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Preface to "An Overview of Topological 
Groups: Yesterday, Today, Tomorrow"
Sidney A. Morris

Reprinted from Axioms. Cite as: Morris, S.A. An Overview of Topological Groups: 
Yesterday, Today, Tomorrow. Axioms 2016, 5, 11.

It was in 1969 that I began my graduate studies on topological group theory and 
I often dived into one of the following five books. My favourite book “Abstract 
Harmonic Analysis” [1] by Ed Hewitt and Ken Ross contains both a proof of 
the Pontryagin-van Kampen Duality Theorem for locally compact abelian groups 
and the structure theory of locally compact abelian groups. Walter Rudin’s book 
“Fourier Analysis on Groups” [2] includes an elegant proof of the Pontryagin-van 
Kampen Duality Theorem. Much gentler than these is “Introduction to Topological 
Groups” [3] by Taqdir Husain which has an introduction to topological group theory, 
Haar measure, the Peter-Weyl Theorem and Duality Theory.

Of course the book “Topological Groups” [4] by Lev Semyonovich Pontryagin 
himself was a tour de force for its time. P. S. Aleksandrov, V.G. Boltyanskii, R.V. 
Gamkrelidze and E.F. Mishchenko described this book in glowing terms: “This book 
belongs to that rare category of mathematical works that can truly be called classical 
- books which retain their significance for decades and exert a formative influence on 
the scientific outlook of whole generations of mathematicians”.

The final book I mention from my graduate studies days is “Topological 
Transformation Groups” [5] by Deane Montgomery and Leo Zippin which contains a 
solution of Hilbert’s fifth problem as well as a structure theory for locally compact 
non-abelian groups. These five books gave me a good feeling for the most significant 
research on locally compact group theory in the first 60 years of the twentieth century. 
My own contribution to understanding the structure of locally compact abelian 
groups was a small book “Pontryagin Duality and the Structure of Locally Compact 
Abelian Groups” [6] which was translated into Russian and served to introduce a 
generation of young Soviet mathematicians to this topic.

Far from locally compact groups, A.A. Markov [7,8] introduced the study of free 
topological groups. This was followed up by M.I. Graev in 1948 [9] with a slightly 
more general concept. Free topological groups are an analogue of free groups in 
abstract group theory. Markov gave a very long construction of the free topological 
group on a Tychonoff space and also proved its uniqueness. Graev’s proof is also 
long. Shorter proofs appeared after a few years. Today one derives the existence 
of Markov and Graev free topological groups from the Adjoint Functor Theorem. 
Free topological groups have been an active area of research to this day, especially by 
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Alexander Vladimirovich Arhangel’skii of Moscow State University and his former 
doctoral students and they have produced a wealth of deep and interesting results.

Now let me turn to this volume. My aim for “Topological Groups: Yesterday, 
Today, Tomorrow” is for these articles to describe significant topics in topological 
group theory in the 20th century and the early 21st century as well as providing some 
guidance to the future directions topological group theory might take by including 
some interesting open questions.

‘’In 1900 David Hilbert presented a seminal address to the International 
Congress of Mathematicians in Paris. In this address, he initiated a program 
by formulating 23 problems, which influenced a vast amount of research of the 
20th century. The fifth of these problems asked whether every locally-Euclidean 
topological group admits a Lie group structure. This motivated an enormous 
volume of work on locally-compact groups during the first half of the 20th century. 
It culminated in the work of Gleason, Iwasawa, Montgomery, Yamabe and Zippin, 
yielding a positive answer to Hilbert’s fifth problem and exposing the structure of 
almost connected locally-compact groups [5]. (Recall that a topological group G 
is called almost connected [10] if the quotient group G/G0, modulo the connected 
component G0 of the identity, is compact. The class of almost connected groups 
includes all compact groups and all connected locally-compact groups.). The 
advances in the second half of the 20th century shed much light on the structure and 
representation theory of locally compact groups” is how Karl Heinrich Hofmann and 
Sidney A. Morris began their article Pro-Lie Groups: A Survey with Open Problems in 
this volume.

While the class of locally compact abelian groups has the beautiful 
Pontryagin-van Kampen Duality from which the structure of locally compact abelian 
groups can be described (see [6]), the structure theory of compact groups has not 
been derived from any of the various Duality Theorems for compact groups. This 
led Hofmann and Morris to establish and use a Lie Theory for compact groups to 
provide a complete description of the structure of compact groups in [11]. They 
then used in [10] the same Lie Theory approach to establish the structure theory of 
(almost) connected locally compact groups. As the class of locally compact groups is 
not closed even under infinite products, they introduced the class of pro-Lie Groups 
which is a natural extension of the classes of finite-dimensional Lie groups, locally 
compact abelian groups, compact groups and connected locally compact groups 
and used the Lie Theory to describe completely the structure of almost connected 
pro-Lie groups. Their article Pro-Lie Groups: A Survey with Open Problems provides an 
up-to-date summary of pro-Lie groups and lists 12 interesting questions. Probably 
the most interesting of these is

Question 2. Let G be a pro-Lie group with identity component G0. Is G/G0 
complete (and therefore, prodiscrete)?
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Over the last 50 years there has been a steady development of the theory of 
pseudocompact topological groups. In their article Non-abelian Pseudocompact Groups 
in this volume Wis Comfort and Dieter Remus survey the historical development 
of the theory of pseudocompact topological groups. They report that “Many of 
the results we cite, especially the older results, require an abelian hypothesis; some 
questions, definitions and results make sense and are correct without that hypothesis, 
however, and we emphasize these. Thus, this paper has two goals: (1) to provide an 
overview of the (by now substantial) literature on pseudocompact groups; and (2) to 
offer several new results about non-abelian pseudocompact groups.”

In particular Comfort and Remus examine “three recently-established theorems 
from the literature:

(A) (2006) Every non-metrizable compact abelian group K has 2jKj -many proper 
dense pseudocompact subgroups.

(B) (2003) Every non-metrizable compact abelian group K admits 22jKj -many strictly 
finer pseudocompact topological group refinements.

(C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense 
pseudocompact subgroup and a strictly finer pseudocompact topological group 
refinement.

(Theorems (A), (B) and (C) become false if the non-metrizable hypothesis is 
omitted.)”. The authors ask: What happens to (A), (B), (C) and to similar known 
facts about pseudocompact abelian groups if the abelian hypothesis is omitted? Are 
the resulting statements true, false, true under certain natural additional hypotheses, 
etc.? Several new results responding in part to these questions are given, and several 
specific additional questions are posed. One conjecture they mention is due to 
Comfort and van Mill.

Conjecture 5.4.1. Let G be an abelian group which admits a pseudocompact 
group topology. Then the supremum of the pseudocompact group topologies 
on G coincides with the largest totally bounded group topology on G (that is, 
the topology induced on G by Hom(G, T).

We mention two of the questions they ask:

Problem 5.7.2. Does every infinite compact group K have 2jKj -many 
non-measurable subgroups (of cardinality jKj)?
Problem 8.2.11. Let (K, T ) be a profinite group of uncountable weight.
(a) Does T admit a proper pseudocompact refinement of maximal weight 2jKj?
(b) Are there 22jKj -many pseudocompact group topologies on K which are finer 
than T?
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The next paper we discuss here is Free Boolean Topological Groups by Ol’ga 
Sipacheva. She introduces her paper as follows: “In the very early 1940s, 
A. A. Markov [7,8] introduced the free topological group F(X) and the free Abelian 
topological group A(X) on an arbitrary completely regular Hausdorff topological 
space X as a topological-algebraic counterpart of the abstract free and free Abelian 
groups on a set; he also proved the existence and uniqueness of these groups. 
During the next decade, Graev [9,12], Nakayama [13], and Kakutani [14] simplified 
the proofs of the main statements of Markov’s theory of free topological groups, 
generalized Markov’s construction, and proved a number of important theorems on 
free topological groups. In particular, Graev generalized the notions of the free and 
the free Abelian topological group on a space X by identifying the identity element 
of the free group with an (arbitrary) point of X (the free topological group on X 
in the sense of Markov coincides with Graev’s group on X plus an isolated point), 
described the topology of free topological groups on compact spaces, and extended 
any continuous pseudometric on X to a continuous invariant pseudometric on F(X) 
(and on A(X)) which is maximal among all such extensions [9].

This study stimulated Mal’tsev, who believed that the most appropriate place 
of the theory of abstract free groups was in the framework of the general theory of 
algebraic systems, to introduce general free topological algebraic systems. In 1957, 
he published the large paper [15], where the basics of the theory of free topological 
universal algebras were presented.

Yet another decade later, Morris initiated the study of free topological groups 
in the most general aspect. Namely, he introduced the notion of a variety of 
topological groups (A definition of a variety of topological groups (determined 
by a so-called varietal free topological group) was also proposed in 1951 by 
Higman [16]; however, it is Morris’ definition which has proved viable and 
developed into a rich theory.) and a full variety of topological groups and studied 
free objects of these varieties [17-19] (see also [20]). Varieties of topological 
groups and their free objects were also considered by Porst [21], Comfort and 
van Mill [22], Kopperman, Mislove, Morris, Nickolas, Pestov, and Svetlichny [23], 
and other authors. Special mention should be made of Dikranjan and Tkachenko’s 
detailed study of varieties of Abelian topological groups with properties related to 
compactness [24].

The varieties of topological groups in which free objects have been studied best 
are, naturally, the varieties of general and Abelian topological groups; free and free 
Abelian precompact groups have also been considered (see, e.g., [25]). However, 
there is yet another natural variety—Boolean topological groups. Free objects in this 
variety and its subvarieties have been investigated much less extensively, although 
they arise fairly often in various studies (especially in the set-theoretic context). The 
author is aware of only two published papers considering free Boolean topological 
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groups from a general point of view: [26], where the topology of the free Boolean 
topological group on a compact metric space was explicitly described, and [27], 
where the free Boolean topological groups on compact initial segments of ordinals 
were classified (see also [28]). The purpose of this paper is to draw attention to these 
very interesting groups and give a general impression of them. We collect some 
(known and new) results on free Boolean topological groups, which describe both 
properties which these groups share with free or free Abelian topological groups and 
properties specific of free Boolean groups.

We mention here Theorem 8: If dimX = 0, then indB( X) = 0, which 
can be proved much more easily than the analogous result for free topological 
groups. By contrast, Proposition 9 says: The free Abelian topological group on 
any connected space has infinitely many connected components, however the free 
Boolean topological group on any connected space has two connected components. 
We record here a few of Sipacheva’s questions:

Problem 3. Does there exist a space X such that B(X) is normal, but X2 is not?
Problem 4. Describe spaces X for which B(X) is Lindelof. Does there exist a 
space X such that B (X) is Lindelof, but X is not?
Problem 5. Does there exist a space X for which B(X) is normal (Lindelof, ccc), 
but F(X) or A(X) is not?
Problem 6. Is it true that B (X) is Weil complete for any Dieudonne complete 
space X?
Problem 7. Is it true that the free (free Boolean) topological group of any 
stratifiable space is stratifiable?

The article On T-Characterized Subgroups of Compact Abelian Groups by Saak 
Gabriyelyan addresses T-sequences in compact abelian groups. A sequence fung in 
an Abelian group G is called a T-sequence if there is a Hausdorff group topology 
on G relative to which limn un = 0. A subgroup H of an infinite compact Abelian 
group X is said to be T-characterized if there is a T-sequence u = fung in the dual 
group of X such that H = fx 2 X : (un, x) ! 1g. The author summarizes the results 
in this paper as follows: “We show that a closed subgroup H of X is T-characterized 
if and only if H is a Gd-subgroup of X and the annihilator of H admits a Hausdorff 
minimally almost periodic group topology. All closed subgroups of an infinite 
compact Abelian group X are T-characterized if and only if X is metrizable and 
connected. We prove that every compact Abelian group X of infinite exponent has a 
T-characterized subgroup which is not an Fs-subgroup of X, that gives a negative 
answer to Problem 3.3 in [29]”.

The next paper we introduce is Characterized Subgroups of Topological Abelian 
Groups by Dikran Dikranjan, Anna Giordano Bruno and Danele Impieri. Historically, 
characterized subgroups were studied excusively in the case of the circle group 
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T in the context of Diophantine approximation, dynamical systems and ergodic 
theory, see for example [30]. A subgroup H of an abelian topological group 
X is said to be characterized by a sequence v = (vn ) of characters of X if 
H = fx 2 X : vn(x) ! 0 in Tg. The authors say “we introduce the relevant class of 
auto-characterized groups (namely, the groups that are characterized subgroups of 
themselves by means of a sequence of non-null characters); in the case of locally 
compact abelian groups, these are proven to be exactly the non-compact ones. As 
a by-product of our results, we find a complete description of the characterized 
subgroups of discrete abelian groups”. Amongst the questions presented in the 
paper, we mention:

Question 5. Are the closed Gd-subgroups of a precompact abelian always 
N-characterized? (This is equivalent to asking if there exists a continuous 
injection from X/ F into Tn for every closed Gd-subgroup F of a precompact 
abelian group X.)

In the paper Fixed Points of Local Actions of Lie Groups on Real and Complex 
2-Manifolds, Morris W. Hirsch surveys “old and new results on fixed points of 
local actions by Lie groups G on real and complex 2-manifolds. The theme is to 
find conditions guaranteeing that a compact set of fixed points of a 1-parameter 
subgroup contains a fixed point of G.” The classical results of Poincare (1885) [31], 
Hopf (1925) [32] and Lefschetz (1937) [33] yield.

Theorem. Every flow on a compact manifold of nonzero Euler characteristic 
has a fixed point.

The earliest papers I’ve found on fixed points for actions of other nondiscrete 
Lie group are those of P. A. Smith [34] (1942) and H. Wang [35], (1952). Then came 
Borel [36] with

Theorem. If H is a solvable, irreducible algebraic group over an algebraically 
closed field K, every algebraic action of H on a complete algebraic variety over 
K has a fixed point.”

In this paper Hirsch, in particular, puts into context the results of Sommese 
(1973) [37], Lima (1964) [38], Plante (1986) [39], Bonatti (1992) [40], Hirsch (2001) [41], 
Hirsch (2010) [42], Hirsch (2013) [43] and Hirsch (2014) [44].

Next we turn to the survey paper Open and Dense Topological Transitivity of 
Extensions by Non-compact Fiber of Hyperbolic Systems - a Review by Viorel Nitica and 
Andrei Torok. They summarize their paper as follows: “Currently there is great 
renewed interest in proving topological transitivity of various classes of continuous 
dynamical systems. Even though this is one of the most basic dynamical properties 
that can be investigated, the tools used by various authors are quite diverse and are 
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strongly related to the class of dynamical systems under consideration. The goal of 
this survey article is to present the state of art for the class of Holder extensions of 
hyperbolic systems with non-compact connected Lie group fiber. The hyperbolic 
systems we consider are mostly discrete time. In particular, we address the stability 
and genericity of topological transitivity in large classes of such transformations. 
The paper lists several open problems, conjectures and tries to place this topic of 
research in the general context of hyperbolic and topological dynamics”. The Main 
Conjecture is:

Conjecture 6. Assume that X is a hyperbolic basic set for f : X ! X and 
G is a finite-dimensional connected Lie group. Among the Holder cocycles 
b : X ! X with subexponential growth that are not cohomologous to a cocycle 
with values in a maximal subsemigroup of G with non-empty interior, there is 
a Holder open and dense set for which the extension fb is transitive.

The conjecture is proved for various classes of Lie groups. The techniques used 
so far are quite diverse and seem to depend heavily on the particular properties of 
the group that appears in the fiber.

The next paper we discuss is Locally Quasi-Convex Compatible Topologies on a 
Topological group by Lydia Aufienhofer, Dikran Dikranjan and Elena Martfn-Peinador.

“Varopoulos posed the question of the description of the group topologies on an 
abelian group G having a given character group H, and called them compatible 
topologies for the duality (G; H), [45]. As the author explains, the question is 
motivated by Mackey’s Theorem, which holds in the framework of locally convex 
spaces. He treated the question within the class of locally precompact abelian groups. 
Later on, this problem was set in a bigger generality in [46]; namely, within the class 
of locally quasi-convex groups. This is a class of abelian topological groups which 
properly contains the class of locally convex spaces, a fact which makes the attempt 
to generalize the Mackey-Arens Theorem more natural”.

The authors summarize their results as follows: “For a locally quasi-convex 
topological abelian group (G, t) we study the poset C(G, t) of all locally quasi-convex 
topologies on G that are compatible with t (i.e., have the same dual as (G, t) ordered 
by inclusion. Obviously, this poset has always a bottom element, namely the weak 
topology s(G, Gb). Whether it has also a top element is an open question. We 
study both quantitative aspects of this poset (its size) and its qualitative aspects, 
e.g., its chains and anti-chains. Since we are mostly interested in estimates ‘from 
below’, our strategy consists in finding appropriate subgroups H of G that are easier 
to handle and show that C(H) and C(G/H)) are large and embed, as a poset, in 
C(G, t). Important special results are: (i) If K is a compact subgroup of a locally 
quasi-convex group G, then C(G) and C(G/K) are quasi-isomorphic; (ii) If D is a 
discrete abelian group of infinite rank, then C (D) is quasi-isomorphic to the poset

7



FD of filters on D. Combining both results, we prove that for a lca (locally compact 
abelian) group G with an open subgroup of infinite co-rank (this class includes, 
among others, all non s-compact LCA groups), the poset C ( G) is as big as the 
underlying topological structure of (G, t) (and set theory) allow. For a metrizable 
connected compact group X the group of null-sequences G = c0 ( X) with the topology 
of uniform convergence is studied. We prove that C (G) is quasi-isomorphic to P (R).” 
Three questions are recorded below:

Question 7.3. Let G be a non-precompact second countable Mackey group.
Is it true that jC(G)j c.
Problem 7.4. Find sufficient conditions for a metrizable precompact group G 
to be Mackey (i.e., have jC(G)j = 1.)
Conjecture 7.6. [Mackey dichotomy] For a locally compact group G, one 
has either jC(G)j = 1 or jC(G)j c.

Last, but certainly not least, we mention Lindelof S-Spaces and R-Factorizable 
Paratopological Groups by Mikhail Tkachenko. He summarizes the results as follows: 
“We prove that if a paratopological group G is a continuous image of an arbitrary 
product of regular Lindelof S-spaces, then it is R-factorizable and has countable 
cellularity. If in addition G is regular, then it is totally w-narrow, and satisfies 
celw(G) w, and the Hewitt-Nachbin completion of G is again an R-factorizable 
paratopological group”. A curious consequence of the above is Corollary 14: The 
Sorgenfrey line is not a continuous of any product of regular Lindelof S-spaces. We 
conclude by mentioning three questions in this paper:

Problem 15. Let a (Hausdorff) paratopological group G be a continuous 
image of a product of a family of Lindelof S-spaces. Does G have the Knaster 
property? Is it w-narrow?
Problem 17. Let a Hausdorff (regular) paratopological group G be a 
continuous image of a dense subspace of a product of separable metrizable 
spaces. Is G perfectly k-normal or R-factorizable?
Problem 18. Does every upper quasi-uniformly continuous quasi-pseudometric 
on an arbitrary product of Lindelof S-spaces depend at most on countably many 
coordinates?

In conclusion, the collection of articles in this volume should give the reader an 
overview of topological group theory as it developed over the last 115 years, as well 
as the richness of current research. In this Editorial I have listed some of the open 
questions in these papers which interested me, but the papers themselves contain 
many more. My hope is that you, the reader, will solve some of these problems and 
contribute to the future development of topological group theory.
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Pro-Lie Groups: A Survey with 
Open Problems
Karl H. Hofmann and Sidney A. Morris

Abstract: A topological group is called a pro-Lie group if it is isomorphic to a 
closed subgroup of a product of finite-dimensional real Lie groups. This class of 
groups is closed under the formation of arbitrary products and closed subgroups 
and forms a complete category. It includes each finite-dimensional Lie group, 
each locally-compact group that has a compact quotient group modulo its identity 
component and, thus, in particular, each compact and each connected locally-compact 
group; it also includes all locally-compact Abelian groups. This paper provides an 
overview of the structure theory and the Lie theory of pro-Lie groups, including 
results more recent than those in the authors’ reference book on pro-Lie groups. 
Significantly, it also includes a review of the recent insight that weakly-complete 
unital algebras provide a natural habitat for both pro-Lie algebras and pro-Lie groups, 
indeed for the exponential function that links the two. (A topological vector space 
is weakly complete if it is isomorphic to a power RX of an arbitrary set of copies of 
R. This class of real vector spaces is at the basis of the Lie theory of pro-Lie groups.) 
The article also lists 12 open questions connected to pro-Lie groups.

Reprinted from Axioms. Cite as: Hofmann, K.H.; Morris, S.A. Pro-Lie Groups: 
A Survey with Open Problems. Axioms 2016,4, 294-312.

1. Introduction

In 1900, David Hilbert presented a seminal address to the International Congress 
of Mathematicians in Paris. In this address, he initiated a program by formulating 
23 problems, which influenced a vast amount of research of the 20th century. The 
fifth of these problems asked whether every locally-Euclidean topological group 
admits a Lie group structure, see [1]. This motivated an enormous volume of work 
on locally-compact groups during the first half of the 20th century. It culminated in 
the work of Gleason, Iwasawa, Montgomery, Yamabe and Zippin, yielding a positive 
answer to Hilbert’s fifth problem and exposing the structure of almost connected 
locally-compact groups. (Recall that a topological group G is called almost connected 
if the quotient group G/G0, modulo the connected component G0 of the identity, 
is compact. The class of almost connected groups includes all compact groups 
and all connected locally-compact groups.) The advances in the second half of the 
20th century shed much light on the structure and representation theory of locally 
compact groups.
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Notwithstanding this, it was recognized that the class of locally-compact groups 
is obviously deficient in that it is not even closed under the formation of arbitrary 
products. It was unclear which class of topological groups would most appropriately 
extend the class of finite-dimensional Lie groups and avoid this defect.

At the beginning of the 21st century, the authors of this survey introduced the 
class of pro-Lie groups [2-4]. This class contains all finite-dimensional Lie groups, 
all compact groups, all locally-compact Abelian groups and all almost connected 
locally-compact groups. It is characterized as the class of all closed subgroups of 
arbitrary products of finite-dimensional Lie groups. Obviously, it is closed under the 
formation of arbitrary products and even the passage to closed subgroups.

This notion of pro-Lie group differs from that used in the late 20th century, where 
a group G is called a pro-Lie group if it is locally compact and contains arbitrarily 
small compact normal subgroups N, such that G/ N is a finite-dimensional Lie group.

In order to understand the structure of pro-Lie groups in our sense, we 
developed a highly infinite-dimensional Lie theory of considerable complexity 
(see [5] and subsequent publications [6-8]). This Lie theory assigns to each pro-Lie 
group G a pro-Lie algebra g and an exponential function exp : g ! G. This 
approach was exploited very successfully in [9] for compact groups and was found 
to be an eminently useful extension of the classical theory of real Lie groups of 
finite dimension.

The theory of an n-dimensional real Lie group is based on the fact that open 
subsets of Rn have a rich differentiable structure that is transported to the group, 
allowing a differentiable multiplication and inversion in the group. It has been 
an ongoing effort to replace Rn by more general, possibly infinite-dimensional, 
topological vector spaces supporting differentiable structures. The most advanced 
such theory is the theory of Lie groups on differentiable or smooth manifolds 
modeled on open subsets of locally-convex vector spaces and their real analysis as 
used by Helge Glockner and Karl-Hermann Neeb (see [10-12]). One may justifiably 
ask how the theory of pro-Lie groups and the theory of infinite-dimensional 
differentiable Lie groups in their spirit are related. It was shown in [13] that a pro-Lie 
group is a smooth Lie group in their sense if and only if it is locally contractible.

The theory of pro-Lie groups has been described in detail in the 678-page 
book [5] in 2007 and in later papers. An endeavor to summarize that work would 
therefore be futile. Rather, in this survey, we highlight central results and explain 
some key open problems.

The purely theoretical foundation of, and motivation for, the theory of pro-Lie 
groups, however, must be complemented by an outlook to areas in which they 
emerge naturally and by necessity. Section 8 therefore deals with the appearance of 
pro-Lie groups in the so-called character theory of Hopf algebras, which received 
attention in recent publications [14].
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2. The Topology of Pro-Lie Groups

It has become a standard result in the literature that every connected 
locally-compact Abelian group is homeomorphic to Rn K where K is a compact 
connected Abelian group (see, e.g., [9], Theorem 7.57). The non-Abelian version of 
this (see [15], p. 188f) says that a connected locally-compact group is homeomorphic 
to Rn K, where K is a compact connected group. We shall see in this section that 
a connected pro-Lie group is homeomorphic to Rm K where m is an arbitrary 
cardinal and K is a compact connected group. This is convincing evidence that 
connected pro-Lie groups represent a natural extension of connected locally-compact 
groups. We also see from this observation that the pro-Lie group RI, for an arbitrary 
set I, is a critical example of a pro-Lie group. We shall return to this theme repeatedly 
in this text.

We shall give now a complete description of the topological structure of an 
almost connected pro-Lie group [16]. We present it here because it is perhaps easily 
understood without too much background information. A complete proof of the 
result is far from elementary or short.

A compact connected group S is said to be semisimple if its algebraic 
commutator subgroup is the whole group. Let us preface the main result by the 
remark that we know very explicitly the structure of compact connected semisimple 
groups from [9], Theorem 9.19. It is also a fact that in such a group, every element is 
itself a commutator.

Likewise, the structure of a compact connected Abelian group A is well 
understood. Indeed, a compact Abelian group A is connected if and only if its 
Pontryagin dual is a torsion-free Abelian group (see [9], Corollary 8.5). This allows 
the determination of details of the structure of such a group, as is expounded in [9], 
Chapter 8.

We denote by Z(n) the n-element group Z/ nZ.
With this notation and information at hand, one can appreciate the power of the 

following result:

Theorem 1. ([7], Corollary 8.9, p. 381) An almost connected pro-Lie group G contains a 
compact connected semisimple subgroup S and a compact connected Abelian subgroup A, 
such that for suitable sets I and J, the topological group G is homeomorphic to the topological 
group RI S A D, where:

(Z(n), if G has finitely many components,

Z(2) J, otherwise.

This result allows several immediate corollaries, which are of interest for the 
topology of pro-Lie groups.
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Corollary 1. The space underlying an almost connected pro-Lie group is a Baire space.

This follows from Theorem 1 and Oxtoby’s results in [17].

Corollary 2. Every almost connected pro-Lie group is homotopy equivalent to a 
compact group.

Indeed, RI is homotopy equivalent to a singleton. The algebraic topology of an 
almost connected pro-Lie group therefore is that of a compact group (cf. [9]).

Corollary 3. An almost connected pro-Lie group is locally compact if and only if in 
Theorem 1, the set I is finite.

At the root of Theorem 1 is the following main theorem generalizing the 
Theorem on p. 188ff in [15].

Theorem 2. ([7], Main Theorem 8.1, p. 379) Every almost connected pro-Lie group G has 
a maximal compact subgroup M, and any other compact subgroup is conjugate to a subgroup 
of M. Moreover,

(1) G = G0M,
(2) M0 = G0 \ M, and
(3) M0 is a maximal compact subgroup of G0 .

We record that the results of Theorem 2 enter into a proof of Theorem 1 in an 
essential way. In the process of proving Theorem 1, one also establishes the following 
theorem, which is more concise than Theorem 1 if one assumes the structure theory 
of compact groups as presented in [9].

Theorem 3. ([7], Theorem 8.4) Let G be an almost connected pro-Lie group, and M a 
maximal compact subgroup of G. Then, G contains a subspace E homeomorphic to RI, 
for a set I, such that (m, e) 7! me : M E ! G is a homeomorphism. Thus, G is 
homeomorphic to RI M.

3. Pro-Lie Groups as Projective Limits of Lie Groups

We have defined pro-Lie groups as closed subgroups of products of 
finite-dimensional real Lie groups. In fact, they can be equivalently defined as special 
closed subgroups of such products, namely projective limits of finite-dimensional 
Lie groups.

At first pass, this is surprising, and its proof requires some effort.
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Definition 1. A family ffjk : Gj ! Gkjj, k 2 Jg of morphisms of topological groups is 
called a projective system if J is a directed set satisfying the conditions:

(a) for all j 2 J, fjj is the identity map of Gjj, and
(b) for i, j, k 2 J with i j k, we have fik = fij fjk.

Given a projective system of morphisms of topological groups, we define a closed 
subgroup G of the product nj2 j Gj to be the set f (gi) i 2 j '■ gj = fjk (gk) for all j < k in J g • 
This group G is called the projective limit (of the projective system), denoted by limj2J Gj.

When we say in the following that a subgroup N of a topological group G is a 
co-Lie subgroup, we mean that N is a normal closed subgroup, such that the factor 
group G/N is a Lie group.

Theorem 4. ( , Theorem 3.39 on p. 161, ) For a topological group G, the 
following conditions are equivalent

[5,18] [6,19]

(1) G is complete, and every identity neighborhood contains a co-Lie subgroup^
(2) G is a projective limit of Lie groups^
(3) G is a pro-Lie group^

This theorem, by the way, explains the choice of the name “pro-Lie group.” 
(See also [20].) There is a considerable literature on the projective limits of finite 
discrete groups, called profinite groups (see [21,22]). Furthermore, amongst the 
pro-Lie groups, there are the prodiscrete groups, namely projective limits of discrete 
groups or, equivalently, closed subgroups of products of discrete groups. There is not 
much literature on prodiscrete groups. We formulate the following open question 
Question 1: Is there a satisfactory structure theory for non-discrete prodiscrete 
groups? More particularly, is there a satisfactory structure theory even for Abelian 
non-discrete prodiscrete groups?

We do know that a quotient group of a pro-Lie group modulo a closed subgroup 
is a pro-Lie group if the quotient group is complete (see [5], Theorem 4.1.(i), p.170). 
One may reasonably ask whether, for a pro-Lie group G and a closed normal 
subgroup N, we have sufficient conditions for G/ N to be complete and therefore a 
pro-Lie group (cf. [23]).

Theorem 5. ( , Theorem 4.28, p. 202) Let G be a pro-Lie group and N a closed normal 
subgroup of G^ Each of the following condition suffices for G / N to be a pro-Lie group:

[5]

(i) N is almost connected, and G / G0 is complete
(ii) N satisfies the first axiom of countability

(iii) N is locally compact
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The answer to following question is unknown:
Question 2: Let G be a pro-Lie group with identity component G0. Is G/G0 complete 
(and therefore, prodiscrete)?

Indeed, this is the case when G is Abelian; see Theorem 6(iii) below.

4. Weakly-Complete Vector Groups

In this section, we discuss the previously mentioned connected pro-Lie groups 
RI (ii) (iii), for a set I. For infinite sets I, these are the simplest connected pro-Lie groups 
outside the class of locally-compact groups. However they will appear many times 
in the Lie theory we shall present. In particular, they feature in the structure theory 
of Abelian pro-Lie groups.

(i) (v, h) 7! v + h : V H ! G is an isomorphism of topological groups.
(ii) H0 is a compact connected Abelian group, and every compact subgroup of G is 

contained in H.
(iii) H/H0 = G/G0, and, thus, G/G0 is prodiscrete.

All vector spaces considered here are understood to be vector spaces over R. 
For a vector space E, let Hom( E, R) denote the set of all linear functionals on E with 
the vector space structure and topology it inherits from RE, the vector space of all 
functions E ! R with the product topology.

Proposition 1. For a topological vector space V, the following conditions are equivalent:

(1) There is a vector space E, such that the topological vector spaces Hom(E, R) and V 
are isomorphic as topological groups.

(2) There is some set I, such that V is isomorphic to R  with the product topology.I

Definition 2. A topological vector space V is called weakly complete if it satisfies the 
equivalent conditions of Proposition 1.

Every weakly-complete vector space is a nuclear locally-convex space (see [24], 
p. 100, Corollary to Theorem 7.4, p. 103). The vector space E in Proposition 1 is 
obtained as the vector space of all continuous linear maps V ! R. In fact, the 
category of all weakly-complete vector spaces and continuous linear maps between 
them is dual to the category of all vector spaces and linear maps between them in a 
fashion analogous to the Pontryagin duality between compact Abelian groups and 
discrete Abelian groups (see [9], Theorem 7.30, [5], Appendix 2: Weakly Complete 
Topological Vector Spaces, pp. 629-650).

Theorem 6. ([5], Theorem 5.20, p. 230) For any Abelian pro-Lie group G, there is a 
weakly-complete vector subgroup V and a closed subgroup H, such that (in additive notation):
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(iv) If Ga and Ha are the arc components of the identity of G and H, respectively, then 
Ga = V Ha.

We note that in the present circumstances, the positive answer to Question 2 
expressed in Conclusion (iii) follows from the compactness of H0 via Theorem 5.

We have seen that products of pro-Lie groups are pro-Lie groups and that closed 
subgroups of pro-Lie groups are pro-Lie groups. As a consequence, projective limits 
of pro-Lie groups are pro-Lie groups.

In Section 7 of [25], Banaszczyk introduced nuclear Abelian groups. Since 
all Abelian Lie groups are nuclear and the class of nuclear groups is closed under 
projective limits, all Abelian pro-Lie groups are nuclear. (See also [26].)

In these circumstances, it is somewhat surprising that quotient groups of pro-Lie 
groups may fail to be pro-Lie groups. Indeed, as we shall see in the next Proposition 2, 
there is a quotient group of a very simple Abelian pro-Lie group, namely of R2@0 , 
which is an Abelian topological group that is not complete and, therefore, is not 
a pro-Lie group. However, this situation is not as concerning as it might first 
appear, because every quotient group of a pro-Lie group has a completion, and 
the completion is a pro-Lie group.

We consider the unit interval I = [0, 1] as representative for the sets of continuum 
cardinality 2@0 . Let dn 2 Z(N) be defined by:

1 if m = n, 
dn = (emn )m2N, emn =

0 otherwise.

Then, B = fdn : n 2 Ng generates the free Abelian group Z(N) algebraically.

Proposition 2. ([5], Proposition 5.2, p. 214) The free Abelian group Z(N) of 
countably-infinite rank has a non-discrete topology making it a prodiscrete group F, so 
that the following conditions are satisfied:

(i) F is a countable non-discrete non-metrizable pro-Lie group, which therefore is not a 
Baire space.

(ii) F can be considered as a closed subgroup of V = RI with dense R-linear span in V, 
so that V / F is an incomplete group whose completion is a compact-connected and 
locally-connected, but not arcwise-connected group.

(iii) Every compact subset of F is contained in a finite rank subgroup.

The structure theory results we discussed permit us to derive results on the 
duality of Abelian pro-Lie groups. Recall that this class contains the class of all 
locally-compact Abelian groups properly and is contained in the class of all Abelian 
nuclear groups.
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For any Abelian topological group G, we let Gb = Hom(G, T) denote its dual 
with the compact open topology, where T = R/Z (see e.g., [9], Chapter 7). There 
is a natural morphism of Abelian groups hG : G ! Gbb given by hG (g)(c) = c(g), 
which may or may not be continuous; information regarding this issue is to be found 
for instance in [9], notably in Theorem 7.7. We shall call an Abelian topological 
group semireflexive if hG : G ! Gbb is bijective and reflexive if hG is an isomorphism 
of topological groups; in the latter case, G is also said to have duality (see [9], 
Definition 7.8).

There is an example of a non-discrete, but prodiscrete Abelian torsion group 
due to Banaszczyk (see [25], p. 159, Example 17.11), which is semireflexive, but not 
reflexive (see also [5], Chapter 14, p. 595, Example 14.15; attention: in Line 2 of the 
text of this example, read Na = Z(2)(fn: nag), not n < a). Therefore, we know that 
the category of Abelian pro-Lie groups is not self-dual under Pontryagin duality.

Theorem 7. ([5] Theorem 5.36, p. 239) Every almost connected Abelian pro-Lie group is 
reflexive, and its character group is a direct sum of the additive topological group of a real 
vector space endowed with the finest locally-convex topology and a discrete Abelian group. 
Pontryagin duality establishes a contravariant functorial bijection between the categories of 
almost connected Abelian pro-Lie groups and the full subcategory of the category of topological 
Abelian groups containing all direct sums of vector groups with the finest locally-convex 
topology and discrete Abelian groups.

By this theorem, duality applies to almost connected Abelian Lie groups. In 
particular, we recall that weakly-complete topological vector spaces have a good 
Pontryagin duality. By Theorem 7 above, the issue of duality of Abelian pro-Lie 
groups is reduced to groups with a compact identity component. Amongst this class 
there are all prodiscrete groups. In particular, nothing is known about the duality of 
prodiscrete Abelian groups. As all Abelian pro-Lie groups are nuclear, whatever is 
known on the duality of nuclear Abelian groups applies to pro-Lie groups. 
Question 3: Which Abelian pro-Lie groups are reflexive?
Question 4: Which Abelian pro-Lie groups are strongly reflexive in the sense that all 
of their subgroups and Hausdorff quotient groups are reflexive?

5. The Open Mapping Theorem

We have just dealt with the question of whether a quotient group of a pro-Lie 
group is a pro-Lie groups, and we have seen that the answer is negative sometimes. 
We now deal with the question when a surjective morphism of pro-Lie groups 
is a quotient morphism. Specifically, let f : G ! H be a surjective morphism 
of pro-Lie groups. Does this imply that f is an open mapping? This question 
is answered negatively in any first course on topological groups by the example 
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of G = Rd, the additive group of reals with the discrete topology and H = R 
with its natural topology. The quest for sufficient conditions that would secure 
the openness is answered by any of the so-called “open mapping theorems” in the 
classical literature in functional analysis and in the theory of topological groups. 
These impose countability conditions on G and a Baire space hypothesis on H. The 
latter is provided by such properties as complete metrizability, local compactness 
or the pro-Lie group property. If s-compactness is taken as a countability condition 
on G, then the Baire space property of H will force local compactness upon G/ ker f . 
The induced bijection G / ker f ! H is an isomorphism if and only if f is open. 
Therefore, settling the issue for bijective f cannot be much of a restriction, assuming 
that the properties envisaged for G are preserved by passing to quotients.

Whichever way the issue is looked at, the proof of an open mapping theorem for 
pro-Lie groups [27,28] is quite different from all other open mapping theorems 
we know.

Once more, we encounter the class of almost connected pro-Lie groups as that 
class on which our methods, notably a Lie theory, which we have yet to discuss, 
yields an expected result.

Theorem 8. ([5], 9.60, p.409f) [6,19]) Let G and H be pro-Lie groups, and let f : G ! H 
be a surjective continuous homomorphism. Then, f is an open mapping if G is almost 
connected. In particular, the natural bijective morphism G/ ker f ! H is an isomorphism 
of topological groups.

The last conclusion yields another instance of a quotient group of a pro-Lie 
group, which is again a pro-Lie group, giving us a sufficient condition not included 
in Theorem 5 above, namely G is almost connected, and N is the kernel of a morphism 
onto a pro-Lie group.

A further corollary of our open mapping theorem is the following form of the 
second isomorphism theorem for pro-Lie groups:

Corollary 4. Assume that N and H are two closed almost connected subgroups of a 
topological group with N being normal, and assume that NH is a pro-Lie group. Then, 
H/(N \ H) = NH/N. Moreover, the natural morphism m: NoH ! NH, mu(n, h) = 

nh is a quotient morphism (where H is acting as an automorphism group on N via inner 
automorphisms.

Noting that ZI is a pro-Lie group, but is not Polish, unless I is countable (see [5], 
pp. 235, 236, notably Lemma 5.30), we ask:
Question 5: Is a surjective morphism f : ZI ! K onto a compact group open for 
every set I?
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The results in Theorem 8 and in Chapter 5 of [5] do not answer this question. If 
I is countable, then ZI is a Polish group, and an open mapping theorem applies in 
this case and gives an affirmative answer. The open mapping theorem for Pro-Lie 
groups does not apply, since ZI is never almost connected for I nonempty.

Added in Proof: Saak Gabriyelyan and the second author have recently 
announced a positive answer to Question 5.

6. Lie Theory

We started our discussion with a presentation of some remarkable structure 
theorems on almost connected pro-Lie groups. It is not surprising that the proofs of 
such results require some powerful tools. The crucial tool for a structure theory of 
pro-Lie groups is their Lie theory. It is a challenge to explain what we mean by “Lie 
theory.” Minimally, one wants to attach to each pro-Lie group G a Lie algebra L(G) 
with characteristics making it suitable for an exploitation of its topological algebraic 
structure for the topological group structure of the pro-Lie group G. Guided by 
our knowledge of classical Lie group theory, we shall link the group G with its Lie 
algebra L(G) by an exponential function exp: L(G) ! G, which mediates between 
Lie algebra theoretical properties of L(G) and group theoretical properties of G.

As a start, for each X 2 L(G), the function t 7! exp(t.X) : R ! G is a morphism 
of topological groups. Tradition calls a morphism f : R ! G of topological groups a 
one-parameter subgroup of G (admittedly, a misnomer). In classical Lie theory, every 
one-parameter subgroup is obtained via the exponential function in this fashion. In 
other words, however one defines a Lie algebra and an exponential function, it must 
establish a bijection b from the elements of the Lie algebra L(G) to the set Hom(R, G) 

of one-parameter subgroups of G, so that the following diagram commutes:

L(g) g

b?y y?idG

Hom(R, G) -------- ! G
f7!f(1)

Therefore, if we are given a topological group G, as a first step, we may think 
of L(G) as Hom(R, G) with a scalar multiplication, such that r.X(s) = X(sr) for 
X 2 L(G) and r,s 2 R. If G has an additional structure, such as that of a pro-Lie 
group, we will obtain the additional structure on L(G). Therefore, if G is a closed 
subgroup of a product P = ni2 I Gi of finite-dimensional Lie groups, then an element 
X 2 L(P) may be identified with an element (Xi)i2I of ni2I L(Gi), and an element 
X of this kind is in L(G) simply if X(R) G. As Gi is a finite-dimensional Lie 
group, each L(Gi) has the structure of a Lie algebra, L(P) is both a weakly-complete 
topological vector space and a topological Lie algebra. Since G is a closed subgroup 
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of P, it is elementary that L(G) is closed in L(P), both topologically and in the sense 
of Lie algebras.

Definition 3. A pro-Lie algebra g is a topological real Lie algebra isomorphic to a closed 
subalgebra ofa product of finite-dimensional Lie algebras.

Clearly, every pro-Lie algebra has a weakly-complete topological vector space 
as the underlying topological vector space. In complete analogy to Theorem 4, we 
have the following characterization [29]:

Theorem 9. ( , p. 138ff) For a topological Lie algebra g, the following conditions 
are equivalent:

[5]

(1) g is complete, and every neighborhood of zero contains a closed ideal i, such that the 
Lie algebra g/i is finite-dimensional.

(2) g is a projective limit of finite-dimensional Lie algebras.
(3) g is a pro-Lie algebra.

One notes that our procedure of identifying L(G) = Hom(R, G) for a pro-Lie 
group G with the structure of a pro-Lie algebra yields an exponential function 
exp : L(G) ! G by exp X = X(1) for X : R ! G in L(G). The implementation of 
this setup is secured in [5], summarized in the following:

Theorem 10. To each pro-Lie group, there is uniquely and functorially assigned a pro-Lie 
algebra L(G) together with an exponential function expG : L(G) ! G, such that every 
one-parameter subgroup of G is of the form t 7! exp t.X : L(G) ! G with a unique element 
X 2 L(G) and that the subgroup hexp L(G)i generated by all one parameter subgroups is 
dense in the identity component G0 of the identity in G.

To each pro-Lie algebra g there is a uniquely- and functorially-assigned connected 
pro-Lie group G(g) with Lie algebra g, and for each pro-Lie group G with Lie algebra L(G) 

permitting an isomorphism f : g ! L(G) of pro-Lie algebras, there is a unique isomorphism 
of pro-Lie groups fG : G(g) ! G, such that the following diagram is commutative with exp 
denoting the exponential function of G(g):

exp 
g ! G(g)

fy? ?y fG

L(G) -------- ! G
expG

A pro-Lie group G is prodiscrete if and only if it is totally disconnected if and only if 
L(G) = f0g. Further, G(g) is always simply connected.
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Sophus Lie’s third theorem applies and is perfectly coded into the existence of 
the functor G. The exactness properties of the functor L are well understood (see [5], 
Theorem 4.20, p. 188). Structural results, such as we discussed at the beginning 
of our survey, are all based on a thorough application of the Lie theory of pro-Lie 
groups. Since L(G) = L(G0) from the very definition of L(G), in the strictest sense 
it applies to connected pro-Lie groups, we saw that the essential facts reach out to 
almost connected pro-Lie groups.

Of course, since every locally-compact group has an open subgroup that is an 
almost connected pro-Lie group, this Lie theory applies to all locally-compact groups.

In classical Lie theory, Lie algebras are more directly amenable to structural 
analysis than Lie groups, as they are purely algebraic. While pro-Lie algebras are 
both topological and algebraic, they are nevertheless more easily analyzed than 
pro-Lie groups, as well.

Let us look as some characteristic features of pro-Lie algebras.

Definition 4. A pro-Lie algebra g is called:

(i) reductive if every closed ideal is algebraically and topologically a direct summand, 
(ii) prosolvable if every finite-dimensional quotient algebra is solvable,

(iii) pronilpotent if every finite-dimensional quotient algebra is nilpotent.

The center ofg is denoted z(g). A pro-Lie algebra is called semisimple if it is reductive 
and satisfies z(g) = f0g.

Theorem 11. ([5] Theorem 7.27, p. 283) A reductive pro-Lie algebra g is a product of 
finite-dimensional ideals, each of which is either simple or else is isomorphic to R.

The algebraic commutator algebra [g, g] is closed and a product of simple ideals. 
Furthermore,

g=z(g)[g,g],

algebraically and topologically.

If a maximal prosolvable (respectively, pronilpotent) ideal of a pro-Lie algebra 
g exists, it is called the (solvable) radical r(g) (respectively, the nilradical n(g)). If 
there is a smallest closed ideal i of g, such that g/i is reductive, then we call it the 
co-reductive radical ncored (g) of g.

Theorem 12. ([5], Chapter 7) Every pro-Lie algebra has a radical, a nilradical and a 
co-reductive radical, and:

ncored (g) n(g) r(g).
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Moreover,
ncored(g) = [g, g] \ r(g) = [g, r(g)].

There is a closed semisimple subalgebra s, such that g = r(g) s, where (r, s) 7! 

r + s : r(g) s ! g is an isomorphism of weakly-complete topological vector spaces 
(Levi-Mal'cev decomposition). Moreover,

[g, g] = ncored (g) ® S.

All of this fine structure can be translated to the group level with due 
circumspection and ensuing complications. One can get an idea of this translation 
from the process of Lie’s third theorem. Among other things, Theorem 10 yields for 
each of the pro-Lie algebras g a pro-Lie group G(g) with an exponential function 
exp: g ! G(g).

If g is pronilpotent, then exp is a homeomorphism. In fact, the Baker-Campbell- 
Hausdorff series is summable on the weakly-complete topological vector space g 
yielding a binary operation ?, so that for G(g), we may take (g, ?) and for exp the 
identity map. This applies, in particular, to the co-reductive radical ncored (g), for 
which g/ncored (g) is reductive.

For reductive g, however, the product structure of g expressed in Theorem 10 
carries over to a clean product structure:

G(g) = RI x n Sj 
j2J

for a family of simply-connected simple real Lie groups Sj, producing, in fact, 
a simply-connected reductive group G(g).

These observations show again how far connected pro-Lie groups reach outside 
the domain of locally-compact connected groups while their structure remains close 
to that which is familiar from finite-dimensional Lie groups due to a fairly lucid 
topological-algebraic structure of pro-Lie algebras. We note that for every connected 
pro-Lie group G with L(G) = g, one has a morphism f : G(g) ! G with a prodiscrete 
kernel and a dense image, such that the following diagram is commutative:

g

L(G)

! G(g) 

y?f 

------- > G 
expG

In [5], it is demonstrated that this tool allows a structural analysis of G.
For instance, the existence of the various radicals of a pro-Lie algebra has its 

correspondence in respective radicals in any connected pro-Lie group. For example,
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every connected pro-Lie group G has a unique largest normal connected solvable 
subgroup R(G), called its (solvable) radical. If G is any topological group whose 
identity component G0 is a pro-Lie group, then one writes R(G) = R(G0) and also 
calls R(G) the radical of G.

The volume of additional details of the theory of pro-Lie algebras and connected 
pro-Lie groups presented in [5] is immense. It cannot be expected that a survey such 
as this can do complete justice to it.

7. Later Developments

In this section, we report on some developments in the theory of pro-Lie groups 
since the appearance of [5]. Of course, we have already included some important 
material, which appeared subsequent to [5], namely [7,13].

The article [7] contributed the insight that some essential structure theorems 
on connected pro-Lie groups could be formulated so as to include almost connected 
pro-Lie groups. This provided a common generalization of the structure theories of 
connected pro-Lie groups and compact groups. This generalization is both significant 
and satisfying. In this survey, this was illustrated by Theorem 1 and its corollaries 
and Theorems 2 and 3.

Hofmann-Morris [7] contains another interesting result, which we think has yet 
to be exploited in the literature.

Theorem 13. Let G be an arbitrary topological group whose identity component G0 is a 
pro-Lie group. Then, there is a closed subgroup G1 whose identity component is the radical 
R(G), such that the following conditions hold:

(i) G = G0G1 and G0 \G1 = R(G).
(ii) The factor group G/R(G) is the semidirect product of the connected normal subgroup 

G0/R(G) and the totally disconnected closed subgroup G1 /R(G).
(iii) In particular,

G ~ G/R(G) _ G/R(G0) ~ G 1

G0 “ G0/RG) = G0/RG) _ (G1)0

with a prosolvable pro-Lie group (G1)0.

The significance of Theorem 13 emerges even when it is specialized to the case 
that G is a pro-Lie group. As was emphasized by formulating Question 2, we do 
not know whether the component factor group G/G0 is complete and, therefore, is 
a prodiscrete group. Theorem 13 reduces the problem to the case that the identity 
component of G is prosolvable. For instance, we obtain a positive answer to 
Question 2 if we know that the radical R(G) is locally compact or first countable (see 
Theorem 5 above).
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In the process of extending the structure theory of pro-Lie groups from 
connected ones to almost connected ones, G. Michael, A.A. has proven the following 
structure theorem guaranteeing a local splitting, provided the nilradical is not too 
big on the Lie algebra side.

Theorem 14. ([8,30]) Assume that G is an almost connected pro-Lie group G whose Lie 
algebra g has a finite-dimensional co-reductive radical ncored (g). Then, there are arbitrarily 
small closed normal subgroups N, such that there exists a simply-connected Lie group LN 
and a morphism a: LN ! G, such that the morphism:

(n, x) 7! na(x) : NLN ! G

is open and has a discrete kernel. In particular, G and N LN are locally isomorphic.

Let us recall Iwasawa’s local splitting theorem for locally-compact groups as it 
is reported in [9], Theorem 10.89.

Theorem 15. Let G be a locally-compact group. Then, there exists an open almost connected 
subgroup A, such that for each identity neighborhood U, there is:

— a compact normal subgroup N of A contained in U,
— a simply-connected Lie group L, and
— an open and continuous surjective morphism f: NL ! A with a discrete kernel, 

such that f(n, 1) = n for all n 2 N.

The way to compare the two preceding theorems is to look at the Lie algebra g 
of G in Theorem 15. We notice that g = L(N) l, l = L( L). As the Lie algebra of a 
compact group N of the first direct summand is of the form L(N) = c s1 with a 
central ideal c and a compact semisimple ideal s1, the finite-dimensional Lie algebra 
l has a Levi-Mal’cev decomposition r ffi S2 with its radical r and a finite-dimensional 
semisimple subalgebra s2, so that we have:

g = (cs1) (r +sdir s2) = (rc) +sdir (s1 + s2).

We observe that the radical r(g) is r c and that the co-reductive radical 
ncored (g) of g are contained in the finite-dimensional subalgebra r and are, therefore, 
finite-dimensional. The hypothesis that was imposed in Theorem 14, namely that 
the Lie algebra dimension of the co-reductive radical is finite, thus emerges as a 
necessary condition in the more classical Iwasawa local decomposition theorem of 
locally-compact groups. Additional comments on the local decomposition of pro-Lie 
groups may be found in [31].
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8. A Natural Occurrence of Pro-Lie Groups and Pro-Lie Algebras

We emphasized that weakly-complete topological vector spaces play an essential 
role in the theory of pro-Lie groups and pro-Lie algebras. Now, we record that they 
are crucial in describing a mathematical environment where they occur naturally; 
this was pointed out recently in [14]. Each of the categories of real vector spaces and 
of their dual category of weakly-complete topological vector spaces (see Section 3, 
Definition 3.2ff) in fact has a tensor product (see [14], Appendix C, notably C4, 
and [32]), making each of them a commutative monoidal category (see, e.g., [9], 
Appendix 3, Definition A3.62 ff). Let us denote by V the category of (real) vector 
spaces E, F . . . , and of linear maps, equipped with the usual tensor product E F, 
and let us call W the category of weakly-complete vector spaces V, W, . . . , etc., with 
continuous linear maps, equipped with the (completed) tensor product Ve W. Then, 
a monoid in W (see [9] Appendix 3, the discussion preceding Definition A3.64) 
is a weakly-complete topological (associative) algebra with identity, specifically, a 
morphism m : Ae A ! A plus a morphism R ! A representing the identity (see 
also [32]). Its dual E d=ef A0 = Hom( A, R) then is an (associative unital) coalgebra 
m0: E ! E E with a coidentity (augmentation) u : E ! R. The theory of coalgebras 
(see [33]) culminates in one theorem holding without any further hypotheses:

Theorem 16. (The fundamental theorem of coalgebras [33], 4.12, p. 742) Each 
associative unitary coalgebra is the directed union of its finite-dimensional unitary 
sub-coalgebras.

By duality this implies at once Rafael Dahmen’s fundamental theorem of 
weakly-complete algebras.

Theorem 17. (Fundamental theorem of weakly-complete algebras ) For every 
weakly-complete associative unital algebra A, there is a projective system of surjective linear 
morphisms fjk : Ak ! Aj, j k, j, k 2 J of finite-dimensional associative unital algebras 
and a natural isomorphism fA : A ! limj2J Aj onto the projective limit of this system.

[14]

Conversely, by definition, every projective limit of finite-dimensional real unital 
associative algebras is a weakly-complete associative unital algebra.

Every associative algebra A becomes a Lie algebra ALie when it is equipped 
with the commutator bracket (x, y) ! [x, y] def xy — yx. Each of the Lie algebras 
(Aj )Lie with j 2 J is finite-dimensional. From Theorem 17 and the Definition 3 plus 
Theorem 9, we thus have:

Corollary 5. For every weakly-complete associative unital algebra A, the Lie algebra ALie 
is a pro-Lie algebra, and fA : ALie ! limj2J ( Aj)Lie is an isomorphism of pro-Lie algebras.
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Each of the morphisms fjk maps the group Ak 1 of units, that is invertible 
elements, into the group of units Af 1, and so, we obtain a natural isomorphism:

fA j A 1 : A 1 ! lim A r 1.
j2 J j

Now, every A ■ 1 is a (linear) Lie group (see [5], Chapter 5,5.1-5.32) with exponential 
function exp A : (Aj )Lie ! A fX- By Theorem 4, as a consequence, we have 
Dahmen’s corollary.

Corollary 6. ([14], Proposition 5.4) The group A 1 of units of every weakly-complete 
associative unital algebra A is a pro-Lie group with Lie algebra ALie and exponential function:

exp A : A Lie ! A 1, exp( x) = 1 + x + 2! x2 + 3! x3 +------ .

What we have exposed here is the basis of a theory that applies to group 
objects in the commutative monoidal category W as defined in [9], Definition 
A3.64(ii). These objects are commonly called Hopf algebras, and so, we shall fix the 
following definition.

Definition 5. A weakly-complete Hopf algebra is a group object in W according to 
Definition A3.64(ii) of [9].

In particular, the multiplicative structure of a weakly-complete Hopf algebra A 
is a weakly-complete associative unital algebra. It also has a comultiplication c : A ! 

Ae A linked with the multiplication m : Ae A ! A through several commutative 
diagrams, for which we refer to [9], A3.63(ii), and which express the fact that c is 
indeed a morphism of algebras.

Definition 6. Let A be a weakly-complete Hopf algebra with a comultiplication c. An 
element x 2 A is called group-like if it satisfies c(x) = xex and u(x) = 1, and it is called 
primitive if it satisfies c(x) = xe1 + 1e x. The set of group-like (respectively, primitive) 
elements will be denoted by G(A) (respectively, P(A)).

One shows the following fact:

Theorem 18. G (A) is a closed subgroup of A 1, the group of units of the underlying 
algebra, and P(A) is a closed Lie subalgebra of ALie .

The link to the previous remarks is provided by the following theorem:
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Theorem 19. Let A be a weakly-complete Hopf algebra. Then, the set of group-like elements 
G(A) is a pro-Lie group, and the set of primitive elements P(A) is a pro-Lie algebra and is 
the Lie algebra of G(A) with the exponential function:

expA jP(A): P(A) ! G(A)

with the restriction of the exponential function of Corollary 5.

A proof is based on the fact that for the algebra morphism c, we have 
expA c = c (expA e expA). If x is primitive, then c(x) = (xe 1) + (1e x), and 
thus, c(exp x) = exp(c(x)) = exp((xe 1) + (1e x)) = (exp xe 1)(1e exp x) = 

exp xe exp x. Therefore, exp maps P(A) into G(A). To see the converse, let 
t 7! exp tx: R ! G(A) be a one-parameter subgroup. Then, exp tx is group-like 
for all t, i.e.,

exp tc(x) = exp c(tx) = c(exp tx) = (exp tx)e (exp tx) 

= ((exp t ■ x )® 1)(1® (exp t ■ x))

= exp(txe 1) exp(1e tx) = exp((txe 1) + (1e tx))

= exp t■(x® 1 + 1®x), for all t 2 R,

and this implies:
c(x) = x®e 1 + 1®ex

which means x 2 P( A).
If the weakly-complete Hopf algebra A arises as the dual of an (abstract) Hopf 

algebra H (i.e., a group object in V), then the members of G(A) are multiplicative 
linear functionals on H, the so-called characters of H. Thus, Theorem 19 may be 
interpreted as saying that the character group of a Hopf algebra is a pro-Lie group 
(see also Theorem 5.6 in [14]).

The simplest example is A = R[[x]], the algebra of formal power series in 
one variable. As a vector space, A is isomorphic to Rf1,x,x2,... g, and this is weakly 
complete. Then, A®eA is isomorphic to R[[y, z]], the formal power series algebra 
in two commuting variables y and z. The algebra morphism R[[x]] ! R[[y, z]] 
generated by x 7! y + z gives a comultiplication c : A ! A®eA making A into a 
weakly-complete Hopf algebra. The multiplicative subgroup G(A) = fexp t■ x : t 2 Rg 
is a Lie group isomorphic to (R, +), and P(A) = R-x is (trivially) a Lie algebra 
mapped by exp onto G(A).
Question 6: (i) Is there a more elaborate duality theory of real Hopf algebras and 
weakly-complete Hopf algebras in which these facts on pro-Lie group and pro-Lie 
algebra theory play a role?
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(ii) Does the existence of weakly-complete enveloping algebras of weakly- 
complete Lie algebras secure for each pro-Lie algebra L, an associative weakly- 
complete Hopf Algebra U(L), such that L is isomorphic to a closed Lie subalgebra of 
P(U(L))?

9. Further Open Questions

In this last section, we record a few additional questions on pro-Lie groups that 
do not fit naturally with the material previously discussed in this paper, but that are 
of some significance to pro-Lie group theory. In so doing, we rely on definitions and 
concepts defined and discussed in [5].
Question 7: Is an Abelian prodiscrete compactly-generated group without 
nondegenerate compact subgroups a discrete group?

For a a definition and discussion of compactly-generated groups, see [5], 
Definition 5.6, pp. 218ff. For a discussion of Abelian compactly generated pro-Lie 
groups, see [5], Theorem 5.32, p. 236.
Question 8: Is a compactly-generated Abelian prodiscrete compact-free group a 
finitely-generated-free Abelian group?

Note that by compact free we mean the group has no nontrivial compact subgroups.
See [5], Theorem 5.32, the Compact Generation Theorem for Abelian Pro-Lie 

Groups, p. 236.
In the proof of the structure of reductive pro-Lie algebras in Theorem 11 ([5], 

Theorem 7.27), one uses the lemma that in every finite-dimensional real semisimple 
Lie algebra every element is a sum of at most two Lie brackets. For brackets in 
semisimple Lie algebras, see [5], Appendix 3, p. 651ff.
Question 9: Is every element in an arbitrary real semisimple Lie algebra a bracket?

For the concept of transfinitely-solvable pro-Lie algebras and pro-Lie groups, 
see [5], Definition 7.32, pp. 285ff, respectively pp. 420ff. For the concept of 
transfinitely-nilpotent pro-Lie algebras and pro-Lie groups, see [5], pp. 296ff, 
respectively, pp. 443 ff.
Question 10: Is a transfinitely-nilpotent connected pro-Lie group pronilpotent?

In Question 10, such a group has to be prosolvable, since it is transfinitely 
solvable, and then, the Equivalence Theorem for Solvability of Connected Pro-Lie 
Groups 10.18 of [5] applies. The impediment to a proof is the failure of transfinite 
nilpotency to be preserved by passing to quotients. Free topological groups are free 
groups in the algebraic sense and, thus, are countably nilpotent; but, every topological 
group is a quotient of a free topological group and, thus, of a transfinitely-countably 
nilpotent topological group.

For the definition of an analytic subgroup, see [5], Definition 9.5 on p. 360. 
Question 11: Let h be a closed subalgebra of the Lie algebra g of a connected pro-Lie 
group G. Let A(h) denote the analytic group generated by h. Is A(h)/A(h) Abelian?
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(See [5], Theorem 9.32.)
Question 12: Is there a satisfactory theory of Polish pro-Lie groups (respectively, 
separable pro-Lie groups, or compactly-generated pro-Lie groups), notably in the 
connected case?

For information in [5] on the Abelian case, see pp. 235ff.
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Non-Abelian Pseudocompact Groups
W. W. Comfort and Dieter Remus

Abstract: Here are three recently-established theorems from the literature. (A) (2006) 
Every non-metrizable compact abelian group K has 2jKj-many proper dense 
pseudocompact subgroups. (B) (2003) Every non-metrizable compact abelian group 
K admits 22jKj -many strictly finer pseudocompact topological group refinements. 
(C) (2007) Every non-metrizable pseudocompact abelian group has a proper dense 
pseudocompact subgroup and a strictly finer pseudocompact topological group 
refinement. (Theorems (A), (B) and (C) become false if the non-metrizable hypothesis 
is omitted.) With a detailed view toward the relevant literature, the present authors 
ask: What happens to (A), (B), (C) and to similar known facts about pseudocompact 
abelian groups if the abelian hypothesis is omitted? Are the resulting statements 
true, false, true under certain natural additional hypotheses, etc.? Several new results 
responding in part to these questions are given, and several specific additional 
questions are posed.

Reprinted from Axioms. Cite as: Comfort, W.W.; Remus, D. Non-Abelian 
Pseudocompact Groups. Axioms 2016, 5, 2.

1. Introduction

Specific references to the literature concerning Theorems (A), (B) and (C) of 
the Abstract are given in 5.7(d), 8.2.2 and 4(l), respectively. Every metrizable 
pseudocompact group, abelian or not, is compact, hence admits neither a proper 
dense pseudocompact subgroup nor a proper pseudocompact group refinement 
(see 4(a)); thus, (A), (B) and (C) all become false when the non-metrizability 
hypothesis is omitted.

All hypothesized topological spaces and topological groups in this paper are 
assumed to be Tychonoff spaces.

1.1. Brief Outline of the Paper

As our Title and Abstract indicate, our goal in this survey is to describe the 
historical development of the theory of pseudocompact topological groups. Many of 
the results we cite, especially the older results, require an abelian hypothesis; some 
questions, definitions and results make sense and are correct without that hypothesis, 
however, and we emphasize these. Thus, this paper has two goals: (1) to provide an 
overview of the (by now substantial) literature on pseudocompact groups; and (2) to 
offer several new results about non-abelian pseudocompact groups.
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As an aid to the reader and to avoid uncertainty, algebraic statements and results 
known to hold also for non-abelian groups carry the symbol .

We proceed as follows. Subsection 1.2 establishes the notation and terminology, 
and Subsection 1.3 reviews early works.

Section 2 describes several criteria, some algebraic and some cardinality-related, 
which are necessary or sufficient that a group admits a pseudocompact group 
topology. With a focus on compact groups, Section 3 describes the availability 
of proper dense subgroups. Section 4 recounts the principal incremental steps in 
the literature which led finally to a positive solution to these questions: Does every 
non-metrizable pseudocompact abelian group admit a proper dense subgroup and 
a strictly finer pseudocompact group topology? Section 5 considers briefly several 
miscellaneous issues and questions which concern pseudocompact groups.

Several workers have noted that those compact groups which admit a 
continuous epimorphism onto a product of the form Fk (jFj > 1, k > w) or of the 
form Pi2I Ki (jKij > 1, j Ij > w) admit (sometimes large) families of dense subgroups 
with special properties. Section 6 describes several instances in the literature.

Sections 7 and 8 concern respectively free compact (abelian and non-abelian) 
groups over a Tychonoff space and new results concerning non-abelian 
pseudocompact groups.

Insofar as expository clarity permits, we use the symbol K to denote a topological 
group known or assumed to be compact; and we use the symbol G for other groups 
and topological groups.

1.2. Notation and Terminology

As to notation and terminology, we generally follow Engelking [1] and Hewitt 
and Ross [2]. Here we record some supplemental definitions, notation and 
conventions.

(a) Given a cardinal number a = a0 w, the cardinal iw(a) is defined as
follows: an+1 := 2an for n < w, and iw(a0) := Sn an = supn an.

(b) For topological groups G0 and G1, we write G0 ' G1 if some bijection 
from G0 onto G1 is simultaneously an algebraic isomorphism and a topological 
homeomorphism.

(c) A topological group G = (G, T) is totally bounded (alternatively, 
precompact) if for every non-empty U 2 T there is finite F G such that G = FU. 
We denote by TB( G) the set of totally bounded group topologies on a group G.

(d) (Hewitt ) A space X is pseudocompact if each continuous function f : 
X ! R is bounded.

[3]

(e) A space is countably compact if each of its infinite subsets has an accumulation 
point (equivalently ( ) if each countable open cover admits a finite subcover).[1]

33



(f) A space is w-bounded if each of its countably-infinite subsets has 
compact closure.

(g) A space X is a Baire space if every intersection of countably many dense 
open subsets of X is again dense in X.

(h) A cardinal k is admissible if there is a pseudocompact group of cardinality 
k. And k is l-admissible if there is a pseudocompact group such that jGj = k 
and wG = l.

(i) Given a topological group G, we write
P(G) := fH : jHj is a dense pseudocompact subgroup of Gg, 

and, following [4], for a compact group K we write
m(K) := minfjHj: H 2 P(K)g.
(j) For a topological space X = (X, T ), we denote by PX, or by (X, PT), the 

set X with the smallest topology in which each Gd -subset of (X, T ) is open.
It is clear from the definitions of PK and m(K) that m(K) = d(PK); hence 
cf(m(K)) > w, for each infinite compact group K.

(k) It is well known  (7.7) that a compact group K is totally disconnected 
(equivalently: zero-dimensional) if and only if each neighborhood of 1K contains 
a compact open normal subgroup. In this paper we follow many workers and call 
such compact groups K profinite.

[2]

1.3. Basic Early Works

Here we offer a brief history of the principal concepts and objects we deal with 
in this paper.

(a) Hewitt  showed inter alia that a space X is pseudocompact if and only if it 
is Gd-dense in its Stone-Cech compactification bX, hence in every (Tychonoff) space 
in which it is densely embedded. Later, Glicksberg  characterized pseudocompact 
spaces as those in which each locally finite family of open subsets is finite. For a 
detailed treatment and extrapolation of Hewitt’s work, including the many other 
fruitful concepts introduced there, see .

[3]

[5]

[6]
(b) It is a fundamental theorem of Weil  that the totally bounded groups are 

exactly the topological groups G which embed as a dense topological subgroup of a 
compact group. Further, this compactification of G, called the Weil completion of G 
and here denoted G, is unique in the obvious sense.

[7]

(c) It is easy to see (  (1.1)) that every pseudocompact group is totally 
bounded. Identifying those totally bounded groups which are pseudocompact, 
Comfort and Ross  (1.2, 4.1) showed that for a totally bounded group G, these 
conditions are equivalent: (1) G is pseudocompact; (2) G is Gd-dense in G; and 
(3) G = bG.

[8]

[8]
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(d) From the equivalence ((1),(3)) and Mycielski’s theorem  that every 
compact divisible group is connected, Wilcox  deduced a useful consequence: 
every divisible pseudocompact group is connected (we note in passing, as remarked 

by Wilcox  (p. 579), that a connected pseudocompact abelian group need not 
be divisible).

 (c) [9]
[10]

[10]

(e) From and the uniqueness aspect of Weil’s theorem it follows that a dense 
subgroup H of a pseudocompact group G is itself pseudocompact if and only if H 
is Gd-dense in G - in which case necessarily H = G; further, as in  (1.4), *the 
product of any set of pseudocompact groups is again pseudocompact. Those two 
statements have been vastly generalized by subsequent workers. We give some 
examples. In (1) and (2), G = Pi2I Gi with each Gi an arbitrary (not necessarily 
abelian or pseudocompact) topological group, Fi Gi and F := Pi2I Fi. (1)  If Fi 
is functionally bounded in Gi in the sense that each continuous f : Gi ! R is bounded 
on Fi, then F is functionally bounded in G; (2)  If Fi Gi is pseudocompact and 
either each Fi is a Gd-set in Gi or each Fi is a retract of Gi, then F is pseudocompact; 
(3)  If K is compact and X is Gd-dense in K, then X is pseudocompact and 
K = bX; (4)  If G is pseudocompact and X is dense in G, then X is C-embedded 
in clPG X.

 (c) 

[8]

[11]

[12]

[13]
[14]

(f) The equivalences of were established in  using earlier theorems of 
Kakutani and Kodaira , Halmos  (§64) and Ross and Stromberg . A more 
direct approach, avoiding reference to those works, was given subsequently by 
deVries . See also Husek  and Tkachenko  for alternative approaches.

 (c) [8]
[15] [16] [17]

[18] [19] [11,20]
(g) Many of the results cited above have been extended and generalized into 

the context of locally pseudocompact groups; see, for example,  and the 
references given there.

[21,22]

2. Pseudocompactifiability Criteria: Elementary Constraints

(a) Every pseudocompact space is a Baire space  (3.10.F(e)), so in particular 
every pseudocompact group is a Baire space (alternatively one may argue as 

in  (2.4(b)): a Gd -dense subspace of a Baire space is itself a Baire space, so a 
pseudocompact group G, being Gd-dense in the compact space G, is necessarily a 
Baire space).

[1]

[4]

(b) Using  several workers (e.g., ,  (2.5), ) made elementary 
cardinality observations like these, valid for infinite pseudocompact groups G. 
(1) jGj c; (2) d(PG) c; (3) cf(d(PG)) > w; (4) if jGj is a strong limit cardinal, 
then cf(jGj) > w; (5) if G is abelian, then either r0(G) c or G is torsion; (6) if G is a 
torsion abelian group, then G is of bounded order.

 (a), [4,23] [24] [25]

Concerning (b): Van Douwen [23], arguing in a more general context, proved 
jXj c and other inequalities of cardinality type for every infinite pseudocompact 
space X with no isolated point.
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(c) We remark in passing that the relation w = cf(jGj) does occur for some 
pseudocompact abelian groups in some models of ZFC . For example, if c = @1 < 
@w < 2c , then, as noted below in  the group K = Tc contains a proper dense 
countably compact subgroup H with jHj = c, and then any group G such that 
H G K, say with jGj = @w, is necessarily pseudocompact by ((2))(1)) 
(with K = H = G).

 3(e),

 1.3(c) 

(d) The remarks in are useful, but they are largely negative in flavor. Here 
are some simple examples. (1) There is no countably infinite pseudocompact group; 
(2) A compact group K such that wK = iw (a), satisfies dK = iw(a); (3) If [CH] 
fails, no infinite pseudocompact group satisfies jGj = @1.

 (b) 

3. Dense Subgroups: Scattered Results

Some topological groups do, and some do not, have proper dense subgroups. 
Here we cite some representative results from the literature.

(a) The relations dK wK < 2wK = jKj, valid for every infinite compact group 
K (  (28.58(c))), make it clear that each such K admits a (proper) dense subset D 
with jDj < jKj, which then in turn generates a proper dense subgroup of the same 
cardinality. For emphasis: every infinite compact group K admits a proper dense 
subgroup G with jGj < jKj. Similarly it follows easily, as in  (2.2(b)), that for K a 
compact group with w(K) = a w, one has m(K) (log(a))w.

[26]

[4]

(b)  (2.7(a)) Infinite compact groups K, K0 with w(K) = w(K0) satisfy 
m(K) = m(K0). Hence m(K) is determined fully by w(K) and is not affected by 
algebraic properties of the group K. Following , we define m(a) := m(K) for 
(arbitrary) compact K with w(K) = a. Note: for a w, the cardinal m(f0, 1ga), 
which is m(a), is denoted D(a, w) in .

[4]

[4]

[27]
(c) ( ) If the Singular Cardinals Hypothesis is assumed (that is: kl 2l k+[27]

for all infinite k, l), then m(a) = (log(a))w.
(d) Every infinite pseudocompact group, and every infinite connected abelian 

group, has a proper dense subgroup  (4.1, 4.2).[28]
(e) For compact groups K with w(K) of the form w(K) = 2a, it was shown by 

Itzkowitz  (the abelian case) and by Wilcox  in general that K contains a 
(necessarily proper) dense pseudocompact subgroup H such that jHj aw 2a < 
22a = jKj. It was noted later  that H may be chosen countably compact.

[29] [30]

[31]
(f) Negating the tempting conjecture that parallel results might hold for locally 

compact groups, Rajagopalan and Soundrarajan  show that for each infinite 
cardinal k there is on the group Tk a locally compact group topology which admits 
no proper dense subgroup. In the same vein, there are many infinite totally bounded 
abelian groups which admit no proper dense subgroup .

[32]

[28]
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(g) In fact, given an abelian group G, the topology induced on G by Hom(G, T) 
is a totally bounded group topology  (1.5) in which every subgroup is 
closed  (2.1).

[33]
[31]

4. Extremal Phenomena

We adopt terminology introduced tentatively and partially in [34] (5.1) and 
finally fully formalized in [35] (4.1): a pseudocompact group (G, T ) is r-extremal 
(resp., s-extremal) if no pseudocompact group topology on G strictly contains T 
(resp., (G, T ) admits no proper dense pseudocompact subgroup). Note: the letters r 
and s here are intended to invoke the words refinement and subgroup, respectively.

(a) Since a pseudocompact normal space is countably compact (  (3.10.21),  
(3.D.2)) and a countably compact metric space is compact  (4.1.17), we have, 
as noted frequently in the literature (  (4.5(a)),  (3.1),  (2.4, 3.6)): every 
pseudocompact group G with w(G) w is both r- and s-extremal. This explains the 
occurrence of the hypothesis “w(G) > w” (equivalently: “G is non-metrizable”) in 
many of the theorems cited below.

[1] [6]
[1]

[36] [37] [34]

It was conjectured in [34] (5.1ff.) that no non-metrizable pseudocompact abelian 
group is r- or s-extremal (see also Question 2.B.1 in [38]). In the earliest days of 
investigation, the non-abelian case seemed totally inaccessible; but some fragmentary 
non-abelian results have emerged serendipitously by now (see below). Concerning 
the abelian question, the reader interested not in preliminary or incremental stages 
but only in the denouement may safely ignore (b)-(k) below and skip directly to (l). 
For a more leisurely treatment of the historical development of this theorem, and for 
the statement of several related unsolved problems, see [39].

(b) A non-metrizable compact abelian group is not r-extremal  (3.4).[37]
(c) A non-metrizable compact totally disconnected abelian group is neither r- 

nor s-extremal  (4.3, 4.4).[36]
(d) A non-metrizable compact abelian group is neither r- nor s-extremal; indeed, 

the witnessing dense subgroup may be chosen w-bounded  (3.4).[34]
(e) A non-metrizable compact connected group is not r-extremal  (6.7).[40]
(f) A non-metrizable zero-dimensional pseudocompact abelian group is neither 

r- nor s-extremal  (7.3).[34]
(g) A pseudocompact abelian group G such that jGj > c or w1 w(G) c is

not s-extremal [41] (1.3).
(h) A pseudocompact abelian group G such that r0(G) > c or w1 w(G) c

is not r-extremal [42] (5.10).
(i) A pseudocompact connected non-divisible abelian group is neither 

s-extremal  (7.1) nor r-extremal  (6.1),  (4.5(b)).[25] [43] [42]
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(j) A pseudocompact abelian group G with a closed Gd-subgroup H (1) is 
r-extremal if H is r-extremal, and (2) is s-extremal if H is s-extremal (  (2.1)).[42]

(k) If H is a closed pseudocompact subgroup of a pseudocompact abelian group 
G, then (1) G is not r-extremal if G/ H is not r-extremal, and (2) G is not s-extremal if 
G/H is not s-extremal  (4.5),  (5.3).[43] [42]

(l) (See (C) of the Abstract.) Fully familiar with the sources cited in (b)  and 
drawing on some of the arguments cited there, Comfort and van Mill showed  
that no non-metrizable abelian pseudocompact group is r-extremal or s-extremal.

-(k),
[44,45]

As suggested above and as our title indicates, we are interested in the 
present paper primarily in comparable and parallel results concerning non-abelian 
pseudocompact groups. See in this connection especially Sections 6 and 8.

4.1. Extremality Questions

As indicated in 4(l), the following two questions have been answered 
affirmatively [44,45] in the context of abelian groups. However, they remain unsettled 
in the general (possibly non-abelian) case.

Problem 4.1.1. (a) Is every non-metrizable pseudocompact group not r-extremal?
(b) Is every non-metrizable pseudocompact group not s-extremal?
(c) Are those properties (r- extremal, s-extremal) equivalent?

5. Related Concepts

It was natural that workers thinking about the issues raised in Section 4 might 
be drawn simultaneously to different but related questions. Here, with no pretense 
to completeness, we mention some of these.

5.1. Refinements of Maximal Weight

When a pseudocompact group G admits a proper pseudocompact refinement, 
can that be chosen of maximal weight (that is, of weight 2jGj)? Comfort and 
Remus [40] (5.5) responded positively for many (non-metrizable) compact abelian 
groups K, including for example those which are connected, or torsion, or which 
satisfy cf(w(K)) > w. Later Comfort and Galindo [46] gave a positive answer for 
all non-metrizable compact abelian groups G [46] (5.1), also for non-metrizable 
pseudocompact abelian groups G which are torsion-free with wG jGj = jGjw [46] 
(5.3) or (assuming [GCH]) which are torsion-free [46] (5.4(b)a). Indeed ([46] (5.2)), in 
the compact abelian case K with w(K) = a > w, there are 222a -many pseudocompact 
group refinements of weight 2a .
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5.2. The Poset of Pseudocompact Refinements

Given a pseudocompact group (G, T ) with w( G, T) = a, let Ps( G, T) 
(respectively, CPs(G, T )) be the partially-ordered set of group topologies U on G 
such that U T and U is pseudocompact (respectively, U is pseudocompact and 
connected). For each cardinal number g set

Psg = fU 2 Ps(G, T) : w(G, U) = gg and
CPsg = fU 2 CPs(G, T) : w(G, U) = gg.
From [47] (3.11) it follows that each U 2 CPsg (G, T ) satisfies a 

w(G, U) 2jGj.
We have shown [40] (6.6):

Theorem 5.2.1. Let K = (K,T) be a compact, connected group such that w(K) = a > w, 
and let A be the connected component of the center of K. Then:

(a) if w < b < a, then K admits a pseudocompact group topology U such that U T,
U 6= T, and w(K,U) = a+ 22b; and

(b) if w( A) = a or cf(a)> w, then K admits a pseudocompact group topology U with 
U T, U 6= T, and w(K,U) = 22a.

As usual the (a) width, the (b) height and the (c) depth of a partially ordered set 
P are defined to be the supremum of the cardinality of those subsets of P which are 
respectively (a) an anti-chain, (b) well ordered, and (c) anti-well ordered. If there is 
an anti-chain A P such that jAj=width(P), then we say that width(P) is assumed, 
and similarly for height( P) and depth( P).

Comfort and Remus [47] (6.7) proved the following

Theorem 5.2.2. Let (K,T) be a compact, connected group, such that w(K,T) = a with 
cf(a)> w, and let a < g < 2jKj. Define g = minf g+,2jKj g. Then:

(a) jPs(K,T)j = jCPs(K,T)j = 22jKj;
(b) jPsg(K,T)j = jCPsg(K,T)j = 2gjKj;
(c) width(Psg(K, T )) = width(CPsg(K, T )) = 2gjKj, and these widths are 

assumed;
(d) height(Psg(K, T)) = height(CPsg(K, T)) = g, and these heights are 

assumed; and
(e) depth(Psg(K, T)) = depth(CPsg(K, T)) = g, and these depths are assumed.

In the proof of Theorem 5.2.2 the main tools are Theorem 5.2.1 and the following 
theorem ([47] (6.4)).

Theorem 5.2.3. Let (K, T1) be a totally bounded topological group such that w(K, T1) = 
a1 > w and the Weil completion is connected. Then every totally bounded group topology 
T0 on K such that T0 T1 and w(K, T0) = a0 < a1 satisfies j [T0, T1] j = 2a1.
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In the absence of the connectivity hypothesis, we proved this result [48] (2.6(a)).

Theorem 5.2.4. Let G be a group, and let Ti 2 TB(G) (i = 0, 1) with w(G, Ti) = ai w.
Ifa0 < a1 and T0 T1,thenj[T0,T1]ja1.

Corollary 5.2.5. Let (G,T) be a pseudocompact group with w(G, T ) = a > jGj. Then 
there are at least a-many pseudocompact group topologies on G which are coarser than T.

Proof. Using the technique of the proof of [49] (2.9), we obtain U 2 TB(G) with 
w(G, U) jGj < a = w(G,T) such that U T. Then j[U,T]j a by
Theorem 5.2.4, and (G, V) is pseudocompact for each V 2 [U, T] (since (G, T) 

is pseudocompact). □

In [47] (6.9), one finds

Problem 5.2.6. Let G be a group, and let Ti 2 TB(G) (i = 0, 1) with w(G, Ti) = ai w.
Ifa0 < a1 and T0 T1, must j[T0, T1]j = 2a1?

We add the following

Problem 5.2.7. Let (K,T) be a non-metrizable compact, connected group.
(a) Does T admit a proper (connected) pseudocompact refinement of maximal 

weight 2jKj ?
(b) Are there 22jKj -many (connected) pseudocompact group topologies on K which are 

finer than T?

We note in passing in connection with Problem 5.2.7, as remarked in [47] 
(pp. 277-278) and in contrast with [47] (6.11), that a pseudocompact refinement of a 
connected (abelian) pseudocompact group need not itself be connected. We note also 
that when the non-metrizability hypothesis is omitted in Problem 5.2.7, the resulting 
Questions (a) and (b) have negative answers. See in this connection 4(a) above.

5.3. Totally Dense Subgroups

As usual, a subgroup D of a topological group G is totally dense in G if D \ H 
is dense in H for every closed normal subgroup H of G. Several workers have 
turned attention to the question of the existence of totally dense pseudocompact 
subgroups of a given (usually compact) group. Since this topic is a bit removed from 
our central focus here, for details in this direction we simply refer the reader to the 
relevant papers known to us: [50,51], [36] (5.3), [4] (5.8), [52-55]. We note explicitly 
that, building upon and extending results from her thesis [56], Giordano Bruno and 
Dikranjan [57] characterized those compact abelian groups with a proper totally 
dense pseudocompact subgroup as those with no closed torsion Gd-subgroup.
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5.4. Concerning the Group Topologies supTB(G) and supPs( G, T )

It is easily seen that the supremum of any nonempty set of totally bounded 
group topologies on a fixed group G is another such topology. In particular, then 
each group G which admits a totally bounded group topology admits the largest 

such topology. As noted [33] (1.6, 1.7) above, for abelian groups G this is the topology 
induced on G by Hom(G, T). It is shown in [31] (2.2) that when G is infinite abelian, 
that topology on G is never pseudocompact; that is obvious now, in view of the result 
cited above in 4(l).

Concerning that supremum, we record here a conjecture of Comfort and 
van Mill [58].

Conjecture 5.4.1. Let G be an abelian group which admits a pseudocompact group topology. 
Then the supremum of the pseudocompact group topologies on G coincides with the largest 
totally bounded group topology on G (that is, the topology induced on G by Hom(G, T)).

Conjecture 5.4.1 was established in [58] for abelian groups G which satisfy any of 
these (overlapping) conditions: (1) G is torsion; (2) jGj 2c; (3) r0(G) = jGj = jGjw; 
(4) jGj is a strong limit cardinal with r0(G) = jGj; (5) some pseudocompact group 
topology T on G satisfies w(G, T ) c; (6) G admits a compact group topology. 
However, the conjecture remains unsettled in full generality.

While neither the present authors nor the authors of [58] attempted to find 
the optimal non-abelian version of the theorems and conjecture just given, we 
note that the most naive non-abelian analogue, namely that the supremum of all 
pseudocompact group topologies on a (possibly non-abelian) group G which admits 
such a topology coincides with the largest totally bounded group topology, fails 
dramatically, even in the metrizable case. The following result is taken from [47].

Theorem 5.4.2. Let K be a compact, connected Lie group with trivial center, and let T be 
the usual product topology on Kw. Then T is the only pseudocompact group topology on 
Kw [47] (7.4(a)), but T admits 22c -many totally bounded finer group topologies [47] (7.4(b)).

5.5. Additional Extremality Theorems

The techniques used in the papers cited in Section 4 were adapted and extended 
by Giordano Bruno [56,59] to achieve parallel extremality results for pseudocompact 
abelian groups G which are even a-pseudocompact in the sense that G meets every 
non-empty intersection of a-many open subsets of G = bG.

Prior to the appearance of [44,45], researchers in Udine, Italy, considered 
conditions weaker than metrizability which suffice to guarantee that a pseudocompact 
abelian group G is both r- and s-extremal [56,57,60,61]. Here is a sample result.
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Theorem 5.5.1. If some closed Gd-subgroup N of G admits a dense pseudocompact subgroup 
H such that r0 ( N / H) c, then G itself has such a subgroup (hence is neither r-
nor s-extremal).

5.6. Closed Subgroups of Pseudocompact Groups

Since every subgroup of a totally bounded group is totally bounded and 
every closed subspace of a countably compact space is countably compact, it is 
reasonable (though perhaps naive) to inquire whether every closed subgroup of a 
pseudocompact group is necessarily pseudocompact. To the authors’ knowledge, 
this question was first addressed in [31] (2.4), where a straightforward abelian 
counterexample is offered. Later this fact was noted (see [62] (2.1), [63] (2.9)):

Theorem 5.6 .1. Every totally bounded group H embeds as a closed subgroup of a 
pseudocompact group G. If H is abelian, G may be chosen as abelian.

The construction of [62] (2.1) shows, though the authors did not record the 
fact explicitly, that, when H as in Theorem 5.6.1 is non-metrizable (that is, when 
w(H) > w), one may choose G so that w(G) = w(H).

In the abelian case, the correct locally bounded analogue of Theorem 5.6.1 has 
been recorded by Ursul [64]:

Theorem 5.6 .2. Every locally bounded abelian group is a closed subgroup of a locally 
pseudocompact group.

More recently, Leiderman, Morris and Tkachenko [65] have focused on closed 
embeddings into pseudocompact groups of small density character. For example, 
they have shown this.

Theorem 5.6 .3. Every totally bounded group H such that w( H) c embeds as a closed
subgroup of a separable pseudocompact group.

Since there are many totally bounded non-separable pseudocompact groups of 
weight c, for example the w-bounded group H := fx 2 Tc : jfh < c : xh 6= 1Tgj 
wg, it follows from Theorem 5.6.3, as is remarked in [65], that a closed subgroup of a 
separable pseudocompact abelian group can be non-separable.

5.7. Miscellaneous Investigations

(a) Dikranjan and Shakhmatov  (3.7) extended an important result of 
Zel0 manov  (the compact case) to prove: every pseudocompact torsion group is 
locally finite.

[66]
[67]

(b) The same authors investigated the following problem: Which infinite 
groups admit a pseudocompact group topology? We restrict attention here to 
non-abelian groups. A variety V of groups is said to be precompact if each V -free 
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group admits a precompact (totally bounded) group topology. An example is the 
variety of all groups. Here, we quote verbatim from [66] (1.3) “a free group F in a 
variety V admits a non-discrete pseudocompact group topology if and only if V is 
precompact and jFj is admissible”. For further results see [66] (Chapter 5).

(c) Dikranjan  proved (among other interesting theorems concerning 
pseudocompact abelian groups) this statement: Let F be a free group in a variety, 
and let a w. If jFj is a-admissible, then the poset of all pseudocompact group 
topologies of weight a on F contains a copy of the power set of a.

[68]

(d) (See (A) of the Abstract.) Comfort, Raczkowski and Trigos-Arrieta noted  
(3.1) that in a compact group, every proper, Gd-dense subgroup (that is, every proper 
dense pseudocompact subgroup) is non-measurable (in the sense of Haar). They 
showed that every infinite abelian group K of uncountable weight has 2jKj -many 
dense pseudocompact subgroups of cardinality jKj  (3.2); hence such K admits 
2jKj-many dense non-measurable subgroups of cardinality jKj  (3.4). In the same 
vein, Itzkowitz  (2.1) showed that every non-metrizable product-like group, 
defined as in Section  satisfies jP(K)j = 2jKj (the witnessing elements of P(K) 

being necessarily non-measurable). For further related results see .

[69]

[69]
[69]

[70]
 6.1,

[70]

Problem 5.7.1. Let K be a non-metrizable compact group. Does jP(K)j = 2jKj hold?

By [71] (3.4) a strongly complete group is a profinite group in which every 
finite index subgroup is open. An infinite group is almost perfect if jG/ G0j is 
finite for the algebraic commutator subgroup G0 of G. Hernandez, Hofmann and 
Morris [71] (3.5) proved: an infinite group in which every subgroup is measurable is 
a strongly complete almost perfect group. More recently Brian and Mislove [72] 
showed that it is consistent with ZFC that every infinite compact group has a 
non-measurable subgroup.

Problem 5.7.2. Does every infinite compact group K have 2jKj-many non-measurable 
subgroups (of cardinality jKj)?

6. Epimorphisms onto Products

Comfort and Robertson [37] (3.2(b)) showed that each non-metrizable compact 
abelian group K maps by a continuous epimorphism onto a group of the form M(w+) 

with M a compact subgroup of T. From this they determined [37] (3.4) that such K is 
not r-extremal.

6.1. Product-Like Groups

According to a definition of Itzkowitz and Shakhmatov ([70,73-75]) * a compact 
group K with k = w(K) is product-like if there is a continuous epimorphism h : K 
Px<k Mx with each Mx a non-trivial (compact) metrizable group. A similar class 
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was introduced by Varopoulos [76] (§3): a compact group K is called a n-group if 
K ' Pi2I Mi, where all Mi are (compact) metrizable groups. Not every n-group 
K is product-like: take for example for K an algebraically simple compact group. 
In [76] it is proved that if K is a connected, compact group with center Z, then K/Z 
is a n-group. Comfort and Robertson [4] (4.2) showed that (for non-trivial K) the 
group K/Z(K) is a product of compact, connected, non-abelian Lie groups which are 
algebraically simple.

It is known that every non-metrizable compact group K which is either abelian 
or connected is product-like (see for example [40] (5.4) or [74] (1.11) for the abelian 
case, [40] (proof of 6.5) or [73] for the connected case). This allowed the authors 
of [70,73-75] to conclude that for every such group K the set W(K) of dense 
w-bounded subgroups of K satisfies jW(K)j jKj. They asked whether that
inequality may be improved to jW(K)j = 2jKj; the question was answered 
affirmatively in [77] for those K which in addition satisfy w(K) = (w(K))w.

In this connection this question, raised in [77], appears still to be unsettled:

Problem 6.1.1. Does jW(K)j = 2jKj hold for every non-metrizable compact group K? 
What if K is product-like? What if cf(wK) > w?

Itzkowitz [70] (p. 23) cites from [74,75] the statement that all non-metrizable 
compact groups which are connected or abelian are product-like. In the proof for 
connected groups ([75] (5)) the authors used [4] ((4.2), (4.3)). The paper [40] was cited 
in [74] (2.5), but not in [75]. The authors of [70,74,75] inadvertently failed to note that 
already in [40] (proof of (6.5)) the following more detailed result had been obtained 
in a more direct way (see also [40] (5.4) for a relevant result in the abelian context):

Lemma 6.1.2. Let K be an infinite compact, connected group, and let A be the connected 
component of the center of K. Then:

(a) if w(A) = w(K), then there is a continuous epimorphism h : K Tw(K); and
(b) if w(A) < w(K), then there is a continuous epimorphism h : K Pi2I (Hi/Ci) 

with jIj = w(K).

In the statement of Lemma 6.1.2(b), each Hi is a compact, simply connected, 
simple Lie group with finite center Ci . By a result of van der Waerden [78] all groups 
Hi/Ci are algebraically simple.

Lemma 6.1.2 is fundamental for the following theorem, which is a main tool in 
the proof of Theorem 5.2.1.

Theorem 6.1.3 ([40] (6.5)). Let K be a compact, connected group such that w(K) = a > w, 
and let A be the connected component of the center of K. Then:

(a) if w < b < a, then there are a compact group F with jFj > 1 and a continuous 
epimorphism from K onto Fb ; and
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(b) if w(A) = a or cf(a) > w, then there are a compact group F with jFj > 1 and a 
continuous epimorphism from K onto Fa.

The proof of Theorem 5.2.1 depends crucially on the following result.

Theorem 6.1.4 ([40] (5.2)). Let k > w, let K = (K, T) be a compact group, and let 
h : K Fk bea continuous epimorphism with F a compact group, jFj > 1. Then K admits a 
pseudocompact group topology U such that U T, U 6= T, and w(K,U) = w(K,T) +22k.

Remarks 6.1.5. (a) By no means is every compact group product-like. It is shown 
in [34] (4.10(d)) that for every cardinal k w there is a compact (non-abelian) 
group K with wK = k such that no homomorphism h : K H0 H1 with jHij > 1 
is surjective.

(b) It is shown in  (6.2) that when a := iw(a0) (a0 w), then with K := 
Pn<w (Z(pn))an we have: every continuous surjective epimorphism h : K Fk with 
jFj > 1 satisfies k < a = w(K) (indeed 22k < 22a ). Seeking a non-abelian result with 
a similar flavor, we have formulated (but not proved) several reasonable conjectures. 
Of these, Conjecture below seems particularly attractive and accessible. Here 
we say as usual that a topological group K is topologically simple if the only closed 
normal subgroups of K are f1Kg and K itself, and we recall this characterization of 
compact topologically simple groups, due to Yu  (1.8).

[46]

 6.1.6 

[79]

Every compact topologically simple group is either a finite simple group or a 
compact, algebraically simple, connected Lie group.

In particular, then, each such group K is metrizable, i.e., satisfies wK w.
We recall also, for example from [80] (7.3.11), that for K as hypothesized below, 

every closed normal subgroup N of K (in particular the subgroup N = ker(h)), 
has the form N = Pn2I Knbn f1wnI g for suitable I w and for suitable cardinals 
bn an .

Conjecture 6.1.6. Let (an)n<w be a strictly increasing sequence of infinite cardinals with 
each cf(an) > w, and set a := supn an = Sn an. Let fKn : n < wg be a sequence of 
pairwise non-isomorphic, non-abelian, topologically simple compact groups, and set K := 
Pn Knan . Then:

(a) every continuous epimorphism h : K Fk with jFj > 1 satisfies k < a = wK; and
(b) if an+1 = 2an for all n, so that a = iw(a0), then kb < wK for all b < a.

Of course (b) follows from (a), since for such k and b there is n < w such that 
k < an and b < an, and then kb aann = 2an = an+1 < a.
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7. Concerning Free Compact Topological Groups

7.1. Characterizations of FX and FAX

Here we follow generally the conventions of Hofmann and Morris [81] (Chapter 11). 
See also [2] (8.8) for a less extensive, more constructive approach to free 
topological groups.

(a) For every space X there is a compact group FX, the free compact group on 
X, such that

(1) X hXi FX with X closed in hXi and hXi dense in FX;
(2) algebraically, hXi is the free group on the set X; and
(3) for every continuous f : X ! K with K a compact group there is a (unique) 

continuous homomorphism f : FX ! K such that f j X = f.
The free compact abelian group FAX has analogous properties, with f D f : 

X ! K with K a compact abelian group.
(b) The role of 1FX is played in FX by the empty word. In contrast, some 

workers prefer to work with pointed spaces (X, p), then with the identification 
p!1p=1FX2hXiFX.

The theorem cited in (a) is rooted in the work of Markov [82,83] and Graev [84,85] 
concerning free topological groups. Alternate latter-day constructions abound, some 
achieved independently of [82-85] and some based on those works, some with 
algebraic emphasis [86,87], [2] (8.8,8.9), [24] (2.3-2.5), some topological [88-90], some 
functorial or categorical [91]. See [92] (§4) for a comprehensive introduction to the 
groups FX and FAX, and see [62] for generalizations to “free P-spaces” for some 
other classes P.

The reader will note that in our present convention, the “free compact group 
FX” is a compact group which is not algebraically the free group on X. In the sources 
about free topological groups cited above, that is reversed: “the free topological 
group over a space X” is itself not compact, it is algebraically the free group on 
X. Note that FX is the Bohr compactification (see [93] (Chapter 5.4)) of the free 
topological group over the space X.

7.2. Basic Properties ofFX and FAX

(a) We list four basic facts about the free groups FX and FAX.
(i) (  (4.2.2)) For each space X the free compact group FX is naturally 

isomorphic to the free compact group FbX, where bX is the Stone-Cech 
compactification of X.

[92]

(ii) FX is connected if and only if X is connected; similarly for FAX.
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(iii) (  (1.4),  (4.2.4)) *With X given and with FX in hand, the group 
FAX maybe “realized” in concrete form by the rule FAX = FX / (FX )0), with (FX )0 

denoting the commutator subgroup of FX;

[81] [92]

(iv) (  (4.2.1(i),  (11.6)) For X compact and infinite one has w(FX) = 
w(FAX) = (wX)w; hence cf(w(FX)) = cf(w(FAX)) > w.

[92] [81]

It follows from (ii), (iii) and (iv) that the free compact groups FX and FAX for X 
compact and connected satisfy the conditions of Theorem 5.2.1(b) of Section 5. By 
applying Theorem 8.2.3 of Section 8 below we have this result.

Theorem 7.2.1. Let FX = ( FX, T ) be the free compact group over the compact space X 
with jXj > 1 and w(FX) = w(FAX) = a > w. Then with k := 222a there are k-many 
pseudocompact group topologies Uh (h < k) on FX such that Uh T, Uh 6= T, and
w(FX, Uh) = 2jFXj.

8. New Results, Non-Abelian Emphasis

8.1. Three Preliminary Lemmas

It is shown in [46] (5.1) that every non-metrizable compact abelian group K 
admits a pseudocompact group refinement of maximal weight (that is, of weight 
2jKj). With a view toward generalizing that statement and its corollaries from [46] 
into the non-abelian context, we begin this section (making no claim for novelty in 
either case) with two simple lemmas.

Lemma 8.1.1. Let H be a closed normal subgroup of an infinite totally bounded group G. 
Then wG = wH + w(G/H).

Proof. The result is well known (see for example [40] (6.1)) when G, hence also 
H, is compact. Denoting as in 1.3(b) by G the Weil completion of (an arbitrary) 
totally bounded group G, we have in the present case G/H = G/H (see also in this 
connection [93] (5.4.3) and [94] (2.6)), and hence

wG = wG = wH + w (G / H )= wH + w (G / H). □

Lemma 8.1.2. [47] (3.11) Let S and U be totally bounded group topologies on a group G 
such that S U. Then w(G, S) w(G, U).

Proof. The continuous map id : (G, S) ^ (G, U) extends continuously to id : 
(G, S) ^ (G, U), and a continuous surjection between compact spaces cannot raise 
weight [1] (3.1.22), so we have

w(G,S) = w(G,S) > w(G,U) = w(G,U). □

Now for an arbitrary totally bounded group (G, T) we denote by M(T) the 
set of totally bounded group topologies on G which contain T. Further, given a 
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closed normal subgroup H of G, we denote by f the usual quotient map from G onto 
G/ H and by Tq the quotient topology on G/ H. We note that for a group topology S 

on G / H, the initial topology f -1(S) induced on G by f and S is a group topology 
which is not in general a Hausdorff topology.

Lemma 8.1.3. Let K = (K,T) bea compact group with a closed normal subgroup H. Then:
(a) S 2 M(T.) ) T_ f -1(S) 2 M(T);
(b) the map M(Tq) ! M(T) given in (a) is injective; and
(c) if S 2 M(T) is pseudocompact, then T_ f 1 (S) is pseudocompact.

Proof. With only notational changes, the proof follows the argument of our work 
with Szambien [95] (3.5). □

8.2. Refinements of Large Weight (the Non-abelian Case)

The following theorem is a generalization of [40] (6.2).

Theorem 8.2.1. Let K = (K, T) be a compact group such that w(K) = a > w. Let 
K0 be the closure in (K, T) of the commutator subgroup of K. If w(K/K0, T.) = b > w, 
then there is a pseudocompact group topology U on K such that U T, U 6= T, and 
w(K,U) = a+22b.

Proof. From [46] (5.1) applied to the compact group (K/K0, T.) we have: there is a 
pseudocompact group topology S 2 M(T.) such that S 6= T. and w(K/K0, S) = 22b. 
The topology U := T_ f -1(S) on K is pseudocompact by Lemma 8.1.3(c).

Lemma 8.1.1 implies w(K,U) = w(K0, U0) + w(K/K0, S), because S is the 
quotient topology of U; here U0 denotes the topology induced by U on K0. This 
topology coincides with the topology induced by T on K0, so w(K,U) a+ 22b.

For the reverse equality we note that w(K,U) w(K/K0, S) = 22b. Lemma 8.1.2
gives w (K, U) > a. Hence w (K, U) > a + 22b. □

In preparation for Theorem 8.2.3 we recall this result from [46] (5.2) (see (B) of 
the Abstract).

Lemma 8.2.2. For every compact abelian group K = (K, T) with wK = a > w there 
are 22jKj -many pseudocompact group topologies U on K such that U T, U 6= T, and 
w(K,U) = 2jKj.

Theorem 8.2.3. Let K = (K, T) be a compact group such that w(K, T) = w(K/K0, T.) = 

a > w. Then with k := 222a there are k-many pseudocompact group topologies Uh (h < k) 

on K such that Uh T, Uh 6= T, and w(K, Uh) = 2jKj.

Proof. In view of Lemma 8.1.1 and Lemma 8.1.3, it is enough to know that there 
are k-many pseudocompact group topologies Sh (h < k) on the abelian group K/K0 

such that Sh T., Sh 6= T., and w(K/K0, Sh) = 2jK/K0j = 2jKj. This is given by
Lemma 8.2.2 (with K there replaced by K/K1 here). □
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Remark 8.2.4. We adopt this definition from [81] (9.92). Given a group G, the set F 
of all elements whose conjugacy class is finite is called the FC-center of G. If F = G, 
then G is an FC-group. Hofmann and Morris [81] (9.99) proved this theorem:

Let K be a compact group. Then the following three statements are equivalent:
(i) K is an FC-group;
(ii) K/Z(K) is finite; and
(iii) the commutator subgroup of K is finite.

From the implication (i) ) (iii) it is clear that every FC-group K = (K, T) with 
w(K) = a > w satisfies the condition w(K) = w(K/K0) = a, so from Theorem 8.2.3 
we have this consequence for such K: with k := 222 there are k-many pseudocompact 
group topologies Uh (h < k) on K such that Uh T, Uh 6= T, and w(K, Uh) = 2jKj.

Theorem 8.2.5. Let K = (K,T) be a compact group, such that w(K) = a > w, and 
let Z0(K) be the connected component of the center Z(K) of K. If w(Z0(K)) = b > w, 
then there is a pseudocompact group topology U on K such that U T, U 6= T, and 
w(K,U) a+22b.

Proof. Let K0 be the closure of the commutator subgroup of K. By [81] (9.23(iii)) the 
connected component C0 of K/K0 is topologically isomorphic to Z0(K)/H, where H is 
the intersection of Z0 (K) and K0. The group H is totally disconnected, since Z(K) \ K0 

is totally disconnected by [81] (9.23(i)). Thus [96] (3.2) implies w(Z0(K)) = w(C0). 
Hence b < w(K/K0). Now apply Theorem 8.2.1 to complete the proof. □

Let R denote a set of representatives for the isomorphism classes of the class of 
all compact simple groups. It was noted by Hofmann and Morris [97] (p. 412) that R 

is an infinite countable set. In [97] (2.2), a compact group is called strictly reductive if 
it is isomorphic to a Cartesian product of compact algebraically simple groups. For 
a compact group K and S 2 R, the smallest closed subgroup KS of K containing all 
closed normal subgroups isomorphic to S is called in [97] the S-socle of K.

Theorem 8.2.6 ([97] (2.3)). Let K be a strictly reductive compact group, and let (KS )S2R 

denote the sequence of S-socles of K. Then there is a sequence of cardinals (J(K, S))S2R such 
that K ' PS2R KS, with KS ' SJ(K,S) for each S 2 R.

Theorem 8.2.7. Let (K,T) be a strictly reductive compact group with w(K,T) = a > w. 
Then:

(a) if w < b < a, then K admits a pseudocompact group topology U such that U T,
U 6= T, and w(K, U ) = a + 22b ; and

(b) if cf(a)> w, then K admits a pseudocompact group topology U with U T,
U6= T,andw(K,U) = 22a.

Proof. By Theorem 8.2.6 there is a sequence of cardinals (J(K, S))S2R such that 
K ' PS2R KS, KS ' SJ(K,S) . Hofmann and Morris [97](2.7) showed w(K, T) = 

maxfw,sup{J(K,S) : S 2 Rgg. Then Theorem 6.1.4 completes the proof. □
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Corollary 8.2.8. Let (K,T) bea strictly reductive compact group with w(K,T) = a > w. 
Then K admits a pseudocompact group topology U with U T, U 6= T.

Proof. If a > w+, use Theorem 8.2.7(a). If a = w+, use Theorem 8.2.7(b). □

Corollary 8.2.9. Let (K,T) be a strictly reductive compact group with w(K,T) = a. If 
cf(a) > w, then K admits a pseudocompact group topology U with U T, U 6= T, and 
j[T,U]j 2jKj.

Proof. Use Theorem 5.2.4 and Theorem 8.2.7(b). □

Remus considered in [98] uncountable powers of a non-abelian, compact, 
topologically simple group.

Theorem 8.2.10 ([98] (3.40)). Let F be a non-abelian, compact, topologically simple group, 
and let a > w. Let K = Fa endowed with the product topology T. Then:

(a) there is a pseudocompact group topology U on K with w(K,U) = 2jKj and T U 

such that there is an order-isomorphism f of the power set P (2jKj), ordered by the inclusion, 
onto a subset of [T,U]. The compact Weil completion of (K,U) is topologically isomorphic 
to F22a; and

(b) for each cardinal g such that a g 2jKj and for every M 2 P(2jKj) with
jMj = g, one has w(K, f(M)) = g.

From the proof of [98] (3.36) this statement follows: let (K,T) be a profinite 
group with w(K, T) = a. If cf(a) > w, there is a subnormal series H1 H2 . . . 
Hk = K of open subgroups of K such that there is a pseudocompact group topology 
U on H1, finer than the topology induced by T on H1, such that w(H1, U) = 2jGj. 
By [98] ((3.36)(b)) there is a linear totally bounded group topology V of weight 2jGj on 
K which is finer than T (this is constructed using the topology U and the subnormal 
series). It remains open if V can be chosen pseudocompact. It is natural to pose 
the following

Problem 8.2.11. Let (K,T) be a profinite group of uncountable weight.
(a) Does T admit a proper pseudocompact refinement of maximal weight 2jKj ?
(b) Are there 22jKj -many pseudocompact group topologies on K which are finer than T?
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Fixed Points of Local Actions of Lie Groups 
on Real and Complex 2-Manifolds
Morris W. Hirsch

Abstract: I discuss old and new results on fixed points of local actions by Lie groups 
G on real and complex 2-manifolds, and zero sets of Lie algebras of vector fields. 
Results of E. Lima, J. Plante and C. Bonatti are reviewed.

Reprinted from Axioms. Cite as: Hirsch, M.W. Fixed Points of Local Actions of Lie 
Groups on Real and Complex 2-Manifolds. Axioms 2016,4, 313-320.

1. Introduction

Classical results of Poincare [1] (1885), Hopf [2] (1925) and Lefschetz [3] (1937) 
yield the archetypal fixed point theorem for Lie group actions:

Theorem 1. Every flow on a compact manifold of non-zero Euler characteristic has 
a fixed point.

Here the Lie group is the group R of real numbers.
The earliest papers I have found on fixed points for actions of other non-discrete 

Lie group are those of P. A. Smith [4] (1942) and H. Wang [5] (1952). Then came 
Armand Borel’s landmark paper of 1956:

Theorem 2 (Borel ). If H is a solvable, irreducible affine algebraic group over an 
algebraically closed field K, every algebraic action of H on a complete algebraic variety 
over K has a fixed point.

[6]

Over the field of complex numbers, completeness is equivalent to compactness 
in the classical topology, and complete nonsingular varieties are compact Kahler 
manifolds.

In 1973, A. Sommese [7] extended Borel’s theorem to solvable holomorphic 
actions on compact Kahler manifolds with first Betti number 0. In contrast 
to the results below, these have no explicit restrictions on dimensions or Euler 
characteristics.

2. Actions and Local Actions

If f : A ! B denotes a map, its domain is Df := A and its range is Rf := f (A).
Let g, f denote maps. Regardless of their domains and ranges, the composition 

g o f is defined as the map x ! g(f (x)) whose domain, perhaps empty, is f-1(Dg).
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The associative law holds for these compositions: The maps (h g) f and h (g f) 
have the same domain

D:=fx2Df: f(x) 2 Dg, g( f (x)) 2Dfg, 

and
x2D =) (hg)(f(x)) = h((g f)(x)).

Henceforth M denotes a manifold with boundary 3M, and G denotes a 
connected Lie group with Lie algebra g.

A local homeomorphism f on M is a homeomorphism between open subsets of M. 
The set of these homeomorphisms is denoted by LH( M).

A local action of G on M is a triple (a, G, M), where a: G ! LH(M) is a function 
having the following properties:

The set W(a) := (g, p) 2 G M: p 2 Da(g) is an open neighborhood of 
feGg M.
The evaluation map

ev: W(a) ! M, (g, p) 7! a(g) p

is continuous.
a(eG ) is the identity map of M.
The maps a(fg) a(h) and a(f) a(gh) agree on the intersection of their 
domains.

• a (g1) = a (g )_1-

Notation of a may be omitted.
When W(a) = G M the local action is a global action. If G is simply connected 

and M is compact, every local action extends to a unique global action.
When a has been specified, we define the fixed-point sets

Fix(g) := fx2Dg: g(x) = xg, 

Fix(G) := \ Fix(g)
g2G

The local action is effective if Fix(g) 6= M for all g 6= eG.
A local flow is a local action (Y, R, M). In this case we set Yt := Y(t) and identify 

Y with the indexed family of fYtgt2R of local maps in M. If (a, G, M) is a local action, 
to every X 2 g there corresponds a local flow (aY, R, M) defined in the following. 
Consider X as a 1-parameter subgroup of G, i.e., a homomorphism X : R ! G, and 
set aY = fa( X (t))gt2R . The local flow induced by a C1 vector field X on M tangent 
to 3M is denoted by FX := fFtXgt2R.
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A block for a local flow Y (a Y-block) is a compact K Fix(Y) having a 
precompact open neighborhood U c M, termed isolating, such that Fix(Y) \ U = K. 
When this holds, the index i(Y, U) of Y in U is defined as the fixed point index 
of YtjU : U ! M for sufficiently small t > 0, as defined by Dold [8] (see also 
Brown [9] and Granas and Dugundji [10]). This integer depends only on K, and we 
set iK(Y) := i(Y, U). When iK(Y) 6= 0 then K is essential. If K is a block for the local 
flow FX of a vector field X, an equivalent definition of iK(FX) as the Poincare-Hopf 
index of X at K is given in Section 4.

3. Fixed Points of Local Actions on Surfaces

In the rest of this section M denotes a real closed surface (compact with empty 
boundary) and G is a connected Lie group acting continuously on M.

An important role is played by the group ST(n, R), the solvable group of real, 
upper triangulable n n matrices with positive diagonal entries. In his pioneering 
1964 paper, E. Lima [11] constructed fixed-point free actions of ST(2, R) on the 
compact 2-cell and the 2-sphere, but he also showed that every abelian Lie group 
action on a compact surface M of nonzero Euler characteristic c( M ) has a fixed point. 
These results were extended in 1986 by Plante:

Theorem 3 (Plante [12]). Let M be a compact surface whose boundary may be nonempty.

(i) ST(2, R) has a fixed-point free action on M.
(ii) If c(M) 6= 0, every action on M by a connected nilpotent Lie group has a fixed point.

Many facts about existence of fixed points for continuous actions on closed 
surfaces can be derived from the results of M. Belliart summarized in the following 
theorem. If H c GL(n, F) denotes a group of matrices, PH denotes the quotient of 
H by its center.

Theorem 4 (Belliart [13]). There is a fixed-point free action of G on M iff one of the 
following conditions (a), (b), (c) holds:

(a) c( M) > 0 and G is solvable but not nilpotent.
(b) c(M) < 0 and G has ST(2, R) as a quotient.
(c) c(M ) 0, G is semisimple, and either:

(i) G has PSL(2, R) as a quotient, or
(ii) c (M) > 0, dM = ?, and G has as a quotient one of the groups 

PSL(3, R), PSL(2, C) or PSO(3).

A Lie algebra is supersolvable if it is faithfully represented as upper triangular 
real matrices. A Lie group is supersolvable if its Lie algebra is.
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Theorem 5.

(i) ST(3, R) has an effective analytic action on M.
(ii) If G has an effective, fixed-point free analytic action on M, then c(M) 0, with equality

when G is a supersolvable and dM = ?.

Part (i) and the first conclusion in (ii) are due to Turiel [14]. The second 
conclusion in (ii) is due to Hirsch and Weinstein [15].

The following result gives upper and lower bounds on the number of fixed 
points of analytic actions of ST(3, R):

Proposition 1 (Hirsch [16], Cor. 17, Thm 22).

(i) Let M have genus g. For every k 2 N there is an effective analytic action b of ST(3, R) 
on M such that:

2(g+k+1) if M is orientable, 
# Fix(b) = (1)

g + k if M is nonorientable and g 1.

(ii) If G is not supersolvable and has an effective analytic action on M,

0 # Fix(G) c(M) 2.

Question. Can the right hand side of Equation (1) can be lowered?

4. Indices of Vector Fields

Let V (M) denote the vector space of vector fields (continuous sections of the 
tangent bundle) on a smooth manifold M, endowed with the compact open topology.

The zero set of X 2 V(M) is

Z(X) := fp2M: Xp = 0g.

A block for X (an X-block) is a compact, relatively open set K Z(X). Every 
sufficiently small open neighborhood U M of K is isolating for X, meaning its 
closure U is compact and Z( X) \ U = K. This implies that U is isolating for every 
vector field Y sufficiently close to X.

Let K be an X-block. When K is finite, the Poincare-Hopf index of X at K, and in 
U, is the integer iKPH(X) = iPH(X, U) defined as follows. For each p 2 K choose an 
open set W U meeting K only at p, such that W is the domain of a C1 chart

f: W W0Rn, f(p) = p0.

59



The transform of X by f is

X0 := Tf o X o f-1 2 V(W0).

There is a unique map of pairs

Fp: (W0, 0) ! Rn, 0)

that expresses X0 by the formula

Xx = (x,Fp(x)) 2 fxg x Rn, (x 2 W0).

Noting that F 1 (0) = p, we define ipH(X) 2 Z as the degree of the map defined 
for any sufficiently small e > 0 as

S n-1 S n ~ 1
Fp (eu) 

k Fp(eu)k

where k k is the norm defined by any Riemannian metric on M. This degree is 
independent of e and the chart f, by standard properties of the degree function. 
Therefore the integer

|E p 2 KipH (X) if K = ? 

0 ifK= .
iKPH(X) = iPH(X,U):=

is well defined and depends only on X and K.
The index of an arbitrary X-block K is the integer iK(X) := i(X, U) defined as 

the Poincare-Hopf index of any sufficiently close approximation to X having only 
finitely many zeros in U [17].

This number is independent of U and is stable under perturbations of X. The 
X-block K is essential when iK(X) 6= 0. This implies Z(X) \ K 6= ? because every 
isolating neighborhood of K meets Z(X).

Theorem 6 (Poincare-Hopf). IfM is compact, i(X, M) = c(M) for all continuous vector 
fields X on M.

For calculations of the index in more general settings see Morse [18], Pugh [19], 
Gottlieb [20], Jubin [21].

Theorem 7 (Bonatti [22]). Assume M is a real manifold of dimension 4 with empty 
boundary, and X,Y are analytic vector fields on M such that [X, Y] = 0. Then Z(Y) meets 
every essential X-block [23].
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This implies certain local actions of 2-dimensional abelian Lie groups have fixed 
points. The results below are analogs for local actions of nonabelian Lie groups.

Theorem 8 (Hirsch [24]). Let M be a real surface, perhaps non-compact or having 
non-empty boundary. Let G be a connected nilpotent Lie group and (a, G, M) an effective 
local action. Assume given a continuous local action of G on M, and let K be an essential 
block for the local flow induced by a 1-parameter subgroup. Then Fix(G) \K 6= ?.

This implies Plante’s result, Theorem 3(ii).

Corollary 1. Let G, M and X be as in Theorem 8.

(i) If G M is a compact attractor for FX and c(G) 6= 0, then Fix(G) \G 6= ?.
(ii) IfFX has n essential blocks, then Fix(G) has n components.

The counter-example in Theorem 3(i) show that fixed point results for broader 
classes of Lie groups, including supersolvable groups, need stronger hypotheses.

Henceforth M denotes either a real or complex 2-manifold, the corresponding 
ground field being F = R or C. Let Vw (M) denote the Lie algebra of vector fields on 
M that are analytic over F. If Y 2 Vw (M), TFY denotes the induced local flow on 
the tangent vector bundle of M.

Assume X, Y 2 Vw(M). We say that Y tracks X if there exists a continuous map

f: M ! F, f-1(0) = Z(X), [Y, X]= fX.

Equivalently: if p 2 M and t 2 R there exists g(t, p) 2 F such that:

FtY(p) = q(t) =) TFtY(Xp) = g(t, p)Xq(t).

For real M this means FtY sends orbits of XjDFYt to orbits of XjRFYt .
Let G Vw(M) denote a Lie algebra of vector fields. We say that G tracks X

provided each Y 2 G tracks X.

Example 1. If X spans an ideal in G then G tracks X, and the converse holds if G is 
finite dimensional.

Example 2. The set fY 2 Vw(M) : Y tracks Xg is a Lie algebra that tracks X.

The following result will be proved in a forthcoming paper [25]; a preliminary 
version is in [26].

Theorem 9. Assume X 2 Vw (M), K is an essential X-bloc, and G Vw(M) tracks X.
Let one of the following conditions hold:
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(a) M is complex,
(b) M is real and G is supersolvable.

Then Z(G) \K6= ?.

Example 3. Here is a simple example in which the hypotheses hold. For M take 
complex projective 3-space. Let G be the solvable complex Lie group of unimodular 
4 4 upper triangular complex matrices. The natural action of G on C4 induces an 
effective holomorphic action of G on M, mapping the Lie algebra of G isomorphically 
onto a Lie algebra G Vw(M). Let X 2 G have the block 00 10 in its upper right 
hand corner and all other elements equal to zero. X spans an ideal, the triple 
commutator subalgebra G 000. The X-block K := Z(X), a copy of CP1, is essential 
because c(M) = 3; and Z(G) is a singleton in Z(X).
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Free Boolean Topological Groups
Ol’ga Sipacheva

Abstract: Known and new results on free Boolean topological groups are collected. 
An account of the properties that these groups share with free or free Abelian 
topological groups and properties specific to free Boolean groups is given. Special 
emphasis is placed on the application of set-theoretic methods to the study of Boolean 
topological groups.

Reprinted from Axioms. Cite as: Sipacheva, O. Free Boolean Topological Groups. 
Axioms 2016, 4, 492-517.

1. Introduction

In the very early 1940s, Markov [1,2] introduced the free topological group F(X) 
and the free Abelian topological group A(X) on an arbitrary completely regular 
Hausdorff topological space X as a topological-algebraic counterpart of the abstract 
free and free Abelian groups on a set, respectively; he also proved the existence and 
uniqueness of these groups. During the next decade, Graev [3,4], Nakayama [5] 
and Kakutani [6] simplified the proofs of the main statements of Markov’s theory of 
free topological groups, generalized Markov’s construction and proved a number 
of important theorems on free topological groups. In particular, Graev generalized 
the notions of the free and the free Abelian topological group on a space X by 
identifying the identity element of the free group with an (arbitrary) point of X (the 
free topological group on X in the sense of Markov coincides with Graev’s group 
on X plus an isolated point), described the topology of free topological groups on 
compact spaces and extended any continuous pseudometric on X to a continuous 
invariant pseudometric on F(X) (and on A(X)) which is maximal among all such 
extensions [3].

This study stimulated Mal’tsev, who believed that the most appropriate place 
of the theory of abstract free groups was in the framework of the general theory of 
algebraic systems, to introduce general free topological algebraic systems. In 1957, 
he published the large paper [7], where the basics of the theory of free topological 
universal algebras were presented.

Yet another decade later, Morris initiated the study of free topological groups in 
the most general aspect. Namely, he introduced the notion of a variety of topological 
groups and a full variety of topological groups and studied the free objects of these 
varieties [8-10] (see also [11]). (A definition of a variety of topological groups 
(determined by a so-called varietal free topological group) was also proposed in 
1951 by Higman [12]; however, it is Morris’ definition that has proven viable and 

64



developed into a rich theory.) Varieties of topological groups and their free objects 
were also considered by Porst [13], Comfort and van Mill [14], Kopperman, Mislove, 
Morris, Nickolas, Pestov and Svetlichny [15], and other authors. Special mention 
should be made of Dikranjan and Tkachenko’s detailed study of varieties of Abelian 
topological groups with properties related to compactness [16].

The varieties of topological groups in which free objects have been studied best 
are, naturally, the varieties of general and Abelian topological groups; free and free 
Abelian precompact groups have also been considered (see, e.g., [17]). However, 
there is yet another natural variety: Boolean topological groups. Free objects in this 
variety and its subvarieties have been investigated much less extensively, although 
they arise fairly often in various studies (especially in the set-theoretic context). The 
author is aware of only three published papers considering free Boolean topological 
groups from a general point of view: [18], where free Boolean topological groups 
on compact spaces were studied fairly thoroughly; [19], where the topology of the 
free Boolean topological group on a compact metric space was explicitly described; 
and [20], where the free Boolean topological groups on compact initial segments of 
ordinals were classified (see also [21]). The purpose of this paper is to draw attention 
to these very interesting groups and to give a general impression of them. We collect 
some (known and new) results on free Boolean topological groups, which describe 
both properties that these groups share with free or free Abelian topological groups 
and properties specific to free Boolean groups.

2. Preliminaries and a General Description of Free Boolean Topological Groups

All topological spaces and groups considered in this paper are assumed to be 
completely regular and Hausdorff.

The notation w is used for the set of all nonnegative integers and N for the set of 
all positive integers. By Z2, we denote the group of order two. The cardinality of a 
set A is denoted by j Aj and the closure of a set A in an ambient topological space by 
A. We denote the disjoint union of spaces X and Y by X © Y.

By a zero-dimensional space, we mean a space X with ind X = 0 and by a 
strongly zero-dimensional space a space X with dim X = 0.

A Boolean group is a group in which all elements are of order two. Clearly, all 
Boolean groups are Abelian. Algebraically, all Boolean groups are free, because any 
Boolean group is a linear space over the field F2 = f0, 1g and must have a basis 
(a maximal linearly independent set) by Zorn’s lemma. This basis freely generates 
the given Boolean group. Moreover, any Boolean group (linear space) with basis 
X is isomorphic to the direct sum LjXj Z2 of jXj copies of Z2, i.e., the set of finitely 
supported maps g : X ! Z2 with pointwise addition (in the field F2). Of course, such 
an isomorphic representation depends on the choice of the basis.
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A variety of topological groups is a class of topological groups closed with 
respect to taking topological subgroups, topological quotient groups and Cartesian 
products of groups with the product topology. Thus, the abstract groups Ge 

underlying the topological groups G in a variety V of topological groups (that 
is, all groups G 2 V without topology) form a usual variety Ve of groups. A variety V 
of topological groups is full if any topological group G for which Ge 2 Ve belongs to 
V. The notions of a variety and a full variety of topological groups were introduced 
by Morris in [8,9], who also proved the existence of the free group of any full variety 
on any completely regular Hausdorff space X .

Free objects of varieties of topological groups are characterized by the 
corresponding universality properties (we give a somewhat specific meaning to 
the word “universality,” but we use this word only in this meaning here). Thus, 
the free topological group F(X) on a space X admits the following description: 
X is topologically embedded in F( X) and, for any continuous map f of X to 
a topological group G, there exists a continuous homomorphism f: F (X) ! G 
for which f = f \ X. As an abstract group, F(X) is the free group on the set X. The 
topology of F(X) can be defined as the strongest group topology inducing the initial 
topology on X. On the other hand, the free topological group F(X) is the abstract free 
group generated by the set X (which means that any map of the set X to any abstract 
group can be extended to a homomorphism of F(X)) endowed with the weakest 
topology with respect to which all homomorphic extensions of continuous maps 
from X to topological groups are continuous. The free Abelian topological group 
A(X ) on X, the free Boolean topological group B( X ) on X and free (free Abelian, free 
Boolean) precompact groups are defined similarly; instead of continuous maps to 
any topological groups, continuous maps to topological Abelian groups, topological 
Boolean groups and precompact (Abelian precompact, Boolean precompact) groups 
should be considered.

There is yet another family of interesting varieties of topological groups. 
Following Malykhin (see also [17]), we say that a topological group is linear if it has 
a base of neighborhoods of the identity element which consists of open subgroups. 
The classes of all linear groups, all Abelian linear groups and all Boolean linear 
groups are varieties of topological groups. These varieties are not full, but for any 
zero-dimensional space X, there exist free groups of all of these three varieties on 
X . Indeed, Morris proved that a free group of a variety of topological groups on a 
given space exists if this space can be embedded as a subspace in a group from this 
variety ([8], Theorem 2.6). Thus, it suffices to embed any zero-dimensional X in a 
Boolean linear topological group (which belongs to all of the three varieties under 
consideration). We do this below, but first we introduce more notation.

Whenever X algebraically generates a group G, we can set the length of the 
identity element to zero, define the length of any non-identity g 2 G with respect 
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to X as the least (positive) integer n such that g = x1#1 x2#2 . . . x#nn for some xi 2 X and 
#i = 1, i = 1,2, . . . , n, and denote the set of elements of length at most k by Gk for 
k 2 w; then, G = Gk. Thus, we use Fk(X), Ak(X) and Bk (X) to denote the sets of 
words of length at most k in F(X), A(X) and B(X), respectively.

Now, we can describe the promised embedding.

Lemma 1. (i) For any space X with ind X = 0, there exists a Hausdorff linear
topological group F0 (X ) such that F0 (X ) is an algebraically free group on X, X 
is a closed subspace of F0(X), and all sets Fn(X) of words of length at most n are 
closed in F0(X).

(ii) For any space X with ind X = 0, there exssis a Hausdorff Abelian linear topologic al 
group A°(X such that A 0 (X) is an algebraically free Abelian group on X, X is a 
closed subspace of A0(X), and all Mts An(X )ofwords of length at mod n are closed 
in A0(X)■„..,.,„„.,..„,„„,,.

(iii) For any space X with ind X = 0, there eiists a Hausdorff Boolean linear topological 
group B0 ( X ) such that B0 ( X ) is an algebraically free Boolean group on X, X is a 
closed subspace of B0(X), and all sets Bn (X) of words of length at most n are closed 
in B o ( x )

Proof. Assertion (i) was proven in [22], Theorem 10.5. Let us prove (ii). Given a 
disjoint open cover g of X, we set:

H(y) = |y~^(xi - yi): n G N and for each i < n, there exists an Ui e Y for which xi, yi G Ui}; 
i=1

this is a subgroup of the free Abelian group on X. We can assume that all words in 
H (g) are reduced (if x, is canceled with yj, then U, = Uj, because Ui \ Uj 3 x, = yj 

a g is disjoint, and we can replace x, - yi + x - y by xj - y,). All s subgroups 
generate a group topology on the free Abelian group on X; we denote the free Abelian 
group with this topology by A0(X) (we might as well take only finite covers).

The space X is indeed embedded in A0(X): given any clopen neighborhood U 
of any point x 2 X,we have x + H(fU, X n Ug) \ X = U.

Let us show that An(X) is closed in A0(X) for any n 2 w. Take any reduced 
word g = #1x1 + #2x2 + + #kxk with k > n, where #i = 1 and xi 2 X for i k.
Let Ui be clopen neighborhoods of xi such that U and Uj are disjoint if xj = xi and 
coincide if xj = xj . We set:

no

g = U1, . . . , Uk, X n Ui .
ik

Take any reduced word h = £m=1(yi — z, ) in H (g) and consider g + h. If, for some 
i < m, both yi and — z, are canceled in g + h with some xj and xl, then, first, xj = xl 
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(because any different letters in g are separated by the cover g, while yi and zi must 
belong to the same element of this cover), and secondly, #j = — #i (because yi and 
zi occur in h with opposite signs). Hence, #jXj = — #iXi, which contradicts g being 
reduced. Thus, among any two letters yi and — zi in h, only one can be canceled in 
g + h, so that g + h cannot be shorter than g. In other words, g + H(g) \ A0n (X) = ?.

The proof that X is closed in A0 (X) is similar: given any g 2/ X, we construct 
precisely the same g as above (if g 2 — X) or set g = f Xg (if g 2 — X) and show that 
g + H(g) must contain at least one negative letter.

The Hausdorffness of A0(X ) is equivalent to the closedness of A0 (X ).
The proof of (iii) is similar. □

This lemma and Morris’ theorem cited above ([8], Theorem 2.6) immediately 
imply the following theorem.

Theorem 2. For any space X with ind X = 0, the free, free Abelian and free Boolean 
linear topological groups Flin(X), Alin(X) and Blin(X) are defined. They are Hausdorff 
and contain X as a closed subspace, and all sets Fn(X), An (X) and Bn (X) are closed in the 
respective groups.

By definition, the free linear groups of a zero-dimensional space X have the 
strongest linear group topologies inducing the topology of X, that is, any continuous 
map from X to a linear topological group (Abelian linear topological group, Boolean 
linear topological group) extends to a continuous homomorphism from Flin(X) 
(Alin (X), Blin(X)) to this group. S

Let X be a space, and let Xn, n 2 w, be its subspaces such that X = Xn. 
Suppose that any Y X is open in X if and only if each Y \ Xn is open in Xn 

(replacing “open” by “closed,” we obtain an equivalent condition). Then, X is said 
to have the inductive limit topology (with respect to the decomposition X = Xn ). 
When talking about inductive limit topologies on F(X), A(X) and B(X), we always 
mean the decompositions F(X) = S Fk(X), A(X) = S Ak(X) and B(X) = S Bk(X) 

and assume the sets Fk(X), Ak(X) and Bk (X) to be endowed with the topology 
induced by the respective free topological groups.

For any space X, the free Abelian topological group A( X) is the quotient 
topological group of F (X ) by the commutator subgroup, and the free Boolean 
topological group B(X) is the quotient of A(X) by the subgroup of squares A (2X) 

(which is generated by all words of the form 2x, x 2 X) (the universality of free objects 
in varieties of topological groups implies that the corresponding homomorphisms 
are continuous and open). Thus, B(X) is the image of A(X) (and of F(X)) under a 
continuous open homomorphism.

The topology of free groups can be described explicitly. The first descriptions 
were given for free topological groups on compact spaces and free Abelian topological 
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groups by Graev [3,4]; Tkachenko [23,24] and Pestov [25] gave explicit descriptions of 
the topology of general free topological groups. There are also descriptions due to the 
author (see, e.g., [26,27]). Mal’tsev proposed a universal approach to describing the 
topology of free topological algebras, which is not quite constructive, but looks very 
promising [7]. All descriptions of the topology of free and free Abelian topological 
groups of which the author is aware are given in [22]. The descriptions of the free 
topological group topology are very complex (except in a few special cases); the 
topologies of free Abelian and Boolean topological groups look much simpler. Thanks 
to the fact that B(X) = A(X)/A(2X), the descriptions of the free Abelian topological 
group topology given in [22] immediately imply the following descriptions of the 
free topology of B(X).

I For each n 2 N, we fix an arbitrary entourage Wn 2 U of the diagonal of 
X X in the universal uniformity of X and set:

We = fWngn2N,

U(Wn) = fx +y: (x, y) 2 Wng, 
U(We) = [ (U(W1) + U(W2) ++U(Wn)).

n2N

The sets U(We), where We ranges over all sequences of uniform entourages of the 
diagonal, form a neighborhood base at zero for the topology of the free Boolean 
topological group B(X).

II For each n 2 N, we fix an arbitrary normal (or merely open) cover gn of the 
space X and set:

G = fgn gn2N, 

U(gn) = fx +y: (x, y) 2U 2 gng, 
U(G) = [(U(g1)+U(g2)++U(gn)).

n2N

The sets U(G), where G ranges over all sequences of normal (or arbitrary open) covers, 
form a neighborhood base at zero for the topology of B(X).

III For an arbitrary continuous pseudometric d on X, we set:

n no
U(d) = |x 1 + y 1 + x2 + y2 +------ + Xn + yn: n 2 N, Xt,yt 2 X, ̂  d(Xi,yt) < 1J.

i=1

The sets U(d), where d ranges over all continuous pseudometrics on X, form a 
neighborhood base at zero for the topology of B(X).

It follows directly from the second description that the base of neighborhoods 
of zero in Blin ( X ) (for zero-dimensional X) is formed by the subgroups:
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nn o
hU(g)i = |£(Xi + yi): n 2 N, (Xi,y{) 2 Ui 2 g for i < nJ 

i=1

generated by the sets U(g) with g ranging over all normal covers of X. By 
definition, any normal cover of a strongly zero-dimensional space has a disjoint open 
refinement. Therefore, for X with dim X = 0, the covers g can be assumed to be 
disjoint, and for disjoint g, we have:

(U(y)) = |y~^(xi + yi): n G N, (xi, yi) e Ui G y for i < n, the word (xi + yi) is reduced}-
i=1 i=1

(see the proof of Lemma 1). A similar description is valid for the Abelian groups Alin (X) 
(the pluses must be replaced by minuses). This leads to the following statement.

Proposition 3. For any strongly zero-dimensional space X and any n 2 w, the topology 
induced on An (X) (on Bn (X)) by Alin (X) (by Blin(X)) coincides with that induced by A(X) 
(by B(X)).

Proof. We can assume without loss of generality that n is even. Given any 
neighborhood U of zero in A(X) (in B(X)), it suffices to take a sequence G = fgkgk2N 

of disjoint covers such that 2 ■ U(G) C U and note that hU(g 1 )i \ An(X) C 

2 ■ U (g 1) C U. □

Graev’s procedure for extending any continuous pseudometric d on X to a 
maximal invariant pseudometric d on F(X) is easy to adapt to the Boolean case. 
Following Graev, we first consider free topological groups in the sense of Graev, 
in which the identity element is identified with a point of the generating space 
and the universality property is slightly different: only continuous maps of the 
generating space to topological groups G that take the distinguished point to the 
identity elements of G must extend to continuous homomorphisms [3]. Graev 
showed that the free topological and Abelian topological groups FG(X) and AG(X) 
in the sense of Graev are unique (up to topological isomorphism) and do not depend 
on the choice of the distinguished point; moreover, the free topological group in the 
sense of Markov is nothing but the Graev free topological group on the same space 
to which an isolated point is added (and identified with the identity element).

The extension of a continuous pseudometric d on X to a maximal invariant 
continuous pseudometric d on the Graev free Boolean topological group BG (X) is 
defined by setting:

nn n n o
d (g, h) = inf{ ^ d (Xi, yi): n 2 N, Xi, yi 2 X, g = ^ Xi, h = ^ yA 

i=1 i=1 i=1 
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for any g, h 2 BG(X). The infimum is taken over all r presentations of g and h 
as (reducible) words of equal lengths. The corresponding Graev seminorm || ■ ||d 

(defined by ||g||d = d(g,0) for g 2 BG(X), where 0 is the zero element of BG(X)) is 
given by:

nn n o
IL11 d = f E d (Xi, yi ):g = E( Xi + y), Xi, y. 2 x} .

The infimum is attained at a word representing g which may contain one zero 
(if the length of g is odd) and is otherwise reduced. Indeed, if the sum representing g 
contains terms of the form X + z and z + y, then these terms can be replaced by one 
term X + y; the sum Ein=1 d(Xi, yi) does not increase under such a change thanks to 
the triangle inequality.

For the usual (Markov s) free Boolean topological group B(X), which is the same 
as BG(X f0 ) (where 0 is an isolated point identified with zero), the Graev metric 
depends on the distances from the points of X to the isolated point (they can be set 
to 1 for all X 2 X). The corresponding seminorm | ■ |d on the subgroup Beven(X) of 
B(X) consisting of words of even length does not change. The subgroup Beven(X) is 
open and closed in B(X), because this is the kernel of the continuous homomorphism 
f: B(X) ! f0,lg extending the constant continuous map f: X ! f0,lg taking al 
X 2 X to 1. Thus, in fact, it does not matter how to extend | ■ |d to B(X) n Beven (X); 
for convenience, we set:

(
min{ Yn=1 d(xi,yi): g = Yn=1(x! + yi), Xi,yi G X, if g e Beven(X),

the word in =1 (xi + yi) is reduced

1 if g e b(x) \ Beven(X).

All open balls (as well as all open balls of any fixed radius not exceeding one) in 
all seminorms | ■ |d for d ranging over all continuous pseudometrics on X form a 
base of open neighborhoods of zero in B(X).

Topological spaces X and Y are said to be M-equivalent ( A-equivalent) if their 
free (free Abelian) topological groups are topologically isomorphic. We shall say that 
X and Y are B-equivalent if B(X) and B(Y) are topologically isomorphic.

Given X Y, we use B(YjX) to denote the topological subgroup of B(X) 

generated by Y.
A special role in the theory of topological groups and in set-theoretic topology 

is played by Boolean topological groups generated by almost discrete spaces, that is, 
spaces having only one non-isolated point. With each free filter F on any set X, we 
associate the almost discrete space XF = X[fg (is a point not belonging to X); all 
points of X are isolated, and the neighborhoods of are fg [ A, A 2 F. For a space 
with infinitely many isolated points, there is no difference between the canonical 
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definition of the groups F(X), A(X) and B(X) and Graev’s generalizations FG (X), 
AG (X) and BG(X). Indeed, Graev showed that FG(X) and AG (X) are unique (up 
t tpological isomorphism) and o not depend on the choice of the distinguished 
point. Graev’s argument, which uses olythe universality property, carries over word 
for word to free Boolean topological groups. Thus, when dealing with spaces XF 

associated with filters, we can identify B(XF) with BG(XF) and assume that the only 
non-isolated point of XF is the zero of B(XF); the descriptions of the neighborhoods 
of zer and the Graev seminorm re altered accordingly. To understand how they 
change, take the new (but in fact, the same) space XeF = XF [ f0g, where 0 is one 
more isolated point, represent B(XF) as the Graev fre Boolean topological grop 
BG (Xf) with distinguished point (zero of BG (Xf)) 0, and consider the topological 
isomorphism g ! + + 0 between this group and the similar group with distinguished 
point (zero) .

For example, since any open cover of Xf can be assumed to consist of a 
neighborhood of * and singletons, Descriptfon II reads as foHows in this case: For 
each 2 N, we fix an arbitrary nighbor ood Vn of, that is, An [ fg, where 
An 2 F , and set:

W = {Vn}neN,

U(Vn) = {x + *: x € Vn} = {x: x € An} (* is zero),

U (W)=nj^,+U (V2+•..+U (vn»=ytx. xn: xi. A for i s n}.

The sets U(W), where the W range over all sequences of neighborhoods of *, 
form a neighborhood base at zero for the topology of B(XF). Strictly speaking, to 
obtain a full analogy with Description II of the Markov free group topology, we 
should set:

U (W) = U (2U(Vi) + 2U(V2) + • • • + 2U(Vn)) {xi + yi • • • + xn + yn: Xi,yi E Vi for i < n},

but this would not affect the topology: the former U (W) equals the latter for a 
sequence of smaller neighborhoods, say Vn0 = i 2n Vi (remember that some of the 
xi and yi in the expression for U(W) may equal *, that is, vanish).

Similarly, the base neighborhoods of zero in Description III take the form:

n no

U(d) = {x 1 + x2 +-----+ xn: n 2 N, x 1,...,xn 2 X, ^ d(xi, *) <11,
i=1
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wn here d ranges over continuous pseudometrics on XF (again, we should set Uo(d) = 
{x 1 + y 1 + x2 + y2 +-------- + xn + yn: n 2 N, Xi,yi 2 X [{*}, En=i d(Xi,yi) < 1},but

this would not make any difference).
It is also easy to see that the isomorphism between BG(XeF) (with distinguished 

point ) and B(XF) does not essentially affect the sets of words of length at most n; 
in particular, they remain closed, and BG(XeF) is the inductive limit of these sets with 
the induced topology if and only if B(XF) has the inductive limit topology. In what 
follows, by B(XF), we shall usually mean the Graev free Boolean topological group 
with zero .

Thus, B(XF) is naturally identified with the group [X]<w of all finite subsets of 
X under the operation 4 of symmetric difference (A4B = (A n B) [ (B n A)). The 
point *, which is the zero element of B (Xf), is identified with the empty set 0, which 
belongs to [X]<w as the zero element. In the context of free Boolean groups on almost 
discrete spaces, we also identify each x 2 X with the one-point set {x} 2 [X]<w.

Sets of the form [X]<w often arise in set-theoretic topology and in forcing. 
The role of X is often played by w, and the filter F is usually an ultrafilter with 
certain properties.

We assume all filters F on w to be free, i.e., to contain the Frechet filter (of all 
cofinite sets).

A filter F on w is said to be a P-filter if, for any family of Ai 2 F, i 2 w, the 
filter F contains a pseudo-intersection of this family, i.e., a set A w such that 
jA n Aij < w for all i 2 w . For ultrafilters, this property is equivalent to being a 
P-point, or weakly selective, ultrafilter. A filter F on w is said to be a Ramsey filter if, 
for any family of Ai 2 F, i 2 w, the filter F contains a diagonal of this family, i.e., a 
set D w such that, whenever i, j 2 D and i < j, we have j 2 Ai . Ultrafilters with 
this property are known as Ramsey, or selective, ultrafilters.

We use the standard notation [w]<w for the set of all finite subsets of w and w<w 
for the set of all finite sequences of elements of w. Given s, t 2 [w]<w, s @ t means 
that s is an initial segment of t, i.e., s t and all elements of t n s are greater than all 
elements of s. For s 2 [w]<w n {0}, by max s, we mean the greatest element of s in 
the ordering of w. We also set max 0 = —1.

3. A Comparison of Free, Free Abelian and Free Boolean Topological Groups

3.1. Similarity

There are a number of known properties of free and free Abelian topological 
groups that automatically carry over to free Boolean topological groups simply 
because they are preserved by taking topological quotient groups or, more generally, 
by continuous maps. Thus, if F(X) (and A(X)) is separable, Lindelof, ccc, and so on, 

73



then so is B(X). It is also quite obvious that X is discrete if and only if so are F(X), 
A(X) and B(X).

Let X be a space, and let Y be its subspace. The topological subgroup B(YjX) 

of B( X) generated by Y is not always the free Boolean topological group on 
Y (the induced topology of B(YjX) may be weaker). Looking at Description I 
of the free group topology on B(X), we see that X and Y equipped with the 
universal uniformities UX and UY are uniform subspaces of B(X) and B(Y) with 
their group uniformities WB(X) and WB(Y) (generated by entourages of the form 
W(U) = f(g, h) : h 2 g + Ug, where U ranges over all neighborhoods of zero in the 
corresponding group), which completely determine the topologies of B(X) and B(Y). 
Thus, if the topology of B(YjX) coincides with that of B(Y), then, like in the case of 
free and free Abelian topological groups [28,29], (Y, UY) must be a uniform subspace 
of (X,UX), which means that any bounded continuous pseudometric on Y can be 
extended to a continuous pseudometric on X (in this case, Y is said to be P-embedded 
in X [30]). The converse has been proven to be true for free Abelian (presented in [28] 
with an incomplete proof and completely proven in [29]) and even free [27] (see 
also [22], where a minor misprint in the condition 3 on p. 186 of [27] is corrected) 
topological groups. Since B(X) and B(Y) are the topological quotients of A(X) and 
A(Y) by the subgroups of squares A(2X) and A(2Y) and A(2Y) = A(2X) \ A(Y), 
we immediately obtain the following theorem.

Theorem 4. Let X be a space, and let Y be its subspace. The topological subgroup of the free 
Boolean groups B(X) generated by Y is the free topological group B(Y) if and only if each 
bounded continuous pseudometric on Y can be extended to a continuous pseudometric on X.

Any space X is closed in its free Boolean topological group B(X) (see, e.g., ([9], 
Theorems 2.1 and 2.2)), as well as in F(X) and A(X) [1,2]. Moreover, all Fn(X), An (X) 
and Bn (X) (the sets of words of length at most n) are closed in their respective groups, 
as well. The most elegant proof of this fact was first proposed by Arkhangel’skii 
in the unavailable book [31] (for F(X), but the argument works for A(X) and B(X) 
without any changes): Note that all Fn( bX) F (bX) are compact, since these are 
the continuous images of (X © f eg © X 1)n under the natural multiplication maps 
in : (x1#1, . . . , xn#n) 7! x1#1 . . . xn#n (here, e denotes the identity element of F(X), #i = 1, 
and the word x#11 . . . xn#n may be reducible, i.e., have length shorter than n). Therefore, 
the Fn(bX) are closed in F(bX), and hence, the sets Fn(X) = Fn(bX) \ F(XjbX) are 
closed in F(XjbX). It follows that these sets are also closed in F(X), which is the 
same group as F(XjbX), but has stronger topology.

The topological structure of a free group becomes much clearer when this group 
has the inductive limit topology (or, equivalently, when the inductive limit topology 
is a group topology). The problem of describing all spaces for which F(X) (or 
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A( X)) possesses this property has proven extremely difficult (and is still unsolved). 
Apparently, the problem was first stated explicitly by Pestov and Tkachenko in 
1985 [32], but it was tackled as early as in 1948 by Graev [3], who proved that the 
free topological group of a compact space has the inductive limit topology. Then, 
Mack, Morris and Ordman [33] proved the same for kw-spaces. The strongest (to the 
author ’s knowledge) result in this direction was obtained by Tkachenko [34], who 
proved that if X is a P-space or a Cw -space (the latter means X is the inductive limit 
of an increasing sequence fXng of its closed subsets such that all finite powers of 
each Xn are countably compact and strictly collection-wise normal), then F(X) has 
the inductive limit topology. All of these sufficient conditions are also valid for A(X) 

and B(X) by virtue of the following simple observation.

Proposition 5. Suppose that X = n2N Xn,Y= n2N Yn, X is the inductive limit of its 
subspaces Xn, n 2 N, and f : X ! Y is a quotient map such that f (Xn ) = Yn for each 
n 2 N. Then, Y is the inductive limit of its subspaces Yn.

Proof. Let U C Y be such that all Un = U \ Yn are open in Yn. Consider V = f 1 (U) 
and Vn = f 1 (Un) \ Xn for n 2 w. Each Vn is open in Xn, because the restriction of 
f to Xn is continuous and f( Xn ) = Yn . On the other hand,

Vn = f-1(U \ Yn) \ Xn = (f-1(U) \ f-1(Yn)) \ Xn = V \ Xn;

therefore, V is open in X. Since the map f is quotient, it follows that U = f(V) is an 
open set. □

For X of the form wF (where F is a filter on w), not only the sufficient conditions 
mentioned above, but also a necessary and sufficient condition for F(X) and A(X) to 
have the inductive limit topology is known. This condition is also valid for B(X).

Theorem 6. Given a filter F on w, B(wF) has the inductive limit topology if and only if F 
is a P-filter.

Proof. This theorem is true for free and free Abelian topological groups [35]. 
Therefore, by Proposition 5, B(wF ) has the inductive limit topology for any P-filter. 
It remains to prove that if B(wF) is the inductive limit of the Bn(wF), then F is a 
P-filter.

Thus, suppose that B(wF) is the inductive limit of the Bn (wF), but F is not a 
P-filter, that is, there exists a decreasing sequence of An 2 F, n 2 w, such that, for 
any A 2 F, there is an i for which the intersection A \ Ai is infinite. As usual, we 
assume that the zero element of B(wF) is the non-isolated point of wF.
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Without loss of generality, can assume that A0 = w and all set An n An+1 

are infinite. We enumerate these sets as:

An n An+1 = fxni : i 2 wg

and put:

Dn = {Xnm + Xiiji + Xi2j2 +----- + Xj : n < i1 < i2 < • •• < in < j1 < j2 < • • • < jn < m}

for all n 2 w. Let us show that each Dn is a closed discrete subset of B(wF). Fix n and 
consider X = fg[fxni: i 2 wg and the retraction r: wF ! X that takes wFnX 
to {*}. Clearly, X is discrete, and the map r is continuous. Let r: B(wf) ! B(X) 
be the homomorphic extension of r; then, r continuously maps B (wF- ) onto the 
discrete group B(X). For any g 2 B(X), the set r_1 (g) \ Dn is finite: if r 1 (g) \ Dn 

is nonempty, then we have g = r(xnm0 + xi01 j01 + xi02j02 + ■ ■ ■ + xi0nj0n ) for some 
m0, i0k, j0k 2 w such that n < i01 < i02 < < i0n < j01 < j02 < < j0n < m0,
whence g = xnm0 and:

r 1 (g) \ Dn = {xnm0 + xi 1 j 1 + xi2j2 + + xinjn :

n < i 1 < i 2 < ■■■ < im <j 1 < j 2 < ■■■ < jn < m 0}.

Since the sets r 1 (g), g 2 B(X), form an open cover of B(wf), it follows that 
Dn is a closed discrete subspace of B(wF). S

The length of each word in Dn equals n + 1. Therefore, D = n Dn is closed in 
the inductive limit topology. It remains to show that (the zero of B(wF)) belongs to 
the closure of D in the free group topology, i.e., that U (d) \ D = ® for any continuous 
pseudometric d on wF (see Description III of the topology of B(wF)).

Take an arbitrary (continuous) pseudometric d on wf. In wf, the ball Bd(*, 2) 
of radius 1 centered at * with respect to d is a neighborhood of *; that is, the 
punctured ball (with * removed) belongs to F. By assumption, there is an n 2 w 
for which the set M = {i 2 w : d(*, xni) < 2)} is infinite. Since Bd(*,2n) \ An+1 is 
a punctured neighborhood of * and hence belongs to F, it follows by assumption 
that the sets Ji = {j 2 w : d(*, xij) < 21n} are infinite for infinitely many i. Choose 
i 1 < i2 < ■ ■ ■ < in greater than n so that all Jik are infinite, then choose jk 2 Jik, 
k < n, so that in < j 1 < ■ ■ ■ < jn, and take m 2 M such that m > jn. We have 
g = xnm + xi 1 j 1 + xi2j2 +--------+ xinjn 2 Dn. We also have g 2 U(d), because:

n 11
d(*, xnm) + £ d(*, xikjk ) < ^ + n— = 1.
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Therefore, g 2 Dn \ U (d). □

In [36] Tkachuk proved that the free Abelian topological group of a disjoint 
union of two spaces X and Y is topologically isomorphic to the direct sum 
A(X) A(Y) = A(X) A(Y). His argument carries over to varieties of Abelian 
topological groups closed under direct sums (or, in topological terminology, 
s-products with respect to the zero elements of factors) with the box topology. We 
denote such sums by s.

Proposition 7. For any family fXa: a 2 Ag of spaces,

A Xa = sa2 A A( Xa ) and B a Xa = sa2AB(Xa).

If all Xa are zero-dimensional, then:

Alin Xa = sa2A Alin(Xa) and Blin aM Xa = sa2ABlin(Xa).

Proof. Let T stand for A, B, Alim or Blim, and let 0a denote the zero element of T(Xa). 
For each a 2 A, we set Xa0 = sb2A Yb, where Ya = Xa and Yb = f0bg for b 6= a. 
Every Xa0 is embedded in the group Ta0 (Xa) defined accordingly as a product of T(Xa) 

and zeros. Clearly, the union a2A Xa0 algebraically generates sa2AT(Xa) and is 
homeomorphic to a2A Xa. It remains to show that the homomorphic extension of 
any continuous map of this union to any topological group from the corresponding 
variety is continuous. Let f : a2A Xa0 ! G be such a map. For each a 2 A, the 
homomorphic extension fa: Ta (Xa) ! G of the restriction of f to Xa is continuous. 
We define f: s□ aeaT(Xa) ! G by setting f ((ga)aea) = Ea2a fa (ga) for each 
(ga)a2A 2 sa2AT(Xa); the sum is defined, because any element of sa2AT(Xa) has 
only finitely many nonzero components. Let us show thatf is continuous. It suffices 
to check continuity at the zero element of s□ aeAT(Xa). Take any neighborhood U of 
zero in G. Its preimages Va under the component maps fa are open neighborhoods 
of zero in Ta(Xa). The product s□ aVa is the preimage of U under f, and it is open in 
the box topology. □

The free Boolean topological group of a non-discrete space is never metrizable 
(as well as the free and free Abelian topological groups). Indeed, if B(X) is metrizable 
and X is non-discrete, then X contains a convergent sequence S with limit point , and 
B(S) = B(SjX) (see Theorem 4); thus, it suffices to show that B(S) is non-metrizable. 
Suppose that it is metrizable. Then, the topology of B(S) is generated by a continuous
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norm k k. For all pairs of positive integers n and m n, choose different snm 2 S so
that kSnm + *|| < n12. Clearly, the set:

D = f(sn1 + ) + (sn2 + ) + . . . (snn + ) : n 0g

has finite intersection with each Bk(S); hence, it must be discrete, because B(S) has 
the inductive limit topology. On the other hand, D is a sequence convergent to 
zero, since:

||(sn 1 + *) + (sn2 + *) + ... (snn + *)|| < ^(snt + *) < n ■ -2 = ~■ 
i=1 n n

The list of properties shared by free, free Abelian and free Boolean topological 
groups that can be proven without much effort is very long. Many of these properties 
are proven for Boolean groups by analogy, but sometimes, their proofs are drastically 
simplified. We conclude our brief excursion by one such examples. The proof of the 
following theorem for free topological groups given in [27] is extremely complicated 
(it is based on a more general construction). The proof given in [22] is much shorter, 
but still very cumbersome. In the Boolean case, the proof becomes almost trivial.

Theorem 8. If dim X = 0, then ind B(X) = 0.

Proof. Any continuous pseudometric d on X is majorized by a non-Archimedean 
pseudometric r (a pseudometric r is said to be non-Archimedean if r(x, z) 
maxf r (x,y), p (y, z)g for any x, y,z 2 X) taking only values of the form 2n• To see this, 
it suffices to consider the elements V0, V1, . . . of the universal uniformity on X which 
are determined by decreasing disjoint open refinements g0, g1, . . . of the covers of X 
by balls of radii 21,22, • • • with respect to d and apply the construction in the proof of 
Theorem 8.1.10 of [37] (see also [38]). Since the covers gn determining the entourages 
Vn are disjoint and each gi+1 is a refinement of gi, it follows that the function f in 
this construction has the property f (x, z) maxf f (x, y), f (y, z)g, and therefore, the 
pseudometric r constructed there from f is non-Archimedean and takes the values 
2n. Clearly, it majorizes d.

Each value kgkr, g 2 B(X), of the Graev extension k kr of r is either one or 
a finite sum of values of d (recall that the minimum in the expression for kgkr is 
attained at an irreducible representation of g). Hence, k kr takes only rational values, 
and the balls with irrational radii centered at zero in this norm are open and closed. 
They form a base of neighborhoods of zero, and their translates form a base of the 
entire topology on B(X). □
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3.2. Difference

Pestov gave an example of a space X for which F(X) is not homeomorphic to 
A(X) [39]. Spaces for which A(X) is not homeomorphic to B(X) exist, too.

Proposition 9. The free Abelian topological group of any connected space has infinitely 
many connected components. The free Boolean topological group of any connected space has 
two connected components.

Proof. Consider a connected space X. The connected component of zero in A(X) 

is the subgroup Ac(X) consisting of all words £”=1 x#i with £n=1 #i = 0 (see ([17], 
Lemma 7.10.2)). Clearly, all words in this subgroup are of even length, and the 
canonical homomorphism A(X) ! B(X) takes Ac (X) to the subgroup Bc (X) of 
B(X) consisting of all words of even length. Since the canonical homomorphism 
is continuous and open, the subgroup Bc(X) is connected and open (and hence, 
closed), and it has index two in B(X). Thus, B(X) has two connected components, 
while A(X) has infinitely many connected components, because A(X)/Ac(X) = Z 
(see ([17], Lemma 7.10.2)). □

There is a fundamental difference in the very topological-algebraic nature of free, 
free Abelian and free Boolean groups. Thus, nontrivial free and free Abelian groups 
admit no compact group topologies (see [40]); this follows from the well-known 
algebraic description of infinite compact Abelian groups ([41], Theorem 25.25). On 
the other hand, for any infinite cardinal k, the direct sum 2k Z2 of 2k copies of Z2 
(that is, the free Boolean group of rank 2k) is algebraically isomorphic to the Cartesian 
product (Z2)k ([42], Lemma 4.5) and, therefore, admits compact group topologies 
(e.g., the product topology).

The free and free Abelian groups are never finite, while the free Boolean group 
of any finite set is finite.

The free and free Abelian topological groups of any completely regular 
Hausdorff topological space X contain all finite powers Xn of X as closed subspaces. 
Thus, each Xn is homeomorphic to the closed subset fx1 . . . xn : xi 2 X for i = 1 ng 
of F(X) [43] and to the closed subset fx1 + 2x2 + + nxn : xi 2 X for i = 1 ng of
A(X) [44]. (Arkhangel’skii announced the result for F(X) in [43] and proved it in [31] 
by considering the Stone-Cech compactification of X and its free topological group; 
details can be found in Theorem 7.1.13 of [17]. Unfortunately, the book [31], which is 
a rotaprint edition of a lecture course, is (and always was) virtually unavailable, even 
in Russia. Thus, the result was rediscovered by Joiner [45] and the idea of proof by 
Morris [9] (see also [46]). In fact, both Arkhangel’skii and Joiner proved a stronger 
statement; namely, they gave the same complete description of the topological 
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structure of all Fn(X), although obtained by different methods (Arkhangel’skii proof 
is much shorter).)

However, the situation with free Boolean topological groups is much more 
complicated. For example, consider extremally disconnected free topological groups.

Extremally disconnected groups are discussed in the next section. Here, we only 
mention that non-discrete F(X) and A(X) are never extremally disconnected, while 
B(X) may be non-discrete and extremally disconnected under certain set-theoretic 
assumptions (e.g., under CH), even for countable X of the form wF, and that 
any hereditarily normal, in particular, countable, extremally disconnected space, 
is hereditarily extremally disconnected (this is shown in the next section). It follows 
that if X is a non-discrete countable space for which B(X) is extremally disconnected, 
then B(X) does not contain X2 as a subspace. Indeed, otherwise, X2 is extremally 
disconnected (and non-discrete), and the existence of such spaces is prohibited by 
the following simple observation; it must be known, although the author failed to 
find a reference.

Proposition 10. If X X is extremally disconnected, then X is discrete.

This immediately follows from Frock’s general theorem that the fixed-point 
set of any surjective self-homeomorphism of an extremally disconnected space is 
clopen [47]: it suffices to consider the self-homeomorphism of X X defined by 
(x,y) ! (y, x). (Frolik proved this theorem for compact extremally disconnected 
spaces and not necessarily surjective self-homeomorphisms; in the surjective 
case, the theorem is extended to non-compact spaces by considering their 
Stone-Cech compactifications, which are always extremally disconnected for 
extremally disconnected spaces (this and other fundamental properties of extremally 
disconnected spaces can be found in the book [48]).)

Thus, there exist (under CH) filters F on w for which (wF )2 is not contained 
in B(wf) as a subspace. However, in the simplest case where F is the Frechet 
filter (i.e., wF is a convergent sequence), B(wF) not merely contains (wF)n, but is 
topologically isomorphic to B(wF)n for all n by virtue of Proposition 7 and the fact 
that a convergent sequence is B-equivalent to the disjoint union of two convergent 
sequences, which can be demonstrated as follows.

Any M-equivalent spaces are A-equivalent, and any A-equivalent spaces are 
B-equivalent, because A(X) (B(X)) is the quotient of F(X) (A(X)) by an algebraically 
determined subgroup not depending on X. Therefore, all known sufficient conditions 
for M- and A-equivalence (see, e.g., [3,4,49-51]) remain valid for B-equivalence. In 
particular, if X0 is a space, K is a retract of X0, X is the space obtained by adding 
an isolated point to X0 and Y = X0/K K, then X and Y are M-equivalent ([50], 
Theorem 2.4). This immediately implies the required B-equivalence of a convergent 
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sequence S and the disjoint union S S of two convergent sequences: it suffices to 
take S S for X0 and X and the two-point set of the two limit points in S S for K.

However, there exist B-equivalent spaces, which are neither F- nor A-equivalent. 
Genze, Gul’ko and Khmyleva obtained necessary and sufficient conditions for infinite 
initial segments of ordinals to be F-, A- and B-equivalent [20] (see also [21]). It turned 
out that the criteria for F- and A-equivalence are the same, and the criterion for 
B-equivalence differs from them; see [20] for details.

Finally, the following theorem shows that there is also a fundamental difference 
between free groups of the varieties of Abelian and Boolean linear topological groups.

Theorem 11. The free Boolean linear topological group of any strongly zero-dimensional 
pseudocompact space is precompact.

Proof. Let X be a strongly zero-dimensional pseudocompact space. As mentioned 
in the preceding section, a base of neighborhoods of zero in Blim (X) is formed by 
subgroups of the form:

nn o
hU(g)i = |£(Xi + yi): n 2 w, (Xi,yi) 2 Ui 2 g for i < nJ, 

i=1

where g in a disjoint open cover of X; note that all such covers are finite. Clearly, 

n 2n o
hU(g)i = | £ Xi: n 2 w, jf i < 2n: Xi 2 Ugj is even for each U 2 gj. 

i=1

Every such subgroup has finite index. Therefore, B (X) is precompact. □

This theorem is not true for Abelian groups; morenover, free Abelian linear groupos 
are never precompact. Indeed, the group Ac(X) = |^n=1 x#i: n 2 N, £n=1 #i = 1| 

considered above is always open, being the preimage of the isolated point zero 
under the homomorphism A(X) ! Z2 = f0, 1g, which extends the constant map 
X ! f0, 1g taking everything to one. As already mentioned, Ac (X) has infinite index 
in A(X).

4. Extremally Disconnected Groups

There is an old problem of Arkhangel’skii on the existence in ZFC of a 
non-discrete Hausdorff extremally disconnected topological group; it was posed 
in 1967 [52] and has been extensively studied since then. The problem is still 
open even for countable groups, although several consistent examples have been 
constructed [53-58]. An impression of the state-of-the-art in this area can be 
gained from Zelenyuk’s book [59] and the author’s papers [60] and [61]. The 
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most recent result (presented in [61]) asserts that, under additional set-theoretic 
assumptions, a countable extremally disconnected group cannot contain a sequence 
of open subgroups whose intersection has an empty interior; in other words, if 
there exists in ZFC a non-discrete countable extremally disconnected group, then 
there must exist such a group without open subgroups (note in this connection 
that any extremally disconnected space is strongly zero-dimensional, and any 
zero-dimensional free Boolean topological group contains a family of open subgroups 
with trivial intersection (see Theorem 2)). Here, we present a new observation closely 
related to free Boolean topological groups.

A space X is said to be extremally disconnected if the closure of each open set in 
this space is open or, equivalently, if any two disjoint open sets have disjoint closures. 
In particular, the space XF associated with a filter F is extremally disconnected 
if and only if F is an ultrafilter. The most fundamental properties of extremally 
disconnected spaces can be found in the book [48]. Much useful information 
(especially in the topological-algebraic context) is contained in [62]. The central 
place in the theory of extremally disconnected topological groups is occupied by 
Boolean topological groups because of the following theorem of Malykhin.

Theorem 12 (Malykhin [54]). Any extremally disconnected group contains an open (and 
therefore closed) Boolean subgroup.

This theorem follows from Frolfk’s fixed-point theorem mentioned at the end of 
the preceding section. In [54], Malykhin reproved Frolik’s theorem for the particular 
self-homeomorphism g ! g-1; its fixed-point set U is an open neighborhood of the 
identity element, and the subgroup generated by an open neighborhood V of the 
identity for which V2 U is as required.

Thus, in the theory of extremally disconnected groups, only Boolean groups 
matter. As is known, the existence of a non-discrete extremally disconnected free 
Boolean topological group implies the existence of either measurable cardinals or 
Ramsey ultrafilters [60] (this is proven by reduction to the free Boolean topological 
group on a countable space with one non-isolated point); it is also known that 
the simultaneous nonexistence of measurable cardinals and Ramsey ultrafilters 
is consistent with ZFC (see [63]). The following two theorems have a stronger 
consequence.

Theorem 13. Any hereditarily normal extremally disconnected space is hereditarily 
extremally disconnected.

Proof. Let X be a hereditarily normal extremally disconnected space. We must prove 
that any Y X is extremally disconnected. We can assume that Y is closed in 
X, because, obviously, any dense subspace of an extremally disconnected space is 
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extremally disconnected. We must show that the closures in Y of any disjoint sets U 
and V which are open in Y are disjoint. Note that such sets U and V are separated 
(in Y and, therefore, in X), that is, U \ V = U \ V = 0. Since X is hereditarily 
normal, there exist disjoint open (in X) sets U0 U and V0 V ([37], Theorem 2.1.7). 
Their closures in X cannot intersect, because X is extremally disconnected; thus, the 
closures in Y of the smaller sets U and V do not intersect either. □

Theorem 14. If G is a hereditarily normal extremally disconnected Boolean group, then any 
closed linearly independent subset of G contains at most one non-isolated point.

Proof. Let A G be a closed linearly-independent subset of G. Suppose that a 2 A 
and b 2 A are distinct limit points of A. Take their disjoint closed neighborhoods 
U 3 a and V 3 b. Since A is linearly independent and closed, it follows that 
a + (V \ A) \ b + (U \ A) = fa + bg, and the sets a + (V \ A) and b + (U \ A) are 
closed. Therefore, the sets a + ((V n fbg) \ A) and b + ((U n fag) \ A) are closed in 
the normal subspace (a + (V \ A) [b + (U \ A)) nfa + bg of G and, hence, can be 
separated by disjoint open neighborhoods in this subspace. These neighborhoods 
remain open in a + (V \ A) [b + (U \ A); obviously, a + b belongs to the closure of 
each of them, which contradicts the hereditary extremal disconnectedness of G. □

Corollary 15. If X is a non-discrete countable space for which B( X) is extremally 
disconnected, then X is almost discrete.

We shall see in the next section that, in fact, the space X in Corollary 15 must be 
associated with a Ramsey ultrafilter.

5. Free Boolean Groups on Filters on w

We have already seen in the preceding sections that free Boolean groups on 
almost discrete countable spaces (associated with filters on w) exhibit interesting 
behavior. Moreover, they are encountered more often than it may seem at first glance.

Consider any Boolean group B(X) with countable basis X. As mentioned in 
Section 2, this group is (algebraically) isomorphic to the direct sum (or, in topological 
terminology, s-product) L@0 Z2 of countably many copies of Z2. There is a familiar 
natural topology on this s-product, namely the usual product topology; let us denote it by 
tprod. This topology induces the topology of a convergent sequence on X f0g (where 
0 denotes the zero element of B(X)) and is metrizable; therefore, it never coincides 
with the topology tfree of the free Boolean topological group on X. Moreover, tprod is 
contained in tfree only when X is discrete or has the form wF for some filter (recall 
that we assume all filters to be free, i.e., contain the filter of cofinite sets, and identify 
the non-isolated points of the associated spaces with the zeros of their free Boolean 
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groups). On the other hand, any countable space is zero-dimensional; therefore, any 
countable free Boolean topological group contains a sequence of subgroups with 
trivial intersection (see Theorem 2). In [61], the following lemma was proven.

Lemma 16 ([61]). Let G be a countable non-discrete Boolean topological group that contains 
a family of open subgroups wLith trivial intersection. Then, there exists a basis Lof G such 
that the isomorphism G ! @0 Z2 taking this basis to the canonical basis of @0 Z2 is
continuous with respect to the product topology on L@0 Z2 = s(Z2)@0.

This immediately implies the following assertion.

Theorem 17. Any countable Boolean topological group containing a family of open 
subgroups with trivial intersection (in particular, any free Boolean topological or linear 
topological group on a countable space) has either a discrete closed basis or a closed basis 
homeomorphic to the space wF associated with a filter F on w.

Spaces of the form wF are one of the rare examples where the free Boolean 
topological group is naturally embedded in the free and free Abelian topological 
groups as a closed subspac. The embedding of B(wF) into A(wF) is defined simply 
by x1 + x2 + + xn 7! x1 + x2 + + xn (for the Graev free grop, whic are the 
same as Markov ons for uch spaces), and the embedding into F(wF) is x1 + x2 +

+ xn 7! x1x2 . . . xn, provided that x1 < x2 < < xn. Thes embeddings take
B(wF) to:

A = {x1 + x2 + ••• + xn -(x, — •) + (x2 -.) + ••• + (xn -.): n e N xi e «} c A(wF)

and:

F = {X1X2 ...Xn = X1 *-1 X2 *-1 ... Xn*-1: n e N, Xi e w, X1 < X2 < ••• < Xn} C F(WF).

The topologies induced on A and F by A(wF) and F(wF) are easy to describe; 
the restrictions of base neighborhoods of the zero (identity) element to these sets 
are determined by sequences of open covers of wF (i.e., of neighborhoods of 
the non-isolated point ) in the same manner as in Description ii (see [22]). A 
straightforward verification shows that A, B and B(wF) are homeomorphic. The 
rigorous proof of this fact is rather tedious, and we omit it.

As mentioned in the Introduction, for any filter F, the free Boolean group on wF 
is simply [w]<w. Any topology on [w]<w (as well as on any other set) is a partially 
ordered (by inclusion) family of subsets. Partial orderings of subsets of [w]<w have 
been extensively studied in forcing, and countable Boolean topological groups turn 
out to be closely related to them. In this section, we shall try to give an intuitive 
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explanation of this relationship. The basic definitions and facts related to forcing can 
be found in Jech’s book [64].

By a notion of forcing, we mean a partially ordered set (briefly, poset) (P, ). 
Elements of a notion of forcing are called conditions; given two conditions p, q 2 P, 
we say that p is stronger than q if p q. A partially ordered set (P, ) is separative 
if, whenever p 6 q, there exists an r p which is incompatible with q. Thus, 
any topology is a generally non-separative notion of forcing, and the family of all 
regular open sets in a topology is a separative notion of forcing. Any separative 
forcing notion ( P, ) is isomorphic to a dense subset of a complete Boolean algebra. 
Indeed, consider the set P # p = fq : q pg for each p 2 P. The family fX P : 
(P # p) X for every p 2 Xg generates a topology on P. The complete Boolean 
algebra mentioned above is the algebra ro(P) of regular open sets in this topology.

Two notions of forcing P and Q are said to be forcing equivalent if the algebras 
ro(P) and ro(Q) are isomorphic or, equivalently, if P can be densely embedded in 
Q and vice versa (which means that P and Q give the same generic extensions).

Roughly speaking, given a countable transitive model M of set theory, the 
method of forcing extends M by adding a so-called generic subset (called also a 
generic filter) G of P not belonging to M; the extended model, called a generic 
extension of M, contains G, which has certain desired properties ensured by the 
choice of P and G.

In the context of free Boolean groups on filters, most interesting are two 
well-known notions of forcing, Mathias forcing and Laver forcing relativized to 
(usual) filters on w.

In Mathias forcing relative to a filter F, the forcing poset, denoted M(F), is 
formed by pairs (s, A) consisting of a finite set s w and an (infinite) set A 2 F 
such that every element of s is less than every element of A in the ordering of w. A 
condition (t, B) is stronger than (s, A) ((t, B) (s, A)) if s @ t, B A and t ns A.

The poset in Laver forcing consists of subsets of the set w<w of ordered finite 
sequences in w. However, it is more convenient for our purposes to consider its 
modification consisting of subsets of [w]<w. Thus, we restrict the Laver forcing poset 
to the set w"<w of strictly increasing finite sequences in w (this restricted poset is 
forcing equivalent to the original one) and note that the latter is naturally identified 
with [w]<w. Below, we give the definition of the corresponding modification of 
Laver forcing.

The definition of Laver forcing uses the notion of a Laver tree. A Laver tree is a 
set p of finite subsets of w such that:

(i) p is a tree (i.e., if t 2 p, then p contains any initial segment of t),
(ii) p has a stem, i.e., a maximal node s(p) 2 p, such that s(p) @ t or t @ s(p) for 

all t 2 p and
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(iii) if t 2 p and s(p) @ t, then the set succ(t) = fn 2 w: n > max t, t [fng 2 pg is 
infinite.

In Laver forcing relative to F, the poset, denoted L(F), is the set of Laver trees 
p such that succ(t) 2 F for any t 2 p with s(p) @ t, ordered by inclusion.

The Mathias and Laver forcings M(F) and L(F) have the special feature that 
they diagonalize the filter F (i.e., add its pseudo-intersection). They determine two 
natural topologies on [w]<w: the Mathias topology tM generated by the base:

f[s, A] : s 2 [w]<w, A 2 Fg, where [s, A] = ft 2 [w]<w: s @ t, t ns Ag,

and the Laver topology tL generated by all sets U [w]<w such that:

t 2 U =) fn > max t : t [ fng 2 Ug 2 F.

It is easy to see that the Mathias topology is nothing but the topology of the 
free Boolean linear topological group on wF (recall that linear groups are those with 
topology generated by subgroups): a base of neighborhoods of zero is formed by the 
sets [0, A] with A 2 F, that is, by all subgroups generated by elements of F.

The neighborhoods of zero in the Laver topology are not so easy to describe 
explicitly; their recursive definition immediately follows from that given above 
for general open sets (the only condition that must be added is 0 2 U). Thus, 
U is an open neighborhood of zero if, first, 0 2 U; by definition, U must also 
contain all n 2 A(0) for some A(0) 2 F (moreover, U may contain no other 
elements of size one); for each of these n, there must exist an A(n) 2 F such that 
A(n) \ f0, 1, . . . ,ng = 0 and U contains all fn, mg with m 2 A(n) (moreover, U may 
contain no other element of size two); for any such fn, mg (m > n), there must exist 
an A(fn, mg) 2 F such that A(fn, mg) \ f0, 1, . . . ,mg = 0 and U contains all fn, m, lg 
with l 2 A(fn, mg), and so on. Thus, each neighborhood of zero is determined by a 
family fA(s) : s 2 [w]<wg of elements of F. Clearly, the topology tL is invariant with 
respect to translation by elements of [w]<w; upon a little reflection, it becomes clear 
that tL is the maximal invariant topology on [w]<w in which the filter F converges 
to zero. (An invariant topology is a topology with respect to which the group 
operation is separately continuous; groups with an invariant topology are said to be 
semi-topological. The convergence of F to zero means that tL induces the initially 
given topology on wF .) Since the free group topology is invariant as well, it is weaker 
than tL .

The Mathias topology is, so to speak, the uniform version of the Laver topology: 
a neighborhood of zero in the Laver topology determined by a family fA(s) 2 F: s 2 
[w]<wg is open in the Mathias topology if and only if there exists a single A 2 F such 
that A(s) = Anf0, 1, . . . ,maxsg for each s. (In [65], the corresponding relationship
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between Mathias and Laver forcings was discussed from a purely set-theoretic point 
of view.) Hence, tM tL.

The topology of the free Boolean topological group on wF occupies an 
intermediate position between the Mathias and the Laver topology: it is not so 
uniform as the former, but more uniform than the latter. A neighborhood of zero is 
determined not by a single element of the filter (like in the Mathias topology), but 
by a family of elements of F assigned to s 2 [w]<w (like in the Laver topology), but 
these elements depend only on the lengths of s.

The following theorem shows that the Laver topology is a group topology only 
for special filters. This theorem was proven in 2007 by Egbert Thummel, who kindly 
communicated it, together with a complete proof, to the author. The symbols tfree 
and tindlim in its statement denote the topology of the free topological group B(wF) 
and the inductive limit topology of B(wF), respectively.

Theorem 18 (Thummel, 2007 [66]). For any filter on w, the following conditions 
are equivalent:

(i) F is Ramsey;
(ii) tM = tfree = tindlim = tL ;

(iii) tL is a group topology; S
(iv) for any sequence of Ai 2 F,i 2 w, the set U = f0g U Ui2w [i, Ai] is open in tfree.

This theorem is particularly interesting because its original (Thummel’s) proof 
uses an argument that is simple and still quite typical of the method of forcing. The 
proof given below only slightly differs from Thummel’s and uses this argument, 
as well.

Proof. First, note that tM tfree tindlim tL . Indeed, the first two inclusions 
are obvious, and the third one follows from Proposition 3 (or from the inclusion 
tfree tL noted above) and the observation that tL is the inductive limit of its 
restrictions to Bn (wF).

Thus, to prove the implication (i) ) (ii), it suffices to show that tM = tL for any 
Ramsey filter. Let U be a neighborhood of 0 in tL. For each i 2 w, we set:

Ai = fn > maxs: s U fng 2 Ug: s 2 U, maxs i .

Since the number of s 2 [w]<w with maxs i is finite, it follows that Ai 2 F. 
Take a diagonal D 2 F for the family fAi : i 2 wg. We can assume that D A0. 
Clearly, [0, D] U, whence U 2 tM.

The implication (ii) ) (iii) is trivial.
Let us prove (iii) ) (iv). Note that it follows from (iii) that tfree = tL, because 

tfree tL and tfree is the strongest group topology inducing the initially given
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topology on wf. It remains to note that any set of the form {0} U Ui2w[i, Ai], where 
Ai 2 F, is open in tL .

We proceed to the last implication (iv) ) (i). Take any family {Ai : i 2 wg F 

and consider the set U defined as in (iv). Since this is an open neighborhood of zero 
in the group topology tfree, there exists an open neighborhood V of zero (in tfree) such 
that V + V U. The set D = {i 2 w : i 2 Vg belongs to F (because tfree induces the 
initially given topology on wf) and is a diagonal of {Ai: i 2 wg. □

This theorem is worth comparing to Judah and Shelah’s proof that if F is a 
Ramsey ultrafilter, then M(F) is forcing equivalent to L(F) ([67], Theorem 1.20 (i)).

Thummel also obtained the following remarkable result as a simple corollary of 
Theorem 18.

Theorem 19 (Thummel, 2007 [66]). Given a filter F on w, the group B(wF) is extremally 
disconnected if and only if F is a Ramsey ultrafilter.

Proof. The proof of the if part is essentially contained in Sirota’s construction of 
a (consistent) example of an extremally disconnected group [56]. The proof of the 
only if part is based on the equivalence (iv) , (i) of Theorem 18: for any family 
{Ai : i 2 wg F, the set i2w[i, Ai] is open even in the Mathias topology, and 
its closure in tfree, which must be open by virtue of extremal disconnectedness, is 
{0gU i2w[i, Ai]. The assertion (iv) , (i) implies that F is a Ramsey filter. It remains 
to apply Theorem 13 and recall that wF is extremally disconnected if and only if F is 
an ultrafilter. □

Thummel has never published these results, and Theorem 19 was rediscovered 
by Zelenyuk, who included it, among other impressive results, in his book [59] (see 
Theorem 5.1 in [59]).

Combining Theorem 19 with Corollary 15, we obtain yet another corollary.

Corollary 20. The free Boolean group on a non-discrete countable space X is extremally 
disconnected if and only if X is an almost discrete space associated with a Ramsey ultrafilter.

Free Boolean topological and free Boolean linear (that is, Mathias) topological 
groups on spaces associated with filters, as well as Boolean groups with other 
topologies determined by filters, are the main tool in the study of topological groups 
with extreme topological properties (see [59] and the references therein). However, 
free Boolean (linear) topological groups on filters arise also in more “conservative” 
domains. We conclude with mentioning an instance of this kind.

The most elegant (in the author ’s opinion) example of a countable 
non-metrizable Frechet-Urysohn group was constructed by Nyikos in [68] under the 
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relatively mild assumption p = b (Hrusak and Ramos-Garcia have recently proven 
that such an example cannot be constructed in ZFC [69]).

It is clear from general considerations that test spaces most convenient for 
studying convergence properties that can be defined pointwise (such as the 
Frechet-Urysohn property and the related ai-properties) are countable almost 
discrete spaces (that is, spaces of the form wF), and the most convenient test groups 
for studying such properties in topological groups are those generated by such 
spaces, simplest among which are free Boolean linear topological groups. Thus, it is 
quite natural that Nyikos’ example is Blin(wF) for a very cleverly constructed filter F. 
In fact, he constructed it on ww (which does not make any difference, of course) as 
the set of neighborhoods of the only non-isolated point in a Y-like space defined by 
using graphs of functions w ! w from a special family. In the same paper, Nyikos 
proved many interesting convergence properties of groups Blin(wF) for arbitrary 
filters F on w. We do not give any more details here: the interested reader will gain 
much more benefit and pleasure from reading Nyikos’ original paper.

6. A Few Open Problems

Free Boolean topological groups have not yet been extensively studied, and 
related unsolved problems are numerous. Some of the problems most interesting to 
the author are suggested below.

Problem 1. Describe those spaces X whose finite powers are embedded in the free 
Boolean topological groups B(X). Is it true that if F is a free ultrafilter on w, then 
wF wF cannot be embedded in B(wF)?

The following problem is open not only for free Boolean topological groups, but 
also for free and free Abelian ones.

Problem 2. Describe those spaces X for which B(X) (F(X), A(X)) is normal.

Of course, if F(X) or A(X) is normal, then so are all finite powers of X, because 
they are embedded in F(X) and A(X) as closed subspaces. However, in the Boolean 
case, even this has not been proven.

Problem 3. Does there exist a space X such that B(X) is normal, but X2 is not?

Similarly, for Boolean groups, the following problem becomes nontrivial.

Problem 4. Describe spaces X for which B(X) is Lindelof. Does there exist a space X 
such that B (X) is Lindelof, but X2 is not?
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Problem 5. Does there exist a space X for which B (X) is normal (Lindelof, ccc), but 
F( X ) or A( X ) is not?

Problem 6. Is it true that B (X) is Weil complete for any Dieudonne complete 
space X?

A positive answer to this question in the case where X is a product of metrizable 
spaces would imply a positive answer in the general case. Indeed, any Dieudonne 
complete space X can be embedded in a product P of metric spaces as a closed 
subspace in such a way that every bounded continuous pseudometric on X can be 
extended to P. Therefore, by Theorem 4, B(X) is a subgroup of B(P); it is easy to 
see that B(X) is closed in B(P), and hence, B(X) is Weil complete if so is B(P). For 
free and free Abelian topological groups, Problem 6 has been completely solved: 
Tkachenko proved that if X is Dieudonne complete, then A(X) is Weil complete [28]; 
Uspenskii proved the Weil completeness of F(X) in the case where X is a product 
of metrizable spaces [29]; and the author extended Uspenskii’s result to arbitrary 
Dieudonne complete spaces [27].

The following problem has been solved only for free Abelian topological 
groups [70].

Problem 7. Is it true that the free (Boolean) topological group of any stratifiable 
space is stratifiable?

The following two problems have been extensively studied and proven very 
difficult for free and free Abelian topological groups. Results related to the inductive 
limit topology were mentioned in Section 3.1, and results related to the natural 
multiplication maps being quotient can be found, e.g., in [25,34,71-73].

Problem 8. Describe spaces X for which B(X) has the inductive limit topology.

Problem 9. Describe spaces X for which all (or some) of the natural addition maps 
in: X [ X 1 ! B (X) defined by (x## 1, x22,..., xnn) ! x 1 + x2 + ■ ■ ■ + xn for n 2 N, 
xi 2 X and #i = 1 (i n) are quotient.

We conclude this short list of problems with a problem closely related to 
extremally disconnected groups.

Problem 10. Does there exist a (countable) non-discrete Boolean topological group 
in which all linearly independent sets are closed and discrete?
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Lindelof S-Spaces and R-Factorizable 
Paratopological Groups
Mikhail Tkachenko

Abstract: We prove that if a paratopological group G is a continuous image of 
an arbitrary product of regular Lindelof S-spaces, then it is R-factorizable and 
has countable cellularity. If in addition, G is regular, then it is totally !-narrow 
and satisfies cel! (G) < !, and the Hewitt-Nachbin completion of G is again an 
R-factorizable paratopological group.

Reprinted from Axioms. Cite as: Tkachenko, M. Lindelof S-Spaces and R-Factorizable 
Paratopological Groups. Axioms 2016, 4, 254-267.

1. Introduction

Our main objective is the study of paratopological groups that can be 
represented as continuous images of products of Lindelof S-spaces. While the 
properties of (para)topological groups that are Lindelof S-spaces (referred to as 
Lindelof S-groups) are well-understood [1-4], our knowledge about the former class 
of groups is very modest. The lack of the continuity of the inverse in paratopological 
groups makes our job more difficult when compared to the case of topological groups. 
In fact, most of our technique is essentially asymmetric.

Topological groups representable as continuous images of products of Lindelof 
S-spaces were studied in [5], where it was shown that every uncountable regular 
cardinal was a weak precaliber for any group G in this class and that G satisfied 
cel! ( G) < !. According to [2] (Corollary 3.5), a slightly weaker result is valid for 
Tychonoff paratopological groups representable as continuous images of products of 
Lindelof S-spaces: these groups G satisfy the inequality cel! (G) < !. However, the 
justification of this fact given in [2] contains a gap. In a few words, the problem with 
the argument in [2] is the existence of a weak s-lattice of open continuous mappings 
of a given completely regular paratopological group G onto Hausdorff spaces with a 
G-diagonal (see Definition 6). As far as we know, all other results in [2] are proven 
correctly. It is a simple exercise to show that every Hausdorff topological group has 
the required lattice of open mappings, while the case of paratopological groups is 
much more elusive.

It follows from our lemmas 9 and 11 that every weakly Lindelof regular 
paratopological group has a weak -lattice of continuous open mappings onto 
Hausdorff spaces with a G-diagonal. Since every space representable as a 
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continuous image of a product of Lindelof S-spaces is weakly Lindelof, these facts 
fill in the gap in the proof of [2] (Corollary 3.5) (see our Theorem 13).

It turns out that the paratopological groups G, which are continuous images 
of products of Lindelof S-spaces, have several properties that make them look like 
Lindelof S-groups. For example, we prove in Theorem 12 that such a group G is 
R-factorizable and has countable cellularity. If in addition the group G is regular, 
then it is totally !-narrow and satisfies cel! (G) < !, and the Hewitt-Nachbin 
completion of G is again an R-factorizable paratopological group containing G 
as a dense subgroup (see Theorem 13). This fact is one of the first results on the 
preservation of the paratopological group structure under taking the Hewitt-Nachbin 
completion: almost all known results of this kind refer to topological groups, and 
their proofs depend essentially on the continuity of the inverse.

Finally, in Section 4, we formulate several open problems regarding 
paratopological groups representable as continuous images of products of Lindelof 
S-spaces. We are mainly interested in finding out whether the conclusions “G is 
totally !-narrow and satisfies cel! (G) < !” in Theorem 13 can be extended to 
Hausdorff paratopological groups G.

The article is organized as follows. In Section 2, we introduce a class LS of 
Hausdorff spaces that contains the Lindelof S-spaces and shares many properties 
with the latter one. The advantage of working with spaces from the class LS resides 
in the fact that this class is stable with respect to taking Hausdorff continuous 
images. We collect several results about the permanence properties of the class LS 
and present more facts that will be used in Section 3.

Section 3 contains our main results about paratopological groups representable 
as continuous images of products of Lindelof S-spaces. A few selected problems 
related to the material of Section 3 are given with comments in Section 4.

2. Preliminaries

A space X is weakly Lindelof if every open cover of X contains a countable 
subfamily whose union is dense in X. Every space with a dense Lindelof subspace or 
having countable cellularity is weakly Lindelof.

According to [6], a Hausdorff space X is called a Lindelof S-space if there exist 
a countable family F of closed sets in X and a cover C of X by compact sets, such 
that for every C 2 C and every open neighborhood U of C in X, one can find F 2 F, 
such that C F U. In fact, K. Nagami defined in [6] the wider class of S-spaces, 
so the Lindelof S-spaces are simply the S-spaces with the Lindelof property. The 
reader can find a detailed discussion of distinct ways to define Lindelof S-spaces 
in [7] (Theorem 1).

It is known that the class of Lindelof S-spaces is countably productive and that 
an F-subset of a Lindelof S-space is again a Lindelof S-space [6]. This class of spaces 
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becomes especially stable when one restricts himself to considering Tychonoff spaces 
only. It turns out that every continuous image, say Y of a Lindelof S-space X, is 
again a Lindelof S-space, provided that X and Y are Tychonoff [1], (Proposition 5.3.5). 
In fact, the same conclusion remains valid if X is Hausdorff and Y is regular [4] 
(Lemma 4.5). However, we do not know whether the latter fact can be extended to 
the case when both X and Y are Hausdorff. This is why we define here a (possibly) 
wider class LS of Hausdorff spaces that is countably productive and is closed under 
taking continuous images.

Definition 1. A Hausdorff space X is in the class LS if there exist a countable family F 
of (not necessarily closed) subsets of X and a cover C of X by compact subsets, such that 
for every C 2 C and every open neighborhood U of C in X, one can find F 2 F, such that 
C F U.

It follows from Definition 1 that every Lindelof S-space is in the class LS. It is 
also easy to verify that every space X 2 LS is Lindelof. Therefore, a regular space 
in LS is normal (hence, Tychonoff), so regular spaces in LS are Lindelof S-spaces 
according to [7] (Theorem 1).

Proposition 2. The class LS is countably productive and closed under taking continuous 
images. Further, if Y is an Fs-subset of a space X 2 LS, then Y 2 LS.

Proof. Let fXk : k 2 !g LS be a family of spaces. For every k 2 !, let Fk and Ck 
be families of subsets of Xk witnessing that Xk 2 LS. We can assume that Xk 2 Fk 
for each k 2 !. To show that X = Hk2! Xk is in LS, we define families F and C of 
subsets of X as follows.

Let F be the family of sets of the form Hk2! Fk, where Fk 2 Fk for each k 2 ! 
and Fk 6= Xk for at most finitely many indices k 2 !. Clearly the family F is 
countable. Similarly, let C be the family of sets of the form Hk2! Ck, where Ck 2 Ck 

for each k 2 !. Then, the family C consists of compact subsets of X. Take an element 
C 2 C and an open neighborhood U of C in X. Then, C = Hk2! Ck, where Ck 2 Ck 

for each k 2 !. By Wallace’s Lemma, there exists a finite set A ! and open sets 
Ok C Xk with k 2 A, such that C C Hk2! Vk C U, where Vk = Ok if k 2 A and 
Vk = Xk if k 2 ! n A. For every k 2 A, there exists Fk 2 Fk, such that Ck Fk Ok. 
Let F = Hk2! Ek, where Ek = Fk if k 2 A and Ek = Xk if k 2 ! n A. Then, F 2 F and 
C C F C Hk2! Vk C U. Therefore, the families F and C witness that X 2 LS. This 
proves that the class LS is countably productive.

Let f : X ! Y be a continuous onto mapping of Hausdorff spaces, where 
X 2 LS. Take families F and C of subsets of X witnessing that X 2 LS. It is easy to 
verify that the families FY = ff (F) : F 2 Fg and CY = ff (C) : C 2 Cg of subsets of 
Y witness that Y 2 LS.
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Finally, let Y = Sk2! Bk, where each Bk is a closed subset of a space X 2 LS. 
Denote by F and C families of subsets of X witnessing that X 2 LS, where F is 
countable and each C 2 C is compact. Let us verify that the families:

FY = fF \ Bk : F 2 F, k 2 !g

and:
CY = fC \ Bk : C 2 C, k 2 !g

witness that Y 2 LS. It is clear that jFYj ! and that each element of CY is a 
compact subset of Y. Let K = C \ Bk be an element of CY, where C 2 C and k 2 !. 
Let also V be an open neighborhood of K in Y. Then, there exists an open set O in 
X, such that O \ Y = V. Since the compact set C0 = C nO is disjoint from K and the 
space X is Hausdorff, we can find disjoint open in X neighborhoods W1 and W2 of 
K and C0, respectively. The set W = W2 n Bk is open in X and contains C0. Hence, 
the set U = O [ W is an open neighborhood of C in X, so we can find an element 
F 2 F, such that C F U. Then, F \ Bk is an element of FY that satisfies:

K F \ Bk U \ Bk = O \ Bk O \ Y = V

This completes the proof of the fact that Y 2 LS. □

Another important property of the spaces in LS is presented in the following 
result, which is close to [1] (Proposition 5.3.15). However, our proof of Proposition 3 
is quite different from the one given in [1], since we work in the class of Hausdorff 
spaces, which is much wider than the class of Tychonoff spaces considered in [1] 
(Section 5.3).

Proposition 3. If a space X 2 LS admits a continuous one-to-one mapping onto a 
Hausdorff space Y with a countable network, then X itself has a countable network.

Proof. Let f : X ! Y be a continuous bijection. It is well known that every Hausdorff 
space with a countable network admits a continuous one-to-one mapping onto a 
second countable Hausdorff space. Let i: Y ! Z be a continuous bijection of Y onto 
a second countable Hausdorff space Z. Then, g = i f is a continuous bijection of X 
onto Z. Denote by B a countable base for Z. We can assume that B is closed under 
finite intersections and finite unions.

Let families F and C of subsets of X witness that X 2 LS, where jFj w and
each C 2 C is compact. We claim that the countable family:

N = f F \ g l( W) : F 2 F W 2 Bg
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is a network for X. Indeed, take a point x 2 X and an open neighborhood U of x in 
X. There exists C 2 C, such that x 2 C. Then, K = C n U is a compact subset of X 
and x 2/ K. Hence, the compact subset g(K) of Z does not contain the point g(x), and 
we can find disjoint elements W, W0 2 B, such that g(x) 2 W and g(K) W0. Then, 
O = U [ g 1( W0) is an open neighborhood of C in X, so there exists an element 
F 2 F, such that C C F C O. It is clear that F \ g 1 (W) is an element of N, and we 
have that:

x 2 F \ g 1 (W) C O \ g-1 (W) = U \ g 1 (W) C U

We have thus proven that N is a countable network for X. □

Replacing the family N in the proof of Proposition 3 with the family:

N0 = f F \ g-1(W) : F 2 F, W 2 Bg

we obtain the following version of the proposition:

Proposition 4. If a Lindelof S-space X admits a continuous one-to-one mapping onto a 
Hausdorff space with a countable network, then X has a countable network of closed sets.

The following lemma was proven in [2] for regular Lindelof S-spaces. Therefore, 
we extend the corresponding result from [2] to the wider class of Hausdorff 
LS-spaces.

Lemma 5. If a space X 2 LS has a Gd-diagonal, then it has a countable network.

Proof. Suppose that X 2 LS. Then, Proposition 2 implies that X2 2 LS, so the space 
X2 is Lindelof. Let fUn : n 2 !g be a family of open neighborhoods of the diagonal 
DX in X2 such that DX = Tn2! Un. It is clear that Fn = X2 n Un is a closed Lindelof 
subspace of X2. Given n 2 ! and a point (x, y) 2 Fn, we can find disjoint open 
neighborhoods Vn(x, y) and Wn(x, y) of the points x and y, respectively, in X. The 
open cover fVn(x, y) Wn(x, y) : (x, y) 2 Fng of the Lindelof space Fn contains a 
countable subcover, say fVn(x, y) Wn(x, y) : (x, y) 2 Cng, where Cn is a countable 
subset of Fn . Let:

= fVn(x, y) : n 2 !, (x, y) 2 Cng [ fWn(x, y) : n 2 !, (x, y) 2 Cng

Then, is a countable family of open sets in X. We claim that for every pair 
a, b of distinct points in X, there exist disjoint elements V, W 2 , such that a 2 V 
and b 2 W. Indeed, since (a, b) 2 X2 nDX, there exists n 2 !, such that (a, b) 2/ Un, 
i.e., (a, b) 2 Fn. Hence, there exists an element (x, y) 2 Cn, such that (a, b) 2 
Vn(x, y) Wn(x, y). This means that V = Vn(x, y) 2 and W = Wn(x, y) 2 are 
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disjoint open neighborhoods of the points a and b, respectively. This proves our 
claim.

Let B be the family of finite intersections of elements of . It is clear that B is a 
base for a Hausdorff topology on X. Then, the space Y = (X, ) has a countable 
base, and the identity mapping of X onto Y is a continuous bijection. Applying 
Proposition 3, we conclude that X has a countable network. □

Given continuous mappings g: X ! Y and h : X ! Z, we will write g h if 
there exists a continuous mapping p : Y ! Z satisfying h = p g.

We will also need the notion of a weak -lattice of mappings mentioned in the 
Introduction (see also [2], Definition 3.1).

Definition 6. Let Y bea space and L a family of continuous mappings of Y elsewhere. Then, 
L is said to be a weak s-lattice for Y if the following conditions hold:

(1) L generates the original topology of Y;
(2) every finite subfamily ofL has a lower bound in (L, );
(3) for every decreasing sequence p0 p1 p2 in L, there exists p 2 L and a 

continuous one-to-one mapping f: p(Y) ! q(Y), such that q = f p, where q is the 
diagonal product of the family fpn : n 2 wg.

A typical example of a weak -lattice for a topological group H is the family of 
all quotient mappings N : H ! H/N onto left coset spaces, where N is an arbitrary 
closed subgroup of type G in H.

Let us recall that a G,S -set in a space X is the union of an arbitrary family of 
G-sets in X. Further, a space Y is said to be !-cellular or, in symbols, cel!(Y) ! 
if every family of G-sets in Y contains a countable subfamily , such that S is 
dense in S . It is clear that every !-cellular space has countable cellularity. In fact, 
the class of !-cellular spaces is considerably narrower than the class of spaces of 
countable cellularity. For example, a space Y of countable pseudo-character satisfies 
cel! (Y) !if and only if it is hereditarily separable.

Our next result is a special case of [2] (Theorem 3.4), which is sufficient for our 
purposes. We supply it with a short proof based on another fact from [2].

Theorem 7. Let X = ni2I Xi be a product of regular Lindelof S-spaces and a Tychonoff 
space Ybea continuous image of X. If Y has a weak s-lattice of open mappings onto Hausdorff 
spaces with a Gd-diagonal, then celw (Y) w, and the closure of every Gd,S-subset of Y is 
a Gd -set.

Proof. First, we choose a point a 2 X. For every countable set J I, denote by pJ the 
projection of X onto the sub-product Xj = ni2 j Xi• Then, Xj is a Lindelof S-space, 

100



and we identify it with a corresponding closed subspace of X multiplying XJ by the 
singleton fpJ (a)g. Then, the family:

fpJ : J I, j Jj !g

constitutes a strong s-lattice of open retractions of X onto Lindelof S-subspaces 
(see [2], Definition 3.1).

Let f : X ! Y be a continuous onto mapping. Denote by L a weak -lattice of 
open mappings of Y onto Hausdorff spaces with a G-diagonal. For every ' 2 L, 
the composition g = ' f is a continuous mapping of X onto the Hausdorff space 
'(Y) with a G-diagonal. By [8] (Theorem 1), g depends at most on countably many 
coordinates, so we can find a countable set J I and a mapping hJ: XJ !'(Y), 
such that g = hJ pJ . Since pJ is an open continuous mapping, hJ is continuous. 
Hence, '(Y) is in the class LS as a continuous image of the Lindelof S-space XJ. 
By Lemma 5, '(Y) has a countable network for each ' 2 L. It follows that X, f, Y 
satisfy the conditions of Theorem 3.3 in [2]; hence, cel! (Y) !, and the closure of 
every G§,s-subset of Y is a Gg-set in Y. □

We recall that a paratopological group G is called R-factorizable if for every 
continuous real-valued function f on G, one can find a continuous homomorphism 
p : G ! H onto a second countable paratopological group H and a continuous 
real-valued function h on H satisfying f = h p. The original definition of 
R-factorizable paratopological groups in [9] involves separation restrictions on the 
groups G and H, thus giving rise to the concepts of Ri-factorizability for i = 1,2,3. 
However, it is shown in [4] that all of these concepts coincide and are equivalent to 
the one given above.

The following fact is a special case of [10] (Theorem 2.2) formulated in a form 
convenient for applications in Section 3. More precisely, it will be used in the proof of 
Theorem 12 to deduce the R-factorizability of paratopological groups representable 
as continuous images of products of Lindelof S-spaces.

Proposition 8. Let f: H ! Mbea continuous mapping of a Hausdorff weakly Lindelof 
paratopological group H to a metrizable space M. Then, one can find a closed subgroup N of 
type Gd in H anda continuous mapping h of the left coset space H/N to M, such that H/N 
is Hausdorff and the equality f = h p holds, where p: G ! G/N is the quotient mapping.

3. Continuous Images of Products of Lindelof S-Spaces

In this section we present the proofs of our main results announced in the 
Introduction. We start with three auxiliary results, Lemmas 9 to 11.
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Let us recall that a space X is Urysohn if for every pair x, y of distinct points 
in X, there exist open neighborhoods Ux and Uy of x and y, respectively, such that 
ux \ uy = ®.

Lemma 9. Let G be a weakly Lindelof regular paratopological group, 10 a countable family 
of open neighborhoods of the identity element e in G and u0 2 l0 . Then, there exists a 
closed subgroup N of G satisfying the following conditions, where pl : G ! G/N and 
pr : G ! GnN are quotient mappings of G onto the left and right coset spaces G/ N and 
GnN, respectively:

(a) N T l0;
(b l ) the space G/ N is urysohn and has a Gd-diagonal;
(b r) the space GnN is urysohn and has a Gd-diagonal;
(c) there exist open neighborhoods Ol and Or of the elements pl(e) and pr(e) in G/N 

and G \ N, respectively, such that pl ] (Ol) C U0 and pp1 (Or) C U0.

Proof. Denote by N(e) the family of open neighborhoods of e in G. Since G is weakly 
Lindelof, it follows from [11] (Theorem 10) that the index of regularity of G is 
countable. Hence the Hausdorff number of G is also countable [12] (Proposition 3.5), 
i.e., for every U 2 N(e), there exists a countable family N(e), such that 
TV2A vv-1 c U.

We introduce a new group multiplication in G by letting x y = y x, for all 
x,y 2 G. Let G be the paratopological group (G, , ), where is the topology of 
G. In other words, G and G differ only in multiplication. Hence, G is also weakly 
Lindelof and has a countable Hausdorff number. Therefore, for every U 2 N(e), there 
exists a countable family A c N(e), such that TV A V * V 1 c U or, equivalently, 
TV2A V-1 V c U.

Let 0 = A0. Making use of the inequalities Hs(G) ! and Hs(G*) !, one 
can define a sequence fn : n 2 !g of countable subfamilies of N(e) satisfying the 
following conditions for each n 2 !:

(i) For every V 2 n, there exists W 2 n+1, such that W2 c V;
(ii r) TW2Yn+1 WW 1 c V, for each V 2 yn;
(ii l) Tweyn+1 W 1W c V, for each V 2 yn.

Then, y = Sn2! yn is a countable subfamily of N(e). Let us show that N = Ty 
is as required.

Since A0 = y0 C y, it follows that N C T A0. This implies the validity of (a) of the 
lemma. Condition (ii r) implies that NN 1 C V for every V 2 yn and every n 2 !, 
so NN 1 C N. Since N contains the identity e of G, we see that N is a subgroup 
of G. Let l : G ! G/N and r : G ! GnN be the quotient mappings. By (i), there 
exists V 2 y1 c y, such that V2 c U0. Then, Ol = l (V) is an open neighborhood 
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of %l(e) in G/N and %f1(Ol) = VN C V2 C U0. Similarly, Or = %r(V) is an open 
neighborhood of %r(e) in G\N and %r 1 (Or) = NV C V2 C U0. Hence, (c) of the 
lemma is valid, as well.

Our next step is to show that condition (bi) of the lemma is also fulfilled, i.e., 
the coset space G/N is Urysohn and, hence, Hausdorff. In particular, the subgroup 
N = % p1%l (e) is closed in G .A similar verification of item (b r) is left to the reader, 
since it only requires the use of (iir) in place of (iii).

Take an arbitrary element x 2 G, such that x 2/ N. Since the space G/N is 
homogeneous, it suffices to show that the points %i (e) and %i (x) have disjoint closed 
neighborhoods in G/N. As x 2/ N, there exists an element U 2 n, for some n 2 !, 
such that x 2 U .By (ii l), there exists V 2 y n+1, such that x 2 V 1V. Applying (i) 
twice, we can find W 2 yn+3, such that W4 C V. Then, W2 W4 C W4 W4 3 x, 
whence it follows that:

W 1W2 \ WxW-2 = ® (1)

Since the mapping %i of G onto G/N is open and N C W (and, therefore, 
N = N 1 C W 1), we have the following inclusions:

%f1(%l(W)) = %-1 (%l(W)) = WN C W-1 WN C W-1 W2 (2)

and:
%f1 (%l(Wx)) = %f1(%l(Wx)) = WxN C WxNW-1 C WxW-2 (3)

Combining Equations (1) to (3), we see that the closed subsets %l (W) and %l (Wx) 
of G/N are disjoint. Since %l(W) and %l(Wx) are open neighborhoods of %l (e) and 
%l(x), respectively, in G/N, the latter space is Urysohn.

Finally we verify that G/N has a G-diagonal. For every U 2 N(e), let:

OU = [fpl (xU) pl(xU) : x 2 Gg

Then, the countable family F = fOU : U 2 yg of open entourages of the 
diagonal D in G/N G/N satisfies D = T F. Indeed, take arbitrary elements 
a, b 2 G, such that %l (a) = %l (b). Then, a 1 b 2 N, so we can find an element U 2 yn, 
for some n 2 !, such that a 1 b 2 U. By (ii l), there exists V 2 yn+1, such that 
a 1 b 2 V 1V. Now, we apply (i) to take W 2 yn+2 with W2 C V. We claim that 
(%l(a), %l(b)) 2/ OW. Indeed, otherwise, there exists x 2 G, such that %l(a) 2 %l (xW) 
and %l (b) 2 %l(xW). The latter implies that a 2 xWN and b 2 xWN, whence:

a 1 b 2 N 1W 1 x 1 xWN C W“2 W2 C V“1 V
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which is a contradiction. Since the family F is countable, we conclude that the coset 
space G/N has a G-diagonal. A similar argument shows that the right coset space 
G n N has a G §-diagonal. This completes the proof. □

The next result is almost evident, so we omit its proof.

Lemma 10. The class of spaces with a Gd-diagonal is countably productive.

Lemma 11. Let G be a weakly Lindelof regular paratopological group and A the family of 
closed subgroups N of G that satisfy conditions (bl) and (br) of Lemma 9. Then, A is closed 
under countable intersections.

Proof. Let fNk : k 2 !g A be a sequence of subgroups of G. For every k 2 !, 
denote by k the quotient mapping of G onto the left coset space G/Nk. Let also 
' be the diagonal product of the family fk : k 2 !g. Then, ' is a continuous 
mapping of G to the product space Z = Hk2! G/Nk• Each of the factors G/N has a 
G§-diagonal, and so does Z, by Lemma 10. Hence the subspace '(G) of Z also has 
a G§ -diagonal. Similarly, the space Z and its subspace '(G) are Urysohn since the 
factors G/ Nk are Urysohn.

Put N = Tk2! Nk, and let : G ! G/N be the quotient mapping. For every 
k 2 !, there exists a mapping pk : G/N ! G/Nk, such that k = pk . The 
mapping pk is continuous and open since so are and k . The diagonal product of 
the family fpk : k 2 !g, say p, is a continuous mapping of G/N to Z = Hk2! G/Nk. 
It is clear that p satisfies the equality ' = p . It is also easy to see that the fibers of 
the mappings ' and coincide, i.e., p is a continuous bijection of G/N onto '(G). 
Indeed, take arbitrary points x, y 2 G with '(x) = '(y). We have to show that 

(x) = (y). It follows from the definition of ' that k(x) = k(y), for each k 2 !. 
Hence, x 1 y 2 Tk2w Nk = N and n(x) = n(y). Therefore, the equality ' = p o n 
implies that p: G/N ! '(G) is a continuous bijection.

Finally, since the space '(G) is Urysohn and has a G§-diagonal and p is 
continuous and one-to-one, we infer that the space G/ N is also Urysohn and has a 
G§-diagonal. A similar argument shows that the right coset space GnN has the same 
property. This proves that N 2 A. □

In the following theorem, we do not impose any separation restriction on the 
paratopological group G.

Theorem 12. Let X = Hi2 I Xi be a product of regular Lindelof S-spaces and f : X ! G a 
continuous mapping of X onto a paratopological group G. Then, the group G is R-factorizable 
and has countable cellularity.
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Proof. Consider a continuous real-valued function g defined on G. We can 
assume the group G is a regular space. Indeed, let 'r : G ! Reg(G) be the 
canonical continuous homomorphism, where Reg( G) is the regularization of G 
(see [13,14]). Then, Reg(G) is a regular paratopological group, and by the definition 
of Reg(G), there exists a continuous real-valued function gr on Reg(G), such that 
g = gr 'r. Hence, G is R-factorizable if so is the group Reg(G). It also follows 
from [15] (Proposition 2.2) that the groups G and Reg(G) have the same cellularity. 
Notice that 'r f is a continuous mapping of X onto Reg(G). Thus, we can assume 
that G itself is regular.

By a recent theorem of Banakh and Ravsky in [16], every regular paratopological 
group is completely regular. Each factor Xi, being a regular Lindelof space, is normal 
and, hence, Tychonoff. Therefore, the product space X is Tychonoff, as well. Our 
next step is to show that G has a weak -lattice of open mappings onto Hausdorff 
spaces with a G-diagonal.

Take an arbitrary point x in X and denote by ( x) the subspace of X consisting 
of the points x 2 X that differ from x at most on finitely many coordinates. Clearly 

(x) is dense in X. Since the class of Lindelof S-spaces is finitely productive (this 
follows, e.g., from Proposition 2) [1] (Corollary 1.6.45) implies that the subspace (x) 
of X is Lindelof. Hence, f ((x)) is a dense Lindelof subspace of G, so the space 
G is weakly Lindelof. Applying Lemma 9, we see that the topology of the group G 
is initial with respect to the family L of quotient mappings of G onto Urysohn left 
coset spaces with a G-diagonal, and the same is valid for the family R of quotient 
mappings of G onto Urysohn right coset spaces with a G-diagonal. Making use of 
Lemma 11, one can easily prove that both L and R are weak -lattices of continuous 
open mappings for G. A routine verification of this fact is omitted.

Since G is a continuous image of the product space X, Theorem 7 implies that 
cel!(G) !. As c(G) cel!(G), we conclude that G has countable cellularity. It 
remains to show that the group G is R-factorizable. This requires several steps.

Following the notation in Lemma 11, we denote by A the family of all closed 
subgroups N of G, such that the coset spaces G/N and GnN are Urysohn and have a 
G-diagonal.

Claim 1. The coset spaces G/N and GnN have a countable network, for 
each N 2 A.

Let N,l : G ! G/ N be the quotient mapping, where N 2 A. Then, 
fN = N,l f is a continuous mapping of X onto the left coset space G/N. Notice 
that Xj = ni2j Xi is a Lindelof S-space for every countable set J C I; hence, [8] 
(Theorem 1) implies that fN depends on at most countably many coordinates, i.e., 
one can find a countable set J C I and a continuous mapping h : XJ ! G/N, such 
that fN = h pJ, where pJ : X ! XJ is the projection. It is clear that h is a surjective 
mapping. Applying Proposition 2, we conclude that G/N 2 LS. Hence, by Lemma 5, 
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the space G/ N has a countable network. The same argument applied to the quotient 
mapping N,r : G ! GnN enables us to deduce that the right coset space GnN also 
has a countable network. This proves Claim 1.

Claim 2. For every N 2 A, there exists M 2 A, such that pM,r pN,l, and
similarly, for every L 2 A, there exists K 2 A, such that pK,l pL,r .

By the symmetry argument, it suffices to verify the first part of the claim. Let N 
be a closed subgroup of G, such that the left coset space G/N is Urysohn and has 
a G-diagonal. By Claim 1, the space G/N has a countable network. Denote by Z 
the semi-regularization of the space G/N (see [14], p. 204), and let iN : G/N ! Z be 
the identity mapping. Since G/N is Hausdorff, it follows from [17] (Proposition 1) 
that the space Z is regular. It is clear that the mapping iN is continuous, so Z has 
a countable network as a continuous image of the space G/ N. In particular, Z is 
Lindelof and normal. Since Z has a countable network, we can find a continuous 
bijection iZ : Z ! Z0 onto a separable metrizable space Z0. Then, p = iZ iN N,l is 
a continuous mapping of G onto Z0. By Proposition 8, there exists a closed subgroup 
M of type G in G and a continuous mapping q: GnM ! Z0, such that p = q M,r, 
where M,r is the quotient mapping of G onto GnM. According to Lemma 9 we can 
assume without loss of generality that M 2 A. Let q0 = iN1 o iZ1 o q. The mapping 
q0 of GnM to G/N is well defined, since iN and iZ are bijections. Thus, the following 
diagram commutes.

GnM

Since N,l and M,r are continuous open mappings, so is q0. This implies that 
M,r N,l . Claim 2 is proven.

Claim 3. For every N 2 A, there exists K 2 A, such that K N and K is 
invariant in G.

Indeed, take an arbitrary element N 2 A, and let N0 = N. By Claim 2, there 
exists M0 2 A, such that M0,r N0,l . Hence, M0x xN0 or, equivalently, M0
xNox“1, for each x 2 G. Applying Claim 2 once again, we find N1 2 A, such that 
N1 C x 1M0x for each x 2 G. Continuing this way, we define sequences f Nk : k 2 

!g C A and fMk : k 2 !g C A, such that Mk C xNkx 1 and Nk+1 C xMkx 1 
for each x 2 G. Then, the subgroup K = Tk2! Mk = Tk2! Nk of G is as required. 
Indeed, it follows from Lemma 11 that K 2 A, so both coset spaces G/K and GnK 
are Urysohn and have a G-diagonal. It also follows from our definition of K that:

x 1 Kx C x-1 Mkx C Nk
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for all x 2 G and k 2 !, so x 1 Kx C Tk2! Nk = K. This inclusion is in fact the 
equality, so K is a closed invariant subgroup of G. Since K N0 = N, this completes 
the proof of Claim 3.

We are now in the position to complete our argument. Let us recall that g is an 
arbitrary continuous real-valued function on G. Since G is Hausdorff and weakly 
Lindelof, we apply Proposition 8 to find a closed subgroup N of type G§ in G, such 
that g is constant on each left coset of N in G. Therefore, there exists a real-valued 
function h on G/N, such that g = h N,l, where N,l : G ! G/N is the quotient 
mapping. Since N,l is continuous and open, the function h is also continuous. By 
Lemma 9, there exists N1 2 A with N1 C N. Then, Claim 3 implies the existence of an 
invariant subgroup K of G, such that K 2 A and K C N1. The inclusions K C N1 C N 
mean that there exists a mapping KN : G/K ! GN, such that N,l = KN K, where

K : G ! G/K is the quotient homomorphism.

Since the mappings N,l and K are continuous and open, so is KN . Hence, 
hK = h KN is a continuous real-valued function on G/K. Notice that G/K is a 
paratopological group, by the invariance of K in G, and G/K is Hausdorff by our 
choice of K 2 A. The group G/K has a countable network by Claim 1; hence, we 
can apply [9] (Corollary 3.11) according to which G/K is R-factorizable. Therefore, 
we can find a continuous homomorphism ': G/K ! P onto a second countable 
paratopological group P and a continuous real-valued function hP on P, such that 
hK = hP '. Therefore, the following diagram commutes.

It remains to note that the continuous homomorphism i.|> = ‘ o nK and the 
function hP satisfy the equality g = hP o ^, which implies the R-factorizability of the 
group G. □

A topological group G is said to be !-narrow (see [1], Section 3.4) if it can 
be covered by countably many translations of any neighborhood of the identity. 
A paratopological group is totally !-narrow if it is a continuous homomorphic 
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image of an !-narrow topological group or, equivalently, if the topological group G 
associated with G is !-narrow [12] (Subsection 1.1).

If the paratopological group G in Theorem 12 is regular, we are able to 
complement the conclusion of the theorem as follows:

Theorem 13. Let X = ni2 I Xi be a product space, where each Xi is a regular Lindelof 
S-space and f : X ! G a continuous mapping of X onto a regular paratopological group G. 
Then, the group G is totally w-narrow and satisfies celw (G) < w, and the Hewitt-Nachbin 
completion uG of the group G is again a paratopological group containing G as a dense 
subgroup. Furthermore, the group uG is R-factorizable.

Proof. Every regular paratopological group is Tychonoff according to [16]. 
Hence, applying Theorem 12, we conclude that G is a Tychonoff R-factorizable 
paratopological group. By [17] (Proposition 3.10), G is totally !-narrow.

The inequality cel!(G) < ! was established in the proof of Theorem 12 under 
the assumption of the regularity of G.

Finally, according to [18] (Theorem 2.3), the Hewitt-Nachbin completion 
of a Tychonoff R-factorizable paratopological group is again an R-factorizable 
paratopological group containing the original group as a dense subgroup. □

Since the Sorgenfrey line S is a regular paratopological group that fails to be 
totally !-narrow, Theorem 13 implies the following curious fact:

Corollary 14. The Sorgenfrey line S is not a continuous image of any product of regular 
Lindelof S-spaces.

The above corollary also follows from Theorem 12, since the group S is not 
R-factorizable according to [1] (Example 8.1.8). We also note that the conclusion of 
Corollary 14 is valid for every uncountable subgroup of S.

Remark 1. We present here a direct proof of the fact that the regular group G in Theorem 13 is 
totally !-narrow. We hope that it can help to treat the more general case when G is Hausdorff.

Let t be the topology of G. Denote by t 1 the family f U 1 : U 2 t}. Then, 
G0 = (G, t 1) is a paratopological group conjugated to G, and the inversion in G 
is a homeomorphism of G onto G0. Hence, G0 is also a continuous image of X, so 
the groups G and G0 have the same properties. Let D = f(x, x) : x 2 Gg be the 
diagonal in the paratopological group G G0. According to [9] (Lemma 2.2), D is
a closed subgroup of G G0 topologically isomorphic to the topological group G
associated with G. Therefore, it suffices to show that the group D is !-narrow. Let 
O be a neighborhood of the identity e in D. There exists an open neighborhood 
U of the identity e in G, such that D \ (U x U 1) C O. By Lemma 9 and Claims 1 
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and 3 in the proof of Theorem 12, we can find a closed invariant subgroup N of 
G, such that the quotient group G / N has a countable network and nT1 (V) C U 
for some open neighborhood V of the identity in G/ N, where : G ! G/ N is the 
quotient homomorphism. It is clear that G0/ N is a paratopological group conjugated 
to G/N and that G0/N has a countable network. Let n0: G0 ! G0/N be the quotient 
homomorphism. Then, ' = nn0 is a continuous homomorphism of G G0 onto the 
paratopological group G/N G0/N with a countable network. Clearly, the subgroup 
DN = f(n(x), n0(x)) : x 2 Gg of G/N G0/N also has a countable network and, 
hence, is Lindelof. In particular, the group Dn is !-narrow. Therefore, we can find a 
countable subset D of DN, such thatDW = DN = WD, where W = DN \ (V x V 1) 
(we identify the groups G/N and G0/N algebraically). Let C be a countable subset 
of D, such that '(C) = D. It easily follows from our choice of the sets V and W that 
D \ ' 1 (W) C D \ (U x U 1) C O, so we have the equality CO = D = OC. This 
proves that the topological group D = G is !-narrow.

4. Open Problems

A space Y is said to have the Knaster property if every uncountable family of 
open sets in Y contains an uncountable subfamily , such that every two elements of 

have a non-empty intersection [1] (Section 5.4). It is clear that every space with the 
Knaster property has countable cellularity; the converse is valid under MA plus the 
negation of CH and fails under CH.

Problem 15. Let a (Hausdorff) paratopological group G be a continuous image of a product 
of a family of Lindelof S -spaces. Does G have the Knaster property? Is it w-narrow?

It is worth mentioning that if G itself is a Lindelof S-space, then it has the 
Knaster property and is totally !-narrow, since the topological group G associated 
with G is again a Lindelof S-space (see, e.g., [9], Corollary 2.3, and [1], Theorem 5.4.7).

Problem 16. Let G be as in Problem 15.

(a) Does the topological group G associated with G satisfies c(G) w?
(b) Is the group G R-factorizable?
(c) Is the group G w-narrow?

What if, in addition, the group G in (a), (b) or (c) is Hausdorff or regular?

Let us note that Theorem 13 answers (c) of Problem 16 in the affirmative for 
a regular paratopological group G. Since every R-factorizable topological group is 
!-narrow, the affirmative answer to (b) of Problem 16 would imply the same answer 
to (c) of the problem.
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Let us recall that a space Y is said to be perfectly k-normal if the closure of every 
open set in Y is a G -set. Every metrizable space is evidently perfectly k-normal; it 
is much less evident that arbitrary products of metrizable spaces are also perfectly 
k-normal [19] (Theorem 2).

Problem 17. Let a Hausdorff (regular) paratopological group G be a continuous image 
of a dense subspace of a product of separable metrizable spaces. Is G perfectly k-normal 
or R-factorizable?

Every paratopological group G admits the natural left quasi-uniformity LG 
whose base consists of the sets:

UlV = f (x, y) 2 G2 : x 1 y 2 V g

where V runs through all open neighborhoods of the identity in G. Since every 
quasi-uniformity is generated by a family of upper quasi-uniformly continuous 
quasi-pseudometrics, the following problem arises in an attempt to show that the 
group G in Theorem 12 is !-narrow independently of whether it is regular or not.

Problem 18. Does every upper quasi-uniformly continuous quasi-pseudometric on an 
arbitrary product ofLindelof S-spaces depend at most on countably many coordinates?
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On T-Characterized Subgroups of Compact 
Abelian Groups
Saak Gabriyelyan

Abstract: A sequence fungn2w in abstract additively-written Abelian group G is 
called a T-sequence if there is a Hausdorff group topology on G relative to which 
limn un = 0. We say that a subgroup H of an infinite compact Abelian group X 
is T-characterized if there is a T-sequence u = fung in the dual group of X, such 
that H = fx 2 X : (un, x) ! 1g. We show that a closed subgroup H of X is 
T-characterized if and only if H is a Gd -subgroup of X and the annihilator of H admits 
a Hausdorff minimally almost periodic group topology. All closed subgroups of an 
infinite compact Abelian group X are T-characterized if and only if X is metrizable 
and connected. We prove that every compact Abelian group X of infinite exponent 
has a T-characterized subgroup, which is not an Fs-subgroup of X, that gives a 
negative answer to Problem 3.3 in Dikranjan and Gabriyelyan (Topol. Appl. 2013, 160, 
2427-2442).

Reprinted from Axioms. Cite as: Gabriyelyan, S. On T-Characterized Subgroups of 
Compact Abelian Groups. Axioms 2016, 4, 194-212.

1. Introduction

Notation and preliminaries: Let X be an Abelian topological group. We 
denote by Xb the group of all continuous characters on X, and Xb endowed with 
the compact-open topology is denoted by XA. The homomorphism aX : X ! XAA, 
x 7! (c 7! (c, x)), is called the canonical homomorphism. Denote by n( X) = 

\c2Xb ker(c) = ker(aX) the von Neumann radical of X. The group X is called 
minimally almost periodic (MinAP) if n(X) = X, and X is called maximally almost 
periodic (MAP) if n(X) = f0g. Let H be a subgroup of X. The annihilator of H we 
denote by H?, i.e., H? = fc 2 XA : (c, h) = 1 for every h 2 Hg.

Recall that an Abelian group G is of finite exponent or bounded if there exists 
a positive integer n, such that ng = 0 for every g 2 G. The minimal integer n with 
this property is called the exponent of G and is denoted by exp(G). When G is not 
bounded, we write exp(G) = ¥ and say that G is of infinite exponent or unbounded. 
The direct sum of w copies of an Abelian group G we denote by G(w).

Let u = fungn2w be a sequence in an Abelian group G. In general, no Hausdroff 
topology may exist in which u converges to zero. A very important question of 
whether there exists a Hausdorff group topology t on G, such that un ! 0 in 
(G, t), especially for the integers, has been studied by many authors; see Graev [1], 
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Nienhuys [2], and others. Protasov and Zelenyuk [3] obtained a criterion that gives a 
complete answer to this question. Following [3], we say that a sequence u = fung in 
an Abelian group G is a T-sequence if there is a Hausdorff group topology on G in 
which un converges to zero. The finest group topology with this property we denote 
by tu .

The counterpart of the above question for precompact group topologies on Z 
is studied by Raczkowski [4]. Following [5,6] and motivated by [4], we say that a 
sequence u = fung is a TB-sequence in an Abelian group G if there is a precompact 
Hausdorff group topology on G in which un converges to zero. For a TB-sequence u, 
we denote by tbu the finest precompact group topology on G in which u converges 
to zero. Clearly, every T B-sequence is a T-sequence, but in general, the converse 
assertion does not hold.

While it is quite hard to check whether a given sequence is a T-sequence 
(see, for example, [3,7-10]), the case of TB-sequences is much simpler. Let X be 
an Abelian topological group and u = f un g be a sequence in its dual group XA. 
Following [11], set:

su (X) = fx 2X : (un, x) !1g.

In [5], the following simple criterion to be a TB-sequence was obtained:

Fact 1 ([5]). A sequence u in a (discrete) Abelian group G is a TB-sequence if and only if 
the subgroup su (X) of the (compact) dual X = GA is dense.

Motivated by Fact 1, Dikranjan et al. [11] introduced the following notion related 
to subgroups of the form su (X) of a compact Abelian group X:

Definition 2 ([11]). LetHbe a subgroup ofa compact Abelian group X and u = fung 
be a sequence in Xb. If H = su (X), we say that u characterizes H and that H is 
characterized (by u).

Note that for the torus T, this notion was already defined in [12]. Characterized 
subgroups have been studied by many authors; see, for example, [11-16]. In 
particular, the main theorem of [15] (see also [14]) asserts that every countable 
subgroup of a compact metrizable Abelian group is characterized. It is natural 
to ask whether a closed subgroup of a compact Abelian group is characterized. The 
following easy criterion is given in [13]:

Fact 3 ([13]). A closed subgroup H ofa compact Abelian group X is characterized if and 
only if H is a Gd-subgroup. In particular, X / H is metrizable, and the annihilator H? of H 
is countable.
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The next fact follows easily from Definition 2:

Fact 4 ([17], see also [13]). Every characterized subgroup H ofa compact Abelian group X 
is an Fsd-subgroup of X, and hence, H is a Borel subset of X.

Facts 3 and 4 inspired in [13] the study of the Borel hierarchy of characterized 
subgroups of compact Abelian groups. For a compact Abelian group X, denote 
by Char(X) (respectively, SFs (X), SFsd (X) and SGd(X)) the set of all characterized 
subgroups (respectively, Fs-subgroups, Fsd-subgroups and Gd-subgroups) of X. The 
next fact is Theorem E in [13]:

Fact 5 ([13]). For every infinite compact Abelian group X, the following inclusions hold:

SGd(X) $ Char(X) $ SFsd (X) and SFs(X) 6 Char(X).

If in addition X has finite exponent, then:

Char(X) $ SFs(X). (1)

The inclusion Equation (1) inspired the following question:

Question 6 (Problem 3.3 in [13]). Does there exist a compact Abelian group X of infinite 
exponent all of whose characterized subgroups are Fs-subsets of X?

Main results: It is important to emphasize that there is no restriction on the 
sequence u in Definition 2. If a characterized subgroup H of a compact Abelian group 
X is dense, then, by Fact 1, a characterizing sequence is also a T B-sequence. However, 
if H is not dense, we cannot expect in general that a characterizing sequence of H is 
a T-sequence. Thus, it is natural to ask:

Question 7. For which characterized subgroups of compact Abelian groups can one find 
characterizing sequences that are also T-sequences?

This question is of independent interest, because every T-sequence u naturally 
defines the group topology tu satisfying the following dual property:

Fact 8 ([18]). Let H be a subgroup ofan infinite compact Abelian group X characterized by 
a T-sequence u. Then, (X,tu)a = H(= su(X)) and n(X,tu) = H? algebraically.

This motivates us to introduce the following notion:
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Definition 9. Let H be a subgroup of a compact Abelian group X. We say that H is a 
T-characterized subgroup of X if there exists a T-sequence u = fungn2w in Xb, such that 
H = su(X).

Denote by CharT (X) the set of all T-characterized subgroups of a compact 
Abelian group X. Clearly, CharT (X) Char(X). Hence, if a T-characterized 
subgroup H of X is closed, it is a Gd-subgroup of X by Fact 3. Note also that X 
is T-characterized by the zero sequence.

The main goal of the article is to obtain a complete description of closed 
T-characterized subgroups (see Theorem 10) and to study the Borel hierarchy 
of T-characterized subgroups (see Theorem 18) of compact Abelian groups. In 
particular, we obtain a complete answer to Question 7 for closed characterized 
subgroups and give a negative answer to Question 6.

Note that, if a compact Abelian group X is finite, then every T-sequence u 
in Xb is eventually equal to zero. Hence, su (X) = X. Thus, X is the unique 
T-characterized subgroup of X. Therefore, in what follows, we shall consider only 
infinite compact groups.

The following theorem describes all closed subgroups of compact Abelian 
groups that are T-characterized.

Theorem 10. Let H be a proper closed subgroup of an infinite compact Abelian group X. 
Then, the following assertions are equivalent:

(1) H is a T-characterized subgroup of X;
(2) H is a Gd-subgroup of X, and the countable group H? admits a Hausdorff MinAP 

group topology;
(3) H is a Gd-subgroup of X and one of the following holds:

(a) H? has infinite exponent;
(b) H? has finite exponent and contains a subgroup that is isomorphic to 

Z (exp(H?))(w).

Corollary 11. Let X be an infinite compact metrizable Abelian group. Then, the trivial 
subgroup H = f0g is T-characterized if and only if Xb admits a Hausdorff MinAP 
group topology.

As an immediate corollary of Fact 3 and Theorem 10, we obtain a complete 
answer to Question 7 for closed characterized subgroups.

Corollary 12. A proper closed characterized subgroup H of an infinite compact Abelian 
group X is T-characterized if and only if H? admits a Hausdorff MinAP group topology.
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If H is an open proper subgroup of X, then H? is non-trivial and finite. Thus, 
every Hausdorff group topology on H? is discrete. Taking into account Fact 3, 
we obtain:

Corollary 13. Every open proper subgroup H ofan infinite compact Abelian group X is a 
characterized non- T-characterized subgroup of X.

Nevertheless (see Example 1 below), there is a compact metrizable Abelian 
group X with a countable T-characterized subgroup H, such that its closure TH is 
open. Thus, it may happen that the closure of a T-characterized subgroup is not 
T-characterized.

It is natural to ask for which compact Abelian groups all of their closed 
Gd-subgroups are T-characterized. The next theorem gives a complete answer to 
this question.

Theorem 14. Let X be an infinite compact Abelian group. The following assertions 
are equivalent:

(1) All closed Gd-subgroups of X are T-characterized;
(2) X is connected.

By Corollary 2.8 of [13], the trivial subgroup H = f0g of a compact Abelian 
group X is a Gd -subgroup if and only if X is metrizable. Therefore, we obtain:

Corollary 15. All closed subgroups of an infinite compact Abelian group X are 
T-characterized if and only if X is metrizable and connected.

Theorems 10 and 14 are proven in Section 2.
In the next theorem, we give a negative answer to Question 6:

Theorem 16. Every compact Abelian group of infinite exponent has a dense T-characterized 
subgroup, which is not an Fs-subgroup.

As a corollary of the inclusion Equation (1) and Theorem 16, we obtain:

Corollary 17. For an infinite compact Abelian group X, the following assertions 
are equivalent:

(i) X has finite exponent;
(ii) every characterized subgroup of X is an Fs-subgroup;

(iii) every T-characterized subgroup of X is an Fs-subgroup.

Therefore, Char(X ) SFs ( X ) if and only if X has finite exponent.
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In the next theorem, we summarize the obtained results about the Borel 
hierarchy of T-characterized subgroups of compact Abelian groups.

Theorem 18. Let X be an infinite compact Abelian group X. Then:

(1) CharT(X) $ SFsd(X);
(2) SGd(X) T CharT(X) $ CharT(X);
(3) SGd (X) CharT (X) if and only if X is connected;
(4) CharT(X) T SFs(X) $ SFs(X);
(5) CharT(X) SFs(X) if and only if X has finite exponent.

We prove Theorems 16 and 18 in Section 3.
The notions of g-closed and g-dense subgroups of a compact Abelian group X 

were defined in [11]. In the last section of the paper, in analogy to these notions, 
we define gT -closed and gT -dense subgroups of X. In particular, we show that 
every gT-dense subgroup of a compact Abelian group X is dense if and only if X is 
connected (see Theorem 37).

2. The Proofs of Theorems and 10  14

The subgroup of a group G generated by a subset A we denote by h Ai.
Recall that a subgroup H of an Abelian topological group X is called dually 

closed in X if for every x 2 X n H, there exists a character c 2 H?, such that 
(c, x) 6= 1. H is called dually embedded in X if every character of H can be extended 
to a character of X. Every open subgroup of X is dually closed and dually embedded 
in X by Lemma 3 of [19].

The next notion generalizes the notion of the maximal extension in the class of 
all compact Abelian groups introduced in [20].

Definition 19. Let G be an arbitrary class of topological groups. Let (G, t) 2 G and 
H be a subgroup of G. The group (G, t) is called a maximal extension of (H, tjH) 
in the class G if s t for every group topology on G, such that sjH = tjH and 
(G, s) 2 G.

Clearly, the maximal extension is unique if it exists. Note that in Definition 19, 
we do not assume that (H, tjH) belongs to the class G.

If H is a subgroup of an Abelian group G and u is a T-sequence (respectively, a 
TB-sequence) in H, we denote by tu(H) (respectively, tbu(H)) the finest (respectively, 
precompact) group topology on H generated by u. We use the following easy 
corollary of the definition of T-sequences.

Lemma 20. For a sequence u in an Abelian group G, the following assertions are equivalent:
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(1) u is a T-sequence in G;
(2) u is a T-sequence in every subgroup of G containing hui;
(3) u is a T-sequence in hui.

In this case, hui is open in tu (and hence, hui is dually closed and dually embedded 
in (G, tu)), and (G, tu) is the maximal extension of (hui, tu(hui) in the class TAG of all 
Abelian topological groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a T-sequence in hui. Let 
t be the topology on G whose base is all translationsof tu(hui)-open sets. Clearly, u 
converges to zero in t. Thus, u is a T-sequence in G. Therefore, (3) implies (1).

Let us prove the last assertion. By the definition of tu, we have also t tu, 
and hence, tjhui = tu(hui) tujhui. Thus, hui is open in tu, and hence, it is dually 
closed and dually embedded in (G, tu) by [19] (Lemma 3.3). On the other hand, 
tujhui tu(hui) = tjhui by the definition of tu(hui). Therefore, tu is an extension of 
tu(hui). Now, clearly, t = tu, and (G, tu) is the maximal extension of (hui, tu(hui) 

in the class TAG. □

For TB-sequences, we have the following:

Lemma 21. For a sequence u in an Abelian group G, the following assertions are equivalent:

(1) u is a TB-sequence in G;
(2) u is a TB-sequence in every subgroup of G containing hui;
(3) u is a TB-sequence in hui.

In this case, the subgroup hui is dually closed and dually embedded in (G, tbu), 
and (G, tbu) is the maximal extension of (hui, tbu(hui)) in the class of all precompact 
Abelian groups.

Proof. Evidently, (1) implies (2) and (2) implies (3). Let u be a TB-sequence in 
(u). Then, ((u), tbu (hui))A separates the points of (u). Let t be the topology on G 
whose base is all translations of tbu(hui)-open sets. Then, (hui, tbu(hui)) is an open 
subgroup of (G, t). It is easy to see that (G, t)A separates the points of G. Since u 
converges to zero in t, it also converges to zero in t+, where t+ is the Bohr topology 
of (G, t). Thus, u is a TB-sequence in G. Therefore, (3) implies (1).

The last assertion follows from Proposition 1.8 and Lemma 3.6 in [20]. □

For a sequence u = fungn2w of characters of a compact Abelian group X, set:

Ku = \w ker(un).

The following assertions is proven in [13]:
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Fact 22 (Lemma 2.2(i) of [13]). For every sequence u = fungn2w of characters ofa compact 
Abelian group X, the subgroup Ku is a closed Gd-subgroup of X and Ku = hui?.

The next two lemmas are natural analogues of Lemmas 2.2(ii) and 2.6 of [13].

Lemma 23. Let X be a compact Abelian group and u = fungn2w be a T-sequence in Xb. 
Then, su (X)/Ku is a T-characterized subgroup of X/Ku.

Proof. Set H := su (X) and K := Ku. Let q : X ! X/K be the quotient map. Then, 
the adjoint homomorphism qA is an isomorphism from (X/K)A onto K? in XA. For 
every n 2 w, define the character uen of X/K as follows: (uen, q(x)) = (un, x) (uen is 
well-defined, since K ker(un)). Then, ue = fuengn2w is a sequence of characters of 
X/K, such that qA(uen) = un. Since u K?, u is a T-sequence in K? by Lemma 20. 
Hence, ue is a T-sequence in ( X/K )A because qA is an isomorphism.

We claim that H/K = su(X/K). Indeed, for every h + K 2 H/K, by definition, 
we have (uen,h+K) = (un, he) !1. Thus, H/K sue(X/K). If x+K 2 sue(X/K), 

then (en, x + K) = (un, x) ! 1. This yields x 2 H. Thus, x + K 2 H /K. □

Let u = f un gn2w be a T-sequence in an Abelian group G. For every natural 
number m, set um = fungnm. Clearly, um is a T-sequence in G, tu = tum and 
su (X) = sum (X) for every natural number m.

Lemma 24. Let K be a closed subgroup of a compact Abelian group X and q : X ! X/K 
be the quotient map. Then, H is a T-characterized subgroup ofX / K if and only if q 1 (H) is 
a T-characterized subgroup of X.

Proof. Let He be a T-characterized subgroup of X/K, and let a T-sequence 
u = fengn2w-characterized H. Set H := q 1 (H). We have to show that H is a 
T-characterized subgroup of X .

Note that the adjoint homomorphism qA is an isomorphism from (X/K)A 

onto K? in XA. Set u = fun gn2w, where un = qA (uen). Since qA is injective, u is 
a T-sequence in K?. By Lemma 20, u is a T-sequence in Xb. Therefore, it is enough 
to show that H = su(X). This follows from the following chain of equivalences. By 
definition, x 2 su (X) if and only if:

(un, x) ! 1 , (uen, q(x)) ! 1 , q(x) 2 He = H/K , x 2 H.

The last equivalence is due to the inclusion K H.
Conversely, let H := q 1( H) be a T-characterized subgroup of X and a 

T-sequence u = fun gn2w-characterized H. Proposition 2.5 of [13] implies that 
we can find m 2 N, such that K Kum . Therefore, taking into account that
H = su (X) = sum (X) for every natural number m, without loss of generality, we
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can assume that K Ku . By Lemma 23, H /Ku is a T-characterized subgroup 
of X /Ku . Denote by qu the quotient homomorphism from X /K onto X /Ku . 
Then, H = q^1 (H / Ku) is T-characterized in X / K by the previous paragraph of 
the proof. □

The next theorem is an analogue of Theorem B of [13], and it reduces the study of 
T-characterized subgroups of compact Abelian groups to the study of T-characterized 
ones of compact Abelian metrizable groups:

Theorem 25. A subgroup H ofa compact Abelian group X is T-characterized if and only if 
H contains a closed Gd-subgroup K of X, such that H/K is a T-characterized subgroup of 
the compact metrizable group X /K.

Proof. Let H be T-characterized in X by a T-sequence u = fungn2w in Xb. Set 
K := Ku. Since K is a closed Gd-subgroup of X by Fact 22, X/K is metrizable. By 
Lemma 23, H/K is a T-characterized subgroup of X/K.

Conversely, let H contain a closed Gd -subgroup K of X, such that H/K is a 
T-characterized subgroup of the compact metrizable group X/K. Then, H is a 
T-characterized subgroup of X by Lemma 24. □

As was noticed in [21] before Definition 2.33, for every T-sequence u in an 
infinite Abelian group G, the subgroup hui is open in (G, tu) (see also Lemma 20), 
and hence, by Lemmas 1.4 and 2.2 of [22], the following sequences are exact:

0 ! (hui, tu) ! (G,tu) ! G/hui ! 0,

0! ( g/hui)A! ( g , tu r ! (hui, tu ihui r ! 0,
(2)

where (G/hui)A = hui? is a compact subgroup of (G, tu)A and (hui, tu)A =

(G, tu)A/hui?.
Let u = fungn2w be a T-sequence in an Abelian group G. It is known [10] that tu 

is sequential, and hence, (G, tu ) is a k-space. Therefore, the natural homomorphism 
a := a(G,tu) : (G, tu) ! (G, tu)AA is continuous by [23] (5.12). Let us recall that 
(G, tu) is MinAP if and only if (G, tu) = ker(a).

To prove Theorem 10, we need the following:

Fact 26 ([16]). For each T-sequence u in a countably infinite Abelian group G, the group 
(G, tu)A is Polish.

Now, we are in a position to prove Theorem 10.

Proof of Theorem 10. (1) ) (2) Let H be a proper closed T-characterized subgroup 
of X and a T-sequence u = fungn2w-characterizedH. Since H is also characterized, 
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it is a Gd -subgroup of X by Fact 3. We have to show that H? admits a MinAP 
group topology.

Our idea of the proof is the following. Set G := Xb. By Fact 8, H? is the von 
Neumann radical of (G, tu). Now, assume that we found another T-sequence v that 
characterizes H and such that hvi = H? (maybe v = u). By Fact 8, we have n(G, tv) = 
H? = hvi. Lemma 20 implies that the subgroup (hvi, tvjhvi) of (G, tv) is open, and 
hence, it is dually closed and dually embedded in (G, tv). Hence, n(hvi, tvjhvi) = 

n(G, tv)(= hvi) by Lemma 4 of [16]. Therefore, (hvi, tvjhvi) is MinAP. Thus, 
H? = hvi admits a MinAP group topology, as desired.

We find such a T-sequence v in four steps (in fact, we show that v has the form 
um for some m 2 N).

Step 1. Let q : X ! X/Ku be the quotient map. For every n 2 w, define the 
character uen of X/Ku by the equality un = eun q (this is possible since Ku ker(un)). 
As was shown in the proof of Lemma 23, the sequence ue = fuengn2w is a T-sequence, 
which characterizes H/Ku in X/Ku. Set Xe := X/Ku and He := H/Ku. Therefore, 

He = sue(Xe). By [24] (5.34 and 24.11) and since Ku H, we have:

H ? = (X / H )A = (X / Hi = He ?. (3)

By Fact 3, Xe is metrizable. Hence, He is also compact and metrizable, and Ge := Xbe 

is a countable Abelian group by [24] (24.15). Since H is a proper closed subgroup of 
X, Equation (3) implies that Ge is non-zero.

We claim that Ge is countably infinite. Indeed, suppose for a contradiction that 
Ge is finite. Then, X/Ku = Xe is also finite. Now, Fact 22 implies that hui is a finite 
subgroup of G. Since u is a T-sequence, u must be eventually equal to zero. Hence, 
H = su (X) = X is not a proper subgroup of X, a contradiction.

Step 2. We claim that there is a natural number m, such that the group 
(huemi, tuejhuemi) = (huemi, teumjhuemi) is MinAP.

Indeed, since Ge is countably infinite, we can apply Fact 8. Therefore, 
He = (Ge, tu)A algebraically. Since He and (Ge, tu)A are Polish groups (see Fact 26), 
He and (Ge,tu)A are topologically isomorphic by the uniqueness of the Polish group 
topology. Hence (Ge, tu)AA = HeA is discrete. As was noticed before the proof, the 
natural homomorphism ae : (Ge,tu) ! (Ge, tu)AA is continuous. Since (Ge, tu)AA is 
discrete, we obtain that the von Neumann radical ker(ea) of (Ge,tu) is open in tu. 
Therefore, there exists a natural number m, such that uen 2 ker(ae) for every n m. 
Hence, huemi ker(ea). Lemma 20 implies that the subgroup huemi is open in (Ge, tu), 
and hence, it is dually closed and dually embedded in (Ge, tu). Now, Lemma 4 of [16] 
yields huemi = ker(ea), and (huemi, teujhuemi) is MinAP.

Step 3. Set v = fvngn2w, where vn = un+m for every n 2 w. Clearly, v is a 
T-sequence in G characterizing H, tu = tv and Ku Kv. Let t : X ! X/Kv and 
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r : X/Ku ! X/Kv be the quotient maps. Analogously to Step 1 and the proof of 
Lemma 23, the sequence ev = fevngn2w is a T-sequence in X\/Kv, which characterizes 

H/Kv in X/Kv, where vn = evn t. Since t = r q, we have:

Vn = vn o t = tA(Vn) = qA (rA(Vn)) ,

where tA, rA and qA are the adjoint homomorphisms to t, r and q, respectively.
Since qA and rA are embeddings, we have rA (evn) = uen+m. In particular, 

hvi = hvei = huemi and :

(huemi, tuejhuemi) = (huemi, teumjhuemi) = (hevi,tvejhvei) = (hvi, tvjhvi).

By Step 2, (huemi, tuemjhuemi) is MinAP. Hence, (hvi, tvjhvi) is MinAP, as well.
Step 4. By the second exact sequence in Equation (2) applying to v, Fact 8, and 

since (hvi, tvjhvi) is MinAP (by Step 3), we have H = sv(X) = (G, tv)A = (G/hvi)A = 

hvi? algebraically. Thus, H? = hvi, and hence, H? admits a MinAP group topology 
generated by the T-sequence v.

(2) ) (1): Since H is a Gd-subgroup of X, H is closed by [13] (Proposition 
2.4) and X/H is metrizable (due to the well-known fact that a compact group of 
countable pseudo-character is metrizable). Hence, H? = (X/H)A is countable. Since 
H? admits a MinAP group topology, H? must be countably infinite. By Theorem 3.8 
of [9], H? admits a MinAP group topology generated by a T-sequence ue = fuengn2w. 
By Fact 8, this means that su (X/H) = f0g. Let q : X ! X/H be the quotient map. 
Set un = eun o q = qA (uen). Since qA is injective, u is a T-sequence in Xb by Lemma 20. 
We have to show that H = su(X). By definition, x 2 su(X) if and only if:

(un, x) = (eun, q(x)) !1 , q(x) 2 sue(X/H) , q(x) = 0 , x 2 H.

(2),(3) follows from Theorem 3.8 of [9]. The theorem is proven. □

Proof of Theorem 14. (1) ) (2): Suppose for a contradiction that X is not connected. 
Then, by [24] (24.25), the dual group G = XA has a non-zero element g of finite order. 
Then, the subgroup H := hgi? of X has finite index. Hence, H is an open subgroup 
of X. Thus, H is not T-characterized by Corollary 13. This contradiction shows that 
X must be connected.

(2) ) (1): Let H be a proper Gd-subgroup of X. Then, H is closed by [13] 
(Proposition 2.4), and X/H is connected and non-zero. Hence, H? = (X/H)A is 
countably infinite and torsion free by [24] (24.25). Thus, H? has infinite exponent. 
Therefore, by Theorem 10, H is T-characterized. □

The next proposition is a simple corollary of Theorem B in [13].
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Proposition 27. The closure H of a characterized (in particular, T-characterized) subgroup 
H of a compact Abelian group X is a characterized subgroup of X.

Proof. By Theorem B of [13], H contains a compact Gd-subgroup K of X. Then, H is 
also a Gd-subgroup of X. Thus, H is a characterized subgroup of X by Theorem B 
of [13]. □

In general, we cannot assert that the closure H of a T-characterized subgroup H 
of a compact Abelian group X is also T-characterized, as the next example shows.

Example 1. Let X = Z(2) T and G = Xb = Z(2) Z. It is known (see the end of (1) 

in [7]) that there is a T-sequence u in G, such that the von Neumann radical n(G, tu) 

of (G, Tu) is Z(2) x f0g, the subgroup H := su(X) is countable and H = f0g x T. 
Therefore, the closure H of the countable T-characterized subgroup H of X is open. 
Thus, H is not T-characterized by Corollary 13.

We do not know the answers to the following questions:

Problem 28. Let H be a characterized subgroup of a compact Abelian group X, such that its 
closure H is T-characterized. IsH a T-characterized subgroup ofX?

Problem 29. Does there exists a metrizable Abelian compact group that has a countable 
non-T-characterized subgroup?

3. The Proofs of Theorems 16 and 18

Recall that a Borel subgroup H of a Polish group X is called polishable if there 
exists a Polish group topology t on H, such that the inclusion map i : (H, t) ! X is 
continuous. Let H be a T-characterized subgroup of a compact metrizable Abelian 
group X by a T-sequence u = fungn2w. Then, by [16] (Theorem 1), H is polishable 
by the metric:

r(x,y) = d(x,y) + supf|(un,x) - (un,y)|, n 2 wg, (4)

where d is the initial metric on X. Clearly, the topology generated by the metric r on 
H is finer than the induced one from X.

To prove Theorem 16 we need the following three lemmas.
For a real number x, we write [x] for the integral part of x and kxk for the 

distance from x to the nearest integer. We also use the following inequality proven 
in [25]:

1 1pj jj < j1 - e2 j j< 2pj j|, j 2 - 2,2). (5)
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Lemma 30. Let fangn2w N be such that an ! ¥and an 2,n 2 w. Set un = nk<n an 

for every n 2 w. Then, u = fungn2w is a T-sequence in X = T, and the T-characterized 
subgroup H = su(T) ofT is a dense non-Fs-subset of T.

Proof. We consider the circle group T as R/Z and write it additively. Therefore, 
d(0, x) = kxk for every x 2 T. Recall that every x 2 T has the unique representation
in the form:

x=
¥c cn cn

n=0 un
(6)

where 0 < cn < an and cn = an — 1 for infinitely many indices n.
It is known [26] (see also (12) in the proof of Lemma 1 of [25]) that x with 

representation Equation (6) belongs to H if and only if:

lim cn (mod 1) = 0. 
n!¥ an (7)

Hence, H is a dense subgroup of T. Thus, u is even a TB-sequence in Z by Fact 1.
We have to show that H is not an Fs-subset of T. Suppose for a contradiction 

that H is an Fs-subset of T. Then, H = [n2NFn, where Fn is a compact subset of T for 
every n 2 N. Since H is a subgroup of T, without loss of generality, we can assume 
that Fn — Fn C Fn+1. Since all Fn are closed in (H, r), as well, the Baire theorem implies 
that there are 0 < # < 0.1 and m 2 N, such that Fm fx : r(0, x) < #g.

Fix arbitrarily l > 0, such that ^^ < 2#0. For every natural number k > l, set:

k1

xk := £ IT n=l un

(an - 1)#' 
20

Then, for every k > l, we have:

k1

Xk = £ UT ■ n=l un

(an -1) # 
20

V 1 # 1 kP' £ 2 # 1
< n=,UnZ1 ^ 20 < 1^ n=02n < 1^ < 20 < 2.

n=

This inequality and Equation (5) imply that:

#
d(0,xk) = IIxkII = xk < 20, forevery k > l. (8)

For every s 2 w and every natural number k > l, we estimate j1 — (us, xk )j 
as follows.
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Case 1. Let s < k. Set q = maxfs + 1, lg. By the definition of xk, we have:

2p [(us xk) (mod 1)] = 2p

p#
< 10

p#
< 10

k1
Us E - ■

n=l Un

1
1 +----------- 1------------------ 1-------------------------+ ... )

as+1 as+1as+2 as+1as+2as+3

1 1 1 p# 2# 1<1+ 2 + 22 + 23 + -J = 10 ■2 < 7 < 2.

■(an - 1)#
20

(mod 1) < 2 p E — 
n=q Un

(an - 1)# 
20

This inequality and Equation (5) imply:

j1 - (Us, Xk)| = |1 - exp {2pi ■ [(Us ■ Xk) (mod 1)]g| < 2#. (9)

Case 2. Let s k. By the definition of xk, we have:

|1 - (Us, Xk)| = 0. (10)

In particular, Equation (10) implies that Xk 2 H for every k > l.
Now, for every k > l, Equations (4) and (8)-(10) imply:

r(0, xk) < 20 + 2# < #.

Thus, Xk 2 Fm for every natural number k > l. Clearly,

¥1
xk! x := E - ■ 

n=l Un

(an - 1)#' 
20

in T.

Since Fm is a compact subset of T, we have x 2 Fm . Hence, x 2 H. On the other 
hand, we have:

# 
(mod 1) = 20 = 0.

1 (an - 1)#
lim — ■ 3-------- —

n!¥ an 20

Therefore, Equation (7) implies that x 2 H. This contradiction shows that 
H = su (T) is not an Fs-subset of T. □

For a prime number p, the group Z(p¥) is regarded as the collection of fractions 
m/pn 2 [0, 1). Let Dp be the compact group of p-adic integers. It is well known 
that Dcp = Z(p¥).

1 1
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Lemma 31. Let X = Dp. For an increasing sequence of natural numbers 0 < n0 < n1 < 
..., such that nk+1 - nk ! ¥, set:

1
uk = —-i 2 Z(P¥). k pnk+1

Then, the sequence u = fukgk2w is a T-sequence in Z(p¥), and the T-characterized 
subgroup H = su(Dp) is a dense non-Fs-subset of Dp.

Proof. Let w = (an)n2w 2 Dp, where 0 an < p for every n 2 w. Recall that, for
every k 2 w, [24] (25.2) implies:

(uk , w) = exp
2 pi 

pnk+1
a0 + pa1 + + pnk ank (11)

Further, by [24] (10.4), if w = 0, then d(0, w) = 2n, where n is the minimal 
index, such that an 6= 0.

Following [27] (2.2), for every w = (an) 2 Dp and every natural number 
k > 1, set:

mk = mk(w) = maxf jk, nk-1g,

where:
jk = nk if 0 < ank < p - 1,

and otherwise:

jk = minf j : either as = 0 for j < s < nk, or as = p — 1 for j < s < nkg.

In [27] (2.2), it is shown that:

w 2 su (Dp) if and only if nk — mk ! ¥. (12)

Therefore, H := su(Dp) contains the identity 1 = (1, 0, 0, . . . ) of Dp. By [24] 
(Remark 10.6), h1i is dense in Dp. Hence, H is dense in Dp, as well. Now, Fact 1 
implies that u is a T-sequence in Z(p¥).

We have to show that H is not an Fs-subset of Dp . Suppose for a contradiction 
that H = [n2N Fn is an Fs-subset of Dp, where Fn is a compact subset of Dp for every 
n 2 N. Since H is a subgroup of Dp, without loss of generality, we can assume that 
Fn — Fn Q Fn+1. Since all Fn are closed in (H, r), as well, the Baire theorem implies 
that there are 0 < # < 0.1 and m 2 N, such that Fm fx : r(0, x) < #g.
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Fix a natural number s, such that 1 < 20. Choose a natural number l > s, such 
that, for every natural number w > l, we have:

nw+1 - nw > s. (13)

For every r 2 N, set:

{
1, if n = nl+i — s for some 1 < i < r,

0, otherwise.

Then, for every r 2 N, Equation (13) implies that wr is well defined and:

d(0, wr) = 2^ < < 1 < 2s < 20. (14)

Note that: 
pk +1__ 1

1 + P +-------- + Pk = y---- < Pk +1. (15)

For every k 2 w and every r 2 N, we estimate |1 — (Uk, wr)| as follows.
Case 1. Let k < l .By Equations  and  and the definition of wr, we have:(11) (13)

|1 - (Uk,wr)| = 0. (16)

Case 2. Let l < k < l + r. Then, Equation  yields:(15)

2 p [p nl +1- s +_____ L n nk - s| < 2 p . V»k -s+1 = 2p< 2p < £ < 1
pnk+1 1P + + P 1 < pnk+1 P ps < 2s < 2 < 2.

This inequality and the inequality Equations (5) and (11) imply:

|1 - (Uk,wr)| = 1 — exp
( 2 pi

pnk+1
ppn++1-s + ... £

< 2. (17)

Case 3. Let l + r < k .By Equation , we have:(15)

:.".pn+,-s+...+pn+,y<2+. ■,-s+1

< 2 p . pnk - s+1 = 2 p 2 2 p < £ 
pnk+1 p ps < 2s 2.

These inequalities, Equations (5) and (11) immediately yield:

|1 - (Uk,wr)| = 1 - exp
2 pi

pnk+1

£
< 2, (18)
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and:
2p

j1 - (uk,wr)j < pnk+1 ■ pnl+r s+1 ! 0, as k ! ¥.

Therefore, Equation (19) implies that wr 2 H for every r 2 N.
For every r 2 N, by Equations (4), (14) and (16)-(18), we have:

(19)

##
r(0,wr) = d(0,wr) + sup {|1 - (uk,wr)|, k 2 wg < 20 + 2 < #.

Thus, wr 2 Fm for every r 2 N. Evidently,

{
1, if n = ni+i — s for some i 2 N,

0, otherwise.

Since Fm is a compact subset of Dp, we have we 2 Fm . Hence, we 2 H. On the other 
hand, it is clear that mk (w) = nk — s for every k > l + 1. Thus, for every k > l + 1, 
nk — mk(w) = s ! ¥. Now, Equation (12) implies that w 2 H. This contradiction 
shows that H is not an Fs-subset of Dp. □

Lemma 32. Let X = nn2w Z(bn), where 1 < b0 < b1 < ... and G := X = Ln2w Z(bn). 
Set u = {ungn2w, where un = 1 2 Z(bn)A c Gfor every n 2 w. Then, u is a T-sequence 
in G, and the T-characterized subgroup H = su(X) is a dense non-Fs-subset of X.

Proof. Set H := su(X). In [27] (2.3), it is shown that:

w = (an) 2 su (X) if and only if
an 
bn

(20)

Therefore, Ln2w Z(bn) H. Thus, H is dense in X. Now, Fact 1 implies that u
is a T-sequence in G.

We have to show that H is not an Fs-subset of X. Suppose for a contradiction 
that H = [n2N Fn is an Fs -subset of X, where Fn is a compact subset of X for every 
n 2 N. Since H is a subgroup of X, without loss of generality, we can assume that 
Fn — Fn Q Fn+1. Since all Fn are closed in (H, p), as well, the Baire theorem yields that 
there are 0 < # < 0.1 and m 2 N, such that Fm {w 2 X : r(0, w) #g.

Note that d(0, w) = 21, where 0 = w = (an)n2w 2 X and l is the minimal index, 
such that ai = 0. Choose l, such that 2l < #/3. For every natural number k > l, set:

wk := (akn ), where akn =
#bn

20
, for every n such that l n k,

0, if either 1 n < l or k < n.
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Since (un, wk) = 1 for every n > k, we obtain that wk 2 H for every k > l. 
For every n 2 w, we have:

2 P ■
bn
1 # bn„

20
2p#

< 20 < # <
1
2.

This inequality and the inequality Equations (4) and (5) imply:

r(0, Wk) = d(0, Wk)+ sup fj1 - (Un, Wk )j, n 2 w g 
1 #bn

1 - expr pibn 20 j,
1

+ + + max
2l

< 0 + 2 p ■ maxfl W
3 bn 20

20
# 2p#l< n < 4 < 3 + 2 < #.

Thus, wk 2 Fm for every natural number k > l. Evidently,

wk ! we = (ean)n2w in X, where ean =

0, if 0 n < l,
#bn

20 ,if l < n

Since Fm is a compact subset of X, we have we 2 Fm . Hence, we 2 H. On the other 
hand, since bn ! ¥, we have:

lim 
n!¥

ean 
bn

= lim — 
n!¥ bn

1 #bbn 

20 = 2 = 0.

Thus, We 62 H by Equation (20). This contradiction shows that H is not an 
Fs -subset of X. □

Now, we are in a position to prove Theorems 16 and 18.

Proof of Theorem 16. Let X be a compact Abelian group of infinite exponent. 
Then, G := Xb also has infinite exponent. It is well-known that G contains a 
countably-infinite subgroup S of one of the following form:

(a) S = Z;
(b) S = Z(p¥);
(c) S = Ln2W Z(bn), where 1 <b0 <b 1 < ....

Fix such a subgroup S. Set K = S? and Y = X /K = S£, where Sd denotes the 
group S endowed with the discrete topology. Since S is countable, Y is metrizable. 
Hence, f0g is a Gd-subgroup of Y. Thus, Kis a Gd-subgroup of X. Let q : X ! Ybe the 
quotient map. By Lemmas 30-32, the compact group Y has a dense T-characterized 
subgroup H, which is not an Fs-subset of Y. Lemma 24 implies that H := q 1 (H) is a 
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dense T-characterized subgroup of X. Since the continuous image of an Fs-subset 
of a compact group is an Fs-subset, as well, we obtain that H is not an Fs-subset of 
X. Thus, the subgroup H of X is T-characterized, but it is not an Fs-subset of X. The 
theorem is proven. □

Proof of Theorem 18. (1) Follows from Fact 5.
(2) By Lemma 3.6 in , every infinite compact Abelian group X contains 

a dense characterized subgroup H. By Fact  H is T-characterized. Since every 
Gd-subgroup of X is closed in X by Proposition 2.4 of , H is not a Gd-subgroup 
of X.

[13]
 1,

[13]

(3) Follows from Theorem and the aforementioned Proposition 2.4 of . 14 [13]
(4) Follows from Fact 5.
(5) Follows from Corollary  □ 17.

It is trivial that CharT (X) Char(X) for every compact Abelian group X. For
the circle group T, we have:

Proposition 33. CharT(T) = Char(T).

Proof. We have to show only that Char(T) CharT(T). Let H = su(T) 2 Char(T)
for some sequence u in Z.

If H is infinite, then H is dense in T. Therefore, u is a T-sequence in Z by Fact 1.
Thus, H 2 CharT(T).

If H is finite, then H is closed in T. Clearly, H? has infinite exponent. Thus, 
H 2 CharT(T) by Theorem 10. □

Note that, if a compact Abelian group X satisfies the equality CharT(X) = 
Char(X), then X is connected by Fact 3 and Theorem 14. This fact and Proposition 33 
justify the next problem:

Problem 34. Does there exists a connected compact Abelian group X, such that 
CharT(X) 6= Char(X)? Is it true that CharT(X) = Char(X) if and only if X is connected?

For a compact Abelian group X, the set of all subgroups of X that are both 
Fsd- and Gds-subsets of X we denote by SD03 (X). To complete the study of the Borel 
hierarchy of (T-)characterized subgroups of X, we have to answer the next question.

Problem 35. Describe compact Abelian groups X of infinite exponent for which Char(X) 
SD03 (X). For which compact Abelian groups X of infinite exponent there exists a 
T-characterized subgroup H that does not belong to SD03 (X)?
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4. gT-Closed and gT-Dense Subgroups of Compact Abelian Groups

The following closure operator g of the category of Abelian topological groups is 
defined in [11]. Let X be an Abelian topological group and H its arbitrary subgroup. 
The closure operator g = gX is defined as follows:

gX(H) := \ fsu (X) : H su(X)g,
u2XbN

and we say that H is g-closed if H = g(H), and H is g-dense if g(H) = X.
The set of all T-sequences in the dual group Xb of a compact Abelian group X 

we denote by Ts (Xb). Clearly, Ts(Xb) $ XbN. Let H be a subgroup of X. In analogy to 
the closure operator g, g-closure and g-density, the operator gT is defined as follows:

gT(H) := \ fsu(X) : H su(X)g, 
u2Ts(Xb)

and we say that H is gT-closed if H = gT (H), and H is gT-dense if gT(H) = X.
In this section, we study some properties of gT-closed and gT-dense subgroups 

of a compact Abelian group X. Note that every g-dense subgroup of X is dense by 
Lemma 2.12 of [11], but for gT-dense subgroups, the situation changes:

Proposition 36. Let X be a compact Abelian group.

(1) IfH is a gT-dense subgroup ofX, then the closure H of H is an open subgroup ofX.
(2) Every open subgroup ofa compact Abelian group X is gT-dense.

Proof. (1) Suppose for a contradiction that H is not open in X. Then, X/H is an 
infinite compact group. By Lemma 3.6 of [13], X/H has a proper dense characterized 
subgroup S. Fact 1 implies that S is a T-characterized subgroup of X/H. Let q : X ! 
X/H be the quotient map. Then, Lemma 24 yields that q 1 (S) is a T-characterized 
dense subgroup of X containing H. Since q 1(S) = X, we obtain that H is not 
gT -dense in X, a contradiction.

(2) Let H be an open subgroup of X. If H = X, the assertion is trivial. 
Assume that H is a proper subgroup (so X is disconnected). Let u be an 
arbitrary T-sequence, such that H su(X). Since H is open, su (X) is open, 
as well. Now, Corollary implies that su (X) = X. Thus, H is gT-dense 
in X. □

 13 

Proposition 36(2) shows that gT-density may essentially differ from the usual 
g-density. In the next theorem, we characterize all compact Abelian groups for which 
all gT-dense subgroups are also dense.
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Theorem 37. All gT-dense subgroups ofa compact Abelian group X are dense if and only if 
X is connected.

Proof. Assume that all gT-dense subgroup of X are dense. Proposition 36(2) implies 
that X has no open proper subgroups. Thus, X is connected by [24] (7.9).

Conversely, let X be connected and H be a gT-dense subgroup of X. Proposition 
36(1) implies that the closure H of H is an open subgroup of X. Since X is connected, 
we obtain that H = X. Thus, H is dense in X. □

For gT-closed subgroups, we have:

Proposition 38. Let X be a compact Abelian group.

(1) Every proper open subgroup H of X is a g-closed non-gT-closed subgroup.
(2) If every g-closed subgroup of X is gT-closed, then X is connected.

Proof. (1) The subgroup H is gT-dense in X by Proposition 36. Therefore, H is not 
gT -closed. On the other hand, H is g-closed in X by Theorem A of [13].

(2) Item (1) implies that X has no open subgroups. Thus, X is connected 
by [24] (7.9). □

We do not know whether the converse in Proposition 38(2) holds true:

Problem 39. Let a compact Abelian group X be connected. Is it true that every g-closed 
subgroup of X is also gT-closed?
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Characterized Subgroups of Topological 
Abelian Groups
Dikran Dikranjan, Anna Giordano Bruno and Daniele Impieri

Abstract: A subgroup H of a topological abelian group X is said to be characterized 
by a sequence v = (vn) of characters of X if H = fx 2 X : vn (x) ! 0 in Tg. 
We study the basic properties of characterized subgroups in the general setting, 
extending results known in the compact case. For a better description, we isolate 
various types of characterized subgroups. Moreover, we introduce the relevant class 
of auto-characterized groups (namely, the groups that are characterized subgroups 
of themselves by means of a sequence of non-null characters); in the case of locally 
compact abelian groups, these are proven to be exactly the non-compact ones. As 
a by-product of our results, we find a complete description of the characterized 
subgroups of discrete abelian groups.

Reprinted from Axioms. Cite as: Dikranjan, D.; Bruno, A.G.; Impieri, D. Characterized 
Subgroups of Topological Abelian Groups. Axioms 2016,4, 459-491.

1. Introduction

For a topological abelian group X, we denote by X its dual group, that is the 
group of all characters of X (i.e., continuous homomorphisms X ! T). Following [1], 
for a sequence of characters v = (vn ) 2 XbN, let:

sv(X) := fx 2 X : vn (x) ! 0g

which is always a subgroup of X. A subgroup H of X is said to be characterized if 
H = sv(X) for some v = (vn) 2 XbN.

Historically, characterized subgroups were studied exclusively in the case of 
the circle group T = R/Z (see [2-5]), also in relation to Diophantine approximation, 
dynamical systems and ergodic theory (see [3,6,7]; one can find more on this topic 
in the nice survey [8], as well as in the more recent [9-12]). Some general results 
were then obtained in the case of metrizable compact abelian groups; for example, 
it is known that every countable subgroup of a metrizable compact abelian group 
is characterized (see [13, Theorem 1.4] and [14]), and it was pointed out in [14,15] 
that the metrizability is necessary, as a compact abelian group with a countable 
characterized subgroup is necessarily metrizable. Only recently, the case of general 
compact abelian groups was given full attention in [16], and a reduction theorem (to 
the metrizable case) was obtained.
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The few exceptions [8,17,18] only confirm the tendency to study the 
characterized subgroups of T or, more recently, of compact abelian groups. To 
say the least, even the simplest case of characterized subgroups of discrete abelian 
groups has never been considered in the literature to the best of our knowledge.

The aim of these notes is to develop a general approach to characterized 
subgroups of arbitrary topological abelian groups, collecting the basic properties so 
far established in the compact case.

We isolate three special types of characterized subgroups, namely T-characterized, 
K-characterized and N-characterized subgroups (see Definition 3). Of those, 
T-characterized subgroups were introduced by Gabriyelyan in [11], K-characterized 
subgroups were substantially studied by Kunen and his coauthors in [13,19,20], while 
N-characterized subgroups, even if never introduced explicitly, have been frequently 
used in the theory of duality in topological abelian groups (being nothing else but 
the annihilators of countable sets of the dual group). One of the advantages of this 
articulation is the possibility to establish some general permanence properties that 
fail to be true in the whole class of characterized subgroups, but hold true in some 
of these subclasses. Moreover, we see that each characterized subgroup is either 
N-characterized or coincides with the intersection of an N-characterized subgroup 
and a K-characterized subgroup (see Corollary 3).

Inspired by the notion of T-characterized subgroup, we introduce also the 
stronger one of TB-characterized subgroup (see Definition 4). The following 
implications hold, and none of them can be reversed in general (see Section 5):

TB-characterized = > T-characterized > K-characterized = > characterized
| (*) |

proper dense characterized N-characterized > closed characterized

where () holds under the assumption that the subgroup is closed and has infinite 
index (see Corollary 6).

In Section 6, we introduce the prominent class of auto-characterized groups 
(see Definition 5). These are the topological abelian groups that are characterized 
subgroups of themselves by means of a non-trivial sequence of characters (see (2)). 
The fact that compact abelian groups are not auto-characterized is equivalent to the 
well-known non-trivial fact that the Bohr topology of an infinite discrete abelian 
group has no non-trivial convergent sequences. Here, we generalize this fact by 
proving that the property of being non-auto-characterized describes the compact 
abelian groups within the class of all locally compact abelian groups (see Theorem 3). 
Moreover, in the general case, we describe the auto-characterized groups in terms of 
their Bohr compactification (see Theorem 5).
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We study the basic properties of K- and of N-characterized subgroups 
respectively in Sections 7 and 8. For the case of discrete abelian groups, which 
is considered here for the first time, we give a complete description of characterized 
subgroups by showing that these are precisely the subgroups of index at most c and 
that a subgroup is characterized precisely when it is K- and N-characterized (see 
Corollary 16).

In Section 7, we describe when a closed subgroup of infinite index is both K- and 
N-characterized, and we see that this occurs precisely when it is only N-characterized 
(see Theorem 6); then, we consider the special case of open subgroups, proving 
that proper open subgroups of infinite index (respectively, of finite index) are 
K-characterized if and only if they are characterized (respectively, auto-characterized) 
(see Theorems 7 and 8). In particular, no proper open subgroup of a compact abelian 
group is K-characterized.

In Section 8, extending a criterion for compact abelian groups given in [16], 
we show that for locally compact abelian groups one can reduce the study of 
characterized subgroups to the metrizable case (see Theorem 11). Moreover, we 
describe the closed characterized subgroups of the locally compact abelian groups 
by showing that they are precisely the N-characterized subgroups (see Theorem 12). 
As a consequence, we add other equivalent conditions to the known fact from [16] 
that a closed subgroup of a compact abelian group is characterized if and only if it 
is Gd, namely that the subgroup is K- and N-characterized (see Theorem 13).

Section 9 concerns T-characterized subgroups of compact abelian groups. We 
establish a criterion to determine when a characterized subgroup of a compact abelian 
group is not T-characterized (see Theorem 15), which extends results from [11]. The 
impact on characterized subgroups of connected compact abelian groups is discussed.

The final Section 10 contains various comments and open problems, both general 
and specific.

1.1. Notation and Terminology

The symbol c is used to denote the cardinality of continuum. The symbols Z, P, 
N and N+ are used for the set of integers, the set of primes, the set of non-negative 
integers and the set of positive integers, respectively. The circle group T is identified 
with the quotient group R/Z of the reals R and carries its usual compact topology. 
Let p : R ! T be the canonical projection; the usual group norm || — || on T is defined 
by kp(x)| = d(x,Z) for every x 2 R. We denote by T+ the image of [—1/4,1/4] in 
T. If m is a positive integer, G[m] = fx 2 G : mx = 0g, and Z(m) is the cyclic group 
of order m. Moreover, for p 2 P, we denote by Z(p¥) and Jp, respectively, the Prufer 
group and the p-adic integers.

We say that an abelian group G is torsion if every element of G is torsion (i.e., for 
every x 2 G, there exists m 2 N+, such that mx = 0). If M is a subset of G, then hMi 
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is the smallest subgroup of G containing M. We denote by Hom(G, T) the group of 
the homomorphisms G ! T.

For a topological space X = (X, t), the weight w(X) of X is the minimum 
cardinality of a base for t. For a subset A of X, we denote by A the closure of A in 
(X, t) (we write only A when there is no possibility of confusion).

A topological abelian group X is totally bounded if for every open subset U of 0 in 
X, there exists a finite subset F of X, such that U + F = X . If X is totally bounded and 
Hausdorff, we say that X is precompact. We denote by X the two-sided completion of 
X; in case X is precompact, X coincides with the Weil completion.

For a subset A of X, the annihilator of A in Xb is A? = fc 2 Xb : c( A) = f0gg, and 
for a subset B of Xb, the annihilator of B in X is B? = fx 2 X : c(x) = 0 for every c 2 Bg.

We say that a sequence v 2 Xb N is trivially null if there exists n0 2 N, such that 
vn = 0 for every n n0, and we say that v is non-trivial if it is not trivially null.

2. Background on Topological Groups

2.1. Basic Definitions

Let G be an abelian group and H a subgroup of Hom(G, T). Let TH be the 
weakest group topology on G, such that all elements of H are continuous with 
respect to TH; then TH is totally bounded. The other way around, Comfort and Ross 
proved that any totally bounded group topology is of this type (see [21, Theorem 1.2]).

Theorem 1. [21, Theorems 1.2, 1.3 and 1.11, Corollary 1.4] Let G be an abelian group and 
H a subgroup of Hom(G,T). Then, TH is totally bounded and:

(a) TH is Hausdorff if and only if H separates the points of G;
(b) TH is metrizable if and only if H is countable.

The following two notions will be often used in the paper.

Definition 1. A topological abelian group X is said to be:

(i) maximally almost periodic (MAP) if X separates the points of X;
(ii) minimally almost periodic (MinAP) if Xb = f0g.

We recall that two group topologies t1 and t2 on an abelian group X are 
compatible if they have the same characters, that is (\X, t1) = (\X, t2).

If X = (X, t ) is a topological abelian group, denote by t+ its Bohr topology, that 
is the finest totally bounded group topology on X coarser than t (indeed, t+ = TXb ); 
we denote X endowed with its Bohr topology also by X+, and we call t+ also the 
Bohr modification of t. Clearly, t and t+ are compatible. Moreover,
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(i) t is MAP if and only if t+ is Hausdorff;
(ii) t is MinAP if and only if t+ is indiscrete.

A subgroup H of (X, t) is:

(a) dually closed if H is t+ -closed (or, equivalently, X/H is MAP);
(b) dually embedded if every c 2 Hb can be extended to X.

Clearly, dually closed implies closed, since H < Ht < Ht .

Fact 1. Let X be a locally compact abelian group. Then:

(i) every closed subgroup H of X is dually closed, i.e., X/ H is MAP;
(ii) in particular, every locally compact abelian group is MAP;

(iii) X and X+ have the same closed subgroups;
(iv) consequently, X is separable if and only if X+ is separable.

For a topological abelian group X and a subgroup L of X, the weak topology 
s(Xb , L) of the dual Xb is the totally bounded group topology of Xb generated by the 
elements of L considered as characters of X; namely, for every x 2 L, consider 
xx : Xb ! T defined by xx (c) = c(x) for every c 2 Xb. A local base of s(Xb, L) is 
given by the finite intersections of the sets X71 (U), where x 2 L and U is an open 
neighborhood of 0 in T. Clearly, if L1 < L2, then s(Xb, L1) < s(Xb, L2).

Note that the weak topology s(Xb, X) is coarser than the compact-open topology 
on X. If L separates the points of X (e.g., when L is dense in X or when L = X), then 
s(Xb , L) is precompact.

Fact 2. If X is a reflexive topological abelian group, then s(Xb, X) coincides with the Bohr 
rtopology of X.

We recall that a sequence v in an abelian group G is a T-sequence (respectively, 
TB-sequence) if there exists a Hausdorff (respectively, precompact) group topology t 
on G, such that v is a null sequence in (G, t).

Lemma 1. Let X be a topological abelian group and v 2 XbN. Then:

(i) for a subgroup L of X, vn (x) ! 0 in T for every x 2 L if and only if vn ! 0 in 
s(Xb, L);

(ii) if sv(X) is dense in X, then v is a TB-sequence.

Proof. (i) follows from the definition of s(Xb, L).
(ii) As sv(X) is dense in X, then s(Xb, sv(X)) is precompact. By item (i), vn ! 0 

in s(X,sv(X)); hence, v is a TB-sequence. □
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Let G be a discrete abelian group. For a sequence v 2 GN, the group topology: 

sv:= Tsv(Gb) (1)

is the finest totally bounded group topology on G, such that v is a null sequence in 
(G, sv).

Fact 3. [1, Lemma 3.1, Proposition 3.2] Let G be a discrete abelian group and v 2 GN. The 
following conditions are equivalent:

(i) v is a TB-sequence;
(ii) sv is Hausdorff;
(ii) sv(Gb) is dense in Gb.

2.2. Useful Folklore Results

We recall the following basic properties that will be used in the paper. Although 
most of them are well known, we offer proofs for the reader’s convenience.

Lemma 2. Let X be a topological abelian group and H a subgroup of X. Then:

(i) X[/ H is algebraically isomorphic to H?;
(ii) Xb /H? is algebraically isomorphic to a subgroup of Hb .

Proof. (i) Let y : X[/ H ! X be defined by c 7! c p, where p : X ! X/H is the 
canonical projection. Then, y is injective, and its image is H?.

(ii) Let r : Xb ! Hb be defined by c 7! c H. Then, kerr = H?, and so, we get 
the thesis. □

The following fact follows from the equivalence of items (a) and (e) 
of [4, Exercise 3.8.25]. Since no proofs are given there, we offer a proof for the 
reader ’s convenience.

Lemma 3. A compact abelian group K is separable if and only if w(K) c.

Proof. The inequality w(K) c holds for every separable regular topological
space K.

Assume that w(K) c. The discrete abelian group X = Kb has size jXj = 

w(K) c. Consider the embedding i : X ! D(X), where D(X) is the divisible hull 
of X. Then, jD(X)j c and D(X) = Li2I Di, for some countable divisible abelian 
groups D[ and a set of indices I with j Ij < c. Therefore, i : niti Di ! X = K is a 
surjective continuous homomorphism, and each Di is a metrizable compact abelian 
group. By the Hewitt-Marczewski-Pondiczery Theorem, since jIj < c, we have that 
ni21 Di is separable; hence, K is separable, as well. □
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Lemma 4. Let X be a precompact abelian group. Then, the singleton f0g is Gd if and only if 
there exists a continuous injection X ! TN .

Proof. If there exists a continuous injection X ! TN, then f0g is Gd in X, as it is Gd 
in TN.

Assume now that f0g = Tn2N Un, where each Un is an open subset of X, 
and we can assume that Un is in the prebase of the neighborhoods of 0 in X. 
Therefore, for every n 2 N, there exist vn 2 X and an open neighborhood Vn of 
0 in T containing no non-trivial subgroup of T, such that Un = v,,}(Vn). Then, 
f0g=Tn2N ker vn. Hence, j : X ! TN defined by j(x) = (vn(x)) n2N is a continuous 
injective homomorphism. □

Theorem 2. Let X be a locally compact abelian group. Then, X is metrizable with jXj c if 
and only if there exists a continuous injective homomorphism X ! TN .

Proof. If there exists a continuous injective homomorphism X ! TN, then clearly X 
is metrizable and jXj jTNj = c.

Suppose now that X is metrizable and has cardinality at most c. It is well 
known (for example, see [22]) that X = Rn X0, where n 2 N and X0 is a locally 
compact abelian group admitting an open compact (metrizable) subgroup K. Clearly, 
there exist two continuous injective homomorphisms j1 : Rn ,! TN and j2 : K ,! 
TN. Therefore, j3 = (j1, j2) : Rn K ! TN TN = TN is an injective continuous
homomorphism, too. Since TN is divisible and Rn K is open in X, j3 extends 
continuously to je3 : X ! TN. Let p : X ! X/(Rn K) be the canonical projection. 
Since X/(Rn K) is discrete, there exists a continuous injective homomorphism 
j4 : X/(Rn K) !TN. Letj= j4p: X!TN.

X
j 

p

X/(Rn x K)----- TN
j4

Let now j : X ! TN x TN = TN be defined by j(x) = (j(x), je3(x)) for every 
x 2 X. Then, j is continuous, since j and je3 are continuous. Moreover, j is injective, 
as j(x) = 0 for some x 2 X implies j(x) = 0 and j3(x) = 0; therefore, x 2 Rn x K, 
and so, since j3 |Rn xK = j3 is injective, one has x = 0. □

3. General Permanence Properties of Characterized Subgroups

Let X be a topological abelian group, and denote by Char(X) the family of all 
subgroups of X that are characterized.
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We start by observing that:

if v 2 XbN is trivially null, then X = sv (X) (2)

The following are basic facts on characterized subgroups (see [1,13,16,23]); we 
give a proof for the reader ’s convenience.

Lemma 5. Let X be a topological abelian group and v 2 XbN. Then:

(i) for every subgroup J of X, sv(J) = sv(X) \ J, where vn = vn J for every n 2 N;
(ii) sv (X) = su (X) ifu is any permutation ofv;

(iii) Char(X) is stable under taking finite intersections;
(iv) sv (X) is an Fsd-set (i.e., countable intersection of countable unions of closed subsets).

Proof. Items (i) and (ii) are obvious. To prove (iii), if u, v 2 XbN, define w = (wn), 
where w2n = un and w2n+1 = vn for every n 2 N; hence, su(X) \ sv(X) = 

sw(X). To prove (iv), note that sv(X) = Tm Sk Tnk Sn,m, where each Sn,m =
|x 2 X : kvn(x)|| < is a closed subset of X. □

Now, we prove that, under suitable hypotheses, the relation of being a 
characterized subgroup is transitive:

Proposition 1. Let X be a topological abelian group and X0, X1, X2 subgroups of X with 
X0 < X1 < X2 and such that X1 is dually embedded in X2. If X0 2 Char(X1 ) and
X1 2 Char(X2), then X0 2 Char(X2).

Proof. Let v 2 Xc1N, such that X0 = sv(X1), and let w 2 Xc2N, such that X1 = sw(X2). 

As X1 is dually embedded in X2, vn extends to a character vn of X2 for every n 2 N; 
so, let v = (vn ) 2 Xc2N. Define w 2 Xc2N by letting w2n = vn and w2n+1 = wn for 

every n 2 N. Then, by Lemma 5(i),

sw(X2) = sv(X2) \ sw(X2) = sv(X2) \ X1 = sv(X1) =X0,

so X0 2 Char(X2), as required. □

Clearly, two compatible group topologies have the same characterized subgroups:

Lemma 6. If t1 and t2 are compatible group topologies on an abelian group X, then 
Char(X, t1) = Char(X, t2).

In particular, for a topological abelian group (X, t), since t and its Bohr 
modification t+ are compatible, Char(X, t) = Char(X, t+).
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4. The G-Radical

Definition 2. Let X be a topological abelian group. For a subset G of X, define the 
G-radical of X by:

nG(X) := \ kerc= G?.
c2G

Clearly, nG(X) is a closed subgroup of X.

The motivation for the choice of the term G-radical is the special case G = X, when

n(X) := nXb (X)

is usually called the von Neumann radical of X. Then, n(X) = f0g (respectively, 
n(X) = X) precisely when Xb separates the points of X (respectively, Xb = f0g); in 
other words:

(i) X is MAP if and only if n(X) = f0g;
(ii) X is MinAP if and only if n(X) = X.

T» 1 -• T 17 1 . 1-111- 11-1 1.1- O’Remark 1. Let X be a topological abelian group and G a subset of X.

(i) If G = 0, then ng (X) = X.
(ii) If G is countable, then nG(X) is a characterized subgroup of X (indeed, 

nG(X) = sv (X) for v 2 Xb N, such that each character in G appears infinitely 
many times in v).

For a given sequence v 2 XbN, the support Gv = fvn : n 2 Ng of v is the set of all 
characters appearing in v. We abbreviate the notation of the Gv-radical by writing:

nv(X) := nGv (X),

and we call this subgroup the v-radical of X.

Lemma 7. Let X be a topological abelian group and v 2 Xb N . Then:

(i) nv(X) sv(X);
(ii) nv (X) is dually closed;

(iii) nv (X) is characterized;
(iv) nv(X) is closed, and f0g is Gd in X/nv(X) (so, nv (X) is Gd); v fg d v v d
(v) [X : nv (X)] c.

Proof. (i) and (ii) are clear from the definitions, and (iii) follows from Remark 1(ii).
(iv) Let j : X ! TN be defined by j(x) = (v0(x), . . . , vn(x), . . . ) for every

x 2 X. Since f0g is Gd in TN, we conclude that f0g is Gd in X/nv(X). Moreover, 
ker j = j 1 (0) = nv(X), so nv(X) is Gd in X.
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(v) Since X/nv(X) is algebraically isomorphic to j(X) TN and jTNj = c, we
conclude that [X : nv(X)] < c. □

Remark 2. Let X be a topological abelian group and v 2 XbN. Then, nv(X) is closed 
and Gd in every group topology on X that makes vn continuous for every n 2 N. In 
particular, nv (X ) is closed and Gd in every group topology on X compatible with the 
topology of X, so in the Bohr topology of X.

Lemma 7 gives a bound for the index of the characterized subgroups:

Corollary 1. Every characterized subgroup of a topological abelian group X has index 
at most c.

Proof. Let v 2 XbN. Since nv(X) < sv(X) by Lemma 7(i); hence, [X : sv(X)] < [X : 
nv(X)] < c by Lemma 7(v). □

The set Gv can be partitioned as

Gv = G¥ [ Gv,

where:

(i) Gv¥ := fvn 2 Gv : vn = vm for infinitely many m 2 Ng;
(ii) G0v := Gv n Gv¥.

In other words, Gv¥ is the set of all characters appearing infinitely many times 
in v, while each character in its complement G0v appears finitely many times in v. 
Clearly, v is a finitely many-to-one sequence if and only if G¥ = 0.

In case G¥ = 0, let v¥ be the largest subsequence of v with Gv~ = G¥. Then, 
clearly, sv¥(X) = nv¥ (X).

In case G0v is finite, the subsequence v¥ of v is cofinite, so sv(X) = sv¥ (X). In 
other words, one can safely replace v by v¥ . This is why from now on, we shall 
always assume that:

either G0v = 0 or G0v is infinite. (3)

If G0v is infinite, we denote by v0 the subsequence of v such that Gv0 = G0v . If 
Gv¥ 6= 0, we have the partition

v = v¥ [ v0

of v in the two subsequences v¥ and v0. Moreover, always Gv¥0 = 0, and so, if Gv0 

is infinite (equivalently, G0v 6= 0 by (3)), v0 is a finitely many-to-one sequence and 
sv0 (X) = sw(X), where w is a one-to-one subsequence ofv0 such that Gw = Gv0 = G0v.
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We see now how we can obtain the subgroup of X characterized by v by 
considering separately the v¥-radical of X and the subgroup of X characterized 
by v0.

Lemma 8. Let X be a topological abelian group and v 2 Xb N satisfying (3).

(i) If GV = 0, then v¥ = v, so G¥ = 0 and s v( X) = n v¥ (X).
(ii) If GV is infinite and G¥ = 0, then s v( X) = s vo (X) \ n V¥ (X).

Proof. (i) Since G0v = 0, we have sv (X) = sv¥ (X), and as observed above, 
sv¥ (X) = nv¥ (X).

(ii) Since v¥ and v0 are subsequences of v, it follows that sv(X) sv0 (X) \ 
nv¥ (X). Let now x 2 sv0 (X) \ nv¥ (X). Since both v¥ (x) ! 0 and v0 (x) ! 0 and 
since v = v¥[v0, we conclude that v(x) ! 0, that is x 2 sv(X). This concludes 
the proof. □

For v = (vn) 2 XbN and m 2 N, let

v(m) := (vn)nm. (4)

Note that nv(m) (X) nv(m+1) (X) for every m 2 N.

5. A Hierarchy for Characterized Subgroups

The following definition introduces three specific types of characterized subgroups.

Definition 3. Let X be a topological abelian group. A subgroup H of X is:

(i) T-characterized if H = sv (X) where v 2 XbN is a non-trivial T-sequence;
(ii) K-characterized if H = sv (X) for some finitely many-to-one sequence v 2 XbN 

(i.e., Gv¥ = 0);
(iii) N-characterized if H = nv(X) for some v 2 XbN.

In analogy to Definition 3(i), we introduce the following smaller class of 
characterized subgroups (see also Problem 1).

Definition 4. A subgroup H of a topological abelian group X is TB-characterized if 
H = sv (X), where v 2 XbN is a non-trivial T B-sequence.

The N-characterized subgroups are clearly closed, and they are always 
characterized as noted above. Every TB-characterized subgroup is obviously 
T-characterized. Moreover, every T-characterized subgroup is also K-characterized. 
Indeed, let H = sv (X), where v 2 XbN is a non-trivial T-sequence, and without loss 
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of generality, assume that vn = 0 for all n 2 N; then, G¥ = 0, that is v contains no 
constant subsequences, and so, H is K-characterized.

Furthermore, proper dense characterized subgroups are TB-characterized by 
Lemma 1(ii), so also T-characterized and, in particular, K-characterized, but they 
are not N-characterized (as N-characterized subgroups are necessarily closed). We 
shall see below that closed (even open) subgroups need not be K-characterized 
in general. Denote by CharK(X) (respectively, CharN (X), CharT(X), CharTB (X)) 
the family of all K-characterized (respectively, N-characterized, T-characterized, 
TB-characterized) subgroups of the topological abelian group X. Then, we have the 
following strict inclusions:

CharTB (X) ( CharT (X) ( CharK(X) ( Char(X) ) CharN(X).

We start giving some basic properties that can be proven immediately.

Corollary 2. Let X be a topological abelian group and X0, X1, X2 subgroups of X with 
X0 X1 X2 and such that X1 is dually embedded in X2 .

(i) IfX0 2 CharK(X1) and X1 2 CharK(X2), then X0 2 CharK(X2).
(ii) IfX0 2 CharN(X1) and X1 2 CharN(X2), then X0 2 CharN(X2).

Proof. (i) It suffices to note that if in the proof of Proposition 1, v is one-to-one and 
w is one-to-one, then w is finitely many-to-one.

(ii) It suffices to note that if in the proof of Proposition 1, Gv = Gv¥ and Gw = Gw¥, 
then also Gw* = Gw*. □

By Lemma 8, we have directly the following:

Corollary 3. Every characterized subgroup of a topological abelian group X is either 
N-characterized or it is the intersection of an N-characterized subgroup of X and a 
K-characterized subgroup of X.

The following stability property is clear for N-characterized subgroups, while it 
is not known for characterized subgroups.

Lemma 9. Countable intersections of N-characterized subgroups are N-characterized.

The next correspondence theorem was proven in [16] for characterized 
subgroups of compact abelian groups.

Proposition 2. Let X be a topological abelian group and F a closed subgroup of X, and 
let p : X ! X/F be the canonical projection. If H is a characterized (respectively,
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K-characterized, N-characterized, T-characterized) subgroup of X / F, then p 1 (H) is a 
characterized (respectively, K-characterized, N-characterized, T-characterized) subgroup 
of X.

Proof. Let u = (un) 2 X[/F , and consider pb : X[/F ! Xb. For every n 2 N, let 
vn = pb(un) = un p 2 F? Xb and v = (vn).

(i) Assume that H = su (X /F). Then, p 1 (H) = sv (X), as x 2 sv (X) if and only 
if vn (x) = un(p(x)) ! 0, and this occurs precisely when p(x) 2 H.

(ii) Assume now that H is K-characterized, that is assume that H = su (X/F) 

and that G¥ = 0. By (i), p 1 (H) = sv(X), and moreover, G¥ = 0.
(iii) If H is N-characterized, then assume that H = nu(X/F). By (i), p 1 (H) = 

sv(X), and moreover, p 1 (H) = nv(X), since vn(x) = un(p(x)) = 0 for every n 2 N
precisely when p(x) 2 H = nu(X/F).

(iv) If H is T-characterized, that is if H = su (X/F) and u is a T-sequence, it 
remains to verify that v is a T-sequence, as well, since p 1 (H) = sv(X) by (i). Let t 
be a Hausdorff group topology on X[/ F, such that un ! 0 in (X[/F, t). By Lemma 2(i), 
one can identify X[/ F with the subgroup F? of Xb by the algebraic monomorphism 

y : X[/ F ! X defined by c 7! c p. Let t be the group topology on X having as 
a local base at 0 the open neighborhoods of 0 in (X[/F, t). Then, t is a Hausdorff 
group topology on Xb and vn ! 0 in (Xb, t), as vn = y(un) 2 F? for every n 2 N 
by definition. □

Lemma 10. Let X be a topological abelian group and H a subgroup of X, such that 
n(X) H. Then, H is characterized (respectively, K-characterized, N-characterized,
T-characterized) if and only if H/n(X) is characterized (respectively, K-characterized, 
N-characterized, T-characterized).

Proof. Let H = sv (X) for some v 2 XbN, and denote by p : X ! X/n(X) the 
canonical projection. For every n 2 N, since n(X) ker vn, the character vn factorizes 
as vn = un p, where un 2 X\/n(X). Then, H/n(X) = su(X/n(X)). Vice versa, if

N
H/n(X) = su(X/n(X)) for some u 2 X\/n(X) , let vn = un p for every n 2 N. 
Hence, H = sv(X). Moreover, v is a finitely many-to-one sequence if and only if u 
is a finitely many-to-one sequence, so H is K-characterized if and only if H/n(X) 
is K-characterized. Similarly, G0u is finite, precisely when G0v is finite; hence, H is 
N-characterized if and only if H/n(X) is N-characterized.

It remains to check that v is a T-sequence precisely when u is a T-sequence. This 
follows from the fact that the natural homomorphism X\/n(X) ! Xb sending (the 

members of) u to (the members of) v is an isomorphism, so certainly preserving the 
property of being a T-sequence. □
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The following lemma gives equivalent conditions for a subgroup to be 
characterized.

Lemma 11. Let X be a topological abelian group and H a subgroup of X. The following 
conditions are equivalent:

(i) H 2 Char(X);
(ii) there exists a closed subgroup F of X, such that F H and H/F 2 Char(X/F);

(iii) there exists v 2 XbN, such that for every closed F nv (X), one has that H/F =
su(X/F), where u = (un), and each un is the factorization of vn through the canonical 
projection p : X ! X /F.

Proof. (iii))(ii) Take F = nv(X).
(ii))(i) Since F < H, one has H = p 1(H/F), and one can conclude, by 

Proposition 2.
(i))(iii) Let H = sv (X) for some v 2 XbN and F < nv(X). Let p : X ! X/F be 

the canonical projection. For every n 2 N, let un be the character of X/ F defined 
by p(x) 7! vn(x). Then, un is well defined, since F < nv(X) < ker vn. Hence, 
un p = vn for every n 2 N, and H/F = su (X/F). Indeed, for every h 2 H, we have 
un (p(h)) = vn (h) ! 0, and hence, H/F < su (X/F). Conversely, if p(x) 2 su(X/F), 
then vn(x) = un(p(x)) ! 0. Hence, x 2 H, and so, p(x) 2 H/F. □

6. Auto-Characterized Groups

The following consequence of [16, Proposition 2.5] motivates the introduction 
of the notion of auto-characterized group (see Definition 5).

Proposition 3. Let X be a compact abelian group. Then, sv (X) = X for some v 2 XbN if 
and only if the sequence v is trivially null.

Proof. It is clear from (2) that sv(X) = X if v is trivially null. Assume now that 
X = sv (X) for some v 2 XbN. By [16, Proposition 2.5], being sv(X) compact, there 
exists m 2 N, such that X = sv(X) = nv(m) (X), and so, vn = 0 for all n > m. □

If one drops the compactness, then the conclusion of Proposition 3 may fail, as 
shown in the next example.

Example 1.

(i) Let N be an infinite countable subgroup of T. As mentioned in the 
Introduction, N is characterized in T; hence, N = sv (T) for a non-trivial 
sequence v 2 ZN . If u = v N, then u is non-trivial (since N is dense in T), and 
su(N) = N.
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(ii) Let X = R, let p : R ! T be the canonical projection and let v = (vn) 2 RbN, 
such that v0 = 0 and vn(x) = p(n) 2 T for every x 2 R and n 2 N+. 
Obviously, sv(R) = R, even though v is non-trivial.

(iii) Let X = Qp, where p is a prime. For every n 2 N, let vn = pn 2 Qcp . Obviously, 
sv (Qp ) = Qp, even though v is non-trivial.

Motivated by Proposition 3 and Example 1, we give the following:

Definition 5. A topological abelian group X is auto-characterized if X = sv (X) for 
some non-trivial v 2 XbN .

Items (ii) and (iii) of Example 1 show that R and Qp are auto-characterized.

Remark 3. (i) Let X be an auto-characterized group, so let v 2 XbN be non-trivial
and such that X = sv(X). Then, there exists a one-to-one subsequence u of v, 
such that un 6= 0 for every n 2 N and X = su(X).

Indeed, if c 2 Gv¥, then X = sv (X) ker c, and so, c = 0; therefore,
Gv¥ is either empty or f0g. Since v is non-trivial, G0v is infinite; hence, 
X = sv(X) = sv0 (X) by Lemma 8(ii). Let u be the one-to-one subsequence 
of v0, such that Gu = Gv0; therefore, X = su(X).

(ii) The above item shows that auto-characterized groups are K-characterized 
subgroups of themselves. However, one can prove actually that they 
are T-characterized subgroups of themselves (indeed, T B-characterized 
subgroups of themselves; see ).[24]

6.1. Basic Properties of Auto-Characterized Groups

We start by a direct consequence of Lemma 10:

Lemma 12. Let X be a topological abelian group and H a subgroup of X, such that 
n(X) H. Then, H is auto-characterized if and only if H/n(X) is auto-characterized.

The next proposition, describing an auto-characterized group in terms of the 
null sequences of its dual, follows from the definitions and Lemma 1:

Proposition 4. A topological abelian group X is auto-characterized if and only if 
(Xb, s(Xb, X)) has a non-trivial null sequence v (in such a case, X = sv(X)).

In the next lemma, we see when a subgroup of an auto-characterized group is 
auto-characterized, and vice versa.

Lemma 13. Let X be a topological abelian group and H a subgroup of X.
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(i) If X is auto-characterized and H is dense in X, then H is auto-characterized.
(ii) If H is auto-characterized and one of the following conditions holds, then X is 

auto-characterized:

(a) H is a topological direct summand of X;
(b) H is open and has a finite index.

Proof. (i) Let X = sv (X) forv 2 X with vn 6= 0for every n 2 N, and let un = vn H2 H. 
Then, each un is non-zero and H = su(H).

(ii) Let H = sv (H) for some v 2 Hb N with vn 6= 0 for every n 2 N.
(a) Let X = H Z. For every n 2 N, let un be the unique character of X that 

extends vn and such that un vanishes on Z. Then, un 6= 0 for every n 2 N, and 
X = su(X).

(b) Arguing by induction, we can assume without loss of generality that 
[X : H] = p is prime. Let X = H + hxi with x 62 H and px 2 H. If px = 0, 
then H is an open direct summand of X, so H is also a topological direct summand 
of X; hence, item (a) applies. Assume now that px 6= 0, and let an = vn ( px) for every 
n 2 N. If an = 0 for infinitely many n, extend vn to un 2 XbN for those n by letting 
un (x) = 0. Then, obviously, the sequence u obtained in this way is not trivially null 
and X = su (X), so X is auto-characterized. Assume now that an 6= 0 for infinitely 
many n 2 N; for those n, pick an element bn 2 T with pbn = an, and extend vn by 
letting un(h + kx) = vn(h) + kbn. Let wn = pun. Then, wn(x) = an 6= 0, so w is not 
trivially null. Moreover, X = su (X) as pX < H. □

Lemma 14. Let X be a topological abelian group and v 2 Xb N. If F is a subgroup of X, such 
that F < sv (X) and F is not auto-characterized, then F < nv(m) (X) for some m 2 N.

Proof. Let un = vn F for every n 2 N and u = (un) 2 bFN. Then, F = su (F), so the 
sequence u must be trivially null. Let m 2 N, such that un = 0 for every n m. 
Therefore, F < nv(m)(X). □

The following consequence of Lemma 14 is a generalization of Lemma 2.6 in [16], 
where the group X is compact.

Corollary 4. Let X be a topological abelian group, F and H subgroups of X, such that F is 
compact and F < H. Then, H/F 2 Char(X/F) if and only if H 2 Char(X).

Proof. Denote by p : X ! X/ F the canonical projection. If H/F is a characterized 
subgroup of X / F, then H = p 1( H /F) is a characterized subgroup of X by 
Proposition 2. Assume now that H = sv (X) for some v 2 XbN. Since F is compact, 
Proposition 3 implies that F is not auto-characterized. By Lemma 14, Fis contained in 
nv(m) (X) for a sufficiently large m 2 N. Let p0 : X/F ! X/nv(m) (X) be the canonical 
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projection and q = p0 o p, then q 1(H/nv m.) (X)) = H = sv(X) = sv(m.) (X). Therefore, 
one deduces from Lemma 11 that H/nv(m) (X) is a characterized subgroup of 
X / n v( m)(X )• Hence, by Proposition 2, H / F = ( p ')—1( H / n v( m) (X)) 2 Char( X / F). □

The argument of the above proof fails in case F is not compact. For example, 
take F = H = X = N, where N is as in Example 1; then, one cannot conclude that 
v F is trivially null and, hence, that F is contained in nv(m) (X).

6.2. Criteria Describing Auto-Characterized Groups

Here, we give two criteria for a group to be auto-characterized. We start below 
with a criterion for locally compact abelian groups, while a general one, in terms of 
the Bohr compactification, will be given at the end of the section.

We established in Proposition 3 that no compact abelian group is 
auto-characterized; now, we prove in Theorem 3 that this property describes the 
compact abelian groups within the larger class of all locally compact abelian groups. 
This follows easily from Lemma 13(ii) for the locally compact abelian groups that 
contain a copy of R, while the general case requires the following deeper argument.

Theorem 3. If X is a locally compact abelian group, then X is auto-characterized if and only 
if X is not compact.

Proof. If X is auto-characterized, then X is not compact according to Proposition 
3. Assume now that X is not auto-characterized. Then, by Fact 2 and Proposition 4, 
the dual X has no non-trivial null sequences in its Bohr topology. However, since 
Xb is locally compact, it has the same null sequences as its Bohr modification Xb + . 
Therefore, X is a locally compact group without non-trivial null sequences. We have 
to conclude that X is compact.

This follows from the conjunction of several facts. The first one is the deep result 
that non-discrete locally compact abelian groups have non-trivial null sequences. 
(This follows, in turn, from that fact that a non-discrete locally compact abelian group 
either contains a line R or an infinite compact subgroup. Since compact groups are 
dyadic compacts, i.e., continuous images of Cantor cubes, they have non-trivial null 
sequences.) Now, we can conclude that the locally compact group X is discrete. It is 
a well known fact that this implies the compactness of X. □

Remark 4. An alternative argument to prove that non-discrete locally compact 
abelian groups have non-trivial null sequences is based on a theorem by Hagler, 
Gerlits and Efimov (proven independently also by Efimov in [25]). It states that 
every infinite compact group K contains a copy of the Cantor cube f0, 1gw(K), which 
obviously has plenty of non-trivial null sequences.
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In order to obtain a general criterion describing auto-characterized groups we 
need another relevant notion in the theory of characterized subgroups:

Definition 6. [1] Let X be a topological abelian group and H a subgroup of X. Let:

gX(H) = \ nsv(X) :v2XbN, H sv(X)o.

A subgroup H of X is said to be:

(i) g-dense if gX (H) = X;
(ii) g-closed if gX (H) = H.

We write simply g(H) when there is no possibility of confusion. Clearly, g(H) is a 
subgroup of X containing H. Moreover, g(f0g) is the intersection of all characterized 
subgroups of X and g(f0g) n(X).

Remark 5. Let X = (X, t) be a topological abelian group and H a subgroup of X.

(i) If X1 is another topological abelian group and f : X ! X1 a continuous 
homomorphism, then f(gX(H)) gX1 (f(H)) (see  Proposition 2.6]).[1,

(ii) Moreover, gX(H) < Ht . Indeed, Ht = Tfkerc : c 2 X, H < kercg 
and kerc = nv(X) = sv (X) for v 2 XbN with Gv = Gv¥ = fcg (i.e., v is 
the constant sequence given by c). Item (i) says, in terms of , that 
g is a closure operator in the category of topological abelian groups. The 
inclusion gX(H) < Ht says that g is finer than the closure operator defined 
by H! Ht +.

[15,26]

(iii) If H is dually closed, then H is g-closed by item (ii).
(iv) If (X, t) is a locally compact abelian group, then every closed subgroup of 

(X, t) is dually closed, and so, (ii) implies that g(H) < Ht for every subgroup 
H of X. Therefore, g-dense subgroups are also dense in this case.

(v) The inclusion g(H) < H may fail if the group H is not MAP (e.g., if X is MinAP, 
then g(H) = X for every H, while X may have proper closed subgroups).

The next result shows that the auto-characterized precompact abelian groups 
are exactly the dense non-g-dense subgroups of the compact abelian groups.

Theorem 4. Let X be a precompact abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in its completion X.

Proof. (ii))(i) Assume that X is not g-dense in K := X. Then, there exists a sequence 
v 2 KbN, such that X < sv (K) < K. By Proposition 3 (see also Remark 3), we may
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assume without loss of generality that vn 6= 0 for every n 2 N. Let un = vn X 
for every n 2 N. Since X is dense in K, clearly un 6= 0 for every n 2 N. Moreover, 
X = su(X); hence, X is auto-characterized.

(i))(ii) Suppose that X is auto-characterized, say X = su (X) for u 2 XbN, such 
that un 6= 0 for every n 2 N. For every n 2 N, let vn 2 K be the extension of un to K. 
Then, X < sv(K) < K by Proposition 3, so X is not g-dense in K. □

If X is a MAP abelian group, then t+ is precompact, and the Bohr 
compactification of X is rX : X ! bX, where bX is the completion of (X, t+) and 
rX is an injective homomorphism. If X is not MAP, then n(X) 6= f0g. Consider 
the quotient X/n(X), which is a MAP group. Then, take the Bohr compactification 
rX/n(X) : X/n(X) ! b(X/n(X)). The Bohr compactification of X is rX : X ! bX, 
where bX := b(X/n(X)) and rX = rX/n(X) p, where p : X ! X/n(X) is the 
canonical projection.

Corollary 5. Let X be a MAP abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) X is not g-dense in bX.

Proof. Since X is MAP, X embeds in bX. By Lemma 6, X and X+ have the same 
characterized subgroups. Moreover, X+ is precompact, and by definition, bX is the 
completion of X+. Then, it suffices to apply Theorem 4. □

Theorem 5. Let X be a topological abelian group. The following conditions are equivalent:

(i) X is auto-characterized;
(ii) rX(X) is not g-dense in bX.

Proof. Since X is auto-characterized precisely when X/n(X) is auto-characterized 
by Lemma 12, apply Corollary 5 to conclude. □

7. K-Characterized Subgroups

We start by recalling [23, Lemma 3.19]: if X is a compact abelian group 
and v 2 XbN is a one-to-one sequence, then sv (X) has Haar measure zero in 
X. Since K-characterized subgroups are characterized by finitely many-to-one 
sequences (which obviously contain a one-to-one subsequence), this result applies to 
K-characterized subgroups and gives the following (formally weaker) result, which 
will be necessary and more convenient to apply in the current paper:

Lemma 15. If X is a compact abelian group and H 2 CharK(X), then H has Haar measure 
zero (hence, [X : H] is infinite). In particular, no open subgroup of X is K-characterized.
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Lemma 15 cannot be inverted; take, for example, the constant sequence u = (1) 
in TbN .

Remark 6. If X is a connected compact abelian group, then the conclusion of Lemma 
15 holds for all non-trivial sequences in X, since every measurable proper subgroup 
H of X has measure zero (indeed, X is divisible, so the proper subgroup H of X has 
infinite index; hence, the measure of H must be 0, as X has measure 1).

Example 2. Here, we provide examples of non-auto-characterized non-compact 
abelian groups.

(i) A relatively simple example can be obtained by taking a dense non-measurable 
subgroup X of a connected compact abelian group K. Since we intend to 
deduce that X is not auto-characterized by using Theorem 4, we have to check 
that X is g-dense in K. Indeed, every measurable proper subgroup of K has 
measure zero as noted in Remark 6; therefore, every proper characterized 
(hence, every non-g-dense) subgroup of K has measure zero. Therefore, X is 
not contained in any proper characterized subgroup of K, i.e., X is g-dense in K.

(ii) More sophisticated examples of g-dense subgroups of metrizable compact 
abelian groups were given in [27] (under the assumption of Martin Axiom) 
and in [19] (in ZFC). These groups have the additional property of being of 
measure zero (so that the above elementary argument cannot be used to verify 
the g-density).

7.1. When Closed Subgroups of Infinite Index are K-Characterized

The next theorem gives a sufficient condition (see item (iii)) for a closed subgroup 
of infinite index H to be K-characterized. This condition implies, as a by-product, 
that H is also N-characterized.

The easier case of open subgroups will be tackled in Theorem 7, by applying 
Theorem 6.

Theorem 6. Let X be a topological abelian group and H a closed subgroup of X of infinite 
index. The following conditions are equivalent:

(i) H 2 CharK (X) \ CharN(X);
(ii) H 2 CharN(X);

(iii) X/H is MAP, and (X[/H, s(X[/H, X/H)) is separable.

Proof. (i))(ii) is obvious.
(ii))(iii) Since H is N-characterized, then H is dually closed by Lemma 7(ii), 

that is X/ H is MAP. Let H = nv (X) for some v 2 Xb N, and let p : X ! X/ H be the 
canonical projection. Since ker p = H ker vn for every n 2 N, one can factorize 
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vn : X ! T through p, i.e., write vn = vn o p for appropriate vn 2 [/H. It remains 
to verify that D = fvn : n 2 Ng is dense in (X/H,s(X/H, X/H)). To this end, let 
y = p(y) 2 X/H; if Xy(D) = f0g, then vn (y) = vn (y) = 0, and so, y 2 H, that 
is, y = 0.

(iii))(i) Let Y = X/ H, equipped with the quotient topology. By hypotheses, Y 
is infinite and MAP, while Y is an infinite topological abelian group with a countably 
infinite dense subgroup D. According to Proposition 2 applied to the canonical 
projection p : X ! Y, it suffices to prove that f0g is a K-characterized subgroup 
of Y. Let D = fvn : n 2 Ng be a one-to-one enumeration of D and v = (vn). To 
prove that sv (Y) = f0g, we have to show that for every non-zero y 2 Y, there exists a 
neighborhood U of 0 in T, such that vn (y) 62 U for infinitely many n 2 N. Actually, 
we show that U = T+ works for all non-zero y 2 Y. In fact, for every y 2 Y n f0g, 
one has that Ny := fd(y) : d 2 Dg = fvn(y) : n 2 Ng is a non-trivial subgroup of T, 
as Y is MAP and y 6= 0.

Let y 2 Y n f0g. If Ny is infinite, then Ny is dense in T; so, Ny nU is infinite, and 
we are done. Now, consider the case when Ny is finite. As Ny 6= f0g and U contains 
no non-trivial subgroups of T, there exists a 2 Ny, such that a 62 U. Then, the map 
fy : D ! T defined by fy(d) = d(y) is a homomorphism with fy(D) = Ny finite. 
Therefore, K := ker fy is a finite-index subgroup of D, so K is infinite. Let a = vm (y) 
for some m 2 N. Then, vm + K = fd 2 D : d(y) = ag is infinite, as well. This means 
that vn (y) = a 62 U for infinitely many n (namely, those n for which vn 2 vm + K). 
Therefore, vn (y) 6! 0, and so, y 62 sv(Y).

Finally, let us note that the above argument shows also that H is N-characterized, 
as obviously H < nv(X). □

The following is an obvious consequence of Theorem 6.

Corollary 6. Let X be a topological abelian group and H a closed subgroup of X of infinite 
index. If H 2 CharN (X), then H 2 CharK(X).

Next, we rewrite Theorem 6 in the case of locally compact abelian groups.

Corollary 7. Let X be a locally compact abelian group and H a subgroup of X. Then, 
H 2 CharN (X) if and only if H is closed and X[/H is separable.

Proof. As both conditions imply that H is closed, we assume without loss of 
generality that H is closed. Since X / H and X[ / H are locally compact abelian groups, 
X/H is MAP, and the Bohr topology on X[/H coincides with s(X[/H, X/H) by Fact 2, 

+
so the separability of X[ /H is equivalent to the separability of X[/ H by Fact 1. If H 
has a infinite index in X, apply Theorem 6 to conclude. If H has a finite index in X, 
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then the equivalence is trivially satisfied; indeed, H is a finite intersection of kernels 
of characters, so it is N-characterized, and X/H is finite, so separable. □

As a consequence of Theorem 6, we find a sufficient condition for an open 
subgroup of infinite index to be K-characterized:

Theorem 7. Let X be a topological abelian group and H an open subgroup of X of infinite 
index. Then, the following conditions are equivalent:

(i) H 2 Char(X);
(ii) H 2 CharK(X);

(iii) [X : H] c;
(iv) X[/ H is separable.

Proof. (ii))(i) is clear, and (i))(iii) is Corollary 1.
(iii))(iv) Since X[/ H is a compact abelian group of weight at most c, it is 

separable by Lemma 3.
(iv))(ii) As [X : H] is infinite, we can apply Theorem 6 to conclude that H is 

K-characterized. □

The following is another direct consequence of Theorem 6.

Corollary 8. If X is a metrizable compact abelian group, then every closed non-open 
subgroup of X is K-characterized.

7.2. When Closed Subgroups of Finite Index are K-Characterized

We start by giving the following useful technical lemma.

Lemma 16. Let X be a topological abelian group and H an open subgroup of X, such that 
X = H + hxi for some x 2 X n H. If H is auto-characterized, then H 2 CharK(X).

Proof. Let u 2 HbN, such that H = su(H). By Remark 3, we can assume that u is 
one-to-one and that un 6= 0 for every n 2 N.

Assume first that H \ hxi = f0g. If o(x) is infinite, then fix an irrational number 
a 2 R, and for every n 2 N, let vn (x) = a+ Z and vn (h) = un (h) for every h 2 H. 
If o (x) = k is finite, then for every n 2 N, let vn (x) = 1k + Z and vn (h) = un (h) for 
every h 2 H. In both cases, it is straightforward to prove that H = sv(X). Moreover, 
since u is one-to-one, then also v is one-to-one.

Suppose now that H \ hxi = hmxi for some m 2 N, with m 1. As x 62 H, one
has m 2.
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For every n 2 N, let an = un (mx) 2 T. Since un (mx) ! 0, there exists n0, such 
that kan k < m2 for every n > n0. As sU() (H) = H, we shall assume for simplicity 
that k an k < m2 every n 2 N.

Claim 1. For every a 2 T with kak < m2, there exists b 2 T, such that

mb = a and ||kb || > m2 for every k 2 N, 1 < k < m. (5)

Proof. We tackle the problem in R, that is identifying T with [0, 1). First, assume that
0 < a < ^2, and let: m2

b = - + - 
mm

Then, mb = a + 1 =z a and m < b < m2. Let now k 2 N with 1 < k < m — 1, then:

< - < kb = ka + - <
m2 m m m

m - 1 m - 1 = 1 1
m2 m m2

(6)

Therefore, k kb k > m2. This establishes condition (5) in the current case.
It remains to consider the case m2^ < a < 1. Let a * = 1 — a, i.e., a m2

Then, obviously, k a *k < m2 and 0 < a * < m2. Hence, by the above case applied to a *, 
there exists b *2 T satisfying condition (5) with — a in place of a (i.e., mb * = — a). Let 
b = — b* 2 T. Then, condition (5) holds true for b and a, as kk(—b)k = kkb k for every 
k 2 N with 1 < k < m. □

a in T.

For every n 2 N, apply Claim 1 to an to get bn as in Equation (5), then define 
vn : X ! T by letting vn(x) = bn for every n 2 N and vn (h) = un (h) for every h 2 H. 
As un (mx) = vn (mx) = mvn (x) = mbn = an, this definition is correct. Moreover, 
since H is open in X, vn 2 Xb. Since u is one-to-one, then v = (vn) is one-to-one, too.

We show that

vn (kx) ! 0 for k 2 N if and only if k 2 mZ. (7)

In fact, if k = k0m for some k0 2 N,

vn (kx) = k0vn (mx) = k0an ! 0.

The other way around, assume that k = k0m + r, where k0 2 N and 1 < r < m — 1. 
Then,

vn (kx) = k0vn (mx) + rvn (x) = k0an + rbn 6! 0

since k'an ! 0 and k rbn k > m2 by Equation (5).
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We deduce finally that H = sv(X). Indeed, H = su (H) sv (X), so it remains to 
prove that sv (X) H. To this end, let y 2 X n H, that is y = h + kx for some h 2 H 
and k 2 N with 1 k < m. Then,

vn(y) = vn(h + kx) = un (h) + vn(kx).

Since h 2 H = su(H), that is, un(h) ! 0, while vn (kx) 6! 0 by condition (7), we 
conclude that vn (y) ! 0, that is, y 2 sv(X). Hence, H = sv(X). □

Every open finite-index subgroup is a finite intersection of kernels of characters, 
so it is N-characterized. In the next theorem we describe when a proper open 
finite-index subgroup is K-characterized.

Theorem 8. Let X be a topological abelian group and H a proper open subgroup of X of 
finite index. Then, H 2 CharK(X) if and only if H is auto-characterized.

Proof. Assume that H 2 CharK(X). We can write H = su(X) for u 2 XbN one-to-one. 
Let vn = un H for every n 2 N. Then, the map un 7! vn is finitely many-to-one, as 
X/H is finite. Therefore, v = (vn) is finitely many-to-one. Obviously, H = sv(H), so 
H is auto-characterized.

Now, assume that H is auto-characterized. Since H has finite index in X, there 
exist x1, . . .,xn 2 X, such that X = H + hx1, . . .,xni and that, letting Xi := H + 

hx 1,..., xii for i = 1,..., n and X0 := H, the subgroup Xi_1 is a proper subgroup of 
Xi for i = 1, . . . ,n. We shall prove by induction on i = 1, . . . , n, that

H 2 CharK(Xi). (8)

As X = Xn, this will give H 2 CharK(X), as desired.
Before starting the induction, we note that according to Lemma 13(ii), all 

subgroups Xi, for i = 1,..., n, are auto-characterized, as each Xi_1 is open in 
Xi. For i = 1, the assertion in condition (8) follows from Lemma 16. Assume that 
1 < i < n and condition (8) holds true for i — 1, i.e., H 2 CharK(Xi_1). Since Xi_1 is 
open in Xi, again Lemma 16 applied to Xi = Xi_1 + hxii gives that Xi_1 2 CharK(Xi). 
As H 2 CharK(Xi_1) by our inductive hypothesis, we conclude with Corollary 2(i) 
that H 2 CharK(Xi). □

7.3. Further Results on K-Characterized Subgroups

The next corollary resolves an open question from [28]:

Corollary 9. Let X be an infinite discrete abelian group and H a subgroup of X. The 
following conditions are equivalent:
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(i) H 2 Char(X);
(ii) H 2 CharK(X);

(iii) [X: H] c.

Proof. (ii))(i) is clear, and (i))(iii) is Corollary 1.
(iii))(ii) If [X : H] is infinite, then H 2 Char(X) by Theorem 7. Therefore, 

assume that [X : H] is finite, then H is infinite, and hence, H is auto-characterized by 
Theorem 3; therefore, H 2 CharK(X) by Theorem 8. □

We give now sufficient conditions for a non-closed characterized subgroup to 
be K-characterized.

Theorem 9. Let X be a topological abelian group and H 2 Char(X) a non-closed subgroup 
of X, such that:

(i) X/H is MAP, and (X/H,s(X/H,X/H)) is separable; 
(ii) if 1 < [X : H] < w, then H is auto-characterized.

Then, H 2 CharK(X).

Proof. As H = H is dense in H and obviously H 2 Char(H), we deduce that 
H 2 CharK(H), as dense characterized subgroups are TB-characterized by Lemma 
1(ii). If H = X, we are done. Therefore, assume that H is proper.

Our aim now is to apply Corollary 2, so we need to check that H 2 CharK(X). 
If H has finite index in X, then H is auto-characterized by hypothesis, and so, 
Theorem 8 yields H 2 CharK(X). If H has infinite index in X, then H 2 CharK(X) by 
Theorem 6. □

Corollary 10. Let X be a divisible topological abelian group and H 2 Char(X) a non-closed 

subgroup ofX, such that H is dually closed. If (X/H,s(X/H, X/H)) is separable, then 

H 2 CharK(X). In particular, H 2 CharK(X) whenever X/H is separable.

Proof. The first part of our hypothesis entails that X/H is MAP. Moreover, divisible 
topological abelian groups have no proper closed subgroup of finite index. Therefore, 
the first assertion follows directly from Theorem 9.

The topology s(X/H, X/H) of the dual X/H is coarser than the compact-open 

topology of X/ H, so that the separability of X/ H yields the separability of 

(X/H,s(X/H,X/H)). Hence, the second assertion can be deduced from the 
first one. □

In the case of connected locally compact abelian groups, one obtains the 
following stronger conclusion:
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Corollary 11. Let X be a connected locally compact abelian group. Then:

(Char(X), if X is not compact 

Char(X) n fXg, if X is compact.

Proof. The group X is divisible, as connected locally compact abelian groups 
are divisible.

Let H 2 Char(X). Our next aim will be to check that X/H is separable. Indeed, 
if H = sv(X) for v 2 XN, then one has the chain of subgroups nv(X) < H < H < X. 

If H = X, then X/H is trivially separable. Otherwise, H has infinite index in X, 
since X/H is divisible, so X/nv(X) is separable by Corollary 7; since H contains 

nv( X), the quotient group X / H is a quotient group of X / nv( X). Therefore, X/ H is 

isomorphic to a subgroup of the separable group X/nv(X), so X/H is separable, as 
well (see [29]). Furthermore, H is dually closed (so X/H is MAP) by Fact 1.

If H is not closed, Corollary 10 gives that H 2 CharK (X). If H is a proper closed 
subgroup of X, then H has infinite index, as X/H is divisible, so H 2 CharK(X) 
by Theorem 6. This proves the inclusion Char(X) nfXg CharK(X) n fXg, which, 
along with the obvious inclusion CharK(X) Char(X), proves the equality Char(X) n 
fXg = CharK(X) n fXg.

It remains to consider the (closed) subgroup H = X, which obviously belongs 
to Char(X). If X is compact, then X 62 CharK(X), by Lemma 15, so CharK(X) = 
Char(X) n fXg. If X is not compact, then H = X 2 CharK(X) by Theorem 3 and 
Remark 3(ii). Hence, CharK(X) = Char(X) in this case. □

In particular, the above corollary yields CharK(T) = Char(T) n fTg and 
CharK(R) = Char(R).

Remark 7. Aswe shall see in Corollary 18, connectedness is necessary in this corollary.

8. N-Characterized Subgroups

The following consequence of Lemma 14 gives a sufficient condition for a 
characterized subgroup to be N-characterized:

Corollary 12. Let X be a topological abelian group and H a subgroup of X, which is not 
auto-characterized. If H 2 Char(X), then H 2 CharN(X).

Proof. Let H = sv(X) for some v 2 Xb N. Then, H < nv(m) (X) for some m 2 N 
by Lemma 14. Since H = sv(X) = sv(m) (X) nv(m) (X), we deduce that H = 
n V( m)(X). □ m m

Here comes an easy criterion establishing when a subgroup is N-characterized.
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Theorem 10. Let X be a topological abelian group and H a subgroup of X. The following 
conditions are equivalent:

(i) H is closed, and there exists a continuous injection X/ H ! TN;
(ii) H 2 CharN(X);

(iii) H is closed, and f0g is Gd in (X/H)+.

Proof. (i))(ii) Suppose that there exists a continuous injection j : X/H ! TN. Let 
p : X ! X/H be the canonical projection. For every n 2 N, let pn : TN ! T be n-th 
projection, and let vn = pn j p.

p pn

X-------- >■ Tvn

Therefore, vn 2 XbN for every n 2 N and H = nv(X), where v = (vn).
(ii))(i) Let H = nv(X) for v 2 XbN. Let p : X ! X/nv(X) be the canonical 

projection, and define j : X/nv(X) ! TN by j(p(x)) = (vn (x))n2N for every x 2 
X. Since nv(X) = Tn2N ker vn, then j is well defined and injective. Moreover, j 
is continuous.

Finally, (i) and (iii) are obviously equivalent. □

The above criterion simplifies in the case of open subgroups:

Corollary 13. Let X be a topological abelian group and H an open subgroup of X. The 
following conditions are equivalent:

(i) H 2 Char(X);
(ii) H 2 CharN(X);

(iii) [X : H] c.

Proof. (ii))(i) is obvious, and (i))(iii) is Corollary 1.
(iii))(ii) Since H is open, X/ H is discrete. By hypothesis jX / Hj c, so there

exists a continuous injection X/H ! TN. Hence, H 2 Charn(X) by Theorem 10. □

The next is another consequence of Theorem 10.

Corollary 14. Let X be a metrizable precompact abelian group and H a subgroup of X. The 
following conditions are equivalent:

(i) H is closed;
(ii) H is closed and H 2 Char(X);
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(iii) H 2 CharN(X).

Proof. (iii))(ii) and (ii))(i) are clear.
(i))(iii) Since X is metrizable, X/ H is metrizable, as well, and so, f0g is Gd in 

X/ H. By Lemma 4, there exists a continuous injective homomorphism X/ H ! TN . 
Therefore, H is N-characterized by Theorem 10. □

According to Theorem 6, one can add to the equivalent conditions in Corollaries 
13 and 14 also “H 2 CharK(X)”, in case [X : H] w.

In the sequel, we consider the case of locally compact abelian groups. The 
following theorem was proven in Theorem B of [16] for compact abelian groups.

Theorem 11. Let H be a locally compact abelian group and H a subgroup of X. Then, 
H 2 Char(X) if and only if H contains a closed Gd-subgroup K of X, such that H/K 2 
Char(X/K), where X/K is a metrizable locally compact abelian group.

Proof. The equivalence follows from Lemma 11, since the subgroup nv (X) is closed 
and Gd for every v 2 XbN, by Lemma 7(iv). Since K is closed and Gd, X/K is a 
metrizable locally compact abelian group. □

By Lemma 7, nv (X) is always closed and characterized. Theorem 12 describes 
the closed characterized subgroups of the locally compact abelian groups X by 
showing that these are precisely the N-characterized subgroups of X.

Theorem 12. Let Xbea locally compact abelian group and H a subgroup ofX. The following 
conditions are equivalent:

(i) H is closed and H 2 Char(X);
(ii) H 2 CharN(X);

(iii) H is closed and Gd in the Bohr topology;
(iv) H is closed, Gd and [X : H] c.
(v) H is closed, and X[/ H is separable.

Proof. (iii))(ii) follows from Theorem 10, (ii))(i) by Lemma 7, and (ii),(v) is 
Corollary 7.

(iv))(iii) The group X/ H is locally compact, metrizable and has cardinality at 
most c; therefore, by Theorem 2, there exists a continuous injective homomorphism 
j : X/H ! TN. Then, Theorem 10 gives the thesis.

(i))(iv) Let H = sv (X) for v 2 XbN, and let p : X ! X/nv (X) be the canonical 
projection. By Corollary 1, [X : H] c. By Lemma 7, nv (X) sv (X), and nv (X) is 
closed and Gd. Then, X/nv (X) is a metrizable locally compact abelian group, and 
by hypothesis, sv (X) is closed. Therefore, sv (X)/nv (X) is closed and, hence, Gd in 
X/nv(X). Therefore, sv(X) = p 1 (sv(X)/nv(X)) is closed and Gd in X. □
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We see now the following result from [16] as a consequence of Theorem 12.

Corollary 15. [16, Theorem A] Let X be a compact abelian group and H a closed subgroup 
ofX. Then, H 2 Char(X) if and only ifH is Gd.

Proof. If H is characterized, then H is Gd by Theorem 12. Vice versa, assume that 
H is Gd. Then, X/ H is compact and metrizable, hence jX/ Hj c. Therefore, again 
Theorem 12 implies that H is characterized. □

In the following theorem, we use that the Gd-subgroups of a locally compact 
abelian group are always closed (see [28] (Theorem A.2.14)).

Theorem 13. Let X be a compact abelian group and H a subgroup of X. The following 
conditions are equivalent:

(i) H 2 CharK (X) and H is closed;
(ii) H is Gd and non-open;

(iii) H 2 CharN (X) and H is non-open;
(iv) H 2 Char(X) and H is closed and non-open.

Proof. (i))(iv) Since Lemma 15 implies that H is non-open, (iv),(iii) by Theorem 
12, and (iv),(ii) by Corollary 15.

(ii))(i) Since X/ H is a metrizable compact non-discrete (hence infinite) abelian 
group, f0g is closed and non-open in X/ H; hence, f0g is K-characterized in X/ H by 
Corollary 8. Therefore, H is K-characterized by Proposition 2. □

This theorem generalizes Corollary 15 as it implies that, for a closed non-open 
subgroup H of a compact abelian group X, one has:

His Gd , H 2 Char(X) , H 2 CharN(X) , H 2 CharK(X).

The following immediate consequence of Corollaries 13 and 9 shows that for a 
discrete abelian group all characterized subgroups are N-characterized.

Corollary 16. Let X be an infinite discrete abelian group and H a subgroup of X. The 
following conditions are equivalent:

(i) H 2 Char(X);
(ii) H 2 CharN(X);

(iii) H 2 CharK(X);
(iv) [X: H] c.
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9. T-Characterized Closed Subgroups of Compact Abelian Groups

In [30, Theorem 4], Gabriyelyan observed that if u is a T-sequence of an infinite 
countable abelian group G, then (see formula (1) for the definition of sv)

n(G, sv) = sv(Gcd)? algebraically,

where Gd denotes the abelian group G endowed with the discrete topology. Therefore, 
the following fact is an immediate corollary of this result.

Fact 4. Let v be a T-sequence of an infinite countable abelian group G. Then:

(i) (G, sv ) is MAP if and only if v is a TB-sequence;
(ii) (G, sv ) is MinAP if and only if sv (Gcd ) = f0g and G = hvi.

Recall that a topological abelian group X is almost maximally almost periodic 
(AMAP) if n(X) is finite.

Remark 8. In relation to Fact 4, Lukacs in [31] found a T-sequence in Z(p¥) that 
is not a TB-sequence, providing in this way an example of a non-trivial AMAP 
group. More precisely, he found a characterizing sequence v for pmJp Jp for a 
fixed m 2 N+, i.e., sv(Jp) = pmJp. In this way, being Jp /pmJp finite, then

sv(Jp)? = n(Z(p¥), sv) 6= f0g is finite.

Therefore, (Jp, sv) is AMAP. Further results in this direction were obtained by 
Nguyen in [32]. Finally, Gabriyelyan in [33] proved that an abelian group G admits 
an AMAP group topology if and only if G has non-trivial torsion elements.

The following theorem, due to Gabriyelyan, links the notions of T-characterized 
subgroup and MinAP topology.

Theorem 14.  Let X be a compact abelian group and H a closed subgroup of X. Then, 
H 2 CharT (X) if and only if H is Gd and H? carries a MinAP topology.

[11]

Following [4, §4], for a topological abelian group X and a prime number p, we 
denote by Tp (X) the closure of the subgroup Xp = fx 2 X : pnx ! 0g. In case X is 
compact, one can prove that

Tp (X) = fmX : m 2 N+, (m, p) = 1g. (9)
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In particular, Tp(X) contains the connected component c(X) of X. More precisely, if 
X/c(X) = np2p(X(c(X))p is the topologically primary decomposition of the totally 
disconnected compact abelian group X/c(X), then:

Tp(X)/c(X) = (X/c(X))p = Tp(X/c(X))

Following [34], we say that d 2 N is a proper divisor of n 2 N, provided that 
d 62 f0, ng and dm = n for some m 2 N. Note that, according to our definition, each 
d 2 N n f0g is a proper divisor of zero.

Definition 7. Let G be an abelian group.

(i) For n 2 N the group G is said to be of exponent n (denoted by exp(G)) if 
nG = f0g, but dG 6= f0g for every proper divisor d of n. We say that G is 
bounded if exp(G) > 0 and, otherwise, that G is unbounded.

(ii)  If G is bounded, the essential order eo(G) of G is the smallest n 2 N+, such 
that nG is finite. If G is unbounded, we define eo(G) = 0.
[35]

In the next theorem, we aim to give a detailed description of the closed 
characterized subgroups H of X that are not T-characterized. As stated in 
Corollary 15, a closed subgroup H of a compact abelian group X is characterized 
if and only if H is Gd (i.e., X/H is metrizable). This explains the blanket condition 
imposed on H to be a Gd-subgroup of X.

Theorem 15. For a compact abelian group X and a Gd-subgroup H of X, the following 
conditions are equivalent:

(i) H 62 CharT(X);
(ii) H? does not admit a MinAP group topology;

(iii) there exists m 2 N, such that m( X / H ) is finite and non-trivial;
(iv) eo(X/H) < exp(X/H);
(v) there exists a finite set P of primes, so that:

(a) Tq(X) Hforallq2PnP,
(b) for every p 2 P there exist kp 2 N with pkp Tp(X) H,
(c) there exists p0 2 P, such that p0p0 Tp0 (X) £ H and p0p0 Tp0 (X) \ H 

has finite index in p0kp0 Tp0 (X);

(vi) there exists a finite set P of primes, so that X / H = np2 P Kp, where each Kp is a 
compact p-group, and there exist some p0 2 P and k 2 N, such that p0kKp0 is finite 
and non-trivial.

Proof. (i),(ii) is Theorem 14, and (iii),(iv) is clear from the definition.
(ii),(iii) The main theorem in [36] states that an abelian group G does not admit 

a MinAP group topology precisely when there exists m 2 N+, such that mG is finite 
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and non-trivial. In our case, G = H? is topologically isomorphic to X[/ H, so G does 
\not admit a MinAP group topology if and only if mX[/ H = m\(X/H) is finite and 

non-trivial, and this occurs precisely when m(X/H) is finite and non-trivial.
(vi))(v) Write X/H = np2pKp, where each Kp is a compact p-group. Let 

pkp = exp(Kp) for every p 2 P, and let pk0Kp0 be finite and non-trivial for p0 2 P 
and k 2 N.

Obviously, all q 2 P n P are coprime to m = exp(X/H). As mX H, we deduce 
from the equality (9) that

Tq(X) H, forallq2PnP. (10)

This proves (a). From (10), we deduce that that c(X) H.
The quotient groups X0 = X/c(X) and H0 = H/c(X) are totally disconnected; 

hence, X0 = np2p XP and H0 = np2p Hp• Here,

X0p = Tp(X)/c(X) and H0p = Tp (H)/c(X) foreveryp2P. (11)

Furthermore, X0 = np2P X0p nq2PnP Xq0. From (10), we deduce that Xq0 Hq0
for all q 2 Pn P. Therefore, nq2PnP Xq0 H0 and H0 = np2P Hp0 nq2PnP Xq0. 
Hence, X/H = np2P X0p/H0p, and consequently, X0p / Hp0 = Kp for all p 2 P. Thus, 
pkp X0p H0p for all p 2 P. Equivalently, pkp Tp(X) H for p 2 P. This proves (b).

As pkkKp0 is finite and non-trivial, we deduce that k < kp0. Therefore, pkp0 1 Kp0 

is still finite and non-trivial. Hence, pkp0 1 Xp0 t Hp0, and so,

p kp0 1 Tpo (X) t H.

To prove the second assertion in (c), note that the finiteness of p0kKp0 yields that:

kpp0 1(Y 0 ITJ0 \ __  SpOv0 1V 0 I CJ0 \/f-f0 — kp00 1V 0 /0(j' n kp00 “1V0 tpi (Xp0 /Hp0) = (p0 Xp0 + Hp0)/Hp0 = p0 Xp0 /(Hp0 \ p0 Xp0) 

is finite. Hence, from (11), we deduce that Tp0 (H) \ pkp0 1 Tp0 (X) has finite index in 

p0p0 1 Tp0(X). Therefore,

H \ pkp0 ' Tpo (X) = \ Tpo (H) \ pkp0 ' Tpo (X)

has finite index in pkp0 1 Tp0(X).

(v))(iii) Let m0 be the product of all pkp when p runs over P, and let m = 

m0/p. Then, an argument similar to the above argument shows that m(X/H) 6= f0g 

is finite. □
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Corollary 17. Let X be a compact abelian group and H a closed subgroup of X that does 
not contain the connected component c(X) of X. Then, H 2 CharT(X) if and only if 
H 2 Char(X).

Proof. Clearly, H T-characterized implies H characterized. Therefore, assume that 
H is characterized. Then, H is Gd in X by Corollary 15. Let p : X ! X/H be the 
canonical projection. Then, p(c(G)) is a non-trivial connected subgroup of X/H; 
hence, X/H is unbounded, as its connected component c(X/H) is a non-trivial 
divisible subgroup. According to Theorem 15, H is T-characterized. □

By Corollary 17, for a connected compact abelian group X and H a closed 
subgroup of X,

H 2 CharT(X) , H 2 Char(X) n fXg. (12)

This result was obtained in [11]; actually, the following more precise form holds (the 
equivalence (i),(ii) is proven in [11, Theorem 1.14]):

Corollary 18. For a compact abelian group X, the following conditions are equivalent:

(i) X is connected;
(ii) H 2 CharT(X) , H 2 Char(X) nfXg for every closed subgroup H of G;

(iii) H 2 CharK (X) , H 2 Char(X) n fXg for every closed subgroup H of G.

Proof. (i))(ii) by (12), and (ii))(iii) is obvious.
(iii))(i) Assume that X is not connected. Then, X has a proper open subgroup 

H, as the connected component of X is an intersection of clopen subgroups (see [22]). 
Then, H 2 Char(X) \ f Xg, but H 2 CharK(X) by Lemma 15. □

Obviously, each one of the above equivalent conditions implies that 
H 2 CharT (X) , H 2 CharK(X) for every closed subgroup H of a compact 
abelian group X. To see that in general the latter property is strictly weaker than 
H 2 CharT(X), consider the group X = Z(3) Z(2)N. Then, for the closed subgroup 
H = f0g of X, one has H 2 CharK(X) by Theorem 13, while H 62 CharT(X) by 
Theorem 15, as 3X is finite and non-trivial (moreover, X does not admit any MinAP 
group topology, as noticed by Remus; see [37]).

10. Final Comments and Open Questions

In this section, we collect various open questions arising throughout the paper.

For a topological abelian group X and v 2 Xb N, we defined for each m 2 N the 
closed subgroup nv(m) (X) in (4). Since these subgroups are contained one in each 
other, the increasing union Fv(X) := Sm2N nv(m) (X) is an Fs-subgroup of X, and it is 
contained in sv(X). We do not know whether Fv(X) is characterized or not:
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Question 1. For a topological abelian group X and v 2 XbN, is Fv(X) a characterized 
subgroup of X?

This question is motivated by [16, Theorem 1.11], where it is proven that 
under some additional restraint, the union of a countably infinite increasing chain 
of closed characterized subgroups of a metrizable compact abelian group is still 
characterized. On the other hand, it is known that every characterized subgroup is 
Fsd (see Lemma 5(iv)) and that the characterized subgroup need not be Fs.

In analogy to T-characterized subgroups, we have introduced here the notion 
of the TB-characterized subgroup (see Definition 4). In relation to what is 
already known for T-characterized subgroups, one could consider the following 
general problem.

Problem 1. Study the TB-characterized subgroups of topological abelian groups.

Next comes a more precise question on the properties of T- and TB-characterized 
subgroups. In fact, we do not know whether the counterpart of Corollary 2 is true 
for T- and TB-characterized subgroups:

Question 2. Let X be a topological abelian group and X0, X1, X2 subgroups of X 
with X0 X1 X2, such that X1 is dually embedded in X2.

(i) If X0 2 CharT(X1) and X1 2 CharT(X2), is then X0 2 CharT(X2)?
(ii) If X0 2 CharTB (X1) and X1 2 CharTB (X2), is then X0 2 CharTB(X2)?

A full description of open K-characterized subgroups is given in Theorems 7 
and 8, while Theorem 6 describes the closed K-characterized subgroups of infinite 
index that are also N-characterized. Moreover, N-characterized closed subgroups of 
infinite index are K-characterized. This leaves open the following general problem 
and question.

Problem 2. For a topological abelian group X, describe CharK(X).

Question 3. Let X be a topological abelian group. Can one add “H 2 CharK(X)” 
as an equivalent condition in Theorem 6? Equivalently, does there exist a closed 
subgroup H of X, such that H 2 CharK(X) n CharN(X)?

In Theorem 8, we have seen in particular that a proper open finite-index 
subgroup H of a topological abelian group X is auto-characterized precisely when 
H 2 CharK(X). We do not know whether also the stronger condition H 2 CharT(X) 
is equivalent:
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Question 4. Let H be a topological abelian group and H an open subgroup of X of 
finite index. Does H 2 CharT (X) whenever H is auto-characterized? What about the 
case when H is a topological direct summand of X?

By looking at Theorem 10 and Corollary 14, the following natural question arises:

Question 5. Are the closed Gd-subgroups of a precompact abelian groups always 
N-characterized?

This amounts to asking whether there exists a continuous injection from X / F 
into TN for every closed Gd subgroup F of a precompact abelian group X; in other 
words, we are asking for a generalization of Lemma 4.
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Locally Quasi-Convex Compatible 
Topologies on a Topological Group
Lydia Aufienhofer, Dikran Dikranjan and Elena Martm-Peinador

Abstract: For a locally quasi-convex topological abelian group (G, ), we study the 
poset C (G, ) of all locally quasi-convex topologies on G that are compatible with 
(i.e., have the same dual as (G, )) ordered by inclusion. Obviously, this poset has 
always a bottom element, namely the weak topology (G, Gb). Whether it has also a 
top element is an open question. We study both quantitative aspects of this poset (its 
size) and its qualitative aspects, e.g., its chains and anti-chains. Since we are mostly 
interested in estimates “from below”, our strategy consists of finding appropriate 
subgroups H of G that are easier to handle and show that C (H) and C (G/H) are 
large and embed, as a poset, in C (G, ). Important special results are: (i) if K is a 
compact subgroup of a locally quasi-convex group G, then C (G) and C (G/K) are 
quasi-isomorphic (3.15); (ii) if D is a discrete abelian group of infinite rank, then 
C (D) is quasi-isomorphic to the poset FD of filters on D (4.5). Combining both 
results, we prove that for an LCA (locally compact abelian) group G with an open 
subgroup of infinite co-rank (this class includes, among others, all non--compact 
LCA groups), the poset C (G) is as big as the underlying topological structure of 
(G, ) (and set theory) allows. For a metrizable connected compact group X, the 
group of null sequences G = c0 (X) with the topology of uniform convergence is 
studied. We prove that C (G) is quasi-isomorphic to P(R) (6.9).

Reprinted from Axioms. Cite as: Aufienhofer, L.; Dikranjan, D.; Martin-Peinador, E. 
Locally Quasi-Convex Compatible Topologies on a Topological Group. Axioms 2016, 
4, 436-458.

1. Introduction

All groups in this paper are abelian, and for a group G, we denote by L( G) 
(resp., T (G)) the set of all (Hausdorff) group topologies on G.

Varopoulos posed the question of the description of the group topologies on 
an abelian group G having a given character group H and called them compatible 
topologies for the duality (G, H) [1]. As the author explains, the question is motivated 
by Mackey’s theorem, which holds in the framework of locally convex spaces. He 
treated the question within the class of locally precompact abelian groups. Later on, 
this problem was set in a bigger generality in [2]; namely, within the class of locally 
quasi-convex groups. This is a class of abelian topological groups, which properly 
contains the class of locally convex spaces, a fact that makes the attempt to generalize 
the Mackey-Arens Theorem more natural. We denote by C (G, ), or simply by C (G) 
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if no misunderstanding can arise, the set of all locally quasi-convex group topologies 
on G, which are compatible for GA, the character group of G.

The bottom element of C(G, t) is the weak topology <r(G, GA). In [2], it was 
asked if the poset C(G, ) has a top element. We denote the supremum (in L(G)) of 
C(G, t) by S(G, t). Then, S(G, t) is a locally quasi-convex topology; nevertheless, 
the question of whether S(G, t) 2 C(G, t) is still open. In case S(G, t) 2 C (G, t), it 
is called Mackey topology and denoted by m(G, GA). Furthermore, if t = (G, GA), 
the group (G, t) is called a Mackey group. This is a generalization of the notion of a 
Mackey locally convex space.

Theorem 1.1. ([2]) If a locally quasi-convex group G is (Cech complete (in particular, 
complete metrizable or locally compact abelian (LCA)), then G is a Mackey group.

In particular, one has the following immediate corollary concerning the special 
case when jC (G, t)j = 1 (i.e., t = (G, GA) = (G, GA)):

Corollary 1.2. If G is an LCA group, then jC (G)j = 1 if and only if G is compact.

Further attention to topological groups G with jC (G)j = 1 is paid in [3,4], where 
many examples are given, inspired by [5] (in particular, it is proven that this equality 
holds for pseudocompact abelian groups).

This paper offers a solution for the following questions from [3] in the case that 
G is a non--compact LCA group:

Questions 1.3. Let G be a locally quasi-convex topological group.

(a)  (Question 8.92) Compute the cardinality of the poset C (G).[3]
(b)  (Problem 8.93) Under which conditions on the group G is the poset C(G) 

a chain?
[3]

More precisely, in the light of Corollary 1.2, we show that if an LCA group is 
sufficiently far from being compact (e.g., non--compact), then the poset C(G) is as 
big (and as far from being a chain) as possible (see Section 1.2 for details).

1.1. Measuring Posets of Group Topologies

In order to face Question 1.3, one needs a tool to measure the poset C(G) of 
group topologies.

The complete lattice L(G) for a group G and some of its subsets (e.g., T (G), 
the subset B(G) of precompact topologies, its subset P sc(G) of pseudocompact 
topologies, etc.) have been studied by many authors [6-11]. In particular, many 
cardinal invariants of the specific subposets of T(G) have been computed by 
using the simple idea of replacing the complicated posets T (G), B(G), Psc(G), 
etc., by some naturally-defined simple posets of purely combinatorial nature (e.g., 
the powerset P(G) ordered by inclusion). Since C(G) \ B(G) = f(G, Gb)g 
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is a singleton for a locally quasi-convex group G, we cannot make use of the 
above-mentioned results where B(G) (and even Psc(G)) were shown to be as big as 
possible.

Let us recall that a subset A of a partially-ordered set X is called anti-chain 
if its members are pairwise incomparable. The maximal size of an anti-chain in a 
partially-ordered set X is called the width of X and denoted by width(X).

In order to measure the size and width of the poset C (G), we introduce the 
following notion:

Definition 1.4. Two posets (X, ) and (Y, ) are:

isomorphic (we write X = Y) if there exists a poset isomorphism X Y;
q.i.

• ([9-11]) quasi-isomorphic (we write X = Y) if there exist poset embeddings:

(X, ) ,! (Y,) and (Y, ) ,! (X,)

Clearly, quasi-isomorphic posets share the same monotone cardinal invariants, 
e.g., cardinality, width, maximum size of chains, etc. As a “sample” poset of 
combinatorial nature will be used, the poset is defined in the following example.

Example 1.5. Let X be an infinite set, and let FilX be the set of all free filters (i.e., 
filters F on X with T F = 0) ordered by inclusion. The bottom element j0 of Filx 
is known as the Frechet filter; its elements are the complements of finite sets. A filter 
on X is free iff it contains j0. For the sake of completeness, we shall add to FilX also 
the power set P(X) of X to obtain the complete lattice:

FX := FilX [ fP(X)g P(P(X))

having as top element P(X) and bottom element j0. We shall denote FX also by Fk 

where k = jXj, if we do not need to indicate the specific set X and only care about its 
size k. Then:

width(FX) = jFXj = 22jXj (1)

since there are 22jXj ultrafilters on X ([12]) that obviously form an anti-chain; the 
reverse inequalities width(FX) jFXj 22jXj are obvious, as FX is contained in the 
power set P (P (X)) of P(X) having size 22jXj.

Our choice of FX as a sample poset is justified by the following simple fact:

Proposition 1.6. For every infinite group G, there exists a poset embedding T (G) ! FjGj.

Proof. Every Hausdorff group topology on G is completely determined by the filter 
NG, of all -neighborhoods of zero. Since is Hausdorff, zero is the only common 
point of all members of NG,. Hence, by restricting this filter to the set X = G n f0g, 
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we obtain an element of FX . In other words, we defined an injective monotone map 
T(G) ! FX. Note that the discrete topology on X is mapped to P(X). □

Let us recall that a poset (X, ) is called a dcpo (directedly complete poset) if all 
directed suprema in X exist ([13] (Definition 2.1.13)). Clearly, a dcpo with a bottom 
element is a complete lattice precisely when it is a lattice. The relevant fact that the 
poset C (G, ) is a dcpo was established in [2] (Proposition 1.14):

Fact 1.7. [2] C (G, ) is a dcpo, i.e., stable under directed suprema taken in the 
complete lattice L(G).

According to the above fact, the poset C (G) has maximal elements (actually, 
every element of C (G) is contained in a maximal element of C (G)), so it has a top 
element precisely when it is a lattice. In such a case, C (G) is a complete lattice, and 
G has a Mackey topology.

1.2. Main Results

We give for a large class of LCA groups concrete descriptions of the set of 
compatible locally quasi-convex group topologies. More precisely, we first establish 
the following.

(a) If G is a locally quasi-convex abelian group and K is a compact subgroup of G, 
then C (G) = C (G/K) (Theorem . 3.15)

(b) If H is an open subgroup of G, then there exist poset embeddings C (H) ,!

C(G) Q- C(G/H) (Theorem 3.6 and Corollary 3.11).
(c) For every discrete group D of infinite rank, the set C(D) is quasi-isomorphic 

to the set of filters on D (Lemma . 4.5)

Item (a) above gives a precise and useful form of the intuitive understanding 
(based on Corollary 1.2) that compact subgroups are “negligible” when C(G) is 
computed for a locally quasi-convex group G. In particular, this holds for an LCA 
group G and a compact subgroup K. This allows us to reduce the computation of 
C(G) to the case of much simpler (e.g., discrete) groups G.

Items (b) and (c) yield the following:

Theorem A. If H is an open subgroup of a locally quasi-convex group (G, T) with 
r(G/H) w, then there is a poset embedding:

FjG/Hj ,! C(G) (2)

so that jC(G)j width(C (G)) 22jG/Hj.
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Corollary 1.8. If a locally quasi-convex group (G,T ) has an open subgroup of infinite 
co-rank, then:

jC(G)j width(C(G)) 2c

so C (G) is not a chain.

This answers Problem 8.93 of [3] (i.e., Question 1.3(b)) in the case of groups that 
have a discrete quotient of infinite rank.

Item (b) and Theorem A suggest considering open subgroups H of G with the 
highest possible co-rank. Motivated by this, we introduce the following notion.

Definition 1.9. A topological abelian group G is called r-disconnected if G has an 
open subgroup H of infinite co-rank.

For example, a non--compact LCA group is r-disconnected (see Section 2 for a 
proof, as well as for further details). According to (2), r-disconnected groups G have 
a sufficiently large poset C (G). The term r-disconnected is suggested by the fact that 
an r-disconnected group G has open subgroups H of infinite co-rank, so its degree 
of disconnectedness of G “is measured” by the rank of G/H. Now, we introduce a 
cardinal invariant to carry out the measuring of r-disconnectedness in a natural way:

Definition 1.10. For a topological group G define the discrete rank (d-rank) of G by:

$(G) = supfr(G/H) : H open subgroup of Gg (3)

Clearly, r-disconnected groups G have infinite $(G), but a group with $(G) = w 
need not be r-disconnected unless G is LCA. For the properties of this cardinal 
invariant and its connection to the compact covering number k(G), see Section 2.

In the case of LCA groups, it is possible to provide an embedding in the opposite 
direction of the embedding (2). In fact, we prove the following theorem (see Section 5 
for the proof of Theorems A and B).

Theorem B. For every r-disconnected LCA group G, there exist poset embeddings:

F$(G) ,! C (G),! Fc$(G) (4)

in particular,

22$(G) jC(G)j 22c$(G) and 22$(G) width(C(G)) 22c$(G)

q.i.
If G is totally disconnected, then C (G) = F$(G) .

It turns out that the inclusions (4) hold also under a slightly stronger condition 
of purely topological flavor
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Corollary C. Let G be a non -compact LCA group, then $( G) > w; so, the 
inclusions (4) hold.

The proof of this corollary will be given in Section 5.
Since both sides of the concluding inequality in Theorem B coincide when 

2$(G) 2c, we obtain the equality jC (G)j = 22$(G) . One can say something more 
precise under a stronger assumption:

q.i.
Corollary 1.11. Ifan LCA group G has $(G) c, then C (G) = F$(G).

Since $(G) c implies that the group G is r-disconnected, Theorem B applies.
Now, the assertion follows from the inclusions (4).

From Corollary C and Corollary 1.11, one can immediately deduce:

q.i.
Corollary 1.12. Under the assumption of CH, C (G) = F$(G) holds for every 
non--compact LCA group.

The last section is dedicated to a natural generalization of the metrizable 
LCA groups, namely the complete metrizable locally quasi-convex (so, necessarily 
Mackey) groups. In Theorem 6.1, we prove that for every non-trivial compact 
connected metrizable group X, the group c0 ( X) of null sequences in X carries a Polish 
Mackey topology , and C (G) is quasi-isomorphic to P (N), so it contains exactly c 
many connected separable metrizable locally quasi-convex non-Mackey topologies 
compatible with p0, the topology induced by the product topology c0 (X) ,! XN.

The paper is organized as follows. Properties of the d-rank and its connection to 
the compact covering number are exposed in Section 2. In Section 3, we give general 
properties of the compatible topologies and of the poset C (G) (mainly invariance 
properties w.r.t. passage to products, subgroups and quotient groups). They enable 

q.i.
us to prove in Section 4 that C (G) = FjGj for every discrete group G of infinite rank. 
Using this fact, we prove Theorems A and B and Corollary C in Section 5. Finally, 
in Section 6, we investigate C (G) for G = c0(X), where X is a non-trivial, compact 
connected metrizable group, and we show that C (G) is quasi-isomorphic to P (R). 
In Section 7, we collect final remarks and open questions.

The main results of the paper were exposed in talks of the second named author 
at the Prague TopoSym 2011 and at the Seventh Italian Spanish Conference on 
General Topology in Badajoz in September 2010, as well as at a Colloquim talk at 
Complutense University of Madrid in 2010.

Notation and preliminaries.

We denote by N = f0, 1,2, . . .g the natural numbers, by P the prime numbers, 
by Z the group of integers, by Q the group of rational numbers, by R the group of 
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real numbers and by Zm the cyclic group of order m. Let T denote the quotient group 
R/Z. We shall identify it with the interval (—1/2,1/2] with addition modulo one. It 
is isomorphic to the unit circle in the complex plane, with the ordinary product of 
complex numbers. Let T+ =: [—1/4,1/4] C T. For a topological abelian group G, 
the character group or dual group GA is the set of all continuous homomorphisms 
from G to T, with addition defined pointwise.

For an abelian topological group (G, ) and its dual GA, we shall denote the 
weak topology (G, GA) also by +. An abelian topological group (G, ) is said to 
be maximally almost periodic (MAP), if the continuous characters of G separate the 
points of G (i.e., if + is Hausdorff).

In the beginning of the 1950s, Vilenkin defined the notions of locally 
quasi-convex subsets and locally quasi-convex groups for abelian Hausdorff groups. 
These settings generalize the terms convexity and local convexity in topological vector 
spaces. A subset M of an abelian topological group G is said to be quasi-convex if 
every element in G n M can be separated from M by means of a continuous character. 
More precisely: for any z 2/ M, there exists x 2 GA, such that x(M) C T+ and 
x(z) 2/ T+ . An abelian topological group is called locally quasi-convex if it has a 
neighborhood basis of zero consisting of quasi-convex sets. The most prominent 
examples of locally quasi-convex groups are T, R and discrete groups and, more 
generally, locally compact abelian groups and locally convex vector spaces (see [14] 
for an account of the properties of quasi-convex groups).

For an abelian group G, we shall denote by LQC(G) the poset of all Hausdorff 
locally quasi-convex group topologies on G. Then, B(G) C LQC(G) C T (G).

We use frequently the fact that the supremum of locally quasi-convex topologies 
is again locally quasi-convex.

Consider the mapping:

LQC(G) -! Hom(G,T), t >-! (G,t)a

Its restriction to the set B(G) of all precompact topologies is injective. The 
image of this mapping is the set of all dense subgroups of the dual group of the 
discrete group G, and the fiber of (G, t)A is precisely C (G, t). Therefore, fC (G, t) : 
t 2 LQC(G)g forms a partition of LQC (G). Since (G, t)A = (G, t+)A and t+ is a 
precompact, we obtain:

LQC(G) = [ C (G, t) = [ C (G,t+) = ] C(G,t) (5)
2LQC(G) 2LQC(G) 2B(G)

One of the aims of this paper is to show that each member of the partition (5) 

containing a non--compact LCA group topology has the same size as the whole 
LQC(G) and actually the same size as T (G).
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For an abelian group G, we denote by r0(G) the free-rank of G, and for a prime p, 
we denote by rp(G) the p-rank of G (namely, dimZp fx 2 G : px = 0g). Finally, the 
rank of G is defined by:

r(G) = r0(G) + supfrp(G) : p 2Pg

For a subgroup H of G, the co-rank of H in G is defined to be the rank r(G/H) 
of the quotient group.

2. The Connections between the Compact Covering Number and the d-Rank of 
Topological Groups

For a topological group G, we denote by k(G) the compact covering number 
of G, i.e., the minimum number of compact sets whose union covers G. Clearly, either 
k(G) = 1 (precisely when G is compact) or k(G) !. If k(G) !, the group is 
called -compact. We shall see below (Theorem 2.7) that there is a close connection 
between the cardinal invariants k(G) and $(G).

Clearly, $(G) = 0 precisely when G has no proper open subgroups. This class 
of groups (in different, but equivalent terms) was introduced by Enflo [15] under 
the name locally generated groups (connected groups are obviously the leading 
example of locally generated groups). Therefore, the non-r-disconnected groups G (in 
particular, the groups with $( G) < !) can be considered as a natural generalization 
of the locally generated groups introduced by Enflo.

Furthermore, $(G) ! when G is either -compact or separable, since both 
conditions imply that all discrete quotients of G are countable (see Theorem 2.7 for 
the connection between -compactness and countability of the d-rank $).

As the next example shows, the supremum in Equation (3) need not be 
attained by any specific open subgroup of G. We shall see in Theorem 2.7 that 
for r-disconnected LCA groups, this supremum is always a maximum.

Example 2.1. Consider the group G = Ln Gn, where Gn = L@n Q is discrete and G 
carries the product topology. A base of neighborhoods of zero is formed by the open 
subgroups Wm = Ln>m Gn, so that G is r-disconnected as r(G/Wm) = @m for every 
m 2 N. Moreover, $( G) = jGj = @!. On the other hand, every open subgroup H of 
G contains some Wm, so r(G/H) r(G/Wm) = @m < $(G).

Generalizing the well-known fact that connected locally compact groups are 
-compact, we characterize below the LCA groups that are not r-disconnected, 

showing that they are -compact of a very special form (see Example 2.6). They 
will be the object of study in [16], whereas in this paper, we are interested in 
r-disconnected groups that may well be -compact (an example to this effect is 
any discrete countable group of infinite rank).

Let us start with the description of the groups of finite rank.
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Fact 2.2. Let G be an infinite abelian group. Then, the following statements 
are equivalent:

(a) r(G) < ¥;
(b) G is isomorphic to a subgroup of a group of the form Qm x nk=1 Z(p¥), where

m,k 2 N and p1, . . . , pk are not necessarily distinct primes;
(c) G = L x F x nk=1 Z(p¥), where k 2 N, F is a finite abelian group, L is a 

subgroup of Qm (m 2 N) and p1, . . . , pk are not necessarily distinct primes;
(d) G contains no infinite direct sum of non-trivial subgroups;
(e) G contains no subgroup H, which is a direct sum of jGj-many non-trivial 

subgroups.

Proof. (a) ! (b). Let D(G) be the divisible hull of G. Then, r(D(G)) = r(G), since 
r0(D(G)) = r0 (G) and rp(D(G)) = rp (G) by the fact that G is essential in D(G) (see 
[17] (Lemma 24.3)). Therefore, (a) implies that r(D(G)) < ¥. Now, (b) follows from 
the structure theorem for divisible abelian groups.

(b) ! (c) Assume wlogthat G is a subgroup of H = Qm x D, where 
D = nk=1 Z(p¥). Then, the torsion subgroup t(G) of G is a subgroup of D; 
hence, t(G) = F x T for subgroup T = ns=1 Z(P¥) of G and for appropriate 
1 < i 1 < ... < it < k and a finite subgroup F of nk=1 Z(Pi¥)- Since T is a divisible 
subgroup of G, it splits in G. Therefore, there exists a subgroup G1 (containing F) 
of G, such that G = G1 x T. Note that t(G1) = t(G/T) = t(G)/T = F, since T is 
a torsion group. By a theorem of Kulikov [17] (Theorem 27.5), the torsion part of 
an abelian group splits when it is finite, so we can write G1 = t(G1 ) x G2, where 
G2 is a torsion-free subgroup of G1 (isomorphic to G1/t(G1) = G/t(G)). Since 
r0(G2) < r0(G) < r0 (H) = m < ¥, one has D(G2) = Qm2 for some m2 < m, so G2 is 
isomorphic to a subgroup of Qm .

(c) ! (d) is obvious and (d) ! (e) is trivial.
To prove the implication of (e) ! (a), assume for a contradiction that r(G) is 

infinite. Then, G contains a direct sum of r(G)-many non-trivial subgroups (it will be 
isomorphic to (Lr0 (G) Z) (Lp Lrp (G) Zp)). To end the proof, it suffices to note that 
jGj = r(G) whenever the latter cardinal is infinite [17]. □

It is important to note that while the d-rank is obviously monotone with respect 
to taking quotients, the rank is not (i.e., a quotient of a group may have a bigger rank 
that the group itself, as we shall see in a while).

A group G of finite rank may have infinite $(G) (e.g., r(Q) = 1, while $(Q) = !, 
witnessed by r(Q/Z) = !). In order to understand better the properties of the d-rank 
of rational groups, we introduce some specific rational groups.

Let Qp be the subgroup ofQ formed by all rational numbers having only powers 
of a given fixed prime number p in the denominator. For a set p of prime numbers, 
denote by Qp the subgroup £p2p Qp of Q, i.e., Qp consists of those rational numbers 
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for which the primes from P n p are excluded from denominators. For completeness, 
let Q0 = Z.

Example 2.3. For p P, one has r(Qp) = 1 and $(Qp) = jpj. In particular, 
$(Qnp) < ¥ (for n 2 N) if and only if p is finite. Actually, a torsion-free group G has 
finite d-rank if and only if G is isomorphic to a subgroup of Qnp for some n 2 N and 
some finite p P ([18] (Lemma 10.8)).

One can describe the non-r-disconnected discrete groups as follows:

Fact 2.4. ([18] (Lemma 10.12)) A discrete abelian group G is non-r-disconnected 
(i.e., has $(G) < ¥) if and only if G = L x F x nk=1 Z(p¥), where L is a torsion-free 
non-r-disconnected group (i.e., isomorphic to a subgroup of Qnp for some finite p P 
and n 2 N), F is a finite abelian group, k 2 N and p1, . . . ,pk are not necessarily 
distinct primes.

In order to describe also the non-r-disconnected LCA groups, we need a 
fundamental fact from the structure theory of LCA groups.

Fact 2.5. According to the structure theory, an LCA group G is topologically 
isomorphic to Rn x H, where n 2 N and the group H has a compact open subgroup 
K ([19]). Therefore, the quotient group D = H/K is discrete.

Example 2.6. Let G be a non-r-disconnected LCA group.
(a) G has a compact subgroup K, such that G/K = Rn x L x nk=1 Z(P¥) for 

some n, k 2 N, a torsion-free discrete non-r-disconnected group L, and not necessarily 
distinct primes pi .

(b) The quotient Rn x L x nk=1 Z( p¥) does not depend on the choice of the 
compact group K up to isomorphism in the following sense. If K1 is another 
compact subgroup of G, such that G/K 1 = Rn1 x L 1 x nk=1 Z(q¥) with n 1,k 1 2 N, a 
torsion-free discrete non-r-disconnected group L1, and not necessarily distinct primes 
qj, then G/K = G/K1 (so n1 = n, L1 = L, k1 = k and pi = qj for all i = 1,2, . . . ,k and 
an appropriate permutation of the primes qj).

Proof. (a) Indeed, as we saw above, there exists a closed subgroup H of G with 
a compact open subgroup K, such that G = Rn x H, so N = Rn x K is an open 
subgroup of G. By our hypothesis, H/K = G/N has finite d-rank. By Fact 2.4, 
H/K = L x F x nk=1 Z(p¥), where L is a a torsion-free discrete non-r-disconnected 
group, F is a finite group and p1, . . . , pk, with k 2 N, are not necessarily distinct 
primes. Choosing K a bit larger, we can assume without loss of generality that F = 0. 
Since G/K = Rn x H/K, we are done.

(b) Since K + K1 is a compact subgroup of G containing K and K1 as open 
subgroups, both indexes [(K + K1) : K] and [(K + K1) : K1] are finite. Therefore,
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F = (K + K1)/K is a finite subgroup of G/K, and similarly, F1 = (K + K1)/K1 is a 
finite subgroup of G/K1. Moreover,

(G/K)/F = G/(K + K1) = (G/K1)/F1 (6)

Since F is a finite subgroup of t(G/K) = nk=i Z(P¥), it is easy to see 
that t(G /K)/F = t(G/K). Similarly, t(G/K1)/F1 = t(G/K1). This yields 
the isomorphisms (G/K)/F = G/K and (G/Ki)/Fi = G/Ki. Now, the 
isomorphisms (6) yield the desired isomorphism G/K = G/Ki. These isomorphisms 
take the connected component c(G/K) = Rn of G/K to the the connected component 
c(G/Ki) = Rni of G/Ki; in particular, ni = n. Moreover, these isomorphisms 
takes the torsion subgroup t (G / K) = nk=1 Z( p¥) of G / K to the torsion subgroup 
t(G/K 1) ^ nk=1 Z(q¥) of G/K 1. Hence, k 1 = k, pi = qj for all i = 1,2,...,k 
and an appropriate permutation of the primes qj . Finally, the isomorphism 
induces an isomorphism of the quotients (G/K)/(c(G/K) t(G/K)) = L and 
(G/K 1)/(c(G/K 1) x t(G/K 1)) = L 1. Therefore, we deduce L 1 = L. □

We need a property of the discrete rank $(G), when the group G is LCA and 
r-disconnected. Since it is related to the rank of discrete quotients of G, it has also a 
connection to the compact covering number k(G), as Theorem 2.7 shows.

Theorem 2.7. Let G be an r-disconnected group. Then, k(G) $(G). If G is LCA, then:

(a) G has an open -compact subgroup L with r(G/L) = $(G).
(b) every discrete quotient of G has a size at most $(G).
(c) there exists a compact subgroup N of G, such that G/ N = Rn x D for some discrete 

abelian group D with jDj = $(G) and n 2 N.
(d) k(G) = $(G).

Proof. Assume that G = Si2I Ki, where each Ki is compact. Then, for every open 
subgroup H of G with infinite G/ H, the quotient map q : G ! G/ H takes each Ki to 
a finite subset of G/ H. Since G/ H is infinite, one has jG/ Hj jIj. This proves that 
$(G) k(G).

Now, suppose that G is LCA. We may assume without loss of generality that 
G = Rn x H with n, H and K, as in Fact 2.5. Then, the subgroup L = Rn x K of G is 
open and -compact. Moreover, G/L = H/K is discrete. Every open subgroup of 
G contains Rn x f0g, so having the form Rn x O, for some open subgroup O of H. 
Hence, our hypothesis of r-disconnectedness on G implies that H is r-disconnected, 
as well, and $(G) = $(H) r(H/K) = jH/Kj.

(a) To see that $(G) = $(H) r(H/K), take any open subgroup N of H. We can 
assume wlog that N is contained in K. Then, the quotient K / N is both discrete and 
compact, hence finite. Therefore, r ( H / N) = r ( H /K) as the quotient K / N is finite, 
while r(H/N) and r(H/K) are both infinite.
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(b) Let O G be an open subgroup. If r(G/O) < ¥, then jG/Oj ! r(G);
otherwise, if r(G/O) = ¥, then jG/Oj = r(G/O) r(G).

(c) follows from the above argument.
(d) We only have to check that k(G) $(G). Since Rn is -compact and K is

compact, one has k(G) < ! ■ jD j = ! ■ $(G) = $(G). □

3. Some General Properties of Compatible Topologies

Let (G, ) be a topological group. Another group topology n on G is said to be 
compatible for ( G, ) if it has the same character group as the original one, that is if 
(G, n )A = (G, t)a .

We start with the following general facts providing easy upper bounds 
for jC (G, )j:

Proposition 3.1. If (G, ) is Mackey, then:
(a) jC (G, )j < 2jj; so jC (G, )j < 22w(G), where w(G) denotes the weight of G;
(b) if Ck(G) denotes the subset of the compatible topologies of local weight < k, then 

jCk(G)j < jjk. In particular, the cardinality of the set of metrizable compatible topologies is 
not greater than jj!.

Proof. (a) For the first inequality, it suffices to note that any compatible group 
topology is a subset of . For the second assertion, note that jj < 2w(G) .

(b) follows from the fact that a group topology with local weight < k is 
completely determined by the assignment of a family of size < k that forms its 
local base at zero. □

In order to understand the structure (in particular, the size) of the poset C (G) 
for a topological group G, we relate C (G) to the corresponding posets C (H) and 
C (G/H) for convenient subgroups H < G.

Proposition 3.2. Let G = H1 H2 be a locally quasi-convex group. Then,

C(H 1) x C(H2) —n C(G), (n1, n2) i—n n1 x n2

is a poset embedding.

Proof. This mapping is injective and preserves the order. It remains to show that it 
is well defined. Therefore, let be the original topology on G and 1, 2 the induced 
topologies on H1 and H2 respectively. Take n1 2 C (H1, 1) and n2 2 C (H2, 2). Then, 
n1 x n2 is again a locally quasi-convex topology on G = H1 x H2. Clearly,

(H1 x H2, n1 x n2)A = (H1, n1)A x (H2, n2)A = (H1, 1)A x (H2, 2)A = (G, )A

so n1 x n2 is compatible. The assertion follows. □
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A subgroup H of a topological abelian group G is called:

• dually closed if for every x 2 G \ H, there exists c 2 GA, such that c(H) = f 0g 
and c(x) 6= 0;

• dually embedded if each continuous character of H can be extended to a 
continuous character of G.

Remark 3.3. It is well known that if H is an open subgroup, it is dually closed and 
dually embedded, but in general, a closed subgroup need not have these properties.

(a) It is easy to see that a subgroup H of a topological group (G, ) is dually closed 
if and only if H is +-closed.

(b) It is straightforward to prove that if G = H1 H2 is equipped with the product
topology, then H1 and H2 are dually embedded in G. Moreover, H1 and H2 are 
dually closed in G precisely when H1 and H2 are maximally almost periodic.

(c) It follows from Item (a) that a pair of compatible topologies shares the same 
dually-closed subgroups.

Lemma 3.4. Let (G, ) be a topological abelian group and H a dually-closed and 
dually-embedded subgroup. If M H is quasi-convex in H, it is also quasi-convex in G.

Proof. We must check that every x 2 G n M can be separated from M by means of a 
continuous character. Consider two cases:

(a) x 2 H n M. Then, there exists c 2 HA, such that c(M) T+ and c(x) 2/ T+.
Now, any extension of c, say c 2 GA, does the job.

(b) x 2 G n H. Since H is dually closed, there exists x 2 GA, such that 
x(H) = f0g and x(x) 6= 0. A suitable multiple of x gives a character that separates x 
from M. □

Proposition 3.5. [20] (1.4) Every compact subgroup ofa maximally almost periodic group 
is dually embedded and dually closed.

Proposition 3.6. Let (G, ) bea locally quasi-convex group and Han open subgroup. Then, 
there exists a canonical poset embedding:

Y : C(H, r| h ) —! C(G, r)

Proof. Fix (H, n) 2 C(H, jH), and let NH,n(0) be a basis of quasi-convex zero 
neighborhoods for n. If NH,n(0) is considered as a basis of zero neighborhoods in 
G, we obtain a new group topology Y(n) on G, for which H is an open subgroup. 
According to 3.4, Y(n) is locally quasi-convex.

Since H is an open subgroup of G both w.r.t. to r and to Y(n) and since a 
homomorphism c : G ! T is continuous iff its restriction to an open subgroup 
is continuous, it is sufficient to prove that (H, Y(n)|H) is compatible with (H, r|H). 
Obviously, Y(n)|H = n 2 C(H,r|H); hence, the assertion follows. □
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Remark 3.7. In the sequel, we denote by Q() the quotient topology of a topology 
(the quotient group will always be quite clear from the context).

Let H be a dually-closed subgroup of the Hausdorff abelian group G. By Remark 
3.3(c), H is closed for every topology 2 C (G). Hence, for 2 C (G), the group 
topology Q() is Hausdorff and:

Q : C(G) -!T(G/H), t -! Q(t)

is an order-preserving mapping.
Of course, Q is in general not injective. The situation improves when K 

is a compact subgroup and G is a locally quasi-convex Hausdorff group (see 
Theorem 3.15).

The next fact is probably known, but hard to find in the literature; hence, we 
prefer to give a proof for the reader ’s convenience.

Lemma 3.8. Let (G, t) be a MAP abelian group and H a dually-closed subgroup. Then, for 
the quotient G/H, one has Q(t)+ = Q(t+), i.e., the Bohr topology of the quotient coincides 
with the quotient topology of the Bohr topology t+.

Proof. Since both Q(t)+ and Q(t+) are precompact group topologies on G/H, it is 
sufficient to check that they are compatible. To this end, note that Q(t)+ Q(t+), 
since Q(t) Q(t+) and Q(t+) is precompact. To see that they are compatible, take a 
Q(t)+-continuous character c : G/H ! T. Then, it is also Q(t)-continuous. Hence, 
the composition with the canonical projection q : G ! G/ H produces a t-continuous 
character x = c q of G. Since x is t+-continuous, as well, from the factorization 
X = C ° q, we deduce that C is also Q(T+)-continuous. Hence, Q(t)+ < Q(t+). □

Next, we are interested in embedding C (G/H) into C (G). The following 
notation will be used in the sequel:

Notation 3.9. Let H be a closed subgroup of the topological abelian group (G, t). Denote 
by q : G ! G/H the canonical projection. Further, for a group topology 2 T (G/H), 
we denote by q 1 (0) the initial topology, namely the group topology f q 1 (O) : O 2 0g. 
It is straightforward to prove that whenever 0 is locally quasi-convex, then q 1 (0) is locally 
quasi-convex, as well.

Theorem 3.10. Let H be a dually-closed subgroup of the locally quasi-convex Hausdorff 
group (G, t). The mapping:

Q : C(G/H, Q(t)) -! C(G,t), 0 -! q~1(0) _ t+

is a poset embedding with left inverse Q.
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Proof. According to 3.9, Q() is a locally quasi-convex group topology on G and 
finer than +, hence Hausdorff.

Before proving that Q() is compatible, we show that Q Q() = . This will 
imply (once it is shown that Q is well defined) that Q is a left inverse for Q, and 
hence, Q is injective. A neighborhood basis of zero in (G, Q()) is given by sets of 
the form V = q 1 (U) \ W where W is a neighborhood of zero in (G,t+) and U a 
neighborhood of zero in (G/H, ). Observe that q(V) = U \ q(W). This implies the 
first equality in the following chain of equalities:

Q(Q())) = _ Q(+) 3=.8 _ Q()+ =

(the last equality follows from Q()+).
Let us show now that Q() is compatible. Since Q() +, we only need

to show that if c 2 (G, Q(0))a, then c is also continuous with respect to t. It is 
easy to check that Q()jH = +jH. Hence, we obtain that cjH : (H, +jH) ! T is 
continuous. Thus, cjH is a continuous character of the precompact group (H, t+jH), 
which is dually embedded in (G, t+). Hence, there exists a continuous character 
c1 2 (G, t+)a, which extends c. Since c1 2 (G, t+)a = (G, t)a, it is sufficient to 
show that c — c 1 2 (G, t) a or, equivalently, we may suppose that c 2 H?.

Hence, c : (G/H, Q(Q(0))) ! T, x + H ! c(x) is well defined and continuous. 
|----- {z----- }

= 0
Since 0 is compatible with Q(t), we deduce that c : (G/H, Q(t)) ! T is continuous, 
and hence, c = c o q : (G, t) ! T is continuous.

This completes the proof. □

Since open or compact subgroups are dually closed, the above theorem gives:

Corollary 3.11. Let G be a locally quasi-convex group, and let H be an open or a compact 
subgroup of G. Then, Q : C (G/H) ! C (G) is a poset embedding.

Remark 3.12. Let (G, t) be a locally quasi-convex group, and let H be an open 
subgroup of G. The images Q(C (G/H)) and Y(C (H)) in C (G) of both embeddings, 
obtained in Theorem 3.6 and Corollary 3.11, meet in a singleton, namely:

Q(C (G/H)) \ Y(C (H)) = fT0 _ t+g

where T0 is the topology on G with neighborhood basis fHg.
Indeed, one can see first that if T 2 Y(C (H)), then T T0 _ t+.

On the other hand, if T 2 Q(C (G/H)), then T = Q(0) Q(G/H) = T0 _ t+ 

for some 0 2 C (G/H), where G/H denotes the discrete topology on G/H. 
Combining both inclusions, we obtain T = T0 _ t+ . On the other hand, to see 
that the topology T0 _ t+ is an element of the intersection, it suffices to realize that 
T0 _t+ = Y(t+jH) = Q(G/H).
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In the proof of the next result, namely that for a locally quasi-convex group G 
and a compact subgroup K of G, the posets C (G) and C (G/K) are isomorphic, we 
need the following results from [21]:

Theorem 3.13. Let (G, ) be a locally quasi-convex Hausdorff group, and let K be a 
subgroup of G.

(a)  (Theorem (3.5)) If (K, +jK) is compact, then jK = +jK, in particular (K, jK)[21]
is compact.

(b)  (Theorem (2.7)) If K is compact, then G/K is a locally quasi-convex 
Hausdorff group.
[21]

Further, we need:

Lemma 3.14 (Merzon). Let 1 2 be group topologies on a group G, and let H be
a subgroup of G. If the subspace topologies 1jH = 2jH and the quotient topologies 
Q(1) = Q(2) coincide, then 1 = 2.

Theorem 3.15. Let (G, ) be a locally quasi-convex Hausdorff group and K a compact 
subgroup of G. Then:

Q : C (G / K) -! C (G) and Q : C(G) -! C (G / K)

are mutually inverse poset isomorphisms.

Proof. Let us show first that Q : C(G) ! C (G/K), 7! Q() is well defined. 
According to 3.13(b), Q() is a locally quasi-convex Hausdorff group topology. 
In order to show that Q() is compatible for 2 C (G), we fix a continuous 
character c : (G/K, Q()) ! T. Let q : G ! G/K be the quotient homomorphism. 
Then, c q : (G, ) ! T is continuous. Since is compatible for (G, ), also 
c q : (G, ) ! T is continuous, and hence, c : (G, Q()) ! T is continuous. On 
the other hand, +, and hence, Q() Q(+) = Q()+. Combining both 
conclusions, we obtain that Q() is compatible for (G, Q()).

Taking into account 3.10, it is sufficient to prove that Q Q = idC (G).
Therefore, fix 0 2 C(G). The topology Q(Q(0)) = q 1(Q(0)) _ x+ is 

coarser than , so applying Merzon’s Lemma, it is sufficient to show that and 
q 1(Q(0)) _ x+ coincide on K and on G/K. Since 0+ = x+ and since (H,x+ jK) is 
compact, we obtain by Theorem 3.13(a) that (K, 0jK) = (K, 0+ jK) is compact. Hence: 
0jK Q(Q(0))jK +jK = 0+jK = 0jK imply that Q(Q(0))jK = 0jK. For
the quotient topologies, the following holds by Theorem 3.10: Q(Q(Q(0))) = 

(Q o Q)(Q(0)) = Q(0). Combining the partial results, the theorem is proven. □

Since every locally compact abelian group is locally quasi-convex, from 
Theorem 3.15, we immediately obtain:
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Corollary 3.16. Let G be a locally compact abelian group and K a compact subgroup of G. 
Then, C(G) = C (G/K).

Corollary 3.17. Let G be a -compact group with an open compact subgroup. Then, there is 
a poset embedding C (G) ,! F!; in particular, jC (G)j 2c.

Proof. Let K be an open compact subgroup of G. Without loss of generality, we may 
assume that G is not compact, and hence, G/K is infinite.

As a consequence of the above theorem, Q : C (G) ! C (G/K) is a poset 
isomorphism. Since G/K is countable and discrete, 1.6 establishes a poset embedding 
C(G/K) !T(G/K) ! F!. □

Note that a group G as in the above corollary is necessarily locally compact. We 
shall see in the sequel (see Example 2.6) that unless G has a very special structure, one 
has actually a quasi-isomorphism between C(G) and F!, in particular jC (G)j = 2c.

4. Compatible Topologies for Discrete Abelian Groups

We intend to reduce the study of the poset C (G) for a LCA group G to the 
case of infinite direct sums of countable groups. This is why, throughout the first 
part of this section, will denote an infinite cardinal and C will be a non-zero 
countable group for every < . Our intention is to show that for the discrete 
group G = L< C, the poset C(G) is quasi-isomorphic to F (so, it contains an 
anti-chain of the maximal possible size 22 (note that = jGj), in particular C(G) 
has width and size 22 ).

In order to get (many) group topologies on G, we need a frequently-used 
standard construction based on filters on .

Notation 4.1. Every free filter jon defines a topology j on G with a base fWB : B 2 jg 
of neighborhoods of zero, where:

WB = M C

(here, we are identifying the direct sum defining WB with a subgroup of G in the obvious way, 
by adding zeros in the coordinates 62 B). Using the fact that each WB is a subgroup of G 
and WB1 \ WB2 = WB1\B2 for B1, B2 2 j, one can easily prove that j is a Hausdorff group 
topology on G. Moreover, j is locally quasi-convex, since every basic open neighborhood 
WB is an open subgroup, hence quasi-convex.

Finally, let us mention the fact (although it will not be used here) that, according to [22], 
j is complete when j is an ultrafilter.

Lemma 4.2. Let denote the discrete topology on G. The mapping:

X : Fy —C C(G), j ।—! xj _ 6+
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is a poset embedding.

Proof. Obviously + j _ + , so the topology j _ + is compatible. Since
+ is precompact, + is also locally quasi-convex. Moreover, j _ + is locally 

quasi-convex, as proven in Notation 4.1. This shows that X is well defined.
It is obvious that X preserves the order. Let us show that X is injective: 

To that end we fix j, y 2 F and assume that j _ + = y _ +, in particular 
j _ + y _ +, and hence, j y _ +. Let B 2 j, then WB 2 j, so 

WB 2 y _ + by our hypothesis. Then, there exist B0 2 y and a finite set 
F C G\ such that U := WB0 \ F/ C WB. Since U C WB0, as well, we conclude 
that U WB \ WB0 = WB\B0 . Since U is a neighborhood of zero in the Bohr topology
of the subgroup Wg0, this proves that also Wg\g0 is a neighborhood of zero in the 
Bohr topology of Wg0. This means that Wg\ g0 is an open subgroup of Wg0 equipped 
with the Bohr topology. Since every open subgroup in a precompact topology 
must have finite index, we deduce that Wg\g0 has finite index in Wg0 . Therefore, 
Wg0 /Wg\g0 = L2g0ng C is finite. Consequently, also the set S = g0 n g is finite. 
Since nS 2 y, we conclude that also g00 := g0 nS = g0 \ (nS) 2 y. On the other 
hand, B00 \ B = 0, i.e., B00 C B. This proves that B 2 y. Therefore, j C y. The other 
inclusion is proven analogously. □

Remark 4.3. Observe that X(P ()) = .

Corollary 4.4. For G as above, the sets C (G) and F are quasi-isomorphic, in particular 
width (C (G)) = jC(G)j = 22jGj.

Further, C (G) has chains of size (at least) .

Proof. According to 4.2 and 1.6, the sets C (G) and F are quasi-isomorphic. 
Since jGj = and since there are 22 different free ultrafilters in F, the first 
assertion follows.

F has chains of length . Indeed, one can easily produce a chain of length in 
Fy by using any partition of y in y pairwise disjoint sets of size y each. □

q.i.
Theorem 4.5. Let G be a discrete abelian group of infinite rank. Then, C (G) = FjGj 

holds. In particular, G admits 22jGj pairwise incomparable compatible group topologies and 
jC(G)j = 22jGj.

Proof. Let = jGj. According to 1.6, there are poset embeddings:

C(G) -!T(G) -! Fy.

It is easy to see that G has a subgroup H isomorphic to a direct sum L< C, 
where each C is a non-trivial countable group (actually, it can be taken to be a cyclic 
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group). According to Lemma 4.2 and Proposition 3.6, there are poset embeddings 
q.i.

X : F ! C (H) and Y : C (H) ! C (G). This proves that C (G) = FjGj. The second 
assertion follows from (1). □

Corollary 4.6. Suppose that H is a discrete abelian group for which F! does not embed in 
C (H). Then, H has finite d-rank; in particular, H is countable.

Proof. If H has infinite d-rank, then 4.5 implies the existence of a poset embedding 
FjHj ! C(H). Hence, the hypothesis implies that H has finite rank. □

The case of finite rank abelian groups will be considered separately in [16].

5. Proofs of Theorem A, Theorem B and Corollary C

We intend to apply the results obtained so far to describe the poset of 
all compatible group topologies for r-disconnected groups (in particular, for 
non--compact LCA groups).

Here comes the proof of Theorem A. It shows that for an LCA group G with 
large discrete rank $(G), the poset C(G) is quite large (in particular, jC (G)j < 22$(G) 

implies, among other things, that G is -compact).

Proof of Theorem A. Let H be an open subgroup of the locally quasi-convex group 
(G, T ), such that G/H has infinite rank. According to Corollary 3.11 and Theorem 
4.5, there is a poset embedding FjG/Hj ,! C (G). The assertion follows.

This theorem gives as a by-product a description of the LCA groups G, such 
that F! does not embed in C (G).

Corollary 5.1. If G is an LCA group, such that F! does not embed in C (G), then G 
is non-r-disconnected (so G contains a compact subgroup K, such that G/K = Rn 

L x nk=1 Z(p¥) for some n, m, k 2 N, a subgroup L of Qm and not necessarily distinct 
primes pi).

Proof. This follows from Example 2.6 and Theorem A. □

Proof of Theorem B. First, we have to prove that if G is an r-disconnected LCA group, 
then there exist poset embeddings as in formula (4). Since the existence of the first 
one was already established in Theorem A, it remains to produce the embedding 
C(G) ,! Fc$(G). To this end, we use the isomorphism C(G) = C(Rn D) provided 
by the above fact. Since jRn Dj = c $(G), Proposition 1.6 applies.

Now, assume that G is totally disconnected. We have to prove that 
q.i.

C(G) = F$(G). According to Fact 2.5, the LCA group G is topologically isomorphic
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to Rn H, where n 2 N and the group H has a compact open subgroup K. Since 
the quotient group D = H/K is discrete and G/K = Rn D, Corollary 3.16 gives
C (G) = C (Rn D). According to our hypothesis, G is totally disconnected, so G
cannot contain subgroups of the form Rn with n > 0. Therefore, G/K = D is discrete. 
Now, Corollary 3.16 implies that C (G) = C (G/K). Moreover, r(G/K) is infinite, 

q.i.
since G is r-disconnected. Thus, C (G/K) = FjG/Kj = F$(G) by Theorem 4.5.

Proof of Corollary C. We have to prove that if G is non--compact, then $(G) > !, 
and there exists a poset embedding F$(G) ,! C (G). By Theorem 2.7(d), we have 
$(G) = k(G) > !; so, G is r-disconnected, and Theorem A applies.

6. Metrizable Separable Mackey Groups with Many Compatible Topologies

For an abelian topological group X, we denote by c0 (X) the subgroup of XN 
consisting of all (xn ) 2 XN, such that xn ! 0 in X. We denote by p and u the product 
topology and the uniform topology of XN, respectively. We use p0 and u0 to denote 
the topologies induced by p and u, respectively, on c0(X).

Throughout this section, let X be a non-trivial compact connected 
metrizable group:

Theorem 6.1. [23] The group G = (c0(X), u0) is a non-compact Polish connected Mackey 
group with u0+ = p0 .

Observe that both u0 and p0 are metrizable and non-compact. In order to find 
more compatible topologies on G, we use the following construction.

Notation 6.2. For a subset B ofN and a neighborhood U of 0 in X, let:

P(B, U) = c0(X) \ UB XNnB

The following properties of these sets will be frequently used in the sequel:

(a) Ti2I P(Bi, U) = P(Si2I Bi, U) for every subset fBi : i 2 Ig P(N);
(b) ifU 6= X and P(B1,U1) P(B, U), then B B1.

This follow directly from X(N) \ (U1B1 X(NnB1)) UB X(NnB).

Definition 6.3. For any A N, define a group topology tA on c0 (X) having as a 
neighborhood basis at zero the family of sets (P(B, U)), where U runs through all 
neighborhoods of zero in X and B through all elements of P(N) with finite ADB.

Obviously, t® = p0 and tN- = u0; more precisely, tA = p0 (tA = u0) if and only if 
A is finite (resp., co-finite).
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Lemma 6.4. If P(A, U) 2 tB with U 6= X, then A n B is finite. Consequently, A n B is 
finite whenever tA tB.

Proof. By our hypothesis, there exists a subset B0 of N, such that B0DB is finite and 
P(B0, U0) P(A, U) for some neighborhood U0 of 0 in X. Then, by Item (b) of 
Notation 6.2, A B0. Since jB0DBj < ¥, this proves that A n B is finite, as well.

Now, assume that tA tB. Then, P(A, U) 2 tA, so P(A, U) 2 tB, as well. Hence, 
A n B is finite by the fist part of the argument. □

Proposition 6.5. For the topological group (G, u0) = (c0(X), u0), the mapping:

P(N) —! C(G), A ^! ta (7)

is order preserving. Moreover, tA = tB for A,B 2 P(N) if and only if the symmetric 
difference ADB is finite.

Proof. The mapping (7) is well defined, since for any A N, we have p0 tA u0.
Since all of the topologies tA are also locally quasi-convex, they belong to C (G).

Assume that tA = tB . Applying twice the second assertion in Lemma 6.4, we 
conclude that ADB is finite. □

Define an equivalence relation on P(N) by letting A B for A, B 2 P(N) 
whenever jADBj < ¥. Denote the set of equivalence classes by P (N) and its 
elements by A; moreover, write A B (A = B) for subsets of N when jA n Bj < ¥ 
(resp., ADB) is finite. In these terms, Proposition 6.5 can be reformulated as follows:

Corollary 6.6. The mapping P(N) ! C (G), A 7! tA is a poset embedding.

Remark 6.7. The above Proposition 6.5 implies that supftA, tBg tA[B. However, 
one can easily check with Notation 6.2(a) that actually, supftA, tBg = tA[B holds true. 
In particular, if P(A, U) 2 supftB1,. . .,tBng= tB1[...[Bn with U 6= X, then A SiBi 

by Lemma 6.4.

The structure of (P(N),) is very rich, as the following example shows.

Example 6.8. There exists an anti-chain of size c in (P (N), ). Although this 
fact is well known (see, for example, [24]), we give a brief argument for the 
reader’s convenience.

As the poset P(N) is isomorphic to P(Q), it is enough to check that 
width(P(Q)) = c. For every r 2 R, pick a one-to-one sequence of rational numbers 
(rrn ) converging to r. Then, the sets Ar := frrn : n 2 Ng, r 2 R, form an almost 
disjoint family witnessing width(P (Q)) = c.

All topologies of the form tA produced so far, including the top and the bottom 
element (u0 and p0, resp.) of C (G), are metrizable (so, second countable, since G 
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is separable by (3.4) in [23]). This makes it natural to ask whether all compatible 
topologies are metrizable. The next theorem and Example 6.10 answer this question 
negatively in the strongest possible way.

Theorem 6.9. The poset C(G) is quasi-isomorphic to P (R), so jC (G)j = 2c and C (G) 
has chains of length c+.

Proof. According to Proposition 3.1, C (G) embeds into P(R) as (G, u0) is Mackey 
and ju0j = c. Therefore, it suffices to show that P(R) embeds into C (G). It is 
enough to produce an embedding of P(R) \ {0} into C(G) \ fp0g. To this end, 
we shall replace R by an almost disjoint family A of size c of infinite subsets of N 
(see Example 6.8).

For 0 6= B A, let TB = sup{tA : A 2 Bg. It suffices to prove that
the mapping:

P(A) \ {0g —! C(G), B • ■ TB

is injective. To this end, it suffices to show that TB TB0 implies B B0 for 
0 6= B, B0 2 P(A). Pick A 2 B and fix a neighborhood U ( X of zero. As 
P( A, U) 2 tA TB TB0 , there exists a finite subset B00 B0, such that P( A, U) 2 
TB0 = tSB0. Then, A S B00 by Remark 6.7. Since the finite set {Ag [ B00 is a
subfamily of the almost disjoint family A, this may occur only if A = B for some 
member B 2 B00, i.e., A 2 B00 B0.

For the last assertion, we need the following notation. For infinite cardinals 
k,l, we shall write C(k, l) if, for a set of size k, the poset P(k) has a chain of size l 
(for more details, see [7,25]). In these terms, Sierpinksi has proven that C(2<l, 2l) 
holds true for every infinite cardinal l, where 2<l = sup{2 : < lg. Now, let l
be the minimal cardinal, such that 2l > c. Then, obviously, 2<l = c, since l > !. 
As 2l c+, C(2<l, 2l) implies that C(c, c+) holds true (see also [7] (Corollary 1.6) 
for the proof of C(k,k+) for arbitrary k). In other words, P(R) admits chains of 
length c+. □

By Proposition 3.1, the set of metrizable group topologies in C(G) has 
cardinality c! = c. Hence, the above theorem provides 2c many non-metrizable 
topologies in C (G). For the sake of completeness, we provide a short intrinsic proof 
of this fact.

Example 6.10. Let A be as in the above proof. We show that TB is not metrizable 
whenever B is an uncountable subset of A. Since there are 2c many such sets, this 
provides 2c many non-metrizable topologies in C (G).
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Assume that TB is metrizable, and let (Wk)k2N be a countable neighborhood 
basis at zero in TB . For every k, there exists a finite subset Bk of B, such that Wk 2 TBk . 
Hence, there exist a neighborhood Uk of zero in X and Ck N with:

Ck=[Bk and P(Ck,Uk) Wk. (8)

Since B is uncountable, we can choose A0 2 B n Sk2N Bk. Let U ( X be a 
neighborhood of zero. Then, P(A0, U) 2 tA0 TB. Therefore, Wk P(A0, U) for 
some k 2 N. Now, the inclusion in (8) yields P(Ck, Uk) P(A0, U). Hence, Notation 
6.2(b) implies A0 Ck = S Bk. Since these are finitely many members of an almost 
disjoint family, we conclude that A0 2 Bk, a contradiction.

7. Final Comments and Open Questions

The embedding F! ,! C (G) remains true for many non-compact -compact 
LCA groups G. Actually, the -compact LCA groups G for which our approach 
does not ensure an embedding of F! in C (G) must be non-r-disconnected. Hence, 
they must have a very special structure (namely, contain a compact subgroup K, 
such that G /K = Rn x L x nk=1 Z(p¥) for some n, m, k 2 N, a discrete torsion-free 
non-r-discrete group L and not necessarily distinct primes pi, see Example 2.6). Still 
simpler is this structure in the case when G is supposed additionally to have a 
compact open subgroup (this eliminates the vector subgroup Rn). Indeed, in this 
case, G must contain an open subgroup of the form K x Zm, for some m 2 N and 
a compact group K, so that G/(K x Zm) = nk=1 Z(p¥) for some k 2 N and not 
necessarily distinct primes pi .

In the general case, we have proved in [16] that jC (G)j 3 for every
non-compact LCA group G. In particular, jC (R)j 3, jC (Z)j 3 and
jC (Z(( p¥))j 3 for every prime p. Further progress in this direction depends 
pretty much on the following:

Questions 7.1. (a) Compute jC (Z)j. Is it infinite? Is it countable? Is it at most c?
At least c?

(b) Compute jC (R)j. Is it infinite? Is it countable? Is it at most c? At least c?
(c) Compute jC (Z(p¥))j, where p is a prime. Is it infinite? Is it countable? Is it at 

most c? At least c?

Note that in (a) and (c), the group in question is countable, so that 2c is an 
obvious upper bound in both cases.

Any information in the direction of Item (c) will throw light on the poset C (Qp) 
for all p containing p (as Qp has a quotient isomorphic to Z(p¥), so the poset 
C (Z(p¥) embeds into the poset C (Qp) by Theorem 3.10).
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Clearly, CH is needed in Corollary 1.12 only to eliminate those groups G that 
have ! < $(G) < c. We do not know if the assertion from this corollary remains true 
without the assumption of CH. In particular, the following question remains open: 

Question 7.2. IsC(RL!1Z2) q=.i. F!1?

Question 7.3. Let G be a non-precompact second countable Mackey group. Is it true 
that jC (G)j c?

Here comes a somewhat general question:

Problem 7.4. Find sufficient conditions for a metrizable precompact group G to be Mackey 
(i.e., have jC (G)j = 1).

Such a sufficient condition was pointed out in [3]: all bounded metrizable 
precompact groups are Mackey.

The next question is related to Question 7.3:

Question 7.5. If for a group G, one has jC (G)j > 1, can C (G) be finite? In particular, 
can one have a Mackey group G with jC (G)j = 2?

The following conjecture will positively answer Question 7.3 (as well as 
Question 7.1) and negatively answer Question 7.5:

Conjecture 7.6. [Mackey dichotomy] For a locally quasi-convex group G, one has either 
jC(G)j = 1orjC(G)jc.

Positive evidence in the case of bounded groups can be obtained from the recent 
results in [26].

Let l be a non-discrete linear topology on Z. It is easy to see that (Z, l) is 
metrizable and precompact. It is shown in [27] that these groups are not Mackey, i.e., 
jC (Z, l)j > 1.

Question 7.7. How large can C (Z, l) be?

Let (G, ) be infinite torsion subgroup of T equipped with the (precompact 
metrizable) topology induced by T. It was proven in [28] that (G, ) is not a Mackey 
group, i.e., jC (G, )j > 1.

Question 7.8. How large can be C (G, ) in this case?
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Open and Dense Topological Transitivity of 
Extensions by Non-Compact Fiber of 
Hyperbolic Systems: A Review
Viorel Nitica and Andrei Torok

Abstract: Currently, there is great renewed interest in proving the topological 
transitivity of various classes of continuous dynamical systems. Even though this is 
one of the most basic dynamical properties that can be investigated, the tools used by 
various authors are quite diverse and are strongly related to the class of dynamical 
systems under consideration. The goal of this review article is to present the state of 
the art for the class of Holder extensions of hyperbolic systems with non-compact 
connected Lie group fiber. The hyperbolic systems we consider are mostly discrete 
time. In particular, we address the stability and genericity of topological transitivity 
in large classes of such transformations. The paper lists several open problems and 
conjectures and tries to place this topic of research in the general context of hyperbolic 
and topological dynamics.

Reprinted from Axioms. Cite as: Nitica, V.; Torok, A. Open and Dense Topological 
Transitivity of Extensions by Non-Compact Fiber of Hyperbolic Systems: A Review. 
Axioms 2016, 4, 84-101.

1. Introduction

A dynamical system is a continuous map f of a topological space X. We 
emphasize that in this paper, X will be mostly a non-compact set and f will 
be invertible. Given a dynamical system (X, f ), a basic property that one may 
study is topological transitivity, that is the existence of a dense forward orbit 
x, f (x), f2 (x),   If X is locally compact separable without isolated points, then 
(X, f ) is topologically transitive if and only if for any non-empty open subsets 
U, V C X, there exists n > 1, such that fn (U) \ V = 0. The topological spaces that 
we will work with, Riemannian manifolds and phase spaces of shifts of the finite 
type, satisfy these conditions. Let us observe that other, sometimes equivalent with 
ours, definitions are introduced in the literature for topological transitivity. One 
may refer to the survey papers of Blanchard [1] or Kolyada-Snoha [2] for a more 
in-depth discussion and other definitions/interpretations of topological transitivity. 
This notion is also closely related to the notion of topological chaos introduced 
by Devaney [3]. The original definition of topological chaos given by Devaney, in 
addition to topological transitivity, requires the existence of a dense set of periodic 
points and the sensitive dependence of initial data for the dynamical system. It was 
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later shown by Banks et al. [4] that the sensitivity of the initial data is a consequence 
of the other two conditions.

Various examples of topological transitive transformations are constructed in 
the literature. In some respects, topological transitivity is the topological counterpart 
of ergodicity. We recall that a probability measure m on a measurable space X 
is ergodic with respect to a measurable map f : X ! X if and only if the only 
f -invariant subsets, up to subsets of measure zero, are X and the empty set. If 
X is compact topological space and the continuous map f has an invariant Borel 
probability measure m, which is positive on open sets, then topological transitivity 
is implied by ergodicity. It was shown by Oxtoby and Ulam [5] that ergodicity is a 
residual property, in the set of homeomorphisms of a manifold X of dimension at 
least two, if m is a nonatomic measure of full support with m (<)X) = 0. We recall that 
a residual property for a complete metric space is one that is valid for a second Baire 
category subset.

Examples of topological transitive transformations of the plane are constructed 
by Besicovitch [6,7] and Shnirelman [8]. Their work was generalized by Sidorov [9], 
who constructed topological transitive extensions of a topologically transitive map 
with fiber an arbitrary Banach space.

The class of hyperbolic dynamical systems, introduced in the 1960s-1970s 
by Anosov and Sinai [10] in the USSR and by Bowen [11] and Smale [12] in the 
USA, provides many examples of ergodic and, in particular, topologically transitive 
transformations. Hyperbolic systems have a splitting of the tangent bundle into 
two invariant subbundles, one contracting and one expanding. These bundles are 
integrable into stable/unstable foliations. A standard reference for the theory of 
hyperbolic dynamical systems is the monograph of Katok and Hasselblatt [13]. 
During our exposition, we will assume as known or already defined many standard 
notions discussed there. Similar techniques can be applied to continuous dynamical 
systems, such as hyperbolic flows. Building onan argument of Hopf [14], who proved 
the ergodicity of the geodesic flow of a surface of negative curvature, Anosov [15] 
proved the ergodicity of the geodesic flow of any manifold of negative curvature. A 
key ingredient of the proof is the existence of invariant stable and unstable foliations 
for the geodesic flow. These foliations are, in general, only transversally Holder, but 
exhibit the absolute continuity of the holonomy maps; this allows the Hopf argument 
to be carried out.

Partially hyperbolic diffeomorphisms were introduced in the 1980s by Brin and 
Pesin [16] as a generalization of hyperbolic diffeomorphisms. Partially hyperbolic 
diffeomorphisms have a splitting of the tangent bundle into three invariant 
subbundles, one contracting, one expanding and one, called the center bundle, 
for which the expansion/contraction is in-between. The contracting and expanding 
subbundles are always integrable into stable/unstable foliations. It was expected that, 
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in the presence of a smooth invariant volume, ergodicity with respect to the volume 
measure should be true for many of these transformations. Brin and Pesin [16] 
proved ergodicity under the assumptions that the stable/unstable foliations are 
smooth and form an accessible pair, that is, one can travel from any point in the 
manifold to any other point in the manifold via a path built out of segments sitting 
inside stable/unstable leaves. The argument was carried forward by Grayson, Pugh 
and Shub [17], Pugh and Shub [18] and Burns and Wilkinson [19]. The state of the 
art in this direction is that the accessibility of the pair of stable/unstable foliations 
implies ergodicity. Nevertheless, accessibility turned out to be difficult to prove. 
Some progress was done in the case of a one-dimensional center subbundle; see, 
e.g., [20]. Hertz [21] proved the stable ergodicity of certain linear automorphisms of 
the torus. Furthermore, Dolgopyat and Wilkinson [22] proved that stable accessibility 
is dense in the C1-topology for the class of volume preserving partially hyperbolic 
diffeomorphisms. Pugh and Shub conjectured that in C2 and even Cr, r 2 topology, 
accessibility is open and dense.

If the invariant volume does not exist, then even in the presence of partial 
hyperbolicity, different tools are needed in order to study topological transitivity. 
Given a dynamical system (X, f ), a point x 2 X is called recurrent if for any 
neighborhood U of x, there exists a positive integer n 1, such that fn (x) 2 U. In 
particular, any periodic point is recurrent. Brin [23] proved that a C1 diffeomorphism 
that has an accessible pair of stable/unstable foliations and a dense set of recurrent 
points is topologically transitive. This result has, nevertheless, limited applicability 
due to the difficulty of proving the accessibility and density of recurrent points. 
In particular, it is difficult to exhibit a dense set of periodic points for such 
transformations. Open sets of transitive partially hyperbolic diffeomorphisms are 
found by Bonatti and Diaz [24], building on previous examples found by Shub [25].

A robust obstruction to topological transitivity is the existence of a trapping 
region, i.e., a non-empty open proper subset U C M, such that f (U) C U. When this 
obstruction does not occur, it follows from the work of Bonatti and Crovisier [26] 
that a generic C1 diffeomorphism of a compact Riemannian manifold is topologically 
transitive. This result relies on the Pugh-Hayashi [27-29] closing lemma, and it is not 
available beyond the C1 category.

Another direction currently pursued in the literature is that of linear topological 
chaos, that is, the study of topological chaos for infinite dimensional continuous 
linear operators [30]. The techniques employed in linear topological chaos are quite 
different from those employed in the study of hyperbolic dynamical systems and 
will not be discussed in this review.

In the rest of this review paper, we summarize the results about the topological 
transitivity for various classes of non-compact Lie group extensions of hyperbolic 
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systems. These classes of dynamical systems can be thought of as thin classes of 
partially hyperbolic systems.

2. Lie Group Extensions of Hyperbolic Systems: Basic Definitions and the 
Main Conjecture

Definition 1. Consider a continuous transformation f : X ! X, a Lie group G and a 
continuous map b : X ! G called a cocycle. These determine a skew product, or G-extension,

fb : XG!XG, fb(x, g) = ( f x, gb(x))

It is assumed throughout the rest of the paper that X is a hyperbolic basic set. 
Of interest to us is whether non-compact Lie group extensions of a hyperbolic basic 
set are typically topologically transitive.

Definition 2. Let ( M, dM ) be a smooth manifold endowed with a Riemannian metric. Let 
f : M ! M be a smooth diffeomorphism and X M a compact and f -invariant subset 
ofM. We say that X is hyperbolic if there exists a continuous D f -invariant splitting Es Eu 

of the tangent bundle TXM and constants C1 > 0,0 < l < 1, such that for all n 0 and 
x 2 X, we have:

k(Dfn)xvk C1lnkvk, v2Esx (1)

k(Df-n)xvk< C1 ln kv||, v 2 EU

If X coincides with M, then f is called hyperbolic, or Anosov, diffeomorphism.
We say that X is locally maximal if there exists an open neighborhood U of X, such that 

every compact f -invariant set of U is contained in X. A locally maximal hyperbolic set X 
is a basic set forf : M ! M iff : X ! X is transitive and X does not consist ofa single 
periodic orbit.

We present some motivation for the study of Lie group extensions of hyperbolic 
systems. These transformations have many common properties with partially 
hyperbolic diffeomorphisms. If the fiber is a compact connected Lie group, 
the cocycle b is at least C1 and the hyperbolic basic set (X, f) is an Anosov 
diffeomorphism, then the extension is a partially hyperbolic diffeomorphism. In 
general, we will see that if a certain bunching condition for the center direction holds, 
then fb has stable and unstable foliations. If the Lie group G is not compact, the 
extension fb acts on a space that does not support an invariant probability measure. 
Thus, the class of non-compact Lie group extensions can be considered as a test bed 
for the more general class of partially hyperbolic diffeomorphisms that do not have a 
nice invariant probability measure.
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Given a connected Lie group G and a cocycle b : X ! G, we consider the 
G-extension fb : X G ! X G. We say that the cocycle b is topologically transitive 
(for brevity, transitive,) if the corresponding skew product fb is transitive.

Let LG be the Lie algebra of G. We denote by eG the identity element of G. Let 
Ad denote the adjoint representation of G on LG. Let k k be a norm on LG. There is a 
metric d on G with the following properties (see Pollicott and Walkden [31]):

1. d(gg1, gg2) = d(g1, g2);
2. d(g1g, g2g) kAd(g)kd(g1, g2);

for any g, g1, g2 2 G.

Definition 3. Let f : X ! X be a map and b : X ! G a cocycle. For k 1, we write
fbk(x, g) = ( f kx, gb(k, x)), where:

k-1 
b (k, x)=b (x) b (fx) ■ ■■ b (f 1 x) = n b (fx) 

j=0

(occasionally, we use the last formula to keep notation simple; its meaning is the ordered 
product given by the middle expression).

If Qis a trajectory off oflength k (i.e., Q = f x, f (x),..., fk 1 (x )g for some x), then 
we define the height ofb over Q to be b(Q) = b(k, x). In particular, if x is a periodic point 
ofperiod ', then the height of the corresponding periodic orbit P is b (P) = b (', x).

By abuse of notation, we often refer to “the periodic orbit P” instead of “the orbit of the 
periodic point x” when x is clear from the context.

Definition 4. Given a cocycle b : X ! G over f : X ! X, define m 1 to be:

m = max n lim sup ||Ad(b(n,x))k1/n, lim sup ||Ad(b(n,x))—11|1/n j 
n!¥ x2X n!¥ x2X

For f fixed, we say that the cocycle b has subexponential growth if m = 1.

Remark 1. The subexponential growth condition is automatically satisfied for any cocycle 
if the group G is compact, nilpotent or a semidirect product of compact and nilpotent. This 
follows from the well-known result that nilpotent Lie groups have polynomial growth [32].

Recall the definition of cohomology:
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Definition 5. Let G be a topological group. If b1, b2 : X ! G are continuous functions and 
f : X ! X is a continuous map, then b1, b1 are called cohomologous (over f) if there exists 
a continuous map u : X ! G, such that:

b 1 = (u ° f) b 2 u 1

In [33], we proposed a general conjecture about topological transitivity in the 
class of Holder cocycles. We start by observing that if the cocycle b takes values in 
a proper closed sub-semigroup S of the fiber G, then obviously fb is not transitive. 
An example is the group G = R with sub-semigroup S consisting of the set of 
non-negative numbers. As IntS = ®, we can construct open sets of nontransitive 
R-extensions. Another example is the group G = S L(n, R) with sub-semigroup S 
consisting of matrices with non-negative entries. Since IntS = ®, again we can 
construct open sets of nontransitive SL(n, R)-extensions.

Our conjecture is that this situation is the only essential obstruction 
to transitivity.

Conjecture 1 (Main Conjecture). Assume that X is a hyperbolic basic set for f : X ! X 
and G is a finite-dimensional connected Lie group. Among the Holder cocycles b : X ! G 
with subexponential growth that are not cohomologous to a cocycle with values in a maximal 
sub-semigroup of G with a non-empty interior, there is a Holder open and dense set for which 
the extension fb is transitive.

3. Statements of Available Results

The conjecture is proven for various classes of Lie groups. The techniques used 
so far are quite diverse and seem to depend heavily on the particular properties of 
the group that appears in the fiber.

3.1. G Compact Connected Lie Group

We start by observing that in this case, closed sub-semigroups coincide with 
closed subgroups and that there are no proper sub-semigroups with a nonempty 
interior. It was proven by Brin [23] that if the fiber G is a compact connected Lie 
group, then topologically transitive extensions ofa transitive Anosov diffeomorphism 
contain a set that is open and dense in the C2-topology. An extension of Brin’s 
general transitivity result is obtained in [34,35], in which accessibility is replaced by 
e-accessibility for any e > 0. This improvement allows one to consider extensions 
with a disconnected base, such as subshifts of the finite type.

As observed in [20], Brin’s result also holds in the Holder topology. In fact, 
over an Anosov diffeomorphism, for any r > 0, the Cr cocycles that are transitive 
contain a Holder-open (meaning Cs-open for any s 2 (0, 1), s r) and Cr-dense 
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set, and this result generalizes to extensions of a hyperbolic attractor. The latter 
result does not hold for extensions of general hyperbolic basic sets when r < 1 (in 
particular, the result is false if (X, f ) is topologically conjugate to a subshift of finite 
type and G is a torus: the interior of the transitive Cr -cocycles contains no cocycle of 
higher smoothness). However, for compact group extensions of general hyperbolic 
basic sets, Field et al. [36] proved that the transitive extensions contain a set that is: 
(i) Holder open and dense (proving the Main Conjecture 1); and (ii) C2-open, Cr-dense 
for all r > 2. See, also, [37-39].

Burns and Wilkinson [40] generalized Brin’s result by showing the stability of 
the ergodicity of the extensions with compact fiber for perturbations in the class of 
Cr diffeomorphisms.

3.2. G = Rn

In this case, the maximal sub-semigroups with non-empty interior are the 
half-spaces whose bounding hyperplane contains the origin. Hence, stable 
transitivity is certainly not a generic property of Rn -extensions. However, there 
are no further obstructions. We recall that a continuous map f of a topological space 
X is called weakly topologically mixing if f f is topologically transitive. We can 
associate with each periodic orbit fnx = x a height b(n,x) := £"Tq b(fix). We 
denote by PDb = fb(n, x) : fnx = x,x 2 Xg the collection of all heights over the 
closed orbits of f.

Nitica and Pollicott [41] proved the following result:

Theorem 1. Let X be an infranilmanifold, f : X ! X an Anosov diffeomorphism and 
b : X ! Rn a Holder cocycle. Then, the following are equivalent:

1. the cocycle b is not cohomologous to a cocycle that takes values in a half-space;
2. the set PDb is not separated by any hyperplane passing through the origin;
3. the extension fb is transitive;
4. the extension fb is C0-stably transitive;
5. the extension fb is weakly mixing;
6. the extension fb is C0-stably weakly mixing;
7. for any direction in Rn, there exist orbits offb that are unbounded in the positive sense 

and orbits that are unbounded in the negative sense (i.e., 8v 2 Rn - f 0g, 9x, y 2 X, 
8N > 0, 9n, m > 0 such that hb(n, x), vi > N and hb(m, y), vi < -N).

Remark 2. We note that, due to a result of Bousch [42], one can check if a cocycle b is 
cohomologous to one that takes values in a half-space by looking at the periodic data PDb.

Therefore, one has a complete dichotomy for an Rn -extension fb over an infranil 
Anosov diffeomorphism: either it is transitive (and, hence, stably transitive), or b is 
cohomologous to a cocycle with values in such a half-space. Moreover, the transitive 
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Holder Rn-extensions fb are actually C0-stably transitive, that is, if /b0 is C0-close 
enough to b and fb is transitive, then fb0 is transitive.

A crucial ingredient in the proof of Theorem 1 is that the induced map in the 
first Cech cohomology groups f * : H1 (X, Z) ! H 1( X, Z) does not have one as 
an eigenvalue. This is known to be the case for an Anosov diffeomorphism of an 
infranilmanifold, and it is an important open question as to whether this is the case 
for all Anosov diffeomorphisms (cf. [43]) (indeed, it is an open question as to whether 
there are Anosov diffeomorphisms on spaces other than infranilmanifolds).

Moss and Walkden [44] replace the condition about the induced map in 
cohomology by the weaker condition that the first (Zech cohomology group H1 (X, Z) 
has finite rank, where X is a hyperbolic basic set. Moreover, the action in the base is 
extended to hyperbolic flows. Their proof gives an explicit and global description 
of the set of functions b that give rise to transitive skew-products in terms of the 
cohomology of the hyperbolic basic set X .

We recall that a continuous map f of a topological space X is called topologically 
mixing if for any open subsets U, V X, there exists a positive integer N, such that 
fn (U) \ V = ® for any n > N. The following problem seems to be open.

Problem 1. Find a topologically mixing R-extension of an Anosov diffeomorphism.

For general hyperbolic basic sets, transitive Rn-extensions need not be stably 
transitive. However, let S denote the set of cocycles that are not cohomologous to 
a cocycle with values in a half-space. For cocycles in S, Field et al. [36] proved a 
result identical to that stated above for compact group extensions. Again this proves 
the Main Conjecture 1 for Rn -extensions. Similar results hold for general Abelian 
finite-dimensional Lie groups G = Rn Td, where Td is a d-dimensional torus.

3.3. G Is a Euclidean-Type Group

An important test case of a Euclidean-type group is the special Euclidean group, 
which is the semidirect product G = SE(n) = SO(n) nRn with the action of SO(n) 

on Rn given by the usual matrix multiplication. In this case, it is easy to see that there 
are no proper sub-semigroups with non-empty interior. It is shown in [33,45,46] that 
when n is even, the set of cocycles that are transitive is Holder-open and Cr-dense, 
thus solving the conjecture in this case. The conjecture remains open for n > 3 odd. 
The difference between the case n odd and n even is due to the different behavior 
of a generic element in G: if n is even, then for a residual set of elements in G, the 
closure of the semigroup generated by an element is a compact subgroup of G; if n is 
odd, then for a residual set of elements in G, the closure of the semigroup generated 
by an element is an unbounded subset of G.
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Problem 2. For 0 < a < 1, find a Ca-stable transitive SE(3)-extension of an Anosov 
diffeomorphism.

In this direction, we show in [47] that for SE(n)-extensions, n 3 odd, the 
transitivity is generic.

Theorem 2. Let X be a basic hyperbolic set for f : X ! X. Let r > 0, and let n 3 be odd. 
Amongst the Cr cocycles b : X ! SE(n), the transitive cocycles form a residual set.

More generally, one may consider Euclidean-type groups of the form G = 
G n Rn, where G is a compact connected Lie group acting linearly (and orthogonally) 
on Rn, and the group multiplication is given by:

(g1, v1)(g2, v2) = (g1g2, v1 + g1v2)

Let Fix G = fv 2 Rn : gv = v for all g 2 Gg. Set p : G ! Fix G to be 
the projection onto the Rn-component and then orthogonal projection onto Fix G. 
If Fix G 6= f0g, then there is an obvious obstruction to transitivity, namely that 
p b : X ! Fix G takes values in a half-space. More generally, if p b is cohomologous 
to a cocycle with values in a half space, then fb is not transitive. This is the only 
obstruction in generalizing Theorem 2 to general Euclidean-type groups.

Theorem 3. Let X be a basic hyperbolic set for f : X ! X, and let G = G n Rn be a 
Euclidean-type group. Let r > 0. Define S to be the space of Cr cocycles b : X ! G for 
which pb : X ! Fix G is not cohomologous to a cocycle with values in a half-space.

Then, S is an open subset of the space of Cr cocycles, and the transitive cocycles 
b : X ! G form a residual subset ofS.

Remark 3. (1) If FixG = 0, then there is no obstruction to transitivity, so Theorem 2 is a 
special case of Theorem 3.

(2) By a standard argument, the set of transitive Cr cocycles can be written as a 
countable intersection of Cr-open sets. We include the argument below. Hence, it suffices to 
prove the density in Theorems and 2  3.

Choose a countable basis f Uk gk of the topology on X x G and denote by Ck < the Cr 

cocycles n 2 S for which there is a positive integer n, such that fn (Uk) \ U' = ®. Each set 
Ck' is clearly Cr-open, and f is transitive if and only if n is in each of the sets Ck'.
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3.4. G Is a Nilpotent Lie Group

Definition 6. For n 1, let Hn denote the group consisting of matrices of the form:

1
(a, b, c) := @B 0 

0

aT c 1
In b CA 2 Matn+2 (R)

01
(2)

where a, b 2 Rn, c 2 R and In is the n-dimensional identity matrix.

Remark 4. (1) We can identify Hn with Rn Rn R endowed with the multiplication:

(a,b,c)(A,B,C) = (a + A,b + B,c + C + aTB) (3)

where a, b, A, B 2 Rn, c, C 2 R
(2) H1 is the standard three-dimensional Heisenberg group.

The center of Hn is [Hn, Hn] = f(0,0,c)g = R. Denote Hbn = Hn/R = R2n. If 
b : X ! Hn is a cocycle, denote by bb : X ! Hbn the corresponding quotient cocycle. 
There is an obvious obstruction to transitivity, namely that bb : X ! Hb n = R2n takes 
values in a half-space bounded by a hyperplane passing through the origin (for 
brevity, call this a half-space from now on). More generally, if bbis cohomologous to a 
cocycle with values in a half-space, then fb is not transitive.

If r > 0, let Sr(X, Hn) be the set of Cr cocycles b : X ! Hn for which bb is 
not cohomologous to a cocycle with values in a half-space. The main result in [48], 
improving on a weaker result showing only genericity and proven in [49], is:

Theorem 4 ([48, Theorem 1.4]). Assume that X is a hyperbolic basic set for f : X ! X. 
Let r > 0. Then Sr(X, Hn) contains a dense and open set of transitive cocycles.

More precisely, we prove:

Theorem 5 ([48, Theorem 1.5]). Let X be a hyperbolic basic set for f : X ! X and 
b : X !Hna Holder cocycle. If b : X ! R2n is transitive, then so is b.

This implies Theorem 4, because, by [36,41]:

Theorem 6 ([48, Theorem 1.6]). For r > 0, there is an open and dense set in Sr(X, Rd) 
consisting of transitive cocycles.

A new technical tool needed in the proof of Theorem 4, which is of independent 
interest, is a diophantine approximation result, which shows the existence of an 
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infinite set of approximate positive integer solutions for a diophantine system of 
equations consisting of a quadratic indefinite form and several linear equations, 
provided exact solutions exist over R. The set of approximate solutions can be chosen 
to point in a certain direction; this direction can be chosen from a residual subset of 
full measure of the set of real directions solving exactly the system of equations.

Theorem 7 ([48, Theorem 6.2]). For d 2, assume given in Rd a (homogeneous) quadratic
form Q and k (homogeneous) linear forms L1, L2, . . . ,Lk, such that Qj\Ker Li is indefinite.

Assume that rankQ 2k + 3. Then, for a residual, full measure set (in the induced
topology/Lebesgue measure) of vectors v 6= 0 in:

fQ=0g\fLi =0,1 ikg

for any e > 0, there are xn 2 Zd, such that:

(1) kxnk ! ¥,
(2) sup jQ(xn)j < ¥,
(3) dist(xn, R+v) e.

In particular,
jLi(xn)j Ce, for all 1 i k and all n

with a constant C > 0 determined by the linear forms.

There is a class of nilpotent groups, analogous to the Heisenberg groups, but 
with a compact center, for which we obtain stronger results and for which the proofs 
are much simpler.

The normal subgroup of Hn generated by (0, 0, 1) is isomorphic to Z. Denote by 
Gn the quotient Hn /Z. The center of Gn is R/Z = S1; let bGn = Gn/S1 = R2n.

If b : X ! Gn is a cocycle, denote by bb : X ! R2n the corresponding quotient 
cocycle. For r > 0, let Sr (X, Gn) be the set of Cr cocycles b : X ! Gn for which bb is 
not cohomologous to a cocycle with values in a half-space.

Theorem 8 ([49, Theorem 1.5]). Assume that X is a basic hyperbolic set for f : X ! X. 
Let n 1, r > 0. Then, there is an open and dense set of transitive cocycles in Sr(X, Gn).

3.5. G Is a Compact and Nilpotent Semidirect Product

In this subsection, we follow [50].

Definition 7. A connected Lie group Gis called a good semidirect product ifit is a semidirect 
product K n N, where N is a nilpotent Lie group, K is a compact Lie group and, in addition, if 
T is a maximal torus in K; the only element of N fixed under conjugation by T is the identity.
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Definition 8. A connected Lie group G is perfect if its commutator subgroup [G, G] 
coincides with G.

Theorem 9 ([50, Theorem 1.1]). Assume that X is a hyperbolic basic set for f : X ! X. 
Let G = K n N be a good semidirect product that is perfect. Then, in the class of Cr-cocycles 
b : X ! G, r > 0, the transitive ones contain an open and dense set.

We describe next a large class of Lie groups that satisfy the assumptions in 
Theorem 9.

Definition 9. Let K be R or C. Let n be a positive integer, and let n = n 1 + n2 +-------- + n',
where ni, 1 < i < ' are also positive integers. Define G (n 1, n 2,..., n', K) to be the subgroup 
of gl(n, K), which consists of all block matrices:

A1 B1,2 B1,3 . . . B 1,' 1
0 A2 B2,3 . . . B 2,'

0 
. .

0
..

A3

....
B3,'C

..
(4)

.
0

.
0

.
0 ..
..
. A'

where:

the block Ai is an arbitrary matrix in the orthogonal group SO(ni) (respectively, the 
unitary group U (ni)), 1 < i < ';

• the block Bi,j is an arbitrary matrix in Mat(ni, nj),for 1 < i < ' - 1, i + 1 < j < ', 
the blocks below the diagonal are zero.

Remark 5. For n > 3, the partition (n - 1,1) gives the special Euclidean group SE(n - 1).

Theorem 10 ([50, Theorem 1.2]). Let K be R or C. Let n 3 be an integer and n1 + n2 + 

----- + n' = na partition ofn, where (n 1, n 2,..., n') are even integers, all greater or equal 
to four, except possibly for a single occurrence of one. Then, G = G (n 1, n 2,..., n', K) is a 
good semidirect product, which is perfect.

Problem 3. Ifni = 2 ,for some 1 < i < ', and if there is no more than one one among the 
nfs, then the group G (n 1, n 2,..., n', R) is a good semidirect product that is not perfect. If 
there are at least two ones among the nfs, then the group G (n 1, n 2,..., n', R) is not a good 
semidirect product. With the exception of the case G = se(2) = G(2, 1, R), solved in [46] 
using results about extensions with Abelian fiber, Theorem 10 leaves open the transitivity 
conjecture for these cases.
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Definition 10. If G is a topological group, we call g 2 G compact if the closure of the 
subgroup generated by g is compact. We denote by C(G) the set of compact elements in G.

Remark 6. The proof of Theorem 9 is based on the existence ofan open dense set of compact 
elements in G. It is shown in [51] that ifa connected Lie subgroup H of gl(n, K) contains 
an open neighborhood of the identity in which compact elements are dense and is maximal 
with this property, then H is conjugate to a group G (n 1, n 2,..., n', K). This remark shows 
the optimality of our results and the limitations of the method. In order to solve Problem 3, 
one needs to develop new techniques.

3.6. G Is a Non-Compact Semisimple Lie Group

The conjecture is not verified for any non-compact semisimple Lie group. 
Nevertheless, for G = SL(2, R) and, more generally, for G = Sp(n, R), open sets 
of transitive extensions are constructed in [33]. Here is a brief description of the 
construction. One uses the existence of compact elements in G that are stably compact 
under small perturbations. No such elements are known in sl(3, R) or many 
other non-compact semisimple Lie groups. These compact elements can be chosen 
arbitrarily close to the identity. We start with the identity cocycle b. After a small 
perturbation, we can arrange for the height of b over the orbit of a fixed periodic 
point x0 2 X to be a stably compact element. Using the method described in Section 4, 
this allows one to construct a set of generators for G in the range Lb(x0) (defined 
in Section 4) that are close to the identity. The generating property is stable under 
small perturbations due to a classical result of Kuranishi [52]. In conjunction with 
Theorem 11 in Section 4, this gives a stably transitive extension with fiber Sp(n, R).

The following problem is left open:

Problem 4. For a 2 (0, 1), find a Ca-stable transitive SL(3, R)-extension of an Anosov 
diffeomorphism.

4. Criterion for Transitivity

In order to prove the topological transitivity of extensions with non-compact 
fiber, sometimes we are able to use the methods developed by Brin in the proof of his 
general result mentioned in the Introduction. This is due to the existence of the pair 
of stable/unstable foliations for the extension and the fact that generic accessibility 
for the pair is easy to prove in some cases. The difficult part is to show the density 
of recurrent points. The compact factors in G are sometimes easy to accommodate, 
due to the existence of compact elements. See [46] for the case of G = SE(2) and 
G = K Rn with K compact.
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We denote by Ws (x) and Wu (x) the stable and unstable leaves of the hyperbolic 
dynamical system f through the point x 2 X. The next lemma is a consequence 
of [20, Appendix A]. Detailed proofs can be found in [53].

Lemma 1. Assume that X is a hyperbolic basic set for f : X ! X, that G is a connected 
Lie group and b : X ! G an a-Holder cocycle that has subexponential growth. Then, the 
G-extension fb : X x G ! X x G admits stable and unstable foliations, which are a-Holder 
and invariant under right multiplication by elements of G. The stable and unstable leaves of 
fb through ( x, eG) 2 X x G are the graphs of the functions:

gsx : Ws (x) ! G, gsx (y) = nlirn b (n, x) b (n, y) 1 2

(1) Lb( x) is a closed semigroup of G for each x 2 X.
(2) If there exists a point x0 2 X, such that Lb(x0 ) = G, then b is a transitive cocycle.

gu : Wu(x) ! G, gu(y) = lim b(-n,x)b(~n,y) 1 n!¥

These functions are a-Holder and vary continuously with the cocycle b in the following 
sense: if bk ! b in the C0-topology and bk remains Ca-bounded, then gks,x ! gsx and 
gku,x ! gxu on Wlsoc(x) in the C0-topology.

We call the values of the functions gsx, gxu holononies along stable/ 
unstable leaves.

A new criterion for topological transitivity applicable to extensions was 
developed in [33]. One of the key notions introduced in [33] is:

Definition 11. Let G be a connected Lie group, X a basic hyperbolic set for f : X ! X, 
b : X ! G a cocycle and fb : X x G ! X x G the skew-extension. Given x 2 X, let:

Lb(x) = fg 2 G : there exist xk 2 X and nk > 0 such that xk ! x and fbnk (xk, eG) ! (x, g)g

We will refer to Lb(x) as the range ofb over x.

That is, the set Lb (x) consists of the possible linits link!¥ b(nk, xk), subject to 
xk ! x and fnk(xk) ! x. Note that we do not require that nk ! ¥ or that xk 6= x. 
Clearly, Lb( x ) is a closed subset of G.

The following theoren is [33, Lenna 3.1, Theoren 3.3].

Theorem 11. Assume that X is a hyperbolic basic set for f : X ! X, that G is a connected 
Lie group and b : X ! G a Holder cocycle that has subexponential growth. Then:
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The following lemma is [33, Lemma 2.2]. Briefly, it says that the heights of fb 
over two nearby trajectories in the base are close, independent of the lengths of the 
trajectories. This result is used in the constructions of elements in Lb.

Lemma 2. Assume that X is a hyperbolic basic set for f : X ! X, that G is a connected Lie 
group and b : X ! G an a-Holder cocycle that has subexponential growth. Then, there is a 
constant C5 > 0 with the following property.

For any e > 0 sufficiently small, any n 1 and any two trajectories xk = f k(x0), 
yk = fk(y0), such that dM(xk, yk) < e for 0 < k < n - 1,

d(b(n, x0), b(n, y0)) C5(kAd(b(n, x0))k + 1)ea

5. Admissible Sequences of Products of Holonomies

We observe that a priori, the set Lb introduced in the previous section may be 
empty. In this section, we describe a method for obtaining elements in Lb. We follow 
closely [47].

Throughout this section, ( M, dM ) is a Riemannian manifold, X M is 
a basic hyperbolic set for f : X ! X with contraction constant l 2 (0, 1) 

satisfying (1), G a connected Lie group and b : X ! G an a-Holder cocycle that 
has subexponential growth.

Definition 12. By a periodic heteroclinic cycle, we mean a cycle consisting of points 
p1, . . . , pk that are periodic for the map f, have disjoint trajectories, such that pj is transverse 
heteroclinic to pj+1 through a point zj 2 Wu (pj) \ Ws(pj+1), for j = 1, . . . ,k (where 
pk+1 = p1).

Let P1,..., Pk be the corresponding periodic orbits and denote the periods by '1z...,' k. 
Denote by Oj the heteroclinic trajectory from pj to pj+1 (of the point zj chosen above), and 
by Hj the holonomy along this heteroclinic connection (that is, along Wu (pj) from pj to zj 
and then along Ws(pj+1) from zj to pj+1).

Replace the heteroclinic orbit Oj from pj to pj+1 by the trajectory Qj of length 
'jMj + 'j+1 Mj+1 that spends time 'jMj in the first half of Oj and time 'j+1 Mj+1 in 
the second half of Oj; that is, Qj = ffn (Zj) j —'jMj < n < 0g [ ffn (Zj) j 0 < n < 
'j+1 Mj+1 g). For the trajectory connecting pk to pk+1, we allow M1 and Mk+1 to be 
distinct. The positive integers Mj will be chosen later.

Consider the heights b(Pj) and b(Qj) over the periodic orbits Pj and 
trajectories Qj.
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Lemma 3. For j = 1, . . . ,k, the limit:

lim b (Pj)-Mj b (Qj) b (Pj+1)-Mj+1 = Hj
Mj,Mj+1!¥

exists and is the product of the holonomies along the unstable and stable leaves of Oj, from 
pj to pj+1.

Proof. This follows from Lemma 1. □

Definition 13. Consider a sequence of vectors N(1), N(2) . . . 2 Nk+1 whose entries are 
positive integers. Write N(i) = (M1 (i), . . . , Mk+1(i)). The sequence is admissible if there 
is a constant C2 1, such that Mp(i)/Mq(i) C2, for all p,q = 1 . . . ,k + 1 and all i 1.

If N = (M1, . . . , Mk+1) is a sequence, we write N ! ¥ if Mp ! ¥ for 
p= 1,...,k+1.

Theorem 12. Let N = (M1, . . . , Mk+1) 2 Nk+1. Define:

A(N) = b(P1)M1 H1 b(P2)2M2 H2 b(Pk)2Mk Hk b(P1)Mk+1

If the limit A = limN!¥ A(N) exists along an admissible sequence N(1), N(2), . . ., 
then A 2 Lb(p1).

In the remainder of this section, we prove Theorem 12. From now on, we assume 
for notational simplicity that Pj = pj are fixed points (so, 'j = 1).

Given N = (M1, . . . , Mk+1) 2 Nk+1, define:

jNj = (M1 + Mk+1)/2 + £k=2 Mj, min N = minf M1,..., Mk+1 g,max N = maxf M1,..., Mk+1 g

Note that for an admissible sequence N, we have max N C2 min N. Define:

Hj (N) = b (Pj)- Mj b (Qj) b (Pj+1)-M+1.

By Lemma 3, limN!¥ Hj ( N) = Hj (independent of the sequence N). Moreover, 
by [20, proof of Theorem 4.3(g)], there is d0 2 (0, 1), such that:

d(Hj(N), Hj) = O(d0minN) (5)

Recall that Qj is a trajectory of length Mj + Mj+1 that shadows the heteroclinic 
connection from pj to pj+1. Concatenate these trajectories to form a periodic 
pseudo-orbit Q = Q1 . . . Qk of length 2jNj. Then, Q is a d-pseudo-orbit with 
d C3lmin N, where C3 > 0 is a constant (depending on f : X ! X) and l is
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.1 . . . T~t .1 1 1 1 • • . C 17 .1 • • 1- 1 •.the contraction constant. By the hyperbolicity of X, there is a periodic orbit Q 
of length 2jNj that e-shadows Q with e C4lmin N, where C4 > 0 is a constant. 
See [54, page 74] for standard shadowing techniques.

Proposition 1.

(1) b(Q) = b(P1)M1H1(N) b(P2)2M2H2(N) b(Pk)2MkHk(N) b(P1)Mk+1.
(2) limN!¥ d(b(Q), b(Q)) = 0 along admissible sequences N.
(3) limN!¥ d(b(Q), A(N)) = 0 along admissible sequences N.

Proof. Part (1) is a direct calculation, namely:

kk

b ( q )=n b (Qj)=n b (Pj) MjHj (N) b (Pj+1) M

Next, write Q = Q1... Qk where Qj has length Mj + Mj+1. Define gj = b(Qj), 
gj = b (Qj). Note that Qj and Qj have a length of at most 2 max N and that 
Qj e-shadows Qj with e < C41min N. It follows from Lemma 2 that d (gi, gi) < 
ClaminN(|| Ad(gi) k + 1) where C = C4C5. Hence, using the properties of the metric 
on G and the fact that b has subexponential growth, we have:

7/O//-A O/A\\ 7/ ~ ~ ~ \d(b(Q),b(Q)) = d(YiY2 • • • Yk,YiY2 • •• 7k)
< d(YiY2 • • • Yk, Y1Y2 ••• Yk) + d(7iY2Y3 • •• Yk, 7172Y3 •• • Yk) +

-- + d(Yi72 • • • Yk-iYk, Y1Y2 • • • Yk-i7k)

< d(Yi,7i)bAd(Y2 .. .Yk)|| + d(Y2,Y2)llAd(Y3 •••Yk)|| + • • • + d(Yk,Yk)
< CXa min N [(1 + n)2max N +1][(1 + n)2max N + ••• + (1 + n)2(k-1) maxN]

where h > 0 can be chosen arbitrarily small and ||Ad( b (n, x ))k < (1 + h)n for n large 
enough. Restricting to admissible sequences, min N and max N are comparable, and 
Part (2) follows. The proof of Part (3) is similar using (5). □

Proof of Theorem 12. By assumption, A (N) ! A. Hence, by Proposition 1, 
Part (2,3), b((2) ! A. We conclude that A 2 Lb(p 1) by definition of Lb(p 1). □

Remark 7. Proving that the limit A = limN!¥ A(N) exists is challenging. The proof 
depends on the group that appears in the fiber. If G is the Heisenberg group, the components 
of A( N ) are a quadratic and several linear polynomials. In order to extract a convergent 
subsequence, we need to show that a diophantine system of a quadratic and several linear 
equations has approximate solutions. A difficulty is that, even though we can prescribe 
the leading coefficients in these equations, we cannot control all of the coefficients. Lower 
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order coefficients depend on the holonomy factors in A( N), which are difficult to control 
generically. This is the place where the diophantine approximation results, such as Theorem 7, 
come into play.

6. Semigroup Problem

For many Lie groups G, it is not hard to show that, for an integer p > 0 big 
enough, there is a large open set U Gp , such that if F 2 U, then the family F 
generates G, that is the group generated by F is dense in G. The proof of transitivity 
of an extension fb is based on showing that the set Lb (x) of “heights” of b over 
a (periodic) point x is the whole fiber G. See Theorem 11. To obtain the condition 
Lb (x) = G, we have to prove that for a typical family F 2 Gp that generates G as a 
group, if F is not contained in a maximal sub-semigroup with a non-empty interior, 
then F generates G as a semigroup, as well. We refer to this question as the semigroup 
problem. For example, if G = R, the problem states that if a set S contains both 
positive and negative numbers, then the closure of the semigroup generated by S 
is a group.

The semigroup problem was solved for G = Rn [41] and more generally for 
groups of the form G = K Rn, where K is a compact Lie group [33, Theorem 5.10]. 
It is also solved for G = SE(n) [33, Theorem 6.8], for certain solvable groups that 
are semidirect products of Rn with Rm, such as Aff+ in [55], and for the Heisenberg 
group in [48].
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