

CONTENTS IN DETAIL

TITLE PAGE

COPYRIGHT

DEDICATION

ABOUT THE AUTHOR

ACKNOWLEDGMENTS

INTRODUCTION
Who Is This Book For?
About This Book
Setting Up the Environment
Windows
macOS
Linux
Installing Packages with Python
Other Tools
Summary

CHAPTER 1: EXPLORATORY DATA ANALYSIS
Your First Day as CEO
Finding Patterns in Datasets
Using .csv Files to Review and Store Data
Displaying Data with Python

Calculating Summary Statistics
Analyzing Subsets of Data
Nighttime Data
Seasonal Data
Visualizing Data with Matplotlib
Drawing and Displaying a Simple Plot
Clarifying Plots with Titles and Labels
Plotting Subsets of Data
Testing Different Plot Types
Exploring Correlations
Calculating Correlations
Understanding Strong vs. Weak Correlations
Finding Correlations Between Variables
Creating Heat Maps
Exploring Further
Summary

CHAPTER 2: FORECASTING
Predicting Customer Demand
Cleaning Erroneous Data
Plotting Data to Find Trends
Performing Linear Regression
Applying Algebra to the Regression Line
Calculating Error Measurements
Using Regression to Forecast Future Trends
Trying More Regression Models
Multivariate Linear Regression to Predict Sales
Trigonometry to Capture Variations

Choosing the Best Regression to Use for Forecasting
Exploring Further
Summary

CHAPTER 3: GROUP COMPARISONS
Reading Population Data
Summary Statistics
Random Samples
Differences Between Sample Data
Performing Hypothesis Testing
The t-Test
Nuances of Hypothesis Testing
Comparing Groups in a Practical Context
Summary

CHAPTER 4: A/B TESTING
The Need for Experimentation
Running Experiments to Test New Hypotheses
Understanding the Math of A/B Testing
Translating the Math into Practice
Optimizing with the Champion/Challenger Framework
Preventing Mistakes with Twyman’s Law and A/A Testing
Understanding Effect Sizes
Calculating the Significance of Data
Applications and Advanced Considerations
The Ethics of A/B Testing
Summary

CHAPTER 5: BINARY CLASSIFICATION

Minimizing Customer Attrition
Using Linear Probability Models to Find High-Risk Customers
Plotting Attrition Risk
Confirming Relationships with Linear Regression
Predicting the Future
Making Business Recommendations
Measuring Prediction Accuracy
Using Multivariate LPMs
Creating New Metrics
Considering the Weaknesses of LPMs
Predicting Binary Outcomes with Logistic Regression
Drawing Logistic Curves
Fitting the Logistic Function to Our Data
Applications of Binary Classification
Summary

CHAPTER 6: SUPERVISED LEARNING
Predicting Website Traffic
Reading and Plotting News Article Data
Using Linear Regression as a Prediction Method
Understanding Supervised Learning
k-Nearest Neighbors
Implementing k-NN
Performing k-NN with Python’s sklearn
Using Other Supervised Learning Algorithms
Decision Trees
Random Forests
Neural Networks
Measuring Prediction Accuracy

Working with Multivariate Models
Using Classification Instead of Regression
Summary

CHAPTER 7: UNSUPERVISED LEARNING
Unsupervised Learning vs. Supervised Learning
Generating and Exploring Data
Rolling the Dice
Using Another Kind of Die
The Origin of Observations with Clustering
Clustering in Business Applications
Analyzing Multiple Dimensions
E-M Clustering
The Guessing Step
The Expectation Step
The Maximization Step
The Convergence Step
Other Clustering Methods
Other Unsupervised Learning Methods
Summary

CHAPTER 8: WEB SCRAPING
Understanding How Websites Work
Creating Your First Web Scraper
Parsing HTML Code
Scraping an Email Address
Searching for Addresses Directly
Performing Searches with Regular Expressions
Using Metacharacters for Flexible Searches

Fine-Tuning Searches with Escape Sequences
Combining Metacharacters for Advanced Searches
Using Regular Expressions to Search for Email Addresses
Converting Results to Usable Data
Using Beautiful Soup
Parsing HTML Label Elements
Scraping and Parsing HTML Tables
Advanced Scraping
Summary

CHAPTER 9: RECOMMENDATION SYSTEMS
Popularity-Based Recommendations
Item-Based Collaborative Filtering
Measuring Vector Similarity
Calculating Cosine Similarity
Implementing Item-Based Collaborative Filtering
User-Based Collaborative Filtering
Case Study: Music Recommendations
Generating Recommendations with Advanced Systems
Summary

CHAPTER 10: NATURAL LANGUAGE PROCESSING
Using NLP to Detect Plagiarism
Understanding the word2vec NLP Model
Quantifying Similarities Between Words
Creating a System of Equations
Analyzing Numeric Vectors in word2vec
Manipulating Vectors with Mathematical Calculations
Detecting Plagiarism with word2vec

Using Skip-Thoughts
Topic Modeling
Other Applications of NLP
Summary

CHAPTER 11: DATA SCIENCE IN OTHER LANGUAGES
Winning Soccer Games with SQL
Reading and Analyzing Data
Getting Familiar with SQL
Setting Up a SQL Database
Running SQL Queries
Combining Data by Joining Tables
Winning Soccer Games with R
Getting Familiar with R
Applying Linear Regression in R
Using R to Plot Data
Gaining Other Valuable Skills
Summary

INDEX

DIVE INTO DATA SCIENCE

Use Python to Tackle Your Toughest
Business Challenges

by Bradford Tuckfield

DIVE INTO DATA SCIENCE. Copyright © 2023 by Bradford Tuckfield.
All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information storage or
retrieval system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-7185-0288-8 (print)
ISBN-13: 978-1-7185-0289-5 (ebook)
Publisher: William Pollock
Managing Editor: Jill Franklin
Production Manager: Sabrina Plomitallo-González
Production Editor: Jennifer Kepler
Developmental Editor: Alex Freed
Cover Illustrator: Gina Redman
Interior Design: Octopod Studios
Technical Reviewer: Christian Ritter
Copyeditor: Sharon Wilkey
Compositor: Ashley McKevitt, Happenstance Type-O-Rama
Proofreader: Paula L. Fleming
Indexer: Emma Tuckfield

For information on distribution, bulk sales, corporate sales, or translations, please contact No Starch
Press, Inc. directly at info@nostarch.com or:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900
www.nostarch.com

Library of Congress Cataloging-in-Publication Data
Names: Tuckfield, Bradford, author.
Title: Dive into data science : use Python to tackle your toughest business
 challenges / by Bradford Tuckfield.
Description: San Francisco, CA : No Starch Press, [2023] | Includes index.
Identifiers: LCCN 2022051900 (print) | LCCN 2022051901 (ebook) | ISBN
 9781718502888 (paperback) | ISBN 9781718502895 (ebook)
Subjects: LCSH: Business--Computer programs. | Python (Computer program
 language)
Classification: LCC HF5548.5.P98 T83 2023 (print) | LCC HF5548.5.P98
 (ebook) | DDC 650.0285--dc23/eng/20221102
LC record available at https://lccn.loc.gov/2022051900
LC ebook record available at https://lccn.loc.gov/2022051901

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc.
Other product and company names mentioned herein may be the trademarks of their respective
owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we are
using the names only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every
precaution has been taken in the preparation of this work, neither the author nor No Starch Press, Inc.
shall have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in it.

http://www.nostarch.com/

For Leah

About the Author
Bradford Tuckfield is a data scientist, consultant, and writer. He received a
PhD in operations and information management from the Wharton School
of the University of Pennsylvania and a BS in mathematics from Brigham
Young University. He is the author of Dive Into Algorithms (No Starch
Press, 2021) and co-author of Applied Unsupervised Learning with R
(Packt, 2019). In addition to working as a data scientist and tech manager
for top finance firms and startups, he has published his research in academic
journals spanning math, business management, and medicine.

About the Technical Reviewer
As lead data scientist at Statistics Canada, Christian Ritter provided critical
support to build the agency’s data science division from the ground up,
including the development of its data analytics platform. He has led projects
leveraging natural language processing, computer vision, and recommender
systems to serve a variety of clients. Christian is currently leading the
agency’s integration of MLOps. He is also the founder of OptimizeAI
Consulting and works part-time as an independent data science consultant.
When not taking on data science projects, he mentors students as part of
postgraduate data science programs. Christian holds a PhD in
computational astrophysics.

ACKNOWLEDGMENTS

Many people made valuable contributions to this book. Professional
mentors and colleagues helped me learn Python and data science and
business and how all three can be put together. Included among these
mentors are Seshu Edala and Dr. Sundaram Narayanan. Friends, including
Sheng Lee, Ben Brown, Ee Chien Chua, and Drew Durtschi, have given
valuable advice and encouragement that helped me during the writing
process. Alex Freed at No Starch Press was unbelievably helpful throughout
the process. Christian Ritter provided excellent suggestions and corrections
as the technical reviewer. Emma Tuckfield provided excellent help in the
editing process. Jayesh Thorat helped prepare much of the code and data in
Chapter 8. My dear grandma Dr. Virgie Day provided lifelong
encouragement to my intellectual development, and also inspiration for
some of the ideas in Chapter 4; that chapter is dedicated to her. This book is
dedicated to Leah, who has been my most important source of support and
motivation.

INTRODUCTION

Some years ago, Hal Varian, the chief
economist at Google, confidently
claimed that “the sexy job in the next 10
years will be statisticians.” In the years
since he made that claim, two things

have happened: we’ve started calling statisticians
data scientists, and the profession has seen enormous
growth, both in demand for skilled practitioners and
in salaries.

The supply of skilled data scientists has not kept up with the demand.
Part of the aim of this book is to help solve that problem by introducing you
to all of the main data science techniques being used at today’s top firms.
Explanations come with working, thoroughly explained code for every
example, and we also provide ideas about how various data science
methods are applied and how to find creative solutions to challenges. The
book is meant to give anyone who reads it the skills to become a data
scientist and take on the toughest and most exciting challenges being faced
by businesses today.

But data science is more than just a career opportunity. It’s a broad field
combining elements of statistics, software development, math, economics,
and computer science. It allows you to analyze data, detect differences
between groups, investigate causes of mysterious phenomena, classify
species, and perform experiments—in other words, to do science. Anyone
who gets excited about discovering the truth about something hard to

understand, or who wants to understand the world better, should feel excited
about this aspect of data science.

In short, data science can offer something to nearly everyone. It can help
you solve business problems and make your business more successful. It
can make you more of a scientist, better able to observe and clearly
understand the world around you. It can sharpen your analytical abilities
and your coding skills. What’s more, it can be fun. Becoming a data
scientist means joining a field that’s constantly growing and expanding, and
this will mean that you need to expand your own knowledge and skills
every day. If you feel up to the challenge of learning a wide range of
difficult new skills that will help you work better, think better, and get a
“sexy” job, read on.

Who Is This Book For?
While we explain each code snippet in everyday language to make the book
digestible for someone with no Python experience and not much
programming experience, someone who has at least some basic
understanding of the fundamentals of programming—things like variable
assignment, for loops, if...then statements, and function calls—will be
the most prepared to benefit from the content in this book.

This book was written with the following groups in mind:

Aspiring data scientists
These days, it seems like everyone wants to be a data scientist, and every
company wants to hire data scientists. This book will help a beginner who
is just entering the job market get the skills they need to work in the data
science field. It can also help people who already have other careers and
want to jump laterally to become data scientists or start doing more data
science in their current roles.

Students
This book is suitable for an introductory class on data science at the
undergraduate level or for interested students to read independently.

Professionals
Several types of professionals, including project managers, executive-level
leaders, developers, and businesspeople in general, can benefit from
understanding what their data scientist colleagues do all day. Gaining the
skills in this book can help them work with data scientists more fruitfully.

Interested amateurs
You don’t have to read this book just for career advancement purposes.
Data science is a new, exciting field, and any interested amateur will find
this book fascinating and edifying.

About This Book
This book provides an introduction to all of the most common techniques
used by data scientists at the world’s top businesses. You will also learn
about ways that data science can be applied creatively to problems in
various industries. Here is a summary of the how the chapters are
organized.

Chapter 1: Exploratory Data Analysis Explains the first step of every
data science problem: exploring data, including reading data in Python,
calculating summary statistics, visualizing data, and uncovering
commonsense insights
Chapter 2: Forecasting Covers linear regression, a popular technique
from statistics that can be used to determine relationships between
quantitative variables and even to predict the future
Chapter 3: Group Comparisons Explores hypothesis testing, the
standard statistical method for comparing measurements of groups
Chapter 4: A/B Testing Discusses how to use experiments to determine
which business practices work best
Chapter 5: Binary Classification Covers logistic regression, a simple
machine learning technique for classification into two categories
Chapter 6: Supervised Learning Dives into several machine learning
methods for prediction, including decision trees, random forests, and
neural networks
Chapter 7: Unsupervised Learning Presents two methods for
clustering, another type of machine learning that can be used to find
natural groups in unlabeled data
Chapter 8: Web Scraping Explains methods for automatically
downloading data from public-facing websites
Chapter 9: Recommendation Systems Discusses how to build a system
that can automatically recommend products to customers
Chapter 10: Natural Language Processing Explores an advanced
method that converts text to quantitative vectors that can be used for a
variety of data science analyses

Chapter 11: Data Science in Other Languages Covers both R and
SQL, two other languages that are often used for data science
applications

Setting Up the Environment
We’ll implement the algorithms described in this book by using the Python
language. Python is free and open source, and it runs on every major
platform. You can use the following steps to install Python on Windows,
macOS, and Linux.

Windows
To install Python on Windows, do the following:

. Open the page dedicated to the latest version of Python for Windows: http
s://www.python.org/downloads/windows/ (make sure you include the final
slash).

. Click the link for the Python release you want to download. To download
the most recent release, click the link Latest Python 3 Release - 3.X.Y,
where 3.X.Y is the latest version number, like 3.10.4. The code in this book
was tested on Python 3.8 and should work with later versions. If you’re
interested in downloading an older version, scroll down on this page to the
Stable Releases section to find a release you prefer.

. The link you clicked in step 2 takes you to a page dedicated to your chosen
Python release. In the Files section, click the Windows installer (64-bit)
link.

. The link in step 3 downloads an .exe file to your computer. This is an
installer file; double-click it to open it. It will execute the installation
process automatically. Check the Add Python 3.X to PATH box, where X
is the release number of the installer you downloaded, like 10. After that,
click Install Now and choose the default options.

. When you see the Setup was successful message, click Close to
complete the installation process.

https://www.python.org/downloads/windows/

A new application is now on your computer. Its name is Python 3.X,
where X is the version of Python 3 that you installed. In the Windows
search bar, type Python, and click the application that appears. This will
open a Python console. You can enter Python commands in this console,
and they’ll run there.

macOS
To install Python on macOS, do the following:

. Open the page dedicated to the latest version of Python for macOS: https://
www.python.org/downloads/mac-osx/ (make sure you include the final
slash).

. Click the link for the Python release you want to download. To download
the most recent release, click the link Latest Python 3 Release - 3.X.Y,
where 3.X.Y is the latest version number, like 3.10.4. The code in this book
was tested on Python 3.8 and should work with later versions. If you’re
interested in downloading an older version, scroll down on this page to the
Stable Releases section to find a release you prefer.

. The link you clicked in step 2 takes you to a page dedicated to the latest
Python release. In the Files section, click the macOS 64-bit installer link.

. The link in step 3 downloads a .pkg file to your computer. This is an
installer file; double-click it to open it. It will execute the installation
process automatically. Choose the default options.

. The installer will create a folder on your computer called Python 3.X,
where X is the number of the Python release you installed. In this folder,
double-click the IDLE icon. This will open the Python 3.X.Y Shell, where
3.X.Y is your version number. This is a Python console where you can run
any Python commands.

Linux
To install Python on Linux, do the following:

. Determine which package manager your version of Linux uses. Two
common examples of package managers are Yum and APT.

https://www.python.org/downloads/mac-osx/

. Open the Linux console (also called the terminal) and execute the following
two commands:

> sudo apt-get update
> sudo apt-get install python3.11

If you are using Yum or another package manager, replace both instances
of apt-get in these two lines with yum or the name of your package
manager. Likewise, if you want to install a different version of Python,
replace 3.11 (the latest version number at the time of this writing) with any
other release number, like 3.8, one of the versions used to test the code in
this book. To see the latest version of Python, go to https://www.python.org/
downloads/source/. There, you will see a Latest Python 3 Release -
Python 3.X.Y link, where 3.X.Y is a release number; use the first two
numbers (for example, 3 and 11) in the previous installation command.

. Run Python by executing the following command in the Linux console:

> python3

The Python console opens in the Linux console window. You can enter
Python commands here.

Installing Packages with Python
When you install Python using the steps in the previous section, you’re
installing the Python standard library, or in more colloquial terms, base
Python. Base Python enables you to run simple Python code and contains
standard capabilities that are built into the Python language. Base Python is
powerful, and you can do many remarkable things with it. But it can’t do
everything, and this is why kind, talented people in the Python community
create Python packages.

Python packages (also called Python libraries) are add-ons to base
Python that provide extra capabilities not present in base Python. For
example, you may find that you have some data stored in Microsoft Excel
format, and you may want to write Python code that will read this Excel
data. There’s no straightforward way to do this in base Python, but a

https://www.python.org/downloads/source/

package called pandas enables you to read Excel files in Python quite
easily.

To use the pandas package, or any other Python package, you’ll need to
install it. A few packages are installed by default when you install base
Python, but most packages need to be installed manually. To install any
Python package manually, you’ll need Python’s standard package
installation tool, pip.

If you have base Python installed, installing pip is straightforward. First,
you will need to download a Python script from https://bootstrap.pypa.io/ge
t-pip.py. As the name of this script suggests, it’s a script that will help you
get pip. Now, you will need to run this script. The way you run this script
will depend on the operating system you’re using:
If you’re using Windows, you need to open the command prompt. You can
do this by clicking the Start button and entering cmd in the search bar. The
command prompt program will appear as a suggestion in the Start menu,
and you can click this to open the command prompt.
If you’re using macOS, you need to open the terminal. To open the
terminal, you can open the Finder, open the /Applications/Utilities folder,
and then double-click Terminal.
If you’re using Linux, you need to open the terminal. Most Linux
distributions have a shortcut to open the terminal available on the desktop
by default.

After opening the command prompt (in Windows) or the terminal (in
macOS or Linux), you need to run the following command:

> python3 get-pip.py

This will install pip on your computer. If you get an error when you run
this command, it’s possible that your get-pip.py file is stored in a location
that Python is having trouble finding. Being more specific about the
location of your files often helps, so you can try a command like the
following instead:

> python3 C:/Users/AtticusFinch/Documents/get-pip.py

https://bootstrap.pypa.io/get-pip.py

Here, we’ve specified a filepath (C:/Users/AtticusFinch/Documents/get-
pip.py) that tells Python where to look for the get-pip.py file. You should
alter this filepath so it matches the location of the get-pip.py file on your
own computer; for example, you probably need to change AtticusFinch to
your own name.

After you’ve installed pip, you’ll be able to use it to install any other
Python packages. For example, if you want to install the pandas package,
you can install it with the following command:

> pip install pandas

You can replace pandas with the name of any other Python package you
want to install. After installing pandas or any other Python package, you’ll
be able to use it in your Python scripts. We’ll go over more details about
how to use packages in Python in Chapter 1.

Other Tools
The previous sections contain details on how to install Python and how to
manually install Python packages. If you can do those two things, you will
be able to run all the code in this book.

Some Python users prefer to use other tools to run Python code. For
example, a popular tool called Anaconda is also free to use and allows you
to run Python code for data science. Anaconda includes base Python, plus
many popular packages and other capabilities. If you’d like to download
and use Anaconda for free, you can visit its web page at https://www.anaco
nda.com/products/distribution. You may find that you like it, and you’ll be
able to use it to run any code in this book, but it’s not required.

Project Jupyter provides another popular set of tools for running Python
code. You can visit its website at https://jupyter.org/ to learn about its most
popular tools: JupyterLab and Jupyter Notebook. These tools allow users to
run Python code in environments that are highly readable, interactive,
shareable, and user-friendly. All of the Python code in this book was tested
with Jupyter, but neither Jupyter nor Anaconda is required to run the code

https://www.anaconda.com/products/distribution
https://jupyter.org/

in this book: only base Python and pip (as described in the previous
sections) are needed.

Summary
Data science can give you abilities that feel like magic: the ability to predict
the future, the ability to multiply profits, the ability to automatically collect
huge datasets, the ability to turn a word into a number, and more. Learning
to do all these things well is not easy, and it takes serious study to make it to
the most advanced level. But the difficulty of learning data science can lead
to great rewards, and if you master the skills in this book, you can succeed
in a data science career and also have a lot of fun. This book is an
introduction to the main ideas of data science and how they’re applied in
business—it will get you started on the journey to becoming an expert data
scientist in any field you choose.

1
EXPLORATORY DATA ANALYSIS

This is a data science book, so let’s start
by diving into some data. This is
something you should get used to: the
first step of every data science problem
is exploring your data. Looking closely

at its minutest details will help you understand it
better and give you clearer ideas for next steps and
more sophisticated analyses. It will also help you
catch any errors or problems with your data as early
as possible. These first steps in the data science
process are referred to as exploratory data analysis.

We’ll start this first chapter by introducing a business scenario and
describing how data might be used to better run a business. We’ll talk about
reading data in Python and checking basic summary statistics. We’ll then
introduce some Python tools to create plots of data. We’ll go over simple
exploratory analyses we can perform and talk about the questions they can
answer for us. Finally, we’ll close with a discussion of how the analyses can
help us improve business practices. The simple analyses that we’ll do in this
chapter are the same types of analyses that you can do as a first step of
working on any data science problem you ever encounter. Let’s begin!

Your First Day as CEO
Imagine you receive a job offer to be the CEO of a company in Washington,
DC, that provides bicycles that people can rent for short periods to ride
around the city. Even though you don’t have any experience running bike-
sharing companies, you accept the offer.

You show up to work on your first day and think about your business
goals as a CEO. Some of the goals you might think about could be related
to issues like customer satisfaction, employee morale, brand recognition,
market share maximization, cost reduction, or revenue growth. How can
you decide which of these goals you should pursue first, and how should
you pursue it? For example, think about increasing customer satisfaction.
Before focusing on that goal, you’d need to find out whether your
customers are satisfied and, if not, discover what’s making satisfaction
suffer and how it can be improved. Or suppose you’re more interested in
working to increase revenue. You would need to know what your revenue is
right now before figuring out how it could be increased. In other words, you
won’t be able to choose your initial focus until you better understand your
company.

If you want to understand your company, you need data. You might try to
look at charts and reports that summarize your company’s data, but no
prepared report can tell you as much as you’ll learn by diving into the data
yourself.

Finding Patterns in Datasets
Let’s look at some data from a real bike-sharing service and imagine that
this is data from your company. You can download this data from https://br
adfordtuckfield.com/hour.csv. (This file is in a special format called .csv,
which we’ll talk more about soon.) You can open this file in a spreadsheet
editor like Microsoft Excel or LibreOffice Calc; you should see something
that looks like Figure 1-1.

https://bradfordtuckfield.com/hour.csv

NOTE

The original source of the bike-sharing data is Capital Bikeshare (ht
tps://ride.capitalbikeshare.com/system-data). The data was
compiled and augmented by Hadi Fanaee-T and Joao Gama and
posted online by Mark Kaghazgarian.

Figure 1-1: Bike-sharing data, viewed in a spreadsheet

This dataset is no different from many other datasets that you’ve
probably seen before: a rectangular array of rows and columns. In this
dataset, each row represents information about a particular hour between
midnight on January 1, 2011, and 11:59 PM on December 31, 2012—more
than 17,000 hours total. The rows are arranged in order, so the first few
rows give us information about the first few hours of 2011, and the last few
rows relate to the last few hours of 2012.

Each column contains a particular metric that has been measured for each
of these hours. For example, the windspeed column gives us hourly

https://ride.capitalbikeshare.com/system-data

measurements of wind speed at a particular weather-recording station in
Washington, DC. Notice that this measurement isn’t in familiar units like
miles per hour. Instead, the measurements have been transformed so that
they’re always between 0 and 1; all we need to know is that 1 represents a
fast wind speed and 0 represents no wind.

If you look at the first few rows, you’ll see that the windspeed value is 0
for each of these rows, meaning there was no measured wind for the first
few hours of the bike-sharing service’s existence. On the seventh row
(counting the heading as the first row), you can see that there was finally
some wind, and its measured speed was 0.0896. If you look at the hr
column, you can see that this wind was recorded when hr = 5, or at 5 AM.
We know that this row gives us information about January 1 because the
dteday column on the seventh row has the value 2011-01-01.

Just by looking at a few values in the data, we can already start to tell a
story, albeit an unexciting one: a still New Year’s night that turned into a
slightly less still New Year’s morning. If we want to know some stories
about the bike-sharing company and its performance instead of just the
weather, we’ll have to look at other, more relevant columns.

The columns with the most important information are the last three:
casual, registered, and count. These columns indicate the number of
people who used your company’s bikes each hour. People who register with
your service to get discounts and benefits are registered users, and their bike
use is recorded in the registered column. But people can also use your
bikes without registering, and their bike use is recorded in the casual
column. The sum of the casual and registered columns is the total count
of users during each hour, and it’s recorded in the count column.

Now that you’re familiar with some of the more relevant columns in this
dataset, you can learn a great deal just by glancing at their numbers.
Looking at the first 20 or so hours shown in Figure 1-1, for example, you
can see that in most hours, you have more registered users than casual users
(higher values in the registered column than the casual column). This is
just a simple numeric fact, but as the CEO, you should think through its
implications for your business. Having more registered than casual users
might mean that you’re doing well at convincing people to register, but it
also might mean that using your service casually without registering isn’t as

easy as it should be. You’ll have to think about which segment of customers
is more important for you to target: the regular, registered users, like daily
commuters, or the casual, infrequent users, like sightseeing tourists.

We can look more closely at the daily patterns of casual and registered
users to see if we can learn more about them. Let’s look at the hours shown
in Figure 1-1 again. We see that casual users are sparse until the afternoon
of the first day and peak around 1 PM. Registered users are relatively
numerous even at 1 AM of the first day and peak at 2 PM. The differences
between the behavior of registered and casual users are small but could be
meaningful. For example, they could indicate demographic differences
between these groups. This, in turn, could require using different marketing
strategies targeted to each group.

Consider what we’ve done already: just by looking at a few columns of
the first 24 rows of our data, we’ve already learned several important things
about the company and started to get some business ideas. Data science has
a reputation for requiring arcane knowledge about sophisticated math and
computer science, but simply glancing at a dataset, thinking a little, and
applying common sense can go a long way toward improving any business
scenario.

Using .csv Files to Review and Store Data
Let’s look even more closely at our data. If you open the data file (hour.csv)
in a spreadsheet editor, it will look like Figure 1-1. However, you can also
open this file in a text editor like Notepad (if you’re using Windows) or
TextEdit (if you’re using macOS) or GNU Emacs or gedit (if you’re using
Linux). When you open this file in a text editor, it will look like Figure 1-2.

Figure 1-2: Bike-sharing data viewed as raw text

This raw data (that is, every single text character) constitutes our hour.csv
file, without the alignment of straight columns you’d see in a spreadsheet.
Notice the many commas. This file’s extension, .csv, is short for comma-
separated values because the numeric values in each row are separated
from each other by commas.

When you use a spreadsheet editor to open a .csv file, the editor will
attempt to interpret every comma as a boundary between spreadsheet cells
so that it can display the data in straight, aligned rows and columns. But the
data itself is not stored that way: it’s just raw text with rows of values, with
each value separated from other values by commas.

The simplicity of .csv files means that they can be easily created, easily
opened by many types of programs, and easily changed. That’s why data
scientists commonly store their data in .csv format.

Displaying Data with Python

Using Python will allow us to do more sophisticated analyses than are
possible in text editors and spreadsheet programs. It will also allow us to
automate our processes and run analyses more quickly. We can easily open
.csv files in Python. The following three lines of Python code will read the
hour.csv file into your Python session and display its first five rows:

import pandas as pd
hour=pd.read_csv('hour.csv')
print(hour.head())

We’ll look more closely at the output of this snippet later. For now, let’s
look at the code itself. Its purpose is to read and display our data. The
second line reads the data by using the read_csv() method. A method is a
unit of code that performs a single, well-defined function. As its name
suggests, read_csv() is specifically designed to read data that’s stored in
.csv files. After you run this line, the hour variable will contain all the data
in the hour.csv file; then you can access this data in Python.

On the third line, we use the print() function to display (print) our data
onscreen. We could change the third line to print(hour) to see the entire
dataset printed out. But datasets can be very large and hard to read all at
once. Therefore, we add the head() method because it returns only the
dataset’s first five rows.

Both read_csv() and head() can be very useful to us. But they’re not
part of the Python standard library—the standard Python capabilities
installed by default. They are instead part of a package, a third-party body
of code that’s optional to install and use in Python scripts.

These two methods are part of a popular package called pandas, which
contains code for working with data. That’s why the first line of the
previous snippet is import pandas as pd: this imports, or brings in, the
pandas package so we can access it in our Python session. When we write
as pd, this gives the package an alias, so every time we want to access a
pandas capability, we can write pd instead of the full name pandas. So when
we write pd.read_csv(), we’re accessing the read_csv() method that’s
part of the pandas package.

If you get an error when you run import pandas as pd, it’s possible that
pandas is not installed on your computer. (Packages need to be installed

before you can import them.) To install pandas, or any other Python
package, you should use the standard Python package installer, called pip.
You can find instructions for how to install pip and use it to install Python
packages like pandas in this book’s introduction. Throughout this book,
every time you import a package, you should make sure that you’ve first
installed it on your computer by using pip.

You might get another error when you run this snippet. One of the most
common errors will occur when Python isn’t able to find the hour.csv file. If
that happens, Python will print out an error report. The last line of the error
report might say this:

FileNotFoundError: [Errno 2] No such file or directory: 'hou
r.csv'

Even if you’re not a Python expert, you can surmise what this means:
Python tried to read the hour.csv file but wasn’t able to find it. This can be a
frustrating error, but one that’s possible to resolve. First, make sure that
you’ve downloaded the hour.csv file and that it has the name hour.csv on
your computer. The filename on your computer needs to exactly match the
filename in your Python code.

If the name hour.csv is spelled correctly in your Python code (entirely
with lowercase letters), the problem is probably with the file’s location.
Remember that every file on your computer has a unique filepath that
specifies exactly where you need to navigate to get to it. A filepath might
look like this:

C:\Users\DonQuixote\Documents\hour.csv

This filepath is in the format used in the Windows operating system. If
you’re using Windows, try to make sure that your directories and filenames
don’t use any special characters (like characters from non-English
alphabets) because filepaths with special characters can lead to errors. The
following is another example of a filepath, one that’s in the format used by
Unix-style operating systems (including macOS and Linux):

/home/DonQuixote/Documents/hour.csv

You’ll notice that Windows filepaths look different from macOS and
Linux filepaths. In macOS and Linux, we use forward slashes exclusively,
and we start with a slash (/) instead of a drive name like C:\. When you
read a file into Python, the most straightforward way to avoid an error is to
specify the full filepath, as follows:

import pandas as pd
hour=pd.read_csv('/home/DonQuixote/Documents/hour.csv')
print(hour.head())

When you run this snippet, you can replace the filepath in the
read_csv() method with the filepath on your own computer. When you run
the previous snippet, with the filepath correctly specified to match the
location of hour.csv on your computer, you should get the following output:

 instant dteday season yr ... windspeed casual r
egistered count
0 1 2011-01-01 1 0 ... 0.0 3
13 16
1 2 2011-01-01 1 0 ... 0.0 8
32 40
2 3 2011-01-01 1 0 ... 0.0 5
27 32
3 4 2011-01-01 1 0 ... 0.0 3
10 13
4 5 2011-01-01 1 0 ... 0.0 0
1 1

[5 rows x 17 columns]

This output shows the first five rows of our data. You can see that the
data is arranged by column, in a way that looks similar to our spreadsheet
output. Just as in Figure 1-1, each row contains numeric values related to a
particular hour of the bike-sharing company’s history.

Here, we see ellipses in place of some columns so that it’s easier to read
onscreen and not too hard to read or copy and paste into text documents.
(You might see all the columns instead of ellipses—your display will
depend on the details of how Python and pandas are configured on your
computer.) Just as we did when we opened the file in a spreadsheet editor,

we can start looking at some of these numbers to discover stories about the
company’s history and get ideas for running the business.

Calculating Summary Statistics
Besides just looking at our data, quantifying its important attributes will be
helpful. We can start by calculating the mean of one of the columns, as
follows:

print(hour['count'].mean())

Here, we access the count column of our hour dataset by using square
brackets ([]) and the column name (count). If you run
print(hour['count']) alone, you’ll see the entire column printed to your
screen. But we want just the mean of the column, not the column itself, so
we add the mean() method—yet another capability provided by pandas. We
see that the mean is about 189.46. This is interesting to know from a
business perspective; it’s a rough measurement of the size of the business
over the two years covered by the data.

In addition to calculating the mean, we could calculate other important
metrics as follows:

print(hour['count'].median())
print(hour['count'].std())
print(hour['registered'].min())
print(hour['registered'].max())

Here, we calculate the median of the count column by using the
median() method. We also use the std() method to calculate a standard
deviation of our count variable. (You may already know that a standard
deviation is a measurement of how far spread out a set of numbers is. It’s
useful to help us understand the amount of variation that exists in ridership
counts between hours in our data.) We also calculate the minimum and
maximum of the registered variable, using the min() and max() methods,
respectively. The number of registered users ranges from 0 to 886, and this
tells us the hourly record you’ve set, and the record you’ll need to break if
you want your business to do better than it ever has before.

These simple calculations are called summary statistics, and they’re
useful to check for every dataset you ever work with. Checking the
summary statistics of a dataset can help you better understand your data
and, in this case, help you better understand your business.

As simple as these summary statistics might seem, many CEOs, if put on
the spot, couldn’t even tell you their company’s exact number of customers.
Knowing simple things like the mean number of customers on any hour of
any day can help you understand how big your company is and how much
room you have to grow.

These summary statistics can also be combined with other information to
tell us even more. For example, if you look up how much your company
charges for one hour of bike usage, you can multiply that by the mean of the
count column to get your total revenue over the two years covered by the
data.

You can check summary statistics manually by using pandas methods
like mean() and median() as we did previously. But another method makes
summary statistics easy to check:

print(hour.describe())

Here, we use the describe() method to check the summary statistics of
all variables in the dataset. The output looks like this:

 instant season ... registered co
unt
count 17379.0000 17379.000000 ... 17379.000000 17379.000
000
mean 8690.0000 2.501640 ... 153.786869 189.463
088
std 5017.0295 1.106918 ... 151.357286 181.387
599
min 1.0000 1.000000 ... 0.000000 1.000
000
25% 4345.5000 2.000000 ... 34.000000 40.000
000
50% 8690.0000 3.000000 ... 115.000000 142.000
000
75% 13034.5000 3.000000 ... 220.000000 281.000
000
max 17379.0000 4.000000 ... 886.000000 977.000

000

[8 rows x 16 columns]

You can see that describe() provides an entire table to us, and this table
contains several useful metrics, including the mean, minimum, and
maximum of each of our variables. The output of describe() also contains
percentiles. The 25% row, for example, contains the 25th percentile of each
variable in the hour data. We can see that the 25th percentile of the count
variable is 40, meaning that 25 percent of the hours in our dataset had 40
users or fewer, while 75 percent had more than 40 users.

The table that we get from the describe() method is also useful to help
us check for problems with the data. It’s common for datasets to contain
major errors that can be spotted in the output of describe(). For example,
if you run the describe() method on a dataset of people and see that their
average age is 200, your data has errors. This may sound obvious, but that
exact error (average ages greater than 200) was recently found in a well-
known research paper published in a top academic journal—if only those
researchers had used describe()! You should look at the output of
describe() for every dataset you work with to make sure that all the values
are at least plausible. If you find average ages over 200, or other data that
doesn’t look credible, you’ll have to locate the problems in the data and fix
them.

At this stage, we can already start to use what we’ve learned from the
data to get ideas for improving the business. For example, we’ve seen that
in the first 24 hours of our data, rider numbers at night are much lower than
rider numbers during the day. We’ve also seen a wide variation in the
hourly count of users: 25 percent of hours have fewer than 40 riders, but
one hour had 886 riders. As the CEO, you may want more hours that have
closer to 886 riders and fewer hours that have fewer than 40 riders.

You could pursue this goal in many ways. For example, you might lower
prices during the night to get more customers at that time and therefore
have fewer hours with low ridership. Just through simple exploration, you
can continue to learn from the data and get ideas for improving the
business.

Analyzing Subsets of Data
We’ve checked summary statistics related to the full dataset, and then
considered offering lower prices at night to increase nighttime ridership. If
we really want to pursue this idea, we should check summary statistics
related to just the nighttime.

Nighttime Data
We can start by using the loc() method:

print(hour.loc[3,'count'])

This loc() method allows us to specify a subset of our full data. When
we use loc(), we specify the subset we want to select by using square
brackets with this pattern: [<row>,<column>]. Here, we specify
[3,'count'], indicating that we want to select row 3 of our data and the
count column. The output we get from this is 13, and if you look at the data
in Figure 1-1 or Figure 1-2, you can see that this is correct.

One important thing to point out here is that the standard practice in
Python, as well as in pandas, is to use zero-based indexing. We count from
zero, so if our dataset has four rows, we label them row 0, row 1, row 2, and
row 3. The fourth row of your data is called row 3, or we say its index is 3.
Similarly, the third row of your data has index 2, the second row has index
1, and the first row has index 0. That’s why when we run
print(hour.loc[3,'count']), we get 13, which is the fourth value stored
in the data (the value from the row with index 3), instead of 32, which is the
third value stored in the data (the value from the row with index 2). Zero-
based indexing doesn’t feel natural to many people, but with experience,
you can get used to it and feel comfortable with it.

In the previous snippet, we looked at a subset that consists of a single
number (the count from a single row and a single column). But you may
want to know about a subset that consists of multiple rows or multiple
columns. By using a colon (:), we can specify a range of rows we want to
look at:

print(hour.loc[2:4,'registered'])

In this snippet, we specify that we want values of the registered
variable. By specifying 2:4 in the square brackets, we indicate that we want
all the rows between row 2 and row 4, so we get three numbers as output:
27, 10, and 1. If you look at these rows, you can see that these observations
are related to the hours 2 AM, 3 AM, and 4 AM. Instead of printing out all
the data, we’re printing out just three rows. Since we are printing out only a
subset, we can call this process subsetting—selecting subsets of data. This
can be useful when exploring and analyzing data.

Instead of looking at a few adjacent rows at a time, let’s look at all the
nighttime observations in our data. We can use logical conditions with the
loc() method:

print(hour.loc[hour['hr']<5,'registered'].mean())

This snippet uses loc() to access a subset of the data, just as we’ve done
before. However, instead of specifying particular row numbers, it specifies
a logical condition: hour['hr']<5, meaning that it will select every row in
our data for which the value of the hr variable is less than 5. This will give
us a subset of the data corresponding to the earliest hours of the morning
(midnight to 4 AM). We can specify multiple conditions for more complex
logic. For example, we can check specifically for ridership counts on colder
early mornings or warmer early mornings:

print(hour.loc[(hour['hr']<5) & (hour['temp']<.50),'count'].m
ean())
print(hour.loc[(hour['hr']<5) & (hour['temp']>.50),'count'].m
ean())

Here, we specify multiple logical conditions, separated by an & character
to mean and, which indicates that two things must be true simultaneously.
The first line selects rows that have an hr value less than 5 and a temp value
less than 0.50. In this dataset, the temp variable records temperatures, but
not on a Fahrenheit or Celsius scale that we’re familiar with. Instead, it uses
a special scale that puts all temperatures between 0 and 1, where 0
represents a very cold temperature, and 1 represents a very warm
temperature. Whenever you’re working with data, it’s important to make
sure you know exactly which units are used for each variable. We specify
hour['temp']<.50 to select hours with colder temperatures and

hour['temp']>.50 to select hours with warmer temperatures. Together,
these lines allow us to compare average ridership on cold early mornings
with average ridership on warm early mornings.

We can also use the | symbol to signify or. This could be useful in an
example like this:

print(hour.loc[(hour['temp']>0.5) | (hour['hum']>0.5),'coun
t'].mean())

This line selects the mean readership count for rows with either high
temperatures or high humidity—both aren’t required. Being able to select
these complex conditions could help you choose ways to improve ridership
during hours with uncomfortable weather.

Seasonal Data
A nighttime discount is not the only possible strategy for improving
ridership and revenue. You could also consider specials during certain
seasons or at certain times of the year. In our data, the season variable
records 1 for winter, 2 for spring, 3 for summer, and 4 for fall. We can use
the groupby() method to find the mean number of users during each of
these seasons:

print(hour.groupby(['season'])['count'].mean())

Much of this snippet should look familiar. We’re using print() to look at
metrics related to the hour data. We use the mean() method, indicating that
we’re looking at averages. And we use ['count'] to access the count
column of the data. So it’s already clear that we’re going to be looking at
average ridership counts in our hour data.

The only new part is groupby(['season']). This is a method that splits
the data into groups—in this case, one group for each unique value that
appears in the season column. The output shows us the mean ridership
counts for each individual season:

season
1 111.114569
2 208.344069

3 236.016237
4 198.868856
Name: count, dtype: float64

Interpreting this output is straightforward: in the first season (winter),
average ridership per hour is about 111.115; in the second season (spring),
average ridership per hour is about 208.344; and so on. A definite seasonal
pattern exists: higher ridership in the spring and summer seasons, and lower
ridership in the fall and winter. The groupby() method can also group on
multiple columns, as follows:

print(hour.groupby(['season','holiday'])['count'].mean())

The result is the following:

season holiday
1 0 112.685875
 1 72.042683
2 0 208.428472
 1 204.552083
3 0 235.976818
 1 237.822917
4 0 199.965998
 1 167.722222
Name: count, dtype: float64

Here, we specify two columns to group on: season and holiday. This
splits our hourly data into the four individual seasons, and then splits each
season into holidays (denoted by 1s) and non-holidays (denoted by 0s). It
shows us average ridership counts on holidays and non-holidays separately
for each season. The result is that we can see the differences between
holidays and non-holidays seasonally. It seems like holidays in the colder
seasons have ridership that’s lower than that on non-holidays, and holidays
in the warmer seasons have ridership that’s roughly equal to that on non-
holidays. Understanding these differences can help you make decisions
about how to run the business and might give you ideas about strategies you
can pursue during different seasons or different holidays.

This dataset is big, and there’s no end to the different ways it can be
examined. We’ve begun to look at a few subsets and started to get a few
ideas. You should do much more: examine subsets related to all the columns

and explore many perspectives on the data. Even without doing advanced
statistics and machine learning, you can learn a great deal and get many
useful ideas.

Visualizing Data with Matplotlib
Summary statistics are valuable and useful for exploration. However,
there’s an extremely important part of exploratory data analysis that we
haven’t done yet: plotting, or visualizing the data in organized charts.

Drawing and Displaying a Simple Plot
You should plot your data early and often every time you’re doing data
analysis. We’ll use a popular plotting package called Matplotlib. We can
draw a simple plot of our data as follows:

import matplotlib.pyplot as plt
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = hour['instant'], y = hour['count'])
plt.show()

Here, we import the Matplotlib package, giving it the alias plt. Next, we
create a figure, called fig, and an axis, called ax. The figure, fig, will
contain all the information about whatever plot or group of plots we draw.
The axis, ax, will give us access to useful methods for actually drawing
plots. The subplots() method creates both of these for us, and inside that
method, we can specify a figure size (figsize). In this case, we specify a
figure size of (10,6), meaning that our figure will have a width of 10
inches and a height of 6 inches.

Next, we draw our plot by using the scatter() method. In scatter(),
we specify x=hour['instant'] so the x-axis will show the instant
variable in our hour data. We specify y=hour['count'] so the y-axis will
show the count variable. Finally, we use plt.show() to display this plot
onscreen. This snippet creates a plot that should look like Figure 1-3.

Figure 1-3: Ridership counts every hour for two years

In this plot, you can see that every single point is an hour whose
information is recorded in the dataset. The first hour (the beginning of
2011) is the one that appears at the farthest left of the plot. The last hour
(the end of 2012) is the one that appears at the farthest right, and all other
hours proceed in order in between.

This plot, known as a scatterplot, is a good first plot to draw because it
shows every observation in the data; it also makes relationships easy to
visually identify. In this case, we can see a full representation of the
seasonal variation that our groupby() statement previously gave us a hint
about. We can also see the general growth of ridership over time.

Clarifying Plots with Titles and Labels
The plot in Figure 1-3 shows the data, but it’s not as clearly presented as it
should be. We can add titles and labels to our plot as follows:

fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = hour['instant'], y = hour['count'])
plt.xlabel("Hour")
plt.ylabel("Count")
plt.title("Ridership Count by Hour")
plt.show()

This snippet uses xlabel() to add a label to our x-axis, ylabel() to add
a label to our y-axis, and title() to add a title to the plot. You can specify
any text in these methods to get any labels you like. The output should look
like Figure 1-4.

Figure 1-4: Ridership counts by hour, with axis labels and a title

Our dataset is very large, and looking at all the data at once is hard. Let’s
look at how to plot smaller subsets of our data.

Plotting Subsets of Data

We can use the subsetting we did previously to plot only a subset of the
data:

hour_first48=hour.loc[0:48,:]
fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = hour_first48['instant'], y = hour_first48['cou
nt'])
plt.xlabel("Hour")
plt.ylabel("Count")
plt.title("Count by Hour - First Two Days")
plt.show()

Here, we define a new variable called hour_first48. This variable
contains data related to row 0 through row 48 of the original data,
corresponding roughly to the first two full days in the data.

Notice that we select this subset by writing hour.loc[0:48,:]. This is
the same loc() method that we’ve used before. We use 0:48 to specify that
we want the rows with indexes up to 48, but we don’t specify any columns
—we just write a colon (:) where we would normally specify column
names to select. This is a useful shortcut: a colon alone placed there tells
pandas that we want to select every column of the dataset, so we don’t need
to write out each column name individually. The plot of this subset looks
like Figure 1-5.

Figure 1-5: Ridership counts by hour for the first two days

By plotting only two days instead of two years of data, we avoid the
problem of points overlapping and hiding one another. We can see every
observation much more clearly. When you have a big dataset, it’s a good
idea to do both: plot the entire dataset at once (to understand the general,
overall patterns) as well as plot smaller subsets of the data (to understand
individual observations and smaller-scale patterns). In this case, we can see
patterns within each day of the data in addition to the longer-term seasonal
patterns within its years.

Testing Different Plot Types
We have many ways to change the appearance of a plot. Our scatter()
function contains parameters that we can adjust to get different looks:

fig, ax = plt.subplots(figsize=(10, 6))
ax.scatter(x = hour_first48['instant'], y = hour_first48['cou

nt'],c='red',marker='+')
plt.xlabel("Hour")
plt.ylabel("Count")
plt.title("Count by Hour - First Two Days")
plt.show()

Here, we use the c argument to specify a color for our plot points (red).
We also specify a marker argument to change the marker style, or the shape
of the points that are drawn. By specifying + for our marker argument, we
get plot points that look like little pluses instead of little dots. Figure 1-6
shows the output.

Figure 1-6: Ridership counts, with different style choices

This book isn’t printed in color, so you will not see the specified red
color displayed on this page. But you should see red points if you run this
code at home.

Scatterplots are not the only type of plot we can draw. Let’s try a line
plot:

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(hour_first48['instant'], hour_first48['casual'],c='re
d',label='casual',linestyle='-')
ax.plot(hour_first48['instant'],\
hour_first48['registered'],c='blue',label='registered',linest
yle='--')
ax.legend()
plt.show()

In this case, we use ax.plot() instead of ax.scatter() to draw the plot.
The ax.plot() method allows us to draw a line plot. Here, we call
ax.plot() twice to draw two lines on a single plot. This enables us to
compare casual and registered users (Figure 1-7).

Figure 1-7: A line plot showing casual and registered riders over the first two days

This plot shows that the number of casual riders is almost always lower
than the number of registered riders. The plot’s legend indicates different
colors for casual and registered users as well as the different line styles

(solid for casual riders, dashed for registered riders). Run this code at home
to see the colors and their contrast more clearly.

We can also try a different kind of plot:

import seaborn as sns
fig, ax = plt.subplots(figsize=(10, 6))
sns.boxplot(x='hr', y='registered', data=hour)
plt.xlabel("Hour")
plt.ylabel("Count")
plt.title("Counts by Hour")
plt.show()

This time, we import a package called seaborn. This package is based on
Matplotlib, so it includes all the capabilities of Matplotlib, plus more
features that help create beautiful, informative plots quickly. We use
seaborn’s boxplot() method to create a new kind of plot: a box plot. Figure
1-8 shows the box plots that this snippet creates.

Figure 1-8: Box plots showing ridership counts grouped by the hour of the day

You can see 24 vertical box plots, drawn parallel to one another—each
one representing information about a particular hour of the day. A box plot
is a simple kind of plot, but one that gives a great deal of information. In a
box plot, the upper and lower horizontal boundaries of each rectangle
represent the 75th and 25th percentiles of the plotted data, respectively. The
horizontal line inside the rectangle represents the median (or 50th
percentile). The vertical lines extending from the top and bottom of each
rectangle represent the full range of all observations that are not considered
outliers. The individually drawn points beyond the ranges of the vertical
lines are regarded as outliers.

Seeing the box plots together in Figure 1-8 enables you to compare
ridership at different times of day. For example, the median ridership during
hour 5 (around 5 AM) is quite low, but the median ridership at hour 6
(around 6 AM) is much higher. At hour 7 (around 7 AM), the median
ridership is higher still. High ridership occurs again around 5 PM and 6 PM;
maybe these peaks indicate that many of your customers use your bikes to
commute to and from work.

As you might expect, we can draw many more types of plots. Another
useful one is a histogram, which you can create as follows:

fig, ax = plt.subplots(figsize=(10, 6))
ax.hist(hour['count'],bins=80)
plt.xlabel("Ridership")
plt.ylabel("Frequency")
plt.title("Ridership Histogram")
plt.show()

This snippet uses the hist() command to draw a histogram. Figure 1-9
shows the output.

Figure 1-9: A histogram showing the frequency of each ridership count

In a histogram, the height of every bar represents frequency. In this case,
our histogram shows the frequencies of every ridership count. For example,
if you look at the x-axis around 800, you’ll see bars that have a height close
to 0. This means that very few hours in our dataset had around 800 riders.
By contrast, at about 200 on the x-axis, you see higher bars, with height
closer to 500. This indicates that for close to 500 individual hours in our
data, ridership was close to 200. The pattern we see in this histogram is a
common one for businesses: many hours have few customers, and few
hours have many customers.

You could use this kind of histogram to think about the capacity of your
company. For example, maybe your company has 1,000 bicycles available
to rent today. You think that it might be good to save money by selling 200
of your bicycles—that way, you’ll earn some extra cash and won’t have to
worry about maintenance and storage of superfluous bikes. This would
leave you with 800 bicycles available to rent. By looking at the histogram,

you can see exactly how much you would expect that change to impact your
company: since only a small fraction of hours have demand higher than
800, this should have a relatively small impact on your capacity. You could
look at the histogram to decide exactly how many of your bicycles you feel
comfortable selling.

Another type of plot, a pair plot, draws every possible scatterplot for
every possible pair of variables in your data:

thevariables=['hr','temp','windspeed']
hour_first100=hour.loc[0:100,thevariables]
sns.pairplot(hour_first100, corner=True)
plt.show()

Here, we create a thevariables variable, which is a list of three
variables we’ll plot. (We’re plotting only three instead of all variables
because of the limited space in the book.) We also create hour_first100,
which is a subset of our full data containing only the rows with index 100 or
less in the hour dataset. Again, the seaborn package helps us by providing
the pairplot() method that we can call to create our plot. The result, Figur
e 1-10, is a collection of plots, including both scatterplots and histograms.

Figure 1-10: Pair plots showing relationships among selected variables

The pair plot shows scatterplots for every possible combination of
variables in the subset of the data we selected, as well as histograms for the
individual variables we selected. A lot of data is plotted here, but the
scatterplots don’t show much apparent relationship among the variables;
these relationships appear to be essentially random.

Sometimes when we draw pair plots, we see more than just randomness.
Instead, we can see clear relationships among variables. For example, if we
had a measurement of snowfall in our data, we would see that as
temperature goes up, snowfall levels go down, and vice versa. This type of

clear relationship between variables is called correlation, and we’ll explore
it in the next section.

Exploring Correlations
Two variables are correlated if a change in one variable tends to occur
together with a change in the other variable. We say that two variables are
positively correlated if they change together: one variable tends to go up
when the other goes up, and one variable tends to go down when the other
goes down. We can find innumerable examples of positive correlations in
the world. The number of domestic house cats in a city is positively
correlated with the amount of cat food purchased in that city. If one of these
variables is high, the other one also tends to be high, and if one of these
variables is low, the other one also tends to be low.

We can also talk about negative correlations: two variables are negatively
correlated if one tends to go up when the other goes down, or if one tends to
go down when the other goes up. Negative correlations are also common in
the world. For example, the average temperature of a city is negatively
correlated with the average amount of money a typical resident spends on
thick winter coats every year. In cities where one of these numbers is high,
the other tends to be low, and in cities where one of these numbers is low,
the other tends to be high.

In the world of data science, it’s extremely important to find and
understand correlations, both positive and negative ones. Your performance
as CEO will improve if you can find and understand these correlations. For
example, you might find that the count of riders is positively correlated with
the temperature. If so, this means that ridership tends to be low when
temperatures are low. You could even consider selling some of your bikes
during seasons with low ridership to generate cash flow instead of letting
many of your bikes sit idle. Exactly what you choose to do will depend on
many other details of your situation, but understanding the data on a deep
level will help you make the best possible business decisions.

Calculating Correlations
We can calculate correlations in Python:

print(hour['casual'].corr(hour['registered']))
print(hour['temp'].corr(hour['hum']))

Here, we use the corr() method, yet another capability provided by
pandas. The corr() method calculates a number called the correlation
coefficient. We can calculate many types of correlation coefficients, but by
default, corr() calculates the Pearson correlation coefficient. This is the
most commonly used correlation coefficient, so whenever we refer to a
correlation coefficient in this book, we’ll be referring to the Pearson
correlation coefficient.

The Pearson correlation coefficient is a number that’s always between –1
and 1, and it’s often named with the variable r. It’s meant to describe the
relationship between two variables; its sign describes the type of
correlation, and its size describes the strength of the correlation. If the
correlation coefficient r is a positive number, our two variables are
positively correlated, and if r is a negative number, they’re negatively
correlated. If the correlation coefficient is 0, or very close to 0, we say that
the variables are uncorrelated.

In this case, the first line of this snippet calculates the correlation
coefficient describing the relationship between the casual and registered
variables in our data. For these variables, r is about 0.51, a positive number
that indicates a positive correlation.

Understanding Strong vs. Weak Correlations
In addition to noticing whether correlation coefficients are positive,
negative, or 0, we pay attention to their exact magnitude, or size. If a
correlation coefficient is large (far from 0 and close to either 1 or –1), we
often say that the correlation is strong. Take a look at Figure 1-11 to see
examples of correlations.

Figure 1-11: Positively correlated variables

Here, you can see two plots. The first plot shows the relationship
between Fahrenheit and Celsius temperatures. You can see that Fahrenheit
and Celsius are positively correlated: when one goes up, the other goes up,
and vice versa. The second plot shows the relationship between casual and

registered ridership in your company. Again, we see a positive correlation:
when casual ridership goes up, registered ridership tends to go up as well,
and vice versa.

The two correlations in Figure 1-11 are both positive, but we can see a
qualitative difference between them. The relationship between Fahrenheit
and Celsius is deterministic: knowing the Fahrenheit temperature allows us
to know the Celsius temperature exactly, with no uncertainty or guesswork.
This kind of deterministic positive correlation that appears as a straight line
on a plot is also called a perfect correlation, and when we measure a
correlation coefficient for a perfect positive correlation, we’ll find that r =
1.

By contrast, the relationship between casual and registered ridership is
not deterministic. Often a higher number of casual riders corresponds to a
higher number of registered riders. But sometimes it doesn’t; we can’t
perfectly predict one variable by using the other one. When two variables
are correlated but don’t have a deterministic relationship, we say that the
relationship between the two variables has “noise,” or randomness.

Randomness is hard to define precisely, but you can think of it as
unpredictability. When you know a Fahrenheit temperature, you can predict
the Celsius temperature with perfect accuracy. By contrast, when you know
the casual ridership, you can predict the registered ridership, but your
prediction may not be perfectly accurate. When unpredictability like this
exists, the two variables will have a correlation coefficient that’s less than 1.
In this case, we can calculate the correlation of casual and registered
ridership and find that r = 0.51.

You can think of the size of the correlation coefficient as a measure of the
amount of randomness in the relationship between two variables. A larger
correlation coefficient corresponds to less randomness (closer to a
deterministic relationship, like the relationship between Fahrenheit and
Celsius). A smaller correlation coefficient corresponds to more randomness
and less predictability. You can think of a 0 correlation coefficient,
indicating no relationship at all between variables, as an indication of pure
randomness, or pure noise.

You can look at Figure 1-12 to see examples of negative correlations of
different magnitudes.

Figure 1-12: Negatively correlated variables

Here, we see the same ideas as in Figure 1-11. The first plot shows a
perfect negative correlation: this time, the deterministic relationship
between pressure and volume. The correlation here is exactly r = –1,

indicating that no randomness occurs in the relationship between the
variables; each variable is perfectly predictable by using the other one.

The second plot shows the relationship between temperature and
humidity in our data. These two variables also have a negative correlation,
but with a much smaller coefficient: r is about –0.07. Just as we did with
the positive correlations in Figure 1-11, we can interpret these correlation
coefficients as measurements of randomness: a correlation coefficient with
a larger magnitude (meaning that it’s closer to 1 or –1) is a correlation that’s
highly predictable and not very random, while a coefficient with a smaller
magnitude (closer to 0) is a correlation that has more randomness. When we
see r = –0.07 here, we interpret that to mean that temperature and humidity
are negatively correlated, but their correlation is very weak—it’s not far
from pure randomness.

One important thing to remember when you look at correlations is a
famous saying: “Correlation does not imply causation.” When we observe
strong correlations, all we can be certain of is that two variables tend to
change together; we can’t be certain that one causes the other.

For example, suppose we study Silicon Valley startups and find that their
monthly revenues are correlated with the number of Ping-Pong tables they
purchase. We may hastily conclude from this correlation that Ping-Pong
tables are causing revenue to increase; maybe the relaxation and
camaraderie that they facilitate leads to higher productivity, or maybe the
fun atmosphere they create leads to better retention and hiring success.

On the other hand, these ideas may be completely mistaken, and maybe
the causation flows in the opposite direction; companies that have success
(totally independent of their Ping-Pong tables) have higher revenues, and
since their budget has suddenly increased, they use some of their new extra
money for a fun purchase like a Ping-Pong table. In that case, revenue
would be causing Ping-Pong table purchases, not the other way around.

Finally, the correlation could be mere coincidence. Maybe Ping-Pong
tables don’t lead to higher revenues, and revenues don’t lead to more Ping-
Pong tables, but instead we’ve observed a spurious correlation: a
correlation that occurs only by coincidence and does not indicate any
causation or special relationship. A correlation could also be due to an

omitted variable, something we haven’t observed but is independently
causing revenue increases and Ping-Pong table purchases simultaneously.

In any case, the important thing is to always be cautious when you find
and interpret correlations. Correlations mean that two variables tend to
change together, and they can help us make predictions, but they don’t
necessarily imply that one variable causes the other, or even that they have
any real relationship.

Discovering and understanding correlation coefficients can help you in
your CEO duties, especially when you find surprising correlations. For
example, you may find a strong, positive correlation between the size of
groups that rent bicycles together and their level of customer satisfaction
after the rental. Maybe this can give you some ideas about encouraging
people to rent bikes with their friends as a chance to get more satisfied
customers. Finding correlations, and understanding the magnitude of
correlations and what that tells you about predictability, can be valuable in
business.

Finding Correlations Between Variables
We can do more than calculate individual correlations between pairs of
variables. We can go further by creating a correlation matrix, which is a
matrix (or rectangular array) of numbers, each of whose elements is the
correlation coefficient measuring the relationship between two particular
variables. A correlation matrix will show the relationships among all of our
variables:

thenames=['hr','temp','windspeed']
cor_matrix = hour[thenames].corr()
print(cor_matrix)

Here, we use the same corr() method that we’ve used before. When we
use corr() without any arguments inside the parentheses, it creates a
correlation matrix for all the variables in a dataset. In this case, we create a
smaller correlation matrix that shows correlations among just three selected
variables. The correlation matrix that we calculate here looks like this:

 hr temp windspeed
hr 1.000000 0.137603 0.137252

temp 0.137603 1.000000 -0.023125
windspeed 0.137252 -0.023125 1.000000

Here, we have a 3×3 matrix. Every entry in this matrix is a correlation
coefficient. For example, in the second row, third column, you can see that
the correlation between windspeed and temp is about r = –0.023.
Technically, this is a negative correlation, though it’s so close to 0 that we
would typically describe the two variables as uncorrelated.

You also can see that three correlations in the matrix are equal to 1.0.
That’s expected: these perfect correlations are measuring the correlation of
each variable with itself (the correlation of hr with hr, temp with temp, and
windspeed with windspeed). Every variable will always have a perfect
correlation with itself. Creating a correlation matrix can be a quick, simple
way to find correlations among all the variables in your data and find any
surprising positive or negative correlations.

Creating Heat Maps
After creating a correlation matrix, we can create a plot of all these
correlations to make the matrix more easily readable:

plt.figure(figsize=(14,10))
corr = hour[thenames].corr()
sns.heatmap(corr, annot=True,cmap='binary',
 fmt=".3f",
 xticklabels=thenames,
 yticklabels=thenames)
plt.show()

Here, we create a heat map. In this type of plot, the color or darkness of a
cell indicates the value of the number in that cell. The heat map in Figure 1-
13 shows measurements of correlations between variables.

Figure 1-13: Correlations shown in a heat map

This heat map shows a collection of nine rectangles. As the legend on the
right indicates, a darker fill in a rectangle indicates that a particular
correlation is higher, and a lighter fill indicates that a particular correlation
is lower. A heat map of a correlation matrix can provide an even quicker
way to check for patterns and relationships among variables, since strong
relationships will quickly catch the eye.

If you prefer a color plot instead of a grayscale one, you can change the
cmap='binary' parameter in the sns.heatmap() method. This cmap
parameter refers to the color map of the heat map, and by choosing a
different cmap value, you can get different color schemes. For example, if

you use cmap='coolwarm', you’ll see a heat map in which higher values are
represented by reddish colors and lower values are represented by bluish
colors.

Heat maps can be drawn for variables other than correlation matrices. For
example, we can draw a heat map showing the number of riders at each
hour throughout a week:

Create a pivot table
df_hm =hour.pivot_table(index = 'hr',columns ='weekday',value
s ='count')
Draw a heatmap
plt.figure(figsize = (20,10)) # To resize the plot
sns.heatmap(df_hm, fmt="d", cmap='binary',linewidths=.5, vmi
n = 0)
plt.show()

To create this plot, we have to create a pivot table, a table of grouped
values. If you’ve spent a lot of time working with Excel or other
spreadsheet programs, you’ve likely encountered pivot tables before. Here,
our pivot table has grouped values from our full dataset based on their day
of the week and hour of the day. We have the average ridership for each
hour (0 through 23) of each day (Sunday through Saturday). After creating
a pivot table with data grouped in this way, we can use the same heatmap()
method to create the heat map shown in Figure 1-14.

Figure 1-14: Ridership counts for each hour of every day

This heat map contains darker rectangles for hours that had more riders
and lighter rectangles for hours that had fewer riders. We can see
commuters who spike in activity around 8 AM and 5 PM. We can also see
weekend outings on Saturday and Sunday afternoons.

From a business perspective, this heat map could give us any number of
business ideas. For instance, seeing the spike in ridership around 8 AM on
weekdays could give you an idea for increasing your revenue. Just as we
imagined providing discounts during times of low activity, we might also
consider the mirror image strategy: surge pricing (temporarily higher
prices) during especially active times. Other transportation companies like
Uber, Lyft, and Grab use this surge pricing strategy, not only to increase
revenue but also to ensure high availability of their products.

Exploring Further
So far, we’ve looked at only one dataset, and we’ve done only a few of the
infinite explorations that are possible with it. As you continue from your
first morning as CEO to your first afternoon, then your second day, and
further on, you will need to make many decisions about your business and
the way it operates. The exploration that we’ve done in this chapter can be
applied to any other business question you ever encounter. For example,
you might consider bundling bike rentals with refreshing drinks and earning
extra revenue that way (not to mention keeping your riders healthier and
safer). Analyzing data related to your customers, their riding patterns, and
how thirsty they get during bike rides could help you figure out whether this
strategy is a good idea.

Other analyses could be related to the repairs your bikes need. How often
are your bikes being repaired, and how much do repairs cost? You could
check for the times of repairs and make sure they’re not being done during
peak hours. You could check the costs of repairs of various types of bikes.
You could check a histogram of the prices of repairs and check whether any
outliers are increasing your costs too much. These explorations would help
you better understand your business and help you get ideas for running it
better.

So far, our analyses have not been extremely sophisticated; mostly we’ve
calculated only summary statistics and drawn plots. But these simple
calculations and plots, when combined with common sense, can be valuable
as a first step in making business decisions. Some CEOs don’t look at data
enough, and others want to look at data but depend on staff to provide
reports to them, and those reports may be slow or imperfect. A CEO who
can confidently check data related to their company is a CEO who can be
effective. CEOs can become good at data, and this can combine with their
business knowledge to make them even better at their jobs. Similarly, data
scientists can become good at business, and when their data skills are
combined with business acumen, they can really become a force to be
reckoned with.

Summary

In this chapter, we started with a simple business scenario: becoming a CEO
and making decisions related to running a business better. We went over
some ideas for what a CEO needs to do and how exploratory data analysis
can be helpful. We covered how to read data into Python, calculate
summary statistics, draw plots, and interpret results in a business context. In
the next chapter, we’ll go over linear regression, a more sophisticated
method that can be used not only for exploration but also for forecasting.
Let’s continue!

2
FORECASTING

Let’s look at some data science tools
that can help you predict the future. In
this chapter, we’ll introduce a simple
business scenario in which a company
needs to forecast customer demand.

We’ll then talk about how tools from data science can
be applied to make an accurate forecast and how that
forecast can lead to better business decision-making.

We’ll use linear regression for our forecasting, and we’ll discuss both
univariate and multivariate linear regression. Finally, we’ll look at
extrapolation of regression lines and how to evaluate various regression
models to choose the best one.

Predicting Customer Demand
Imagine that you’re running a car dealership in Quebec, Canada. You are
using a standard business model for retail: you buy cars from a
manufacturer at a low price and then sell those cars to individual customers
at higher prices. Every month, you need to decide how many cars you’ll
order from the manufacturer. If you order too many cars, you’ll be unable to
sell them all quickly, resulting in high storage costs or cash flow problems.

If you order too few cars, you won’t be able to meet your customers’
demands.

Ordering the right number of cars is important. But what is the right
number? The answer depends on certain business considerations, such as
the cash in your bank account and how much you want to grow—but in a
typical month, the right number of cars to order is exactly the number of
cars that customers will want to buy during the coming month. Since we
can’t ◊see into the future, we need to forecast the demand and place an
order based on our forecast.

We can choose from several proven quantitative methods to obtain a
forecast of next month’s demand. One of the best methods is linear
regression. In the remainder of this chapter, we’ll explain how to use linear
regression for forecasting. We’ll use past data to predict future data, to learn
the number of cars we need to order. We’ll start simply, just by reading in
and looking at some data, and then proceed to the other steps of the
forecasting process.

Cleaning Erroneous Data
The data we’ll analyze to forecast the future is a record of the number of
cars sold by dealerships in Quebec, Canada, for each of 108 consecutive
months. This data was originally made available online by Rob Hyndman, a
statistics professor and forecasting guru. You can download the data from ht
tps://bradfordtuckfield.com/carsales.csv.

This data is old; the most recent month recorded is December 1968.
Therefore, for this scenario, we’ll be imagining that we live in December
1968, and we’ll make forecasts for January 1969. The forecasting principles
we’ll discuss will be evergreen, so if you can use data from 1968 to forecast
results in 1969, you’ll be able to use data from year n to forecast results
from year n + 1, for n = 2,023 or 3,023 or any other number.

Save this file into the same directory where you’re running Python. Then
we’ll read our data by using Python’s pandas package:

import pandas as pd
carsales=pd.read_csv('carsales.csv')

https://bradfordtuckfield.com/carsales.csv

Here, we import pandas and give it the alias pd. We then use its
read_csv() method to read our data into Python and store it in the variable
carsales. The pandas package we import and use here is a powerful
module that makes working with data in Python easier. The carsales
object we create is a pandas dataframe, which is the standard pandas format
for storing data in a Python session. Because the object is stored as a pandas
dataframe, we’ll be able to use many helpful pandas methods to work with
it, just as we did in Chapter 1. Let’s start by using the head() method that
enables us to inspect pandas dataframes:

>>> print(carsales.head())
 Month Monthly car sales in Quebec 1960-1968
0 1960-01 6550.0
1 1960-02 8728.0
2 1960-03 12026.0
3 1960-04 14395.0
4 1960-05 14587.0

By looking at these rows, we can notice a few important points. First, we
can see the column names. The column names in this dataset are Month and
Monthly car sales in Quebec 1960-1968. The second column name will
be easier to work with if we shorten it. We can do this easily in Python:

carsales.columns= ['month','sales']

In this snippet, we access the columns of our dataframe and redefine
them to have shorter names (month and sales, respectively).

Just as the head() method prints the top five rows of a dataset, the
tail() method prints the bottom five rows. If you run
print(carsales.tail()), you’ll see the following output:

>>> print(carsales.tail())
 month sales
104 1968-09 14385.0
105 1968-10 21342.0
106 1968-11 17180.0
107 1968-12 14577.0
108 Monthly car sales in Quebec 1960-1968 NaN

We can see that the column names are shorter now and easier to read. But
we also see that the very last row doesn’t contain car sales data. Instead, its
first entry is a tag, or label, that tells us about the whole dataset. Its second
entry is NaN, which stands for not a number, meaning that the entry contains
no data or undefined data. We don’t need the label entry or the empty (NaN)
entry, so let’s remove the entire last row (row 108):

carsales=carsales.loc[0:107,:].copy()

Here, we use the pandas loc() method to specify a selection of rows that
we want to keep: in this case, all the rows between row 0 and row 107,
inclusive. We use the colon (:) after the comma to indicate that we want to
keep both of the dataset’s columns. We store the result in our carsales
variable, thereby removing the superfluous row 108. If you run
print(carsales.tail()) again, you’ll see that that row has been removed.

Another thing we can see by looking at the head and tail of our data is the
format of the month data. The first entry is 1960-01 (January of 1960), the
second entry is 1960-02 (February of 1960), and so on.

As data scientists, we’re interested in doing numeric analyses using math,
statistics, and other quantitative methods. Dates can present several tedious
challenges that make it hard to do math and statistics the way we want to.
The first challenge is that dates are sometimes not stored in a numeric data
type. Here, the dates are stored as strings, or collections of characters.

To see why this is an issue, try print(1960+1) in the Python console;
you’ll notice that the result is 1961. Python has seen that we’re working
with two numbers, and it’s added them in the way we expect. Then, try
print('1960'+'1') in the Python console; now you get 19601 as the result.
Instead of adding two numbers, Python has seen that we’ve input strings
and assumes that the + sign means that we want to do concatenation, simply
fusing the strings together in a way that doesn’t follow the rules of math.

Another challenge with dates is that even when they’re in numeric form,
they follow logic that is different from the logic of natural numbers. For
example, if we add 1 to month 11, we get month 12, which follows the
arithmetic rule that 11 + 1 = 12. But if we add 1 to month 12, we get month
1 again (since every December is followed by January of the next year),
which is not consistent with the simple arithmetic of 12 + 1 = 13.

In this case, the simplest way to address the issues with the data type of
our date data is to define a new variable called period. We can define it as
follows:

carsales['period']=list(range(108))

Our new period variable is just a list of all the numbers from 0 to 107.
We’ll refer to January 1960 as period 0, February 1960 as period 1, and so
on until December 1968, the last month in our data, which we’ll call period
107. This new variable is numeric, so we can add to it, subtract from it, or
do any other mathematical operation with it. Also, it will follow the rules of
standard arithmetic, with period 13 coming after period 12, as we expect in
numeric variables. This simple solution is possible because in this particular
dataset, the rows are organized in chronological order, so we can be sure
that each period number is being assigned to the correct month.

These simple tasks, like adding a numeric column for months, removing
an extra row, and changing column names, are part of data cleaning. This is
not a glamorous or particularly exciting process, but doing it right is
extremely important because it lays a foundation for the more thrilling steps
of the data science process.

Plotting Data to Find Trends
After these basic data-cleaning tasks, we should definitely plot the data.
Plotting should be done early and often in every data science project. Let’s
use the Matplotlib module to create a simple plot of our data:

from matplotlib import pyplot as plt
plt.scatter(carsales['period'],carsales['sales'])
plt.title('Car Sales by Month')
plt.xlabel('Month')
plt.ylabel('Sales')
plt.show()

In this snippet, we import the Matplotlib pyplot module and give it the
alias plt. Then, we use the scatter() method to create a scatterplot of all
the sales numbers in our data, organized by period (month). We also use a

few lines to add axis labels and a plot title and then show the plot. Figure 2-
1 shows the result.

Figure 2-1: Car sales by month over nine years

This simple plot shows our period variable on the x-axis and sales on
the y-axis. Each point represents one row of data or, in other words, the
number of car sales for one particular month.

See what interesting information pops out at you in this plot. Probably
the most obvious thing is the gradual upward trend from left to right: sales
appear to be increasing gradually over time. Other than this trend, the data
seems noisy and scattered, with huge variations between one month and
another. The variations within a year or season look random, noisy, and
unpredictable. The linear regression method that we’ll implement next will
attempt to capture the order and patterns in our data, and help us be less
distracted by the randomness and noise.

So far, all we’ve done is read in the data and draw a simple plot. But
already we’re starting to see patterns that will be useful for making accurate
forecasts. Let’s go on to some more serious forecasting steps.

Performing Linear Regression

Now that we’ve cleaned the data, plotted it, and noticed some basic
patterns, we’re ready to do forecasting in earnest. We’ll use linear
regression for our forecasts. Linear regression is an essential part of every
data scientist’s toolkit: it finds a line that captures a noisy relationship
between variables, and we can use that line to make predictions about
things we’ve never seen.

Linear regression was invented more than a century before the term
machine learning was coined, and it has historically been thought of as part
of pure statistics. However, since it bears such a strong resemblance to
many common machine learning methods, and since it shares some
common theoretical foundations with machine learning, linear regression is
sometimes considered part of the machine learning field. Like all the best
scientific tools, it allows us to pull order from chaos.

In this case, we have the chaos of car sales in Quebec, where seasonal
variations, time trends, and plain randomness mingle together in a noisy
dataset. When we apply simple linear regression to this data, our output will
be a straight line that captures an underlying structure that will help us
make sound forecasts for the future. Figure 2-2 shows an example of a
typical output of linear regression.

Figure 2-2: A dashed line showing a typical output of linear regression

In this plot, you can see the points representing the data, just as in Figure
2-1. Again, we see the chaos of our dataset: great variations occur between
months across the whole dataset.

The dashed line that progresses slightly upward from left to right
represents the output of a linear regression. It’s called a regression line, and
we often say that this regression line fits the data. In other words, it goes
through what looks like roughly the center of the cloud constituted by all
the points together. It gets close to many of the points of our data, and no
data point is particularly far away from it. It’s as if the line expresses or
reveals the fundamental relationship between time and sales (a relationship
of gradual growth). The notion of a line fitting a set of points is
fundamental to linear regression. In fact, for reasons we’ll discuss later, a
regression line is sometimes called the line of best fit to a dataset.

Since our regression line is a straight line, it doesn’t have the random
variation of the real data. The line proceeds in a predictable way. By
removing that randomness, the regression line shows us a clear
representation of the underlying pattern of the data. In this case, the
regression line shows us that the data has a general trend upward over time,
and if we measure the regression line carefully, we can find exactly the
slope and height of that trend.

We can interpret the value of the regression line for any particular month
as the number of car sales expected in that month. Later we’ll extrapolate
our simple line forward into the future (by continuing to draw it with the
same slope until it extends past the right edge of the plot) to generate
forecasts for sales in future months.

Let’s run the code that performs linear regression and outputs a
regression line. We’ll use methods for linear regression that are very
particular about the shape of the data we use, meaning whether sales
numbers are stored as 108 rows × 1 column or 108 columns × 1 row. In this
case, our linear regression code will run more smoothly if our data is stored
as 108 rows of 1 list each, where each list contains one number. To get our
data in this shape, we’ll use the pandas reshape() method as follows:

x = carsales['period'].values.reshape(-1,1)
y = carsales['sales'].values.reshape(-1,1)

If you run print(x) and print(y), you can see the new shape of the
data: 108 rows of one-element lists. Actually performing the linear
regression takes little code. We can do the whole thing, including importing
the relevant module, with three lines:

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x, y)

Here, we import the linear regression capability from the scikit-learn
package, which can be referred to by its standard abbreviation, sklearn. This
package, which is extremely popular in the machine learning world,
provides many useful machine learning capabilities, including linear
regression. After importing sklearn, we define the variable regressor. A
regressor, as its name tautologically suggests, is a Python object that we’ll
use to perform regression. After creating the regressor, we tell it to fit our
x and y variables. We are telling it to calculate the line shown in Figure 2-2
that fits the data by matching its location and general trend.

A more quantitative way to describe what fitting our regression means is
that it’s determining precise, optimized values for two numbers: a
coefficient and an intercept. After running the preceding snippet, we can
look at both of these numbers as follows:

print(regressor.coef_)
print(regressor.intercept_)

This code prints out two numbers that are output by the regressor’s fit()
method: an intercept, which you should see is about 10,250.8; and a
variable called coef_, which is short for coefficients, and should be equal to
about 81.2. Together, these two numbers specify the exact position and
trend of the dashed regression line you see in Figure 2-2. You’ll see how
they do this in the next section.

Applying Algebra to the Regression Line
To see how these two numbers specify the regression line, think back to
your high school math classes. You may remember learning that every
straight line can be expressed in a form like this:

y = m · x + b

Here, m is a slope, or coefficient, and b is the intercept (technically a y-
intercept—the exact place where the line crosses the plot’s y-axis). In this
case, the value of the coef_ variable we found, about 81.2, is the value of
m, and the value of the intercept variable we found, about 10,250.8, is the
value of b. So, what we have learned from our regression process is that the
relationship between time period and car sales can be expressed, at least
approximately, as follows:

car sales = 81.2 · period + 10250.8

The chaos of the car sales dataset’s apparently random variation (shown
in Figure 2-1) is now reduced to the order of this simple equation. The line
that this equation describes is the dashed line in Figure 2-2. We can think of
every point on that line as a prediction of how many car sales are expected
at each time period, ignoring the distracting randomness and noise.

The m and b values in our equation have useful interpretations. The
interpretation of the line’s slope, 81.2, is the monthly growth trend of car
sales. Based on the data we’ve observed in the past, we conclude that car
sales in Quebec grow by about 81.2 cars per month. Randomness and other
variation remain, but a growth of 81.2 is what we approximately expect.
The interpretation of the intercept variable, 10,250.8, is the baseline value
of car sales: the expected car sales in month 0 after “removing” or ignoring
the chaos of seasonal variation, the passage of time, and other influences.

The equation that linear regression finds can also be called a model, a
quantitative description of how two or more variables relate to each other.
So when we perform the preceding steps, we can say that we fit a
regression, or equivalently we can say that we trained a model. Our
regression, or equivalently our model, tells us that we expect to sell about
10,250.8 cars at the beginning of the time frame in our data, and we expect
to sell about 81.2 more cars every month than we sold in the previous
month.

It’s natural to wonder how our regressor determined that 81.2 and
10,250.8 (the coef_ and intercept outputs of our regressor) are the best
values for m and b in our regression line. The line they specify looks good

enough in Figure 2-2, but it’s not the only line we could draw through our
cloud of points. A literally infinite number of conceivable lines also go
through our cloud and could be said to fit our data. For example, we might
hypothesize that the following line is a better approximation of the
relationship between time period and sales:

car sales = 125 · period + 8000

Let’s call this new line our hypothesized line. If we use it as a model of
our data, we have a new m and b, and so we have a new interpretation. In
particular, the slope of this line is 125, which we would interpret as an
expectation that monthly car sales will increase by about 125 every month
—significantly higher than 81.2, the estimate from our regression line. Let’s
plot our regression line and this new hypothesized line together with the
data as follows:

plt.scatter(carsales['period'],carsales['sales'])
plt.plot(carsales['period'],[81.2 * i + 10250.8 for i in \
carsales['period']],'r-',label='Regression Line')
plt.plot(carsales['period'],[125 * i + 8000 for i in
carsales['period']],'r--',label='Hypothesized Line')
plt.legend(loc="upper left")
plt.title('Car Sales by Month')
plt.xlabel('Month')
plt.ylabel('Sales')
plt.show()

You can see the output of this snippet in Figure 2-3, where we’ve drawn
the data, our regression line (the shallow solid line), and our new
hypothesized line (the steeper dashed line).

Figure 2-3: A regression line and a steeper line that also fits the data

Both lines go through our cloud of points. Both show an upward trend
over time. Both are reasonable candidates to be approximations of the
relationship between time and sales, and both could be said to fit the data.
Why has our regressor output one line instead of the other? We said that the
regression line output by the linear regression process is the line of best fit.
What is it that enables us to say that it fits better than any other line?

Calculating Error Measurements
We can find the answer by looking at measurements related to regression
errors. Remember that we interpret each point of a regression line as our
prediction of what value we expect in the data. Figure 2-4 shows a
regression line and the data used to create it.

Figure 2-4: Regression errors: vertical distances between points and a regression line

You can see that this regression line is a good fit to the data, meaning it
gets close to most of the illustrated points. However, it’s not a perfect fit.
For every data point, we can calculate the vertical distance between the data
point and the regression line. The regression line predicts a certain value,
and the point in the data has a particular distance from that prediction. This
distance between a predicted and an actual value of a data point is called the
regression’s error relative to that point. In Figure 2-4, the variable ei is an
error measurement for one of the points in the data. You can see that ei is
the vertical distance between a particular point and the regression line. We
can calculate this distance for every point in our data.

Calculating the error relative to each data point will give us a way to
quantify how well any line fits our data. Lines with low errors fit the data
well, and lines with high errors fit the data poorly. That’s why we say that
measuring regression errors is one way to measure a regression line’s
goodness of fit, the degree to which a line fits the data well.

Let’s calculate those error measurements for our car sales regression.
We’ll calculate each point of the lines we’re interested in and compare those
points to each point of our dataset:

saleslist=carsales['sales'].tolist()
regressionline=[81.2 * i + 10250.8 for i in carsales['perio
d']]
hypothesizedline=[125 * i + 8000 for i in carsales['period']]
error1=[(x-y) for x, y in zip(regressionline,saleslist)]
error2=[(x-y) for x, y in zip(hypothesizedline,saleslist)]

In this snippet, we create saleslist, a variable that includes the raw car
sales numbers for every month. Then we create two variables,
regressionline and hypothesizedline. These variables record every
point on the regression and hypothesized lines, respectively. We want to
measure how far each true sales number is from both of these lines, so we
create two more variables: error1 to record the distance between true sales
numbers and the regression line, and error2 to record the distance between
true sales numbers and the hypothesized line.

We can print out these variables to look at what errors we find for both of
our lines:

print(error1)
print(error2)

When you look at these lists of errors, you can see 108 separate
measurements of how far these lines are from the raw data. These 108
measurements are an expression of how well these lines fit the raw data.
However, looking at all 216 of these measurements at once is difficult. It
would be easier if we could boil down all this information indicating how
well a line fits to just one number. The following snippet shows one way to
do this:

import numpy as np

error1abs=[abs(value) for value in error1]
error2abs=[abs(value) for value in error2]

print(np.mean(error1abs))
print(np.mean(error2abs))

In this snippet, we import Python’s NumPy package. NumPy is used
often in data science, especially for calculations with arrays and matrices.

Here, we import it because it gives us the ability to find the mean of a list.
Then we define two new variables: error1abs and error2abs, each
containing a list of the absolute values of our error measurements for our
two respective lines. Finally, we take the means of these lists.

The means that we find are called the mean absolute error (MAE)
measurements of each line. Hopefully, the MAE feels like an intuitive
measurement of error to you: it’s just the average vertical distance between
a line and the points in a dataset. A line that gets very close to the points in
a dataset will have a low MAE, and a line that is very far from most points
will have a higher MAE.

The MAE is a reasonable way to express the degree of goodness of fit of
a regression line or any other line. The lower the MAE, the better. In this
case, we can see that the MAE for our regression line is 3,154.4, while the
MAE for our hypothesized line is 3,239.8. At least according to this
measurement, the regression line fits the data better than our hypothesized
line.

The MAE has an easy interpretation: it’s the average error we expect to
have if we use a particular line for prediction. When we say that the MAE
for our regression line is 3,154.4, we mean that if we use this regression line
to make predictions, we expect our predictions to be wrong by about
3,154.4 on average (either 3,154.4 too low or too high).

For example, suppose we predict that three months from now, we will
sell exactly 20,000 cars. We wait three months, count our monthly sales,
and find that we actually sold 23,154 cars instead of 20,000. Our prediction
was wrong; we underestimated car sales by 3,154. So, we’re not perfect at
prediction, and the size of our prediction error tells us exactly how
imperfect we are. Is the size of our error a surprise? The MAE we just
measured (3,154.4) tells us that having an error this high isn’t surprising—
in fact, underestimating by 3,154 is (after rounding) exactly the size of error
we expect to encounter in any month when we’re using this regression.
Sometimes we’ll overestimate instead of underestimating, and sometimes
we’ll have lower or higher errors than 3,154. Regardless, the MAE is telling
us that having an error of about 3,154 is what we expect when using this
regression for this prediction scenario.

MAE is not the only measurement that indicates how well a line fits a
dataset. Let’s look at another possible measurement:

error1squared=[(value)**2 for value in error1]
error2squared=[(value)**2 for value in error2]

print(np.sqrt(np.mean(error1squared)))
print(np.sqrt(np.mean(error2squared)))

Here, we create lists of the squared values of each error. Then we take the
square root of the sum of these errors. This measurement is called the root
mean squared error (RMSE). Lower RMSE values indicate a line that is a
better fit—one that’s expected to make better predictions.

We can create simple Python functions that perform calculations of MAE
and RMSE:

def get_mae(line,actual):
 error=[(x-y) for x,y in zip(line,actual)]
 errorabs=[abs(value) for value in error]
 mae=np.mean(errorabs)
 return(mae)

def get_rmse(line,actual):
 error=[(x-y) for x,y in zip(line,actual)]
 errorsquared=[(value)**2 for value in error]
 rmse=np.sqrt(np.mean(errorsquared))
 return(rmse)

These functions just calculate MAE and RMSE, respectively, exactly as
we did previously. If you run
print(get_rmse(regressionline,saleslist)), you can see that the
RMSE of our regression line is about 3,725, and if you run
print(get_rmse(hypothesizedline,saleslist)), you can see that the
RMSE of our hypothesized line is about 3,969.

You’ll notice that the RMSE of our regression line is smaller than the
RMSE of our hypothesized line. This enables us to say that the regression
line is a better fit to the data than the hypothesized line, according to the
RMSE metric.

It’s not a coincidence that our regression line has a lower RMSE than our
hypothesized line. When we ran the command regressor.fit(x,y) in
Python earlier, the regressor.fit() method performed linear algebraic
calculations that were invented by the great mathematician Adrien-Marie
Legendre and first published in 1805. Legendre’s calculations take a
collection of points as an input, and their output is the intercept and
coefficients that minimize the value of the RMSE. In other words, the line
whose coefficients are determined by Legendre’s method is mathematically
guaranteed to have a lower RMSE than any of the other infinite possible
lines that we could draw to try to fit our data. When we call the regression
line the line of best fit, we mean that it is mathematically guaranteed to
have the lowest possible RMSE of all possible lines that use the variables
we specified. This guarantee is a reason for the enduring popularity of
linear regression, and why it’s still a standard way to find a line that fits a
dataset after all these years.

The line that the regressor outputs is the best-fit line, not just in the loose
sense that it looks like it fits the cloud very well, but in the strict
quantitative sense that out of all the infinite lines that go through the cloud
of points, it is guaranteed to have the lowest RMSE. You can feel free to try
other straight lines and check their RMSE values—you won’t find one that
performs better than our regression line.

Using Regression to Forecast Future Trends
So far, we’ve used linear regression to find the line that is the best fit of our
historical data. But our historical data is all from the past, so we haven’t
done any real forecasting yet. Going from a linear regression to a forecast is
simple: we just need to extrapolate.

The dashed regression line we drew in Figure 2-2 stops at the edges of
our plot, at month 0 on the left and month 107 on the right, but there’s no
reason it needs to stop there. If we continue to draw our regression line
farther to the right, we can see the values we expect for any month,
however far in the future. Of course, we’ll keep the same slope and
intercept as we extend the line in this way. Let’s write code that will do this:

x_extended = np.append(carsales['period'], np.arange(108, 11
6))

Here, we create the variable x_extended. This variable is a combination
of two sets of numbers. First, it includes the values of our dataset’s period
column that records the periods from 0 to 107 in order. Second, it includes
all the numbers 108 through 115 in order—these are meant to represent
future months after the end of our data (month 108, month 109, . . . all the
way to month 115). We combine these two things by using the np.append()
method, and the end result is an extended version of our original x variable.

Next, we can use our regressor’s predict method to calculate the values
that will be on our regression line for each of the month numbers in
x_extended:

x_extended=x_extended.reshape(-1,1)
extended_prediction=regressor.predict(x_extended)

Now we have the forecast values stored in the variable
extended_prediction. If you look at extended_prediction, you can see
what these predictions are. These predictions follow a simple pattern: each
is about 81.2 higher than the previous one. This is because 81.2 is the slope
of our regression line. Remember, 81.2 is not just the slope of the line but
also the size of the increase we expect in car sales every month, ignoring
randomness and seasonal variation.

The prediction method we used here is helpful, but we don’t really need
it. We can get any values we want on our regression line just by plugging in
numbers to our regression equation:

car sales = 81.2 · period + 10250.8

However we get the next predicted values, we can plot them and see
what they look like on a graph (Figure 2-5):

plt.scatter(carsales['period'],carsales['sales'])
plt.plot(x_extended,extended_prediction,'r--')
plt.title('Car Sales by Month')
plt.xlabel('Month')

plt.ylabel('Sales')
plt.show()

Figure 2-5: A regression line extrapolated several periods forward, for forecasting

This plot will probably not surprise you. It looks almost identical to Figur
e 2-2, and it’s supposed to. The only difference is that we’ve extended our
regression line out a few more periods to the right, to see what car sales we
expect—that is, how many we forecast—in the near future. This
extrapolation of a regression line is a simple but effective way to forecast.

We’ve accomplished forecasting with linear regression, but there’s more
we can do to improve our forecasts. In the next sections, we’ll talk about
ways to evaluate and improve the performance of our forecasts.

Trying More Regression Models
The linear regression we did in the previous sections is a simple kind called
univariate linear regression. This type of regression uses only one variable
to predict one other variable. In our case, we used the period variable alone
to predict sales. Using only one variable has a couple of advantages: first, it
is easy; and second, it creates a simple, straight line that expresses some
order in the data without also including its random noise. But we have other
options.

Multivariate Linear Regression to Predict Sales
If we use other variables to predict sales as well as just the period, we can
perform a more complex kind of regression called multivariate linear
regression. The details of multivariate linear regression are essentially the
same as univariate linear regression; the only real difference is the number
of variables we use for prediction. We can use any variables we like for
multivariate regression: gross domestic product (GDP) growth rates,
population estimates, car prices, inflation rates, or anything else we want.

For now, we’re limited because our dataset doesn’t contain any of those
variables. It contains only the period and the sales. However, we can still
perform multivariate regression, by using variables that we derive from the
period variable. For example, we could use period2 as a new variable in a
multivariate regression, or log(period), or any other mathematical
transformation of the period variable.

Remember that when we performed regression before, we found the m
and the b (slope and intercept) variables in the following equation:

y = m · x + b

When we use multiple variables to predict car sales, we’re also finding
slope and intercept variables. The only difference is that we’re also finding
more variables. If we’re using three variables to do prediction (which we
can call x1, x2, and x3), then we’re finding the m1, m2, m3, and b variables in
the following equation:

y = m1 · x1 + m2 · x2 + m3 · x3 + b

The idea is the same as in univariate regression, but we end up with more
slopes for more predictor variables. If we want to use period, period2, and
period3 to predict car sales in our regression, we’ll need to estimate the m1,
m2, m3, and b variables in Equation 2-1:

car sales = m1 · period + m2 · period2 + m3 · period3 + b

Equation 2-1: An equation for multivariate regression using our car sales data

Let’s look at the code that will create these transformations of our period
variable and do linear regression with three variables:

carsales['quadratic']=carsales['period'].apply(lambda x: x**
2)
carsales['cubic']=carsales['period'].apply(lambda x: x**3)

x3 = carsales.loc[:,['period','quadratic','cubic']].values.re
shape(-1,3)
y = carsales['sales'].values.reshape(-1,1)

regressor_cubic = LinearRegression()
regressor_cubic.fit(x3, y)
plt.scatter(carsales['period'],carsales['sales'])
plt.plot(x,regressor.predict(x),'r-')
plt.plot(x,regressor_cubic.predict(x3),'r--')
plt.title('Car Sales by Month')
plt.xlabel('Month')
plt.ylabel('Sales')
plt.show()

In this snippet, we define two new variables: quadratic, whose value is
equal to period2, and cubic, whose value is equal to period3. Then, we
define a new x3 dataframe that includes all three of these new variables, and
we reshape it so that they will be the right shape for our regressor. The right
shape for this three-variable multivariate regression is an array of 108 rows,
in which each row is a list of the values of our three variables for a
particular month. As long as the data is in the right shape, we can use the
fit() method for any univariate or multivariate linear regression with any
number of variables. After calling fit(), we calculate the values predicted
by this regression for our data and plot them. This snippet creates the plot in
Figure 2-6.

Figure 2-6: A curve that also fits the data

Here, you can see two regression lines. One is the (solid) straight line that
is the result of our previous (univariate) regression. The other, newer
regression line is not a straight line, but rather a (dashed) curve—a cubic
curve, to be precise. Linear regression was originally designed to work with
straight lines (hence the name linear), but we can also use it to find best-fit
curves and nonlinear functions like the cubic polynomial in Figure 2-6.

Whether we find a best-fit straight line or a best-fit curve, the linear
regression methods that we’re using are exactly the same. Similarly, using
multiple variables for prediction is not really different from univariate
regression with one variable: the output still fits our data, and in fact, our
new curve goes very close to the straight line. Every time we select
different variables for our regression, the output will look a little different:
it may have a different shape or a different curve. But it will always fit the
data. In this case, if you want to know the unknown variables in Equation 2-
1, we can print them out as follows:

print(regressor_cubic.coef_)
print(regressor_cubic.intercept_)

The outputs from these print() statements are the following:

[[8.13410634e+01 7.90279561e-01 -8.19451188e-03]]
[9746.41276055]

These outputs enable us to fill in all the variables in Equation 2-1 to get
an equation for estimating car sales using a cubic polynomial of the period:

car sales = 81.34 · period + 0.79 · period2 – 0.008 · period3 + 9746.41

One important thing to notice about Figure 2-6 is the different behavior
of our regression lines during the last few periods, on the right side of the
plot. The straight line from our univariate regression increases by about
81.2 every period, and when we extrapolate it farther to the right, it will
continue to predict increases of about 81.2 every period. By contrast, the
curved line from our multivariate regression begins to curve downward on
the right side of the plot. If we extrapolated it farther to the right, it would
predict a decrease in car sales every month forever.

These two lines, though they behave similarly and are both the result of
linear regression, make opposite predictions about the future: one predicts
growth, and the other predicts contraction. Later in the chapter, we’ll talk
more about how to choose which regression line to use for forecasting.

Trigonometry to Capture Variations
There’s no limit to the number of variables we can add to a multivariate
regression. Each selection of variables will lead to a curve with a slightly
different shape. One of the difficult choices we have to make in every
regression problem is which variables to add to the regression.

In this case, the univariate regression line (the straight line in Figure 2-2)
and the cubic regression line (the curved line in Figure 2-6) are both
acceptable and can be used to forecast the future. However, though they
both pass through what looks like the middle of our cloud of points, there is
so much variation that they don’t capture—sales for many individual
months are much higher or much lower than these lines. Ideally, we could
find a collection of variables that, when fit using a linear regression, lead to
a curve that better fits some of this variation. In this case, making one small
change to the way we plot our data can make what we should do next
clearer.

Let’s change Figure 2-1 from a scatterplot to a line plot, by making just
one small change in our code (shown in bold):

from matplotlib import pyplot as plt
plt.plot(carsales['period'],carsales['sales'])
plt.title('Car Sales by Month')
plt.xlabel('Month')
plt.ylabel('Sales')
plt.show()

Figure 2-7 shows the new plot.

Figure 2-7: A line plot makes the patterns within years (high summers and low winters)
more apparent.

This new plot shows the same data, but plotted as a line rather than a
collection of points. With a line plot, another pattern becomes much clearer.
We can see that the noisy ups and downs of monthly sales within individual
years are more ordered than they looked in the scatterplot.

In particular, our data includes nine years of sales figures, and exactly
nine major peaks are apparent in the contour of the line plot. What looked
like totally random noise actually has some structure: a predictable peak in
sales occurs every summer, with a corresponding trough every winter. If
you think about it a little more, you might realize why variation could exist
within a year: it’s because this data comes from Quebec, where very cold

winters are associated with lower activity levels, and beautiful warm
summers are associated with going outside and shopping and taking long
road trips that require cars.

Now that you can see the way the number of car sales goes up and down
during a year, maybe it reminds you of a mathematical function. In fact, the
pattern of periodic increases and decreases looks like a trigonometric curve,
like a sine or cosine curve. Figure 2-8 shows an example of sine and cosine
curves.

Figure 2-8: A plot of a sine curve and a cosine curve

Let’s try a regression that uses the sine and cosine of the period in a
multivariate regression:

import math
carsales['sin_period']=carsales['period'].apply(lambda x: mat
h.sin(x*2*math.pi/12))
carsales['cos_period']=carsales['period'].apply(lambda x: mat
h.cos(x*2*math.pi/12))

x_trig = carsales.loc[:,['period','sin_period','cos_perio
d']].values.reshape(-1,3)
y = carsales['sales'].values.reshape(-1,1)

regressor_trig = LinearRegression()
regressor_trig.fit(x_trig, y)

plt.plot(carsales['period'],carsales['sales'])

plt.plot(x,regressor_trig.predict(x_trig),'r--')
plt.title('Car Sales by Month')
plt.xlabel('Month')
plt.ylabel('Sales')
plt.show()

In this snippet, we define sine and cosine transformations of the period
variable, and then we fit a regression that uses these new variables as
predictors. Finally, we plot the result, which is shown in Figure 2-9.

Figure 2-9: A trigonometric curve fit to our data

In Figure 2-9, you can see the raw sales data plotted as a solid line, and
the trigonometric regression curve plotted as a dashed line. You can see that
we’re really getting somewhere now. The regression that relies on
trigonometric functions seems to fit the data especially well. In particular, it
seems to go up during the yearly peaks and down during the yearly troughs,
thereby getting much closer to the true sales numbers. We can verify that
this trigonometric curve has a lower RMSE than the straight line as follows:

trig_line=regressor_trig.predict(x_trig)[:, 0]
print(get_rmse(trig_line,saleslist))

The RMSE we get as output is the lowest one we’ve seen yet: about
2,681. It is not entirely a coincidence that trigonometric functions enable us

to fit the data well. In fact, the increases and decreases in temperature
during seasons on our planet are due to a change in the angle of the Earth
during its revolution around the sun. The change in the angle of the Earth
with respect to the sun follows a curve that’s like a sine curve, and therefore
temperature changes throughout each year also follow sine-like curves. If
car sales are reacting to winter and summer weather changes due to
temperature, it makes sense that they would also follow sine-like curves.
Regardless of whether we found the trigonometric model by blind chance,
by looking at our scatterplot in Figure 2-1, or because we know about the
astronomy of the Earth’s rotation around the sun, it seems like we’ve found
a good regression curve that fits the data well.

Choosing the Best Regression to Use for
Forecasting
We’ve observed that the regression line that includes terms for the sine and
cosine of the period seem to fit the data well. When we say that this line fits
the data well, we mean that, qualitatively, the dashed line in Figure 2-9 gets
quite close to the solid line. More precisely, we mean that quantitatively, the
RMSE for the trigonometric line is lower than the RMSE for the other lines
we’ve looked at. Whenever we find a model with a lower RMSE, we are
getting a model that fits our data better.

The natural temptation is to keep looking for new regression
specifications that have lower and lower RMSEs. For example, let’s try a
new regression specification that includes seven prediction terms to forecast
sales, and find the RMSE for that model:

carsales['squareroot']=carsales['period'].apply(lambda x: x**
0.5)
carsales['exponent15']=carsales['period'].apply(lambda x: x**
1.5)
carsales['log']=carsales['period'].apply(lambda x: math.log(x
+1))

x_complex = carsales.loc[:,['period','log','sin_period','cos_
period', \
'squareroot','exponent15','log','quadratic', 'cubic']].value
s.reshape(-1,9)

y = carsales['sales'].values.reshape(-1,1)

regressor_complex = LinearRegression()
regressor_complex.fit(x_complex,y)

complex_line=[prediction for sublist in regressor_complex.pre
dict(x_complex) \
for prediction in sublist]
print(get_rmse(complex_line,saleslist))

In this snippet, we repeated steps that we’ve done before: define some
variables, use the variables in a linear regression, and check the RMSE of
the regression. Notice the backslash (\) at the end of a few of the lines.
These are line continuation characters: they’re telling Python that the line
they’re on and the next line should be treated as one single line of code. We
are using them here because the full line doesn’t fit on the book’s page. At
home, you can use line continuation characters, or you can ignore them if
you’re able to type the full lines without breaks.

At the end of the preceding snippet, we check the RMSE for this new
regression model, and we find that it’s about 2,610: even lower than the
RMSE for the trigonometric model shown in Figure 2-9. If RMSE is our
metric for judging how well a model fits, and we have gotten the lowest
RMSE yet, it probably seems natural to conclude that this is our best model
yet, and we should use this model for forecasting.

But be careful; this apparently reasonable conclusion is not correct. The
approach we’ve been taking to model selection has a problem: it doesn’t
fully resemble the reality of forecasting as we encounter it in real life.
Think about what we’ve done. We’ve used past data to fit a regression line
and then judged how good that regression line is, based on how close it gets
to past data points (its RMSE). We’re using the past both for fitting our
regression line and for judging its performance. In a real-world forecasting
scenario, we’ll use the past to fit our regression line, but we should use the
future for judging its performance. A forecasting method is worthwhile only
if it can predict the unknown future.

When we’re choosing the best regression line to use for forecasting, we
want to find a way to evaluate various regression lines based on their
performance on future data. This is not possible because the future hasn’t
happened yet, so we can’t ever have future data. But we can make a small

change in the way we perform and evaluate regressions so that our
measurements of performance on past data give a good estimate of how
they’ll perform when predicting the future.

What we need to do is split our full dataset into two separate, mutually
exclusive subsets: a training set, consisting of the majority of our data, and
a test set, consisting of the rest. We’ll use only the training set to fit our
regressions, or in other words, to train them. After fitting/training our
regressions, we’ll use the test set to evaluate how good the regressions are,
using metrics like RMSE or MAE.

This simple change makes an important difference. Instead of evaluating
performance based on the same data used to fit our regressions, we are
evaluating based on separate data that was not used during the fitting
process. Our test set is from the past, but it’s as if it’s from the future, since
it’s not used to determine the coefficients and intercept in our regression,
and it’s used only to test how good the regression’s predictions are. Since
the test set hasn’t been used to fit our regressions, we sometimes say that
the regressions haven’t learned from the test data, or that it’s as if the test
data is from the future. By having some data that’s as if it’s from the future,
our regression evaluation more closely resembles a true forecasting process,
where prediction of the future is the most important goal.

Let’s look at the code to accomplish this training/test split, and then we’ll
see what makes it work so well:

x_complex_train = carsales.loc[0:80,['period','log','sin_peri
od','cos_period','squareroot', \
'exponent15','log','quadratic','cubic']].values.reshape(-1,9)
y_train = carsales.loc[0:80,'sales'].values.reshape(-1,1)

x_complex_test = carsales.loc[81:107,['period','log','sin_per
iod','cos_period','squareroot', \
'exponent15','log','quadratic','cubic']].values.reshape(-1,9)
y_test = carsales.loc[81:107,'sales'].values.reshape(-1,1)

regressor_complex.fit(x_complex_train, y_train)

Here, we split the data into two sets: a training set and a test set. We use
the training set to train the data (to fit a regression line). We can then use
the test set to test how well our regression performs. If you think about this

approach, it resembles an actual forecasting situation: we train a model
knowing only the past, but the model has to do well on data that wasn’t
used to train it (the future, or data that’s as if it’s from the future). Creating
a test set like this is essentially creating a simulated future.

In the preceding snippet, we use the first 81 time periods as our training
data and the rest (27 time periods) as our test data. In percentage terms, we
use 75 percent of our data for training and reserve about 25 percent for
testing. Splitting training and test data in proportions close to this is
common: 70 percent training data and 30 percent testing data is also
common, as are 80/20 and 90/10 splits. We usually keep the large majority
of our data in the training set since finding the right regression line is
crucial, and using more data for training can help us find the best regression
line (the one with the most predictive accuracy). At the same time, we need
more than a negligible amount of data in the test set, since we also need to
get an accurate estimate of how our regression is expected to perform with
new data.

After we’ve created training and test sets, we can test our different
regression models on the test set and check the RMSE or the MAE for each
model. The model that has the lowest RMSE or MAE on the test set is a
reasonable choice for the model we can use for forecasts of the actual
future. Let’s check the RMSE for several of the regressions we’ve run so
far:

x_train = carsales.loc[0:80,['period']].values.reshape(-1,1)
x_test = carsales.loc[81:107,['period']].values.reshape(-1,1)
x_trig_train = carsales.loc[0:80,['period','sin_period','cos_
period']].values.reshape(-1,3)
x_trig_test = carsales.loc[81:107,['period','sin_period','cos
_period']].values.reshape(-1,3)

regressor.fit(x_train, y_train)
regressor_trig.fit(x_trig_train, y_train)

complex_test_predictions=[prediction for sublist in \
 regressor_complex.predict(x_complex_test) for predictio
n in sublist]
test_predictions=[prediction for sublist in regressor.predict
(x_test) for \
 prediction in sublist]
trig_test_predictions=[prediction for sublist in \

 regressor_trig.predict(x_trig_test) for prediction in s
ublist]

print(get_rmse(test_predictions,saleslist[81:107]))
print(get_rmse(trig_test_predictions,saleslist[81:107]))
print(get_rmse(complex_test_predictions,saleslist[81:107]))

After you run the preceding snippet, you can see that our univariate
regression has an RMSE of about 4,116 on the test set. The trigonometric
multivariate regression has an RMSE of about 3,461—much better than the
univariate regression. By contrast, the complex regression model that
includes nine prediction terms has an RMSE of about 6,006 on the test set
—an awful performance. Though it had excellent performance on the
training set, we find that it has awful performance on the test set.

This complex model shows a particularly bad example of overfitting. In
this common machine learning problem, a model is too complex and fits the
data’s noise and coincidences instead of the data’s true patterns. Overfitting
often happens when our attempts to get low errors on a training set lead to
us getting much higher errors on a test set.

For example, suppose that by some coincidence, car sales in Quebec
spiked every time the star Betelgeuse had a V-band magnitude greater than
0.6 between 1960 and 1968. If we included Betelguese’s V-band magnitude
as a parameter in our regressions, we would find that our RMSE was quite
low when predicting 1960 to 1968 because of this coincidence. Finding a
low RMSE might make us quite confident that we had a great model that
would perform well. We might extrapolate this pattern into the future and
forecast future sales spikes at future high points of Betelgeuse’s brightness
cycle. However, since the past relationship between Betelgeuse and car
sales was only coincidental, extrapolating this pattern into the future would
give us huge errors; it would cause RMSE on future predictions to be quite
high. The Betelgeuse/car sales relationship was only noise, and our
regressions are supposed to capture only true signals, not noise. Including
Betelguese’s brightness measurements in our regression would be an
example of overfitting, since our zeal to decrease RMSE for the past would
lead us to increase RMSE in the future.

This example should make it clear that using error measurements on a
training set to choose the best model could lead us to choose a model that

has high error measurements on the test set. For that reason, error
measurement on the test set is the right metric to use to compare models in
all forecasting tasks. As a general rule, you can expect overfitting to happen
when you’ve included too many irrelevant variables in your regression. So,
you can avoid overfitting by removing the irrelevant variables (like the
brightness of Betelgeuse) from your regressions.

The problem is that we’re not always entirely sure which variables are
irrelevant and which ones are actually useful. That’s why we have to try
several models and check performance. Find the model that has the lowest
RMSE on the test set, and that will be the one that has the right mix of
variables and doesn’t lead you to get distracted by coincidences and overfit.

Now that we’ve compared models based on their RMSE on the test set,
we can choose the trigonometric model as our best model so far. We can
extrapolate one period forward in this model and determine a forecast for
consumer demand next month, just as we extrapolated for our univariate
model before. We can report this number back to the business as an estimate
based on rigorous linear regression analysis. Not only that, we can explain
why we made this prediction and why we used our model, including the
idea of the best-fit line, the trigonometric modeling of the seasons, and the
favorable (low) errors on the test set. If no objections or countervailing
business considerations arise, we can order this number of cars next month,
and we can expect that customers will want to purchase close to this
number of cars.

Exploring Further
Linear regression and forecasting are both topics that can fill many
textbooks. If you continue in your data science education, you’ll have a
chance to learn many of the subtleties and nuances related to these subjects.

One thing you should consider studying if you want to get to an advanced
level in data science is the linear algebra behind linear regression. You can
think of each observation in your data as a row of a matrix, and then you
can use matrix multiplication and matrix inversion to calculate the line of
best fit, instead of relying on a Python library to do the calculations for you.
If you deeply explore these linear algebra concepts, you’ll learn about the

mathematical assumptions underlying linear regression. Understanding
these mathematical assumptions will enable you to more accurately judge
whether linear regression is the best method to use with your data, or
whether you should use some of the methods described later in the book
instead (especially the supervised learning topics discussed in Chapter 6).

Another issue you should become familiar with is the limitation of linear
regression as a forecasting method. As the name indicates, linear regression
is a linear method, and it’s meant to be used with variables that have linear
relationships. For example, if customers order about 10 more units of your
product each week than they did the previous week, a linear relationship
exists between time and customer demand, and linear regression would be a
perfect method to measure that increase and forecast future customer
demand. On the other hand, if your sales double every week for a year and
then suddenly crash and then slowly rise again for a while, the relationship
between time and sales would be highly nonlinear, and linear regression
may not yield accurate predictions.

Similarly, remember that when we use linear regression for forecasting,
we are extrapolating past growth to predict future growth. If certain
circumstances aren’t present or accounted for in your historical data, your
linear regression won’t be able to accurately predict their occurrence in the
future. For example, if you use data from steady, prosperous years as your
training data, you’ll probably predict steady, prosperous growth in the
future. Instead, you may find that a global financial crisis or pandemic
changes everything, and since the regression’s training data didn’t include a
pandemic, no prediction of any pandemic will be given for the future.
Regression works only when the future resembles the past. Some events
like wars and pandemics are so inherently unpredictable that regression can
never give us completely accurate predictions about them. In those cases,
preparation is more important than forecasting; make sure your business is
ready for hard times and surprises instead of assuming that linear regression
will always give you completely correct answers. Though forecasting is
important and linear regression is powerful, it’s important to remember that
these limitations exist.

Summary

We began this chapter with a common business scenario: a company needs
to decide how much new inventory it should order. We used linear
regression as our main forecasting tool, and we looked a little at the
programming side of it (how to write code for regression), the statistical
side of it (which error metrics we can use to determine a model’s goodness
of fit), and the math side of it (why our particular line is the best-fit line).
After we went through all these aspects of the problem, we arrived at a
model that we thought was best, which we could use to obtain a forecast of
next month’s consumer demand.

This scenario—considering a business problem and using programming,
mathematical theory, and common sense to find a data-driven solution—is
typical of data science. In the remaining chapters, we’ll examine other
business scenarios and talk about how to use data science to find ideal
solutions to them. In the next chapter, we’ll go over data distributions and
show how to test two groups to see whether they’re significantly different
from each other.

3
GROUP COMPARISONS

In this chapter, we’ll discuss how to
make intelligent comparisons between
groups, using examples from business
scenarios. We’ll start small by looking
at one group alone. We’ll see which

descriptive statistics most succinctly describe it, draw
plots that capture its essence, and compare various
samples from it. We’ll then be ready to reason about
samples from two groups. We’ll conclude by looking
at statistical significance tests: the t-test and the
Mann-Whitney U test.

Reading Population Data
Let’s start by reading in some data. This data records measurements of
1,034 professional baseball players, including their height, weight, and age
at the time of measurement. You can download this data directly from http
s://bradfordtuckfield.com/mlb.csv. Its original source is the Statistics Online
Computational Resource (SOCR) website (https://web.archive.org/web/202
20629205951/https://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_
HeightsWeights).

https://bradfordtuckfield.com/mlb.csv
https://web.archive.org/web/20220629205951/https://wiki.stat.ucla.edu/socr/index.php/SOCR_Data_MLB_HeightsWeights

import pandas as pd
mlb=pd.read_csv('mlb.csv')
print(mlb.head())
print(mlb.shape)

In this snippet, we import pandas and use its read_csv() method to read
in our data. This is all simple data ingestion, just as we did in Chapters 1
and 2. After you run this snippet, you should see the following output:

 name team position height weight age
0 Adam_Donachie BAL Catcher 74 180.0 22.99
1 Paul_Bako BAL Catcher 74 215.0 34.69
2 Ramon_Hernandez BAL Catcher 72 210.0 30.78
3 Kevin_Millar BAL First_Baseman 72 210.0 35.43
4 Chris_Gomez BAL First_Baseman 73 188.0 35.71
(1034, 6)

The last line of the output shows the shape of the data, the number of
rows and columns in the dataset. We can see that our data has 1,034 rows
and 6 columns. We have one row for each person who was measured, and
one column for each fact recorded about each person. These 1,034 people
are collectively called our population, which, in the world of statistics,
means any set of similar items that are being studied to answer a particular
question.

Summary Statistics
Doing exploratory analysis every time we get a new dataset is useful. One
thing we can do is run print(mlb.describe()) to see our summary
statistics all at once:

 height weight age
count 1034.000000 1033.000000 1034.000000
mean 73.697292 201.689255 28.736712
std 2.305818 20.991491 4.320310
min 67.000000 150.000000 20.900000
25% 72.000000 187.000000 25.440000
50% 74.000000 200.000000 27.925000
75% 75.000000 215.000000 31.232500
max 83.000000 290.000000 48.520000

Plotting the data early and often is also a good idea in any data analysis
effort. We’ll create a box plot with the following code:

import matplotlib.pyplot as plt
fig1, ax1 = plt.subplots()
ax1.boxplot([mlb['height']])
ax1.set_ylabel('Height (Inches)')
plt.title('MLB Player Heights')
plt.xticks([1], ['Full Population'])
plt.show()

Here, we import Matplotlib to create plots. We use its boxplot()
command to create a box plot of all the heights in our population. You can
see the results in Figure 3-1.

Figure 3-1: A box plot showing the distribution of heights of our Major League Baseball
(MLB) population

This box plot is similar to the box plots we looked at in Chapter 1.
Remember that box plots show the range and distribution of data. Here, we
can see that the minimum value of height in the data is around 67, and the
maximum is around 83. The median (the horizontal line in the middle of the
box) is around 74 inches. We can see that Matplotlib regards several of the
points as outliers, and that’s why they’re drawn as circles beyond the range
of the vertical lines extending from the top and bottom of the box. Box plots
provide a simple way to explore our population and understand it better.

Random Samples
In many common scenarios, we’re interested in studying a population, but
we don’t have access to the full population, so we study a small part, or
sample, instead. For example, medical researchers may want to create a
drug that can cure a disease for all women over 50 years old. The
researchers don’t have a way to contact all women in the world who are
over 50, so instead they recruit a sample of that full population, maybe a
few hundred people. They study the effect of their drug on this sample.
They hope that their sample resembles the full population, so that if the
drug works on the sample, it will also work on the full population.

Recruiting a sample is something you should do carefully, to make sure
the sample resembles the full population as much as possible. For example,
if you recruit participants at an Olympic training facility, your sample will
contain people who are healthier than average, so you may create a drug
that works for extremely healthy people but not for the general population.
If you recruit participants at a Polish community festival, you might create a
drug that works for Eastern Europeans but not for others. The best way to
collect a sample that resembles the full population is to take a random
sample. By selecting randomly from a full population, you expect to have
equal likelihood of selecting each different type of person.

Let’s look at samples of our baseball player population, which we can
create in Python as follows:

sample1=mlb.sample(n=30,random_state=8675309)
sample2=mlb.sample(n=30,random_state=1729)

Here, we use the convenient pandas sample() method. This method
randomly selects 30 baseball players for both of our samples, sample1 and
sample2. Setting the random_state parameter is not necessary. But we set it
here because it ensures that you’ll get the same results as we do when you
run the same code.

You may wonder why we select 30 samples and not 20 or 40 or some
other number. In fact, we could easily select any other number of samples
by changing n=30 to n=20 or n=40 or anything else we prefer. When we
choose a large n for our random sample, we expect the sample to closely
resemble the full population. But sometimes recruiting participants can be

challenging, so we want to choose a small n to avoid the difficulty of
recruiting. In the world of statistics, choosing n = 30 is a common
convention; when we choose samples that have at least size 30, we feel
reasonably confident that our samples are big enough to make our statistical
calculations give us good results.

Let’s also create a third sample, which we’ll define manually as follows:

sample3=[71, 72, 73, 74, 74, 76, 75, 75, 75, 76, 75, 77, 76,
 75, 77, 76, 75,\
76, 76, 75, 75, 81,77, 75, 77, 75, 77, 77, 75, 75]

We know that sample1 and sample2 are random samples from our
baseball player population, since we created them using sample(). But it’s
not yet clear where the measurements in sample3 came from. Later, you’ll
learn how to use statistical tests to reason about whether sample3 is likely
to be a random sample from our population of baseball players, or whether
it is more likely to be associated with a different population, like basketball
players or another group. Keep thinking about sample3, because reasoning
about where sample3 came from (and in general, whether two given
samples come from the same population) will be the central goal of this
chapter.

Let’s look at a plot of these samples to see whether they resemble each
other and the full population:

import numpy as np
fig1, ax1 = plt.subplots()
ax1.boxplot([mlb['height'],sample1['height'],sample2['heigh
t'],np.array(sample3)])
ax1.set_ylabel('Height (Inches)')
plt.title('MLB Player Heights')
plt.xticks([1,2,3,4], ['Full Population','Sample 1','Sample
 2','Sample 3'])
plt.show()

Here, we use the same box plot code we used before, but instead of
plotting only one dataset, we plot four datasets: the distribution of heights
of the full population and the distribution of heights of all three samples
separately. We can see the results in Figure 3-2.

Figure 3-2: Box plots of our full MLB population (far left), two samples from the population
(middle), and a mystery sample that may or may not be from our population (right)

We can see that none of these box plots are quite identical, but they
definitely bear some resemblance to one another. We see some similar
median values and 75th percentile values, as well as some similar maxima.
The similarity in the first three box plots should match your intuition: when
we take large enough random samples from a population, the samples
should resemble the population and should resemble one another. We can
also check simple summary statistics related to each sample, like the mean:

print(np.mean(sample1['height']))
print(np.mean(sample2['height']))
print(np.mean(sample3))

Here, we check the mean height in all our samples. The mean height for
sample1 is 73.8, while the mean height for sample2 is 74.4, and the mean
height for sample3 is 75.4. These means are relatively close to the mean
height of the full population, 73.7. In this context, the mean height of the
full population has a special name; it’s called the population’s expected
value. If we take a random sample from our population, we expect that the
mean height of our sample will be about the same as the population’s
expected value for height, 73.7. At least two of our samples are random
samples from the population, and we see that their means are indeed close
to our expected value.

When we look at the box plot of sample3, we can see that it doesn’t seem
to resemble the other three box plots as much as they resemble each other.
We may interpret this as evidence that it isn’t a random sample from our
population of baseball players. On the other hand, it doesn’t look different
enough from the population or other samples that we can be immediately
certain that it isn’t a random sample from our population. We need to learn
more before we can feel certain about whether sample3 is a random draw
from our population or whether it comes from some other population.

So far, we’ve used vague and impressionistic language to talk about our
samples: they resemble each other, and they have means that are relatively
close or about the same as our expectations. If we want to make concrete,
evidence-based decisions, we need to be more precise. In the next section,
we’ll explore quantitative methods that statisticians have developed for
reasoning about the differences between groups, including some easy-to-use
tests that help us decide whether two groups come from the same
population.

Differences Between Sample Data
We saw a difference of about 0.6 inches between sample1 and sample2 and
a difference of more than 1.6 inches between sample1 and sample3. Here’s
the important question we would like to answer: Do we believe that
sample3 is a random sample from the same population as sample1 and
sample2? We need a method more reliable than intuition to say, for
example, that a difference of 0.6 inches between sample means is plausible
or probable, while a difference of 1.6 inches between sample means makes
it implausible that the samples come from the same population. How big of
a difference between sample means would make it implausible that two
samples come from the same population?

To answer this question, we need to understand the size differences we
should expect between random samples from our population. So far, we’ve
looked at only two random samples from our population. Instead of trying
to generalize based on only two samples, let’s look at a large collection of
samples and see how much they tend to differ from one another. This will
help us understand which variations are plausible and which variations are
implausible.

Here’s some code to get a collection of 2,000 sample means and their
differences:

alldifferences=[]
for i in range(1000):
 newsample1=mlb.sample(n=30,random_state=i*2)
 newsample2=mlb.sample(n=30,random_state=i*2+1)
 alldifferences.append(newsample1['height'].mean()-newsamp
le2['height'].mean())

print(alldifferences[0:10])

In this snippet, we create the alldifferences variable as an empty list.
Then we create a loop that goes through 1,000 iterations. In each iteration,
we create two new samples and append the difference between their sample
means to our alldifferences list. The final result is a completely filled-in
alldifferences, a list of 1,000 differences between randomly selected
samples. After running this snippet, you should see the following output:

[0.8333333333333286, -0.30000000000001137, -0.100000000000008
53,\
-0.1666666666666572, 0.06666666666667709, -0.966666666666668
6,\
0.7999999999999972, 0.9333333333333371, -0.5333333333333314,\
-0.20000000000000284]

You can see that the first two samples we checked have means that are
about 0.83 inches apart. The second pair of samples has means that are
about 0.3 inches apart. The sixth pair of samples has means that are almost
a full inch apart from each other (about –0.97 inches), while the fifth pair of
samples has means that are nearly identical, only about 0.07 inches apart.
Looking at these 10 numbers, we can see that 0.6 is not an implausible
difference between two samples from our population, since several of our
first 10 differences are greater in magnitude than 0.6. However, none of the
differences we’ve seen so far are greater than 1 inch in magnitude, so 1.6
inches is starting to seem more implausible.

We can see a fuller representation of our 1,000 differences by drawing a
plot of the alldifferences list:

import seaborn as sns
sns.set()
ax=sns.distplot(alldifferences).set_title("Differences Betwee
n Sample Means")
plt.xlabel('Difference Between Means (Inches)')
plt.ylabel('Relative Frequency')
plt.show()

Here, we import the seaborn package because it can make beautiful plots.
We use its distplot() method to plot the differences we find. You can see
the results in Figure 3-3.

Figure 3-3: A histogram showing the distribution of differences between mean heights of
random samples, creating an approximate bell curve pattern

In this histogram, each bar represents a relative frequency; it represents
how likely each observation is compared to other observations. There’s a
high bar at the point marked 0 on the x-axis. This indicates a relatively high
number of differences in our alldifferences list that are very close to 0. A
much lower bar appears at x = 1. This indicates relatively few cases in
which the difference between the sample means is about 1. The full shape
of the plot should make solid intuitive sense: it’s rare for our random
samples to be very different from each other, because they’re samples from
the same population and we expect their means to be roughly the same.

The shape that the bars make in Figure 3-3 resembles a bell. You can see
that we’ve drawn a line over the bars that shows this general bell shape. The
curve that this plot approximates is called a bell curve. Approximate bell
curves are found in many situations. One powerful theoretical result in
statistics is called the central limit theorem, and it states that under a certain
set of common conditions, differences between means of samples will be
distributed in a shape that’s approximately a bell curve. The technical
conditions that make this theorem true are that the random samples are
independent and identically distributed (that is, random draws from the
same population) and that the population has a finite expected value and a
finite variance. The fact that we see approximate bell curves in so many
domains provides evidence that these technical conditions are often met.

Once we know the shape and size of the bell curve in Figure 3-3, we can
reason more accurately about difficult statistical questions. Let’s return to
the question of sample3. Given what we know so far, do we believe that
sample3 is a random sample from our population of baseball players? We
saw that the difference between the mean of sample3 and the mean of
sample1 is about 1.6 inches. When we look at Figure 3-3, we can see that
the bell curve is extremely low there, close to 0. This means that random
samples from our population only rarely differ by as much as 1.6 inches.
This makes it seem relatively implausible that sample3 is a random sample
from our baseball player population. We can find out how implausible it is
by checking exactly how many of our differences have magnitude greater
than or equal to 1.6 inches:

largedifferences=[diff for diff in alldifferences if abs(dif
f)>=1.6]
print(len(largedifferences))

In this snippet, we create largedifferences, a list that contains all
elements of alldifferences with magnitude greater than or equal to 1.6.
We then check the length of the largedifferences list. We find that the list
has only eight elements, meaning random samples from our mlb population
have means that differ by 1.6 or more only about 8 in 1,000 times, or 0.8
percent of the time. This value, 0.8 percent or 0.008, is a calculated
likelihood. We can think of it as our best estimate of the probability that the
mean heights of two random samples from the mlb population differ by 1.6

inches or more. This probability is often called a p-value, where p is short
for probability.

If we assume that sample3 is a random sample from our mlb population,
we have to believe that this rare difference, something whose extremity
occurs less than 1 percent of the time, has happened naturally. The low
likelihood of this event may convince us to reject the idea that sample3
comes from the same population as sample1. In other words, the low p-
value causes us to reject the notion that these two groups come from the
same population. The lower the p-value, the more confident we feel about
rejecting the notion that the groups come from the same population,
because low p-values require us to believe in more and more unlikely
coincidences. By contrast, consider how common it is that differences
between sample means from our population are 0.6 inches or more:

smalldifferences=[diff for diff in alldifferences if abs(dif
f)>=0.6]
print(len(smalldifferences))

Here, we create smalldifferences, a list containing every element of
alldifferences that has magnitude greater than or equal to 0.6 inches. We
can see that differences of this magnitude occur about 31.4 percent of the
time. In this case, we would say that our p-value is 0.314. If sample1 and
sample2 come from the same population, we would have to believe that this
size of difference, which occurs about 31 percent of the time, occurred in
our case. It’s not hard to believe that something with 31 percent probability
occurred, so we conclude that the difference between sample1 and sample2
is plausible; we’re willing to accept that, though not identical, they’re
random samples from the same population.

The p-values we’ve calculated here have led us to accept the notion that
sample1 and sample2 come from the same population, and to reject the
notion that sample1 and sample3 come from the same population. You can
see how important the size of a p-value is in our efforts to compare groups.

Performing Hypothesis Testing

We’ve outlined all the ingredients needed for a method of statistical
reasoning called hypothesis testing. We can formalize this method of
reasoning in more scientific terms. We’re trying to determine whether
sample3 is a random sample from the same population as sample1. In
scientific terms, we can say that we’re considering two separate hypotheses:

Hypothesis 0 sample1 and sample3 are random samples from the same
population.
Hypothesis 1 sample1 and sample3 are not random samples from the
same population.
In the common statistical parlance, we call Hypothesis 0 the null

hypothesis, and we call Hypothesis 1 the alternative hypothesis. The null
hypothesis asserts that both samples are randomly drawn from one
population (our baseball player dataset), with just one mean and one
standard deviation. The alternative hypothesis asserts that the samples are
randomly drawn from two totally different populations, each with its own
mean, its own standard deviation, and all of its own unique characteristics.
The way we choose between these two hypotheses is by following the same
reasoning we followed previously:

. Assume that Hypothesis 0, the null hypothesis, is true.

. Find how likely we are to observe sample means that differ by as much as
our observed sample means, assuming that Hypothesis 0 is true. The
likelihood of this occurring is called the p-value.

. If the p-value is small enough, we reject Hypothesis 0, and we’re therefore
willing to accept Hypothesis 1.

Notice that step 3 is stated vaguely: it doesn’t specify how small the p-
value should be to justify rejecting the null hypothesis. The reason for this
vagueness is that there’s no mathematically dictated choice for how small
the p-value needs to be. We can choose whatever level of smallness we
think is appropriate to justify rejecting Hypothesis 0, based on our own
judgment and intuitions. The p-value size that we believe justifies rejecting
Hypothesis 0 is called the significance level.

The most common significance level used in empirical research is 5
percent, meaning that we consider the rejection of the null hypothesis

justified if p < 0.05. In the case of sample1 and sample3, we can justify
rejecting Hypothesis 0 at a significance level as low as 1 percent, because
we found p < 0.01. When we find a p-value that’s less than our chosen
significance level, we say that the difference between our groups is
statistically significant. The recommended practice is to choose the
significance level that we want to use before we do any calculations; that
way, we avoid the temptation to choose a significance level that confirms
whichever hypothesis we want to be confirmed.

The t-Test
We don’t have to go through the whole process of calculating means,
creating a histogram, and manually calculating p-values every time we want
to do hypothesis testing. Statisticians have discovered succinct equations
that define how likely two groups are to come from the same population.
They’ve created a relatively simple test called a t-test that does the process
of hypothesis testing quickly and painlessly, without requiring a for loop or
a histogram. We can do a t-test to test our Hypothesis 0 and Hypothesis 1.
We’ll check whether sample1 and sample2 come from the same population
as follows:

import scipy.stats
scipy.stats.ttest_ind(sample1['height'],sample2['height'])

Here, we import the scipy.stats module. The SciPy package that this
module is a part of is a popular Python library that includes, among other
things, many statistical tests that could be useful as you get more advanced
in statistics and data science. After importing this module, we use its
ttest_ind command to check for differences between our samples. Its
output is the following:

Ttest_indResult(statistic=-1.0839563860213952, pvalue=0.28286
95892305152)

Here, the p-value is relatively high (about 0.283), certainly higher than a
0.05 significance threshold. (It differs a little from the 0.314 p-value we
calculated earlier because that p-value calculation method was an
approximate method, and this one is more mathematically exact.) This high

p-value indicates that it is plausible that these are samples from the same
population. This is not surprising because we know that they are from the
same population (we created them ourselves). In this case, we decide not to
reject our null hypothesis, and we accept (until any other evidence
convinces us otherwise) that sample1 and sample2 come from the same
population. You can also run
scipy.stats.ttest_ind(sample1['height'],sample3) to compare
sample1 and sample3, and if you do, you’ll find a low p-value (less than
0.05), which justifies rejecting the null hypothesis that sample1 and
sample3 come from the same population.

Several types of t-tests exist, as well as other hypothesis tests besides the
t-test. The ttest_ind command we’ve used so far has an _ind suffix to
indicate that it’s meant to be used for independent samples. Here,
independent means just what we would expect: no meaningful, consistent
relationship exists between the individuals in one sample and the
individuals in the other—the samples consist of different people who were
randomly selected.

If we have related rather than independent samples, we can use another
command, scipy.stats.ttest_rel, which performs another type of t-test
that is mathematically a little different from ttest_ind. The ttest_rel
command would be appropriate when observations in different samples
have a meaningful relationship to each other—for example, if they’re two
different exam scores for the same student, or two different medical test
results for the same patient.

Another type of t-test, the Welch’s t-test, is designed for comparing
samples when we don’t want to assume that the samples have equal
variance. You can implement Welch’s t-test in Python by adding
equal_var=False to the t-test command.

The t-test is a parametric test, meaning that it relies on assumptions
about the distribution of the data in our population. The t-test relies on
several technical assumptions: first, that the groups being compared should
have sample means that follow a bell curve; second, that the variances of
the groups being compared should be identical (unless using Welch’s t-test);
and third, that the two groups are independent of each other. If these

assumptions are not met, the t-test is not completely accurate, though it’s
rarely too far from the truth even if the assumptions are not met.

In some cases, we’d prefer to perform hypothesis testing with a test that
didn’t make these strong assumptions that may not be true. If so, we can
rely on a body of knowledge called nonparametric statistics, which
provides tools for hypothesis testing and other statistical reasoning that
make fewer assumptions about the distribution of our data (for example, we
don’t need to work with populations whose sample means follow bell
curves). One hypothesis test from nonparametric statistics is called the
Mann-Whitney U test (or the Wilcoxon rank-sum test), and we can
implement it easily in Python as follows:

scipy.stats.mannwhitneyu(sample1['height'],sample2['height'])

This test requires only one line, since the SciPy package includes an
implementation of the Mann-Whitney U test. Just like the t-test, all we need
to input is the data we’re comparing, and the code will output a p-value. If
you want to have a deep understanding of the various kinds of hypothesis
tests and exactly when to use them, you should read some advanced
theoretical statistics textbooks. For now, the simple independent sample t-
test we’ve used is quite robust and should work in most practical scenarios.

Nuances of Hypothesis Testing
Hypothesis testing using a null hypothesis and a t-test is common enough to
be called popular, but it’s not as beloved as most popular things are.
Students tend to dislike it because it’s not intuitive to most people, and it
requires some tortured reasoning to understand. Teachers sometimes dislike
it because their students dislike it and struggle to learn it. Many
methodological researchers find it irritating because it’s so common at all
levels for people to misunderstand and misinterpret t-tests, p-values, and
hypothesis tests in general. The antipathy toward hypothesis testing has
even led some respected scientific journals to ban it from their publications,
although this has been rare.

Most of the negative feelings toward hypothesis testing are the result of
misunderstanding. Researchers misunderstand some nuances of hypothesis
testing and misuse it, and then mistakes in research result, which

methodological sticklers resent. Since these misunderstandings are common
even among professionals, it’s worthwhile to mention some of them here
and try to explain nuances that will help you avoid some of these same
mistakes.

One important point to remember is what a p-value tells you: it tells you
the likelihood of observing data, after assuming a null hypothesis to be true.
People often think or wish it told them the converse: the likelihood of a
hypothesis’s truth, given some observed data. Always remember that a p-
value should not be interpreted directly as a probability of a hypothesis
being true. So, when we see that the p-value for comparing the heights of
sample1 and sample3 is p = 0.008, we can’t say, “These samples have only
a 0.8 percent probability of coming from the same population,” nor can we
say, “The null hypothesis has a 0.8 percent probability of being true.” We
can say only, “If the null hypothesis is true, something with 0.8 percent
probability occurred.” This enables us to decide whether to reject the null
hypothesis, but it doesn’t enable us to say exactly how likely either
hypothesis is to be true.

Another important nuance is the difference between accepting a
hypothesis and failing to reject it. Hypothesis testing has only two possible
outcomes: either we reject a null hypothesis, or we decide not to reject the
null hypothesis. Failing to reject something is not quite the same as
wholeheartedly accepting it, and just because a p-value is not below a
significance threshold does not mean that two groups are certainly the
same. Just because one t-test fails to lead to a rejection of the null
hypothesis does not mean that the null hypothesis is certainly true.

Similarly, just because one p-value seems to justify a rejection of a null
hypothesis does not mean that the null hypothesis is certainly false. This is
especially true when we have limited data; difficult, noisy measurements; or
a reason to doubt our measurements. Hypothesis testing does not let us take
uncertain data and have perfect certainty about hypotheses. Rather, it
provides one piece of evidence that we have to understand properly and
then weigh together with a great deal of other evidence.

Another important concept to remember is the Anna Karenina principle.
Leo Tolstoy wrote in Anna Karenina that “all happy families are alike; each
unhappy family is unhappy in its own way.” Statistics has an analogous

principle: all acceptances of the null hypothesis are alike, but each rejection
of the null hypothesis happens for a different reason. The null hypothesis
states that two samples are random draws from the same population. If we
reject the null hypothesis, any one or more of a number of things could be
true: our two samples could be random draws from different populations, or
both could be samples from the same population but not randomly selected,
or a source of sampling bias could be present, or blind luck might be
occurring. Just because we are confident about rejecting the null hypothesis
doesn’t mean we can be confident about which part of the null hypothesis is
incorrect. As empirical researchers like to say, “Further research is needed.”

A final nuance to remember is the difference between statistical
significance and practical significance. It’s possible for one sample of
athletes to have mean height 73.11 and another sample of athletes to have
mean height 73.12, and for these two means to have a statistically
significant difference according to a t-test. We can justifiably conclude that
these two groups are not random samples from the same population and
treat them differently because of their different mean height. However, even
if this difference of 0.01 inches is statistically significant, it’s not clear that
this difference has practical significance. Members of these two groups
should be able to wear the same clothes, sit on the same seats on airplanes,
and reach the same high cupboards (on average). We have no reason to
suppose that one group would be better than the other group at baseball in
any practically important sense. In this case, we might wish to ignore the
results of a t-test, since even though a statistically detectable difference
exists, it’s not a difference that has any practical consequence. Practical
significance is always an important thing to consider during the process of
hypothesis testing.

Now that we’ve discussed hypothesis testing and its thorny theoretical
nuances, let’s turn to a practical business example.

Comparing Groups in a Practical Context
So far, this chapter has focused on statistical theory. But for data scientists,
theoretical considerations always take place within a practical context. Let’s
switch from our baseball example to a marketing example. Suppose you’re
running a company that manufactures computers. To keep in touch with

customers and increase sales, your company maintains email lists:
interested customers can sign up for a topic they’re interested in and receive
periodic emails from your company related to that topic. For now, you have
only two email lists: the desktop list and the laptop list, designed for
customers who are interested in your desktop computers and your laptop
computers, respectively.

Until now, desktops and laptops have been the only products your
company makes. But soon you’ll be releasing a new set of products that
have been in development for several years: top-of-the-line web servers. It’s
a natural product line for your company, since you already manufacture
computer hardware and already have many tech clients who need server
infrastructure. But since this product line is new, almost no one knows
about it. Your marketing team is planning to email the subscribers on your
email lists to tell them about your great new products and hopefully get
started on the right foot with high sales of the new servers.

The marketing team members want to make this email campaign as
effective as possible. They have a discussion with you about the campaign
strategy. They could design one email and send it to every person on both
email lists, or they could design one email message for the desktop
subscribers and a different email message for the laptop subscribers. The
experts on your marketing team know a lot about targeting: for example,
they know that the email messages that extroverts react to most positively
are different from the email messages that introverts react to most
positively. Other personal characteristics—including age, income, and
culture—also have strong effects on responses to advertising.

We need to know whether the desktop subscribers have different
characteristics than the laptop subscribers. If the two groups are essentially
the same, we can save the marketing team members some time and have
them send the same email to everyone. If the two groups are significantly
different in ways we understand, we can craft better messages that appeal to
each group and improve sales numbers.

We can start our investigation by reading in our data. We’ll read in two
fabricated datasets (not based on real people or products, just created to
illustrate the points in the chapter). You can download these two datasets

from https://bradfordtuckfield.com/desktop.csv and https://bradfordtuckfiel
d.com/laptop.csv, and then read them into Python as follows:

desktop=pd.read_csv('desktop.csv')
laptop=pd.read_csv('laptop.csv')

You can run print(desktop.head()) and print(laptop.head()) to see
the first five rows of each dataset. You’ll notice that both datasets have four
columns:

userid Contains a unique number identifying a particular user
spending Contains a record of how much that user has spent at your
company’s website
age Holds the user’s age, which you may have recorded during a separate
survey
visits Holds the number of times the user has visited pages on your
website
Our goal is to determine whether the users described in the desktop

dataframe and the users described in the laptop dataframe differ
significantly from each other. Let’s draw some plots and see whether any
immediately apparent differences exist.

We can start with a plot of the amounts that subscribers to each list have
spent on our company’s products. We’ll create a box plot with the following
code:

import matplotlib.pyplot as plt
sns.reset_orig()
fig1, ax1 = plt.subplots()
ax1.set_title('Spending by Desktop and Laptop Subscribers')
ax1.boxplot([desktop['spending'].values,laptop['spending'].va
lues])
ax1.set_ylabel('Spending ($)')
plt.xticks([1,2], ['Desktop Subscribers','Laptop Subscriber
s'])
plt.show()

Here, we import Matplotlib to create plots. We use its boxplot()
command with data from desktop’s spending column and laptop’s

https://bradfordtuckfield.com/desktop.csv
https://bradfordtuckfield.com/laptop.csv

spending column. You can see the results in Figure 3-4.

Figure 3-4: Box plots showing the spending levels of subscribers to the desktop email list
(left) and subscribers of the laptop email list (right)

We can learn a few things by looking at these box plots. Both groups
have minima at 0. Laptop subscribers have a higher 25th percentile, 50th
percentile, and 75th percentile, as well as a high outlier that is higher than
any observations in the desktop subscriber group. On the other hand, the
distributions don’t seem terribly different either; desktop subscribers don’t
seem totally different from laptop subscribers. We have groups that are
different, but not too different. We should look more closely and see if some
more precise quantitative metrics will help us judge how different they are.

Besides plotting, we can do simple calculations that get summary
statistics for our data. In the following snippet, we’ll get some of these
descriptive statistics:

print(np.mean(desktop['age']))
print(np.mean(laptop['age']))
print(np.median(desktop['age']))
print(np.median(laptop['age']))
print(np.quantile(laptop['spending'],.25))
print(np.quantile(desktop['spending'],.75))
print(np.std(desktop['age']))

In this snippet, we check the mean age of desktop subscribers and laptop
subscribers. The results reveal that the mean desktop subscriber is about
35.8 years old, and the mean laptop subscriber is about 38.7 years old. We
can conclude that these groups are different, in the sense that they’re not
identical. But it’s not clear whether the groups are different enough that we
should tell our marketing group to create two separate emails instead of
one. To make that judgment, we need to use our hypothesis-testing
framework. We can specify our null hypothesis and alternative hypothesis
as follows:

Hypothesis 0 The two email lists are random samples from the same
population.
Hypothesis 1 The two email lists are not random samples from the same
population.
Hypothesis 0, our null hypothesis, is describing a world in which there’s

a population of people who are interested in computers, both laptops and
desktops. People from this population sign up for your company’s email
lists occasionally. But when they sign up for a list, they choose completely
at random which of your two lists they sign up for. In this world, your lists
have superficial differences, but they are truly two random samples from
the same population and don’t differ in any essential ways that would
warrant different treatment by your company.

Hypothesis 1, the alternative hypothesis, describes a world in which the
null hypothesis is not true. This would mean that your subscribers’
membership on different email lists is the result at least partially of
underlying differences in people who like desktops and people who like
laptops. If Hypothesis 0 is true, it would be reasonable to send the same
marketing email to both groups. If Hypothesis 1 is true, sending different
marketing emails to each group makes more sense. A business decision
now depends on the result of a statistical test.

Let’s run our t-test and see whether our two subscriber groups actually
differ from each other. First, we should specify a significance level. Let’s
use the 5 percent significance level that’s common in research. We can run
our t-test with only one line of code:

scipy.stats.ttest_ind(desktop['spending'],laptop['spending'])

When you look at the results from our t-test, you can see that our p-value
is about 0.04. Since we use the common 5 percent significance level, this p-
value is low enough for us to conclude that the desktop and laptop groups
are not random draws from the same population, so we can reject the null
hypothesis. It appears that desktop and laptop email subscribers are at least
slightly different in a detectable way.

After finding these differences, we can talk to our company’s marketing
team and collectively make a decision about whether to design different
email campaigns for the different groups. Suppose that the team decides to
do so. We can feel proud of ourselves that our statistical analysis has led to
a practical decision that we feel is justified. We didn’t only analyze data; we
used the data to make a decision. This is common in data science: we use
our data analysis for data-driven decision-making to improve business
outcomes.

But what next? We have come so far in this chapter only to make one
decision: a yes/no decision to send different emails to both of our subscriber
lists. The next set of questions we need to ask is about how our emails to
each group should differ: What should their content be, how should we
design them, and how will we know whether we’re doing it right? In the
next chapter, we’ll talk about A/B testing, a powerful framework for
answering these difficult questions.

Summary
In this chapter, we talked about populations and samples, as well as how
samples that come from the same population should resemble each other.
We introduced hypothesis testing, including the t-test, an easy, useful tool
for detecting whether two groups are likely to be random draws from the
same population. We discussed some business scenarios where the t-test
would be useful, including a marketing scenario and a decision about
whether to send different emails to different email lists.

The next chapter will build on the tools we introduced here. Instead of
just comparing groups, we’ll discuss how to run experiments and then use
group comparison tools to check for the differences between our
experimental treatments.

4
A/B TESTING

In the preceding chapter, we discussed
the scientific practice of observing two
groups and making quantitative
judgments about how they relate to each
other. But scientists (including data

scientists) do more than just observe preexisting
differences. A huge part of science consists of
creating differences experimentally and then drawing
conclusions. In this chapter, we’ll discuss how to
conduct those kinds of experiments in business.

We’ll start by discussing the need for experimentation and our
motivations for testing. We’ll cover how to properly set up experiments,
including the need for randomization. Next, we’ll detail the steps of A/B
testing and the champion/challenger framework. We’ll conclude by
describing nuances like the exploration/exploitation trade-off, as well as
ethical concerns.

The Need for Experimentation
Let’s return to the scenario we outlined in the second half of Chapter 3.
Imagine that you’re running a computer company and maintain email

marketing lists that your customers can choose to subscribe to. One email
list is designed for customers who are interested in your desktop computers,
and the other email list is for customers interested in your laptops. You can
download two fabricated datasets for this scenario from https://bradfordtuck
field.com/desktop.csv and https://bradfordtuckfield.com/laptop.csv. If you
save them to the same directory you’re running Python from, you can read
these hypothetical lists into Python as follows:

import pandas as pd
desktop=pd.read_csv('desktop.csv')
laptop=pd.read_csv('laptop.csv')

You can run print(desktop.head()) and print(laptop.head()) to see
the first five rows of each dataset.

In Chapter 3, you learned how to use simple t-tests to detect differences
between our datasets, as follows:

import scipy.stats
print(scipy.stats.ttest_ind(desktop['spending'],laptop['spend
ing']))
print(scipy.stats.ttest_ind(desktop['age'],laptop['age']))
print(scipy.stats.ttest_ind(desktop['visits'],laptop['visit
s']))

Here, we import the SciPy package’s stats module so we can use it for t-
tests. Then we print the results of three separate t-tests: one comparing the
spending of desktop and laptop subscribers, one comparing the ages of
desktop and laptop subscribers, and one comparing the number of recorded
website visits of desktop and laptop subscribers. We can see that the first p-
value is less than 0.05, indicating that these groups are significantly
different in their spending levels (at the 5 percent significance level), just as
we concluded in Chapter 3.

After determining that desktop subscribers are different from laptop
subscribers, we can conclude that we should send them different marketing
emails. However, this fact alone is not enough to completely guide our
marketing strategy. Just knowing that our desktop subscriber group spends a
little less than the laptop subscriber group doesn’t tell us whether crafting
long messages or short ones would lead to better sales, or whether using red

https://bradfordtuckfield.com/desktop.csv
https://bradfordtuckfield.com/laptop.csv

text or blue text would get us more clicks, or whether informal or formal
language would improve customer loyalty most. In some cases, past
research published in academic marketing journals can give us hints about
what will work best. But even when relevant research exists, every
company has its own unique set of customers that may not respond to
marketing in exactly the same way that past research indicates.

We need a way to generate new data that’s never been collected or
published before, so we can use that data to answer new questions about the
new situations that we regularly face. Only if we can generate this kind of
new data can we reliably learn about what will work best in our efforts to
grow our business with our particular set of unique customers. We’ll spend
the rest of this chapter discussing an approach that will accomplish this.

A/B testing, the focus of this chapter, uses experiments to help businesses
determine which practices will give them the greatest chances of success. It
consists of a few steps: experimental design, random assignment into
treatment and control groups, careful measurement of outcomes, and finally,
statistical comparison of outcomes between groups.

The way we’ll do statistical comparisons will be familiar: we’ll use the t-
tests introduced in the previous chapter. While t-tests are a part of the A/B
testing process, they are not the only part. A/B testing is a process for
collecting new data, which can then be analyzed using tests like the t-test.
Since we’ve already introduced t-tests, we won’t focus on them in this
chapter. Instead, we’ll focus on all the other steps of A/B testing.

Running Experiments to Test New
Hypotheses
Let’s consider just one hypothesis about our customers that might interest
us. Suppose we’re interested in studying whether changing the color of text
in our marketing emails from black to blue will increase the revenue we
earn as a result of the emails. Let’s express two hypotheses related to this:

Hypothesis 0 Changing the color of text in our emails from black to blue
will have no effect on revenues.

Hypothesis 1 Changing the color of text in our emails from black to blue
will lead to a change in revenues (either an increase or a decrease).
We can use the testing hypothesis framework covered in Chapter 3 to test

our null hypothesis (Hypothesis 0) and decide whether we want to reject it
in favor of its alternative hypothesis (Hypothesis 1). The only difference is
that in Chapter 3, we tested hypotheses related to data we had already
collected. Here, our datasets do not include information about blue-text and
black-text emails. So, extra steps are required before we perform hypothesis
testing: designing an experiment, running an experiment, and collecting
data related to the experiment’s results.

Running experiments may not sound so difficult, but some tricky parts
are important to get exactly right. To do the hypothesis test we just outlined,
we’ll need data from two groups: a group that has received a blue-text email
and a group that has received a black-text email. We’ll need to know how
much revenue we received from each member of the group that received the
blue-text email and how much revenue we received from each member of
the group that received the black-text email.

After we have that, we can do a simple t-test to determine whether the
revenue collected from the blue-text group differed significantly from the
revenue collected from the black-text group. In this chapter, we’ll use a 5
percent significance level for all of our tests—that is, we’ll reject the null
hypothesis and accept our alternative hypothesis if our p-value is less than
0.05. When we do our t-test, if the revenues are significantly different, we
can reject our null hypothesis (Hypothesis 0). Otherwise, we won’t reject
our null hypothesis, and until something convinces us otherwise, we’ll
accept its assertion that blue and black text lead to equal revenues.

We need to split our population of interest into two subgroups and send a
blue-text email to one subgroup and a black-text email to our other
subgroup so we can compare revenues from each group. For now, let’s
focus on desktop subscribers only and split our desktop dataframe into two
subgroups.

We can split a group into two subgroups in many ways. One possible
choice is to split our dataset into a group of younger people and a group of
older people. We might split our data this way because we believe that
younger people and older people might be interested in different products,

or we might do it this way just because age is one of the few variables that
appears in our data. Later, we’ll see that this way of splitting our group into
subgroups will lead to problems in our analysis, and we’ll discuss better
ways to create subgroups. But since this method of splitting into subgroups
is simple and easy, let’s start by trying it to see what happens:

import numpy as np
medianage=np.median(desktop['age'])
groupa=desktop.loc[desktop['age']<=medianage,:]
groupb=desktop.loc[desktop['age']>medianage,:]

Here, we import the NumPy package, giving it the alias np, so we can use
its median() method. Then we simply take the median age of our group of
desktop subscribers and create groupa, a subset of our desktop subscribers
whose age is below or equal to the median age, and groupb, a subset of our
desktop subscribers whose age is above the median age.

After creating groupa and groupb, you can send these two dataframes to
your marketing team members and instruct them to send different emails to
each group. Suppose they send the black-text email to groupa and the blue-
text email to groupb. In every email, they include links to new products
they want to sell, and by tracking who clicks which links and their
purchases, the team members can measure the total revenue earned from
each individual email recipient.

Let’s read in some fabricated data that shows hypothetical outcomes for
members of our two groups. This data can be downloaded from https://brad
fordtuckfield.com/emailresults1.csv; store it in the same directory where you
run Python. Then you can read it into your Python session as follows:

emailresults1=pd.read_csv('emailresults1.csv')

If you run print(emailresults1.head()) in Python, you can see the
first rows of this new data. It’s a simple dataset: each row corresponds to
one individual desktop email subscriber, whose ID is identified in the
userid column. The revenue column records the revenue your company
earned from each user as a result of this email campaign.

It will be useful to have this new revenue information in the same
dataframe as our other information about each user. Let’s join the datasets:

https://bradfordtuckfield.com/emailresults1.csv

groupa_withrevenue=groupa.merge(emailresults1,on='userid')
groupb_withrevenue=groupb.merge(emailresults1,on='userid')

In this snippet, we use the pandas merge() method to combine our
dataframes. We specify on='userid', meaning that we take the row of
emailresults1 that corresponds to a particular userid and merge it with
the row of groupa that corresponds to that same userid. The end result of
using merge() is a dataframe in which every row corresponds to a particular
user identified by their unique userid. The columns tell us not only about
their characteristics like age but also about the revenue we earned from
them as a result of our recent email campaign.

After preparing our data, it’s simple to perform a t-test to check whether
our groups are different. We can do it in one line, as follows:

print(scipy.stats.ttest_ind(groupa_withrevenue['revenue'],gro
upb_withrevenue['revenue']))

When you run this code, you’ll get the following result:

Ttest_indResult(statistic=-2.186454851070545, pvalue=0.037300
73920038287)

The important part of this output is the pvalue variable, which tells us
the p-value of our test. We can see that the result says that p = 0.037,
approximately. Since p < 0.05, we can conclude that this is a statistically
significant difference. We can check the size of the difference:

print(np.mean(groupb_withrevenue['revenue'])-np.mean(groupa_w
ithrevenue['revenue']))

The output is 125.0. The average groupb customer has outspent the
average groupa customer by $125. This difference is statistically
significant, so we reject Hypothesis 0 in favor of Hypothesis 1, concluding
(for now, at least) that the blue text in marketing emails leads to about $125
more in revenue per user than black text.

What we have just done was an experiment. We split a population into
two groups, performed different actions on each group, and compared the

results. In the context of business, such an experiment is often called an A/B
test. The A/B part of the name refers to the two groups, Group A and Group
B, whose different responses to emails we compared. Every A/B test
follows the same pattern we went through here: a split into two groups,
application of a different treatment (for example, sending different emails)
to each group, and statistical analysis to compare the groups’ outcomes and
draw conclusions about which treatment is better.

Now that we’ve successfully conducted an A/B test, we may want to
conclude that the effect of blue text is to increase spending by $125.
However, something is wrong with the A/B test we ran: it’s confounded. To
see what we mean, consider Table 4-1.

Table 4-1: Differences Between Groups

Group A Group B
Personal characteristics Younger

(Same as B in other ways)
Older
(Same as A in other ways)

Email text color Black Blue
Average revenue per user $104 $229

We can see the important features of Group A and Group B. Our t-test
comparing spending found that their spending levels were significantly
different. We want an explanation for why they’re different, and any
explanation of different outcomes will have to rely on the differences listed
in Table 4-1. We want to be able to conclude that the difference in spending
can be explained by the difference in the text color. However, that
difference coexists with another difference: age.

We can’t be certain that the difference in spending levels is due to text
color rather than age. For example, perhaps no one even noticed the text
difference, but older people tend to be wealthier and more eager to buy your
products than young people. If so, our A/B test didn’t test for the effect of
blue text, but rather for the effect of age or wealth. We intended to study
only the effect of text color in this A/B test, and now we don’t know
whether we truly studied that or whether we studied age, wealth, or
something else. It would be better if our A/B test had a simpler, non-
confounded design like the one illustrated in Table 4-2.

Table 4-2: A Non-confounded A/B Test Design

Group C Group D
Personal characteristics (Same as D in every way) (Same as C in every way)
Email text color Black Blue
Average revenue per user $104 $229

Table 4-2 imagines that we had split the users into hypothetical groups
called C and D, which are identical in all personal characteristics, but differ
only in the text of the emails they received. In this hypothetical scenario,
the spending difference can be explained only by the different text colors
sent to each group because that’s the only difference between them. We
should have split our groups in a way that ensured that the only differences
between groups were in our experimental treatment, not in the group
members’ preexisting characteristics. If we had done so, we would have
avoided having a confounded experiment.

Understanding the Math of A/B Testing
We can also express these notions mathematically. We can use the common
statistical notation E() to refer to the expected value. So E(A’s revenue with
blk text) will mean the expected value of revenue we would earn by sending
a black-text email to Group A. We can write two simple equations that
describe the relationship between the revenue we expect to earn from black
text, the effect of our experiment, and the revenue we expect to earn from
blue text:

E(A’s revenue with blk text) + E(effect of changing blk → blue on A) =
E(A’s revenue with blue text)

E(B’s revenue with blk text) + E(effect of changing blk → blue on B) =
E(B’s revenue with blue text)

To decide whether to reject Hypothesis 0, we need to solve for the effect
sizes: E(effect of changing blk → blue on A) and E(effect of changing blk →
blue on B). If either of these effect sizes is different from 0, we should reject
Hypothesis 0. By performing our experiment, we found E(A’s revenue with

blk text) = 104 and E(B’s revenue with blue text) = 229. After knowing these
values, we have the following equations:

104 + E(effect of changing blk → blue on A) = E(A’s revenue with blue
text)

E(B’s revenue with blk text) + E(effect of changing blk → blue on B) =
229

But this still leaves many variables we don’t know, and we’re not yet able
to solve for E(effect of changing blk → blue on A) and E(effect of changing
blk → blue on B). The only way we’ll be able to solve for our effect sizes
will be if we can simplify these two equations. For example, if we knew
that E(A’s revenue with blk text) = E(B’s revenue with blk text), and E(effect
of changing blk → blue on A) = E(effect of changing blk → blue on B), and
E(A’s revenue with blue Text) = E(B’s revenue with blue text), then we could
reduce these two equations to just one simple equation. If we knew that our
groups were identical before our experiment, we would know that all of
these expected values were equal, and we could simplify our two equations
to the following easily solvable equation:

104 + E(effect of changing blk → blue on everyone) = 229

With this, we can be sure that the effect of blue text is a $125 revenue
increase. This is why we consider it so important to design non-confounded
experiments in which the groups have equal expected values for personal
characteristics. By doing so, we’re able to solve the preceding equations
and be confident that our measured effect size is actually the effect of what
we’re studying and not the result of different underlying characteristics.

Translating the Math into Practice
We know what to do mathematically, but we need to translate that into
practical action. How should we ensure that E(A’s revenue with blk text) =
E(B’s revenue with blk text), and how should we ensure that the other
expected values are all the same? In other words, how can we ensure that
our study design looks like Table 4-2 instead of Table 4-1? We need to find

a way to select subgroups of our desktop subscriber list that are expected to
be identical.

The simplest way to select subgroups that are expected to be identical is
to select them randomly. We mentioned this briefly in Chapter 3: every
random sample from a population has an expected value equal to the
population mean. So, we expect that two random samples from the same
population won’t differ from each other significantly.

Let’s perform an A/B test on our laptop subscriber list, but this time we’ll
use randomization to select our groups to avoid having a confounded
experimental design. Suppose that in this new A/B test, we want to test
whether adding a picture to a marketing email will improve revenue. We
can proceed just as we did before: we split the laptop subscriber list into
two subgroups, and we send different emails to each subgroup. The
difference is that this time, instead of splitting based on age, we perform a
random split:

np.random.seed(18811015)
laptop.loc[:,'groupassignment1']=1*(np.random.random(len(lapt
op.index))>0.5)
groupc=laptop.loc[laptop['groupassignment1']==0,:].copy()
groupd=laptop.loc[laptop['groupassignment1']==1,:].copy()

In this snippet, we use the NumPy random.random() method to generate
a column that consists of randomly generated 0s and 1s. We can interpret a
0 to mean that a user belongs to Group C, and a 1 to mean that a user
belongs to group D. When we generate 0s and 1s randomly like this, the
groups could end up with different sizes. However, here we use a random
seed (in the first line, np.random.seed(18811015)). Every time anyone
uses this random seed, their “randomly” generated column of 0s and 1s will
be identical. That means that if you use this random seed, your results at
home should be the same as the results here in the book. Using a random
seed is not necessary, but if you use the same random seed we used here,
you should find that both Group C and Group D have 15 members.

After generating this random column of 0s and 1s that indicates the group
assignment of each customer, we create two smaller dataframes, groupc and
groupd, that contain user IDs and information about the users in each
subgroup.

You can send the group membership information to your marketing team
members and ask them to send the right emails to the right groups. One
group, either C or D, should receive an email without a picture, and the
other group, either D or C, should receive an email with a picture. Then,
suppose that the marketing team sends you a file containing the results of
this latest A/B test. You can download a fabricated dataset containing
hypothetical results from https://bradfordtuckfield.com/emailresults2.csv.
After you store it in the same place where you’re running Python, let’s read
the results of this email campaign into Python as follows:

emailresults2=pd.read_csv('emailresults2.csv')

Again, let’s join our email results to our group dataframes, just as we did
before:

groupc_withrevenue=groupc.merge(emailresults2,on='userid')
groupd_withrevenue=groupd.merge(emailresults2,on='userid')

And again, we can use a t-test to check whether the revenue resulting
from Group C is different from the revenue we get from Group D:

print(scipy.stats.ttest_ind(groupc_withrevenue['revenue'],gro
upd_withrevenue['revenue']))

We find that the p-value is less than 0.05, indicating that the difference
between the groups is statistically significant. This time, our experiment
isn’t confounded, because we used random assignment to ensure that the
differences between groups are the result of our different emails, not the
result of different characteristics of each group. Since our experiment isn’t
confounded, and since we find a significant difference between the
revenues earned from Group C and Group D, we conclude that including
the picture in the email has a nonzero effect. If the marketing team tells us
that it sent the picture only to Group D, we can find the estimated size of
the effect easily:

print(np.mean(groupd_withrevenue['revenue'])-np.mean(groupc_w
ithrevenue['revenue']))

https://bradfordtuckfield.com/emailresults2.csv

We calculate the estimated effect here with subtraction: the mean revenue
obtained from subjects in Group D minus the mean revenue obtained from
subjects in Group C. The difference between mean revenue from Group C
and mean revenue from Group D, about $260, is the size of the effect of our
experiment.

The process we follow for A/B testing is really quite simple, but it’s also
powerful. We can use it for a wide variety of questions that we might want
to answer. Anytime you’re unsure about an approach to take in business,
especially in user interactions and product design, considering an A/B test
as an approach to learn the answer is worthwhile. Now that you know the
process, let’s move on and understand its nuances.

Optimizing with the Champion/Challenger
Framework
When we’ve crafted a great email, we might call it our champion email
design: the one that, according to what we know so far, we think will
perform the best. After we have a champion email design, we may wish to
stop doing A/B testing and simply rest on our laurels, collecting money
indefinitely from our “perfect” email campaigns.

But this isn’t a good idea, for a few reasons. The first is that times
change. Fads in design and marketing change quickly, and a marketing
effort that seems exciting and effective today may soon seem dated and
outmoded. Like all champions, your champion email design will become
weaker and less effective as it ages. Even if design and marketing fads don’t
change, your champion will eventually seem boring as the novelty wears
off: new stimuli are more likely to get people’s attention.

Another reason that you shouldn’t stop A/B testing is that your customer
base will change. You’ll lose some old customers and gain new ones. You’ll
release new products and enter new markets. As your customer mix
changes, the types of emails that they tend to respond to will change as
well, and constant A/B testing will enable you to keep up with their
changing characteristics and preferences.

A final reason to continue A/B testing is that although your champion
likely is good, you might not have optimized it in every possible way. A
dimension you haven’t tested yet could enable you to have an even better
champion that gets even better performance. If we can successfully run one
A/B test and learn one thing, we’ll naturally want to continue to use our
A/B testing skills to learn more and more and to increase profits higher and
higher.

Suppose you have a champion email and want to continue A/B testing to
try to improve it. You do another random split of your users, into a new
Group A and a new Group B. You send the champion email to Group A.
You send another email to Group B that differs from the champion email in
one way that you want to learn about; for example, maybe it uses formal
rather than informal language. When we compare the revenues from Group
A and Group B after the email campaign, we’ll be able to see whether this
new email performs better than the champion email.

Since the new email is in direct competition with the champion email, we
call it the challenger. If the champion performs better than the challenger,
the champion retains its champion status. If the challenger performs better
than the champion, that challenger becomes the new champion.

This process can continue indefinitely: we have a champion that
represents the state of the art of whatever we’re doing (marketing emails, in
this case). We constantly test the champion by putting it in direct
competition with a succession of challengers in A/B tests. Each challenger
that leads to significantly better outcomes than the champion becomes the
new champion and is, in turn, put into competition against new challengers
later.

This endless process is called the champion/challenger framework for
A/B tests. It’s meant to lead to continuous improvement, continuous
refinement, and asymptotic optimization to get to the best-possible
performance in all aspects of business. The biggest tech companies in the
world run literally hundreds of A/B tests per day, with hundreds of
challengers taking on hundreds of champions, sometimes defeating them
and sometimes being defeated. The champion/challenger framework is a
common approach for setting up and running A/B tests for the most
important and most challenging parts of your business.

Preventing Mistakes with Twyman’s Law and
A/A Testing
A/B testing is a relatively simple process from beginning to end.
Nevertheless, we are all human and make mistakes. In any data science
effort, not just A/B testing, it’s important to proceed carefully and
constantly check whether we’ve done something wrong. One piece of
evidence that often indicates that we’ve done something wrong is that
things are going too well.

How could it be bad for things to go too well? Consider a simple
example. You perform an A/B test: Group A gets one email, and Group B
gets a different one. You measure revenue from each group afterward and
find that the average revenue earned from members of Group A is about
$25, while the average revenue earned from members of Group B is
$99,999. You feel thrilled about the enormous revenue you earned from
Group B. You call all your colleagues to an emergency meeting and tell
them to stop everything they’re doing and immediately work on
implementing the email that Group B got and pivot the whole company
strategy around this miracle email.

As your colleagues are working around the clock on sending the new
email to everyone they know, you start to feel a nagging sense of doubt.
You think about how unlikely it is that a single email campaign could
plausibly earn almost $100,000 in revenue per recipient, especially when
your other campaigns are earning only about $25 per user. You think about
how $99,999, the amount of revenue you supposedly earned per user, is five
identical digits repeated. Maybe you remember a conversation you had with
a database administrator who told you that your company database
automatically inserts 99999 every time a database error occurs or data is
missing. Suddenly, you realize that your email campaign didn’t really earn
$99,999 per user, but rather a database error for Group B caused the
appearance of the apparently miraculous result.

A/B testing is a simple process from a data science point of view, but it
can be quite complex from a practical and social point of view. For
example, in any company larger than a tiny startup, the creative people
designing marketing emails will be different from the technology people

who maintain the databases that record revenues per user. Other groups may
be involved in little parts of A/B testing: maybe a group that maintains the
software used to schedule and send out emails, maybe a group that creates
art that the email marketing team asks for, and maybe others.

With all these groups and steps involved, many possible chances exist for
miscommunication and small errors. Maybe two different emails are
designed, but the person who’s in charge of sending them out doesn’t
understand A/B testing and copies and pastes the same email to both
groups. Maybe they accidentally paste in something that’s not even
supposed to be in the A/B test at all. In our example, maybe the database
that records revenues encounters an error and puts 99999 in the results as an
error code, which others mistakenly interpret as a high revenue. No matter
how careful we try to be, mistakes and miscommunications will always find
a way to happen.

The inevitability of mistakes should lead us to be naturally suspicious of
anything that seems too good, bad, interesting, or strange to be true. This
natural suspicion is advocated by Twyman’s law, which states that “any
figure that looks interesting or different is usually wrong.” This law has
been restated in several ways, including “any statistic that appears
interesting is almost certainly a mistake” and “the more unusual or
interesting the data, the more likely it is to have been the result of an error.”

Besides extreme carefulness and natural suspicion of good news, we have
another good way to prevent the kinds of interpretive mistakes that
Twyman’s law warns against: A/A testing. This type of testing is just what it
sounds like; we go through the steps of randomization, treatment, and
comparison of two groups just as in A/B testing, but instead of sending two
different emails to our two randomized groups, we send the identical email
to each group. In this case, we expect the null hypothesis to be true, and we
won’t be gullibly convinced by a group that appears to get $100,000 more
revenue than the other group.

If we consistently find that A/A tests lead to statistically significant
differences between groups, we can conclude that our process has a
problem: a database gone haywire, a t-test being run incorrectly, an email
being pasted wrong, randomization performed incorrectly, or something
else. An A/A test would also help us realize that the first test described in

this chapter (where Group A consists of younger people and Group B
consists of older people) was confounded, since we would know that
differences between the results of an A/A test must be due to the differences
in age rather than differences between emails. A/A testing can be a useful
sanity check that can prevent us from getting carried away by the kind of
unusual, interesting, too-good-to-be-true results that Twyman’s law warns
us about.

Understanding Effect Sizes
In the first A/B test we ran, we observed a difference of $125 between the
Group A users who received a black-text email and the Group B users who
received a blue-text email. This $125 difference between groups is also
called the A/B test’s effect size. It’s natural to try to form a judgment about
whether we should consider this $125 effect size a small effect, a medium
effect, or a large effect.

To judge whether an effect is small or large, we have to compare it to
something else. Consider the following list of nominal GDP figures (in US
dollars, as of 2019) for Malaysia, Myanmar, and the Marshall Islands,
respectively:

gdps=[365303000000,65994000000,220000000]

When we look at these numbers, $125 starts to seem pretty small. For
example, consider the standard deviation of our gdps list:

print(np.std(gdps))

The result is 158884197328.32672, or about $158,884,197,328 (almost
$159 billion). The standard deviation is a common way to measure how
dispersed a dataset is. If we observe a difference between two countries’
GDPs that’s about $80 billion, we don’t think of that as outrageously big or
outrageously small, because it means those countries are about half of a
standard deviation apart, a common magnitude of difference. Instead of
expressing the difference as an $80 billion difference, you might say that

the two countries’ GDPs differed by about half of a standard deviation, and
expect to be understood by anyone with some statistical training.

By contrast, if someone tells you that two countries have GDPs that
differ by 112 trillion kyat (the currency of Myanmar), you might be unsure
whether that difference is large or small if you’ve never learned the value of
1 kyat (112 trillion kyat is equal to about $80 billion at the time of writing).
Many currencies exist in the world, and their relative and absolute values
change all the time. A standard deviation, on the other hand, isn’t specific to
any particular country and is not affected by inflation, making it a useful
unit of measurement.

We can use standard deviations as measurements in other domains as
well. Someone from Europe may be used to using meters to express
heights. When you tell your European data scientist friend about a man
who’s 75 inches tall, they may feel puzzled about whether that’s tall or short
or average if they’re not used to conversion from inches. But, if you tell
them that he’s about two standard deviations taller than the mean, they
should immediately be able to understand that he’s pretty tall but not a
record-breaking height. Observing someone who’s more than three standard
deviations above the mean height will be much rarer, and we can know that
whether we’re measuring in meters or inches or any other units.

When we talk about the $125 effect size of our A/B test, let’s try to think
of it in terms of standard deviations as well. Compared to the standard
deviation of the GDP measurements we’ve seen, $125 is small potatoes:

print(125/np.std(gdps))

The output is about 7.9 · 10–10, which shows us that the $125 effect size
is a little more than 1 one-billionth of the standard deviation of our GDP
figures. Compared to the world of GDP measurements, a $125 difference in
GDP is like being a micrometer taller than your friend—not even enough to
notice without extremely precise measurement technology.

By contrast, suppose we conduct a survey of the prices of burgers at local
restaurants. Maybe we find the following prices:

burgers=[9.0,12.99,10.50]

We can check this standard deviation as well:

print(np.std(burgers))

The standard deviation of our burger price data is about 1.65. So, two
countries’ GDPs differing by about $80 billion is roughly comparable to
two burger prices differing by about 80 cents: both represent about half of a
standard deviation in their respective domains. When we compare a $125
effect size to this, we see that it’s huge:

print(125/np.std(burgers))

We see that $125 is about 75.9 burger price standard deviations. Seeing a
$125 difference in burger prices in your town is therefore something like
seeing a man who is over 20 feet tall—unheard of.

By measuring our effect size in terms of the standard deviation of
different datasets, we can easily make comparisons, not just between
different domains with the same units (GDP in dollars versus burger prices
in dollars) but also between different domains that use totally different units
(burger prices in dollars versus height in inches). The metric we’ve
calculated several times here—an effect size divided by a relevant standard
deviation—is called Cohen’s d, a common metric for measuring effect sizes.
Cohen’s d is just the number of standard deviations that two populations’
means are apart from each other. We can calculate Cohen’s d for our first
A/B test as follows:

print(125/np.std(emailresults1['revenue']))

We see that the result is about 0.76. A common convention when we’re
working with Cohen’s d is to say that if Cohen’s d is about 0.2 or lower, we
have a small effect; if Cohen’s d is about 0.5, we have a medium effect; and
if Cohen’s d is around 0.8 or even higher, we have a large effect. Since our
result is about 0.76—quite close to 0.8—we can say that we’re working
with a large effect size.

Calculating the Significance of Data

We typically use statistical significance as the key piece of evidence that
convinces us that an effect that we study in an A/B test is real.
Mathematically, statistical significance depends on three things:
The size of the effect being studied (like the increase in revenue that results
from changing an email’s text color). Bigger effects make statistical
significance more likely.
The size of the sample being studied (the number of people on a subscriber
list who are receiving our marketing emails). Bigger samples make
statistical significance more likely.
The significance threshold we’re using (typically 0.05). A higher threshold
makes statistical significance more likely.

If we have a big sample size, and we’re studying a big effect, our t-tests
will likely reach statistical significance. On the other hand, if we study an
effect that’s very small, with a sample that’s very small, we may have
predestined our own failure: the probability that we detect a statistically
significant result is essentially 0—even if the email truly does have an
effect. Since running an A/B test costs time and money, we’d rather not
waste resources running tests like this that are predestined to fail to reach
statistical significance.

The probability that a correctly run A/B test will reject a false null
hypothesis is called the A/B test’s statistical power. If changing the color of
text leads to a $125 increase in revenue per user, we can say that $125 is the
effect size, and since the effect size is nonzero, we know the null hypothesis
(that changing the text color has no effect on revenue) is false. But if we
study this true effect by using a sample of only three or four email
subscribers, it’s very possible that, by chance, none of these subscribers
purchase anything, so we fail to detect the true $125 effect. By contrast, if
we study the effect of changing the text color by using an email list of a
million subscribers, we’re much more likely to detect the $125 effect and
measure it as statistically significant. With the million-subscriber list, we
have greater statistical power.

We can import a module into Python that makes calculating statistical
power easy:

from statsmodels.stats.power import TTestIndPower

To calculate power with this module, we’ll need to define parameters for
the three things that determine statistical significance (see the preceding
bulleted list). We’ll define alpha, which is our chosen statistical
significance threshold, as discussed in Chapter 3:

alpha=0.05

We choose the standard 0.05 threshold for alpha, as is standard in much
empirical research. We also need to define our sample size. Suppose we’re
running an A/B test on a group of email subscribers that consists of 90
people total. That means we’ll have 45 people in Group A and 45 people in
Group B, so we define the number of observations in each of our groups as
45. We’ll store this number in a variable called nobs, short for number of
observations:

nobs=45

We also have to define an estimated effect size. In our previous A/B test,
we observed an effect size of $125. However, for the statistical power
calculations this module performs, we can’t express the effect size in dollar
units or units of any other currency. We’ll use Cohen’s d instead, and we’ll
specify a medium size:

effectsize=0.5

Finally, we can use a function that will take the three parameters we’ve
defined and calculate the statistical power we should expect:

analysis = TTestIndPower()
power = analysis.solve_power(effect_size=effectsize, nobs1=no
bs, alpha=alpha)

If you run print(power), you can see that the estimated statistical power
for our hypothetical A/B test is about 0.65. This means that we expect about
a 65 percent chance of detecting an effect from our A/B test and about a 35
percent chance that even though a true effect exists, our A/B test doesn’t
find it. These odds might seem unfavorable if a given A/B test is expected

to be expensive; you’ll have to make your own decisions about the
minimum level of power that is acceptable to you. Power calculations can
help at the planning stage to understand what to expect and be prepared.
One common convention is to authorize only A/B tests that are expected to
have at least 80 percent power.

You can also use the same solve_power() method we used in the
previous snippet to “reverse” the power calculation: you’d start by
assuming a certain power level and then calculate the parameters required
to achieve that level of statistical power. For example, in the following
snippet, we define power, alpha, and our effect size, and run the
solve_power() command not to calculate the power but to calculate
observations, the number of observations we’ll need in each group to
achieve the power level we specified:

analysis = TTestIndPower()
alpha = 0.05
effect = 0.5
power = 0.8
observations = analysis.solve_power(effect_size=effect, power
=power, alpha=alpha)

If you run print(observations), you’ll see that the result is about 63.8.
This means that if we want to have 80 percent statistical power for our
planned A/B test, we’ll need to recruit at least 64 participants for both
groups. Being able to perform these kinds of calculations can be helpful in
the planning stages of A/B tests.

Applications and Advanced Considerations
So far, we’ve considered only A/B tests related to marketing emails. But
A/B tests are applicable to a wide variety of business challenges beyond
optimal email design. One of the most common applications of A/B testing
is user interface/experience design. A website might randomly assign
visitors to two groups (called Group A and Group B, as usual) and show
different versions of the site to each group. The site can then measure which
version leads to more user satisfaction, higher revenue, more link clicks,
more time spent on the site, or whatever else interests the company. The

whole process can be completely automated, which is what enables the
high-speed, high-volume A/B testing that today’s top tech companies are
doing.

E-commerce companies run tests, including A/B tests, on product
pricing. By running an A/B test on pricing, you can measure what
economists call the price elasticity of demand, meaning how much demand
changes in response to price changes. If your A/B test finds only a very
small change in demand when you increase the price, you should increase
the price for everyone and take advantage of their greater willingness to
pay. If your A/B test finds that demand drops off significantly when you
increase the price slightly, you can conclude that customers are sensitive to
price, and their purchase decisions depend heavily on price considerations.
If customers are sensitive to price and constantly thinking about it, they’ll
likely respond positively to a price decrease. If so, you should decrease the
price for everyone instead, and expect a large increase in demand. Some
businesses have to set prices based on intuition or other painstaking
calculations, but A/B testing makes determining the right price relatively
simple.

Email design, user-interface design, and product pricing are all common
concerns for business-to-consumer (B2C) business models, in which
businesses sell directly to consumers. B2C scenarios are a natural fit for
A/B testing because the number of customers, products, and transactions
tends to be higher for B2C businesses than for other businesses, so we can
get large sample sizes and higher statistical power.

This doesn’t mean that business-to-business (B2B) companies can’t do
A/B testing. Indeed, A/B testing has been practiced for centuries around the
world and in many domains, though it used to be called just science. For
example, medical researchers do randomized controlled trials for new
drugs, with an approach that’s often essentially the same as A/B testing in a
champion/challenger framework. Businesses of all kinds have always
needed to learn about the market and their customers, and A/B testing is a
natural, rigorous way to learn nearly anything.

As you apply A/B testing in your business, you should try to learn as
much as you can about it, beyond the content in the limited space of this
chapter. One huge field you might want to wade into is Bayesian statistics.

Some data scientists prefer to use Bayesian methods instead of significance
tests and p-values to test for the success of A/B tests.

Another interesting, useful topic to learn more about is the
exploration/exploitation trade-off in A/B tests. In this trade-off, two goals
are in constant tension: to explore (for example, to run A/B tests with
possibly bad email designs to learn which is best) and to exploit (for
example, to send out only the champion email because it seems to perform
the best). Exploration can lead to missed opportunities if one of your
challengers performs much worse than the champion; you would have been
better off just sending out the champion to everyone. Exploitation can lead
to missed opportunities if your champion is not as good as another
challenger that you haven’t tested yet because you’re too busy exploiting
your champion to do the requisite exploration.

In operations research, you’ll find a huge body of research on the multi-
armed bandit problem, which is a mathematical formalization of the
exploration/exploitation dilemma. If you’re really interested in doing A/B
testing optimally, you can peer into some of the strategies that researchers
have come up with to solve the multi-armed bandit problem and run A/B
tests as efficiently as possible.

The Ethics of A/B Testing
A/B testing is fraught with difficult ethical issues. This may seem
surprising, but remember, A/B testing is an experimental method in which
we intentionally alter human subjects’ experiences in order to study the
results for our own gain. This means that A/B testing is human
experimentation. Think about other examples of human experimentation to
see why people have ethical concerns about it:

. Jonas Salk developed an untested, unprecedented polio vaccine, tried it on
himself and his family, and then tried it on millions of American children to
ensure that it worked. (It worked and helped eliminate a terrible disease
from much of the world.)

. My grandmother made a pie for her grandchildren, observed how we
reacted to it, and then the next day made a different pie and checked

whether we reacted more or less positively. (Both were delicious.)
. A professor posed as a student and emailed 6,300 professors to ask them to
schedule time to talk to her, lying about herself and her intentions in an
attempt to determine whether her false persona would be a target of
discrimination so she could publish a paper about the replies. She didn’t
compensate any of the unwitting study participants for the deception or the
schedule disruption, nor did she receive their consent beforehand to be an
experimental subject. (Every detail of this study was approved by a
university ethics board.)

. A corporation intentionally manipulated the emotions of its users to better
understand and sell products to them.

. Josef Mengele performed painful and deadly sadistic experiments on
unwilling human subjects in the Auschwitz concentration camp.

. You perform an A/B test.

The first five entries on this list of human experiments actually happened,
and all but the second inspired public discussions about ethics among social
scientists. You’ll have to decide whether the sixth will happen and what
position you will take concerning the ethical issues involved. Because of
the broad range of activities that could be called human experimentation,
making a single ethical judgment about all of its forms isn’t possible. We
have to consider several important ethical concepts when we’re deciding
whether our A/B tests make us a hero like my grandmother or Salk, a villain
like Mengele, or something in between.

The first concept we should consider is consent. Salk tested his vaccine
on himself before large-scale tests of others. Mengele, by contrast,
performed experiments on unwilling subjects confined in concentration
camps. Informed consent always makes human experimentation more
ethical. In some cases, obtaining informed consent is not feasible. For
example, if we perform experiments about which outdoor billboard designs
are most effective, we can’t obtain informed consent from every possible
human research subject, since any person in the world could conceivably
see a public billboard, and we don’t have a way to contact every living
human.

Other cases form a large gray area. For example, a website that performs
A/B tests may have a Terms and Conditions section, with small print and
legalese that claims that every website visitor provides consent to be
experimented on (via A/B tests of user-interface features) whenever they
navigate to the site. This may technically meet the definition of informed
consent, but only a tiny percentage of any website’s visitors likely visit and
understand these conditions. In gray-area cases, it helps to consider other
ethical concepts.

Another important ethical consideration related to A/B testing is risk.
Risk itself involves two considerations: potential downsides to participation
as a human subject and the probability of experiencing those downsides.
Salk’s vaccine had a large potential downside—contracting polio—but
because of Salk’s preparation and knowledge, the probability of subjects
experiencing it was remarkably low. A/B testing for marketing campaigns
usually has potential downsides that are minuscule or smaller, as it’s hard to
even imagine any downside that could occur because (for example)
someone was exposed to blue rather than black text in one marketing email.
Experiments with low risks to subjects are more ethical than risky
experiments.

We should also consider the potential benefits that could result from our
experimentation. Salk’s vaccine experiments had the potential (later
realized) of eradicating polio from most of the Earth. A/B tests are designed
to improve profits, not cure diseases, so your judgment of their benefits will
have to depend on your opinion of the moral status of corporate profits. The
only other benefit likely to come from a corporation’s marketing
experiment would be an advance in understanding of human psychology.
Indeed, corporate marketing practitioners occasionally publish the results of
marketing experiments in psychology journals, so this isn’t unheard of.

Ethical and philosophical questions can never reach a definitive, final
conclusion that everyone agrees on. You can make up your own mind about
whether you feel that A/B testing is fundamentally good, like Salk’s vaccine
experiments, or fundamentally abhorrent, like Mengele’s horrors. Most
people agree that the extremely low risks of most online A/B testing, and
the fact that people rarely refuse consent to benign A/B tests, mean that A/B
testing is an ethically justifiable activity when performed properly.

Regardless, you should think carefully through your own situation and
come to your own conclusion.

Summary
In this chapter, we discussed A/B testing. We started with a simple t-test,
and then looked at the need for random, non-confounded data collection as
part of the A/B testing process. We covered some nuances of A/B testing,
including the champion/challenger framework and Twyman’s law, as well
as ethical concerns. In the next chapter, we’ll discuss binary classification,
an essential skill for any data scientist.

5
BINARY CLASSIFICATION

Many difficult questions can be phrased
simply as yes/no questions: To buy the
stock or not? To take the job or not? To
hire the applicant or not? This chapter is
about binary classification, the

technical term for answering yes/no questions, or
deciding between true and false, 1 and 0.

We’ll start by introducing a common business scenario that depends on
binary classification. We’ll continue by discussing linear probability
models, a simple but powerful binary classification approach based on
linear regression. We’ll also cover logistic regression, a more advanced
classification method that improves on some of the shortcomings of linear
probability models. We’ll conclude by going over some of the many
applications of binary classification methods, including risk analysis and
forecasting.

Minimizing Customer Attrition
Imagine you’re running a big tech company with about 10,000 large clients.
Each client has a long-term contract with you, promising that they’ll pay
you regularly to use your company’s software. However, all your clients are
free to exit their contracts at any time and stop paying you if they decide

they don’t want to use your software anymore. You want to have as many
clients as you can, so you do your best to do two things: one, grow the
company by signing new contracts with new clients and, two, prevent
attrition by ensuring that your existing clients don’t exit their contracts.

In this chapter, we’ll focus on your second goal: preventing client
attrition. This is an extremely common concern for businesses in every
industry, and one that every company struggles with. It’s especially
important since acquiring new customers is well known to be much more
costly than retaining existing ones.

To prevent attrition, you have a team of client managers who stay in
touch with clients, make sure they’re happy, resolve any problems that
come up, and in general ensure that they’re satisfied enough to continue
renewing their contracts indefinitely. Your client management team is small,
however—only a few people who together have to try to keep 10,000
clients happy. It’s impossible for them to be in constant contact with all
10,000 clients, and inevitably some clients will have concerns and problems
that your client management team isn’t able to find out about or resolve.

As the leader of your company, you have to decide how to direct the
efforts of the client managers to minimize attrition. Every hour they spend
working with a client who’s at high risk of attrition is probably worthwhile,
but their time is wasted when they spend too much time on a client who is
not at risk of attrition. The best use of the client managers’ time will be to
focus on the clients who have the highest likelihood of canceling their
contracts. All the managers need is a list of all the high-risk clients to
contact, and then they can use their time with maximum efficiency to
minimize attrition.

Getting an accurate list of high-attrition-risk clients is not an easy task,
since you can’t read the minds of all your clients and immediately know
which ones are in danger of canceling their contracts and which ones are
happy as clams. Many companies rely on intuition or guessing to decide
which clients have the highest attrition risk. But intuition and guessing
rarely lead to the most accurate possible results. We’ll get better accuracy,
and therefore better cost savings, by using data science tools to decide
whether each client is high risk or low risk.

Deciding whether a client is high risk or low risk for attrition is a binary
classification problem; it consists of answering a yes-or-no question: Is this
client at high risk for attrition? What started as a daunting business problem
(how to increase revenue growth with limited resources) has been reduced
to a much simpler data analysis problem (how to perform a binary
classification of attrition risk). We’ll approach this problem by reading in
historical data related to past attrition, analyzing that data to find useful
patterns in it, and applying our knowledge of those patterns to more recent
data to perform our binary classification and make useful business
recommendations.

Using Linear Probability Models to Find
High-Risk Customers
We can choose from several data analysis methods to do binary
classification. But before we explore these methods, we should read some
data into Python. We’ll use fabricated data about hypothetical clients of our
imaginary firm. You can load it into your Python session directly from its
online home by using the following snippet:

import pandas as pd
attrition_past=pd.read_csv('https://bradfordtuckfield.com/att
rition_past.csv')

In this snippet, we import pandas and read the file for our data. This time,
we read the file directly from a website where it’s being stored. The file is
in .csv format, which you’ve already encountered in previous chapters. You
can print the top five rows of our data as follows:

print(attrition_past.head())

You should see the following output:

 corporation lastmonth_activity ... number_of_employees
 exited
0 abcd 78 ... 12
1
1 asdf 14 ... 20

0
2 xyzz 182 ... 35
0
3 acme 101 ... 2
1
4 qwer 0 ... 42
1

The last line of the output tells us that the dataset has five columns.
Suppose that the first four columns of the data were generated about six
months ago. The first column is a four-character code for every client. The
second column is lastmonth_activity, a measurement of the number of
times someone at that client company accessed our software in the last
month before this data was generated (between 6 and 7 months ago). The
third column is lastyear_activity, the same measurement for the entire
year before the data was generated (between 6 and 18 months ago). The
lastyear_activity column is not visible in the preceding snippet, where
we can see only ellipses between the second and fourth columns. The
reason for this is that the pandas package has default display settings that
ensure its output will be small enough to fit easily onscreen. If you’d like to
change the maximum number of columns that pandas prints out, you can
run the following line in Python:

pd.set_option('display.max_columns', 6)

Here, we use the pandas option display.max_columns to change the
maximum number of columns pandas will display to 6. This change ensures
that if we ever print the attrition_past dataset again, we’ll see all five of
its columns, and when we add one more column to the dataset, we’ll then
be able to see all six of its columns. If you want to display all columns of
every dataset, no matter how many, you can change the 6 to None, which
will mean that there’s no maximum limit on the number of columns for
pandas to display.

Besides columns recording activity levels, we also have a record of the
number of employees each company had six months ago in the
number_of_employees column. Finally, suppose that the final column,
exited, was generated today. This column records whether a given
corporation exited its contract at any time in the six-month period between

when the first four columns were generated and today. This column is
recorded in a binary format: 1 for a client that exited in the last six months
and 0 for a client that didn’t exit. The exited column is our binary
measurement of attrition, and it’s the column that interests us most because
it’s what we’re going to learn to predict.

Having four columns that are six months old and one column that’s new
may seem like a bug or an unnecessary complication. However, this
temporal difference between our columns enables us to find patterns
relating the past and the future. We’ll find patterns in the data that show
how activity levels and employee numbers at one particular time can be
used to predict attrition levels later. Eventually, the patterns we’ll find in
this data will enable us to use a client’s activity as measured today to
predict their attrition likelihood during the next six months. If we can
predict a client’s attrition risk in the next six months, we can take action
during those six months to change their minds and keep them around.
Convincing clients to stay will be the client manager’s role—the
contribution of data science will be to make the attrition prediction itself.

Plotting Attrition Risk
Before we jump into finding all these patterns, let’s check how often
attrition occurs in our data:

print(attrition_past['exited'].mean())

The result we get is about 0.58, meaning that about 58 percent of the
clients in the data exited their contracts in the last six months. This shows
us that attrition is a big problem for the business.

Next, we should make plots of our data. Doing this early and often is a
good idea in any data analysis scenario. We’re interested in how each of our
variables will relate to the binary exited variable, so we can start with a
plot of the relationship of lastmonth_activity and exited:

from matplotlib import pyplot as plt
plt.scatter(attrition_past['lastmonth_activity'],attrition_pa
st['exited'])
plt.title('Historical Attrition')
plt.xlabel('Last Month\'s Activity')

plt.ylabel('Attrition')
plt.show()

We can see the result in Figure 5-1.

Figure 5-1: Historical attrition of clients of a hypothetical company

On the x-axis, we see last month’s activity, although since the data was
recorded six months ago, it’s really activity from six to seven months ago.
The y-axis shows attrition from our exited variable, and that’s why all
values are 0 (did not exit) or 1 (exited) in the most recent six months.
Eyeballing this figure can give us a basic idea of the relationship between
past activity and future attrition. In particular, the clients with the most
activity (> 600) did not exit their contracts in the six months after their high
activity was recorded. High activity seems to be a predictor of client
loyalty, and if it is, low activity will be a predictor of client attrition.

Confirming Relationships with Linear Regression
We’ll want to confirm our initial visual impression by performing a more
rigorous quantitative test. In particular, we can use linear regression.
Remember that in Chapter 2, we had a cloud of points and used linear
regression to find a line that was the best fit to the cloud. Here, our points
don’t look very cloud-like because of the limited range of the y variable:

our “cloud” is two scattered lines at y = 0 and y = 1. However, linear
regression is a mathematical method from linear algebra, and it doesn’t care
how cloud-like our plot looks. We can perform linear regression on our
attrition data with code that’s almost identical to the code we used before:

x = attrition_past['lastmonth_activity'].values.reshape(-1,1)
y = attrition_past['exited'].values.reshape(-1,1)

from sklearn.linear_model import LinearRegression
regressor = LinearRegression()
regressor.fit(x, y)

In this snippet, we create a variable called regressor, which we then fit
to our data. After fitting our regressor, we can plot our regression line going
through our “cloud” of data, just as we did in Chapter 2:

from matplotlib import pyplot as plt
plt.scatter(attrition_past['lastmonth_activity'],attrition_pa
st['exited'])
prediction = [regressor.coef_[0]*x+regressor.intercept_[0] fo
r x in \
list(attrition_past['lastmonth_activity'])]
plt.plot(attrition_past['lastmonth_activity'], prediction, c
olor='red')
plt.title('Historical Attrition')
plt.xlabel('Last Month\'s Activity')
plt.ylabel('Attrition')
plt.show()

Figure 5-2 shows the result of this code.

Figure 5-2: A linear regression predicting a 0–1 attrition outcome

You can compare this plot with Figure 2-2 in Chapter 2. Just as we did in
Figure 2-2, we have a collection of points, and we’ve added a regression
line that we know is the line of best fit to those points. Remember that we
interpret the value of a regression line as an expected value. In Figure 2-2,
we saw that our regression line went approximately through the point x =
109, y = 17,000, and we interpreted that to mean that in month 109, we
expect about 17,000 car sales.

In Figure 5-2, the way to interpret our expected values may not seem
immediately obvious. For example, at x = 400, the y value of the regression
line is about 0.4. This means that our expected value of exited is 0.4, but
that’s not a cogent statement because exited can be only 0 or 1 (either you
exit or you don’t, with no middle ground). So, what could it mean to expect
0.4 “exiteds,” or 0.4 units of exiting at that activity level?

The way we interpret an expected value of 0.4 units of exiting is as a
probability: we conclude that clients with an activity level of about 400 in
the most recent month have about a 40 percent probability of exiting their
contracts. Since our exited data consists of six months of exits after the
activity levels were recorded, we interpret the value of the regression line as
a 40 percent probability of attrition over the next six months after the
activity level was recorded. Another way we can phrase our estimated 40

percent attrition probability is to say that we estimate a 40 percent attrition
risk for clients with an activity level of 400.

The regression in Figure 5-2 is a standard linear regression, exactly like
the linear regression model we created in Chapter 2 and plotted in Figure 2-
2. However, when we perform a standard linear regression on binary data
(data consisting of only two values like 0 and 1), we have a special name
for it: we call it a linear probability model (LPM). These models are simple
and easy to implement, but they can be useful whenever we want to know a
predicted probability of something that’s hard to predict.

After performing our regression and interpreting its values, the last
important step is to make a business decision based on everything we’ve
learned. Figure 5-2 shows a simple relationship between activity and exit
probability: lower activity is associated with higher exit probability, and
higher activity is associated with lower exit probability. What we call exit
probability, we can also call attrition risk, so we can also say that last
month’s activity is negatively correlated with the next six months’ attrition
risk. This negative correlation makes sense from a business point of view: if
a client uses your product very actively, we expect them to be unlikely to
exit their contract, and if a client is very inactive, we expect them to be
more likely to exit.

Knowing that a general negative correlation exists between activity and
attrition risk is helpful. But we can be even more specific in our reasoning
and decision-making if we calculate the exact predicted attrition risk for
each client. This will enable us to make individualized decisions for each
client based on their predicted risk. The following code calculates the
attrition risk for each client (the predicted value from our regression) and
stores its value in a new column called predicted:

attrition_past['predicted']=regressor.predict(x)

If you run print(attrition_past.head()), you can see that our
attrition dataset now has six columns. Its new sixth column is the predicted
attrition probability for each client based on our regression. Of course, this
is not very useful to us; we don’t need predicted attrition probabilities, since
this is a record of past attrition and we already know with certainty whether
each of these clients exited.

Altogether, attrition prediction has two steps. First, we learn the
relationships between features and target variables by using data from the
past. Second, we use the relationships we learned from past data to make
predictions for the future. So far, we’ve done only the first step: we’ve fit a
regression that captures the relationship between customer attributes and
attrition risk. Next, we need to make predictions for the future.

Predicting the Future
Let’s download and open more fabricated data. This time, suppose that all
the data was generated today, so its lastmonthactivity column refers to
the previous month, and its lastyearactivity column refers to the 12-
month period ending today. We can read in our data as follows:

attrition_future=pd.read_csv('http://bradfordtuckfield.com/at
trition2.csv')

The attrition_past dataset that we worked with before used old data
(more than six months old) to predict attrition that happened in the recent
past (any time in the last six months). By contrast, with this dataset, we’ll
use new data (generated today) to predict attrition that we expect to happen
in the near future (in the next six months). That’s why we’re calling it
attrition_future. If you run print(attrition_future.head()), you can
see the first five rows of this data:

 corporation lastmonth_activity lastyear_activity number_
of_employees
0 hhtn 166 1393
91
1 slfm 824 16920
288
2 pryr 68 549
12
3 ahva 121 1491
16
4 dmai 4 94
2

You can see that this dataset’s first four columns have the same names
and interpretations as the first four columns of attrition_past. However,

this dataset doesn’t have a fifth, exited column. The dataset lacks this
column because the exited column is supposed to record whether a client
exited their contract in the six-month period after the other columns were
generated. But that six-month period hasn’t happened yet; it’s the six
months that start today. We need to use what we’ve learned from the
attrition dataset to predict the probabilities of attrition for this new set of
clients. When we do, we’ll be making a prediction about the future rather
than the past.

All of the four-character corporation codes in the first column of
attrition_future are new—they didn’t appear in the original attrition
dataset. We can’t use anything from the original attrition dataset to learn
directly about this new dataset. However, we can use the regressor we fit to
make attrition probability predictions for this new dataset. In other words,
we don’t use the actual data from attrition_past to learn about
attrition_future, but we do use the patterns we found in
attrition_past, which we encoded in a linear regression, to make
predictions about attrition_future.

We can predict attrition probabilities for the attrition_future dataset in
exactly the same way we predicted attrition probabilities for the
attrition_past dataset, as follows:

x = attrition_future['lastmonth_activity'].values.reshape(-1,
1)
attrition_future['predicted']=regressor.predict(x)

This snippet adds a new column called predicted to the
attrition_future dataset. We can run print(attrition_future.head())
to see the top five rows after the change:

 corporation lastmonth_activity ... number_of_employees
 predicted
0 hhtn 166 ... 91
0.576641
1 slfm 824 ... 288
0.040352
2 pryr 68 ... 12
0.656514
3 ahva 121 ... 16
0.613317

4 dmai 4 ... 2
0.708676

You can see that the pattern of low predicted exit probability for high-
activity clients matches the pattern we observed for the attrition_past
dataset. This is because our predicted probabilities were generated using the
same regressor that was trained on the attrition_past dataset.

Making Business Recommendations
After calculating these predicted probabilities, we want to translate them to
business recommendations for our client management team. The simplest
way to direct the team members’ efforts would be to provide them with a
list of high-risk clients to focus their efforts on. We can specify a number of
clients n that we think they have the time and bandwidth to focus on, and
create a list of the top n highest-risk clients. We can do this for n = 5 as
follows:

print(attrition_future.nlargest(5,'predicted'))

When we run this line, we get the following output:

 corporation lastmonth_activity ... number_of_employees
predicted
8 whsh 0 ... 52
0.711936
12 mike 0 ... 49
0.711936
24 pian 0 ... 19
0.711936
21 bass 2 ... 1400
0.710306
4 dmai 4 ... 2
0.708676

[5 rows x 5 columns]

You can see that our top five highest-risk clients have predicted
probabilities over 0.7 (70 percent), quite a high attrition probability.

Now, suppose your client managers are unsure of the number of clients
they can focus on. Instead of asking for the top n clients for some n, they

may simply want a ranked list of every client from highest to lowest
attrition probability. The client managers can start at the beginning of the
list and work their way through it as far as they can get. You can print this
list easily as follows:

print(list(attrition_future.sort_values(by='predicted',ascend
ing=False).loc[:,'corporation']))

The output is a list of all corporations in the attrition_future dataset,
ranked from highest to lowest attrition probability:

['whsh', 'pian', 'mike', 'bass', 'pevc', 'dmai', 'ynus', 'kdi
c', 'hlpd',\
 'angl', 'erin', 'oscr', 'grce', 'zamk', 'hlly', 'xkcd', 'dwg
t', 'pryr',\
 'skct', 'frgv', 'ejdc', 'ahva', 'wlcj', 'hhtn', 'slfm', 'cre
d']

The first three corporations in this list—whsh, pian, and mike—are
estimated to have the highest attrition risk (highest probability of exiting
their contracts). In this case, the data shows a three-way tie for highest risk,
since all three of these corporations have the same predicted high risk, and
all the other corporations have lower predicted attrition risk.

Finally, you may decide that you’re interested in any clients whose
predicted probabilities are higher than a certain threshold x. We can do this
as follows for x = 0.7:

print(list(attrition_future.loc[attrition_future['predicted']
>0.7,'corporation']))

You’ll see a full list of all corporations that are predicted to have a greater
than 70 percent attrition risk over the next six months. This could be a
useful priority list for your client managers.

Measuring Prediction Accuracy
In the previous section, we went through all the steps necessary to send a
list of at-risk corporations to our client managers. Having reported our
attrition risk predictions, we may feel that our task is complete and we can

move on to the next one. But we’re not finished yet. As soon as we deliver
our predictions to client managers, they’ll likely immediately ask us how
accurate we expect our predictions to be. They’ll want to know how much
they can trust our predictions before they put in great effort acting on them.

In Chapter 2, we went over two common ways to measure the accuracy
of linear regressions: root mean squared error (RMSE) and mean absolute
error (MAE). Our LPM is technically a linear regression, so it’s possible to
use these metrics again. However, for classification problems, the common
convention is to use a different set of metrics that express classification
accuracy in a more easily interpretable way. The first thing we’ll need to do
is create lists of our predictions and actual values, respectively:

themedian=attrition_past['predicted'].median()
prediction=list(1*(attrition_past['predicted']>themedian))
actual=list(attrition_past['exited'])

In this snippet, we calculate the median value of our predicted column.
Then we create prediction, which will be 0 when our LPM predicts
below-median probability, and 1 when our LPM predicts above-median
probability. We’re doing this because when we measure accuracy for
classification tasks, we’ll use metrics that count exact matches like
predicted = 1, actual = 1 and predicted = 0, actual = 0. Typical
classification accuracy metrics don’t give “partial credit” for predicting 0.99
probability when the actual value is 1, so we convert our probabilities to 1s
and 0s so we can get “full credit” where possible. We also convert our list
of actual values (from the exited column) to a Python list.

Now that our data is in the right format, we can create a confusion
matrix, a standard way to measure accuracy in classification models:

from sklearn.metrics import confusion_matrix
print(confusion_matrix(prediction,actual))

The confusion matrix that is output shows the number of true positives,
true negatives, false positives, and false negatives we get when making
predictions on our dataset. Our confusion matrix looks like this:

>>> print(confusion_matrix(prediction,actual))
[[7 6]

[4 9]]

Every confusion matrix has the following structure:

[[true positives false positives]
 [false negatives true negatives]]

So, when we look at our confusion matrix, we find that our model made
seven true-positive classifications: for seven corporations, our model
predicted above-median exit probability (high attrition risk), and those
seven corporations did exit. Our false positives are six cases in which we
predicted above-median exit probability but the corporation didn’t exit. Our
false negatives are four cases in which we predicted below-median exit
probability but the corporation did exit. Finally, our true negatives are nine
cases in which we predicted below-median exit probability for clients that
didn’t exit.

We’re always happy about true positives and true negatives, and we
always want both (the values on the main diagonal of the confusion matrix)
to be high. We’re never happy about false positives or false negatives, and
we always want both (the values off the main diagonal) to be as low as
possible.

The confusion matrix contains all possible information about the
classifications we’ve made and their correctness. However, data scientists
can never get enough new ways to slice and dice and re-represent data. We
can calculate a huge number of derived metrics from our little confusion
matrix.

Two of the most popular metrics we can derive are precision and recall.
Precision is defined as true positives / (true positives + false positives).
Recall is also called sensitivity and is defined as true positives / (true
positives + false negatives). Precision is answering the question, Out of
everything we thought was positive, how many times was it actually
positive? (In our case, positive refers to attrition—out of all the times we
thought a client was at high risk of leaving, how many times did they
actually leave?) Recall is answering the slightly different question, Out of
all the actually positive cases, how many did we think were positive? (In
other words, out of all the clients who actually exited their contracts, how

many did we predict were at high attrition risk?) If false positives are high,
precision will be low. If false negatives are high, recall will be low. Ideally,
both will be as high as possible.

We can calculate both precision and recall as follows:

conf_mat = confusion_matrix(prediction,actual)
precision = conf_mat[0][0]/(conf_mat[0][0]+conf_mat[0][1])
recall = conf_mat[0][0]/(conf_mat[0][0]+conf_mat[1][0])

You’ll see that our precision is about 0.54, and our recall is about 0.64.
These are not extremely encouraging values. Precision and recall are always
between 0 and 1, and they’re supposed to be as close to 1 as possible. Our
results are higher than 0, which is good news, but we have plenty of room
for improvement. Let’s do our best to get better precision and recall by
making some improvements in the next sections.

Using Multivariate LPMs
So far, all of our results have been simple: the clients with the lowest
activity levels are also the clients with the highest predicted attrition
probabilities. These models are so simple that they may hardly seem
worthwhile. You may think that the relationship between low activity and
attrition risk is both intuitive and visually evident in Figure 5-2, so fitting a
regression to confirm it is superfluous. This is reasonable, although it’s wise
to seek rigorous confirmation from a regression even in cases that seem
intuitively obvious.

Regressions begin to become more useful when we have no clear
intuitive relationship and no simple plots that can show them instantly. For
example, we can use three predictors to predict attrition risk: last month’s
activity, last year’s activity, and a client’s number of employees. If we
wanted to plot the relationship of all three variables with attrition
simultaneously, we would need to create a four-dimensional plot, which
would be hard to read and think about. If we didn’t want to create a four-
dimensional plot, we could create separate plots for the relationship
between each individual variable and attrition. But each of these plots
would show only one variable’s relationship with attrition, thus failing to
capture the whole story told by the whole dataset together.

Instead of trying to discover attrition risk through plotting and intuition,
we can run a multivariate regression with the predictors we’re interested in:

x3 = attrition_past.loc[:,['lastmonth_activity', 'lastyear_ac
tivity',\
 'number_of_employees']].values.reshape(-1,3)
y = attrition_past['exited'].values.reshape(-1,1)
regressor_multi = LinearRegression()
regressor_multi.fit(x3, y)

This is a multivariate linear regression, just like the multivariate linear
regressions we introduced in Chapter 2. Since we’re running it to predict 0–
1 data, it’s a multivariate linear probability model. Just as we’ve done for
previous regressions we’ve created, we can use this new multivariate
regressor to predict probabilities for the attrition_future dataset:

attrition_future['predicted_multi']=regressor_multi.predict(x
3)

When we run
print(attrition_future.nlargest(5,'predicted_multi')), we can see
the five corporations with the highest predicted attrition risk, based on this
new multivariate regressor. The output looks like this:

 corporation lastmonth_activity lastyear_activity number
_of_employees \
11 ejdc 95 1005
61
12 mike 0 0
49
13 pevc 4 6
1686
4 dmai 4 94
2
22 ynus 9 90
12

 predicted predicted_multi
11 0.634508 0.870000
12 0.711936 0.815677
13 0.708676 0.788110
4 0.708676 0.755625
22 0.704600 0.715362

[5 rows x 5 columns]

Since we’re using three variables to predict attrition probability instead
of one, it’s not as obvious which corporations will have the highest and
lowest estimated attrition risk. The regression’s ability to predict for us will
be helpful in this more complex scenario.

Let’s look at a list of all corporations, sorted by highest attrition risk to
lowest risk based on this most recent regression:

print(list(attrition_future.sort_values(by='predicted_mult
i',\
ascending=False).loc[:,'corporation']))

You’ll see the following list of corporations:

['ejdc', 'mike', 'pevc', 'dmai', 'ynus', 'wlcj', 'angl', 'pia
n', 'slfm',\
 'hlpd', 'frgv', 'hlly', 'oscr', 'cred', 'dwgt', 'hhtn', 'whs
h', 'grce',\
 'pryr', 'xkcd', 'bass', 'ahva', 'erin', 'zamk', 'skct', 'kdi
c']

These are the same corporations we saw before, but they’re in a different
order, since their attrition risk was predicted using regressor_multi
instead of regressor. You can see that in some cases, the order is similar.
For example, the dmai corporation was ranked sixth by regressor and
ranked fourth by regressor_multi. In other cases, the order is quite
different. For example, the whsh corporation was ranked first (tied with two
other corporations) by regressor, but it’s seventeenth in the prediction by
regressor_multi. The order changes because the distinct regressors take
into account different information and find different patterns.

Creating New Metrics
After running a regression that uses all the numeric predictors in the dataset,
you may think that we’ve done all the regression that’s possible. But we can
do more, because we’re not strictly limited to creating LPMs based on the
columns of our attrition dataset in their raw form. We can also create a

derived feature, or engineered feature—a feature or metric created by
transforming and combining existing variables. The following is an
example of a derived feature:

attrition_future['activity_per_employee']=attrition_future.lo
c[:,\
'lastmonth_activity']/attrition_future.loc[:,'number_of_emplo
yees']

Here, we create a new metric called activity_per_employee. This is
simply the last month’s activity for the whole corporation divided by the
number of employees at the corporation. This new derived metric could be
a better predictor of attrition risk than the raw activity level or the raw
number of employees alone.

For example, two companies may both have high activity levels at
exactly 10,000 each. However, if one of those companies has 10,000
employees, and the other has 10 employees, we might have very different
expectations about their attrition risk. The average employee at the smaller
company is accessing our tool 1,000 times per month, while the average
employee at the larger company is accessing it only 1 time per month. Even
though both companies have the same level of activity according to our raw
measurement, the smaller company seems to have a lower likelihood of
attrition because our tool appears to be much more important to the work of
each of its employees, on average. We can use this new
activity_per_employee metric in a regression that’s just like all the
regressions we’ve done before:

attrition_past['activity_per_employee']=attrition_past.loc
[:,\
'lastmonth_activity']/attrition_past.loc[:,'number_of_employe
es']
x = attrition_past.loc[:,['activity_per_employee','lastmonth_
activity',\
 'lastyear_activity', 'number_of_employees']].values.reshape
(-1,4)
y = attrition_past['exited'].values.reshape(-1,1)

regressor_derived= LinearRegression()
regressor_derived.fit(x, y)
attrition_past['predicted3']=regressor_derived.predict(x)

x = attrition_future.loc[:,['activity_per_employee','lastmont
h_activity',\
 'lastyear_activity', 'number_of_employees']].values.reshape
(-1,4)
attrition_future['predicted3']=regressor_derived.predict(x)

This snippet contains a lot of code, but everything it does is something
you’ve done before. First, we define the activity_per_employee metric,
our new derived feature. Then, we define our x and y variables. The x
variable will be our features: the four variables we’ll use to predict attrition.
The y variable will be our target: the one variable we’re trying to predict.
We create and fit a linear regression that uses x to predict y, and then we
create predicted3, a new column that contains predictions of attrition risk
made by this new regression. We create a predicted3 column both for our
past data and our present data.

As we did before, we can look at the predictions made by this model:

print(list(attrition_future.sort_values(by='predicted3',ascen
ding=False).loc[:,'corporation']))

Again, you’ll see that the order is different from the order given by the
previous regressors we tried:

['pevc', 'bass', 'frgv', 'hlpd', 'angl', 'oscr', 'zamk', 'whs
h', 'mike',\
 'hhtn', 'ejdc', 'grce', 'pian', 'ynus', 'dmai', 'kdic', 'eri
n', 'slfm',\
 'dwgt', 'pryr', 'hlly', 'xkcd', 'skct', 'ahva', 'wlcj', 'cre
d']

Just as we did before, we can check the confusion matrix for our latest
model. First, we’ll put our predictions and actual values in the correct 0–1
format:

themedian=attrition_past['predicted3'].median()
prediction=list(1*(attrition_past['predicted3']>themedian))
actual=list(attrition_past['exited'])

Now we can calculate our latest confusion matrix:

>>> print(confusion_matrix(prediction,actual))
[[9 4]
[2 11]]

This confusion matrix should immediately look better to you than our
previous confusion matrix. If you need more evidence that our latest model
is better, look at the precision and recall values for this model:

conf_mat = confusion_matrix(prediction,actual)
precision = conf_mat[0][0]/(conf_mat[0][0]+conf_mat[0][1])
recall = conf_mat[0][0]/(conf_mat[0][0]+conf_mat[1][0])

You’ll see that our precision is about 0.69, and our recall is about 0.82—
still not perfect, but big improvements on our previous, lower values.

Considering the Weaknesses of LPMs
LPMs have good points: it’s easy to interpret their values, it’s easy to
estimate them with centuries-old methods and many useful Python
modules, and they’re simple in a way only a straight line can be. However,
LPMs also have weaknesses. One is that they don’t fit the points of a
dataset well: they pass through the middle of the points and get close to
only a few points.

The biggest weakness of LPMs is apparent if you look at the right side of
Figure 5-2. There, you can see that the regression line dips below y = 0. If
we try to interpret the value of the regression line at that part of the plot, we
reach an absurd conclusion: we predict approximately a –20 percent
probability of attrition for corporations with about 1,200 logins. There’s no
reasonable way to interpret a negative probability; it’s just nonsense that our
model has output. Unfortunately, this kind of nonsense is inevitable with
every LPM that isn’t a horizontal line. Any non-horizontal regression line
will make predictions that are below 0 percent or above 100 percent for
certain values. The inevitability of these nonsensical predictions is the
major weakness of LPMs and the reason you should learn alternative binary
classification methods.

Predicting Binary Outcomes with Logistic
Regression
We need a method for binary classification that is not subject to the
weaknesses of LPMs. If you think about Figure 5-2, you’ll realize that
whatever method we use can’t rely on fitting straight lines to points, since
any straight line besides a perfectly flat horizontal line will inevitably make
predictions that are higher than 100 percent or lower than 0 percent. Any
straight line will also be far from many of the points it’s trying to fit. If
we’re going to fit a line to points to do binary classification, it will have to
be a curve that doesn’t go below 0 or above 1, and that also gets close to
many of the points (which are all at y = 0 or y = 1).

One important curve that fits these criteria is called the logistic curve.
Mathematically, the logistic curve can be described by the following
function:

The logistic function is used to model populations, epidemics, chemical
reactions, and linguistic shifts, among other things. If you look closely at
the denominator of this function, you’ll see β0 + β1· x. If that reminds you
of the type of expression that we used when we were doing linear
regression in Chapter 2, it should—it’s exactly the same expression as we
find in a standard regression formula (one with an intercept, a slope, and an
x variable).

Soon, we’ll go over a new type of regression using this logistic function.
We’ll be working with many of the same elements that we’ve used before,
so much of what we’ll do should feel familiar. We’ll use the logistic
function to model attrition risk, and the way we’ll use it can be applied to
any situation where you need a model of the probability of a yes/no or 0/1
answer.

Drawing Logistic Curves

We can draw a simple logistic curve in Python as follows:

from matplotlib import pyplot as plt
import numpy as np
import math
x = np.arange(-5, 5, 0.05)
y = (1/(1+np.exp(-1-2*x)))
plt.plot(x,y)
plt.xlabel("X")
plt.ylabel("Value of Logistic Function")
plt.title('A Logistic Curve')
plt.show()

We can see the output of this code in Figure 5-3.

Figure 5-3: An example of a logistic curve

The logistic curve has an S-like shape, so it stays close to y = 0 and y = 1
over most of its domain. Also, it never goes above 1 and never goes below
0, so it resolves the weaknesses of LPMs.

If we change the coefficients in our logistic equation to be positive
instead of negative, we reverse the direction of the logistic curve, so it’s a
backward S instead of a standard S:

from matplotlib import pyplot as plt
import numpy as np
import math
x = np.arange(-5, 5, 0.05)
y = (1/(1+np.exp(1+2*x)))
plt.plot(x,y)
plt.xlabel("X")
plt.ylabel("Value of Logistic Function")
plt.title('A Logistic Curve')
plt.show()

This code snippet is the same as the previous code snippet, except for the
change of two numbers from negative to positive (shown in bold). We can
see the final plot in Figure 5-4.

Figure 5-4: Another example of a logistic curve, showing a backward S shape

Now let’s use logistic curves with our data.

Fitting the Logistic Function to Our Data
We can fit a logistic curve to binary data in much the same way that we fit a
straight line to binary data when we created our LPM. Fitting a logistic
curve to binary data is also called performing logistic regression, and it’s a
common, standard alternative to linear regression for binary classification.
We can choose from several useful Python modules to perform logistic
regression:

from sklearn.linear_model import LogisticRegression
model = LogisticRegression(solver='liblinear', random_state=
0)
x = attrition_past['lastmonth_activity'].values.reshape(-1,1)
y = attrition_past['exited']
model.fit(x, y)

After we fit the model, we can access predicted probabilities for each
element as follows:

attrition_past['logisticprediction']=model.predict_proba(x)
[:,1]

We can then plot the results:

fig = plt.scatter(attrition_past['lastmonth_activity'],attrit
ion_past['exited'], color='blue')
attrition_past.sort_values('lastmonth_activity').plot('lastmo
nth_activity',\
'logisticprediction',ls='--', ax=fig.axes,color='red')
plt.title('Logistic Regression for Attrition Predictions')
plt.xlabel('Last Month\'s Activity')
plt.ylabel('Attrition (1=Exited)')
plt.show()

You can see in the output plot in Figure 5-5 that we have exactly what we
wanted: a regression that never predicts above 100 percent or below 0
percent probability and gets very close to some of the points in our strange
“cloud.” We’ve resolved the weaknesses of LPMs with this new method.

Figure 5-5: A logistic regression predicting attrition risk

You may object that we introduced logistic regression as something that
produces an S-shaped curve like the curves in Figures 5-3 and 5-4, and
there’s no S-shaped curve in Figure 5-5. But Figure 5-5 shows only a
portion of the full S; it’s like Figure 5-5 is zoomed in on the lower-right side
of Figure 5-4, so we see only the right side of the backward S. If we
zoomed out the plot and considered hypothetical activity levels that were
negative, we would see a fuller backward S, including predicted attrition
probabilities close to 1. Since negative activity levels are impossible, we see
only a portion of the full S that the logistic equation specifies.

Just as we did with other regressions, we can look at the predictions our
logistic regression makes. In particular, we can predict the probabilities of
attrition for every company in our attrition2 dataset and print them out in
order from highest to lowest attrition risk:

x = attrition_future['lastmonth_activity'].values.reshape(-1,
1)
attrition_future['logisticprediction']=model.predict_proba(x)

[:,1]
print(list(attrition_future.sort_values(by='logisticpredictio
n',\
ascending=False).loc[:,'corporation']))

We can see that the output consists of every corporation in attrition2,
sorted in order of highest to lowest predicted attrition probability based on
the results of our logistic regression:

['whsh', 'pian', 'mike', 'bass', 'pevc', 'dmai', 'ynus', 'kdi
c', 'hlpd',\
'angl', 'erin', 'oscr', 'grce', 'zamk', 'hlly', 'xkcd', 'dwg
t', 'pryr',\
'skct', 'frgv', 'ejdc', 'ahva', 'wlcj', 'hhtn', 'slfm', 'cre
d']

You can look at these results and compare them to the predictions from
our other regressions. Taking into account different information and using
different functions to model the data can lead to different results each time
we perform regression. In this case, since our logistic regression used the
same predictor (last month’s activity) as our first LPM, it ranks corporations
from highest to lowest risk in the same order.

Applications of Binary Classification
Logistic regressions and LPMs are commonly used to predict binary
outcomes. We can use them not only for attrition prediction but also for
predicting whether a stock will go up, whether an applicant will be
successful in a job, whether a project will be profitable, whether a team will
win a game, or any other binary classification that can be expressed in a
true/false, 0/1 framework.

The LPMs and logistic regressions you learned about in this chapter are
statistical tools that can tell us the probability of attrition. But knowing the
probability of attrition does not fully solve the business problem that
attrition represents. A business leader needs to communicate these attrition
predictions and make sure that client managers act on them effectively. A
host of business considerations could alter the strategy a leader implements
to manage an attrition problem. For example, attrition probability is not the

only thing that could determine the priority assigned to a client. That
priority will also depend on the relative importance of the client, probably
including the revenue the company expects to gain from the client, the size
of the client, and other strategic considerations. Data science is always part
of a larger business process, every step of which is difficult and important.

LPMs and logistic regressions have one important thing in common:
they’re monotonic: they express a trend that moves in only one direction. In
Figures 5-1, 5-2 and 5-5, less activity is always associated with higher
attrition risk, and vice versa. However, imagine a more complex situation,
in which low activity is especially associated with high attrition risk,
medium activity is associated with low attrition risk, and high activity again
is associated with high attrition risk. A monotonic function like the ones
examined in this chapter wouldn’t be able to capture this pattern, and we
would have to turn to more complex models. The next chapter describes
methods for machine learning—including methods to capture non-
monotonic trends in complex, multivariate data—to make predictions and
perform classifications even more accurately.

Summary
In this chapter, we discussed binary classification. We started with a simple
business scenario and showed how linear regression can enable us to predict
probabilities that help solve a business problem. We considered the
weaknesses of those linear probability models and introduced logistic
regression as a more complex model that overcomes those weaknesses.
Binary classification may seem like an unimportant topic, but we can use it
for analyzing risk, predicting the future, and making difficult yes/no
decisions. In our discussion of machine learning in the next chapter, we’ll
discuss prediction and classification methods that go beyond regressions.

6
SUPERVISED LEARNING

Computer scientists use the term
supervised learning to refer to a broad
range of quantitative methods that
predict and classify. In fact, you’ve
already done supervised learning: the

linear regression you did in Chapter 2 and the LPMs
and logistic regression from Chapter 5 are all
instances of supervised learning. By learning those
methods, you’ve already become familiar with the
basic ideas of supervised learning. This chapter
introduces some advanced supervised learning
methods and discusses the idea of supervised
learning in general. We’re dwelling on this topic so
much because it’s such a crucial component of data
science.

We’ll start by introducing yet another business challenge and describing
how supervised learning can help us resolve it. We’ll talk about linear
regression as an imperfect solution and discuss supervised learning in
general. Then we’ll introduce k-NN, a simple but elegant supervised
learning method. We’ll also briefly introduce decision trees, random forests,

and neural networks, and discuss how to use them for prediction and
classification. We’ll close with a discussion of how to measure accuracy
and what unites each of these disparate methods.

Predicting Website Traffic
Imagine that you’re running a website. Your website’s business model is
simple: you post articles on interesting topics, and you earn money from the
people who view your website’s articles. Whether your revenue comes from
ad sales, subscriptions, or donations, you earn money in proportion to the
number of people who visit your site: the more visitors, the higher your
revenue.

Amateur writers submit articles to you with the hope that you’ll publish
them on your site. You receive an enormous number of submissions and
can’t possibly read, much less publish, everything you receive. So you have
to do some curation. You may consider many factors as you’re deciding
what to publish. Of course, you’ll try to consider the quality of submitted
articles. You’ll also want to consider which articles fit with the “brand” of
your site. But in the end, you’re trying to run a business, and maximizing
your site’s revenue will be crucial to ensuring your business’s long-term
survival. Since you earn revenue in proportion to the number of visitors to
your site, maximizing revenue will depend on selecting articles to publish
that are likely to get many visitors.

You could try to rely on intuition to decide which articles are likely to
receive many visitors. This would require either you or your team to read
every submission and make difficult judgments about which articles are
likely to attract visitors. This would be extremely time-consuming, and
even after spending all that time reading articles, it’s far from certain that
your team would have the right judgment about which articles will attract
the most visitors.

A faster and potentially more accurate approach to this problem is
through supervised learning. Imagine that you could write code to read
articles for you as soon as they arrived in your inbox and could then use
information that the code gleans from each submitted article to accurately
predict the number of visitors it will attract, before you publish it. If you

had code like that, you could even fully automate your publishing process: a
bot could read submissions from emails, predict the likely revenue expected
from every submitted article, and publish every article that had an expected
revenue above a particular threshold.

The hardest part of that process would be predicting an article’s expected
revenue; that’s the part we need to rely on supervised learning to
accomplish. In the rest of the chapter, we’ll go through the steps required
for the supervised learning that would enable this kind of automated system
to predict the number of visitors a given article will attract.

Reading and Plotting News Article Data
Like most data science scenarios, supervised learning requires us to read in
data. We’ll read in a dataset that’s available for free from the University of
California, Irvine (UCI) Machine Learning Repository (https://archive-beta.
ics.uci.edu/). This repository contains hundreds of datasets that machine
learning researchers and enthusiasts can use for research and fun.

The particular dataset we’ll use contains detailed information about news
articles published on Mashable (https://mashable.com) in 2013 and 2014.
This Online News Popularity dataset has a web page at https://archive-beta.
ics.uci.edu/dataset/332/online+news+popularity that presents more
information about the data, including its source, the information it contains,
and papers that have been published containing analyses of it.

You can obtain a ZIP file of the data from https://archive.ics.uci.edu/ml/
machine-learning-databases/00332/OnlineNewsPopularity.zip. After you
download the ZIP archive, you must extract it on your computer. You’ll
then see the OnlineNewsPopularity.csv file, which is the dataset itself. After
extracting that .csv, you can read it into your Python session as follows:

import pandas as pd
news=pd.read_csv('OnlineNewsPopularity.csv')

We import our old friend the pandas package and read the news dataset
into a variable called news. Each row of news contains detailed information
about one particular article published on Mashable. The first column, url,

https://archive-beta.ics.uci.edu/
https://mashable.com/
https://archive-beta.ics.uci.edu/dataset/332/online+news+popularity
https://archive.ics.uci.edu/ml/machine-learning-databases/00332/OnlineNewsPopularity.zip

contains the URL of the original article. If you visit the URL of a particular
article, you can see the text and images associated with it.

In total, our news dataset has 61 columns. Each column after the first
contains a numeric measurement of something about the article. For
example, the third column is called n_tokens_title. This is a count of the
tokens in the title, which in this case just means the number of words in the
title. Many of the columns in the news dataset have names that refer to
advanced methods in natural language processing (NLP). NLP is a
relatively new field concerned with using computer science and
mathematical algorithms to analyze, generate, and translate natural human
language in a way that’s quick and automatic and doesn’t require human
effort.

Consider the 46th column, global_sentiment_polarity. This column
contains a measure of each article’s overall sentiment, ranging from –1
(highly negative) to 0 (neutral) to 1 (highly positive). The ability to
automatically measure the sentiment of text written in natural human
language is one of the recent, exciting developments in the world of NLP.
The most advanced sentiment analysis algorithms are able to closely match
humans’ sentiment ratings, so an article about death, horror, and sadness
will be ranked by both humans and NLP algorithms as having a highly
negative sentiment (close to –1), while an article about joy, freedom, and
data analysis will be universally agreed to have a highly positive sentiment
(close to 1). The creators of our dataset have already run a sentiment
analysis algorithm to measure the sentiment of each article in the dataset,
and the result is stored in global_sentiment_polarity. Other columns
have other measurements, including simple things like article length as well
as other advanced NLP results.

The final column, shares, records the number of times each article was
shared on social media platforms. Our true goal is to increase revenue by
increasing the number of visitors. But our dataset doesn’t contain any direct
measurement of either revenue or visitors! This is a common occurrence in
the practice of data science: we want to analyze something, but our data
contains only other things. In this case, it’s reasonable to suppose that the
number of social media shares is correlated with the number of visitors to
an article, both because highly visited articles will be shared often and
because highly shared articles will be visited often. And, as we mentioned

before, our revenue is directly related to the number of website visits. So,
we can reasonably suppose that the number of social media shares of an
article is closely related to the revenue obtained from the article. This
means that we’ll use shares as a proxy for visits and revenue.

It will help our analysis if we can determine which features of an article
are positively related to shares. For example, we might guess that articles
with high sentiment scores will also get shared frequently, if we believe that
people like to share happy things. If that’s true, knowing the sentiment of an
article will help us predict the number of times an article will be shared. By
learning how to predict shares, we suppose that we’ll be simultaneously
learning how to predict both visitors and revenue as well. And, if we know
the features of a highly shared article, we’ll know how to design future
articles to maximize our revenue.

As we’ve done before (especially in Chapter 1), we can start with simple
exploration. We’ll start by drawing a graph. Let’s consider a graph of the
relationship between sentiment and shares:

from matplotlib import pyplot as plt
plt.scatter(news[' global_sentiment_polarity'],news[' share
s'])
plt.title('Popularity by Sentiment')
plt.xlabel('Sentiment Polarity')
plt.ylabel('Shares')
plt.show()

You may notice that when we access our dataset’s columns in this Python
snippet, we put a space at the beginning of every column name. For
example, we write news[' shares'] instead of news['shares'] to refer to
the column recording the number of shares. We do this because that’s the
way the column names are recorded in the original data file. For whatever
reason, that file contains a space before every column name instead of the
column name alone, so we need to include that space when we tell Python
to access each column by name. You’ll see these spaces throughout the
chapter; every dataset has its own quirks, and part of being a successful data
scientist is being able to understand and adapt to quirks like this one.

Figure 6-1 shows the relationship between sentiment polarity and shares.

Figure 6-1: The relationship between sentiment and shares for every article in our dataset

One thing we can notice about this plot is that, at least to the naked eye,
no clear linear relationship exists between polarity and shares. High-
sentiment articles don’t seem to be shared much more than low-sentiment
articles, or vice versa. If anything, articles close to the middle of the
polarity scale (articles that have close to neutral sentiment) seem to earn the
most shares.

Using Linear Regression as a Prediction
Method
We can do a more rigorous test for this (lack of a) linear relationship by
performing a linear regression, just as we did in Chapters 2 and 5:

from sklearn.linear_model import LinearRegression
x = news[' global_sentiment_polarity'].values.reshape(-1,1)
y = news[' shares'].values.reshape(-1,1)
regressor = LinearRegression()
regressor.fit(x, y)
print(regressor.coef_)
print(regressor.intercept_)

This snippet performs a linear regression predicting shares using
sentiment polarity. It does so in the same way we outlined in Chapter 2. We
start by importing from the module sklearn.linear_model, which contains

the LinearRegression() function we want to use. Then, we reshape the
data so that the module we’re importing can work with it. We create a
variable called regressor, and we fit the regressor to our data. Finally, we
print out the coefficient and intercept obtained by fitting the regression:
499.3 and 3,335.8.

You’ll remember from Chapter 2 that we can interpret these numbers as
the slope and intercept of the regression line, respectively. In other words,
our linear regression estimates the relationship between sentiment and
shares as follows:

shares = 3335.8 + 499.3 · sentiment

We can plot this regression line together with our data as follows:

regline=regressor.predict(x)
plt.scatter(news[' global_sentiment_polarity'],news[' share
s'],color='blue')
plt.plot(sorted(news[' global_sentiment_polarity'].tolist()),
regline,'r')
plt.title('Shares by Sentiment')
plt.xlabel('Sentiment')
plt.ylabel('Shares')
plt.show()

The output should look like Figure 6-2.

Figure 6-2: A regression line showing the estimated relationship between sentiment and
shares

Our regression line, which should be red if you create the plot at home,
appears quite flat, showing only a weak relationship between sentiment and
shares. Using this regression line to predict shares probably wouldn’t help
us much, since it predicts nearly identical numbers of shares for every
sentiment value. We’ll want to explore other supervised learning methods
that can lead to better, more accurate predictions. But first, let’s think about
supervised learning in general, including what it is about linear regression
that makes it a type of supervised learning, and what other types of
supervised learning could also be applicable to our business scenario.

Understanding Supervised Learning
The linear regression we just did is an example of supervised learning.
We’ve mentioned supervised learning several times in this chapter, without
precisely defining it. We can define it as the process of learning a function
that maps feature variables to target variables. This may not sound
immediately obvious or clear. To understand what we mean, consider Figur
e 6-3.

Figure 6-3: The supervised learning process

Think about how this figure applies to the linear regression we completed
earlier in the chapter. We used sentiment as our only feature (the oval on the
left). Our target variable was shares (the oval on the right). The following
equation shows our learned function (the arrow in the middle):

shares = 3,335.8 + 499.3 · sentiment

This function does what every learned function is supposed to do in
supervised learning: it takes a feature (or multiple features) as its input, and
it outputs a prediction of the value of a target variable. In our code, we
imported capabilities from the sklearn module that determined the

coefficients, or learned the function, for us. (For its part, sklearn learned the
function by relying on linear algebra equations that are guaranteed to find
the coefficients that minimize the mean squared error on our target variable,
as we discussed in Chapter 2.)

The term supervised learning refers to the process of determining
(learning) this function. The target variable is what supervises the process,
because as we’re determining the learned function, we check whether it
leads to accurate predictions of the target. Without a target variable, we
would have no way to learn the function, because we’d have no way to
determine which coefficients led to high accuracy and which led to low
accuracy.

Every supervised learning method you’ll ever use can be described by Fi
gure 6-3. In some cases, we can do feature engineering, in which we
carefully select which variables in our dataset will lead to the most accurate
possible predictions. In other cases, we’ll adjust our target variable—for
example, by using a proxy or a transformation of the original variable. But
the most important part of any supervised learning method is the learned
function that maps the features to the target. Mastering new supervised
learning methods consists of mastering new ways to determine these
learned functions.

When we use linear regression as our chosen supervised learning method,
the learned function we get is always in the form shown in Equation 6-1:

target = intercept + coefficient1 · feature1 + coefficient2 · feature2 + … +
coefficientn · featuren

Equation 6-1: The general form of every linear regression’s learned function

For someone who has taken lots of algebra classes, this may seem like a
natural form for a function to take. Coefficients are multiplied by features
and added up. When we do this in two dimensions, we get a line, like the
line in Figure 6-2.

However, this is not the only possible form for a learned function. If we
think more deeply about this form, we can realize that the function for
linear regression is implicitly expressing an assumed view, or model, of the
world. In particular, linear regression is implicitly assuming that the world

can be described by lines: that anytime we have two variables x and y,
there’s a way to relate them accurately as the line y = a + bx, for some a and
b. Many things in the world can be described by lines, but not everything.
The universe is a big place, and there are many models of the world, many
learned functions, and many supervised learning methods that can give us
more accurate predictions by abandoning this assumption of linearity.

If the world isn’t described by lines and linear relationships, what model
of the world is the correct one, or the most accurate or useful one? Many
answers are possible. For example, instead of a world made up of lines, we
could think of the world as composed of unique little neighborhoods around
points. Instead of using a line to make predictions, we could measure
characteristics of neighborhoods around points, and use those
neighborhoods to make predictions. (This approach will become clearer in
the next section.)

If everything we observe in the world is related by lines and linear
relationships, linear regression is the right model for studying it. If the
world is instead made up of neighborhoods, another supervised learning
model is more suitable: k-nearest neighbors. We’ll examine this method
next.

k-Nearest Neighbors
Suppose that you have an intern who has never studied statistics, linear
regression, supervised learning, or data science at any level. You just
received a new article from an author who wants to be published on your
website. You give the intern the newly submitted article as well as the news
dataset and some NLP software. You assign the intern to predict the number
of times the new article will be shared. If your intern predicts a high number
of shares, you’ll publish the article. Otherwise, you won’t.

Your intern uses NLP software to determine that this article has
global_sentiment_polarity equal to 0.42. Your intern doesn’t know how
to do the linear regression that we did at the beginning of the chapter.
Instead, they have a simple idea of how they’ll predict shares. Their simple
idea is to look through the news dataset until they find an article that closely
resembles this new article. If an existing article in the dataset closely

resembles the newly submitted article, it’s reasonable to suppose that the
new article’s number of shares will resemble the existing article’s number
of shares.

For example, suppose they find an existing article in the dataset that has
global_sentiment_polarity equal to 0.4199. They’ll conclude,
reasonably, that the existing article is similar to our new article, because
their sentiment ratings are nearly identical. If the existing article achieved
1,200 shares, we can expect that our new article, with a nearly identical
global_sentiment_polarity, should have a similar number of shares.
“Similar articles get similar numbers of shares” is one way to sum up this
simple thought process. In the context of supervised learning, we can
rephrase this as “similar feature values lead to similar target values,” though
of course your intern has never heard of supervised learning.

Since we’re working with numeric data, we don’t need to speak merely
qualitatively about articles resembling each other. We can directly measure
the distance between any two observations in our dataset. The existing
article that resembles our new article has global_sentiment_polarity
equal to 0.4199, which is 0.0001 different from our new article’s
global_sentiment_polarity of 0.42. Since global_sentiment_polarity
is the only variable we’ve considered so far, we can say that these two
articles have a distance of 0.0001 between them.

You may think that distance is something that has one nonnegotiable
definition. But in data science and machine learning, we often find
ourselves measuring distances that don’t match what we mean by the term
in everyday life. In this example, we’re using a difference between
sentiment scores as our distance, even though it’s not a distance that can be
walked or measured with a ruler. In other cases, we may find ourselves
expressing a distance between true and false values, especially if we’re
doing a classification as in Chapter 5. When we talk about distance, we’re
often using the term as a loose analogy rather than a literal physical
measurement.

Observations that have a small distance between them can be called
neighbors, and in this case we’ve found two close neighbors. Another
article with sentiment 0.41 would have distance 0.1 from our new article:
still a neighbor, but a little further down the “street.” For any two articles,

we can measure the distance between them on all variables that interest us
and use this as a measurement of the extent to which any two articles are
neighbors.

Instead of considering just one neighbor article, we can consider the
entire neighborhood surrounding the new article we want to make
predictions about. We might find the 15 nearest neighbors to our new article
—the 15 points in our dataset with global_sentiment_polarity closest to
0.42. We can consider the number of shares associated with each of those
15 articles. The mean of the number of shares achieved by these 15 nearest
neighbors is a reasonable prediction for the number of shares we can expect
our new article to get.

Your intern didn’t think their prediction method was anything special. It
just seemed like a natural, simple way to make a prediction without using
any calculus or computer science. However, their simple process is actually
a powerful supervised learning algorithm called k-nearest neighbors (k-
NN). We can describe the whole method in four simple steps; truly, it is
simplicity itself:

. Choose a point p you want to make a prediction about for a target variable.

. Choose a natural number, k.

. Find the k nearest neighbors to point p in your dataset.

. The mean target value of the k nearest neighbors is the prediction for the
target value of p.

You may have noticed that the k-NN process doesn’t require any matrix
multiplication or calculus or really any math at all. Though it’s usually
taught in only postgraduate-level computer science classes, k-NN is nothing
more than a simple idea that children and even interns already intuitively
grasp: that if things resemble each other in some ways, they’re likely to
resemble each other in other ways. If things live in the same neighborhood,
they might be similar to each other.

Implementing k-NN

Writing code for k-NN supervised learning is straightforward. We’ll start by
defining k, the number of neighbors we’ll look at, and newsentiment,
which will hold the global_sentiment_polarity of the hypothetical new
article we want to make a prediction about. In this case, let’s suppose that
we receive another new article, and this one has a sentiment score of 0.5:

k=15
newsentiment=0.5

So, we’ll be predicting the number of shares that will be achieved by a
new article with a sentiment score of 0.5. We’ll look at the 15 nearest
neighbors of our new article to make these predictions. It will be convenient
to convert our polarity and shares data to lists, as follows:

allsentiment=news[' global_sentiment_polarity'].tolist()
allshares=news[' shares'].tolist()

Next, we can calculate the distance between every article in our dataset
and the hypothetical new article:

distances=[abs(x-newsentiment) for x in allsentiment]

This snippet uses a list comprehension to calculate the absolute value of
the difference between the sentiment of each existing article and the
sentiment of our new article.

Now that we have all these distances, we need to find which are the
smallest. Remember, the articles with the smallest distance to the new
article are the nearest neighbors, and we’ll use them to make our final
prediction. A useful function in Python’s NumPy package enables us to
easily find the nearest neighbors:

import numpy as np
idx = np.argsort(distances)

In this snippet, we import NumPy and then define a variable called idx,
which is short for index. If you run print(idx[0:k]), you can see what this
variable consists of:

[30230, 30670, 13035, 7284, 36029, 19361, 29598, 22546, 2555
6, 6744, 26473,\
7211, 9200, 15198, 31496]

These 15 numbers are the index numbers of the nearest neighbors. The
30,230th article in our dataset has the global_sentiment_polarity that is
closest to 0.5 out of all articles in the data. The 30,670th article has the
global_sentiment_polarity that’s second closest, and so on. The
argsort() method we use is a convenient method that sorts the distances
list from smallest to largest, then provides the indices of the k smallest
distances (the indices of the nearest neighbors) to us.

After we know the indices of the nearest neighbors, we can create a list
of the number of shares associated with each neighbor:

nearbyshares=[allshares[i] for i in idx[0:k]]

Our final prediction is just the mean of this list:

print(np.mean(nearbyshares))

You should get the output 7344.466666666666, indicating that past
articles with sentiment equal to about 0.5 get about 7,344 social media
shares, on average. If we trust the logic of k-NN, we should expect that any
future article that has sentiment about equal to 0.5 will also get about 7,344
social media shares.

Performing k-NN with Python’s sklearn
We don’t have to go through that whole process every time we want to use
k-NN for prediction. Certain Python packages can perform k-NN for us,
including the sklearn package, whose relevant module we can import into
Python as follows:

from sklearn.neighbors import KNeighborsRegressor

You may be surprised that the module we import here is called
KNeighborsRegressor. We just finished describing how k-NN is very

different from linear regression, so why would a k-NN module be using the
word regressor just like a linear regression module does?

The k-NN method is certainly not linear regression, and it doesn’t use
any of the matrix algebra that linear regression relies on, and it doesn’t
output regression lines like linear regression. However, since it’s a
supervised learning method, it’s accomplishing the same goal as linear
regression: determining a function that maps features to targets. Since
regression was the dominant supervised learning method for well over a
century, people began to think of regression as synonymous with supervised
learning. So people started to call k-NN functions k-NN regressors because
they accomplish the same goal as regression, though without doing any
actual linear regression.

Today, the words regression and regressors are used for all supervised
learning methods that make predictions about continuous, numeric target
variables, regardless of whether they’re actually related to linear regression.
Since supervised learning and data science are relatively new fields
(compared to mathematics, which has been around for millennia), many
instances of confusing or redundant terminology like these remain that
haven’t been cleaned up; part of learning data science is getting used to
these confusing names.

Just as we’ve done with linear regression, we need to reshape our
sentiment list so that it’s in the format this package expects:

x=np.array(allsentiment).reshape(-1,1)
y=np.array(allshares)

Now, instead of calculating distances and indices, we can simply create a
“regressor” and fit it to our data:

knnregressor = KNeighborsRegressor(n_neighbors=15)
knnregressor.fit(x,y)

Now we can find the prediction our classifier makes for any sentiment, as
long as it’s properly reshaped:

print(knnregressor.predict(np.array([newsentiment]).reshape
(1,-1)))

This k-NN regressor has predicted that the new article will receive
7,344.46666667 shares. This exactly matches the number we got before,
when doing the k-NN process manually. You should be pleased that the
numbers match: it means that you know how to write code for k-NN at least
as well as the authors of the respected and popular sklearn package.

Now that you’ve learned a new supervised learning method, think about
how it’s similar to and different from linear regression. Both linear
regression and k-NN rely on feature variables and a target variable, as
shown in Figure 6-3. Both create a learned function that maps feature
variables to the target variable. In the case of linear regression, the learned
function is a linear sum of variables multiplied by coefficients, in the form
shown in Equation 6-1. In the case of k-NN, the learned function is a
function that finds the mean target value for k nearest neighbors in the
relevant dataset.

While linear regression implicitly expresses a model of the world in
which all variables can be related to each other by lines, k-NN implicitly
expresses a model of the world in which neighborhoods of points are all
similar to each other. These models of the world, and the learned functions
they imply, are quite different. Because the learned functions are different,
they could make different predictions about numbers of article shares or
anything else we want to predict. But the goal of accurately predicting a
target variable is the same in both cases, and so both are commonly used
supervised learning methods.

Using Other Supervised Learning Algorithms
Linear regression and k-NN are only two of many supervised learning
algorithms that can be used for our prediction scenario. The same sklearn
package that allowed us to easily do k-NN regression can also enable us to
use these other supervised learning algorithms. Listing 6-1 shows how to do
supervised learning with five methods, each using the same features and
target variables, but with different supervised learning algorithms (different
learned functions):

#linear regression
from sklearn.linear_model import LinearRegression

regressor = LinearRegression()
regressor.fit(np.array(allsentiment).reshape(-1,1), np.array
(allshares))
print(regressor.predict(np.array([newsentiment]).reshape(1,-
1)))

#knn
from sklearn.neighbors import KNeighborsRegressor
knnregressor = KNeighborsRegressor(n_neighbors=15)
knnregressor.fit(np.array(allsentiment).reshape(-1,1), np.arr
ay(allshares))
print(knnregressor.predict(np.array([newsentiment]).reshape
(1,-1)))

#decision tree
from sklearn.tree import DecisionTreeRegressor
dtregressor = DecisionTreeRegressor(max_depth=3)
dtregressor.fit(np.array(allsentiment).reshape(-1,1), np.arra
y(allshares))
print(dtregressor.predict(np.array([newsentiment]).reshape(1,
-1)))

#random forest
from sklearn.ensemble import RandomForestRegressor
rfregressor = RandomForestRegressor()
rfregressor.fit(np.array(allsentiment).reshape(-1,1), np.arra
y(allshares))
print(rfregressor.predict(np.array([newsentiment]).reshape(1,
-1)))

#neural network
from sklearn.neural_network import MLPRegressor
nnregressor = MLPRegressor()
nnregressor.fit(np.array(allsentiment).reshape(-1,1), np.arra
y(allshares))
print(nnregressor.predict(np.array([newsentiment]).reshape(1,
-1)))

Listing 6-1: A collection of five supervised learning methods

This snippet contains five sections of four code lines each. The first two
sections are for linear regression and k-NN; they’re the same code we ran
previously to use sklearn’s prebuilt packages to easily get linear regression
and k-NN predictions. The other three sections have the exact same
structure as the first two sections:

. Import the package.

. Define a “regressor.”

. Fit the regressor to our data.

. Use the fitted regressor to print a prediction.

The difference is that each of the five sections uses a different kind of
regressor. The third section uses a decision tree regressor, the fourth uses a
random forest regressor, and the fifth uses a neural network regressor. You
may not know what any of these types of regressors are, but you can think
of that as a convenient thing: supervised learning is so easy that you can
write code to build models and make predictions before you even know
what the models are! (That’s not to say this is a good practice—it’s always
better to have a solid theoretical understanding of every algorithm you use.)

Describing every detail of all these supervised learning algorithms goes
beyond the scope of this book. But we can provide a sketch of the main
ideas. Each approach accomplishes the same goal (prediction of a target
variable), but does it using different learned functions. In turn, these learned
functions implicitly express different assumptions and different math or, in
other words, different models of the world.

Decision Trees
Let’s begin by looking at decision trees, the first type of model in our code
after our k-NN section. Instead of assuming that variables are related by
lines (like linear regression) or by membership in neighborhoods (like k-
NN), decision trees assume that the relationships among variables can be
best expressed as a tree that consists of binary splits. Don’t worry if that
description doesn’t sound immediately clear; we’ll use sklearn’s decision
tree–plotting function to create a plot of the decision tree regressor called
dtregressor that was created by the code in Listing 6-1:

from sklearn.tree import plot_tree
import matplotlib.pyplot as plt
plt.figure(figsize=(16,5))
plot_tree(dtregressor, filled=True, fontsize=8)
plt.savefig('decisiontree.png')

We can see the result in Figure 6-4.

Figure 6-4: A decision tree for predicting article shares based on sentiment

We can follow this flowchart to make predictions about shares, given any
global_sentiment_polarity. Since the flowchart has a branching
structure that resembles a tree’s branches, and since it enables decision-
making, we call it a decision tree.

We start at the box at the top of the tree. The first line of the box
expresses a condition: X[0] <= 0.259. Here, X[0] is referring to the
global_sentiment_polarity variable, which is the only feature in our
dataset. If that condition is true, we proceed along the leftward arrow to a
box on the next lowest level. Otherwise, we proceed along the rightward
arrow to the other side of the tree. We continue to check the conditions in
each box until we arrive at a box that specifies no condition and has no
arrows pointing to other, lower boxes. We then check the value specified
there and use that as our prediction.

For the sentiment value we’ve been working with in our example (0.5),
we go right from the first box because 0.5 > 0.259, then we go right at the
second box for the same reason, and then we go right yet again at our third
box because 0.5 > 0.263. Finally, we arrive at the fourth box, which doesn’t
have any condition to check, and we get our prediction: about 3,979 shares
for an article with sentiment polarity 0.5.

If you create this decision tree at home, you’ll see that some of the boxes
are shaded or colored. This shading is done automatically, and the level of
shading applied is proportional to the value predicted by the decision tree.
For example, you can see that one box in Figure 6-4 indicates a prediction
of 57,100 shares, and it has the darkest shading. Boxes that predict lower
numbers of shares will have lighter shading or no shading at all. This
automatic shading is done to highlight especially high predicted values.

You can find the details of how sklearn creates the decision tree in Figure
6-4 in advanced machine learning textbooks. For most standard business
use cases, the details and math of optimizing decision trees is not as
important as the much easier task of writing a few simple Python lines to
create one and then read its plot.

The decision tree in Figure 6-4 can be generated with only a few lines of
code and can be interpreted without any special training. This means that
decision trees are well suited to business applications. You can quickly
generate a decision tree and show it to clients or company leaders, and
explain it without needing to go into any math, computer science, or other
difficult topics. Because of this, data scientists often say that decision trees
are interpretable models, in contrast to other models like neural networks
that are more opaque and difficult to quickly understand or explain. A
decision tree can be a natural, quick addition to any presentation or report
that can provide visual interest and can help others understand a dataset or
prediction problem. These are important advantages of decision trees in
business applications. On the other hand, decision trees tend to have lower
accuracy than other, more complex methods like random forests (see the
next section).

Just like linear regression and k-NN, a decision tree uses a feature of data
(in this case, sentiment) to make a prediction about a target (in this case,
shares). The difference is that decision trees don’t rely on an assumption
that the variables are related by a line (the assumption of linear regression)
or that the variables are related by small neighborhoods around points (the
assumption of k-NN). Instead, decision trees are built with the assumption
that the branching structure shown in Figure 6-4 is the appropriate model of
the world.

Random Forests

The fourth section of Listing 6-1 uses random forests for prediction.
Random forests are a type of ensemble method. Ensemble methods got their
name because they consist of a collection of many simpler methods. As you
might surmise from the name, random forests consist of a collection of
simpler decision trees. Every time you use a random forest regressor for
prediction, the sklearn code creates many decision tree regressors. Each of
the individual decision tree regressors is created with a different subset of
the training data and a different subset of the training features. The final
random forest prediction is the mean of the predictions made by each of the
many individual decision trees.

In the context of Figure 6-3, random forests learn a complicated function:
one that consists of a mean of many learned functions from multiple
randomly selected decision trees. Nevertheless, because random forests
learn a function that maps features to a target variable, they are a standard
supervised learning method, just like linear regression, k-NN, and all the
rest.

Random forests have become popular because their code is relatively
easy to write and they often have much better accuracy than decision trees
or linear regressions. These are their main advantages. On the other hand,
while we can draw an easily interpretable representation of a decision tree,
like Figure 6-4, random forests often consist of hundreds of unique decision
trees averaged together, and it’s not easy to draw a representation of a
random forest in a way a human can understand. Choosing a random forest
as your supervised learning method will probably increase your accuracy,
but at the cost of interpretability and explainability. Every supervised
learning method has advantages and disadvantages, and choosing the right
trade-offs that are appropriate for your situation is important for any data
scientist who wants to succeed at supervised learning.

Neural Networks
Neural networks have become extremely popular in recent years as our
computer hardware has matured to the point of being able to handle their
computational complexity. The complexity of neural networks also makes
them hard to describe succinctly, except to say that we can use them for
supervised learning. We can start by showing a diagram of one particular
neural network (Figure 6-5).

Figure 6-5: A diagram of a neural network

This plot is a representation of a neural network’s learned function. In
this plot, you can see a column of 13 circles, called nodes, on the left side.
These 13 nodes are collectively called the input layer of the neural network.
Each node of the input layer represents one feature of the training data. The
single node on the far right represents the neural network’s final prediction
of a target variable. All of the lines and nodes between the left and right
represent a complex learned function that maps feature inputs to the final
target prediction.

For example, you can see that the topmost node in the leftmost column
(labeled A) has an arrow pointing to another node (labeled B), with the
number 4.52768 written near it. This number is a weight, and we’re
supposed to multiply this weight by the value of the feature corresponding
to node A. We then add the result of that multiplication to a running total
that corresponds to node B. You can see that node B has 13 arrows pointing

to it, one for each node in the input layer. Each feature will be multiplied by
a different weight, and the product of the feature value and the weight will
be added to the running total for node B. Then, the number –0.14254 will
be added to the result; this is the number drawn on an arrow between a blue
node with a 1 inside it and node B. (This blue node is also called a bias
node.)

After all this multiplication and addition, we’ll have a running total for
node B, and we’ll apply a new function called an activation function to it.
Many possible activation functions exist, one of which is the logistic
function you met in Chapter 5. After we apply our activation function, we’ll
have a final numeric value for node B. We’ve only barely begun the process
of calculating the neural network’s learned function. You can see that node
B has four arrows emanating from it, each pointing to other nodes further to
the right. For each of those arrows, we’ll have to follow the same steps of
multiplying weights by node values, adding to running totals for every
node, and applying activation functions. After we do this for all the nodes
and all the arrows in the diagram, we’ll have a final value for the rightmost
node: this will be our prediction of the target value.

Neural networks are designed in such a way that this whole process,
including repeated multiplication and addition and activation functions,
should give us a highly accurate prediction as its final output. The
complexity of neural networks can be a challenge, but it’s also what enables
them to accurately model our complex nonlinear world.

These networks are called neural because the nodes and arrows in Figure
6-5 resemble the neurons and synapses in a brain. This resemblance is
mostly superficial. You could depict neural networks in a way that didn’t
look like a brain, or you could write down other methods like linear
regression in a way that did look like a brain.

To really master neural networks, you need to learn a lot more. Some of
the interesting advances in neural networks have come from experimenting
with different structures, or architectures, of the nodes. For example, deep
neural networks have many layers between the leftmost input nodes and the
rightmost output. Convolutional neural networks add an extra type of layer
that performs a special operation called convolution to the network

structure. Recurrent neural networks allow connections to flow in multiple
directions, instead of just from left to right.

Researchers have found remarkable applications for neural networks in
computer vision (like recognizing a dog or a cat or a car or a person),
language processing (like machine translation and speech recognition), and
much more. On the other hand, neural networks are hard to interpret, hard
to understand, and hard to train properly, and they sometimes require
specialized hardware. These downsides sometimes make neural networks
an unattractive option in business applications despite their power.

Measuring Prediction Accuracy
Whichever supervised learning model we choose, after we fit it, we’ll want
to measure its prediction accuracy. Here is how we do it for our scenario of
predicting shares of articles:

allprediction=regressor.predict(np.array([allsentiment]).resh
ape(-1,1))
predictionerror=abs(allprediction-allsentiment)
print(np.mean(predictionerror))

This simple snippet calculates the MAE, as we’ve done before. In the
first line, we use our regressor’s predict() method to predict the number
of shares for each article in our dataset. (Remember, this regressor is the
linear regression model we created near the beginning of the chapter. If
you’d like, you can replace regressor with rfregressor or nnregressor
to measure the accuracy of our random forest or our neural network,
respectively.) In the second line, we calculate the prediction error of these
predictions: this is simply the absolute value of the difference between
predicted and actual. The mean of our prediction error, calculated in the
third line, is a measurement of how well our particular supervised learning
method performed, where 0 is the best-possible value, and higher values are
worse. We can use this process to calculate prediction accuracy for many
supervised learning algorithms, and then choose the algorithm that leads to
the highest accuracy (the lowest mean absolute error) as the best method for
our scenario.

The only problem with this approach is that it doesn’t resemble a true
prediction scenario. In real life, we’d have to make predictions for articles
that were not in our training dataset—articles that our regressor had never
seen during its training process. In contrast, we’ve taken a dataset of articles
from 2013 and 2014, fit a regressor to that whole dataset, and then judged
our accuracy based on the same 2013–14 dataset that was used to fit our
regressor. Since we judged our accuracy based on the same data that was
used to fit our regressor, what we’ve done isn’t truly prediction. It’s
postdiction—saying what happened after it happened instead of before.
When we do postdiction, we’re liable to be guilty of overfitting, the
dastardly peril that we already encountered in Chapter 2.

To avoid the problems of postdiction and overfitting, we can take the
same approach we took in Chapter 2: split our dataset into two mutually
exclusive subsets, a training set and a test set. We use the training set to
train the data or, in other words, to allow our supervised learning model to
learn its learned function. After we train the data using only the training
dataset, we test it using the test data. The test data, since it wasn’t used in
the training process, is “as if” from the future, since our regressor hasn’t
used it for learning, even if it’s actually from the past.

The sklearn package has a convenient function we can use to split our
data into training and test sets:

from sklearn.model_selection import train_test_split
x=np.array([allsentiment]).reshape(-1,1)
y=np.array(allshares)
trainingx,testx,trainingy,testy=train_test_split(x,y,random_s
tate=1)

The four outputs of this snippet are trainingx and trainingy—the x and
y components of our training data—and testx and testy—the x and y
components of our test data. Let’s check the length of each of these outputs:

>>> print(len(trainingx))
29733
>>> print(len(trainingy))
29733
>>> print(len(testx))
9911

>>> print(len(testy))
9911

You can see that our training data consists of trainingx (the sentiment
scores of the training examples) and trainingy (the share statistics of the
training examples). Both of these training datasets consist of 29,733
observations, or 75 percent of the data. The test datasets (testx and testy)
consist of 9,911 observations, or the other 25 percent. This type of split
follows the same approach that we took in Chapter 2: training our model
with the majority of the data and testing our model with a smaller minority
of the data.

One important difference between the training/test split we did here and
the training/test split we did in Chapter 2 is that, in Chapter 2, we used
earlier data (the first years of our dataset) as training data and later data (the
last years of our dataset) as test data. Here, we don’t do a before/after split
for our training and test data. Instead, the train_test_split() function we
used performs a random split: randomly choosing training and test sets,
instead of neatly selecting from earlier and later times. This is an important
distinction to remember: for time-series data (data recorded at regular,
ordered intervals), we choose training and test sets based on a split between
earlier and later data, but for all other datasets, we select training and test
sets randomly.

Next, we need to train our models by using these training sets, and we
need to calculate prediction error by using these test sets:

rfregressor = RandomForestRegressor(random_state=1)
rfregressor.fit(trainingx, trainingy)
predicted = rfregressor.predict(testx)
predictionerror = abs(predicted-testy)

You can see in this snippet that we fit the regressor by using only the
training data. Then we calculate the prediction error by using only the test
data. Even though all of our data comes from the past, by making
predictions for data that weren’t included in our training, we’re making sure
that our process resembles a true prediction process instead of postdiction.

We can see the error on the test set by running
print(np.mean(predictionerror)). You’ll see that the mean prediction

error on our test set is about 3,816 when using our random forest regressor.
We can also do the same with our other regressors. For example, this is

how we can check the prediction error of our k-NN regressor:

knnregressor = KNeighborsRegressor(n_neighbors=15)
knnregressor.fit(trainingx, trainingy)
predicted = knnregressor.predict(testx)
predictionerror = abs(predicted-testy)

Again, we can use print(np.mean(predictionerror)) to find out
whether this method seems to perform better than our other supervised
learning methods. When we do, we find that our k-NN regressor has a mean
prediction error equal to about 3,292 on the test set. In this case, k-NN has
better performance than random forests, as measured by prediction error on
the test set. When we want to choose the best supervised learning method
for a particular scenario, the simplest way to do it is to choose the one with
the lowest prediction error on a test set.

Working with Multivariate Models
So far in this chapter, we’ve worked with only univariate supervised
learning, meaning that we’ve used only one feature (sentiment) to predict
shares. Once you know how to do univariate supervised learning, jumping
to multivariate supervised learning, where we use multiple features to
predict a target, is completely straightforward. All we need to do is specify
more features in our x variable, as follows:

x=news[[' global_sentiment_polarity',' n_unique_tokens',' n_n
on_stop_words']]
y=np.array(allshares)
trainingx,testx,trainingy,testy=train_test_split(x,y,random_s
tate=1)
from sklearn.ensemble import RandomForestRegressor
rfregressor = RandomForestRegressor(random_state=1)
rfregressor.fit(trainingx, trainingy)
predicted = rfregressor.predict(testx)
predictionerror = abs(predicted-testy)

Here, we specify an x variable that contains not only the sentiment of an
article but also two other features from other columns in our dataset. After
that, the process is the same as we’ve followed before: splitting into a
training and test set, creating and fitting a regressor using a training set, and
calculating prediction error on a test set. When we run
print(np.mean(predictionerror)) now, we see that our multivariate
model has a mean prediction error equal to about 3,474, indicating that our
multivariate random forest model performs better than our univariate
random forest model on our test set.

Using Classification Instead of Regression
So far, this whole chapter has presented various ways to predict shares,
given different features of an article. The shares variable can take any
integer value from 0 to infinity. For data like that (continuous, numeric
variables), it’s appropriate to use regression to predict the values it will
take. We used linear regression, k-NN regression, decision tree regression,
random forest regression, and neural network regression: five supervised
learning methods, all of them used to predict targets that can take a wide
range of values.

Instead of doing prediction and regression, we may want to do
categorical classification, as we did in Chapter 5. In our business scenario,
we might not be interested in predicting a precise number of shares. Instead,
we may be interested only in whether an article will reach a number of
shares that’s higher than the median number. Deciding whether something
is above or below a median is a classification scenario, since it consists of
deciding true/false to a question with only two possible answers.

We can create a variable that enables us to do classification as follows:

themedian=np.median(news[' shares'])
news['abovemedianshares']=1*(news[' shares']>themedian)

Here, we create a themedian variable that represents the median value of
shares in our dataset. Then we add a new column to the news dataset called
abovemedianshares. This new column is 1 when an article’s share count is
above the median, and it’s 0 otherwise. This new measurement is derived

from a numeric measurement (number of shares), but we can think of it as a
categorical measurement: one that expresses a true/false proposition of
whether an article is in the high-share category. Since our business goal is
to publish high-share articles and not publish low-share articles, being able
to accurately classify new articles as likely high-share articles or likely low-
share articles would be useful to us.

To perform classification instead of regression, we need to change our
supervised learning code. But luckily, the changes we have to make are
minor. In the following snippet, we use classifiers instead of regressors for
our new categorical target variable:

x=news[[' global_sentiment_polarity',' n_unique_tokens',' n_n
on_stop_words']]
y=np.array(news['abovemedianshares'])
from sklearn.neighbors import KNeighborsClassifier
knnclassifier = KNeighborsClassifier(n_neighbors=15)
trainingx,testx,trainingy,testy=train_test_split(x,y,random_s
tate=1)
knnclassifier.fit(trainingx, trainingy)
predicted = knnclassifier.predict(testx)

You can see that the difference between the regression we were doing
before and the classification we’re doing here is quite minor. The only
changes are shown in bold. In particular, instead of importing the
KNeighborsRegressor module, we import the KNeighborsClassifier
module. Both modules use k-NN, but one is designed for regression and the
other for classification. We name our variable knnclassifier instead of
knnregressor, but beyond that, the supervised learning process is just the
same: importing a supervised learning module, splitting data into training
and test sets, fitting the model to a training dataset, and finally using the fit
model for predictions on a test set.

You should remember from Chapter 5 that we usually measure accuracy
differently in classification scenarios than we do in regression scenarios.
The following snippet creates a confusion matrix, just like the ones we
made in Chapter 5:

from sklearn.metrics import confusion_matrix
print(confusion_matrix(testy,predicted))

Remember that the output of this code is a confusion matrix that shows
the number of true positives, true negatives, false positives, and false
negatives on our test set. The confusion matrix looks like this:

[[2703 2280]
 [2370 2558]]

Remember that every confusion matrix has the following structure:

[[true positives false positives]
[false negatives true negatives]]

So, when we look at our confusion matrix, we find that our model made
2,703 true-positive classifications: our model predicted above-median
shares for 2,703 articles, and those articles did have above-median shares.
We have 2,280 false positives: predictions of above-median shares for
articles that instead had below-median shares. We have 2,370 false
negatives: predictions for below-median shares for articles that instead had
above-median shares. Finally, we have 2,558 true negatives: predictions of
below-median shares for articles that did have below-median shares.

We can calculate our precision and recall as follows:

from sklearn.metrics import precision_score
from sklearn.metrics import recall_score

precision = precision_score(testy,predicted)
recall = recall_score(testy,predicted)

You’ll see that our precision is equal to about 0.53, and our recall is equal
to about 0.52. These are not extremely encouraging values; precision and
recall are supposed to be as close to 1 as possible. One reason these values
are so low is that we’re trying to make difficult predictions. It’s inherently
hard to know the number of shares an article will get, no matter how good
your algorithms are.

It’s important to remember that even though supervised learning is a
sophisticated set of methods based on ingenious ideas and executed on
powerful hardware, it’s not magic. Many things in the universe are
inherently difficult to predict, even when using the best-possible methods.

But just because perfect prediction may be impossible doesn’t mean we
shouldn’t try to make predictions at all. In this case, a model that helps us
even a little bit is better than nothing.

Summary
In this chapter, we explored supervised learning. We started with a business
scenario related to prediction. We reviewed linear regression, including its
shortcomings. We then talked about supervised learning in general and
introduced several other supervised learning methods. We went on to
discuss some finer points of supervised learning, including multivariate
supervised learning and classification.

In the next chapter, we’ll discuss supervised learning’s less popular
younger sibling: unsupervised learning. Unsupervised learning gives us
powerful ways to explore and understand hidden relationships in data,
without even using a target variable for supervision. Supervised learning
and unsupervised learning together make up the bulk of machine learning,
one of the most essential data science skills.

7
UNSUPERVISED LEARNING

We’ll start this chapter with an
introduction to the concept of
unsupervised learning, comparing it to
supervised learning. Then we’ll
generate data for clustering, the most

common task associated with unsupervised learning.
We’ll first focus on a sophisticated method called E-
M clustering. Finally, we’ll round out the chapter by
looking at how other clustering methods relate to the
rest of unsupervised learning.

Unsupervised Learning vs. Supervised
Learning
The easiest way to understand unsupervised learning is by comparing it to
supervised learning. Remember from Chapter 6 that the supervised learning
process is captured by Figure 7-1.

Figure 7-1: The conceptual map of all supervised learning methods

The target that Figure 7-1 refers to is the special variable in our dataset
that we want to predict. The features are the variables in our dataset that
we’ll use to predict the target. The learned function is a function that maps
the features to the target. We can check the accuracy of the learned function
by comparing our predictions to actual target values. If the predictions are
very far from the target values, we know that we should try to find a better
learned function. It’s like the target values are supervising our process by
telling us how accurate our function is and enabling us to push toward the
highest possible accuracy.

Unsupervised learning doesn’t have this supervision because it doesn’t
have a target variable. Figure 7-2 depicts the process of unsupervised
learning.

Figure 7-2: The conceptual map of the unsupervised learning process

Instead of trying to map features to a target variable, unsupervised
learning is concerned with creating a model of the features themselves; it
does this by finding relationships between observations and natural groups
in the features. In general, it’s a way of exploring the features. Finding
relationships among observations in our data can help us understand them
better; it will also help us find anomalies and make the dataset a little less
unwieldy.

The arrow in Figure 7-2 connects the features to themselves. This arrow
indicates that we are finding ways that features relate to one another, such
as the natural groups they form; it does not indicate a cycle or repeating
process. This probably sounds rather abstract, so let’s make it clearer by
looking at a concrete example.

Generating and Exploring Data
Let’s start by looking at some data. Instead of reading in existing data as
we’ve done in previous chapters, we’ll generate new data by using Python’s
random number generation capabilities. Randomly generated data tends to
be simpler and easier to work with than data from real life; this will help us
as we’re trying to discuss the complexities of unsupervised learning.

More importantly, one of the main goals of unsupervised learning is to
understand how subsets of data relate to one another. Generating data
ourselves will mean that we can judge whether our unsupervised learning
methods have found the right relationships among subsets of our data, since
we’ll know exactly where those subsets came from and how they relate.

Rolling the Dice
We’ll start by generating simple example data with some dice rolls:

from random import choices,seed
numberofrolls=1800
seed(9)
dice1=choices([1,2,3,4,5,6], k=numberofrolls)
dice2=choices([1,2,3,4,5,6], k=numberofrolls)

In this snippet, we import the choices() and seed() functions from the
random module. These are the functions we’ll use to do random number
generation. We define a variable called numberofrolls, which is storing the
value 1800, the number of simulated dice rolls we want Python to generate
for us. We call the seed() function, which isn’t necessary but will ensure
you get the same results as the ones presented here in the book.

Next, we create two lists, dice1 and dice2, using the choices()
function. We pass two arguments to this function: the list [1,2,3,4,5,6],

which tells the choices() function that we want it to make random
selections from the integers between 1 and 6, and k=numberofrolls, which
tells the choices() function that we want it to make 1,800 such selections.
The dice1 list represents 1,800 rolls of one die, and the dice2 variable
likewise represents 1,800 rolls of a second, separate die.

You can look at the first 10 elements of dice1 as follows:

print(dice1[0:10])

You should see the following output (if you ran seed(9) in the preceding
snippet):

[3, 3, 1, 6, 1, 4, 6, 1, 4, 4]

This list looks plausible as a record of 10 rolls of a fair die. After
generating lists of 1,800 random rolls from two dice, we can find the sums
of each of the 1,800 rolls:

dicesum=[dice1[n]+dice2[n] for n in range(numberofrolls)]

Here we create the dicesum variable by using a list comprehension. The
first element of dicesum is the sum of the first element of dice1 and the
first element of dice2, the second element of dicesum is the sum of the
second element of dice1 and the second element of dice2, and so on. All of
this code simulates a common scenario: rolling two dice together and
looking at the sum of the numbers that are face up after rolling. But instead
of rolling the dice ourselves, we have Python simulate all 1,800 rolls for us.

Once we have the summed dice rolls, we can draw a histogram of all of
them:

from matplotlib import pyplot as plt
import numpy as np
fig, ax = plt.subplots(figsize =(10, 7))
ax.hist(dicesum,bins=[2,3,4,5,6,7,8,9,10,11,12,13],align='lef
t')
plt.show()

Figure 7-3 shows the result.

Figure 7-3: The outcomes of 1,800 simulated dice rolls

This is a histogram just like the ones we’ve seen in Chapters 1 and 3.
Each vertical bar represents a frequency of a particular dice outcome. For
example, the leftmost bar indicates that of our 1,800 rolls, about 50 summed
to 2. The tallest bar in the middle indicates that around 300 of our dice rolls
summed to 7.

Histograms like this one show us the distribution of our data—the
relative frequency of different observations occurring. Our distribution
shows that the highest and lowest values, like 2 and 12, are relatively
uncommon, while the middle values, like 7, are much more common. We
can also interpret a distribution in terms of probabilities: if we roll two fair
dice, 7 is a highly likely outcome, and 2 and 12 are not likely outcomes. We
can know the approximate likelihood of each outcome by looking at the
height of each bar of our histogram.

We can see that this histogram takes a shape that resembles a bell. The
more times we roll our dice, the more bell-like our histogram will become.
For large numbers of dice rolls, the histogram of outcomes is closely
approximated by a special distribution called the normal distribution, or
Gaussian distribution. You also met this distribution in Chapter 3, although
in that chapter we called it by one of its other names: the bell curve. The
normal distribution is a common pattern we observe when we measure the
relative frequencies of certain things, like differences between means in
Chapter 3, or sums of dice rolls here.

Every bell curve is fully described by just two numbers: a mean,
describing the center and highest point of the bell curve, and a variance,
describing how widely spread out the bell curve is. The square root of the
variance is the standard deviation, another measure of how widely spread
out a bell curve is. We can calculate the mean and standard deviation of our
dice roll data with the following simple function:

def getcenter(allpoints):
 center=np.mean(allpoints)
 stdev=np.sqrt(np.cov(allpoints))
 return(center,stdev)

print(getcenter(dicesum))

This function takes a list of observations as its input. It uses the
np.mean() function to get the mean of the list and store it in the variable
called center. Then, it uses the np.cov() method. This method’s name,
cov, is short for covariance, another measurement of the way data varies.
When we calculate a covariance of two separate lists of observations, it tells
us how much those datasets vary together. When we calculate a covariance
of one list of observations alone, it’s simply called the variance, and the
square root of the variance is the standard deviation.

If we run the preceding snippet, we should get the mean and standard
deviation of our dice rolls:

(6.9511111111111115, 2.468219092930105)

This output tells us that the mean of our observed dice rolls is about 7
and the standard deviation is about 2.5. Now that we know these numbers,
we can plot a bell curve as an overlay on our histogram as follows:

fig, ax = plt.subplots(figsize =(10, 7))
ax.hist(dicesum,bins=range(2,14),align='left')
import scipy.stats as stats
import math
mu=7
sigma=2.5
x = np.linspace(mu - 2*sigma, mu + 2*sigma, 100)*1
plt.plot(x, stats.norm.pdf(x, mu, sigma)*numberofrolls,linewi

dth=5)
plt.show()

Figure 7-4 shows our output.

Figure 7-4: A bell curve overlaid on a histogram of dice rolls

You can see that the bell curve is a continuous curve that we’ve plotted
over our histogram. Its value represents relative probability: since it has a
relatively high value at 7, and a relatively low value at 2 and 12, we
interpret that to mean that we are more likely to roll a 7 than to roll a 2 or
12. We can see that these theoretical probabilities match our observed dice
rolls pretty closely, since the height of the bell curve is close to the height of
each histogram bar. We can easily check the number of rolls predicted by
the bell curve as follows:

stats.norm.pdf(2, mu, sigma)*numberofrolls
output: 38.8734958894954

stats.norm.pdf(7, mu, sigma)*numberofrolls
output: 287.23844188903155

stats.norm.pdf(12, mu, sigma)*numberofrolls
output: 38.8734958894954

Here, we use the stats.norm.pdf() function to calculate the expected
number of dice rolls for 2, 7, and 12. This function is from the stats

module, and its name, norm.pdf, is short for normal probability density
function, which is yet another name for our familiar bell curve. The snippet
uses stats.norm.pdf() to calculate how high the bell curve is at x = 2, x =
7, and x = 12 (in other words, how likely rolling a 2, rolling a 7, and rolling
a 12 are based on the mean and standard deviation we calculated before).
Then, it multiplies these likelihoods by the number of times we want to roll
the dice (1,800 in this case) to get the total number of expected rolls of 2, 7,
and 12, respectively.

Using Another Kind of Die
We’ve calculated probabilities for the hypothetical scenario of rolling two
6-sided dice together because dice rolls give us an easy, familiar way to
think about important data science ideas like probabilities and distributions.
But of course this is not the only possible type of data we could analyze, or
even the only type of dice roll we could analyze.

Imagine rolling a pair of nonstandard 12-sided dice, whose sides are
marked with the numbers 4, 5, 6, . . . , 14, 15. When these dice are rolled
together, their sum could be any integer between 8 and 30. We can
randomly generate 1,800 hypothetical rolls again and draw a histogram of
those rolls by using the same type of code we used before, with a few small
changes:

seed(913)
dice1=choices([4,5,6,7,8,9,10,11,12,13,14,15], k=numberofroll
s)
dice2=choices([4,5,6,7,8,9,10,11,12,13,14,15], k=numberofroll
s)
dicesum12=[dice1[n]+dice2[n] for n in range(numberofrolls)]
fig, ax = plt.subplots(figsize =(10, 7))
ax.hist(dicesum12,bins=range(8,32),align='left')
mu=np.mean(dicesum12)
sigma=np.std(dicesum12)
x = np.linspace(mu - 2*sigma, mu + 2*sigma, 100)*1
plt.plot(x, stats.norm.pdf(x, mu, sigma)*numberofrolls,linewi
dth=5)
plt.show()

Figure 7-5 shows the resulting histogram.

Figure 7-5: A bell curve and histogram for dice rolls using a pair of custom 12-sided dice

The bell shape is roughly the same as in Figure 7-4, but in this case, 19 is
the most likely outcome, not 7, and the range goes from 8 to 30 instead of
from 2 to 12. So we have a normal distribution or bell curve again, but with
a different mean and standard deviation.

We can plot both of our histograms (Figures 7-4 and 7-5) together as
follows:

dicesumboth=dicesum+dicesum12
fig, ax = plt.subplots(figsize =(10, 7))
ax.hist(dicesumboth,bins=range(2,32),align='left')
import scipy.stats as stats
import math
mu=np.mean(dicesum12)
sigma=np.std(dicesum12)
x = np.linspace(mu - 2*sigma, mu + 2*sigma, 100)*1
plt.plot(x, stats.norm.pdf(x, mu, sigma)*numberofrolls,linewi
dth=5)
mu=np.mean(dicesum)
sigma=np.std(dicesum)
x = np.linspace(mu - 2*sigma, mu + 2*sigma, 100)*1
plt.plot(x, stats.norm.pdf(x, mu, sigma)*numberofrolls,linewi
dth=5)
plt.show()

Figure 7-6 shows the result.

Figure 7-6: A combined histogram showing outcomes from 6-sided and 12-sided dice pairs

This is technically one histogram, though we know that it was generated
by combining the data from two separate histograms. Remember that for
the pair of 6-sided dice, 7 is the most common outcome, and for the pair of
12-sided dice, 19 is the most common outcome. We see this reflected in a
local peak at 7 and another local peak at 19 in our histogram. These two
local peaks are called modes. Since we have two modes, this is what we call
a bimodal histogram.

When you look at Figure 7-6, it should help you start to understand what
the conceptual diagram in Figure 7-2 is trying to illustrate. We’re not
predicting or classifying dice rolls as we’ve done in previous chapters on
supervised learning. Instead, we’re making simple theoretical models—in
this case, our bell curves—that express our understanding of the data and
the way observations relate to one another. In the next section, we’ll use
these bell curve models to reason about the data and understand it better.

The Origin of Observations with Clustering
Imagine that we randomly select one dice roll out of all the rolls that we
plotted in Figure 7-6:

seed(494)
randomselection=choices(dicesumboth, k=1)

print(randomselection)

You should see the output [12], indicating that we randomly selected one
instance in our data in which we rolled a sum of 12. Without giving you any
other information, imagine that I ask you to make an educated guess about
which pair of dice was responsible for rolling this particular 12. It could
have been either pair: the 6-sided die could have come up as a pair of 6s, or
the 12-sided die could have come up in various combinations, like 8 and 4.
How can you make an educated guess about which pair of dice is most
likely to be the origin of this observation?

You may have strong intuition already that the 12 was not likely to have
been rolled by the 6-sided dice. After all, 12 is the least likely roll for 6-
sided dice (tied with 2), but 12 is closer to the middle of Figure 7-5,
indicating that it’s a more common roll for the 12-sided dice.

Your educated guess need not be based merely on intuition. We can look
at the heights of the histogram bars in Figures 7-4 and 7-5 to see that when
we rolled both pairs of dice 1,800 times, we got about 50 instances of 12s
from the 6-sided dice and more than 60 instances of 12s from the 12-sided
dice. And from a theoretical perspective, the heights of the bell curves in Fi
gure 7-6 enable us to directly compare the relative probabilities of each
outcome for each pair of dice, since we roll both pairs equally often.

We can do this same type of reasoning to think about dice rolls other than
12. For example, we know that 8 is more likely for the 6-sided dice, not
only because of our intuition but also because the left bell curve in Figure 7
-6 is higher than the right bell curve when the x value is 8. In case we don’t
have Figure 7-6 in front of us, we can calculate the heights of each bell
curve as follows:

stats.norm.pdf(8, np.mean(dicesum), np.std(dicesum))*numberof
rolls
output: 265.87855493973007

stats.norm.pdf(8, np.mean(dicesum12), np.std(dicesum12))*numb
erofrolls
output: 11.2892030357587252

Here we see that the 6-sided dice are more likely to be the origin of the
observed 8 roll: it’s expected about 266 times out of 1,800 rolls of the 6-
sided dice, while we expect to roll 8 only about 11 or 12 times out of 1,800
rolls of the 12-sided dice. We can follow exactly the same process to
determine that the 12-sided pair is more likely to be the origin of the
observed 12 roll:

stats.norm.pdf(12, np.mean(dicesum), np.std(dicesum))*numbero
frolls
results in 35.87586208537935

stats.norm.pdf(12, np.mean(dicesum12), np.std(dicesum12))*num
berofrolls
results in 51.42993240324318

If we use this method of comparing the heights of bell curves, then for
any observed dice roll, we can say which dice pair is most likely to be its
origin.

Now that we can make educated guesses about the origin of any dice
rolls, we’re ready to tackle clustering, one of the most important, most
common tasks in unsupervised learning. The goal of clustering is to answer
a global version of the question we considered previously: Which pair of
dice is the origin of every observation in our data?

Clustering begins with a reasoning process that’s similar to the reasoning
in our previous section. But instead of reasoning about a single dice roll, we
try to determine which dice pair is the origin of every observation in our
data. This is a simple process that we can go through as follows:
For all rolls of 2, dice pair 1’s bell curve is higher than dice pair 2’s, so,
without knowing anything else, we suppose that all rolls of 2 came from
dice pair 1.
For all rolls of 3, dice pair 1’s bell curve is higher than dice pair 2’s, so,
without knowing anything else, we suppose that all rolls of 3 came from
dice pair 1.
. . .
For all rolls of 12, dice pair 2’s bell curve is higher than dice pair 1’s, so,
without knowing anything else, we suppose that all rolls of 12 came from

dice pair 2.
. . .
For all rolls of 30, dice pair 2’s bell curve is higher than dice pair 1’s, so,
without knowing anything else, we suppose that all rolls of 30 came from
dice pair 2.

By considering each of the 29 possible dice roll outcomes individually,
we can make good guesses about the respective origins of every observation
in our data. We can also write code to accomplish this:

from scipy.stats import multivariate_normal
def classify(allpts,allmns,allvar):
 vars=[]
 for n in range(len(allmns)):
 vars.append(multivariate_normal(mean=allmns[n], cov=a
llvar[n]))
 classification=[]
 for point in allpts:
 this_classification=-1
 this_pdf=0
 for n in range(len(allmns)):
 if vars[n].pdf(point)>this_pdf:
 this_pdf=vars[n].pdf(point)
 this_classification=n+1
 classification.append(this_classification)
 return classification

Let’s look at the classify() function. It takes three arguments. The first
argument it requires is allpts, which represents a list of every observation
in our data. The other two arguments the function requires are allmns and
allvar. These two arguments represent the means and variances,
respectively, of every group (that is, every dice pair) in our data.

The function needs to accomplish what we did visually when we looked
at Figure 7-6 to find which dice pairs were the origin of each roll. We
consider the bell curves for each dice pair, and whichever bell curve has a
higher value for a particular dice roll is assumed to be the dice pair it came
from. In our function, instead of looking visually at bell curves, we need to
calculate the values of bell curves and see which one is higher. This is why
we create a list called vars. This list starts out empty, but then we append
our bell curves to it with the multivariate_normal() function.

After we have our collection of bell curves, we consider every point in
our data. If the first bell curve is higher than the other bell curves at that
point, we say that the point is associated with the first dice pair. If the
second bell curve is the highest at that point, we say the point belongs to the
second dice pair. If we have more than two bell curves, we can compare all
of them, classifying every point according to which bell curve is highest.
We find the highest bell curve the same way we did when we were looking
at Figure 7-6 previously, but now we’re doing it with code instead of with
our eyes. Every time we classify a point, we append its dice pair number to
a list called classification. When the function finishes running, it has
filled up the list with a dice pair classification for every point in our data,
and it returns this as its final value.

Let’s try out our new classify() function. First, let’s define some
points, means, and variances:

allpoints = [2,8,12,15,25]
allmeans = [7, 19]
allvar = [np.cov(dicesum),np.cov(dicesum12)]

Our allpoints list is a collection of hypothetical dice rolls that we want
to classify. Our allmeans list consists of two numbers: 7, the mean dice roll
expected from our 6-sided dice pair, and 19, the mean dice roll expected
from our 12-sided dice pair. Our allvar list consists of the respective
variances of the two dice pairs. Now that we have the three required
arguments, we can call our classify() function:

print(classify(allpoints,allmeans,allvar))

We see the following output:

[1, 1, 2, 2, 2]

This list is telling us that the first two dice rolls in our allpoints list, 2
and 8, are more likely to be associated with the 6-sided dice pair. The other
dice rolls in our allpoints list—12, 15, and 25—are more likely to be
associated with the 12-sided dice pair.

What we’ve just done is take a list of very different dice rolls and classify
them into two distinct groups. You might want to call this classification or
grouping, but in the world of machine learning, it’s called clustering. If you
look at Figure 7-6, you can begin to see why. Dice rolls from the 6-sided
dice appear to cluster around their most common value, 7, while dice rolls
from the 12-sided dice appear to cluster around their most common value,
19. They form little mountains of observations, or groups, that we’re going
to call clusters regardless of their shape or size.

It’s common in practice for data to have this type of clustered structure,
in which a small number of subsets (clusters) are apparent, with most
observations in each subset appearing close to the subset’s mean, and only a
small minority of observations between subsets or far away from the mean.
By forming a conclusion about the clusters that exist in our data, and
assigning each observation to one of our clusters, we’ve accomplished a
simple version of clustering, the main task of this chapter.

Clustering in Business Applications
Dice rolls have probabilities that are easy to understand and reason about.
But not many situations in business require being directly interested in dice
rolls. Nevertheless, clustering is commonly used in business, especially by
marketers.

Imagine that Figure 7-6 is not a record of dice rolls but rather a record of
transaction sizes at a retail store you’re running. The lower cluster around 7
indicates that people in one group are spending about $7 at your store, and
the higher cluster around 19 indicates that people in another group are
spending around $19 at your store. You can say that you have a cluster of
low-spending customers and a cluster of high-spending customers.

Now that you know that you have two distinct groups of customers and
you know who they are, you can act on this information. For example,
instead of using the same advertising strategy for all your customers, you
may want to advertise or market differently to each group. Maybe
advertisements emphasizing bargains and utility are persuasive to low
spenders, while advertisements emphasizing premium quality and social
prestige are more appealing to high spenders. Once you have a firm grasp

of the boundary between your two groups of customers, the size of each
group, and their most common spending habits, you have most of what you
need to enact a sophisticated two-pronged advertisement strategy.

On the other hand, after discovering the clusters in your data, you might
want to eliminate them rather than cater to them. For example, you may
believe that your low-spending customers are not budget conscious but
rather simply unaware of some of your more expensive, useful products.
You may focus on more aggressive and informative advertising strictly for
them, to encourage all of your customers to be in the high-spending group.
Your exact approach will depend on many other details of your business,
your products, and your strategy. A cluster analysis can give you important
input to your strategic decisions by showing you the salient groups of
customers and their characteristics, but it won’t go all the way to providing
a clear business strategy from scratch.

Instead of transaction size, we could imagine that the x-axis of the
histogram in Figure 7-6 refers to another variable, like customer age. Then,
our clustering analysis would be telling us that two distinct groups patronize
our business: a younger group and an older group. You could do clustering
on any numeric variable that you measure related to your customers and
potentially find interesting customer groups.

Corporate marketers had been splitting customers into groups for many
years before the term data science was common or even before most of
today’s clustering methods were invented. Before the age of data science
and clustering, marketers called the practice of splitting customers into
groups customer segmentation.

In practice, marketers often perform segmentation in a nonscientific way,
not by finding clusters and boundaries from data but by picking round
numbers from guesses or intuition. For example, a television producer
might commission surveys of viewers and analyze the data in a way that
seems natural, by looking at results from all viewers younger than age 30,
then looking at viewers age 30 and up separately. Using the nice, round
number 30 provides a potentially natural-seeming boundary between
younger and older viewers. However, maybe the producer’s show has
scarcely any viewers above age 30, so analyzing responses from this group
separately would be a distraction from the much larger group of viewers

under 30. A simple cluster analysis might instead reveal a large cluster of
viewers around age 18 and a large cluster around age 28, with a boundary
between these groups at age 23. Analyzing segments based on this
clustering analysis, rather than the round-sounding but ultimately misguided
under-30 and over-30 segments, would be more useful to understand the
show’s viewers and their opinions.

Segmentation predates clustering, but clustering is a great way to do
segmentation because it enables us to find more accurate and useful
segments, and precise boundaries between them. In this case, you could say
that the clustering approach is giving us objective, data-driven insights, as
compared to the intuition-based or experience-based approach associated
with round-number segmentation. Improving from intuition to objective,
data-driven insights is one of the main contributions of data science to
business.

So far, we’ve discussed segmentation on only one variable at a time: dice
rolls, spending, or age analyzed individually. Instead of clustering and
segmenting on only one variable at a time, we can start thinking in multiple
dimensions. For example, if we’re running a retail company in the United
States, we might find a cluster of young, high spenders in the west; a group
of older, low spenders in the southeast; and a cluster of middle-aged,
moderately high spenders in the north. To discover this, we would have to
perform clustering in multiple dimensions at once. Data science clustering
methods have this capability, giving them another advantage over
traditional segmentation methods.

Analyzing Multiple Dimensions
In our dice roll data, each observation consists of just one number: the sum
of the face-up numbers on the dice we rolled. We don’t record the
temperature or color of the dice, the length or width of their edges, or
anything else except for exactly one raw number per roll. Our dice roll
dataset is one-dimensional. Here a dimension doesn’t necessarily refer to a
dimension in space but rather to any measurement that can vary between
low and high. Dice rolls can vary a great deal between a low roll like 2 and
a high roll like 12 (or more, depending on the dice we’re using), but we

measure only their highs and lows on one metric: the sum of the numbers
that are face up after we roll them.

In business scenarios, we’re almost always interested in more than one
dimension. When we’re analyzing customer clusters, for example, we want
to know customers’ ages, locations, incomes, genders, years of education,
and as much more as we can so we can successfully market to them. When
we’re working with many dimensions, some things will look different. For
example, the bell curves we’ve seen in Figures 7-3 through 7-6 will gain an
extra dimension, as in the right side of Figure 7-7.

Figure 7-7: A univariate bell curve (left) and a bivariate bell curve (right)

The left side of this diagram shows a univariate bell curve, called
univariate because it shows relative probabilities for only one variable (the
x-axis). The right side shows a bivariate bell curve, one that shows relative
probabilities varying along two dimensions: the x- and y-axes. We can
imagine that the x- and y-axes in the plot on the right side of Figure 7-7
could be age and average transaction size, for example.

A univariate Gaussian curve has a mean that’s represented by just one
number, like x = 0 in the left side of Figure 7-7. A bivariate Gaussian curve
has a mean that’s represented by two numbers: an ordered pair consisting of
an x-coordinate and a y-coordinate, like (0, 0). The number of dimensions
increases, but the idea of using the mean of each dimension to find the
highest point of the bell is the same. Finding the means of each dimension
will tell us where to find the center and highest point of the bell, around
which the other observations tend to cluster. In both the univariate and

bivariate cases, we can interpret the height of the bell curve as a probability:
points where the bell curve is higher correspond to observations that are
more likely.

Going from one to two dimensions also affects the way we express how
spread out our bell curve is. In one dimension, we use the variance (or
standard deviation) as a single number that expresses the degree of spread
of our curve. In two or more dimensions, we use a matrix, or a rectangular
array of numbers, to express the degree of the bell curve’s spread. The
matrix we use, called a covariance matrix, records not only how spread out
each dimension is on its own but also the extent to which different
dimensions vary together. We don’t need to worry about the details of the
covariance matrix; we mostly just need to calculate it with the np.cov()
function and use it as an input in our clustering methods.

When you increase the number of dimensions in your clustering analysis
from two to three or more, the adjustment is straightforward. Instead of a
univariate or bivariate bell curve, we’ll have a multivariate bell curve. In
three dimensions, a mean will have three coordinates; in n dimensions, it
will have n coordinates. The covariance matrix will also get bigger every
time you increase the dimension of your problem. But no matter how many
dimensions you have, the features of the bell curve are always the same: it
has a mean, which most observations are near, and it has a measure of
covariance, which shows how spread out the bell curve is.

In the rest of the chapter, we’ll look at a two-dimensional example, which
will show the idea and process of clustering while still enabling us to draw
simple, interpretable plots. This example will show all the essential features
of clustering and unsupervised learning that you can apply in any number of
dimensions.

E-M Clustering
We now have all the ingredients required to perform E-M clustering, a
powerful unsupervised learning approach that enables us to intelligently
find natural groups in multidimensional data. This technique is also called
Gaussian mixture modeling, because it uses bell curves (Gaussian

distributions) to model how groups mix together. Whatever you call it, it’s
useful and relatively straightforward.

We’ll start by looking at new two-dimensional data that we want to
perform clustering on. We can read the data from its online home as
follows:

import ast
import requests
link = "https://bradfordtuckfield.com/emdata.txt"
f = requests.get(link)
allpoints = ast.literal_eval(f.text)

This snippet uses two modules: ast and requests. The requests
package allows Python to request a file or dataset from a website—in this
case, the website where the clustering data lives. The data is stored in a file
as a Python list. Python reads .txt files as strings by default, but we want to
read the data into a Python list instead of a string. The ast module contains
a literal_eval() method that enables us to read list data from files that
would otherwise be treated as strings. We read our list into a variable called
allpoints.

Now that we’ve read the data into Python, we can plot it to see what it
looks like:

allxs=[point[0] for point in allpoints]
allys=[point[1] for point in allpoints]
plt.plot(allxs, allys, 'x')
plt.axis('equal')
plt.show()

Figure 7-8 shows the results.

Figure 7-8: A plot of our new two-dimensional data

One thing you might notice is that these axes have no labels. This is not
an accident: we’re going to work with this data as an unlabeled example
and then talk about how it can be applied to many scenarios. You could
imagine many possible labels for the axes in this example: maybe the points
represent cities, the x-axis is percent population growth, and the y-axis is
percent economic growth. If so, performing clustering will identify clusters
of cities whose growth has been comparable recently. Maybe this could be
useful if you’re a CEO and you’re trying to decide where to open a new
franchise of your business. But the axes don’t have to represent the cities’
growth: they could represent anything at all, and our clustering algorithms
will work in the same way regardless.

A few other things are immediately apparent in Figure 7-8. Two
particularly dense clusters of observations appear at the top and right of the
plot, respectively. In the center of the plot, another cluster appears to be
much less dense than the other two. We seem to have three clusters in
different locations, with different sizes and densities.

Instead of relying only on our eyes for this clustering exercise, let’s use a
powerful clustering algorithm: the E-M algorithm. E-M is short for
expectation-maximization. We can describe this algorithm in four steps:

. Guessing: Make guesses for the means and covariances of every cluster.

. Expectation: Classify every observation in our data according to which
cluster it’s most likely to be a member of, according to the most recent
estimates of means and covariances. (This is called the E, or Expectation,
step because we’re classifying based on our expectation of how likely each
point is to be in each cluster.)

. Maximization: Use the classifications obtained in the Expectation step to
calculate new estimates for the means and covariances of each cluster. (This
is called the M, or Maximization, step because we find the means and
variances that maximize the probability of matching our data.)

. Convergence: Repeat the Expectation and Maximization steps until
reaching a stopping condition.

If this algorithm seems intimidating, don’t worry; you’ve already done all
the hard parts earlier in the chapter. Let’s proceed through each step in turn
to understand them better.

The Guessing Step
The first step is the easiest, since we can make any guess whatsoever for the
means and covariances of our clusters. Let’s make some initial guesses:

#initial guesses
mean1=[-1,0]
mean2=[0.5,-1]
mean3=[0.5,0.5]

allmeans=[mean1,mean2,mean3]

cov1=[[1,0],[0,1]]
cov2=[[1,0],[0,1]]
cov3=[[1,0],[0,1]]

allvar=[cov1,cov2,cov3]

In this snippet, we first make guesses for mean1, mean2, and mean3. These
guesses are two-dimensional points that are supposed to be the respective
centers of our three clusters. We then make guesses for the covariance of
each cluster. We make the easiest-possible guess for covariance: we guess a
special, simple matrix called the identity matrix as the covariance matrix for

each cluster. (The details of the identity matrix aren’t important right now;
we use it because it’s simple and tends to work well enough as an initial
guess.) We can draw a plot to see what these guesses look like:

plt.plot(allxs, allys, 'x')
plt.plot(mean1[0],mean1[1],'r*', markersize=15)
plt.plot(mean2[0],mean2[1],'r*', markersize=15)
plt.plot(mean3[0],mean3[1],'r*', markersize=15)
plt.axis('equal')
plt.show()

The plot looks like Figure 7-9.

Figure 7-9: Our data with some guesses at cluster centers shown as stars

You can see the points plotted again, with stars representing the guesses
we made for cluster centers. (The stars will be red if you’re plotting at
home.) Our guesses clearly were not very good. In particular, none of our
guesses are in the center of the two dense clusters we see at the top and
right of the plot, and none are close to the center of the main cloud of
points. In this case, starting with inaccurate guesses is good, because it will
enable us to see how powerful the E-M clustering algorithm is: it can find
the right cluster centers even if our initial guesses in the Guessing step are
quite poor.

The Expectation Step
We’ve completed the Guessing step of the algorithm. For the next step, we
need to classify all of our points according to which cluster we believe
they’re in. Luckily, we already have our classify() function for this:

def classify(allpts,allmns,allvar):
 vars=[]
 for n in range(len(allmns)):
 vars.append(multivariate_normal(mean=allmns[n], cov=a
llvar[n]))
 classification=[]
 for point in allpts:
 this_classification=-1
 this_pdf=0
 for n in range(len(allmns)):
 if vars[n].pdf(point)>this_pdf:
 this_pdf=vars[n].pdf(point)
 this_classification=n+1
 classification.append(this_classification)
 return classification

Remember what this function does. Earlier in the chapter, we used it to
classify dice rolls. We took a set of dice roll observations and found which
dice pair each dice roll was likely to come from by comparing the heights
of two bell curves. Here, we will use the function for a similar task, but
we’ll use our new unlabeled data instead of dice roll data. For each
observation in our new data, this function finds which group it’s likely to
belong to by comparing the heights of the bell curve associated with each
group. Let’s call this function on our points, means, and variances:

theclass=classify(allpoints,allmeans,allvar)

Now we have a list called theclass, which contains a classification of
every point in our data. We can look at the first 10 elements of theclass by
running print(theclass[:10]). We see the following output:

[1, 1, 1, 1, 3, 1, 3, 3, 1, 3]

This output is telling us that the first point in our data seems to be in
cluster 1, the fifth point is in cluster 3, and so on. We’ve accomplished the

Guessing step and the Expectation step: we have some values for means
and variances of our clusters, and we’ve classified every data point into one
of our clusters. Before we move on, let’s create a function that will plot our
data and clusters:

def makeplot(allpoints,theclass,allmeans):
 thecolors=['black']*len(allpoints)
 for idx in range(len(thecolors)):
 if theclass[idx]==2:
 thecolors[idx]='green'
 if theclass[idx]==3:
 thecolors[idx]='yellow'
 allxs=[point[0] for point in allpoints]
 allys=[point[1] for point in allpoints]
 for i in range(len(allpoints)):
 plt.scatter(allxs[i], allys[i],color=thecolors[i])
 for i in range(len(allmeans)):
 plt.plot(allmeans[i][0],allmeans[i][1],'b*', markersi
ze=15)
 plt.axis('equal')
 plt.show()

This function takes our data (allpoints), our cluster classifications
(theclass), and our cluster means (allmeans) as inputs. Then it assigns
colors to each cluster: points in the first cluster are black, points in the
second cluster are green, and points in the third cluster are yellow. The
plt.scatter() function draws all our points in their colors. Finally, it
draws red stars for each of our cluster centers. Note this book is printed in
black-and-white, so you will see these colors only if you try this code on
your own computer.

We can call this function by running
makeplot(allpoints,theclass,allmeans), and we should see Figure 7-
10.

Figure 7-10: Initial cluster classifications

This is a two-dimensional plot. But to understand how it performed
classification into clusters, you should imagine three bivariate bell curves
(like the one on the right side of Figure 7-7) jutting out of the page, each
one centered on one of the star-shaped cluster centers. The covariance
we’ve estimated will determine how widely spread out each bell curve is.
The cluster classifications are determined by which of these three bell
curves is highest for each point in our data. You can imagine that if we
moved the centers or changed the covariance estimates, our bivariate bell
curves would look different, and we could get different classifications.
(This will happen very soon.)

It’s clear from Figure 7-10 that we haven’t finished our clustering task.
For one thing, the cluster shapes don’t match the shapes we think we see in
Figure 7-8. But even more obviously, the points that we’ve called cluster
centers, shown as stars on this plot, are clearly not in the center of their
respective clusters; they’re more or less on the edge of their data. This is
why we need to do the Maximization step of the E-M clustering algorithm,
in which we’ll recalculate the means and variances of each cluster (and
thereby move cluster centers to more appropriate locations).

The Maximization Step

This step is pretty simple: we just need to take the points in each of our
clusters and calculate their means and variances. We can update the
getcenters() function we used previously to accomplish this:

def getcenters(allpoints,theclass,k):
 centers=[]
 thevars=[]
 for n in range(k):
 pointsn=[allpoints[i] for i in range(0,len(allpoint
s)) if theclass[i]==(n+1)]
 xpointsn=[points[0] for points in pointsn]
 ypointsn=[points[1] for points in pointsn]
 xcenter=np.mean(xpointsn)
 ycenter=np.mean(ypointsn)
 centers.append([xcenter,ycenter])
 thevars.append(np.cov(xpointsn,ypointsn))
 return centers,thevars

Our updated getcenters() function is simple. We pass a number k to the
function as an argument; this number indicates the number of clusters in our
data. We also pass the data and the cluster classifications to the function.
The function calculates the mean and variance of every cluster and then
returns a list of means (which we call centers) and a list of variances
(which we call thevars).

Let’s call our updated getcenters() function to find the actual means
and variances of our three clusters:

allmeans,allvar=getcenters(allpoints,theclass,3)

Now that we have newly calculated means and variances, let’s plot our
clusters again by running makeplot(allpoints,theclass,allmeans). The
result should look like Figure 7-11.

Figure 7-11: Recalculated cluster centers

You can see that our cluster centers, the star shapes, have moved since we
recalculated them in the Expectation step. But now that the cluster centers
have moved, some of our previous cluster classifications are probably
incorrect. If you run this on your computer, you’ll see some yellow points
that are quite far from the center of the yellow cluster (the cluster at the top
right of the plot), and quite close to the centers of the other clusters. Since
the centers have moved and we’ve recalculated covariances, we need to
rerun our classification function to reclassify all the points into their correct
clusters (meaning, we need to run our Expectation step again):

theclass=classify(allpoints,allmeans,allvar)

Again, to think about how this classification is accomplished, you can
imagine three bivariate bell curves jutting out of the page, with bell curve
centers determined by the positions of the stars, and widths determined by
the bell curve covariances we’ve calculated. Whichever bell curve is
highest at each point will determine that point’s cluster classification.

Let’s make another plot that will reflect these newly recalculated cluster
classifications by running makeplot(allpoints,theclass,allmeans) yet
again. The result is Figure 7-12.

Figure 7-12: Reclassified cluster classifications

Here, you can see that the stars (cluster centers) are in the same locations
as in Figure 7-11. But we’ve accomplished reclassification of the points:
based on comparing the bell curves for each cluster, we’ve found the cluster
that’s most likely to contain every point, and we’ve changed the coloring
accordingly. You can compare this to Figure 7-10 to see the progress we’ve
made since we started: we’ve changed our estimates of where the cluster
centers are as well as our estimates of which points belong in which
clusters.

The Convergence Step
You can see that two clusters have grown (the lower cluster and the cluster
on the left), while one cluster has shrunk (the cluster at the top right). But
now we’re in the same situation we were in before: after reclassifying the
clusters, the centers are not correct, so we need to recalculate them too.

Hopefully, you can see the pattern in this process by now: every time we
reclassify our clusters, we have to recalculate the clusters’ centers, but
every time we recalculate the centers, we have to reclassify the clusters.
Stated another way, every time we perform the Expectation step, we have to
perform the Maximization step, but every time we perform the
Maximization step, we have to perform the Expectation step again.

That’s why the next, final step of E-M clustering is to repeat the
Expectation and Maximization steps: both steps create a need for the other
one. We can write a short loop that will accomplish this for us:

for n in range(0,100):
 theclass=classify(allpoints,allmeans,allvar)
 allmeans,allvar=getcenters(allpoints,theclass,3)

The first line of the loop’s body (starting with theclass=) accomplishes
the Expectation step, and the next line accomplishes the Maximization step.
You may wonder whether we’ll get caught in an infinite loop, in which we
have to constantly recalculate centers and reclassify clusters again and
again forever, never reaching a final answer. We’re lucky because E-M
clustering is mathematically guaranteed to converge, meaning that
eventually we’ll reach a step where we recalculate the centers and find the
same centers we calculated in the previous step, and we reclassify the
clusters and find the same clusters we classified in the previous step. At that
point, we can stop running our clustering because continuing will just give
us a repetition of the same answers over and over.

In the previous snippet, instead of checking for convergence, we set a
limit at 100 iterations. For a dataset as small and simple as ours, this will
certainly be more than enough iterations. If you have a complex dataset that
doesn’t seem to converge after 100 iterations, you can increase to 1,000 or
more until your E-M clustering reaches convergence.

Let’s think about what we’ve done. We did the Guessing step, guessing
means and variances of our clusters. We did the Expectation step,
classifying clusters based on means and variances. We did the
Maximization step, calculating means and variances based on clusters. And
we did the Convergence step, repeating the Expectation and Maximization
steps until reaching a stopping condition.

We’ve completed E-M clustering! Now that we’ve finished, let’s look at
a plot of the final estimated clusters and centers by running
makeplot(allpoints,theclass,allmeans) one final time; see Figure 7-
13.

When we look at this plot, we can see that our clustering succeeded. One
of our cluster centers (stars) appears close to the center of the large, spread-

out cluster. The other two cluster centers appear near the center of the
smaller, more compact clusters. Importantly, we can see observations that
are closer (in absolute distance) to the small clusters but are classified as
being part of the large cluster. This is because E-M clustering takes variance
into account; since it sees that the center cluster is more spread out, it
assigns a higher variance to it, and therefore it’s able to include more points.
Remember that we started with some atrocious guesses for cluster centers,
but we got a result that exactly matches what looks perfect to us. Starting
from our bad guesses in Figure 7-10, we’ve arrived at reasonable-looking
results in Figure 7-13. This shows the strength of E-M clustering.

Figure 7-13: Final E-M clustering results

Our E-M clustering process has identified clusters in our data. We’ve
completed the clustering algorithm, but we haven’t applied it to any
business scenario yet. The way we apply it to business will depend on what
the data represents. This was just example data generated for the book, but
we could perform exactly the same E-M clustering process on any other
data from any field. For example, we might imagine, as we described
before, that the points of Figure 7-13 represent cities, and the x- and y-axes
represent types of urban growth. Or, the points of Figure 7-13 could
represent customers, and the x- and y-axes represent customer attributes
like total spending, age, location, or anything else.

What you do with your clusters will depend on the data you’re working
with and your goals. But in every situation, knowing the clusters that exist
in your data can help you craft different marketing approaches or different
products for different clusters, or different strategies for interacting with
each of them.

Other Clustering Methods
E-M clustering is a powerful clustering method, but it’s not the only one.
Another method, k-means clustering, is more popular because it’s easier. If
you can do E-M clustering, k-means clustering is easy after some
straightforward changes to our code. The following are the steps of k-means
clustering:

. Guessing: Make guesses for the means of every cluster.

. Classification: Classify every observation in our data according to which
cluster it’s most likely to be a member of, according to which mean it’s
closest to.

. Adjustment: Use the classifications obtained in the Classification step to
calculate new estimates for the means of each cluster.

. Convergence: Repeat the Classification and Adjustment steps until reaching
a stopping condition.

You can see that k-means clustering consists of four steps, just like E-M
clustering. The first and last steps (Guessing and Convergence) are
identical: we make guesses at the beginning of both processes, and we
repeat steps until convergence in both processes. The only differences are in
the second and third steps.

In both algorithms, the second step (Expectation for E-M clustering,
Classification for k-means clustering) determines which observations
belong to which clusters. The difference is in the way we determine which
observations belong to which cluster. For E-M clustering, we determine an
observation’s cluster based on comparing the heights of bell curves, as
illustrated in Figure 7-6. With k-means clustering, we determine an
observation’s cluster more simply: by measuring the distance between the

observation and each cluster center, and finding which cluster center it’s
closest to. So, when we see a dice roll equal to 12, E-M clustering will tell
us that it was rolled by the 12-sided dice, because of the heights of bell
curves in Figure 7-6. However, k-means clustering will tell us that it was
rolled by the 6-sided dice, because 12 is closer to 7 (the mean roll of 6-
sided dice) than it is to 19 (the mean roll of our 12-sided dice).

The other difference between E-M clustering and k-means clustering is in
the third step (Maximization for E-M clustering and Adjustment for k-
means clustering). In E-M clustering, we need to calculate the means and
covariance matrices for every cluster. But in k-means clustering, we need to
calculate only the means of each cluster—we don’t use covariance
estimates at all in k-means clustering. You can see that E-M clustering and
k-means clustering both have the same general outline, and differ in only a
few particulars of the way classification and adjustment are performed.

Actually, we can easily implement k-means clustering in Python if we
import the right modules:

from sklearn.cluster import KMeans
kmeans = KMeans(init="random", n_clusters=3, n_init=10, max_i
ter=300, random_state=42)
kmeans.fit(allpoints)
newclass=[label+1 for label in kmeans.labels_]
makeplot(allpoints,newclass,kmeans.cluster_centers_)

Here, we import KMeans() from the same sklearn module we’ve used
before. Then, we create an object called kmeans; this is the object we can
use to do k-means clustering on our data. You can see that when we call the
KMeans() function, we need to specify a few important parameters,
including the number of clusters we’re looking for (n_clusters). After
we’ve created our kmeans object, we can call its fit() method to find the
clusters in our allpoints data (the same data we used before). When we
call the fit() method, this determines what cluster every point is in, and
we can access the classification of each cluster in the kmeans.labels_
object. We can also access the cluster centers in the
kmeans.cluster_centers_ object. Finally, we can call our makeplot()
function, to plot our data and the clusters we found using k-means. Figure 7
-14 has the result.

Figure 7-14: The result of k-means clustering

You can see in this plot that the results of k-means clustering are not very
different from the results of E-M clustering: we’ve identified the two dense
clusters at the top and right of the plot, and we’ve identified the looser
cluster in the rest of the plot. One difference is that the cluster boundaries
are not the same: in k-means clustering, the top and right clusters include
some observations that look more like members of the less dense cluster.
This is not a coincidence; k-means clustering is designed to find clusters
that are approximately the same sizes, and it doesn’t have the flexibility that
E-M clustering has to find different cluster sizes with different densities.

Many other clustering methods exist besides E-M and k-means, so many
that they are too numerous to write about in detail here. Every clustering
method is suited to a particular type of data and a particular application. For
example, one powerful yet underappreciated clustering method is called
density-based spatial clustering of applications with noise (DBSCAN).
Unlike E-M and k-means clustering, DBSCAN can detect clusters that have
unique, nonspherical, non-bell-like shapes, like the shapes shown in Figure
7-15.

Figure 7-15: The result of DBSCAN clustering, with nonspherical clusters

You can see two distinct groups, or clusters, of data. But since they swirl
around each other, using bell curves to classify them wouldn’t work well.
Bell curves can’t easily find the complex boundaries that these clusters
have. DBSCAN doesn’t rely on bell curves, but rather relies on careful
considerations of the distances between each of the points within and
between clusters.

Another important kind of clustering is called hierarchical clustering.
Instead of simply classifying observations into groups, hierarchical
clustering yields a nested hierarchy that shows groups of observations in
closely related, then successively more distant groups. Every type of
clustering has different assumptions and methods associated with it. But all
of them are accomplishing the same goal: classifying points into groups
without any labels or supervision.

Other Unsupervised Learning Methods
Clustering is the most popular application of unsupervised learning, but a
variety of algorithms besides clustering fall under the broad umbrella of
unsupervised learning. Several unsupervised learning methods accomplish
anomaly detection: finding observations that don’t fit with the general

pattern of a dataset. Some anomaly detection methods are broadly similar to
clustering methods, because they sometimes include identifying dense
groups of near neighbors (like clusters) and measuring distances between
observations and their closest clusters.

Another group of unsupervised learning methods are called latent
variable models. These models try to express the observations in a dataset
as a function of hypothetical hidden, or latent, variables. For example, a
dataset may consist of student scores in eight classes. We might have a
hypothesis that two main types of intelligence exist: analytic and creative.
We can check whether students’ scores in quantitative, analytic classes like
math and science tend to correlate, and whether students’ scores in more
creative classes like language and music tend to correlate. In other words,
we hypothesize that there are two hidden, or latent, variables that we
haven’t directly measured, analytic intelligence and creative intelligence,
and these two latent variables determine the values of all the variables we
do observe, all the students’ grades, to a large extent.

This isn’t the only possible hypothesis. We could also hypothesize that
student grades are determined by only one latent variable, general
intelligence, or we could hypothesize that student grades are determined by
three or any other number of latent variables that we could then try to
measure and analyze.

The E-M clustering we accomplished in this chapter can also be thought
of as a type of latent variable model. In the case of clustering dice rolls, the
latent variables we’re interested in finding are the mean and standard
deviations of the bell curves that indicate cluster locations and sizes. Many
of these latent variable models rely on linear algebra and matrix algebra, so
if you’re interested in unsupervised learning, you should study those topics
diligently.

Remember that all of these methods are unsupervised, meaning we have
no labels that we can rigorously test our hypotheses against. In the case of F
igure 7-13 and Figure 7-14, we can see that the cluster classifications we’ve
found look right and make sense in certain ways, but we can’t say with
certainty whether they’re correct. Nor can we say whether E-M clustering
(whose results are shown in Figure 7-13) or k-means clustering (whose
results are shown in Figure 7-14) is more correct than the other—because

there are no “ground truth” group labels that we can use to judge
correctness. This is why unsupervised learning methods are often used for
data exploration but aren’t often used to get final answers about predictions
or classifications.

Since it’s not possible to definitively say whether any unsupervised
learning method has delivered correct results, unsupervised learning
requires good judgment to do well. Instead of giving us final answers, it
tends to give us insight into data that in turn helps us get ideas for other
analyses, including supervised learning. But that doesn’t mean it’s not
worthwhile; unsupervised learning can provide invaluable insights and
ideas.

Summary
In this chapter, we covered unsupervised learning, with a focus on E-M
clustering. We discussed the concept of unsupervised learning, the details of
E-M clustering, and the differences between E-M clustering and other
clustering methods like k-means clustering. We finished with a discussion
of other unsupervised learning methods. In the next chapter, we’ll discuss
web scraping and how to get data quickly and easily from websites for
analysis and business applications.

8
WEB SCRAPING

You need data to do data science, and
when you don’t have a dataset on hand,
you can try web scraping, a set of
techniques for reading information
directly from public websites and

converting it to usable datasets. In this chapter, we’ll
cover some common web-scraping techniques.

We’ll start with the simplest possible kind of scraping: downloading a
web page’s code and looking for relevant text. We’ll then discuss regular
expressions, a set of methods for searching logically through text, and
Beautiful Soup, a free Python library that can help you parse websites more
easily by directly accessing HyperText Markup Language (HTML)
elements and attributes. We’ll explore tables and conclude by going over
some advanced topics related to scraping. Let’s start by looking at how
websites work.

Understanding How Websites Work
Suppose you want to see the website of No Starch Press, the publisher of
this book. You open a browser like Mozilla Firefox, Google Chrome, or
Apple Safari. You enter the URL of No Starch’s home page, https://nostarc

https://nostarch.com/

h.com. Then your browser shows you the page, which, at the time of
writing, looks like Figure 8-1.

Figure 8-1: The home page of the publisher of this book, accessible at https://nostarch.com

You can see a lot on this page, including text, images, and links, all
arranged and formatted carefully so that the page is easy for humans to read
and understand. This careful formatting doesn’t happen by accident. Every
web page has source code that specifies the page’s text and images, as well
as its formatting and arrangement. When you visit a website, you see a
browser’s interpretation of this code.

If you’re interested in seeing the actual code of a website, rather than the
browser’s visual interpretation of it, you can use special commands. In
Chrome and Firefox, you can see the source code for https://nostarch.com
by opening the page, right-clicking (in Windows, or CTRL+clicking in
macOS) on blank space on the page, and then clicking View Page Source.
When you do that, you’ll see a tab that looks like Figure 8-2.

https://nostarch.com/
https://nostarch.com/
https://nostarch.com/

Figure 8-2: The HTML source code of the No Starch Press home page

This tab contains the code that specifies all the content on the No Starch
Press home page. It’s in the form of raw text, without the visual
interpretation that browsers usually provide. Code for web pages is usually
written in the HTML and JavaScript languages.

In this chapter, we’re interested in this raw data. We’re going to write
Python scripts that automatically scan through HTML code, like the code
shown in Figure 8-2, to find useful information that can be used for data
science projects.

Creating Your First Web Scraper
Let’s start with the simplest possible scraper. This scraper will take a URL,
get the source code of the page associated with that URL, and print out the
first part of the source code it got:

import requests
urltoget = 'https://bradfordtuckfield.com/indexarchive2021090

3.xhtml'
pagecode = requests.get(urltoget)
print(pagecode.text[0:600])

This snippet starts by importing the requests package, which we used in
Chapter 7; here we’ll use it to get a page’s source code. Next, we specify
the urltoget variable, which will be the URL of the web page whose code
we want to request. In this case, we’re requesting an archived page from my
personal website. Finally, we use the requests.get() method to get the
code of our web page. We store this code in the pagecode variable.

The pagecode variable has a text attribute that contains all of the web
page’s code. If you run print(pagecode.text), you should be able to see
all the HTML code of the page, stored as one long text string. Some pages
have a huge amount of code, so printing out all the code at once may be
unwieldy. If so, you can specify that you want to print only part of the code.
That’s why we specify that we want only the first 600 characters of the
page’s code by running print(pagecode.text[0:600]) in the preceding
snippet.

The output looks like this:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "htt
p://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en-US" l
ang="en-US">
 <head><meta http-equiv="Content-Type" content="text/html; c
harset=utf-8">

 <title>Bradford Tuckfield</title>
 <meta name="description" content="Bradford Tuckfield" />
 <meta name="keywords" content="Bradford Tuckfield" />
 <meta name="google-site-verification" content="eNw-LEFxVf
71e-ZlYnv5tGSxTZ7V32coMCV9bxS3MGY" />
<link rel="stylesheet" type="text/css" href=

This output is HTML, which consists largely of elements that are marked
with angle brackets (< and >). Each element gives a browser like Firefox or
Chrome information about how to display the website to visitors. For
example, you can see a <title> tag in the output; also called a start tag,
this marks the beginning of the title element. At the end of the seventh line,

</title> is another tag, this time called an end tag, which marks the end of
the title element. The actual title of the site is the text that appears between
the beginning and ending tags; in this case, it’s Bradford Tuckfield. When
a browser visits the site, it will interpret the meaning of the start and end
tags of the title element and then display the title text Bradford Tuckfield
at the top of the browser tab. This isn’t an HTML book, so we’re not going
to go over every detail of the code we see here. We can be successful at
scraping even without deep HTML expertise.

Now that we’ve scraped a web page, you may feel like you have all the
scraping skills you need. However, you have much more to learn. Most web
pages have a great deal of HTML code and content, but a data scientist
rarely needs a web page’s entire source code. In business scenarios, you’ll
more likely need only one specific piece of information or data on a web
page. To find the specific information you need, it will be useful to be able
to quickly and automatically search through long strings of HTML code. In
other words, you will need to parse the HTML code. Let’s look at how to
do this.

AN IMPORTANT WARNING ABOUT SCRAPING

Be careful when you do web scraping! Many websites consider their data to be an
important asset, and their terms of use explicitly forbid automated web scraping of any
kind. Some prominent websites have taken legal action against people and
organizations that have attempted to scrape their data. It’s a relatively new area of the
law, and many active debates are ongoing about what scrapers should and shouldn’t
be allowed to do. Judges and legal systems around the world are still trying to settle
how scraping should be treated. Regardless, it’s important to be careful when you
attempt scraping.

First, look at a website’s terms of use before you set up a scraper. Second, consider
whether the website has an application programming interface (API): some websites
don’t mind sharing their data, but want you to download it in the way that they’ve
specified and in a way that they’re comfortable with. Third, make sure you don’t
overwhelm websites with traffic, because serious scrapers have caused websites to
crash. You need to be careful when you do scraping to avoid these problems and
liabilities. In this chapter, we’ll scrape my personal web pages; I’m happy to allow
gentle scraping of my site (https://bradfordtuckfield.com) using the methods outlined in
this chapter.

https://bradfordtuckfield.com/

Parsing HTML Code
In the previous section, we went over how to download any public web
page’s code to a Python session. Now let’s talk about how to parse the
downloaded code to get the exact data you need.

Scraping an Email Address
Suppose you’re interested in automatically harvesting email addresses to
create a marketing list. You might use the scraper we introduced previously
to download the source code for many web pages. But you won’t need all
the information in the long strings that represent the full code for each page.
Instead, you will want only the small substrings that represent the email
addresses that appear on the pages you scraped. So you will want to search
through each page you scrape to find these smaller substrings.

Suppose that one of the pages whose code you’ve downloaded is https://b
radfordtuckfield.com/contactscrape.xhtml. If you visit this web page, you’ll
see that a browser displays its content, as in Figure 8-3.

Figure 8-3: The content of a demo page that can be scraped easily

This page displays only one email address, which is not hard to find after
glancing at the page content for a moment. If we want to write a script that
finds the email address on pages that are formatted like this one, we could
search for the text Email: and look at the characters immediately following
that text. Let’s do this, with a simple text search through the page’s code:

urltoget = 'https://bradfordtuckfield.com/contactscrape.xhtm
l'
pagecode = requests.get(urltoget)

https://bradfordtuckfield.com/contactscrape.xhtml

mail_beginning=pagecode.text.find('Email:')
print(mail_beginning)

The first two lines of this snippet follow the same scraping process used
in the previous section: we specify a URL, download the page code for that
URL, and store the code in the pagecode variable. After that, we use
find() to search for the email text. This method takes a string of text as its
input and returns the location of that text as its output. In this case, we use
the Email: string as the input to the find() method, and we store the
location of this text in the mail_beginning variable. The final output is 511,
indicating that the text Email: begins at the 511th character in the page’s
code.

After we know the location of the Email: text, we can try to get the
actual email address by looking at characters just after that text:

print(pagecode.text[(mail_beginning):(mail_beginning+80)])

Here, we print out the 80 characters that immediately follow the
beginning of the Email: text (which starts at the 511th character). The
output looks like this:

Email: <label class="email" href="#">demo@bradfordtuckfield.
com</label>
</div>

You can see that the code contains more than just the text visible in Figur
e 8-3. In particular, an HTML element called label appears between the
Email: text and the actual email address. If you want the email address
alone, you have to skip the characters associated with the <label> tag, and
you also have to remove the characters that appear after the email address:

print(pagecode.text[(mail_beginning+38):(mail_beginning+64)])

This snippet will print out demo@bradfordtuckfield.com, exactly the
text we wanted to find on the page, since it skips the 38 characters of the
Email: text and the <label> tag, and it trims off the final characters after
the email address, which ends at 64 characters after the Email: text.

Searching for Addresses Directly
We were able to find the email address in the page’s HTML code by
looking for the 38th through 64th characters after the Email: text. The
problem with this approach is that it’s not likely to work automatically
when we try it on a different web page. If other pages don’t have the same
<label> tag we found, looking at the 38th character after Email: won’t
work. Or if the email address has a different length, stopping our search at
the 64th character after Email: won’t work. Since scraping is usually
supposed to be performed on many websites in rapid, automatic succession,
it probably won’t be feasible to manually check for which characters we
should look at instead of the 38th and 64th characters. So this technique
probably won’t work for a scraper in an actual business scenario.

Instead of searching for the text Email: and looking at the following
characters, we could try searching for the at sign (@) itself. Every email
address should contain an @, so if we find this, we’re likely to have found an
email address. There won’t be any HTML tags in the middle of an email
address, so we won’t have to worry about skipping HTML tags to find the
address. We can search for the @ in the same way we searched for the
Email: text:

urltoget = 'https://bradfordtuckfield.com/contactscrape.xhtm
l'
pagecode = requests.get(urltoget)

at_beginning=pagecode.text.find('@')
print(at_beginning)

This is the same scraping code we used before. The only difference is
that we are searching for @ instead of Email:. The final output shows that @
appears as the 553rd character in the code. We can print out the characters
immediately before and after the @ to get the email address itself:

print(pagecode.text[(at_beginning-4):(at_beginning+22)])

There were no HTML tags to skip over. But we still have a problem: to
get the email address without other extra characters, we have to know the
number of characters before and after the @ (4 and 22, respectively). Again,

this wouldn’t work if we tried to repeat it to automatically scrape multiple
email addresses from many websites.

Our searches would be more successful and easier to automate if we had
a way to do intelligent searches. For example, imagine that we could search
for text that matches the following pattern:

<characters matching the beginning of an email address>

@

<characters matching the end of an email address>

In fact, there is a way to perform automated searches through text in a
way that can recognize patterns like the one described here. We’ll introduce
this approach now.

Performing Searches with Regular
Expressions
Regular expressions are special strings that enable advanced, flexible,
custom searches of patterns in text. In Python, we can do regular expression
searches by using the re module, which is part of the Python standard
library that comes preinstalled with Python. The following is an example of
a regular expression search that uses the re module:

import re

print(re.search(r'recommend','irrelevant text I recommend irr
elevant text').span())

In this snippet, we import the re module. As its abbreviation indicates,
this module is used for regular expressions. This module provides a
search() method that can be used to search for text in any string. In this
case, we specify two arguments: the string recommend and a string of text
that contains the word recommend. We’re asking the method to search for
the substring recommend within the larger string that also has some
irrelevant text. Note that we add a single r character before the recommend

string. This r tells Python to treat the recommend string as a raw string,
meaning that Python won’t process or adjust it before using it in a search.
The span() method will give us the beginning and end locations of this
substring.

The output, (18,27), indicates that recommend exists in the second string,
starting at index 18 in the string and ending at index 27. This search()
method is similar to the find() method that we used in the previous
section; both are finding the locations of substrings within longer strings.

But suppose you are searching a web page written by someone who has a
tendency to misspell words. By default, the re.search() method looks for
exact matches, so if you’re searching a web page that contains recommend
spelled incorrectly, you won’t find any matches. In this case, we may want
to ask Python to look for recommend, but to look for different spellings of it.
The following is one way to accomplish this with regular expressions:

import re
print(re.search('rec+om+end', 'irrelevant text I recommend ir
relevant text').span())

Here, we change the argument of our code: instead of searching for
recommend spelled correctly, we search for rec+om+end. This works because
the re module interprets the plus sign (+) as a metacharacter. When this
special type of character is used in a search, it has a special logical
interpretation that can help you do flexible searches instead of requiring
exact matches. The + metacharacter indicates repetition: it specifies that
Python should search for one or more repetitions of the preceding character.
So when we write c+, Python knows that it should search for one or more
repetitions of the letter c, and when we write m+, Python knows that it
should search for one or more repetitions of the letter m.

A string that uses a metacharacter like + with a special, logical meaning
is called a regular expression. Regular expressions are used in every major
programming language and are extremely important in all code applications
that deal with text.

You should try to experiment with the + metacharacter to get more
comfortable with the way it works. For example, you could try to search for
various misspellings of recommend as follows:

import re
print(re.search('rec+om+end','irrelevant text I recomend irre
levant text').span())
print(re.search('rec+om+end','irrelevant text I reccommend ir
relevant text').span())
print(re.search('rec+om+end','irrelevant text I reommend irre
levant text').span())
print(re.search('rec+om+end','irrelevant text I recomment irr
elevant text').span())

This snippet contains four regular expression searches. The output of the
first search is (18,26), indicating that the misspelled word recomend
matches the regular expression rec+om+end that we searched for.
Remember that the + metacharacter searches for one or more repetitions of
the preceding character, so it will match the single c and single m in the
misspelled recomend. The output of the second search is (18,28),
indicating that the misspelling reccommend also matches the regular
expression rec+om+end, again because the + metacharacter specifies one or
more repetitions of a character, and c and m are both repeated twice here. In
this case, our regular expression using + has provided flexibility to our
search so it can match multiple alternative spellings of a word.

But the flexibility of regular expressions is not absolute. Our third and
fourth searches return errors when you run them in Python, because the
regular expression rec+om+end doesn’t match any part of the specified
strings (reommend and recomment). The third search doesn’t return any
matches because c+ specifies one or more repetitions of c, and there are
zero repetitions of c in reommend. The fourth search doesn’t return any
matches because, even though the number of c and m characters is correct,
searching for rec+om+end requires a d character at the end, and recomment
doesn’t have a match for the d. When you use regular expressions, you need
to be careful to make sure that they’re expressing precisely what you want,
with the exact amount of flexibility you want.

Using Metacharacters for Flexible Searches
In addition to +, several other important metacharacters can be used in
Python regular expressions. Several metacharacters, like +, are used to
specify repetitions. For example, the asterisk (*) specifies that the preceding
character is repeated zero or more times. Notice that this is different from +,

which represents a character repeated one or more times. We can use * in a
regular expression as follows:

re.search('10*','My bank balance is 100').span()

This regular expression would find the location of a bank balance in a
string that specifies 1, 10, 100, 1,000, or indeed any number of 0s (even
zero 0s). Here are examples of using * as a metacharacter:

import re
print(re.search('10*','My bank balance is 1').span())
print(re.search('10*','My bank balance is 1000').span())
print(re.search('10*','My bank balance is 9000').span())
print(re.search('10*','My bank balance is 1000000').span())

In this snippet, we again perform searches for the regular expression 10*
in four strings. We find matches for the first, second, and fourth strings,
because, though all specify different amounts of money, each contains the
character 1 followed by zero or more repetitions of the character 0. The
third string also contains repetitions of the 0 character, but no match occurs
because the string doesn’t contain a 1 character adjacent to the 0s.

In practice, having characters in plaintext that repeat more than twice is
uncommon, so the * may not always be useful to you. If you don’t want to
allow more than one repetition of a character, the question mark (?) is
useful as a metacharacter. The ?, when used as a metacharacter, specifies
that the preceding character appears either zero or one times:

print(re.search('Clarke?','Please refer questions to Mr. Clar
k').span())

In this case, we use the ? because we want to search for either Clark or
Clarke, but not for Clarkee or Clarkeee or Clark with more e’s.

Fine-Tuning Searches with Escape Sequences
Metacharacters enable you to perform useful, flexible text searches,
allowing for many spellings and formats. However, they can also lead to
confusion. For example, suppose that you want to search some text for a

particular math equation, like 99 + 12 = 111. You could try to search for it
as follows:

re.search('99+12=111','Example addition: 99+12=111').span()

When you run this code, you’ll get an error, because Python doesn’t find
any matches for the search string. This may surprise you, since it’s easy to
see an exact match for the equation we specified in the string we searched.
This search returns no results because the default interpretation of + is as a
metacharacter, not a literal addition sign. Remember that + specifies that the
preceding character is repeated one or more times. We would find a match
if we did a search like this one:

re.search('99+12=111','Incorrect fact: 999912=111').span()

In this case, Python finds an exact match by interpreting the + sign as a
metacharacter, since 9 is repeated in the string on the right. If you want to
search for an actual addition sign rather than using + as a metacharacter,
you need to use yet another metacharacter to specify this preference. You
can do it as follows:

re.search('99\+12=111','Example addition: 99+12=111').span()

Here, we use the backslash (\) as a special metacharacter. The \ is called
an escape character. It allows the + addition sign to “escape” from its
metacharacter status and be interpreted literally instead. We call the \+
string an escape sequence. In the preceding snippet, we find a match for our
math equation because we escape the + addition sign, so Python looks for a
literal addition sign instead of interpreting + as a metacharacter and looking
for repetitions of the 9 character.

You can do a literal search for any metacharacter by using an escape
sequence. For example, imagine that you want to look for a question mark,
instead of doing a search with a question mark as a metacharacter. You
could do the following:

re.search('Clarke\?','Is anyone here named Clarke?').span()

This finds a match for Clarke?, but it won’t find a match for Clark?
Because we escape the question mark, Python searches for a literal question
mark instead of interpreting it as a metacharacter.

If you ever need to search for a backslash, you’ll need two backslashes—
one to escape from metacharacter interpretation and another to tell Python
which literal character to search for:

re.search(r'\\',r'The escape character is \\').span()

In this snippet, we use the r character again to specify that we want to
interpret the strings as raw text and to make sure Python doesn’t do any
adjustment or processing before our search. Escape sequences are common
and useful in regular expressions. Some escape sequences give special
meaning to standard characters (not metacharacters). For example, \d will
search for any digit (numbers 0 to 9) in a string, as follows:

re.search('\d','The loneliest number is 1').span()

This snippet finds the location of the character 1 because the \d escape
sequence refers to any digit. The following are other useful escape
sequences using non-metacharacters:

\D Searches for anything that’s not a digit
\s Searches for whitespace (spaces, tabs, and newlines)
\w Searches for any alphabetic characters (letters, numbers, or
underscores)
Other important metacharacters are the square brackets [and]. These

can be used as a pair in regular expressions to represent types of characters.
For example, we can look for any lowercase alphabetic character as
follows:

re.search('[a-z]','My Twitter is @fake; my email is abc@def.c
om').span()

This snippet is specifying that we want to find any characters that are in
the “class” of characters between a and z. This returns the output (1,2),
which consists of only the character y, since this is the first lowercase

character in the string. We could search for any uppercase characters
similarly:

re.search('[A-Z]','My Twitter is @fake; my email is abc@def.c
om').span()

This search outputs (0,1), because the first uppercase character it finds
is the M at the beginning of the string.

Another important metacharacter is the pipe (|), which can be used as an
or logical expression. This can be especially useful if you’re not sure which
of two ways is the correct way to spell something. For example:

re.search('Manchac[a|k]','Lets drive on Manchaca.').span()

Here, we specify that we want the string Manchac with either an a or a k
at the end. It would also return a match if we searched Lets drive on
Manchack.

Combining Metacharacters for Advanced Searches
The following are other metacharacters you should know:

$ For the end of a line or string
^ For the beginning of a line or string
. For a wildcard, meaning any character except the end of a line (\n)
You can combine text and metacharacters for advanced searches. For

example, suppose you have a list of all the files on your computer. You
want to search through all the filenames to find a certain .pdf file. Maybe
you remember that the name of your .pdf has something to do with school,
but you can’t remember anything else about the name. You could use this
flexible search to find the file:

re.search('school.*\.pdf$','schoolforgottenname.pdf').span()

Let’s look at the regular expression in this snippet. It starts with school
since you remember that the filename contains that word. Then, it has two
metacharacters together: .*. The . is a wildcard metacharacter, and the *

refers to any amount of repetition. So, .* specifies any number of any other
characters coming after school. Next, we have an escaped period (full
stop): \., which refers to an actual period sign rather than a wildcard. Next,
we search for the string pdf, but only if it appears at the end of the filename
(specified by $). In summation, this regular expression specifies a filename
that starts with school, ends with .pdf, and may have any other characters
in between.

Let’s search different strings for this regular expression to make sure
you’re comfortable with the patterns it’s searching for:

import re
print(re.search('school.*\.pdf$','schoolforgottenname.pdf').s
pan())
print(re.search('school.*\.pdf$','school.pdf').span())
print(re.search('school.*\.pdf$','schoolothername.pdf').span
())
print(re.search('school.*\.pdf$','othername.pdf').span())
print(re.search('school.*\.pdf$','schoolothernamepdf').span
())
print(re.search('school.*\.pdf$','schoolforgottenname.pdf.ex
e').span())

Some of these searches will find matches, and some will throw errors
because they don’t find matches. Look closely at the searches that throw
errors to make sure you understand why they’re not finding matches. As
you get more comfortable with regular expressions and the metacharacters
they use, you’ll be able to quickly grasp the logic of any regular expression
you see instead of seeing it as a meaningless jumble of punctuation.

You can use regular expressions for many kinds of searches. For
example, you can specify a regular expression that searches for street
addresses, URLs, particular types of filenames, or email addresses. As long
as a logical pattern occurs in the text you’re searching for, you can specify
that pattern in a regular expression.

To learn more about regular expressions, you can check out the official
Python documentation at https://docs.python.org/3/howto/regex.xhtml. But
really, the best way to get comfortable with regular expressions is to simply
practice them on your own.

https://docs.python.org/3/howto/regex.xhtml

Using Regular Expressions to Search for
Email Addresses
Regular expressions enable you to search flexibly and intelligently for
many types of patterns. Let’s return to our initial example of searching for
email addresses and see how we can use regular expressions there.
Remember that we want to search for text that matches the following
pattern:

<some text>@<some more text>

Here’s a regular expression that will accomplish this search:

re.search('[a-zA-Z]+@[a-zA-Z]+\.[a-zA-Z]+',\
'My Twitter is @fake; my email is abc@def.com').span()

Let’s look closely at the elements of this snippet:

. It starts with [a-zA-Z]. This includes the square bracket metacharacters,
which specify a class of characters. In this case, it will look for the
characters represented by a-zA-Z, which refers to any lowercase or
uppercase alphabetic character.

. The [a-zA-Z] is followed by +, specifying one or more instances of any
alphabetic character.

. The @ is next. This is not a metacharacter but rather searches for the literal
at sign (@).

. Next, we have [a-zA-Z]+ again, specifying that after the @, any number of
alphabetic characters should appear. This should be the first part of an email
domain, like the protonmail in protonmail.com.

. The \. specifies a period or full-stop character, to search for this character
in .com or .org or any other top-level domain.

. Finally, we have [a-zA-Z]+ again, specifying that some alphabetic
characters should come after the full stop. This is the com in .com or the org
in .org addresses.

Together, these six elements specify the general pattern of an email
address. If you weren’t familiar with regular expressions, it would be
strange to think that [a-zA-Z]+@[a-zA-Z]+\.[a-zA-Z]+ is specifying an
email address. But because of Python’s ability to interpret metacharacters in
regular expressions, Python has been able to interpret this search and return
email addresses. Just as important, you have learned regular expressions
and understand what this regular expression means too.

One important thing to remember is that there are many email addresses
in the world. The regular expression in the preceding snippet will identify
many email addresses, but not every possible one. For example, some
domain names use characters that aren’t part of the standard Roman
alphabet used for the English language. The preceding regular expression
wouldn’t capture those email addresses. Also, email addresses can include
numerals, and our regular expression wouldn’t match those either. A regular
expression that could reliably capture every possible combination of
characters in every possible email address would be extremely complex,
and going to that level of complexity is beyond the scope of this book. If
you’re interested in advanced regular expressions, you can look at a regular
expression written by a professional that is meant to find email addresses at
https://web.archive.org/web/20220721014244/https://emailregex.com/.

Converting Results to Usable Data
Remember that we’re data scientists, not only web scrapers. After scraping
web pages, we’ll want to convert the results of our scraping to usable data.
We can do this by importing everything we scrape into a pandas dataframe.

Let’s scrape all of the (fake) email addresses listed in a paragraph at the
following URL: https://bradfordtuckfield.com/contactscrape2.xhtml. We
can start by reading all of the text from the site, as follows:

import requests
urltoget = 'https://bradfordtuckfield.com/contactscrape2.xhtm
l'
pagecode = requests.get(urltoget)

https://web.archive.org/web/20220721014244/https://emailregex.com/
https://bradfordtuckfield.com/contactscrape2.xhtml

This is the same code we used before: we simply download the HTML
code and store it in our pagecode variable. If you’d like, you can look at all
the code for this page by running print(pagecode.text).

Next, we can specify our regular expression to look for all email
addresses in the paragraph:

allmatches=re.finditer('[a-zA-Z]+@[a-zA-Z]+\.[a-zA-Z]+',pagec
ode.text)

Here, we use the same characters for our regular expression. But we’re
using a new method: re.finditer() instead of re.search(). We do this
because re.finditer() is able to obtain multiple matches, and we need to
do this to get all of the email addresses. (By default, re.search() finds
only the first match of any string or regular expression.)

Next, we need to compile these email addresses together:

alladdresses = []
for match in allmatches:
 alladdresses.append(match[0])

print(alladdresses)

We start with an empty list called alladdresses. Then we append each
element of our allmatches object to the list. Finally, we print out the list.

We can also convert our list to a pandas dataframe:

import pandas as pd
alladdpd=pd.DataFrame(alladdresses)
print(alladdpd)

Now that our addresses are in a pandas dataframe, we can use the huge
number of methods provided by the pandas library to do anything that we
may have done with any other pandas dataframe. For example, we can put it
in reverse alphabetical order if that’s useful to us, and then export it to a .csv
file:

alladdpd=alladdpd.sort_values(0,ascending=False)
alladdpd.to_csv('alladdpd20220720.csv')

Let’s think about what we did so far. Starting with only a URL, we
downloaded the full HTML code of the web page specified by the URL. We
used a regular expression to find all emails listed on the page. We compiled
the emails into a pandas dataframe, which can then be exported to a .csv or
Excel file or otherwise transformed as we see fit.

Downloading HTML code and specifying regular expressions to search
for certain information, as we have done, is a reasonable way to accomplish
any scraping task. However, in some cases, it may be difficult or
inconvenient to write a complex regular expression for a difficult-to-match
pattern. In these cases, you can use other libraries that include advanced
HTML parsing and scraping capabilities without requiring you to write any
regular expressions. One such library is called Beautiful Soup.

Using Beautiful Soup
The Beautiful Soup library allows us to search for the contents of particular
HTML elements without writing any regular expressions. For example,
imagine that you want to collect all the hyperlinks in a page. HTML code
uses an anchor element to specify hyperlinks. This special element is
specified with a simple <a> start tag. The following is an example of what
an anchor element might look like in the HTML code for a web page:

Click here

This snippet specifies the text Click here. When users click this text on
an HTML web page, their browsers will navigate to https://bradfordtuckfiel
d.com. The HTML element starts with an <a>, which indicates that it’s an
anchor, or hyperlink, to a web page or file. Then it has an attribute called
href. In HTML code, an attribute is a variable that provides more
information about elements. In this case, the href attribute contains the
URL that a hyperlink should “point” to: when someone clicks the Click
here text, their browser navigates to the URL contained in the href
attribute. After the href attribute, there’s an angle bracket, then the text that
appears on the page. A final indicates the end of the hyperlink
element.

https://bradfordtuckfield.com/

We could find all the anchor elements in a web page’s code by doing a
regular expression search for the <a> pattern or by specifying a regular
expression to find URLs themselves. However, the Beautiful Soup module
enables us to find the anchor elements more easily without worrying about
regular expressions. We can find all the URLs that are linked from a
website as follows:

import requests
from bs4 import BeautifulSoup

URL = 'https://bradfordtuckfield.com/indexarchive20210903.xht
ml'
response = requests.get(URL)
soup = BeautifulSoup(response.text, 'lxml')

all_urls = soup.find_all('a')
for each in all_urls:
 print(each['href'])

Here, we import the requests and BeautifulSoup modules. Just like
every other third-party Python package, you will need to install
BeautifulSoup before using it in a script. The BeautifulSoup module is
part of a package called bs4. The bs4 package has what are called
dependencies: other packages that need to be installed for bs4 to work
correctly. One of its dependencies is a package called lxml. You will need to
install lxml before you can use bs4 and BeautifulSoup. After importing the
modules we need, we use the requests.get() method to download a web
page’s code, just as we’ve done previously in the chapter. But then we use
the BeautifulSoup() method to parse the code and store the result in a
variable called soup.

Having the soup variable enables us to use particular methods from
Beautiful Soup. In particular, we can use the find_all() method to look for
particular types of elements in the web page code. In this case, we search
for all anchor elements, which are identified by the character a. After
getting all the anchor elements, we print out the value of their href
attributes—the URLs of the pages or files they’re linking to. You can see
that with Beautiful Soup, we can do useful parsing with only a few lines of
code, all without using complicated regular expressions.

Parsing HTML Label Elements
The anchor element is not the only type of element in HTML code. We saw
the <title> element earlier in the chapter. Sometimes web pages also use
the <label> element to put labels on text or content on their page. For
example, imagine that you want to scrape contact information from the htt
p://bradfordtuckfield.com/contactscrape.xhtml web page that we saw
earlier. We’ve reproduced Figure 8-3 as Figure 8-4 here.

Figure 8-4: The content of a demo page that can be scraped easily

You may be doing a project to search web pages for email addresses,
phone numbers, or websites. Again, you could try to use regular
expressions to search for these items. But the phone numbers and email
addresses on this page are labeled with an HTML <label> element, so
Beautiful Soup makes it easier to get the information we need. First, let’s
look at how this <label> element is used in the HTML code for this web
page. Here’s a small sample of this page’s code:

<div class="find-widget">
 Email: <label class="email" href="#">demo@bradfordtuckfi
eld.com</label>
</div>

As you saw earlier in the chapter, the <label> tag is used to indicate that
a part of the HTML code is of a particular type. In this case, the class
attribute identifies that this is a label for an email address. If the web page
you’re scraping has these <label> elements, you can search for email
addresses, phone numbers, and websites as follows:

import requests
from bs4 import BeautifulSoup

http://bradfordtuckfield.com/contactscrape.xhtml

URL = 'https://bradfordtuckfield.com/contactscrape.xhtml'
response = requests.get(URL)
soup = BeautifulSoup(response.text, 'lxml')

email = soup.find('label',{'class':'email'}).text
mobile = soup.find('label',{'class':'mobile'}).text
website = soup.find('a',{'class':'website'}).text

print("Email : {}".format(email))
print("Mobile : {}".format(mobile))
print("Website : {}".format(website))

Here, we use the soup.find() method again. But instead of finding only
elements labeled with a, as we did when we searched for hyperlinks, this
time we also search for elements with the <label> tag. Each <label> tag in
the code specifies a different class. We find the text with each kind of label
(for email and mobile) and print out the text. For the website link, we
search for an anchor tag with the website class. The final result is that
we’ve been able to find every type of data we wanted: an email address, a
cell phone number, and a website.

Scraping and Parsing HTML Tables
Tables are common on websites, so it’s worth knowing a little about how to
scrape data from website tables. You can see a simple example of an HTML
table if you visit https://bradfordtuckfield.com/user_detailsscrape.xhtml.
This web page contains a table with information about several fictional
people, shown in Figure 8-5.

https://bradfordtuckfield.com/user_detailsscrape.xhtml

Figure 8-5: A table that can be scraped using Beautiful Soup

Say we want to scrape information about these people from this table.
Let’s look at the HTML code that specifies this table:

<table style="width:100%">
 <tr class="user-details-header">
 <th>Firstname</th>
 <th>Lastname</th>
 <th>Age</th>
 </tr>
 <tr class="user-details">
 <td>Jill</td>
 <td>Smith</td>
 <td>50</td>
 </tr>
 <tr class="user-details">
 <td>Eve</td>
 <td>Jackson</td>
 <td>44</td>
 </tr>
 <tr class="user-details">
 <td>John</td>
 <td>Jackson</td>
 <td>24</td>
 </tr>
 <tr class="user-details">

 <td>Kevin</td>
 <td>Snow</td>
 <td>34</td>
 </tr>
</table>

The <table> tag specifies the beginning of the table, and </table>
specifies the end of it. Between the beginning and the end are some <tr>
and </tr> tags. Each <tr> tag specifies the beginning of a table row (tr is
an abbreviation for table row). Within each table row, the <td> tags specify
the content of particular table cells (td is short for table data). You can see
that the first row is the header of the table, and it contains the names of
every column. After the first row, each subsequent row specifies
information about one person: their first name first, their surname second,
and their age third, in three different <td> elements.

We can parse the table as follows:

import requests
from bs4 import BeautifulSoup

URL = 'https://bradfordtuckfield.com/user_detailsscrape.xhtm
l'
response = requests.get(URL)
soup = BeautifulSoup(response.text, 'lxml')

all_user_entries = soup.find_all('tr',{'class':'user-detail
s'})
for each_user in all_user_entries:
 user = each_user.find_all("td")
 print("User Firstname : {}, Lastname : {}, Age: {}"\
.format(user[0].text, user[1].text, user[2].text))

Here, we use Beautiful Soup again. We create a soup variable that
contains the parsed version of the website. Then we use the find_all()
method to find every tr element (table row) on the page. For every table
row, we use find_all() again to look for every td element (table data) in
the row. After finding the contents of each row, we print them out, with
formatting to label first names, last names, and ages. In addition to printing
these elements, you could also consider adding them to a pandas dataframe
to more easily export them, sort them, or do any other analysis you prefer.

Advanced Scraping
Scraping is a deep topic, and there is more to learn beyond the material
covered in this chapter. You could start with a few areas outlined in this
section.

First, consider that some web pages are dynamic; they change depending
on interaction from the user, such as clicking elements or scrolling. Often
the dynamic parts of web pages are rendered using JavaScript, a language
with syntax that’s very different from the HTML we’ve focused on scraping
in this chapter. The requests package that we used to download HTML
code, and the Beautiful Soup module that we used to parse the code, are
meant to be used with static web pages. With dynamic web pages, you may
want to use another tool such as the Selenium library, which is designed for
scraping dynamic web pages. With Selenium, your script can do things like
enter information into website forms and click CAPTCHA-type challenges
without requiring direct human input.

You should also consider strategies to deal with being blocked. Many
websites are hostile to all attempts to scrape their data. They have strategies
to block scrapers, and if they detect that you’re trying to scrape and harvest
their information, they may try to block you. One response to being blocked
is to give up; this will avoid any legal problems or ethical issues that may
come with scraping hostile websites.

If you decide to scrape sites that are trying to block you anyway, you can
take some actions to avoid being blocked. One is to set up one or more
proxy servers. A website might block your IP address from accessing its
data, so you can set up a different server with a different IP address that the
website hasn’t blocked. If the website continues to try to block the IP
address of your proxy server as well, you can set up rotating proxies so that
you continuously get new IP addresses that are not blocked, and scrape only
with those fresh, unblocked IP addresses.

When you take this kind of approach, you should consider its ethical
implications: Do you feel comfortable using strategies like these to access a
site that doesn’t want you to access it? Remember that in rare cases,
unauthorized scraping can lead to lawsuits or even criminal prosecution.

You should always be cautious and ensure that you’ve thought through the
practical and ethical implications of everything you do.

Not all websites are averse to letting people access and scrape their data.
Some websites allow scraping, and some even set up an application
programming interface (API) to facilitate data access. An API allows you to
query a website’s data automatically and receive data that’s in a user-
friendly format. If you ever need to scrape a website, check whether it has
an API that you can access. If a website has an API, the API documentation
should indicate the data that the API provides and how you can access it.
Many of the tools and ideas we’ve discussed in this chapter also apply to
API usage. For example, the requests package can be used to interact with
APIs, and after getting API data, the data can be used to populate a pandas
dataframe.

Finally, timing is an important issue to consider when you set up scraping
scripts. Sometimes a scraping script makes many requests to a website in
quick succession, trying to download as much data as possible, as quickly
as possible. This could cause a website to be overwhelmed and crash, or it
may block the scraper to avoid getting overwhelmed. To prevent the target
site from crashing or blocking you, you can adjust your scraper so that it
works more slowly. One way to slow down your script is to deliberately add
pauses. For example, after downloading one row from a table, the script can
pause and do nothing (the script can sleep) for 1 second or 2 seconds or 10
seconds, and then download the next row from the table. Going slowly on
purpose can be frustrating for those of us who like to get things done
quickly, but it can often make scraping success more likely over the long
term.

Summary
In this chapter, we covered web scraping. We outlined the concept of
scraping, including a brief introduction to how HTML code works. We
went on to build a simple scraper, one that merely downloads and prints out
the code for a web page. We also searched through and parsed a website’s
code, including using regular expressions for advanced searches. We
showed how to convert the data we scrape from websites to usable datasets.
We also used Python’s Beautiful Soup to easily find hyperlinks and tagged

information on web pages. Finally, we briefly discussed some advanced
applications of scraping skills, including API integrations and scraping
dynamic websites. In the next chapter, we’ll be going over recommendation
systems. Let’s continue!

9
RECOMMENDATION SYSTEMS

Every talented salesperson knows how
to make intelligent, targeted
recommendations to customers, and as
online retailers have grown in size and
sophistication, they have

enthusiastically automated this sales tactic. But these
recommendations are hard to make. For this reason,
many businesses create automated recommendation
systems that analyze data about products and
customers to determine which customers would be
most receptive to which products.

In this chapter, we’ll go over recommendation systems in detail. We’ll
start with the simplest possible recommendation system: one that merely
recommends the most popular items to every customer. We’ll go on to
discuss an important technique called collaborative filtering that enables us
to make unique, personalized recommendations for each customer and each
product. We’ll go over two types of collaborative filtering: item based and
user based. We’ll conclude with a case study and advanced ideas related to
recommendation systems.

Popularity-Based Recommendations
Before we write code for recommendation systems, we should consider
how to make recommendations in general. Imagine that you’re a
salesperson and you want to make recommendations to a customer who
walks into your store. If you’re acquainted with the customer, you could
make recommendations based on your knowledge of the customer’s tastes
and situation. If a new customer walks into your store and you want to
make recommendations without knowing anything about the person, you
could observe what they’re browsing and make a recommendation based on
that. But it’s possible that you’ll be asked to make a recommendation before
they’ve browsed anything at all. The dilemma of needing to make
intelligent recommendations without any specific knowledge about the
customer is referred to as the cold-start problem.

One reasonable thing to do when faced with the cold-start problem is to
recommend the most popular items. Doing this is simple and easy. It
doesn’t have the sophistication of knowing everything about a customer and
making a personalized recommendation, but if something is popular with
the general public, it’s reasonable to think it could be appealing to your new
customer.

Online retailers have an analogous challenge: new visitors visit their
websites, and maybe those visitors don’t have browsing history or are
unfamiliar to the online retailers. The retailers want to make personalized
recommendations based on detailed knowledge about customers, but when
they face the cold-start problem, they have to fall back on something else
like general popularity. The cold-start problem is especially common for
online retailers, since it’s easy for prospective customers to view a website
anonymously without giving any personal information to the website or its
sales team.

Let’s think about the code that we would use to make a popularity-based
recommendation. For this, or any other recommendation system, having
data related to transaction history is helpful. We can download, read, and
look at some fabricated transaction history data as follows:

import pandas as pd
import numpy as np

interaction=pd.read_csv('https://bradfordtuckfield.com/purcha
sehistory1.csv')
interaction.set_index("Unnamed: 0", inplace = True)
print(interaction)

Here, we import the pandas package to do data wrangling. We read a .csv
file from the internet into the interaction variable, and we store it as a
pandas dataframe. We specify that the first column of the data should be the
index (the row name) and print the dataframe. The output we see at the end
is shown in Listing 9-1.

 Unnamed: 0 user1 user2 user3 user4 user5
0 item1 1 1 0 1 1
1 item2 1 0 1 1 0
2 item3 1 1 0 1 1
3 item4 1 0 1 0 1
4 item5 1 1 0 0 1

Listing 9-1: An interaction matrix, showing the history of purchases for
each item

Listing 9-1 shows a matrix representing the sales history of a retailer that
has five customers and five items for sale. Note we’re calling the customers
users, assuming that they’re users of the retailer’s website. But whatever we
call them, the recommendation techniques we use will be the same.
The matrix contains a 0 if a user did not purchase a particular item and a 1 if
a user did. For example, you can see that user2 purchased item3 but not
item2, and user3 purchased item2 but not item3. This type of 0/1 matrix is
a common format to encounter when we’re building recommendation
systems. We can call this matrix the interaction matrix; it represents
information about interactions between users and items. Since nearly every
company has records related to its items and their purchase histories,
building recommendation systems based on interaction matrices is an
extremely common practice.

Suppose that a new customer, whom we’ll call user6, walks into your
store (or visits your website). You face a cold start, since you know nothing
about user6. If you want to make recommendations for items that user6
can purchase, you could make a list of the most popular items, as follows:

interaction_withcounts=interaction.copy()
interaction_withcounts.loc[:,'counts']=interaction_withcount
s.sum(axis=1)
interaction_withcounts=interaction_withcounts.sort_values(by
='counts',ascending=False)
print(list(interaction_withcounts.index))

Here we create a copy of our interaction matrix called
interaction_withcounts. We’ll use this copy to find the most popular
items by counting the number of users who have ever purchased each item.
Note that our matrix doesn’t record whether a user purchased an item
multiple times or only once, so our analysis will look at only whether users
have purchased items at all; we won’t analyze how many times each user
purchased each item.

Since each row of our matrix records purchases of a unique item, we use
the sum() method to take the sum of purchases in each row and store the
result in a new column called counts. We then use the sort_values()
method, which sorts the rows of our matrix from the highest to lowest
purchase counts. By sorting from most to least purchased, it is ordering the
items by popularity. Finally, we print out the index of our sorted matrix,
which tells us the item names of all of our items, sorted from most to least
popular:

['item1', 'item3', 'item2', 'item4', 'item5']

We can interpret this to mean that item1 is the most popular item (in fact,
tied with item3), item2 is the third-most popular, and so on.

Now that you have this list, you’re ready to make recommendations to
unfamiliar customers. The way you present your recommendations will
depend on your business strategy, your web development team’s
capabilities, and your marketing team’s preferences. The data science
portion of a recommendation system project is to create the list of
prioritized recommendations and let marketers or web developers present
these to users. This is one reason that recommendation system projects can
be challenging: they require cooperation among several teams.

We can create a function that generates popularity-based
recommendations for any interaction matrix by putting together all of our

code so far:

def popularity_based(interaction):
 interaction_withcounts=interaction.copy()
 interaction_withcounts.loc[:,'counts']=interaction_withco
unts.sum(axis=1)
 sorted = interaction_withcounts.sort_values(by='counts',a
scending=False)
 most_popular=list(sorted.index)
 return(most_popular)

This function merely wraps up the capabilities we’ve written code for
previously in the chapter. It takes an interaction matrix as its input. It sums
up the counts of purchases for each item, sorts by number of purchases, and
returns a list of item names that is sorted from most to least popular. This
final sorted list can be used to make recommendations to customers, even if
you’re unfamiliar with the customers. You can call this function on your
interaction matrix by running print(popularity_based(interaction)) in
Python.

A popularity-based recommendation system is a simple, reasonable way
to solve the cold-start problem and make some kind of recommendation to
users. You can see popularity-based recommendations on many websites
today, where trending content is highlighted. You can also see popularity-
based recommendations in brick-and-mortar retailers, like bookstores that
prominently display bestsellers.

But popularity-based recommendations are not as effective as
personalized ones. Recommendation systems that can use detailed
information about people and items can be more successful than generic
popularity-based recommendation systems. Let’s take a look at one now.

Item-Based Collaborative Filtering
Suppose that you don’t face a completely cold start. Instead, you have just a
little information about a sixth customer: in particular, you know that
they’re interested in item1. This information is all you need to make
recommendations when using collaborative filtering.

Let’s look at our interaction matrix again to get some ideas for how we
should make recommendations to someone who’s interested in item1:

 Unnamed: 0 user1 user2 user3 user4 user5
0 item1 1 1 0 1 1
1 item2 1 0 1 1 0
2 item3 1 1 0 1 1
3 item4 1 0 1 0 1
4 item5 1 1 0 0 1

If we look at the first row of our interaction matrix, we can see the full
history of customer interactions with item1. This item was purchased by
user1, user2, user4, and user5, and it was not purchased by user3. If we
look at item3, we can see that it has exactly the same purchase history as
item1. They could be similar items, like two James Bond movies, or they
could be complementary, like peanut butter and jelly. Regardless, if two
items were purchased together in the past, they’re likely to be purchased
together in the future.

By contrast, look at the purchase histories of item1 and item2; they have
less overlap in customers. These items do not have highly similar purchase
histories. Since they haven’t been purchased together often in the past, they
won’t likely be purchased together often in the future. One way to make
intelligent recommendations is by using this idea: if a user is interested in
an item, recommend to that customer other items whose purchase histories
have the most in common with the item they’re interested in. This method
is called item-based collaborative filtering.

To recommend items with the most similar purchase histories, we need a
way to quantitatively measure exactly how similar two purchase histories
are. We saw that item1 and item3 have very similar (identical) purchase
histories, while item1 and item2 have more different purchase histories. If
we compare item1 and item5, we can see some similarity in their histories
and some differences. But instead of making qualitative judgments that two
purchase histories are very similar or not very similar, using numbers to
precisely quantify that similarity will be useful. If we can find a metric that
quantifies the similarity of two items, we can use that metric to recommend
items.

Measuring Vector Similarity
Let’s look more closely at one item’s purchase history to get ideas for ways
to quantitatively measure similarities:

print(list(interaction.loc['item1',:]))

This line of code prints out the purchase history of item1. The output
looks like this:

[1,1,0,1,1]

We can think of this purchase history in several ways. It may seem like
nothing more than a collection of numbers. Since the numbers are
sandwiched between square brackets, Python will interpret this collection as
a list. We could also think of it as a row of a matrix (our interaction matrix).
Most importantly, we can think of this collection of numbers as a vector.
You may remember from math class that a vector is a directed line segment.
One way to write a vector is as a collection of coordinate numbers. For
example, Figure 9-1 depicts two vectors, A and B .

Figure 9-1: Two vectors, represented by coordinate pairs

In this example, A and B are directed line segments, or vectors. They
are both two-dimensional. Just like every vector, both can be fully described
by their coordinates: after we know that both vectors start at the origin, the
coordinate pair (3,7) fully describes vector A , and the coordinate pair

(8,4) fully describes vector B . The purchase history we looked at
previously, [1,1,0,1,1], can be thought of as the vector representing the
purchase history of item1. In fact, all the rows of our interaction matrix, or
any interaction matrix, can be thought of as vectors.

Since we have vectors representing items, we may want to draw our
vectors in a plot like Figure 9-1. However, in our interaction matrix, our
item vectors have five coordinates each, so if we wanted to draw them, we
would have to draw them in a five-dimensional plot, which is not possible
to do in a way that humans can easily comprehend. Since we can’t draw our
item vectors, let’s look at the A and B vectors in Figure 9-1 to
understand how to measure vector similarity, then apply what we learn to
our item vectors later.

You can see that vectors A and B are somewhat similar: both are
pointing generally upward and generally toward the right. We want to find a
quantitative measurement that signifies exactly how similar the two vectors
are. All we need to do is measure the angle between the two vectors, as in F
igure 9-2.

Figure 9-2: An angle between two vectors, represented by the Greek letter theta

Every pair of vectors will have an angle between them that we can
measure. In two dimensions, we can get out a protractor and physically
measure the angle between two vectors. In Figure 9-2, the angle is labeled
with the Greek letter theta. If the angle theta is small, we conclude that the
two vectors are similar. If theta is large, we conclude that the two vectors
are very different. The smallest possible angle between two vectors is 0; a
0-degree angle between two vectors means that they’re pointing in exactly
the same direction (they overlap).

This isn’t a geometry book, but try to remember just one more thing from
your math and geometry classes: the cosine. The cosine is a function that
we can measure for every angle. The cosine of a 0-degree angle is 1; that’s
the maximum value a cosine can be. As an angle gets larger than 0, its
cosine decreases. For a 90-degree angle (also called a perpendicular, or
right, angle), the cosine will be 0.
The cosine is important because we can use it to measure the similarity of
two vectors. If two vectors are similar, the angle between them will be
small, so the cosine of the angle between them will be large (1 or close to
1). If two vectors are perpendicular, they’re quite different, and the cosine
of the angle between them will be 0. Vectors like A and B in Figure 9-1
are not completely similar and not completely different, so the cosine of the
angle between them will be between 0 and 1. When comparing vectors, we
often refer to the cosine similarity of the two vectors (the cosine of the
angle between the vectors). Similar vectors will have high cosine similarity,
and different vectors will have low cosine similarity.

When vectors have many dimensions, like the five-dimensional vectors
in our purchase histories, we don’t physically measure the angles. Instead,
we can use a special formula that enables us to calculate the cosine of the
angle between any pair of vectors without requiring the physical use of a
protractor; see Figure 9-3.

Figure 9-3: A formula for calculating the cosine of the angle between two vectors

We’ll unpack this formula in the next section.

Calculating Cosine Similarity
Let’s look more closely at the formula in Figure 9-3. The numerator is A ·
B. In this case the dot between the vectors A and B is indicating a dot

product, a special way to multiply vectors together. The following function
calculates the dot product of any two vectors that are the same length:

def dot_product(vector1,vector2):
 thedotproduct=np.sum([vector1[k]*vector2[k] for k in rang
e(0,len(vector1))])
 return(thedotproduct)

The denominator of the formula in Figure 9-3 shows pipe symbols (||)
surrounding both A and B. These pipe symbols indicate the respective sizes
of vectors A and B , also called their vector norms. The following
function calculates the vector norm of any vector:

def vector_norm(vector):
 thenorm=np.sqrt(dot_product(vector,vector))
 return(thenorm)

The cosine of the angle between any two vectors (that is, the cosine
similarity of the two vectors) is the dot product of the two vectors, divided
by the product of the norms of the vectors. We can create a Python function
that calculates the cosine similarity of any two vectors by using the two
functions we just defined, combined as shown in the formula in Figure 9-3:

def cosine_similarity(vector1,vector2):
 thedotproduct=dot_product(vector1,vector2)
 thecosine=thedotproduct/(vector_norm(vector1)*vector_norm
(vector2))
 thecosine=np.round(thecosine,4)
 return(thecosine)

The cosine similarity that this function calculates is a common similarity
measurement that’s used in many data science applications, not just for
recommendation systems.

Let’s try to calculate some cosine similarity measurements for our item
vectors:

import numpy as np
item1=interaction.loc['item1',:]
item3=interaction.loc['item3',:]
print(cosine_similarity(item1,item3))

This snippet yields a simple output:

1.0

We can see that item1 and item3 have a cosine similarity of 1.0,
meaning that the angle between these vectors is 0. Therefore, they’re
identical vectors, and they’re as similar as it is possible to be. By contrast,
you can check the cosine similarity of item2 and item5 by running the
following snippet:

item2=list(interaction.loc['item2',:])
item5=list(interaction.loc['item5',:])
print(cosine_similarity(item2,item5))

These have a cosine similarity of 0.3333, meaning that the angle between
these vectors is relatively large—about 71 degrees, not far from a right
angle. Therefore, these two items are very different from each other. We can
see that when we look at their vectors: only one user out of five purchased
both items. If we follow a similar process to check the cosine similarity of
item3 and item5, we find that it’s 0.866, indicating that these vectors are
similar but not completely identical.

Now that we can measure the similarity of any two items’ histories,
we’re ready to use this calculation to create a recommendation system.

Implementing Item-Based Collaborative Filtering
Let’s think back to our hypothetical salesperson and a hypothetical sales
scenario. You have an interaction matrix that describes the purchase history
of all five of your customers and all five of your items. You observe a new,
unfamiliar customer entering your store (or visiting your website), and all
you know about the new customer is that they are interested in item1. How
should you make recommendations to them?

You can rank every item based on how similar its purchase history is to
the purchase history of item1. Your recommendations will be an ordered
list of items, ranked from the item whose purchase history is the most
similar to item1 to the item whose purchase history is the least similar to
item1.

Let’s write Python code for this, using cosine similarity. We can start by
defining the vectors we’ll need to do our calculations:

ouritem='item1'
otherrows=[rowname for rowname in interaction.index if rownam
e!=ouritem]
otheritems=interaction.loc[otherrows,:]
theitem=interaction.loc[ouritem,:]

Next, we can calculate how similar each item is to our selected item and
make recommendations by finding the other items that are most similar to
our selected item:

similarities=[]
for items in otheritems.index:
 similarities.append(cosine_similarity(theitem,otheritems.
loc[items,:]))

otheritems['similarities']=similarities
recommendations = list(otheritems.sort_values(by='similaritie
s',ascending=False).index)

In this snippet, we create a similarities variable, which starts as an
empty list. Then we create a loop that calculates the cosine similarity
between our item and every other item. After that, we get our final list of
recommendations: a list of all other items, sorted from most similar to least
similar to our item.

You can check the recommendations by running
print(recommendations), which will show you the following list:

['item3', 'item5', 'item2', 'item4']

This list is the output of your recommendation system. This final output
is similar to the output of our popularity-based recommendation system:
just a list of items, sorted in order of most relevant to least relevant (the
highest-priority to the lowest-priority recommendations). The difference is
that instead of measuring relevance in terms of overall popularity, we are
measuring relevance in terms of the similarity of purchase histories: the
more similar purchase histories are rated as more relevant, and therefore a
higher priority to recommend to users.

We can also create a function that combines all of these capabilities
together:

def get_item_recommendations(interaction,itemname):
 otherrows=[rowname for rowname in interaction.index if ro
wname!=itemname]
 otheritems=interaction.loc[otherrows,:]
 theitem=list(interaction.loc[itemname,:])
 similarities=[]
 for items in otheritems.index:
 similarities.append(cosine_similarity(theitem,list(ot
heritems.loc[items,:])))
 otheritems['similarities']=similarities
 return list(otheritems.sort_values(by='similarities',asce
nding=False).index)

You can run get_item_recommendations(interaction,'item1') to see
the items recommended for any user who’s interested in item1. You could
also substitute any other item for item1 to see recommendations for users
interested in other items.

The recommendation system we have created here is item-based
collaborative filtering. It’s filtering because instead of recommending every
item to users, we filter and show only the most relevant. It’s collaborative
because we’re using information related to all items and all users, so it’s as
if the users and items are collaborating to help us determine relevance. It’s
item-based because our recommendations are based on the similarity
between items’ purchase histories, rather than similarity between users or
anything else.

Item-based collaborative filtering is relatively simple to implement, and
it can be used to make “warm” recommendations even if we know only one
fact about a potential customer (a single item that they’re interested in). You
can see that it can be implemented with just a few lines of code, and the
only input data that’s needed is an interaction matrix.

Item-based collaborative filtering has a reputation for making obvious
recommendations. Multiple James Bond films are likely to have high
overlap in their purchase histories, so using item-based collaborative
filtering to make recommendations related to one James Bond film will
likely yield a recommendation to view a different James Bond film. But

James Bond fans are already familiar with James Bond films and don’t need
to get a recommendation to watch a film that they’re already familiar with.
Recommendation systems can be more valuable when they recommend
items that are less obvious. Next, let’s take a look at a method that has a
reputation for generating some less obvious recommendations.

User-Based Collaborative Filtering
Suppose you want to make recommendations for a customer you’re already
familiar with. For example, suppose that our fifth customer, user5, walks
into your store (or visits your website). Your interaction matrix already has
detailed records related to user5 and everything they’ve purchased before.
We can use this detailed information to make intelligent, “warm”
recommendations for user5 with user-based collaborative filtering.

This approach is based on the idea that people who are similar may be
interested in the same items. If we need to make recommendations for a
particular customer, we find the customers who are most similar to that
customer and recommend items that those similar customers purchased.

Let’s start by looking at our interaction matrix yet again:

 Unnamed: 0 user1 user2 user3 user4 user5
0 item1 1 1 0 1 1
1 item2 1 0 1 1 0
2 item3 1 1 0 1 1
3 item4 1 0 1 0 1
4 item5 1 1 0 0 1

This time, instead of thinking of the rows as vectors related to items, let’s
think of the columns as vectors related to customers. The vector
[1,0,1,1,1] (the last column of the matrix) represents the full purchase
history of user5. If we look at other customer purchase history vectors, we
can see that user2 has a purchase history that’s similar to user5’s purchase
history. We can see that user3 has a purchase history that’s very different
from the purchase history of user5—almost no overlap. Just as we did
when we were implementing item-based collaborative filtering, we can
calculate the similarity of customers based on their purchase histories:

user2=interaction.loc[:,'user2']
user5=interaction.loc[:,'user5']
print(cosine_similarity(user2,user5))

The output of this snippet is 0.866, indicating that user2 and user5 have
relatively high cosine similarity (remember that the closer to 1 this
measurement is, the more similar two vectors are). We can change the users
whose similarity we calculate by making small adjustments to this snippet:

user3=interaction.loc[:,'user3']
user5=interaction.loc[:,'user5']
print(cosine_similarity(user3,user5))

Here, we find that user3 and user5 have cosine similarity 0.3536, which
is relatively low, just as expected.

We can also create a function that calculates the most similar customers
to a given customer:

def get_similar_users(interaction,username):
 othercolumns=[columnname for columnname in interaction.co
lumns if columnname!=username]
 otherusers=interaction[othercolumns]
 theuser=list(interaction[username])
 similarities=[]
 for users in otherusers.columns:
 similarities.append(cosine_similarity(theuser,list(ot
herusers.loc[:,users])))
 otherusers.loc['similarities',:]=similarities
 return list(otherusers.sort_values(by='similarities',axis
=1,ascending=False).columns)

This function takes a customer name and an interaction matrix as its
inputs. It calculates the similarity of the input customer to all other
customers specified in the interaction matrix. The final output is a ranked
list of customers, sorted from the most similar customer to the least similar
customer.

We can use this function in several ways to get recommendations. Here’s
one way to get recommendations for user5:

. Calculate how similar every user is to user5.

. Rank customers from most similar to least similar to user5.

. Find the most similar customer to user5.

. Recommend everything the most similar customer has purchased that user5
has not purchased.

We can write code that implements this algorithm as follows:

def get_user_recommendations(interaction,username):
 similar_users=get_similar_users(interaction,username)
 purchase_history=interaction[similar_users[0]]
 purchased=list(purchase_history.loc[purchase_history==1].
index)
 purchased2=list(interaction.loc[interaction[username]==
1,:].index)
 recs=sorted(list(set(purchased) - set(purchased2)))
 return(recs)

In this snippet, we have a function that takes an interaction matrix and a
user name as its inputs. It finds the most similar user to the input user, and it
stores the purchase history of that user in a variable called
purchase_history. Next, it finds everything that the most similar user
purchased (stored in the variable purchased) and everything that the input
user purchased (stored in the variable purchased2). Then it finds everything
that the most similar user purchased that was not purchased by the input
user. It does this by using the set() function. The set() function creates a
collection of the unique elements in a list. So when you run
set(purchased) - set(purchased2), you’ll get the unique elements of
purchased that are not also elements of purchased2. Finally, it returns the
list of these elements as the final recommendations.

You can run this function simply, by running
get_user_recommendations(interaction,'user2'). You should see the
following output:

['item4']

In this case, item4 is our recommendation because it was purchased by
user5, the user who’s most similar to user2, and it hasn’t yet been

purchased by user2. We’ve created a function that performs user-based
collaborative filtering!

You could make many adjustments to this function. For example, you
might want more recommendations than you get by looking at one similar
customer. If so, you could look at more similar customers than just one. You
could also add item-based similarity calculations so that you recommend
only items that were purchased by similar users and are also similar to the
items that have been purchased by the focal user.

Ensuring that you understand the similarities and differences between
user-based and item-based collaborative filtering is worthwhile. Both rely
on cosine similarity calculations, and both rely on an interaction matrix as
input. In item-based collaborative filtering, we calculate the cosine
similarity between items and recommend items that are similar to an item of
interest. In user-based collaborative filtering, we calculate the cosine
similarity between users and recommend items from the purchase histories
of similar users. Both can lead to good recommendations.

To determine which method is right for your business, you could try both
and check which one leads to better results: either more revenue, more
profit, more satisfied customers, more customer engagement, or more of
whatever metric you want to maximize. The best way to do this type of
experimental comparison is with an A/B test, which you’ve already learned
in Chapter 4.

User-based collaborative filtering has a reputation for giving more
surprising results than item-based collaborative filtering. However, it also
tends to be more computationally difficult. Most retailers have more
customers than items, so user-based collaborative filtering usually requires
more calculations than item-based collaborative filtering.

So far, we’ve been working with an unrealistically tiny and entirely
fabricated dataset. Applying the ideas we’ve gone over so far to data that
comes from a real business would be more beneficial, with real users and
their real interaction histories. In the next section, we’ll do just that: we’ll
go through a case study of generating recommendations for real users and
the real items that we expect will interest them.

Case Study: Music Recommendations
We’ll use data from Last.fm (https://last.fm). This website allows people to
log in and listen to music. In this case, the “items” in our interaction matrix
will be musical artists, and a 1 in the interaction matrix will indicate that a
user has listened to an artist, rather than representing a purchase. Despite
these minor differences, we can use all the methods we’ve discussed in this
chapter to make recommendations about music that users should listen to
next.

Let’s read some data related to Last.fm users and look at it:

import pandas as pd
lastfm = pd.read_csv("https://bradfordtuckfield.com/lastfm-ma
trix-germany.csv")
print(lastfm.head())

As usual, we import the pandas package, read our .csv file, and store the
data in the lastfm variable. When we print out the top few rows of the data,
we see the following output:

 user a perfect circle abba ... underoath volbeat yan
n tiersen
0 1 0 0 ... 0 0
0
1 33 0 0 ... 0 0
0
2 42 0 0 ... 0 0
0
3 51 0 0 ... 0 0
0
4 62 0 0 ... 0 0
0

In this data, every row represents a unique (anonymous) user. Every
column represents a musical artist. The entries in the matrix can be
interpreted in the same way as the entries in our previous interaction matrix:
every entry equal to 1 means that a particular user has listened to a
particular artist, and every entry equal to 0 means that the user has not
listened to that artist. In this case, we can talk about a user’s or an item’s
listening history instead of purchase history. Regardless, the entries of this

https://last.fm/

matrix show the history of interactions between users and items. We don’t
need the first column (the user ID number), so we can drop it:

lastfm.drop(['user'],axis=1,inplace=True)

Before we proceed, notice the difference between this interaction matrix
and the previous one. In our previous interaction matrix, the rows
corresponded to items, and the columns corresponded to users. This
interaction matrix is reversed: the rows correspond to users, and the
columns correspond to items (songs). The functions we wrote are meant to
work with interaction matrices that have the former shape (rows for items,
columns for users). To make sure our interaction matrix can work with our
functions, we should transpose it, or rewrite its rows as columns and its
columns as rows:

lastfmt=lastfm.T

This snippet uses our matrix’s T attribute to transpose our interaction
matrix, and it stores the result in the variable lastfmt. Let’s check the
number of rows and columns in this data:

print(lastfmt.shape)

The output here is (285,1257): the data has 285 rows and 1,257
columns. So, we’re looking at information about 1,257 real users and 285
real artists whose music these users listened to. This is much more
substantial than our previous, fabricated data. Let’s get recommendations
for these users. It’s as simple as calling a function we already created earlier
in the chapter:

get_item_recommendations(lastfmt,'abba')[0:10]

You’ll see the following output:

['madonna', 'robbie williams', 'elvis presley', 'michael jack
son', 'queen',
'the beatles', 'kelly clarkson', 'groove coverage', 'duffy',
 'mika']

For people who are interested in music by ABBA, these artists are
recommended via item-based collaborative filtering. They’re listed in order
of most relevant to least relevant. Remember, these artists were selected
based on similar purchase histories: out of all artists, Madonna’s listening
history was the most similar to ABBA’s, and Robbie Williams’s listening
history was the second most similar, and so on.

This is all it takes; we can call the recommendation function for any artist
that interests us. Going from fabricated to real data is quite simple. We can
also call our user recommendation function:

print(get_user_recommendations(lastfmt,0)[0:3])

The output shows us three recommendations for the first user (the user
with index 0 in the dataset):

['billy talent', 'bob marley', 'die toten hosen']

These recommendations were obtained using user-based collaborative
filtering. Remember what that means: our code found the user whose
listening history is the most similar to the listening history of the first user.
The final recommendations are artists that the most similar user listened to
but the focal user has not yet listened to.

Generating Recommendations with
Advanced Systems
Collaborative filtering is the most common way to build recommendation
systems, but it’s not the only one. Several other techniques allow generation
of intelligent recommendations. One approach, called singular value
decomposition, relies on matrix algebra to decompose the interaction matrix
into several smaller matrices. These smaller matrices can be multiplied in
various ways to predict which products will appeal to which customers.
Singular-value decomposition is one of several methods that use linear
algebra to predict customer preferences. Another such linear algebra
method is called alternating least squares.

The clustering methods we discussed in Chapter 7 can also be used to
generate recommendation systems. These clustering-based recommendation
systems use an approach like the following:

. Generate clusters of users.

. Find the most popular items in each cluster of users.

. Recommend those popular items, but only within each cluster.

This method is the same as the popularity-based recommendation system
we discussed at the beginning of the chapter, with one improvement: we
look at popularity within clusters of similar customers, instead of global
popularity.

Other recommendation systems rely on the analysis of content. For
example, to make recommendations about songs on a music-streaming
service, you might download a database of song lyrics. You could use some
NLP tools to measure the similarity between distinct songs’ lyrics. If a user
listened to Song X, you could recommend that they listen to the songs
whose lyrics have the highest similarity to Song X’s lyrics. This is an item-
based recommendation system, but instead of using purchase histories, it
uses item attributes to find relevant recommendations. Attribute-based
systems (also called content-based recommender systems) like this can work
effectively in some situations. Many corporations that implement
recommendation systems today collect a wide variety of data to use as
inputs, and a wide variety of prediction methods, including neural networks,
to predict what each user will like. The problem with a content-based
approach is that it can be difficult to get attribute data that’s reliable and
comparable across items.

Attribute data is not the only kind of data that can be added to
recommendation systems. Using dates in your recommendation systems
could also be valuable. In a popularity-based system, dates or timestamps
can enable you to replace all-time most popular lists with today’s most
popular lists, or lists that show trending content across the most recent hour,
week, or any other time frame.
You may also need to build recommendation systems with interaction
matrices that are not 0/1 matrices. For example, you could have an

interaction matrix whose entries indicate the number of times a song has
been played, rather than a 0/1 indicator of whether a song has been played.
You might also find an interaction matrix that contains ratings rather than
interactions. The same methods you implemented in this chapter can be
applied to these alternative types of interaction matrices: you can still
calculate cosine similarities and make recommendations based on the most
similar items and users.

The world of recommendation systems is big. There’s room for creativity
and new approaches, and you can open your mind while trying to discover
new ways to improve the field.

Summary
In this chapter, we discussed recommendation systems. We started with
popularity-based systems to show how to recommend trending items and
bestsellers. We continued with collaborative filtering, including how to
measure the similarity of items and customers and how to use similarity to
make item-based and user-based recommendations. We presented a case
study in which we used our collaborative-filtering code to get
recommendations related to a music-streaming service. We concluded with
some advanced considerations, including other approaches that could be
used and other data that can be leveraged.

Next, we’ll go over some advanced natural language processing methods
for analysis of text.

10
NATURAL LANGUAGE PROCESSING

Finding ways to mathematically analyze
textual data is the main goal of the field
known as natural language processing
(NLP). In this chapter, we’ll go over
some important ideas from the world of

NLP and talk about how to use NLP tools in data
science projects.

We’ll start the chapter by introducing a business scenario and thinking
through how NLP can help with it. We’ll use the word2vec model, which
can convert individual words to numbers in a way that enables all kinds of
powerful analyses. We’ll walk through the Python code for this conversion
and then explore some applications of it. Next, we’ll discuss the Universal
Sentence Encoder (USE), a tool that can convert entire sentences to
numeric vectors. We’ll go over the Python code for setting up and using the
USE. Along the way, we’ll find ways to use ideas from previous chapters.
Let’s begin!

Using NLP to Detect Plagiarism
Suppose that you’re the president of a literary agency. Your agency receives
hundreds of emails every day, each containing book chapters from aspiring
authors. Chapters can be quite long, consisting of thousands or tens of

thousands of words each, and your agency needs to carefully sift through
these long chapters, trying to find a small number to accept. The longer it
takes agents to filter through these submitted emails, the less time they’ll
have to spend on their other important tasks, like selling books to
publishers. It’s difficult, but possible, to automate some of the filtering that
literary agencies have to do. For example, you could write a Python script
that could automatically detect plagiarism.

Literary agencies are not the only businesses that could be interested in
plagiarism detection. Suppose that you’re the president of a large university.
Every year, your students submit thousands of long papers, which you want
to make sure are not plagiarized. Plagiarism is not only a moral and
educational matter but also a business concern. If your university gains a
reputation for allowing plagiarism, graduates will face worse job prospects,
alumni donations will go down, fewer students will want to enroll, and the
revenue and profits your university makes will surely take a nosedive. Your
university’s professors and graders are overworked already, so you want to
save them time and find an automated approach to plagiarism detection.

A simple plagiarism detector might look for exact matches of text. For
example, one of your university’s students may have submitted the
following sentences in one of their papers:

People’s whole lives do pass in front of their eyes before they die. The process is called
“Living.”

Maybe you read this paper and the idea sounds familiar to you, so you
ask your librarians to search for this text in their book databases. They find
an exact match of every character of this sentence in Terry Pratchett’s
classic The Last Continent, indicating plagiarism; the student is punished
accordingly.

Other students may be more wily. Instead of directly copying text from
published books, they learn to paraphrase so they can copy ideas with
minor, insignificant changes to phrasing. For example, one student may
wish to plagiarize the following text (also by Pratchett):

The trouble with having an open mind, of course, is that people will insist on coming along
and trying to put things in it.

The student rephrases the sentence slightly, changing it to the following:

The problem with having an open mind is that people will insist on approaching and trying to
insert things into your mind.

If your librarians do a search for exact matches of this student’s sentence,
they won’t find any, since the student rephrased the sentence slightly. To
catch clever plagiarists like this one, you will need to rely on NLP tools that
can detect not only exact text matches but also “loose” or “fuzzy” matches
based on the meanings of similar words and sentences. For example, we’ll
need a method that can identify that trouble and problem are similar words
used roughly as synonyms in the student’s paraphrase. By identifying
synonyms and near-synonyms, we’ll be able determine which non-identical
sentences are similar enough to each other to constitute evidence for
plagiarism. We’ll use an NLP model called word2vec to accomplish this.

Understanding the word2vec NLP Model
We need a method that can take any two words and quantify exactly how
similar they are. Let’s think about what it means for two words to be
similar. Consider the words sword and knife. The alphabetic letters in these
words are totally different, with no overlaps, but the words refer to things
that are similar to each other: both are words for sharp, metallic objects
used to cut things. These words are not exact synonyms, but their meanings
are fairly similar. We humans have a lifetime of experience that has given
us an intuitive sense for how similar these words are, but our computer
programs can’t rely on intuition, so we have to find a way to quantify the
similarity of these words based on data.

We’ll use data that comes from a large collection of natural language text,
also called a corpus. A corpus may be a collection of books, newspaper
articles, research papers, theatrical plays, or blog posts or a mix of these.
The important point is that it consists of natural language—phrases and
sentences that were put together by humans and reflect the way humans
speak and write. Once we have our natural language corpus, we can look at
how to use it to quantify the meanings of words.

Quantifying Similarities Between Words

Let’s start by looking at some natural language sentences and thinking
about the words in them. Imagine two possible sentences that might contain
the words sword and knife:
Westley attacked me with a sword and cut my skin.
Westley attacked me with a knife and cut my skin.

You can see that these sentences are identical, except for the detail of
whether the attacker used a sword or a knife. With one word substituted for
the other, they still have rather similar meanings. This is one indication that
the words sword and knife are similar: they can be substituted for each other
in many sentences without drastically changing the sentence’s meaning or
implications. Of course, it’s possible that something other than a sword or
knife could be used in an attack, so a sentence like the following could also
be in the corpus:
Westley attacked me with a herring and cut my skin.

Though a sentence about a skin-puncturing attack with a herring is
technically possible, it’s less likely to appear in any natural language corpus
than a sentence about a sword or knife attack. Someone who doesn’t know
any English, or a Python script, could find evidence for this by looking at
our corpus and noticing that the word attack frequently appears near the
word sword, but doesn’t frequently appear near the word herring.

Noticing which words tend to appear near which other words will be very
useful to us, because we can use a word’s neighbors to better understand the
word itself. Take a look at Table 10-1, which shows words that often appear
near the words sword, knife, and herring.

Table 10-1: Words That Tend to Appear Near Each Other in Natural Language

Word Words that often appear nearby in a natural language corpus
sword cut, attack, sheath, fight, sharp, steel
knife cut, attack, pie, fight, sharp, steel
herring pickled, ocean, fillet, pie, silver, cut

Swords and knives both tend to be sharp, made of steel, used to attack,
and used to cut things and to fight, so we see in Table 10-1 that all of these
words often appear near both sword and knife in a natural language corpus.

However, we can also see differences between the lists of nearby words.
For example, sword appears often near sheath, but knife doesn’t often
appear near sheath. Also, knife often appears near pie, but sword usually
doesn’t. For its part, herring appears near pie sometimes (since people
sometimes eat herring pie) and also appears near cut sometimes (since
people sometimes cut herring when preparing meals). But the other words
that tend to appear near herring have no overlap with the words that tend to
appear near sword and knife.

Table 10-1 is useful because we can use it to understand and express the
similarity of two words, using data rather than gut reactions. We can say
that sword and knife are similar, not just because we have a gut feeling that
they mean similar things, but because they tend to appear near the same
neighbors in natural language texts. By contrast, sword and herring are
quite different, because little overlap exists between their common
neighbors in natural language texts. Table 10-1 gives us a data-centric way
to determine whether words are similar, rather than a way based on vague
intuition, and importantly, Table 10-1 can be created and interpreted even
by someone who doesn’t know a single word of English, since even a non-
English speaker can look at a text and find which words tend to be
neighbors. The table can also be created by a Python script that reads any
corpus and finds common neighbors.

Our goal is to convert words to numbers, so our next step is to create a
version of Table 10-1 that has numeric measurements of how likely words
are to be each other’s neighbors, as in Table 10-2.

Table 10-2: Probabilities of Words Appearing Near Each Other in a Natural Language
Corpus

Word Neighbor word Probability that the neighbor appears near
the word in a natural language corpus

sword cut 61%
knife cut 69%
herring cut 12%
sword pie 1%
knife pie 49%
herring pie 16%
sword sheath 56%
knife sheath 16%
herring sheath 2%

Table 10-2 gives us much of the same information as Table 10-1; it
shows which words are likely to appear near other words in a natural
language corpus. But Table 10-2 is more precise; it gives us numeric
measurements of the likelihood of words appearing together, instead of just
a list of neighbor words. Again, you can see that the percentages in Table 10
-2 seem plausible: sword and knife frequently have cut as a neighbor, knife
and herring are more likely than sword to have pie as a neighbor, and
herring doesn’t often have sheath as a neighbor. Again, Table 10-2 could be
created by someone who doesn’t speak English, and it could also be created
by a Python script that had a collection of books or English language texts
to analyze. Similarly, even someone who doesn’t know a word of English,
or a Python script, could look at Table 10-2 and have a good idea about the
similarities and differences between various words.

Creating a System of Equations
We’re almost ready to represent words purely as numbers. The next step is
to create something even more numeric than Table 10-2. Instead of
representing these percentage likelihoods in a table, let’s try to represent
them in a system of equations. We will need only a few equations to
succinctly represent all the information in Table 10-2.

Let’s start with a fact from arithmetic. This arithmetic fact may seem
useless, but you’ll see later why it’s useful:

61 = 5 · 10 – 5 · 1 + 3 · 5 + 1 · 1

You can see that this is an equation for the number 61—that’s exactly the
probability that the word cut appears near the word sword according to Tabl
e 10-2. We can also rewrite the right side of the equation by using different
notation:

61 = (5, –5, 3, 1) · (10, 1, 5, 1)

Here, the dot is meant to represent the dot product, which we introduced
in Chapter 9. When calculating the dot product, we multiply the first
elements of both vectors together, multiply the second elements of both
vectors together, and so on, summing up the results. We can write out this
dot product as a more standard equation using only multiplication and
addition as follows:

61 = 5 · 10 + (–5) · 1 + 3 · 5 + 1 · 1

You can see that this is just the same equation we started with. The 5 and
10 are multiplied together, since they’re the first element of the first and
second vectors, respectively. The numbers –5 and 1 are also multiplied
together, because they’re the second elements of the first and second
vectors, respectively. When we take a dot product, we multiply all of these
corresponding elements together and sum up the results. Let’s write one
more fact of arithmetic in this same dot product style:

12 = (5, –5, 3, 1) · (2, 2, 2, 6)

This is just another fact of arithmetic, using dot product notation. But
notice, this is an equation for 12—exactly the probability that the word cut
appears near the word herring according to Table 10-2. We can also notice
that the first vector in the equation, (5,–5, 3, 1), is exactly the same as the
first vector in the previous equation. Now that we have both of these
arithmetic facts, we can rewrite them yet again as a simple system of
equations:

sword = (10, 1, 5, 1)

herring = (2, 2 ,2, 6)

Probability that cut appears near a word = (5, –5, 3, 1) · the word’s vector

Here, we’ve taken a leap: instead of just writing down arithmetic facts,
we’re claiming that we have numeric vectors that represent the words sword
and herring, and we’re claiming that we can use these vectors to calculate
the probability that the word cut is near any word. This may seem like a
bold leap, but soon you’re going to see why it’s justified. For now, we can
keep going and write more arithmetic facts as follows:

60 = (5, –5, 3, 1) · (10, 1, 5, 9)

1 = (1, –10, –1, 6) · (10, 1, 5, 1)

49 = (1, –10, –1, 6) · (2, 2, 2, 6)

16 = (1, –10, –1, 6) · (10, 1, 5, 9)

56 = (1, 6, 9, –5) · (10, 1, 5, 1)

16 = (1, 6, 9, –5) · (2, 2, 2, 6)

2 = (1, 6, 9, –5) · (10, 1, 5, 9)

You can look at these as just arbitrary arithmetic facts. But we can also
connect them to Table 10-2. In fact, we can rewrite all of our arithmetic
facts so far as the system shown in Equation 10-1.

sword = (10, 1, 5, 1)

knife = (10, 1 , 5, 9)

herring = (2, 2, 2, 6)

Probability that cut appears near a word = (5, –5, 3, 1) · the word’s vector

Probability that pie appears near a word = (1, –10, –1, 6) · the word’s
vector

Probability that sheath appears near a word = (1, 6, 9, –5) · the word’s
vector

Equation 10-1: A system of equations containing vector representations of words

Mathematically, you can verify that all the equations in Equation 10-1 are
correct: by plugging the word vectors into the equations, we’re able to
calculate all the probabilities in Table 10-2. You may wonder why we
created this system of equations. It seems to be doing nothing more than
repeating the probabilities that we already have in Table 10-2, but in a more
complicated way with more vectors. The important leap we’ve taken here is
that by creating these vectors and this system of equations instead of using
Table 10-2, we’ve found numeric representations of each of our words. The
vector (10, 1, 5, 1) in some sense “captures the meaning” of sword, and the
same goes for (10, 1, 5, 9) and knife and (2, 2, 2, 6) and herring.

Even though we have vectors for each of our words, you may not feel
convinced that these vectors really represent the meanings of English
words. To help convince you, let’s do some simple calculations with our
vectors and see what we can learn. First, let’s define these vectors in a
Python session:

sword = [10,1,5,1]
knife = [10,1,5,9]
herring = [2,2,2,6]

Here, we define each of our word vectors as a Python list, a standard way
to work with vectors in Python. We’re interested in knowing how similar
our words are to each other, so let’s define a function that can calculate the
distance between any two vectors:

import numpy as np
def euclidean(vec1,vec2):
 distance=np.array(vec1)-np.array(vec2)
 squared_sum=np.sum(distance**2)
 return np.sqrt(squared_sum)

This function is called euclidean(), because it’s technically calculating
a Euclidean distance between any two vectors. In two dimensions, a
Euclidean distance is the length of the hypotenuse of a right triangle, which

we can calculate with the Pythagorean theorem. More informally, we often
refer to the Euclidean distance as just distance. In more than two
dimensions, we use the same Pythagorean theorem formula to calculate a
Euclidean distance, and the only difference is that it’s harder to draw.
Calculating Euclidean distances between vectors is a reasonable way to
calculate the similarity of two vectors: the closer the Euclidean distance
between the vectors, the more similar they are. Let’s calculate the Euclidean
distances between our word vectors:

print(euclidean(sword,knife))
print(euclidean(sword,herring))
print(euclidean(knife,herring))

You should see that sword and knife have a distance of 8 from each other.
By contrast, sword and herring have a distance of 9.9 from each other.
These distance measurements reflect our understandings of these words:
sword and knife are similar to each other, so their vectors are close to each
other, while sword and herring are less similar to each other, so their
vectors are further apart. This is evidence that our method for converting
words to numeric vectors has worked: it’s enabling us to quantify word
similarities successfully.

If we want to detect plagiarism, we’ll have to find numeric vectors that
represent more than just these three words. We’ll want to find vectors for
every word in the English language, or at least the majority of the words
that tend to appear in student papers. We can imagine what some of these
vectors might be. For example, the word haddock refers to a type of fish,
not too different from a herring. So, we’ll expect to find that haddock has
similar neighbors to herring and similar probabilities in Table 10-2 (a
similar probability of having cut or pie or anything else as a neighbor).

Anytime two words have similar probabilities in Table 10-2, we expect
that they’ll have similar vectors, since we’ll be multiplying those vectors
according to the system of equations in Equation 10-1 to get those
probabilities. For example, we might find that the numeric vector for
haddock is something like (2.1, 1.9, 2.3, 6.5). This vector will be close in
Euclidean distance to the vector for herring (2, 2, 2, 6), and if we multiply
the haddock vector by the other vectors in Equation 10-1, we’ll find that
haddock should have probabilities of being near each neighbor word that

are similar to the probabilities for herring in Table 10-2. We’ll similarly
need to find vectors for thousands of other words in English, and we’ll
expect that words that have similar meanings should have similar vectors.

It’s easy to say that we need vectors for every English word, but then the
question becomes: How should we determine each of these vectors? To
understand how we can determine the vectors for every word, consider a
diagram of the system of equations in Figure 10-1.

Figure 10-1: A visual representation of the probabilities of words appearing near each other

This diagram looks complex, but it’s meant to illustrate nothing more and
nothing less than our system of equations. In Equation 10-1, we represent
every word as a vector with four elements, like this: (a, b, c, d). The a, b, c,
and d on the left of Figure 10-1 represent these elements. Each arrow
extending from those elements represents a multiplication. For example, the
arrow marked with a 5 that extends from the circle labeled a to the oval
labeled probability of cut appearing nearby means that we should multiply
every a value by 5, and add it to the estimated probability of cut appearing
near a word. If we consider all the multiplications indicated by all of these
arrows, you can see from Figure 10-1 that the probability of cut appearing
near a word is 5 · a – 5 · b + 3 · c + 1 · d, just as described in Equation 10-
1. Figure 10-1 is just another way to represent Equation 10-1. If we can find
the right a, b, c, and d values for every word in English, we’ll have the
word vectors we need to check for plagiarism.

The reason we drew Figure 10-1 is to point out that it has exactly the
form of a neural network, the type of supervised learning model we already

discussed in Chapter 6. Since it constitutes a neural network, we can use
advanced software (including several free Python packages) to train the
neural network and find out exactly what a, b, c, and d should be for every
word in English. The whole point of creating Tables 10-1 and 10-2, and the
system of equations in Equation 10-1, is to create a neural network like the
hypothetical one shown in Figure 10-1. As long as we have data like that in
Table 10-2, we can use this neural network software to train the neural
network shown in Figure 10-1 and find all the word vectors we need.

The most important output of this neural network training will be values
of a, b, c, and d for every word in our data. In other words, the output of the
neural network training will be (a, b, c, d) vectors for every word. This
process is called the word2vec model: create a table of probabilities like Tab
le 10-2 for every word in a corpus, use that table to set up a neural network
like the one shown in Figure 10-1, and then train that neural network to find
numeric vectors that represent every word.

The word2vec model is popular because it can create numeric vectors for
any words, and those vectors can be used for many useful applications. One
reason that word2vec is popular is that we can train a word2vec model by
using only raw text as input; we don’t need to annotate or label any words
before training the model and getting our word vectors. So, even someone
who doesn’t speak English can create word vectors and reason about them
by using the word2vec approach.

If this sounds complex, don’t worry. Next, we’ll go through code for
working with these kinds of vectors, and you’ll see that although the ideas
and theory of word2vec are complex, the code and applications can be
straightforward and simple. For now, try to feel comfortable with the basic
overall idea of what we’ve discussed so far: if we create data about which
words appear near each other in natural language, we can use that data to
create vectors that allow us to quantify the similarity of any pair of words.
Let’s continue with some code, where we can see how to use these numeric
vectors for detecting plagiarism.

Analyzing Numeric Vectors in word2vec

Not only has someone already created the word2vec model, but they’ve
also already done all its hard work for us: written the code, calculated the
vectors, and published all of it online for us to download anytime for free.
In Python, we can use the Gensim package to access word vectors for many
English words:

import gensim.downloader as api

The Gensim package has a downloader that allows us to access many
NLP models and tools just by using the load() method. You can load one
such collection of vectors in one line as follows:

vectors = api.load('word2vec-google-news-300')

This code loads a collection of word vectors that was created from a
corpus of news texts containing about 100 billion words. Essentially,
someone got the information that would be in a table like our Table 10-2,
but with thousands more words in it. They obtained these words and
probabilities from real news sources written by humans. Then they used
that information to create a neural network like the one in Figure 10-1—
again, with thousands more words in it. They trained this neural network
and found vectors for every word in their corpus.

We’ve just downloaded the vectors they calculated. One reason we
expect these vectors to be useful is that the text corpus used to create these
vectors was large and diverse, and large, diverse text data sources tend to
lead to higher accuracy in NLP models. We can look at the vector
corresponding to any word as follows:

print(vectors['sword'])

Here, we print out the vector for the word sword. The output you’ll see is
a vector with 512 numeric elements. Word vectors like this one, which
represents the word sword according to the model we downloaded, are also
called embeddings, because we’ve successfully embedded a word in a
vector space. In short, we’ve converted a word to a vector of numbers.

You’ll notice that this 512-element vector for sword is not the same as the
vector we used for sword previously in the chapter, which was (10, 1, 5, 1).

This vector is different from our vector for a few reasons. First, this vector
uses a different corpus than the one we used, so it will have different
probabilities listed in its version of Table 10-2. Second, the creators of this
model decided to find vectors with 512 elements instead of 4 elements as
we did, so they get more vector elements. Third, their vectors were adjusted
to have values close to 0, while ours were not. Every corpus and every
neural network will lead to slightly different results, but if we’re using a
good corpus and a good neural network, we expect the same qualitative
result: vectors that represent words and enable us to detect plagiarism (and
do many other things).

After downloading these vectors, we can work with them just like any
other Python object. For example, we can calculate distances between our
word vectors, as follows:

print(euclidean(vectors['sword'],vectors['knife']))
print(euclidean(vectors['sword'],vectors['herring']))
print(euclidean(vectors['car'],vectors['van']))

Here, we’re doing the same Euclidean distance calculations that we did
before, but instead of calculating distances with the vectors in Equation 10-
1, we’re doing calculations with the vectors we downloaded. When you run
these comparisons, you’ll see the following outputs:

>>> print(euclidean(vectors['sword'],vectors['knife']))
3.2766972
>>> print(euclidean(vectors['sword'],vectors['herring']))
4.9384727
>>> print(euclidean(vectors['car'],vectors['van']))
2.608656

You can see that these distances make sense: the vector for sword is
similar to the vector for knife (they have distance about 3.28 from each
other), but it’s different from the vector for herring (they have distance
about 4.94 from each other, much larger than the difference between sword
and knife). You can try the same calculation for any other pairs words that
are in the corpus, like car and van as well. You can compare differences
between pairs of words to find out which pairs have the most and the least
similar meanings.

Euclidean distance is not the only distance metric people use to compare
word vectors. Using cosine similarity measurements is also common, just as
we did in Chapter 9. Remember that we used this code to calculate cosine
similarities:

def dot_product(vector1,vector2):
 thedotproduct=np.sum([vector1[k]*vector2[k] for k in rang
e(0,len(vector1))])
 return(thedotproduct)

def vector_norm(vector):
 thenorm=np.sqrt(dot_product(vector,vector))
 return(thenorm)

def cosine_similarity(vector1,vector2):
 thecosine=0
 thedotproduct=dot_product(vector1,vector2)
 thecosine=thedotproduct/(vector_norm(vector1)*vector_norm
(vector2))
 thecosine=np.round(thecosine,4)
 return(thecosine)

Here we define a function called cosine_similarity() to check the
cosine of the angle between any two vectors. We can check some cosine
similarities between vectors as follows:

print(cosine_similarity(vectors['sword'],vectors['knife']))
print(cosine_similarity(vectors['sword'],vectors['herring']))
print(cosine_similarity(vectors['car'],vectors['van']))

When you run this snippet, you’ll see the following results:

>>> print(cosine_similarity(vectors['sword'],vectors['knif
e']))
0.5576
>>> print(cosine_similarity(vectors['sword'],vectors['herrin
g']))
0.0529
>>> print(cosine_similarity(vectors['car'],vectors['van']))
0.6116

You can see that these metrics are doing exactly what we want: they give
us lower values for words that we perceive as different and higher values

for words that we perceive as similar. Even though your laptop doesn’t
“speak English,” just by analyzing a corpus of natural language text, it’s
able to quantify exactly how similar and exactly how different distinct
words are.

Manipulating Vectors with Mathematical Calculations
One famous illustration of the power of word2vec comes from an analysis
of the words king and queen. To see this illustration, let’s start by getting
the vectors associated with some English words:

king = vectors['king']
queen = vectors['queen']
man = vectors['man']
woman = vectors['woman']

Here, we define some vectors associated with several words. As humans,
we know that a king is a male head of a monarchy and a queen is a female
head of a monarchy. We might even express the relationship between the
words king and queen as follows:

king – man + woman = queen

Starting with the idea of a king, and taking away from that the idea of a
man, then adding to that the idea of a woman, we end up with the idea of a
queen. If we’re thinking about just the world of words, this equation might
seem ridiculous, since it’s typically not possible to add and subtract words
or ideas in this way. However, remember that we have vector versions of
each of these words, so we can add and subtract vectors from each other
and see what we get. Let’s try to add and subtract the vectors corresponding
to each of these words in Python:

newvector = king-man+woman

Here, we take our king vector, subtract our man vector, add our woman
vector, and define the result as a new variable called newvector. If our
additions and subtractions do what we want them to, our newvector should
capture a specific meaning: the idea of a king without any attributes of a
man, but with the added attributes of a woman. In other words, even though

the newvector is a sum of three vectors, none of which are the vector for
queen, we expect their sum to be close to, or equal to, the vector for queen.
Let’s check the difference between our newvector and our queen vector to
see whether this is the case:

print(cosine_similarity(newvector,queen))
print(euclidean(newvector,queen))

We can see that our newvector is similar to our queen vector: their cosine
similarity is 0.76, and their Euclidean distance is 2.5. We can compare this
to the differences between other familiar pairs of words:

print(cosine_similarity(vectors['fish'],vectors['herring']))
print(euclidean(vectors['fish'],vectors['herring']))

You should see that king – man + woman is more similar to queen than
fish is to herring. Our mathematical calculations with the words’ vectors
lead to exactly the results we expect based on what we know about the
words’ linguistic meanings. This demonstrates the usefulness of these
vectors: we can not only compare them to find similarities between pairs of
words but also manipulate them through addition and subtraction to add and
subtract concepts. The ability to add and subtract these vectors, and get
results that make sense, is more evidence that these vectors are reliably
capturing the meanings of their associated words.

Detecting Plagiarism with word2vec
Let’s go back to the plagiarism scenario from earlier in the chapter.
Remember that we introduced the following two sentences as an example of
plagiarism:
The trouble with having an open mind, of course, is that people will insist
on coming along and trying to put things in it. [original sentence]
The problem with having an open mind is that people will insist on
approaching and trying to insert things into your mind. [plagiarized
sentence]

Since these two sentences differ in a few places, a naive plagiarism
checker that looks for exact matches won’t detect plagiarism here. Instead

of checking for exact matches for every character of both sentences, we
want to check for close matches between the meanings of each word. For
words that are identical, we’ll find that they have 0 distance between them:

print(cosine_similarity(vectors['the'],vectors['the']))
print(euclidean(vectors['having'],vectors['having']))

The results of this are not surprising. We find that a word’s vector has
perfect (1.0) cosine similarity with itself and a word’s vector has 0
Euclidean distance from itself. Every word is equal to itself. But remember,
wily plagiarists are paraphrasing, not using the exact same words as
published texts. If we compare words that are paraphrased, we expect that
they’ll be similar to the words of the original, but not exactly the same. We
can measure the similarity of potentially paraphrased words as follows:

print(cosine_similarity(vectors['trouble'],vectors['proble
m']))
print(euclidean(vectors['come'],vectors['approach']))
print(cosine_similarity(vectors['put'],vectors['insert']))

You’ll see the following results from this code snippet:

>>> print(cosine_similarity(vectors['trouble'],vectors['probl
em']))
0.5327
>>> print(euclidean(vectors['come'],vectors['approach']))
2.9844923
>>> print(cosine_similarity(vectors['put'],vectors['inser
t']))
0.3435

This snippet compares the words of the plagiarized text and the words of
the original text. The results show close matches in almost every case:
either a relatively small Euclidean distance or a relatively high cosine
similarity. If the individual words of a student’s sentence are all close
matches to the individual words of a published sentence, that’s good
evidence of plagiarism, even if there are few or no exact matches.
Importantly, we can check for these close matches automatically, not based
on slow, costly human judgment, but based on data and quick Python
scripts.

Checking for close matches for all the individual words in sentences is a
reasonable way to start detecting plagiarism. However, it’s not perfect. The
main problem is that so far, we’ve learned to evaluate only individual words
instead of full sentences. We can think of sentences as collections or
sequences of individual words. But in many cases, it will be better to have a
technique that can evaluate meanings and similarities for entire sentences
simultaneously, treating sentences as individual units instead of only as
collections of words. For that, we’ll turn to a powerful new approach.

Using Skip-Thoughts
The skip-thoughts model is an NLP model that uses data and neural
networks to convert entire sentences to numeric vectors. It’s quite similar to
word2vec, but instead of converting individual words one at a time to
vectors, we convert entire sentences to vectors as units.

The theory behind skip-thoughts is similar to the theory behind
word2vec: you take a natural language corpus, find which sentences tend to
appear near each other, and train a neural network that can predict which
sentences are expected to appear before or after any other sentence. For
word2vec, we saw an illustration of a neural network model in Figure 10-1.
For skip-thoughts, a similar illustration is shown in Figure 10-2.

Figure 10-2: We use the skip-thoughts model to predict which sentences appear near each
other.

Figure 10-2 is based on the model from the 2015 paper titled “Skip-
Thought Vectors” by Ryan Kiros and colleagues (https://arxiv.org/pdf/1506.
06726.pdf). You can see that the sentence on the left of the figure is taken as

https://arxiv.org/pdf/1506.06726.pdf

the input. This sentence is a sequence of individual words, but all the words
are considered together as a single unit. The skip-thoughts model attempts
to find a vector representation of this sentence that, when used as an input
in a neural network, can predict sentences that are most likely to come
before and after it (including the sentences on the right of Figure 10-2). Just
as word2vec is based on which individual words are expected to be near
other words, skip-thoughts is based on predicting the full sentences that are
near other sentences. You don’t need to worry about the theory too much;
just try to remember that skip-thoughts is a way to encode natural language
sentences as vectors by calculating probabilities of other sentences
appearing nearby.

Just as with word2vec, writing code for any of this ourselves is not
necessary. Instead, we’ll turn to the Universal Sentence Encoder (USE).
This tool converts sentences into vectors, using the idea of skip-thoughts to
find the vectors (plus other advanced technical methods). We’re going to
use the vector outputs of the USE for plagiarism detection, but USE vectors
can also be used for chatbot implementations, image tagging, and much
more.

The code for the USE is not hard to work with, because someone else has
written it for us. We can start by defining sentences that we want to analyze:

Sentences = [
 "The trouble with having an open mind, of course, is that
people will insist on coming along and trying to put things i
n it.",\
 "The problem with having an open mind is that people will
insist on approaching and trying to insert things into your m
ind.",\
 "To be or not to be, that is the question",\
 "Call me Ishmael"
]

Here we have a list of sentences, and we want to convert each into a
numeric vector. We can import code someone else has written to do this
conversion:

import tensorflow_hub as hub
embed = hub.load("https://tfhub.dev/google/universal-sentence
-encoder-large/5")

The tensorfow_hub module allows us to load the USE from an online
repository. The USE is a big model, so don’t panic if loading it into your
Python session takes a few minutes or more. When we load it, we save it as
a variable called embed. Now that we have the USE in our Python session,
we can create word embeddings (vectors) with one simple line of code:

embeddings = embed(Sentences)

Our embeddings variable contains vectors that represent each of the
sentences in our Sentences list. You can look at the vector for the first
sentence by checking the first element of the embeddings variable as
follows:

print(embeddings[0])

When you run this snippet, you’ll see a numeric vector with 512
elements, the first 16 of which are shown here:

>>> print(embeddings[0])
tf.Tensor(
[9.70209017e-04 -5.99743128e-02 -2.84200953e-03 7.49062840e
-03
 7.74949566e-02 -1.00521010e-03 -7.75496066e-02 4.12207991e
-02
 -1.55476958e-03 -1.11693323e-01 2.58275736e-02 -1.15299867e
-02
 -3.84882478e-05 -4.07184102e-02 3.69430222e-02 6.66357949e
-02

This is the vector representation of the first sentence in your list—not the
individual words in the sentence, but the sentence itself. Just as we did with
our word2vec vectors, we can calculate the distance between any two of our
sentence vectors. In this case, the distances between vectors will represent
the degree of difference between the overall meanings of two sentences.
Let’s check the distance between our first two sentences as follows:

print(cosine_similarity(embeddings[0],embeddings[1]))

We can see that the cosine similarity is about 0.85—indicating that the
first two sentences in our Sentences list are quite similar to each other. This

is evidence that the student’s sentence (the second one in our Sentences
list) is plagiarized from Pratchett’s sentence (the first one in our Sentences
list). By contrast, we can check distances between other vectors and see that
they’re not quite so similar. For example, if you run
print(cosine_similarity(embeddings[0],embeddings[2])), you can
see that the cosine similarity of these two sentences is about 0.02, indicating
that these sentences are almost as different as it’s possible for two sentences
to be. This is evidence that Pratchett didn’t plagiarize Hamlet. If you run
print(cosine_similarity(embeddings[0],embeddings[3])), you can
see that the cosine similarity of these two sentences is about –0.07, another
low similarity score, indicating that Pratchett also didn’t plagiarize Moby
Dick.

You can see that checking the distances between the meanings of any two
sentences is straightforward. Your plagiarism detector can simply check for
the cosine similarity (or Euclidean distance) between a student’s work and
previously published sentences, and if the similarities appear to be large (or
the Euclidean distances appear to be too small), you can take it as evidence
that the student is guilty of plagiarism.

Topic Modeling
To finish the chapter, let’s introduce one final business scenario and talk
about how we can combine NLP tools with tools from previous chapters to
deal with it. In this scenario, imagine that you run a forum website. Your
site has become so successful that you can no longer read all the threads
and conversations yourself, but you still want to understand the topics
people are writing about on your site so you can understand who your users
are and what they care about. You want to find a reliable, automated way to
analyze all the text on your site and discover the main topics being
discussed. This goal, called topic modeling, is common in NLP.

To start, let’s take a collection of sentences that might have appeared on
your site. A successful forum website could receive thousands of comments
every second, but we’ll start by looking at a small sample of the full data,
just eight sentences:

Sentences = [
 "The corn and cheese are delicious when they're roasted t
ogether",
 "Several of the scenes have rich settings but weak charac
terization",
 "Consider adding extra seasoning to the pork",
 "The prose was overwrought and pretentious",
 "There are some nice brisket slices on the menu",
 "It would be better to have a chapter to introduce your m
ain plot ideas",
 "Everything was cold when the waiter brought it to the ta
ble",
 "You can probably find it at a cheaper price in bookstore
s"
]

Just as you did before, you can calculate the vectors, or embeddings, for
all these sentences:

embeddings = embed(Sentences)

Next, we can create a matrix of all our sentence embeddings:

arrays=[]
for i in range(len(Sentences)):
 arrays.append(np.array(embeddings[i]))

sentencematrix = np.empty((len(Sentences),512,), order = "F")

for i in range(len(Sentences)):
 sentencematrix[i]=arrays[i]

import pandas as pd
pandasmatrix=pd.DataFrame(sentencematrix)

This snippet starts by creating a list called arrays and adding all the
sentence vectors to the list. Next, it creates a matrix called sentencematrix.
This matrix is just your sentence vectors stacked on top of each other, with
one row for each sentence vector. Finally, we convert this matrix into a
pandas dataframe, so it’s easier to work with. The final result, called
pandasmatrix, has eight rows; each row is a sentence vector for one of our
eight sentences.

Now we have a matrix that contains our sentence vectors. But getting our
vectors isn’t enough; we need to decide what to do with them. Remember
that our goal is topic modeling. We want to understand the topics that
people are writing about and which sentences relate to which topics. We
have several ways to accomplish this. One natural way to accomplish topic
modeling is by using clustering, something we already discussed in Chapter
7.

Our clustering approach is simple: we’ll take our matrix of sentence
vectors as our input data. We’ll apply clustering to determine the natural
groups that exist in the data. We’ll interpret the groups (clusters) that we
find as the distinct topics being discussed on your forum website. We can
do this clustering as follows:

from sklearn.cluster import KMeans
m = KMeans(2)
m.fit(pandasmatrix)

pandasmatrix['topic'] = m.labels_

pandasmatrix['sentences']=Sentences

You can see that the clustering requires only a few lines of code. We
import the KMeans code from the sklearn module. We create a variable
called m and then use its fit() method to find two clusters for our matrix
(the pandasmatrix). The fit() method uses Euclidean distance
measurements with our sentence vectors to find two clusters of documents.
The two clusters it finds are what we will take to be the two main topics of
our collection of sentences. After we find these clusters, we add two new
columns to our pandasmatrix: first, we add the labels that are the result of
our clustering (in the topic variable), and second, we add the actual
sentences that we’re trying to cluster. Let’s look at the results:

print(pandasmatrix.loc[pandasmatrix['topic']==0,'sentences'])
print(pandasmatrix.loc[pandasmatrix['topic']==1,'sentences'])

This snippet prints out two sets of sentences: first, sentences that are
labeled as belonging to cluster 0 (sentences on rows with the topic variable
equal to 0) and second, sentences that are labeled as belonging to cluster 1

(sentences on rows with the topic variable equal to 1). You should see the
following results:

>>> print(pandasmatrix.loc[pandasmatrix['topic']==0,'sentence
s'])
0 The corn and cheese are delicious when they're...
2 Consider adding extra seasoning to the pork
4 There are some nice brisket slices on the menu
6 Everything was cold when the waiter brought it...
Name: sentences, dtype: object
>>> print(pandasmatrix.loc[pandasmatrix['topic']==1,'sentence
s'])
1 Several of the scenes have rich settings but w...
3 The prose was overwrought and pretentious
5 It would be better to have a chapter to introd...
7 You can probably find it at a cheaper price in...
Name: sentences, dtype: object

You can see that this method has identified two clusters in our data, and
they’ve been labeled as cluster 0 and cluster 1. When you look at the
sentences that have been classified as cluster 0, you can see that many seem
to be discussions about food and restaurants. When you look at cluster 1,
you can see that it seems to consist of critiques of books. At least according
to this sample of eight sentences, these are the main topics being discussed
on your forum, and they’ve been identified and organized automatically.

We’ve accomplished topic modeling, using a numeric method
(clustering) on non-numeric data (natural language text). You can see that
USE, and word embeddings in general, can be useful in many applications.

Other Applications of NLP
One useful application of NLP is in the world of recommendation systems.
Imagine that you run a movie website and want to recommend movies to
your users. In Chapter 9, we discussed how to use interaction matrices to
make recommendations based on comparisons of transaction histories.
However, you could also make a recommendation system based on
comparisons of content. For example, you could take plot summaries of
individual movies and use the USE to get sentence embeddings for each
plot summary. Then you could calculate distances between plot summaries

to determine the similarity of various movies and, anytime a user watches a
move, recommend that that user also watch movies with the most similar
plots. This is a content-based recommendation system.

Another interesting application of NLP is sentiment analysis. We
encountered sentiment analysis a little already in Chapter 6. Certain tools
can determine whether any given sentence is positive, negative, or neutral
in its tone or the sentiment it expresses. Some of these tools rely on word
embeddings like those we’ve covered in this chapter, and others don’t.
Sentiment analysis could be useful for a business that receives thousands of
emails and messages every day. By running automatic sentiment analysis on
all of its incoming emails, a business could determine which customers
were the most happy or unhappy, and potentially prioritize responses based
on customer sentiment.

Many businesses today deploy chatbots on their websites—computer
programs that can understand text inputs and answer questions. Chatbots
have varying levels of sophistication, but many rely on some kind of word
embeddings like the word2vec and skip-thought methods described in this
chapter.

NLP has many other possible applications in business. Today, law firms
are trying to use NLP to automatically analyze documents and even
automatically generate or at least organize contracts. News websites have
tried to use NLP to automatically generate certain kinds of formulaic
articles, like recaps of sports games. There’s no end to the possibilities of
NLP as the field itself continues to develop. If you know some powerful
methods like word2vec and skip-thoughts as a starting point, there’s no
limit to the useful applications you can create.

Summary
In this chapter, we went over natural language processing. All of the
applications of NLP that we discussed relied on embeddings: numeric
vectors that accurately represent words and sentences. If you can represent
a word numerically, you can do math with it, including calculating
similarities (which we did for plagiarism detection) and clustering (which

we did for topic modeling). NLP tools might be difficult to use and master,
but they can be astonishing in their capabilities.

In the next chapter, we’ll shift gears and wrap up the book by going over
some simple ideas about working with other programming languages that
are important for data science.

11
DATA SCIENCE IN OTHER

LANGUAGES

All of our business solutions so far have
had one thing in common: they’ve used
only Python. Python is standard in the
world of data science, but it’s not the
only language out there. The best data

scientists are versatile and capable of writing code in
multiple languages. This chapter contains a short
introduction to both Structured Query Language
(SQL) and R, two common languages that every
good data scientist should know. This chapter isn’t a
comprehensive overview of either language. It’s only
a basic introduction that will enable you to recognize
and write a few lines of SQL or R code.

We’ll start the chapter by introducing a business scenario. Then we’ll go
over some simple SQL code to set up a database and manipulate data within
it. We’ll go on to discuss R and how to use it to perform simple operations
and linear regressions. Instead of spending a lot of effort setting up
environments for running SQL and R commands, you’ll learn how to run
SQL and R commands from within a Python session.

Winning Soccer Games with SQL
Imagine that you receive a job offer to be the manager of a European soccer
team. This may seem like more of a sports scenario than a business
scenario, but remember that sports is a business, one with billions of dollars
of revenues worldwide every year. Teams hire managers to maximize their
revenues and profits and make sure everything runs well.

One of the most important things every team needs to do from a business
perspective is win games—teams that win often earn higher profits than
teams that tend to lose. As a good data scientist, you know exactly what to
do first to set yourself up for success in your new job: you start diving into
and exploring data, and trying to learn what it takes to win soccer games.

Reading and Analyzing Data
You can download several files that contain data related to European soccer
from the following URLs: https://bradfordtuckfield.com/players.csv, https://
bradfordtuckfield.com/games.csv, and https://bradfordtuckfield.com/shots.c
sv. The first file, players.csv, contains a list of professional soccer players,
including their names and unique ID numbers. The next file, games.csv,
contains detailed statistics related to thousands of individual soccer games,
including which teams played, the number of goals scored, and much more.
The third file, shots.csv, is the largest. It contains information about
hundreds of thousands of individual shots taken during games, including
who took the shot, which foot the player used, where the shot was taken,
and the result of the shot (whether it was blocked, missed, or a goal).

If you can do rigorous analysis of this data, you can get a deep
understanding of European soccer and have much of the most important
knowledge you’ll need to succeed as a manager. (The original sources of
this public domain data include https://www.kaggle.com/technika148/footba
ll-database, https://understat.com, and https://www.football-data.co.uk.)

Let’s start by reading these files. We’ll use Python here, but don’t worry,
we’ll be using SQL soon:

import pandas as pd
players=pd.read_csv('players.csv', encoding = 'ISO-8859-1')

https://bradfordtuckfield.com/players.csv
https://bradfordtuckfield.com/games.csv
https://bradfordtuckfield.com/shots.csv
https://www.kaggle.com/technika148/football-database
https://understat.com/
https://www.football-data.co.uk/

games=pd.read_csv('games.csv', encoding = 'ISO-8859-1')
shots=pd.read_csv('shots.csv', encoding = 'ISO-8859-1')

So far, this should look familiar. It’s standard Python code for reading
.csv files. After importing pandas, we read in datasets that have information
about European soccer. You can see that we read all three datasets that we’ll
be working with here: players, which contains data about individual
players; games, which contains data about individual games; and shots,
which contains data about shots that players took during games.

Let’s look at the first few rows of each of these datasets:

print(players.head())
print(games.head())
print(shots.head())

The players table has only two columns, and when you run
print(players.head()), you should see the top five rows of both of them:

 playerID name
0 560 Sergio Romero
1 557 Matteo Darmian
2 548 Daley Blind
3 628 Chris Smalling
4 1006 Luke Shaw

The shots data is more detailed. When you run print(shots.head()),
you should see its top five rows:

 gameID shooterID assisterID ... xGoal positionX pos
itionY
0 81 554 NaN ... 0.104347 0.794
0.421
1 81 555 631.0 ... 0.064342 0.860
0.627
2 81 554 629.0 ... 0.057157 0.843
0.333
3 81 554 NaN ... 0.092141 0.848
0.533
4 81 555 654.0 ... 0.035742 0.812
0.707

You can see that by default, the pandas package has omitted some
columns that don’t fit in the output console. You can see a list of all the
columns in the dataset by running print(shots.columns), which will show
you the following list:

Index(['gameID', 'shooterID', 'assisterID', 'minute', 'situat
ion',
 'lastAction', 'shotType', 'shotResult', 'xGoal', 'posi
tionX',
 'positionY'],
 dtype='object')

We have detailed data about each shot. We know the foot that was used to
shoot (in the shotType column), the results of the shot (in the shotResult
column), and the position at which it was taken (in the positionX and
positionY columns). But one thing that’s not stated explicitly in this data is
the name of the player who took the shot. All we have is the shooterID, a
number. If we want to find out the name of the person who took the shot,
we have to look it up: find the shooterID number in the shots data, then
look at the players dataset to find the name of the player whose ID
matches that shooterID number.

The first shot, for example, was taken by the player with shooterID 554.
If we want to know the name of that player, we need to look at the players
dataset. If you scroll through the players data, or if you run
print(players.loc[7,'name']) in Python, you can see that this player is
Juan Mata.

Getting Familiar with SQL
Let’s go over some SQL code that will enable you to do these kinds of
lookups. We’ll start by looking at SQL code, and we’ll discuss how to run
the code later. Individual SQL commands are usually called SQL queries.
The following code is a SQL query that will show you the entire players
dataset:

SELECT * FROM playertable;

Often, short SQL queries are simple to interpret as long as you know
English. In this snippet, SELECT tells us that we’re selecting data. The FROM
playertable text at the end of the query means that we’ll be selecting data
from the table called playertable. Between SELECT and FROM playertable
is where we’re supposed to specify the columns we want to select from the
playertable data. The asterisk (*) is a shortcut that means that we want to
select all the columns of the playertable table. The semicolon (;) tells
SQL that we’ve finished this particular query.

So, this SQL query selects our entire players table. If you don’t want to
select all the columns of the data, you can replace the * with the names of
one or more columns. For example, both of the following are also valid
SQL queries:

SELECT playerID FROM playertable
SELECT playerID, name FROM playertable

The first query will select only the playerID column from the
playertable. The second will select both the playerID and the name
columns from the playertable table—the output we get from specifying
that we want both columns by name is the same as the output we get from
writing an asterisk.

You may have noticed that our SQL queries use all caps for their
keywords. This is a common practice when writing SQL queries, though it’s
not technically required in most environments. We’ll do it to follow
convention.

Setting Up a SQL Database
If you paste the preceding SQL queries directly into a Python session, they
won’t run correctly; they’re not Python code. If you’re running SQL
frequently, you will probably want to set up an environment that’s designed
for editing and running SQL queries. However, this is a Python book, and
we don’t want to get you bogged down in the details of setting up a SQL
environment. Instead, let’s go over a few steps that will allow you to run
SQL queries directly in Python. You can start by running the following
commands in Python:

import sqlite3
conn = sqlite3.connect("soccer.db")
curr = conn.cursor()

Here, we import the SQLite3 package, which allows us to run SQL
queries in Python. SQL is a language that’s designed to work with
databases, so we need to use SQLite3 to connect to a database. On the
second line, we tell SQLite3 to connect to a database called soccer.db. You
probably don’t have a database on your computer called soccer.db, so
there may be nothing for SQLite3 to connect to. That’s all right, because the
SQLite3 module is very helpful: when we specify a database we want to
connect to, it will connect to the database if it exists, and if we try to
connect to a database that doesn’t exist, it will create the database for us and
then connect to it.

Now that we’re connected to our database, we need to define a cursor to
access this database. You can think of this cursor as similar to the cursor
you use on your computer; it helps you select and manipulate objects. If
that’s not clear to you now, don’t worry. The way we use this cursor will
become clearer later.

Now that we have a database, we want to fill it up. Usually, a database
contains a collection of tables, but our soccer.db database is currently
empty. The three pandas dataframes we’ve worked with so far can all be
saved to our database as tables. We can add the players dataframe to our
database with one line:

players.to_sql('playertable', conn, if_exists='replace', inde
x = False)

Here, we use the to_sql() method to push our players dataframe to the
database’s playertable table. We use the connection we created before,
called conn, which ensures that the table gets pushed to our soccer.db
database. Now the players data is stored in our database instead of being
accessible only as a pandas dataframe in our Python session.

Running SQL Queries

We’re finally ready to run our SQL query on our data. This is Python code
that will run our SQL query:

curr.execute('''
SELECT * FROM playertable
 ''')

You can see that the cursor we created, curr, is finally useful. The cursor
is the object we’ll use to execute SQL queries on our data. In this case, we
execute a simple query that selects the entire table called playertable. It’s
important to note that this has selected the data, but it hasn’t displayed it. If
we want to actually see the data that we selected, we need to print it to our
console:

for row in curr.fetchall():
 print(row)

The cursor has selected the data and pushed it to your Python session’s
memory, but we need to use the fetchall() method to access this data.
When you run fetchall(), it selects a list of rows. That’s why we print
each row individually in a for loop. The playertable table has thousands
of rows, and you may not want to print all of them to your screen at once.
You can limit the number of rows returned by your query by adding a LIMIT
clause:

curr.execute('''
SELECT * FROM playertable LIMIT 5
 ''')
for row in curr.fetchall():
 print (row)

Here, we run the same code as before, adding only seven characters:
LIMIT 5. By adding LIMIT 5 to the SQL query, we limit the rows that are
returned to only the first five. Since we get only the top five rows in the
table, printing them to the screen becomes easier. This shows us the same
data as we see when we run print(players.head()) when we’re using
pandas in Python. But be careful: in this case, LIMIT 5 will give us the top
five rows, but in other database environments, it will give you a random

five rows. You can depend on getting five rows from the LIMIT 5 clause,
but you can’t always be sure which five you’ll get.

We often want only particular subsets of our data. For example, what if
we want to find the player with a particular ID:

curr.execute('''
SELECT * FROM playertable WHERE playerID=554
 ''')
for row in curr.fetchall():
 print (row)

Here, we run much of the same code, but we add a WHERE clause. Instead
of selecting the whole table, we select only rows for which a particular
condition is true. The condition we’re interested in is playerID=554. The
output shows us one row, and that row tells us that the player with playerID
equal to 554 is named Juan Mata. This tells us what we wanted to know,
that Juan Mata is the person who took the first shot recorded in the data.
You should be starting to notice a pattern here: when creating SQL queries,
we start with a short query that selects a whole table, and then we add
clauses to the query (like the LIMIT clause or WHERE clause we added here)
to refine the results we get. SQL queries consist of many clauses, each of
which has an effect on the data the query selects.

We can use WHERE clauses to select all sorts of conditions. For example,
we can use a WHERE clause to select the ID of a player with a particular
name:

curr.execute('''
SELECT playerID FROM playertable WHERE name="Juan Mata"
 ''')
for row in curr.fetchall():
 print (row)

We can also use the AND operator to specify multiple conditions:

curr.execute('''
SELECT * FROM playertable WHERE playerID>100 AND playerID<200
 ''')
for row in curr.fetchall():
 print (row)

In this case, we select the rows of the playertable that satisfy two
conditions simultaneously: both playerID>100 and playerID <200.

You may want to look up a name in a table, but feel uncertain about the
spelling. In that case, you can use the LIKE operator:

curr.execute('''
SELECT * FROM playertable WHERE name LIKE "Juan M%"
 ''')
for row in curr.fetchall():
 print (row)

In this case, we’re using the percent character (%) as a wildcard, meaning
that it stands for any collection of characters. You may notice that this is
similar to the way we used the asterisk earlier in the query (SELECT *). We
use * to mean all columns and % to mean any possible character. But though
these uses are similar (both representing unknown values), they’re not
interchangeable, and there are two important differences. First, the * can be
used as part of a query itself, while the % can be used only as part of a string
of characters. Second, the * is used to refer to columns, and the % is used to
refer to other characters.

When you look at the results of this code, you can see that we’ve found
several players whose names start with Juan M:

(554, 'Juan Mata')
(2067, 'Juan Muñoz')
(4820, 'Juan Manuel Falcón')
(7095, 'Juan Musso')
(2585, 'Juan Muñiz')
(5009, 'Juan Manuel Valencia')
(7286, 'Juan Miranda')

If what we’ve done so far feels familiar, it should. The string we searched
for, Juan M%, is a regular expression, just like the regular expressions we
covered in Chapter 8. You can see that every programming language has its
own rules and syntax, but huge overlaps occur across these languages. Most
languages allow the use of regular expressions to search for text. Many
languages allow you to create tables and select their top five rows. Often,
when you learn a new programming language, you’re not learning totally

new capabilities, but rather learning to do things you’ve already done in
new ways.

You can create and work with tables by using Python and pandas, as well
as SQL. The advantage of using SQL is that in many cases, SQL can be
faster, more reliable, and more secure than pandas. It also may have
compatibility with some programs that do not allow you to use Python and
pandas.

Combining Data by Joining Tables
So far, we’ve worked with our players table. But we can also work with our
other tables. Let’s read in our games table, push it to our soccer database,
and then select its top five rows:

games=pd.read_csv('games.csv', encoding = 'ISO-8859-1')

games.to_sql('gamestable', conn, if_exists='replace', index =
False)

curr.execute('''
SELECT * FROM gamestable limit 5
 ''')

for row in curr.fetchall():
 print (row)

This snippet does everything we did previously with the players table:
reads it, converts it to a SQL database table, and selects rows from it. We
can do the same thing yet again, for our shots table:

shots=pd.read_csv('shots.csv', encoding = 'ISO-8859-1')

shots.to_sql('shotstable', conn, if_exists='replace', index =
False)

curr.execute('''
SELECT * FROM shotstable limit 5
 ''')

for row in curr.fetchall():
 print (row)

Now, our database has three tables: one for players, one for shots, and
one for games. This situation is a little new to us. Throughout most of this
book, we’ve had data conveniently gathered into a single table in each of
our chapters. However, the data you’re interested in could be spread across
several tables. In this case, we already noticed that our shots table has
detailed information about individual shots, but it doesn’t have the name of
the player who took each shot. To find out the name of the player who took
a shot, we have to find the shooterID in the shots table and then look up
this ID number in the players table.

We have to do matching and lookups across multiple tables. If we have to
do this only once or twice, manually scrolling through tables is probably not
a big deal. But if we have to get the names of players who took thousands
of shots, using manual lookups over and over again will become extremely
time-consuming.

Instead, imagine if we could automatically combine the information in
these two tables. This is a natural specialty of SQL. We can see what we
need to do in Figure 11-1.

Figure 11-1: Joining two tables together, so lookups become easier and faster

You can see that if we join two tables together, we no longer have to look
at multiple tables to find all the information we need. Each row contains not
only the information from the shots table but also the shooter name from
the players table. We’re going to accomplish the joining illustrated in Figu
re 11-1 by using a SQL query:

SELECT * FROM shotstable JOIN playertable ON
shotstable.shooterID=playertable.playerID limit 5

Let’s look at this snippet, one piece at a time. We start with SELECT *,
just like our previous SQL queries. Next, we have FROM shotstable,
indicating that we’ll be selecting from the table called shotstable.
However, that’s where the difference starts. We see shotstable JOIN
playertable, indicating that we’re not going to select only from the
shotstable, but instead want to join these two tables and select from the
combined table.

But how should they be joined? We need to specify the way to join these
two tables. Specifically, we’re going to join these tables by looking up
where the IDs match. Every place where the shotstable column called
shooterID is the same as the playertable column called playerID, we
know that our rows match, and we can join them together. Finally, we add
LIMIT 5, indicating that we want to see only the top five rows so the
quantity of output rows isn’t overwhelming.

We can run this SQL query in Python as follows:

curr.execute('''
SELECT * FROM shotstable JOIN playertable ON shotstable.shoot
erID=playertable.playerID limit 5
 ''')

for row in curr.fetchall():
 print(row)

Here, we run the SQL query explained previously on the tables in our
database. Our SQL query joins our tables together in the way shown in Figu
re 11-1. In that figure, you can see that for every shooter ID, we found the
player with a matching player ID and added that player’s name to the
matching row of the joined table. Our query does the same thing: since we
specify WHERE shotstable.shooterID=playertable.playerID, it will find
all matches between shooterID values (from the shotstable) and
playerID values (from the playertable). After finding those matches, it
will combine information from rows that match, and the final result will be
a joined table with more complete information.

After we run our query, we print out the rows that the query has returned.
Overall, we’ve followed the same process we followed before: executing a
query with the cursor, then fetching what we selected and printing it to the
console.

The output looks like this:

(81, 554, None, 27, 'DirectFreekick', 'Standard', 'LeftFoot',
'BlockedShot', 0.104346722364426, 0.794000015258789, 0.420999
984741211, 554, 'Juan Mata')
(81, 555, 631.0, 27, 'SetPiece', 'Pass', 'RightFoot', 'Blocke
dShot', 0.064342200756073, 0.86, 0.627000007629395, 555, 'Mem
phis Depay')
(81, 554, 629.0, 35, 'OpenPlay', 'Pass', 'LeftFoot', 'Blocked
Shot', 0.0571568161249161, 0.843000030517578, 0.3329999923706
05, 554, 'Juan Mata')
(81, 554, None, 35, 'OpenPlay', 'Tackle', 'LeftFoot', 'Missed
Shots', 0.0921413898468018, 0.848000030517578, 0.532999992370
605, 554, 'Juan Mata')
(81, 555, 654.0, 40, 'OpenPlay', 'BallRecovery', 'RightFoot',
'BlockedShot', 0.0357420146465302, 0.811999969482422, 0.70699
9969482422, 555, 'Memphis Depay')

You can see that this output shows the data we want: shots, combined
with information about the players who made the shots (their names are the
last element of each row). Joining tables in this way can be valuable to
enable advanced analyses like the ones we’ve done in previous chapters.

Joining tables may seem simple, but the process has many subtleties that
you should learn about if you want to become great at SQL. For example,
what happens if you have a shot with an ID that doesn’t appear in the
players table? Or, what if two players have the same ID—how will we
know which player took a shot that had their ID assigned to it? By default,
SQL performs joining with INNER JOIN. An inner join will return nothing if
no player ID matches a particular shooter ID; it will give you only rows
where it knows exactly which player took a shot. But SQL provides other
types of joins, and each uses different logic and follows different rules.

This is not a SQL book, so we won’t go into every detail of the language
and every type of join. When you study SQL more deeply, you’ll learn that
advanced SQL capabilities usually consist of more and more sophisticated
ways to select data and join tables. For now, you can feel proud that you’re

able to do basic SQL queries. You’re able to put data in a database, select
data from tables, and even join tables together.

Winning Soccer Games with R
R is another language that can be useful for a data science career. Let’s go
over how to run R commands that will help you with your soccer
management career. Just as we did with SQL, we can run our R commands
from within a Python session instead of worrying about setting up an R
environment. In many ways, R is similar to Python, so after gaining Python
skills for data science, you may find that picking up R skills is less
challenging.

Getting Familiar with R
Let’s start by looking at some R code. Just as we did with SQL queries,
we’ll start by looking at the R code before running it:

my_variable<-512
print(my_variable+12)

The first line defines a variable called my_variable. If we were writing
Python, the equivalent statement would be my_variable=512. In R, we use
<- instead of =, because in R, <- is the assignment operator—the collection
of characters used to define the values of variables. The <- characters are
meant to resemble an arrow pointing from right to left, indicating that the
number 512 is being pushed from the right to be assigned as the value of
my_variable. After we assign the variable, we can add to it, or print it out,
or do anything else we want with it. In our snippet, we print out the value of
our variable plus 12 by writing print(my_variable+12).

Just like when we were running SQL queries, you may wonder: How can
we run this R code? If you’d like, you can download R and set up an R
environment where this code can be run. But instead, we can run it from
within the comfort of our Python session, after some straightforward
preparation. Let’s start by importing a module we need:

from rpy2 import robjects

In this case, the rpy2 package will be helpful for running R commands
within a Python session. Now that we’ve imported our package, running R
code is a breeze:

robjects.r('''
my_variable<-512
print(my_variable+12)
''')

This is similar to what we did to run SQL code. We can use the
robjects.r() function to run any R code within a Python session. You can
see that the output shows 524, the result of the addition we did in the code.

So far, we’ve run simple R code, but nothing related to your soccer
management job. Let’s run R code related to our soccer data, as follows:

robjects.r('''
players<-read.csv('players.csv')
print(head(players))
''')

Here, the first line reads our players.csv file, using the read.csv()
command. We store the data in the players variable by using the same
assignment operator as before (<-). In the second line, we print the top few
rows of the data.

By looking at this R code, you can see some differences between R and
Python. In Python, we use pd.read_csv(), and in R, we use read.csv().
Both are functions for reading .csv files, but there are small differences in
the way they’re written. Similarly, in Python, we need to use
players.head() to get the top rows of the data. In R, we use
head(players). When we’re working with pandas datasets, the head()
method gives us the top five rows. But in R, the head() function gives the
top six rows. R and Python have many similarities, but they are not
identical.

We can read our other tables in the same way:

robjects.r('''
shots<-read.csv('shots.csv')

print(head(shots))
''')

This time, we read and print the top few rows of the shots data. We can
also print out the top few elements of particular columns of our data:

robjects.r('''
print(head(shots$minute))
print(head(shots$positionX))
''')

In R, the dollar sign ($) is used to refer to columns by name. This snippet
prints out the head (top six elements) of the minute and positionX columns
in our shots data. The minute column has the following top six elements:

[1] 27 27 35 35 40 49

These are the minutes at which the first six shots (in our data) were taken.
The first six elements of positionX are these:

[1] 0.794 0.860 0.843 0.848 0.812 0.725

These are the x-positions at which these first six shots (in our data) were
taken. Here, we use the term x-position to mean how far “down the field”
each shot was taken. One team’s goal has an x-position of 0, and the other
team’s goal has an x-position of 1, so the x-position tells us how close to the
opposing team’s goal a particular shot was taken.

Applying Linear Regression in R
Whenever we look at data, we can try to learn from it. One thing we might
want to learn is how shots from the beginning of the game are different
from shots at the end of the game. How does the time during the game
influence the position from which shots are being taken? Several
hypotheses could be true:
Offensive players could get more tired and desperate as a game progresses,
so they start to take shots from farther away from the goal (a lower x-
position).

Defensive players could get more tired and careless as a game progresses,
so players are able to take shots from closer to the goal (a higher x-
position).
Maybe neither of the first two hypotheses is true, or another pattern exists
in the relationship between the minutes of a game and the x-position of
shots.

To decide which of these hypotheses is true, we can try linear regression
in R:

robjects.r('''
shot_location_model <- lm(positionX~minute,data=shots)
print(summary(shot_location_model))
''')

Here, we use the lm() command to run a linear regression. This
regression attempts to find the relationship between the minute variable and
the positionX variable in our shots data. Just as we did in Chapter 2, we
want to look at the coefficients that are part of the output of every linear
regression. Remember that the coefficient can be interpreted as the slope of
a line. If we find a positive coefficient from this regression, we interpret
that to mean that people take shots that are closer to the goal later in the
game. If we find a negative coefficient, we interpret that to mean that
people take shots that are farther from the goal later in the game. When we
look at the output of our linear regression code, we see that it looks like
this:

Call:
lm(formula = positionX ~ minute, data = shots)

Residuals:
 Min 1Q Median 3Q Max
-0.84262 -0.06312 0.01885 0.06443 0.15716

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.414e-01 3.291e-04 2556.513 <2e-16 ***
minute 5.251e-05 5.944e-06 8.835 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
 1

Residual standard error: 0.09 on 324541 degrees of freedom
Multiple R-squared: 0.0002404, Adjusted R-squared: 0.000237
4
F-statistic: 78.05 on 1 and 324541 DF, p-value: < 2.2e-16

If you look in the Estimate column of this output, you can see that the
estimated coefficient for the minute variable is 5.251e-05. This is a
positive coefficient, so as games progress through time, we expect to see
shots that are (slightly) closer to the goal.

Using R to Plot Data
Now that we’ve performed our regression, we can draw a plot of our data,
together with the regression results:

robjects.r('''
png(filename='the_plot_chapter11.png')
plot(shots$minute,shots$positionX)
abline(shot_location_model)
dev.off()
''')

In the first line, we use the png() command. This tells R to open a file to
draw a plot on. We also have to specify a filename where we’ll write the
file. Next, we use the plot() command. We specify what we’ll put on the
x-axis first, and then we specify the y-axis. The abline() command is used
to draw a line for our regression output. Finally, we run dev.off(). This
command turns off the graphics device, meaning it tells R that we’ve
finished the plotting, and the file should be written to your computer’s
memory. After you run this snippet, you should be able to see the file saved
to your laptop; it should look like Figure 11-2.

Figure 11-2: The x-position of shots at each minute of thousands of soccer games, with a
regression line

If you have trouble finding the output file on your laptop, you can change
the filename argument in the preceding snippet. For example, you can write
png(filename='/home/Yossarian/Documents/plotoutput.png') to save
it to any specific location on your computer.

You can see a huge number of shots on this plot, and many are being
plotted right on top of one another. The regression line is barely visible—
you can see it poking out at the left and right of the plot close to where y is
about 0.85. It has a positive slope, but it’s only slightly positive; very little
pattern can be discerned in the shot locations by minute of soccer games.
This is something that you could have done with Python, using the code and
ideas from Chapter 2, but now you’re able to do it in another language as
well.

This one plot and one regression won’t make you a perfect soccer
manager yet, but it will give you information and context that will be

helpful as you study what it takes to win soccer games and help your team
succeed. Instead of relying on theories or hearsay, you have the skills of a
data scientist, so you can determine what works well in soccer games by
examining the data directly. After reading this chapter, you can examine
data and learn from it not only with Python but also with SQL and R.

We can do so much more with R; anything we’ve done with Python in
this book can also be done with R. In addition to plots and linear regression,
you could do supervised learning, k-means clustering, and much more. But
already, you know how to do a lot: you can read data, calculate a regression,
and draw a plot.

Gaining Other Valuable Skills
After you finish this book and close it, you’ll have some strong data science
skills. But you can always learn more. One thing you should consider is
gaining proficiency in even more programming languages. In addition to
Python, SQL, and R, there are many other programming languages that you
might want to learn, at least at a beginner or intermediate level. Here are
some other languages that you might consider learning:

C++
C++ is a high-performance language; code written in C++ is powerful and
fast. It tends to be harder to work with than Python.

Scala
Scala is used for working with big data—that is, datasets that have millions
or billions of rows.

Julia
Julia has been growing in popularity in recent years, gaining a reputation
for efficiency and the speed of mathematical calculations.

JavaScript

JavaScript is extremely common in web programming. It enables you to
create dynamic, interactive websites.

MATLAB
Short for matrix laboratory, MATLAB was designed for precision in
mathematical calculations, including matrix manipulation. It’s often used
for scientific computing, but only by people or institutions that can afford
its hefty price tag.

SAS, Stata, SPSS
These are proprietary statistics packages. Stata is in common use among
professional economists. SPSS, owned by IBM, is commonly used by some
social scientists. SAS is used by some businesses. Just like MATLAB, all of
these languages also have hefty price tags that often persuade people to use
free alternatives like Python, SQL, and R.

Besides these, many others exist. Some data scientists say that a data
scientist should be a better programmer than any statistician, and a better
statistician than any programmer. Speaking of statistics, you may want to
study the following topics in advanced statistics further:

Linear algebra
Many statistical methods like linear regression are, at heart, linear algebra
methods. When you read textbooks related to advanced data science or
advanced machine learning, you will see notation from linear algebra, and
linear algebra ideas like matrix inversion. If you can gain deep knowledge
of linear algebra, you’ll be better able to master these advanced topics.

Bayesian statistics
In recent decades, a set of statistical techniques known as Bayesian
statistics have become popular. Bayesian techniques allow us to reason
effectively about our levels of confidence about different ideas and how we
update our beliefs in the face of new information. They also allow us to use

our prior beliefs in our statistical inferences and reason carefully about the
uncertainty we have about statistical models.

Nonparametric statistics
Like Bayesian statistics, nonparametric methods allow us to reason about
data in new ways. Nonparametric methods are powerful because they
require us to make very few assumptions about data, so they’re robust and
applicable to all kinds of data, even data that isn’t “well behaved.”

Data science is about more than statistical theory. It’s also about
deploying technology. Here are some technical skills related to technology
deployment you will want to gain:

Data engineering
In most of the chapters of this book, we provided you clean data for
analysis. However, in many real-life scenarios, you’ll receive data that’s
messy, incomplete, badly labeled, constantly changing, or otherwise in need
of careful management. Data engineering is a set of skills for working with
big, unruly datasets in a careful and effective way. You may find yourself
working at a company that has data engineers on staff to clean and prepare
data for you, but you’ll likely find yourself in many situations where you
need to do these tasks yourself.

DevOps
After a data scientist performs some analysis, more steps are often required
before the analysis is useful. For example, if you use linear regression to do
forecasting, you may want to install the regression on a server and have it
performed regularly. How and where will you install it? Do you need to
update it regularly? How will you monitor it? How and when will you
redeploy it? These kinds of questions are related to machine learning
DevOps, also called MLOps, and if you can gain some DevOps and MLOps
skills, you can have more success in your data science career.

Advanced/fluent/efficient programming

A beginner data scientist can write code that works. A talented data
scientist, by contrast, can write code that’s efficient. It will run fast, and will
be readable and concise.

Besides these skills, you will want to gain expertise in applied fields
related to the work you do (or the work you want to do). If you’re interested
in working as a data scientist in the world of finance, you should study
mathematical finance and the types of quantitative models that top finance
companies use. If you’re interested in working for a pharmaceutical or
medical company, you should consider biostatistics or even just pure
biology as fields to dive into. The more you know, the more effective you’ll
be in your data science career.

Summary
In this chapter, we discussed other languages besides Python that can be
useful for data scientists. We started with SQL, a powerful language used to
work with tables. We used SQL to select data from tables as well as to join
tables together. We continued with a discussion of R, a language designed
by statisticians that can be used for many powerful data analyses. Now
you’ve completed the book, and you have excellent data science skills.
Congratulations, good luck, and all the best!

Index

Please note that index links to approximate location of each term.

Symbols
* (asterisk), 178, 234, 237
\ (backslash), 51, 179
^ (beginning of a line or string), 180
\D, 180
$ (end of a line or string), 180
/ (forward slash), 7
| (or), 11
% (percent as wildcard), 237
|| (pipe), 198
\s, 180
[] (square brackets), 180
\w, 180
. (wildcard), 180

A
A/A testing, 86
ABBA, 205
abline() command, 244

A/B testing
applications and advanced considerations, 90
definition, 77, 79
ethical considerations, 91–93
framework of, 83–84
math, 80
process, 75, 83, 85

accuracy
of linear probability models, 104–106
of supervised learning models, 134–136

activation function, 133
adding titles and labels

title(), 14
xlabel(), 14
ylabel(), 14

advanced/fluent/efficient programming, 247
algebra of straight lines, 38
algorithms. See also supervised learning; unsupervised learning

and E-M clustering, 157–158, 160, 164
Expectation step, 158–160
Guessing step, 157–158
natural language processing (NLP), 119, 209–229
purpose, 119

alias
definition, 6
use, 13, 32, 35, 78

alternating least squares, 206
alternative hypothesis, 66, 72–73, 77
Anna Karenina, 69
anomaly detection, 167
application programming interface (API), 173, 189
APT, xxiii
apt-get command, xxiii
architectures of neural networks, 133
aspiring data scientists, xx
assignment operator, 241–242
asterisk (*), 178, 234, 237
attribute-based systems (aka content-based recommender systems), 206,
228
attrition risk, 96, 98, 101, 104–110, 114
ax.plot() method, 17
ax.scatter() method, 17

B
b (intercept), 38
backslash (\), 51, 179
baseline of variables, 38
base Python, xxiv–xxv, 176
Bayesian statistics, 91, 247
Beautiful Soup library, 184
beginning of a line or string (^), 180
bell curve, 64, 155
Betelguese, 53

bias node, 133
bimodal histogram, 148
binary classification

applications, 90, 114–115
definition, 95
and linear regression, 110, 112

bivariate bell curve, 154
box plot, 61–62, 71–72
boxplot() method, 18, 59
bs4 package, 185
business recommendations, making, 103–104
business-to-consumer (B2C) business model, 91

C
C++, 246
central limit theorem, 64
champion/challenger framework, 75, 83–84, 91, 93
chatbots, 228
classification instead of regression, 137–139
classify() function, 151, 158
clauses, 236
clustering

in business applications, 152
centers, 160, 162–168
and collaborative filtering, 206
definition, 148–150

E-M, 158, 160
k-means, 245
methods, 164
and natural language processing, 226–227

cmap parameter, 27
code, interpretation of, 170
coefficients

forecasting, 51
intercepts, 37–38, 43, 121
linear regressions, 243–244
logistic equations, 111
Pearson correlation, 21
supervised learning, 123

Cohen’s d, 88–89
cold-start problem, 192
collaborative filtering

advanced ideas, 206–207
definition, 191–192
item-based, 194–195, 199, 201, 203
user-based, 201–203, 205

color map, 27
columns in user-based collaborative filtering, 201
combinations of metacharacters, 180
comma-separated values, 5
comparisons

content, 228

experimental, 203
group, 57, 74, 86, 88, 219
statistical, 77

concatenation, 34
confusion matrix, 105, 109, 138
content-based recommender system (aka attribute-based systems), 206, 2
28
Convergence step, 162–164
convolutional neural networks, 133
corpus, 211–213
correlations, 21–27
corr() method, 21, 26
cosine, 197–198
covariance, 145

cov method, 145
cov/np.cov method, 145, 155
matrix, 155, 157

.csv, 2, 4–5
cubic curve, 46
customers, 201

attrition, 96
segmentation, 153

D
\D, 180
data analysis

correlation analysis, 21

exploratory, 1
machine learning, 117, 141
making plots, 13
of subsets, 10
summary statistics, 8

data cleaning, 32–34
data engineering, 247
data scientists

aspiring, xx
overview/definition of, 32, 75, 105, 153, 231
professional, xxi
as statisticians, xix, 246

decision trees, 130–132
decomposition, 206
deep neural networks, 133
density-based spatial clustering of applications with noise (DBSCAN), 1
66–167
dependencies, 185
derived feature, 108, 137
describe() method, 9
dev.off() method, 244
DevOps, 247
dimension, 154
distance, 216

k-nearest neighbors, 124–125
distribution of data, 144

dot product, 198
distplot() method, 63

E
effect sizes, 86

Cohen’s d, 88–89
embeddings, 219
E-M clustering, 155–164
end of a line or string ($), 180
end tag, 172
engineered feature, 108
ensemble method, 131
error measurements, 40–43
escape sequences, 178–180
ethical considerations of A/B testing, 91–93
Euclidean distance, 216
euclidean() function, 216
exit probability, 101, 105
expectation-maximization, 157
Expectation step, 158
expected value, E(), 62, 64, 80–81, 100
experiment, 76, 79
exploration/exploitation trade-off, 91

F
false positives, 105–106, 138
feature engineering, 123

features, 142
fetchall() method, 236
filtering, 200, 206
find_all() method, 185, 188
find() method, 174–176
fit() method, 37, 46, 165, 227
fitting

logistic function data, 112
regression, 37–38

forecasting
best regression to use with, 50–55
customer demand, 31–32
with linear regression, 35, 43, 45, 47, 247
methods, 51, 54

for loop, 67, 236
forward slash (/), 7
function(s)

activation, 133
calls, xx
classify(), 151, 158
collaborative filtering and, 202–203, 205
euclidean(), 216
generating, 143, 145
getcenters(), 160–161
KMeans(), 165
learned, 142

multivariate_normal(), 151
norms of, 198
np.mean() function, 145
plt.scatter() function, 159–160
print() function, 6, 11, 47
R code and, 242
set() function, 203

future predictions, 102–103

G
Gaussian distribution, 145, 155
generating and exploring data, 142–148
Gensim package, 218
getcenters() function, 160–161
goodness of fit, 40–41
groupby() method, 11–12, 14
group comparisons, 57

hypothesis testing, 66
in a marketing context, 70
visual, 61

guessing step, 157–159

H
Hamlet, 225
head() method, 6, 33
heat maps, 26–28
hierarchical clustering, 167

histogram, 18–20, 29, 64, 67, 144–149
hour.csv, 4–7
HTML code

elements, 172, 185
parsing, 173

Hyndman, Rob, 32
hypothesis

hypothesized line, 38–39, 41–43
null vs. alternative hypothesis, 66, 72–73
testing, 65–66, 68, 77

I
identically distributed, 64
identity matrix, 157–158
idx variable, 126
if...then statements, xx
independent samples, 67
input layer, 133
installation of Python

on Linux, xxiii
on macOS, xxii–xxiii
on Windows, xxii

interaction matrix, 193–196, 199, 201–206
interpretable models, 131
item-based collaborative filtering, 194–201

J

JavaScript, 171, 188, 246
Julia, 246
JupyterLab, xxv
Jupyter Notebook, xxv

K
Kiros, Ryan, 223
k-means clustering, 164–166
KMeans() function, 165
k-nearest neighbors (k-NN), 124

implementing, 126
method, 125
with sklearn, 127–128
other supervised learning algorithms, 128–129

L
Last Continent, The, 210
latent variable models, 167
learned functions

decision trees and, 132–133
definition of, 122–123
supervised learning and, 128–129, 135, 142

Legendre, Adrien-Marie, 43
linear algebra methods, 246–247

alternating least squares, 206
linear probability model (LPM), 95, 97–109

weaknesses of, 109–110

linear regression, 99
classification, 137
decision trees, 130
definition of, 29
and forecasting, 32, 43, 54–55, 247
and k-nearest neighbors, 124, 126, 128–129, 131
measuring accuracy of, 104
methods of, 47–48
multivariate, 31, 45–46, 106
performing, 35–39, 51, 99, 101–102, 108, 110–112
as prediction method, 121
with R, 243–244
and supervised learning, 117, 122–124
univariate, 45

line continuation characters, 51
line of best fit, 36, 39, 43, 54, 100
line plot

how to make, 17
purpose of, 48

Linux console, xxiii
literal_eval() method, 156
lm() command, 243
loc() method, 10
logistic curve, 110–112
logistic regression, 110–114
LPM. See linear probability model

lxml package, 184–187

M
m (slope), 38
machine learning

clustering, 152
datasets, 119
decision trees, 131
distances, 125
forecasting, 53
methods, 36–37, 114–115

Madonna, 205
magnitude of correlations, 22–25
Mann-Whitney U test, 68
marker style, 16
MATLAB, 246
Matplotlib, 13, 18, 34–35, 59, 71
matrix laboratory, 246
Maximization (M) step, 157, 160–163
max() method, 8
mean, calculating, 8
mean absolute error (MAE), 41–42, 51, 52, 104, 134
mean() method, 8–9, 11
median() method, 8–9, 78
Mengele, Josef, 92
merge() method, 79

metacharacters, 177–182
min() method, 8
Moby Dick, 225
model, 38, 123
modes, 148
monotonic trends, 114
multi-armed bandit problem, 91
multivariate linear regression, 31, 45–46, 106
multivariate_normal() function, 151

N
NaN (not a number), 33
natural language, 211
natural language processing (NLP)

applications, 228
definition, 119
methods, 207
sentiment analysis, 119, 228

negatively correlated variables, 24
neighbors, 125
neural networks, 132–134
nighttime data, 10–11
NLP. See natural language processing
nodes, 133
nonparametric statistics, 68, 247
normal distribution, 145, 147

norms, 198
not a number (NaN), 33
np.append() method, 43
np.cov() method, 145, 155
np.mean() function, 145
null hypothesis, 66–69
number of observations (nobs), 89–90
NumPy, 41, 78, 82, 126

O
omitted variable, 25
one-dimensional dataset, 154
or (|), 11
overfitting, 53, 134

P
package managers, xxiii
pair plot, 20
pandas, xxiv, 6, 32–33

dataframes, 32–33, 183
installation, xxiv–xxv, 6

parametric test, 68
parsing HTML, 173–176, 186–188
Pearson correlation coefficient, 21–22
percent as wildcard (%), 237
pip, xxiv–xxv, 6
pipe (||), 198

.pkg file, xxiii
plagiarism, detecting, 210–211, 216–218, 222–223, 225
plot() command, 244
plotting data

adding titles and labels, 14
appearance

box plot, 18
histogram, 19
line plot, 17
pair plot, 20
scatterplot, 16–17

simple plot, 13–14
subsets, 15–16

plt.scatter() function, 159–160
png() command, 244
popularity-based recommendations, 192, 194
populations and samples, 58
positively correlated variables, 22
postdiction, 134
practical significance vs. statistical significance, 69–70
Pratchett, Terry, 210, 225
precision, 105–106
predict() method, 134
price elasticity of demand, 90
print() function, 6, 11, 47
programming languages, 231, 238, 246

proxy, 120
proxy servers, 188
p-value, 65
Python

base Python, xxiv–xxv, 176
installation

on Linux, xxiii
on macOS, xxii–xxiii
on Windows, xxii

packages, xxiv–xxv, 6, 217
working with, 5

Q
quantifying similarity between words, 211–213
quantitative methods, 32, 62, 117
queries, 234–236

R
R (programming language), 241–243

and linear regression, 243–244
random forests, 131–132
randomized controlled trials, 91
randomness, 23–24, 35–38, 44
random.random() method, 82
random samples, 59–62
random seed, 82
read_csv() method, 6–7, 32, 58

reading data, 32–34
recall, 105
recommendation systems, 191

advanced approaches to, 206–207
case study, 204–205
collaborative filtering, 194–195

implementing, 199–201
using, 201–204

cosine similarity, 197, 198–199
popularity-based, 192–194
vector similarity, 195–201

recurrent neural networks, 134
re.finditer() method, 183
regression line, 46–47, 49, 51–52, 100–101, 109–110, 121–122, 127, 245
regressor, 37

decision trees, 130–131
k-NN regressors, 127–129
with multivariate models, 107, 136
random forests, 131–132

regular expressions, 176–182, 184–185, 238
related samples, 67
re.search() method, 176
reshape() method, 37
root mean squared error (RMSE), 42–43, 50–54, 104
rotating proxies, 188
rpy2 package, 242

S
\s, 180
Salk, Jonas, 92–93
sample() method, 60
SAS, 246
Scala, 246
scatter() method, 13, 35
scatterplot, 14, 20, 35, 48
scikit-learn (sklearn), 37, 123, 127–128
SciPy package, 67–68
scraping, 188–189. See also web scraping

an email address, 173–174
and parsing HTML tables, 186–188

seaborn package, 18–20, 63
search() method, 176
seasonal data, analyzing, 11–12
sensitivity, 105
set() function, 203
significance level, 66, 73, 76–77
singular value decomposition, 206
skip-thoughts, 223–225
sklearn. See scikit-learn
solve_power() method, 90
sort_values() method, 193
SPSS, 246
spurious correlation, 25

SQL
introduction, 234
joining tables, 238–241
managing soccer with, 232–234
running queries, 235–238
setting up a database, 234–235
SQLite3 package, 235

square brackets ([]), 180
standard deviation, 8, 86–88, 145–147
start tag, 172
Stata, 246
statistical power, 88–90
statistical significance vs. practical significance, 69–70
statistics packages, 246
std() method, 8
subplots() method, 13
subsets, plotting, 15–16
summary statistics

calculating, 8–9, 72
and plots, 58–59

sum() method, 193
supervised learning

algorithms, 128–129
decision trees, 130–131
random forests, 131–132
neural networks, 132–134

comparison to unsupervised learning, 142
definition of, 117
k-NN, 124–127
process, 122–124
multivariate models, 136
sklearn, 127–128

system of equations, 213–217

T
terminal (Linux console), xxiii–xxiv
test set, 53, 136
titles and labels

title(), 14
xlabel(), 14
ylabel(), 14

Tolstoy, Leo, 69
tools to run Python code, xxv
topic modeling, 225–226
“trained a model,” 38
training set, 51
transpose a matrix, 205
trigonometric curve, 49
trigonometry, 47
true positives, 105, 138
t-test. See also Welch’s t-test

calculating, 67–70

experimentation, 76–77
group comparison, 73–74
performing, 79–80, 83
statistical power, 88

Twyman’s law, 84–86, 93

U
uncorrelated variables, 22, 26
units of exiting, 100
univariate

bell curve, 154
linear regression, 45

Universal Sentence Encoder (USE), 224
unsupervised learning

clustering, 150
comparison to supervised learning, 143
definition, 139
E-M clustering, 155
methods, 143, 167–168

user-based collaborative filtering, 201, 203, 205

V
Varian, Hal, xix
variance, 145
vector

degree, 196–197, 199, 225
similarity, measuring, 195

space, 219

W
\w, 180
web scraping, 169, 171–172, 189. See also scraping

converting results to data, 182–184
warning, 173

websites, 170–171
predicting traffic, 118–119

Welch’s t-test, 68. See also t-test
Wilcoxon rank-sum test, 68
wildcard (.), 180
Williams, Robbie, 205
word2vec, 211, 218, 221–224

X
x-position, 243

Y
y-intercept, 38
Yum, xxiii

Z
zero-based indexing, 10

	Title Page
	Copyright
	Dedication
	About the Author
	Acknowledgments
	Introduction
	Who Is This Book For?
	About This Book
	Setting Up the Environment
	Windows
	macOS
	Linux

	Installing Packages with Python
	Other Tools
	Summary

	Chapter 1: Exploratory Data Analysis
	Your First Day as CEO
	Finding Patterns in Datasets
	Using .csv Files to Review and Store Data

	Displaying Data with Python
	Calculating Summary Statistics
	Analyzing Subsets of Data
	Nighttime Data
	Seasonal Data

	Visualizing Data with Matplotlib
	Drawing and Displaying a Simple Plot
	Clarifying Plots with Titles and Labels
	Plotting Subsets of Data
	Testing Different Plot Types

	Exploring Correlations
	Calculating Correlations
	Understanding Strong vs. Weak Correlations
	Finding Correlations Between Variables

	Creating Heat Maps
	Exploring Further
	Summary

	Chapter 2: Forecasting
	Predicting Customer Demand
	Cleaning Erroneous Data
	Plotting Data to Find Trends
	Performing Linear Regression
	Applying Algebra to the Regression Line
	Calculating Error Measurements

	Using Regression to Forecast Future Trends
	Trying More Regression Models
	Multivariate Linear Regression to Predict Sales
	Trigonometry to Capture Variations

	Choosing the Best Regression to Use for Forecasting
	Exploring Further
	Summary

	Chapter 3: Group Comparisons
	Reading Population Data
	Summary Statistics
	Random Samples
	Differences Between Sample Data

	Performing Hypothesis Testing
	The t-Test
	Nuances of Hypothesis Testing

	Comparing Groups in a Practical Context
	Summary

	Chapter 4: A/B Testing
	The Need for Experimentation
	Running Experiments to Test New Hypotheses
	Understanding the Math of A/B Testing
	Translating the Math into Practice

	Optimizing with the Champion/Challenger Framework
	Preventing Mistakes with Twyman’s Law and A/A Testing
	Understanding Effect Sizes
	Calculating the Significance of Data
	Applications and Advanced Considerations
	The Ethics of A/B Testing
	Summary

	Chapter 5: Binary Classification
	Minimizing Customer Attrition
	Using Linear Probability Models to Find High-Risk Customers
	Plotting Attrition Risk
	Confirming Relationships with Linear Regression
	Predicting the Future
	Making Business Recommendations
	Measuring Prediction Accuracy
	Using Multivariate LPMs
	Creating New Metrics
	Considering the Weaknesses of LPMs

	Predicting Binary Outcomes with Logistic Regression
	Drawing Logistic Curves
	Fitting the Logistic Function to Our Data

	Applications of Binary Classification
	Summary

	Chapter 6: Supervised Learning
	Predicting Website Traffic
	Reading and Plotting News Article Data
	Using Linear Regression as a Prediction Method
	Understanding Supervised Learning
	k-Nearest Neighbors
	Implementing k-NN
	Performing k-NN with Python’s sklearn

	Using Other Supervised Learning Algorithms
	Decision Trees
	Random Forests
	Neural Networks

	Measuring Prediction Accuracy
	Working with Multivariate Models
	Using Classification Instead of Regression
	Summary

	Chapter 7: Unsupervised Learning
	Unsupervised Learning vs. Supervised Learning
	Generating and Exploring Data
	Rolling the Dice
	Using Another Kind of Die

	The Origin of Observations with Clustering
	Clustering in Business Applications
	Analyzing Multiple Dimensions
	E-M Clustering
	The Guessing Step
	The Expectation Step
	The Maximization Step
	The Convergence Step

	Other Clustering Methods
	Other Unsupervised Learning Methods
	Summary

	Chapter 8: Web Scraping
	Understanding How Websites Work
	Creating Your First Web Scraper
	Parsing HTML Code
	Scraping an Email Address
	Searching for Addresses Directly

	Performing Searches with Regular Expressions
	Using Metacharacters for Flexible Searches
	Fine-Tuning Searches with Escape Sequences
	Combining Metacharacters for Advanced Searches

	Using Regular Expressions to Search for Email Addresses
	Converting Results to Usable Data
	Using Beautiful Soup
	Parsing HTML Label Elements
	Scraping and Parsing HTML Tables

	Advanced Scraping
	Summary

	Chapter 9: Recommendation Systems
	Popularity-Based Recommendations
	Item-Based Collaborative Filtering
	Measuring Vector Similarity
	Calculating Cosine Similarity
	Implementing Item-Based Collaborative Filtering

	User-Based Collaborative Filtering
	Case Study: Music Recommendations
	Generating Recommendations with Advanced Systems
	Summary

	Chapter 10: Natural Language Processing
	Using NLP to Detect Plagiarism
	Understanding the word2vec NLP Model
	Quantifying Similarities Between Words
	Creating a System of Equations

	Analyzing Numeric Vectors in word2vec
	Manipulating Vectors with Mathematical Calculations
	Detecting Plagiarism with word2vec

	Using Skip-Thoughts
	Topic Modeling
	Other Applications of NLP
	Summary

	Chapter 11: Data Science in Other Languages
	Winning Soccer Games with SQL
	Reading and Analyzing Data
	Getting Familiar with SQL
	Setting Up a SQL Database
	Running SQL Queries
	Combining Data by Joining Tables

	Winning Soccer Games with R
	Getting Familiar with R
	Applying Linear Regression in R
	Using R to Plot Data

	Gaining Other Valuable Skills
	Summary

	Index

