W )) BW ([u]A) ∼= mW , or in other words that
there exists an exact sequence of right E-modules

0 −→ BW ([u]A) −→ mW −→ 0.
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Since W is an injective cogenerator, by Theorem 644(i) this is equivalent to
the exactness of the sequence

0 −→ Am −→ [u]A −→ 0.

This means that [u]A ∼= Am, i.e., the module [u]A is free of rank m.
(2) Our second requirement is that, once all input variables have been

fixed, there does not remain any free variable. By Lemma and Definition
850, this happens if, and only if the quotient M/ [u]A is torsion (assuming
that A is a left Ore domain and that W is an injective cogenerator). Thus
we are led to the following.

Definition 851. Let A be a left Ore domain with division ring of left frac-
tions F. Let M be a linear system over A, and let ui (1 ≤ i ≤ m) and yi
(1 ≤ i ≤ p) be elements of M such that (a) the module [u]A is free of rank
m, (b) the module M/ [u]A is torsion. Then the triple (M,u, y) is called a
control (linear) system.

Remark 852. Fliess [115] called the pair (M,u) a dynamics. In the above
definition, we assume that both the input- and output-variables have been
chosen when we speak of a control system.

In everything that follows, A is a left Ore domain with division ring of left
fractions F.

5.5.2.2 Transfer Matrix

Consider the functor L = F
⊗

A−. Let (M,u, y) be a control system over
A, let M̂ = L (M) and for any element x of M , set x̂ = 1 ⊗ x ∈ M̂ . The
sequence

0 −→ [u]A −→M −→M/ [u]A −→ 0

is exact, and since the right A-module F is flat (Theorem 609), the covariant
functor L is exact. Since M/ [u]A is torsion, L (M/ [u]A) = 0 (Theorem and
Definition 339(ii)), therefore the sequence below is exact:

0 −→ [û]F −→ M̂ −→ 0.

This means that M̂ = [û]F. By Theorem and Definition 339(iv), û is a basis
of the left F-vector space M̂ .

Corollary and Definition 853. (i) There exists a uniquely defined matrix
G ∈ pFm such that ŷ = G û, and G is called the transfer matrix (or the
transfer function if m = p = 1) of the control system (M,u, y).
(ii) The functor L is called the Laplace functor.
(iii) The left F-vector space M̂ = L (M) is called the transfer vector space
of the system M .
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Example 854. The transfer function of the control system (5.4) is

G =
(
t∂2 + 1

)−1
(1 + t) .

5.5.2.3 Rosenbrock Descriptions

Since A is a left Ore domain, it is weakly finite (Exercise 481(4)).

Definition 855. (1) A Rosenbrock description over A is a set of two equa-
tions of the form {

D ξ = N u,
y = Qξ + W u

(5.28)

where ξ = (ξi)1≤i≤r is called the partial state, D ∈ ρAr N ∈ ρAm, Q ∈ pAr,
W ∈ pAm. The matrix

P =
[
D −N
Q W

]

is called the system matrix.
(2) The Rosenbrock description (5.28) is said to be in input-output form if
y = ξ, i.e., Q = Ip and W = 0.

Lemma and Definition 856. (1) The Rosenbrock description (5.28) rep-
resents a control system if, and only if (a) D is right-regular, and (b)
kerA (•D) ⊆ kerA (•N).
If D is square and regular, then conditions (a) and (b) are both satisfied.
(2) The Rosenbrock description is called admissible if both conditions (a) and
(b) are satisfied.

Proof. (i) The second equality of (5.28) means that the elements yi
(1 ≤ i ≤ p) belong to M = [ξ, u]A. Therefore, we have only to consider
the first equality.

(ii) With the notation in (5.5.2.2), the left F-vector space L (M/ [u]A) is
equal to

[
ξ̄
]
F

which is defined by Dξ̄ = 0. As recalled above, M/ [u]A is
torsion if, and only if L (M/ [u]A) = 0, i.e., Dξ̄ = 0⇒ ξ̄ = 0. This holds true
if, and only if D is left-invertible over F, i.e., D is right-regular (Proposition
420).

(iii) The remaining condition is that one must have [u]A ∼= Am. Choose an
injective cogenerator W . Then this condition is equivalent to BW ([u]A) ∼=
mW . By the first equation of (5.28),

BW ([u]A) = {u ∈ mW ; ∃ξ ∈ rW : N u = D ξ} .

The determination of BW ([u]A) from this equality is an elimination problem
(5.5.1.3). Let R =

[
N −D

]
. The sequence (5.24) is exact if, and only if

imA (•T ′) = kerA (•D) , (5.29)
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without assuming that kerA (•D) is f.g. (see Remark 515), i.e., that the matrix
T ′ has a finite number of rows. Then

BW ([u]A) = {u ∈ mW : T ′N u = 0} .

Thus, BW ([u]A) ∼= mW if, and only if T ′N = 0, i.e.,

imA (•T ′) ⊆ kerA (•N ) . (5.30)

(5.29) and (5.30) yield condition (b).
The last statement is clear.

Corollary 857. Let (5.28) be an admissible Rosenbrock description. The
transfer matrix of the corresponding control system is

G = QD†N +W (5.31)

where D† is any left-inverse of D over F.

Proof. By condition (a) of Lemma and Definition 856, D has a left-inverse
D† over F (Proposition 420). Therefore, ξ̂ = D†û and ŷ = G û where G is
given by (5.31).

Remark 858. (1) Our definition of admissibility of a Rosenbrock description
does not correspond to that given in, e.g., [258], [372]. Let W ∈ AMod be
an injective module. In those references, the Rosenbrock description (5.28)
is called admissible when

Bio =
{[

u
y

]
∈ m+pW,∃ξ ∈ rW :

{
D ξ = N u,

y = Q ξ +W u

}

is a W -behavior such that the input variable u is free. Only the quotient
module [y, u]A / [u]A (not M/ [u]A) is required to be torsion. In Lemma and
Definition 856, the Rosenbrock description (5.28) is admissible when

B =

⎧
⎨

⎩

⎡

⎣
u
y
ξ

⎤

⎦ ∈ m+p+rW,

{
D ξ = N u,

y = Q ξ + W u

⎫
⎬

⎭

is a W -behavior such that the input u is free. See another equivalent formu-
lation in Exercise 940.
(2) In most references, it is assumed that the matrix

[
D −N

]
is left-regular.

This happens when the module M = [ξ, u]A has finite free resolution of length
≤ 1 (3.5.4.1). Every f.g. left A-module has this property when the ring A
is Noetherian, projective-free, and has global dimension ≤ 1 (Definition 579,
and Theorem and Definition 632). When A is a ring of linear differential
operators K [∂; α, δ], this happens when K is a division ring (Lemma 622,
and Theorems 635, 731).
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(3) A Rosenbrock description over a ring of linear differential operators
K [∂; α, δ] (where K is, e.g., a Noetherian domain) is called a polynomial
matrix description (PMD).

Consider two control systems (S, u, y) and (S′, u, y), the former with ad-
missible Rosenbrock description with partial state ξ and system matrix

P =
[
D −N
Q W

]
, the latter with admissible Rosenbrock description with par-

tial state ξ′ and system matrix P ′ =
[
D′ −N ′
Q′ W ′

]
. Note that S = [ξ, u]A and

S′ =
[
ξ′, u
]
A

.

Definition 859. The system matrices P and P ′ are said to be strictly equiv-
alent if there is an isomorphism

[
ξ′, u
]
A
∼= [ξ, u]A fixing [y, u]A pointwise.

In other words, two system matrices are strictly equivalent when they are
associated with the same control system.

Theorem 860. Consider two system matrices P and P ′ with ρ+ r′ = ρ′+ r.

(i) The matrices P and P ′ are strictly equivalent if there exist matrices
M,X,M ′, X ′ over A, of appropriate size, such that

[
M ′ 0
−X ′ Ip

] [
D −N
Q W

]
=
[
D′ −N ′
Q′ W ′

] [
M X
0 Im

]
, (5.32)

where

(D′,M ′) is strongly left-coprime, (D,M) is strongly right-coprime.

(See Definition 518.)
(ii) If the matrices D and D′ are square and regular, then this sufficient
condition is necessary as well.

Proof. (1) The matrices R =
[
D −N

]
and R′ =

[
D′ −N ′

]
are have

the same index (Subsect. 3.2.4), thus by Theorem 520 and Corollary 847,
there exists an isomorphism τ :

[
ξ′, u
]
A
−̃→ [ξ, u]A if the matrices R and R′

satisfy a comaximal relation, i.e., there exist two matrices T ′ = M ′ and T =[
M X
Y Z

]
such that R′ T = T ′R with the suitable comaximality properties.

The converse holds true if D and D′ are regular since then R and R′ are
left-regular.

(2) For [u]A to be fixed pointwise, we must have τ ([u]A) = [u]A; then
there exists an isomorphism τ̄ :

[
ξ′, u
]
A
/ [u]A −̃→ [ξ, u]A / [u]A induced by

τ (Theorem 145). Therefore, denoting by ξ̄
′
i and ξ̄j the canonical images

of ξi and ξj in
[
ξ′, u
]
A
/ [u]A and [ξ, u]A / [u]A respectively, we must have[

ξ̄
′]

A

∼=
[
ξ̄
]
A

under τ̄ . The columns ξ̄
′ and ξ̄ are characterized by the
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relations D′ ξ̄′ = 0, D ξ̄ = 0. By Theorem 520,
[
ξ̄
′]

A

∼=
[
ξ̄
]
A

if D and D′

satisfy a comaximal relation

[
D′ −M ′

]
[
M
D

]
= 0 (5.33)

and the converse holds true when D and D′ are square and regular. The rela-
tion (5.33) is comaximal if, and only if (D,M ) is strongly right-coprime (i.e.,
left-comaximal) and (D′,M ′) is strongly left-coprime (i.e., right-comaximal).
These comaximality conditions are assumed to be satisfied in what follows.

(3) By Remark 848, with the suitable identification we have
[
ξ′

u

]
=
[
M X
Y Z

] [
ξ
u

]

thus Y = 0 and Z = Im; in addition, y = Qξ + W u = Q′ ξ′ + W ′ u. The
latter quantity can be expressed as: Q′ ξ′+W ′ u = Q′ (M ξ +X u)+W ′ u+
X ′ (Dξ −N u), thus Q = Q′M + X ′D, W = Q′X + W ′ −X ′N , i.e., the
equality (5.32) must hold.

(4) Conversely, if (5.32) holds, then (3.10) holds too with T ′ and T as
specified above, and (3.10) is a comaximal relation since (D,M) is strongly
right-coprime and (D′,M ′) is strongly left-coprime. In addition, [u, y]A is
fixed pointwise by the isomorphism τ .

5.5.3 State-Space Systems

Consider a control system (M,u, y) over a ring of linear generalized differen-
tial operators A = K [∂; α, δ] (Definition 355), where α is an automorphism
and δ is an α-derivation of the ring K. If K is a division ring, we know that
the left K-vector space M/ [u]A (obtained from the left A-module M/ [u]A
by restriction of the ring of scalars) is finite-dimensional (Theorem 740). The
condition that K be a division ring is however restrictive.

Theorem and Definition 861. (1) If the left K-module M/ [u]A is finite
free, there exist matrices F ∈ Matn (K), G ∈ nKm, H ∈ pKn and Ji ∈ pKm

(0 ≤ i ≤ α) such that (M,u, y) is defined by the equations

∂x = F x + Gu (5.34)

y = H x +
α∑

i=0

Ji ∂
i u. (5.35)

(2) Then the control system (M,u, y) is called a state-space system, and
(5.34), (5.35) is called a state-space realization of that system; (5.34) and
(5.35) are called the state equation and the output equation, respectively.
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The matrix F (resp., G, H) is called the state (resp., input, output) ma-
trix, and the matrices Ji (0 ≤ i ≤ α) are called the matrices of the di-
rect term. For short, the state-space system (5.34) , (5.35) is denoted by(
F, G, H, (Ji)0≤i≤α

)
.

(3) This state-space system is said to be proper (resp., strictly proper) if
Ji = 0 for i ≥ 1 (resp., i ≥ 0).
(4) The integer n = rkK (M/ [u]A) is called the order of the control system
(M,u, y).

Proof. Let η̄ = (η̄i)1≤i≤n be a basis of the K-module M/ [u]A. For all i ∈
{1, ..., n}, ∂η̄i ∈M/ [u]A; therefore, there exists a matrix F ∈ Matn (K) such
that ∂η̄ = F η̄. There exist n elements ηi ∈ M such that η̄i = ηi + [u]A
(1 ≤ i ≤ n). Therefore, there exist matrices Gj ∈ nKm (0 ≤ j ≤ s) such
that

∂η = F η +
s∑

j=0

Gj ∂
j u.

Assume that s ≥ 1 and Gs �= 0, and set

η∗ = η −Gβ
s ∂

s−1 u

(where β = α−1). Using the commutation rule (2.33), which can be written

∂ a = aα ∂ + aδ

it is easily seen that

∂η∗ = F η∗ +

⎛

⎝
s−2∑

j=0

Gj ∂
j + G′s−1 ∂

s−1

⎞

⎠u,

where G′s−1 is expressed in function of Gs−1, Gβ
s and Gδ

s . By induction,
this elimination procedure yields the state equation (5.34) which no longer
contains derivatives of the input variables. Let ȳi = yi + [u]R (1 ≤ i ≤ p).
As ȳi ∈ M/ [u]A, there exist matrices H ∈ pKn and Ji ∈ pKm (0 ≤ i ≤ α)
such that (5.35) holds.

5.6 Structural Properties of Linear Systems

5.6.1 Controllability

5.6.1.1 Controllability and Image Representation

Let M = cokerA (•R) be the linear system defined by the exact sequence
(5.3), let W ∈ AMod be a signal space, and let BW (M) = kerW (R•) be
the W -behavior associated with M . As usual, E = EndA (W ). Recall that
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AModfp denotes the full subcategory of AMod, the objects of which are
finitely presented (Notation 497).

Definition 862. (i) The behavior BW (M) is said to have an image repre-
sentation if there exists a matrix S ∈ kAr such that

BW (M) = imW (S•) �
{
w ∈ kW : ∃v ∈ rW,w = S v

}
. (5.36)

Then, the variable v is called a potential of BW (M) (see Exercise 949).
(ii) This image representation is called observable if S• :rW → kW is injec-
tive. Then, the variable v is called a free output.

Theorem and Definition 863. Let M be a linear system over A and let
W ∈ AMod.

(1) If •S : Ak → Ar is left-invertible, then the image representation (5.36)
is observable, and the converse holds true if W is a cogenerator for D =
AModfp.
(2) Of the following, (i)⇒(ii)⇒(iii); if W is a cogenerator for D = AModfp,
then (ii)⇒(i); last, if W is a large injective cogenerator, then (iii)⇒(i).
(i) M is free;
(ii) BW (M) has an observable image representation;
(iii) There exist a positive integer r and an E-linear isomorphism BW (M) ∼=
rW .
(3) The linear system M (resp., the behavior BW (M)) is said to be freely
controllable, or flat, if (i) (resp., (ii)) holds.

Proof. (1) If •S : Ak → Ar is left-invertible, then the image representation
(5.36) is obviously observable. Conversely, consider the exact sequence

Ak •S−→ Ar ψ−→ N → 0

which yields the exact sequence

0 −→ BW (N) −→ rW
S•−→ kW .

If S• :rW → BW (M) is injective, this implies BW (N) = 0, and finally
N = 0 if in addition W is a cogenerator for D. Therefore, •S is surjective,
thus left-invertible by Theorem 514(i).

(2) (a) (i)⇒(ii): If M is free, there exists an isomorphism •S : Ar−̃→M
for some positive integer r, thus by Corollary 567(3), S• is an isomorphism
rW −̃→BW (M), and BW (M) = S (rW ) has an observable image represen-
tation.

(ii)⇒(iii): If BW (M) = imW (S•) and S• :rW → kW is injective, then
BW (M) ∼= rW by Noether’s first isomorphism theorem.

(b) If W is a cogenerator for D = AModfp, let us show that (ii)⇒(i):
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Assuming that BW (M) has an observable image representation, (5.36)
holds with •S left-invertible by (1), thus the sequence

0 −→ rW
S•−→ kW

R•−→ qW (5.37)

is exact in ModE and there exists a matrix T ∈ rAk such that TS = Ir .
This equality proves that •S is surjective and the exactness of (5.37) proves
that S• is injective and (RS•) = 0, thus RS = 0 since W is a cogenerator
for D. Therefore, AqR ⊆ kerA (•S) and there exists a map •f such that the
diagram below is commutative

Ak •S−→ Ar

↓ ϕ f ↗
M

where •ϕ : Ak � M = Ak/AqR ∈ AModfp is the canonical epimorphism
and •f : M → Ar is an epimorphism too since so is •S. Thus BW (M) =
kerW (R•) = imW (S•) ∼=rW (by exactness of (5.37)) and since the functor
BW is left exact, the surjectivity of •f implies the exactness of

0 −→ rW
BW (•f)−→ BW (M) ,

thus BW (•f) : rW → BW (M) is an embedding. Therefore, BW (•f) is an
isomorphism rW −̃→BW (M). Now we have

IdAr = •TS = •Tϕf = gf, g � •Tϕ : Ar →M.

Thus •f = •fgf , hence BW (•f) = BW (•fg)BW (•f) which implies
BW (•fg) = IdrW for BW (•f) is invertible. Since W is a cogenerator for
D, this implies •fg = IdAr , thus •f is injective; finally, •f an isomorphism
M−̃→Ar, and M is free.

(c) If W is a large injective cogenerator, let us show that (iii)⇒(i).
If BW (M) ∼= rW , there exists in ModE an exact sequence

0 −→ BW (M)
ψ−→ rW −→ 0.

By Theorem 817(i), BW (D) is a full subcategory of ModE, thus there exists
an A-linear map ϕ : Ar → M such that ψ = BW (ϕ). By Theorem 644(i),
ϕ is an isomorphism, and (i) holds.

So, freely controllable linear systems, and W -behaviors having an observable
image representation, are closely connected, and are clear notions. We still
have to give an interpretation of behaviors having an image representation
when this representation is nonobservable.

To clarify ideas, let us consider a continuous multidimensional system (Re-
mark 832). So, assume that A = C [∂1, ..., ∂n] (∂i = ∂/∂xi) and W = E (Rn)
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(1.7.3.5). According to Remark 350(ii) and to Hilbert’s basis theorem (The-
orem 352), A is a Noetherian domain. First recall the following.

Lemma 864. Let 0 �= a ∈ C [∂1, ..., ∂n]. Then the equation a (∂1, ..., ∂n)u =
0 has no solution, other than zero, in the space D (Rn) of indefinitely differ-
entiable functions with compact support.

Proof. Let u ∈ D (Rn) ⊆ E ′ (Rn) be nonzero and such that
a (∂1, ..., ∂n)u = 0. Then a (s) û (s) = 0 where s = (s1, ..., sn) and û
is the Laplace transform of u. By the Paley-Wiener-Schwartz theorem
([92], (22.18.7)), û is an entire function, thus û = 0, which implies u = 0, a
contradiction.

Definition 865. Let U be a nonempty open subset of Rn, and let V be a
closed subset of Rn, the interior of which contains Ū . Let w ∈ kW . An
element w′ ∈ kW is a cut-off of w with respect to U and V if w′ coincides
with w on U and with zero in V c, the complementary of V .

Lemma and Definition 866. Let B ⊆kW be a right E-module.

(1) The following conditions are equivalent:
(i) Given any two trajectories w1,w2 ∈ B, and any two nonempty open
subsets U1, U2 of Rn with closures Ū1 and Ū2 respectively, such that Ū1∩Ū2 =
∅, there exists a trajectory w ∈ B which coincides with w1 on U1 and with
w1 on U2.
(ii) Given any trajectory w ∈ B, and any sets U and V as in Definition 865,
there exists in B a cut-off w′ of w with respect to U and V .
(2) The right E-module B is called concatenable if it satisfies the above
equivalent conditions.

Proof. (1). (i)⇒(ii) is clear, taking U = U1 and V = U c
2 .

(ii)⇒(i): Let w1,w2 ∈ B, and consider two nonempty open subsets U1, U2

of Rn with closures Ū1 and Ū2 respectively, such that Ū1∩Ū2 = ∅. As Rn is a
metric space, it is a normal topological space ([35], §IX.4), and there exist two
closed sets V1 and V2, the interiors of which contain U1 and U2, respectively.
Let w′1 ∈ B be a cut-off of w1 with respect to U1 and V1, and let w′2 ∈ B
be a cut-off of w2 with respect to U2 and V2. Then w = w′1 + w′2 ∈ B; in
addition, w coincides with w1 on U1 and with w2 on U2.

Consider a W -behavior BW (M).

Theorem 867. The following conditions are equivalent:

(i) BW (M) has an image representation;
(ii) BW (M) is concatenable;
(iii) M = cokerA (•R) is torsion-free.

Proof. (i)⇒(ii): Assume that (i) holds. Let w1,w2 ∈ B, and let v1,v2 ∈rW
be such that wi = S vi (i = 1, 2). Let U1, U2 be two subsets of Rn with
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closures Ū1 and Ū2 respectively, such that Ū1∩ Ū2 = ∅. There exists v ∈rW
such that v |U1 = v1 |U1 and v |U2 = v2 |U2 ([322], Sect. I.2, Theorem II).
Therefore, w = S v is such that w |U1 = w1 |U1 and w |U2 = w2 |U2 . There-
fore, (ii) holds.

(ii)⇒(iii): Assume that (iii) does not hold, and consider the matrix S ∈
kAr in Corollary 610. According to that corollary, kerA (•S) / imA (•R) =
T (M). Let λ ∈ kerA (•S) \ imA (•R). The canonical image λ̄ of λ in
kerA (•S) / imA (•R) is torsion, thus there exists a ∈ A× such that a λ̄ = 0,
i.e., a λ ∈ imA (•R). If λw = 0 for all w ∈ BW (M), the sequence

0 −→ BW (M) −→ kW
λ•−→W

is exact, and since the signal space W is an injective cogenerator (Remark
832), the sequence

A •λ−→ Ak −→ Ak/ imA (•R) −→ 0

is exact by Theorem 644(i); but this means that λ ∈ imA (•R), a contradic-
tion. Therefore, λw is not zero for all w ∈ BW (M), in other words there
exists a nonzero E-linear map

Λ : BW (M)→W : w �→ λw.

Define
α : W →W : u �→ au.

Let w ∈ B be a trajectory such that Λ (w) �= 0. Let U be a bounded open
subset of Rn on which Λ (w) is nonzero, and let V be a compact subset of Rn,
the interior of which contains Ū . If BW (M) is concatenable, there exists a
cut-off w′ ∈ BW (M) of w with respect to U and V . Then Λ (w′) is nonzero
and has a compact support. In addition,

Λ (w′) = aλw′ = 0

since λ ∈ imA (•R) and w′ ∈ kerW (R•) , thus Λ (w′) ∈ kerα. This is
impossible by Lemma 864. Therefore, (ii) does not hold.

(iii)⇒(i): If (iii) holds, there exist by Proposition 342 a positive integer r
and an embedding M ↪→ Ar; thus, by Theorem 514(iii), there exists an exact
sequence

Aq •R−→ Ak •S−→ Ar.

Since W is injective, this yields the exact sequence

rW
S•−→ kW

R•−→ qW,

i.e., (i) holds.
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To close the discussion on multidimensional systems, let us give some addi-
tional definitions and results. Let A = C [X1, ..., Xn] and let R ∈ qAk. In the
case of a continuous (resp., discrete) system, the action of the indeterminate
Xi on a variable is ∂i (resp., qi).

Definition 868. (i) The matrix R is called zero left prime (ZLP) if there is
no common zero of all minors (2.11.1.2) of R in Cn.
(ii) The matrix R is called weakly zero left prime (WLP) if the number of
common zeros of all minors of R is finite.
(iii) The matrix R is called minor left prime (MLP) if the minors of R have
no nonconstant common factor.
(iv) If rkA (R) = q, the matrix R is called factor left prime (FLP) if in any
factorization R = LR′ where L ∈ Matq (A), necessarily L ∈ GLq (A).
(v) The matrix R is called factor left prime in the generalized sense (GFLP)
if the existence of a factorization R = DR′ (D not necessarily square) with
rkA (R) = rkA (R′) implies the existence of a matrix E such that R′ = E R.
(Definitions (iv) & (v) are still valid when A is any left Ore domain.)

The proof of the following is easy:

Lemma 869. Let R be left-regular.

(1) R is FLP if, and only if it is GLFP.
(2) Let V (R) be the algebraic set (Definition 386(i)) defined as follows:

V (R) = {ξ ∈ Cn : rkC (R (ξ)) < rkA (R)}

and let dimV (R) be its dimension (Remark 630(ii)). (i) The matrix R is
ZLP (resp., WLP, MLP) if, and only if dimV (R) = −1 (resp., dimV (R) ≤
0, dimV (R) ≤ n− 2).
(ii) Therefore, when n = 1 (univariate case), ZLP ⇔ MLP whereas WLP is
always true. When n = 2 (bivariate case), ZLP⇒WLP⇔ MLP. When n ≥
3, ZLP ⇒ WLP ⇒ MLP and these conditions are mutually non-equivalent.

Theorem 870. Let M = coker (•R) where R ∈ qAk is left-regular.

(1) The following conditions are equivalent:
(i) The matrix R is ZLP.
(ii) There exists a matrix X ∈ kAq which solves the matrix Bézout equation
RX = Iq.
(iii) M = cokerA (•R) is a freely controllable system.
(2) The following conditions are equivalent:
(iv) The matrix R is MLP.
(v) The matrix R is FLP.
(vi) M = cokerA (•R) is torsion-free.
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Proof. (1) (i)⇔(ii): see ([368], Theorem 2).
(ii)⇔(iii): The matrix Bézout equation RX = Iq has a solution if, and

only if M is stably-free by Theorem 583. By the Quillen-Suslin theorem
(Theorem 581(i)), this holds if, and only if M is free, i.e., freely controllable.

(2) (iv)⇔(vi): See, e.g., ([278], Chap. V, Theorem 1.39). (v)⇔(vi): See
Theorem and Definition 874(1) below.

Remark 871. (1) According to Hilbert’s theorem on syzygies (Theorem
636(i)), gldA = n , and by the Quillen-Suslin theorem (Theorem 581(i)), A
is projective-free, thus all f.g. A-modules have finite free resolution of length
≤ n (3.5.5.2). Let M = cokerA (•R); the matrix R is left-regular when M
has finite free resolution of length ≤ 1. Therefore, the assumption that R be
left-regular is restrictive when n > 1.
(2) Without assuming that R is left-regular, R is GFLP if, and only if
M = cokerA (•R) is torsion-free (Exercise 951).

Let us consider again the general case. Let A be an Ore domain (it is not
sufficient to assume that A is a left Ore domain for the sequel), let M be a
linear system over A, and let W ∈ AMod.

Lemma and Definition 872. (1) Of the following, (i)⇒(ii)⇒(iii). If W
is an injective cogenerator, (ii)⇒(i). If W is a large injective cogenerator,
(iii)⇒(i).
(i) M is torsion-free.
(ii) There exist a positive integer r and, in the category BW (D) (D =
AModfp), an exact sequence

rW
ϕ−→ BW (M) −→ 0, (5.38)

i.e., there exists an E-linear epimorphism ϕ : rW � BW (M) where
ϕ = BW (ι) for some A-linear monomorphism ι.
(iii) There exist a positive integer r and, in ModE, an exact sequence (5.38),
i.e., there exists an E-linear epimorphism ϕ : rW � BW (M).
(2) The linear system M (resp., the behavior BW (M)) is said to be control-
lable if (i) (resp., (ii)) holds.

Proof. (1) By Proposition 342, (i) holds if, and only if there exist a positive
integer r and an embedding ι : M ↪→ Ar, i.e., an exact sequence

0 −→M
ι−→ Ar.

The rest of the proof is similar to that of, e.g., Lemma and
Definition 850(1).

By the above proof and by Theorem 514(iii), M = cokerA (•R) is controllable
if, and only if there exists an exact sequence

Aq •R−→ Ak •S−→ Ar.
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Therefore, assuming that W is an injective cogenerator, BW (M) =
kerW (R•) is controllable if, and only if there exists an exact sequence

rW
S•−→ kW

R•−→ qW,

i.e., BW (M) has an image representation. In addition, if T (M) is f.g.,
consider the short exact sequence (5.26) where B = BW (M); then the largest
nonautonomous subbehavior Bc = BW (M/T (M)) ⊆ B is the controllable
part of B and M/T (M) is the controllable quotient of M . The exact sequence
(3.51) yields the exact sequence

0 −→ Ba −→ imW (S•) −→ B −→ 0

where Ba = BW (T (M)) ∼= B/Bc and imW (S•) is controllable, therefore B
is BW (D)-isomorphic (i.e., isomorphic in the category BW (D)) to a quotient
of the controllable behavior imW (S•).

Corollary 873. Let M be a linear system over an Ore domain A.

(i) M is freely controllable if, and only if M ∼= cokerA (•R) where the matrix
R is completable (Theorem 626 and Corollary 623).
(ii) Assume that A is a semistably-free ideal domain (Lemma and Definition
666). Then M is controllable if, and only if M ∼= cokerA (•R) where the
matrix R is right-invertible (Corollary 623).

Let us add some important points.

Theorem and Definition 874. Let M ∼= cokerA (•R) be a linear system
over an Ore domain A and assume that R ∈ qAk is left-regular.

(1) If M is controllable, then R is FLP, and the converse holds true if the
torsion submodule T (M) is f.g.
(2) Of the following, (i)⇔(ii)⇔(iii):
(i) R is right-invertible over A;
(ii) M is stably-free;
(iii) Let U be a right A-module which is an injective cogenerator (in ModA),
and let λ ∈ Uq. The equality λR = 0 implies λ = 0 (”generalized Popov-
Belevitch-Hautus (PBH) test”).
(3) The linear system M is said to be strongly controllable if the equivalent
conditions of (2) hold.
(4) The following conditions are equivalent:
(iv) M is freely controllable;
(v) There exists a matrix V ∈ GLk (A) such that RV −1 =

[
Iq 0
]
.

Proof. (1) (A) Write R = LR′, and set M = cokerA (•R), M ′ =
cokerA (•R′) and Λ = cokerA (L). Since R is left-regular, so is L too, there-
fore L is invertible over the field of fractions F of A (Proposition 420(iv) and
Exercise 481). By Proposition 841(i) one has the short exact sequence
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0 −→ Λ −→M −→M ′ −→ 0 (5.39)

which yields the short exact sequence

0 −→ Λ̂ −→ M̂ −→ M̂ ′ −→ 0

since the right A-module F is flat (Theorem 609). Since L is invertible over
F, Λ̂ = 0 and M̂ = M̂ ′, i.e., M and M ′ have the same transfer vector space
(Corollary and Definition 853(iii)). By Theorem and Definition 339(ii), Λ
is torsion, and Λ = 0 if, and only if L ∈ GLq (A). Since (5.39) is exact,
M ′ ∼= M/Λ. Therefore, if Λ �= 0 (i.e., if R is not FLP), M is not torsion-free.

(B) Conversely, assume that M = cokerA (•R) is not torsion-free. We
have the short exact sequence

0 −→ T −→M −→M ′ −→ 0

where T = T (M) �= 0 and M ′ ∼= M/T . If T is f.g., then M ′ is f.p. by
Lemma 498(iii), and there exists R′ ∈ qAk such that M ′ = cokerA (•R′).
Let W be an injective cogenerator. Since W is injective, we obtain the short
exact sequence

0 −→ BW (M ′) −→ BW (M) −→ BW (T ) −→ 0

where BW (T ) ∼= BW (M) /BW (M ′); since T �= 0 and W is a cogenerator,
BW (T ) �= 0, therefore BW (M ′) � BW (M). By Theorem 827(ii), there
exists L ∈ Matq (A) such that R = LR′. Since BW (M ′) � BW (M),
L /∈ GLq (A), thus R is not FLP.

(2) (i)⇔(ii) is clear by Theorem 583.
(i)⇔(iii): By Theorem 514(i), (i) means that the sequence

kA R•−→qA −→ 0

is exact. By Theorem 644(i), this holds true if, and only if kerU (•R) = 0,
which is equivalent to (iii).

(4) (iv)⇒(v): If (iv) holds, then R is right-invertible by Proposition 577(ii)
(since M is projective). Therefore, R is completable by Theorem 626, and

there exists a matrix R′ ∈ k−qAk such that V =
[
R
R′

]
is invertible. There-

fore, RV −1 =
[
Iq 0
]
.

(v)⇒(iv): If (v) holds, let R′ =
[
0 Ik−q

]
V . Then,

[
R
R′

]
V −1 = Ik

which proves that R is completable. Therefore, M is freely controllable by
Corollary 873.
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For a behavioral interpretation of strong controllability, we refer to [289]. For
a linear system over an Ore domain A,

freely controllable ⇒ strongly controllable ⇒ controllable.

If A is Hermite,

freely controllable ⇔ strongly controllable.

If A is a semistably-free ideal domain,

strongly controllable ⇔ controllable.

If A is a Bézout domain,

freely controllable ⇔ controllable.

The problem of seeking torsion elements is solved by the following. Let
A be a ring of operators. Consider a sequence of matrices Ri ∈ ki−1Aki

(i ∈ Z) and the associated operators (Ri•) = Di : Ei−1 → Ei where Ei =
Hom

(
Aki ,AA

) ∼= kiAA.

Definition 875. The operator Di+1 said to generate all compatibility con-
ditions of Di (and Di+1 is said to be parametrized by Di) if the sequence

Ei−1
Di−→ Ei

Di+1−→ Ei+1

is exact.

For any operator Di, let D∗i denote its adjoint ad (Di) (Lemma and Definition
360). Assuming that A is semiprime Goldie, consider an operator Di+1.
By Theorem 514(iii) and Proposition 516(iv), the following conditions are
equivalent:

(a) Di+1 is parametrizable by an operator Di;
(b) the left A-module Mi+1 = cokerA Ri+1 is torsion-free;
(c) the linear system Mi+1 is controllable.

Assume that the ring A is coherent. Consider an operator Di : Ei−1 → Ei.
By Theorem 514(ii), Di parametrizes some operator Di+1 : Ei → Ei+1,
i.e., one can find Di+1 which generates all compatibility conditions of Di.
Similarly, an operator D∗i+1 parametrizes some operator D∗i , i.e., one can find
D∗i which generates all compatibility conditions of D∗i+1.

Theorem 876. Let A be a semiprime Goldie coherent ring, consider an op-
erator Di+1, and the following algorithm.

(I) Construct D∗i+1 : Aki+1 → Aki .
(II) Construct D∗i : Aki → Aki−1 generating all compatibility conditions of
D∗i+1, so that the sequence
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Aki−1
D∗

i←− Aki
D∗

i+1←− Aki+1 (5.40)

is exact.
(III) Construct Di = ad (D∗i ) : Ei−1 → Ei.
(IV) Construct an operator D′i+1 : Ei → E′i+1 generating all compatibility
conditions of Di.
Then D′i+1 ◦ Di = 0, and likewise Di+1 ◦ Di = 0 by exactness of (5.40),
and by Lemma and Definition 360. However, Di+1 does not generate all
compatibility conditions of Di in general.
Let Ri+1 (resp., R′i+1) be the matrix of Di+1 (resp., D′i+1) and set

Ri+1η = ζ, R′i+1η = ζ ′.

Then, denoting by ς̄ ′ the canonical image of ζ ′ in Mi+1 = [η]A / [ς]A, [ς̄ ′]A is
the torsion submodule of Mi+1.

Example 877. Let A = C [∂] and consider the control system M1 given by

[
∂2 −∂

]
[
w1

w2

]
= 0.

(To clarify ideas, one can think of w1 as the output and of w2 as the input).
Then, with i = 0,

D1 =
[
∂2 −∂

]
, D∗1 =

[
∂2

∂

]
,

D∗0 =
[
1 −∂

]
, D0 =

[
1
∂

]
,

D′1 =
[
∂ −1

]
.

Let

R1η =
[
∂2 −∂

]
[
η1

η2

]
= ς,

R′1η =
[
∂ −1

]
[
η1

η2

]
= ς ′

i.e., ζ = ∂2η1−∂η2 = ∂ς ′. Since P = ∂ is not a unit, ς̄ ′ is a nonzero torsion
element of M1, and the system M1 is noncontrollable.

Example 878. Let A = C [∂1, ∂2, ∂3] and consider the linear system M1 =
cokerA (•R1) where

R1 =
[

0 −∂3 ∂2

∂3 0 ∂1

]
.
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Thus, D1 = R• and

D∗1 =

⎡

⎣
0 −∂3

∂3 0
−∂2 −∂1

⎤

⎦ .

To determine D∗0, consider a column ς∗ of two elements, calculate η∗ = D∗1ς∗
and determine the corresponding compatibility conditions:

η∗ =

⎡

⎣
−∂3ς

∗
2

∂3ς
∗
1

−∂2ς
∗
1 − ∂1ς

∗
2

⎤

⎦

is subject to D∗0η∗ = 0 where D∗0 =
[
∂1 −∂2 −∂3

]
. Therefore,

D0 =

⎡

⎣
−∂1

∂2

∂3

⎤

⎦ .

To determine D′1, consider an element μ, calculate D0μ = ν and determine
the corresponding compatibility conditions. One obtains D′1ν = 0 where

D′1 =
[
∂2 ∂1 0
0 ∂3 −∂2

]
.

Observe that D1 ◦D0 = D′1 ◦D0 = 0. Set ς = R1η and ς ′ = R′1η. This yields
{
ς1 = −∂3η2 + ∂2η3,
ς2 = ∂3η1 + ∂1η3,

{
ς ′1 = ∂2η1 + ∂1η2,
ς ′2 = ∂3η2 − ∂2η3.

Therefore, ς ′2 = −ς1, and ς̄ ′2 = 0. On the other hand, one can easily check
that ς̄ ′1 is only submitted to ∂3ς̄

′
1 = 0. Therefore, ς̄ ′1 = ∂2η̄1+∂1η̄2 is a nonzero

torsion element of M1 (with equation R1η̄ = 0), and M1 is a noncontrollable
system.

5.6.1.2 Controllability of State-Space Systems

Let K be an Ore domain, α an automorphism and δ an α-derivation of K,
and consider the state-space system (M,u, y) with state equation (5.34) over
A = K [∂; α, δ]. Assume that α δ = δ α (as this always holds in concrete
situations), let β = α−1, and assume that be the subring of constants of K
(Subsect. 2.3.3) is an Ore domain denoted by C.
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Theorem and Definition 879. (1) Consider the matrices

Γs =
[
P0

... P1

... · · ·
... Ps−1

]
(5.41)

defined for s ≥ 1, where

P0 = G, Pi+1 = (F − δ In) Pβ
i , i ≥ 0, (5.42)

and
Γ∞ =

[
P0

... P1

... · · ·
... Ps−1

... · · ·
]
.

(i) The matrix Γ∞ is right-invertible over K if, and only if there exists an
integer s ≥ 1 such that Γs is already right-invertible over K.
(ii) If A = K [∂] and K is a commutative domain, then Γ∞ is right-invertible
over K if, and only if Γn is right-invertible over K.
(2) If there exists s ≥ 1 such that Γs is right-invertible over K, then M is
strongly controllable.
(3) Assume that there exists a fundamental matrix X ∈ GLn (K) such that
Xδ = F X. If M is strongly controllable, then there exists s ≥ 1 such that
Γs is right-invertible over K. If M is controllable, then rkC Xβ Γ1 = n. The
state-space system is said to be Kalman-controllable when the latter condition
holds. Therefore, under the above assumption,

controllable ⇒ Kalman-controllable.

(4) If K is a field and A = K [∂], then the following conditions are equivalent
(Kalman test for controllability):
(iii) rkK Γn = n;
(iv) M is Kalman-controllable;
(v) M is freely controllable.

Proof. (1)(i) If the matrix Γ∞ ∈ nKN is right-invertible, there exists a matrix
Υ∞ ∈ (N)Kn such that Γ∞ Υ∞ = In. The rows of Υ∞ are all zero except for
a finite number of them, therefore the product Γ∞ Υ∞ involves only a finite
number of columns of Γ∞. As a result, there exists s ≥ 1 such that Γs is
right-invertible. The converse is obvious.

(ii): If A = K [∂] where K is a commutative, then (since δ = 0 and β = 1)

Γs =
[
G

... F G
... · · ·

... F s−1 G

]
;

by the Cayley-Hamilton theorem (Theorem 752) and by induction, for any
i ≥ 0, the columns of Fn+iG are K-linear combinations of those of Γn−1.
It follows that Γs is right-invertible for some s > n if, and only if so is
already Γn.
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(2) Equation (5.34) can be put into the form (5.1), setting

R =
[
∂In − F

... G

]
, w =

[
x
−u

]
.

By Theorem and Definition 874, M is strongly controllable if, and only if the
two equalities

(α) λ (∂In − F ) = 0, (β) λG = 0,

imply λ = 0. (β) implies

0 = λG = λG∂ = λG∂2 = ... = λG∂r−1 = ...

The first equality is equivalent to λP0 = 0.
Assume that λPi = 0, i ≥ 0. The commutation rule (2.33) can be

written a ∂ = ∂ aβ − aβδ, thus the equality λPi ∂ = 0 is equivalent to
λ
(
∂ Pβ

i − Pβδ
i

)
= 0. Using (α), this yields

0 = λ
(
F Pβ

i − Pβδ
i

)
= λ (F − δ In)Pβ

i = λPi+1.

By induction, λΓs = 0; if Γs is right-invertible, this implies λ = 0.
(3) Set V = X−1. Since V X = In, (V X)δ = 0, therefore V α Xδ+V δ X =

0, and
V δ = −V α F.

Consider the state equation (5.34) and the new state η = V x. We obtain

∂η = V α ∂x + V δx = V α (F x + Gu) + V δx

=
(
V α F + V δ

)
x + V α Gu

= G̃ u

where G̃ = V α G. The corresponding ”controllability matrix” is

Γ̃s =
[
G̃

... −G̃(δβ)
... · · ·

... (−1)s−1 G̃(δβ)s−1

]
.

(A) If Condition (i) of Theorem and Definition 874 holds, there exist matrices
Ỹ ∈ mAn and Z̃ ∈ Matn (A) such that

(∂In) Z̃ − G̃ Ỹ = −In.

Write
Ỹ =
∑s−1

i=0
∂i Yi, Yi ∈ mKn
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and let

Υ̃s =

⎡

⎢
⎣

Y0

...
Ys−1

⎤

⎥
⎦ ∈ msKn

By induction, it is easy to prove that

G̃ ∂i = (−1)i G̃(βδ)i − ∂ Mi (∂)

for some matrix Mi (∂) ∈ nAm. Therefore,

(∂In) Z̃ = G̃ Ỹ − In =
∑s−1

i=0
(−1)i G̃(βδ)i

Yi − ∂
∑s−1

i=0
Mi (∂) Yi − In,

or equivalently

∂

(
Z̃ −
∑s−1

i=0
Mi (∂) Y

)
= Γ̃s Υ̃s − In.

Therefore, Γ̃s Υ̃s = In, and Γ̃s is right-invertible over K.
(B) By Theorem 409, rkC Xβ Γ1 = rkC Γ̃1 < n if, and only if there ex-

ists a nonzero row v∗ ∈ Cn such that v∗ Γ̃1 = 0; this is equivalent to
v∗ ∂η = ∂ (v∗ η) = 0. The element v∗ η of M is only submitted to the
relation ∂ (v∗ η) = 0, thus it is a nonzero torsion element of M , and M is not
controllable.

(4) (iv)⇔(v) by Theorem 654 since A is a Bézout domain, and (iii)⇔(iv)
is classical (see, e.g., [43]).

Remark 880. For discrete-time systems, δ = α − 1, ∂ = q − 1 (2.7.4.2),
therefore the state equation (5.34) takes the form

qx = F̌ x + Gu (5.43)

where F̌ = F + In, and (5.42) becomes

P0 = G, Pi+1 =
(
F̌ −α In

)
Pβ
i = F̌ Pβ

i − Pi

and Γs can be changed to

Γ ′s =
[
P ′0

... P ′1
... · · ·

... P ′s−1

]
,

P ′0 = G, P ′i+1 = F̌ P ′βi , i ≥ 0.

Recall that k = R or C.

Proposition 881. Let Ω be a nonempty open interval of R, let K be a sub-
ring of the ring O (Ω) of all analytic k-valued functions in Ω (Subsect. 1.9.1),
and let A = K [∂, δ] where δ is the usual derivative. Let (M,u, y) be a
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state-space system with state equation (5.34) over A, let t0 ∈ Ω, and assume
that there exists a fundamental matrix X ∈ GLn (K) such that Xδ = F X
(this is guaranteed if K = O (Ω)).

(i) Then M is Kalman-controllable if, and only if there exists an integer s ≥ 1
such that rkk Γs (t0) = n.
(ii) The latter condition holds if, and only if there exists a subset S of Ω,
dense in Ω, such that rkk Γn (t) = n for all t ∈ S (see Exercise 956).

Proof. If K = O (Ω), there exists a fundamental matrix X ∈ GLn (K) such
that Xδ = F X ([92], (10.7.5)). In addition, C = k.

(i) (a) Assume that for all s ≥ 1, rkk Γs (t0) < n. For any s ≥ 1, let

Vs = {u∗ ∈ kn\ {0} ,u∗ Pi (t0) = 0 : 0 ≤ i ≤ s− 1}
= {u∗ ∈ kn\ {0} : v Γs = 0} �= ∅,

V∞ =
⋂
r≥1 Vr = {u∗ ∈ kn\ {0} : u∗ Γ∞ = 0} .

Since
kn ⊇ V1 ⊇ V2 ⊇ ...

and k is Artinian (Lemma and Definition 317(3)), there exists s ≥ 1 such
that Vs+1 = Vs. Therefore, V∞ = Vs is nonempty. Let u∗ ∈ V∞ and let
v∗ = u∗X−1 (t0) (which makes sense since X (t0) ∈ GLn (k)). The row v∗

is nonzero, and 0 = u∗ Γ∞ (t0) = v∗ Γ̃∞ (t0). Therefore, v∗ G̃δi

(t0) = 0 for
all i ≥ 0, and there exists an open interval I � t0 such that the analytic
function v∗ G̃ is zero in I. By analytic continuation, v∗ G̃ is zero in Ω, and
by Theorem and Definition 879(3), M is not controllable.

(b) Conversely, if the system is not Kalman-controllable, there exists u∗ ∈
kn\ {0} such that v∗ G̃ = 0. This implies v∗ G̃δi

= 0 for all i ≥ 0, thus
v∗ Γ̃s (t0) for all s ≥ 1. Therefore, with the above notation, u∗ Γs (t0) = 0,
thus rkk Γs (t0) < n, for all s ≥ 1.

For (ii), see [329] or ([335], Sect. 3.5).

Example 882. Let A = O (Ω) [∂, δ] where δ = d/dt and consider the first
order state-space system ∂x = tr u. Then, for 1 ≤ s ≤ r + 1

Γs =
[
tr

... · · ·
... (−1)s−i

(
r

r−s+i
)
tr−s+i

... · · ·
... (−1)s−1 ( r

r−s+1

)
tr−s+1

]

(1 ≤ i ≤ s). Since rkC Γ1 (t) = 1 for all t �= 0, this state-space system
is Kalman-controllable by Proposition 881(ii). For s ≤ r, Γs is not right-
invertible, but Γr+1 is right-invertible; therefore this system is strongly con-
trollable by Theorem and Definition 879(2).

Let us give an interpretation of Kalman controllability. LetK be any compact
interval ⊆ Ω and let WK be the space of distributions on Ω with support
included in K, or the space of hyperfunctions on Ω with support included in
K (Subsect. 1.9.3). Consider the operator
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LK : mWK (Ω)→ nk : u �→
∫
Ω G̃ (τ ) u (τ ) dτ .

The operator LK is surjective if, and only if when v∗LK = 0 (v∗ ∈ kn),
necessarily v∗ = 0. But v∗LK = 0 if, and only if for all u ∈ mWK (Ω),

0 = v∗Lu =
∫

Ω
v∗ G̃ (τ ) u (τ ) dτ .

Let (εi)1≤i≤m be the canonical basis of mC, let t ∈ K, let δt be the Dirac
distribution or hyperfunction at t (1.9.2.1) and take u = δt εi. Then

∫
Ω

v∗ G̃ (τ ) u (τ ) dτ = v∗ g̃i (t)

where g̃i is the ith column of G̃. Therefore, all operators LK are surjective
if, and only if v∗ G̃ = 0 ⇒ v∗ = 0, i.e., the state-space system is Kalman-
controllable. Last, consider any two instants t1, t2 ∈ Ω such that t2 > t1;
the surjectivity of L[t1,t2] means that for two arbitrary points η1,η2 ∈ nk,
there exists an input u ∈ mW[t1,t2] (Ω) such that L[t1,t2]u = η2 − η1. With
this input, the system state η : t �→ η (t) is transferred from η1 (assumed to
be the value of η at time t1) to the value η2 in the interval of time [t1, t2].
This is Kalman’s original definition of controllability [172]. (Kalman used
neither hyperfunctions nor distributions, but the reader may check that the
above equivalence still holds if the signal space is changed to, e.g., E (Ω): see
Exercise 955.)

For discrete-time systems, ”0-controllability” is an important notion: see
Exercise 958.

Proposition 883. Let A = K [∂; α, δ] be a stably-free ideal domain and let
(M,u, y) be a control system over A. Let T (M) be the torsion submodule
of M and let P = M/T (M). Let ūi be the canonical image of ui in the
quotient P (1 ≤ i ≤ m). If the left K-modules T (M) and P/ [ū]A are finite
free (this happens, in particular, when K is a division ring), then (M,u, y)
admits a state-space realization of the form

∂

[
xc
xc̄

]
=
[
Fc ∗
0 Fc̄

]
xc +
[
Gc
0

]
u

where xc and xc̄ are columns with nc and nc̄ entries, respectively, ∗ denotes
an nc×nc̄ submatrix with entries in K, the quotient system P with equation

∂x̄c = Fc x̄c + Gc ū

is strongly controllable, and nc̄ > 0 if, and only if M is noncontrollable
(”Kalman controllability decomposition”).

Proof. Since A is a stably-free ideal domain,

M = T (M)⊕ Φ
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where Φ ∼= P is stably-free. Let xc̄1 , ..., xc̄ν be a K-basis of T (M). There
exists a matrix Fc̄ ∈ Matν (K) such that ∂ xc̄ = Fc̄ xc̄. Let η̄c1 , ..., η̄cγ

be a K-
basis of P/ [ū]A. There exists a matrix Fc ∈ Matγ (K) such that ∂ η̄c = Fc η̄c.
There exist γ elements ηi ∈ P such that η̄i = ηi+[ū]A (1 ≤ i ≤ γ). Therefore,
there exist matrices Gcj ∈ γKm such that

∂η = Fc η +
s∑

j=0

Gcj ∂
j ū.

By the same rationale as in the proof of Theorem and Definition 861(1),
there exist a column x̄c and a matrix Gc ∈ γKm such that P = [x̄c, ū]A
and ∂x̄c = Fc x̄c + Gc ū. Since P is stably-free, this quotient system is
strongly controllable. Last, there exist elements xci ∈ M (1 ≤ i ≤ γ) such
that x̄ci = xci + T (M), and there exists a matrix [∗] such that

∂xc = Fc xc + [∗] xc̄ + Gc ū.

The proposition is proved with ν = nc̄ and γ = nc.

5.6.2 Duality

The duality studied below associates to a control system another control
system, the input of the former corresponds to the output of the latter and
vice-versa. Consider a control system with input u = (ui)1≤i≤m and output
y = (yi)1≤i≤p. This system can be assumed to be defined by the admissible
Rosenbrock description (5.28). This description can also be written

⎡

⎣
D 0 −N
Q 0 W
0 0 Im

⎤

⎦

⎡

⎣
ξ
y
u

⎤

⎦ =

⎡

⎣
0
y
u

⎤

⎦ .

Let Ra be the ”augmented” matrix of definition in the left-hand side.
Let W ∈ AMod, and assume that W is a k-space. Let W ′ be another

k-space and let 〈−,−〉 : W ′ × W → k be a nondegenerate bilinear form.
Then, W ′ is canonically endowed with a structure of right A-module, setting
〈w′ a,w〉 = 〈w′, aw〉 for all w ∈ W , w′ ∈W ′ and a ∈ A.

Consider the W -behavior

BW (M) =

⎧
⎨

⎩

⎡

⎣
ξ
y
u

⎤

⎦ ∈ r+2mW :

⎡

⎣
D 0 −N
Q 0 W
0 0 Im

⎤

⎦

⎡

⎣
ξ
y
u

⎤

⎦ =

⎡

⎣
0
y
u

⎤

⎦

⎫
⎬

⎭
.

For simplicity, set B = BW (M). As already said, the behavior B is (iden-
tified with) a right E-module, where E = EndA (W ). By restriction of the
ring of scalars, B is a k-vector space. Let us extend the bilinear map 〈−,−〉
to W ′k × kW in an obvious way, for any integer k ≥ 1.
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Lemma and Definition 884. (i) The dual behavior of B is

B� =

{ [
ξ� u� y�

]
∈ W ′r+p+m : 〈u�,y〉 = 〈y�,u〉

whenever
[
ξT uT yT

]T ∈ B for some ξ ∈ rW.

}

.

(ii) The k-space B� is the W ′-behavior given by
[
ξ� u� y�

]
∈ W ′r+p+m :

[
ξ� u� −y�

]
Ra = 0

i.e., B� = kerW ′ (•Ra) = BW ′ (M�) where M� = cokerA (Ra•) is the f.p.
right A-module [ξ�, u�, y∗]A defined by

[ξ�, u�, y∗]A Ra = 0. (5.44)

(iii) The presentation (5.44) is a Rosenbrock representation, and it is admis-
sible (Lemma and Definition 856) if, and only if D is square and regular.

Proof. (ii): Let
[
ξT uT yT

]T ∈ r+m+pW ;
[
ξT uT yT

]T ∈ B if, and only if

Ra
[
ξT uT yT

]T
=
[
0 uT yT

]T
.

On the other hand, 〈u�,y〉 = 〈y�,u〉 if, and only if for some ξ� ∈W ′r,
〈[

ξ� u� −y�
]
,
[
0 uT yT

]T〉 = 0.

The last equality is equivalent to
〈[

ξ� u� −y�
]
, Ra
[
ξT uT yT

]T〉
= 0,

i.e., to 〈[
ξ� u� −y�

]
Ra,
[
ξT uT yT

]T〉
= 0.

This hold true for all
[
ξT uT yT

]T ∈ r+m+pW if, and only if

[
ξ� u� −y�

]
Ra = 0,

i.e., [
ξ� u� −y�

]
∈ kerW ′ (•Ra) .

(iii) Let us make the presentation of M� = [ξ�, u�, y∗]A more explicit. We
have {

ξ∗D + u∗Q = 0,
−ξ∗N + u∗W − y∗ = 0. (5.45)

By Lemma and Definition 856, a necessary condition for the Rosenbrock
description (5.45) to be admissible is that D be left-regular. Since D is
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already right-regular, the Rosenbrock description (5.45) is admissible if, and
only if D is square and regular.

The above can be formalized in a more intrinsic way. First note that the
necessary and sufficient condition in Lemma and Definition 884(iii) is equiv-
alent to the following: the module M has finite free resolution of length ≤ 1
(see Exercise 960). Then, setting ω� = u∗, we obtain

[
ξ� ω� −y�

]
Ra =

[
ξ�D + ω�Q 0 −ξ�N + ω�W − y∗

]
.

On the other hand, the module M is given by

R
[
ξT yT uT

]T
= 0, R =

[
D 0 −N
Q −Ip W

]
.

Therefore, [
ξ� ω� −y�

]
Ra =

[
ξ� ω�

]
R +
[
0 u� −y�

]
.

We are led to the following definition, where Rosenbrock descriptions are no
longer used:

Lemma and Definition 885. (1) Consider a control system (M,u, y) with
equation R

[
ξT yT uT

]T
= 0 over A (where M ∈ AModfp), and assume

that M has finite free resolution of length ≤ 1. The dual of (M,u, y) is the
triple (M�, u�, y∗) (where M� ∈ModfpA ) with equation

[
ξ� ω�

]
R +
[
0 u� −y�

]
= 0. (5.46)

The input of this dual system is u� = (u�i )1≤i≤p, its output is y� = (y�i )1≤i≤m.
(2) Let W ∈ AMod, and assume that W is a k-space. Let W ′ be another
k-space and let 〈−,−〉 : W ′ ×W → k be a nondegenerate bilinear form. Let
W ′ be canonically endowed with a structure of right A-module as above, so
that W ′ = E′W ′A where E′ = EndA (W ′). The W ′-behavior associated with
(M�, u�, y∗) is B� = HomA (M�,W ′); B� is a left E′-module, called the dual
of the W -behavior B = HomA (M,W ).

Proof. It remains to prove that B� is a left E′-module, but this is clear by
Theorem 236.

Remark 886. (i) The module M� ∈ ModfpA is not the dual M∗ of M
(2.2.5.1).
(ii) It can be convenient to think of M� as a left module M̆ over the oppo-
site ring Aop (Definition 219 and Proposition 229). When A is a ring of
linear generalized differential operators, one is led to use the adjoint of (•R)
(Lemma and Definition 360) since (R∗•) = ad (R•). Then, (5.46) can be
written

R∗
[
ξ̆
ω̆

]
+

⎡

⎣
0
ŭ
−y̆

⎤

⎦ = 0, (5.47)

and (5.47) determines the dual control system
(
M̆, ŭ, y̆

)
over Aop.
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Corollary 887. Consider the state-space system (5.34), (5.35). Its dual is

− ∂ x̆ = FT x̆ + HT ŭ, (5.48)

y̆ = GT x̆ +
α∑

i=0

(−1)i JTi ∂
i ŭ. (5.49)

Proof. The state-space system (5.34), (5.35) can be written

R
[
xT yT uT

]T = 0, R =
[
∂In − F 0 −G

H −Ip
∑α
i=0 Ji ∂

i

]
.

Therefore, (5.47) yields by Lemma and Definition 360
⎡

⎣
−∂In − FT HT

0 −Ip
−GT

∑α
i=0 J

T
i ∂i

⎤

⎦
[
ξ̆
ω̆

]
+

⎡

⎣
0
ŭ
−y̆

⎤

⎦ = 0.

Setting x̆ = −ξ̆, one obtains (5.48) , (5.49).

5.6.3 Observability

Let A be an Ore domain which is a k-algebra (k = R or C), and let (M,u, y)
be a control system over A (Definition 851).

Definition 888. The above control system is said to be strongly observable
if M = [u, y]A, i.e., every element of M can be expressed as an A-linear
combination of the elements ui (1 ≤ i ≤ m) and yj (1 ≤ j ≤ p).

Corollary 889. (i) Let the control system (M,u, y) be given by an admissible
Rosenbrock description (5.28) (Lemma and Definition 856). Then (M,u, y)

is strongly controllable if, and only if
[
D
Q

]
is left-invertible over A.

(ii) Assuming that M has finite free resolution of length ≤ 1, (M,u, y) is
strongly observable if, and only if its dual

(
M̆, ŭ, y̆

)
is strongly controllable.

Proof. (i) We have M = [u, y]A if, and only if M/ [u, y]A = 0. Let ξ be the
partial state with entries ξi (1 ≤ i ≤ r) and let ξ̄i be the canonical image of
ξi in M/ [u, y]A. Last, let ξ̄ be the column with entries ξ̄i (1 ≤ i ≤ r). The
column ξ̄ is submitted to the only relation

[
D
Q

]
ξ̄ = 0.

Therefore, M/ [u, y]A =
[
ξ̄
]
A

is zero if, and only if
[
D
Q

]
is left-invertible

over A.
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(ii) If M has finite free resolution of length ≤ 1, then its dual
(
M̆, ŭ, y̆

)

exists (Lemma and Definition 885). It is given by the Rosenbrock description
(5.45), the first equation of which can be written

[
ξ� u�

]
[
D
Q

]
= 0.

By Theorem and Definition 874(2), this control system is strongly controllable

if, and only if
[
D
Q

]
is left-invertible over A.

In what follows, all control systems (M,u, y) are assumed to be such that the
left A-module M has finite free resolution of length ≤ 1. Due to the above,
we are led to the following.

Definition 890. A control system (M,u, y) is said to be observable (resp.,
freely observable,...) if its dual is controllable (resp., freely controllable, ...).
If (M,u, y) is a state-space system, it is said to be Kalman-observable if its
dual is Kalman-controllable.

The reader is requested to dualize Theorem and Definition 879, and Propo-
sitions 881, 883. By Corollary 887, and by Lemma and Definition 360, the
matrix Γs is changed to Ωs defined for s ≥ 1 as follows:

Ωs =
[
Q0

... Q1

... · · ·
... Qs−1

]
, (5.50)

Q0 = H̆T , Qi+1 =
(
FT + β δ In

)
Qα
i , i ≥ 0. (5.51)

For discrete-time systems (see Remark 880), Ωs can be changed to

Ω′s =
[
Q′0

... Q′1
... · · ·

... Q′s−1

]
,

Q′0 = H̆T , Q′i+1 = FT Q′αi , i ≥ 0.

5.6.4 Bicoprime Factorizations

Let R be an Ore domain and let F be its division ring of fractions.

Definition 891. Let G ∈ pFm, Nr ∈ pRρ, D ∈ Matρ (R) , Nl ∈ ρRm and
W ∈ pRm, where D is invertible over F. The quadruple (Nr, D,Nl,W ) is
called a bicoprime factorization of G over F if (i) G = NrD

−1Nl + W, (ii)
(D,Nl) is strongly left-coprime, and (iii) (D,Nr) is strongly right-coprime.

Lemma 892. If R is a Bézout domain, then every G ∈ M(F) (with the
notation in Subsect. 3.7.1) admits a bicoprime factorization over F.
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Proof. If R is a Bézout domain, then every G ∈ M(F) admits a left-
coprime factorization (D,Nl) over F according to Theorem 670, and then
(Ip, D,Nl, 0) is a bicoprime factorization of G over R.

Theorem 893. Let (Nr, D,Nl,W ) be a bicoprime factorization of G ∈M(F)
over R.

(i) If G admits a left-coprime factorization
(
D̃l, Ñl

)
over R, then

cokerR (•D) ∼= cokerR
(
•D̃l

)
.

(ii) If G admits a right-coprime factorization
(
D̃r, Ñr

)
over R, then

cokerR (•D) ∼= cokerR
(
•D̃r

)
.

Proof. (i) Consider the following Rosenbrock description over R:
{

D ξ = Nl u,
y = Nr ξ +W u.

Since D is square and regular, this Rosenbrock description is admissible ac-
cording to Lemma and Definition 855. Therefore, it represents a control sys-
tem (M,u, y) whose transfer matrix is G. Obviously, M/ [u] = cokerR (•D).

Since (D,Nr) is strongly right-coprime, the matrix
[
D
Nr

]
is left-invertible

over R, therefore the control system (M,u, y) is strongly observable by Corol-
lary 889(i), which implies that M = [ξ, u] = [y, u] . The module M is defined
by

[
D −Nl

] [ ξ
u

]
= 0

and since (D,Nl) is strongly left-coprime,
[
D −Nl

]
is right-invertible, which

implies that the system M is strongly controllable by Theorem and Definition
874(2). Let M̃ = cokerR

(
•
[
D̃l −Ñl

])
. Since G = D̃−1

l Ñl, M and M̃ have
the same transfer vector space (Corollary and Definition 853), i.e. F

⊗
R M =

F
⊗

R M̃ . Since both M and M̃ are torsion-free, they are isomorphic by
Corollary and Definition 341, thus they can be identified. Therefore, the
control system (M,u, y) can also be described by

[
D̃l −Ñl

]
[
y
u

]
= 0

and M/ [u] ∼= cokerR
(
•D̃l

)
.

(ii) is proved similarly.
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5.7 Differential-Difference Systems

As already said, for certain problems a purely algebraic approach is insuffi-
cient and topological notions must be added. Then, the notion of module
is no longer appropriate, and one is led to define the notion of ”topological
module” (in a sense which does not coincide with the usual one, as defined
in, e.g., [34], n◦III.6.6).

Convolutions systems over Lie groups, which include delay-differential sys-
tems and differential-difference systems over Lie groups, can be viewed as
special cases of topological systems. Convolution systems over Lie groups
have applications in various fields such as robotics, image processing, vision
and polymer science [56], [366], and [64].

Whereas the category AMod of left modules over a ring A is abelian, the
category ATMod of topological modules is only semiabelian (see Lemma
900 below). Therefore, all the notions introduced in Sections 1.2 and 5.3
are needed. Some results about topological vector spaces (Section 1.7) and
about Lie groups and Lie algebras (Section 1.8) are also needed.

5.7.1 Introductive Examples

Example 894. Consider the space A = E ′ (R) of distributions with compact
support included in R (1.7.3.5). The pair (E ′ (R) , �) is a convolution algebra.
A convolution system over R is defined by an equation of the form

R � w = 0, (5.52)

R ∈ qAk. The Laplace transform R̂ of R is well-defined as recalled in
(5.7.5.3) below. Taking the Laplace transform of (5.52), one obtains

R̂ ŵ = 0.

To simplify the notation, let us denote the convolution product as a usual
product. Then, (5.52) takes the usual form (5.1).
The convolution algebra A acts (via the convolution product) on the space
W = E (R) of indefinitely differentiable functions in R, thus W can be viewed
as a left A-module (1.8.1.4). Therefore, W -behaviors of linear systems over
A can be defined as usual (Definition 807). The question which naturally
arises is whether W is a cogenerator (for the category AMod or for a
subcategory of AMod).
Let Ri ∈ qiAk, i = 1, 2, and consider condition (C) and Property (P) below:
(C): imA (•R1) is closed in q1A.

(P): kerW (R1•) ⊆ kerW (R2•)⇐⇒ R2 = X R1 for some X ∈ q2Aq1 .

As shown in [103] (see also [139]), property (P) holds for aribitrary R2 if,
and only if condition (C) holds. Property (P) coincides with the property
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obtained in Theorem 812(iii). By Theorem 827(iv), W is a cogenerator for
the class of modules M1 = cokerA (•R1) which satisfy condition (C). The
point is that condition (C) is not algebraic, thus those modules do not form a
subcategory of AMod. However, as will be seen, they form a full subcategory
of the category ATMod. The above result is generalized in Subsect. 5.7.3.

Example 895. Consider the situation in Example 894. Let R̂1 (s) be the
Laplace transform of the matrix of distributions R1 ∈ qAk. The system

M1 = cokerA (•R1) = Ak/N1 (N = qAR1)

is called spectrally controllable if

rkC (R1 (s)) is constant as s varies in C

(see, e.g., [352]).
As shown in the above-quoted reference, M1 is spectrally controllable if,

and only if B1 = kerW (R1•) admits a dense image representation, i.e., there
exists a matrix R2 ∈ kAr such that

B1 = imW (R2•)

where the closure is taken in W k (recall that the multiplication is the convo-
lution product).

Now assume that condition (C) in Example 894 holds. Then, as shown
in ([353], Prop. 8 & Theorem 14), B1 = kerW (R1•) admits a dense image
representation if, and only if M1 is torsion-free.
These results are connected with Theorem 867 and with Lemma and Defini-
tion 872 with the following differences:

(a) According to Lemma and Definition 872, M1 is controllable if, and only
if it is torsion-free (without assuming that condition (C) holds).
(b) According to Theorem 867, an nD system M1 = cokerA (•R1) is control-
lable if, and only if the associated behavior kerW (R1•) (W = E (Rn)) admits
an image representation – a condition which is more restrictive than to admit
a dense image representation. In accordance with Gluesing-Luerssen et al.
[139], we will say that a behavior which admits a dense image representaion
is weakly controllable.

Again, weak controllability is not a purely algebraic notion, thus we are faced
with the same difficulty as in Example 894. The above result is generalized
in Subsect. 5.7.4, where differential systems with lumped shifts are studied.

Example 896. Let ∂ = d/dt and let σi (i = 1, ...,m) be the shift-forward
operator w (t) �→ w (t + τ i) where the positive numbers τ i are pairwise incom-
mensurate, and set σ = (σ1, ..., σm) , σ−1 =

(
σ−1

1 , ..., σ−1
m

)
. Our aim is to

study delay-differential delay systems (with incommensurate delays τ1, ..., τm)
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as well as the associated behaviors in a power of W where W is the classic
signal space E (R) . We first have to choose a suitable ring of operators.

(i) At first glance, the polynomial rings B1 = C [∂, σ] and B = C
[
∂, σ, σ−1

]

are good candidates (see, e.g., [251], [298]). Notice that the indeterminates
∂ and σ commute. However, the following difficulty arises: assume, to sim-
plify the discussion, that m = 1, and let R1, R2 ∈ B be given by R1 = ∂,
R2 = σ − 1. The W -behavior kerW (R1•) consists of all constant functions,
whereas kerW (R2•) consists of all periodic functions of period 1. Therefore,
kerW (R2•) � kerW (R1•). However, R1 does not divide R2 in B, i.e. prop-
erty (P) in Example 894 does not hold. Therefore, according to Theorem 827,
W is not a cogenerator in BMod. Moreover, W is not a cogenerator for the
full subcategory of BMod whose objects are cyclic and torsion. Neither is
the space D′ (R) of distributions on the real line or the space B (R) of hyper-
functions. Indeed, the above rationale still holds when W is replaced by any
of these two spaces. Therefore, one must choose another ring of operators.
(ii) Assume again that m = 1 and, to simplify the notation, assume that σ is
the shift-forward operator w (t) �→ w (t + 1). The Laplace transform yields
the ring-isomorphism

B−̃→C
[
s, es, e−s

]
.

These two rings are identified in what follows. We know that the dual
W ′ = E ′ (R) is the space of compactly supported distributions on the real
line (1.7.3.5). Consider the subring PW (C) of O (C) consisting of those
functions f for which there exist real numbers a ≥ 0, c ≥ 0 and an integer
N ≥ 0 such that for every s ∈ C,

|f (s)| ≤ c (1 + |s|)N ea|Re s|.

According to the Paley-Wiener-Schwartz theorem ([43], Section 12.3.4), the
Laplace transform is an isomorphism

E ′ (R) −̃→PW (C) ,

thus let us identify E ′ (R) with PW (C) . The set

H =
{
b (s)
a (s)

: b (s) ∈ C
[
s, es, e−s

]
, a (s) ∈ C [s]× ,

b (s)
a (s)

∈ PW (C)
}

is both a subring of PW (C) and an over-ring of B (with the above identi-
fications). The elements of H are Laplace transforms of delay-differential
operators with distributed delays. For example, f (s) = 1−e−s

s
is the transfer

function of the operator

w (t) �→
∫ t

t−1

w (ζ) dζ.
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As shown in [137], although the commutative domain H is is neither Noethe-
rian nor a UFD, H is an elementary divisor ring (Lemma and Definition
655(iii)), therefore linear systems over H have very nice algebraic properties
which are very similar to those of linear systems over a commutative princi-
pal ideal domain (Lemma and Definition 655(i)). In addition, W = E (R)
is a cogenerator for HModfp by ([139], Theorem 5.3(1)).
(iii) The above construction of the ring H can be generalized to the case
m > 1. However, the ring H then obtained is no longer an elementary
divisor ring (nor a Bézout domain [153]).
Let Ri ∈ qiHk, i = 1, 2 and consider condition (C’) and Property (P’) below:
(C’): rkH (•R1) = q1.

(P’): kerW (R1•) ⊆ kerW (R2•)⇐⇒ R2 = X R1 for some X ∈ q2Hq1 .

As shown in [153], property (P’) holds if condition (C’) holds. Therefore, W
is a cogenerator for the full subcategory of HMod consisting of all modules M1

of the form cokerH (•R1) where R1 satisfies condition (C’); these H-modules
M1 are those which have finite free resolution of length ≤ 1 (3.5.4.1).
Although the result in (iii) seems to be purely algebraic, to our knowledge it
cannot be established using only algebraic arguments: once again, the category
ATMod must be used. The result in (iii) is generalized in Subsect. 5.7.5.

5.7.2 The Category of Topological Modules

In everything that follows, we make the following

Assumption 897. k is the field of real or complex numbers and all algebras
are associative, unitary and defined over k.

Let A be an algebra, let W be a k-vector space and consider a nondegenerate
bilinear form

〈−,−〉 : A×W → k.

We also consider the nondegenerate bilinear form

〈−,−〉˜ : W ×A→ k (5.53)

defined by 〈w, a〉˜ = 〈a,w〉 for any a ∈ A and w ∈ W . The following
facts are classical ([36], n◦II.6.2): the space W is canonically isomorphic to,
and identified with, the topological dual A′ of (A, σ (A,W )), i.e., of A en-
dowed with the topology σ (A,W ); this statement is also valid with W and A
interchanged; (A, σ (A,W )) and (W,σ (W,A)) (respectively written A and
W in what follows, for short). We know that A and W are locally convex
topological vector spaces (LCSs) and Hausdorff (1.7.2.2).

A left A-module M is called topological if it is endowed with a structure
of LCS and if all maps A → M : a �→ am, m ∈ M , are continuous; a topo-
logical right A-module M is similarly defined. (Note that the definition of a
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topological module over a topological ring is different ([34], n◦III.6.6).) The
algebra A may be itself a topological left or right A-module. The algebraic
dual A∗ = Homk (A,k) is a left and right A-module via

(x) aα = (xa)α and (αa) x = α (ax) , α ∈ A∗, a, x ∈ A.

In general, A′ = W is not an A-submodule of A∗ and when this happens is
characterized below:

Lemma 898. (1) The following conditions are equivalent:
(i) The left module AA is topological, i.e., all maps a �→ ab (b ∈ A) are
continuous.
(ii) W is a left A-module with 〈a, bw〉 = 〈ab,w〉 for all a, b ∈ A and w ∈W .
Then also all maps W →W : w �→ bw (b ∈ A) are continuous.
(2) The following properties are equivalent:
(i’) The right module AA is topological.
(ii’) W is a right A-module with 〈wa, b〉˜ = 〈w, ab〉˜ for all a, b ∈ A.
Then also all maps W →W : w �→ wb (b ∈ A) are continuous.
(3) If the conditions of (1) hold, then those of (2) are equivalent to:
(iii’) The left module AW is topological.

Proof. (1). (i)⇒(ii): If a �→ ab is continuous, then so is bα : a �→ a (bα) =
(ab)α for any α ∈ A′ = W with the identification W � w �→ 〈−,w〉 ∈ A′.
Hence A′ = W is an A-submodule of A∗. (ii)⇒(i): If (ii) holds, then bw ∈ W
for any b ∈ A, w ∈ W , therefore the map A � a �→ 〈a, bw〉 = 〈ab,w〉 ∈ k is
continuous which implies that so is the map a �→ ab. The maps w �→ 〈a, bw〉
are continuous by the above equality. (2) is shown like (1).

(3). If (ii) holds, the following conditions are equivalent: all maps
b �→ bw are continuous, i.e., (iii’) holds; all maps b �→ 〈a, bw〉 = 〈ab,w〉 are
continuous; all maps b �→ ab are continuous, i.e., (i’) holds.

Definition 899. Assuming that all conditions of Lemma 898 are satisfied,
the category of topological left A-modules and continuous linear maps is called
the category of topological left A-modules and written ATMod.

Lemma 900. ATMod is a semiabelian category with arbitrary products and
coproducts and with projective generator A.

Proof. (a) The category C = ATMod is a subcategory of AMod; C is
obviously additive and has kernels and cokernels which are the algebraic
ones endowed with the induced and coinduced topology, respectively, thus C
is preabelian. Let •f : X → Y be a morphism of C and find be its induced
morphism in AMod. Then find is bijective (since AMod is abelian) and
continuous by definition of the topologies of coimf and of im f . Therefore,
find is the induced morphism of f in C. Since find is both a monomorphism
and an epimorphism, the preabelian category C is semiabelian. Last, C has
arbitrary products and coproducts which are the algebraic ones endowed with
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the product topology and the locally convex direct sum topology, respectively
([36], §II.4, Definition 2).

(b) Let M ∈ C. There exists an A-linear surjection •ϕ : A(I) � M . Let
•ι : A ↪→ A(I) be the canonical injection. Let •f = •ιϕ : A → M ; for any
a ∈ A, (a) f = am where m = (1) f , thus f is continuous since the module
M is topological. Therefore, ϕ is continuous (if A(I) is endowed with the
locally convex direct sum topology) according to ([36], §II.4, Prop. 6). This
proves that A is a generator of C.

(c) Let •f : A → M and •g : M1 � M be respectively a morphism and
an epimorphism of C. Since •f and •g are respectively a morphism and an
epimorphism of AMod, there exists a morphism •h : A → M1 of AMod
such that •f = •hg. Since M1 is topological, •h is continuous, i.e., is a
morphism of C, thus A is projective in C.

5.7.3 Cogenerators for Topological Modules

For X,Y ∈ ATMod, we denote by HomA,c (X,Y ) the k-vector space con-
sisting of all continuous A-linear maps X → Y . Endowed with the topology
of pointwise convergence, HomA,c (X,Y ) is an LCS; in particular we have the
additive left exact contravariant functor

BW : ATMod→ModE : M �→ BW � HomA,c (M,W ) ,

E � HomA,c (W,W ) .

The image BW (ATMod) is called the class of all (topological) W -behaviors.
All results in Subsect. 5.3.2 are valid, in particular Theorems 638 and 827.

Remark 901. Let M ∈ C. By Lemma 900, there exists a set of indices I such
that M is a factor of A(I), i.e., there exists a continuous A-linear surjection
ϕ : A(I) � M . There exists a continuous bijection ϕind : A(I)/N → M
where N = kerϕ. But ϕ−1

ind is not continuous in general, i.e., is not an
isomorphism of C, thus A(I)/N and M cannot be identified; then, M is not
an A-cokernel.

Let I be a set of indices. The nondegenerate form 〈−,−〉 is extended to the
nondegenerate form

〈−,−〉 : A(I) × IW : (x,w) �→
∑

i∈I
〈xi,wi〉

where all terms of the sum are zero except a finite number of them. The lo-
cally convex topologies induced by this form in IW and A(I) are respectively
the product topology σ

(
IW,A(I)

)
=
∏
i∈I σ (W,A) ([36], §II.6, Prop. 8) and

the topology σ
(
A(I), IW

)
. The latter coincides with the locally convex di-

rect sum topology
⊕

i∈I σ (A,W ) if, and only if I is finite ([316], Chap. IV,
Exercise 8). In the sequel, A(I) is endowed with the topology σ

(
A(I), IW

)
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and I may be assumed to be finite, to avoid confusions. If N ⊆ A(I) in
ATMod (which means that N is a subspace of A(I)), its polar N 0 ⊆ IA is
defined as usual:

N0 =
{
w ∈ IW : 〈N,w〉 = 0

}
=
⋂

x∈N
ker 〈x,−〉

and N0 is closed in IW . According to the bipolar theorem ([36], n◦II.6.3),
N00 = N where N denotes the closure of N in A(I).

Theorem 902. (i) Let N ⊆ A(I); then

N⊥ = N0 and N⊥⊥ = N 00 = N .

(ii) Let M = A(I)/N be an A-cokernel in C =ATMod; then M is Hausdorff
if, and only if N = N⊥⊥.
(iii) Let D be a full subcategory of C, all objects of which are A-cokernels.
Then W ∈ C is a cogenerator for D if, and only if all objects M = A(I)/N
of D are Hausdorff.

Proof. (i): (a) The identity

〈ax,w〉 = 〈a, xw〉 , a ∈ A, x ∈ A(I), w ∈ IW

holds. By definition, w ∈ N⊥ if, and only if for any x = (xi)i∈I ∈ A(I),
xw �

∑
i∈I xiwi = 0. Since 〈−,−〉 is nondegenerate, the last equality is

equivalent to 0 = 〈a, xw〉 = 〈ax,w〉 for any a ∈ A, thus to 〈x,w〉 = 0. Thus
N⊥ = N0. (b) Since the module AA is topological, the maps A→ A : x �→
ax and A(I) → A(I) : x → ax (a ∈ A) are continuous ([36], n◦II.4.5). This
implies that aN ⊆ aN ⊆ N and that N is a left A-submodule of A(I). Now,
x ∈ N⊥⊥ if, and only if for any w ∈ N⊥ = N0, xw = 0. The last equality
holds if, and only if for all a ∈ A, 0 = 〈a, xw〉 = 〈ax,w〉, i.e., ax ∈ N 00 = N .
Since N is a left A-submodule of A(I), this is equivalent to x ∈ N .

(i) implies (ii) which implies (iii) by Lemma and Definition 504(ii), and
Theorem 638.

Remark 903. (i) Theorem 902 generalizes the result recalled in Example
894. See another nontrivial example in [49].
(ii) Let W be an LCS and A ⊆ W ′. Then, the restriction to A × W of
the canonical bilinear form 〈−,−〉 : W ′ × W → k is possibly degenerate;
the topology σ (A,W ) is Hausdorff (since it is induced from σ (W ′,W )) but
σ (W,A) is not in general ([36], §II.6, Prop. 1). Therefore, the statements
of Theorem 902 are no longer valid. This situation is further investigated in
the two next sections where convolution systems are considered.
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5.7.4 Differential Systems with Lumped Shifts over
Lie Groups

5.7.4.1 Actions over a Lie Group and Convolution Algebra

In everything that follows, we’ll use the following

Notation 904. G is a Lie group with Lie algebra g, W = E (G) is the space
all k-valued indefinitely differentiable functions on G, and its topological dual
W ′ is the space of all k-valued distributions with compact support included
in G.

The group G continuously acts on W via a left and a right action, both of
them denoted by ◦, and defined by

(i) (y) (a ◦ ϕ) = (ya)ϕ (left action of G on a left map, which is a right
shift),

(ii) (ϕ ◦ a) (x) = ϕ (ax) (right action of G on a right map, which is a left
shift),

for any x, y, a ∈ G and ϕ ∈ W . By (1.36), this yields for any S, T ∈ W ′

〈S, a ◦ ϕ〉 = 〈S � δa, ϕ〉 , 〈ϕ ◦ a, T 〉˜ = 〈ϕ, δa � T 〉˜

with Notation (5.53).
These actions induce respectively a right and a left action on W ′, both of

them also denoted by ◦, according to

〈S ◦ a, ϕ〉 = 〈S, a ◦ ϕ〉 , 〈ϕ, a ◦ T 〉˜ = 〈ϕ ◦ a, T 〉˜ (5.54)

and from the above

S ◦ a = S � δa, a ◦ T = δa � T.

We also define a left and a right action of W ′ on W , both of them denoted
by ◦, respectively by

S◦ : W →W : (S ◦ ϕ) (x) = 〈S, ϕ ◦ x〉 (5.55)

◦S : W →W : (x) (ϕ ◦ S) = 〈x ◦ ϕ, S〉˜ (5.56)

for any ϕ ∈ W and S ∈ W ′. As a consequence of (1.37), one easily obtains

ϕ ◦ S = Š � ϕ, S ◦ ϕ = ϕ � Δ̌−1Š

where Δ is the modulus function, ϕ̌ (y) = ϕ
(
y−1
)

and
〈
Š, ϕ
〉

= 〈S, ϕ̌〉 for
any y ∈ G, ϕ ∈ W and S ∈ W ′. We have the following:
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Lemma 905. (i) The equality

〈T, S ◦ ϕ〉 = 〈ϕ ◦ T, S〉˜

holds for any S, T ∈W ′ and ϕ ∈W.
(ii) Both actions ◦ of W ′ on W induce one bilinear law of composition ◦ :
W ′ ×W ′ →W ′ according to

〈T ◦ S, ϕ〉 = 〈T, S ◦ ϕ〉 , 〈ϕ, T ◦ S〉˜ = 〈ϕ ◦ T, S〉˜ (5.57)

and this law of composition is the usual convolution product �.
(iii) For any S, T ∈W ′ and ϕ ∈W,

(T ◦ S) ◦ ϕ = T ◦ (S ◦ ϕ) , ϕ ◦ (T ◦ S) = (ϕ ◦ T ) ◦ S, (5.58)

i.e., W is a left and right W ′-module.

Proof. (i): We have

〈T, S ◦ ϕ〉 =
∫

G

dT (x)
∫

G
dS (y) (ϕ ◦ x) (y) =

∫

G

dT (x)
∫

G
dS (y)ϕ (xy)

thus
〈T, S ◦ ϕ〉 = 〈T � S, ϕ〉 . (5.59)

Similarly (denoting ϕ as a left map)

〈ϕ ◦ T, S〉˜ =
∫

G

dS (y)
∫

G
dT (x) (x) (y ◦ ϕ) =

∫

G

dS (y)
∫

G
dT (x) (xy)ϕ

thus
〈ϕ ◦ T, S〉˜ = 〈T � S, ϕ〉 . (5.60)

(ii): This is an obvious consequence of (5.59) and (5.60).
(iii): By (5.55) , (5.57) we get

〈U, T ◦ (S ◦ ϕ)〉 = 〈U � T ∗ S, ϕ〉 = 〈U, (T � S) ◦ ϕ〉 = 〈U, (T ◦ S) ◦ ϕ〉

which proves the first equality of (5.58). The second one is likewise deduced
from (5.56) and (5.57).

Definition 906. A convolution algebra is a subalgebra of (W ′, ◦).

5.7.4.2 Fundamental Principle and Divisibility

Let B be a convolution algebra. The restriction to B × W of the action
◦ : W ′×W →W and that of the canonical bilinear form 〈−,−〉 : W ′×W →
k are still denoted by ◦ and 〈−,−〉, respectively. In general the latter is
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degenerate, then the topology σ (B,W ) of B is Hausdorff (and induced by
σ (W ′,W )) but not the topology σ (W,B) of W (Remark 903). Therefore,
the theory in Subsect. 5.7 cannot be directly applied.

Example 907. Consider the case when B = Uk (g) (1.8.3.1); we have B =⊕
α∈Nn Dα

ξ δe, where N is the set of non-negative integers and the notation in
(1.8.1.3) is used; the polar Ao of A is given by

Ao =
{
w ∈ W : ∀α ∈ Nn, Dα

ξw (e) = 0
}

thus Ao �= 0 (except in the trivial case G = {e}). We have

A⊥ =
{
w ∈ W : ∀α ∈ Nn, Dα

ξ δe ◦w = 0
}

= 0

where Dα
ξ δe ◦w = Dα

ξ w, thus Ao �= A⊥ and Statement (ii) of Theorem 902
does not hold.

Let I be a set of indices; the canonical bilinear form 〈−,−〉 : B ×W → k
and the action ◦ : B×W →W are extended to B(I)× IW according to

〈−,−〉 : B(I) × IW : (T,w) �→
∑

i∈I
〈Ti,wi〉

◦ : B(I) × IW : (T,w) �→
∑

i∈I
Ti ◦wi.

As usual, the orthogonal space with respect to 〈−,−〉, i.e., the polar, is de-
noted by (−)0, and that with respect to ◦ by (−)⊥.

The following definition will also be needed in the sequel:

Definition 908. Let G be a Lie group; then Pcf (G) is the set of all sub-
groups H of G such that all finitely generated subgroups of H are polycyclic
by finite (Definition 161).

In everything that follows, we will use the following

Notation 909. H is a subgroup of G and A is a Noetherian subalgebra of
Uk (g).

The two main cases are A = Uk (g) –the algebra of invariant differential
operators– and A = Zk (g) –the algebra of bi-invariant differential operators–
when the latter is Noetherian (1.8.3.3). Let

B =
∑
x∈H δx ◦A, C =

∑
x∈G δx ◦A.

Setting ε (x)S � δx ◦S (x ∈ G, S ∈ A), this yields by (1.38) B = A ∗H and
C = A ∗G where ∗ denoted the crossed product (Definition 370). We have

C =
∑

x∈Ḡ δx ◦
(∑

x∈H δx ◦A
)

=
∑
x∈Ḡ δx ◦B
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where Ḡ ⊆ G is a set of representatives of the cosets of G modulo H. All
distributions belonging to A have their support included in {e}, thus again
by (1.38) all above sums are direct since G is the disjoint union of its distinct
cosets modulo H. In particular, B is a subalgebra of C and

C =
⊕

x∈Ḡ δx ◦B = C
⊗

B B (5.61)

is a free right B-module.
When G = Rn and H is a finitely generated subgroup of G, then B is

a convolution algebra of differential-difference operators with lumped shifts,
denoted by Ashift.

Lemma 910. Let H ∈ Pcf (G); then B = A ∗H is coherent.

Proof. Let H be the directed system of all finitely generated subgroups H
of G. The ring A is Noetherian , thus if H1 ∈ H, then the ring A ∗H1

is Noetherian again (Theorem 372), thus it is coherent (Proposition 511).
Moreover, let H1,H2 ∈ H be such that H1 ⊆ H2, let X1 ⊆ H1 be a set
of representatives of the cosets of H2 modulo H1, and let ϕ : H1 → H̄1

be a bijection where H̄1 is a set of units of A ∗H1 (Definition 370). Let
X̄1 = ϕ (X1). Then A ∗H2 is easily seen to be a left and right A ∗H1-
module freely generated by X̄1; thus it is a flat left and right A ∗H1-module
(3.5.3.1), and therefore

B =
⋃

I∈H

A ∗ I = lim−→
I∈H

A ∗ I

is coherent (Theorem 612).

Since the two rings B ⊆ C are subrings of W ′, W is both a left and right
module over B and over C via the actions ◦ induced by those defined in
(5.55) and (5.56). The nondegenerate bilinear form 〈−,−〉 : W ′ ×W → k
induces a bilinear form 〈−,−〉 : C×W → k. We have the following:

Lemma 911. The bilinear form 〈−,−〉 : C×W → k is nondegenerate.

Proof. The ring C contains all distributions δx, x ∈ G. If w ∈ W is such
that 〈C, w〉 = 0, then 〈δx, w〉 = w (x) = 0 for all x ∈G, thus w = 0.

Let R2 ∈ qBk, let N = Bq ◦R2 and let M = Bk/Bq ◦R2; then the sequence

Bq ◦R2−→ Bk −→M −→ 0

is exact in BMod and M is finitely presented in that category. The map
◦R2 is weakly* continuous since the convolution product � : E ′ (G)×E (G)→
E (G) is separately weakly* continuous (1.8.1.4). This map ◦R induces a
weakly* continuous map ◦R2 : Cq → Ck.
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Lemma 912. (i) Assume that H ∈ Pcf (G). Then there exist r ∈ N and a
matrix R1 ∈ rBq such that the sequence below is exact in BMod:

Br ◦R1−→ Bq ◦R2−→ Bk (5.62)

(ii) The exactness of the sequence (5.62) in BMod is equivalent to the ex-
actness of the sequence below in CMod:

Cr ◦R1−→ Cq ◦R2−→ Ck. (5.63)

Proof. (i): The ring B is coherent by Lemma 910, thus there exists a matrix
R1 such that the sequence (5.62) is exact in BMod by Theorem 514(ii).

(ii): As seen above, the right B-module C = C⊗BB is free, thus faithfully
flat (Corollary 616(ii)), thus the exactness of the sequence (5.62) is equivalent
to that of (5.63) (Lemma and Definition 614).

The following expresses when a fundamental principle for W -behaviors is
valid (compare with Corollary and Definition 592) using the above notation:

Corollary 913. Let R2 ∈ qBk be given and let R1 ∈ rBq be as in Lemma
912(i) if it exists. The following properties are equivalent:
(a) The fundamental principle holds, i.e.,

R2 ◦ kW = {u ∈ rW : R1 ◦ u = 0}

(R2 ∈ qBk, R1 ∈ rBq); i.e., the equation R2 ◦ w = u (u ∈ rW ) has a
solution w ∈ kW if, and only if u satisfies the compatibility (or integrability)
condition R1 ◦ u = 0.
(b) The map ◦R2 : Cq → Ck is strict, i.e., coimC ◦R2

∼= imC ◦R2 = Cq ◦R2.

Proof. By Lemma 911 and (5.57), the transpose of R2◦ : kW → qW is
◦R2 : Cq → Ck and that of R1◦ : qW → rW is ◦R1 : Cr → Cq. The
fundamental principle holds if, and only if the sequence

kW
R2◦−→ qW

R1◦−→ rW

is exact in the category Vctk of right k-vector spaces. By ([36], §II.6,
Remark 1 after Corol. 4 of Prop. 7), this holds true if, and only if the map
◦R2 : Cq → Ck is strict.

Remark 914. (i) If B = Uk (g), then R1 can be constructed via the Gröbner
basis algorithm which is applicable to universal enveloping algebras of finite-
dimensional Lie groups ([258], Sect. 5, Definition and Corollary (37)). (For
a general presentation of Gröbner bases, we refer to, e.g., [105], Chap. 15.)
(ii) Let 0 �= μ ∈ D (Rn) ⊆ W ′, where D (Rn) is the usual space of indefinitely
differentiable k-valued functions with compact support in Rn; then μ�W � W
([230], Subsect. II.3.1, Corollary 1), thus the module W ′W is not divisible
(Definition 596) and a fortiori not injective (Proposition 598).



380 5 Systems and Behaviors: A General Setting

(iii) If G = Rn and B = A, the fundamental principle holds ([231], Theorem
3.2), thus Condition (b) in Corollary 913 is always satisfied.
(iv) If G is solvable simply connected (1.8.2.3) and A = Zk (g) then AW is
a divisible ([95], Prop. 2).
(v) If A = Uk (g), the ring of all invariant differential operators over G, and
AW is divisible, then either G is abelian or has an abelian normal subgroup
of codimension 1 ([60], Prop. 2).
(vi) If G is the compact abelian torus R/Z and A = Uk (g) = Zk (g) =
k [d/dt], then AW is not divisible ([322], p. 225), hence not injective.
(vii) If G = Rn and B = Ashift, then BW is divisible, as shown in Ehrenpreis
[99].

Items (iv) and (v) of the above remark suggest preferring the commutative
algebra Zk (g) of bi-invariant differential operators over the algebra Uk (g) of
invariant differential operators regarding the existence of global C∞ solutions
of non-homogeneous differential equations over Lie groups.

Corollary and Definition 915. (1) Let μ be a left-regular element of B.
The following conditions are equivalent:
(i) μ◦ : W →W is an epimorphism;
(ii) ◦μ : C→ C is a strict monomorphism, i.e., C ◦ μ ∼= C.
(iii) ◦μ : W ′ → W ′ is a strict monomorphism for the weak* topology, i.e.,
W ′ ◦ μ ∼= W ′;
(iv) the principal ideal W ′ ◦ μ is weakly* closed in W ′;
(v) the principal ideal W ′ ◦ μ is strongly closed in W ′.
(2) A distribution μ ∈ B is called invertible2 if it satisfies the conditions in
(1).
(3) Assuming that all nonzero elements of B are left-regular, the left B-
module W is divisible if, and only if all nonzero elements of B are invertible
distributions, and then the B-module W is faithful.

Proof. (1): Let μ be left-regular in B. Then the sequence (5.62) is exact
with r = 0, q = k = 1, R1 = 0 and R2 = μ; therefore, by Lemma 912(ii),
◦μ : C → C is a monomorphism, i.e., coimC ◦μ = C/ ker ◦μ = C/ {0} = C.
Thus, by Corollary 913, (i) holds if, and only if ◦μ : C → C is strict , i.e.,
C = coimC ◦μ ∼= imC ◦μ. As a result, (i)⇔(ii).

(i)⇔(iii) by ([36], §IV.4, Corollary 2 of Theorem 1) since W is a Fréchet
space, and (i)⇔(iv) by ([36], §IV.4, Theorem 1).

Since W is a Montel space (1.8.1.3), it is reflexive (1.7.3.3), thus the
weak* closure of W ′ ◦ μ is equal to its weak closure (1.7.3.2), and therefore
also to its strong closure. Therefore, (iv)⇔(v).

2 This denomination is in accordance with that of Ehrenpreis [100] and Hörmander
([162], Definition 16.3.12), but in a more general context. In Schwartz’s termi-
nology ([322], Sect. VI.10), such a distribution μ is called completely invertible.
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(3): If all nonzero elements of B are left-regular, the divisibility of W
over B is equivalent to condition (1)(i) for all 0 �= μ ∈ B (Definition
596). This condition implies the faithfulness of W over B, i.e., μ ◦W = 0
implies μ = 0.

5.7.4.3 A Cogenerator Property

Let G be a Lie group and consider W -behaviors (W = E (G)) over the ring
B = A ∗ H where H is a polycyclic by finite subgroup of G. Thus let
C = A ∗G, R1 ∈ qBk, N = Bq ◦R1 ⊆ Bk, M = Bk/N , B = BW (M) = N⊥

and B⊥ = N⊥⊥ =
{
T ∈ Bk : T ◦B

}
= 0.

Theorem 916. (1) If M is torsion-free, or equivalently torsionless, then the
following equivalent properties hold:
(i) The canonical map φM : M →WB : m �→ (m ◦ w)w∈B is injective;
(ii) N = N⊥⊥.
(2) W is a cogenerator for the full subcategory D of BModfp, all objects of
which are torsion-free.

Proof. (1): By Theorem 372, B is semiprime Noetherian, thus semiprime
Goldie (Remark 334(1)); therefore, by Proposition 516, M is torsion-free if,
and only if it is torsionless, and then there exists an embedding M ↪→ Ar for
some integer r ≥ 1. In that case, by Theorem 514(iii), there exists a matrix
R2 ∈ kBr such that the sequences (5.62), (5.63) are exact. In particular,
with N = Bq ◦ R1, the module C

⊗
B N = Cq ◦ R1 = kerC ◦R2 is closed,

hence by Lemma 911 and Theorem 902(i), C
⊗

B N = (C
⊗

B N)⊥⊥ and the
canonical map

φ̃M̃ : M̃ →WB : m̃ �→ (m̃ ◦w)w∈B

(M̃ = C
⊗

B M , m̃ = 1⊗m) is injective. By (5.61), the map

Ψ : M → M̃ : m �→ 1⊗m = δe ⊗m

is injective too. In addition, •φM = •Ψ φ̃M̃ since m ◦w = (1⊗m) ◦ w for
the given identification, hence •φM is injective.

(2): This is a straightforward consequence of (1)(i) and of Corollary and
Definition 822.

Remark 917. (i) If M ∈ BModfp is not torsion-free, W is not a cogenera-
tor of the category consisting of M alone, as shown by ([137], Example 2.3).
(ii) All B-modules M ∈ D are Hausdorff by Proposition 516(iv) and The-
orem 514(iv) since the map ◦R2 in (5.62) induces a continuous injection
M = Bk/BqR1 ↪→ Br where Br ⊆ (W ′)r is Hausdorff.
(iii) The standard case of delay-differential systems is that when G = R

and H =
⊕

1≤i≤m Zτ i with delays τ 1, ..., τm (thus B = k
[
d/dt, σ, σ−1

]
,

σ = (σ1, ..., σm), σ−1 �
(
σ−1

1 , ..., σ−1
m

)
, σi : w (t) �→ w (t+ τ i)).
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5.7.4.4 Dense Image Representation and Weak Controllability

Theorem 918. Let (B, ◦) be a convolution algebra, let R1 ∈ qBk, let N =
Bq ◦R1, let M = Bk/N , and let B = BW (M) =

{
w ∈ kW : R1 ◦w = 0

}
.

(1) Assume that G is a Lie group and that H ∈ Pcf (G), so that B = A ∗H
is coherent according to Lemma 910. If M is torsionless, then it is Hausdorff
and B admits a dense image representation, i.e., B is weakly controllable,
or equivalently, the following property (P) holds:
(P): There exist r ∈ N and R2 ∈ kBr such that B = R2 ◦ (rW ) (where the
closure is taken in the usual Fréchet topology of compact convergence in rW
(1.8.1.3)).
In addition, if H is polycyclic by finite, then M is torsionless if, and only if
it is torsion-free by Theorem 916(1).
(2) Conversely, if B is dense in W ′, M is Hausdorff and B admits a dense
image representation, then M is both torsion-free and torsionless.
(3) If B is semiprime Goldie (e.g., when G is a Lie group and B = A ∗H
where H is polycyclic by finite, by Theorem 372) and 〈−,−〉 : B ×W → k
is nondegenerate, or in other words if B is wealkly* dense in W ′, then M is
torsion-free if, and only if M is Hausdorff (i.e., N is closed in Bk) and B
admits a dense image representation.

Proof. (1) By Proposition 516(iv) and Theorem 514(iii), there exists a matrix
R2 ∈ kBr such that both sequences (5.62), (5.63) are exact. The exactness
of (5.62) implies that N = imB (◦R1) = kerB (◦R2). Since ◦R2 : Bk → Br

is continuous and B is Hausdorff, the kernel N of this map is closed and
the factor M = Bk/N is Hausdorff. The exactness of (5.63) implies that
imC (◦R1) = kerC (◦R2). Therefore, by ([36], §II.6, Corol. 3 of Prop. 4, and
Corol. 4 of Prop. 6),

R2 ◦ rW = (kerC ◦R2)
0 = (imC ◦R1)

0 = kerW (R1◦) = B

where the closure is taken in the topology σ (rW,Cr) or equivalently in the
initial Fréchet topology of rW .

(2) Since M = Bk/N is Hausdorff, N = Bq ◦R1 is closed in Bk. In addi-
tion, the bilinear form 〈−,−〉 : B×W → k is nondegenerate since B is dense
–thus weakly* dense– in W ′ ([36], §II.6, Corol. 4 of Prop. 3). Therefore, N =
N⊥⊥ = B⊥ by 902(i), thus N =

(
R2 ◦ rW

)⊥
= (R2 ◦ rW )⊥ = kerB ◦R2.

Thus the sequence (5.62) is exact and M is both torsion-free and torsionless
by Proposition 516 and Theorem 514.

(3) (a) Necessary condition: Since B is an semiprime Goldie, the finitely
generated torsion-free module M admits by Proposition 516 a continuous
embedding in some Br (r ≥ 1), and there exists an exact sequence (5.62).
Since the form 〈−,−〉 : B×W → k is nondegenerate, the property R2 ◦ rW =
B is shown as in (1).

(b) The proof of the sufficient condition is the same as that of (2).
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Corollary 919. Assume G = Rn with the data of Theorem 918. Then W ′

is a commutative domain and so is any convolution algebra B. A module
M = Bk/Bq ◦ R1 is torsion-free if, and only if it admits an embedding in
some Br. Therefore, Theorem 918 gets the following form:

(1) If H is any subgroup of Rn, B = A ∗ H and M is torsion-free, then
N = Bq ◦R1 is closed in Bk, and B admits a dense image representation.
(2) If 〈−,−〉 : B ×W → k is nondegenerate, i.e., if B is wealkly* dense in
W ′, then M is torsion-free if, and only if M is Hausdorff and B admits a
dense image representation.

Corollary 919(2) generalizes the result in Example 895.
The matrix R2 in Theorem 918(1) can be constructed using the Gröbner

basis algorithm (see Remark 914(i)).

5.7.5 Differential Systems with Distributed Shifts
over Lie Groups

5.7.5.1 The Ring H (B) and Its Basic Properties

Recall that A is a Noetherian subalgebra of Uk (g) (Notations 904 and 909).
In addition, in the sequel we make the following

Assumption 920. H is a polycyclic subgroup of G such that all nonzero
elements of B = A ∗H are invertible distributions (Corollary and Definition
915).

Example 921. (i) If G = Rn, Assumption 920 is satisfied if A � Uk (g) =
k
[
∂
∂x1

, ..., ∂
∂xn

]
and H is any finitely generated subgroup of G by Remark

914(vi).
(ii) Let G be a solvable simply connected Lie group such that A � Zk (g) is
Noetherian (not all solvable Lie group have this property (1.8.3.3)). Then
Assumption 920 is satisfied with H = {e} by Remark 914(iv).

By Theorem 372, B is a Noetherian domain, thus an Ore domain, and it
admits a quotient division ring Q (B) of left fractions (a)◦−1 ◦ b and of right
fractions b ◦ (a)◦−1, where c = (a)◦−1 ◦ b (resp., c = b ◦ (a)◦−1) means by
definition that a ◦ c = b (resp., c ◦ a = b).

Recall that μ ◦ ν = μ � ν for any μ, ν ∈W ′ by Lemma 905(ii).

Theorem and Definition 922. (1) Let

H (B) �
{
b ◦ (a)◦−1 ∈ Q(B) : ∃μ ∈ W ′, b = μ ◦ a

}
.

Then H (B) is a subring of both Q(B) and W ′, and H (B) = Q (B) ∩W ′.
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(2) The following conditions are equivalent for a right fraction b ◦ (a)◦−1 ∈
Q(B):
(i) b ◦ (a)◦−1 ∈ H (B);
(ii) kerW (a◦) ⊆ kerW (b◦).
(3) H (B) is an Ore domain, thus is weakly finite (Exercise 481(2)), and its
quotient division ring is Q (B).
(4) When G = R and H �= {e} is cyclic, H (B) is not Noetherian.

Proof. (1) is clear. (2) By definition, b ◦ (a)◦−1 ∈ Q(B) belongs to H (B) if,
and only if there exists μ ∈ W ′ such that b = μ ◦ a. Let w ∈ kerW a◦; then
a ◦w = 0 and b ◦w = (μ ◦ a) ◦w = μ ◦ (a ◦ w) = 0 by Lemma 905(iii), which
implies that kerW (a◦) ⊆ kerW (b◦).

Conversely, let a, b ∈ B, a �= 0, such that kerW (a◦) ⊆ kerW (b◦). For any
μ ∈ B, let Bμ = (W ′ ◦ μ)⊥. We have Bμ = kerW (μ◦) and W ′ ◦ μ = B⊥μ by
Theorem 902(i) since 〈−,−〉 : W ′ ×W → k is nondegenerate. By Corollary
and Definition 915(iii), W ′ ◦ μ = W ′ ◦ μ. Thus the assumption kerW (a◦) ⊆
kerW (b◦) implies W ′ ◦ b ⊆W ′ ◦ a, hence b ∈W ′ ◦ a and b ◦ (a)◦−1 ∈ H (B).

(3) H (B) is an integral domain since H (B) ⊆ Q(B). Let us show that
H (B) is right Ore, i.e., whenever f1, f2 ∈ H (B)×, f1◦H (B)∩f2◦H (B) �= 0,
in other words there exist g1, g2 ∈ H (B)× such that f1 ◦ g1 = f2 ◦ g2. This
happens if, and only if g2 =

(
f◦−1
2 ◦ f1

)
◦ g1 where f◦−1

2 ◦ f1 ∈ Q (B). There
exist b, a ∈ B× ⊆ W ′× such that f◦−1

2 ◦ f1 = b ◦ (a)◦−1
. Take g1 = a, g2 = b.

Then g1, g2 ∈ H (B)× and f1 ◦ g1 = f2 ◦ g2 as desired. The definition of
H (B) is left/right symmetric, thus H (B) is a left Ore domain too.

An Ore domain is weakly finite according to (Exercise 481(4)). We have
B ⊆ H (B) ⊆ Q(B), thus the quotient division ring of H (B) is Q (B).

(4) When G = R and H �= {e} is cyclic, then H (B) is not Noetherian by
([137], Prop. 3.1(c)).

5.7.5.2 Cogenerator Properties

Since H (B) ⊆W ′, W has a canonical structure of H (B)-module, by restric-
tion of the ring of scalars.

Theorem 923. (1) For i = 1, 2, let Ri ∈ qiH (B)k, let Ui = W ′qi ◦ Ri and
let Bi = U⊥i = kerW (Ri◦). Assume that rkR2 = q2. Then:
(i) The map R2◦ : kW → q2W is surjective; in particular all nonzero dis-
tributions belonging to H (B) are invertible and the H (B)-module W is both
divisible and faithful.

(ii) B⊥2 = U⊥⊥2 = U2 where B⊥2 = B
⊥(W ′)
2 �

{
w′ ∈ kW ′ : w′ ◦B2

}
= 0.

(iii) kerW (R2◦) ⊆ kerW (R1◦) if, and only if there exists X ∈ qiH (B)q2 such
that R1 = X ◦R2.
(2) The H (B)-module W is a cogenerator for the full subcategory D of
H(B)Mod, the objects M which have finite free resolution of length ≤ 1.
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Proof. (1): (i): The assumption means that R2 is right-invertible over Q (B)
and implies that R2 is right-invertible over Q (B), i.e., there exists a matrix
X2 ∈ k Q (B)q2 such that R2 ◦ X2 = Iq2 . Since B is an Ore domain, for
each j ∈ {1, ..., q2}, all entries of the j-th column of X2 have a common right
denominator μj ∈ B× (Corollary 329), i.e., there exist elements (Y2)ij ∈ B
(1 ≤ i ≤ k) such that (X2)ij = (Y2)ij ◦ μ

◦−1
j ; then (Y2)ij = (X2)ij ◦ μj ∈ B

and
R2 ◦ Y2 = R2 ◦

(
X2 ◦ diag

(
μj
)
1≤j≤q2

)
= diag

(
μj
)
1≤j≤q2 .

Therefore, for any w ∈ q2W ,

R2 ◦ (Y2 ◦ w) = diag
(
μj
)
1≤j≤q2 ◦ w =

(
μj ◦ wj

)
1≤j≤q2 .

By hypothesis, each distribution μj is invertible and μj◦ : W →W is surjec-
tive. Therefore, R2◦ : kW → q2W is surjective too.

(ii): The transpose of R2◦ : kW → q2W is ◦R2 : W ′q2 → W ′k and the
spaces kW , q2W are Fréchet spaces. Therefore, by (i) and ([162], Lemma
16.5.8), ◦R2 : W ′q2 → W ′k is injective and W ′q2 ◦R2 is weakly* closed in W ′k.
Therefore, B⊥2 = U⊥⊥2 = U2 by Theorem 902(i) since 〈−,−〉 : kW ′×W k → k
is nondegenerate.

(iii): The sufficient condition is obvious. Let us prove the necessary condi-
tion. If B2 ⊆ B1, then W ′q1 ◦R1 ⊆ B⊥1 ⊆ B⊥2 and B⊥2 = W ′q2 ◦R2 by (ii).
Thus W ′q1 ◦ R1 ⊆ W ′q2 ◦ R2, hence every row of R1 and therefore R1 itself
are left-multiples of R2, i.e., there exists X ∈ q2W ′q1 such that R1 = X ◦R2.
Since rkR2 = q2, after a possible permutation of columns we obtain

Ri =
[
R′i R

′′
i

]
∈ qiH (B)qi+(k−qi) (i = 1, 2)

where R′2 is invertible over Q (B). Then R′1 = X ◦R′2 and X = R′1 ◦ R′◦−1
2 .

As in (i) we obtain Y ∈ q1Bq2 and νi ∈ B× (1 ≤ i ≤ q2) with R′2 ◦ Y =
diag (νi)1≤i≤q2 = Δ, hence

X = R′1 ◦R′◦−1
2 = R′1 ◦ Y ◦Δ◦−1 ∈ q1 (Q (B)

⋂
W ′)q2 = q1H (B)q2 .

(2) is a consequence of (1)(iii) and of Theorem 827(iii).

Remark 924. Theorem 923(2) generalizes the result recalled in Example
896(iii).

Corollary 925. Let R ∈ qH (B)k, let N = H (B)q ◦R, let M = H (B)k /N ,
and let B = N⊥ = kerW (R◦).
(i) rkR = q if, and only if R ◦ kW = qW .
(ii) If R has a left-inverse X with coefficients in W ′, i.e., X ∈ kW ′q, X ◦R =
δeIk, then B = 0.
(iii) Assuming that rkR = q, kerW (R◦) = 0 if and only if R ∈ GLq (H (B)).
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(iv) In particular, for R ∈ H (B), kerW (R◦) = 0 if, and only if R is a unit
in H (B).

Proof. (i): The necessary condition follows from Theorem 923(i).
Conversely, assume rkR < q. Since rkR is the dimension of the left Q (B)-

vector space generated by the rows of R (Theorem 409(i)), there exists a
nonzero row y ∈ Q(B)q such that y ◦ R = 0. Let d be a common left
denominator of all elements of y and x = d ◦ y ∈ H (B)q; then x ◦R = 0 and
x �= 0. Thus R ◦

(
kW
)
⊆ kerW (x◦) ⊆ qW . Assuming that kerW (x◦) = qW ,

then x◦ qW = 0 and xi ◦W = 0 for all i ∈ {1, ..., q}, a contradiction since the
H (B)-module W is faithful by Theorem 923(i). Therefore R ◦

(
kW
)
� qW .

(iii): Assume that rkR = q. Clearly, kerW (R◦) = 0 if, and only if
kerW (R◦) ⊆ kerW (Ik δe◦), and by Theorem 923(iii) this is equivalent to
the existence of a matrix X ∈ kH (B)q2 such that Ik δe = X ◦ R, thus R is
left-invertible over H (B) and rkR = k. Therefore, R is square, and since
H (B) is weakly finite by Theorem and Definition 922(2), the left-invertibility
of the square matrix R over H (B) is equivalent to its invertibility over that
ring.

(ii) is obvious and (iv) is a particular case of (iii).

Remark 926. Consider the data of Theorem 923 and Corollary 925 for the
special case G = R.

(a) Statement (iii) of Theorem 923 is proved in ([139], Theorem 5.3) without
any assumption on rkR2 when H �= 0 is cyclic. In that case, indeed, H (B)
is a Bézout domain – and even an elementary divisor ring, as already said –,

thus R2 is left-equivalent to a matrix
[
Q
0

]
where Q is full row rank (3.6.1.1),

thus the assumption on rkR2 becomes superfluous. We deduce that when H
is cyclic, the H (B)-module W is a cogenerator for H(B)Modfp.
When H is not cyclic, the situation is quite different: see Exercise 962.
(b) The units in H (B) are explicitly described in Corollary 931 below when
G = Rn.

5.7.5.3 Differential Systems with Distributed Shifts over Rn

In what follows, G = Rn and H is a finitely generated subgroup of G. The
ring of all entire complex-valued functions on Cn is denoted by O (Cn) , as
usual. For s, z ∈ Cn, we set

s • z �
∑

1≤i≤n
sizi, |s| =

(
∑

1≤i≤n
|si|2
)1/2

.

Let A � Uk (g) = k
[
∂
∂x1

, ..., ∂
∂xn

]
and B = A ∗H. The convolution algebra

B is now a commutative domain, thus the left fractions a◦−1 ◦ b ∈ Q(B)
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coincide with the right fractions b ◦ a◦−1 ∈ Q (B) and are denoted by b/◦a in
the sequel. As is well known, the Laplace transform

L : W ′ � μ �→ μ̂ (s) �
∫

Rn

e−s•xdμ (x) , s ∈ Cn

yields the following isomorphisms:

A ∼= C [s] , B ∼= PE (H) �
∑

τ∈H
C [s] e−τ•s, W ′ ∼= PW (Cn)

where PW (Cn) is the set of all functions f ∈ O (Cn) for which there exist
c > 0, a > 0 and N ∈ N such that

|f (s)| ≤ c (1 + |s|)N ea|Re(s)|.

The elements of PE (H) are called complex exponential-polynomial functions
[17] and the third isomorphism is given by the Paley-Wiener-Schwartz theo-
rem ([92], (22.18.7)). We have the following [1]:

Definition 927. Let μ ∈ W ′ and let μ̂ be its Laplace transform. Then μ̂ is
called slowly decreasing if there exist constants A,B and m such that

sup
|s−s0|≤A log(2+|s0|)

|μ̂ (s)| ≥ B (1 + |s0|)−m .

For other characterizations of slowly decreasing μ̂, see ([162], Theorem 16.3.10
and Definition 16.3.12). The following is proved in ([162], Theorems 16.3.10,
16.5.7 and 16.5.19), and in ([1], Appendix).

Lemma 928. For μ ∈ W ′, consider the convolution equation

μ � u = f (5.64)

where the distribution μ is given and the distribution u is looked for. The
following conditions are equivalent:

(i) If f ∈ W ′ and f̂ (s) /μ̂ (s) ∈ O (Cn), then there exists a (unique) u ∈ W ′

such that f̂ (s) /μ̂ (s) = û (s) (which implies (5.64));
(ii) Equation (5.64) has a solution u ∈W for any f ∈W , i.e., μ is invertible;
(iii) Equation (5.64) has a solution u ∈ D′ (Rn) for any f ∈ D′ (Rn);
(iv) μ̂ is slowly decreasing.

Malgrange established the equivalence between Corollary and Definition
915(1)(v) and Lemma 928(i) for 0 �= μ ∈ E ′ (Rn) ([230], Corollary on p. 310).
Ehrenpreis [100] introduced the notion of slowly decreasing μ̂ and proved the
equivalences (ii)⇔(iii)⇔(iv) of Lemma 928. The elements of PE (H) are eas-
ily seen to be slowly decreasing, and this proves Ehrenpreis’ result in Remark
914(vii).
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Lemma 929. Let F,G ∈ PE (H), G �= 0, be such that F/G ∈ O (Cn). There
exist H ∈ PE (H) and 0 �= P ∈ C [s] such that F/G = H/P .

Proof. (a) By ([17], Main Theorem), there exist H ∈ PE (Rn) and 0 �= P ∈
C [s] such that F/G = H/P .

(b) For any 0 �= L (s) ∈ PE (Rn), write L (s) =
∑

τ∈T
lτ (s) e−τ•s where T

is a finite subset of Rn and 0 �= lτ (s) ∈ C [s] for any τ ∈ T. The elements
τ ∈ T are the exponents [153] (or, more loosely speaking, the ”frequencies”
[17]) of L (s). The above element H ∈ PE (Rn) is constructed by induction
in ([17], Proof of Theorem 1). At each step, the exponents involved are
Z-linear combinations of those of F and G , i.e., belong to H; see ([17],
(2.20)-(2.26)) for more details. Since the procedure stops in a finite number
of steps, H ∈ PE (H). (When n = 1, the fact that the exponents of H are
Z-linear combinations of those of F and G is used in the proof of ([153],
Theorem 5.9).)

Theorem 930. The following rings coincide with the ring H (B):

H1 (B) =
{
b/◦a ∈ Q(B) : b̂ (s) /â (s) ∈ PW (Cn)

}
,

H2 (B) =
{
b/◦a ∈ Q(B) : b̂ (s) /â (s) ∈ O (Cn)

}
,

H3 (B) =
{
b/◦a ∈ Q(B) ∩W ′ : b ∈ B, a ∈ A×

}
.

Proof. (a) By definition, if u = b/◦a ∈ H (B), then û (s) ∈ PW (Cn) ⊆
O (Cn) which proves that H (B) ⊆ H1 (B) . The inclusion H1 (B) ⊆ H2 (B)
is obvious.

(b) Let b ∈ B, a ∈ B× be such that b̂ (s) /â (s) ∈ O (Cn). By Lemma 928,
the distribution a is invertible and there exists u ∈ W ′ such that a ◦ u = b.
Therefore, b/◦a ∈ H (B), hence H2 (B) ⊆ H (B).

(c) Last, H3 (B) = H2 (B) by Lemma 929.

Corollary 931. An element T ∈ H (B) is a unit if, and only if it has the
form T = αδτ , τ ∈H, α ∈ k×, i.e., is also a unit in B.

Proof. The indicated elements are obviously units. The ring B can be
written A

[
σ, σ−1

]
with the notation in Remark 917(iii) and A = k [∂],

∂ = (∂/∂xi)1≤i≤n. Assume that T1 ∈ H (B) is invertible and that

δ0 = T1 ◦ T2, Ti = bi/
◦ai, bi ∈ B, ai ∈ A× (i = 1, 2)

therefore b1 ◦ b2 = a1 ◦ a2 in B = A
[
σ, σ−1

]
, where we have used H (B) =

H3 (B). We infer b1 = a′1 ◦ δτ1 for some a′1 ∈ A and τ1 ∈ H, thus T1 =
b1/
◦a1 = (a′1/◦a1) ◦ δτ1 . Since T̂1 (s) is entire, so is the rational function

â′1 (s) /â1 (s) = â′′1 (s). Thus â′′1 (s) is a polynomial and T1 = a′′1 ◦ δτ1 with
a′′1 ∈ A. The same argument applies to T2 and furnishes
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δ0 = T1 ◦ T2 = (a′′1 ◦ a′′2) ◦ δτ1+τ2

thus a′′1 ◦ a′′2 = δ0 and τ 1 + τ2 = 0. Since A is a polynomial algebra,
a′′1 = α ∈ k×, hence T = αδτ as asserted.

Remark 932. (a) We consider the space PE � PE (Rn) of real polynomial-
exponential functions (PE ⊆ E (Rn)). Let Ri ∈ qiE ′ (Rn)k (i = 1, 2). As
shown by Malgrange ([230], Preliminaries, Sect. 4, Theorem 3), the following
conditions are equivalent:
(i) kerPE (R1◦) ⊆ kerPE (R2◦);
(ii) there exists a matrix X ∈ q1O (Cn)q2 such that

R̂2 = X R̂1.

(b) Let Ri ∈ qiE ′ (R)k (i = 1, 2) (notice that n = 1). Vettori and Zampieri
([352], Theorem 3), proved that Condition (ii) above is equivalent to:
(i’) kerW (R1◦) ⊆ kerW (R2◦) (W = E ′ (R)).
This result is based on Schwartz’s theorem on mean periodic functions, ex-
tended to vector-valued functions [321], [185], [268], which implies that for
any natural integer k, every shift-invariant closed subspace of kW is spanned
by the kC-valued exponential-polynomial functions it contains (when n = 1).
(c) As proved by Gurevic̆ ([152], Theorem 3.2), there exists a column R ∈
kE ′ (Rn), n ≥ 2, k = 6, such that

0 = kerPE (R◦) = k (PE)
⋂

kerW (R◦) , kerW (R◦) �= 0.

See Exercise 963.
(d) With the notation from Remark 917(iii), the ring H (B) = H3 (B) is iso-
morphic to D ∩ O (Cn) where D = k (s) [σ], s = (s1, ...sn), σ = (σ1, ..., σm).
The ring D is projective-free (Theorem 581(i)), thus a finitely presented D-
module M has a full row rank matrix of definition if, and only M has pro-
jective dimension ≤ 1. Assume m > 1. Since D has global dimension m
(Theorem 635(2)), such a module M is very peculiar, and so are probably also
the finitely presented H (B)-modules in Theorem 923(iv), for we conjecture
that H (B) has global dimension ≥ m.

5.8 Exercises

Exercise 933. Consider the Galois connection in Proposition 810. Assume
that the ring A is left coherent and that W is a cogenerator.
(i) Prove the following where N1, N2 ∈ Sk and B1,B2 ∈ kW :

(N1 + N2)
⊥ = N⊥1 ∩N⊥2 , (B1 ∩B2)

⊥ = B⊥1 + B⊥2 , (5.65)

(N1 ∩N2)
⊥ = N⊥1 + N⊥2 , (B1 + B2)

⊥ = B⊥1 ∩B⊥2 . (5.66)
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(ii) Deduce from the above that this Galois connection is a lattice-
antiisomorphism (Definition 112).
(Hint: to prove (5.66), show that whenever N1 and N2 are f.p., N1 ∩ N2 is
again f.p. using Lemma 509.).

Exercise 934. (1) Let g : t �→ t arctan (t)− 1
2

ln
(
t2 + 1

)
.

(i) Prove that g ∈ O (i.e., is an Ore function: see Lemma and Defintion 835).
(ii) Let f ∈ O; prove that f ◦ g ∈ O.
(2) Determine other examples of functions g ∈ O such that f◦g ∈ O whenever
f ∈ O.

Exercise 935. Let A = A0 (C) and m = A (t− x), x ∈ R.

(i) Prove that m is a left maximal ideal.
(ii) Prove that A/m ∼=

⊕
n≥0C δ(n)

x ⊆ B (R).

Exercise 936. Let R (∂) = ∂t2 ∈ A1 (C), and consider the system
R (∂) y = 0.

(i) Using Theorem and Definition 185(ii), calculate dimC kerB(R) (R•).
(ii) Using the commutation rule, and Theorem and Definition 185(ii), calcu-
late σ0 and show that kerB(R) (R•) ⊆ D′ (R).
(iii) Prove that kerB(R) (R•) = C δ ⊕C δ̇ ⊕C f.p.

(
1/t2
)
.

Exercise 937. Let R (∂) = t (∂t− 1) ∈ A1 (C).

(a) Answer the same questions as Questions (i) and (ii) of Exercise 936.
(b) Show that kerB(R) (R•) = C t ⊕ C t Υ ⊕ C δ, where Υ is the Heaviside
function.

Exercise 938. Let R (∂) = t2∂ − 1 ∈ A1 (C).

(i) Calculate dimC kerB(R) (R•).
(ii) Prove that kerB(R) (R•) � D′ (R).
(iii) Prove that kerB(R) (R•) = C f⊕C e−(1/(t+i0))⊕C

[
e1/z
]

where f ∈ E (R)
is the function defined by f (t) = e−t, t �= 0, and f (0) = 0.

Exercise 939. Let R (∂) = 1 + t2 ∈ A1 (C).

(i) Prove that cokerA1(C) (•R) �= 0, but that kerB(R) (R•) = 0.
(ii) Conclude that the A1 (C)-module B (R) is not a cogenerator.

Exercise 940. Consider a Rosenbrock description (5.28) over a left Ore do-
main A, let W be an injective cogenerator, and consider the set

Bc =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ mW,∃
[

ξ
y

]
∈ r+pW :

[
D
W

]
u =
[
D 0
−Q Ip

] [
ξ
y

]

⎫
⎪⎪⎬

⎪⎪⎭
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Using a rationale similar to that in the proof of Lemma and Definition 856,
show that the Rosenbrock description (5.28) is admissible if, and only if
Bc = mW.

Exercise 941. Consider the Rosenbrock description
⎡

⎣
∂ −1
0 ∂
0 t

⎤

⎦
[
ξ1

ξ2

]
=

⎡

⎣
1
0
0

⎤

⎦u,

y =
[
1 0
]
[
ξ1

ξ2

]

over A = C [∂]. Show that this Rosenbrock description is admissible and
calculate its transfer function.

Exercise 942. Consider the state-space system (5.34), (5.35). Let ζ = V x
where V ∈ GLn (K) is a change of basis matrix. Show that the new state ζ
satisfies the state equation ∂ζ = F̌ ζ + Ǧ u where F̌ V = V α F + V δ (i.e., F̌
is (α, δ)-conjugate to F by V ) and Ǧ = V αG.

Exercise 943. (1) Consider the control system

D (∂) y = N (∂)u

where D (∂) and N (∂) belong to the first Weyl algebra A1 (C), D (∂) is monic
(Definition 349(i)) and d◦ (N) < d◦ (D). Put D (∂) and N (∂) into the form
of right polynomials (2.7.4.2), i.e.,

D (∂) = ∂n + ∂n−1a1 + ... + an,

N (∂) = ∂n−1b1 + ...+ bn

and show that this system has a state-space realization of the form

ẋ =

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

−a1 1 0 · · · 0

−a2 0
...

. . .
...

... 0
...

. . . 0
...

...
... 0 1

−an 0 0 · · · 0

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

x +

⎡

⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

b1
...
...
...
bn

⎤

⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

u, (5.67)

y =
[
1 0 · · · · · · 0

]
x. (5.68)

(2) Consider the control system given by the Rosenbrock description
{
y = N (∂) ξ,
u = D (∂) ξ, (5.69)
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where D (∂) and N (∂) belong to the first Weyl algebra A1 (C), D (∂) is monic,
and d◦ (N) < d◦ (D). Put D (∂) and N (∂) into the form of left polynomials,
i.e.,

D (∂) = ∂n + a1∂
n−1 + ... + an,

N (∂) = b1∂
n−1 + ...+ bn

and show that this system has a state-space realization of the form

ẋ =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

−a1 −a2 · · · · · · −an
1 0 · · · 0 0

0 1
. . .

...
...

...
. . . . . . 0

...
0 0 0 1 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

x +

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

1
0
...
...
0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

u, (5.70)

y =
[
b1 b2 · · · · · · bn

]
x. (5.71)

Exercise 944. Consider the linear system M defined by ẏ = 0 over A1 (C),
and let W = E (R) .

(i) Determine BW (M).
(ii) Show that the function t �→ t does not belong to BW (M). Deduce that
BW (M) is not an A1 (C)-module.

Exercise 945. Let A = R [d/dt], let R ∈ qAk and let M = cokerA (•R). Let
I = (t1, t2) be a nonempty open interval of R and let W = E (I). A trajectory
on I is an element of kerW (R•) = HomA (M,W ), i.e., is an A-linear map
w : M →W . Let

−∞ ≤ t1 ≤ t2 < t3 ≤ t4 ≤ +∞.

A trajectory w′ : M → E ((t2, t3)) is said to be a restriction of w : M →
E ((t1, t4)) if, and only if for every m ∈ M , the functions w′ (m) and w (m)
coincide on (t2, t3). Let

−∞ ≤ t′1 < t′2 < t′3 < t′4 ≤ +∞.

Two trajectories w′ : M → E ((t′1, t
′
2)) and w′′ : M → E ((t′3, t

′
4)) are said to

be compatible if, and only if there exists a trajectory w : M → E ((t′1, t′4))
such that w′ and w′′ are restrictions of w. Then, w′ (resp., w′′) is called
the past (resp., future) trajectory.

(i) The behavior BW (M) is said to be controllable ”à la Willems” if, and
only if past and future trajectories are always compatible. Show that this
definition is equivalent to free controllability in Theorem and Definition 863,
to concatenability in Lemma and Definition 866, and to controllability in
Lemma and Definition 872.
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(ii) Assume that M is free with basis b1, ..., bk. For each i ∈ {1, ..., k}, choose
fi ∈ E ((t′1, t

′
4)) such that fi (t) = w′ (bi) (t) for t ∈ (t′1, t

′
2) and fi (t) =

w′′ (bi) (t) for t ∈ (t′3, t
′
4). Conclude that if M is free, then BW (M) is

controllable ”à la Willems”.
(iii) Assume that M is not free and take m ∈ T (M). Let 0 �= a (∂) ∈ A be
such that a (∂)m = 0. Check that any trajectory w is such that a (∂)w (m) =
0. Consider two trajectories w′ : M → E ((t′1, t

′
2)) and w′′ : M → E ((t′3, t

′
4))

such that w′ (m) and w′′ (m) do not lie on the same integral curve of the
differential equation a (∂) y = 0, and show that w′ and w′′ are not compatible.
Conclude that if BW (M) is controllable ”à la Willems”, then M is free.

Exercise 946. Let A = C [∂1, ∂2, ∂3] and W = E
(
R3
)
.

(i) Let

R =

⎡

⎣
0 −∂3 ∂2

∂3 0 ∂1

−∂2 ∂1 0

⎤

⎦ .

(a) Check that kerW (R•) consist of all vector fields w ∈ 3W such that
curlw = 0. By Poincaré’s theorem (see, e.g., [323], Theorem 6.7.19 and
Corollary 6.7.21), this implies that there exists f ∈ W such that w = �f
where ∇ is the gradient.
(b) Show directly that kerW (R•) = imW (S•) where S =

[
∂1 ∂2 ∂3

]T .
(c) Is kerW (R•) controllable?
(d) Is kerW (R•) freely controllable?
(Answer for (c): Yes. Answer for (d): No.)

Exercise 947. Consider the same ring and the same signal space as in Ex-
ercise 946, and let

R =
[
∂1 ∂2 ∂3

]
.

(a) Check that kerW (R•) consist of all vector fields w ∈ 3W such that
div w = 0 where div is the divergence. By Poincaré’s theorem (see above),
this implies that there exists f ∈ 3W such that w = curl f .
(b) Show directly that kerW (R•) has this image representation.
(c) Is kerW (R•) controllable? Is it freely controllable?

Exercise 948. Consider B = B1+B2 where B1 is the kernel in Exercise 946
(i.e., B1 = ker curl) and B2 is the kernel in Exercise 947 (i.e., B2 = ker div).
Determine an image representation for B.

(Hint: An image representation for B1 + B2 is given by I1 + I2 where Ii is
an image representation of Bi (i = 1, 2). This is known as the Helmholtz-
Hodge decomposition.)

Exercise 949. Let A = C [∂1, ∂2, ∂3, ∂4], where x4 = t, and let W = E
(
R4
)
.

Recall that the Maxwell equations are given by
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div (B) = 0,
∂4B + curl (E) = 0.

(i) Put these equations into the classical form Rw = 0.
(ii) Using Exercise 948, determine an image representation for kerW (R•),
and finally show that the Maxwell equations can be written

B = curl (A) ,
E = −∂4A−∇φ.

A is the magnetic vector potential, and φ is the scalar electric potential.

Exercise 950. Consider the classical operators in Exercises 947 and 946.
We use Definition 875.

(i) Let D1 = div; show that D∗1 = −∇.
(ii) Check that D∗1 is parametrized by D∗0 = curl and that D0 = ad (D∗0) = D∗0,
i.e., curl is a self-adjoint operator.
(iii) Check that curl is parametrized by − div, so that D∗0 is parametrized by
D∗−1 = − div, and ad

(
D∗−1

)
= D−1 = ∇.

(iv) Summarize the above by two exact sequences: the first one involving ∇,
curl and div, the second one involving the adjoints of these operators.

Exercise 951. Generalize Theorem and Definition 874(1) to the case when
R is GFLP and not necessarily left-regular.

Exercise 952. (i) Consider the linear system M given by (5.4) over the first
Weyl algebra A1 (C) . (i) Prove that a =

(
t∂2 + 1

)
and b = (1 + t) have no

nonunit common left divisor, and deduce that M is controllable.
(ii) (a) Show that there necessarily exists a pair (x, x′) of elements of A1 (C),
solution of the Bézout equation a x− b x′ = 1. (b) Determine such elements
x, x′.
(iii) Consider the linear system M̌ = C (t)

⊗

A1(C)
M , defined over B1 (C)

(2.7.4.3). Show that M̌ is freely controllable.
(Hint for (ii)(b): x = (1 + t)2 /2, x′ = (1 + t) ∂/2 + 2∂ + (1 + t) /2.)

Exercise 953. Prove that the system M defined by (5.70), (5.71) over A1 (C)
is freely controllable.

(Hint: define the partial state ξ such that y = D (∂) ξ, u = N (∂) ξ, and check
that {ξ} is a basis of M .)

Exercise 954. Let K be a division ring, let A = K [∂; α, δ] where α is an
automorphism and δ is an α-derivation of K, let Q = Q(A) = K (∂; α, δ),
and consider a transfer matrix G ∈ Qp×m. Denote by gij the entries of G
(1 ≤ i ≤ p, 1 ≤ j ≤ m), and write gij = a−1

ij bij , 0 �= aij ∈ A, bij ∈ A. Let
a ∈ A be an lclm of all elements aij (i.e., a least common left denominator
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of all elements gij : see Exercise 488). Let C � aG, let L ∈ Matp (A) be a
gcld of a Ip and C, set Dl = L−1a Ip and Nl = L−1C.

(i) Prove that (Dl (∂) , Nl (∂)) is a left-coprime factorization of G (∂) over A
(Definition 667).
(ii) Prove that the control system with equation

Dl (∂) y = Nl (∂)u

is freely controllable and freely observable.

(Hint: A is a Bézout domain, thus use Theorems 653 and 654.)

Exercise 955. (1) Let E be a pre-Hilbert space (1.7.3.1), let F = nk be
endowed with its canonical inner product 〈•, •〉F, and let L : E → nk be a
continuous k-linear map. Recall that the adjoint of L, when it exists (its
existence is guaranteed when E is a Hilbert space), is the operator L∗ : nk→
E such that 〈L∗ z,u〉E = 〈z, Lu〉F for all u ∈ E and all z ∈ F ([92], (11.5.1)).
Show that the following conditions are equivalent:
(a) L is surjective.
(b) L∗ is injective.
(c) The Hermitian matrix operator W = LL∗ : nk→ nk is positive definite.
(2) Let Ω be a nonempty open interval of R and for any compact interval
T ⊆ Ω, let WT be the space of the restrictions to T of the functions belonging
to E (Ω).
(i) Show that the Hermitian form

〈u,v〉WT
=
∫
T

u∗ (t)v (t) dt

is positive definite on mWT (denoting by u∗ (t) the conjugate-transpose of
u (t)). We consider in what follows the pre-Hilbert space WT endowed with
the Hermitian form 〈•, •〉WT

.
(ii) Let K = O (Ω) be the ring of real-valued analytic functions in Ω, let
G̃ ∈ nKm, and let

LT : mWT → nk : u �→
∫
T
G̃ (t) u (t) dt.

Prove that LT is continuous and that its adjoint is

L∗T : nk→mWT : z �→ G̃∗ |T z.

(iii) Define WT = LT L
∗
T and show that

WT =
∫
T G̃ (t) G̃∗dt =

∫
T
X−1 (t)G (t)G∗ (t)X∗−1 (t) dt.
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The matrix WT is called the controllability gramian over the interval T .
Show that WT is positive definite if, and only if the equality z∗ G̃ |T = 0
implies z∗ = 0. Prove that this holds for any compact interval T ⊆ Ω if, and
only if the state-space system η̇ = G̃ u is Kalman-controllable.
(iv) Deduce from the above that the state-space system (5.34) with coefficients
in O (Ω) is Kalman-controllable if, and only if for any two points x1,x2 ∈ nR

and any two instants t1, t2 ∈ Ω such that t2 > t1, there exists an input
u ∈ mE (Ω) for which the system state x : t �→ x (t) is transferred from x1

(assumed to be the value of x at time t1) to x2 in the interval of time [t1, t2].

Exercise 956. Consider the state-space system (5.34) with coefficients in
O (Ω) where

F =

⎡

⎣
t 1 0
0 t3 0
0 0 t2

⎤

⎦ , G =

⎡

⎣
0
1
1

⎤

⎦ .

Show that rkR Γ3 (0) = 2 and that rkR Γ4 (0) = 3. Deduce the following:
(i) This system is Kalman-controllable. (ii) The set S in the statement of
Proposition 881(ii) cannot be reduced to {t0}.

Exercise 957. Consider the state-space system (5.34) with coefficients in
O (Ω) where

F (t) =
[

0 1
−1 0

]
, G (t) =

[
cos t
− sin t

]
.

Prove that this system is not Kalman-controllable, although the ”frozen sys-
tem” (i.e., that obtained when changing G (t) to G (σ) where σ is any fixed
parameter) is freely controllable.

Exercise 958. Consider a state-space system over A = k [q] where k = R

or C and q is the shift-forward operator f (t) �→ f (t + 1). Let (5.43) be the
state equation of this system and let M the A-module defined by this equation.
Consider the multiplicative set

S =
{
qi : i ≥ 0

}

and let L = S−1A be the ring of Laurent polynomials with coefficients in k
(Sect. 2.8).

(1) Prove that the following conditions are equivalent:
(i) The system L

⊗
A M (over L) is freely controllable.

(ii) For any 0 �= z ∈ C, rkC

[
z In − F̌ G

]
= n.

(iii) If v∗ ∈ kn is such that v∗ F̌ iG = 0 (0 ≤ i ≤ n− 1), then necessarily
v∗ F̌n = 0.
(iii) imk

(
F̌n•
)
⊆ imk

(
Γ̌n
)

where

Γ̌n =
[
G

... F̌ G
... · · ·

... F̌n−1 G

]
.
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(iv) For any initial state x0 ∈ nk at time t0, there exists a time t1 > t0
and a finite sequence {u (t) : t0 ≤ t ≤ t1} for which the state of the system is
transferred from x0 to the origin in the interval of time [t0, t1] ⊆ Z.
(2) The system is said to be 0-controllable if the above equivalent conditions
hold.
(3) Generalize the above: for a system over K [q,α], where K is a commuta-
tive ring and α is an automorphism of K, define free 0-controllability, strong
0-controllability, 0-controllability, and for a state-space system, Kalman 0-
controllability.
(4) Consider the system M with coefficients in C [t] and with equation

q2y = q (t− 1)u.

(i) Show that this system is not controllable, but that it is 0-controllable.

(ii) Set η =
[
y

q y

]
. Using the construction in the proof of Theorem and

Definition 861, show that a state-space realization of this system is

q x =
[

0 1
0 0

]
+
[
t− 1

0

]
u,

y =
[
1 0
]
x

and prove that M is not Kalman-controllable.
(Hint: for (1), see ([43], Sect. 10.4.2); for (3), see Proposition 1040 below.)

Exercise 959. Prove that the bidual (i.e., the dual of the dual) of a control
system (M,u, y) is again (M,u, y).

Exercise 960. Consider the control system in Exercise 941 and show that
its dual cannot be properly defined.

Exercise 961. ”Dualize” Exercises 955 and 958. Define the observability
gramian and show that a state-space system with coefficients in O (Ω) (where
Ω is a nonempty open interval of R) is Kalman-observable if, and only if
for any instants t1, t2 ∈ Ω such that t2 > t1, the state x (t1) can be de-
termined from the knowledge of y

∣
∣
(t1,t2) and u

∣
∣
(t1,t2) (assuming that, e.g.,

u ∈ mE (Ω)).

Exercise 962. (i) Let τ 1 �= τ2 be two positive incommensurable time-delays,
let H be the subgroup of R generated by τ 1 and τ2, and let B = A ∗H where
A = C [d/dt] (5.7.5.3). Show that f̂ (s) = s+e−τ1s and ĝ (s) = e−τ1s−e−τ2s

have non common zeros. (For this, prove that all zeros of ĝ (s) lie on the
imaginary axis, and that f̂ (s) cannot be zero when s is imaginary.)
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(ii) Recall that O (C) is a Bézout domain (Example 439). Deduce from (i)
that the ideal in O (C) generated by f̂ (s) and ĝ (s) is O (C).
(iii) Using Malgrange’s theorem (Remark 932(a)), show that

kerPW (C)

[
f̂ (s)
ĝ (s)

]
= kerPW (C) [1] = 0

and deduce using Remark 932(b) that

kerW

([
f
g

]
◦
)

= 0.

(iv) Let L (H (B)) =
{
ĥ : h ∈ H (B)

}
. Consider the ideal I in L (H (B))

generated by f̂ (s) and ĝ (s) and assume that I is principal, generated by
ê (s) = b̂ (s) /â (s) ∈ PW (C). Show that ê (s) has no zero in C; using Weier-
strass’ factorization theorem [308] and Corollary 931, deduce the following: e
is a unit in H (B), I = L (H (B)), and there exist ĉ, d̂ ∈ L (H (B)) such that
the Bézout equality

ĉ f̂ + d̂ ĝ = 1

holds. Using the expression H (B) = H3 (B), show that the ideal J in L (B)
generated by f̂ (s) and ĝ (s) contains a nonzero polynomial p̂ (s) ∈ C [s].
(v) Let D = C [s]−1 L (B). Show that there exists an isomorphism

ψ : D−̃→L � C (s)
[
z1, z

−1
1 , z1, z

−1
2

]
: s �→ s, e−τ1s �→ z1, e

−τ2s �→ z2

and that the ideal in the Laurent polynomial ring L generated by s + z1 and
z1−z2 is equal to L. Write the corresponding Bézout equality and prove that
there is a contradiction. (For all details, see [153], Example 5.13.)
(vi) Deduce from the above that (a) H (B) is not a Bézout ring, and (b)
statement (iii) of Theorem 916 is not valid if R2 is not assumed to be full
row rank.
(vii) Deduce that the H (B)-module W is not a cogenerator for H(B)Modfp.

Exercise 963. Consider the column R ∈ kE ′ (Rn) of Gurevic̆’s example (Re-
mark 932(c)), which is such that kerW (R◦) �= 0, and show that by Mal-
grange’s theorem (Remark 932(a)), there exists a row X ∈ O (Cn)k such that
X R̂ = 1. Deduce that the equivalence in Remark 932(b) is false when n > 1
and, as a consequence, that Schwartz’s theorem on mean periodic functions
is not valid in that case.
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5.9 Notes

As already said in Section 5.1, Willems [360], [361], [362] was the first to em-
phasize that a linear system cannot be properly characterized by a transfer
matrix or a state-space model. He developed the ”behavioral approach” in
the above references and in [276]. In this approach, a system is character-
ized by its behavior (5.5) in a power of a signal space W . As already said
in the Notes of Chapter 3, the connection between a finitely presented A-
module M = cokerA (•R) and kerW (R•) (Theorem 565) was established by
Malgrange [232]. Since M can be viewed as an intrinsic description of the sys-
tem by generators and relations, it was called a linear system by Kashiwara
[181], and, in the context of Automatic Control, by Fliess [115].

The results in Section 5.2 are essentially due to Oberst [258]. W -closedness
(Remark 811) is a notion which was introduced by Pillai and Shankar [275].
The definition of a large cogenerator and its main properties (Definitions
814 and 829, Theorems 815 and 830) were established by Roos [299] and
especially Oberst [257].

The generalizations in Section 5.3 (except those regarding large injective
cogenerators) are due to Bourlès and Oberst [47].

In Section 5.4, Theorems 831 and 833 were obtained by Oberst [258] for
multidimensional systems (Remarks 832 and 834); see also [260]. The proof
we have given for these theorems is quite simple and taken from Bourlès [41].
Several authors, especially Blomberg and Ylinen [21], and Callier and Desoer
[57], used these results in an implicitly way, because without referring to
Homological Algebra. Theorem 837 is due to Zerz [375], whereas Theorems
838 and 833 are new. Theorem 840 is due to Fröhler and Oberst [128], [129].
The definitions of an Ore function and of an Ore field, and the corresponding
properties (5.4.2.1), are new.

In Section 5.5, Propositions 843 and 846, as well as Corollary 849, are due
to Oberst [258]. Autonomy is a classical notion which was emphasized by
Willems [362]; Lemma and Definition 850, which characterizes autonomy in
the general case, is related (taking into account the fact that the ring A is not
necessarily commutative) to the formulations of Fornasini et al. [124], and of
Wood et al. [363]. Control systems, as defined in (5.5.2.1), were introduced
by Fliess [115] under the name of dynamics. Rosenbrock descriptions and
the notion of strict equivalence go back to Rosenbrock [301]. Definition 859
is due to Bourlès and Fliess [44]. An equivalent ”behavioral definition” (in
the case of an injective signal space W ) was given by Perbeno [270]; see
also Fuhrmann [131] and, for a more recent account, Zerz [372]. In the
present form, Lemma and Definition 856, as well as Theorem 860, are new
(Remark 858).

The Laplace functor (Corollary and Definition 853) and the expression
”transfer vector space”, were introduced by Fliess [117], [115]; similar notions
can be found in Oberst [258]. The state-space realization in Theorem and
Definition 861 is a slight generalization of that due to Fliess [115].



400 5 Systems and Behaviors: A General Setting

The key notions in Section 5.6 were introduced by Kalman [171] in 1960 in
the context of state-space systems (controllability, observability, and control-
lability/observability duality). Kalman’s point of view has been dramatically
questioned in the late eighties. In particular, controllability of a linear system
is now considered as a system property which is independent of the choice
of the input variables. This point was first emphasized by Willems [360],
[361], [362] in the case of LTI systems; his original definition of controllabil-
ity is recalled in Exercise 945 (concatenability is just a generalization of this
notion). For LTI systems, controllability and strong controllability are equiv-
alent notions which have not to be distinguished. The connection between
the controllability of an LTI system and the freeness of the corresponding
module was pointed out by Fliess [116] (see Exercise 945). The situation is
completely different for multidimensional systems or for LTV systems with
coefficients in a ring. The connection between concatenability of an nD be-
havior, the existence of an image representation, and the torsion-freeness
of the corresponding system (Theorem 867), was established by Pillai and
Shankar [275]. The notion of flat system and of flat output were introduced
by Fliess et al. [121] in the context of nonlinear systems. Zero primeness,
minor primeness and factor primeness of a polynomial matrix were defined by
Youla and Gnavi [368], who also established the result in Theorem 870(1).
That in Theorem 870(2) is due to Wood et al. [364]. Lemma 869 is due
to Zerz [371], and Exercise 951 to Oberst [258] who introduced the notion
of GFLP matrix. Theorem and Definition 863 is classical when the signal
space W is assumed to be injective (see, e.g., [68]); in the present form, it is
due to Bourlès and Oberst [47]. Exercises 946-949 are taken from Zerz [373],
[374]. Theorem 876 and Exercise 950 are due to Pommaret [277], [278]. The-
orem and Definition 879 is due to several authors, including Ilchmann et al.
[163] for Statement (1), Popov, Belevitch and Hautus [157] for the Popov-
Belevitch-Hautus test in Statement (2)3, LaSalle [210] and Weiss [359] for
Statement (3), Kalman [172] and Fliess [116] for Statement (4). However,
in the present form, Theorem and Definition 879, which also improves the
corresponding result in Bourlès [41], is more general than the above contri-
butions. Proposition 881 is essentially due to Silverman and Meadows [329].
No example of Kalman-controllable but uncontrollable state-space system is
presently known. The decomposition in Proposition 883 generalizes that dis-
covered by Kalman for LTI systems [172]. The duality between observability
and controllability of state-space systems was emphasized by Kalman in 1960
for LTI systems [171] (see also [172]), and by Kreindler and Sarachik [193] in
1964 for LTV systems. Our approach of duality is intrinsic, and is based on
van der Schaft [317] and especially Rudolph [309]. The former contribution
is not completely general, and the latter has not a clear interpretation. Our
presentation is a synthesis of both of them.
3 See Sontag’s historical Note in ([335], Sect. 3.8).
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Section 5.7 is essentially due to Bourlès and Oberst [47]. As already said,
Theorem 902 and Corollary 919 generalize results obtained by Eindhoven
and Habets [103], by Gluesing-Luerssen, Vettori and Zampieri [139], and by
Vettori and Zampieri [352], [353], where it is assumed that G = R, W =
E (R), and B = A = (W ′, �).

In Habets’ terminology [153], the ring H (B) in Subsect. 5.7.5 is the ring
of all admissible right fractions b ◦ (a)◦−1 ∈ Q(B) with respect to W . This
is a generalization of the ring H introduced, in the case G = R, by Gluesing-
Luerssen [137], [138] (see also Bréthé and Loiseau [50]) when the delays are
commensurable (i.e., when H ∼= Z), and by Habets [153] when the delays are
noncommensurate (i.e., when H is not cyclic: see Exercise 962).
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Finite Poles and Zeros of LTV Systems

6.1 Introduction

Stability of an LTV system can be evaluated from the stability of its au-
tonomous part. This is shown in Chapter 12 where an analytic approach for
stability of the LTV systems is given. However, stability can be studied using
the poles of the system. This is the direction followed in the present section.

The approaches which establish for LTV systems a relation between poles
and stability can be mainly split into two classes: the ones in the first class
define the poles as the roots of the factors of decompositions of the differential
operator associated with the system while for the approaches in the second
class, the system is transformed, using operations which preserve stability,
into another system which has a state matrix of upper triangular form; the
poles are then defined as the diagonal terms. An approach which belongs to
the first class is presented in this section, while the second class is discussed
in Chapter 12.

The concept of poles of a system has received special attention as a mean
to evaluate stability. Although this relation is clear and well known for linear
time-invariant systems, the time-varying case is much more difficult since the
frozen-time (pointwise-in-time) eigenanalysis may not contain information
about stability as it is the case in the following example.

Example 964. Consider the second order Euler equation

ÿ + 0.25t−1ẏ + 0.01t−2y = 0 (6.1)

which can be written P (∂)y = 0 with P (∂) = ∂2 + 0.25t−1∂ + 0.01t−2. The
roots of polynomial P (∂) computed in a classical manner - called frozen roots
as they are parameterized by t, the variable time - are −0.2t−1 and −0.05t−1.
Both roots have negative real parts for all t ≥ t0 > 0. However, the system
given by (6.1) is unstable. Indeed, a fundamental set of solutions of (6.1) is
y1(t) = t

3
8+

√
209
40 , y2(t) = t

3
8−

√
209
40 and limt→+∞y1(t) = +∞.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 403–452.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Intrinsic definitions which overcome the difficulties pointed out above are
given in this chapter. First, in Section 6.3 we clarify the connection between
the roots of the factors of the skew polynomial which defines the autonomous
part of the LTV system and the trajectories of the system. Next, in Sec-
tion 6.6 the poles and the zeros of the system are defined using the module
framework developed in Chapter 5. The usual relations between the poles
and zeros are investigated in Section 6.6.5. Section 6.4 shows how field exten-
sions which make it possible to factorize skew polynomials can be constructed
(Those skew polynomials define the autonomous parts of the systems we are
interested in).

6.2 Exponential Stability

Consider an autonomous LTV system Σ and let T be the associated torsion
module. T can be given by a n-th order differential equation in one variable
in the following polynomial form

P (∂)y = 0, P (∂) = ∂n + an−1∂
n−1 + ... + a1∂ + a0, ai ∈ K (6.2)

where P is a skew polynomial with coefficients in the differential field K
(see Theorem and Definition 662(1), Lemma and Definition 781 (2)(v) and
Example 964).

Let R = K[∂; δ] (δ = d/dt) and consider the C-space W = O∞ introduced
in (5.4.2.2). Recall that any element y of O∞ can be viewed as an analytic
function (a,+∞) � t �→ y(t) ∈ C where a is large enough (Example 20).
Assume that W is an injective cogenerator of RMod. This happens if K is
one of the differential fields considered in (5.4.2.2) according to Theorem 838.
A solution of (6.2) in W = O∞ is an element y ∈ HomR(T,W ) (Corollary
567; Lemma and Definition 771(i)).

Definition 965. The autonomous LTV system Σ given by the torsion mod-
ule T is said

• exponentially stable if any solution y ∈ HomR(T,W ) : t �→ y(t) of (6.2)
approaches zero exponentially for t → +∞, i.e., if there exist constants
α > 0, β > 0 and t0 > 0 such that

‖y(t)‖ ≤ αe−β(t−t0), t ≥ t0. (6.3)

• exponentially unstable if there exists a solution y : t �→ y(t) of (6.2) which
is exponentially unbounded, i.e., if there exist constants α > 0, β > 0 and
t0 > 0 such that

‖y(t)‖ ≥ αeβ(t−t0), t ≥ t0. (6.4)

Remark 966. For short, the ring of differential operators R = K[∂; δ] is
denoted by K[∂] in the sequel.
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6.3 Roots, Factors and Solutions

6.3.1 Linear Factors

Consider the polynomial description (6.2) of a general (n-th order) au-
tonomous system Σ. Clearly, if P (∂) has a right factor, i.e., P (∂) = P ′(∂)(∂−
γ1), then γ1 is a right root of P (∂) and y1(t) = e

∫
γ1(t)dt is a solution of (6.2).

One can thus conclude about the asymptotic behavior of y1(t) by investigat-
ing γ1(t). The right roots of P (∂) are thus good candidates for system poles.
However, in general, P (∂) does not necessarily have roots over K, the initial
field of definition of the LTV system (ai ∈ K, i = 0, ..., n − 1) in (6.2). A
special class of polynomials which satisfy this constraint is the one of Wed-
derburn polynomials (W-polynomials for short). More specifically, if P (∂) of
degree n is a W-polynomial (over K), following Definition 767, there exists a
set Δ = {γ1, ..., γn}, γi ∈ K such that

P (∂) = PΔ, (6.5)

where PΔ denotes the minimal polynomial of Δ. Conversely, a set Δ which
satisfies (6.5) is a set of n P-independent right roots of P (∂) according to Def-
inition 767. W-polynomials are thus polynomials which have the maximum
number of P-independent roots on the field of definition of their coefficients.
As a matter of fact, as already said after Definition 767, a polynomial of
degree n has at most n P -independent roots.

Assume that Δ = {γ1, ..., γn} ⊆ K is such that for each i ∈ {1, ..., n}, (a)
yi(t) = e

∫
γi(t)dt exists for t large enough, and (b) yi ∈ O∞ (this happens

if K is one of the differential fields considered in (5.4.2.2)). By Lemma and
Definition 772, each yi is δ-hyperexponential over K, thus the elements of the
set Δ satisfy the following set of elementary equations

(∂ − γi)yi = 0⇔ ẏi = γiyi. (6.6)

Moreover, from Theorem 770, {y1, ..., yn} is a fundamental set of solutions of
(6.2).

Definition 967. Let P be a polynomial of degree n. A set of n P -independent
roots is called a fundamental set of roots of P .

Based on the elementary equations (6.6), if P (∂) is a W-polynomial, the
stability of system Σ can be investigated from a fundamental set of roots of
P (∂).

Proposition 968. Consider the homogeneous differential equation (6.2) and
let {γ1, ..., γn} be a fundamental set of roots of P (∂). If

lim sup
t→+∞

Re{γi(t)} < 0, i ∈ {1, ..., n}, (6.7)
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then any solution of (6.2) approaches exponentially zero when t → +∞. If
limt→+∞γi(t) exists, i ∈ {1, ..., n}, then condition (6.7) is also necessary for
all solutions of (6.2) to approach zero exponentially when t → +∞. At least
one of the solutions of (6.2) is exponentially unbounded if at least one of the
γi(t)’s satisfies the condition

lim inf
t→+∞ Re{γi(t)} > 0. (6.8)

If limt→+∞γi(t) exists, i ∈ {1, ..., n}, then condition (6.8) is also necessary
for at least one of the solutions of (6.2) to be exponentially unbounded.

Proof. Any element γi(t) of the considered fundamental set of roots of P (∂)
is related to an element yi of a fundamental set of solutions {y1, ..., yn} of
(6.2) by an elementary equation (6.6). If (6.7) holds, then Re{γi} ≤ −βi,
for some βi > 0, ∀i ∈ {1, ..., n}, when t is large enough. It follows that
for i = 1, ..., n there exist finite, positive constants αi and βi, such that
|e
∫ t

t1
γidτ | ≤ αie

−βi(t−t1), ∀t ≥ t1 and an instant t1 > t0, from which follows

|yi| ≤ αie
−βi(t−t1), t ≥ t1 > t0 (6.9)

and thus one concludes that any solution y(t) satisfies (6.3).
Suppose now that limt→+∞γi(t) = γi and any solution of (6.2) approaches

zero exponentially when t → +∞. Consider a solution yi of (6.2) such that
γi = ẏi

yi
. It follows that for any ε > 0, there exists t1 > 0 such that whenever

t ≥ t1, | yi(t) |≥ αi | eγit | −ε, where αi is a positive constant. As | yi(t) |
decreases exponentially to 0 when t → +∞, we must have Re{γi} < 0, or,
equivalently, limt→+∞Re{γi(t)} < 0.

The conclusion on the instability follows in the same manner.

A subclass of W-polynomials are the polynomials with real coefficients and
distinct real roots:

Example 969. P (∂) = ∂2− (a+b)∂+ab, a, b ∈ R, a �= b is a W-polynomial.
A fundamental set of roots is {a, b}. The associated autonomous LTI system
is exponentially stable if, and only if a, b < 0.

Notice that all the polynomials with real coefficients are not necessarily W-
polynomials as shown by the following example:

Example 970. P (∂) = (∂ − a)2, a ∈ R. A fundamental set of solutions of
(6.2) is in this case y1(t) = eat, y2(t) = teat from which follows, using (6.6),
that a fundamental set of roots of P (∂) in R(t) is γ1 = a, γ2 = a+ t−1. Thus,
γ2 does not belong to R. Notice however, that, following Proposition 968, the
autonomous system is exponentially stable if, and only if a < 0.

Let’s now make the converse rationale: let {y1, ..., yn} be a fundamental set
of solutions of (6.2). The yi’s do not necessarily belong to K, but may belong
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to a field extension K ⊇ K which is a Picard-Vessiot extension of (6.2).
The behavior of these solutions in the vicinity of +∞ makes sense if one
can define the restriction of each element of K to a neighborhood (A,+∞)
of +∞. Proceeding as in Example 20, one can then define the germs of the
elements of K in a neighborhood of +∞. If the space of these germs can be
embedded in O∞, one is led back to the above formulation.

In Section 6.4 it is shown how such an extension can systematically be built
for continuous-time LTV systems. The connections with W-polynomials are
now further investigated.

Starting from a fundamental set of solutions of (6.2), say {y1, ..., yn} ∈ K,
define Δ = {γ1, ..., γn} ∈ K̃ ⊆ K as solutions of the elementary equations
(6.6). From Theorem 770, Δ is P-independent, thus a fundamental set of
roots of P (∂). In other words, P (∂) is a W-polynomial over K̃. For the linear
time-invariant systems with real coefficients, obviously, K̃ = C.

Each polynomial P (∂) with coefficients in the field K is thus a W-
polynomial over a well-chosen extension K̃ of K.

Let now α be a right root of P (∂). Then y = e
∫
α(t)dt is a solution of

(6.2): P (∂)y = 0. Also, there exist ci ∈ C, i = 1, ..., n, where C is the
subfield of constants of K̃, such that y =

∑n
i ciyi. Let now P ′(∂) be the

minimal polynomial of Δ: P ′(∂) = PΔ. Obviously, P ′(∂)yi = 0, i = 1, ..., n.
As the ci’s are constants, P ′(∂)y =

∑n
i ciP

′(∂)yi = 0 and thus α is also
a right root of P ′(∂). Thus V (P ) ⊆ V (P ′) where V (.) denotes the set of
zeros of a polynomial. As P (∂) is monic and it is a W-polynomial (over K̃),
it follows from Proposition 768 (iii) that there exists a polynomial P ′′(∂)
for which P ′(∂) = P ′′(∂)P (∂). But, as deg(P ′) = deg(P ) = n, one obtains
deg(P ′′) = 0. Moreover, as P ′(∂) is monic, P ′′(∂) = 1 and thus P (∂) = P ′(∂).
This leads to

Proposition 971. If P (∂) ∈ K[∂] is a W-polynomial over K̃ then P = PΔ
where Δ is any fundamental set of roots of P .

Example 972. Let P (∂) = ∂2 + (t−1− 2a)∂+ a2− t−2− at−1, a ∈ R. Thus,
K = R(t), i.e., the field of rational functions in the indeterminate t and with
real coefficients. A fundamental set of solutions of (6.2) with P (∂) as above
is y1 = teat, y2 = eat and a fundamental set of roots of P (∂) is γ1 = a+ t−1,
γ2 = a − t−1. Since γ1, γ2 ∈ R(t), P (∂) is a W-polynomial over the initial
field of definition of the LTV system, i.e., K̃ = K, and no field extension is
needed in this case.

Using Definition 712 of the minimal polynomial and the computation formula
(4.21), (6.5) leads to a factorization of P into n linear (i.e., of degree 1)
distinct factors:

P (∂) = (∂ − an)...(∂ − a1). (6.10)

As a matter of fact, using (4.21), P (∂) for Example 972 can be factorized
as P (∂) = (∂ −γ2−γ1 γ2)(∂ − γ1) = (∂ − a + 2t−1)(∂ − a − t−1) or P (∂) =
(∂ −γ1−γ2 γ1)(∂ − γ2) = (∂ − a)(∂ − a+ t−1).
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6.3.2 Multiple Factors

In the preceding section, a relation between a set of n P -independent (right)
roots of polynomial P (∂) and the solutions of the differential equation (6.2)
has been established using the elementary equations (6.6). This obviously
allows one to conclude on the asymptotic behavior of the solutions yi of (6.2)
by investigating the roots γi as stated in Proposition 968. However, as shown
below, this analysis can also be done in many cases with a factorization (6.10)
of P (∂) where there exist indices i, j ∈ {1, ..., n} such that ai = aj and i �= j.
In this case, the polynomial P (∂) in (6.10) is not necessarily a W-polynomial
over the field K of definition of the elements ai.

To analyze this case, some preliminary results are needed.

Definition 973. 1. Let P ∈ K[∂]× and let Ǩ ⊇ K be a field extension of
K. If there exist polynomials P ′, P ′′ ∈ Ǩ[∂] and a ∈ Ǩ such that P (∂) =
P ′(∂)(∂ − a)P ′′(∂), then a is called a zero of P .

2. If P has a factorization (6.10) into n linear factors ∂−ai (not necessarily
distinct), then {a1, ..., an} ⊆ Ǩ is called a full set of zeros of P .

Let f : I ×X → Rn be a function which satisfies the following assumptions:

(A1) f(., x) : I → Rn is measurable for each fixed x.
(A2) f(t, .) : Rn → Rn is continuous for each fixed t.
(A3) f is locally Lipschitz on x; that is, there are for each x0 ∈ X a

real number ρ > 0 and a locally integrable function α : I → R+ such
that the ball Bρ(x0) of radius ρ centered at x0 is contained in X and
‖ f(t, x)− f(t, y) ‖≤ α(t) ‖ x− y ‖ for each t ∈ I and x, y ∈ Bρ(x0).

(A4) f is locally integrable on t; that is, for each fixed x0 there is a locally
integrable function β : I → R+ such that ‖ f(t, x0) ‖≤ β(t) for almost
all t.

Lemma 974. Assume that f satisfies the assumptions A(1) to (A4) above.
Let ξ ∈ X ⊆ Rn be a solution to the initial value problem

ξ̇ = f(t, ξ(t)), ξ(σ0) = x0 (6.11)

on the interval [σ0, τ ] ⊆ I. Then, there exist numbers c,Δ > 0 so that for each
δ ∈ (0, Δ] the following holds: if h is any mapping satisfying the assumptions
A(1) to (A4) and in addition

‖
∫ t

σ0
h(s, ξ(s))ds ‖≤ δ for all t ∈ [σ0, τ ], (6.12)

and if z0 ∈ X is so that ‖ z0 − x0 ‖< δ, then the solution ζ of

ζ̇ = f(t, ζ) + h(t, ζ), ζ(σ0) = z0 (6.13)
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is defined on the entire interval [σ0, τ ], and

esssup{‖ ξ − ζ ‖} < cδ. (6.14)

If f and h are analytical, then so is ξ.

See [335] for a proof (Theorem 37, Section C.4).
Consider the differential equation

(∂ − a) y = z, (6.15)

a, z ∈ O∞. Let A ∈ R be large enough, so that a, z can be viewed as analytic
functions in (A,+∞) . Let B > A. Then, for t ≥ B, all solutions of (6.15)
are given by

y (t) = CU (t, B) + U (t, B)
∫ t
B
z (τ) e−

∫ τ
B
a(ς)dςdτ ,

U (t, B) = e
∫

t
B
a(τ)dτ , C ∈ C,

(6.16)

and they are analytic in (A,+∞)  [B,+∞) . Therefore, all solutions of
(6.15) are the germs in a neighborhood of +∞ of the analytic functions given
by (6.16) . These solutions belong to O∞ and span an affine C-vector space
of dimension 1. Denote this vector space by S (z) . From the above,

S (z) � O∞.

The above function U (., B) is clearly the unique solution of the homogeneous
differential equation

∂v − av = 0 (6.17)

such that U (B,B) = 1, i.e., U is the fundamental solution of (6.17).
Let a = α + iω where α, ω are real-valued (i.e., α = Re (a) , ω = Im (a))

and let

α = lim sup
t→+∞

∫ t
B
α (τ) dt
t−B

, α = lim inf
t→+∞

∫ t
B
α (τ ) dτ
t−B

. (6.18)

Lemma 975. The following equalities hold:

α = lim sup
t→+∞

ln |U (t, B)|
t−B

, α = lim inf
t→+∞

ln |U (t, B)|
t−A

,

i.e., the quantity α (resp., α) (which belongs to R � R ∪ {−∞,+∞}) is the
upper (resp., lower) Lyapunov exponent of the differential equation (6.17)
(or, with an abuse of language, of the differential equation (6.15) as introduced
by Definition 1198).
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Proof. We have

U (t, B) = e
∫

t
B
α(τ)dτe

∫
t
B
iω(τ)dτ =⇒ |U (t, B)| = e

∫
t
B
α(τ)dτ

=⇒ ln |U (t, B)| =
∫ t

B

α (τ ) dτ .

The rest is clear.

Lemma 976. Consider the four conditions below:

(i) There exists B > A such that U (t, B)→ 0 exponentially as t→ +∞.
(ii) α < 0.
(iii)

lim sup
t→+∞

α (t) < 0.

(iv) For every y ∈ S (z) , y (t)→ 0 exponentially as t→ +∞.
In general, (iii)⇒(i)⇔(ii)�(iii).
(2) If lim

t→+∞α (t) exists (in particular, if a belongs to an Ore field), then

(i)⇔(ii)⇔(iii).
(3) Assume that z (t)→ 0 exponentially as t→ +∞. Then (iv)⇔(i).

Proof. (1). (i)⇒(ii): If (ii) holds, there exist k > 0 and ε > 0 such that for
any t ≥ B,

|U (t, B)| ≤ ke−ε(t−B).

Since |U (t, B)| = e
∫ t

B
α(τ)dτ , this implies the following for any t > B :

e
∫

t
B

(α(τ)+ε)dτ ≤ k =⇒
∫

t

B

(α (τ) + ε) ≤ ln k

=⇒ 1
t−B

∫ t

B

α (τ) dτ ≤ −ε+
1

t−B
ln k,

therefore (ii) holds.
(ii)⇒(i): If (ii) holds there exists ε > 0 and T > B such that for all t ≥ T,

1
t−B

∫ t

B

α (τ) dτ ≤ −ε.

Therefore, whenever t ≥ T,

∫ t

B

α (τ) dτ ≤ −ε (t−B) =⇒ |U (t, B)| ≤ e−ε(t−B),

and (i) holds.
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(iii)⇒(ii): If (iii) holds, there exist ε > 0 and T ≥ B such that for all
t ≥ B,

α (t) ≤ −ε =⇒
∫ t

B

α (τ) dτ ≤ −ε (t−B) =⇒ 1
t−B

∫ t

B

α (τ) dτ ≤ −ε

and (ii) holds.
(ii)�(iii): Let a (t) = cos(t)− 1/2. Then

∫ t

0

a (τ) dτ = sin (t)− t/2,

therefore α = −1/2 < 0, and (ii) hold. However, α (t) = a (t) and

lim sup
t→+∞

α (t) = 1/2 > 0,

thus (iii) does not hold.
(2). Assume that l � limt→+∞ α (t) exists. Then,

lim sup
t→+∞

α (t) = l.

For any ε > 0, there exists B > 0 such that whenever t ≥ B, |α (t)− l| ≤ ε.
This implies
∫ t

B

|α (τ)− l|dτ ≤ ε (t−B) =⇒
∣
∣
∣∣

∫ t

B

α (τ) dτ − l (t−B)
∣
∣
∣∣ ≤ ε (t−B)

=⇒
∣
∣
∣
∣

1
t−B

∫ t

B

α (τ) dτ − l

∣
∣
∣
∣ ≤ ε =⇒ l − ε ≤ 1

t−B

∫ t

B

α (τ) dτ .

Taking t→ +∞, we get
l ≤ α+ ε

If (ii) holds, we have α < 0. Choose ε = −α/2. We get l ≤ α/2 < 0, and
(iii) holds.

(3). Assume that z (t)→ 0 exponentially as t→ +∞.
(i)⇒(iv): Let β > 0 be such that |z| = O

(
e−βt
)

as t → +∞ and let
γ ∈ (0,min (−ᾱ, β)) . Set ỹ = eγty, z̃ = eγtz, and Ũ (t, B) = eγtU (t, B).
This yields

∂ỹ = (a+ γ) ỹ + z̃.

There exist K > 0 and B > A such that |z (t)| ≤ Ke−βt for t ≥ B, therefore
∣
∣∣
∣

∫ t

B

z̃ (τ) dτ
∣
∣∣
∣ ≤ K

∫ t

B

e(γ−β)τdτ = δ1 < +∞
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where δ1 can be chosen arbitrarily small by taking B large enough. In
addition,

∂Ũ (t, B) = (a+ γ) Ũ (t, B) .

Let δ2 =
∣
∣
∣ỹ (B)− Ũ (B,B)

∣
∣
∣ and let δ = sup (δ1, δ2) . Without loss of gener-

ality for our purpose, we can choose C so that δ2 = 0. Then, δ = δ1, and by
Lemma 974, there exists c > 0 such that for all t ≥ B,

∣
∣∣ỹ (t)− Ũ (t, B)

∣
∣∣ ≤ cδ;

the latter inequality implies

|y (t)− U (t, B)| < cδe−γt.

Thus, for all t ≥ B,
|y (t)| ≤ |U (t, B)|+ cδe−γt.

Therefore, if (i) holds, then (iv) holds too.
(iv)⇒(i): This is clear by (6.16) .

Lemma 977. Consider the four conditions below:

(i’) There exists B > A such that |U (t, B)| → +∞ exponentially as t→ +∞.
(ii’) α > 0.
(iii’)

lim inf
t→+∞ α (t) > 0.

(iv’) For any z ∈ O∞, there exists y ∈ S (z) such that |y (t)| → +∞ expo-
nentially as t→ +∞.
In general, (iii’)⇒(i’)⇔(ii’)⇔(iv’)�(iii’).

Proof. (1). The proof of the equivalence (i’)⇔(ii’) is similar to the proof
of the equivalence (i)⇔(ii) in Item 1 of Lemma 976 (changing the sign of
the inequalities). Likewise, (iii’)⇒(i’). To see that (ii’)�(iii’), consider the
function a : t �→ cos (t) + t/2.

(iv’)⇒(i’): If (iv’) holds, there exists y ∈ S (0) such that |y (t)| → +∞
exponentially as t→ +∞, therefore (i’) holds.

(i’)⇒(iv’): Assume that (iv’) does not hold, i.e., there exists z ∈ O∞
such that for all y ∈ S (z) , |y (t)| � +∞ exponentially as t → +∞. De-
note by y (t;C, z) the solution (6.16). We know that |y (t; 1, z)| � +∞ and
|y (t; 0, z)|� +∞ as t→ +∞. Therefore, as t→ +∞,

|U (t, B)| = |y (t; 1, z)− y (t; 0, z)|� +∞

and (i’) does not hold.
The proof of (2) is similar to the proof of Item 2 of Lemma 976.

Lemma 978. Consider the differential equation (6.15) where a ∈ C and
Re (a) < 0. Of the following, (b)⇒(a) but the converse does not hold:
(a) y (t)→ 0 exponentially as t→ +∞.
(b) z (t)→ 0 exponentially as t→ +∞.
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Proof. (b)⇒(a): see Lemma 976(3).
(a)�(b): Assume a = −1 and y (t) = e−t cos

(
e2t
)
. Then (a) holds.

However, z (t) = −2 sin
(
e2t
)
et, thus (b) does not hold.

Lemma 979. Consider the differential equation

(∂ − a)n y = 0, a ∈ O∞, (6.19)

where n is a positive integer. Let P (∂) = (∂ − a)n and consider the set SP
consisting of all solutions y ∈ O∞ of (6.19). Let α, α be defined as in (6.18)
with α = Re (a) .

(i) The set SP is a C-vector space of dimension n.
(ii) If α < 0, then all y ∈ SP tend to zero exponentially as t→ +∞.
(iii) If α > 0, then all solutions y ∈ SP × are such that |y (t)| → +∞
exponentially as t→ +∞.
(iv) If lim

t→+∞α (t) = 0, then all solutions y ∈ SP × are bounded as t → +∞
if, and only if n = 1 and α is integrable on [B,+∞) for B large enough.
These bounded solutions do not tend to zero as t→ +∞.

Proof. (i) The germ a can be viewed as an analytic function in (A,+∞) for
A large enough. Let B > A and for any i ∈ {1, ..., n} , let yn be the general
solution of (6.19) in [B,+∞) . We have for any t ≥ B

y1 (t) = C1U (t, B)

where
U (t, B) = e

∫
t
B
a(τ)dτ .

By induction, one can easily check that

yn (t) = U (t, B)
∑

0≤i≤n−1

Cn−i
(t−B)i

i!
(6.20)

which proves (i).
(ii) If α < 0, then U (t, B)→ 0 exponentially as t → +∞ by Lemma 976,

thus so does |yn (t)| .
(iii) If α > 0, then |U (t, B)| → +∞ as t→ +∞ by Lemma 977. Assuming

that yn is nonzero, let

j = min {i : 0 ≤ i ≤ n− 1 and Cn−i �= 0} .
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Then, as t→ +∞,

|yn (t)| ∼ |U (t, B)|

∣
∣
∣Cn−j (t−B)j

∣
∣
∣

j!
,

thus |yn (t)| → +∞ exponentially as t→ +∞.
(iv) is clear by the expression (6.20) .

Notice that for any a which belongs to an Ore field (according to Lemma
and Definition 835), there exists a constant A such that a is analytic on
(A,+∞). Assume that z ∈ O∞ in (6.15) and that the sign of z(t) is constant
as t→ +∞. We have a ∈ O∞, therefore y(t) ∈ O∞.

Lemma 980. Consider (6.15) where a belong to a real Ore field (see Lemma
and Definition 835), z(t) is real-valued and has a constant sign as t → +∞
and let limt→+∞a(t) = a. If a < 0 and y(t) approaches zero exponentially
when t→ +∞ (i.e., satisfies (6.3)), then z(t) also approaches zero exponen-
tially when t→ +∞.

Proof. The solutions of (6.15) are

y(t) = cy1(t) + y2(t), y1(t) = e
∫
adt, y2(t) = y1(t)

∫
ze−

∫
adtdt (6.21)

where c is any constant. As, by hypothesis, a < 0, there exists β > 0 such that
a ≤ −β. Then, for a given time t1, there exists α > 0 such that | y1(t) |=|
e
∫ t

t1
adτ |≤ αe−β(t−t1), ∀t ≥ t1. Thus, y1 approaches zero exponentially for

t → +∞. By hypothesis, y(t) also approaches zero exponentially when t →
+∞. From (6.21), it follows that y2(t) = y(t)−y1(t) and thus y2 has the same
property as y1 and y, i.e., it approaches zero exponentially when t → +∞.
Moreover, y2 can be written in the form

y2(t) =
f(t)
g(t)

, f(t) =
∫

ze−
∫
adtdt, g(t) = e−

∫
adt (6.22)

where e−
∫
adt → +∞ as t → +∞. Notice that f(t) and g(t) are real-valued

functions. Notice first that df/dt
dg/dt = − z(t)

a(t) . Since a belongs to a real Ore
field, it has a constant sign as t → +∞, f and g are comparable of order
1 near +∞. Following Proposition 7, Chapter V in [37], z(t) and a(t) are
also comparable. Thus, limt→+∞y2(t) = limt→+∞

df/dt
dg/dt = −limt→+∞

z(t)
a(t) .

As y2 exponentially decreases with time, there exists α > 0 such that
y2(t) = O(e−αt)(t → +∞). As y2(t) = f(t)

g(t)
∼ df/dt

dg/dt
= − z(t)

a(t)
, it follows that

z(t)
a(t)

= O(e−αt)(t → +∞). Moreover, as a belongs to an Ore field, there
exists β > 0 such that z(t) = O(e−βt)(t→ +∞).
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Notice however that Lemma 980 was proved under supplementary assump-
tions on a and z. Indeed, this result is not valid in general as shown by the
following example:

Example 981. Consider (6.15) with a(t) = −e2t and z(t) = e
∫ − 1+e2t

1−e2t dt.
Then, a = −∞ and thus Re{a} < 0. Moreover, y(t) approaches zero expo-
nentially when t→ +∞. However, z(t)→ +∞ when t→ +∞.

The asymptotic behavior of the solutions of (6.2) can be investigated from a
general factorization (6.10) of P in which the ai’s are not necessarily distinct.

Definition 982. Let a ∈ R. The set of all f ∈ O∞ such that f : [B,+∞)→
R, f(t) ≥ 0 (t ≥ B) and χ(f) = a (Definition 1198) is denoted by Exp(a).
A germ f ∈ Exp(a) is said to be quasi-exponential of type a.

Remark 983. In Definition 982, a germ f ∈ O∞ is not distinguished from
one of its representatives f : [B,+∞)→ R, as usual.

Lemma 984. (a) If a ∈ O∞ is real-valued and is such that
limt→+∞a(t) = ā ∈ R̄, then e

∫
a(t)dt ∈ Exp(ā).

(b)If f ∈ Exp(a1) and g ∈ Exp(a2) (a1, a2 ∈ R̄), then

(i) f + g ∈ Exp(a1, a2) where a = sup(a1, a2);
(ii) fg ∈ Exp(a1 + a2) where (a1, a2) �= (+∞,−∞).

(c) If f ∈ Exp(a), then
∫
f(t)dt ∈ Exp(a).

Proof. Points (a) and (b) are obvious. For point (c), ln(y(t)) ∼ āt (where ā
is finite). Thus, ln(y(t)) = āt+ O(t) = ā(t +O(1)) from which follows

y(t) = eā(t+O(1)). (6.23)

For any ε > 0, there exists B > 0 such that, for t ≥ B, −ε ≤ O(1) ≤ ε. Thus,
for t ≥ B, (6.23) leads to

e(ā−ε)t ≤ y(t) ≤ e(ā+ε)t

and to
1

ā− ε
e(ā−ε)t ≤

∫
y(t)dt ≤ 1

ā + ε
e(ā+ε)t

and, finally, to χ(y) = ā (see Definition 1198).

Theorem 985. Consider the homogeneous differential equation (6.2).

1. Suppose P admits a factorization (6.10) where {a1, ..., an} is a full set of
zeros of P (Definition 973). If

lim sup
t→+∞

Re{ai(t)} < 0, i = 1, ..., n (6.24)

then any solution of (6.2) approaches exponentially zero as t→ +∞.
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2. If P admits a factorization (6.10) for which all ai’s belong to a real Ore
field, then condition (6.24) is also necessary for all the solutions of (6.2)
to approach exponentially zero as t → +∞. In the latter situation, there
exists a solution of type Exp(ā) (according to Definition 982) where ā =
sup{āi, i = 1, ..., n}. Therefore, condition

limt→+∞ai(t) > 0 for some i ∈ {1, ..., n} (6.25)

is necessary and sufficient for the existence of an exponentially unbounded
solution of (6.2).

3. Assume that P (∂) ∈ K [∂] where K is an Ore field and

P (∂) ∼ (∂ − b1)
d1 ... (∂ − bm)dm

where ∼ means ”is similar to” (over K [∂]), m ≤ n, the d′is are posi-
tive integers and the b′is are pairwise non-conjugate over K. We know
that limt→+∞ bi (t) exists in R̄. If there exists i ∈ {1, ..., n} such that
limt→+∞ bi (t) = 0 (resp., limt→+∞ bi (t) > 0), then there exists y ∈ SP
such that |y (t)| � 0 (resp., |y (t)| → +∞ exponentially) as t → +∞.
Therefore, if there exists i ∈ {1, ..., n} such that limt→+∞ bi(t) ≥ 0, then
there exists y ∈ SP which is exponentially unstable.

Proof.

1. Equation (6.2) with P (∂) given by (6.10) can equivalently be written in
the form ⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(∂ − a1)y = z1

(∂ − a2)z1 = z2

...
(∂ − an−1)zn−2 = zn−1

(∂ − an)zn−1 = 0.

(6.26)

Set z0 = z1 and suppose that (6.24) holds. The dynamics of zn−1 depends
only on the last equation of (6.26) which is of elementary type (6.6):

zn−1(t) = λne
∫
an(t)dt (6.27)

where λn is any constant. As an satisfies (6.24), Re{an(t)} ≤ βn for some
βn > 0 and for t large enough. It follows that for a time t1 which is large
enough, there exist a finite, positive constant αn such that

|e
∫ t

t1
an(τ)dτ | ≤ αn

|λn|e
−βn(t−t1), ∀t ≥ t1

⇔ |zn−1(t)| ≤ αne
−βn(t−t1),∀t ≥ t1

(6.28)

from which one concludes that zn−1(t) approaches exponentially zero as
t → +∞. The rest of the variables zi, i = n − 2, ..., 1 and y(t) have the
same property. Indeed, using Lemma 976 and the fact that an−1 satisfies
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(6.24), zn−2, the solution of the last but one equation of (6.26), approaches
exponentially zero as t → +∞. The conclusion follows by induction to-
wards the first equation of (6.26).

2. Let now the ai’s belong to a real Ore field. Then limt→+∞ai(t) ex-
ists and let limt→+∞ai(t) = ai, i = 1, ..., n. Suppose that all solutions
of (6.2) approach exponentially zero when t → +∞. A particular so-
lution of (6.2) or, equivalently, of (6.26), is y(t) = y1(t) = e

∫
a1(t)dt,

z1(t) = z2(t) = ... = zn−1(t) = 0. More specifically, y1 corresponds to
the solution of the homogeneous part of the first equation of (6.26). More-
over, limt→+∞y1(t) = e

∫
a1dt = ea1t. As y1(t) decreases exponentially to

0 when t→ +∞, from the latter relation it follows that a1 < 0. Moreover,
from (6.27) it follows that the sign of zn−1 is constant as t→ +∞. Next,
the solutions of (6.26) are

zk−1(t) = ce
∫
ak(t)dt + e

∫
ak(t)dt

∫
zke
− ∫ ak(t)dtdt (6.29)

where c is any constant and k = 2, ..., n. It follows by induction that zn−2,
..., z1 have the same property. Using now Lemma 980 for the first equation
in (6.26) one concludes that z1(t) decreases exponentially to 0 when t →
+∞. Another particular solution of (6.26) is y(t), z1(t) = e

∫
a2(t)dt, z2(t) =

z3(t) = ... = zn−1(t) = 0. It follows, as before, that a2 < 0. Again, using
Lemma 980 for the second equation in (6.26) one concludes that z2(t)
decreases exponentially to 0 when t→ +∞. The conclusion follows using
the same rationale down to the last equation.
For the last part of this point, by (6.27), χ(zn−1) = ān. Also,
by (6.29), zn−2 = cz′n−2 + z”n−2 where z′n−2 = e

∫
an−1(t)dt,

z”n−2 = e
∫
an−1(t)dt

∫
zn−1(t)e−

∫
an−1(t)dtdt. From Lemma 984 (a),

z′n−2 ∈ Exp(ān−1). From parts (a) and (b) of the same lemma,
zn−1(t)e−

∫
an−1(t)dt ∈ Exp(ān − ān−1). From part (c) of the same result,∫

zn−1(t)e−
∫
an−1(t)dtdt ∈ Exp(ān − ān−1) and from part (b), z”n−2 ∈

Exp(ān) and, choosing c > 0, zn−2 ∈ Exp(sup(ān−1, ān−2)). The result
follows by induction.

3. Under the assumptions of this point, let A = K [∂] and T = A/AP (∂) .
We have by Corollary 764

T =
⊕

1≤i≤m
Ti, Ti ∼=

A

A (∂ − bi)
di
,

and with the usual identifications,

SP = HomA

⎛

⎝
⊕

1≤i≤m
Ti,O∞

⎞

⎠ ;
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thus by Proposition 549, there exists a C-linear isomorphism

SP ∼=
⊕

1≤i≤m
HomA (Ti,O∞) .

By Corollary 567(3), there exists for each i ∈ {1, ...,m} a C-linear isomor-
phism

HomA (Ti,O∞) ∼= HomA

(
A

A (∂ − bi)
di
,O∞

)

.

By Theorem 763(ii), each bi (1 ≤ i ≤ m) is conjugate to one of the a′js
(1 ≤ j ≤ m), i.e., there exists cij ∈ K× such that

bi − aj =
ċij
cij

.

Let βi = Re (bi) and

βi = lim inf
t→+∞

∫ t
B
βi (τ) dτ
t−B

(1 ≤ i ≤ n). By Lemma and Definition 835(2), bi (t)− aj (t) → 0 as t →
+∞, thus

min
1≤i≤n

βi = min
1≤j≤m

αi > 0.

The result is now a consequence of Lemma 979.

Consider first the simple second order example:

Example 986. Consider (6.2) with P (∂) = (∂−a(t))2. It can be equivalently
written {

(∂ − a(t))y = z
(∂ − a(t))z = 0 (6.30)

that is [
∂ − a(t) −1

0 ∂ − a(t)

] [
y
z

]
= 0 ⇔ ∂w = A(t)w (6.31)

with A(t) =
[
a(t) 1
0 a(t)

]
, w =

[
y
z

]
.

Remark 987. The companion form in the example above can be generalized
to factorizations of polynomial P of the form (6.51). The autonomous system
(6.10) can be equivalently written

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(∂ − a1)y = z1

(∂ − a2)z1 = z2

...
(∂ − an)zn−1 = 0.

(6.32)



6.4 Field Extensions for the Continuous-Time Case 419

In the matrix form this leads to

∂w = A(t)w (6.33)

with

A(t) =

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

a1(t) 1 0 . . . 0

0
. . . . . .

...
...

. . . . . . . . . 0
...

. . . . . . 1
0 . . . . . . 0 an(t)

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

(6.34)

and w =
[
y z1 . . . zn−1

]T .

6.4 Field Extensions for the Continuous-Time Case

In this section only the continuous-time case is considered. Thus, ∂ exclusively
stands for the usual derivation. The problem to solve is: given the field K
to which the coefficients of a polynomial P (∂) belong, find a field Ǩ over
which P (∂) has a factorization (6.10) and a field K̃ over which P (∂) has a
fundamental set of roots.

6.4.1 The Field of Formal Laurent Series

We address the problem with the field K = C((t)) of formal Laurent series
with coefficients in C equipped with the usual derivation d/dt. This field
has the advantage to allow coherent theoretic bases for the developments
and allows also direct calculations in many cases. However, the algorithms
currently existing for factoring linear operators are in majority based on the
calculation of the submodules of a given module from the solutions of the
differential equations: see [10], [11], [330], [295], [296], [54] on this point. For
those calculations we will use in the sequel the field C(t) of rational functions
in t over C instead of C((t)).

An element of K = C((t)) is of the form a =
∑
j≥ν αjt

j , αi ∈ C.
The field

Km = C((z)), zm = t, z = t1/m (6.35)

is a field extension of degree m over K and is a Galois extension of K. The
Galois automorphisms σ are given by σ(t1/m) = ξt1/m with ξ ∈ {e2πik/m, 0 ≤
k ≤ m}. The Galois group is G * Z/mZ.

Consider the valuation v on K (and Km) defined as a map

v : K→ Z ∪ {∞} (6.36)
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with v(0) = ∞ and v(a) = n if a =
∑

j≥n αjt
j and αn �= 0. This valuation

is extended to Km as a map v : Km → (1/m)Z ∪ {∞}, v(a) = n
m

if a =∑
j≥n αjt

j/m and αn �= 0.
Consider the following rings of formal power series are considered:

Definition 988

• Om = C[[t1/m]] = {a ∈ Km, v(a) ≥ 0}
• O = C[[t]] = {a ∈ K, v(a) ≥ 0}

They have the following properties:

Proposition 989

(i) The field of fractions of Om (respectively of O) is Km (respectively K).
(ii) t1/mOm is the unique maximal ideal of Om and Om/(t1/mOm) * C.

For a given skew polynomial P (∂) with coefficients in K we are looking for
a extension Km which allows a factorization of P .

6.4.2 Factorization of Skew Polynomials

A way to factorize P (∂) is to transform the initial differential equation into
a form in which the only coefficients involved belong to the ring of formal
power series Om for some m. Indeed, as shown below, such equations can be
reduced to equations with constant coefficients (over C) which can be easily
analyzed and from which the conclusions about the original system follow.

Definition 990. A differential operator P (∂) = ∂n+
∑n−1
i=0 ai∂

n−i−1, ai ∈
K is said to be regular singular if v(ai) ≥ 0, i = 0, ..., n− 1 where v(.) is the
valuation as introduced in (6.36).

To bring P (∂) from (6.2) to a regular singular form one can consider the new
variable ξ = t−λ∂ with λ = min{ v(an−i−1)

i+1
}, 0 ≤ i ≤ n − 1. This leads to a

monic polynomial with coefficients in Om where m is the denominator of λ:

P (ξ) =
n∑

i=0

bn−iξn−i, bi ∈ Km, b0 = 1. (6.37)

Let P denote the polynomial obtained by the reduction of all coefficients of
P given by (6.37) modulo π = t1/m. P has coefficients in C. Hensel’s lemma
can be used to factorize P using the factors of P obtained over the field of
constants C:

Lemma 991. (Hensel’s Lemma): If P = F1F2 with F1, F2 having coef-
ficients in C and gcd(F1, F2) = 1, then there is a unique decomposition
P = P1P2 of P into monic polynomials such that P i = Fi for i = 1, 2.
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The factors P1 and P2 of Hensel’s lemma can be provided by an iterative
process which is detailed, for example, in [286].

This is shown through the following example:

Example 992. Let

P (∂)y(t) = 0, P (∂) = ∂2 + (
1
2
t−1 − 2α)∂ − t−3 − 1

2
t−1α + α2 (6.38)

with α ∈ C. P (∂) is a skew polynomial which obeys to the commutation rule
(2.2) with δ = d/dt. Let λ = min{−1,− 3

2} = − 3
2 , m = 2. The change of vari-

able ξ = t
3
2 ∂ transforms (6.38) into a differential equation with coefficients

in O2. Setting P (∂) = L(ξ), (6.38) yields L(ξ)y = 0, L(ξ) = t−3Q(ξ),

Q(ξ) = ξ2 + (
1
2
t

1
2 − 2αt

3
2 )ξ − 1− 1

2
t2α+ α2t3

where the commutation rule for the new variable ξ deduced from (2.2) with
δ = d/dt is

ξa = aξ + t
3
2
da

dt
, ∀a ∈K2. (6.39)

Therefore, the polynomial whose coefficients are the canonical images of those
of Q(ξ) in O2/πO2 (π = t1/2) is Q(ξ) = ξ2 − 1 which trivially factorizes on
C: Q(ξ) = F1F2 with F1 = ξ−1 and F2 = ξ+1. The factorization in Lemma
991 can be obtained via an iterative process in which terms of the form πkTk,
πkSk are added to polynomials F1 and F2 respectively:

Q1(ξ) = F1 + πT1 + π2T2 + . . . ,
Q2(ξ) = F2 + πS1 + π2S2 + . . . .

In the additional terms πiTi and πiSi at step i (i ≥ 1), π = t
1
2 and Ti and

Si are polynomials with coefficients in C and such that d0(Ti) < d0(F1) and
d0(Si) < d0(F2). For this example, Ti, Si ∈ C and the factors can be found
in one step:

Q1(ξ) = ξ − 1− 1
2
t

1
2 − αt

3
2 ,

Q2(ξ) = ξ + 1− 1
2τ

1
2 − αt

3
2 .

Obviously, Qi = Fi, i = {1, 2} and one can easily check using the new com-
mutation rule (6.39) that Q(ξ) = Q1(ξ)Q2(ξ). These factors can be trans-
formed to find a factorization of P (∂). In the present case,

P (∂) = t−3Q1(t3/2∂)Q2(t3/2∂) =
= t−3(t

3
2 ∂ − 1− 1

2 t
1
2 − αt

3
2 )(t

3
2 ∂ + 1− 1

2 t
1
2 − αt

3
2 ) =

= t−3(t
3
2 ∂t

3
2 − t

3
2 − 1

2 t
2 − αt3)(∂ + t−

3
2 − 1

2 t
−1 − α) =

= (∂ − t−
3
2 + t−1 − α)(∂ + t−

3
2 − 1

2
t−1 − α).
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This leads to a decomposition of P into two linear factors:

P (∂) = (∂ − a2)(∂ − a1), (6.40)

where a1(t) = −t− 3
2 + 1

2 t
−1 + α and a2(t) = t−

3
2 − t−1 + α.

Generally, a polynomial P (∂) can be decomposed as in (6.51) over a suitable
extended field (ai ∈ Km for some m). In such a decomposition, it can happen
that ai = aj with i �= j.

The above algorithm allows one to find for a given polynomial a root in a
field extension Km with m ∈N sufficiently large. This leads to the following
conclusions about the extensions of K:

Proposition 993

(i) The fields Km are the only finite algebraic extensions of K.
(ii) K = ∪mKm is the algebraic closure of K. K is the field of fractions of

O = {a ∈ K, v(a) ≥ 0}.

6.4.3 Fundamental Sets of Roots and Picard-Vessiot
Extensions

Note that in a factorization of type (6.10), only a1 is a root (zero) of P in
the sense of Definition 759. We are interested in obtaining a fundamental set
of roots of P (∂). This set is obtained over the type of field denoted by K̃ in
Section 6.3. A fundamental set of roots can be found from the set of factors of
(6.10) in an iterative way: first, γ1 = a1. Next, γ2 is solution of the equation

γ2−γ1γ2 =
{
a1 if a1 = a2

a2 if a1 �= a2
(6.41)

which leads to the following Riccati equation in γ2

dγ2

dt
+ γ2

2 − (ai + γ1)γ2 −
dγ1

dt
+ γ1a1 = 0, i = 1 or 2. (6.42)

Notice that the Riccati equation (6.42) has as a particular solution γ2 = γ1

and is thus solvable by reduction to a linear first order differential equation.
Proceeding in the same manner for the rest of the factors ai (multiple or

not), one obtains a set Δ = {γ1, ..., γn} of P -independent roots of P (∂), or,
equivalently, P is the minimal polynomial of Δ according to Definition 767.

For Example 992, the first root is γ1 = a1 = −t− 3
2 + 1

2 t
−1 +α. The second

one can be found as a solution of the equation

γ2−γ1γ2 = a2 (6.43)
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which leads to the Riccati equation

dγ2

dt
+ γ2

2 − (2α− 1
2
)γ2 − t−3 − α

2
t−1 + α2 = 0 (6.44)

which has γ1 as a particular solution. One has thus to look for a general
solution of the form γ2 = −t 3

2 + 1
2 t
−1 +α+ z which, substituted into (6.44),

leads to the Bernoulli equation dz
dt + z2 + (γ1 − a2)z = 0. Another change

of variable z = 1
u transforms the Bernoulli equation into a linear one du

dt +
(2t−

3
2 − 3

2 t
−1)u = 1, a solution of which is u = 1

2 t
3
2 . It follows that γ2 =

t−
3
2 + 1

2 t
−1 + α. Δ = {γ1, γ2} is a set of P -independent roots of P , or,

equivalently, P is the minimal polynomial of Δ. Indeed, the solutions of the
elementary equations (6.6) are

y1,2 = e(±2t−
1
2 + 1

2 lnt+αt) (6.45)

which are C-independent. As a matter of fact, the Wronskian matrix of y1

and y2 is W (y1, y2) =
[
y1 y2
dy1
dt

dy2
dt

]
and det(W (y1, y2)) = 2y1(t)y2(t)t−

3
2 �= 0

for t > 0, therefore condition (3-iv) of Theorem 770 is satisfied.
As shown in the above example, the fields in which a fundamental set

of roots can be calculated provide a direct connection with the solutions of
equation (6.2). Indeed, the elementary equations (6.6) can be solved over
these fields. Notice that this kind of fields, denoted by K̃ in Section 6.3,
may be larger that those over which a factorization with possibly multiple
linear factors (6.10) can be obtained; the latter fields are denoted by Ǩ in
Section 6.3.

Remark 994. If we except periodic systems, which are treated separately
(Sections 6.7.2 and 6.8), the coefficients of physical systems are not described
by infinite series in practice (since they usually correspond to physical entities
like, e.g., time-constants, gains, parameters of actuators, etc.). Therefore, we
will limit ourselves in the sequel to subfields of the Puiseux-type field K∞ de-
fined by

K∞ =
⋃

m≥1

C(t1/m). (6.46)

Notice that K∞ is an Ore field (according to Lemma and Definition 835).

Remark 995. From a theoretical point of view it may happen that Ǩ � K∞.
However, in this case, from a practical point of view, the computation of the
factors (∂−ai) is not feasible since an infinite number of steps is needed with,
for example, the iterative procedure described in Example 6.4.3.
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6.5 The Module Framework

6.5.1 Modules and Full Sets of Zeros

The results obtained in the preceding sections can be interpreted in the in-
trinsic framework of definition of an LTV system by a module. Let R = K[∂].
The LTV system defined by (6.2) is, up to an R-isomorphism, the left torsion
R-module T defined by (6.2).

Let again P ∈ K[∂] be a skew polynomial (or, equivalently, a differential
operator) of degree n. In Section 6.4 it was shown how a factorization of type
(6.10) may be obtained for P over a field extension K̆ ⊇ K. This extension
may be K̆ = Ǩ, in which case a full set of zeros of P is provided, or, K̆ = K̃
which leads to a fundamental set of roots of P .

The general notion of conjugacy class (Definition 754) becomes simpler in
the present case:

Definition 996. The set

ΔK̆(ai) = {ai = ai +
ċ

c
, c ∈ K̆} (6.47)

is called the conjugacy class of the zero ai ∈ K̆ of P given by (6.10).
Following Theorem 763 (ii), there exist at most n distinct conjugacy classes

of zeros of P .
Moreover, in the module-based framework, equation (6.2) is not the unique

differential equation which defines the autonomous system. Indeed, if T ∼= T
is an R-module defined by the equation

P (∂)y = 0 (6.48)

where P (∂) ∼ P (∂) in the sense of Definition 517 and Lemma 745, then (6.2)
and (6.48) define the same autonomous system. Let P (∂) = (∂ − an) . . . (∂ −
a1) be a decomposition of type (6.10) of P (∂) over Ǩ. As Ǩ[∂] is a principal
ideal domain, thus, according to Theorem 462, a unique factorization domain,
it follows from Lemma and Definition 433 that n = n and each ai, i = 1, . . . , n
is conjugated (in the sense of Definition 754) with some aj , i.e., there exists
c ∈ Ǩ such that

ai − aj =
ċ

c
. (6.49)

If the ring of scalars is extended to Ř = Ǩ[∂], (6.10) leads to the composition
series

Ř/ŘP (∂) ⊃ ŘP1(∂)/ŘP (∂) ⊃ ... ⊃ ŘPn(∂)/ŘP (∂) (6.50)

of the module Ř/ŘP (∂), where P1(∂) = ∂−a1 and Pi(∂) = Pi−1(∂)(∂−ai),
i = 2, ..., n.
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If the factors of P are pairwise non similar, (6.50) particularizes to a direct
sum. This happens when the ai’s of (6.10) are pairwise nonconjugate but also
when P has multiple zeros and can be written in the form

P (∂) = (∂ − am)dm ...(∂ − a1)d1 ,m ≤ n (6.51)

where the ai’s are pairwise nonconjugate.
Then,

Ť ∼= Ř/ŘP (∂) ∼= ⊕mi=1Ř/Ř(∂ − ai)di (6.52)

and
ŘP =

⋂

i

Ř(∂ − ai)di , i = 1, ...,m. (6.53)

Obviously, when the ai’s of (6.10) are pairwise nonconjugate, then m = n
and di = 1, i = 1, ..., n in (6.52) and (6.53).

Decomposition (6.52) is a complete direct decomposition of R according to
the Definition given in (3.3.2.4).

Particularly, P is a W-polynomial over K̆; thus

T̃ ∼= R̃/R̃P (∂) = ⊕ni=1R̃/R̃(∂ − γi). (6.54)

where {γ1, ..., γn} ∈ Ǩ is a fundamental set of roots of P (∂). If, moreover,
Ǩ = K̃, then

∀i,∃j such that ai ∼ γj over Ǩ. (6.55)

The polynomial in Example 972 has a factorization (6.51) with n = 2, a1 =
a+ t−1, a2 = a− 2t−1, d1 = d2 = 1. It follows that Ť ∼= Ř/Ř(∂ − a− t−1)⊕
Ř/Ř(∂ − a + 2t−1). Moreover γ1 = a + t−1, γ2 = a − t−1 and thus a2 ∼ γ2.

6.5.2 Modules and Poles

The conjugacy classes (6.47) of the zeros of P (∂) have interesting proper-
ties, at least when the coefficients of P belong to an Ore field (according to
Lemma and Definition 835). Indeed, following Lemma and Definition 835,
limt→+∞(ai(t)− ai(t)), ∀ai ∈ ΔK(ai) where K is an Ore field.

The poles of an LTV system can now be defined in an intrinsic way:

Corollary and Definition 997. Consider an autonomous LTV system
given by a torsion R-module T ∼= R/RP (∂) where R = K[∂] and let
ai ∈ Ǩ ⊇ K, i = 1, ..., n be such that {a1, ..., an} is a full set of zeros of
P (∂) and let γi ∈ K̃ ⊇ Ǩ, i = 1, ..., n, be such that {γ1, ..., γn} is a funda-
mental set of roots of P (∂) (which is Wedderburn over K̃, K̃ ⊇ Ǩ ⊇ K). Let
π1, ..., πp be the conjugacy classes of the ai’s. The multiplicity of πj is the
number νj of zeros ai which belong to πj. Therefore,

∑p
i=1 νi = n. If Ǩ is an

Ore field (according to Lemma and Definition 835) over which there exists
a direct sum decomposition (6.52), the πi’s are called the quasi-poles of the
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LTV system T ; {a1, ..., an} is a full set of quasi-poles of T . If K̃ is an Ore
field, the poles of the LTV system T are the conjugacy classes of the γi’s;
{γ1, ..., γn} is a fundamental set of poles of T .

Notice that, in this context, the poles of a system have multiplicity one.
For Example 972, P (∂) = (∂ − a + 2t−1)(∂ − a − t−1), thus, the quasi-

poles of the system are {ΔC(t)(a− 2t−1), ΔC(t)(a + t−1)}. Since a− 2t−1 ∼
a+ t−1 over C(t), finally ΔC(t)(a− 2t−1) = ΔC(t)(a+ t−1) is the only quasi-
pole with multiplicity 2. A fundamental set of poles of the same system is
{a+ t−1, a− t−1}.

6.5.3 Poles and Stability

Stability can be directly evaluated using the two types of poles of the system
defined above.

Theorem 998. Consider an autonomous system
∑

which is defined by the
R-torsion module T ∼= R/RP (∂).

• Let {γ1, ..., γn} be a full set of quasi-poles or a fundamental set of poles
of
∑

over an Ore field (assuming that such a set exists). Then,
∑

is
exponentially stable if, and only if, for all i ∈ {1, ..., n},

lim
t→+∞Re{γi(t)} < 0. (6.56)

∑
is exponentially unstable if, and only if at least one of the γi’s satisfies

the condition
lim

t→+∞Re{γi(t)} > 0. (6.57)

• If P (∂) has a full set of zeros {γ1, ..., γn} in an Ore field, then
∑

is
exponentially stable if (6.56) holds for all i ∈ {1, ..., n}. If the γi’s belong to
a real Ore field, condition (6.56) is also necessary for exponential stability;
furthermore, condition (6.57) is also necessary for exponential instability.

The proof follows from Theorem 985.
In Example 972, limt→+∞γ1(t) = limt→+∞γ2(t) = a. The system is thus

exponentially stable if, and only if a < 0; it is exponentially unstable if,
and only if a > 0. Notice that one can conclude on exponential stability by
investigating a1 or a2, i.e., limt→+∞a1(t) = limt→+∞a2(t) = a as both of
them belong to the same conjugacy class.

6.5.4 The Case of Linear Time-Invariant Systems

Theorem 998 covers also the case of LTI systems with the simplification that
each conjugacy class of an element of a full set of zeros or a fundamental
set of poles is a singleton. In this case, Theorem 998 leads to the well-known
result for LTI systems:
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Corollary 999. An LTI autonomous system with poles {a1, ..., an} ∈ C is
exponentially stable if, and only if

Re{ai} < 0, i = 1, ..., n. (6.58)

The system is exponentially unstable if, and only if there exists a pole ai such
that

Re{ai} > 0. (6.59)

Example 1000. Consider the following LTI system:

(∂ − 1)2x = (∂ − 1)(∂ + 1)u. (6.60)

There is one pole at 1 with multiplicity 2 and it satisfies condition (6.59).
The system is thus exponentially unstable.

6.6 Modules of Poles and Zeros

6.6.1 System Poles

The above developments make it possible to unify the different ways to char-
acterize stability of an LTV system in the intrinsic framework of modules.
With the notations of the preceding section, let K̆ be a field extension over
which there exists a direct sum decomposition of type (6.54) or (6.52) of the
torsion module which defines the autonomous system. This corresponds re-
spectively to K̃[∂] in the case of the computation of a fundamental set of poles
or to Ǩ[∂] in the case of the computation of quasi-poles which correspond
to a factorization of type (6.52). All the usual poles and zeros entities (like,
e.g., system poles, invariant zeros, decoupling zeros, etc.) are next defined
using modules. Following the definition of those modules over K̃ or Ǩ one
will obtain entities or quasi-entities (i.e., poles or quasi-poles, invariant zeros
or quasi-invariant zeros, etc.). To simplify the language, only one definition
is given in each case. The formulation of the other one is left to the reader
who has only to replace K̃ by Ǩ. One has the following

Lemma and Definition 1001. Consider an LTV control system
∑

=
(M,u, y)1 over R = K[∂]. Let R̆ = K̆[∂], M̆ = R̆ ⊗R M , Ŭ = R̆ ⊗R [u]R̆.
The R̆-module Msp = M̆/Ŭ is torsion and is called the module of system
poles of

∑
. Msp is the quotient module which defines the ”autonomous part”

(6.2) of the LTV system M̆ .

Proof. Take, e.g., a Rosenbrock description (5.28) of
∑

where D is square
and invertible over the field of fractions Q of R, thus over the field of fractions
Q̆ of R̆.
1 The vector y here should not be confused with the scalar variable y in (6.2).
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Let B(∂) be a matrix of definition of Msp (B(∂)w = 0) and consider its Smith
normal form over K̆ as introduced in Lemma and Definition 655: there exist
invertible matrices U(∂), V (∂) over R̆ such that

U(∂)B(∂)V −1(∂) = diag{1, ..., 1, Pm(∂)}.

Pm(∂) is defined up to similarity and Pm ∼= P , where P is the polynomial
in (6.2) which defines Msp. The poles of the LTV system associated with M
thus correspond to the conjugacy classes of a full set of zeros of Pm.

As for polynomials, zeros of a torsion module can be defined:

Lemma and Definition 1002. Let T be a finitely generated torsion module
and let

diag{1, ..., 1, Pm(∂)}

be the Smith normal form of one of its matrices of definition B. Let a ∈ K
be a zero of Pm(∂); a it is called a Smith zero of T . Let {a1, ..., am} be a full
set of zeros of Pm(∂); {a1, ..., am} it is called a full set of Smith zeros of T
and noted a(T ) in the sequel.

Remark 1003. Notice that, in the case K̆ = K̃, a full set of Smith zeros of
T coincides with a fundamental set of roots of Pm.

The matrices B and diag{1, ..., 1, Pm(∂)} define isomorphic R-modules.
Therefore, they are left-similar (Definition 517) and we write B ∼
diag{1, ..., 1, Pm(∂)}.

6.6.2 Invariant Zeros

The same construction can be made for the zeros if one considers an LTV
control system (M,u, y). Let z be a generator of T (M/[y]R) where T (.)
denotes the torsion submodule. There exists Z(∂) ∈ K[∂] such that Z(∂)z = 0
and let K an extension of K over which a full set of zeros of Z can be provided.
Let now K̂ be such that K̂ ⊇ K and K̂ ⊇ K̆ where K̆ is the field over which
the poles of system M are defined. Let M̂ = R̂⊗R M , where R̂ = K̂[∂] and
ŷ = (ŷ1, ..., ŷp), ŷi = 1R̂yi.

Definition 1004. The module of the invariant zeros of the LTV control sys-
tem (M,u, y) is Miz = T (M̂/[ŷ]R̂). The invariant zeros of the control system
(M,u, y) are the conjugacy classes of the elements of a full set of Smith zeros
of Miz.

The module of the invariant zeros of the system is generated by the variables
of the system for which the output is zero (y ≡ 0). As an example, for the
state-representation {

ẋ = Ax+ Bu
y = Cx +Du

(6.61)
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the module of the invariant zeros Miz is defined by R(∂)
[
x
u

]
where R(∂) =

[
∂I − A −B

C D

]
is the system’s matrix (Definition 5.28). As Miz is torsion,

matrix R(∂) is singular for some ∂ = αi. It is known (see, e.g., [170]) that,
in this case, for an input u(t) = u0e

αt, t ≥ 0 there exists an initial state x0

such that the output is zero: y(t) ≡ 0, t ≥ 0.
The same equivalent characterizations discussed above for the poles can

be used to provide the invariant zeros of an LTV control system using a full
set of Smith zeros of the module of the invariant zeros. From a computational
point of view, this leads to the factorization of a skew polynomial.

Example 1005. For the autonomous system of Example 992, consider the
output ÿ. The module of invariant zeros of the control system with the chosen
output is defined by the equation

(
1
2
t−1 − 2α)∂y + (−t−3 − 1

2
t−1α + α2)y = 0 (6.62)

where y denotes the image of y in Miz. It follows that the invariant zero is
ΔC(t)(−

−t−3− 1
2 t

−1α+α2

1
2 t

−1−2α
).

There exists an embedding K ↪→ K̂. Therefore, the system coefficients belong
to K̂ and we assume without loss of generality in the sequel that K = K̂.

6.6.3 Transmission Poles and Zeros

6.6.3.1 Modules of Transmission Poles and Zeros

For an LTV control system (M,u, y) the transfer (i.e., input-output) dy-
namics can be defined. Consider for that the submodule [y, u]R of M . From
Theorem 654, it exists a free submodule F of [y, u]R such that [y, u]R =
T ([y, u]R)⊕F . Then T ([y, u]R) ⊆ T (M) and from Corollary 657, follows that
there exists a free submodule Φ[y,u]R of M such that M = T (M) ⊕ Φ[y,u]R

and F ⊆ Φ[y,u]R . In what follows Φ[y,u]R is simply denoted by Φ and thus

M = T (M)⊕ Φ. (6.63)

Definition 1006. The module Mtd = (Φ ∩ [y, u]R) is the transfer module of
the LTV control system (M,u, y).

Roughly speaking, the transfer module is the torsion-free module generated
by the equations of the system after elimination of all variables with the
exception of u and y. This is similar to the classical construction of the
transfer matrix for a given system.

The modules of transmission poles and zeros can be defined from the trans-
mission dynamics:
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Definition 1007. The module of transmission zeros of the LTV control sys-
tem (M,u, y) is Mtz = T ((Φ ∩ [y, u]R)/(Φ ∩ [y]R)). The transmission zeros
are the conjugacy classes of the elements of a full set of Smith zeros of Mtz.

Definition 1008. The module of transmission poles of the LTV control sys-
tem (M,u, y) is Mtp = (Φ ∩ [y, u]R)/[u]R. The transmission poles are the
conjugacy classes of the elements of a full set of Smith zeros of Mtp.

Remark 1009. As mentioned in Remark 6.6.1, M/[u]R is torsion. From
(6.63) follows that M/[u]R ∼= T (M) ⊕ Φ/[u]R and thus Φ/[u]R is torsion.
(Φ ∩ [y, u]R)/[u]R ⊆ Φ/[u]R from which it follows that Mtp is torsion.

To practically put into evidence the notions defined above, the following
matrix computations are used.

6.6.3.2 Transfer Matrix Factorizations

The following notations are used in the sequel to denote matrices:H (or H(t))
is a matrix with entries in K, H(∂) a matrix with entries in R (a polynomial
matrix) and H(∂) a matrix with entries in Q, the field of fractions of R (a
transfer matrix).

Using the gcld’s and gcrd’s (Definition 81) we are led to the following
factorizations of a given LTV transfer matrix:

Proposition 1010. Any LTV transfer matrix H(∂) has the following factor-
izations:

(i) left-coprime factorizations: H(∂) = A−1
L (∂)BL(∂) (i.e., AL(∂)y =

BL(∂)u), where AL(∂) and BL(∂) are left-coprime
(ii) right-coprime factorizations: H(∂) = BR(∂)A−1

R (∂) (i.e., y = BR(∂)ξ
and u = AR(∂)ξ), where AR(∂) and BR(∂) are right-coprime

related by the diophantine equation

AL(∂)BR(∂)−BL(∂)AR(∂) = 0. (6.64)

From a computational point of view, (6.64) can be solved either using ele-
mentary row and column operations or directly. In the latter case, when a left
factorization is to be deduced from a right one, (6.64) is a system of algebraic
equations and, in the opposite case, (6.64) leads to a system of differential
equations.

Example 1011. H(∂) = (∂+t)(∂−t)−1, thus AR(∂) = ∂−t, BR(∂) = ∂+t.
Let AL(∂) = a∂ + b, BL(∂) = c∂ + d, a, b, c, d ∈ K. (6.64) leads to c = a,
b = a(−t−1 − t), d = a(−t−1 + t), thus H(∂) = (∂ − t−1 − t)−1(∂ − t−1 + t).

Matrices of definition of the modules of transmission poles and zeros defined
above can be extracted from the left and right factorizations of the transfer
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matrix of the system: if a factorization (i) is used for H(∂), the module of
transmission poles is defined by AL(∂)y = 0 and the module of transmission
zeros is defined by BL(∂)u = 0. Starting from (ii), the module of transmission
poles is defined byAR(∂)ξ = 0 and the module of transmission zeros is defined
by BR(∂)ξ = 0. It follows

Proposition 1012. Consider two factorizations (i) and (ii) of a transfer
matrix H: H(∂) = A−1

L (∂)BL(∂) = BR(∂)A−1
R (∂). Then AL(∂) ∼ AR(∂)

and BL(∂) ∼ BR(∂). The transmission poles of the LTV transfer matrix
H(∂) are given by the full sets of zeros of polynomials P (∂) and P (∂) where
AL(∂) ∼ {1, ..., 1, P (∂)}, AR(∂) ∼ {1, ..., 1, P (∂)} and P (∂) ∼ P (∂). The
transmission zeros of the LTV transfer matrix H(∂) are given by the full
sets of zeros of polynomials Q(∂) and Q(∂) where BL(∂) ∼ {1, ..., 1, Q(∂)},
BR(∂) ∼ {1, ..., 1, Q(∂)} and Q(∂) ∼ Q(∂).

Definition 1013. A transfer matrix whose poles or quasi-poles belong to an
Ore field and satisfy the stability condition of Theorem 998 is called exponen-
tially stable.

Example 1014. Consider the LTV system given by
{
D(∂)x1 = N(∂)x2

x3 = Q(∂)x1
(6.65)

where D(∂) = (∂ − t)2, N(∂) = (∂ − t)(∂ + 1) and Q(∂) = (∂ + t). We
are looking for the transfer module with the choice u = x2 and y = x3.
First, notice that M/[x2]R is torsion. Indeed, this module is generated by the
relation: (∂ − t)2x1 = 0, where x1 is the canonical image of x1 in M/[x2]R.
So, u = x2 is an input in the sense of the Definition 851. Next, notice that
the first equation in (6.65) defines a torsion element v = (∂− t)x1− (∂+1)u
since

(∂ − t)v = 0. (6.66)

As shown in Section 5.6.1, this corresponds to a lack of controllability of
the system. Left coprime factors D0(∂) = (∂ − t), N0(∂) = (∂ + 1) are
obtained from D(∂) and N (∂) by skipping their gcld: D(∂) = L0(∂)D0(∂),
N(∂) = L0(∂)N0(∂), L0(∂) = ∂ − t. If y = x3, the transfer module can be
defined using the equation

y = Q(∂)(D0(∂))−1N0(∂)u (6.67)

from which any nonobservable dynamics must be eliminated. As Q(∂) and
D0(∂) are right coprime, there is no lack of observability for this exam-
ple. At this stage, it can be already concluded using Proposition 1012 that
the transmission pole of (6.65) is ΔC(t)(t), i.e., it is given by the zeros of
D0(∂). To obtain the zeros, one should further look for a factorization (i) or
(ii) of the transfer in (6.67). Let’s start by computing a factorization (i) of
Q(∂)D0(∂)−1, i.e., computing Q(∂) and D

0
(∂) left coprime such that
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Q(∂)(D0(∂))−1 = (D
0
(∂))−1Q(∂) (6.68)

which is (6.64) with BR(∂) = Q(∂), AR(∂) = D0(∂). Let the unknowns be
D

0
(∂) = a∂ + b and Q(∂) = c∂ + d. Then, the coefficients a, b, c, d satisfy

the identity:

(a∂ + b)(∂ + t) ≡ (c∂ + d)(∂ − t), a, b, c, d ∈ C (6.69)

which leads to a∂2+(at+b)∂+a+bt ≡ c∂2+(d−ct)∂−c−dt, i.e., to a system
of algebraic equations with the following class of solutions parameterized by a:

c = a
b = a(−t−1 − t)
d = a(−t−1 + t)

(6.70)

It follows that Q(∂)(D0(∂))−1 = (∂+t)(∂−t)−1 = (∂−t−1−t)−1(∂−t−1+t)
which, along with (6.67) leads to

(∂ − t−1 − t)y = (∂ − t−1 + t)(∂ + 1)u (6.71)

which defines the module Mtd. The transfer function as defined in Corollary
and Definition 853 is G(∂) = (∂ − t−1 − t)−1(∂ − t−1 + t)(∂ + 1).

An equation of definition of Mtz is (∂ − t−1 + t)(∂ + 1)ũ = 0. The
quasi-transmission zeros are thus ΔC(t)(−1) ∪ΔC(t)(−t + t−1). An equation
of definition of Mtp is (∂ − t−1 − t)y = 0, from which it follows that the
transmission pole is ΔC(t)(t−1 + t). Notice that t−1 + t is conjugated with t
and thus the latter transmission pole is the same as the one found before:
ΔC(t)(t−1 + t) = ΔC(t)(t).

The same conclusions can be reached if a right factorization (ii) is com-
puted: consider (6.64) with AL(∂) = N (∂), BL(∂) = D(∂) and the unknowns
BR(∂) = D(∂), AR(∂) = N(∂). Obviously, a right coprime solution has the
form D(∂) = ∂ + b, N(∂) = c∂ + b. (6.64) leads in this case to the follow-
ing system of differential equations: c = 1, 1 + b = d − t, b + ḃ = ḋ − td.
We have the following solution: d = 1 + 1

t+1 , b = −t + 1
t+1 (c = 1). Thus

G(∂) = (∂ + t)(∂ + 1 + 1
t+1 )(∂ − t + 1

t+1 )−1. From the latter factoriza-
tion of G(s) it can be deduced that another equation of definition of Mtp is
(∂− t+ 1

t+1 )ξ = 0, thus the transmission pole is also given by ΔC(t)(t− 1
t+1 ).

Indeed, t− 1
t+1 ∼ t−1 + t ∼ t. Similarly, the quasi-transmission zeros are also

given by ΔC(t)(−1− 1
t+1 )∪ΔC(t)(−t) as −1 ∼ −1− 1

t+1 and −t ∼ −t+ t−1.

The transmission zeros have the usual significance: when a control system has
a transmission zero, a zero output y can be obtained with a nonzero input u,
as shown in the following example.
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Example 1015. Let G(∂) =
[

1 (∂ + t)−1 (∂ + 1)−1(∂ + 2t)
0 0 (∂ + 1)−1

]
. A factoriza-

tion of G(∂) is provided by computing the lclm of (∂ +1) and (∂ + t): P (∂) =
[∂+1, ∂+t]l = (∂− t−2

1−t )(∂+t) = (∂− −t+t2−1
1−t )(∂+1) = ∂2+ 2−t2

1−t ∂+ t2−t−1
t−1

.

Then, G(∂) = Dl(∂−1)Nl(∂), where Dl(∂) =
[
P (∂) 0

0 ∂ + 1

]
, Nl(∂) =

[
P (∂) ∂ − t−2

1−t (∂ − −t+t2−1
1−t )(∂ + 2t)

0 0 1

]
. Notice that Dl(∂), Nl(∂) are left-

coprime (when this does not happen, a left-coprime pair (D0
l (∂), N0

l (∂)) such
that D0

l (∂)−1N0
l (∂) = D−1

l (∂)Nl(∂) must be constructed from Dl(∂), Nl(∂),
i.e., a gcld of Dl(∂) and Nl(∂) must be cancelled). Thus Dl(∂) and Nl(∂)
are matrices of definition of the modules of poles and of transmission zeros

respectively. The Smith normal form of Nl(∂) is
[

1 0 0
0 ∂ − t−2

1−t 0

]
, from which

it follows that the transmission zero is ΔC(t)( t−2
1−t ). Therefore, there exists a

nonzero R-linear combination u of the inputs satisfying (∂ − t−2
1−t )u = 0 and

a R-linear combination y of the outputs, with nonzero coefficients, such that
y = 0 for the above inputs.

In case of transmission zeros, the output is zero for some particular inputs
of the form u(t) = u0ϕ(t), where u0 is a particular matrix with constant
entries. A particular case is when the output is zero for any matrix u0 which
is the so-called blocking property of a transfer matrix. This happens when a
non-unit gcrd of all entries of Nl(∂) exists, where G(∂) = Dl(∂)−1Nl(∂) if a
left-coprime factorization of the transfer matrix G(∂). In the latter situation,
blocking zeros can be defined from a non-unit gcrd of all entries of Nl(∂).

Definition 1016. The module of blocking zeros Mbz of an LTV control sys-
tem (M,u, y) is cokerR(•PN (∂)), where PN (∂) is the gcrd of all entries of
Nl(∂) where (Dl(∂), Nl(∂)) is a left-coprime factorization of the transfer ma-
trix G(∂) of the control system: G(∂) = Dl(∂)−1Nl(∂). The blocking zeros
are the conjugacy classes of the elements of a full set of Smith zeros of Mbz.

The transfer matrix of Example 1015 has no blocking zero. If the transfer
matrix is changed to

H(∂) =
[

(∂ + 2t) (∂ + t)−1(∂ + 2t) (∂ + 1)−1(∂ + 2t)
0 0 (∂ + 1)−1(∂ + 2t)

]

then Nl(∂) =
[

1 (∂ + t)−1 (∂ + 1)
0 0 1

]
PN (∂) with PN (∂) = (∂ + 2t). There

exists a unique blocking zero which is ΔC(t)(−2t). Indeed, one can easily

check that the Smith normal form of Nl is
[

1 0 0
0 (∂ + 1)(∂ + 2t)2 0

]
.
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6.6.4 Hidden Modes

Definition 1017. The module of the input-decoupling zeros of the LTV sys-
tem M is Midz = T (M). The input-decoupling zeros are the conjugacy
classes of the elements of a full set of Smith zeros of Midz.

For the system of Example 6.65, Midz is defined by (6.66). The input-
decoupling zero is ΔC(t)(t) and it corresponds to the noncontrollable dynam-

ics of the system. Indeed, from (6.66), the trajectory of v is v(t) = ce
t2
2 , c ∈ C

and it is thus independent of the choice of the input u. v is thus a torsion
element of the system defined by M and (6.66) defines the noncontrollable
quotient system.

Definition 1018. The LTV system defined by M is said to be exponentially
stabilizable if its noncontrollable quotient system is exponentially stable.

Definition 1019. The module of output-decoupling zeros of the LTV control
system (M,u, y) is Modz = M/[y, u]R. The output-decoupling zeros are the
conjugacy classes of the elements of a full set of Smith zeros of Modz.

Remark 1020. M/[y, u]R is isomorphic to a quotient of M/[u]R by
Noether’s third isomorphism theorem (Theorem 52). As M/[u]R is torsion
(see Definition 851), it follows that Modz is also torsion.

Example 1021. Let {
(∂ − t

2
)x = u

y = (∂ − t
2
)x. (6.72)

The input-output relation is obviously y = u which leads to y = 0 for u = 0.
However, M/[y, u]R is defined by

S(∂)x = 0, S(∂) = ∂ − t

2
(6.73)

from which it follows that the output-decoupling zero is ΔC(t)( t2 ). This cor-
responds to dynamics which cannot be observed from the chosen output y
and input u. More precisely, if u = 0, from the first equation of (6.72),
x(t) = x(0)e

t2
4 , x(0) ∈ C and thus x(t) �= 0, t ≥ 0 if x(0) �= 0. This

trajectory, which corresponds to the nonobservable dynamics (6.73) has no
incidence on the output y which remains zero: y(t) = 0, t ≥ 0. Thus, the
state of the system x is nonobservable.

Definition 1022. The LTV control system (M,u, y) is said to be exponen-
tially detectable if its module of output-decoupling zeros is exponentially stable.

Consider a direct sum decomposition of [y, u]R into a torsion and free parts
respectively: [y, u]R = T ⊕ F . Obviously, T ⊆ T (M) and F ⊆ Φ and, using
the form (2.9) of Theorem 147(ii) and (6.63), it follows that
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M/[y, u]R ∼= T (M)/T ⊕ Φ/F (6.74)

The module T is the noncontrollable subsystem of the observable subsystem
[y, u]R of the LTV control system, thus T (M)/T ∼= T (M)/T (M) ∩ [y, u]R
and (6.74) provides a decomposition of the nonobservable quotient into non-
controllable subsystem and controllable quotient respectively. This leads us
to the following definition of the input-output decoupling zeros which char-
acterize the nonobservable quotient which is also noncontrollable:

Definition 1023. The module of input-output decoupling zeros of the LTV
control system (M,u, y) is Miodz = T (M)/(T (M) ∩ [y, u]R). The input-
output decoupling zeros are the conjugacy classes of the elements of a full
set of Smith zeros of Miodz.

The input-output decoupling zeros are thus given by the nonobservable quo-
tient of the noncontrollable subsystem or, equivalently, by the noncontrollable
subsystem of the nonobservable quotient.

Remark 1024. The above terminology is explained as follows: we have
[y, u]R ⊆ M , i.e., [y, u]R is a submodule of M . Since R-modules are sys-
tems, we say that [y, u]R is a subsystem of M , and, more specifically, is the
observable subsystem of M . The quotient module M/[y, u]R is the nonob-
servable quotient of the system M . Likewise, T ⊆ M is a submodule of M ,
thus is the noncontrollable subsystem of the system M . The quotient module
M/T is the controllable quotient of the system M .

Example 1025. Consider the LTV system given by
{

(∂ − t)x = (∂ − t)(∂ + 1)u
y = (∂ + 2)(∂ − t)x. (6.75)

The module T (M) of the input-decoupling zeros is defined by (∂ − t)v = 0,
where v = x− (∂ + 1)u, i.e.,

T (M) ∼= R/R(∂ − t) (6.76)

and the module of the output-decoupling zeros M/[y, u]R is defined by
[

(∂ − t)
(∂ + 2)(∂ − t)

]
x = 0. (6.77)

As
[

(∂ − t)
(∂ + 2)(∂ − t)

]
∼=
[

(∂ − t)
0

]
it follows that M/[y, u]R is defined by

(∂ − t)x = 0, i.e.,
M/[y, u]R ∼= R/R(∂ − t) (6.78)

therefore (M,u, y) has a unique output-decoupling zeros which is ΔC(t)(t).
Consider now the controllable quotient Φ of the control system
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{
x̃ = (∂ + 1)ũ
ỹ = (∂ + 2)(∂ − t)x̃. (6.79)

Notice that the module of output-decoupling zeros of this quotient system is
trivial: Φ/[ỹ, ũ]R ∼= 0, thus ΔC(t)(t) is again the (only) input-output decou-
pling zero.

6.6.5 Relations between Poles and Zeros

In this section, relations between various poles and zeros are established in
the module framework. They are connected to the well-known distinctions
between the transmission modes and hidden modes and correspond to the
separation of the system into controllable/noncontrollable, respectively ob-
servable/nonobservable subsystems and quotients.

6.6.5.1 Poles and Hidden Modes

First, let us distinguish among the system poles those which are controllable,
respectively observable.

Definition 1026. The module of controllable poles of the LTV control sys-
tem (M,u, y) is Mcp = Φ/[u]R. The controllable poles are the conjugacy
classes of the elements of a full set of Smith zeros of Mcp.

Following Remark 1009, Mcp is torsion.
For the system of Example 1021, the module of controllable poles is defined

by (∂− t
2)x = 0, so there exists a unique controllable pole, which is ΔC(t)( t2).

Definition 1027. The module of observable poles of the LTV control sys-
tem (M,u, y) is Mop = [y, u]R/[u]R. The observable poles are the conjugacy
classes of the elements of a full set of Smith zeros of Mop.

Remark 1028. As mentioned in Remark 6.6.1, M/[u]R is torsion. Since
[y, u]R ⊆M , [y, u]R/[u]R is torsion too.

For the system of Example 1025, the module of observable poles is given by
(∂ + 2)x = 0 and the only observable pole is ΔC(t)(−2).

Poles and zeros of LTV systems have been defined as torsion modules. To
establish relations between them, one must investigate the relations between
the Smith zeros of a given torsion module and its submodules. In comparison
with the LTI case, some cautions must be taken in the LTV case since the
non trivial invariant factor of a given module is a polynomial which is not
unique but is defined up to similarity (Definition 1002). Let T be a finitely
generated torsion module over R = K[∂] and let T1 ⊆ T . If T = coker • P
and T1 = coker • P1, then there exists a polynomial P2 such that

P (∂) = P1(∂)P2(∂). (6.80)

or
P (∂) = P2(∂)P1(∂) (6.81)

and T/T1 = coker • P2.



6.6 Modules of Poles and Zeros 437

Thus, roughly speaking, well-chosen relations of definition of the submod-
ules lead to relations of skew polynomial division.

The following notations are used:

• a(T ) = {a1, ..., an} is a full set of Smith zeros of the torsion module T as
introduced by Definition 1002.

• A(T ) = ∪̇i{ΔK(a1), ..., ΔK(an)} where ΔK(ai) is the conjugacy class of
ai and ∪̇ denotes the disjoint union.

Definition 1029. Let T1 ⊆ T be finitely generated torsion modules over R =
K[∂] defined by P (∂)y = 0, P1(∂)y1 = 0.

(i) The polynomials P (∂), P1(∂) are said compliant if there exists P2 to
satisfy (6.80) or (6.81).

(ii) a(T1) and a(T/T1) are said compliant if a(T1)∪̇a(T/T1) is a full set of
Smith zeros of T .

The following result is used in the sequel and is a direct consequence of
Proposition 528:

Proposition 1030. Let T1 ⊆ T be two finitely generated torsion modules
over R = K[∂]. Then A(T ) = A(T1)∪̇A(T/T1).

Indeed, if compliant polynomials P (∂), P1(∂) are chosen to define T and T1

it follows that compliant full sets of Smith zeros can be obtained for T and
T/T1.

Corollary 1031. If T = T1 ⊕ T2, then A(T ) = A(T1)∪̇A(T2).

Proof. T2
∼= T/T1 which leads to the conditions of Proposition 1030.

It follows from (6.63) and the form (2.9) of Theorem 147(ii) that M/[u]R ∼=
T (M)⊕ Φ/[u]R, i.e.,

Msp
∼= Midz ⊕Mcp. (6.82)

Therefore, by Corollary 1031, one can chose a(Mcp) and a(Midz) such that

a(Msp) = a(Midz)∪̇a(Mcp) (6.83)

and, generally,
A(Msp) = A(Midz)∪̇A(Mcp). (6.84)

Example 1032. Consider the LTV system given by

(∂ − t)2x = (∂ − t)(∂ + 1)u. (6.85)

The system pole is thus ΔK(t) with multiplicity 2, i.e., the module of the poles
of the system is M/[u]R ∼= R/R(∂−t)2. The module Midz of input-decoupling
zeros is defined by (∂ − t)v = 0, i.e., T (M) ∼= R/R(∂ − t). The controllable
dynamics is (∂ − t)x = (∂ + 1)u and from this one directly obtains
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(∂ − t)x = 0 (6.86)

as an equation of definition of the module of controllable poles Mcp. The
controllable pole is thus ΔK(t) and (6.83) is thus satisfied. Notice also that,
for example, the controlable poles are also given by ΔK(t+ t−1) as t ∼ t+ t−1

(if the change of variable x̃ = tx is done, i.e., Mcp is defined by (∂ − (t +
t−1))x̃ = 0 instead of (11.22)). However, the corresponding a(Mcp) = t + t−1

is not compliant with the set the definition of Msp by a(Msp) obtained from
(6.85).

Obviously M/[y, u]R ⊆ M/[u]R and, using Theorem 52(3), one has
M/[y, u]R ∼= (M/[u]R)/([y, u]R/[u]R) from which follows using Proposition
1030 that a(Mop) and a(Modz) can be chosen such that

a(Msp) = a(Modz)∪̇a(Mop) (6.87)

and, generally,
A(Msp) = A(Modz)∪̇A(Mop). (6.88)

This can be checked for the system of Example 1021 for which a(Msp) = t
2
,

a(Modz) = t
2 and a(Mop) = {∅}.

From (6.63) and the form (2.9) of Theorem 147(ii) it follows that
[y, u]R/[u]R ∼= (T (M) ∩ [y, u]R) ⊕ (Φ ∩ [y, u]R)/[u]R, i.e., Mop

∼= (T (M) ∩
[y, u]R)⊕Mtp from which follows by Corollary 1031 that a(Mop) and a(Mtp)
can be chosen such that

a(Mop) = a(T (M) ∩ [y, u]R)∪̇a(Mtp) (6.89)

thus,
A(Mtp) ⊂ A(Mop). (6.90)

where a(T (M) ∩ [y, u]R) is a full set of Smith zeros of T (M) ∩ [y, u]R com-
pliant with a(Mtp). Moreover, as T (M) ∩ [y, u]R ⊆ T (M), it follows from
Proposition 1030 that there exist a(Midz) and a(Miodz) such that

a(Midz) = a(T (M) ∩ [y, u]R)∪̇a(Miodz) (6.91)

thus,
A(Miodz) ⊂ A(Midz). (6.92)

If, moreover, a(T (M) ∩ [y, u]R) is chosen simultaneously compliant with
a(Midz) and a(Mop), i.e., if a(T (M) ∩ [y, u]R) is the same in (6.117) and
(6.89), then, from the latter relations one can conclude that

a(Mop) ∪ a(Miodz) = a(Mtp)∪̇a(Midz) (6.93)

or, moreover
A(Mtp)∪̇A(Midz) = A(Mop)∪̇A(Miodz). (6.94)
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The hidden modes describe the unredundant union of the noncontrollable
and nonobservable dynamics.

Definition 1033. The module of hidden modes of the LTV control system
(M,u, y) is Mhm = M/(Φ ∩ [y, u]R).

From (6.63) and the form (2.9) of Theorem 147(ii) it follows that

M/(Φ ∩ [y, u]R) ∼= T (M)⊕ Φ/(Φ ∩ [y, u]R) (6.95)

and thus one can chose a(Mhm) and a(Midz) such that

a(Mhm) = a(Midz)∪̇a(Φ/(Φ ∩ [y, u]R)). (6.96)

Obviously, it follows that

A(Midz) ⊂ A(Mhm). (6.97)

Now,

M/[y, u]R = (T (M)⊕ Φ)/((T (M) ∩ [y, u]R)⊕ (Φ ∩ [y, u]R)

and, using again the form (2.9) of Theorem 147(ii),

M/[y, u]R ∼= T (M)/(T (M ∩ [y, u]R)⊕ Φ/(Φ ∩ [y, u]R)

or, equivalently,
Modz

∼= Miodz ⊕ Φ/(Φ ∩ [y, u]R). (6.98)

If one chooses a(Miodz) compliant with a(Φ/Φ ∩ [y, u]R), (6.98) leads to

a(Modz) = a(Miodz)∪̇a(Φ/(Φ ∩ [y, u]R)). (6.99)

If, moreover, a(Φ/Φ∩[y, u]R) chosen for (6.98) is also compliant with a(Midz)
in (6.96), (6.99) and (6.96) lead to

a(Mhm) = a(Midz)∪̇a(Modz)\a(Miodz) (6.100)

and
A(Mhm) = A(Midz)∪̇A(Modz) \A(Miodz). (6.101)

From (6.87), (6.93) and (6.87) follows that a(Msp) = a(Mtp)∪̇a(Mhm) and

A(Msp) = A(Mtp)∪̇A(Mhm). (6.102)

The hidden modes for the system of Example 1025 are ΔC(t)(t), there are no
transmission poles and the system poles are ΔC(t)(t). Note that ΔC(t)(t) give
also the input-decoupling zeros as well as the output-decoupling zeros.
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6.6.5.2 Zeros and Hidden Modes

The same kind of relations can be established among zeros and hidden modes
using their modules of definition.

From the form (2.9) of Theorem 147(ii) one has

M/[y]R ∼= (T (M)⊕ Φ)/[y]R ∼=
∼= T (M)/(T (M) ∩ [y]R)⊕ Φ/(Φ ∩ [y]R) (6.103)

from which follows

T (M/[y]R) ∼= T (M)/(T (M) ∩ [y]R)⊕ T (Φ/Φ ∩ [y]R). (6.104)

As (Φ∩[y, u]R)/(Φ∩[y]R) ⊆ Φ/(Φ∩[y]R), from (6.104) results T (M)/(T (M)∩
[y]R)⊕ (Φ ∩ [y, u]R)/(Φ ∩ [y]R) ⊆ T (M/[y]R), i.e.,

Mtz ⊕Miodz ⊆Miz . (6.105)

From Proposition 1030 follows that a(Mtz) and a(Miodz) can be chosen such
that a(Mtz)∪̇a(Miodz) ∈ a(Miz)

and
A(Mtz)∪̇A(Miodz) ⊂ A(Miz). (6.106)

If the transfer matrix of the system is right-invertible, then [y]R is free and
T (M) ∩ [y]R = 0. Equation (6.103) can be written in this case

M/[y]R ∼= T (M)⊕ Φ/(Φ ∩ [y]R) (6.107)

from which follows as before T (M)⊕ (Φ ∩ [y, u]R)/(Φ ∩ [y]R) ⊆ T (M/[y]R),
i.e.,

Mtz ⊕Midz ⊆Miz (6.108)

or, furthermore, there exist a(Mtz) and a(Midz) such that a(Mtz)∪̇a(Midz) ∈
a(Miz)

and thus
A(Mtz)∪̇A(Midz) ⊂ A(Miz). (6.109)

Note that in this case, the set of output-decoupling zeros is not generally
included in the set of invariant zeros, as is shown by the following example:

Example 1034 ⎧
⎨

⎩

∂x1 = u1

∂x2 = x2 + u2

y = x1

(6.110)

where the output-decoupling zero is {1}, but the set of invariant zeros is
empty.

Consider now the case where the transfer matrix is left-invertible. Let
G(∂) be the p×m transfer matrix (p > m) and let G(∂) = D−1

G (∂)NG(∂) be
a left-coprime factorization of G(∂). The transfer module Mtd is defined by
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DG(∂)y = NG(∂)u. Obviously,m = rank(G) ≤ rank(NG), thus NG(∂) is left-
invertible. As NG(∂)u = 0 defines the module Mtd/[y]R ∼= (Φ ∩ [y, u]R)/[y]R
it follows that (Φ ∩ [y, u]R)/[y]R is torsion. Now, using the form (2.9) of
Theorem 147(ii),

M/[y]R ∼= (T (M) ∩ [y, u]R)⊕ (Φ ∩ [y, u]R))/[y]R

so M/[y]R is also torsion. Furthermore, its submodule [y, u]R/[y]R is also
torsion. Thus, from Theorem 52 (3) one obtains

(M/[y]R)/([y, u]R/[y]R) ∼= Modz,

i.e.,
a(Miz) = a(Modz)∪̇a([y, u]R/[u]R) (6.111)

where a([y, u]R/[u]R) is compliant with the chosen a(Miz).
Next, from (6.63) and the form (2.9) of Theorem 147(ii) one obtains

[y, u]R/[y]R ∼=
∼= (T (M) ∩ [y, u]R)/(T (M) ∩ [y]R)⊕ (Φ ∩ [y, u]R)/(Φ ∩ [y]R).

or, moreover,

[y, u]R/[y]R ∼= (T (M) ∩ [y, u]R)/(T (M) ∩ [y]R)⊕Mtz (6.112)

from which

a([y, u]R/[u]R) = a((T (M) ∩ [y, u]R)/(T (M) ∩ [y]R))∪̇a(Mtz) (6.113)

where a([y, u]R/[u]R) is compliant with a(Mtz) and a(Modz) chosen in
(6.111). As a consequence, from (6.111) and (6.113) one can conclude that
a(Mtz)∪̇a(Modz) ∈ a(Miz) and

A(Mtz)∪̇A(Modz) ⊆ A(Miz). (6.114)

Note that in this case, the sets of input-decoupling zeros are generally not
included in the sets of invariant zeros, as shown by the following example
which is the ”dual” of Example 1034:

Example 1035 ⎧
⎪⎪⎨

⎪⎪⎩

∂x1 = u
∂x2 = x2

y1 = x1

y2 = x2

(6.115)

In this case, {1} is the input-decoupling zero, but the set of invariant zeros
is empty.

Finally, consider the case where the transfer matrix is invertible. Then,
both [y]R is free and M/[y]R is torsion. In these conditions, (6.112) can be
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written as [y, u]R/[y]R ∼= (T (M) ∩ [y, u]R) ⊕Mtz from which follows that
a(Mtz) can be chosen such that

a([y, u]R/[y]R) = a(T (M) ∩ [y, u]R)∪̇a(Mtz) (6.116)

where a(T (M ∩ [y, u]R) is compliant with a([y, u]R/[y]R).
From Definition 1023 and Proposition 1030 one can chose a(Miodz) com-

pliant with a(T (M ∩ [y, u]R) in (6.116) such that

a(Midz) = a(Miodz)∪̇a(T (M ∩ [y, u]R)). (6.117)

Moreover, from Theorem 52 (3)

M/[y, u]R ∼= (M/[y]R)/([y, u]R/[y]R)

and, following Proposition 1030 one can chose a(Modz) compliant with
a(T (M ∩ [y, u]R) in (6.116) such that

a(Miz) = a(Modz)∪̇a(T (M ∩ [y, u]R). (6.118)

From (6.118), (6.116), (6.117) and (6.100) one can conclude that

a(Mtz)∪̇a(Mhm) = a(Miz) (6.119)

and
A(Mtz)∪̇A(Mhm) = A(Miz). (6.120)

The main relations among the poles and zeros of an LTV control system
can thus be summarized in the following

Theorem 1036.
(i)

α(Msp) = α(Mtp)∪̇α(Mhm)
α(Mtz)∪̇α(Miodz) ⊂ α(Miz)

(ii) if the transfer matrix is left-invertible,

α(Mtz)∪̇α(Modz) ⊂ α(Miz)

(iii) if the transfer matrix is right-invertible,

α(Mtz)∪̇α(Midz) ⊂ α(Miz)

(iv) if the transfer matrix is invertible,

α(Mtz)∪̇α(Mhm) = α(Miz)

where α stands for a or A.
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6.6.5.3 The Case of Linear-Time Invariant Systems

The relations established in Section 6.6.5 are simpler in the case of LTI
systems since the sets of poles and zeros are uniques: A(M) = a(M) =
{a1, ..., an} where M is the module of any pole or zero defined in Section 6.6
and ai ∈ K, i = 1, ..., n. The relations among various poles and zeros are thus
the ones established in Section 6.6.5 for the A’s and for which no compliance
precautions are needed.

For Example 1000 for instance, the set of input-decoupling zeros is {1}
and relation (6.84) which must be red in the LTI case is

{system poles} = {input−decoupling zeros}∪̇{controllable poles} (6.121)

and leads to {1, 1} = {1}∪̇{1} for this example.

6.7 The Case of Discrete-Time Systems

6.7.1 Factors and Roots in the General Case

For the discrete-time case, ∂ stands for q−1 where q denotes the shift forward
operator: qy(t) = y(t + 1). Similar definitions of poles and conditions for
asymptotic stability can be given for discrete-time systems. However, we are
faced with some supplementary difficulties in this case. First, there is no
general method to provide a factorization (6.10) for P (∂), i.e., in so-called
hyperexponential factors. The existing results (e.g., [54], [274] and related
references) make it only possible to check if, over a given field K̆, P (∂) has
a hyperexponential factor, but they do not provide the way to construct the
field extension over which the polynomial factorizes. Next, condition

ċ(t)
c(t)
→ 0 as t→ +∞ (6.122)

satisfied by the elements of an Ore field transposes into a more restrictive
form in the discrete-time case. Indeed, following (4.13), an element a of the
conjugacy class of a root a ∈ K̆ of P (∂) is of the form a = c(t+1)

c(t)
[a(t)+1]−1

and thus limt→+∞(a − a(t)) = 0 if, and only if limt→+∞
c(t+1)
c(t) = 1. The

well-suited fields in the discrete-time case are thus asymptotically constant
fields.

Provided that a full set of factors or/and a fundamental set of roots of
P (∂) can be provided over an asymptotically constant field K̆, the approach
presented for the continuous-time case can be extended to the discrete-time
one. A fundamental set of roots γi of P (∂) leads in the discrete-time case to
the following elementary equations:

(∂ − γi(t))yi(t) = 0⇔ yi(t + 1)− yi(t) = γi(t)yi(t). (6.123)
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Obviously,

yi(t) =
t∏

k=m

(1 + γi(k)), i = 1, ..., n (6.124)

where n = deg(P (∂)) and m is an integer which depends on the initial con-
ditions of (6.2), form a fundamental set of solutions of (6.2). The γi’s form
a fundamental set of poles of the system according to Definition 997. Us-
ing the expression (6.124) for the solutions of (6.2), the condition (6.56) for
exponential stability can be extended to the discrete-time case:

Theorem 1037. The discrete-time autonomous system defined by the R-
torsion module T is exponentially stable if any of its poles γi(t) satisfy the
condition

lim sup
t→+∞

|1 + γi(t)| < 1. (6.125)

If limt→+∞|1 + γi(t)| exists, then condition above is also necessary for expo-
nential stability.

Notice that polynomial P can be written and factorized using operator q
instead of ∂ as in the example below:

Example 1038. P (∂) = ∂2 − (2t− 1)∂ + t2 − 2t. With ∂ = q − 1 it follows
that P (q) = q2 − (2t + 1)q + t2. One can easily check that

P (q) = (q − t)(q − t). (6.126)

If a fundamental set of roots is found working with q instead of ∂, (6.124) is
replaced by

yi(t) =
t∏

k=m

γi(k), i = 1, ..., n (6.127)

and condition (6.125) is replaced by

lim sup
t→+∞

|γi(t)| < 1 (6.128)

which, in the case of LTI systems, particularizes to the well-known stability
condition: |γi| < 1.

For Example 1038, a fundamental set of solutions is y1(t) = (t− 1)!y1(1),
y2(t) = y1(t)(

∑t−1
k=0

1
k

+ y2(1)) to which correspond the fundamental set of
poles γ1(t) = t, γ2(t) = t+ 1∑ t−1

k=0
1
k +y2(1)

. The system is exponentially unstable

since limt→+∞γ1(t) = +∞ (as well as limt→+∞γ2(t) = +∞).
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6.7.2 Poles and Zeros of Periodic Discrete-Time
Systems

6.7.2.1 N-Piled Form

Let K be an algebraically closed field and let α be an automorphism of K
such that αN = 1 for some integer N > 1. The noncommutative rings
A = K [X ; α] and T = K

[
X,X−1; α

]
are principal ideal domains (and

K [X ; α] is an Euclidean domain) by Theorem 467 and Lemma 463, but none
of them is simple by Corollaries 363 & 368. Therefore, the case of ”periodic
discrete-time systems” is quite special, and the methods of the preceding
sections cannot be used. Nevertheless, this case if almost as simple as that
of systems with constant coefficients, due to the results obtained in (2.8.4.2).

Indeed, by Proposition 375 we know that T is is a crossed product S ∗G
where S = K

[
Y, Y −1

]
, the skew Laurent polynomial ring in the central

indeterminate Y = XN , and the group G is cyclic of order N .
Let M be a system over A. Very little information is lost when replacing

M by M̆ = S−1M where S = {Xn : n ≥ 1}; M̆ is a system (i.e., a f.g.
module) over T. Consider the functor C in Theorem 373. The T-module
M̆ and the S-module M̃ = C

(
M̆
)

contain the same information. Since the
indeterminate Y of the Laurent polynomial ring S is central, the structure
of M̃ can be studied using the same techniques as for a f.g. module over a
commutative Laurent polynomial ring. In what follows, when this will be
useful, we’ll set X = q and Y = Δ, considering these indeterminates as
operators.

Now, let (M,u, y) be a control system over A. Again, it is preferable to
replace (M,u, y) by

(
M̆, ŭ, y̆

)
where ŭ = 1⊗ u and y̆ = 1⊗ y, extending the

ring A to T. Let ũ = eN (q)⊗ ŭ and ỹ = eN (q)⊗ y̆.

Theorem and Definition 1039. (1)
(
M̆, ŭ, y̆

)
is a control system over T

and
(
M̃, ũ, ỹ

)
is a control system over S.

(2) The control system
(
M̃, ũ, ỹ

)
is called the N -piled form of

(
M̆, ŭ, y̆

)

(and, abusing the language, of (M,u, y)).

Proof. (1) Let F = K (X ; α); F is the field of fractions of both A and T.
Since M/ [u]A is torsion, F

⊗
A (M/ [u]A) = 0; therefore, F

⊗
T

(
M̆/ [ŭ]T

)
=

0 and M̆/ [ŭ]T is torsion. In addition, since the m entries of u form a basis
of [u]A, the m entries of ŭ form a basis of [ŭ]T by Theorem and Definition

339. This proves that
(
M̆, ŭ, y̆

)
is a control system over T.

By Corollary 374 and by (1), the Nm entries of the column ũ form a basis
of [ũ]S. Consider the following diagram with exact rows:
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0 −→ [u]A −→ M −→ M/ [u]A −→ 0
↓ ↓ ↓

0 −→ [ŭ]T −→ M̆ −→ M̆/ [ŭ]T −→ 0
↓ ↓ ↓

0 −→ [ũ]S −→ M̃ −→ M̃/ [ũ]S −→ 0

Both functors S−1− and C are exact by Theorem 609 and Corollary 374,
therefore one passes from the first row to the second one using the functor
S−1−, and from the second row to the third one using the functor C.
Therefore, by Theorem 379, M̃/ [ũ]S = C

(
M̆/ [ŭ]T

)
is torsion. This proves

that
(
M̃, ũ, ỹ

)
is a control system over S.

6.7.2.2 Controllability and Observability

Proposition 1040. (1) The following conditions are equivalent:
(i) M is 0-controllable (Exercise 958(3));
(ii) M̆ is controllable;
(iii) M̃ is controllable.
(2) Likewise, the following conditions are equivalent:
(i’) (M,u, y) is 0-observable [43];
(ii’)
(
M̆, ŭ, y̆

)
is observable;

(iii’)
(
M̃, ũ, ỹ

)
is observable.

Proof. (1) By definition, (i)⇔(ii).
(ii)⇔(iii): M̆ is controllable if, and only if the T-module M̆ is free

(5.6.1.1). This holds if, and only if the S-module M̃ is free by Corollary
374(iv).

(2) By definition, (i’)⇔(ii’).
(ii’)⇔(iii’):

(
M̆, ŭ, y̆

)
is observable if, and only if M̆ = [ŭ, y̆]T, and this

happens if, and only if the following sequence is exact:

0 −→ [ŭ, y̆]T −→ M̆ −→ 0.

By Corollary 374, this happens if, and only if the following sequence is exact:

0 −→ [ũ, ỹ]S −→ M̃ −→ 0,

i.e.,
(
M̃, ũ, ỹ

)
is observable.

6.7.2.3 Poles and Zeros

Recall that the module of i.d.z. of M̆ is T
(
M̆
)
; that of M̃ is T

(
M̃
)
; we

have T
(
M̃
)

= C
(
T
(
M̆
))

by Corollary 374 and Theorem 379.
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Similarly, the module of system poles of
(
M̆, ŭ, y̆

)
is M̆/ [ŭ]T, that of

(
M̃, ũ, ỹ

)
is M̃/ [ũ]S, and as shown in the proof of Theorem and Definition

1039, M̃/ [ũ]S = C
(
M̆/ [ŭ]T

)
.

The module of invariant zeros of
(
M̆, ŭ, y̆

)
is T

(
M̆/ [y̆]T

)
, that

of
(
M̃, ũ, ỹ

)
is T

(
M̃/ [ỹ]S

)
, and the reader may easily check that

T
(
M̃/ [ỹ]S

)
= C
(
M̆/ [y̆]T

)
.

This rationale can be generalized and one obtains the following result:

Proposition 1041. Let M̆p be a module of poles or zeros of
(
M̆, ŭ, y̆

)
(e.g.,

i.d.z., o.d.z., i.o.d.z., system poles, transmission poles, or transmission zeros).
The module of poles or zeros of

(
M̃, ũ, ỹ

)
of the same kind is M̃p = C

(
M̆p

)
.

The poles and zeros of
(
M̃, ũ, ỹ

)
are calculated in the same way, and have

the same properties, as those of an LTI control system with coefficients in
C. In particular, the control system

(
M̃, ũ, ỹ

)
is exponentially stable if, and

only if all its poles lie in the interior of the unit disc, and it is exponentially
unstable if, and only if at least one of its poles lies in the exterior of the unit
disc. By Corollary 378 we have the following.

Corollary 1042. A element a ∈ K is a system pole of
(
M̆, ŭ, y̆

)
if, and only

if
∏

0≤i≤N−1

aαi

is a system pole of
(
M̃, ũ, ỹ

)
.

The same holds for all kinds of poles and zeros.

6.8 The Case of State-Space Continuous-Time Periodic
Systems

Consider an LTV state-space autonomous system

ẋ = Ax (6.129)

where the entries of matrix A are in the ring Kc
t0

defined as follows: let
Ct0 = C((t0,+∞)) be the ring of continuous functions on (t0,+∞). Consider
a family (ϕi)i∈I of ω-periodic functions, ω > 0, defined on the real line.
Then, Kc

t0 = Ct0 ∩Kω, where Kω is the field C((ϕi)i∈I). Consider the rings
of differential operators: Rω = Kω[∂] and Rc

t0
= Kc

t0
[∂]. From the state-space

system (6.129) we define the left Rω-module

M = Rω ⊗Rc
t0

[x]Rc
t0

(6.130)
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Since Kω is a differential field and the derivation is outer, Rω is a simple
principal ideal domain, thus there exists P (∂) ∈ Rω such that M ∼= coker •
P (∂), i.e., M is represented by the differential equation (6.2). Stability can be
characterized by the roots of P as follows: each root γi of of P can be written
as γi = γωi +γi where γi ∈ C is the mean of γi and γωi is ω-periodic with zero
mean. Notice that the γ’s are the Floquet exponents of (6.129) as introduced
by Definition 1175. Thus, stability can be evaluated by investigating the real
part of those coefficients as a direct consequence of Proposition 1187:

Corollary 1043. The state-space system (6.129) is

• exponentially stable if, and only if all the γi’s satisfy the condition
Re{γi} < 0.

• exponentially unstable if, and only if there exists at least one γi such that
Re{γi} > 0.

For example, consider the first order system:

Example 1044
(∂ − a− sin(t))x = 0, a ∈ R. (6.131)

A fundamental set of roots is trivially found to be γ(t) = a + sin(t). Thus,
γ = a and γω = sin(t). The system is exponentially stable if, and only if
a < 0. Indeed, the solutions of (6.131) are x(t) = ceate−cos(t), c ∈ R and
limt→+∞x(t) = 0 if, and only if a < 0.

The following second order system has been used several times as an example
in the analysis of the stability of LTV systems (see, e.g., [335]):

Example 1045

ẋ = A(t)x, A(t) =
[
−1 + acos2(t) 1− asin(t)cos(t)

−1− asin(t)cos(t) −1 + asin2(t)

]
(6.132)

with 1 < a < 2. If the variable x1 is eliminated from the equations (6.132),
one obtains

α2ẍ2 + α1ẋ2 + α0x2 = 0⇔ P (∂)x2 = 0, P (∂) = α2∂
2 + α1∂ + α0 (6.133)

where
α2 = −1− a

2
sin(2t)

α1 = a− 2 + a2−2a
2

sin(2t) + acos(2t)
α0 = a2

2 + a− 2 + a2

2 sin(2t) + 2a−a2

2 cos(2t).
(6.134)

Notice that for 0 < a < 2, α2 does not vanish on any point of the real
axis so the equation (6.133) has unique solution for given initial conditions
(see, e.g., [164]). Also, it exists at least one periodic solution with the period
equal to the one of the coefficients of the differential operator in (6.133) (see,
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e.g., [164]). It follows that, in the case of periodic systems, no field extension
is needed and at least one solution is of the form:

x2(t) = ebtϕ(t) (6.135)

where b ∈ C is a characteristic coefficient and ϕ(t) is a function of period
2π. Replaced in (6.133), this leads to

α2
d2ϕ

dt2
+ (α1 + 2ϕα2)

dϕ

dt
+ (α2ϕ

2 + α1ϕ + α0)ϕ = 0 (6.136)

One can assume ϕ(t) = αsin(t+ β), with α and β constants, α �= 0 and look
for the solution which corresponds to x2(0) = 0 and dx2

dt
= 1, i.e., to β = 2kπ.

For these values of β (6.136) can be written

α2b
2 + [α1sin(t) + 2α2cos(t)]b + α1cos(t) + (α0 − α2)sin(t) = 0 (6.137)

which for t = 0 leads to b = a−1 which is one of the characteristic coefficients
of (6.133) [164]. One solution to (6.133) is thus

x2(t) = e(a−1)tsin(t) (6.138)

from which one can chose the first member of a fundamental set of roots of
(6.133):

γ1 =
dx2

dt
= a − 1 + ctg(t), γ1 = a− 1, γω1 = ctg(t). (6.139)

One can now factorize P (∂) as P (∂) = ã2(∂ − a2)(∂ − a1) with a1 = γ1,
ã2 = α2 and a2 = −γ1 − α1

α2
. The second member γ2 of a fundamental set

of roots of (6.133) can be found as a solution to the equation γ2−γ1γ2 = a2

which leads to the Riccati equation

γ2 +
d(γ2 − γ1)
(γ2 − γ1)dt

= −γ1 −
α1

α2
. (6.140)

It can be checked (rather by using a tool of formal computation) that (6.140)
has a periodic solution with zero mean γ2(t) = a−1+ϕ(t) where ϕ is periodic
with zero mean. So, γ2 = γ1 = a − 1 and the system is thus exponentially
stable if, and only if a < 1 and exponentially unstable if, and only if a > 1.

6.9 Exercises

Exercise 1046. Let K be a field of characteristic zero. Show that every poly-
nomial P ∈ K[X ] has a splitting field. (Hint: the splitting field is constructed
by extending K by the zeros of nonlinear factors of P over suitable field
extensions.)
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Exercise 1047. Compute the minimal polynomial of {1, t}.

Exercise 1048. Let

P (∂)y = 0 with P (∂) = t2∂2 + (t− 2t2)∂ − t+ t2 (6.141)

Compute the system poles for the system defined by this differential equation
and evaluate the stability. From the poles obtained, deduce the solutions of
the differential equation. (Hint: the change of variable ξ = t∂ leads to P (ξ) =
(ξ − t)2 which, pulled-back to ∂, leads to P (∂) = t2(∂ − t−1 − 1)(∂ − 1).)

Exercise 1049. Consider the 3rd order Euler equation: S(∂)y = 0, S(∂) =
t3∂3− t2∂2− 2t∂− 4. Compute a fundamental set of poles of the system and,
next, a set of independent solutions of the differential equation.

Exercise 1050. Consider the system (∂ − t)(∂ + 1)y = (∂ − t)(∂ + 2t)u.
Compute the transfer poles and zeros. Are there any hidden modes?

Exercise 1051. Consider a system given by the state-space form:
⎧
⎨

⎩
∂x =

[
0 1
0 t−1

]
x +
[

1
0

]
u

y =
[
t 1
]
x

(6.142)

Give the different poles and zeros of this system and check the relations among
them.

Exercise 1052. Same questions as before for the system
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂x =

⎡

⎣
−1 0 0
1 −3 0
1 −4 1

⎤

⎦x +

⎡

⎣
0
1
0

⎤

⎦ u

y =
[

1 0 0
−1 1 0

]
x

(6.143)

Exercise 1053. Let M be a system over A = K [q; α] where α is an auto-
morphism of K such that αN = 1 (N > 1). Let R (q) ∈ qAk be a matrix of
definition of M .

(i) Prove that the corresponding matrix of definition of M̃ is R̃ (Δ) ∈ NqSNk

given by
(eN (q) ⊗ Ik)R (q) = R̃ (Δ) (eN (q)⊗ Ik) .

(ii) Assume that R (q) = f (q) =
∑

0≤i≤7 aiq
i (a7 �= 0) and that N = 2.

Check that

R̃ (Δ) =
[
f0 (Δ) f1 (Δ)
fα
1 (Δ) fα

0 (Δ)

]
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where

f0 (Δ) = a0 + a2Δ + a4Δ
2 + a6Δ

3,

f1 (Δ) = a1 + a3Δ + a5Δ
2 + a7Δ

3.

Exercise 1054. Let M be a system over A = K [q; α] where α is an auto-
morphism of K such that αN = 1 (N > 1). Let R (q) ∈ qAk be a matrix of
definition of M .

(i) Prove that the corresponding matrix of definition of M̃ is R̃ (Δ) ∈ NqSNk

given by
(eN (q) ⊗ Ik)R (q) = R̃ (Δ) (eN (q)⊗ Ik) .

(ii) Assume that R (q) = f (q) =
∑

0≤i≤7 aiq
i (a7 �= 0) and that N = 2.

Check that

R̃ (Δ) =
[
f0 (Δ) f1 (Δ)
fα
1 (Δ) fα

0 (Δ)

]

where

f0 (Δ) = a0 + a2Δ + a4Δ
2 + a6Δ

3,

f1 (Δ) = a1 + a3Δ + a5Δ
2 + a7Δ

3.

6.10 Notes and References

The algebraic approach to define the poles of an LTV system was recently
introduced by the authors: [239], [240] and [241]. It is based on the formal
local theory of the differential equations presented in [286] and on the the-
ory of non-commutative polynomials introduced in [265]. A key notion is
the minimal polynomial and the Wedderburn polynomials studied in [203]
and related references. This factorization is similar to the one previously ob-
tained by Gelfand et al. in [135] using quasideterminants techniques. The
first attempts to characterize the stability from the factors of the differential
operator of an LTV system are due to Kamen in [174] and Zhu and Johnson
in [379], [381], [380]. The transfer matrix of an LTV system was introduced
in the form used here in [117]. The poles and zeros along with the relations
among them have been given in this algebraic approach in the case of LTI
systems in [44].

N -piled forms were used by several authors for the study of N -periodic
discrete-time systems, notably Grasselli et al. [145], [146], El Mrabet and
Bourlès [108], for systems given by a Rosenbrock description. In [108], the
system coefficients are assumed to belong to a ring with zero-divisors. The
present account, where the coefficients are assumed to belong to a field, is
clear and general; it is based on modules and the functor C. The price
to pay is that no reasonable injective cogenerator is presently known in the
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category TMod (that in (5.4.2.3) is valid for LTV discrete-time systems with
coefficients in K = C (t), thus for a class of systems which are non-periodic).

There were attempts to extend the notions of pole and zero to nD sys-
tems. Wood et al. [363] considered the case of nD systems systems with
constant coefficients, and Pommaret ([278], Sect. V.2)–see, also, Pommaret
and Quadrat [279]–the case of nD systems systems with varying coefficients.
An nD system with varying coefficients can be viewed as a filtered mod-
ule M over a filtered ring A. A graded module Mg over a graded ring
Ag is canonically associated with this filtered module. To clarify ideas, as-
sume that n = 1 and that the ring of operators is B1 = K [∂, δ] (δ = d/dt,
K = C (t)); B1 is a filtered ring and the associated graded ring Bg

1 is deduced
from B1 by making the indeterminate ∂ commute with the coefficients, i.e.,
the commutation rule ∂a = a∂ + aδ in B1 is replaced in Bg

1 by Xa = aX
(denoting by X the new indeterminate), so that Bg

1
∼= K [X ]. The first step

of the approach in [278] consists in replacing the filtered module M by the
associated graded module Mg, i.e., roughly speaking, in replacing the ini-
tial time-varying system by the corresponding ”frozen system”. Then, the
approach in [363] and that in [278] become similar. Consider an LTI con-
trol system (M,u, y) over A = C [∂]. The module of system poles is M/Min

where Min = [u]A. Consider its annihilator a and the radical
√

a of a. Then,
the system poles are defined in [363], [278] as being the points of the alge-
braic set Za (2.10.1.2). Consider now an LTV control system (M,u, y) over
B1, with equation (∂3 + 3a∂2 + 3a2∂ + a3)y = u, and let Min = [u]B1

. The
graded module associated with M is the module Mg over K [X ] given by the
equation (X + a)3yg = ug where the indeterminate X and the coefficient t
commute. The graded module associated with Min is the free K [X ]-module
Mg
in = [ug]K[X]. Consider the torsion module (M/Min)

g ∼= Mg/M g
in ([278],

Sect. IV.3). Its annihilator is the ideal
(
(X + a)3

)
in K [X ], the radical of

which is (X + a), thus Za = {a}. This algebraic set, which is the ”char-
acteristic set” of M/Min, is called the set of system poles in [278]. In fact,
it is only a subset of the set of ”frozen system poles”: that obtained when
the multiplicities are not taken into account. Moreover, it is not connected
to the solutions of the equations which are related the full sets of zeros of
P (∂) or the fundamental sets of roots of P (∂) used in this section. Therefore,
unfortunately, this set Za cannot be considered as the set of system poles in
a consistent way.
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Structure at Infinity and Impulsive
Behaviors

7.1 Introduction

The topic of this chapter is the structure at infinity of discrete and continu-
ous linear time-varying systems in a unified approach. When interconnect-
ing two subsystems, ”impulsive motions” may arise. In the continuous-time
case, those impulsive motions are linear combinations of the Dirac distribu-
tion δ and its derivatives; they were first studied by Verghese [346]. In the
discrete-time case, those impulsive behaviors are backward solutions with fi-
nite support; they were revealed by Lewis [216]. The space spanned by all
impulsive motions of a system is called its ”impulsive behavior” and is de-
noted as B∞. The structure of this impulsive behavior must be studied,
and, for the integrity of the system resulting from the interconnection, all
impulsive motions must be avoided.

Before entering into details, let us consider the following continuous-time
system with constant coefficients, in ”descriptor form”:

(E∂ −A)x = Bu, t ∈ T0 (7.1)

where the function u is the ”system input”, assumed to be known, x is
the ”descriptor vector” and ∂ = d/dt, where the time-derivative is under-
stood in the sense of distributions; E,A and B are matrices belonging to
Matq (k) ,Matq (k) and qkm, respectively (k = R or C). Suppose that
T0 = [0,+∞), which means that the system is formed at time t = 0 (as
a result, for example, of switching or of component failure in some other
system; such events are frequent in electrical circuits, mechanics, hydraulics,
etc. [133]). Therefore, let us call (7.1) a ”temporal system” (to point out the
difference with the classic situation where T0 = R, and where system (7.1) is
thus perpetually existing). Assume that the matrix pencil Es−A is regular
(i.e., that the polynomial |Es−A| is nonzero [132]) to ensure that (7.1) has
solutions [179]. If E is singular, the restrictions to T0 of the components
xi of x contain impulsive motions with coefficients only depending on the

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 453–496.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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”initial values” xi (0−), when the latter are incompatible with the equation
(E∂ −A)x = Bu. These impulsive motions, which are said to be ”uncon-
trollable” due to their complete dependence on initial conditions, span the
”autonomous part” B∞,a of B∞. To know what event arose at time t = 0,
the values of the above-mentioned coefficients are not significant, as opposed
to the structure of B∞,a. Setting T = R, the temporal system (7.1) can be
written in the more general form

{
R (∂)w (t) = e (t) , t ∈ T

e (t) = 0, t ∈ T0
(7.2)

where R (∂) is a q × k matrix (k = q + m) with entries in k [∂] and w is the
column, the entries of which are the system variables (here the components
xi and ui of x and u, respectively); the function e has any restriction to
the complement T \ T0 of T0 in T. It is known that the structure of B∞,a
is completely determined by the structure of the ”zeros at infinity” of the
matrix R (∂) [343]–a notion which is explained below. Therefore, the char-
acterization of the structure of B∞,a is not an analytic problem (involving
derivations, integrations, etc., in the framework of the theory of distribu-
tions), but an algebraic one, which makes the calculations much simpler and
easier to computerize.

A similar problem is posed by discrete-time systems [216], [217]. The
variables are now sequences (denoted as functions defined on the set of in-
tegers Z). Let q be the usual shift forward operator w (t) �→ w (t + 1),
define the discrete-time derivative ∂ = q − 1, and with this notation con-
sider the discrete-time system with constant coefficients (7.1). Assume that
the sequence u (again called the input) is known and that the matrix pen-
cil Ez − A is regular. Suppose that the matrix E is singular (which means
that the system is noncausal) and that T0 = {...,−2,−1, 0}, i.e., that the
system exists only up to the ”final time” t = 0 (a phenomenon which arises
in various fields: for example the ”Leontief model”, in economy, describes the
time pattern of production in several interrelated production sectors; it is of
the form (7.1), possibly noncausal, and valid up to a finite final time [220]).
For the same reason as above, let us call (7.1) (or (7.2) which is the most
general form) a ”temporal system”. Due to the fact that (7.1) is noncausal,
the restrictions to T0 of the variables xi contain backward solutions with
finite support (i.e., impulsive motions), with coefficients only depending on
the ”final values” xi (1). As in the continuous-time case, these impulsive
motions, said to be uncontrollable due to their complete dependence on fi-
nal conditions, span the ”autonomous part” B∞,a of B∞. Considering the
temporal system (7.2), where T = Z and where the sequence e has any re-
striction to T \ T0, the structure of B∞,a is again a key problem. As will
be shown below, this structure is determined by the ”structure at infinity”
of the matrix R (∂) by the structure of the zeros at infinity of R (∂), exactly
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as in the continuous-time case. The complete structure at infinity of R (∂)
consists of its poles at infinity and of its zeros at infinity.

The notion of ”temporal interconnection” is useful for the sequel. Any sys-
tem may be considered as resulting from the interconnection of subsystems
[369], [303]. In the continuous-time case, a switching, a component failure,
etc., as mentioned above, are interconnections starting at a given initial time
(assumed to be zero without loss of generality, since the origin of time can
be freely chosen), i.e., only effective on T0 = [0,+∞) � T; such an intercon-
nection is said to be ”temporal” in what follows. In the discrete-time case, a
temporal interconnection is an interconnection valid up to a given final time
(also assumed to be zero), i.e., only effective on T0 = {...,−2,−1, 0} � T.
A temporal system results from the temporal interconnection of subsystems.
This is clear when considering (7.2) which is obtained by interconnecting
the system R (∂)w = e with the trivial system ē = 0 through the temporal
interconnection e (t) = ē (t) , t ∈ T0.

7.2 Structure at Infinity

7.2.1 Matrices over S

Let K be an Ore domain, let A = K [∂; α, δ] (Definition 355), where α an
automorphism and δ an α-derivation of K, and let β = α−1. Consider the
ring S = K [[σ; α, δ]], where σ = ∂−1 (Subsect. 2.9.1). We know that S is a
domain and that if K is Noetherian, S is again a Noetherian (Theorem 381).
If K is local with maximal ideal m, then S is local with maximal ideal (m, a)
where a = (σ) (Theorem 383).

Example 1055. (i) Let K = k {t} (2.9.1.1) and A = K [∂; δ], δ = d/dt.
Then A = A1c (k) (Subsect. 2.7.5) is a local ring with maximal ideal (t, σ)
and, as shown by Corollary 365, this ring is a simple Noetherian domain.
(ii) Consider the first Weyl algebra A1 (k) = k [t] [∂; δ]; this ring is a simple
Noetherian domain but is not local, for k [t] is not. Nevertheless, k [t] can
be embedded in k {t}, and therefore A1 (k) can be embedded in the local ring
A1c (k).

The operator σ can be viewed as a kind of ”integration operator” (see below).
Let us study the general linear group GLn (S).

Proposition 1056. (i) Let

U =
∑

i≥0

Γi σ
i ∈ Matn (S) ,

where Γi ∈ Matn (K) , i ≥ 0. The matrix U belongs to GLn (S) if, and only
if Γ0 ∈ GLn (K)
(ii) Let U ∈ GLn (S) and k ∈ Z. There exist two matrices Uk, U ′k ∈ GLn (S)
such that σk U = Uk σ

k and U σk = σk U ′k.



456 7 Structure at Infinity and Impulsive Behaviors

Proof. (i) If Γ0 is invertible, U can be written in the form Γ0 (In −X) , X ∈
σMatn (S). The matrix In−X is invertible with inverse

∑

i≥0

X i. Conversely,

if U is invertible, there exists L =
∑

i≥0

Λi σ
i ∈ Matn (S) such that U L = In.

This implies Γ0Λ0 = In, thus Γ0 is invertible.
(ii) Let U =

∑

i≥0

Γiσ
i ∈ GLn (S). By the commutation rule (2.44), with

Z = σ, σU =

(
∑

i≥0

Θiσ
i

)

σ with Θ0 = Γβ
0 . The matrix Γβ

0 (the entries

of which are the images of the entries of Γ0 by the automorphism β) is
invertible, therefore

∑

i≥0

Θiσ
i ∈ GLn (S) by (i). By induction, for any k ∈ N,

there exist Uk, U ′k ∈ GLn (S) such that σkU = Ukσ
k and U σk = σk U ′k. By

the first equality, U σ−k = σ−k Uk, by the second equality, σ−k U = U ′k σ
−k,

thus (ii) is proved.

Proposition 1057. Assume that K is a division ring.

(i) The ring S is a principal ideal domain and is local with maximal left ideal
Sσ = σ S = (σ).
(ii) The units of S are the power series of order zero; any nonzero element
a ∈ S can be written in the form a = υ σω(a) = σω(a) υ′, where υ and υ′ are
units of S.
(iii) Let a and b be nonzero elements of S; then b ‖ a (i.e., b is a total divisor
of a) if, and only if ω (b) ≤ ω (a). Therefore, every nonzero element of S is
invariant.
(iv) The residue class division ring of S (Lemma and Definition 343) is K.

Proof. If K is a division ring, its maximal ideal is (0), therefore S is a local
Noetherian domain with maximal ideal a = (σ). The only nonzero elements
of S are the powers σi, i ≥ 0, and their associates (Corollary 384), and this
proves (i), (ii) and (iii). The residue class division ring of S is S/ (σ) ∼= K.

When K is a division ring, every matrix over S has a Smith normal form Σ
(Lemma and Definition 655) by Proposition 1057 and Theorem 658. There-
fore, in that case, for any matrix R ∈ qSk, there exist matrices U ∈ GLq (S)
and V ∈ GLk (S) such that U RV −1 = Σ where

Σ =
[

diag (σμi)1≤i≤r 0
0 0

]
, 0 ≤ μ1 ≤ ... ≤ μr . (7.3)

Let μi, 1 ≤ i ≤ s be the zero elements in the list {μi, 1 ≤ i ≤ r} (if any). The
following is an obvious consequence of Corollary and Definition 662:

Proposition 1058. The noninvertible invariant factors σμi (1 ≤ i ≤ s) of R
coincide with its elementary divisors.
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Remark 1059. Assuming that K is a division ring, the Smith normal form
of a matrix R ∈ qSk can be obtained using only elementary operations (Sub-
sect. 2.10.3), i.e., secondary operations (Definition 649) are not necessary.
Indeed, the Smith normal form is obtained using the following procedure (re-
ferring to the kinds of elementary operations specified in Subsect. 2.10.3):

(a) Using row and column operations of the third kind, put an element of
least order (Definition 380) in position (1,1).
(b) Using row and column operations of the second kind, reduce that element
to a power of σ, say σμ1.
(c) Using row and column operations of the first kind, annihilate all elements
of the first row and the first column of R, except the element in position (1,1).
Then, R is put into the form

[
σμ1 0
0 R+

1

]

and σμ1 is a total divisor of all entries of R1. By induction, using the same
operations, the desired Smith normal form is obtained.

7.2.2 Smith-MacMillan form at Infinity

Let K be an Ore domain, let A = K [∂; α, δ], let B = K
[
σ−1, σ; α, δ

]
, and

let L = K ((σ; α, δ)); B (resp., L) is the ring of Laurent polynomials (resp., of
formal Laurent series) in σ, equipped with the commutation rule (2.44) with
Z = σ. Let K̂ be the division ring of fractions of K, let Q = K̂ (∂; α, δ),
Ŝ = K̂

[[
X−1; α, δ

]]
, and L̂ = K̂ ((σ; α, δ)). The relations between these

rings, already established in Theorem 385, are summarized in the table below,
where −→ is used for ⊆.

B
↗ ↘

A −→ S → L
+ ↓ ↓
A Ŝ −→ L̂
↘ ↗

Q

If K is a division ring, then S = Ŝ, L = L̂, and B ⊆ Q.

Theorem and Definition 1060. (1) Let R ∈ L̂p×m be a matrix of rank r.
There exist matrices U ∈ GLp

(
Ŝ
)

and V ∈ GLm
(
Ŝ
)

such that

U RV −1 =
[

diag (σνi)1≤i≤r 0
0 0

]
, ν1 ≤ ... ≤ νr, (7.4)
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and the integers νi ∈ Z (1 ≤ i ≤ r) are uniquely determined from R. The
integer

c (R) = −
∑

1≤i≤r νi

is called the content of R.
(2) The matrix in the right-hand side of the equality in (7.4) is called the
Smith-MacMillan (normal) form of R over L̂. If R ∈ pQm and Q is embedded
in L̂, (7.4) is called the Smith-MacMillan form at infinity of R.
(3) Let R be A or B, or let R = Q if K is a division ring, and let R (∂) ∈ qRk

be a matrix of rank r. If there exist matrices U ∈ GLq (S) and V ∈ GLk (S)
such that

U (σ) R (∂) V −1 (σ) =
[

diag (σνi)1≤i≤r 0
0 0

]
∈ qLk, (7.5)

ν1 ≤ ... ≤ νr, νi ∈ Z (1 ≤ i ≤ r)

then the matrix on the right of the equality in (7.5) is called the Smith-
MacMillan form at infinity of R (∂).
(4) If R (∂) ∈ qRk (R = A or B, or R = Q if K is a division ring) has
a Smith-MacMillan form at infinity, this form is unique, and R (∂) is called
regular at infinity. Consider the finite sequences (ς̄i)1≤i≤r and (π̄i)1≤i≤r
defined as follows: ς̄i = max (0, νi) and π̄i = max (0,−νi). Among the non-
negative integers ς̄i (resp., π̄i), those which are nonzero (if any) are called
the structural indices of the zero (resp., of the pole) at infinity of the matrix
R (∂); they are put in increasing (resp., decreasing) order and denoted by ςi
(1 ≤ i ≤ ρ) (resp., πi (1 ≤ i ≤ s)). If ς1 > 0, R (∂) is said to have a blocking
zero at infinity of order ς1. The natural integer # (TP∞) =

∑

1≤i≤s
πi (resp.,

# (TZ∞) =
∑

1≤i≤ρ
ς i) is called the degree of the pole (resp., the zero) at

infinity of R (∂). If ς̄i = 0 (resp., π̄i = 0), then R (∂) is said to have no zero
(resp., no pole) at infinity. The integer

c∞ (R) = −
∑

1≤i≤r νi

is called the content at infinity of R.

Proof. (1) Let σk be a least common denominator of all entries of G and
A+ = σk G ∈ Ŝp×m. According to Proposition 1058, there exist matrices
Ū ∈ GLp

(
Ŝ
)

and V ∈ GLm
(
Ŝ
)

such that Ū A+ V −1 = Σ, where Σ is given

by (7.3). Therefore, Ū σk GV −1 = Σ, and by Proposition 1056, Ū σk = σk U

where U = Ū ′k ∈ GLp
(
Ŝ
)
. Thus, the equality in (7.4) holds with νi = μi−k

(1 ≤ i ≤ r).
(3) Assume that R (∂) ∈ qRk has a Smith-MacMillan form at infin-

ity. Embedding R in L̂ and S in Ŝ, we still have (7.5) with R ∈ L̂q×k,
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U ∈ GLq
(
Ŝ
)

and V ∈ GLk
(
Ŝ
)
, thus the right-hand member of (7.5) is the

Smith-MacMillan form of R over L̂. This form is unique by (1).

Lemma 1061. Assume that K is a division ring. Let D (L×) be the derived
group of the multiplicative group L× � L\ {0} (Subsect. 1.6.7), let L×ab be
the abelianization of L× (Definition 170), and let U (S) be the group of units
of S.

(i) D (L×) ⊆ U (S).
(ii) For any a ∈ L×, let a be the canonical image of a in L×ab. Let G be the
group consisting of all σi, i ∈ Z. The map ψ :

Z→ G : i �→ σi

is a group-isomorphism.
(iii) Let ϕ : L× → L×ab = L×/D (L×) be the canonical epimorphism, and
let U = ϕ (U (S)). Then G ∩U =

{
1
}
.

(iv) Let U ∈ GLn (S). The Dieudonné determinant det (U ) of U (Lemma
and Definition 402) exists since S can be embedded in L, and there exists a
unit υ ∈ S such that det (U) = υ � ϕ (υ).
(v) Let R ∈ GLn (L). Then the Dieudonné determinant of R can be uniquely
written in the form

det (R) = υ σ−c = ϕ (υ)ϕ
(
σ−c
)

(7.6)

where υ is a unit of S and c = c (R) is the content of R.
(vi) Let R1, R2 ∈ GLn (L), and let R = R1 R2. The contents of these matrices
are related by c (R) = c (R1) + c (R2).

Proof. (i): Any element x ∈ S× can be uniquely written in the form υσi =
σiυ′ (i ∈ N), thus any element x ∈ L× can be uniquely written in the form
υσi = σiυ′ (i ∈ Z). Let x1 = υ1σ

i1 and x2 = υ1σ
i2 be elements of L×. Their

commutator is, according to Definition 163,

(x1, x2) = (x2 x1)
−1 (x1 x2) = υ σ−(i1+i2)σ(i1+i2) υ′

where υ, υ′ are units of S; thus (x1, x2) ∈ U (S). Therefore, D (L×) ⊆ U (S).
(ii): The map ψ is obviously a group-epimorphism. If ψ (i) = 1, then

σi ∈ U (S) by (i), therefore i = 0, and this proves that ψ is injective.
(iii): If σi ∈ U for some integer i, then there exists a unit υ of S and an

element d ∈ D (L×) such that σi = υd. Since υd ∈ U (S) by (i), σi ∈ U (S),
which implies σi = 1.

(iv): According to Remark 1059, U is the product of elementary matri-
ces, the Dieudonné determinant of which is 1, of permutation matrices, the
Dieudonné determinant of which is −1, and of diagonal matrices with units
of S on the diagonal, the determinant of which is υ for some unit υ ∈ S.
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(v): Let R ∈ GLn (L). By Theorem and Definition 1060(1), there exist
matrices U, V ∈ GLn (S) such that R = U−1 diag (σνi)1≤i≤n V. Therefore, by
(iv) detR = υ σ−c where υ = det (V ) / det (U). Assume that detR = υ′ σ−c′ .
Then σc−c′ = υ υ′−1 ∈ U, thus σc−c′ = 1 by (iii), and c = c′ by (ii). As a
consequence, υ = υ′, and the uniqueness of (7.6) is proved.

(vi): We have det (R) = det (R1) det (R2), and by (v) det (Ri) = υi σ−ci

(i = 1, 2) where each υi is a unit of S. Therefore,

det (R) = υ1 υ2 σ−(c1+c2)

and again by (v), c (R) = c (R1) + c (R2).

We now consider the general situation in Theorem and Definition 1060.

Lemma 1062. Let D = diag (σμi)1≤i≤n (μi ∈ Z) and let U ∈ GLn (S).
There exists U ′ ∈ GLn (S) such that U D = DU ′.

Proof. Let Ii ∈ Matn (Z) be the matrix, all entries of which are zero except
the (i, i) entry which is equal to 1. Then

D =
∑

1≤i≤n
σμi Ii,

therefore by Proposition 1056, there exist Ui ∈ GLn (S) such that

U D = U
∑

1≤i≤n
σμi Ii =

∑

1≤i≤n
σμi Ui Ii = DU ′

where U ′ is the matrix, the ith column of which is the ith column of Ui.
Thus, we have obtained U D = DU ′ with U ′ ∈ Matn (S). Embedding S
in L̂, there exists by Lemma 1061 a unit υ of Ŝ such that det (U ′) = υ,
therefore U ′ ∈ GLn

(
Ŝ
)
∩ Matn (S). Since, U ′ = D−1 U D, we have

U ′−1 = D−1 U−1 D where U−1 ∈ GLn (S), thus the above rationale proves
that U ′−1 ∈ GLn

(
Ŝ
)
∩Matn (S). Therefore, U ′ ∈ GLn (S).

Theorem 1063. Let R1 ∈ pRr and R2 ∈ rRm be two matrices of rank r
and regular at infinity. Then R1 R2 is regular at infinity and c∞ (R1 R2) =
c∞ (R1) + c∞ (R2).

Proof. There exist matrices U1 ∈ GLp (S), V1, U2 ∈ GLr (S), and V2 ∈
GLp (S) such that

U−1
1 R1 V1 =

[
D1

0

]
, D1 = diag (σμi)1≤i≤r ,

U−1
2 R2 V2 =

[
D2 0

]
, D2 = diag (σνi)1≤i≤r .



7.2 Structure at Infinity 461

Setting R = R1 R2, we obtain

R = U1

[
D1

0

]
U
[
D2 0

]
V −1

2

where U = V −1
1 U2 ∈ GLn (S). Let W2 = V −1

2 and

U1 =
[
U11 U12

]
, W2 =

[
W21

W22

]
.

Then,

R =
[
U11D1 U D2 W21 0

0 0

]
;

by Lemma 1062, there exists U ′ ∈ GLn (S) such that U D2 = D2 U
′, therefore

R =
[
U11 DU ′W21 0

0 0

]

where D = D1 D2. This can be written

R = U1

[
D 0
0 0

] [
U ′ 0
0 I

]
V −1

2

where D = diag (σμi+νi)1≤i≤r and
[
U ′ 0
0 I

]
∈ GLp (S). Therefore, R is

regular at infinity and c∞ (R) = −
∑

1≤i≤n (μi + νi) = c∞ (R1) + c∞ (R2).

Definition 1064. Assuming that K is a division ring, let G (∂) be the trans-
fer matrix of a control system (M,u, y) over A (Corollary and Definition
853(i)). The order of (M,u, y) is dimK (M/ [u]A) in that case (Theo-
rem and Definition 861(4)). Assume that (M,u, y) is both controllable and
observable.

(i) The pole (resp., the zero) at infinity of G (∂) are called the transmission
pole (resp., the transmission zero) at infinity of (M,u, y).
(ii) The natural integer dimK (M/ [u]A) + # (TP∞) is called the MacMillan
degree of G (∂), and is denoted by δM (G).

Assuming that K is a division ring, the transfer matrix G (∂) of the control
system (M,u, y) over A can be expanded as:

G (∂) =
∑

i≥ν1

Θi σ
i, Θν1 �= 0.
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Definition 1065. The transfer matrix G (∂) (or the control system (M,u, y))
is said to be proper (resp., strictly proper) if ν1 ≥ 0 (resp., ν1 ≥ 1). It is
said to be biproper if G (∂) is invertible, proper, and with a proper inverse.

7.2.3 Modules over S

7.2.3.1 A Canonical Structure

Let A = K [∂;α, δ] where K is an Ore domain, α is an automorphism and
δ an α-derivation of K. Let R (∂) ∈ qAk be a matrix of rank r.

Theorem 1066. Assume that R (∂) is regular at infinity.

(1) There exists a strongly left-coprime factorization (D (σ) , R+ (σ)) of
R (∂) over S (Definition 518(i) and Exercise 954), i.e., a pair of matrices
(D (σ) , R+ (σ)) such that D (σ) ∈ Matq (S) is invertible over L, R+ (σ) ∈
qSk, R (∂) = D−1 (σ)R+ (σ), and (D (σ) , R+ (σ)) is strongly left-coprime.
(2) For any strongly left-coprime factorization (D (σ) , R+ (σ)) of R (∂) over
S the following properties hold:
(a) D (σ) is equivalent (Definition 280(i)) to

[
diag (σπi)1≤i≤s 0

0 Iq−s

]

where the πi (1 ≤ i ≤ s) are the structural indices of the pole at infinity of
R (∂);
(b) R+ (σ) is equivalent to

⎡

⎣
Is 0 0
0 diag (σς̄i)s+1≤i≤r 0
0 0 0

⎤

⎦

where ς̄ i = 0 for s+1 ≤ i ≤ r−ρ and the ς̄r−ρ+i (1 ≤ i ≤ ρ) are the structural
indices ςi ≥ 1 of the zero at infinity of R (∂).
(3) Let M+ = cokerS (•R+ (σ)). This left S-module is uniquely determined
by R (∂), and

M+ = T
(
M+
)
⊕ Φ+ (7.7)

where Φ+ ∼= M+/T (M+) ∼= Sk−r and

T
(
M+
) ∼=
⊕

1≤i≤ρ C̃ςi
, C̃ςi

� S
(σςi)

. (7.8)

The torsion submodule T (M+) of M+ is determined up to S-isomorphism
by the zero at infinity of R (∂).
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Proof. (1) Since R (∂) is regular at infinity, this matrix has a Smith-
MacMillan form at infinity, and there exist matrices U (σ) ∈ GLq (S) , V (σ) ∈
GLk (S) such that

R (∂) = U−1 (σ)D−1
1 (σ)D2 (σ) V (σ) ,

D1 (σ) =

⎡

⎣
diag (σπ̄i)1≤i≤s 0 0

0 Ir−s 0
0 0 Iq−r

⎤

⎦

D2 (σ) =

⎡

⎣
Is 0 0
0 diag (σς̄i)s+1≤i≤r 0
0 0 0

⎤

⎦ ,

thus R (∂) = D−1 (σ)R+ (σ) with D = D1U and R+ = D2V.
Using elementary column operations, the matrix

[
D1 (σ) D2 (σ)

]
is easily

seen to be right-equivalent to
[
Iq 0
]
. Therefore, there exists a matrix

Q (σ) =
[
Q1 (σ)
Q2 (σ)

]
∈ GLk (S)

such that
[
D1 D2

]
Q (σ) = Iq, i.e., the following Bézout identity holds:

D1Q1 + D2Q2 = Iq.

This is equivalent to

DU−1Q1 + R+ V −1Q2 = Iq ,

therefore the pair (D (σ) , R+ (σ)) is strongly left-coprime.
(2) Let (D′ (σ) , R′+ (σ)) be any strongly left-coprime factorization of R (∂)

over S. Then R (∂) = D′−1 (σ)R′+ (σ) and there exist matrices X ′ (σ) , Y ′ (σ)
over S such that D′X ′ + R′+Y ′ = Iq. Left-multiplying this expression by
D′−1 one obtains X ′ + D′−1R′+Y ′ = D′−1, i.e., X ′ + D−1R+Y ′ = D′−1.
Left-multiplying this equality by D yields

DX ′ + R+Y ′ = DD′−1 ∈ Matq (S) .

By symmetry, D′D−1 ∈ Matq (S), thus W � D′D−1 ∈ GLq (S) . We now
have D′ = W D and R′+ = W R+. Therefore, D′ ≡ D1 and R′+ ≡ D2.

(3) The torsion submodule T (M+) is determined up to S-isomorphism by
the structural indices of the zero at infinity of R (∂).

Extending the terminology introduced in Subsect. 3.6.2 we are led to the
following.

Definition 1067. (i) The elements σςi (1 ≤ i ≤ ρ)–or the ideals generated
by them–are the nonzero invariant factors of the left S-module M+, and they
coincide with its nonzero elementary divisors; the number of times a same
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element σςi is encountered in the list {σςi , 1 ≤ i ≤ ρ} is the multiplicity of
that elementary divisor; rkΦ+ = k − r is the multiplicity of the elementary
divisor 0.
(ii) The non-negative integer # (M+) =

∑

1≤i≤ρ
ςi is called the degree of M+.

Remark 1068. Not all f.g. modules over S have the structure in Theorem
1066(3), except when K is a division ring. The full subcategory of SMod, all
objects of which have the structure of the torsion module T (M+) in Theorem
1066(3), is denoted by SModstruc in the sequel.

7.2.3.2 A Canonical Cogenerator

For any non-negative integer μ, let C̃μ = S
(σμ)

, and let δ̃
(μ−1)

be the canonical

image of 1 ∈ S in C̃μ; the S-module C̃μ is isomorphic to a submodule of C̃μ+1

under right multiplication by σ and δ̃
(μ)

σ = σ +
(
σμ+1
)

= σδ̃
(μ)

; identifying

δ̃
(μ−1)

with σδ̃
(μ)

= δ̃
(μ)

σ, C̃μ is embedded in C̃μ+1, and for any μ ≥ 1

C̃μ = ⊕μi=1Kδ̃
(i−1)

. (7.9)

Let Δ̃ be the directed union of all modules C̃μ, μ ≥ 1 (Example 19), i.e.,

Δ̃ � lim−→
μ

C̃μ = ⊕μ≥0Kδ̃
(μ)

. (7.10)

The left S-module Δ̃ becomes a left L-module, setting σ−1δ̃
(μ)

= δ̃
(μ+1)

,
thus Δ̃ becomes also a left A-module by restriction of the ring of scalars.
Considering σ and ∂ as operators on Δ̃, σ is a left inverse of ∂, but σ has no
left inverse since σδ̃ = 0. Note that

C̃μ = kerΔ̃ (σμ•) . (7.11)

Theorem 1069. (1) Assume that K is a division ring. Then Δ̃ is the canon-
ical cogenerator of the category SMod (Corollary and Definition 643), and
it is a large injective cogenerator (Definition 814).
(2) Let K be any Ore domain; then Δ̃ is a cogenerator for the subcategory
SModstruc of SMod introduced in Remark 1068.

Proof. (1) (a) Let us prove that for any μ ≥ 1, Δ̃ = E
(
C̃μ

)
(the injective

hull of C̃μ). This proof is similar to that of Proposition 603, with some
simplifications, although S is not assumed to be commutative.

(i) Δ̃ is divisible. Indeed, let 0 �= x̃ ∈ Δ̃ and 0 �= r ∈ S. There exist an
integer μ ≥ 0 and a unit υ such that r = σμυ. Let ν be the least positive



7.2 Structure at Infinity 465

integer such that x̃ ∈ C̃ν . There exists ỹ ∈ C̃μ+ν such that x̃ = σμỹ, therefore
x̃ = σμυυ−1ỹ = r z̃ where z̃ = υ−1ỹ.

(ii) Since S is a principal ideal domain, Δ̃ is injective.

(iii) A divisible S-module containing δ̃
(μ)

= σδ̃
(μ+1)

must contain an el-

ement x̃ such that σδ̃
(μ+1)

= σx̃, thus that module must contain δ̃
(μ+1)

.
Therefore, by induction, E

(
C̃μ
)
⊇ Δ̃, and by (ii), E

(
C̃μ
)

= Δ̃.

(b) C̃1 is the only simple S-module (Definition 313(i)), therefore, by Corol-
lary and Definition 643, Δ̃ = E

(
C̃1

)
is the canonical cogenerator of the

category SMod, and is injective.
(c) All proper ideals in S are two-sided since they are of the form (σμ),

μ ≥ 1. They are easily seen to be meet-irreducible (3.5.2.4). For every μ ≥ 1,
C̃μ ⊆ Δ̃, thus the injective cogenerator Δ̃ is large by Theorem 815(1).

(2) Let T =
⊕

1≤i≤ρ C̃ςi
∈ SModstruc. Then T = Sρ/N where N =

imS (•R+ (σ)), R+ (σ) = diag (σςi)1≤i≤ρ. Setting

N⊥ = HomS

(
T, Δ̃
)

= kerΔ̃
(
R+ (σ) •

)
,

we obtain

N⊥ =
{
w̃ ∈ ρΔ̃ : R+ (σ)w = 0

}

=
{
w̃ =
[
w̃1 · · · w̃ρ

]T : w̃i ∈ C̃ςi
(1 ≤ i ≤ ρ)

}
;

therefore, N⊥⊥ = AnnS
l

(
N⊥
)

= N . By Theorem 825(2), Δ̃ is a cogenerator
for SModstruc.

Proposition 1070. Let R (∂) ∈ qAk.

(1) The matrix R (∂) is regular at infinity if, and only if Conditions (i)-(iii)
below hold:
(i) there exists a strongly left-coprime factorization (D (σ) , R+ (σ)) of R (∂)
over S;
(ii)

D (σ) ≡
[

diag (σπi)1≤i≤r 0
0 Iq−r

]

over S, where πi ≥ πi+1 ≥ 0 (1 ≤ i ≤ r − 1) ;

(iii) R+ (σ) ≡
[

diag (σςi)1≤i≤r 0
0 0

]
over S, where 0 ≤ ςi ≤ ςi+1

(1 ≤ i ≤ r − 1) .
(i) and (ii) can be replaced by (i’) and (ii’) below:
(i’) there exists a strongly right-coprime factorization (R+ (σ) , D′ (σ)) of
R (∂) over S;
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(ii’)

D′ (σ) ≡
[

diag (σπi)1≤i≤r 0
0 Ik−r

]

with the same condition as in (ii) on the elements πi.
(2) Then, R (∂) is regular at infinity, and its Smith-MacMillan form at in-
finity is [

diag (σςi−πi)1≤i≤r 0
0 0

]
.

Proof. (1) The condition is necessary by Theorem 1066. Let us prove that it
is sufficient, considering a strongly left-coprime factorization (for a strongly
right-coprime factorization, the proof is similar, with obvious changes).

(a) We have R (∂) = D−1 (σ)R+ (σ).
(b) There exist matrices U1 (σ) , V1 (σ) , U2 (σ) ∈ GLq (S) and a matrix

V2 (σ) ∈ GLk (S) such that

U1 (σ)D (σ) V −1
1 (σ) =

[
diag (σπi)1≤i≤r 0

0 Iq−r

]
= D1 (σ) ,

U2 (σ)R+ (σ) V −1
2 (σ) =

[
diag (σςi)1≤i≤r 0

0 0

]
= D2 (σ) .

Therefore, R = V −1
1 D−1

1 U D2V2 where U = U1U
−1
2 . By Lemma 1062, there

exists a matrix U ′ ∈ GLq (S) such that D−1
1 U = U ′D−1

1 . This yields R =
V −1

1 U ′D−1
1 D2V2. Thus, R (∂) is regular at infinity and its Smith-MacMillan

form at infinity is D−1
1 (σ)D2 (σ).

The ring S is Hausdorff and complete in the (σ)-adic topology (Theorem
381(i)). When K = k, S is commutative, thus, according to Matlis’ theory
([199], §3I; [33], n◦X.8.3), S is the endomorphism ring Ẽ of Δ̃. In the general
case, we have the following result:

Lemma 1071. Let K be any Noetherian domain, and let Ẽ be the endomor-
phism ring of the left S-module Δ̃ (Example 230(ii)). The ring S is a subring
of Ẽ, and therefore, Δ̃ is an (S,S)-bimodule.

Proof. Let μ ∈ S; the action •μ : Δ̃ → Δ̃ : x̃ �→ x̃μ is well-defined and is
obviously Z-linear. In addition, for any ν ∈ S and for any x̃ ∈ Δ̃, (νx̃)μ =
ν (x̃μ), therefore the action •μ is S-linear. This proves that •μ ∈ Ẽ, therefore
S ⊆ Ẽ, and Δ̃ is an (S,S)-bimodule.

The corollary below is a consequence of Theorem 236(i).

Corollary 1072. Let R+ (σ) ∈ qSk, and let M+ = cokerS (•R+ (σ)). Then
kerS (R+ (σ) •) = HomS

(
M+, Δ̃

)
and HomS

(
T (M+) , Δ̃

)
are right S-

modules.
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7.3 Impulsive Systems and Behaviors

7.3.1 Temporal Systems

7.3.1.1 The Framework

In this subsection, we give a provisional and heuristic definition of a ”tem-
poral system”. Continuous-time systems and the discrete-time systems are
considered. These systems are defined over the ring A = K [∂; α, δ]. We
assume that K is a subring of the commutative domain O (R) consisting of
all k-valued analytic functions in R and that α is an automorphism of O (R).

In the continuous-time case, α = 1, δ = d/dt is usual time-derivative, and
∂ is the time-derivative in the sense of distributions. In the discrete-time
case, α is the shift-forward operator, δ = α− 1, q extends α and ∂ = q− 1
(Subsect. 2.7.3). In both cases, k is a field of constants (Subsect. 2.3.3).

7.3.1.2 Generators and Relations

Let M = cokerA (•R (∂)) be a system, where R (∂) ∈ qAk. The system
equations can be written {

R (∂)w = e,
e = 0. (7.12)

This is the definition of a finitely presented module M by generators and
relations (Definition 512). The equations (7.12) correspond to the exact
sequence

Aq •R(∂)−→ Ak ϕ−→M → 0. (7.13)

The module of generators is Ak = [ε]A where ε = (εi)1≤i≤k is the canon-
ical basis of Ak; the module of relations is imA (•R (∂)) = [r]A where
r = (rj)1≤j≤q and rj is the jth row of R (∂). Let wi and ej be the
canonical image of εi and rj , respectively, in the quotient M = Ak/ [r]A
(1 ≤ i ≤ k, 1 ≤ j ≤ q). The equations (7.12) are satisfied, and the second
one (i.e., e = 0) expresses the fact that the relations existing between the
system variables are active.

7.3.1.3 Continuous-Time Temporal System

In the continuous-time case, let T = R and T0 = [0,+∞). In place of (7.12),
consider the equations (7.2), i.e.,

R (∂)w (t) = e (t) , t ∈ T, (7.14)

e (t) = 0, t ∈ T0. (7.15)
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where the entries of the column w belong to the appropriate signal space W
(to be specified in the sequel). By (7.15), the relations between the system
variables are now active only during the time period T0, i.e., the system
is formed at initial time zero (due, e.g., to a failure or a switch). On the
complement T \ T0 of T0 in T, we assume that e can be any C∞ function.

Definition 1073. The system of differential equations (7.14) , (7.15) is the
temporal system with matrix of definition R (∂).

7.3.1.4 Discrete-Time Temporal System

In the discrete-time case, let T = Z and T0 = {...,−2,−1, 0}. Definition 1073
still makes sense, and (7.15) means that the relations between the system
variables are active only up to final time zero. On T \ T0, the sequence
(e (t))t∈T

can have any values.

7.3.2 Signal Spaces and Their Relations

7.3.2.1 Continuous-Time Case

From the analytic point of view, the temporal system Σ defined by
(7.14) , (7.15) is formed as follows: take for e in (7.14) any C∞ function
R → qk; then multiply e by 1 − Υ , where Υ is the Heaviside function (i.e.,
Υ (t) = 1 for t > 0 and 0 otherwise).

For any positive integer n, let In =
(
− 1
n
,+∞

)
and Wn = E (In). Then

W � lim−→Wn is the space of germs of all k-valued C∞ functions defined in an

open neighborhood of [0,+∞) (Example 20). Let

Δ = ⊕μ≥0Kδ(μ) (7.16)

where δ is the Dirac distribution. The A-module generated by S0 �
(1− Υ )W is (as K-module)

S = S0 ⊕Δ. (7.17)

For any distribution T ∈ Δ (with support ⊆ {0}) and for any neighborhood
Ω of 0 in R, the integral

∫
Ω
T is well-defined ([322], p. 88). Abusing the

language, the punctual distribution T and the above integral are denoted by
t �→ T (t) and by ∫

Ω
T (ς) dς,

respectively. In particular, for any t < 0,
∫ t

+∞
δ(μ) (ς) dς =

{
δ(μ−1) (t) if μ ≥ 1,
Υ (t)− 1 if μ = 0.
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whereas for any t > 0 and any μ ≥ 0,
∫ t

+∞
δ(μ) (ς) dς = 0.

For any distribution w ∈ S, there exists n ≥ 1 such that w ∈ (1− Υ )Wn⊕Δ,
thus

(σw) (t) �
∫ t

+∞
w (ς) dς

is well-defined for any t ∈ In\ {0}. Setting

(σw) (0) = (σw)
(
0−
)

� lim
t→0,t<0

(σw) (t) ,

σ becomes a well-defined k-linear operator S → S. Since the inverse of σ is
∂, both ∂ and σ are automorphisms of the k-vector space S. The latter is a
left L-module (thus a left S-module which is a left A-module, by restriction
of the ring of scalars), and S0 is an S-submodule of S. The left A-module Δ
is not an S-module, but there exists by (7.17) an isomorphism of K-module

τ : Δ−̃→S/S0 � Δ̄ (7.18)

and Δ̄ = S/S0 has a canonical structure left S-module. The projection
πΔ : S � Δ parallel to S0 is K-linear.

7.3.2.2 Discrete-Time Case

Let Υ be the sequence defined by Υ (t) = 1 for t > 0 and 0 otherwise. From
the analytic point of view, the temporal system Σ defined by (7.14) , (7.15)
is formed as follows: take for e in (7.14) any sequence Z→ qk; then multiply
e by Υ . Set W = kZ and S0 = ΥW . Let Δ be defined as in (8.7), but
where δ � ∂Υ is the ”Kronecker sequence”, such that δ (t) = 1 for t = 0
and 0 otherwise (thus, Δ is the A-module consisting of all sequences with
left and finite support). The A-module generated by S0 is (as K-module)
S = S0 ⊕ Δ. The operator ∂ is an automorphism of the k-vector space S,
and σ = ∂−1 is the k-linear operator defined on S by

(σw) (t) =
t−1∑

j=−∞
w (j) ;

the set S is an L-module. The K-isomorphism (7.18) still holds, and Δ̄ =
S/S0 has again a canonical structure of left S-module. The projection πΔ :
S � Δ parallel to S0 is defined as above; it is again K-linear.
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7.3.2.3 Structure of Δ̄

The continuous-time case and the discrete-time case are now jointly consid-
ered. Let us further detail the structure of Δ̄. For any μ ≥ 1,

∂μS0 = S0 +
(⊕

1≤i≤μKδ(i−1)
)
,

as easily shown by induction. For any μ ≥ 0, let δ̄
(μ) (resp., δ(μ)) be the

canonical image of δ(μ) ∈ S in S/∂μS0 (resp., S/S0), i.e.,

δ̄
(μ) = δ(μ) + ∂μS0, δ(μ) = δ(μ) + S0.

For μ = 0, δ(μ) = δ̄
(μ)

, and for any μ ≥ 1, δ(μ) � δ̄
(μ) (see Theorem 1074(iv)

below for more details).
The map

σ• : S/∂μS0 → S/∂μ−1S0 : a+ ∂μS0 �→ σa + ∂μ−1S0

is k-linear monomorphism, under which σδ̄
(μ) and δ̄

(μ−1) are identified. We
have k-linear embeddings

S/∂μS0
σ•−→ S/∂μ−1S0

σ•−→ ...
σ•−→ S/S0 = Δ̄.

By restriction of the ring of scalars, the left S-module Δ̄ is a left K-module
given by

Δ̄ = ⊕μ≥0Kδ̄
(μ) (7.19)

where

σδ̄
(μ) = δ̄

(μ−1)
, μ ≥ 1,

σμδ̄
(μ−1) = 0, μ ≥ 1.

Theorem 1074. (i) Every element w̃ of Δ̃ can be uniquely written in the
form λ (∂) δ̃ for some differential operator λ (∂) ∈ A.
(ii) For any a ∈K and any integer μ ≥ 0,

aδ(μ) =
μ∑

i=0

(−1)i
(
μ

i

)
aδiβμ

(0) δ(μ−i). (7.20)

(iii) For every element w̄ of Δ̄, there exists a differential operator λ (∂) ∈ A
such that w̄ = λ (∂) δ̄. In addition, for any a ∈ K and any μ ≥ 1,

aδ̄
(μ) = aβμ

(0) δ̄(μ)
, (7.21)
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therefore the following equalities hold:

Kδ̄
(μ−1) = kδ̄(μ−1)

, Δ̄ = ⊕μ≥0kδ̄
(μ)

, (7.22)

Cμ � ⊕1≤i≤μKδ(i−1) = ⊕1≤i≤μkδ(i−1), Δ = ⊕i≥0kδ(i). (7.23)

C̄μ � ⊕1≤i≤μKδ̄
(i−1) = ⊕1≤i≤μkδ̄

(i−1) = kerΔ̄ (σμ•) , (7.24)

For convenience, we set C0 = C̄0 = 0.
(iv) For any μ ≥ 0,

∂μS0 = S0 ⊕ Cμ and δ̄
(μ) = δ(μ) ⊕ Cμ. (7.25)

(v) For every w ∈ Δ (resp., w̄ ∈ Δ̄), there exists a unique differential
operator λ̄ (∂) ∈ k [∂] such that w = λ̄ (∂) δ (resp., w̄ = λ̄ (∂) δ̄). Both
k-spaces Δ and Δ̄ have a canonical structure of k [∂]-module, and the well-
defined map κ : Δ̄ → Δ : λ̄ (∂) δ̄ �→ λ̄ (∂) δ

(
λ̄ (∂) ∈ k [∂]

)
is a k [∂]-linear

isomorphism.
(vi) There exists a well-defined S-linear epimorphism ψ : Δ̃ � Δ̄ given by
λ (∂) δ̃ �→ λ (∂) δ̄ (λ (∂) ∈ A), and ψ is an isomorphism when K = k.

Proof. (i): Let us show by induction that the map A→ Δ̃ : λ (∂) �→ λ (∂) δ̃
is a k-linear monomorphism. The k-linearity is obvious.

(a) Let λ0 ∈ K and assume that λ0δ̃ = 0. Then λ0 (1 + (σ)) ⊆ (σ), which
implies λ0 = 0.

(b) Assume that for any polynomial λ (∂) =
∑

0≤i≤μ ∂
iλi ∈ A, of de-

gree ≤ μ, the equality λ (∂) δ̃ = 0 implies λ (∂) = 0, and let λ′ (∂) =∑
0≤i≤μ+1 ∂

iλi ∈ A be a polynomial of degree ≤ μ+1, such that λ′ (∂) δ̃ = 0.
Left-multiplying this equality by σμ, this yields λμ+1δ̃ = 0, therefore, by (a),
λμ+1 = 0.

(ii): For μ = 0, aδ = a (0) δ and (7.20) holds true. Assume that (7.20)
holds for μ = n. By the commutation rule (2.37) , for any a ∈ K,

a∂ = ∂aβ − aβδ.

Therefore,

aδ(n+1) = a∂δ(n) =
(
∂aβ − aβδ

)
δ(n) = ∂aβ − aβδδ(n)
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We have by assumption

∂aβ = ∂

(
n∑

i=0

(−1)i
(
n

i

)
aδiβn+1

(0) δ(n−i)
)

= aβn+1
(0) δ(n+1) +

n−1∑

j=0

(−1)j+1

(
n

i+ 1

)
aδj+1βn+1

(0) δ(n−j)

and by the binomial identity
(

n

j + 1

)
=
(
n+ 1
j + 1

)
−
(
n

j

)
.

Finally, one obtains

aδ(n+1) =
n+1∑

i=0

(−1)i
(
n+ 1
i

)
aδiβn+1

(0) δ(n+1−i)

and (7.20) is proved by induction.
(iii): (a) By (7.19), for every w̄ ∈ Δ̄, there exists λ (∂) ∈ A such that

w̄ = λ (∂) δ̄.
(b) Let a ∈ K and let μ ≥ 0. Then, aδ̄(μ) = a

(
δ(μ) + ∂μS0

)
, and by (7.20),

there exists cμ−1 ∈ ⊕0≤i≤μ−1kδ(i) such that aδ(μ) = aβμ

(0) δ(μ) + cμ−1.
Therefore, aδ(μ) − aβμ

(0) δ(μ) ∈ ∂μS0, so that

aδ(μ) + ∂μS0 = aβμ

(0) δ(μ) + ∂μS0,

which implies (7.21). Last, (7.21) implies (7.22). The equalities in (7.24), as
well as those in (7.23), are now clear (they have connections with (7.11)).

(iv): The two equalities of (7.25) are easily established by induction.
(v) is clear.
(vi): We know by (i) that for every w̃ ∈ Δ̃ there exists a unique λ (∂) ∈ A

such that w̃ = λ (∂) δ̃. By (iii), or every w̄ ∈ Δ̄ there exists some λ (∂) ∈ A
such that w̄ = λ (∂) δ̄. Therefore, ψ : Δ̃ → Δ̄ is a well-defined surjection
which is obviously S-linear. If K = k, then ψ is an isomophism by (v).

7.3.3 Impulsive Behavior

Consider a temporal system Σ with matrix of definition R (∂) ∈ qAk (Defi-
nition 1073) and assume that R (∂) is regular at infinity (Theorem and Def-
inition 1060(4)).

Proposition 1075. The following properties are equivalent: (i) For any e ∈
qS0, there exists w ∈ kS such that (7.14) is satisfied. (ii) The matrix R (∂)
is full row rank (i.e., of rank r = q)
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Proof. (i) ⇒ (ii): If the matrix R (∂) is not full row rank, •R (∂) is not injec-
tive, i.e., there exists a nonzero element η (∂) ∈ Aq such that η (∂)R (∂) = 0.
Therefore, for w ∈ kS and e ∈ qS0 to satisfy (7.14), e must satisfy the
”compatibility condition” η (∂) e = 0.

(ii) ⇒ (i): By Theorem 1066, assuming that q = r,

U (σ)R (∂)V −1 (σ) =
[
diag {σνi}1≤i≤r 0

]

and (7.14) is equivalent to
[
diag {σνi}1≤i≤r 0

]
v = h, (7.26)

where
v = V (σ)w, h = U (σ) e (7.27)

and (7.26) is equivalent to σνivi = hi, 1 ≤ i ≤ r. For any νi ∈ Z and any
hi ∈ S0, vi = ∂νihi belongs to S. Therefore, (i) holds because h spans qS0

as e spans the same space (since S0 is an S-module and U (σ) ∈ GLq (S)).

In the sequel, the matrix R (∂) is assumed to be full row rank. Considering
the Smith-MacMillan form at infinity (7.5) of R (σ), let

r = {1, ..., r} , r+ = {j ∈ r : νj ≥ 0} , r− = {j ∈ r : νj < 0} .

Let B ⊆ kS be the k-space consisting of all w ∈ kS for which there exists
e ∈ rS0 such that (7.14) holds. In the equalities (7.26) , (7.27), let

v =
[
va
vc

]
, wa = V −1 (σ)

[
va
0

]
,

where va has r rows, and let

Z (σ) = V −1 (σ)
[
Ir 0
0 0

]
V (σ) ∈ Matk (S) .

Then, wa = Z (σ)w. Let

Ba = Z (σ)B =
{
wa ∈ kS : w ∈ B

}

Definition 1076. (i) The k-space B∞ = πΔB ⊆ kΔ is the impulsive be-
havior of the temporal system Σ, where the projection πΔ is extended to kS,
acting on this power of S component-wise.
(ii) The k-space B∞,a = πΔBa ⊆ kΔ is the autonomous impulsive behavior
of the temporal system Σ.
(iii) M+ � cokerS (•R+ (σ)) is the impulsive system of the temporal
system Σ.

Theorem 1077. (i) V (σ)B = (⊕i∈r∂νiS0)⊕ Sk−r;
(ii) πΔV (σ)B = (⊕i∈r+Cνi)⊕Δk−r;
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(iii) V (σ) Ba =
[
Ir 0
0 0

]
V (σ)B = ⊕i∈r∂νiS0;

(iv) πΔ

[
Ir 0
0 0

]
V (σ)B = ⊕i∈r+Cνi .

(v) M+ ∼=
(
⊕i∈r+C̃νi

)
⊕ Sk−r;

(vi) T (M+) ∼= ⊕i∈r+C̃νi
;

(vii) V (σ) kerΔ̃ (R+ (σ) •) =
(
⊕i∈r+C̃νi

)
⊕ Δ̃k−r ;

(viii) HomS

(
T (M+) , Δ̃

)
∼= ⊕i∈r+ C̃νi

.

Proof. (i): We know that

B =
{
w ∈ kS : (7.14) holds for some e ∈ rS0

}

and (7.14) is equivalent to

U (σ)R (∂)V −1 (∂)V (σ)w = e,

i.e., to (7.26) where v and h are defined according to (7.27) . The space of
all v ∈ kS for which there exists h ∈ rS such that (7.26) holds is isomorphic
to (⊕i∈r∂νiS0) ⊕ Sk−r according to the proof of Proposition 1075. By the
first equality of (7.27) , this space is V (σ)B.

(ii) is a consequence of (i) and of the first equality of Theorem 1074(iv).
By (i), [

Ir 0
0 0

]
V (σ)B = ⊕i∈r∂νiS0,

thus (iii) results from the definition of Ba.
(iv) is proved similarly.
(v) and (vi) are clear.
(vii) and (viii) are consequences of (7.11) .

Let us show through an example how the above can be used to determine
B∞,a in an algebraic way.

Example 1078. Consider the temporal system with matrix of definition

R (∂) =

⎡

⎣
−1 ∂2 + t 0 0
0 0 ∂2 −1
0 1 −1 0

⎤

⎦ (7.28)

over the first Weyl algebra A1 (k) or over k [t] [∂; α,α− 1] (Definition 355).

(1) Setting σ = ∂−1, one obtains

R (∂) = D−1 (σ)R+ (σ)
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where

D (σ) = diag
(
σ2, σ2, 1

)
, R+ (σ) =

⎡

⎣
−σ2 1 + σ2t 0 0

0 0 1 −σ2

0 1 −1 0

⎤

⎦ . (7.29)

Form the matrix E (σ) =
[
D (σ) R+ (σ)

]
, i.e.,

E (σ) =

⎡

⎣
σ2 0 0 −σ2 1 + σ2t 0 0
0 σ2 0 0 0 1 −σ2

0 0 1 0 1 −1 0

⎤

⎦ ,

and carry out the following elementary column operations (Subsect. 2.10.3):

- subtract from the 5th column both the 3rd one and the 1st one right-
multiplied by t;
- add to the 1st (resp., 4th) column the (new) 5th one multiplied by −σ2

(resp., σ2);
- add to the 6th column the 3rd one;
- add to the 2nd (resp., 7th) column the 6th one multiplied by −σ2 (resp.,
σ2);
- interchange the 1st column and the 5th one, and interchange the 2nd column
and the 6th one.

Doing so, E (σ) is found to be right-equivalent (Definition 280) to
[
I3 0
]
.

Therefore, (D (σ) , R+ (σ)) is a strongly left-coprime factorization of R (σ)
over S (Theorem 1066).
(2) After some algebra, one obtains

U (σ)R+ (σ)V −1 (σ) =
[
diag
(
1, 1, σ2

)
0
]

with

U (σ) =

⎡

⎣
1 0 −1
0 0 1
−1 1 1

⎤

⎦ ,

V −1 (σ) =

⎡

⎢⎢
⎣

t t 1 + tσ2 1 + tσ2

1 1 σ2 σ2

1 0 σ2 σ2

0 0 0 1

⎤

⎥⎥
⎦ .

Therefore, by Proposition 1070, R (∂) is regular at infinity, and its Smith-
MacMillan form at infinity is

[
diag
(
σ−2, σ−2, σ2

)
0
]
.

(3) Let
R+ (σ)w+ = 0
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be the equation of the impulsive system M+, where w+ =
[(
w+
i

)
1≤i≤4

]T
.

This equation is equivalent to
[
diag
(
1, 1, σ2

)
0
]
v+ = 0

where

v+ = V (σ)w+ =

⎡

⎢
⎢
⎣

−σ2 tσ2 1 0
0 1 −1 0
1 −t 0 −1
0 0 0 1

⎤

⎥
⎥
⎦w

+. (7.30)

The torsion submodule of M+ is
[
v+
3

]
S
∼= S/

(
σ2
)
, where

v+
3 = w+

1 − t w+
2 − w+

4 .

(4) B∞,a is the k-space spanned by the variable

t �→ v3 (t) (t ∈ T0)

where v3 = w1 − tw2 −w4, and B∞,a ∼= C2 = kδ ⊕ k (∂δ).

7.3.4 Causal Laplace Transform and Anticausal
Z-Transform

The impulsive behavior has been determined in the previous subsection in an
algebraic way. The comparison with an analytic approach is instructive. For
this, an appropriate causal Laplace transform and an appropriate anticausal
Z-transform must be developed.

7.3.4.1 Causal Laplace Transform

We consider the continuous-time case. Every germ f ∈W is defined on some
interval In =

(
− 1
n
,+∞

)
. Let fα : t �→ eαtf (t) for any t ∈ In. Let We be

the k-space consisting of all germs f ∈ W for which there exists α ≥ 0 such
that Υfα ∈ L1 (R+), with the identification in (1.8.1.4); set Qe = ΥWe ⊕Δ
and Se = (1− Υ )We ⊕Qe.

Lemma and Definition 1079. (i) For any w ∈ Se, there exists a unique
decomposition of the form

w = f + w+, f ∈ (1− Υ )We, w+ ∈ Qe. (7.31)

(ii) The elements of Qe are Laplace-transformable.
(iii) The causal Laplace transform L+ on Se is defined by

L+ (w) = L (w+)

where L is the two-sided Laplace transform.
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(iv) There exist canonical k-linear isomorphisms

L+ (Se) ∼=
Se

(1− Υ )We

∼= Qe. (7.32)

Proof. (i) and (ii) are clear.
(iv): Since kerL+ = (1− Υ )We, the first isomorphism in (7.32) is obtained

by the first Noether isomorphism theorem (Theorem 52(1)). The second
isomorphism in (7.32) is a consequence of Theorem 147(ii).

Let w ∈ Se and consider the decomposition (7.31) of w. There exists an
integer m > 0 such that f is defined in

(
− 1
m ,+∞

)
; in addition, there exists

a function g ∈We, defined in
(
− 1
m
,+∞

)
, such that f = (1− Υ ) g, thus

∂f = (1− Υ ) ∂g − g (0) δ.

On the other hand,

L (∂ (w+)) (s) = sL (w+) (s) = s ŵ (s)

where ŵ (s) � L+ (w) (s). The function g and the distribution w have the
same restriction to

(
− 1
m , 0
)

(with the identification in (1.8.1.4)), therefore

g (0) = lim
t→0,t<0

w (t) � w
(
0−
)
,

and this makes sense although w is a distribution (see [43] for a more general
account). Finally, ∂w = ∂ (w+) + ∂f , hence

(∂w)+ = ∂ (w+) + (∂f)+ = ∂ (w+)− g (0) δ = ∂ (w+)−w
(
0−
)
δ,

so that
L+ (∂w) (s) = s ŵ (s)−w

(
0−
)
.

Corollary and Definition 1080. (i) The operator ∂n0 : w �→ ∂nw (0−) is
well-defined on Se for any integer n ≥ 0.
(ii) For any n ≥ 0,

L+ (∂nw) (s) = sn ŵ (s)−
n−1∑

i=0
sn−1−i ∂i0w.

The above expression is equivalent to

L+ (∂nw) (s) = sn ŵ (s)− sn−∂n
0

s−∂0 w. (7.33)

(iii) Abusing the language, for any n ≥ 0,

L+ (tnw (t)) (s) = (−1)n dn

dsn ŵ (s) . (7.34)
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Proof. (i) and (ii) are easily obtained by induction. (iii) is classical ([369],
Sect. A.3, Remark 22).

7.3.4.2 Anticausal Z-Transform

We consider the discrete-time case. Let Se be the subspace of kZ consisting
of all sequences with left bounded support. By (7.23), Δ = (1− Υ )Se, and

Se = Δ⊕ ΥSe.

Lemma and Definition 1081. (i) Every element w ∈ Se can be decom-
posed in a unique way as

w = w− + w+,

w− ∈ Δ, w+ ∈ ΥSe.
(ii) The anticausal Z-transform Z− (w) of w is defined as

Z− (w) = Z (w−)

where Z (w−) is the two-sided Z-transform of w−.
(iii) The image of Z− is k

[
z−1
]
, its kernel is ΥSe, therefore there exists

canonical k-linear isomorphisms

k
[
z−1
] ∼=

Se
ΥSe

∼= Δ.

Let ∂n0 (n ≥ 0) be the operator defined on Se as follows: for any w ∈ Se,

∂0
0w = −w (1) , ∂n0 w = ∂0

0 (∂nw)

(where ∂w (n) = w (n + 1)−w (n)); in addition, let s = z − 1.

Proposition 1082. (i) For any w ∈ Se and any integer n ≥ 0,

Z− (∂nw) = snZ− (w)−
n−1∑

i=0

sn−1−i ∂i0w,

i.e.,

Z− (∂nw) = snZ− (w)− sn−∂n
0

s−∂0 w. (7.35)

(ii) For any w ∈ Se and any integer n ≥ 0, abusing the language,

Z−
(

(t+n−1)!
(t−1)! w (t)

)
= (−1)n zn dn

dznZ− (w (t)) . (7.36)
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Proof. (i): We proceed by induction. For n = 1,

Z− (∂w) = Z−
(
(∂w)−

)
=
∑
t≤0 (w (t + 1)−w (t)) z−t

= w (1) + (z − 1)Z− (w) .

Assuming that (7.35) holds for n = k,

Z−
(
∂k+1w

)
= Z−

(
∂
(
∂kw
))

= sk+1Z− (w)−
k∑

i=0
sk−i ∂i0w.

(ii) For any integer n ≥ 0,

Z−

(
(t+ n− 1)!

(t− 1)!
w (t)
)

=
∑
t≤0 w (t)

(t+ n− 1)!
(t− 1)!

z−t;

the equality
dn

dzn
z−t = (−1)n

(t + n− 1)!
(t− 1)!

z−(t+n)

yields
(t + n− 1)!

(t− 1)!
z−t = (−1)n zn

dn

dzn
z−t.

Note that (7.33) and (7.35) are completely similar.

Example 1083. (Example 1078 cont’d.)

(1) Consider the continuous-time case. Then, this temporal system is defined
over the first Weyl algebra A1 [k], T = R and T0 = [0,+∞[. For t ≥ 0 we
obtain

−ŵ1 (s) + s2ŵ2 (s)−
(
s∂0

0 + ∂1
0

)
w2 −

dŵ2

ds
(s) = 0,

s2ŵ3 (s)−
(
s∂0

0 + ∂1
0

)
w3 − ŵ4 = 0,

ŵ2 (s)− ŵ3 (s) = 0.

Note that the last equation does not imply
(
s∂0

0 + ∂1
0

)
w2 =

(
s∂0

0 + ∂1
0

)
w3

since in general, for i = 1, 2

∂i0w2 = lim
t→0,t<0

∂iw2 (t) �= lim
t→0,t<0

∂iw3 (t) = ∂i0w3.

Therefore,

−ŵ1 (s)− dŵ2

ds
(s) + ŵ4 (s) =

(
∂1
0 + s∂0

0

)
(w2 −w3)
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which yields

−w1 (t) + tw2 (t) + w4 (t) = α0 (∂δ) + α1δ, t ≥ 0,

αi = ∂i0 (w2 −w3) , i = 1, 2.

The k-space B∞,a is generated by the variable t �→ −w1 (t)+tw2 (t)+w4 (t),
and B∞,a ∼= C2 = kδ⊕ k (∂δ). This is consistent with the result obtained in
Example 1078.
(2) In the discrete-time case, the temporal system is defined over
k [t] [∂; α,α− 1], T = Z and T0 = {...,−2,−1, 0}. The calculations are
similar to those in case (1), but B∞,a ∼= C2 = kδ ⊕ k (∂δ) is a k-space
spanned by backward solutions with finite support.

7.3.5 Temporal Interconnections

7.3.5.1 Interconnection of Linear Systems

The interconnection of linear systems is defined in [118]. In the case of several
systems, one may first interconnect two of them, then interconnect a third
one with the system resulting from the interconnection of the two first ones,
etc. Therefore, it is sufficient to consider the case of two linear systems M1

and M2. Their interconnection is a fibered sum [206]. Let us briefly explain
this point.

Let G be a finite free A-module and assume that there exist two morphisms
•hi : G→Mi, i = 1, 2. Let H be the submodule of M = M1⊕M2 generated
by the elements of the form gh = (gh1,−gh2) , g ∈ G, i.e., H = imG (•h),
where h = (h1,−h2). The quotient module M̆ = M/H , written M1

∐
GM2,

is the fibered sum of M1 and M2 over G (with respect to the morphisms
h1, h2); from the point of view of systems theory, it is the interconnected
system (with respect to h1, h2).

Let •ξ : M → M̆ be the canonical epimorphism and set h̆ = hξ, so that

gh̆ = 0, g ∈ G. (7.37)

The system M̆ is defined by an equation consisting of the equations of the
subsystems Mi, plus the interconnection equation (7.37). More specifically,
let us assume that Mi is defined by the equation Ri (∂)wi = 0 (i = 1, 2),
where wi =

(
wi1, ..., w

i
ki

)
. The interconnection equation can be written

J1 (∂) w̆1 = J2 (∂) w̆2, where J1 (∂) and J2 (∂) are matrices over A, with the
same number of rows and with, respectively, k1 and k2 columns; J1 (∂) and
J2 (∂) are the interconnection matrices . Then, M̆ = cokerA (R (∂) •) where

R (∂) =

⎡

⎣
R1 (∂) 0

0 R2 (∂)
J1 (∂) −J2 (∂)

⎤

⎦ (7.38)
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7.3.5.2 Temporal Interconnections

Consider two temporal systems
{
Ri (∂)wi (t) = ei (t) , t ∈ T

ei (t) = 0, t ∈ T0

(i = 1, 2). Let these temporal systems be interconnected through intercon-
nection matrices J1 and J2 with coefficients in k. We are led to the following
definition.

Definition 1084. The interconnected temporal system is defined by
{
R (∂)w (t) = e (t) , t ∈ T,

e (t) = 0, t ∈ T0,

where

R (∂) =

⎡

⎣
R1 (∂) 0

0 R2 (∂)
J1 −J2

⎤

⎦ .

One has the following result.

Theorem 1085. Assume that R1 (∂) and R2 (∂) are regular at infinity.
Then R (∂) is regular at infinity and the impulsive system M+ of the in-
terconnected temporal system is given by M+ = cokerS (•R+ (σ)) where

R+ (σ) =

⎡

⎣
R+

1 (σ) 0
0 R+

2 (σ)
J1 −J2

⎤

⎦ (7.39)

and
(
Di (σ) , R+

i (σ)
)

is any strongly left coprime factorization over S of
Ri (∂) (i = 1, 2).

Proof. Let R+ (σ) be given by (7.39) and

R+ (σ) =

⎡

⎣
R+

1 (σ) 0
0 R+

2 (σ)
J1 −J2

⎤

⎦ , D (σ) =

⎡

⎣
D1 (σ) 0 0

0 D2 (σ) 0
0 0 Ip

⎤

⎦

where p is the number of rows of the matrices J1 and J2. Then, using
elementary operations, (D (σ) , R+ (σ)) is easily shown to be a strongly left
coprime factorization over S of R (∂). The theorem is now a consequence of
Proposition 1070.

By Theorem 1085 and (7.38), M+ can be written as a fibered sum of the
impulsive systems M+

i = cokerS
(
•R+

i

)
with interconnection matrices J1

and J2. In other words, the impulsive system of the interconnected temporal
system is obtained by interconnecting the impulsive systems of the temporal
subsystems.
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Example 1086. (Example 1078 cont’d.) Set w1 = u1, w2 = y1, w3 = u2,
w4 = y2. The temporal system with matrix of definition (7.28) can be viewed
as resulting from the temporal series interconnection of Temporal System 1,
with input u1, output y1 and equation

(
∂2 + t

)
y1 − u1 = 0, with Temporal

System 2, with input u2, output y2 and equation ∂2u2 − y2 = 0; the inter-
connection equation is u2 (t) = y1 (t), t ∈ T0. The equation of the impulsive
system M+

1 , associated with Temporal System 1, is

σ2
(
u+

1 − ty+
1

)
− y+

1 = 0,

that of the impulsive system M+
2 , associated with Temporal System 2, is

u+
2 − σ2y+

2 = 0;

the temporal interconnection equation yields

u+
2 = y+

1 .

Therefore, from the two last equations, y+
1 = σ2y+

2 ; substituting this value of
y+
1 in the first equation, one obtains

σ2
(
u+

1 − ty+
1 − y+

2

)
= 0,

in accordance with the result in Example 1078.

7.3.6 The Axiomatic Characterization of Temporal
System

7.3.6.1 Introduction

As already said, Definition 1073 is heuristic and provisional. Our aim is now
to characterize a temporal system in an axiomatic way. We assume that
either

(I) the framework is that specified in (7.3.1.1)
or
(II) K is a division ring, A = K [∂; α, δ] where α is an automorphism and

δ an α-derivation of K.

Without loss of generality, a control system over the ring A can be given by
an admissible PMD (Lemma & Definition 856, and Remark 858(3)), and two
PMDs characterize the same control system if, and only if they are strictly
equivalent (Definition 859 and Theorem 860).
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7.3.6.2 Full Equivalence

The equation (5.28) of an admissible PMD can be put into the usual form

R (∂)w = 0,

w =

⎡

⎣
ξ
u
y

⎤

⎦ ,

R (∂) =
[
D (∂) −N (∂) 0
Q (∂) W (∂) −Ip

]
. (7.40)

Assume that R (∂) is regular at infinity, let (A (σ) , R+ (σ)) be a strongly
left-coprime factorization of R (∂) over S, and write

R+ (σ) =
[
D+ (σ) −N+ (σ) Z+ (σ)
Q+ (σ) W+ (σ) Y + (σ)

]
(7.41)

according to the sizes in (7.40). The impulsive system associated with R (∂)
is M+ = cokerS (•R+ (σ)), and M+ =

[
ξ+, u+, y+

]
S

where

R+ (σ)

⎡

⎣
ξ+

u+

y+

⎤

⎦ = 0. (7.42)

Definition 1087. Consider two admissible PMD’s {Di, Ni, Qi,Wi} with ma-
trices over A and denote by M+

i the associated impulsive systems (i = 1, 2).
These PMD’s are fully equivalent if (i) they are strictly equivalent (Definition
859) and (ii) there exists an S-isomorphism M+

1
∼= M+

2 .

Consider case (II) in (7.3.6.1). Let Ri (∂) (i = 1, 2) be the matrix of defi-
nition associated with the PMD {Di, Ni, Qi,Wi} following (7.40)). We know
that R1 (∂) , R2 (∂) satisfy a comaximal relation

R1 T2 = T1 R2,

i.e.,
[
R1 (∂) T1 (∂)

]
[
−T2 (∂)
R2 (∂)

]
= 0

(see the proof of Theorem 860). Assume that
[
Di Ni

]
, or equivalently Ri,

is left-regular (i = 1, 2).

Definition 1088. Let A (∂) ∈ rAk1 and B (∂) ∈ rA be such that
rkA

[
A (∂) B (∂)

]
= r. The matrices A (∂) , B (∂) are said to be left-

coprime at infinity if
[
A (∂) B (∂)

]
has no zero at infinity (Theorem and

Definition 1060(4)). Right-coprimeness at infinity is likewise defined.
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Theorem 1089. Let
(
A1 (σ) ,

[
R+

1 (σ) T1 (σ)
])

be a left-coprime factoriza-

tion of
[
R1 (∂) T1 (∂)

]
and let

([
−T+

2 (σ)
R+

2 (σ)

]
, A2 (σ)

)
be a right-coprime fac-

torization of
[
−T2 (∂)
R2 (∂)

]
over S. The two PMDs {D1, N1, Q1,W1} are fully

equivalent if, and only if:

(i) they are strictly equivalent;
(ii) (R1, T1) and (T2, R2) are, respectively, left-coprime at infinity and right-
coprime at infinity;

(iii) δM (R1) = δM

(
R1 T1

)
and δM (R2) = δM

(
−T2

R2

)
.

Proof. (1) Condition (i) is obviously necessary. Assume that (i) holds. Then
by Theorem 860, there exists matrices M1, X1,M2, X2 over A, of appropriate
size, such that

[
M2 0
−X2 Ip

] [
D1 −N1

Q1 W1

]
=
[
D2 −N2

Q2 W2

] [
M1 X1

0 Im

]
, (7.43)

where (D2,M2) is left-coprime, and (D1,M1) is right-coprime. Since K is
a division ring, A is a principal ideal domain (Theorem 467), thus strong
left (resp., right) coprimeness of a pair of matrices over A is equivalent to
its left (resp., right) coprimeness (Theorem 653(iii)). The relation (7.43) is
equivalent to the comaximal relation

[
R2 T2

]
[
−T1

R1

]
= 0

where

Ri =
[
Di −Ni 0
Qi Wi −Ip

]
, i = 1, 2,

T1 =

⎡

⎣
M1 X1 0
0 Im 0
0 0 −Ip

⎤

⎦ , T2 =
[
M2 0
−X2 Ip

]
.

(2) Let

(
A1 (σ) ,

[
R+

1 (σ) T+
1 (σ)

])
and
([
−T+

2 (σ)
R+

2 (σ)

]
, A2 (σ)

)

be a left-coprime factorization of
[
R1 (∂) T1 (∂)

]
over S and a right-coprime

factorization of
[
−T2 (∂)
R2 (∂)

]
over S, respectively. We have

A−1
1

[
R+

1 T+
1

]
[
−T+

2

R+
2

]
A−1

2 = 0,
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therefore
[
R+

1 T+
1

]
[
−T+

2

R+
2

]
= 0. (7.44)

(2) We will show that R+
i (σ) is a matrix of definition of the impulsive

system M+
i (i = 1, 2) if, and only if (iii) holds.

We haveR1 (∂) = A−1
1 (σ)R+

1 (σ). By Proposition 1070, R+
1 (σ) is a matrix

of definition of the impulsive system M+
1 if, and only if

(
A1 (σ) , R+

1 (σ)
)

is a
left-coprime factorization of R1 (∂) over S. This holds true if, and only if

c∞
([
A1 R+

1

])
= c∞

(
A1

[
Iq R1

])
= 0.

By Theorem 1063,

c∞
(
A1

[
Iq R1

])
= c∞ (A1) + c∞

([
Iq R1

])
,

and
c∞
([
Iq R1

])
= δM

([
Iq R1

])
= δM (R1)

(Exercise 1110(iii)). Therefore, the above condition holds if, and only if
δM (R1) = −c∞ (A1) .

Since
(
A1,
[
R+

1 T+
1

])
is a left-coprime factorization of

[
R1 T1

]
,

c∞
([
A1 R+

1 T+
1

])
= c∞ (A1) + c∞

([
R1 T1

])
= 0,

therefore δM

([
R1 T1

])
= −c∞ (A1).

Therefore, R+
1 (σ) is a matrix of definition of M+

1 if, and only if

δM

([
R1 T1

])
= δM (R1) .

By a similar rationale, the same holds with the index 1 changed to 2.
(3) Last, the following conditions are equivalent: (a) the relation

(7.44) is comaximal, (b) cokerS
(
•R+

1

) ∼= cokerS
(
•R+

2

)
, (c) Condition (ii)

holds. Indeed, (a)⇔(b) by Theorem 520, and (a)⇔(c) by Exercise 1109(ii).

7.3.6.3 An Algebraic Definition of a Temporal System

Definition 1090. A temporal control system Σ is an equivalence class of
fully equivalent admissible PMDs. The impulsive system M+ of Σ is defined
(up to S-isomorphism) in accordance with Definition 1076, and its control
system (M,u, y) is defined in accordance with Lemma and Definition 856
(thus, M is defined up to A-isomorphism).

7.4 Poles and Zeros at Infinity

In this section, K is a division ring (except when otherwise stated) and
A = K [∂; α, δ] where α is an automorphism and δ an α-derivation of K.
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We consider a temporal control system Σ (Definition 1090) with matrix of
definition R (∂); there exists a PMD {D,N,Q,W} belonging to Σ, the sys-
tem matrix P (∂) of which (Definition 855(1)) is connected to R (∂) by (7.40).
The transfer matrix of Σ is G (∂) = Q (∂)D−1 (∂)N (∂)+W (∂). The trans-
mission poles and zeros at infinity of have already been defined (Definition
1064). The other kinds of poles and zeros at infinity are defined in what
follows from the impulsive system M+ (Definition 1076(iii)) in the same way
than the ”finite” poles and zeros have been defined in Chapter 6 from the
system M (see, also, [43]). Nevertheless, the case of poles and zeros at in-
finity is simpler, for the principal ideal domain S is rigid (2.13.2.3), whereas
the principal ideal domain A is not.

7.4.1 Uncontrollable Poles at Infinity

Definition 1091. The module of uncontrollable poles at infinity (also called
the module of input–decoupling zeros at infinity, and denoted by IDZ∞) is
T (M+). Its elementary divisors are the nonzero elementary divisors of the
matrix R+ (σ).

Example 1092. (Example 1078 cont’d.). Embedding k [t] into its field of
fractions k (t), the transfer function of System 1 is G1 (∂) =

(
∂2 + t

)−1
,

that of System 2 is G2 (∂) = ∂2, and the transfer function of the intercon-
nected temporal system is G (∂) = ∂2

(
∂2 + t

)−1. Therefore, System 1 has
a transmission zero at infinity with structural index 2, and System 2 has a
transmission pole at infinity with structural index 2. The interconnected sys-
tem has no transmission pole and no transmission zero at infinity. Abusing
the language, a pole/zero cancellation at infinity arises due to the tempo-
ral interconnection. The temporal system has a ”hidden mode at infinity”
which turns out to be an uncontrollable pole at infinity with set of elementary
divisors

{
σ2
}

(for T (M+) ∼= S/
(
σ2
)
).

7.4.2 System Poles at Infinity

Let M̌+ = L
⊗

SM
+ and let ϕ̌ : M+ → M̌ be the canonical map defined by

ϕ̌ (w+) = w̌+ = 1L

⊗
S w

+, where 1L is the unit-element of L.

Lemma 1093. (i) The L-vector space M̌+ is of dimension m and M̌+ =
[ǔ+]L.
(ii) Let u+, y+ be the columns defined by (7.42). The module [u+]S is free of
rank m and M+/ [u+]S is torsion.
(iii) There exists a free submodule Φ+ of M+ such that (7.7) holds and

[
u+, y+

]
S

= T
([
u+, y+

]
S

)
⊕
(
Φ+ ∩

[
u+, y+

]
S

)
.

In particular, [u+]S � Φ+.
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Proof. The module M+ is defined by R+ (σ)w+ = 0, therefore
A−1 (σ) B+ (σ) w̌+ = 0, i.e., R (∂) w̌+ = 0. Thus (using the notation in Sub-
sect. 7.2.2 with L = L̂ and S = Ŝ) M̌+ = L

⊗
Q M̂ = L

⊗
Q [û]Q = [ǔ+]L,

and (i) is proved.
By (i), [u+]S is of rank m, and [u+]S is free since [u+]S is generated by m

elements (Corollary and Definition 341(1)); in addition, L
⊗

S (M+/ [u+]S) =
0, thus M+/ [u+]S is torsion.

(iii) is a consequence (ii) and of Corollary 661.

In what follows, Φ+ denotes the free S-module in Lemma 1093(iii).

Definition 1094. The module of system poles at infinity, denoted by SP∞,
is M+/ [u+]S.

The elementary divisors of M+/ [u+]S are those of the submatrix[
D+ (σ) Z+ (σ)
Q+ (σ) Y + (σ)

]
of R+ (σ).

Example 1095. (Example 1078 cont’d.) Let us transform the matrix R+ (σ)
in (7.29), using permutations of rows and columns, in such a way that the
impulsive control system M+ be described by an equation of the form (7.42)
where u+ = u+

1 and y+ = y+
2 . The new matrix R+ (σ) is given by

R+ (σ) =

⎡

⎣
1 + σ2t 0 −σ2 0

1 −1 0 0
0 1 0 −σ2

⎤

⎦ .

Therefore,

[
D+ (σ) Z+ (σ)
Q+ (σ) Y + (σ)

]
=

⎡

⎣
1 + σ2t 0 0

1 −1 0
0 1 −σ2

⎤

⎦ ≡

⎡

⎣
1 0 0
0 1 0
0 0 σ2

⎤

⎦ .

with the notation in Definition 280(i) (the equivalence is obtained using ele-
mentary operations, and using the fact that 1+σ2t is a unit of S by Theorem
381(i)). Therefore, SP∞ ∼= C̃2, and the set of elementary divisors of SP∞
is
{
σ2
}
.

Remark 1096. The calculations in the above example are still valid if k [t]
is not embedded into k (t).

7.4.3 Hidden Modes at Infinity

The module of uncontrollable poles at infinity is also called the module of
input-decoupling zeros at infinity and is denoted by IDZ∞.
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Definition 1097. (i) The module of output-decoupling zeros at infinity (de-
noted by ODZ∞) is M+/ [y+, u+]S.
(ii) The module of input-output decoupling zeros at infinity (denoted by
IODZ∞) is T (M+) / (T (M+) ∩ [y+, u+]S).
(iii) The module of hidden modes at infinity (denoted by HM∞) is
M+/ (Φ+ ∩ [y+, u+]S).

The elementary divisors of ODZ∞ are those of the submatrix
[
D+ (σ)
Q+ (σ)

]
.

Example 1098. (Example 1078 cont’d.)
(1) We have

[
D+ (σ)
Q+ (σ)

]
=

⎡

⎣
1 + σ2t 0

1 −1
0 1

⎤

⎦ ≡

⎡

⎣
1 0
0 1
0 0

⎤

⎦ ,

therefore ODZ∞ = 0.
(2) In addition, T (M+) = [v+]S where v+ = u+− tξ+

1 − y+, and ξ+
1 = ξ+

2 =
σ2y+, therefore v+ = u+ −

(
tσ2 + 1

)
y+ ∈ [y+, u+]S, T (M+) � [y+, u+]S,

therefore T (M+) ∩ [y+, u+]S = T (M+) and IODZ∞ = 0. Note that Re-
mark 1096 is still valid in this context.

Lemma 1099. (i) Let T+
1 and T+

2 be submodules of a f.g. S-module, such
that T+

1 and T+
2 are torsion and T+

1 ∩ T+
2 = 0. Then

ε
(
T+

1 ⊕ T+
2

)
= ε
(
T+

1

) •
∪ ε
(
T+

2

)

where
•
∪ is the disjoint union (1.2.1.3) and where ε (T+) is the set of ele-

mentary divisors of the f.g. torsion S-module T+.
(ii) Let M+

1 , M+
2 , M+

3 be f.g. S-modules such that M+
1 � M+

2 � M+
3 and

M+
i+1/M

+
i is torsion (i = 1, 2). Then

#
(
M+

3 /M+
1

)
= #
(
M+

3 /M+
2

)
+ #
(
M+

2 /M+
1

)
.

Proof. This is a consequence of Corollary 663.

Theorem 1100. The following equality holds:

ε (HM∞) = ε (IDZ∞)
•
∪ ε (ODZ∞) \ ε (IODZ∞) .

Proof. We have

M+

Φ+ ∩ [y+, u+]S
=
T (M+)⊕ Φ+

Φ+ ∩ [y+, u+]S
∼= T
(
M+
)
⊕ Φ+

Φ+ ∩ [y+, u+]S
, (7.45)
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this isomorphism holding because (Φ+ ∩ [y+, u+]S) ∩ T (M+) = 0. In
addition,

M+

[y+, u+]S
=

T (M+)⊕ Φ+

(T (M+) ∩ [y+, u+]S)⊕ (Φ+ ∩ [y+, u+]S)

∼=
T (M+)

T (M+) ∩ [y+, u+]S
⊕ Φ+

Φ+ ∩ [y+, u+]S
(7.46)

by (2.9). The theorem is a consequence of (7.45), (7.46) and of Lemma 1099.

Example 1101. (Example 1078, cont’d.) We obtain by Theorem 1100

ε (HM∞) =
{
σ2
} •
∪∅ \∅ =

{
σ2
}
.

Remark 1096 is still valid.

7.4.4 Invariant Zeros at Infinity

Definition 1102. The module of invariant zeros at infinity (denoted by
IZ∞) is T (M+/ [y+]S).

The elementary divisors of IZ∞ are those of the submatrix[
D+ (σ) −N+ (σ)
Q+ (σ) W+ (σ)

]
.

Example 1103. (Example 1078 cont’d.) We have

[
D+ (σ) −N+ (σ)
Q+ (σ) W+ (σ)

]
=

⎡

⎣
1 + σ2t 0 −σ2

1 −1 0
0 1 0

⎤

⎦ ≡

⎡

⎣
1 0 0
0 1 0
0 0 σ2

⎤

⎦ ,

therefore IZ∞ ∼= C̃2, and the set of elementary divisors of IZ∞ is
{
σ2
}
.

Remark 1096 is still valid.

7.4.5 System Zeros at Infinity

The module of system zeros at infinity is not defined. However, the degree
of the system zeros at infinity (denoted by # (SZ∞) is defined as follows:

Definition 1104. # (SZ∞) = # (TZ∞) + # (HM∞).

Example 1105. (Example 1078 cont’d.) We have

# (SZ∞) = 0 + 2 = 2.
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7.4.6 Transmission Poles and Transmission Zeros at
Infinity

Lemma and Definition 1106. (1) Consider the two torsion modules S-
modules TP∞ and TZ∞ below:

TP∞ =
Φ+ ∩ [y+, u+]S

[u+]S
, TZ∞ = T

(
Φ+ ∩ [y+, u+]S
Φ+ ∩ [y+]S

)
.

These modules TP∞ and TZ∞ are called the module of transmission poles
at infinity and the module of transmission zeros at infinity, respectively.
(2) The set ε (TP∞) (resp., ε (TZ∞)) of all elementary divisors of TP∞
(resp., TZ∞) is given by {σπi , 1 ≤ i ≤ s} (resp., {σςi , 1 ≤ i ≤ ρ}) where
{πi : 1 ≤ i ≤ s} (resp., {ςi : 1 ≤ i ≤ ρ}) is the set of structural indices of the
transmission pole (resp., the transmission zero) at infinity (Definition 1064).

Proof. (2) (a) The matrix R+ (σ) can be put into the form L (σ)R+
0 (σ) where

R+
0 (σ) has no elementary divisor. Then, Φ+ is described by the equation

R+
0 (σ)

⎡

⎣
ξ+

u+

y+

⎤

⎦ = 0.

To simplify the notation, assume that R+ (σ) has no elementary divisor, i.e.,
that M+ = Φ+. Then,

TP∞ =
[y+, u+]S

[u+]S
, TZ∞ = T

(
[y+, u+]S

[y+]S

)

and R+
0 (σ) = R+ (σ).

(b) The equation (7.42) of M+ = Φ+ can be written
[
D+ (σ)
Q+ (σ)

]
ξ+ +

[
−N+ (σ) Z+ (σ)
W+ (σ) Y + (σ)

] [
u+ (σ)
y+ (σ)

]
= 0, (7.47)

thus M+/ [y+, u+]S is given by the equation
[
D+ (σ)
Q+ (σ)

]
ξ̄
+ = 0.

This module is zero (i.e., M+ = [y+, u+]S) if, and only if
[
D+ (σ)
Q+ (σ)

]
is left-

invertible, i.e., D+ (σ) and Q+ (σ) are right-coprime. If this does not hold, let
R (σ) be a gcrd of D+ (σ) and Q+ (σ); we can write D+ (σ) = D+

0 (σ)R (σ)
and Q+ (σ) = Q+

0 (σ)R (σ) where D+
0 (σ) and Q+

0 (σ) are right-coprime, i.e.,[
D+

0 (σ)
Q+

0 (σ)

]
is left-invertible. Then (7.47) can be written
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[
D+

0 (σ)
Q+

0 (σ)

]
ξ′+ +

[
−N+ (σ) Z+ (σ)
W+ (σ) Y + (σ)

] [
u+ (σ)
y+ (σ)

]
= 0

where ξ′+ = R (σ) ξ+. To simplify the notation, assume that D+ (σ) and

Q+ (σ) are right-coprime. Then,
[
D+ (σ)
Q+ (σ)

]
=
[
D+

0 (σ)
Q+

0 (σ)

]
is left-invertible

and ξ+ = ξ′+ is such that
[
ξ+
]
S

� [y+, u+]S.
(c) The module [y+, u+]S has an equation of the form

A+ (σ) y+ = B+ (σ)u+.

This module is free, therefore A+ (σ) and B+ (σ) are left-coprime. In addition,
with the notation in Subsect. 7.4.2, [y̌+]L � [ǔ+]L, and since ǔ+ is a basis of
[ǔ+]L, there exists a unique matrix G+ (σ) such that y̌+ = G+ (σ) ǔ+. There-
fore, A+ (σ) is invertible over L and G+ (σ) = A+ (σ)−1

B+ (σ). In addition,
(A (σ) , R+ (σ)) is a left-coprime factorization ofR (∂) over S (7.3.6.2), there-
fore y̌+ = G (∂) ǔ+, which proves that G+ (σ) = G (∂).

(d) The module TP∞ is described by the equation A+ (σ) y+ = 0,
where the entries of y+ are the canonical images of the entries of y+ in
[y+, u+]S / [u+]S, therefore the elementary divisors of TP∞ are those of
A+ (σ). Likewise, the elementary divisors of TZ∞ are those of B+ (σ), and
(2) is proved since the left fraction G (∂) = A+ (σ)−1

B+ (σ) is irreducible
over S.

Example 1107. (Example 1078 cont’d.) The module M+ is described by[
diag
(
1, 1, σ2

)
0
]
v+ = 0 where v+ and w+ are related by (7.30) and w+ =[

u+ ξ+
1 ξ+

2 y+
]
. The equations can be written into the form

⎧
⎨

⎩

σ2v+
3 = σ2

(
u+ − tξ+

1 − y+
)

= 0,
σ2y+ = ξ+

1 ,
ξ+
1 = ξ+

2 .

The second equation implies tσ2y+ = tξ+
1 . We have Φ ∼= M+/T (M+)

where T (M+) =
[
v+
3

]
S
. Let ξ̄

+
1 , ξ̄

+
2 , ū

+ and ȳ+ be the canonical images
of ξ+

1 , ξ
+
2 , u

+ and y+, respectively, in M+/T (M+). We obtain

⎧
⎨

⎩

ū+ −
(
1 + tσ2

)
ȳ+ = 0,

σ2ȳ+ = ξ̄
+
1 ,

ξ̄
+
1 = ξ̄

+
2 ,

therefore ξ̄
+
1 = ξ̄

+
2 belongs to [ȳ+, ū+]S, and this module is defined by the

equation ū+ −
(
1 + tσ2

)
ȳ+ = 0. Therefore, TP∞ ∼= [ȳ+, ū+]S / [ū+], the

equation of which is
(
1 + tσ2

)
y̌+ where y̌+ is the canonical image of ȳ+ in

[ȳ+, ū+]S / [ū+]. Since 1 + tσ2 is a unit of S, TP∞ = 0. Likewise, ZP∞ ∼=
[ȳ+, ū+]S / [ȳ+] = 0.
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Remark 1096 is still valid with this definition of TP∞ and ZP∞ (whereas it
is not with Definition 1064(i)).

7.4.7 Relations between the Various Poles and Zeros
at Infinity

We have already seen how ε (HM∞), ε (IDZ∞), ε (ODZ∞) and ε (IODZ∞)
are related (Theorem 1100). In addition, we have:

Theorem 1108. (1) In the general case, the following equalities hold:
(i)

# (SP∞) = # (HM∞) + # (TP∞) .

(ii)
# (TZ∞) + # (IODZ∞) ≤ # (IZ∞) ≤ # (SZ∞) .

(2) Assume that K is a division ring, let G (∂) ∈ pQm be the transfer matrix
of the temporal system, and let r = rkQ (G (∂)).
(iii) If r = p (i.e., if G (∂) is right-invertible), then

ε (TZ∞) ∪̇ε (IDZ∞) ⊆ ε (IZ∞)

and in particular

# (TZ∞) + # (IDZ∞) ≤ # (IZ∞)

(iv) If r = m (i.e., if G (∂) is left-invertible), then

# (TZ∞) + # (ODZ∞) ≤ # (IZ∞) .

(v) If r = p = m (i.e., if G (∂) is square and invertible), then

# (TZ∞) + # (HM∞) = # (IZ∞) = # (SZ∞) .

Proof. (1), (i) We have [u+]S � Φ+ ∩ [u+, y+]S � M+, therefore by Lemma
1099(ii),

#
(
M+/

[
u+
]
S

)
=#
(
M+/

(
Φ+∩
[
u+, y+

]
S

))
+#
((
Φ+∩
[
u+, y+

]
S

)
/
[
u+
]
S

)
.

(ii), (a): Let T+ = T (M+). We have by Lemma 1093(ii) and by (2.9)

M+

[y+]S
=

T+ ⊕ Φ+

(T+ ∩ [y+]S)⊕ (Φ+ ∩ [y+]S)

∼=
T+

(T+ ∩ [y+]S)
⊕ Φ+

(Φ+ ∩ [y+]S)
.
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In addition,
Φ+ ∩ [y+, u+]S
(Φ+ ∩ [y+]S)

� Φ+

(Φ+ ∩ [y+]S)
,

therefore

#
(
T
(

Φ+

(Φ+ ∩ [y+]S)

))
≥ # (TZ∞) .

Since T+ ∩ [y+]S � T+ ∩ [y+, u+]S � T+, we have by Lemma 1099(ii)

#
(

T+

T+ ∩ [y+]S

)
= #
(

T+

T+ ∩ [y+, u+]S

)
+ #
(
T+ ∩ [y+, u+]S
T+ ∩ [y+]S

)

≥ #
(

T+

T+ ∩ [y+, u+]S

)
= # (IODZ∞) ,

and the left equality of (ii) is proved.
(b): We have

M+

[y+, u+]S
=

Φ+

Φ+ ∩ [y+, u+]S
⊕ T+

T+ ∩ [y+, u+]S

therefore, putting T+
1 = Φ+/ (Φ+ ∩ [y+, u+]S),

#
(
T+

1

)
= # (ODZ∞)−# (IODZ∞) .

In addition,

T
{

M+

[y+]S

}
= T
{

Φ+

Φ+ ∩ [y+]S

}
⊕ T+

T+ ∩ [y+]S
,

#
(
T
{

Φ+

Φ+ ∩ [y+]S

})
= #
(

Φ+

Φ+ ∩ [y+, u+]S

)
+ #
(
Φ+ ∩ [y+, u+]S
Φ+ ∩ [y+]S

)
,

therefore

# (IZ∞) = #
(
T+

1

)
+ # (TZ∞) + #

(
T+

T+ ∩ [y+]S

)

= # (ODZ∞)−# (IODZ∞) + # (TZ∞) + #
(

T+

T+ ∩ [y+]S

)
.

Since # (T+/T+ ∩ [y+]S) ≤ # (IDZ∞), the right inequality of (ii) is proved.
(2) Let us embed Q in L. With the notation in the proof of Lemma and

Definition 1106, we have y̌+ = G (∂) ǔ+.
(iii) If r = p, then dim [y̌+]L = p, therefore [y]S is free of rank p by

Corollary and Definition 341, so that

T
{

M+

[y+]S

}
∼= T
{

Φ+

[y+]S

}
⊕ T+ ⊇ T

{
Φ+ ∩ [y+, u+]S

[y+]S

}
⊕ T+.
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(iv) If r = m, then M+/ [y+]S is torsion. By Lemma 1099(ii),

#
(

M+

[y+]S

)
= #
(

M+

[y+, u+]S

)
+ #
(

[y+, u+]S
[y+]S

)
(7.48)

≥ #
(

M+

[y+, u+]S

)
+ # (TZ∞) .

(v) If r = m = p, then M+/ [y+]S is torsion and [y]S is free. Therefore,

[y+, u+]S
[y+]S

∼=
(
T+ ∩

[
y+, u+

]
S

)
⊕ Φ+ ∩ [y+, u+]S

[y+]S
.

In addition, 0 � (T+ ∩ [y+, u+]S) � T+, therefore by Lemma 1099(ii),

#
(
T+ ∩

[
y+, u+

]
S

)
= #
(
T+
)
−#
(

T+

T+ ∩ [y+, u+]S

)

= # (IDZ∞)−# (IODZ∞) ,

so that

#
(

[y+, u+]S
[y+]S

)
= # (TZ∞) + # (IDZ∞)−# (IODZ∞) .

(v) is a consequence the above equality and of (7.48).

7.5 Exercises

Exercise 1109. Let A (∂) ∈ rAk1 , B (∂) ∈ rAk2 where A = K [∂;α, δ] and
K is a division ring. Let R (∂) =

[
A (∂) B (∂)

]
. Assuming that rkR (∂) =

r, let (D (σ) , R+ (σ)) be a left-coprime factorization of R (∂) over S, and set
R+ (σ) =

[
A+ (σ) B+ (σ)

]
, A+ (σ) ∈ rSk1 , B+ (σ) ∈ rSk1 .

(i) Prove that the Smith-MacMillan form of R+ (σ) over S is
[
Ir 0

]
if,

and only if R (∂) has no zero at infinity.
(ii) Deduce that A+ (σ) , B+ (σ) are left-coprime if, and only if[
A (∂) B (∂)

]
has no zero at infinity.

(iii) Generalize the above to the case when K is a Noetherian domain and
R (∂) is regular at infinity.

Exercise 1110. Let K be a division ring, and let A = K (∂;α, δ). Let
A (∂) ∈ qQm and B (∂) ∈ qQp be two matrices of rank r, and set F (∂) =[
A (∂)
B (∂)

]
.

(i) Assuming that the Smith-MacMillan form at infinity of A (∂) and
of B (∂) are diag (σν1 , ..., σνr , 0, ..., 0) and diag

(
σλ1 , ..., σλr , 0, ..., 0

)
, re-

spectively, show that the Smith-MacMillan form at infinity of F (∂) is
diag (σε1 , ..., σεr , 0, ..., 0) with εi = min {νi, λi} , 1 ≤ i ≤ r.
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(ii) Deduce from (i) that if F (∂) has no pole at infinity, then A (∂) and B (∂)
have the same property, and that c∞ (F ) ≥ max {c∞ (A) , c∞ (B)}.

(iii) Show that δM

([
A (∂)
Im

])
= δM (A (∂)).

(Hint: for (i), B (∂) and B (∂) V have the same Smith-MacMillan form over
S if V ∈ GLm (S); use row elementary operations once A (∂) and B (∂) V
have been reduced to their Smith-MacMillan form over S, where V is a suit-
able element of GLm (S).)

Exercise 1111. Assume that K = k. Let Σ1 be the system (∂ + 1) y = u,
Σ2 be the system ȳ = ∂2ū, and consider the interconnection ȳ = u (i.e.,
Σ2 → Σ1), active only for t ∈ T0. The resulting temporal system is denoted
by Σ.

(1) Uncontrollable poles at infinity: (i) What kind of ”pole-zero cancellation
at infinity” does arise when Σ is formed? (ii) Check that T (M+) ∼= C̃1 = kδ̃.
(iii) ”Where”, in Σ, does the uncontrollable impulsive behavior kδ arise?
(2) System poles at infinity: Show Σ has one transmission pole at infinity of
order 1 and that SP∞ ∼= C̃2.
(3) Unobservable poles at infinity: Consider the same systems Σ1 and Σ2

as above, and the temporal interconnection y = ū (i.e., Σ1 → Σ2), active
only for t ∈ T0. The resulting temporal system is denoted by Σ′. (i’) What
kind of ”pole-zero cancellation at infinity” does arise when Σ′ is formed?
(ii’) Check that M+/ [y+, u+]S ∼= C̃1 = kδ̃. (iii’) ”Where”, in Σ′, does the
”unobservable impulsive behavior” kδ arise?

Exercise 1112. Assume that K = k. Let Σ1 be the system y = ∂2u,
let Σ2 be the system ∂3ȳ = ∂ū, and consider the interconnection y = ū
(i.e., Σ1 → Σ2), active only for t ∈ T0. (i) What kind of ”pole-zero can-
cellation at infinity” does arise when the temporal system is formed? (ii)
Calculate IDZ∞, ODZ∞, IODZ∞, HM∞, SP∞ and IZ∞. (Answers:
IDZ∞ = IODZ∞ = 0, ODZ∞ ∼= HM∞ ∼= SP∞ ∼= IZ∞ ∼= C̃2.)

Exercise 1113. Assume that K = k [t]. Consider the temporal system, the
matrix of definition R (∂) of which is given by (7.40) with

D (∂) =
[

1 0
t∂3 ∂2

]
, N (∂) =

[
0

(t− 1)∂

]
,

Q (∂) =
[
t∂ t2∂

]
, W (∂) = t2∂.

(i) Is R (∂) is regular at infinity?
(ii) Calculate SP∞, IDZ∞, ODZ∞, IODZ∞, HM∞, IZ∞, TP∞, TZ∞ and
# (SZ∞). Interpretation?
(Answers: (i): Yes. (ii): SP∞ ∼= C̃1 ⊕ C̃1, IDZ∞ ∼= ODZ∞ ∼= IODZ∞ ∼=
HM∞ ∼= IZ∞ ∼= TP∞ ∼= C̃1, TZ∞ = 0 and # (SZ∞) = 1.
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7.6 Notes

The ”structure at infinity” of matrix pencils goes back to Kronecker and
Weierstrass (see [132], Chap. XII) who introduced the notion of infinite el-
ementary divisor. The connection between this notion and the impulsive
motions which may arise in a system was pointed out by Verghese in his
Ph.D. thesis [346] and in several papers, some of them written in collab-
oration with coauthors–especially his advisor T. Kailath [348], [350], [347],
[349]. In these papers, the notion of MacMillan degree (which goes back to
MacMillan [248]) was also clarified The following result was proved in [349]:
let δM (resp., δz) be the number of poles (resp., of zeros), finite and infinite,
of a transfer matrix G (s) (δM is the MacMillan degree); then, δM − δz ≥ 0
in general, with equality when G (s) is square and nonsingular; δP − δz is
called the defect of G (s) ([170], Subsect. 6.5.4). Usual elementary row and
column operations (over the ring A) do not preserve the structure at infin-
ity, as emphasized by Pugh and Ratcliffe [284]. Based on this observation,
the study of the various kinds of poles and zeros at infinity (including hidden
modes at infinity) was completed by Vardulakis [341], by van der Weiden and
Bosgra [358], and by Ferreira [112]. The Smith-MacMillan form at infinity
of a general polynomial matrix (with constant coefficients) was studied by
Vardulakis et al. [344]. These results are presented in Vardulakis’ monograph
[345].

Full equivalence of two PMDs was defined by Hayton et al. [159], in the
case K = k, and for continuous-time systems, by the necessary and sufficient
condition in Theorem 1089. This is a refinement of restricted equivalence and
of strong equivalence, introduced by Verghese [346] and by Bosgra and van der
Weiden [25], respectively. An interpretation of full equivalence in terms of the
existence of a bijective map between the finite and infinite solution sets of the
differential equations describing two systems was given later by Pugh et al.
[283]. The characteristics of a system left invariant by full equivalence were
studied by Karampetakis and Vardulakis [178]. See also, e.g., Karampetakis
et al. [179], [180], [177].

The extension of poles, zeros and hidden modes at infinity to time-varying
systems over A = K [∂, δ], where K is a differential field, was carried out
by Bourlès and Marinescu [46] using module theory. They (implicitly) in-
troduced the notion of impulsive system. The notions of temporal system,
of temporal interconnection and of regularity at infinity are due to Bourlès
[40], [42], who showed that the continuous-time case and the discrete-time
case can be jointly treated. Theorem 1108 was announced in [46] by analogy
with the result on the relations between finite poles and zeros obtained by
Bourlès and Fliess [44] (this result was slightly improved in [43]). Theorem
1085 was obtained in [40]. The causal Laplace transform and the anticausal
Z-transform in Subsect. 7.3.4 were developed in [39]. Definition 1087 (i.e.,
the general definition of full equivalence) and Theorem 1089 were obtained
in [42].
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8

Analysis of LTV Systems

8.1 Introduction

Many engineering problems need a time-varying modeling and some exam-
ples are shown in this section. The most common class of LTV systems is
the one of periodic systems. They are encountered in signal processing and
communications as, for example, filters which incorporate modulators in the
signal path (see, e.g., [252] in which spectral characterizations of linear peri-
odically time-varying systems are used to the study of gated phased-locked
loops), as well as in control.

However, the physical time-dependance of some parameters is not the only
reason for studying LTV systems. Indeed, LTV representations are obtained
when simplifying complicated models as it is the case of the linearization
of the nonlinear dynamics around a given trajectory. In [255] LTV models
are used for the linear analysis of electrical circuits while [130] shows that a
simplified observer design can be carried out using an LTV model.

Linear Parameter-Varying (LPV) systems form a special class of LTV sys-
tems in which the coefficients of the system depend on a time-varying param-
eter. LPV systems arise in the gain scheduling ([310], [212]). Again, despite
the supplementary difficulty introduced by the time-dependance of the pa-
rameters, this kind of modeling can lead to important simplifications of the
problem. In [287], the LPV modeling applied to the voltage control of the
power systems leads to a decentralized control scheme. Other industrial LPV
applications are reported in [15] and [365].

We continue here by presenting three industrial applications for which
the time-varying modeling is mandatory. It is also shown how the algebraic
approach presented in Part II is used to analyse the structural properties of
some industrial systems.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 499–514.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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8.2 Need of Time-Varying Models

8.2.1 Current-Mode Control of a Converter

As power electronics has been increasingly used in the control of electrical
drives in the last decades, modeling of current-mode controlled converters has
been a topic of interest for the control and power electronics communities.

A boost converter as considered in [338] is shown in Fig. 8.1 where D
defines the impulse modulation.

Fig. 8.1 Example boost converter

Under normal operating conditions, the switch is turned on every T sec-
onds, and is turned off when the inductor current iL(t) reaches a peak value
of the control signal ip(t) minus a compensation ramp. For the control de-
sign, the relation between a perturbation îp(t) in the control signal and the
resulting perturbation îL(t) is investigated. The modeling usually adopted
(see, e.g., [293], [338]) is based on the assumption that the input and out-
put voltages do not vary significantly and, as a consequence, the relation
between the perturbation in control and the resulting current perturbation
can be approximated by a sample-and-hold system as given in Fig. 8.2.

This leads to a linear time-invariant discrete-time model

H(z) =
2iL(z)
2ip(z)

=
(M1 +M2)z

(Mc + M1)z − (Mc −M2)
(8.1)

where M1, M2 and Mc are the slope magnitudes of the rising inductor current,
falling inductor current, and slope-compensation ramp.

The main effects not modeled by the sample-and-hold approximation are
the variation in sampling time and the finite slope of the current perturbation
transition.

This modeling is correct at low-frequencies. Its flaws at high frequencies
were pointed out in [272] where it is shown that the system in Fig. 8.2 is time-
varying for control perturbations approaching half the switching frequency.
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Fig. 8.2 System for modeling the relation between perturbations in control and
perturbations in current

Indeed, the sampling process, which is modeled by impulse modulation, gen-
erates replicas of the input frequency spectrum centered at multiples of the
sampling (switching) frequency, fsw = 1/T :

î∗p(s) =
1
T

∞∑

n=−∞
îp(s +

2πnj
T

). (8.2)

The effects of the replicas are ignored in (8.1) where the approximation
î∗p(s) ≈ 1

T îp(s) is used instead of (8.2). If for low-frequency this approxima-
tion is justified since the low-pass zero-order hold in Fig. 8.2 filters the high
order frequency replicas, it is more critical for higher frequency perturbations
since the zero-order holder filtering is less efficient and thus contributions due
to the replicas are present at the output. The response of the system in Fig.
8.2 at these frequencies depends on the position of the control signal with
respect to the sampling points. It follows that a time-varying modeling is
necessary for the analysis in this case.

8.2.2 Modeling Highway Vehicles with Time-Varying
Velocity

In an automated highway system the steering control of a vehicle is based on
a model which mainly captures the lateral dynamics of the vehicle and, in
particular, the interaction between the tires and the road surface. Tradition-
ally, a linear time-invariant model is obtained by linearizing the dynamics
assuming that the vehicle is traveling at a constant velocity. This model
does not cover the situation when a vehicle changes highway lanes while
accelerating. In [261] such a different approach is proposed on the basis of
a linear time-varying model developed by linearizing the nonlinear dynam-
ics for a specified velocity trajectory. This way of modeling and the main
differences with a traditional time-invariant approach are summarized here
as an example.
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Consider a time-varying velocity defined by

v̇x(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t, 0 ≤ t < 2
2, 2 ≤ t < 7.5

2− (t− 7.5), 7.5 ≤ t < 9.5
0, 9.5 ≤ t < 12

(8.3)

or, in other words, a given acceleration profile. The LTV model consists in
the linearization of the full nonlinear model around the trajectory (8.3).

The nonlinear model consists in the equations of the mass center of the
vehicle and the tire/road interface and is schematically given in Fig. 8.3.

Fig. 8.3 Block diagram of the nonlinear model of the highway vehicle

The inputs are τ the engine/braking torque and δ the front wheel steering
angle. The tire/road interface is described by ωt the wheel angular velocity,
SLIP the longitudinal (tire) slip, α the side slip angle, FC the circumferential
(tire) force, and FS the side (tire) force. The motion of the center of mass is
described in the inertial frame by xi the longitudinal position, yi the lateral
position, and ψ the yaw angle. In the body frame, the motion of the center
of mass is descibed by the following five degrees of freedom: φ the roll angle,
ωx the roll rate, θ the pitch angle, ωy the pitch rate and ωz the yaw rate.
The equations of the center of the mass are

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

ẋi

mv̇x
ẏi

mv̇y
φ̇

Jxω̇x
θ̇

Jyω̇y
ψ̇

Jzω̇z

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

vxcosφ− vysinφ
mvyωy

vxsinφ+ vycosφ
−mvxωz

ωx
(Jy − Jz)ωyωz

ωy
(Jz − Jx)ωxωz

ωz
(Jx − Jy)ωxωy

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

+

⎡

⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎣

0
ΣF bx

0
ΣF by

0
ΣM b

x

0
ΣM b

y

0
ΣM b

z

⎤

⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎦

(8.4)
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where J is the moment of inertia about each axis, ΣF b is the sum of forces
along each axis in the body frame, and ΣM b is the sum of the moments
about each axis in the body frame.

The interaction between the tire and the road generates the forces and the
moments in (8.4). Their expressions depend on the assumptions made on the
time-dependancy of the velocity. For example, the normal load N of each tire
is the fraction of the vehicle weight supported by each tire. For a constant
velocity, the normal load distribution is static and given by

N0
f =

mgl2
2(l1 + l2)

, N0
r =

mgl1
2(l1 + l2)

(8.5)

where N 0
f (respectively N0

r ) is the normal load on the front (respectively rear)
tires and the length l1 (respectively l2) represents the distance from the front
(respectively rear) axle to the center of mass. Indeed, at constant velocity,
there is no roll motion and, as a result, the normal load is equally distributed
between the right and left side of the vehicle. This is no longer valid if one
considers time-varying velocity. In this case, the normal load depends on the
vehicle’s suspension. The suspension is modeled as a mass-spring-damper
system with a spring constant K and a damper constant β. The normal force
is

NFL = N0
f − (KzFL + βżFL)

NFR = N0
f − (KzFR + βżFR)

NRL = N 0
r − (KzRL + βżRL)

NRR = N0
r − (KzRR + βżRR)

(8.6)

where z is the suspension deflection at each tire. This deflection depends on
the pitch and roll angles.

The angular velocity ωt is given by the torque produced by the engine or
braking Te, the circumferential force FC and the friction force Ff :

Jtω̇t = Te − h(FC + Ff ) (8.7)

where Jt is the moment of inertia of the tire and Ff = μN .
The slips α for each tire are computed using algebraic relations from the

velocities in the ground plane vgx, vgy and the front wheel steering angle δ.
The computations are skipped here and the reader can directly refer to [261]
for these details.

The equations (8.4), (8.7) and (8.6) define a nonlinear dynamics which
can be linearized for the acceleration trajectory defined by (8.3) with initial
values for the velocity and the front wheel steering angle δ. In the linearization
process in [261] five states were retained from the nonlinear process:

x =
[
y vy ψ ψ̇ δ

]T
(8.8)



504 8 Analysis of LTV Systems

The first four states describe the motion of the center of mass: relative lateral
position y, the yaw angle ψ and their derivatives. The last state represents the
steering actuator modeled by the first order transfer function 1

1+0.2s
. With

the choice of the state (8.8), the linear model has the state representation

A =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 vx 0 0
0 a11 0 a12 b1
0 0 0 1 0
0 a21 0 a22 b2
0 0 0 0 −b

⎤

⎥
⎥
⎥
⎥
⎦
, B =

⎡

⎢
⎢
⎢
⎢
⎣

0
0
0
0
b

⎤

⎥
⎥
⎥
⎥
⎦

(8.9)

where
a11 = − C̃Sf

+C̃Sr

mvx
a12 =

C̃Sr l2−C̃Sf
l1

mvx
− vx

a21 =
C̃Sr l2−C̃Sf

l1

Izvx
a22 = − C̃Sr l

2
2+C̃Sf

l21
Izvx

b1 =
C̃Sf

+FCf
−aNf

m
b2 =

(C̃Sf
+FCf

−aNf )l1

m

(8.10)

where a, b ∈ R and C̃Sf
and C̃Sr are the effective cornering stiffness values

of the front and rear wheels:

C̃Sf
= Nf

N0
f
CSf

√
1− (

FCf

0.8Nf
)2

C̃Sr = Nr

N0
r
CSr

√
1− ( FCr

0.8Nr
)2

(8.11)

and the circumferential forces and the normal loads are:

for 0 ≤ t < 2, FCf
= −9t− 150 FCr = 1853t+ 1134

Nf = −690t+ 10000 Nr = 920t+ 7420
for 2 ≤ t < 7.5, FCf

= −168 FCr = 204t+ 4440
Nf = 8620 Nr = 9260

for 7.5 ≤ t < 9.5, FCf
= 9t− 235.5 FCr = −1665t+ 18458

Nf = 690t+ 3445 Nr = −920t+ 16160
for 9.5 ≤ t < 12, FCf

= −150 FCr = 2640
Nf = 10000 Nr = 7420.

(8.12)

The state-space representation (8.9) is time-varying since the entries of the
matrix A depend on the time-variant speed vx (and the coefficients (8.10)).

8.2.3 Polynomial Time-Varying Models

The servo systems are a particular class of control systems. They usually
control the position of second or third order systems as quick as possible and
in the presence of some external disturbances. Such systems are implemented
in several domains like aeronautics, rocket techniques, antenna positioning,
computer hard disk drive control, etc.
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A bang-bang control, known to move in minimal time an object from
one place to another, cannot be used in practical applications concerned
with overshoots/undershoots, residual vibrations and disturbance rejection
problems. A model-following control method is usually used as a tradeoff
between fast movement and accurate settling as shown in [340] for the control
of a hard disk drive. The control is of polynomial type

un = a1n + a2n
2 + a3n

3 + u0 (8.13)

where n is the discrete time. The desired trajectories are chosen as the output
of the model when the control input is generated by a polynomial function
of time of type (8.13).

Moreover, to capture the evolution of the operating point it is useful to
model the system with time-varying coefficients. In [253], in order to solve
the problem of an antenna positioning in presence of varying loads according
to weather conditions, the following second order linear dynamic polynomial
type model

Aÿ + Bẏ + Cy = u (8.14)

with the time-varying coefficients

A = at2 + bt+ c
B = dt + e
C = f

(8.15)

where a, b, c, d, e, f ∈ R was considered along with a polynomial control
(of type (8.13)).

8.3 Analysis of Structural Properties

The algebraic framework presented in Part II is used here to analyse two
industrial systems.

8.3.1 Controllability and Observability Analysis

In this section it is shown how the analysis of the controllability and ob-
servability of a power system is used for the reduction of the order of the
simulation models of such systems.

8.3.1.1 Synchrony in Power Systems

A power system is the structure needed to supply consumers with electrical
energy as schematically represented in Fig. 8.4. It is mainly composed by gen-
erators (G) which are rotating machines which produce the energy, loads (L),
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Fig. 8.4 A power system

which are the consumers (of various kinds) and a grid used to transport elec-
tricity from producers to the loads. The grid consists in several components,
mainly transmission lines and transformers.

The dynamic model of such a system consists in the set of equations which
represent the physical laws of the behavior of each component. They are of
differential type as, for example, for the rotating machines and their regula-
tions, or of algebraic type, as in the case of transmission lines. This results in
a huge size system which is not easy to handle even for simulation purposes.
For that reason, the reduction of the order of a dynamic model of a power
system is a topic of interest in power systems analysis.

With the usual techniques of reduction based on a balanced realization
one is faced with some difficulties in this case. Indeed, a reduced model with
physical meaning should be provided, i.e., a model whose variables should
preserve their initial meaning like voltages, machines rotating speeds, etc. A
mathematical object like, e.g., a transfer function, is not acceptable. This
pushed the researchers in the electrical engineering field to imagine specific
reduction methods which exploit redundancy in a given interconnected power
system. Classes of similarity of the rotating machines have been defined.
Based on this notion, only one representative of each class is retained in the
reduced model while the other machines are replaced by static compensations.

Synchrony, is up to date the most powerful similarity concept [291], [292].
Let Λ = {λ1, ..., λp} be a class of interesting modes of a given power system
to be reduced. This means that the reduced model is expected to reproduce
at least the phenomena linked to these dynamics. The set Λ is called chord
in the sequel.

Definition 1114. Two generators i and j are said exactly (approximatively)
Λ-synchronous if their angular variations are exactly (approximatively) in
constant proportion for any transient in which only the modes in the chord
Λ are excited:

δi = Kδj (8.16)
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Fig. 8.5 Two-machines power system

8.3.1.2 Representation of the Power System

Synchrony in power systems is usually investigated with the so-called classical
model for generators [191] which consists only in the swing equation. For
the simple example of a power system consisting only of two machines in
Fig. 8.5 this leads to

Miδ̈i = Pmi − Pei , (8.17)

i ∈ {1, 2} where Mi = 2Hi

ω0
and Hi, Pmi , Pei and δi denote the inertias, the

mechanical powers, the electrical powers and respectively the angles of the
machines (ω0 is the nominal speed, generally equal to 1).

If a linear approximation is used around a given operating point, the grid
equations are

Pe1 = Ps(δ1 − δ2)
Pe2 = Ps(δ2 − δ1)

(8.18)

where Ps = E10E20
X

cos(δ10 − δ20) and X is the sum of the reactance of the
line which connects the two machines and the transient reactances of the two
machines, δ10, δ20 are the equilibrium values of the angles of the machines
and E10, E20 are the terminal voltages which are supposed constant. Thus, Ps
is constant if X is constant. However, X may vary in time. Indeed, it should
be noted that, in the context of synchrony and model reduction, the model
above is an aggregated representation of a real power system, which is usually
an interconnection of several sub-systems. The lines between the machines
are in fact a model of the real grid of the system. Roughly speaking, it pro-
vides the impedance ”seen” from the stator of each machine. This impedance
varies with the operating conditions of the system. This includes the topology
modifications which can be amplified by the control of the FACTS present
on the system (see, e.g., the case of a Thyristor Controlled Switched Capac-
itor (TCSC) presented in Section 9.4). In this case X is no longer constant,
X = X(t) and the system is thus LTV.

If the power system is balanced, the mechanical powers of the two machines
are not independent variables. If, moreover, the loads are supposed constant,
the relation among the powers is
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Pm1 + Pm2 = 0. (8.19)

Equations (8.17), (8.18) and (8.19) constitute an analytical model of the sys-
tem, i.e., a set of physical variables δ1, δ2, Pm1 , Pm2 , Pe1 and Pe2 which
satisfy a set of equations, closely related to the so-called Differential and
Algebraic Equations (DAE) form of the power system (see, e.g., [244]). This
form is close to physics and also widely used in simulation and modal analysis
because of its sparsity properties.

Notice that this representation can be compacted if variables Pe1 , Pe2 , Pm1

are eliminated from equations (8.19) and (8.18) into equations (8.17):

M1δ̈1 = Pm1 − Ps(δ1 − δ2)
M2δ̈2 = −Pm1 − Ps(δ2 − δ1).

(8.20)

8.3.1.3 Analogy with a Mechanic System

Consider the system of two masses m1 and m2 connected by a spring of elas-
ticity constant k in Fig. 8.6 where x1 and x2 denote the horizontal positions
of the two masses respectively. If, f1 = −f2, the system is described by the
equations

m1ẍ1 = f1 − k(x1 − x2)
m2ẍ2 = −f1 − k(x2 − x1).

(8.21)

Notice that the model (8.21) is the same as the one provided by (8.20) with
the following correspondences among the variables:

• Mi ↔ mi: the inertia of the rotating machines correspond to the masses
of the two objects.

• δi ↔ xi: the angular positions of the two machines correspond to the linear
positions of the two objects.

• Pmi = fi: the mechanical powers correspond to the external forces.
• Ps ↔ k: the line reactance corresponds to the stiffness of the spring (more

precisely, k corresponds to Ps, but in the expression of Ps, the most struc-
tural parameter is X).

Fig. 8.6 Two masses with a spring
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8.3.1.4 Lack of Controllability

The DAE form (8.20) for the two-machines system can be written

S(∂)w = 0, (8.22)

where

S(∂) =
[
M1∂

2 + Ps −Ps −1
−Ps M2∂

2 + Ps 1

]
, w =

⎡

⎣
δ1

δ2

Pm1

⎤

⎦ . (8.23)

Equation (8.22) defines the module associated with the linear representation
of the two-machines system. The Smith normal form of its presentation ma-
trix S(∂) is diag{1, ∂2}, from which follows that the system is not controllable
with a double input-decoupling zero at ∂ = 0. As a matter of fact, if one adds
the two rows of (8.22), one obtains

∂2(M1δ1 + M2δ2) = 0 (8.24)

which implies that M1δ1 + M2δ2 is a nonzero torsion element Δ, such that
∂2Δ = 0. The variable Δ, which is the mean speed of the system, evolves
independently of the rest of the system with an uncontrollable dynamics. In
the mechanical analogy, if the system is driven in a symmetric way by taking
f1 = −f2, the position of the mass center z = m1x1 + m2x2 cannot be
controlled.

If one looks now for solutions in W = C∞(R) (see Theorem 831), i.e.,
trajectories of the system, (8.24) leads to δ1(t) = −M2

M1
δ2(t) + c1t+ c2 where

c1, c2 ∈ R. As physically the angles of the machines remain bounded as
t→ +∞, c1 = 0. Also, as the origin of the axis over which the angles evolve
can be arbitrarily chosen, c2 can be assumed to be zero, which leads to

δ1 = −M2

M1
δ2 (8.25)

which is of type (8.16) with K = −M2
M1

. Thus, lack of controllability leads
to synchrony. Fig. 8.7 shows the response δ1 − δ2 of the autonomous system
(Pm1 = 0) with initial conditions δ10 = δ̇10 = 1, δ20 = δ̇20 = 0 which excite
mode ∂ = 0 only (solid line). With δ10 = 1, δ̇10 = δ20 = δ̇20 = 0 only the

other (controllable) mode s = ±j
√

Ps(M1+M2)
M1M2

of the system is excited which
leads to the response in the dotted line which is not of synchrony type.

Remark 1115. From equation (8.25) follows that Δ = 0 which is ap-
parently incompatible with the torsion equation (8.24). However, (8.25)
and (8.24) are obtained with two different modelizations and, from the
algebraic point of view, with two different systems. Indeed, for the DAE form
(8.17), (8.18) and (8.19), no angle reference is chosen for the angles of the
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Fig. 8.7 Responses of δ1 − δ2 to different initial conditions

machines. This is the usual manner to proceed in power systems since the
resulting representation is sparse (i.e., use sparse matrices) and facilitates
thus numerical analysis and simulation. To derive (8.25) an angle reference
have been chosen.

Notice that the above conclusion about the lack of the controllability is inde-
pendent of the choice of the control variables. Indeed, no a priori distinction
has been made among the physical variables δ1, δ2 and Pm1 which means
that this conclusion is intrinsic, i.e., does not depend on the way in which
the system is controlled.

8.3.1.5 Lack of Observability

Choice of inputs and outputs: Observability depends on the input u and the
output y which are chosen. Therefore, starting from the system M given by
(8.22) one should construct a control system according to Definition 851, i.e.,
to chose both a vector of inputs u and a vector of outputs y. A well-defined
input for the two-machines example is u = Pm1 . Indeed, M/[Pm1 ]R is torsion.
Let now y = δ2 − δ1. The equations of the control system (M,u, y) defined
in this way are

⎡

⎣
M1∂

2 + Ps −Ps −1 0
−Ps M2∂

2 + Ps 1 0
−1 1 0 −1

⎤

⎦

⎡

⎢
⎢
⎣

δ1

δ2

Pm1

y

⎤

⎥
⎥
⎦ = 0. (8.26)
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Unobservable modes: According to Definition 1019, the nonobservable modes
of (M,u, y) are the Smith zeros of a matrix of definition of the module
M/[u, y]R. From the computational point of view, this means to eliminate
from (8.26) u, y and the columns which correspond to u and y: a presentation
of M/[u, y]R is thus

S(∂)
[
δ1

δ2

]
= 0, S(∂) =

⎡

⎣
M1∂

2 + Ps −Ps
−Ps M2∂

2 + Ps
−1 1

⎤

⎦ . (8.27)

Notice that S(∂) = S(∂)T . Thus, the Smith normal form of S(∂) is still
diag{1, ∂2}. The only nonobservable mode is ∂2 = 0. To find the nonob-
servable dynamics let S(∂) = U2(∂)U1(∂)S(∂)V1(∂) with the unimodular
matrices

U1(∂) =

⎡

⎣
1 0 Ps
0 1 −(M2∂

2 + Ps)
0 0 1

⎤

⎦ , U2(∂) =

⎡

⎣
1 0 0
−M2
M1

1 0
0 0 1

⎤

⎦ ,

V1(∂) =
[

1 0
1 1

]
.

(8.28)

This transforms (8.27) into

S(∂)
[
δ1

δ2

]
= 0 (8.29)

where S(∂) =

⎡

⎣
M1∂

2 0
0 0
0 1

⎤

⎦ and
[
δ1

δ2

]
= V −1

1 with V1 given by (8.28). The first

row in (8.29) leads to ∂2δ1 = 0 which gives the nonobservable dynamics. As
δ1 = δ1, the trajectories of the latter nonobservable dynamics, over the solu-
tions space W = C∞(R), are δ1 = c1t + c2. For the same reasons mentioned
in the preceding paragraphe, c1 = 0, thus δ1 = c2. Together with the third
relation in (8.27) this leads to

δ1 = δ2 = const (not necessarily 0) (8.30)

and obviously to y ≡ 0: when the nonobservable mode ∂ = 0 is excited, no
difference between the angles of the machines is observed. Relation (8.30) is
again of type (8.16) which means that the lack of observability leads also to
synchrony. Notice that, as for the lack of controllability, the apparent gap
between the nonobservable dynamics and the synchrony relation (8.30) is
explained by Remark 1115.
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8.3.1.6 The Zero Mode

The investigations above revealed a somewhat dual situation. The same dou-
ble mode ∂ = 0 and the same dynamics have been found both for the uncon-
trollable and nonobservable parts of the system. This mode is now further
investigated. Let skip the noncontrollable subsystem T (M) of the system
M , i.e., the factor ∂2 in (8.24). A presentation of the remaining controllable
quotient Mc = M/T (M) of the system M is thus

S(∂)

⎡

⎣
δ1

δ2

Pm1

⎤

⎦ = 0, S(∂) =
[

M1 M2 0
M1∂

2 + Ps −Ps −1

]
. (8.31)

If the same inputs/outputs as before are now chosen for the controllable quo-
tient (8.31), the module Mc/[u, y]R of the output-decoupling zeros of Mc is

given by S̃(∂)

[
δ̃1

δ̃2

]

= 0, S̃(∂) =

⎡

⎣
M1 M2

M1∂
2 + Ps −Ps
−1 1

⎤

⎦. All the invariant fac-

tors of S̃(∂) are equal to 1, thus Mc has no output-decoupling zeros. Following
Definition 1023, ∂ = 0 is a double input-output decoupling zero of M .

The double input-output decoupling zero ∂ = 0 has a clear significance in
power systems. One of the zero mode is connected to the absence of angle
reference in the model (8.17), (8.18) (see, e.g., [65]). Indeed, δ1 and δ2 are
not independent which explains the singularity of all considered presentation
matrices. The second zero mode is the so-called frequency mode of the system
(see, e.g., [191]) and expresses a structural similarity in the response of the
machines of any power system. When a detailed model of the system is used,
the frequency mode gives the dynamics of the response of all machines of
the system at the first moments after a power imbalance of the system: the
speeds of all machines of a power system decrease with the same slope which
is the well-known gradient of the system [191]. The case of the interconnected
European power system can be seen in Fig. 8.8 which contains the responses
of some machines to a generation outage in France.

8.3.1.7 Exact Synchrony/Approximate Synchrony/Model
Reduction

The analysis above clarified some points:

• exact synchrony is related to the simultaneous lack of controllability and
observability, i.e., to the input-output decoupling-zeros.

• the lack of controllability is a ”built-in” property of the system (thus
independent of the choice of the input variables of the system).
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Fig. 8.8 European frequency gradient

• the only exact similar behavior of the machines of a power system is the
one given by the frequency gradient, i.e., by the frequency mode which is
∂ = 0 when computed using the classical model for the machines.

This provides a link between systems theory and the specific analysis widely
used by the experts in power systems. Also, these results are a basis for model
reduction techniques. It has been proved that the only exact synchrony is re-
lated to the zero mode and this is not constructive. However, the link with the
lack of controllability and observability is fundamental since it opens the way
to reduction methods based on balanced-realizations. This has been exploited
in [242], [233] [243] to provide structure-preserving reduction methodologies
for power systems.

8.3.2 Stability Analysis

A bandwidth adaptation of linear filters is sometimes needed to fulfil the
specifications of several classes of industrial applications. Such an example is
treated in [382] where a time-varying bandwidth filter of the form

P (∂)uout = uin, P (∂) = ∂2 + [2ξωn(t)−
dωn
dt

(ωn(t))−1]∂ + (ωn(t))2 (8.32)
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is used in the design of a missile autopilot. In order to cope with the require-
ments on the tracking performance and on the actuator rate limit, the control
is filtered by a block of type (8.32) which is supposed to reduce the accelera-
tion and the rate of the control in case of tracking of abrupt trajectories and,
on the contrary, to have have little influence on smooth trajectories which
can be tracked without limiting the actuator. These two requirements cannot
be achieved with a fixed-parameter filter and a well-chosen time dependance
t �→ ωn(t) in (8.32) of the bandwidth should be considered. Consider the
autonomous part

P (∂)y = 0 (8.33)

of (8.32). For 0 < ξ < 1, the solutions of (8.33) in Ed (see Theorem 837) can
be easily found to be y(t) = α1y1(t)+α2y2(t), y1,2(t) = e(−ξ±i

√
1−ξ2) ∫ ωn(t)dt

where i2 = −1 and α1, α2 ∈ C. According to the elementary equations (6.6),
to the fundamental set of solutions {y1(t), y2(t)} above corresponds the fun-
damental set of roots {γ1(t), γ2(t)} of P : γ1,2 = −ξωn(t)±iωn(t)

√
1− ξ2. As

the bandwidth variation is necessarily such that ωn(t) > 0, ∀t, the condition
of Theorem 998 is satisfied and the filter (8.32) is thus exponentially stable.
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Modeling: Choice of the Input
Variables of an LTV System

9.1 Introduction

A linear system has been defined as a module, or roughly speaking, as a set
of variables which satisfy a set of differential and algebraic equations. This
definition has a strong connection with the construction of the model of a
dynamic systems in practice. As a matter of fact, one of the most common
way of building models for dynamic systems is the so-called analytical model-
ing which consists of writing the equations of the basic principles of physics
in accordance to the nature of the system (electrical energy conservation
laws, Lagrange formalism for mechanical systems, thermodynamics heat ex-
change laws, etc.). Examples for this way of doing are the models presented in
Chapter 8.

The analytical models are thus obtained in a sort of generalized form in
which neither the control variables (the inputs) nor the measured variables
(the outputs) are distinguished among the variables of the system at this
stage of the model construction. The choice of the inputs and of the out-
puts is an important step of the modeling process which can be non trivial.
Of course, the class of variables which are good candidates to be inputs is
limited by practical considerations like the type and availability of the actua-
tors. However, theoretical considerations which must be made in a systematic
way on the model at several levels are discussed in this section. For this, the
framework in Chapter 7 is used. Let M be an LTV system, i.e., a R-module
M where R = K[∂;α, δ] and K is the Noetherian domain to which the co-
efficients of the system belong. It is assumed that M is given by a general
representation (5.1) in which the matrix of definition R(∂) is regular at in-
finity (according to Theorem and Definition 1060(4)). Consider a temporal
system Mt which has the same matrix of definition as M along with its
impulsive system M+. M+ is an S-module where S = K[[σ;α, δ]], σ = ∂−1.

The criteria needed for the choice of the inputs are discussed in Section
9.2 while a recursive form for the general algorithm is given in Section 9.3.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 515–522.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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This algorithm is applied in Section 9.4 to the case of an electrical circuit
which is a model used in power engineering for power transmission lines.

9.2 Criteria for the Choice of the Inputs

The following points should be analyzed when a control system (M,u, y)
(according to Definition 851) is designed starting from a given system M :

(i) first, the system should be stabilizable.
(ii) the minimal number of the input variables must be determined. For

the given linear system M , the set of inputs u = {u1, ..., um} should be
such that the quotient module M/[u]R is a torsion module (see Chapter
5). The inputs u are independent if, and only if the module [u]R is free of
rank m. It follows that the number of independent inputs is the rank of
the module which defines the system:

m = rank(M) (9.1)

Roughly speaking, u should be chosen of minimal size and in order to
annihilate the ”degrees of freedom” of the system M .

(iii) one may also choose a vector y of outputs such that the transfer u −→ y
is proper. As shown in Section 7.2.2, properness can be directly character-
ized in terms of the pole of the system at infinity. This characterization is
more convenient also from a computational point of view and, as a con-
sequence, is used in the following chapter to state an algorithm for the
systematic choice of the inputs.

(iv) the dynamic of the system should be also free from impulsive motions
due to the initial conditions. Indeed, this may happen with temporal sys-
tems as in the following example:

Example 1116. Let the condenser in Fig. 9.1 be short-circuited at time
t = 0 by closing the switch in the same figure. If the capacitance C is
supposed to be the unit for simplification, the equations which describe the
behavior of this circuit for t ≥ 0 are

{
x1 = 0
ẋ1 = x2 + x3

(9.2)

where x2, x3 denote the short-circuit current and the current injected by the
ideal current source S respectively, and x1 is the voltage on the condenser.
The autonomous impulsive behavior B∞,a (Definition 1076) is given by

{
x1(t) = 0
x2(t) + x3(t) = −x1(0−)δ (9.3)

where x1(0−) is the initial condition, i.e., a measure of the initial load of
the condenser and δ is the Dirac distribution. If x1(0−) �= 0, an impulsive
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Fig. 9.1 Switched electrical circuit

motion x2+x3 is generated. This is the physical interpretation of an input-
decoupling zero at infinity as defined in Section 7.4.3. It can be evaluated

starting from the matrix of definition R(∂) =
(

1 0 0
∂ −1 −1

)
of the temporal

system Mt defined by (9.2). A strongly left-coprime factorization of R(1/σ)
is

R(1/σ) = D−1(σ)R+(σ),

D(σ) =
[

1 0
0 σ

]
, R+(σ) =

[
1 0 0
1 −σ −σ

]
. (9.4)

The Smith normal form of R+(σ) exists and is
[

1 0 0
0 σ 0

]
(R(∂) is thus

regular at infinity). It follows that R+(σ) is a matrix of definition of the
module of the input-decoupling zero at infinity Mt or, in other words, of
the impulsive system M+. The input-decoupling zeros at infinity can be
investigated on the above Smith normal form from which follows that the
temporal system M+ given by 9.2 has an input-decoupling zero at infin-
ity of degree one, i.e., '(IDZ∞) = 1 (according to Definition 1091 and
Definition 1060).

Initial conditions can also excite the output-decoupling zero at infinity, if
any, in which case the resulting impulsive motions are not observable from
the chosen input u and output y.

The conditions given before Example 1116 are of a different nature: conditions
(i) and (ii) concern the finite dynamics of the system while the last two
conditions concern the dynamics at infinity. Also, from another point of view,
conditions (i) and the part of (iv) concerning the input-decoupling zero at
infinity are independent of the choice of the input u. Condition (ii) obviously
concerns the inputs u and conditions (iii) and the part of (iv) on the output-
decoupling zero at infinity depends both on u and y.

Conditions (iii) and (iv) can be merged into a single condition concerning
the system pole at infinity

(iii’) '(SP∞) = 0
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i.e., the system is required to have no pole at infinity. Notice that condition
(iii’) is independent of the choice of y and this presents a practical advantage:
at the modeling stage the designer is concerned only with the choice of the
input u. Afterwards, whatever the measured output y will be, it will lead to
proper transfer functions. This is an important advantage when analyzing
systems with many variables for which it is difficult to check both u and
y because of the increasing combinatorics. This is the case of the example
presented in Section 9.4.

9.3 General Algorithm

Consider a temporal system Mt and the LTV system M which has the
same matrix of definition as Mt. If M is stabilizable and Mt has no input-
decoupling zero at infinity, one should look for u which satisfies conditions (ii)
and (iii’) formulated in the preceding section. To obtain an efficient algorithm
for the choice of u two transformations of the above conditions are needed.
First, condition (ii) can be also formulated using the impulsive system M+.
Next, both conditions can be written in recursive forms.

Using Lemma 1093 (ii), condition (ii) can be written in an equivalent
manner

(ii’) [u+]S is free of rank m = Card(u+)
(ii”) M+/[u+]S is torsion, i.e., m = rank(M+).

To obtain an iterative form for (ii’), (ii”) and (iii’), the following notations
are considered: u+ = {u+

1 , ..., u
+
m}, the set u+

1 , ..., u
+
k (k ≤ m) is denoted by

u+k

and u+0
is the empty set: u+0

= {∅}.
Conditions (ii’) and (ii”) can be easily put in an iterative form. Indeed,

these conditions are satisfied if, and only if

rank(M+/[u+k

]S) = m− k, 0 ≤ k ≤ m. (9.5)

Condition (iii”) can be also checked iteratively from the following results:

Lemma 1117. Let M+
1 , M+

2 and M+ be S-modules such that M+
1 ⊆M+

2 ⊆
M+, M+

1 and M+
2 are free and M+

1 is a direct summand of M+
2 . Then

'(M+/M+
1 ) ≤ '(M+/M+

2 ).

Proof. T (M
+

M+
2

) ∼= T (M
+/M+

1

M+
2 /M

+
1

) ⊇ T (M+/M+
1 )

T (M+
2 /M

+
1 )

, where T (.) denotes the torsion

submodule. As M+
1 is a direct summand of M+

2 , T (M+
2 /M+

1 ) = 0 which
leads to the result.

Denote by '(M+/[u+]S) the degree of the system pole at infinity (i.e.,
'(M+/[u+]S) = '(SP∞)) and, by analogy, '(M+/[u+k

]S) the similar degree
obtained when the input u+k

is used instead u+.
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Proposition 1118. '(M+/[u+]S) = 0 if, and only if

'(M+/[u+k

]S) = 0, k = 1, ..., m. (9.6)

Proof. From Lemma 1117 with M+
1 = [u+k−1

]S and M+
2 = [u+k

]S, it follows
that '(M+/[u+k−1

]S) ≤ '(M+/[u+k

]S), k = 1, ..., m which proves the
result.

The following iterative algorithm can now be stated:

Algorithm 1119

Step 0:

• check if M is stabilizable (compute the finite input-decoupling zero). If not,
stop (the problem has no solution).

• compute the degree of the input-decoupling zero at infinity. If it is grater
than zero, stop (no solution)

• compute the number of independent inputs: m = rank(M) = rank(M+).

Step k (k ≥ 1):
It is supposed that u+k−1

has been chosen at step k − 1 such that

• rank(M+/[u+k−1
]) = m− (k − 1)

• '(M+/[u+k−1
]S) = 0.

Then, u+k

is chosen such that conditions (9.5) and (9.6) are satisfied.

Notice that using the result of Lemma 1117 the combinatorics of the al-
gorithm above is much reduced. Indeed, the input variable which does not
respect condition (9.6) at step k has never to be tested again since it will
always provide a pole of the system at infinity.

9.4 Control Model of an Electrical Circuit

The algorithm presented above is applied to the electrical circuit in Fig. 9.2.
It can be considered as a simply RLC circuit but it represents also, under
certain conditions, the so-called π-model used for high-voltage transmission
lines in voltage control and simulation of power systems (see, e.g., [191]).
Moreover, if the value of the reactance X is supposed to be continuously
adaptable by the law

X(t) = eα(t−t0), α > 0, t0 ≤ t ≤ t0 + Δ (9.7)

the same circuit provides a model for a Thyristor Controlled Switched Capac-
itor which is a FACTS often used in the power systems industry to control
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Fig. 9.2 RLC electrical circuit

the power flow on a transmission line of an electrical grid [191]. Roughly
speaking, it consists in a thyristor controlled reactance placed in series with
the electrical line on which the power flow must be controlled.

The equations describing the circuit in Fig. 9.2 are:

Cv̇1 = i1
Cv̇2 = i2
v1 = R(iA − i1) + X(t) ddt (iA − i1) + v2

iA − i1 = iB + i2

(9.8)

where X(t) is given by (9.7).
A matrix of definition of the module M defined by (9.8) is

R(∂) =

⎡

⎢
⎢
⎣

∂C1 0 −1 0 0 0
0 ∂C2 0 −1 0 0
1 −1 R + ∂X(t) 0 −(R + ∂X(t)) 0
0 0 −1 −1 1 −1

⎤

⎥
⎥
⎦ (9.9)

A strongly left-coprime factorization of R(1/σ) over S is R(1/σ) =
D−1(σ)R+(σ) where

D(σ) =

⎡

⎢
⎢
⎣

σ 0 0 0
0 σ 0 0
0 0 σ 0
0 0 0 1

⎤

⎥
⎥
⎦ ,

R+(σ) =

⎡

⎢
⎢
⎣

C1 0 −σ 0 0 0
0 C2 0 −σ 0 0
σ −σ P (σ) 0 −P (σ) 0
0 0 −1 −1 1 −1

⎤

⎥
⎥
⎦

(9.10)

and P (σ) = Rσ +X(t).
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Step 0: The matrix of definition of M+ can be transformed using elementary
row and column operations:

R+(σ) ∼

⎡

⎢
⎢
⎣

1 0 0 0 0 0
0 C1 0 −σ 0 0
0 0 C2 0 −σ 0
0 σ −σ P (σ) 0 −P (σ)

⎤

⎥
⎥
⎦ ∼

∼

⎡

⎢⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 C2 0 −σ 0
0 0 −σ P (σ) + 1

C1
σ 0 −P (σ)

⎤

⎥⎥
⎦ ∼

∼

⎡

⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 P (σ) + 1

C1
σ 1
C2

σ −P (σ)

⎤

⎥
⎥
⎦ ∼

∼

⎡

⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤

⎥
⎥
⎦

because P (σ) is a unit of S since X(t) �= 0 in (9.7). It fol-
lows that rank(R+(σ)) = 4 and m = rank(M) = rank(M+) =
rank(R+(σ)) − dim{w} = 4 − 2 = 2, where w = {v1, v2, i1, i2, iA, iB}.
So, m = 2 and two input variables have to be found in the following two steps.

Step 1 (choice of the first input variable): Consider v+
1 as a candidate

for the first control variable. A matrix of definition of the quotient module
M+/[v+

1 ]S is obtained from R+(σ) by eliminating the column corresponding

to v+
1 : R+

v+1
(σ) =

⎡

⎢⎢
⎣

0 −σ 0 0 0
C2 0 −σ 0 0
−σ P (σ) 0 −P (σ) 0
0 −1 −1 1 −1

⎤

⎥⎥
⎦. As for R+(σ), it can be shown

that R+

v+1
(σ) ∼

⎡

⎢
⎢
⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 σ 0

⎤

⎥
⎥
⎦ from which follows that '(M+/[v+

1 ]S) = 1.

As a result, condition (9.6) is violated and v+
1 cannot be a control vari-

able. R+

v+2
(σ) has the same property, hence v+

2 is also inadequate. However,

'(M+/[i+1 ]S) = 0 and rank(M+/[i+1 ]S) = 1, thus i+1 can be a control variable.

Step 2 (choice of the second input variable): From Proposition
1118 neither v+

1 nor v+
2 can be the second control variable. A candidate is i+2
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and a matrix of definition of M+/[i+1 i+2 ]S is R+

i+1 , i
+
2
(σ) ∼

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −P (σ)

⎤

⎥
⎥
⎦.

As P (σ) is a unit of S it follows that R+

i+1 , i
+
2
(σ) ∼

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦ is nonsingular

at σ = 0. In addition, M+/[i+1 , i
+
2 ]S is torsion, so that the final solution can

be u+ = {i+1 , i+2 }.
Notice that the solution is not unique; one can verify that {i+A, i

+
B} is also

a solution to the problem. As a result, the electrical circuit, considered as an
independent system or in connection with other systems, must be controlled
by currents; the voltage control is not possible.

9.5 Notes and References

The modeling problems treated in this Chapter arise naturally in the intrinsic
algebraic framework presented in Chapter 5. Indeed, in this formalism, no
distinction is made a priori among the variables which define the system M .
The definition of the input variables u and the condition that M/[u]R must
be a torsion submodule of M were first given in [115]. The extension to the
topics concerning the structure at infinity was done in [45]. The recursive
algorithm for the choice of the input variables of a control system has been
used in the analysis of electrical circuits in [234].



10

Open-Loop Control by
Model-Matching

10.1 Introduction

The model-matching problem consists in assigning the transfer matrix of a
system. Many control problems reduce to model-matching and several ap-
proaches have been developed. The model-matching can be exact when a
given transfer matrix is assigned or approximate when the design is such
that the transfer matrix of the controlled system gets a specified structure
(as is the case for decoupling control) or gets as close as possible to a refer-
ence transfer matrix. In the latter case, the distance between the two trans-
fers is expressed in terms of a chosen norm of the difference between the
two transfer matrices like, e.g., the ‖.‖∞ norm for the H∞ control. The ex-
act model-matching (EMM) consists in precisely assigning all entries of the
transfer matrix to given transfer functions. It can be done by feedforward
(pre or postcompensation) or by feedback (static or dynamic).

Both continuous- and discrete-time cases are addressed in a unified way
using directly the transfer matrix formalism introduced in Section 5.5.2. In
Section 10.2 a parametrization of the class of proper solutions is given using
the Smith-MacMillan form at infinity of a transfer matrix. In Section 10.3 it
is shown that, from an algebraic point of view, most of the EMM-type prob-
lems mentioned above can be reduced to an exact feedforward one. Related
problems like the output-disturbance decoupling and system decoupling ones
are treated in the same framework in Sections 10.4 and 10.5 respectively. In
the last two sections applications to two physical systems are discussed.

10.2 Feedforward Exact Model-Matching

10.2.1 Problem Formulation

Let K be a differential field and R = K[∂; δ] denote the ring of generalized
differential operators as introduced in Section 2.7.2. Let Q = K(∂;α, δ) be

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 523–543.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 10.1 Exact left feedforward model-matching

Fig. 10.2 Exact right feedforward model-matching

the quotient field of R. Set σ = ∂−1 and β = α−1 and let S = K[[σ;β, δ]] be
the ring of formal power series in σ (see Section 2.9.1). Let L = K((σ;β, δ))
be the quotient field of S, i.e., the field of Laurent series in σ. It is equipped
with the commutation rule (2.44) (with Z = σ, α = 1 and (.)δ = d

dt (.)).
Every element of Q can be considered as an element of L, which is of the
form

∑
i≥ν aiσ

i, ν ∈ Z, aν �= 0. A transfer matrix is a matrix with entries
in Q or, alternatively, in L (Section 5.5.2).

The feedforward exact model matching for a given plant with (proper)
transfer matrix A(∂) consists in finding a compensator with transfer matrix
G(∂) such that the series connection of the initial plant with the compensator
has a given desired transfer matrix B(∂). If a postcompensator is used as in
Fig. 10.1, the so-called left feedforward exact model-matching problem is to
be solved:

G(∂)A(∂) = B(∂). (10.1)

In case of precompensation as in Fig. 10.2, the right feedforward exact model-
matching formulation is obtained:

A(∂)G(∂) = B(∂). (10.2)

The feedforward EMM problems lead to a linear system of equations over Q
or over L if Q is embedded in L. The usual conditions for the existence of
solutions can thus be used:

Proposition 1120. Equation (10.1) (respectively equation (10.2)) has a so-
lution if, and only if

rank(A(∂)) = rank

([
A(∂)
B(∂)

])

(respectively rank(A(∂)) = rank
([
A(∂) B(∂)

])
).

(10.3)
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Fig. 10.3 Types of interconnections

10.2.2 Transmission Poles and Zeros at Infinity of
Composite Transfer Matrices

The results presented in this section are technical and will be used in the
proofs of the main results in the sequel. We are mainly interested here in
evaluating the degrees of the poles and zeros at infinity of transfer matri-
ces obtained by multiplying, appending or inverting initially given transfer
matrices.

In the more general framework of the interconnection of LTV systems the
first situation mentioned above corresponds to cancelations which may occur
between poles and zeros, i.e., to hidden modes. The system poles and the
hidden modes at infinity introduced in Section 7 as S-modules are used here
along with their degrees to conclude about the poles and zeros at infinity
of the product of two transfer matrices. For this, systems are constructed
from the input-output mappings defined by each of the transfer matrices
as follows: let

∑
G1

and
∑
G2

be the systems defined by the input-output
mappings given by the transfer matrices G1 and G2 respectively. The system∑

G2G1
of the interconnection in 10.3.a is described by the set of equations

of
∑

G1
and
∑

G2
, plus the interconnection equation y′ = u′. The transfer

function of
∑
G2G1

is obviously S = G2G1. Then, one has the following

Proposition 1121. Series interconnection: For the series interconnection in
Figure 10.3.a, '(TP∞(S)) = '(TP∞(G1))+'(TP∞(G2))−'(HM∞(

∑
G2G1

)).

Proof. From Theorem 1108 1.(i), '(SP∞(
∑
G2G1

)) = '(TP∞(S) +
'(HM∞(

∑
G2G1

). It follows that

'(TP∞(S)) = '(SP∞(ΣG2G1))− '(HM∞(ΣG2G1)) (10.4)

Next, '(SP∞(
∑

G2G1
)) can be evaluated from the degrees of the system poles

at infinity of each subsystem
∑
G1

,
∑

G2
: let Gi(∂) = D−1

i (∂)Ni(∂), Bi(∂) =[
−Di(∂) Ni(∂)

]
and

Bi(σ) = Bi(∂) |∂=σ−1= A−1
i (σ)

[
−B+

iD
(σ) B+

iN
(σ)
]
, i ∈ {1, 2}
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be left-coprime factorizations of B1 and B2 over S. B+
1D

and B+
2D

are matrices
of definition of the modules of system poles at infinity of

∑
G1

and
∑

G2

respectively. A matrix B+
12 of definition of the module of the system poles at

infinity of
∑

G2G1
can be deduced from B+

1D
and B+

2D
taking into account the

equation of interconnection of the two systems:

B+
12 =

⎡

⎣
−B+

1D
(σ) 0 0

0 −B+
2D

(σ) B+
2N

(σ)
I 0 −I

⎤

⎦ .

Using elementary row and column transformations, one obtains

B+
12 ∼

[
0 B

+
12

I 0

]
with B

+

12 =
[
B+

1D
(σ) 0

B+
2N

(σ) B+
2D

(σ)

]
. By taking the Dieudonné

determinant of the last expression of B+
12, |B+

12| = |B+

12| = |B+
1D
||B+

2D
| or,

equivalently, |σΣiν
B

+
12

i | = |σΣjν
B

+
1D

j ||σΣkν
B

+
2D

k | where ν
B+

12
i , ν

B+
1D

j and ν
B+

2D

k

denote the structural indices at infinity of matrices B+
12, B

+
1D

and B+
2D

respec-
tively. As B+

1D
and B+

2D
define the modules of system poles at infinity of

∑
G1

and
∑

G2
, it follows that '(SP∞(

∑
G2G1

)) = '(SP∞(
∑
G1

))+ '(SP∞(
∑
G2

)).
Also, as

∑
G1

and
∑
G2

are built from the input/output mappings given by
G1 and G2, their only system poles at infinity are the transmission ones and
coincide with the transmission poles at infinity of G1 and G2 respectively.
Thus '(SP∞(

∑
G1G2

)) = '(TP∞(G1)) + '(TP∞(G2)) which exploited in
(10.4) leads to the conclusion.

Proposition 1122. Parallel interconnection: Let Pb be the transfer matrix
of the interconnection in Figure 10.3.b and Pc the one of the interconnection
in Figure 10.3.c (in each case the dimensions of the transfer matrices G1

and G2 are supposed to be compliant). Then '(TP∞(Pi)) ≤ '(TP∞(G1)) +
'(TP∞(G2)) where i ∈ {b, c}.

Proof. Pb =
[
G1

G2

]
and Pc =

[
G1

... G2

]
. The result follows from the com-

putation of the Smith-MacMillan form at infinity of Pb and Pc respectively
and it is an extension of the well-known in the LTI case characterization of
the degree of the transmission pole at infinity of a transfer matrix in terms
of the lowest negative power of σ which occurs in any minor of the transfer
matrix written over L (see, e.g., [170]).

Consider first a full column rank m×r matrix G. A left inverse transfer matrix
G−L can be constructed and investigated using the Smith-MacMillan form

at infinity of G given in Section 7.2.2. Let P−1GU =
[
diag{σν1 , ..., σνr}

0

]

be a Smith-MacMillan factorization at infinity of G. G−LG = Ir leads to

G−LP
[
diag{σν1 , ..., σνr}

0

]
= U , or, if one partitions G−LP =

[
G̃1

... G̃2

]
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according to the zero bloc structure of the Smith-MacMillan form at infin-
ity of G, to G̃1 = Udiag{σ−ν1 , ..., σ−νr}. It follows that the set of the left
inverses of G is

G−L =
[
Udiag{σ−ν1 , ..., σ−νr}

... Ω
]
P−1 (10.5)

where Ω is any r × (m − r) matrix, νi are the structural indices at infinity
of G and U ∈ GLr(S) and P ∈ GLm(S) are transformations which provide
the Smith-MacMillan form at infinity of G. Parametrization (10.5) can also
be written over Q with σ = ∂−1.

Similarly, in the case where G is full row rank, the set of its right inverses
is:

G−R = U

[
diag{σ−ν1 , ..., σ−νm}P−1

Ω

]
(10.6)

Remark 1123. This approach avoids direct matrix inversions. Even the in-
version of P can be avoided: indeed, as indicated in Section 7.2.2, the Smith-
MacMillan form at infinity of G is given by the Smith normal form over S of
G (where G = σ−kG): P

′−1GU = diag{σμ1 , ..., σμr , 0, ..., 0} and thus P
′−1

is directly obtained from the elementary transformations which lead to the
Smith form of G and not by a matrix inversion. Next, from Proposition 1056
it follows that there exists an invertible matrix P such that σkP−1 = P

′−1σk

from which P−1 can be obtained from P ′−1 without any matrix inversion.

With this parametrization of the sets of the inverse matrices, relations be-
tween the degree of the transmission poles at infinity of the transfer matrix
and the degree of the transmission zeros at infinity of its inverses can be given
as a direct consequence of Proposition 1122:

Corollary 1124. Let G be a transfer matrix. Then:

• if G is full column (respectively row) rank, then '(TP∞(G−L)) ≥
'(TZ∞(G)) (respectively '(TP∞(G−R)) ≥ '(TZ∞(G)))

• if G is square, full (row or column) rank and has structural indices at infin-
ity νi, i = 1, ..., n, then the structural indices at infinity of G−L and G−R

are −νi, i = 1, ..., n and '(TP∞(G−L)) = '(TP∞(G−R)) = '(TZ∞(G)).

10.2.3 Existence of Proper Solutions

To be implementable, the solution G(∂) must be proper. Properness is char-
acterized in terms of the transmission pole at infinity as defined by Theorem
and Definition 1060. The following result is necessary to state conditions for
the existence of proper EMM solutions:

Proposition 1125. Let A(∂) ∈ Qm×r and B(∂) ∈ Ql×r be full column rank

transfer matrices. If the pole and the zero at infinity of F (∂) =
[
A(∂)
B(∂)

]
have

degree zero, then the poles at infinity of A and B have degree zero.
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Proof. Set σ = 1/∂ and let F (1/σ) =
[
A(1/σ)
B(1/σ)

]
. The Smith-MacMillan

form at infinity of A (respectively of B) is of the form σ−k
′
P ′−1AU ′

(respectively σ−k”P”−1BU”) where k′ (respectively k”) is the least common
denominator (up to similarity) of all entries of A (respectively of B) and
A(σ) = σ−k

′
A(σ) where A is a matrix with entries in S (respectively

B(σ) = σ−k”B(σ) where B is a matrix with entries in S). P ′ and U ′

(respectively P” and U”) are unimodular matrices over S which give

the Smith normal form of A (respectively B): P ′−1AU ′ =
[
Λ
0

]
with

Λ =

⎡

⎢
⎣

σν1 . . . 0
...

. . .
...

0 . . . σνr

⎤

⎥
⎦ (resp. P”−1BU” =

[
Γ
0

]
with Γ =

⎡

⎢
⎣

σμ1 . . . 0
...

. . .
...

0 . . . σμr

⎤

⎥
⎦)

(see Lemma and Definition 655). Let k = max{k′, k”}. Consider the case

k = k′ > k”. Then, the Smith-McMillan form at infinity of F is
[
Υ
0

]
with

Υ =

⎡

⎢
⎣

σα1 . . . 0
...

. . .
...

0 . . . σαr

⎤

⎥
⎦, where αi = min{νi, μi+k−k”}, 1 ≤ i ≤ r. As the pole

and the zero at infinity of F have degree zero, it follows αi = k, 1 ≤ i ≤ r.
One obtains that k = min{νi, μi + k − k”}, 1 ≤ i ≤ r from which k ≤ νi
and k” ≤ μi, 1 ≤ i ≤ r, i.e., the poles at infinity of A and B, have degree
zero. The same rationale can be made in the case k = k” > k′.

An elegant interpretation of the necessary and sufficient condition for the
feedforward EMM problem to have proper solution(s) was given in the time-
invariant case in [346] and [349] using the notion of content at infinity of a
transfer matrix G denoted by c∞(G) and generalized to the time-varying case
in Theorem and Definition 1060. The following property is the key point for
providing conditions for the existence of proper solutions of the feedforward
EMM. The formulation in the time-varying case is the same as in the invariant
one (see, e.g., [170], [346]), but the proof is slightly different.

Theorem 1126. Suppose that rank(A) = rank(F ), where F =
[
A(∂)
B(∂)

]
.

The left feedforward EMM problem has proper solutions if, and only if
c∞(A) = c∞(F ).

Proof. Let factorize F as F (∂) = F (∂)Q(∂), F (∂) =
[
A(∂)
B(∂)

]
where the pole

an the zero at infinity of F (∂) has degree zero and Q(∂), F (∂) are full rank.
Then (10.1) can be written as

G(∂)A(∂) = B(∂) (10.7)



10.2 Feedforward Exact Model-Matching 529

where A(∂) is left invertible; from (10.7) one obtains

G(∂) = B(∂)A(∂)−L (10.8)

where A(∂)−L is a left inverse of A.
By Proposition 1125, the poles at infinity of A(∂) and B(∂) have degree

zero. From (10.8), one deduces that the pole at infinity of G has degree zero
if, and only if the zero at infinity of A(∂) has degree zero, or equivalently, if,
and only if c∞(A) = 0. Now, A(∂)Q(∂) = A(∂), where A(∂) and Q(∂) are
full column rank and full row rank, respectively. Using Theorem 1063, one
obtains:

c∞(A) = c∞(A) + c∞(Q). (10.9)

As Q and F have the same structure at infinity, (10.9) yields
c∞(A) = c∞(A) + c∞(F ). As a result, G is proper if, and only if
c∞(A) = c∞(F ).

Remark 1127. Usually it is assumed that A has full column rank (see, e.g.,
[63] and [170]). Here we treat the general case; from a practical point of view,
considering that A is not full column rank means that the input variables are
not independent. The plant model can then be changed in order to reduce the
number of physical input variables, i.e., to obtain a full column rank transfer
matrix.

Obviously, the same kind of result can be established for the right feedforward
EMM problem.

10.2.4 Parametrization of the Class of Proper
Solutions

For what follows, the transfer matrices are considered over L. Consider as
before the left feedforward EMM problem (10.1) with A(σ) ∈ Lm×r, B(σ) ∈
Ll×r and A full column rank. The situation m < r is trivial since (10.1) has
in this case no solution or a unique one. The solution (if exists) is given by a
matrix inversion. The interesting case is m > r in which a class of solutions
may exist. As for the demonstration of Proposition 1125, let σk be the least
common denominator of all entries of A and let

P−1AU =
[
Λ
0

]
(10.10)

be the Smith form of A(σ) = σkA(σ) over S. One can thus write (10.1) as

G(σ)σ−kP
[
Λ
0

]
U−1 = B. From Proposition 1056(i), there exist an invertible

matrix P , such that
σ−kP = Pσ−k. (10.11)
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As a consequence, (10.1) can be further written as G(σ)Pσ−k
[
Λ
0

]
U−1 = B.

Let G = GP and consider the partition G =
[
G1 G2

]
according to Λ and the

zero block of the Smith form of A. It follows that G1σ
−kΛ = BU or finally

G1 = BUΛ−1σk.
G1 is thus fixed by A and B and G2 is free to take any value. If A and

B satisfy the condition of Theorem 1126, G1 is proper. If, moreover, G2 is
chosen to be proper, the solution of the EMM problem is proper. It follows:

Theorem 1128. The proper solutions of the left feedforward EMM problem
(10.1) with A(σ) ∈ Lm×r, m > r, rank(A) = r, B(σ) ∈ Ll×r, if exist, can
be parameterized as

G(σ) =
[
BUΛ−1σk Ω

]
P
−1

(10.12)

where k, Λ, U are such that σ−kP−1AU =
[
σ−kΛ

0

]
is the Smith-MacMillan

of A over L, P is given by (10.11) and Ω is any proper transfer matrix of
dimension l × (m− r).

A similar parametrization can be of course given for the proper solutions of
the right feedforward EMM problem.

From a computational point of view, one can notice that, despite the fact
that the expression of the solutions (10.12) contains two inverses of matrices,
no special effort is needed to provide them. Indeed, the first one is trivial

since Λ is diagonal: Λ =

⎡

⎢
⎣

σν1 · · · 0
...

. . .
...

0 · · · σνr

⎤

⎥
⎦ =⇒ Λ−1 =

⎡

⎢
⎣

σ−ν1 · · · 0
...

. . .
...

0 · · · σ−νr

⎤

⎥
⎦. Also,

P need not to be inverted since from (10.11) one obtains P−1σk = σkP
−1

so that P
−1

can be computed from P−1 which is directly obtained when
constructing the Smith form of A.

Example 1129. Consider the following continuous-time (∂ = d/dt and α =

1) transfer matrices: A(∂) =
[

∂−1

(∂ + 1)−1t

]
, B(∂) = (∂ + 2)−1t. One can

easily check that
[

1 0
−1 (t− σ)−1(1 + σ)

]
A(σ) =

[
σ
0

]
(10.13)

which gives the Smith-MacMillan form at infinity of A. It follows that

c∞(A) = 1. Similarly it can be shown that c∞

([
B
A

])
= 1. Thus, from

Theorem 1126, the left feedforward EMM problem has proper solutions.
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From (10.13) one deduces that k = 0, Λ = σ, U = I2 and P
−1

= P−1 =[
1 0
−1 (t− σ)−1(1 + σ)

]
. It follows from (10.12) that all proper solutions to

the left feedforward EMM problem are in this case

G(σ) =
[
(σ−1 + 2)tσ−1 −Ω(σ) Ω(σ)(t− σ)−1(1 + σ)

]
(10.14)

where Ω(σ) is any proper transfer function. The class of solutions can be
further written as G(σ) =[
(1 + 2σ)−1σtσ−1 −Ω(σ) Ω(σ)(t− σ)−1(1 + σ)

]
, or, using the commuta-

tion rule (2.44) (with Z = σ, α = 1 and (.)δ = d
dt (.)),

G(σ) = [(1 + 2σ)−1(t− σ)−Ω(σ) Ω(σ)(t− σ)−1(1 + σ)]. (10.15)

To check this result, let pull-back the solution (10.15) in Q: G(∂) = [(∂ +
2)−1(∂t − 1) − Ω(∂) Ω(∂)(∂t − 1)−1(1 + ∂)]. Using the commutation rule
(2.33) (with X = ∂ and (.)δ = d

dt
(.)),

G(∂) =
[
(∂ + 2)−1t∂ − Ω(∂) Ω(∂)(t∂)−1(∂ + 1)

]

and G(∂)A(∂) = (∂ + 2)−1t − Ω(∂)∂−1 + Ω(∂)(t∂)−1t = (∂ + 2)−1t. Thus,
G(∂)A(∂) = B(∂), ∀Ω(∂).

Obviously, for any Ω(∂) proper, G(∂) is proper. As an example, the par-
ticular solution obtained for Ω(∂) = 0, G(∂) =

[
(∂ + 2)−1t∂ 0

]
is proper.

10.3 Feedback Exact Model-Matching

The EMM problem occurs in many forms according to the type of regulator
used (static/dynamic), the configuration used for the implementation (feed-
back/feedforward) and the variables used for the control (state/output). The
solutions proposed in the literature are often dedicated to one of this situa-
tions but some of them are equivalent from an algebraic point of view. In this
section it is shown how some EMM problems can be reduced to the exact
feedforward one.

10.3.1 Dynamic Output Feedback EMM

Consider the situation in Figure 10.4 where the input of the controller G is
switched to y. The output feedback EMM problem is to find a proper transfer
matrix G such that the transfer matrix v �−→ y in Figure 10.4 matches exactly
a given transfer matrix B.

This problem can be written

[I − A(∂)G(∂)]−1A(∂) = B(∂) (10.16)



532 10 Open-Loop Control by Model-Matching

Fig. 10.4 Feedback EMM

and can be solved in two steps:

• first, find X(∂) (not necessarily proper) such that X(∂)B(∂) = A(∂). This
is a left feedforward EMM type problem.

• next, find G(∂) proper such that A(∂)G(∂) = I − X(∂). This is a right
feedforward EMM type problem.

Example 1130. Consider the discrete-time (∂ = z − 1, α = q, δ = q − 1
where q is the forward shift operator) transfer matrices: A(z) = (1+ z)−2tz2,
B(z) = (t+ z)−1z. As A is a single input/single output system, the solutions
of the two EMM problems are trivial. First, X(z)B(z) = A(z) =⇒ X(z) =
(1+z)−2tz(t+z). Using the commutation rule (2.33) (with X = z−1, α = q
and (.)δ = (q− 1)(.)), the solution of the first step is X(z) = (1+ z)−2[−2t+
t2+(t+t2)z+tz2]. At the second step, from A(z)G(z) = 1−X(z) one obtains
G(z) = z−2[t−1 + 2 − t + (2t−1 − 1 − t)z + (t−1 − 1)z2] which is the proper
solution to the problem.

This can be easily checked if one uses the equations of the closed-loop in
Figure 10.4
⎧
⎨

⎩

y = (1 + z)−1tz2u

u
′
= z−2[t−1 + 2− t + (2t−1 − 1− t)z + (t−1 − 1)z2]y

u = u
′
+ v

to compute the transfer function from v to y: y = [(1+ z)2−1−2t+ t2− (2−
t− t2)z + (1− t)z2]−1tz2v = [t(−2 + t + z + tz + z2)]−1tz2v or, using again
the commutation rule (2.33), y = [tz(t + z)]−1tz2v which gives the desired
transfer function B(z).

10.3.2 Dynamic State Feedback EMM

Consider now a state x feedback in Figure 10.4 along with a state represen-
tation of the strictly proper system A (as defined in Section 5.5.3):
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{
∂x(t) = Fx(t) + Γu(t)
y(t) = Hx(t) (10.17)

where F ∈ Kn×n, Γ ∈ Kn×r, H ∈ Km×n. Let B(∂) be the desired transfer
matrix. State feedback solutions are sometimes attractive so that we consider
a control law u = v + K(∂)x(t). If one consider Γ of full column rank (in
other words, independent inputs), the dynamic state feedback is equivalent to
a dynamic precompensation. More precisely, the closed-loop transfer matrix,
i.e., the transfer v �−→ y is A(∂)[Ir − G(∂)(∂In − F )−1Γ ]−1. The EMM
problem is thus to find a proper compensator with transfer matrix G(∂) such
that A(∂)[Ir − G(∂)(∂In − F )−1Γ ]−1 = B(∂). This problem can be further
solved in two steps:

• first, find X(∂) (not necessarily proper) such that A(∂)X(∂) = B(∂). This
is a right feedforward EMM type problem.

• next, find G(∂) proper such that G(∂)A(∂) = B(∂), where A = (∂In −
F )−1ΓX(∂) and B = X(∂) − Ir. This is a left feedforward EMM type
problem.

10.4 Output Disturbance Decoupling Problem

Several control problems can be treated as model-matching problems. In this
section we investigate how the output disturbance decoupling one can be
fitted into the EMM framework.

Fig. 10.5 Output disturbance decoupling

Consider the case in Figure 10.5 where the output of system is polluted
by a disturbance signal d. It is assumed that d is measurable and its model
(transfer matrix D) is known.

The output disturbance problem consist in finding a control law to cancel
the effect of d on y. If a precompensator G is chosen for this, the problem
reduces to a right feedforward EMM problem: given A(∂) and D(∂), find
G(∂) proper such that

A(∂)G(∂) = −D(∂). (10.18)
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Fig. 10.6 Two-degrees of freedom EMM

With the control law given by (10.18) the output is exactly zero. However,
the output disturbance decoupling can be integrated in a general control
problem. A two-degrees of freedom regulator can be used like in Figure 10.6
to reject the disturbance d and to achieve another control objective like, e.g.,
to assign a desired transfer matrix B from v to y.

The output y is given by

y = (D(∂) + A(∂)Gd(∂))d + A(∂)Gv(∂)v. (10.19)

To exactly cancel the effect of disturbance d on the output y one has to choose
Gd such that

A(∂)Gd(∂) = −D(∂). (10.20)

Next, to ensure the desired B transfer from v to y it is sufficient to choose
Gv such that

A(∂)Gv(∂) = B(∂). (10.21)

Obviously, to be implementable Gd and Gv should be proper. Problems
(10.20) and (10.21) are right feedforward EMM independent problems.

10.5 System Decoupling Problem

The techniques of decoupling have been extensively investigated for linear
time-invariant systems in the purpose of noninteracting control. The problem
is to find a proper compensator such that the corrected system has a diagonal
structure (purely diagonal or block diagonal). In this way, a subset of inputs
affect only a subset of outputs and the regulation problem can be decomposed
in parallel independent subproblems.

If a dynamic precompensation is chosen, from an algebraic point of view,
the decoupling problem can be reduced to a right feedforward EMM problem
if a desired decoupled transfer matrix is specified. This is in general too
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restrictive and only the structure (dimensions of the blocks) of the decoupled
transfer matrix has to be specified.

10.5.1 Necessary and Sufficient Condition for
Block-Decoupling

The necessary and sufficient condition for general block decoupling by
dynamic precompensation formulated in [158] can be also given in the
(continuous- and discrete-time) time-varying case.

Definition 1131. Let B be a m × q transfer matrix and m1, ...,mk ∈ N
such that

∑k
i=1 mi = m, mi �= 0, i = 1, ..., k. B is said (m1, ...,mk) de-

coupled if there exist positive integers q1, ..., qk such that
∑k
i=1 qi = q and

B = diag{B1, ..., Bk}, where Bi, i = 1, ..., k are mi × qi transfer matrices.

Definition 1132. A compensator G is called admissible for a given plant A
if the following rank condition is satisfied: rank(AG) = rank(A).

This assumption avoids trivial solutions to the decoupling problem, in par-
ticular G = 0.

Theorem 1133. Given an m × r transfer matrix A and mi ∈ N such that
mi �= 0, i = 1, ..., k and m =

∑k
i=1 mi, there exists an admissible compensator

G such that AG is (m1, ...,mk) decoupled if, and only if rank(A) =
∑k
i=1 qi,

where qi = rank(Ai) and Ai are the row blocks induced on A by the partition
(m1, ...,mk):

A =

⎡

⎢
⎣

A1

...
Ak

⎤

⎥
⎦
}m1

}mk.
(10.22)

Proof. The if part: Consider the Smith-MacMillan form at infinity of each
block Ai of the partition (10.22) of A: there exist matrices Pi ∈ GLmi(S)
and Ui ∈ GLr(S) such that P−1

i AiUi = diag{σν1 , ..., σνqi , 0, ..., 0}, where
νj , j = 1, ..., qi are the structural indices at infinity of Ai. It follows that

Ai = Pi

[
Ai
0

]
where Ai =

[
diag{σν1 , ..., σνqi }

... 0
]
U−1
i is full row rank.

Since rank(A) =
∑k
i=1 qi it follows that

A =

⎡

⎢
⎣

A1

...
Ak

⎤

⎥
⎦ (10.23)

is right invertible, so there exists G ∈ Lr×q, where q =
∑k
i=1 qi, such that

A G = Iq . (10.24)
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Let
G =
[
G1

... · · ·
... Gk

]
(10.25)

be the (q1, ..., qk) column partition of G. From (10.24) results

AiGj =
{
Iqi if i = j
0 if i �= j

, i, j = 1, ..., k. (10.26)

Next, A = diag{P1, ..., Pk}

⎡

⎢
⎢
⎢⎢
⎢
⎣

[
A1

0

]

...[
Ak
0

]

⎤

⎥
⎥
⎥⎥
⎥
⎦
. Using this factorization of A and

(10.26), one obtains B = AG = diag{P1, ..., Pk}diag{
[
Iq1
0

]
, ...,

[
Iqk

0

]
} =

diag{Bi}, where Bi = Pi

[
Iqi

0

]
, i = 1, ..., k. Obviously, B is a (m1, . . . ,mk)

decoupled transfer matrix. Also, since P1, . . . , Pk are invertibles, we have
rank(AG) =

∑k
i=1 qi = rank(A) which means that G is admissible.

The only if part: Suppose G is an admissible decoupling precompensator
for A, i.e., AG = diag{B1, ..., Bk}, where Bi, i = 1, ..., k are transfer
matrices with mi rows respectively. The rows of the transfer matrix A of
the plant and the columns of the transfer matrix G of the compensator

are partitioned according to the dimensions of the blocks Bi: A =

⎡

⎢
⎣

A1

...
Ak

⎤

⎥
⎦

and G =
[
G1

... . . .
... Gk

]
. Then AiGi = Bi, i = 1, ..., k. It follows that

rank(Bi) ≤ rank(Ai) = qi, i = 1, ..., k and rank(B) =
∑k
i=1 rank(Bi) ≤∑k

i=1 qi. But also rank(B) = rank(AG) = rank(A) = q, since G is
admissible. One deduces that rank(Bi) = qi, i = 1, ..., k and q =

∑k
i=1 qi.

10.5.2 Parametrization of the Solutions

The solution G provided in the proof of Theorem 1133 is not unique. We
now give the whole class of admissible compensators G which (m1, ...,mk)
decouple the given m× r transfer matrix A. For this, from A construct A as
defined by (10.23) and consider the set of right inverses of A given by (10.6)

G = A
−R

= U

[
diag{σ−μ1 , ..., σ−μq}P−1

Ω

]
(10.27)
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where μi, i = 1, ..., q, q = rank(A) = rank(A) are the structural indices at
infinity of A and Ω is any (r − q) × q transfer matrix. Consider again the
(q1, ..., qk) partition of G (10.25), where qi = rank(Ai), i = 1, ..., k and Ai
are the blocks of A induced by the (m1, ...,mk) partition (10.22). Then, any
compensator

G =
[
G1

... . . .
... Gk

]
, Gi = GiΘi, i = 1, ..., k (10.28)

where Θi is any transfer matrix with qi rows (qi = rank(Ai)), provides the
same type of decoupling as G: AG = B where

B = diag{Bi}, Bi = Pi

[
Θi
0

]
, i = 1, ..., k. (10.29)

As for the EMM problem, the Smith-MacMillan form at infinity of A provides
not only the characterization of the class of all decoupling solutions but also
a pragmatic way of computing which avoids direct matrix inversions.

10.5.3 Proper and Minimal Delay Solutions

Θi can always be chosen to obtain a proper compensator G. This can be
trivially achieved by assigning to Θi(σ) sufficiently large powers of σ. How-
ever, one can ask for the simplest structure of the decoupled system B which
allows a proper decoupling solution G. The complexity of B is measured by
the degree of its transmission zeros at infinity or, roughly speaking, in terms
of the degrees of its denominators when written over Q as shown below. This
is known as the minimum delay problem for the decoupling in the continuous
LTI case and it is now addressed in the general LTV case. Suppose that the
m×r transfer matrix A can be (m1, ..., mk) block-decoupled (m =

∑k
i=1 mi,

mi ∈ N, mi �= 0, i = 1, ..., k). Let Gi = GiΘi, i = 1, ..., k be the decoupling
solution as found in Section 10.5.2.

First, we are interested in finding necessary and sufficient conditions to
obtain proper decoupling solutions. The transfer matrices Gi’s given by
(10.28) are proper if, and only if '(TP∞(Gi) = 0, or, using Proposition
1121, if, and only if '(TP∞(Gi)) + '(TP∞(Θi)) = '(HM∞(

∑
GiΘi

)). As
B = AG = diag{Bi}, with Bi given by (10.29) in which Pi ∈ GLmi(S),
must also be proper, it follows that Θi’s are proper. Thus, the necessary and
sufficient condition for the block-decoupling compensator G to be proper is

'(TP∞(Gi)) = '(HM∞(
∑

GiΘi

)) = '(TZ∞(Θi)), i = 1, ..., k (10.30)

which means that if Gi has transmission poles at infinity, these poles must
be compensated by hidden modes at infinity introduced by Θi in

∑
GiΘi

, or,
equivalently, by the transmission zeros at infinity of Θi. If a sum of (10.30)
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is performed following i, it results: Σk
i=1'(TP∞(Gi)) = Σk

i=1'(TZ∞(Bi)) =
'(TZ∞(B)). From Proposition 1122, Σk

i=1'(TP∞(Gi)) ≥ '(TP∞(G)) and,
from Corollary 1124, '(TP∞(G)) ≥ '(TZ∞(A)) (the latter equality is satis-
fied, for instance, when Ω in (10.27) is 0). Thus, the proper decoupling com-
pensators G are such that the resulting decoupled transfer matrix B satisfies
'(TZ∞(B)) ≥ '(TZ∞(A)). Notice that if the inequality in the latter formula
is strict, the transmission zeros at infinity of Θ should compensate more than
the transmission zeros at infinity of A. Indeed, this is because supplemen-
tary transmission poles at infinity may be brought by Ω in parametrization
(10.27).

Next, we investigate the minimal delay solution which is obtained when Ω
in (10.27) does not introduce supplementary transmission poles at infinity.
This is trivially achieved with Ω = 0 and, in that case, the minimal delay
solution is provided by

Θi = U idiag{σ−ν1 , ..., σ−νp , 1, ..., 1}, i = 1, ..., k (10.31)

where P
−1

i GiU i =
[
diag{σν1 , ..., σνp , σνp+1 , ..., σνqi }

0

]
is a Smith-MacMillan

factorization at infinity of Gi with νl < 0, l = 1, ..., p and νj ≥ 0, j =

p + 1, ..., qi. Obviously, Gi = GiΘi = P i

[
diag{1, ..., 1, σνp+1 , ..., σνqi }

0

]
and

it is thus proper.

Example 1134. Consider the following time-varying transfer matrix:

A(∂) =

⎡

⎣
∂−1t 0 0 ∂−2

0 ∂−1 0 ∂−3

−∂−1 −∂−1 −∂−2 −∂−2 − ∂−3

⎤

⎦ and consider the partition m1 =

2, m2 = 1. Let A1(σ) = A1(∂) |∂=σ−1=
[

(t− σ)σ 0 0 σ2

0 σ 0 σ3

]
. The Smith-

MacMillan form at infinity of A1 is
[
diag{σ, σ}

... 0
]

and the one of A is
[
diag{σ, σ, σ2}

... 0
]

from which it follows that rank(A1) = 2, rank(A) = 3

and the condition of Theorem 1133 is fulfilled: rank(A) = rank(A1) +
rank(A2) thus the (2, 1) decoupling problem has a solution in this case. As
both A1 and A2 are full row rank, A1 = A1 and A2 = A2, so A = A is right
invertible with A−R = G given by (10.27) with Ω = 0:

G =

⎡

⎢
⎢
⎣

0 −σ−1 −σ−1

−1 σ + σ−1 − t σ − t
−σ−2 σ−1 − σ−2t σ−1 − σ−2t
σ−2 −σ−1 + σ−2t −σ−1 + σ−2t

⎤

⎥
⎥
⎦ . (10.32)
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Let G =
[
G1

... G2

]
be the partition (10.25) of G. The minimal delay so-

lution (10.31) can be computed from the following Smith-MacMillan fac-

torizations at infinity of G1 and G2: P
−1
i GiU i =

[
Λi
0

]
, i ∈ {1, 2} with

Λ1 = diag{σ−2, σ−1}, U1 =
[

1 σ − t
0 1

]
, Λ2 = σ−2, U 2 = 1 which leads to

Θ1(σ) =
[
σ2 σ2 − tσ
0 σ

]
and Θ2(σ) = σ2. The solution provided by (10.28)

is G(σ) =

⎡

⎢
⎢
⎣

0 −1 −σ
−σ2 1 σ3 − tσ2

−1 0 −t− σ
1 0 t + σ

⎤

⎥
⎥
⎦ which is proper and (2, 1)−block decoupling:

using the multiplication rule (2.44) (with Z = σ, α = 1 and (.)δ = d
dt

(.))

one could check that A(σ)G(σ) =

⎡

⎣
σ2 −σt 0
0 σ 0
0 0 σ2

⎤

⎦ = B(σ) which is proper

and (2,1) decoupled. Also, rank(AG) = 3 = rank(A), thus G is admissi-
ble. Moreover, the Smith-MacMillan form at infinity of B is diag{σ, σ2, σ2},
thus '(TZ∞(B)) = 5. Notice that this solution has less ”delay” than the one
obtained by simply dividing the columns of G (given by (10.32)), the right
inverse of A, by large enough powers of σ in order to render each entry of G
proper. Doing so, each column would be multiplied by at least σ2 which leads
to a solution B with '(TZ∞(B)) equal at least to 6. In fact, 6 is the minimal
”delay” which can be achieved for the system in this example by row-by-row
decoupling, i.e., for the (1, 1, 1) decoupling.

10.6 Case of a FACTS in a Power System

Consider again the electrical circuit in Figure 9.2. As mentioned in Section
9, this model is used to take into account the evolution of the voltages and
the currents of the electrical transmission lines for an upper control level
of the hierarchical grid control of a power system, i.e., the Electrical High
Voltage (EHV) control which is, for instance, the control of 225kV and 400kV
lines in France. When the branch reactance X is time-varying one obtains
the model of a Thyristor Controlled Switched Capacitor (TCSC) which is a
power electronics device controlled to adapt the impedance of the branch.

It has been shown in Section 9 that in order to control this model without
impulsive motions, two currents have to be chosen as inputs. Let us take
u = [iA iB ]T and y = [v1 v2]T . Let us normalize Ci, setting C1 = C2 = 1 and
assume that the value of R is negligible (R = 0). Using the equations (9.8),
one can compute the transfer matrix A(s) from u to y

A(s) =
[

D−1(s)N(s) D−1(s)
D−1(s)N (s) + s−1 D−1(s)− s−1

]
(10.33)
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where D(s) = (2+Ẋs+Xs2)s, N(s) = 1+Ẋ+Xs2 and X(t) is given by (9.7).
We wonder whether there exists a proper transfer matrix G(s) satisfying
the left feedforward EMM problem (10.1) with B(s) of the form: B(s) =[
k1s
−1 0

0 k1s
−1

]
. In other words, we try to find a feedforward compensator to

decouple the transfer u �→ y and to retrieve the usual time invariant relation
between voltage and current as in the first two equations of (9.8). Set σ = 1/s
and compute first the Smith-MacMillan form at infinity of A:

A(1/σ) =
[

D−1(1/σ)N(1/σ) D−1(1/σ)
D−1(1/σ)N(1/σ) + σ D−1(1/σ)− σ

]
(10.34)

where D(1/σ) = 2/σ+ Ẋ/σ2 +X/σ3, N(1/σ) = 1 + Ẋ/σ+X/σ2. Using the
commutation rule (2.44) (with Z = σ, α = 1 and (.)δ = d/dt(.)) one obtains

A(1/σ) = τ−1(σ)
[
γ(σ)σ −σ3

ε(σ)σ π(σ)σ

]
(10.35)

where
τ(σ) = 2α− β − (α− β)t+ (α− β)σ + 2σ2

γ(σ) = α− (α− β)t + 2(α− β)σ + 2σ2

ε(σ) = α− β − (α− β)σ + σ2

π(σ) = −2α+ β + (α − β)t− (α− β)σ − σ2

(10.36)

are units of S if α �= 0, α �= β, β �= 2α. Using the three classic elementary col-
umn and row operations defined in Section 2.10.3, one can further transform
(10.35) to finally obtain the Smith MacMillan form:

P−1(σ)A(1/σ)U(σ) = Λ (10.37)

where

P−1(σ) =
[

1 γ−1(σ)(σ)2ξ−1(σ)
0 ξ−1(σ)

] [
τ (σ) 0
−τ(σ) τ (σ)

]
,

U(σ) =
[
γ−1(σ) 0

0 ε−1(σ)

]
, Λ =

[
σ 0
0 σ

] (10.38)

and ξ(σ) = ε−1(σ)π(σ)−σγ−1(σ)σ is another unit of S. Hence c∞(A) = −2.

Similar calculations yield c∞(
[
B
A

]
) = −2. Therefore, by Theorem 1126, the

EMM problem admits proper solutions in this case. The parametrization of
the whole class of proper solutions is given by (10.10) with k = 1, P , U
and Λ given by (10.38) and Ω any proper transfer matrix with 2 rows and 2
columns.
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Fig. 10.7 Equivalent circuit of the DC motor

10.7 Case of a DC Motor

Consider a separated excitation variable flux DC motor (see, e.g., [213]) de-
scribed by the equations:

Ls
dIs

dt
+ RsIs = Vs(t),

LsIs(t) = Φ(t)
Lr

dIr(t)
dt + RrIr(t) = Vr(t)−KeΦ(t)ω(t)

J dω(t)
dt + fω(t) = KmΦ(t)Ir(t)

(10.39)

where the indices s and r denote respectively the stator and rotor variables
as follows: R the resistances, L the inductances, I the currents and V the
voltages. J is the rotor and load inertia and Φ is the flux produced by the
stator current. The equivalent circuit of the motor is given in Fig. 10.7. By
elimination of Ir from the last two equations of (10.39) one can obtain the
relation between the rotor velocity and the rotor voltage:

d2ω

dt2
+ α1(t)

dω

dt
+ α0(t)ω = β(t)Vr (10.40)

where
α0(t) = fRr

LrJ
+ KmKef

LrJ
Φ2

α1(t) = f
J
− Φ̇(t)

Φ(t)

β(t) = KmΦ(t)
JLr

.

(10.41)

To simplify, it is assumed that the variation in the stator coil voltage induces
a periodic time-varying flux given by:

Φ(t) = Φ0(1 + γsin(πt)). (10.42)
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The time-varying transfer function from Vr to ω is thus:

H(s) = [s2 + α1(t)s + α0(t)]−1β(t). (10.43)

The EMM problem for this system has been considered in [189] under the
assumption of constant flux in which case coefficients (10.41) are constant.
A desired transfer function

B(s) = (s2 + 2wνs + w2
ν)
−1 (10.44)

is assigned to the closed-loop. This problem can now be addressed considering
the time dependance (10.42) of the flux: A(σ) = [σ−2 + α1σ

−1 + α0]−1β =
[1 + σα1 − σ2α̇1 + σ2α0]−1σ2β from which results that the Smith-MacMillan
form of A over L is σ2 so that c∞(A) = −2. Similarly it can be shown that the
Smith-MacMillan form of [A B] over L is [σ2 0] so that c∞([A B]) = −2 =
c∞(A) and, from Theorem 1126, it follows that the right feedforward EMM
problem has here proper solutions. As A and B are scalar transfer functions,
the solution to the equation AG = B is unique and can be trivially obtained
by inverting A: G(s) = A−1(s)B(s) = β−1[s2 +α1s+α0](s2 + 2wrs+w2

r)−1,
which is obviously proper.

Remark 1135. The EMM topics were addressed here for the LTV systems
with coefficients defined over a differential field K. However, the techniques
used avoid matrix inversions and allow thus the extension of these results to
systems defined over domains which have matrices of definition regular at
infinity according to Theorem and Definition 1060 (4). For example, this is
the case for the DC motor presented in the section above if | γ |< 1. Indeed,
then Φ(t) > 0 and the system is defined over the ring K[∂] where K = O(R)
is the domain of the real analytic functions.

10.8 Notes and References

The model matching problem, firstly formulated in the late seventies, was
next studied for LTI systems in several forms according to the nature of
the compensator (static or dynamic compensator) and the type of the
compensation (feedback or feedforward) (see, e.g., [4], [228], [342]). Although
a lot of work has been carried out on these topics in the time-invariant case,
very few results exist in the time-varying one, maybe because of the difficulty
to characterize the input-output behavior for this kind of systems. In [271]
the Silverman’s inversion algorithm is used to solve the problem in the
continuous-time case while in [267] and [8] the solution is obtained solving
a system of first order differential equations obtained considering identical
weighting pattern matrices for the model and for the closed-loop system
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considered also in the continuous-time only. Input-output representations for
LTV system have been introduced in the late ’80 in [173], [110] and [117].
The series developments proposed in [173] and [110] has been used in [109]
and [110] to address the model matching problem for LTV systems. The
definition of transfer matrices for LTV systems over the field of fractions of
the two-sided Ore domain K[s], where K is the differential field of definition to
which the system’s coefficients are supposed to belong, allowed a more direct
and constructive (from the implementation point of view) approach for the
model matching topics in [235]. The presentation in this chapter follows this
approach.
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Closed-Loop Control by Output
Feedback Pole Placement

11.1 Introduction

The pole placement consists of tuning the natural response of a given system.
The input-output representation is convenient for engineers and thus widely
used in industrial applications. For this reason, the output feedback problem
is of particular interest. It is addressed here using the transfer matrix formal-
ism given in Section 5.5.2 and the stability characterization by the notions of
poles introduced in Chapter 6. We consider continuous-time systems (i.e., ∂
stands exclusively for d/dt) which are supposed controllable and observable.
These results allow the closed-loop control of LTV systems but also to drive
nonlinear systems around a given trajectory.

In Section 11.2 a typical LTV closed-loop system is analyzed. Its poles
are defined and used to provide conditions for internal stability. The pole
placement procedure is presented in Section 11.3 along with issues for the
implementation of the regulators. A Youla-type parameterization of the class
of all stabilizing regulators is given in Section 11.4. In Section 11.5 it is
treated the case of the well-known two-degrees of freedom control structure
while Section 11.6 is devoted to the application of these techniques to the
control of nonlinear systems around a given trajectory.

11.2 Closed-Loop Transfer Matrices and Stability

Let R be an Ore domain and F = Q (R) its division ring of fractions. Con-
sider a typical closed-loop system encountered in the output-feedback control
of linear systems as given in Figure 11.1 where (H, u, y) and (G, w, v) are
strongly observable and controllable control systems over R, whose transfer
matrices are denoted by H(∂) and G(∂).

Let ũ =
[
r
d

]
and ỹ =

[
y
v

]
. Assume that H (resp., G) has both a

left-coprime factorization (i.e., of type (i) as introduced in Section 6.6.3)

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 545–580.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Fig. 11.1 LTV multi input/multi output closed-loop

Fp×m � H(∂) = AL(∂)−1BL(∂) (resp. Fm×p � G(∂) = SL(∂)−1RL(∂)) and
a right-coprime factorization (i.e., of type (ii)) H(∂) = BR(∂)AR(∂)−1 (resp.
G(∂) = RR(∂)SR(∂)−1).

The latter factorizations are obviously related by (6.64) and by

SL(∂)RR(∂)−RL(∂)SR(∂) = 0. (11.1)

Let
Acl(∂) = AL(∂)SR(∂) + BL(∂)RR(∂) (11.2)

and
Acl(∂) = SL(∂)AR(∂) + RL(∂)BR(∂). (11.3)

Let M be the system resulting from the interconnection in Figure 11.1.

Theorem and Definition 1136. (1) The following conditions are equiva-
lent:
(i) Acl is invertible over F.
(ii) Acl is invertible over F.
(iii) (M, ũ, ỹ) is a control system.
(2) The closed-loop in Figure 11.1 is said to be well-posed if the above equiv-
alent conditions hold.

Proof. Let û and ŷ be the columns whose entries are the images of the
entries of ũ and ỹ by the Laplace functor. As easily checked, condition (ii)
is necessary and sufficient for a matrix TH,G to exist, such that ŷ = TH,Gû.
So is also condition (iii). This matrix TH,G is then the transfer matrix of
the closed-loop system, and therefore this system is a control system. (See
the proof of the theorem below for more details.)

Theorem 1137. Assume that the control system is well-posed.

(i) Then TH,G admits two bicoprime factorizations (∗, Acl, ∗, ∗) and(
∗, Acl, ∗, ∗

)
.

(ii) Therefore, the closed-loop control system is such that M/ [ũ] ∼=
cokerR (•Acl) ∼= cokerR

(
•Acl
)
.
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Proof. As easily checked, we have

TH,G(∂) =
[
Hry(∂) Hdy(∂)
Hrv(∂) Hdv(∂)

]
(11.4)

where

Hry(∂) = [Ip +H(∂)G(∂)]−1H(∂) = H(∂)[Im + G(∂)H(∂)]−1

Hdy(∂) = −[Ip +H(∂)G(∂)]−1H(∂)G(∂)
Hdv(∂) = [Im + G(∂)H(∂)]−1G(∂)
Hrv(∂) = Im − [Im + G(∂)H(∂)]−1.

(11.5)

Next,
[Im + G(∂)H(∂)]−1 =
= [Im + SL(∂)−1RL(∂)BR(∂)AR(∂)−1]−1 =
= AR(∂)[SL(∂)AR(∂) + RL(∂)BR(∂)]−1SL(∂) =
= AR(∂)A

−1

cl SL(∂),

where Acl is given by (11.3).
Also, it can be directly checked that

[Im + G(∂)H(∂)]−1 = Im − G(∂)[Ip +H(∂)G(∂)]−1H(∂)

from which follows that

[Im + G(∂)H(∂)]−1 =
=Im−RR(∂)SR(∂)−1[Ip+AL(∂)−1BL(∂)RR(∂)SR(∂)−1]−1AL(∂)−1BL(∂)=
= Im − RR(∂)Acl(∂)−1BL(∂),

where Acl(∂) is given by (11.2).
The latter deductions lead to the following expressions of the closed-loop

transfer r �→ v:

Hrv(∂) = RR(∂)Acl(∂)−1BL(∂) = Im − AR(∂)Acl(∂)−1SL(∂). (11.6)

Using similar developments, one can obtain for the other transfers of the
closed-loop:

Hdy(∂) = Ip − SR(∂)Acl(∂)−1AL(∂) = −BR(∂)Acl(∂)−1RL(∂)
Hry(∂) = SR(∂)Acl(∂)−1SL(∂) = BR(∂)Acl(∂)−1SL(∂)
Hdv(∂) = RR(∂)Acl(∂)−1AL(∂) = AR(∂)Acl(∂)−1RL(∂).

(11.7)

The expressions (11.6) and (11.7) provide the following bicoprime factoriza-
tions of (11.4):



548 11 Closed-Loop Control by Output Feedback Pole Placement

TH,G(∂) =

=
[

0 −Ip
0 0

]
+
[
SR(∂)
RR(∂)

]
Acl(∂)−1

[
BL(∂) AL(∂)

]
=

=
[

0 0
Im 0

]
+
[
BR(∂)
−AR(∂)

]
Acl(∂)−1

[
SL(∂) −RL(∂)

]
.

(11.8)

Indeed, on one hand, as RR(∂) and SR(∂) are right-coprime, it follows that

SR(∂) and Acl(∂) are right-coprime and, furthermore, that
[
SR(∂)
RR(∂)

]
and

Acl(∂) are right-coprime. On the other hand, as AL(∂) and BL(∂) are left-
coprime, it follows that Acl(∂) and

[
BL(∂) AL(∂)

]
are left-coprime. In the

same way it can be concluded that
[
BR(∂)
−AR(∂)

]
and Acl(∂) are right-coprime

and Acl(∂) and
[
SL(∂) −RL(∂)

]
are left-coprime.

(ii) is now an obvious consequence of Theorem 893.

Definition 1138. Consider that Acl(∂) or, equivalently, Acl(∂) admits a di-
rect sum decomposition (6.54) (resp. (6.52)) over an Ore field K̆. Then, the
poles (resp. quasi-poles) of the closed-loop system in Fig. 11.1 are the conju-
gacy classes of the Smith zeros of Acl(∂) which coincide with those of Acl(∂).

The result above has the same formulation as in the LTI case. However, its
significance is quite different: in the LTV case, the four transfers of the closed-
loop system do not have the same dynamic. Indeed, as Acl(∂) �= Acl(∂), the
inputs r and d do not impose the same transients on u and y. If the poles of the
closed-loop system are placed over the field K∞ defined by (6.46), Acl(∂) ∼
Acl(∂) means that the dynamics of u and y are only asymptotically similar,
i.e., for t→ +∞. This is however sufficient to conclude about stability.

Definition 1139. The closed-loop in Fig. 11.1 is said internally exponen-
tially stable if all transfers r �→ y, r �→ v, d �→ y and d �→ v are exponentially
stable.

Corollary 1140. If G(∂) is chosen such that a fundamental set of roots of
Acl(∂) (or, equivalently, of Acl(∂)) belongs to an Ore field and satisfies the
stability condition of Theorem 998, then the closed-loop system in Fig. 11.1
is internally exponentially stable.

Notice that the internal stability of the closed-loop system ensures distur-
bance rejection and tracking properties. Indeed, first, the transfer d �→ y given
by the first line in (11.7) is exponentially stable. Next, one can compute the
transfer r �→ e, where e = r− y is the tracking error : Hre(∂) = Im −Hry(∂)
which is exponentially stable since Hry(∂) is.
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11.3 Regulator Synthesis and Implementation

11.3.1 Pole Placement

The pole placement problem: For the closed-loop system in Fig. 11.1 one has
to find the compensator transfer matrix G(∂) such that the closed-loop has
a desired fundamental set of poles Λcl = {λ1, ..., λn} which belong to an Ore
field and satisfy the stability condition of Theorem 998.

Let Pcl(∂) = [∂ − λi; i = 1, ..., n]l be the minimal polynomial of Λcl (see
Section 4.3.4). Following Definition 767, Pcl(∂) is of degree n since Λcl is
P-idependent. Let Acl(∂) ∈ Rm×m and with the Smith normal form given
by Λcl, i.e., such that Acl(∂) ∼ diag{1, ..., 1, Pcl(∂)} (see Lemma and Defini-
tion 655). The problem is thus to find SR(∂) and RR(∂) which satisfy (11.2).
The latter is a diophantine equation which has solutions since AL(∂) and
BL(∂) are left-coprime and R is Euclidean. The whole class of solutions can
directly be obtained by solving the system of differential equations obtained
from (11.2). The solutions of interest for the pole placement problem are
the ones for which SR(∂) is nonsingular. Notice that, as mentioned in Sec-
tion 11.2, alternatively (11.3) can be solved (as AR(∂) and BR(∂) are right-
coprime). Compared to (11.2), when directly solved for SL(∂) and RL(∂),
(11.3) leads to a system of algebraic equations. Following the discussion in
Section 11.2, the above pole placement is different from the one in the LTI
case: the same dynamics cannot be assigned for all the closed-loop transfer
matrices by choosing G(∂)1. Only a common asymptotic behavior is imposed
in terms of the chosen poles of the closed-loop system.

Equations (11.2), (11.3), (6.64) and (11.1) lead to

Corollary 1141. Let AL(∂) ∈ Rp×p, BL(∂) ∈ Rp×m be left-coprime and
Acl(∂) ∈ Rp×p. Then there exist 7 matrices AR(∂) ∈ Rm×m, BR(∂) ∈ Rp×m,
SR(∂) ∈ Rp×p, RR(∂) ∈ Rm×p, RL(∂) ∈ Rm×p, SL(∂) ∈ Rm×m and
Acl(∂) ∼ Acl(∂) such that the following generalized diophantine identity
holds:

[
AL(∂) BL(∂)
RL(∂) −SL(∂)

] [
SR(∂) BR(∂)
RR(∂) −AR(∂)

]
=
[
Acl(∂) 0

0 Acl(∂)

]
. (11.9)

11.3.2 Canonical Forms of Transfer Functions

Factorizations (i) and (ii) of Proposition 1010 lead to the right and left
canonical forms, well-known for the LTI systems. They are important for the
practical implementation of the regulator since they provide a systematic way
to ensure causality in the input/output relations. For any entry Gij(∂) of G(∂),

1 This is the case even when constant poles are placed by Acl. Indeed, in that case,
the poles of the other closed-loop transfers are not necessarily constant.
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consider a factorization of type (i): Gij(∂) = aL(∂)−1bL(∂) where aL(∂) =
∂n+ an−1∂

n−1 + ...+ a0, bL(∂) = bn∂
n+ bn−1∂

n−1 + ...+ b0 with ai, bj ∈ K.
Using the commutation rule (2.33) with X = ∂ and (.)δ = d/dt(.) one can
write aL(∂) = ∂n+∂n−1an−1+ ...+a0 and bL(∂) = ∂nbn+∂n−1bn−1 + ...+b0
from which follows v = bnw+∂−1(bn−1w−an−1v)+...+∂−n(b0w−a0v) which
is a causal description of Gij(∂). It can be implemented with the scheme in
Fig. 11.2 which does not contain derivators.

Fig. 11.2 Left canonical form implementation

This corresponds to an observable state-space realization, called the left
canonical form of Gij(∂), which can be associated to (i):

{
ẋ = Alx + Blw
v = Clx + Dlw

Al =

⎡

⎢
⎢
⎢
⎢
⎣

−an−1 1 · · · 0
...

. . . . . .
...

−a1 · · ·
. . . 1

−a0 · · · · · · 0

⎤

⎥
⎥
⎥
⎥
⎦
, Bl =

⎡

⎢
⎣

bn−1

...
b0

⎤

⎥
⎦

Cl =
[
1 0 · · · 0

]
, Dl = bn.

(11.10)

A dual form can be obtained for a factorization (ii) of Gij(∂) = bR(∂)a−1
R (∂)

where aR(∂) = ∂n+ an−1∂
n−1 + ...+ a0, bR(∂) = bn∂

n + bn−1∂
n−1 + ...+ b0.

Then a causal description is ξ(n) = w− an−1ξ
(n−1) − ...− a0ξ which leads to
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Fig. 11.3 Right canonical form implementation

the implementation in Fig. 11.3 associated to the controllable right canonical
form {

ẋ = Arx + Brw
v = Crx + Drw

Ar =

⎡

⎢
⎢
⎢
⎢
⎣

−an−1 −an−2 · · · −a0

1
. . . . . .

...
...

. . . . . . 0
0 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎦
, Br =

⎡

⎢
⎢
⎢
⎣

1
0
...
0

⎤

⎥
⎥
⎥
⎦

Cr =
[
bn−1 − bnan−1 · · · b0 − bna0

]
, Dr = bn.

(11.11)

11.3.3 Regulator Implementation

To implement G(∂), one has to find canonical forms of each entry of G(∂)
starting from SR(∂) and RR(∂). The inversion of SR(∂), which is a difficult
task in the non commutative case, can be replaced by a diagonalization of
SR(∂): let U(∂) and V (∂) be unimodular matrices which lead to the Smith
normal form of SR(∂):

U(∂)SR(∂)V (∂) = diag{1, ..., 1, PS(∂)}.

Then, SR(∂) = U(∂)−1diag{1, ..., 1, PS(∂)}V (∂)−1 from which follows

U(∂)−1diag{1, ..., 1, PS(∂)}V (∂)−1G(∂) = RR(∂)

and finally G(∂) = V (∂)diag{1, ..., 1, PS(∂)−1}U(∂)RR(∂). The latter expres-
sion provides factorizations (not necessarily coprime) for each entry Gij(∂)
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Fig. 11.4 Output responses for Example 1142

without any matrix inversion. The latter are implemented with one of the
causal canonical forms presented in Section 11.3.2.

Example 1142. Let H(∂) =
[

(∂ − 1)−1

(∂ + 2 + t−1)−1

]
which is obviously unstable

because of its first entry. The transfer matrix can also be trivially factorized:

H(∂) = AL(∂)−1BL(∂), AL(∂) =
[
∂ − 1 0

0 ∂ + 2 + t−1

]
, BL(∂) =

[
1
1

]
.

To place the poles Λcl = {−2,−2} one can solve (11.2) to get SR(∂) =[
∂ + 6t+5

3t+1
t

3t+1−9t
3t+1

t
3t+1

]
, RR(∂) =

[
9t

3t+1∂ + 9(6t2+5t+2)
(3t+1)2

−t
3t+1∂ + 3t2+t−1

(3t+1)2

]
. Next,

U(∂)SR(∂)V (∂) = diag{1, ∂ + 5} is the Smith normal form of SR(∂) ob-
tained with

U(∂) =
[

3 + t−1 0
1 −1

]
and V (∂) =

[
0 1
1 −(3 + t−1)∂ − 6− 5t−1

]
.

Thus, G(∂) = V (∂)diag{1, (∂ + 5)−1}U(∂)RR(∂). The closed-loop responses
y to a unitary step on r shown in Fig. 11.4 are stable and compatible with
the closed-loop poles Λcl. Notice that, provided that a factorization (ii) is
available, G(∂) can be computed by solving (11.3) instead of (11.2). This has
the advantage to lead to a system of algebraic equations. A factorization (ii)
of H(∂) is of the form H(∂) = BR(∂)AR(∂)−1 where AR(∂) is a right least
common multiple of ∂−1 and ∂+2+t−1, i.e., AR(∂) = ∂2+ (1+2t)(1+3t)−t2

t(1+3t)
−

1+2t
1+3t

. It follows that BR(∂) =
[ 1+2t

1+3t
+ t

1+3t
∂

t
1+3t

− t
1+3t

∂

]
.
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11.4 Parametrization of the Class of Stabilizing
Controllers

The whole class of stabilizing controllers can be given. For that, G(∂) must
be written into another form. Let X(∂) and Y (∂) be such that

AL(∂)X(∂) + BL(∂)Y (∂) = Ip (11.12)

and let K(∂) = A−1
R (∂)[RR(∂)A−1

cl (∂)− Y (∂)] which, on the one hand, leads
to

Y (∂) + AR(∂)K(∂) = RR(∂)A−1
cl (∂). (11.13)

On the other hand,

X(∂)−BR(∂)K(∂) =
= X(∂)−BR(∂)A−1

R (∂)RR(∂)A−1
cl (∂) + BR(∂)A−1

R (∂)Y (∂) =
= X(∂)−A−1

L (∂)BL(∂)RR(∂)A−1
cl (∂) + A−1

L (∂)BL(∂)Y (∂) =
= A−1

L (∂)[AL(∂)X(∂) + BL(∂)Y (∂)−BL(∂)RR(∂)A−1
cl (∂)].

Using (11.12) and (11.2), it follows that

X(∂)−BR(∂)K(∂) =
= A−1

L (∂)[AL(∂)SR(∂) + BL(∂)RR(∂)−BL(∂)RR(∂)]A−1
cl (∂)

and thus, finally,

X(∂)−BR(∂)K(∂) = SR(∂)Acl(∂)−1. (11.14)

Moreover, X(∂) − BR(∂)K(∂) is invertible since SR(∂) is invertible. From
(11.13) and (11.14) it can be easily deduced the following right factorization
of the controller:

G(∂) = [Y (∂) + AR(∂)K(∂)][X(∂)−BR(∂)K(∂)]−1. (11.15)

Notice that AL(∂)[X(∂) − BR(∂)K(∂)] + BL(∂)[Y (∂) + AR(∂)K(∂)] =
AL(∂)X(∂) + BL(∂)Y (∂) + [BL(∂)AR(∂) − AL(∂)BR(∂)]K(∂) and, using
(11.12) and (6.64), it follows that AL(∂)[X(∂)−BR(∂)K(∂)]+BL(∂)[Y (∂)+
AR(∂)K(∂)] = Ip thus (11.15) is right-coprime.

Let now X ′(∂) and Y ′(∂) be such that

X ′(∂)AR(∂) + Y ′(∂)BR(∂) = Im. (11.16)

If one additions (11.14) left multipied by Y ′(∂) to (11.13) left multiplied by
X ′(∂) it is obtained a relation which leads to the following factorization of K:

K(∂) = [X ′(∂)RR(∂)− Y ′(∂)SR(∂)]Acl(∂)−1 + Y ′(∂)X(∂)−X ′(∂)Y (∂).
(11.17)
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To obtain a left factorization of G(∂), let K(∂) be such that

Y ′(∂) +K(∂)AL(∂) = Acl(∂)−1RL(∂). (11.18)

As before, it follows that

X ′(∂)− K(∂)BL(∂) = Acl(∂)−1SL(∂) (11.19)

which, along with (11.18) lead to the dual left factorization of the controller:

G(∂) = [X ′ −K(∂)BL(∂)]−1[Y ′ +K(∂)AL(∂)]. (11.20)

It is easy to check that factorization (11.20) is left-coprime.
As before, from (11.18) and (11.19) it can be obtained a factorization of

K(∂):

K(∂) = Acl(∂)−1[SL(∂)Y (∂)−RL(∂)X(∂)] + Y ′(∂)X(∂)−X ′(∂)Y (∂).
(11.21)

Moreover, if X ′(∂) and Y ′(∂) are chosen to satisfy

X ′(∂)Y (∂) = Y ′(∂)X(∂) (11.22)

in addition to (11.16)2, the two factorizations (11.17) and (11.20) lead to
K(∂) = K(∂). Relations (6.64), (11.12), (11.16) and (11.22) lead to a doubly
coprime factorization of the plant and of the regulator which is the following
generalized diophantine equation:

[
AL(∂) BL(∂)
Y ′(∂) −X ′(∂)

] [
X(∂) BR(∂)
Y (∂) −AR(∂)

]
=
[
Ip 0
0 Im

]
. (11.23)

The Youla-Kučera parametrization introduced for LTI systems in [367] holds
also for LTV systems:

Theorem 1143. The class of exponentially stabilizing controllers for the
closed-loop system in Fig. 11.1 is given by the right-coprime factorization
(11.15) or by the left one (11.20) where K(∂), respectively K(∂), is an expo-
nentially stable transfer matrix (according to Definition 1013).

Proof. First, (11.17) can be written also

K(∂) = {X ′(∂)RR(∂)− Y ′(∂)SR(∂)+

[Y ′(∂)X(∂)−X ′(∂)Y (∂)]Acl(∂)}Acl(∂)−1

from which follows that K(∂) is a stable transfer matrix if Acl(∂) is chosen
to provide stable closed-loop poles. The same argument is valid for the form
2 From a procedural point of view, this can be achieved by choosing first Y ′(∂) =

A−1
R (∂)Y (∂)AL(∂) and, next, X ′(∂) = [Im − Y ′(∂)BR(∂)]A−1

R (∂).
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(11.21). Next, let K(∂) be an exponentially stable transfer matrix and let
G(∂) be given by (11.15). Then,

y = AL(∂)−1BL(∂){r − [Y (∂) +AR(∂)K(∂)][X(∂)−BR(∂)K(∂)]−1y}

so

{Ip + AL(∂)−1BL(∂)[Y (∂) + AR(∂)K(∂)][X(∂)−BR(∂)K(∂)]−1}y =
= AL(∂)−1BL(∂)r.

The latter equality left multiplied on both sides by AL(∂) leads to [AL(∂) +
BL(∂)(Y (∂) + AR(∂)K(∂))(X(∂) − BR(∂)K(∂))−1] = BL(∂)r or, moreover
to [AL(∂)X(∂) + BL(∂)Y (∂) + (BL(∂)AR(∂) − AL(∂)BR(∂))K(∂)](X(∂) −
BR(∂)K(∂))−1 = BL(∂)r from which, using (11.12) and (6.64), follows that
y = [X(∂)−BR(∂)K(∂)]BL(∂)r, thus

Hry(∂) = [X(∂)−BR(∂)K(∂)]BL(∂). (11.24)

Consider now a factorization (ii) of K(∂): K(∂) = UR(∂)VR(∂)−1. The poles
of K(∂) are the roots of the polynomial VR(∂) and they respect the stability
condition of Theorem 998 because K(∂) is exponentially stable. Hry(∂) =
[X(∂)VR(∂) − BR(∂)UR(∂)]VR(∂)−1BL(∂). As VR(∂) and UR(∂) are right-
coprime, VR(∂) and X(∂)VR(∂) − BR(∂)UR(∂) are also right-coprime and
thus exist V R(∂) and S(∂) left-coprime such that

[X(∂)VR(∂)−BR(∂)UR(∂)]VR(∂)−1 = V R(∂)−1S(∂)

and V R(∂) ∼ VR(∂). It follows Hry(∂) = V R(∂)−1S(∂)BL(∂), thus exponen-
tially stable. Following Theorem 1137, the closed-loop system is internally
exponentially stable. The same conclusion can be obtained with factorization
(11.21).

11.5 Two-Input Regulators

A more general type of feedback system is obtained if the regulator in Fig.
11.1 is enriched by a second input as in Fig. 11.5. The new regulator G(∂) =[
G1(∂) G2(∂)

]
is indeed now directly driven by the reference signal r and by

the feedback y and may ensure more flexibility in the synthesis of the control
law.

11.5.1 The Two-Degrees-Of-Freedom (2DOF) Control
Structure

A two-input regulator can be implemented with the 2DOF structure in Fig.
11.6. Widely used in industrial applications, it consists of three distinct trans-
fers R(∂), S(∂) and T (∂) located on the feedback path, the direct path and,
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Fig. 11.5 General two-input regulator

respectively, on the feedforward path. The 2DOF control loop is studied here
for a single input/single output LTV plant H(∂). Let T (∂) = V −1(∂)T (∂),
S(∂) = S−1

L (∂)V (∂), R(∂) = V −1(∂)RL(∂) where V (∂) is an a priori given
polynomial with coefficients in R and having roots in the left-half com-
plex plane. Its only role is to ensure proper transfers for the three blocs.
The regulator synthesis consists in choosing left-coprime polynomials SL(∂)
and RL(∂) to place the poles of the closed-loop system at desired locations
Λcl = {λ1, ..., λn} or, equivalently, to impose Acl and to determine T (∂) to
ensure tracking properties of the overall closed-loop system as explained in
the preceding sections.

11.5.1.1 Closed-Loop Stability

Following Definition 1139, the closed-loop system in Fig. 11.6 is internally
exponentially stable if the six transfers r �→ u, r �→ y, d1 �→ u, d1 �→ y,
d2 �→ u and d2 �→ y are exponentially stable. It is now shown that the
same kind of pole placement as introduced in Section 11.3.1 ensures the
exponential stability of the closed-loop system of the 2DOF structure. The
closed-loop relation with d1 = d2 = 0 is y = H(∂)S(∂)(T (∂)r − R(∂)y),
or, moreover, [1 +H(∂)S(∂)R(∂)]y = H(∂)S(∂)T (∂)r which, using a right-
coprime factorization for the plant H(∂) = BR(∂)A−1

R (∂) leads to

[1 + BR(∂)A−1
R (∂)S−1

L (∂)RL(∂)]y = BR(∂)A−1
R (∂)S−1

L (∂)T (∂)r.

Because BR(∂) is invertible in this case, the latter relation left multiplied by
AR(∂)B−1

R (∂) leads to

[AR(∂)B−1
R (∂) + S−1

L (∂)RL(∂)]y = SL(∂)−1T (∂)r

or, equivalently, to

[SL(∂)AR(∂) +RL(∂)BR(∂)]B−1
R (∂)y = T (∂)r

from which one deduces the closed-loop transfer function

y = Hry(∂)r, Hry(∂) = BR(∂)A
−1

cl (∂)T (∂) (11.25)



11.5 Two-Input Regulators 557

Fig. 11.6 2DOF closed-loop system

where Acl(∂) is given by (11.3). The desired poles Λcl can thus be placed by
solving (11.3) where Acl(∂) is obtained from Λcl as explained in Section 11.3.

For the same closed-loop, one can now write u = S(∂)(T (∂)r−R(∂)H(∂)u)
from which follows [1 + S−1

L (∂)RL(∂)BR(∂)A−1
R (∂)]u = S−1

L (∂)T (∂)r or,
moreover,

S−1
L (∂)(SL(∂)AR(∂) +RL(∂)BR(∂))A−1

R (∂)u = S−1
L (∂)T (∂)r

thus
u = Hru(∂)r, Hru(∂) = AR(∂)A

−1
cl (∂)T (∂). (11.26)

Let now r = d2 = 0: u = d1 − S(∂)R(∂)H(∂)u from which, using the same
type of calculations, follows that

u = Hd1u(∂)d1, Hd1u(∂) = AR(∂)A
−1

cl (∂)SL(∂). (11.27)

Next, Hd1y(∂) = H(∂)Hd1u(∂) from which follows

y = Hd1y(∂)d1, Hd1y(∂) = BR(∂)A
−1
cl (∂)SL(∂). (11.28)

If r = d1 = 0, u = −S(∂)R(∂)(d2 +H(∂)u) which leads to

u = Hd2u(∂)u, Hd2u(∂) = −AR(∂)A
−1
cl (∂)RL(∂). (11.29)

Also, Hd2u(∂) = −S(∂)R(∂)Hd2y(∂) from which

Hd2y(∂) = R−1
L (∂)SL(∂)AR(∂)A

−1

cl (∂)RL(∂) =
= R−1

L (∂)[A−1
R (∂)S−1

L (∂)]−1[SL(∂)AR(∂) + RL(∂)BR(∂)]−1RL(∂) =
= R−1

L (∂)[1 + RL(∂)BR(∂)A−1
R (∂)S−1

L (∂)]RL(∂) =
= {[1 + RL(∂)BR(∂)A−1

R (∂)S−1
L (∂)]RL(∂)}−1RL(∂) =

= {RL(∂)[1 + BR(∂)A−1
R (∂)S−1

L (∂)RL(∂)]}−1RL(∂) =
= [1 +H(∂)S−1

L (∂)RL(∂)]−1.
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If one choses now a left-coprime factorization for the plant H(∂) =
A−1
L (∂)BL(∂) and a right-coprime one for the R part of the regulator (i.e.,

RR(∂) and SR(∂) right-coprime which verify (11.1), it follows

Hd2y(∂) = [1 + AL(∂)BL(∂)RR(∂)S−1
R (∂)] =

= {A−1
L (∂)[AL(∂)SR(∂) + BL(∂)RR(∂)]S−1

R (∂)}−1,

thus
y = Hd2y(∂)d2, Hd2y(∂) = SR(∂)A−1

cl (∂)AL(∂) (11.30)

where Acl(∂) is given by (11.2).

Proposition 1144. The closed-loop system in Fig. 11.6 is internally expo-
nentially stable if Acl(∂) (or, equivalently, Acl(∂)) has a fundamental set of
roots which belongs to an Ore field and satisfies the stability condition of
Theorem 998.

Proof. As AR(∂) and BR(∂) are right-coprime, Acl(∂) and BR(∂) and,
respectively, Acl(∂) and AR(∂), are also right-coprime. It follows that the
closed-loop transfers (11.25), (11.28) and, respectively, (11.26), (11.27) and
(11.29) are exponentially stable if Acl(∂) has a fundamental set of roots
which belongs to an Ore field and satisfies the stability condition of Theorem
998. Similarly, Acl(∂) and SR(∂) are right-coprime because RR(∂) and SR(∂)
are right-coprime and thus (11.30) is exponentially stable if Acl(∂) has the
same property above.

11.5.1.2 Reference Tracking

A basic system performance requirement is that the output y follows the
reference r.

Definition 1145. The exponentially stable closed-loop system in Fig. 11.6
is said to asymptotically track the reference r if, with d1(t) ≡ d2(t) ≡ 0,
limt→+∞e(t) = 0 where e(t) = y(t)− r(t) is the tracking error.

From (11.25) one can easily deduce the transfer function of the tracking
error: e = Hre(∂)r, Hre(∂) = BR(∂)A

−1
cl (∂)T (∂) − 1. As Acl(∂) and BR(∂)

are right-coprime (as shown in the preceding paragraph), there exist Ãcl(∂)
and B̃R(∂) left-coprime such that

Ãcl(∂)BR(∂) = B̃R(∂)Acl(∂). (11.31)

Thus, Hre(∂) = Ã−1
cl (∂)P (∂) where P (∂) = B̃R(∂)T (∂)− Ãcl(∂).

The most current class of reference signals is the constant ones, i.e., the ref-
erence set-points: r = const. Obviously, a sufficient condition for asymptotic
tracking of a constant reference is P (0) = 0 or, equivalently,

Ãcl(0) = (B̃RT )(0). (11.32)
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Proposition 1146. A constant reference r is asymptotically tracked if con-
dition (11.32) is satisfied.

In practice, once Acl(∂) (or, equivalently, Acl(∂)) is chosen and consequently
SL(∂) and RL(∂) computed, the feedforward term T (∂) is determined such
that (11.32) is satisfied. Thus, the property of asymptotic tracking can be
ensured independent from the pole placement of the closed-loop.

When the feedforward term is not used in the 2DOF structure, i.e., when
T (∂) = 1, asymptotic tracking of constant references can still be ensured if
the poles of the closed-loop are placed such that

Ãcl(0) = B̃R(0). (11.33)

Remark 1147. The left-coprime factorisation used to deduce (11.31) is not

unique. Thus, a different left-coprime pair ˜̃Acl(∂) and ˜̃BR(∂) might satisfy
˜̃
Acl(∂)BR(∂) = ˜̃BR(∂)Acl(∂). However, Ãcl(0)/B̃R(0) = ˜̃Acl(0)/ ˜̃BR(0) thus
condition (11.33) as well as (11.32) are consistent.

11.5.1.3 Disturbance Rejection

One usual additional requirement of system performance is that the output
y tracks the reference r even in the presence of disturbances.

Definition 1148. The exponentially stable closed-loop in Fig. 11.6 with d1 �=
0 and d2(t) ≡ 0 (resp. d2 �= 0 and d1(t) ≡ 0) is said to asymptotically reject
disturbance d1 (resp. d2) if limt→+∞e(t) = 0, where e(t) = y(t)− r(t) is the
tracking error.

As Hd1y(∂) = BR(∂)A
−1
cl (∂)SL(∂) = Ã−1

cl (∂)B̃R(∂)SL(∂), where Ã−1
cl (∂) and

B̃R(∂) satisfy (11.31), the same arguments as in the preceding paragraph can
be used. If, moreover, one uses the evaluation of a product of polynomials
formula of Lemma 758, we have

Proposition 1149. The exponentially stable closed-loop in Fig. 11.6 asymp-
totically rejects constant input disturbances d1 = const if

SL(0) = 0 (i.e., s0 = 0 where SL(∂) = sn∂
n + ... + s1∂ + s0)

or

B̃R(SL(0)0) = 0 (if SL(0) �= 0).
(11.34)

Notice that the situation is different from the LTI case where condition
SL(0) = 0, which means that the controller in the direct chain of the closed-
loop must have an integral effect, is necessary and sufficient for asymptotic
input disturbance rejection. In the LTV case, the same condition is only a
sufficient condition.
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Consider now the case of the output disturbance d2. Using dual factor-
izations for the plant and the regulator, the transfer function from d2 to
y (11.30) can be written Hd2y(∂) = Â−1

cl (∂)ŜR(∂)AL(∂) where Âcl(∂) and
ŜR(∂) are left-coprime such that Âcl(∂)SR(∂) = ŜR(∂)Acl(∂). Thus, we have
the following result

Proposition 1150. The exponentially stable closed-loop in Fig. 11.6 asymp-
totically rejects constant output disturbances d2 = const if

AL(0) = 0 (i.e., a0 = 0 where AL(∂) = an∂
n + ... + a1∂ + a0)

or

ŜR(AL(0)0) = 0 (if AL(0) �= 0).
(11.35)

As mentioned in Remark 1147 for asymptotic tracking, conditions (11.34)

and (11.35) are also coherent. Indeed, if an equivalent factorization ˜̃Acl(∂)

and ˜̃BR(∂) (respectively ̂̂Acl(∂) and ˜̃SR(∂)) is used, ˜̃BR(∂) and B̃R(∂) (re-

spectively ˜̃SR(∂) and S̃R(∂)) have the same roots since they differ by a mul-
tiplicative constant (unimodular factor).

11.5.2 Application to the Control of a Variable Flux
DC Motor

The separated excitation variable flux DC motor presented in Section 10.7
can now be controlled in closed-loop. For that, the LTV transfer function
H(∂) from the rotor voltage Vr to the speed ω of the motor given by
(10.43) is considered. If the variation in the stator coil voltage induces
a periodic time-varying flux (10.42) with Φ0 = 2, γ = 0.5, k = 4, the
open-loop response of ω to a unitary step on Vr is oscillatory as shown in
solid-line in Fig. 11.7. This dynamic can be changed if the constant poles
Λcl = {−1,−1,−1,−1} are placed. For that, a right-coprime factorization is
used for H(∂) = BR(∂)AR(∂)−1 with AR(∂) = β−1∂2 + β−1α1∂ + β−1α0

and BR(∂) = 1. Consider (11.3) with Acl(∂) = (∂ + 1)4. Notice that in
this case the asymptotic tracking condition (11.32) is satisfied because
Acl(∂) = Acl(∂) = Ãcl(∂) = (∂ + 1)4 and B̃R(∂) = BR(∂) = 1 and
both have free terms equal to 1. Thus, there is no need for a feedforward
term and it is taken T (∂) = 1. An integral type regulator is demanded:
SL(∂) = s2(t)∂2 + s1(t)∂, RL(∂) = r2(t)∂2 + r1(t)∂ + r0(t). Thus condition
(11.34) for input disturbance rejection is satisfied. Equation (11.3) lead to a
system of 5 algebraic equations. A set of solutions is

s2(t) = KmΦ(t)
JLr

s1(t) = Km

J2Lr
[−Φ(t)f + 3JΦ̇+ 4JΦ(t)]
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Fig. 11.7 Speed responses for the DC motor

r2(t) = −1
J2LrΦ

(−Lrf2Φ+3LfJ dΦdt +4LFJΦ−8LJ2 dΦ
dt +fRJΦ+KefJΦ

3−
3LJ2 d2Φ

dt2 − 6LJ2Φ)

r1(t) = −1
J2LrΦ2 (−Φ2f2R+f dΦ

dt
RΦJ+4fRJΦ2−Φ4Kef

2 +5fKeJ
dΦ
dt
Φ3)+

4KefJΦ
4 + Lf2 dΦ

dt Φ − 3fLJ(dΦdt )
2 − 4LΦfJ + 3 d

2Φ
dt2

dΦ
dt J

2L − 4LΦd
2Φ
dt2 J

2 +
8L(dΦdt )

2J2 − Φd
3Φ
dt3 J

2L− 4Φ2J2L

r0(t) = 1
J2LrΦ2 (−f2R dΦ

dt Φ + fRJ(dΦdt )
2 + 4RfJ dΦdt Φ + Kef

2 dΦ
dt Φ

3 −
3fKeJ(dΦ

dt
)2Φ2 − 4fKe

dΦ
dt
Φ3 + fRJΦd

2Φ
dt2
− fJKeΦ

3 d2Φ
dt2

+ J2LΦ2).

Transfer matrices S(∂) = SL(∂)−1V (∂) and R(∂) = V (∂)−1RL(∂) are
implemented with one of the canonical forms presented in Section 11.3.2. The
dotted line in Fig. 11.7 gives the speed response to a unitary step input on
r, the rotor voltage reference, obtained with the loop closed by the LTV reg-
ulator above. It can be seen that the response is aperiodic and the dynamic
corresponds to the multiple pole ∂ = −1 placed by output feedback. The
steady-state error is zero. At time t = 20sec, an input step disturbance has
been simulated (d1 in Fig. 11.6). It can be seen that this disturbance is also
fully rejected in steady-state. This is no longer the case with a step output
disturbance (d2 in Fig. 11.6) simulated at time t = 40sec. Indeed, condition
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S(0) = 0 is not sufficient for asymptotic output disturbance rejection as in the
LTI case. As a matter of fact, the above regulator does not satisfy condition
(11.35).

11.6 Application to the Control of Nonlinear Systems

Nonlinear systems can be approximated by LTV systems. Thus, the LTV
approach developed here allows us to control nonlinear systems without going
into a purely nonlinear control formalism.

11.6.1 Differential Field Extensions

Let K be a differential field and L/K a differential field extension. As for the
non-differential case, for an element ξ ∈ L two cases are possible:

• either ξ is K-differentially algebraic if it satisfies an algebraic differential
equation P (ξ, ξ̇, ..., ξ(n)) = 0 where P is a polynomial with coefficients in K
and with indeterminates ξ and its n first derivatives. The extension L/K
is said to be differentially algebraic if any element of L is K-differentially
algebraic.

• either ξ is K-differentially transcendental if it is not K-differentially alge-
braic, i.e., if it does not satisfy any algebraic differential equation.

A set {ξi, i ∈ I} of elements in L is said to be K-differentially algebraically
dependent if the set {ξ(νi)

i , i ∈ I, νi = 0, 1, 2, ...} of derivatives of any order
is K-algebraically dependent.

A set which is not K-differentially algebraically dependent is called K-
differentially algebraically independent. A K-differentially algebraically inde-
pendent set which is maximal with respect to inclusion is called a differential
transcendence basis of L/K.

Two such bases have the same cardinality which is the differential tran-
scendence degree of L/K, denoted by deg.tr.diffKL. Obviously, L/K is a
differential algebraic extension if, and only if deg.tr.diff(L/K) = 0.

Let z = {zi ∈ L), i ∈ I} be a set of elements of L. K < z > denotes the
differential field generated by K and the set z, i.e., the smallest differential
subfield of L which contains K and z. The set z is a set of generators of
K < z > and, if I is finite, K < z > is said finitely generated.

Among all possible choices of sets ξ = {ξ1, ..., ξm} of m K-differentially
algebraically independent elements of L where m = deg.tr.diffKL, take one
such that deg.tr.diffK<ξ>L < ξ > is maximum, say δ. The integer δ is called
the defect of L/K.
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Fig. 11.8 Robot arm

11.6.2 Nonlinear Systems

11.6.2.1 Nonlinear Systems as Field Extensions

In the Fliess’s algebraic approach ([114], [119] and related references) a non-
linear system is defined as a finite set of variables related by algebraic dif-
ferential equations. The following intrinsic characterization was given using
field extensions:

Definition 1151. A nonlinear system Σ over a differential ground field K
is a finitely generated extension L/K.

Example 1152. Consider the robot arm in Fig. 11.8 which pivots in the
vertical plan. Its movement is described by the nonlinear equation

Jθ̈(t) + mglsinθ(t) = u(t) (11.36)

where θ is the angular position, J , m and l are constant parameters of the
robot (respectively the inertia, the mass and the length of the arm) which
belong to the field R and u is the torque provided by the motor which drives
the arm. With the change of variable x = tg(θ/2), i.e., sinθ = 2x

1+x2 , θ̇ = 2ẋ
1+x2

and θ̈ = 2(1+x2)−2ẋ2ẍ
(1+x2)2 , (11.36) is replaced by

2J
2(1 + x2)− 2ẋ2ẍ

(1 + x2)2
+ mgl

2x
1 + x2

= u (11.37)

which defines a differential extension of the field R generated by u and x.

Let u = {u1, ..., um} be a finite set of differential quantities, i.e., of variables
of the system Σ.

Definition 1153. A dynamic nonlinear system is a finitely generated differ-
ential algebraic extension L/K < u >.
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Notice that if u is a differential transcendence basis of L/K, then L/K < u >
is a differential algebraic extension. An input of the system Σ is thus a vector
u such that deg.tr.diffK<u>L = 0. An output of the system Σ is a finite set
y = {y1, ..., yp} of elements of L. A system Σ for which an input u and an
output y have been defined form an nonlinear control system (Σ, u, y).

11.6.2.2 State-Representations of Nonlinear Systems

Definition 1151 is intrinsic in the sense that it makes no a distinction among
the variables of definition of the system (neither state, nor input variables).
However, a state-space representation can be obtained for a nonlinear con-
trol system (Σ, u, y) as follows: let x = {x1, ..., xn} be a (non differential)
transcendence basis of L/K < u >. Thus, every element w of L is K < u >-
algebraic dependent on the components of x, i.e., satisfies a polynomial equa-
tion P (w, x, u, u̇, ..., u(ν)) = 0. In particular, the components of x and y verify

{
Fi(ẋi, x, u, u̇, ..., u(αi)) = 0, i = 1, ..., n
Hj(ẏj , x, u, u̇, ..., u(βj)) = 0, j = 1, ..., p

(11.38)

where Fi and Hj are polynomials with coefficients in K. The form (11.38) is
called a generalized state representation of the nonlinear system Σ. The set x
is a (minimal, as n is the degree of transcendence of L/K < u >) generalized
state and xi, i = 1, ..., n are the generalized state variables of Σ.

Under the hypotheses of the theorem of implicit functions, the following
explicit local form can be obtained from (11.38):

{
ẋi = fi(x, u, ..., u(αi)), i = 1, ..., n
yj = hj(x, u, ..., u(βj)), j = 1, ..., p.

(11.39)

A state representation (11.39) with αi = 0 is called a Kalman state rep-
resentation and contains thus derivatives of the inputs only for the output
equations {

ẋi = fi(x, u), i = 1, ..., n
yj = hj(x, u, ..., u(βj)), j = 1, ..., p.

(11.40)

A nonlinear analogue of the notion of properness of transfer matrices of linear
systems introduced by Definition 1065 is obtained when βj = 0 in (11.40).
If, moreover, K is not a field of constants, (11.40) reduces to the so-called
classical nonlinear state representation, used by most of the nonlinear analysis
and control approaches. The standard notation is

{
ẋ = f(t, x, u), t ≥ t0
y = g(t, x, u). (11.41)



11.6 Application to the Control of Nonlinear Systems 565

Conversely, if the coefficients of the set of the differential equations which
define the nonlinear system Σ are functions which satisfy algebraic differential
equations, it is possible to transform the equations of Σ into a polynomial
form (11.38) as shown for Example 1152. For systems which coefficients do
not satisfy condition above, an intrinsic definition of Σ was given in [122] and
related references in a geometric differential approach which uses objects of
type (11.41).

11.6.3 Linearization

11.6.3.1 Kähler Differential

The Kähler differential, denoted by dL/K, provides a connection between the
nonlinear and linear algebraic structures used to define systems. It associates
to a differential extension L/K a left L[ ddt ]-module ΩL/K. More precisely, the
Kähler differential is a K-linear application dK/k : L/K → ΩL/K which has
the following properties [169]:

∀x, y ∈ L, dL/K(x + y) = dL/Kx + dL/Ky
∀x, y ∈ L, dL/K(xy) = (dL/Kx)y + xdL/Ky
∀x ∈ L, dL/Kẋ = d

dt(dL/Kx)
∀a ∈ K, dL/Ka = 0.

(11.42)

Definition 1154. Let Σ be the nonlinear system defined by the differential
field extension L/K. The generic tangent linear system ΣT associated with
the nonlinear system Σ is the K[∂]-module ΩL/K spanned by the Kähler dif-
ferential of the elements of L. To a dynamics L/K < u > it is associated the
generic tangent linear dynamics ΩL/K with input dL/Ku and for the nonlin-
ear control system (Σ, u, y), the output of the generic tangent input-output
system is dL/Ky.

Example 1155. Consider the nonlinear system given by the variables x and
u related by ẋ+x2 = u. Using the properties of the Kähler differential (11.42),
the generic linear tangent of this system is

d

dt
(dL/Kx) + 2x(t)dL/Kx = dL/Ku. (11.43)

11.6.3.2 Linearization around a Given Trajectory

The generic linear tangent system ΣT can be parameterized if one considers
the trajectories of Σ, i.e., time dependence expressions for the variables of
Σ which satisfy the equations of definition of Σ. For Example 1155, one
trajectory T ∗ is u∗(t) = 0, x∗(t) = t−1 since, obviously, x∗(t) = t−1 verifies
ẋ∗(t) + (x(t))2 = 0. Thus, x(t) = x∗(t) in (11.43) leads to
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ḋx + 2x∗(t)dx = du ⇔ ḋx − t−1dx = du (11.44)

which is the linear tangent of Σ around trajectory T ∗, denoted by ΣT∗ .
The tangent systems ΣT∗ can also be achieved using the classical (Fréchet)

differential. If Σ is given by a state representation (11.41), a trajectory T ∗

of Σ is T ∗ = (x∗(t), u∗(t), y∗(t)) such that
{
ẋ∗(t) = f(t, x∗(t), u∗(t)), t ≥ t0
y∗(t) = g(t, x∗(t), u∗(t)). (11.45)

Let du(t) be a fixed input and note by x̂(t) = x∗(t)+dx(t) the state trajectory
in response to û(t) = u∗(t)+du(t). A first order development of f and g lead
to
{ ˙̂x(t) = f(t, x∗(t), u∗(t)) + ∂f

∂x (t, x∗(t), u∗(t))dx(t) + ∂f
∂u(t, x∗(t), u∗(t))du(t)

ŷ(t) = g(t, x∗(t), u∗(t)) + ∂g
∂x(t, x∗(t), u∗(t))dx(t) + ∂g

∂u (t, x∗(t), u∗(t))du(t)
(11.46)

where ŷ(t) = y∗(t) + dy(t) is the output of Σ in response to û(t) = u∗(t) +
du(t). Using (11.45) along with the notations

{
A(t) = ∂f

∂x
(t, x∗(t), u∗(t)), B(t) = ∂f

∂u
(t, x∗(t), u∗(t))

C(t) = ∂g
∂x

(t, x∗(t), u∗(t)), D(t) = ∂g
∂u

(t, x∗(t), u∗(t)),
(11.47)

(11.46) leads to the following LTV state representation of ΣT∗ :
{
ḋx = A(t)dx + B(t)du
dy = C(t)dx + D(t)du.

(11.48)

Clearly, (11.46) is an approximation of Σ valid in the vicinity of trajectory
T ∗, i.e., the band around the trajectory in Fig. 11.9. For Example 1155,
A(t) = −2x∗(t), B(t) = 1 and the resulting state form of the linearization
around trajectory (x∗(t) = t−1, u∗(t) = 0) obviously corresponds to (11.44).

If f and g of (11.41) are analytic (i.e., f, g ∈ O(R)), then the poles of
the LTV system (11.48) can be placed as shown in Section 11.3. Also, the
entries of A(t), B(t), C(t), D(t) in (11.48) belong also to O(R) and they
can be embedded in the field of meromorphic functions M(R). A regulator
can be synthesized as shown in Section 11.3 to place the poles of the LTV
closed-loop system at exponentially stable locations over an Ore field. As a
consequence, the resulting control du is also analytic and, from Lemma 974
it follows that dx and dy of the aforementioned LTV closed-loop are also
analytic. In Section 11.6.6 it is shown that this stabilizing LTV controller is
suitable for the control of the initial nonlinear system Σ.

There exists an important particular case of the linearization above:
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Fig. 11.9 Linearization around a given trajectory/operation point

11.6.3.3 Linearization around an Equilibrium Point

Trajectory (11.45) reduces to an equilibrium point when f(t, xe, ue) = 0,
∀t ≥ t0 and thus x∗(t) = xe = const. and x∗(t) = ue = const.. When Σ is
time-invariant, i.e., given by

{
ẋ = f(x, u)
y = g(x, u) (11.49)

instead of (11.41). Its tangent linear approximation around the equilibrium
point (xe, ye) is the following LTI system

{
ḋx = Adx + Bdu
dy = Cdx + Ddu

(11.50)

where dx = x̂ − xe, du = û − ue, dy = ŷ − ye (ye = g(xe, ue)) and A, B, C
and D are matrices with entries in K which is now a field of constants.

The linearization around an equilibrium point has obviously the advan-
tage to lead to an LTI system with more control facilities. However, the LTV
approximation (11.48) can be controlled using the results of the Section 11.3.
Before this, a special class of nonlinear systems, called flat systems, is inves-
tigated especially due to the fact that trajectories can be easily generated for
this class of systems.

11.6.4 Trajectory Planning

11.6.4.1 Flat Systems

Definition 1156. A nonlinear system Σ is called differentially flat or simply
flat if there exists a vector of variables z(t) such that:
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• the components of z are differentially independent, i.e., not related by any
differential equation.

• the components of z are differential functions of the system definition vari-
ables and a finite number of their derivatives.

• any system variable is a differential function of z, i.e., is a function of the
components of z and a finite number of their derivatives.

If Σ is given by a state representation of the form (11.49), then it is flat if
there exists

z(t) = h(x(t), u(t), u̇(t), ..., u(δ)(t)) (11.51)

with components differentially independent and two functions E(.), F (.) such
that {

x(t) = E(z(t), ż(t), ..., z(α)(t))
u(t) = F (z(t), ż(t), ..., z(β)(t)).

(11.52)

z is called the flat output of Σ. (11.52) shows that a flat system can be
inverted (from the flat output z towards the input u) without integrating
any equation.

The system of Example 1152 is flat with the flat output y = θ (respec-
tively y = x). Indeed, u = Jÿ −mglsin(y) (respectively u = 2J (1+x2)ẍ−ẋ2

(1+x2)2 +
2mgl x

1+x2 ).

11.6.4.2 Computation of x∗(t), u∗(t)

In motion planning of nonlinear systems it is of interest to obtain a whole
trajectory (x∗(t), u∗(t), y∗(t)) compliant with a desired output y∗(t) = yd(t).
This provides in fact an open-loop control: given an output tracking objective
yd(t), t ∈ [t0 tf ], under the hypothesis of perfect model and no disturbances,
it is sufficient to excite the system with the input u∗(t) on the time interval
[t0 tf ] to obtain as response of the system the desired output yd(t). Of course,
the above hypothesis of perfect model is not realistic and, for a practical
implementation, a closed-loop control should be provided. However, as shown
in the next section, to synthesize such a control, it is important to know not
only the desired output, but also state and input trajectory x∗(t), u∗(t) of
the system, compliant with yd(t). This problem, called trajectory planning,
is investigated in three distinct situations:

• Σ is flat and the trajectory is to be planned on the flat output: the trajec-
tory planning problem can in this case be trivially solved since x∗(t) and
u∗(t) are given by (11.52) with z(t) = y(t) = yd(t) = y∗(t).

• Σ is flat but y(t) �= z(t): z∗(t) can be constructed from y∗(t) following the
steps:
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1. compute the transient points from y∗(t) and its derivatives

y∗(ti) = yi, i = 1, ..., N − 1
y∗(j)(ti) = yij , j = 1, ...,M.

(11.53)

2. from y = φ(z, ż, ..., z(q)) compute y(j) = φj(z, ż, ..., z(q+j)), j = 1, ...,M.

3. solve the system (11.53) for z∗(ti) and z∗(j)(ti).
4. (linearly) interpolate z∗(t) between the points ti.
5. compute the error e(t) = y∗(t) − φ(z∗, ż∗, ..., z∗(q)). If e satisfies a tol-

erance criterium, then z∗(t) is declared compliant with y∗(t) and it is
used to generate x∗(t) and u∗(t) by (11.52) with z(t) = z∗(t). If not,
supplementary points ti are inserted at step 1 and the procedure is run
again.

• Σ is not flat: the problem may not always have a solution. More precisely,
one has to invert the general control system (Σ, u, y).

Definition 1157. Consider the state representation (11.49) of Σ with u ∈
Rm, y ∈ Rp, x ∈ Rn. Let U denote the set of analytic applications t �→ u(t)
from R to Rm and Y the set of analytic applications t �→ y(t) from R

to Rp. For a given initial condition x0 of the state equation of (11.49),
let y(t) = Hx0(u(t)) be the solution of (11.49) with entry u ∈ U and
initial condition x0. Then, Σ is said left (respectively right) invertible if
application Hx0 is injective (respectively surjective).

Necessary and sufficient conditions for invertibility have been provided in
[114] in the algebraic framework adopted here using the differential output
rank of the system.

Definition 1158. The differential output rank, denoted by ρ, of Σ with
respect to the output y is the differential transcendence degree of the differ-
ential field extension generated by this output: ρ = deg.tr.diff(K < y >
/K).

Proposition 1159. Σ is left (respectively right) invertible if, and only if
ρ = m (respectively ρ = p).

Remark 1160. In the case of linear systems, the differential output rank
is the rank of the module generated by y: ρ = rank([y]R). The following
are equivalent:

- the linear control system Γ is left (respectively right) invertible.
- the transfer matrix of Γ is left (respectively right) invertible.
- ρ = m (respectively ρ = p) where m is the number of inputs (respec-

tively p is the number of outputs) of Γ .

When Σ is left invertible, the solution is provided by the so-called struc-
ture algorithm given firstly in [328] for linear systems and extended in
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[160] and [218] to the nonlinear ones. The output of this algorithm is the
inverse system with input y, output u and state x. To compute x∗(t), u∗(t)
compliant with y∗(t) one has to integrate the latter system.

11.6.5 Flatness-Based Trajectory Tracking

11.6.5.1 System Differential Equivalence

Definition 1161. Two nonlinear systems L/K and L/K are said differen-
tially equivalent or equivalent by endogenous feedback if any element of L
(respectively L) is K-differentially algebraic over L (respectively L). Two dy-
namics L/K < u > and L/K < u > are differentially equivalent if the
corresponding systems are so.

System L/K can be created from system L/K by transforming the original
(endogenous) variables of the latter system without creation of new (exoge-
nous) variables. This transformation is a particular type of dynamic feedback.
If a state representation of type (11.49) is used both for the system L/K and
for its feedback, the latter can be written

{
v̇ = a(x, v, w)
u = k(x, v, w) (11.54)

which leads to the closed-loop system
⎧
⎨

⎩

ẋ = f(x, k(x, v, w))
v̇ = a(x, v, w)
y = g(x, v, w)

(11.55)

where w is the new input. The feedback (11.54) is thus endogenous if (11.55)
and the open-loop system L/K are differentially equivalent. In this case,
the state variable v is endogenous to the initial system L/K. Obviously,
differentially equivalent systems does not have the same state dimension but
they have the same number of independent inputs. Also, they have the same
generic tangent system: ΩL/K ∼ ΩL/K (see [121] for a complete proof).

11.6.5.2 Connections with Linear Systems

From Definition 1156 immediately follows

Proposition 1162. A nonlinear system L/K if differentially flat if, and only
if its defect is zero.

Notice also that the generic tangent linear system of a nonlinear flat system
Σ is controllable. Indeed, if K < y > /K is differentially transcendental, the
module ΩK < y > /K spanned by dK<y>/Ky1, ..., dK<y>/Kyp is necessarily
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free. Flatness may be thus viewed as a nonlinear extension of the notion of
linear controllability. Indeed, consider the case of a linear system Γ and let
Γ = T (Γ )⊕ Φ be a decomposition (3.61). A basis of Φ plays the role of the
flat output when Γ is free. When T (Γ ) �= 0, the differential field extension
T /K generated by T (Γ ) is differentially algebraic and its (non-differential)
transcendence degree is equal to the dimension of T (Γ ) as K-vector space.
It follows that Γ is flat if, and only if it is controllable.

Indeed, consider a controllable linear system Γ . Suppose for the moment
that it has only one input and consider its right canonical form (11.11). The
loop consisting of Γ fed back by the control

u = an−1x1 + an−2x2 + ... + a0xn + v (11.56)

has the following cascade of n integrators state representation ż1 = v, ż2 = z1,
..., żn = zn−1 where z1 = x1, ..., zn = xn are the flat outputs. This can be
further written,

z(n)
n = v. (11.57)

Control (11.56) is obviously endogenous, thus Γ is differentially equivalent
to (11.57) which is called the Brunowsky (controllability) canonical form of a
linear system. In the case where Γ has m inputs, its Brunowsky form consists
of m independent systems of the form (11.57)

z
(νi)
i = vi, i = 1, ...,m (11.58)

where the νi’s are the controllability indices of Γ (see [170] and [120] for
details).

The same equivalence can be obtained for flat nonlinear systems.

Proposition 1163. A flat nonlinear system Σ with m (independent) outputs
is differentially equivalent to system (11.58) where z = (z1, ..., zm) is the flat
output.

Proof. Using the second relation in (11.52), one can propose the control law

u(t) = F (z(t), ż(t), ..., z(β)(t), v(t)) (11.59)

where v(t) is the new control of the resulting closed-loop. If ∂F
∂z(β) is locally

invertible, control (11.59) leads to the linear decoupled system (11.58).

For Example 1152, u = mglsin(z)+v transforms the initial nonlinear system
into the differentially equivalent LTI one Jθ̈ = v.

Thus both flat nonlinear systems and controllable linear systems can be
brought to the linear canonical form (11.58). It follows that flat systems are
the class of nonlinear systems which are differentially equivalent to the par-
ticular controllable realization (11.58). Flatness can thus be interpreted like
a generalization of the well-known static feedback linearization results (see,
e.g., [166]) to the case of dynamic feedback. However, several main differences
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between the two approaches must be pointed out. First, linearization (11.58)
is global and not valid only in a (sufficiently small) vicinity of an operating
point. Next, as any component of u and x can be retrieved from the flat
output z without integrating any differential equation, the flat dynamics has
a trivial zero-dynamics. Both mentioned facts are important advantages for
the flatness-based control which is studied in the next two sections.

11.6.5.3 Flatness-Based Trajectory Tracking

The problem now is to track a specified desired output trajectory y∗(t).

Definition 1164. A closed-loop control asymptotically tracks the desired
output y∗(t) if limt→+∞[y∗(t)− y(t)] = 0.

As shown in Section 11.6.4.2.2, a full trajectory (x∗(t), u∗(t), y∗(t)) compliant
with the desired output y∗(t) can be computed starting from y∗(t). Control
u∗(t) cannot be directly applied to a real system subject to model errors
and perturbations. A closed-loop control should be provided. For that, two
distinct situations can be encountered which are now studied from a control
point of view.

Tracking of a flat output:

This first case corresponds to the situation of a flat system with z(t) ≡ y(t).
The linearizing control (11.59) can be supplemented by a standard linear
feedback with constant coefficients

vi(t) = z
(νi)
i (t) +

νi−1∑

j=0

Kij [z
∗(j)
i (t)− z

(j)
i (t)], i = 1, ...,m (11.60)

to stabilize the linear system (11.57) (obviously z
∗(νi)
i (t) = y

∗(νi)
i (t)). More

specifically, the constant gains Kij , j = 0, ..., νi − 1, i = 1, ...,m are chosen
such that the roots of polynomials Abfi(∂) = ∂νi +

∑νi−1
j=0 Kij∂

j are in the
left half of the complex plane. As a consequence, the closed-loop dynamic is
Abf (∂)i[z∗i (t) − zi(t)] = 0, i = 1, ...,m and thus limt→+∞[z∗(t) − z(t)] = 0,
i.e., limt→+∞y(t) = y∗(t).

The overall nonlinear control is thus (11.59) with v(t) given by (11.60).

Example 1165. Control of a synchronous alternator [331]: A simplified
model of a synchronous alternator, the so-called classical model with voltage
dynamics, is (see, e.g., [213]):

⎧
⎪⎨

⎪⎩

θ̇ = ω
ω̇ = 1

J
Pe − d

J
ω + Pm

J

T ′d0Ė
′ = −xd

x′
d
E′ + xd−x′

d

x′
d

Ecos(θ) + Efd

(11.61)
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where θ is the machine angle, ω the machine speed, E′ the voltage behind the
reactance x′d and Pe the electrical power. Under the assumption of constant
and nominal (thus unitary) grid-side voltage, Pe = E′

x′
dxtfo

sin(θ), where xtfo
is the reactance of the transformer which is a constant. Pm is the mechanical
power and it is considered constant (this is a usual hypothesis for the voltage
regulation); it becomes thus a parameter. The other parameters of the machine
are: J the inertia, d the damping coefficient, xd the direct axis transient
reactance, x′d the direct axis subtransient reactance. Grouping the constant
terms, (11.61) can be written as the following state LTI model

⎧
⎨

⎩

ẋ1 = x2

ẋ2 = −b1x3sin(x1)−Dx2 + P
ẋ3 = b3cos(x1)− b4x3 +E − u

(11.62)

where the state variables are x1 = θ, x2 = ω and x3 = E′. The electric part
of the machine is driven by the excitation system, thus the control variable
in this case is the excitation voltage Efd: u = Efd. The model (11.62) is flat
with the flat output z = x1. Indeed, simple transformations of (11.62) lead to
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = z
x2 = ż
x3 = P−Dż−z̈

b1sin(z)

u = E − b4
b1
P−Dż−z̈
sin(z) + b3cos(z)− (−Dz̈−z(3))sin(z)−(P−Dż−z̈)żcos(z)

b1sin2(z) .

(11.63)
Moreover the machine angle is systematically measured in practice. Thus, if
x∗1(t) is a desired trajectory to be imposed to the machine angle (usually step
references). We are in the case z = y and a direct control can be synthesized
based on the measurement of the flat output. The control law (11.59) is in
the case of the alternator

u = E − b4
b1
P−Dż−z̈
sin(z)

+ b3cos(z)−
− (−Dz̈−v(3))sin(z)−(P−Dż−z̈)żcos(z)

b1sin2(z)

(11.64)

and leads to z(3)(t) = v(3)(t). The second control v is chosen

v(t) = z∗(3)(t)−k2[z(2)(t)−z∗(2)(t)]−k1[ż(t)−ż∗(t)]−k0[z(t)−z∗(t)] (11.65)

with k0, k1, k2 such that the roots of the polynomial P (∂) = s3 + k2s
2 +

k1s + k0 are in the left half complex plane. This ensures an exact tracking:
limt→+∞z(t) = z∗(t).
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Tracking of a non flat output:

Consider now the situation when the system is flat with flat output z(t) but
the desired trajectory y∗(t) is specified on an output which is not flat, i.e.,
y(t) �= z(t). It has been shown in Section 11.6.4.2.2 that a desired flat output
z∗(t) compliant with y∗(t) can be constructed exploiting the flatness proper-
ties of the system. However, if z(t) is not measurable, a control of type (11.59)
cannot be implemented. Moreover, even when z(t) is measurable, (11.59) en-
sures only limt→+∞z(t) = z∗(t) and not necessarily limt→+∞y(t) = y∗(t).
In this case, a better solution is to implement a LTV control law as explained
in the following section.

11.6.6 Trajectory Tracking by LTV Control

We are interested now in tracking the output trajectory for a general nonlin-
ear (not necessarily flat) system.

Proposition 1166. Let Σ be a nonlinear system, T ∗ one of its trajectories
(x∗(t), u∗(t), y∗(t)) and ΣT∗ the linear tangent system around this trajectory.
Suppose that ΣT∗ is exponentially stabilizable. Then, G(s) can be chosen to
exponentially stabilize the linear closed-loop system in Fig. 11.1 where H(s) is
the transfer matrix of ΣT∗ and, when applied to the nonlinear system Σ as in
Fig. 11.10, to provide an asymptotic tracking of the desired output trajectory
y∗(t).

Proof. Let {
ẋ = f(t, x, u)
y = g(t, x, u)

(11.66)

where x = x − x∗, u = u − u∗, y = y − x∗, f(t, x, u) = f(t, x, u) −
f(t, x∗, u∗), g(x, u, t) = g(t, x, u) − g(t, x∗, u∗) be the variational system
relative to trajectory (x∗(t), u∗(t), y∗(t)) (see also Section 12.4.1). Obvi-
ously, (x = 0, u = 0, y = 0) is an equilibrium point of (11.66). More-
over, ∂f

∂x
|x=0,u=0 = ∂f

∂x
|x=x∗,u=u∗ , ∂f

∂u
|x=0,u=0 = ∂f

∂u
|x=x∗,u=u∗ , ∂g

∂x
|x=0,u=0 =

∂g
∂x |x=x∗,u=u∗ , ∂g

∂u |x=0,u=0 = ∂g
∂u |x=x∗,u=u∗ and dx = dx, du = du, dy = dy

thus, the linear tangent ET 0 of (11.66) around the origin is (11.48) and
(11.47), the same as the linear tangent of Σ around (x∗(t), u∗(t), y∗(t)). It
follows that the regulator G(∂) stabilizes also the closed-loop system Fig. 11.1
where H(∂) is the transfer matrix of ET0 . If a state representation of this
controller is {

ẋr = Ar(t)xr + Br(t)dy
−du = Cr(t)xr + Dr(t)dy

(11.67)



11.6 Application to the Control of Nonlinear Systems 575

Fig. 11.10 General nonlinear closed-loop system

then, the equations of the closed-loop are thus (11.48) and (11.67) which,
after elimination of du and dy lead to the following state representation of
the LTV closed-loop system:

ẊLTV = Acl(t)XLTV , XLTV =
[
dx
xr

]
,

Acl(t) =
[

A−B(I + DrD)−1DrC −B(I + DrD)−1Cr
BrC −BrD(I +DrD)−1DrC Ar −BrD(I + DrD)−1Cr

]
.

(11.68)
If, moreover, Ar, Br, Cr, Dr are chosen such that Acl(t) is bounded and
Lipschitz in a neighboring of the origin3, from Proposition 1196 follows that
the origin is an asymptotically stable equilibrium point of the nonlinear
closed-loop system in Fig. 11.10 and thus limt→+∞(y(t)→ y∗(t)) = 0.

The following example has been used several times to test and demonstrate
gain-scheduling approaches (see, e.g., [310]). It is now treated with the LTV
methodology presented above.

Example 1167. Consider the nonlinear system defined by ẋ = −x + u, y =
tanh(x). It is flat with the flat output y. Indeed, from the latter equation one
can easily express x and u in function of y and its derivatives:

x = 1
2
ln 1+y

1−y ,
u = ẋ+ x.

(11.69)

Equations (11.69) can be exploited to generate a full system trajectory
(x∗(t), u∗(t), y∗(t)) from a desired output y∗(t). If a first-order type response
is desired, let

y∗(t) = α(1 − e−t/T ), T = 1, α = 0.9 . (11.70)

3 Notice that these conditions are trivially satisfied if Acl(t) has constant entries,
i.e., if constant poles are placed for the closed-loop system.



576 11 Closed-Loop Control by Output Feedback Pole Placement

Fig. 11.11 Output response of the nonlinear closed-loop

The associated tangent linear system around the trajectory (11.70) ΣT∗ is
ḋx = −dx + du, dy = [1 − y∗2(t)]dx. The transfer function of ΣT∗ is thus
H(∂) = [1−y∗2(t)](∂+1)−1 (dy = H(∂)du). An 2DOF regulator as presented
in Section 11.5 which places the closed-loop poles to Λcl = {−1,−1} is S(∂) =
[1− y∗2(t)]∂,

R(∂) = (1− 4 y∗ẏ∗

1−y∗2 )∂ + 1−
−2y∗ ẏ

∗−2ẏ∗y∗2+ẏ∗y∗4+ÿ∗−ÿ∗y∗2+2ẏ∗2y∗

1−y∗2 − 2(1 + y∗2).

When trajectory (11.70) is used, the response y of the closed-loop system in
Fig. 11.10 with zero initial conditions is given in Fig. 11.11 from t = 0 to
t = 40s. A unitary step input disturbance applied at time t = 20sec is also
rejected with good transients and without steady-state error because of the
integral effect of the regulator (no free term for S(∂)).

The control (11.67), plotted in Fig. 11.12, stabilizes the closed-loop in Fig.
11.10 only locally around trajectory (x∗(t), u∗(t), y∗(t)) of Σ. The domain of
validity of such a control (i.e., the width of the zone around the trajectory
in Fig. 11.9) depends on the application (i.e., on the nature of Σ) and it is
difficult to estimate. In general, the closed-loop system can be driven around
the linearization trajectory by including a supplementary reference signal.
For Example 1167, as an 2DOF regulator is used, this transforms the closed-
loop in Fig. 11.10 into the one in Fig. 11.13. In Fig. 11.11 it is shown from
time t = 40sec to t = 60sec the response y to a step of magnitude 0.09 on
reference r in Fig. 11.13.

Remark 1168. The proposed LTV output feedback allows stable operation
for the whole range r ∈ (−1, 1). This is not the case with the classical gain-
scheduling schemes. Indeed, in [310] it is shown that the closed-loop response
diverges for r > 0.8 if precautions are not taken during the linearization to
counteract the action of the so-called hidden coupling terms. One existing so-
lution for this is the velocity-based linearization, discussed in the next section
in comparison with the linearization along a given trajectory.
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Fig. 11.12 Control of the nonlinear closed-loop

Fig. 11.13 Nonlinear 2DOF closed-loop

Remark 1169. Notice that the solution presented in Section 11.6.6 is gen-
eral, i.e., does not require Σ to be flat. First, trajectory planning can be done
in the general case as exposed in Section 11.6.4.2 but, of course, flatness
would facilitate this task and should be exploited at this stage if ever the sys-
tem is flat. Next, control law (11.67) is not based on flatness properties and
can thus be used in the case where the system is not flat or when it is flat
but the output to track is not flat. Moreover, it presents also a more robust
alternative to the control presented in Section 11.6.5 for tracking flat outputs
of flat systems. Indeed, control law (11.60) is not only a feedback of the flat
output z(t) but also of a number of its derivatives. Although solutions have
been proposed to compute those derivatives (see, e.g., [331] and [246]), their
presence in the closed-loop still diminish robustness and noise filtering (for
a detailed analysis the reader should refer to a background textbook on linear
robust control like, e.g., [333]).
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11.6.7 Connections and Differences with the
Gain-Scheduling Control

The gain-scheduling is a control technique used to overcome the limitations
due to the linearization around a single equilibrium point and thus to extend
the domain of validity of the controller. The nonlinear system is linearized
around several equilibrium points and for each obtained LTI model an LTI
controller is synthesized. The final control law consists in an adaptation of
the control parameters inside the family previously computed and for that a
measured variable, called the scheduling variable is used (see [212], [310] for
a survey of the topic). The keypoint is to parameterize a set of equilibrium
points of the given nonlinear system Σ by the scheduling variable σ. If a
state representation (11.49) is used, let (xo(σ), uo(σ), yo(σ)) be this family.
Then, the family of linear systems around those equilibrium points is also
parameterized by σ: {

ḋx = A(σ)dx + B(σ)du
dy = C(σ)dx + D(σ)du

(11.71)

where dx(t) = x(t) − xo(σ), du(t) = u(t)− uo(σ), dy(t) = y(t)− yo(σ).

11.6.7.1 Scheduling on a Reference Trajectory

The scheduling variable must be measurable and, preferably exogenous. Its
choice is, of course, application dependent, but the existing gain-scheduling
approaches differ mainly in the way in which (11.71) is written. One encoun-
tered situation is the scheduling on a reference trajectory [318] where σ is in
fact an a priori given trajectory (x∗(t), u∗(t), y∗(t)) of Σ. The LTV approach
presented above allows one to better asses the closed-loop stability and to
skip thus the usual hypothesis of slow varying input and scheduling variable
under which the reference trajectory scheduling was previously done.

11.6.7.2 Velocity-Based Linearization

In Section 11.6.3, the linearization around an equilibrium point has been
presented as a particular case of the linearization around a trajectory. The
velocity-based linearization, another important particular case, is now intro-
duced. It has been shown that the state x̂(t) in (11.46) is a first order ap-
proximation of the state x(t) of the nonlinear system Σ. More precisely, the
state equation of (11.48) can be written

˙̂x(t) = ẋ∗(t) + A(t)(x̂(t)− x∗(t)) + B(t)(x̂(t)− x∗(t)). (11.72)

Let now t1 > t0 and x1 = x∗(t1), u1 = u∗(t1), y1 = y∗(t1) be one point
of the trajectory (11.45) of Σ. Notice that (x1, u1, y1) is not necessarily an
equilibrium point of Σ. A second approximation in the evaluation of Σ is
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to consider in (11.46) the trajectory (x∗(t), u∗(t), y∗(t)) frozen to its point
(x1, u1, y1). If, moreover, Σ is time-invariant, i.e., K is a field of constants,
this leads to the following approximation of the state x of Σ:

˙̂̂
x(t) = f(x1, u1) + A(̂̂x(t)− x1) + B(̂̂u(t)− u1) (11.73)

where A and B are matrices with constant entries. A similar development
leads to

̂̂y(t) = y1 + C(̂̂x(t)− x1) + D(̂̂u(t)− u1). (11.74)

The constant terms in (11.73) and (11.74) can be skipped if one differentiate
both equations which leads to the LTI state representation

⎧
⎪⎪⎨

⎪⎪⎩

˙̂̂
x(t) = ̂̂w
˙̂̂
w = A ̂̂w + B

˙̂̂
u(t)

˙̂̂
y = C ̂̂w + D

˙̂̂
u(t)

(11.75)

called the velocity-based linearization of Σ around the constant operating
point (x1, u1, y1). Compared to (11.50), (11.75) has the advantage to be
computable in every operating point, not only in an equilibrium one. Also,
approximation (11.75) is stronger than (11.48) and thus valid in a smaller
region (the disc centered to (x1, u1, y1) instead of the band around trajectory
(x∗(t), u∗(t), y∗(t)) in Fig. 11.9).

The velocity-based linearization was proposed in [211] as a way to improve
the efficiency of the gain scheduling scheme. More precisely, it has been shown
that a velocity-based implementation of the gain-scheduling controller avoids
the so-called hidden coupling terms which may cause the instability of the
overall nonlinear closed-loop system. Notice that the velocity-based lineariza-
tion may be interpreted as a frozen realization of the lineariration around a
trajectory at a given point (x1, u1, y1) of that trajectory. Indeed, the state
matrices of (11.75) are A(t1), B(t1), C(t1), D(t1) in (11.47) and (11.48).
However, the comparison stops here as (11.75) is of higher order than (11.48)
and their variables have also different signification. For Example 1155, the
velocity-based linearization is obtained with the state X =

[
x ẋ
]T :

Ẋ = A(t1)X + B(t1)U, A(t1) =
[

0 1
0 −2x(t1)

]
, B(t1) =

[
0
1

]
, U = u̇.

(11.76)
The LTI transfer function U �→ y = x is H(∂) = (s+2x1)−1, with x1 = x∗(t1)
whereas the LTV transfer matrix of system (11.44) is H′(∂) = (s+2x∗(t))−1.

11.7 Notes and References

The output-feedback pole placement problem has been widely studied in the
literature and a survey is given in [196]. Factorizations over Euclidean rings



580 11 Closed-Loop Control by Output Feedback Pole Placement

are used as, for example, in [354]. The latter are valid also on noncommutative
rings as used for LTV systems. However, the exposal is adapted to treat the
closed-loop stability item in the LTV case based on the definitions given for
finite poles in the LTV case in Chapter 6; from this point of view, the results
in Sections 11.2, 11.3 and 11.4 are original and have been recently published
in [236] and [237]. The topic has been addressed in the LTV case in [281]
and [110] for systems with coefficients in a ring. For the LTV systems defined
over fields, the transfer matrix formalism [117] and the characterization of
the stability using the notion of poles given in Chapter 6 were used here to
better assess computations and closed-loop stability for the output feedback
pole placement problem. This provides a general solution of the problem
tackled in some particular cases of LTV systems in [377], [151].

Nonlinear systems have been studied in the differential algebraic approach
introduced by Fliess in [114], [119] and further extended to the differential
geometric one in [122]. An overview of the state representation construction
and input-output inversion problems is given in [86]. In this intrinsic frame-
work, flatness has been introduced in [121] and further developed in [122].
An overview is given in [305].

Part of the computations have been done with the Maple packages Ore-
Modules [67] and Janet [20].
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Analytic Theory of LTV Systems

12.1 Introduction

We recall here some known facts about the stability of LTV systems given
by their state representation

ẋ(t) = A(t)x(t) + B(t)u(t) (12.1)

y(t) = C(t)x(t) + D(t)u(t) (12.2)

where A(t), B(t), C(t) and D(t) are matrices which entries are real-valued
piecewise continuous functions of t and the dimension of the state x is n. The
structural properties of such an LTV system are analyzed using the solutions
of the system of differential equations (12.1) in Section 12.2. The Lyapunov
analysis of stability is recalled in Section 12.4. Definitions of the poles and
zeros are given in Section 12.5 using Lyapunov transformations of the initial
system. This analytic approach is a complement of the intrinsic algebraic one
presented in Chapter 6.

12.2 Solutions and Trajectories

Definition 1170. The control system given by (12.1) and (12.2) is well-
defined if its equations of definition aforementioned satisfy the conditions of
existence and uniqueness of the solutions of the associated initial condition
problem.

A system is thus well-defined if, for a given set of initial conditions and inputs,
it has a unique trajectory. Since A(.) is assumed to be continuous, for any
initial state x0 and any u, there exists a unique solution to (12.1), thus the
state LTV system above is well-defined.

H. Bourlès and B. Marinescu: Linear Time-Varying Systems, LNCIS 410, pp. 583–603.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2011
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Consider first the autonomous part of the system (12.1), i.e., the system
obtained when u = 0:

ẋ = A(t)x. (12.3)

As (12.1) is well-defined, the autonomous system (12.3) is also well-defined.
The space of solutions of (12.3) is of dimension n.

Definition 1171. A basis of the space of solutions of the autonomous system
(12.3), i.e., a set x1(t), ..., xn(t) of linearly independent solutions, is called a
fundamental set of solutions. A matrix Ψ(t) = [x1(t)...xn(t)] whose columns
are the vectors of a basis of the solution space of (12.3) is called a fundamental
matrix of (12.3).

A fundamental matrix of (12.3) is solution of the matrix equation

d

dt
Ψ(t) = A(t)Ψ(t) (12.4)

and, conversely, any nonsingular solution of (12.4) is a fundamental matrix
of (12.3).

Definition 1172. Let Ψ(t) be a fundamental matrix of (12.3). Then

Φ(t, t0) = Ψ(t)Ψ−1(t0), t ≥ t0 (12.5)

is called the state transition matrix of (12.3).

Notice that the above definition is consistent in the sense that Φ(t, t0) is
uniquely defined by A(t) and independent of the particular choice of Ψ(t).
Indeed, for two different fundamental matrices Ψ1(t) and Ψ2(t), there exists
P (t) nonsingular such that Ψ2(t) = Ψ1(t)P (t). Thus, following the Definition
1172, Φ(t, t0) = Ψ1(t)Ψ−1

1 (t0) = Ψ2(t)P−1(t)P (t)Ψ−1
2 (t0) = Ψ2(t)Ψ−1

2 (t0).
The transition matrix has the following properties:

Lemma 1173. If Φ(t, t0) is the state transition matrix of the LTV system
(12.1), then:

(i) Φ(t, t) = In
(ii) Φ(t2, t0) = Φ(t2, t1)Φ(t1, t0)
(iii) Φ−1(t, t0) = Φ(t0, t).

Proof. Properties (i) and (ii) follow directly from Definition (12.5). (iii) is a
special case of (ii) with t1 = t2 and t3 = t0.

The solution of (12.3) with initial conditions x(t0) = x0 is

x(t) = Φ(t, t0)x0. (12.6)

Formula (12.6) can be directly checked using the definition relation (12.5). It
shows that the state transition matrix is a linear transformation which maps
the initial condition x0 into the state x at time t.
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Notice that, in the particular case of LTI systems, Ψ(t) = eAt and Φ(t, t0) =
eA(t−t0).

The solution of the system (12.1) with initial condition x(t0) = x0 can be
given using the state transition matrix:

x(t) = Φ(t, t0)x0 +
∫ t
t0
Φ(t, τ)B(τ)u(τ)dτ =

= Φ(t, t0)
[
x0 +

∫ t
t0
Φ(t0, τ )B(τ)u(τ)dτ

]
, t ≥ t0 .

(12.7)

It can be directly checked that both expressions above verify (12.1). The first
terms in (12.7) give the so-called unforced response (i.e., the response due ex-
clusively to the initial conditions) while the second ones are the contributions
of the input u.

12.3 Periodic Systems

When the entries of A(t) are piecewise continuous functions of period T ,
(12.3) defines a periodic autonomous system. Such kind of differential equa-
tions were first investigated by Floquet [123] (see also [164], [3]). Any fun-
damental matrix Ψ(t) of a periodic system is periodic with the same period:
Ψ(t + T ) = Ψ(t)Ψ−1(t0)Ψ(T ), ∀t ∈ R.

For each matrix B (possibly with complex entries) such that eTB =
Ψ−1(0)Ψ(T ), there is a periodic (of period T ) matrix function t �→ P (t)
such that

Ψ(t) = P (t)etB, ∀t ∈ R. (12.8)

Also, there exists a real matrix R and a real periodic (of period 2T ) matrix
function t �→ Q(t) such that

Ψ(t) = Q(t)etR, ∀t ∈ R. (12.9)

The mapping (12.8) leads to a change of coordinates under which the original
periodic system becomes a linear system with real constant coefficients.

Proposition 1174. A linear system with periodic coefficients is reducible to
a system with constant coefficients.

Proof. The change of coordinates

x(t) = P (t)y(t) (12.10)

where P (t) is given by (12.8) transforms (12.3) into ẏ = C(t)y where
C(t) = P (t)−1A(t)P (t) − P (t)−1Ṗ (t). Using P (t) = Ψ(t)e−Bt and
Ψ̇(t) = A(t)Ψ , the latter is written C(t) = eBtΨ−1(t)A(t)Ψ(t)e−Bt −
eBtΨ−1(t)A(t)Ψ(t)e−Bt + eBtΨ−1(t)Ψ(t)e−BtB = B.
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In Section 12.5.1 it is shown that the change of coordinates (12.10) is a
Lyapunov transformation and, as a consequence, the LTI system in the new
coordinates has the same stability properties as the original periodic one.

Definition 1175. • the representation (12.8) is called the Floquet normal
form for the fundamental matrix Ψ(t).

• the eigenvalues of eTB are called the characteristic multipliers of the peri-
odic system defined by (12.3).

• a Floquet exponent of the periodic system is a complex μ such that eμT is
a characteristic multiplier of the system.

12.4 Stability

Stability is a seminal problem in the analysis of dynamic systems. The object
of a stability study is to draw conclusions about the behavior of the system
without computing its solutions or trajectories. Starting with the theory of
the differential equations, the stability items evolved in parallel with the
different engineering disciplines and lead to formulations and problematics
some time quite different according to the nature and specificities of each
discipline. A unified approach, extending the notion of energy coming from
mechanics, was developed by the Russian mathematician Lyapunov [222] to
analyze in the same way the properties of any type of system modeled by
differential equations. This formalism, intensively developed and extended
since, is today an indispensable tool in the analysis and synthesis of dynamic
systems. We will first give the basics of this approach in the general case of
nonlinear systems and, next, we will focus of the advances of the analysis of
the LTV case.

12.4.1 Stability Definitions

Let Σ be a nonlinear system given by

ẋ = f(t, x) (12.11)

for t ≥ t0 and x(t0) = x0. Let ‖.‖ denote a (any) norm of Rn. Then Σ is
well-defined in the sense of Definition 1170 if f(x, t) is continuous in a set
S = {‖x − x0‖ ≤ a, t0 ≤ t ≤ t0 + b} and Lypschitz (i.e., ∃K > 0 such that
‖f(t, x1)−f(t, x2)‖ ≤ K‖x1−x2‖ for all (t, x1), (t, x2) ∈ S)1. All the systems
considered below are supposed well-defined.

Lyapunov theory of stability is concerned with the analysis of the asymp-
totic (i.e., as t → +∞) behavior of the trajectories of Σ. Let a solution of

1 Notice that the two conditions are sufficient, but continuity of f is not necessary
for the existance of a continuous solution and there exist solutions which do not
met the Lypschitz condition ([69], [164]).
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(12.11) for t ≥ t0 which verifies the initial condition x(t0) = x0 be denoted
by x(t; t0, x0). In the Lyapunov’s original work [222] it is called the initial (or
non perturbed) trajectory. It is of interest the behavior of other trajectories,
called perturbed trajectories, initiated close to the initial trajectory.

Definition 1176. Trajectory x(t; t0, x0) of system Σ is said stable if for
every ε > 0, there exists a δ = δ(ε; f, t0) > 0 such that any perturbed trajectory
x(t; t0, x1) with ‖x1 − x0‖ ≤ δ satisfies ‖x(t; t0, x1)− x(t; t0, x0)‖ ≤ ε for all
t0 ≤ t < +∞. The same trajectory it is said unstable if it is not stable.

In the definition above the value of δ depend both on ε and t0 but the notion
of stability itself is independent of the choice of t0. This corresponds to the
notion of uniform stability formalized by the following

Definition 1177. The solution x(t; t0, x0) is said uniformly stable if for any
ε > 0 there exists δ = δ(ε; f) > 0 such that any perturbed trajectory x(t; t0, x1)
with ‖x1−x0‖ ≤ δ satisfies ‖x(t; t0, x1)−x(t; t0, x0)‖ ≤ ε for all t0 ≤ t < +∞.

The above definitions of stability can be interpreted as properties of continu-
ity of the solution of (12.11) with respect to the initial conditions. Moreover,
the initial trajectory x(t; t0, x0) may attract the perturbed trajectories which
leads to a stronger notion of stability:

Definition 1178. Trajectory x(t; t0, x0) of system Σ is said (uniformly)
asymptotically stable if it is (uniformly) stable and there exists a δ =
δ(ε; f, x0) > 0 such that any perturbed trajectory x(t; t0, x1) with ‖x1−x0‖ ≤ δ
satisfies ‖x(t; t0, x1)− x(t; t0, x0)‖ → 0 as t→ +∞.

Notice that an atrractive trajectory is not necessarily stable (see [355], 5.1.32
for an example). The ball ‖x1 − x0‖ ≤ δ is called the domain of attraction
of trajectory x(t; t0, x0). All the concepts of stability above are local in the
sense that they pertain only to the behavior of perturbed trajectories starting
close to the initial trajectory. If δ = +∞, trajectory x(t; t0, x0) is said globally
asymptotically stable. If the the rate of attraction is concerned, we have

Definition 1179. Trajectory x(t;x0, t0) is said exponentially stable if there
exist constants m > 0, λ > 0 and δ = δ(ε; f, x0) > 0 such that any perturbed
trajectory x(t; t0, x1) with ‖x1−x0‖ ≤ δ satisfies ‖x(t;x0, t0)−x(t; t0, x0)‖ ≤
me−λ(t−t0), t ≥ t0.

A particular type of trajectories are the equilibrium points xe which satisfy
f(xe, t) = 0, ∀t. Thus, a trajectory of Σ initialized in an equilibrium point
xe is x(t; t0, xe) = xe, ∀t. The analysis of the stability of a general trajectory
x∗(t) = x(t; t0, x0) reduces to the analysis of the stability of the origin (i.e.,
of the equilibrium point xe = 0) of some new system derived from Σ. Indeed,
the change of variables

x(t) = x(t)− x∗(t) (12.12)
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leads to ΣV given by
ẋ(t) = F (t, x) (12.13)

where F (t, x) = f(t, x∗(t) + x(t)) − f(t, x∗(t)). ΣV is called the variational
system with respect to trajectory x∗(t). As F (t, 0) = 0, the origin is an
equilibrium point for ΣV . The stability of x∗(t) with respect to Σ is reduced
to the stability of x(t) = 0 with respect to ΣV . Therefore, without loss of
generality, we will assume that f(t, 0) = 0 and we will study the stability of
the origin x = 0 for (12.11).

12.4.2 Lyapunov’s Direct Method

Lyapunov’s theory generalizes ideas which link stability to the energy of a
system. For an isolated system like (12.11), i.e. without exogenous variables,
the total energy is a function which is zero at the origin (which is an equi-
librium) and positive elsewhere. If the system is initially at the equilibrium
point x = 0 and a perturbation brings it into a state close to 0 where the en-
ergy is positive, its behavior is characterized depending on the way in which
its energy varies. If the system dynamics are such that the energy of the sys-
tem is nonincreasing with time, the system is stable. If the energy decreases
with time till zero, the system is asymptotically stable and if the energy in-
creases, the system is said unstable. This energetic interpretation, pioneered
by Lagrange for mechanical systems, was extended by Lyapunov to general-
ized systems defined by any differential equations. The energy function was
replaced by a function with some prespecified properties.

Definition 1180. Let x = 0 be an equilibrium point for the nonlinear system
Σ given by (12.11). A Lyapunov function for Σ is a continuously differen-
tiable function V : [t0, +∞) × Rn → R for which exists r > 0 such that

V (t, 0) = 0, ∀t ≥ t0 and V (t, x) > 0,∀t ≥ t0, ∀x such that ‖x‖ < r, (12.14)

V̇ (t, x) ≤ 0, ∀t ≥ t0, ∀x such that ‖x‖ < r (12.15)

where V̇ is evaluated along the trajectories of Σ.

The derivative in the definition above is dependent on the nature of Σ, i.e.,
on f : V̇ (t, x) = ∂V

∂t +
∑n

i=1
∂V
∂xi

ẋi = ∂V
∂t + ∂V

∂x f(x).

Proposition 1181. The equilibrium x = 0 of system Σ is stable if there
exists a Lyapunov function V for Σ.

Proof. Since V is a Lyapunov function for Σ, there exists a class K function
α2 and s > 0 such that

α(‖x‖) ≤ V (t, x), ∀t ≥ 0, ∀x such that ‖x‖ ≤ s. (12.16)
2 i.e., α : [0, a) → [0, +∞), strictly increasing and α(0) = 0.
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Let ε > 0, t0 > 0,
ε1 = min{ε, r, s} (12.17)

where r is the one in (12.14). Choose δ > 0 such that

β(t0, δ) < α(ε1) (12.18)

where β(t0, δ) = sup‖x‖≤δV (t0, x). This choice satisfies the condition of Def-
inition 1176. Indeed, let x0 such that ‖x0‖ < δ. Then V (t0, x0) ≤ β(t0, δ) <
α(ε1).

Moreover, with a such choice of x0, x stays in the ball ‖x‖ < r: suppose
that there exists x such that ‖x‖ ≥ ε1 and let T be such that

‖x(t; t0, x0)‖ ≤ ε1, ∀t ∈ [t0, T ) (12.19)

and
‖x(T ; t0, x0)‖ = ε1. (12.20)

Since ε1 ≤ r, it follows from (12.15) that

V (T ; x(T ; t0, x0)) ≤ V (t0, x0) < α(ε1). (12.21)

But, as ε1 ≤ s, from (12.20) and (12.16) we have V (T ;x(T ; t0, x0)) ≥
α(‖x(T ; t0, x0)‖) = α(ε1) which contradicts (12.21).

Thus, from (12.15) follows that V (t, x(t; t0, x0)) ≤ V (t0, x0) < α(ε1),
∀t ≥ t0. From the latter inequality and (12.16) follows that α(‖x(t; t0, x0)‖) <
α(ε1). Finally, as α is strictly increasing, ‖x(t; t0, x0)‖ < ε1 ≤ ε, ∀t ≥ t0, thus
0 is a stable equilibrium point of Σ.

Example 1182. Consider a simple pendulum as in Fig. 12.1. Using New-
ton’s second law of motion, we can write the equation of motion in the tan-
gential direction as mlθ̈ = −mgsinθ − klθ̇. If the frictional resistance is
neglected (k = 0) and after suitable normalization, this leads to θ̈+ sinθ = 0.
The state representation which corresponds to the choice of the state variables
x1 = θ, x2 = θ̇ is {

ẋ1 = x2

ẋ2 = −sinx1.
(12.22)

The origin x1 = 0, x2 = 0 (the vertical low equilibrium position) is an equi-
librium of the pendulum. The total energy of the pendulum is the sum of the
potential and kinetic energies, i.e., V (x1, x2) = (1− cosx1) + 1

2
x2

2. Function
V satisfies the conditions of Definition 1180, so it is a Lyapunov function for
the pendulum. Thus, the origin is a stable equilibrium.

Similar results exist for the other types of stability introduced above. They
are mentioned here without proof (for which the reader should refer, for
example, to [186] or [355]).
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Fig. 12.1 Simple pendulum

Proposition 1183. The equilibrium x = 0 of system Σ is

• uniformly stable if there exists a descrescent Lyapunov function for Σ.
• uniformly asymptotically stable if there exists a descrescent Lyapunov

function for Σ such that −V̇ is a locally positive definite function.
• exponetially stable if there exists constants a, b, c, r > 0, p ≥ 1 such that

a‖x‖p ≤ V (x, t) ≤ b‖x‖p, ∀t ≥ 0, ∀x such that ‖x‖ ≤ r.

Propositions 1181 and 1183 provide only sufficient conditions for stability
but the converse results are also true (see [154], [186]). They basically pro-
vide Lyapunov functions for each case of stability. However, they are not
constructive since the construction of the Lyapunov functions always uses
the solution of the system. Their interest stays theoretical. An example of
such converse result is the ”only if” part of Proposition 1196 in the case of
nonlinear systems and Proposition 1193 for linear systems.

12.4.3 Linear Systems

12.4.3.1 Autonomous Systems

Consider the LTV autonomous (i.e., without input signals) system Γ defined
by (12.3) where A(t) is continuous. Thus, Γ is well-defined in the sense of
Definition 1170. Clearly, x = 0 is an equilibrium point of (12.3). It is an
isolated equilibrium point (i.e., there are no other equilibrium points in its
vicinity) if A(t) is nonsingular for some t ≥ 0.

The stability of Γ can be characterized using the state transition matrix
Φ(t; t0) of (12.3) as introduced by Definition 1172.

Proposition 1184. The equilibrium point x = 0 of Γ is stable if, and only
if for each t0 ≥ 0

supt≥t0‖Φ(t, t0)‖ = m(t0) <∞ (12.23)

where ‖Φ(t, t0)‖ is the matrix induced norm3.

3 For A ∈ Rn, ‖A‖ = supx �=0,x∈Rn
‖Ax‖
‖x‖ = sup‖x‖=1‖Ax‖ = sup‖x‖≤1‖Ax‖. When

a specific norm p (p = 1, 2,∞) is used on Rn, the resulting induced norm is
denoted by ‖.‖p.
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Proof. The ”if” part: Suppose (12.23) holds, and let ε > 0, t0 ≥ 0 be
specified. If δ = ε/m(t0), then ‖x(t0)‖ ≤ δ ⇒ ‖x(t)‖ = ‖Φ(t, t0)x(t0)‖ ≤
‖Φ(t, t0)‖‖x(t0)‖ ≤ m(t0)δ = ε.

The ”only if” part: Let ε, δ > 0 and δ1 be such that 0 < δ1 < δ. If (12.23) is
false, then ‖Φ(t, t0)‖ in an unbounded function of t for some t0 ≥ 0, i.e., there
exists t ≥ t0 such that ‖Φ(t, t0)‖ > ε/δ1. Next, select a vector v of norm one
such that ‖Φ(t, t0)v‖ = ‖Φ(t, t0)‖ and x(t0) = δ1v. It follows that ‖x(t0)‖ ≤
δ1 < δ. Moreover, ‖x(t)‖ = ‖Φ(t, t0)x(t0)‖ = ‖δ1Φ(t, t0)v‖ = δ1‖Φ(t, t0)‖ > ε.
Thus, following Definition 1176, 0 is un unstable equilibrium.

Notice that there is a difference in the meaning of stability between linear and
nonlinear autonomous systems. In the linear case, instability is synonymous
of unboundedness of some solution as shown in the necessity part of the
proof of Proposition 1184. This is not the case for nonlinear systems where
the instability can be accompanied by the boundedness of all solutions as in
the following example.

Example 1185. Consider the Van der Pol oscillator given by
{
ẋ1 = x2

ẋ2 = −x1 + (1− x2
1)x2.

(12.24)

The origin x1 = 0, x2 = 0 is an equilibrium of (12.24). The response to any
nonzero initial conditions is oscillatory and this results in the limit cycle in
Fig. 12.2 (obtained for x10 = x20 = 0.1). Following Definition 1176 the origin
is unstable: by choosing ε > 0 sufficiently small such that the ball ‖x(t)‖ < ε
is contained in the limit cycle in Fig. 12.2, trajectories starting in this ball
will leave it and so no δ > 0 can be found to satisfy the condition of Definition
1176. However, all trajectories are bounded by the limit cycle.

Proposition 1186. The equilibrium point x = 0 of Γ is (globally) uniformly
asymptotically stable if, and only if the state transition matrix satisfies the
inequality

‖Φ(t, t0)‖ ≤ me−λ(t−t0), ∀t ≥ t0 ≥ 0 (12.25)

for some positive constants m and λ.

Proof. Due to the linear dependence (12.6) of x(t) on x0 = x(t0), if the
origin is uniformly asymptotically stable, it is globally so.

The ”if” part: ‖x(t)‖ ≤ ‖Φ(t, t0)‖x0 ≤ m‖x0‖e−λ(t−t0), thus (12.25) is
sufficient for asymptotic stability.

The ”only if” part: If x = 0 is uniformly asymptotically stable, then there
exist finite constants μ and T such that

‖Φ(t, t0)‖ ≤ μ, ∀t ≥ t0 > 0 (12.26)
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Fig. 12.2 Limit cycle of the Van der Pol oscillator

and
‖Φ(t0 + t, t0)‖ ≤ 1/2, ∀t ≥ T, ∀t0 ≥ 0. (12.27)

For a given t ≥ t0, let k be an integer such that t0 + kT ≤ t < t0 + (k + 1)T .
It follows, using Lemma 1173 (ii), that Φ(t, t0) = Φ(t; t0 +kT )Φ(t0 +kT ; t0 +
kT −T )...Φ(t0 +T ; t0) thus ‖Φ(t, t0)‖ ≤ ‖Φ(t; t0 +kT )‖

∏k
j=1 ‖Φ(t0 + jT ; t0 +

jT − T )‖. Repeated application of (12.26) and (12.27) gives ‖Φ(t, t0)‖ ≤
μ2−k ≤ (2μ)2−(t−t0)/T . Hence (12.25) is satisfied with m = 2μ and λ = log2

T
.

Thus, for linear systems, uniform asymptotic stability is equivalent to expo-
nential stability. Also, notice that in the general case of nonlinear systems,
an equilibrium point is globally uniformly or exponentially stable if it is the
only equilibrium of the system. This is the case for nondegenerate LTV sys-
tems (i.e., with nonsingular state matrix). This makes a major difference
between the two classes of systems and, for linear systems, we will speak
shortly about stability of the autonomous system (instead of stability of an
equilibrium point or trajectory).

Another important particularity of LTV systems is that condition (12.25)
is not easy to check in practice because knowledge of the state transition
matrix Φ(t, t0) requires the integration of equations (12.3). Propositions 1184
and 1186 have just a theoretical interest.
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12.4.3.2 Periodic Systems

If the entries of the state matrix A(t) in (12.3) are periodic functions,
the stability can be evaluated from the Floquet exponents introduced by
Definition 1180.

Proposition 1187. The periodic system (12.3) is

• exponentially stable if the real parts of all its Floquet exponents are nega-
tive.

• stable if the real parts of all its Floquet exponents are nonpositive
• unstable otherwise.

12.4.3.3 Nonautonomous Systems

When the influence of the inputs is taken into account, the nonautonomous
system (12.1) is to be studied. Let e(t) = x(t; t0, x0) − x(t; t0, x1) be the
error between the initial and perturbed trajectories. From (12.7) it follows
that e(t) = Φ(t, t0)(x0 − x1) and thus e(t) is the solution of the autonomous
system with the initial condition e(t0) = x0 − x1 no matter what u(t) is.
As a consequence, the question of stability of the solution x(t;x0, t0) of the
nonautonomous system reduces to: for a given ε > 0, does exist δ > 0 such
that ‖e(t0)‖ < δ ⇒ ‖e(t)‖ < ε, ∀t ≥ t0. This is the problem of stability of
the trivial solution (x(t) = 0) of the autonomous system (12.3). A similar
rationale can be made for the asymptotic and exponential stability, which
leads to

Proposition 1188. A linear nonautonomous system is stable (asymptoti-
cally or exponentially stable) if, and only if the associated linear autonomous
system is stable (asymptotically or exponentially stable).

However, in practice a stronger notion of stability is needed. Indeed, follow-
ing Proposition 1188, trajectories of a stable nonautonomous system are not
necessarily bounded as shown by the following example.

Example 1189. The linear nonautonomous system given by

ẋ = −x + t (12.28)

is exponentially stable since its autonomous part ẋ = −x is exponentially
stable. The solutions of (12.28) from t0 = 0 are x(t) = −1 + t+ x0e

−t. Thus
e(t) = [x0 − x1]e−t → 0 as t→ +∞. However, x(t)→ +∞.

To ensure also bounded trajectories, i.e., input to state stability, other sup-
plementary conditions must be added for the nonautonomous part f(t) =
B(t)u(t):

‖f(t)‖ ≤ b <∞, t ≥ t0. (12.29)
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Also, the following result is used:

Lemma 1190. (Banach-Steinhaus Lemma) If the vector u given by

u(t) =
∫ t

t0

Φ(t, τ)f(τ)dτ , t, τ ≥ t0 (12.30)

is bounded as t→ +∞ for every vector f satisfying (12.29), then the matrix
Φ(t, τ ) satisfies the condition

∫ t

t0

‖Φ(t, τ )‖dτ ≤ c < +∞ for some c and all t ≥ τ ≥ t0 (12.31)

See [16], [383] for a proof.

Proposition 1191. When B and u are such that the non autonomous part
f(t) = B(t)u(t) satisfies (12.29), a necessary and sufficient condition for
(12.1) to have bounded solutions on [t0,+∞) is (12.31), where Φ(t, t0) is the
state transition matrix of the autonomous part of (12.1).

Proof. The ”if part” : suppose (12.31) holds. The solution of the non
autonomous system (12.1) is given by (12.7). Using (12.31) and (12.29),
it follows that ‖x‖ ≤ (‖Φ(t, t0)x0‖ + b)c. Again, from (12.31) follows that
Φ(t, t0)x0, the solution of the autonomous part, is bounded for t → +∞
from which follows that x is bounded.

The ”only if” part : suppose x is bounded when t→ +∞. Then, Φ(t, t0)x0,
the autonomous part of the solution is bounded as a particular case of x
(obtained with u = 0). From (12.29), it follows that

∫ t
t0
‖Φ(t, τ )B(τ)u(τ)‖dτ

is bounded and, using Lemma 1190 with f(t) = B(t)u(t), one can conclude
that
∫ t
t0
‖Φ(t, τ)‖dτ is bounded.

Condition (12.29) is natural and usually satisfied in practice. On the
one hand, physical systems have continuous and bounded coefficients over
[t0, +∞), the interval over which the model is considered; they do not ex-
hibit any finite-time escape phenomena. On the other hand, to investigate
(input to state or input/output) stability it is natural to consider bounded
inputs, i.e., to excite the system with physical signals of finite energy.

The last two propositions above give the basis of stability analysis for linear
systems: it is necessary and sufficient to study the stability of the autonomous
system in order to conclude on the stability of the general (nonautonomous)
system. This is the main difference with the nonlinear case, and allows one to
speak for the linear systems about the (asymptotic or exponential) stability
of the system without any danger of confusion.
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12.4.3.4 The Case of LTI Systems

If all the coefficients of the system are constant, (12.3) particulizes to

ẋ = Ax (12.32)

where the entries of A are constants. In this particular case of linear systems,
the results are much simpler and constructive. First, the state transition
matrix reduces to Φ(t, t0) = eA(t−t0) which can be computed in practice
without integrating (12.32). Next, stability is directly characterized by the
eigenvalues of A:

Proposition 1192. The equilibrium x = 0 of (12.32) is

• (globally) exponentially stable if, and only if all eigenvalues of A have
negative real parts.

• stable if, and only if all eigenvalues of A have nonpositive real parts and,
in addition, every eigenvalue of A having a zero real part is a simple zero
of the minimal polynomial of A.

The result above is a well-known fact and it is recalled without proof.

12.4.3.5 Lyapunov Functions

In the case of linear systems, Lyapunov functions can be directly provided
using the state transition matrix.

Proposition 1193. It is assumed that the origin is an uniformly asymptot-
ically (i.e., also exponentially) stable equilibrium of the linear system (12.3)
and its state matrix is bounded in the sense that

m0 = supt≥0‖A(t)‖ <∞. (12.33)

Then for each bounded function Q(t) which is a symmetric positive definite
matrix for each t > 0 and such that there exists a constant α > 0 such that

αxTx ≤ xTQ(t)x, ∀t ≥ 0, ∀x ∈ Rn, (12.34)

the function
V (t, x) = xTP (t)x (12.35)

where
P (t) =

∫ ∞

t

ΦT (τ , t)Q(τ )Φ(τ , t)dτ (12.36)

is a Lyapunov function for (12.3).

Proof. Notice first that P (t) is well-defined by (12.36). Indeed, as (12.3) is
exponentially stable, there exist positive constants m, λ such that ‖Φ(τ, t)‖ ≤
me−λ(τ−t), ∀τ ≥ t ≥ 0. Also, Q(t) is bounded.
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Next, P (t) is positive defined for each t ≥ 0: from (12.36) follows that
xTP (t)x =

∫∞
t

xTΦT (τ , t)Q(τ)Φ(τ , t)xdτ =
∫∞
t

sT (τ ; t, x)Q(τ)s(τ ; t, x)dτ
where s(τ ; t, x) is the solution of (12.3) evaluated at time τ with the ini-
tial condition x at the initial time t. From (12.34) follows that xTP (t)x ≥
α
∫∞
t
‖s(τ ; t, x)‖dτ . As (12.3) is exponentially stable, roughly speaking, the

right term of the latter inequality can be minorated by the initial conditions
x of s(τ ; t, x) which leads to V (t, x) = xTP (t)x ≥ βxTx for some β > 0,
thus V (t, x) > 0. Moreover, V̇ (t, x) = xT [Ṗ (t) + AT (t)P (t) + P (t)A(t)]x =
−xTQ(t)x, thus V̇ (t, x) < 0. It follows that V satisfies the conditions of Def-
inition 1180.

In the particular case of LTI systems, the Lyapunov functions are of the form
V (x) = xTPx where P ∈ Cn×n is the real symmetric matrix solution of the
so-called Lyapunov matrix equation

ATP + PA = −Q (12.37)

where Q is any positive definite matrix. As a matter of fact,

Proposition 1194. Given a matrix with constant entries, the following
statements are equivalent:

• all the eigenvalues of A have negative real parts.
• there exists some positive definite matrix Q such that (12.37) has a unique

solution P , and this solution is positive definite.
• for every positive definite matrix Q, (12.37) has a unique solution P , and

this solution is positive definite.

12.4.4 Lyapunov’s Indirect Method

The Lyapunov’s indirect method, called also the linearization method, uses
the tangent linear system of the initial nonlinear system Σ to draw stability
conclusions on Σ. Let Σ be given by (12.11). As shown in Section 11.6.3, the
tangent linear system ΣT0 of Σ around the origin x = 0 is the LTV system
(12.3) whereA(t) = ∂f

∂x (t, x) |x=0. It is assumed that ΣT 0 is well-defined in the
sense of Definition 1170 (i.e., A(t) is continuous). Supplementary properties
are needed on the Jacobian matrix of Σ.

Lemma 1195. Let f : R+ × Rn → Rn be continuous and differentiable with
respect to t. Consider that the Jacobian ∂f

∂x (t, x) is Lipschitz in a neighboring
‖x‖ ≤ r, r > 0 of the origin, uniformly in t. Let the function f1(t, x) be
defined by

f1i(t, x) = [
∂fi
∂x

(t, zi)−
∂fi
∂x

(t, 0)]x (12.38)
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for some zi. Then, there exists a point zi on the line segment connecting x
to the origin such that

‖f1(x, t)‖ ≤ L‖x‖2 (12.39)

for some L > 0.

Proof. The Lipschitz condition of ∂f
∂x (t, x) is

‖∂fi
∂x

(t, x1)−
∂fi
∂x

(t, x2)‖ ≤ Li‖x1 − x2‖ (12.40)

for ‖x1‖, ‖x2‖ ≤ r, ∀t ≥ 0, Li > 0 and i = 1, ..., n. By the mean value
theorem4, fi(x, t) = fi(0, t)+ ∂fi

∂x (t, zi)x where zi is a point on the line segment
connecting x to the origin and i = 1, ..., n. As f(t, 0) = 0 for all t ≥ 0, it
follows, using (12.38), that fi(t, x) = ∂fi

∂x
(t, 0)x + f1i(t, x), thus

f(t, x) = A(t)x + f1(t, x). (12.41)

Moreover, from (12.40) one has ‖ ∂fi

∂x
(x, t)− ∂fi

∂x
(0, t)‖ ≤ Li‖z‖ ≤ Li‖x‖ from

which the conclusion follows with L = n max{L1, ..., Ln}.

Proposition 1196. Let x = 0 be an equilibrium point of Σ and assume that
ΣT0 is well-defined and, moreover, the Jacobian ∂f

∂x(x, t) is bounded and
Lipschitz in a neighboring ‖x‖ ≤ r, r > 0 of the origin, uniformly in t. Then,
x = 0 is an exponentially stable equilibrium point for the nonlinear system
Σ if, and only if it is an exponentially stable equilibrium point for the LTV
system (12.3).

Proof. The ”if” part: Suppose x = 0 is an exponentially stable equilibrium
point for the LTV system (12.3). Since A(t) is bounded, it follows, as in the
proof of Proposition 1193 that

P (t) =
∫ ∞

t

ΦT (τ , t)Φ(τ , t)dτ (12.42)

is well-defined for all t ≥ 0 and exist positive constants α and β such that

αxTx ≤ xTP (t)x ≤ βxTx, ∀x ∈ Rn, ∀t ≥ 0. (12.43)

As ΣT0 is exponentially stable, it follows that the function xTP (t)x is de-
screscent positive definite, thus a suitable Lyapunov candidate: V (t, x) =
xTP (t)x. Moreover, V̇ (t, x) = xT Ṗ (t)x + fT (t, x)P (t)x + xTP (t)f(t, x) =
xT [Ṗ (t) + AT (t)P (t) + P (t)A(t)]x + 2xTP (t)[f(t, x) − A(t)x]. From (12.42)
follows that Ṗ (t) +AT (t)P (t) + P (t)A(t) = −In, thus
4 For a function f : Rn → R continuously differentiable at each point x of an

open set S ⊂ Rn let x, y ∈ S such that L(x, y) ⊂ S where L(x, y) = {z | z =
θx + (1− θ)y, 0 < θ < 1} is the line segment joining x and y. Then, there exists
a point z ∈ L(x, y) such that f(y) − f(x) = ∂f

∂x
|x=z (y − x). (see, e.g., [5]).
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V̇ (t, x) = −xTx + 2xTP (t)[f(t, x)−A(t)x]. (12.44)

From Lemma 1195, one can chose r > 0 such that L = s
β

in (12.39)
with s < 1

2r . Thus, ‖f(t, x) − A(t)x‖ ≤ 1
2βr‖x‖2, ∀t ≥ 0, ∀ x such

that ‖x‖ ≤ r. The latter inequality in conjunction with (12.43) leads to
| 2xTP (t)[f(t, x) − A(t)x] |≤ 2srxTx, ∀t ≥ 0, ∀ x such that ‖x‖ ≤ r. Thus,
(12.44) leads to V̇ (t, x) ≤ −(1 − 2s)xTx, ∀t ≥ 0, ∀ x such that ‖x‖ ≤ r
which, as s < 1

2r
, means that −V̇ is a locally positive definite function. Thus,

following Proposition 1183, x = 0 is an exponentially stable equilibrium for Σ.

The only if part: Suppose x = 0 is an exponetially stable equilibrium for
Σ. Then, there exist positive constants m, λ and c such that

‖x(t)‖ ≤ m‖x(t0)‖e−λ(t−t0), ∀t ≥ t0 ≥ 0, ∀‖xt0‖ < c. (12.45)

Consider the function V (t, x) =
∫ t+δ
t

sT (τ ; t, x)s(τ ; t, x)dτ where δ is a con-
stant to be chosen and s(τ ; t, x) is the solution of (12.11) that starts at t in x,
i.e., s(t) = x. It is now shown that δ can be chosen such that V is a Lyapunov
function for Σ:

• there exist positive constants c1, c2 such that c1‖x‖2 ≤ V (t, x) ≤ c2‖x‖2:
First, from (12.45) follows that

V (t, x) ≤
∫ t+δ

t

m2e−2λ(τ−t)dτ‖x‖2 =
m2

2λ
(1− e−2λδ)‖x‖2.

Thus, c2 = m2

2λ
(1 − e−2λδ). Next, as the Jacobian is bounded, let

‖∂f∂x (t, x)‖ ≤ T , for ‖x‖ ≤ r. It follows ‖f(t, x)‖ ≤ T ‖x‖ from which fol-
lows that s(τ ; t, x) satisfies the lower bound ‖s(τ ; t, x)‖2 ≥ ‖x‖2e−2T (τ−t).
Hence V (t, x) ≥

∫ t+δ
t

e−2T (τ−t)dτ‖x‖2 = 1
2T

(1 − e−2Tδ)‖x‖2, thus c1 =
1

2T
(1− e−2Tδ).

• there exists c3 such that V̇ (t, x) ≤ −c3‖x‖2 : Let s(τ ; t, x) = ∂
∂ts(τ ; t, x),

sx(τ ; t, x) = ∂
∂x
s(τ ; t, x). Then, V̇ (t, x) = ∂V

∂t
+ ∂V

∂x
f(t, x) = sT (t +

δ; t, x)s(t + δ; t, x) − sT (t; t, x)s(t; t, x) +
∫ t+δ
t

2sT (τ ; t, x)st(τ ; t, x)dτ +
∫ t+δ
t

2sT (τ ; t, x)sx(τ ; t, x)dτf(t, x) = sT (t + δ; t, x)s(t + δ; t, x) − ‖x‖22 +
∫ t+δ
t

2sT (τ ; t, x)[st(τ ; t, x) + sx(τ ; t, x)f(t, x)]dτ . As

st(τ ; t, x) + sx(τ ; t, x)f(t, x) ≡ 0, ∀τ ≥ t,

it follows that V̇ (t, x) = sT (t + δ; t, x)s(t + δ; t, x) − ‖x‖22 ≤ −(1 −
k2e−2λδ)‖x‖22. By choosing δ = ln(2k2)

2λ
and using the equivalence of norms

it follows that c3 = 1
2
.

• there exists c4 such that ‖ ∂V
∂x
‖ ≤ c4‖x‖: similar calculations lead to c4 =

2k
λ−T [1− e(λ−T )δ].
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Let now compute the derivative of V but along the trajectories of the
linear system (12.3): ∂V

∂t
+ ∂V

∂x
A(t)x = ∂V

∂t
+ ∂V

∂x
f(t, x) − ∂V

∂x
f1(t, x),

where f1(t, x) is given by (12.41). Using Lemma 1195 and the second
item above, ∂V

∂t + ∂V
∂xA(t)x ≤ −c3‖x‖2 + c4T‖x‖3 < −(c3 − c4Tρ)‖x‖2,

∀ ‖x‖ < ρ. The choice ρ < min{r, c3
c4T
} ensures that the derivative of V

along the trajectories of (12.3) is negative definite in ‖x‖ < ρ, thus the ori-
gin is an exponentially stable equilibrium point for the linear system (12.3).

12.5 Poles of the System

12.5.1 Lyapunov Transformations

Consider again an LTV system given by the space representation (12.3). A
change of variables

x = L(t)y, (12.46)

where L is a nonsingular and continuously differentiable for t ≥ t0 matrix,
brings (12.3) to

ẏ = B(t)y, (12.47)

where B(t) = L−1(t)A(t)L(t)− L−1(t)L̇(t). We are interested in the class of
transformations which preserve stability properties of (12.3).

Definition 1197. The transformation (12.46) is called a Lyapunov trans-
formation if L(t) is a nonsingular and continuously differentiable for t ≥ t0
matrix and L(t), L̇(t), L−1(t) are bounded for t ≥ t0.

Let f(t) be a complex-valued function defined on the interval [t0, +∞).

Definition 1198. The characteristic or Lyapunov exponent of f is

χ[f ] = limsupt→+∞
ln | f(t) |

t
. (12.48)

χ[f ] determines the growth of the absolute value of f with respect to the
exponential scale. As a matter of fact, the Lyapunov characteristic of eαt is
α. Moreover, | f(t) |= te

ln|f(t)|
t .

Vector-functions x1, ..., xn defined on [t0, +∞) and having different finite
Lyapunov exponents are linearly independent. It follows that the solutions of
a linear system (12.3) cannot have more that n different Lyapunov exponents.

Definition 1199. The set of all different Lyapunov exponents of solutions
of a linear system is called its Lyapunov spectrum.

The Lyapunov transformations do not change the Lyapunov spectrum:

Proposition 1200. Systems (12.3) and (12.47) have the same Lyapunov
spectra.
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Proof. On the one hand, from (12.46), obviously ‖x‖ ≤ ‖L(t)‖‖y‖ ≤ K‖y‖,
thus χ[x] ≤ χ[y]. On the other hand, y = L−1(t)x and, L−1(t) is also
bounded, it follows that ‖y‖ ≤ K ′‖x‖, thus χ[y] ≤ χ[x]. Finally, χ[x] = χ[y]
for any solutions of (12.3) and (12.47).

12.5.2 Reduction of a Linear System to a Triangular
Form

System (12.3) can always be reduced to a state form having an upper-
triangular state matrix. We are interested in the case in which this kind
of reduction, called Perron transformation [273], can be achieved with a Lya-
punov change of coordinates.

The result below is widely known and used in linear algebra. It is the con-
sequence of the orthogonalization of the basis of the state transition matrix
of (12.3) (see, e.g., [3]).

Lemma 1201. Any fundamental matrix ΨA(t) of (12.3) can be written

ΨA(t) = U (t)R(t) (12.49)

where U (t) is unitary (i.e., UT (t)U (t) = In) and R(t) is an upper triangular
matrix with positive elements on the diagonal.

Proposition 1202. System (12.3) can be reduced to a system with an upper
triangular state matrix with real diagonal coefficients by a unitary change of
variable (12.46). Moreover, if the initial system has bounded coefficients, the
coefficients of the reduced system are also bounded and the unitary transfor-
mation is Lyapunov.

Proof. The change of variables (12.46) with L(t) = U(t) where U(t) is the
unitary matrix in (12.49) brings the initial system (12.3) to (12.47) where

B(t) = U−1(t)A(t)U (t)− U−1(t)U̇(t). (12.50)

A fundamental matrix of the reduced system is ΨB(t) = U−1(t)Ψ(t) where
Ψ(t) is a fundamental matrix of the initial system. From (12.49) follows that
Ψ(t) = R(t), thus ΨB(t) is upper triangular. Also, Ψ̇B(t) = B(t)ΨB(t) from
which B(t) = Ψ̇(t)Ψ−1(t), thus B(t) is upper triangular also. Moreover,

bii = ṙii(t)r−1
ii (t), i = 1, ..., n (12.51)

which, following Lemma 1201, are positive. Suppose now the coefficients of the
initial system are bounded: supt≥t0‖A(t)‖ ≤ M . Then ‖U−1(t)A(t)U(t)‖ ≤
M for t ≥ t0 since U (t) is unitary. Using (12.50), it follows that

‖B(t)‖ ≤M + ‖V (t)‖ (12.52)
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where V (t) = U−1(t)U̇ (t). It can be easily checked that V (t) = −V T (t). As
bii > 0, i = 1, ..., n, it follows from (12.50) that Vii(t) ≤ (U−1(t)A(t)U(t))ii,
i = 1, ..., n. Thus, ‖V (t)‖ ≤ M which, combined with (12.52) leads to
‖B(t)‖ ≤ 2M for t ≥ t0. Moreover, ‖U(t)‖ and ‖U−1(t)‖ are bounded since
U is unitary. The boundedness of ‖U̇(t)‖ follows from the boundedness of
V (t) since U̇(t) = U (t)V (t).

12.5.3 Poles and Stability

Poles can be defined for LTV systems with bounded coefficients. Indeed,
following Proposition 1202, the transformation towards the upper triangular
form is in this case Lyapunov and preserves the stability properties of the
initial system.

Definition 1203. Consider the system defined by (12.3) and suppose A(t)
is bounded. A set P of system poles for (12.3) is the diagonal of the state
matrix B(t) given by (12.50) of the upper triangular reduced system: P =
{b11, ..., bnn}.

Proposition 1204. The system defined by (12.3) where A(t) is bounded is
exponentially stable if, and only if

limsupt→+∞bii(t) < 0, i = 1, ..., n. (12.53)

Proof. We will use the same notations as in Proposition 1202.

The ”if” part: Suppose (12.53) is satisfied. As shown in the proof of
the mentioned proposition, transformation U(t) brings also a fundamen-
tal matrix to an upper triangular form: ΨB(t) = R(t). A fundamental
set of solutions of the reduced system (12.47) is formed by the columns
yi(t) = [r1i(t)...rn−1i(t) rii(t) 0...0]T of ΨB(t) or, equivalently, R(t). From
the elementary equations (12.51) follows that rii(t) =

∫
bii(t)dt, i = 1, ..., n.

Obviously rii(t) → 0 exponentially when t → +∞ because of (12.53). The
same property holds for the other components of each yi of the fundamental
set: the i− 1 row of ẏi(t) = B(t)yi(t) is

ṙi−1i(t) = bi−1i−1(t)ri−1i(t) + f(t) (12.54)

where f(t) = bi−1i(t)rii(t). As bi−1i(t) is bounded and rii(t) is exponentially
decreasing to zero, f satisfies (12.29), thus, from Proposition 1191, the state
of (12.54), i.e., ri−1i(t) exponentially decreases to zero. Following in the
same manner, it can be concluded that all the entries of Ψ(t) exponentially
decrease to zero, i.e., that the reduced system (12.47) is exponentially stable.
It follows that the initial system (12.3) is also exponentially stable since the
transformation L(t) = U (t) is Lyapunov.
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The ”only if” part: Suppose (12.3) is exponentially stable. Then (12.47)
is also exponentially stable. As shown in the proof of the ”if” part, rii,
i = 1, ..., n are elements of the vectors of a fundamental set of solutions
of (12.47). Thus they exponentially decrease to zero. From the elementary
equations (12.51) it follows (12.53).

It is important to notice that the stability characterization above holds only
for systems with bounded coefficients. Indeed, this is a key point in the
demonstration above. Without this condition, the transformationL(t) = U (t)
is no longer Lyapunov. Moreover, U(t) is built from a fundamental matrix
of the initial system which can be determined only after computation of all
solutions to the system (12.3). Thus, stability characterization (12.53) is not
constructive even in the particular case of systems having bounded coeffi-
cients.

When B(t) has the particular form B(t) = diag{b1, ..., bn}, the pole set P
corresponds to the parallel D-spectrum introduced in [378] and related refer-
ences. It furthermore corresponds to a fundamental set of poles defined in Sec-
tion 6.6 for the particular case of linear systems defined by a W-polynomial.

Example 1205. Consider the third order Euler differential equation:

t3y(3)(t)− t2ÿ(t)− 2tẏ(t)− 4y(t) = 0. (12.55)

A state representation is (12.3) with x(t) = [y(t) ẏ(t) ÿ(t)]T and A(t) =⎡

⎣
0 1 0
0 0 1

−4t−3 −2t−2 t−1

⎤

⎦. Notice that A(t) is bounded for [t0, +∞), t0 > 0. A

set of poles which is also a parallel D-spectrum is γ1(t) = 4t−1, γ2(t) = it−1,
γ3(t) = −it−1 where i2 = −1. Equation (12.55) can be written P (∂)y = 0
where ∂ = d/dt and P (∂) = t3∂3 − t2∂2 − 2t∂ − 4. The γ’s given above form
a fundamental set of roots of the skew polynomial P (∂) and can be computed
directly from the factors of P (∂).

12.6 Exercises

Exercise 1206. For the LTV system (12.1) and (12.2) consider the matrix

Wo(t0, t1) =
∫ t1

t0

ΦT (τ , t0)CT (τ)C(τ )Φ(τ , t0)dτ ,

called the observability grammian of (12.1), (12.2), where Φ(τ , t0) is the state
transition matrix of (12.1). Show that (12.1), (12.2) is observable at t0 if,
and only if it exists t1 > t0 such that Wo(t0, t1) is nonsingular.

Exercise 1207. Show that the Lyapunov transformations form a group.
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12.7 Notes and References

Overviews of the presentation and analysis of an LTV system from its state
representations are given in [63], [170], [304], [151]. Stability is derived from
the original approach of Lyapunov [222]. Our presentation follows mainly the
ones in [355], [186] and [61]. Lyapunov transformations and reducibility of
state representations of LTV systems are treated in [3]. In [262], Lyapunov
transformations were used to obtain the Perron’s upper triangular form [273]
of the state matrix, on which the notion of pole set of the state matrix was
defined.
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Proc. PSCC, Liège, Belgium (2005)



616 References

[245] Martineau, A.: Les hyperfonctions de M. Sato. Séminaire Bourbaki, Exposé
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separable -, 275
unitary -, 97
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- variety, 151
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algorithm
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structure -, 569

analytic functional
- carried by a compact set, 81
real -, 81

support of a -, 81
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antiisomorphism, 11
asymptotic
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- stability, 587
- tracking, 558
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I-, 47

automorphism
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differential transcendence -, 562
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preadditive -, 17
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chain, 39
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isomorphic -, 43
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- matrices, 200

- numbers, 46
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commutative -, 175
noncommutative -, 176
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stably-free ideal -, 259
Sylvester -, 166
unique factorization -, 170
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dual
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strong -, 62
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equation
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integral -, 175
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function
analytic -, 68
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periodic -, 115
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rational -, 133
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analytic -, 81

functor
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adjoint -, 17
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contravariant -, 10
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essentially surjective -, 83
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induced -, 11
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- matrix, 584
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derived -, 56
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difference -, 305
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length of a -, 55
Lie -, 70
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order of a -, 48
orthogonal -, 74
perfect -, 57
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proalgebraic -, 303
simple -, 53
solvable -, 57
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special linear -, 51
special orthogonal -, 86
symmetric -, 48
symplectic -, 88
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hidden
- coupling terms, 579
- modes, 439

homomorphism
- of monoids, 31
bimodule-, 98
canonical -, 101
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lattice-, 42
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module-, 97
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hyperfunction, 77
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support of a -, 77, 82

ideal
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difference -, 297
differential -, 297
fractional -, 128
in a Lie algebra, 74
invertible -, 175
leading -, 139
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meet-irreducible -, 234
nilpotent -, 123
primary -, 208
prime -, 118
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proper -, 28
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product of -, 118
sum of -, 117

identity
Jacobi -, 73

image, 19
canonical -, 6

inclusion, 7
- functor, 11

indeterminate
central -, 131

index
structural -, 458

injection
canonical -, 5, 7, 9
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intersection
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projective -, 43
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law
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Sylvester’s - of nullity, 163

left coprime factorization, 430
lemma
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Hensel’s -, 420
Nine -, 85
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length
- of a chain, of a poset, 39
- of an element, 44

limit
direct -, 14
inductive -, 14
inverse -, 16
projective -, 16
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Lyapunov
- exponent, 599
- function, 588
- matrix equation, 596
- spectrum, 599
- stability, 587
- transformation, 599

manifold, 69
map

adjoint -, 62, 88, 138
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canonical -, 108, 113, 216
compact -, 66
isotone -, 37
left -, 4
right -, 4
transpose -, 62

matrices
(left, right) equivalent -, 111
(left, right) similar -, 200
- of the direct term, 345
comaximally transposable -, 202
conjugate

(alpha-delta)-, 284
conjugate -, 111
stably associated -, 201

matrix
- of a homomorphism, 105
- of definition of a module, 197, 517
- regular at infinity, 458
algebraic -, 285
Casoratian -, 293
companion -, 282
completable -, 242
cyclic -, 282
eigenvalue of a -, 289
eigenvector of a -, 289
elementary -, 154
full -, 165
fundamental -, 300, 304
Hamiltonian -, 88
index of a -, 200
input -, 345
interconnection -, 480
order of a - , 30
output -, 345
prime -, 167
rank of a -, 155
regular -, 158
singular -, 159
skew-Hamiltonian -, 88
skew-symmetric -, 86
state -, 345
symplectic -, 88
system -, 341
totally transcendental -, 285
transfer, 340
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- of order p, 157
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faithful -, 238
faithfully flat -, 238
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finitely generated -, 102
finitely presented -, 191
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indecomposable -, 102
injective -, 229
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Noetherian -, 120
presentation of a -, 191
projective -, 225
semisimple -, 121
simple -, 121
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torsion -, 516
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torsionless -, 198
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monoid, 27
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atomic -, 34
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commutative -, 27
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finitely generated -, 30
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invariant -, 35
opposite of a -, 28
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unique factorization -, 46

monomorphism, 7
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morphism
- of functors, 12
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induced -, 19
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complex -, 76
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object, 6
- of finite type, 27
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factor -, 7
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projective -, 22
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monic -, 132

multivariate -, 185
root (or zero) of a -, 422
root of a -, 132
separable -, 275

skew -, 135
evaluation of a -, 288
root of a -, 289

skew Laurent -, 140
univariate -, 185
Wedderburn -, 292, 405

poset, 36

Artinian -, 39
dual -, 37
Noetherian -, 39
well-ordered -, 39

properness, 462
power, 4, 9
prime, 46, 119

(GFLP), 350

factor left -, 350
I-, 47
minor left -, 350

weakly zero left -, 350
zero left -, 350

primitive, 307
principle

fundamental -, 230
problem

universal -, 12
product

free -, 53
product

- of a family, 4, 9
cartesian -, 4

crossed -, 141
tensor -, 112
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projection
canonical -, 4, 9, 70

proper
- transfer matrix, 516

property
unimodular extension -, 263

quotient
controllable -, 352

radical, 151
Jacobson -, 117

radius
convergence -, 147

rank
- of a homomorphism, 163
- of a module, 162
- of a set, 292
inner -, 165
outer -, 163

realization
state-space -, 344

refinement
- of a chain, 39
proper -, 39

matrix
2DOF -, 556

relation
(left, right) comaximal -, 200
coarser equivalence -, 6
converse order -, 37
finer equivalence -, 6
order -, 36
preorder -, 5
proper -, 200
total order -, 36
well-defined -, 6

representation
controllable image -, 346
image -, 346

resolution
finite free -, 239
flat -, 239
free -, 239
injective -, 239
left -, 239
length of a -, 239

projective -, 239
right -, 239

retraction, 26, 224
right coprime factorization, 430

ring
- of formal power series, 420
adequate -, 267
affine coordinate -, 152

Artinian -, 120
change of -, 215
characteristic of a -, 93
coherent -, 194

commutative -, 93
difference -, 114
differential -, 114
division -, 94

elementary divisor -, 254
endomorphism -, 96
extension of the - of scalars, 113, 217
free R-, 185

Goldie -, 127
hereditary -, 229
Hermite -, 227
local -, 130

Noetherian -, 120
opposite, 93
perfect -, 93, 266
Picard-Vessiot -, 304
prime -, 123

principal ideal -, 176
projective-free -, 227
radical-free -, 117
rank-stable -, 166

reduced -, 152
regular -, 244
restriction of the - of scalars, 96, 216
Schreier -, 170

semihereditary -, 264
semiprime -, 123
semisimple -, 122
simple -, 94

weakly finite -, 183
roots

P-independent -, 422
Rosenbrock

- description, 341
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Rosenbrock description
admissible -, 341

row
unimodular -, 263

rule
Cramer’s -, 157

section, 26, 224
semifir, 164
sequence

arithmetic-geometric -, 326
exact -, 23
generalized -, 59
hypergeometric -, 296
inexact -, 24
Kronecker -, 469
short exact -, 23
split short exact -, 26

series
derived -, 57
Jordan-Hölder -, 55
Laurent -

skew -, 149
power -

convergent -, 114
formal -, 146
order of a -, 148
skew -, 148

set
absorbed -, 61
absorbing -, 61
algebraic -, 153, 291
alpha-invariant -, 139
bornivorous -, 61
bounded -, 61
delta-invariant -, 139
denominator -, 125
equicontinuous -, 62
filtering -, 13
homogeneous -, 58
irreducible -, 151
multiplicative -, 123
Ore -, 125
P-independent -, 292
preordered -, 5

sheaf
flabby -, 77

singular point
determined -, 78

nonregularity of a -, 78
singular -, 78

space
(DFS) -, 66, 69
(FS) -, 66, 69
(LF)-, 66
(LFM)-, 66
affine -, 153
Banach -, 63
barreled -, 64
bornological -, 64
complete -, 61
Fréchet -, 63
Fréchet-Montel -, 65
Hardy -, 169
Hilbert -, 63
locally convex -, 61
Montel -, 64
pre-Hilbert -, 63
reflexive -, 63
Schwartz -, 66
semicomplete -, 61
semireflexive -, 63
topological -, 59
topological vector -, 60
transfer vector -, 340
vector -, 103

dimension of a - , 104
spectrum

prime -, 119
stability

input to state -, 593
internal -, 548
uniform -, 587

stabilizer, 58
state

- transition matrix, 584, 590
partial -, 341

subbehavior, 316, 324
subcategory, 7

full -, 7
subfunctor, 11
subgroup, 49

algebraic -, 153
index of a -, 49
normal -, 50

sublattice, 41
submodule, 96

essential -, 265
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maximal -, 206
proper -, 96
superfluous -, 266
torsion -, 129

submonoid, 28
proper -, 28

subobject, 7
sum

- of submodules, 101
- of subobjects, 25
direct -, 101

support
- of a family, 52

surjection
canonical -, 6

system
autonomous -, 404, 584
control -, 340, 433
controllable -, 351

0-, 397
Kalman-, 357

direct -, 13
dual -, 61
dual of a -, 364
flat -, 346, 567
freely controllable -, 346
generalized state representation of a

nonlinear -, 564
impulsive -, 473, 517, 518
interconnected -, 480
inverse -, 15
invertible (left/right) nonlinear -, 569
linear -, 312
multidimensional -, 326
nD -

continuous -, 326
discrete -, 327

nonautonomous -, 593
nonlinear -, 563
nonlinear control -, 564
observable -

strongly -, 365
order of a -, 345
spectrally controllable -, 369
state-space -, 344

proper -, 345
strictly proper -, 345

strongly controllable -, 352
tangent -, 565

temporal -, 468, 516
U-, 320
variational -, 574, 588

syzygy, 199

term
constant -, 132
leading -, 132

test
Kalman -

- for controllability, 357
Popov-Belevitch-Hautus -

generalized -, 352
theorem

- of the primitive element, 275
Abel’s -, 279
Adjoint Isomorphism -, 113
Artin’s -, 277
Banach -, 63
Banach-Schauder -, 20
Cantor’s -, 8
Cartan’s -, 70
Cayley-Hamilton -, 286
Dedekind’s -, 270
full embedding -, 24
fundamental - of the difference Galois

theory, 305
fundamental - of the differential

Galois theory, 302
fundamental - of the Galois theory,

277
Galois’ -, 279
Gauss’ -, 170
Goldie’s, 127
Hahn-Banach -, 62
Hilbert’s -, 246
Hilbert’s basis -, 133
Hopkins-Levitzki -, 121
Jordan -, 287
Jordan-Hölder -, 55
Jordan-Hölder-Dedekind -, 43
Köthe’s duality -, 80
Komatzu’s -, 78
Kronecker’s -, 272
Krull’s -, 116
Krull-Schmidt -, 45
Kurosh-Ore -, 45
Lagrange’s -, 50
Lasker-Noether -, 209
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Levi’s -, 74
Montel’s -, 68
Noether’s -, 234
Paley-Wiener -, 348
Poincaré’s -, 393
Poincaré-Birkhoff-Witt -, 75
Quillen-Suslin -, 228
Sato’s -, 78
Schreier -, 43
Schreier-Zassenhaus -, 55
Skolem-Noether, 136
Steinitz’ -, 271, 273
Vitali’s -, 68
Weierstrass’ factorization -, 172

theorems
Noether’s isomorphism -, 25, 52

topology
a-adic -, 131
coarser -, 60
discrete -, 60
finer -, 60
finite -, 60
Hausdorff -, 59
induced -, 60
Krull -, 279
profinite -, 279
quotient -, 61
strong -, 62
trivial -, 60
weak -, 61
weak* -, 62
weakened -, 62
Zariski -, 151

torus, 72
tracking error, 548, 558
trajectory, 314, 392, 583

- planning, 568
transform

anticausal Z-, 478
causal Laplace -, 476

transformation
natural -, 12
pseudo-linear -, 282

transpose
- of a map, 106
- of a matrix, 108
classical -, 108

transposition, 49

union
directed -, 15
disjoint -, 5

unit, 29

valuation, 419
variable

free -, 338
velocity-based linearization, 578,

579

word, 36
length of a -, 36

Youla-Kučera parametrization, 554

zero
- at infinity, 458, 528
input-output-decoupling -, 436
blocking -, 433
blocking - at infinity, 458
input decoupling - at infinity, 517
input-decoupling -, 434, 439
input-decoupling - at infinity, 487,

517
input-output-decoupling -, 435
invariant -, 428, 429, 440, 441
output-decoupling -, 434, 439–441
output-decoupling - at infinity, 517
transmission -, 430, 432
transmission - at infinity, 461, 528
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