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Chapter 1. Subtyping and Wildcards

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 2nd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

Now that we’ve covered the basics, we can start to cover more advanced

features of generics, such as subtyping and wildcards. In this section, we’ll

review how subtyping works and we’ll see how wildcards let you use

subtyping in connection with generics. The Java Collections Framework

will serve as the source of our examples; see Part 2 for detail on specific

features of the Collections API.

Subtyping and the Substitution Principle

mailto:shunter@oreilly.com


Subtyping is a key feature of object-oriented languages such as Java. In

Java, one type is a subtype of another if they are related by an extends

or implements  clause. Here are some examples:

Integer is a subtype of Number

Double is a subtype of Number

ArrayList<E> is a subtype of List<E>

List<E> is a subtype of Collection<E>

Collection<E> is a subtype of Iterable<E>

Subtyping is transitive, meaning that if one type is a subtype of a second,

and the second is a subtype of a third, then the first is a subtype of the third.

So, from the last two lines in the preceding list, it follows that List<E>

is a subtype of Iterable<E> . If one type is a subtype of another, we

also say that the second is a supertype of the first. Every reference type is a

subtype of Object , and Object  is a supertype of every reference type.

We also define the subtype relationship so that every type is a subtype of

itself.



The most important property of subtyping is summarized in the Substitution

Principle 

Substitution Principle: wherever a value of type T  is expected, you

can provide instead a value of a subtype of T .

For example, a variable of a given type may be assigned a value of any

subtype of that type, and a method with a parameter of a given type may be

invoked with an argument of any subtype of that type.

Consider the interface Collection<E> . One of its methods is add,

which takes a parameter of type E :

interface Collection<E> { 

  public boolean add(E elt); 

  ... 

}

According to the Substitution Principle, if we have a collection of numbers

we may add an integer or a double to it, because Integer  and Double

are subtypes of Number .

List<Number> nums = new ArrayList<>(); 

nums.add(2); 

nums.add(0.25); 

assert nums.equals(List.of(2, 0.25)); 

1



Here, subtyping is used in two ways for each method call. The first call is

permitted because nums  has the type List<Number> , which is a

subtype of Collection<Number> , and 2  has the type Integer

(thanks to boxing), which is a subtype of Number . The second call is

similarly permitted. In both calls, the E  in List<E>  is taken to be

Number .

It may seem reasonable to expect that since Integer  is a subtype of

Number , it follows that List<Integer>  is a subtype of

List<Number> . But this is not the case, because, if it were, the

Substitution Principle would rapidly get us into trouble. To see why it is not

safe to assign a value of type List<Integer>  to a variable of type

List<Number> , consider the following code:

This code assigns the variable ints  to point to a list of Integer , and

then—if the Substitution Principle were to require  to succeed—assigns

nums  to point to the same list; in that case, the call in the following line—

which is clearly legal—would add a Double  to this list, meaning that the

variable ints , typed as a List<Integer>  would be pointing at a list

containing a Double , and Java’s type system would be broken.

List<Integer> ints = new ArrayList<>(); 

List<Number> nums = ints;         //  can't be a

nums.add(3.14); 



Obviously, this can’t be allowed; the solution is to outlaw assignment . If

List<Integer>  is prevented from being a subtype of

List<Number> , then the Substitution Principle does not apply and 

can be reported as a compile error.

What about the reverse? Can we take List<Number>  to be a subtype of

List<Integer> ? No, that doesn’t work either, as shown by the

following code:

where allowing  leads to the same problem—once again, a variable typed

as List<Integer>  is pointing to a list containing a Double . So

List<Number>  is not a subtype of List<Integer> , and since

we’ve already seen that List<Integer>  is not a subtype of

List<Number> , all we have is the trivial case where

List<Integer>  is a subtype of itself. (We also have the more intuitive

relationship that List<Integer>  is a subtype of

Collection<Integer> .)

Arrays behave quite differently; with them, Integer[]  is a subtype of

Number[] . We will compare the treatment of lists and arrays later (see

“Arrays”).

List<Number> nums = new ArrayList<>(); 

nums.add(3.14); 

List<Integer> ints = nums;        //  can't be a



Sometimes we would like lists to behave more like arrays, in that we want

to accept not only a list with elements of a given type, but also a list with

elements of any subtype of a given type. For this purpose, we use

wildcards.

Wildcards with extends

Another method in the Collection  interface is addAll , which adds

all members of one collection to another:

Clearly, given a collection of elements of type E , we should be able to add

all members of another collection with elements of type E . The quizzical

phrase “ ? extends E ” means that it is also OK to add all members of a

collection with elements of any type that is a subtype of E . The question

mark is called a wildcard; it stands for some as-yet-unknown subtype of E .

Here is an example. We create an empty list of numbers, and add to it first a

list of integers and then a list of doubles:

interface Collection<E> { 

  ... 

  public boolean addAll(Collection<? extends E> c

  ... 

}



List<Number> nums = new ArrayList<>(); 

List<Integer> ints = List.of(1, 2); 

List<Double> dbls = List.of(1.0, 0.5); 

nums.addAll(ints); 

nums.addAll(dbls); 

assert nums.equals(List.of(1, 2, 1.0, 0.5)); 

The first call is permitted because nums  has type List<Number> ,

which is a subtype of Collection<Number> , and ints  has type

List<Integer> , which is a subtype of Collection<Integer> ,

which is in turn a subtype of Collection<? extends Number> .

The second call is similarly permitted. In both calls, E  is taken to be

Number . If the parameter declaration for addAll  had been written

without the wildcard, then the calls to add lists of integers and doubles to a

list of numbers would not have been permitted; you would only have been

able to add a list that was explicitly declared to be a list of numbers.

We can also use wildcards when declaring variables. Here is a variant of the

introductory example of the preceding section, changed by adding a

wildcard to the second line:

List<Integer> ints = new ArrayList<>(); 

List<? extends Number> nums = ints;  //  now leg

nums.add(3.14);                      //  can't b



Previously, line  caused a compile-time error (because

List<Integer>  is not a subtype of List<Number> ), but line  was

fine (because a double is a number, so you can add a double to a

List<Number> ). Now line  is fine (because List<Integer>  is a

subtype of List<? extends Number> ), but line  has to be a

compile error: you cannot add a double to a List<? extends

Number> , since you don’t know the type represented by the wildcard; all

you know is that it is some subtype of Number . Otherwise, as before, the

last line would result in the variable ints , typed as a

List<Integer> , pointing to a list containing a double.

In general, if a structure contains elements with a type of the form “ ?

extends E ”, we can get elements out of the structure, but we cannot put

elements into the structure. To put elements into the structure we need

another kind of wildcard, as explained in the next section.

Wildcards with super

Here is a method, from the convenience class Collections , that copies

the elements from a source list into a destination list:

public static <T> void copy(List<? super T> dst, 

  for (int i = 0; i < src.size(); i++) { 

    dst.set(i, src.get(i)); 

  } 



The quizzical phrase “ ? super T ” means that the destination list may

have elements of any type that is a supertype of T , just as the source list

may have elements of any type that is a subtype of T .

Here is a sample call.

As with any generic method, the type parameter may be inferred or may be

given explicitly. In this case, there are four possible choices, all of which

type-check and all of which have the same effect:

Collections.copy(objs, ints); 

Collections.<Object>copy(objs, ints); 

Collections.<Number>copy(objs, ints); 

Collections.<Integer>copy(objs, ints);

The first call leaves the type parameter implicit; it is taken to be

Integer , since that is the most specific choice that works. In the third

} 

List<Object> objs = Stream.of(2, 3.14, "four").co

List<Integer> ints = List.of(5, 6); 

Collections.copy(objs, ints); 

assert objs.equals(List.of(5, 6, "four"));



line, it is taken to be Number . The call is permitted because objs  has

type List<Object> , which is a subtype of List<? super

Number>  (since Object  is a supertype of Number , as required by the

super  wildcard) and ints  has type List<Integer> , which is a

subtype of List<? extends Number>  (since Integer  is a

subtype of Number , as required by the extends  wildcard).

We could also declare the method with several possible signatures (a

method signature is the combination of the method identifier, its type

parameters, and the types and order of its parameters).

The first of these is too restrictive, as it only permits calls when the

destination and source have exactly the same type. The remaining three are

equivalent for calls that use implicit type parameters, but differ for explicit

type parameters. For the example calls above, the second signature works

only when the type parameter is Object , the third signature works only

when the type parameter is Integer , and the last signature works (as we

have seen) for all three type parameters—i.e., Object , Number , and

public static <T> void copy(List<T> dst, List<T> 

public static <T> void copy(List<T> dst, List<? e

public static <T> void copy(List<? super T> dst, 

public static <T> void copy(List<? super T> dst, 



Integer . When writing a method signature, always use wildcards where

you can, since this permits the widest range of calls.

The Get and Put Principle

It may be good practice to insert wildcards whenever possible, but how do

you decide which wildcard to use? Where should you use extends ,

where should you use super , and where is it inappropriate to use a

wildcard at all?

Fortunately, a simple principle determines which is appropriate.

The Get and Put Principle: use an extends  wildcard when you

only get values out of a structure, use a super  wildcard when you

only put values into a structure, and don’t use a wildcard when you

both get and put.

In Effective Java ([Bloch17]), Joshua Bloch gives this principle the

mnemonic PECS (producer extends, consumer super). We already saw this

principle at work in the signature of the copy  method:

public static <T> void copy(List<? super T> dst, 



The method gets values out of the source src , so it is declared with an

extends  wildcard, and it puts values into the destination dst , so it is

declared with a super  wildcard.

Whenever you use an iterator or a stream, you are getting values out of a

structure, so you must use an extends  wildcard. Here is the iterator

version of a method that takes a collection of numbers, converts each to a

double, and sums them up:

The stream equivalent doesn’t declare a Number  variable explicitly, but

the type constraint on the argument is exactly the same:

Since these methods use extends , the following calls are all legal:

public static double sum(Collection<? extends Num

  double s = 0.0; 

  for (Number num : nums) s += num.doubleValue();

  return s; 

}

public static double sum(Collection<? extends Num

   return nums.stream().mapToDouble(Number::doubl

}



List<Integer> ints = List.of(1,2,3); 

assert sum(ints) == 6.0; 

 

List<Double> doubles = List.of(2.5,3.5); 

assert sum(doubles) == 6.0; 

 

List<Number> nums = List.of(1,2,2.5,3.5); 

assert sum(nums) == 9.0;

The first two calls would not be legal if extends  was not used.

Whenever you use the add  method, you’re putting values into a structure,

so you should use a super  wildcard. Here is a method that takes a

collection of numbers and an integer n , and puts the first n  integers,

starting from zero, into the collection:

(There is no simple stream-based equivalent to this method.) Since the

parameter to this method uses super , the following calls are all legal:

public static void count(Collection<? super Integ

  for (int i = 0; i < n; i++) ints.add(i); 

}

List<Integer> ints1 = new ArrayList<>(); 

count(ints1, 5); 

assert ints1.equals(List.of(0, 1, 2, 3, 4));



The last two calls would not be legal if super  was not used.

Whenever you both put values into and get values out of the same structure,

you should not use a wildcard.

The collection is passed to both sum  and count , so its element type

must both extend Number  (as sum  requires) and be a supertype of

Integer  (as count  requires). The only two classes that satisfy both of

assert ints1.equals(List.of(0, 1, 2, 3, 4)); 

 

List<Number> nums1 = new ArrayList<>(); 

count(nums1, 5); nums1.add(5.0); 

assert nums1.equals(List.of(0, 1, 2, 3, 4, 5.0));

 

List<Object> objs1 = new ArrayList<>(); 

count(objs1, 5); objs1.add("five"); 

assert objs1.equals(List.of(0, 1, 2, 3, 4, "five"

public static double sumCount(Collection<Number> 

  count(nums, n); 

  return sum(nums); 

}



these constraints are Number  and Integer ; we have picked the first of

these. Here is a sample call:

List<Number> nums2 = new ArrayList<>(); 

double sum = sumCount(nums2,5); 

assert sum == 10;

Since there is no wildcard, the argument must be a collection of Number .

If you don’t like having to choose between Number  and Integer , it

might occur to you that if Java let you write a wildcard with both

extends  and super , you would not need to choose. For instance, we

could write the following:

Then we could call sumCount  on either a collection of numbers or a

collection of integers. But Java doesn’t permit this. The only reason for

outlawing it is simplicity, and conceivably Java might support such notation

in the future. But, for now, if you need to both get and put then don’t use

wildcards.

double sumCount(Collection<? extends Number super

// not legal Java!



The Get and Put Principle also works the other way around. If an

extends  wildcard is present, pretty much all you will be able to do is get

but not put values of that type; and if a super  wildcard is present, pretty

much all you will be able to do is put but not get values of that type. For

example, consider the following code, which uses a list declared with an

extends  wildcard:

The call to sum  is fine, because it gets values from the list, but the call to

add  is not, because it puts a value into the list. This is just as well, since

otherwise we could add a double to a list of integers!

Conversely, consider the following code, which uses a list declared with a

super  wildcard:

List<Integer> ints = new ArrayList<>(); 

ints.add(1); 

ints.add(2); 

List<? extends Number> nums = ints; 

double dbl = sum(nums);     // ok 

nums.add(3.14);             // compile-time error

List<Object> objs = new ArrayList<>(); 

objs.add(1); 

objs.add("two"); 

List<? super Integer> ints = objs; 

ints.add(3);             // ok 



Now the call to add  is fine, because it puts a value into the list, but the

call to sum  is not, because it gets a value from the list. This is just as well,

because the sum of a list containing a string makes no sense!

The exception proves the rule, as the saying goes, and indeed each of these

rules has an exception. The one value that you can put into a type declared

with an extends  wildcard is null , the only value that belongs to every

reference type:

Similarly, the only values that you can get from a type declared with a

super  wildcard are those of type Object , which is the supertype of

every reference type:

( );

double dbl = sum(ints);  // compile-time error

List<Integer> ints = new ArrayList<>(); 

ints.add(1); 

ints.add(2); 

List<? extends Number> nums = ints; 

nums.add(null);    // ok 

assert nums.equals(Arrays.asList(1, 2, null));

List<Object> objs = List.of(1,"two"); 

List<? super Integer> ints = objs; 

String str = ""; 



You may find it helpful to think of ? extends T  as being an unknown

type in an interval bounded by the type of null  below and by T  above

(where the type of null  is a subtype of every reference type). Similarly,

you may think of ? super T  as being an unknown type in an interval

bounded by T  below and by Object  above (see Figure 1-1).

Figure 1-1. Bounded types: extends and super

for (Object obj : ints) str += obj.toString(); 

assert str.equals("1two");



It is tempting to think that an extends  wildcard ensures immutability or

at least unmodifiability (see “Immutability and Unmodifiability”), but it

does not. As we saw earlier, given a list of type List<? extends

Number> , you can still add null  values to the list. You can also remove

list elements (using remove , removeAll , or retainAll ) or

permute the list (using swap , sort , or shuffle  in the convenience

class Collections ; see “Changing the Order of List Elements”). The

problems and advantages of achieving unmodifiability or immutability are

explored in “Immutability and Unmodifiability” and further in [Link to

Come].

Because String  is final and can have no subtypes, you might expect that

List<String>  is the same type as List<? extends String> .

But in fact the former is a subtype of the latter, not the same type, as can be

seen by an application of our principles. The Substitution Principle tells us

it is a subtype, because it is fine to pass a value of the former type where the

latter is expected. The Get and Put Principle tells us that it is not the same

type, because we can add a string to a value of the former type but not the

latter.

Arrays

It is instructive to compare the treatment of lists and arrays in Java, keeping

in mind the Substitution Principle and the Get and Put Principle.



In Java, array subtyping is covariant, meaning that type S[]  is considered

to be a subtype of T[]  whenever S  is a subtype of T . Consider the

following code fragment, which allocates an array of integers, assigns it to a

variable typed as a Number  array, and then attempts to store a double in

the array:

Integer[] ints = {0}; 

Number[] nums = ints; 

nums[0] = 3.14;  // array store exception

Something is wrong with this program since, if it were to succeed, the

variable ints , typed as an Integer[] , would be pointing at an array

containing a Double , and once again Java’s type system would be

broken. Where is the problem? Since Integer[]  is considered a subtype

of Number[] , according to the Substitution Principle the assignment on

the second line must be legal. Instead, the problem is caught at run time on

the third line. When an array is allocated (as on the first line), it is tagged

with its reified type (a run-time representation of its component type, in this

case, Integer ), and every time a value is stored in the array (as on the

third line), an array store exception is raised if the reified type is not

compatible with the assigned value (in this case, a double cannot be stored

into an array of Integer ).

In contrast, the subtyping relation for generics is invariant, meaning that

type List<S>  is not considered to be a subtype of List<T> , except in



the trivial case where S  and T  are identical. Here is a code fragment

analogous to the preceding one, with lists replacing arrays:

Since List<Integer>  is not considered to be a subtype of

List<Number> , the problem is detected on the second line, not the

third, and it is detected at compile time, not run time.

Wildcards reintroduce covariant subtyping for generics, in that type

List<S>  is considered to be a subtype of List<? extends T>

when S  is a subtype of T . Here is a third variant of the fragment:

List<Integer> ints = Arrays.asList(0); 

List<? extends Number> nums = ints; 

nums.set(0, 3.14);  // compile-time error

As with arrays, the third line is in error, but, in contrast to arrays, the

problem is detected at compile time, not run time. The assignment violates

the Get and Put Principle, because you cannot put a value into a type

declared with an extends  wildcard.

List<Integer> ints = Arrays.asList(0); 

List<Number> nums = ints;  // compile-time error 

nums.set(0, 3.14);



Wildcards also introduce contravariant subtyping for generics, in that type

List<S>  is considered to be a subtype of List<? super T>  when

S  is a supertype of T  (as opposed to a subtype). Arrays do not support

contravariant subtyping. For instance, recall that the method count

accepted a parameter of type Collection<? super Integer>  and

filled it with integers. There is no equivalent way to do this with an array,

since Java does not permit you to write (? super Integer)[] .

Detecting problems at compile time rather than at run time brings two

advantages, one minor and one major. The minor advantage is that it is

more efficient. The system does not need to carry around a description of

the element type at run time, and the system does not need to check against

this description every time an assignment into an array is performed. The

major advantage is that a common family of errors is detected by the

compiler. This improves every aspect of the program’s life cycle: coding,

debugging, testing, and maintenance are all made easier, quicker, and less

expensive.

Apart from the fact that typing errors are caught earlier, there are many

other reasons to prefer collection classes to arrays. Collections are more

flexible than arrays; the only operations supported on arrays are to get or set

a component, and the number of elements they can contain is fixed.

Collections support many additional operations, including testing for

containment, adding and removing elements, and combining two

collections. Collections may be lists (where order is significant and



elements may be repeated, and further operations are available), sets (where

order is not significant and elements may not be repeated), or queues

(predominantly used in workflow situations), and a number of

representations are available, including arrays, linked lists, trees, and hash

tables. Specialised collections are available for situations requiring efficient

concurrent access. Finally, although this is not an inherent advantage of

collections over arrays, the convenience class Collections  offers

operations to rotate or shuffle a list, to find the maximum of a collection, to

make a collection unmodifiable or synchronized, and others—many more

than are provided by the corresponding convenience class Arrays .

Nonetheless, there are situations in which arrays are preferable to

collections. In particular, arrays of primitive types are much more efficient

than either arrays or collections of reference types, since they don’t involve

boxing, and they use less memory with much better spatial locality (see

“Performance”). Further, assignments into a primitive array need not check

for an array store exception, because arrays of primitive type do not have

subtypes. These advantages may lead you to replace collections with arrays

in performance-critical code sections. As always, you should measure

comparative performance to justify such a design, bearing in mind that

future compiler and library design improvements may change the relative

performance balance. Finally, in some cases arrays may be preferable for

reasons of compatibility.



To summarize, it is better to detect errors at compile time rather than run

time, but Java arrays are forced to detect certain errors at run time by the

decision to make array subtyping covariant. Was this a good decision?

Before the advent of generics, it was absolutely necessary. For instance,

look at the following methods, which are used to sort any array or to fill an

array with a given value:

Thanks to covariance, these methods can be used to sort or fill arrays of any

reference type. Without covariance and without generics, there would have

been no way to declare methods that apply for all types. With generics,

however, covariant arrays became unnecessary: these methods could now

have the following signatures, directly stating that they work for all types:

public static <T> void sort(T[] a); 

public static <T> void fill(T[] a, T val);

In some sense, covariant arrays are an artifact of the lack of generics in

earlier versions of Java. Once you have generics, covariant arrays are

probably the wrong design choice, and the only reason for retaining them is

backward compatibility. The differing type systems of generics and arrays

public static void sort(Object[] a); 

public static void fill(Object[] a, Object val);



lead to a variety of inconvenient interactions, which we explore in detail in

[Link to Come],

Sections ???–??? discuss inconvenient interactions between generics and

arrays. For many purposes, it may be sensible to consider arrays as an

obsolete type. We return to this point in [Link to Come].

Wildcards Versus Type Parameters

The contains  method checks whether a collection contains a given

object, and its generalization, containsAll , checks whether a

collection contains every element of another collection. This section

presents two alternative approaches to giving generic signatures for these

methods. The first approach uses wildcards and is the one used in the Java

Collections Framework. The second approach uses type parameters.

Wildcards    Here are the types that the methods have in Java with

generics:

interface Collection<E> { 

  ... 

  public boolean contains(Object o); 

  public boolean containsAll(Collection<?> c); 

  ... 

}



The first method does not use generics at all! The second method is our first

sight of an important abbreviation. The type Collection<?>  stands

for:

Collection<? extends Object>

Extending Object  is one of the most common uses of wildcards, so it

makes sense to provide a short form for writing it.

These methods let us test for membership and containment:

The given list of objects contains both the string "one"  and the given list

of integers, but the given list of integers does not contain the string

"one" , nor does it contain the given list of objects.

Object obj = "one"; 

List<Object> objs = List.of("one", 2, 3.5, 4); 

List<Integer> ints = List.of(2, 4); 

assert objs.contains(obj); 

assert objs.containsAll(ints); 

assert ! ints.contains(obj); 

assert ! ints.containsAll(objs);



The tests ints.contains(obj)  and

ints.containsAll(objs)  might seem silly. Of course, a list of

integers won’t contain an arbitrary object, such as the string "one" . But it

is permitted because sometimes such tests might succeed:

Object obj = 1; 

List<Object> objs = List.of(1, 3); 

List<Integer> ints = List.of(1, 2, 3, 4); 

assert ints.contains(obj); 

assert ints.containsAll(objs);

In this case, the object may be contained in the list of integers because it

happens to be an integer, and the list of objects may be contained within the

list of integers because every object in the list happens to be an integer.

Type Parameters    You might reasonably choose an alternative design for

collections—a design in which you can only test containment for subtypes

of the element type:

interface MyCollection<E> {  // alternative desig

  ... 

  public boolean contains(E o); 

  public boolean containsAll(Collection<? extends

  ... 

}



Say we have a class MyList  that implements MyCollection . Now

the tests are legal only one way around:

The last two tests are illegal, because the type declarations now require that

we can only test whether a list contains an element of a subtype of that list.

So we can check whether a list of objects contains a list of integers, but not

the other way around.

The library designers chose wildcards over type parameters in the case of

contains , containsAll , and other methods in Collection ,

List , and Map  that test for, or remove values from, the collection. There

are arguments both for and against this choice: we will explore them in ???.

Wildcard Capture

Object obj = "one"; 

MyList<Object> objs = MyList.of("one", 2, 3.5, 4)

MyList<Integer> ints = MyList.of(2, 4); 

assert objs.contains(obj); 

assert objs.containsAll(ints); 

assert ! ints.contains(obj);             // compi

assert ! ints.containsAll(objs);         // compi



When a generic method is invoked, the type parameter may be chosen to

match the unknown type represented by a wildcard. This is called wildcard

capture.

Consider the method reverse  in the convenience class

java.util.Collections , which accepts a list of any type and

reverses it. It can be given either of the following two signatures, which are

equivalent:

public static void reverse(List<?> list); 

public static <T> void reverse(List<T> list);

The wildcard signature is slightly shorter and clearer, and is the one used in

the library.

If you use the second signature, it is easy to implement the method:

public static<T> void reverse(List<T> list) { 

  List<T> tmp = new ArrayList<>(list); 

  for (int i = 0; i < list.size(); i++) { 

    list.set(i, tmp.get(list.size()-i-1)); 

  } 

}

This copies the argument into a temporary list, and then writes from the

copy back into the original in reverse order.



If you try to use the first signature with a similar method body, it won’t

work:

Now it is not legal to write from the copy back into the original, because we

are trying to write from a list of objects into a list of unknown type.

Replacing List<Object>  with List<?>  won’t fix the problem,

because now we have two lists with (possibly different) unknown element

types.

Instead, you can implement the method with the first signature by

implementing a private method with the second signature, and calling the

second from the first:

public static void reverse(List<?> list) { 

  List<Object> tmp = new ArrayList<>(list); 

  for (int i = 0; i < list.size(); i++) { 

    list.set(i, tmp.get(list.size()-i-1));  // co

  } 

}

public static void reverse(List<?> list) { rev(li

private static <T> void rev(List<T> list) { 

  List<T> tmp = new ArrayList<>(list); 

  for (int i = 0; i < list.size(); i++) { 

    list.set(i, tmp.get(list.size()-i-1)); 

  } 



Here we say that the type variable T  has captured the wildcard. This is a

generally useful technique when dealing with wildcards, and it is worth

knowing.

Another reason to know about wildcard capture is that it can show up in

error messages, even if you don’t use the above technique. In general, each

occurrence of a wildcard is taken to stand for some unknown type. If the

compiler prints an error message containing this type, it is referred to as

capture of ? . For instance, with the OpenJDK compiler at Java 19,

the incorrect version of reverse  generates the following error message:

CAP#1  is the name that the compiler has given to the type of the elements

of list . If there is more than one distinct wildcard, each represents a

different unknown type, so they will be assigned different names—even if

the type associated with each is the same, for example capture of ?

or, in the case of a bounded wildcard, capture of ? extends

Number .

}

Capture.java:8: error: incompatible types: Object

     list.set(i, tmp.get(list.size()-i-1))

                        ^ 

  where CAP#1 is a fresh type-variable: CAP#1 ext



Restrictions on Wildcards

Wildcards may not appear at the top level in class instance creation

expressions ( new ), in explicit type parameters in generic method calls, or

in supertypes ( extends  and implements ).

Instance Creation    In a class instance creation expression, if the type is a

parameterized type, then none of the type parameters may be wildcards. For

example, the following are illegal:

This is usually not a hardship. The Get and Put Principle tells us that if a

structure contains a wildcard, we should only get values out of it (if it is an

extends  wildcard) or only put values into it (if it is a super  wildcard).

For a structure to be useful, we must do both. Therefore, we usually create a

structure at a precise type, even if we use wildcard types to put values into

or get values from the structure, as in the following example:

List<?> list = new ArrayList<?>();  // compile-ti

Map<String, ? extends Number> map 

  = new HashMap<String, ? extends Number>();  // 

List<Number> nums = new ArrayList<Number>(); 

List<? super Number> sink = nums; 

List<? extends Number> source = nums; 

for (int i=0; i<4; i++) sink.add(i); 



Here wildcards appear in the second and third lines, but not in the first line

that creates the list.

Only top-level parameters in instance creation are prohibited from

containing wildcards. Nested wildcards are permitted. Hence, the following

is legal:

Even though the list of lists is created at a wildcard type, each individual list

within it has a specific type: the first is a list of integers and the second is a

list of strings. The wildcard type prohibits us from extracting elements from

the inner lists as any type other than Object , but since that is the type

used by toString , this code is well typed.

One way to remember the restriction is that the relationship between

wildcards and ordinary types is similar to the relationship between

( ; ; ) ( );

int sum = nums.stream().mapToInt(Number::intValue

assert sum == 6;

List<List<?>> lists = new ArrayList<List<?>>(); 

lists.add(List.of(1,2,3)); 

lists.add(List.of("four","five")); 

assert lists.equals(List.of(List.of(1, 2, 3), Lis

assert lists.getFirst().getFirst().toString().equ



interfaces and classes—wildcards and interfaces are more general, ordinary

types and classes are more specific, and instance creation requires the more

specific information. Consider the following three statements:

The first is legal; the second is illegal because an instance creation

expression requires a class, not an interface; and the third is illegal because

an instance creation expression requires an ordinary type, not a wildcard.

You might wonder why this restriction is necessary. The Java designers had

in mind that every wildcard type is shorthand for some ordinary type, so

they believed that ultimately every object should be created with an

ordinary type. It is not clear whether this restriction is necessary, but it is

unlikely to be a problem. (We tried hard to contrive a situation in which it

was a problem, and we failed!)

Generic Method Calls    If a generic method call includes explicit type

parameters, those type parameters must not be wildcards. For example, say

we have the following generic method:

List<?> list = new ArrayList<Object>();   // ok 

List<?> list = new List<Object>()  // compile-tim

List<?> list = new ArrayList<?>()  // compile-tim

class Lists { 

  public static <T> List<T> factory() { return ne

}



You may choose for the type parameters to be inferred, or you may pass an

explicit type parameter. Both of the following are legal:

List<?> list = Lists.factory(); 

List<?> list = Lists.<Object>factory();

If an explicit type parameter is passed, it must not be a wildcard:

As before, nested wildcards are permitted:

The motivation for this restriction is similar to the previous one. Again, it is

not clear whether it is necessary, but it is unlikely to be a problem.

Supertypes    When a class instance is created, it invokes the constructor

for its supertype. Hence, any restriction that applies to instance creation

must also apply to supertypes. In a class declaration, if the supertype or any

superinterface has type parameters, these types must not be wildcards.

}

List<?> list = Lists.<?>factory();  // compile-ti

List<List<?>> list = Lists.<List<?>>factory();  /



For example, this declaration is illegal:

And so is this:

But, as before, nested wildcards are permitted:

The motivation for this restriction is similar to the previous two. As before,

it is not clear whether it is necessary, but it is unlikely to be a problem.

 Liskov87] provides a definition of behavioral subtyping in terms of

the ability to substitute values of one type for values of another without any

change in program behavior. Applying this definition in reverse gives the

design principle often called the Liskov Substitution Principle. We discuss

its application to the Collections Framework in Chapter 5 and [Link to

Come].

class AnyList extends ArrayList<?> {...} // compi

class AnotherList implements List<?> {...} // com

class NestedList extends ArrayList<List<?>> {...}

1



Chapter 2. Comparison and Bounds

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 3rd chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

Now that we have the basics, let’s look at some more advanced uses of

generics. This chapter describes the interfaces Comparable<T>  and

Comparator<T> , which are used to support comparison on elements.

These interfaces are useful if, for instance, you want to find the maximum

element of a collection or to sort a list. Along the way, we will introduce

bounds on type variables, an important feature of generics that is

particularly useful in combination with the Comparable<T>  interface.

Comparable<T>

mailto:shunter@oreilly.com


The interface Comparable<T>  declares a single instance method for

comparing one object with another:

interface Comparable<T> { 

  public int compareTo(T o); 

}

The compareTo  method returns an integer value that is negative, zero, or

positive depending upon whether the receiver—this object—is less than,

equal to, or greater than the argument. When a class implements

Comparable , the ordering specified by this interface is called the

natural ordering for that class.

Typically, an object belonging to a class can only be compared with an

object belonging to the same class. For instance, Integer  implements

Comparable<Integer> :

Integer int0 = 0; 

Integer int1 = 1; 

assert int0.compareTo(int1) < 0;

The comparison returns a negative number, since 0  precedes 1  under

numerical ordering. Similarly, String  implements

Comparable<String> :



String str0 = "zero"; 

String str1 = "one"; 

assert str0.compareTo(str1) > 0;

This comparison returns a positive number, since "zero"  follows

"one"  under alphabetic ordering.

The type parameter to the interface allows nonsensical comparisons to be

caught at compile time:

You can compare an integer with an integer or a string with a string, but

attempting to compare an integer with a string is a compile-time error.

Comparison is not supported between arbitrary numerical types:

Integer i = 0; 

String s = "one"; 

assert i.compareTo(s) < 0; // compile-time error

Number m = Integer.valueOf(2); 

Number n = Double.valueOf(3.14); 

assert m.compareTo(n) < 0; // compile-time error



Here the comparison is illegal, because the Number  class does not

implement the Comparable  interface.

Comparison differs from equality in that it does not accept a null

argument. If x  is not null , x.equals(null)  must return false ,

while x.compareTo(null)  must throw a

NullPointerException .

We adapt standard idioms for comparison, writing x.compareTo(y) <

0  instead of x < y , and writing x.compareTo(y) <= 0  instead of

x <= y .

Contract for Comparable  The contract for the Comparable<T>

interface specifies three properties. The properties are defined using the

sign function, which is defined such that sgn(x)  returns -1, 0, or 1,

depending on whether x  is negative, zero, or positive.

First, comparison is anti-symmetric. Reversing the order of arguments

reverses the result:

sgn(x.compareTo(y)) == -sgn(y.compareTo(x))

This generalizes the property for numbers: x < y  if and only if y > x .

It is also required that x.compareTo(y)  raises an exception if and only

if y.compareTo(x)  raises an exception.



Taking x  and y  to be the same gives us sgn(x.compareTo(x)) ==

-sgn(x.compareTo(x)) . It follows that

x.compareTo(x) == 0

so comparison is reflexive—that is, every value compares as the same as

itself.

Second, comparison is transitive. If one value is smaller than a second, and

the second is smaller than a third, then the first is smaller than the third:

This generalizes the property for numbers: if x < y  and y < z  then x

< z .

Third, comparison is a congruence. If two values compare as the same then

they compare the same way with any third value:

This generalizes the property for numbers: if x == y  then x < z  if and

only if y < z . Presumably, it is also required that if x.compareTo(y)

== 0  then x.compareTo(z)  raises an exception if and only if

if  x.compareTo(y) < 0 and  y.compareTo(z) < 0  t

if  x.compareTo(y) == 0 then  sgn(x.compareTo(z))



y.compareTo(z)  raises an exception, although this is not explicitly

stated.

Consistent with Equals  The contract for Comparable  strongly

recommends that the compareTo  method should be consistent with

equals—that is, that two objects should satisfy the equals  method if and

only if they compare as the same:

Notice that this is a recommendation, not a mandatory part of the contract.

But in fact it is the normal case: most classes having a natural ordering do

comply with this recommendation. If you are designing a class that

implements Comparable , you should not ignore it without good reason.

The best-known example in the platform library that contravenes this

recommendation is java.math.BigDecimal : two instances of this

class representing the same value but with different precisions, for example

4.0 and 4.00, will compare as the same but not satisfy the equals

method. One consequence of this design choice is that values of such a

class cannot be reliably stored in an internally ordered collection like

NavigableSet  or NavigableMap , as we will see in Chapter 8. A

discussion of possible reasons for choosing inconsistency with equals ,

and the wider consequences of this choice, will be found in Chapter 13.

x.equals(y)  if and only if  x.compareTo(y) == 0



Look Out for This!   It’s worth pointing out a subtlety in the definition of

comparison. Suppose that you have a series of Event  objects, each

described by its name and the number of milliseconds at which it occurred

before or after the present moment. Here is one way to define the natural

order for Event  to be the same as the timing order:

The conditional expression returns -1, 0, or 1 depending on whether the

receiver is less than, equal to, or greater than the argument. At first sight,

you might think that the following code would work just as well, since

compareTo  is permitted to return any negative integer if the receiver is

less than the argument, and any positive integer if it is greater:

record Event(String name, int millisecs) implemen

    public int compareTo(Event other) { 

        return this.millisecs < other.millisecs ?

               : this.millisecs == other.millisec

               : 1; 

    } 

}

record Event(String name, int millisecs) implemen

    public int compareTo(Event other) { 

        // bad implementation — don't do this 

        return this.millisecs - other.millisecs; 

    } 

}



But if the two values being compared have opposite signs, calculating the

difference between them may result in overflow—that is, a value outside

the range that can be stored in an integer, between

Integer.MIN_VALUE  and Integer.MAX_VALUE . In

“Comparator<T>” we will see how the factory methods of Comparator

provide concise ways of comparing two objects without encountering this

problem.

Maximum of a Collection

In this section, we show how to use the Comparable  interface to find

the maximum element in a collection.We begin with a simplified version.

The signature of the version actually found in the Collections Framework is

more complicated, and later we will see why.

Here is the code to find the maximum element in a nonempty collection,

from the class Collections :

}

public static <T extends Comparable<T>> T max(Col

    Iterator<? extends T> i = coll.iterator(); 

    T candidate = i.next(); 

    while (i.hasNext()) { 

        T next = i.next(); 

if (next compareTo(candidate) > 0)



We first saw generic methods that declare new type variables in the

signature in [Link to Come]. For instance, the method asList  takes an

array of type E[]  and returns a result of type List<E> , and does so for

any type E . Here we have a generic method that declares a bound on the

type variable. The method max  takes a collection of type

Collection<T>  and returns a T , and it does this for any type T  such

that T  is a subtype of Comparable<T> .

The highlighted phrase in angle brackets at the beginning of the type

signature declares the type variable T , and we say that T  is bounded by

Comparable<T> . As with wildcards, bounds for type variables are

always indicated by the keyword extends , even when the bound is an

interface rather than a class, as is the case here. Unlike wildcards, type

variables can only be bounded using extends , not super .

In this case, the bound is recursive, in that the bound on T  itself depends

upon T . It is even possible to have mutually recursive bounds, such as:

<T extends C<T,U>, U extends D<T,U>>

        if (next.compareTo(candidate) > 0) 

            candidate = next; 

    } 

    return candidate; 

} 



An example of mutually recursive bounds appears in [Link to Come].

The method body first obtains an iterator over the collection, then calls the

next  method to select the first element as a candidate for the maximum;

the specification of this method allows it to throw a

NoSuchElementException  if it is supplied with an empty collection.

It then compares the candidate with each element in the collection, setting

the candidate to the element when the element is larger.

The code shown above, from the current (Java 20) version of the JDK, was

written before Java 8 introduced streams and static methods on interfaces,

which permit a more concise and probably more efficient version, with the

same signature but returning a value of type Optional<T>  to allow for

the case of an empty collection:

We will explore the features of Comparator  that make this possible in

“Comparator<T>”.

public static <T extends Comparable<T>> Optional<

    return coll.stream().max(Comparator.naturalOr

} 

 



When calling the method, T  may be chosen to be Integer  (since

Integer  implements Comparable<Integer> ) or String  (since

String  implements Comparable<String> ):

But we may not choose T  to be Number  (since Number  does not

implement Comparable ):

As expected, here the call to max  is illegal.

Declarations for methods should be as general as possible to maximize

utility. If you can replace a type parameter with a wildcard then you should

do so. We can improve the declaration of max  by replacing:

List<Integer> ints = Arrays.asList(0,1,2); 

assert Collections.max(ints) == 2; 

 

List<String> strs = Arrays.asList("zero","one","t

assert Collections.max(strs).equals("zero");

List<Number> nums = Arrays.asList(0,1,2,3.14); 

assert Collections.max(nums) == 3.14; // compile-

<T extends Comparable<T>> T max(Collection<T> col



with:

Following the Get and Put Principle, we use extends  with

Collection  because we get values of type T  from the collection, and

we use super  with Comparable  because we put value of type T  into

the compareTo  method. In the next section, we’ll see an example that

would not type-check if the super  clause above was omitted.

If you look at the signature of this method in the Java library, you will see

something that looks even worse than the preceding code:

The highlighted bound is there for backward compatibility, as we will

explain at the end of “Multiple Bounds”.

A Fruity Example

The Comparable<T>  interface gives fine control over what can and

cannot be compared. Say that we have a Fruit  class with subclasses

Apple  and Orange . Depending on how we set things up, we may

<T extends Comparable<? super T>> T max(Collectio

<T extends Object & Comparable<? super T>> T max(



prohibit comparison of apples with oranges or we may permit such

comparison.

Example 2-1 prohibits comparison of apples with oranges. Here are the

three classes it declares:

Each fruit has a name and a size, and two fruits are equal if they have the

same name and the same size. Since we have overridden equals , we

have also overridden hashCode , to ensure that equal objects have the

same hash code (see Hash Tables for an explanation of the importance of

this). Apples are compared by comparing their sizes, and so are oranges.

Since Apple  implements Comparable<Apple> , it is clear that you

can compare apples with apples, but not with oranges. The test code builds

three lists, one of apples, one of oranges, and one containing mixed fruits.

We may find the maximum of the first two lists, but attempting to find the

maximum of the mixed list signals an error at compile time.

Example 2-2 permits comparison of apples with oranges. Compare these

three class declarations with those given previously (all differences between

Example 2-1 and Example 2-2 are highlighted):

class Fruit {...} 

class Apple extends Fruit implements Comparable<A

class Orange extends Fruit implements Comparable<



As before, each fruit has a name and a size, and two fruits are equal if they

have the same name and the same size. Now, since Fruit  implements

Comparable<Fruit> , any two fruits may be compared by comparing

their sizes. So the test code can find the maximum of all three lists,

including the one that mixes apples with oranges.

Recall that at the end of the previous section we extended the type signature

of max  to use super :

Example 2-2 shows why this wildcard is needed. If we want to compare

two oranges, we take T in the preceding code to be Orange :

Orange extends Comparable<? super Orange>

And this is true because both of the following hold:

class Fruit implements Comparable<Fruit> {...} 

class Apple extends Fruit {...} 

class Orange extends Fruit {...}

<T extends Comparable<? super T>> T max(Collectio

Orange extends Comparable<Fruit>  and  Fruit supe



Without the super wildcard, finding the maximum of a List<Orange>

would be illegal, even though finding the maximum of a List<Fruit>

is permitted.

Also note that the natural ordering used here is not consistent with equals

(see “Comparable<T>”). Two fruits with different names but the same size

compare as the same, but they are not equal.

Comparator<T>

Sometimes we want to compare objects that do not implement the

Comparable  interface, or to compare objects using a different ordering

from the one specified by that interface. The ordering provided by the

Comparable  interface is called the natural ordering, so the

Comparator  interface provides, so to speak, an unnatural ordering.

We specify additional orderings using the Comparator  interface, which

declares two abstract methods:

interface Comparator<T> { 

  public int compare(T o1, T o2); 

  public boolean equals(Object obj); 

}



The compare  method returns a value that is negative, zero, or positive

depending upon whether the first object is less than, equal to, or greater

than the second object—just as with compareTo . (The equals

method is the one familiar from class Object ; it is included in the

interface to remind implementors that equal comparators must have

compare  methods that impose the same ordering.)

Example 2-1. Prohibiting comparison of apples with oranges

abstract class Fruit { 

  protected String name; 

  protected int size; 

  protected Fruit(String name, int size) { 

    this.name = name; this.size = size; 

  } 

  public boolean equals(Object o) { 

    if (o instanceof Fruit) { 

      Fruit that = (Fruit)o; 

      return this.name.equals(that.name) && this

    } else return false; 

  } 

  public int hashCode() { 

    return Objects.hash(name,size); 

  } 

  protected int compareTo(Fruit that) { 

    return Integer.compare(this.size, that.size);

  } 



Example 2-2. Permitting comparison of apples with oranges

}

} 

class Apple extends Fruit implements Comparable<A

  public Apple(int size) { super("Apple", size); 

  public int compareTo(Apple a) { return super.co

} 

class Orange extends Fruit implements Comparable<

  public Orange(int size) { super("Orange", size)

  public int compareTo(Orange o) { return super.c

} 

class Test { 

  public static void main(String[] args) { 

 

    Apple a1 = new Apple(1); Apple a2 = new Apple

    Orange o3 = new Orange(3); Orange o4 = new Or

 

    List<Apple> apples = Arrays.asList(a1,a2); 

    assert Collections.max(apples).equals(a2); 

 

    List<Orange> oranges = Arrays.asList(o3,o4); 

    assert Collections.max(oranges).equals(o4); 

 

    List<Fruit> mixed = List.of(a1,o3); 

    Collections.max(mixed);       // compile-time

  } 

} 



abstract class Fruit implements Comparable<Fruit>

  protected String name; 

  protected int size; 

  protected Fruit(String name, int size) { 

    this.name = name; this.size = size; 

  } 

  public boolean equals(Object o) { 

    if (o instanceof Fruit) { 

      Fruit that = (Fruit)o; 

      return this.name.equals(that.name) && this

    } else return false; 

  } 

  public int hashCode() { 

    return Objects.hash(name,size); 

  } 

  public int compareTo(Fruit that) { 

    return Integer.compare(this.size, that.size);

  } 

} 

class Apple extends Fruit { 

  public Apple(int size) { super("Apple", size); 

} 

class Orange extends Fruit { 

  public Orange(int size) { super("Orange", size)

} 

class Test { 

  public static void main(String[] args) { 

 



Here is a comparator that considers the shorter of two strings to be smaller.

Only if two strings have the same length are they compared using the

natural (alphabetic) ordering.

    Apple a1 = new Apple(1); Apple a2 = new Apple

    Orange o3 = new Orange(3); Orange o4 = new Or

 

    List<Apple> apples = Arrays.asList(a1,a2); 

    assert Collections.max(apples).equals(a2); 

 

    List<Orange> oranges = Arrays.asList(o3,o4); 

    assert Collections.max(oranges).equals(o4); 

 

    List<Fruit> mixed = List.of(a1,o3); 

    assert Collections.max(mixed).equals(o3); // 

  } 

} 

Comparator<String> sizeOrder = 

  new Comparator<>() { 

    public int compare(String s1, String s2) { 

      return 

        s1.length() < s2.length() ? -1 : 

        s1.length() > s2.length() ? 1 : 

        s1.compareTo(s2) ; 

      } 

};



And here is an example of its use:

assert "two".compareTo("three") > 0; 

assert sizeOrder.compare("two","three") < 0;

In the natural alphabetic ordering, "two"  is greater than "three" ,

whereas in the size ordering it is smaller.

The Java libraries always provide a choice between Comparable  and

Comparator . For every generic method with a type variable bounded by

Comparable , there is another generic method with an additional

argument of type Comparator . For instance, corresponding to:

we also have:

public static <T extends Comparable<? super T>> 

  T max(Collection<? extends T> coll)

public static <T> 

  T max(Collection<? extends T> coll, Comparator<



There are similar methods to find the minimum. For example, here is how

to find the maximum and minimum of a list using the natural ordering and

using the size ordering:

The string "from"  is the maximum using the size ordering because it is

longest, and "to"  is minimum because it is shortest.

Here, slightly simplified, is the code in the class Collection  for the

version of max  that takes a Comparator .

Collection<String> strings = Arrays.asList("from"

assert Collections.max(strings).equals("zzz"); 

assert Collections.min(strings).equals("aaa"); 

assert Collections.max(strings,sizeOrder).equals(

assert Collections.min(strings,sizeOrder).equals(

public static <T extends Comparable<T>> T max(Col

    Iterator<? extends T> i = coll.iterator(); 

    T candidate = i.next(); 

    while (i.hasNext()) { 

        T next = i.next(); 

        if (comp.compare(next, candidate) > 0) 

            candidate = next; 

    } 



Compared to the previous version, the only change is that where before we

wrote next.compareTo(candidate) , now we write

comp.compare(next, candidate) .

It is easy to define a comparator that provides the natural ordering. This is a

slightly simplified version of the code for the static method

naturalOrder  on the Comparator  interface:

Using this, we can define the version of max  that uses the natural ordering

in terms of the version that uses a given comparator. This is the overload of

max  that was used in the stream version of the Collections  method

in “Comparable<T>”:

    return candidate; 

} 

public static <T extends Comparable<? super T>> C

  return new Comparator<>(){ 

    public int compare(T o1, T o2) { return o1.co

  }; 

}

public static <T extends Comparable<? super T>> T

  return Collections.max(coll, Comparator.natural

}



In everyday practice, you will probably create Comparator  instances

using one of the static or default methods that the interface exposes, or a

combination of them. Let’s explore how they work on a simple record type:

record Person(String name, int age) {}

Probably the most commonly used methods are comparing  and its

variants, which accept a function that extracts a key to use in comparing

two objects. For example, if we want to sort a list of Person  objects by

name, we can use this Comparator :

The method comparing  takes a function (represented by the functional

interface java.util.function.Function  —typically a getter—

from the type to be sorted to a sort key. It then returns a comparator that,

when it is applied to two objects of the type to be sorted, will return a value

corresponding to the natural ordering on their respective sort keys. For

example, if we define a list of Person  objects:

Comparator<Person> compareByName = Comparator.com

Person a32 = new Person("Alice", 32); 

Person b23 = new Person("Bob", 23); 

List<Person> l = new ArrayList<>(List.of(a32, b23

1



we can write

l.sort(compareByName); 

assert l.equals(List.of(a32,b23));

Even somewhat simplified, the declaration of

Comparator.comparing  in the JDK looks very difficult:

In fact, we have met most of the difficulties already. T  is the type of the

class to be compared, and U  is the type of the sort key. As we saw at the

end of “Maximum of a Collection”, the most generally useful bound on the

type of a comparable is U extends Comparable<? super U> : in

other words, if any supertype of U  defines compareTo , U  will inherit

that definition. The type signature of the Function  interface can be

explained by the Substitution Principle: a function that can be applied to

some supertype of T  can certainly be applied to a T  value; conversely, if

public static <T, U extends Comparable<? super U>

    comparing(Function<? super T, ? extends U> ke

        return (c1, c2) -> 

            keyExtractor.apply(c1).compareTo(keyE

}



it returns a subtype of U , that will be certainly be usable where a U  is

required.

The intimidating appearance of this declaration contrasts with the ease of

using the method that it declares. This contrast is typical of Java generics:

the API designer needs to think very carefully about how to make it as

usable and general as possible. If the design is successful, client code

developers will be highly appreciative—if they stop to think about it, that

is, since the best-designed APIs are distinguished by their unobtrusiveness.

The Function  parameter of the method comparing  can only be

applied to an object of a reference type. So for primitive types, we need

specialized versions of comparing . For example:

Earlier, in “Comparable<T>”, we saw two solutions to the problem of

comparing two Event  objects, one clumsy and one defective. We can use

comparingInt  to define a version of compareTo  that is more

readable and less error-prone than the first version, but without the overflow

problem of the second:

Comparator<Person> compareByAge = Comparator.comp

l.sort(compareByAge); 

assert l.equals(List.of(b23,a32));

record Event(String name, int millisecs) implemen



The ordering of a comparator can be conveniently reversed using the

instance method reversed :

l.sort(compareByAge.reversed()); 

assert l.equals(List.of(a32,b23));

Sorting often requires multiple levels: when the result of sorting on one key

produces groups of results, with the results in each group having the same

value of the sort key. Each group may then need to be sorted by a secondary

key. Comparator  supports this with the instance method

comparingAndThen , which creates a comparator that compares its

arguments first using the receiver (this comparator) then, if they are equal,

using the comparator supplied as the argument. To show this in action, we

add a new Person  object with the same name as one pre-existing object

and the same age as the other.

    public int compareTo(Event other) { 

        return Comparator.comparingInt(Event::mil

    } 

}

Person a23 = new Person("Alice", 23); 

l.add(a23); 

l.sort(compareByName.thenComparing(compareByAge))

assert l.equals(List.of(a23,a32,b23));



The Comparator  API is designed so that these methods are composable.

For example, supposing that we want to sort a list of Person  objects in

reverse order of age and then, in the case of tied results, by reverse order of

name. That is easy to express:

Unlike Comparable::compareTo , the compare  method of

Comparator  can optionally permit comparison of null  arguments.

The static methods nullsFirst  and nullsLast  take a

Comparator  and return a null-friendly comparator that treats non-null

values the same as the comparator supplied as the argument, but considers

null to be less—or, respectively, greater—than any non-null value:

As a final example of comparators, here is a method that takes a comparator

on elements and returns a comparator on lists of elements:

l.sort(compareByAge.reversed().thenComparing(comp

assert l.equals(List.of(a32,b23,a23));

l.add(null); 

l.sort(Comparator.nullsFirst(compareByAge)); 

assert l.equals(Arrays.asList(null,b23,a23,a32));

public static <E> 



The loop compares corresponding elements of the two lists, and terminates

when corresponding elements are found that are not equal (in which case,

the list with the smaller element is considered smaller) or when the end of

either list is reached (in which case, the shorter list is considered smaller).

This is the usual ordering for lists; if we convert a string to a list of

characters, it gives the usual ordering on strings.

Enumerated Types

Java 5 includes support for enumerated types: types whose values consist of

a fixed set of constants. Here are two simple examples:

  Comparator<List<E>> listComparator(final Compar

  return new Comparator<>() { 

    public int compare(List<E> list1, List<E> lis

      int n1 = list1.size(); 

      int n2 = list2.size(); 

      for (int i = 0; i < Math.min(n1,n2); i++) {

        int k = comp.compare(list1.get(i), list2

        if (k != 0) return k; 

      } 

      return Integer.compare(n1, n2); 

    } 

  }; 

}



Each enumerated type declaration can be expanded into a corresponding

class in a stylized way. The corresponding class is designed so that it has

exactly one instance for each of the enumerated constants, bound to a

suitable static final variable. For example, the first of the enum

declarations above expands into a class called Season . Exactly four

instances of this class exist, bound to four static final variables with the

names WINTER , SPRING , SUMMER , and FALL . There is no way to

create any further instances of Season .

Foremost amongst the many useful features of Java enums is their type

safety: for example, you can’t assign a Weekday  value to a variable of

type Season , or compare two values of these different types. This type

safety is enforced by the declaration of the enumerated types, as in

Example 2-4. Each class corresponding to an enumerated type is a subclass

of java.lang.Enum , declared as in Example 2-3 .

The class Enum  provides properties that every enumerated type needs: its

name and its ordinal—that is, its position in the enumeration sequence.

Also, by implementing Comparable , it ensures that its derived classes

will also be Comparable . But the requirement for type safety means that

it is not enough that, for example, Season implements

enum Season { WINTER, SPRING, SUMMER, FALL } 

enum Weekday { MONDAY, TUESDAY, WEDNESDAY, THURSD
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Comparable ; on its own, that would still permit comparison of a

Season  with a Weekday . What is necessary is that Season  should

implement Comparable<Season> .

This takes us some distance towards understanding the declaration of

Enum :

You may find this frightening at first sight—your authors certainly did! But

don’t panic. Matching things up shows how a class derived from Enum

will have the property that we need. From what we already know, we have

that

where ...  is some parameterization of Enum . If that parameterization is
Enum<Season> , we get

and substituting //1 into //2 gives

class Enum<E extends Enum<E>> implements Comparab

class Season extends ... implements Comparable<Se

class Season extends Enum<Season>                

class Enum<Season> implements Comparable<Season> 



Of course, Enum  needs to work on any enumerated type, not only

Season , so its declaration in the class library is

Example 2-3. Base class for enumerated types

Example 2-4. Class corresponding to an enumerated type

class Enum<Season extends Enum<Season>> implement

class Enum<E extends Enum<E>> implements Comparab

public abstract class Enum<E extends Enum<E>> imp

  private final String name; 

  private final int ordinal; 

  protected Enum(String name, int ordinal) { 

    this.name = name; this.ordinal = ordinal; 

  } 

  public final String name() { return name; } 

  public final int ordinal() { return ordinal; } 

  public String toString() { return name; } 

  public final int compareTo(E o) { 

    return ordinal - ((Enum<?>)o).ordinal; 

  } 

}



Recursively bounded types like T extends Comparable<T>  and E

extends Enum<E>  occur when we want to constrain a parameter to

range only over the subtypes of a particular type. For example, in any

subtype T  of the base Enum  class, the compareTo  method can only be

applied to an argument of type T , not to any other subtype of Enum : the

definition provides a way of naming the type itself in the body of the class.

(The term “self-type” is sometimes used for this in discussions of

recursively bounded types.)

/* 

   corresponds to enum Season { WINTER, SPRING, S

*/ 

final class Season extends Enum<Season> { 

  private Season(String name, int ordinal) { supe

  public static final Season WINTER = new Season(

  public static final Season SPRING = new Season(

  public static final Season SUMMER = new Season(

  public static final Season FALL   = new Season(

  private static final Season[] VALUES = { WINTER

  public static Season[] values() { return VALUES

  public static Season valueOf(String name) { 

    for (Season e : VALUES) if (e.name().equals(n

    throw new IllegalArgumentException(); 

  } 

}



The rest of the definitions are straightforward. The base class Enum

defines two fields, a string name  and an integer ordinal , that are

possessed by every instance of an enumerated type; the fields are final

because once they are initialized, their value never changes. The constructor

for the class is protected, to ensure that it is used only within subclasses of

this class. Each enumeration class makes the constructor private, to ensure

that it is used only to create the enumerated constants. For instance, the

Season  class has a private constructor that is invoked exactly four times

in order to initialize the final variables WINTER , SPRING , SUMMER ,

and FALL .

The base class defines accessor methods for the name  and ordinal

fields. The toString  method returns the name, and the compareTo

method just returns the difference of the ordinals for the two enumerated

values. (Unlike the definition of Event  in “Comparable<T>”, this is safe

because, since the ordinals are always positive, there is no possibility of

overflow.) Hence, constants have the same ordering as their ordinals—for

example, WINTER  precedes SUMMER .

Lastly, there are two static methods in every class that corresponds to an

enumerated type. The values  method returns an array of all the

constants of the type. It returns a (shallow) clone of the internal array.

Cloning is vital to ensure that the client cannot alter the internal array. Note

that you don’t need a cast when calling the clone  method, because

cloning for arrays now takes advantage of covariant return types (see



“Covariant Overriding”). The valueOf  method takes a string and returns

the corresponding constant, found by searching the internal array. It returns

an IllegalArgumentException  if the string does not name a value

of the enumeration.

Multiple Bounds

We have seen many examples where a type variable or wildcard is bounded

by a single class or interface. In rare situations, it may be desirable to have

multiple bounds, and we show how to do so here.

To demonstrate, we use three interfaces from the Java library. The

Readable  interface has a read  method to read into a buffer from a

character source, the Appendable  interface has an append  method to

copy from a buffer into a target capable of receiving characters, and the

Closeable  interface has a close  method to close a source or target.

Possible sources and targets include character files, buffers, streams, and so

on.

For maximum flexibility, we might want to write a copy  method that

accepts a Supplier  of any source that implements both Readable

and Closeable , and a Supplier  of any target that implements both

Appendable  and Closeable . The method will copy the contents of

the source to the target. Unfortunately, character readers and writers



typically cannot be opened without potentially throwing IOException ,

so we need a specialized supplier interface:

interface IoeThrowingSupplier<S> { 

    S get() throws IOException; 

}

The method copy  can now be declared:

public static <S extends Readable & Closeable, 

               T extends Appendable & Closeable> 

    void copy(IoeThrowingSupplier<S> src, IoeThro

                                                 

    try (S s = src.get(); T t = tgt.get()) { 

        CharBuffer buf = CharBuffer.allocate(size

        int i = s.read(buf); 

        while (i >= 0) { 

            buf.flip(); // prepare buffer for wri

            t.append(buf); 

            buf.clear(); // prepare buffer for re

            i = s.read(buf); 

        } 

    } 

}



The first line of this method specifies that S  ranges over any type that

implements both Readable  and Closeable , and that T  ranges over

any type that implements Appendable  and Closeable . When

multiple bounds on a type variable appear, they are separated by

ampersands.

The try-with-resources statement evaluates the supplied lambdas, which

open and return a character source and a character target. It then repeatedly

reads from the source into a buffer and appends from the buffer into a

target. When the source is empty, the try block is exited, closing both the

source and the target. As an example, this method may be called with a

FileReader  and a FileWriter  as source and target:

Other possible sources include FilterReader , PipedReader , and

StringReader , and other possible targets include FilterWriter ,

PipedWriter , and PrintStream . But you could not use

StringBuffer  as a target, since it implements Appendable  but not

Closeable .

 int size = 32; 

 Files.writeString(Path.of("file.in"), "hello wor

 copy(() -> new FileReader("file.in"), 

      () -> new FileWriter("file.out"), size); 

 assert Files.readString(Path.of("File.out")).equ



If you are familiar with the java.io  library, you may have spotted that

all classes that implement both Readable  and Closeable  are

subclasses of Reader , and almost all classes that implement

Appendable  and Closeable  are subclasses of Writer . So you

might wonder why we don’t simplify the method signature like this:

This will indeed admit most of the same classes, but not all of them. For

instance, PrintStream  implements Appendable  and Closeable

but is not a subclass of Writer . Furthermore, you can’t rule out the

possibility that some programmer using your code might have his or her

own custom class that, say, implements Readable  and Closeable

but is not a subclass of Reader .

When multiple bounds appear, the first bound is used for erasure. We saw

this used earlier in “Maximum of a Collection”:

Without the highlighted text, the erased type signature for max  would have

Comparable  as the return type, whereas in legacy libraries the return

public static void copy(Reader src, Writer trg, i

public static <T extends Object & Comparable<? su

  T max(Collection<? extends T> coll)



type is Object . Maintaining compatibility with legacy libraries is further

discussed in [Link to Come] and [Link to Come].

Bridges

As we mentioned earlier, generics are implemented by erasure: the

compiled representation of code written with generics is almost exactly the

same as that written without. However, in the case of a parameterized

supertype—for example, an interface such as Comparable<T> —erasure

may require additional methods to be inserted by the compiler; these

additional methods are called bridges.

Example 2-5 shows the Comparable  interface and a simple Point

record implementing that interface. The natural order on Point s is

defined by comparing their distances from the origin (or, more precisely, the

squares of their distances from the origin: it amounts to the same thing).

The declaration of compareTo  in Point  overrides that in

Comparable , because the signatures match.

Example 2-5. Generic code implementing a parameterized interface

interface Comparable<T> { 

    public int compareTo(T other); 

} 

record Point(double x, double y) implements Compa



Erasure changes the situation, however, as shown in Example 2-6.

Example 2-6. Parameterized interface and implementation after
erasure

The signature of compareTo  in the interface has changed, and to restore

overriding the compiler must add an extra method to the implementation:

public int compareTo(Object other) { 

     return compareTo((Point)other); 

( y) p p

    public int compareTo(Point p) { 

        return Double.compare(this.x * this.x + t

                              p.x * p.x + p.y * p

    } 

}

interface Comparable { 

    public int compareTo(Object other); 

} 

record Point(double x, double y) implements Compa

    public int compareTo(Point p) { 

        return Double.compare(this.x * this.x + t

                              p.x * p.x + p.y * p

    } 

}



}

You can confirm the existence of this bridge using reflection:

And the entire declaration of the method can be seen by decompiling the

class file, for example with the open source decompiler FernFlower, which

produces this output:

.... 

// $FF: synthetic method 

// $FF: bridge method 

public int compareTo(Object var1) { 

    return this.compareTo((Point)var1); 

} 

....

Bridge methods are required whenever a class or interface implements or

extends a parameterised supertype by instantiating its type parameter .

Map<Class<?>, Boolean> typeToBridge = (Arrays.str

    .filter(m -> m.getName().equals("compareTo"))

    .collect(Collectors.toMap(m -> m.getParameter

assert typeToBridge.size() == 2; 

assert ! typeToBridge.get(Point.class);    // com

assert typeToBridge.get(Object.class);     // com
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Bridges can play an important role when converting legacy code to use

generics; see [Link to Come].

Covariant Overriding

At the same time that generics were introduced, Java started supporting

covariant method overriding. This feature is not directly related to generics,

but we discuss it here because it is worth knowing, and because it is

implemented using a bridging technique like that described in the previous

section.

In early versions of Java, one method could override another only if the

signatures and the return types matched exactly. With covariant overriding,

the signatures must still match (after erasure), but the requirement to match

the return types is relaxed so that now the return type of the overriding

method need only be a subtype of the return type of the overridden method.

The clone  method of class Object  illustrates the advantages of

covariant overriding:

class Object { 

    ... 

    protected Object clone() { ... } 

}



Without covariant overriding, any class that overrides clone  has to give

the overriding method exactly the same return type, namely Object . For

example, here is a Point  record that does this:

Here, even though clone  always returns a Point , without covariance

the old rules required it to have the return type Object . This was

annoying, since every invocation of clone  had to cast its result.

Point p = new Point(1,2); 

Point q = (Point)p.clone();

With covariant overriding, it is possible to give the clone  method a

return type that is more to the point, as it were:

Now we may clone without a cast:

record Point(double x, double y)  { 

    public Object clone() { return new Point(x,y)

}

record Point(double x, double y) { 

    public Point clone() { return new Point(x,y);

}



Point p = new Point(1,2); 

Point q = p.clone();

Covariant overriding is implemented using the bridging technique described

in the previous section. As before, you can see the bridge using

decompilation or by applying reflection. Here is code that finds all methods

with the name clone  in the class Point , then maps the return type of

each overload to the result of calling the Method  method isBridge :

Here the bridging technique exploits the fact that in a class file two methods

of the same class may have the same argument signature, even though this

is not permitted in Java source. The bridge method simply calls the first

method.

 See https://www.lambdafaq.org/what-is-a-functional-interface/

Map<Class<?>,Boolean> returnToBridge = (Arrays.st

        .filter(m -> m.getName().equals("clone"))

        .collect(Collectors.toMap(Method::getRetu

assert returnToBridge.size() == 2; 

assert returnToBridge.get(Object.class);     // O

assert ! returnToBridge.get(Point.class);    // P

1
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 The code for Example 2-3 does not correspond on all points with the

source in the Java library, and most of the code corresponding to

Example 2-4 is actually synthesized by the Java compiler, but these

examples are functionally equivalent to the code that is actually executed.

 Strictly speaking, this is true only if erasure changes the signature of

any of the supertype‘s methods.

2
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Chapter 3. Declarations

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 4th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

This chapter discusses how to declare a generic class. It describes

constructors, static members, and nested classes, and it fills in some details

of how erasure works.

Constructors

In a generic class, type parameters appear in the header that declares the

class, but not in the constructor:

mailto:shunter@oreilly.com


class Pair<T,U> { 

  private final T first; 

  private final U second; 

  public Pair(T first, U second) { 

        this.first = first; 

        this.second = second; 

  } 

  public T getFirst() { return first; } 

  public U getSecond() { return second; } 

}

The type parameters T  and U  are declared at the beginning of the class,

not in the constructor. However, actual type parameters are passed to the

constructor whenever it is invoked:

Look Out for This!   A common mistake is to forget the type parameters

when invoking the constructor:

Pair<String, Integer> pair1 = new Pair<String, In

assert pair1.getFirst().equals("one") && pair1.ge

Pair<String, Integer> pair2 = new Pair("one",2);



This mistake produces a warning, but not an error. It is taken to be legal,

because Pair  is treated as a raw type, a type containing no parametric

type information but which can be converted to the corresponding

parameterized type, generating only an unchecked warning (see [Link to

Come], which explains raw types and how the -Xlint:unchecked

flag can help you spot errors of this kind).

Records can be parameterised in just the same way as regular classes:

record Pair<T,U>(T first, U second) {}

Static Members

Compilation by erasure means that at run time parameterised types are

replaced by the corresponding raw type: for example, the interfaces

List<Integer> , List<String> , and List<List<String>>

are all implemented by a single interface, namely List :

We see here that the class object associated with a list of integers at run

time is the same as the one associated with a list of strings.

List<Integer> ints = Arrays.asList(1,2,3); 

List<String> strings = Arrays.asList("one","two")

assert ints.getClass() == strings.getClass();



One consequence is that static members of a generic class are shared across

all instantiations of that class, including instantiations at different types.

Static members of a class cannot refer to the type parameter of a generic

class, and when accessing a static member the class name should not be

parameterized.

For example, here is a class, Cell<T> , in which each cell has an integer

identifier and a value of type T :

A static field, count , is used to allocate a distinct identifier to each cell.

For the count, an AtomicInteger  is used to ensure that unique

class Cell<T> { 

    private final int id; 

    private final T value; 

    private final static AtomicInteger count = ne

    private static int nextId() { return count.ge

    public Cell(T value) { 

        this.value = value; 

        id = nextId(); 

    } 

    public T getValue() { return value; } 

    public int getId() { return id; } 

    public static int getCount() { return count.g

}



identifiers are generated even under concurrent access. The static

getCount  method returns the current count.

Here is code that allocates a cell containing a string and a cell containing an

integer, which are allocated the identifiers 0  and 1 , respectively:

Static members are shared across all instantiations of a class, so the same

count is incremented when allocating either a string or an integer cell.

Because static members are independent of any type parameters, we are not

permitted to follow the class name with type parameters when accessing a

static member:

The count is static, so it is a property of the class as a whole, not any

particular instance.

Cell<String> a = new Cell<String>("one"); 

Cell<Integer> b = new Cell<Integer>(2); 

assert a.getId() == 0 && b.getId() == 1 && Cell.g

Cell.getCount();          // ok

Cell<Integer>.getCount(); // compile-time error

Cell<?>.getCount();       // compile-time error



For the same reason, you can’t refer to a type parameter anywhere in the

declaration of a static member. Here is a second version of Cell , which

attempts to use a static variable to keep a list of all values stored in any cell:

Since the class may be used with different type parameters at different

places, it makes no sense to refer to T  in the declaration of the static field

values  or the static method getValues , and these lines are reported

as errors at compile time. If we want a list of all values kept in cells, then

we need to use a list of objects, as in the following variant:

class Cell2<T> { 

  private final T value; 

  private static List<T> values = new ArrayList<T

  public Cell2(T value) { 

        this.value=value; 

        values.add(value); 

  } 

  public T getValue() { return value; } 

  public static List<T> getValues() { return valu

}

class Cell2<T> { 

  private final T value; 

  private static List<Object> values = new ArrayL

  public Cell2(T value) { 

this value value;



This code compiles and runs with no difficulty:

Nested Classes

Java permits nesting one class inside another. If the outer class has type

parameters and the inner class is a member class—that is, not static—then

type parameters of the outer class are visible within the inner class.

Example 3-1 shows a class implementing collections as a singly-linked list.

This class extends java.util.AbstractCollection , so it only

needs to define the methods size , add , and iterator  (see

Chapter 13). It contains an inner class, Node , for the list nodes, and an

        this.value=value; 

        values.add(value); 

  } 

  public T getValue() { return value; } 

  public static List<Object> getValues() { return

}

Cell2<String> a = new Cell2<String>("one"); 

Cell2<Integer> b = new Cell2<Integer>(2); 

assert Cell2.getValues().equals(List.of("one",2))



anonymous inner class implementing Iterator<E> . The type

parameter E  is in scope within both of these classes.

Example 3-1. Type parameters are in scope for member classes

class LinkedCollection<E> extends AbstractCollect

  private class Node { 

    private E element; 

    private Node next = null; 

    private Node(E elt) { element = elt; } 

  } 

  private Node first = new Node(null); 

  private Node last = first; 

  private int size = 0; 

  public LinkedCollection() {} 

  public LinkedCollection(Collection<? extends E>

  public int size() { return size; } 

  public boolean add(E elt) { 

    last.next = new Node(elt); last = last.next; 

    return true; 

  } 

  public Iterator<E> iterator() { 

    return new Iterator<E>() { 

      private Node current = first; 

      public boolean hasNext() { 

        return current.next != null; 

      } 

      public E next() { 



For contrast, Example 3-2 shows a similar implementation, but this time the

inner Node  class is static, and so the type parameter E  is not in scope for

this class. Instead, the inner class is declared with its own type parameter,

T . Where the previous version referred to Node , the new version refers

to Node<E> . The anonymous iterator class in the preceding example has

also been replaced by a static inner class, again with its own type parameter.

If the node classes had been made public rather than private, you would

refer to the node class in the first example as

LinkedCollection<E>.Node , whereas you would refer to the node

class in the second example as LinkedCollection.Node<E> .

Example 3-2. Type parameters are not in scope for static inner classes

p () {

        if (current.next != null) { 

          current = current.next; 

          return current.element; 

        } else throw new NoSuchElementException()

      } 

      public void remove() { 

        throw new UnsupportedOperationException()

      } 

    }; 

  } 

}

l Li k dC ll ti E t d Ab t tC ll t



class LinkedCollection<E> extends AbstractCollect

  private static class Node<T> { 

    private T element; 

    private Node<T> next = null; 

    private Node(T elt) { element = elt; } 

  } 

  private Node<E> first = new Node<E>(null); 

  private Node<E> last = first; 

  private int size = 0; 

  public LinkedCollection() {} 

  public LinkedCollection(Collection<? extends E>

  public int size() { return size; } 

  public boolean add(E elt) { 

    last.next = new Node<E>(elt); last = last.nex

    return true; 

  } 

  private static class LinkedIterator<T> implemen

    private Node<T> current; 

    public LinkedIterator(Node<T> first) { curren

    public boolean hasNext() { 

      return current.next != null; 

    } 

    public T next() { 

      if (current.next != null) { 

        current = current.next; 

        return current.element; 

      } else throw new NoSuchElementException(); 

    } 

    public void remove() { 



Of the two alternatives described here, the second is preferable. Member

classes are implemented by including a reference to the enclosing instance,

since they may, in general, access components of that instance. Static inner

classes are usually both simpler and more efficient.

How Erasure Works

The erasure of a type is defined as follows: drop all type parameters from

parameterized types, and replace any type variable with the erasure of its

bound, or with Object  if it has no bound, or with the erasure of the

leftmost bound if it has multiple bounds. Here are some examples:

The erasure of List<Integer> , List<String> , and

List<List<String>>  is List .

The erasure of List<Integer>[]  is List[] .

The erasure of List  is itself, similarly for any raw type .

p () {

      throw new UnsupportedOperationException(); 

    } 

  } 

  public Iterator<E> iterator() { 

    return new LinkedIterator<E>(first); 

  } 

}



The erasure of int  is itself, similarly for any primitive type.

The erasure of Integer  is itself, similarly for any type without type

parameters.

The erasure of T  in the definition of toList  (see [Link to Come]) is

Object , because T  has no bound.

The erasure of T  in the definition of max  (see “Maximum of a

Collection”) is Comparable , because T  has bound

Comparable<? super T> .

The erasure of T  in the final definition of max  (see “Multiple

Bounds”) is Object , because T  has bound Object &

Comparable<T>  and we take the erasure of the leftmost bound.

The erasures of S  and T  in the definition of copy  (see “Multiple

Bounds”) are Readable and Appendable , because S  has bound

Readable & Closeable  and T  has bound Appendable &

Closeable.

The erasure of LinkedCollection<E>.Node  or

LinkedCollection.Node<E>  (see “Nested Classes”) is

LinkedCollection.Node .

In Java, two methods of the same class cannot have the same signature—

that is, the same name and parameter types. Since generics are implemented

by erasure, it also follows that two distinct methods cannot have signatures

with the same erasure. A class cannot overload two methods whose

signatures have the same erasure, and a class cannot implement two

interfaces that have the same erasure.



For example, here is a class with two convenience methods. One adds

together every integer in a list of integers, and the other concatenates

together every string in a list of strings:

Here are the erasures of the declarations of the two methods:

int sum(List) 

String sum(List)

But it is the signatures alone, not the return types, that allow the Java

compiler to distinguish different method overloads. In this case the erasures

of the signatures of both methods are identical:

class Overloaded { 

  public static int sum(List<Integer> ints) { 

    int sum = 0; 

    for (int i : ints) sum += i; 

    return sum; 

  } 

  public static String sum(List<String> strings) 

    StringBuffer sum = new StringBuffer(); 

    for (String s : strings) sum.append(s); 

    return sum.toString(); 

  } 

}



sum(List)

So a name clash is reported at compile time.

For another example, here is a bad version of the Integer  class, that

tries to make it possible to compare an integer with either an integer or a

long:

If this were supported, it would, in general, require a complex and

confusing definition of bridge methods (see “Bridges”). The simplest and

most understandable option by far is to ban this case.

class Integer implements Comparable<Integer>, Com

    // compile-time error, cannot implement two i

    private final int value; 

    ... 

    public int compareTo(Integer i) { 

        return (value < i.value) ? -1 : (value ==

    } 

    public int compareTo(Long l) { 

        return (value < l.intValue()) ? -1 : (val

    } 

    ... 

}



Chapter 4. The Main Interfaces of the
Java Collections Framework

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 10th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

A collection is an object that provides access to a group of objects, allowing

them to be processed in a uniform way. A collections framework provides a

uniform view of a set of collection types specifying and implementing

common data structures, following consistent design rules so that they can

work together. Figure 4-1 shows the main interfaces of the Java Collections

Framework, together with one other— Iterable —which is outside the

Framework. Iterable  (see “Iterable and Iterators”) defines the contract

that a class— any class, not only one of those in the Framework— must
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implement in order to be used as the target for an “enhanced for statement”,

usually called a foreach statement.

Figure 4-1. The main interfaces of the Java Collections Framework

The Framework interfaces in Figure 4-1 have the following purposes:

Collection

Collection  exposes the core functionality required of any collection

other than a Map . Its methods support managing elements by adding or

removing single or multiple elements, checking membership of a single or

multiple values, and inspecting and exporting elements. It has no direct

concrete implementations; the concrete collection classes all implement one

of its subinterfaces as well.

Set

A Set  is a collection in which order is not significant and contains no

duplicates. It adds no operations to Collection , but the contracts for its



element-adding operations specify that they will not create duplicates.

List

A List  is a collection in which order is significant and which

accommodates duplicate elements. It adds operations supporting indexed

access.

Queue

A Queue  is a collection whose additional operations accept elements at

one end, its tail, for processing, and yield them up at the other end, its head,

in the order in which they are to be processed.

Map

A Map  is a collection which uses key-value associations to store and

retrieve elements. The keys of a Map  form a Set , so they follow the rule

that there is no duplication and ordering is not significant. The operations of

Map  allow it to be maintained by addition and removal of single or

multiple key-value associations, but these are ancillary to the main use of

Map s, which is to find the values that correspond to given keys.

Using the Different Collection Types



A simple example, a word cloud generator, will illustrate the purpose of

some of these types. Word cloud generators normally ignore the order of the

words in their input, so any of the word clouds in Figure 4-2 could be

produced from the Set  created by

Set.of("Larry", "Curly", "Moe")

Figure 4-2. Word clouds generated from Set  data

Although the position of words in a cloud is randomly determined, their

size depends on the number of repetitions of each in the input to the

generator. So, since Set s cannot store duplicate elements, they are not

actually a suitable data structure for representing the contents of a word

cloud. For a collection type that does accommodates duplicates, we must

turn to List . The word cloud generated by

List.of("Larry", "Larry", Curly", "Moe")

will be like one of those in Figure 4-3, reflecting the fact that the string

"Larry"  occurs twice as often as the other two. (Again, the random



order of the words in Figure 4-3 is not because the order has been lost from

the collection but because word cloud generators ignore the order of their

input.)

Figure 4-3. Word clouds generated from List  data

Since any Set  can be represented by a List --one without duplicates

and whose order is ignored— why have a separate data type at all? The

reason is that the operations of Set  make it much easier to guarantee

element uniqueness, when that is what we actually want, and being able to

disregard order can allow operations to be much more efficient.

In our word cloud example, a better representation of the input list would be

a Map  associating each word with its frequency:

Map.of("Larry", 2, "Curly", 1, "Moe", 1)

You can think of a Map  as a table, one of those shown in Figure 4-4:



Figure 4-4. Word cloud data represented as a Map

The three tables in Figure 4-4 represent the same Map , because the table

rows— that is, the key-value pairs that make up the Map --form a set, so

that their order is not significant. Further, the keys also form a set, so there

couldn’t be two rows with the same key, “Larry” say.

Sequenced Collections

In the word cloud example, the order of the elements wasn’t important.

Often, though, the ordering of elements is significant, and many collections,

for example List , do preserve it— and, sometimes, impose it. Such

collections are said to be sequenced. A sequenced collection is one with a

defined order— unlike Collection , Set  or Map --that can also be

iterated in either direction, unlike Queue . Sequenced collections differ in



how their ordering is derived: for some, like List , elements retain the

order in which they were added, whereas for others, like NavigableSet

(see below), the ordering is dictated by the values of the elements. These

are sometimes called externally ordered and internally ordered types,

respectively, reflecting the difference between an order which is arbitrarily

imposed on the elements, for example by the order in which they are added,

and an order that is an inherent property of the elements themselves, for

example by alphabetic ordering on strings.

A new interface, SequencedCollection , was introduced in Java ??

to unify the sequenced collections, of both kinds. Figure 4-5 adds the

sequenced interfaces of the Framework to those of Figure 4-1.

Figure 4-5. The sequenced interfaces of the Java Collections Framework



SequencedCollection

SequencedCollection  provides a reversed view (see §11.6),

together with the operations that all sequenced collections must support on

the first and last elements of the collection: access, addition, and removal.

SequencedSet  and NavigableSet

A SequencedSet  is an externally or internally ordered Set  that also

exposes the methods of SequencedCollection . A

NavigableSet  is an internally ordered SequencedSet  that

therefore also automatically sorts its elements, and also provides additional

methods to find elements adjacent to a target value.

Deque

A Deque  is a double-ended queue that can both accept and yield up

elements at either end.

SequencedMap  and NavigableMap

A SequencedMap  is a Map  whose keys form a SequencedSet . A

NavigableMap  is a SequencedMap  whose keys form a

NavigableSet , so that its entries are automatically sorted by the key

ordering, and its methods can find keys and key-value pairs adjacent to a

target key value.



Chapters Chapter 6 through Chapter 11 will concentrate on each of the

Collections Framework interfaces in turn. First, though, in Chapter 5, we

need to cover some preliminary ideas which run through the entire

Framework design.



Chapter 5. Preliminaries

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 11th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

In this chapter, we will take time to discuss the concepts underlying the

framework, before we get into the detail of the collections themselves.

Iterable and Iterators

An iterator is an object that implements the interface Iterator :

public Iterator<E> { 

  boolean hasNext();   // return true if the iter

  E next();            // return the next element

mailto:shunter@oreilly.com


The purpose of iterators is to provide a uniform way of accessing collection

elements sequentially, so whatever kind of collection you are dealing with,

and however it is implemented, you always know how to process its

elements in turn. Iterators are often not used directly, because in many

situations the foreach statement is more convenient: compare the code to

print every element of a collection coll  using foreach:

for (Object o : coll) { 

  System.out.println(o); 

}

with code explicitly using an iterator:

The target of a foreach statement can be an array, or any class that

implements the interface Iterable :

();

  void remove();       // remove the last element

}

for (Iterator itr = coll.iterator() ; itr.hasNext

  System.out.println(itr.next()); 

}

public Iterable<T> { 

It t T it t () // t it t



The Collection  interface extends Iterable , so any set, list, or

queue can be the target of foreach. If you write your own implementation of

Iterable , that too can be used with foreach. ??? shows an example. A

Counter  object is initialized with a count of Integer  objects; its

iterator returns these in ascending order in response to calls of next . Now

Counter  objects can be the target of a foreach statement:

int total = 0; 

for (int i : new Counter(3)) { 

   total += i; 

} 

assert total == 6;

In practice, it is unusual to implement Iterable  directly in this way, as

foreach is most commonly used with arrays and the standard collections

classes. Direct use of Iterators , rather than a foreach statement, is

necessary mainly when you want to make a structural change to a

collection—broadly speaking, adding or removing elements—in the course

of iteration. As we just saw, the Iterator  interface exposes only a

method for removal of collection elements, though its subinterface

ListIterator , available to List  implementations, also provides

methods to add and replace elements.

  Iterator<T> iterator();   // return an iterator

}



At one time or another, you may have made the mistake of trying, during

iteration, to make a structural change directly—that is, rather than using one

of the iterator methods. If the collection that you were iterating over was

one of the general-purpose Collection  implementations —

ArrayList , HashMap , and so on—you may have been puzzled by

seeing ConcurrentModificationException  thrown from single-

threaded code. The iterators of these collections throw this exception

whenever they detect that the collection from which they were derived has

been structurally modified—except by the iterator itself, of course.

The motivation for this behavior is that a structural change made during

iteration is possibly evidence that another thread is accessing the collection;

structural changes that you wish the iterating thread to make should be

made using the iterator. Allowing another thread to access a non-thread-safe

collection will probably result in a failure some time later, when it will be

difficult to diagnose. To avoid this problem the general-purpose Collections

Framework iterators are fail-fast: their methods check for any structural

modifications made since the last iterator method call, throwing

ConcurrentModificationException  if they detect one.

Although this restriction rules out some sound programs, it rules out many

more unsound ones.

class Counter implements Iterable<Integer> { 

  private int count; 

  public Counter(int count) { this.count = count;

public Iterator<Integer> iterator() {



Now Counter  objects can be the target of a foreach statement:

int total = 0; 

for (int i : new Counter(3)) { 

   total += i; 

} 

assert total == 6;

In practice, it is unusual to implement Iterable  directly in this way, as

foreach is most commonly used with arrays and the standard collections

classes. Direct use of Iterators , rather than a foreach statement, is

necessary mainly when you want to make a structural change to a

collection—broadly speaking, adding or removing elements—in the course

of iteration. As we just saw, the Iterator  interface exposes only a

method for removal of collection elements, though its subinterface

  public Iterator<Integer> iterator() { 

    return new Iterator<Integer>() { 

      private int i = 0; 

      public boolean hasNext() { return i < count

      public Integer next() { i++; return i; } 

      public void remove(){ throw new Unsupported

    }; 

  } 

}



ListIterator , available to List  implementations, also provides

methods to add and replace elements.

At one time or another, you may have made the mistake of trying, during

iteration, to make a structural change directly—that is, rather than using one

of the iterator methods. If the collection that you were iterating over was

one of the general-purpose Collection  implementations —

ArrayList , HashMap , and so on—you may have been puzzled by

seeing ConcurrentModificationException  thrown from single-

threaded code. The iterators of these collections throw this exception

whenever they detect that the collection from which they were derived has

been structurally modified—except by the iterator itself, of course.

The motivation for this behavior is that a structural change made during

iteration is possibly evidence that another thread is accessing the collection;

structural changes that you wish the iterating thread to make should be

made using the iterator. Allowing another thread to access a non-thread-safe

collection will probably result in a failure some time later, when it will be

difficult to diagnose. To avoid this problem the general-purpose Collections

Framework iterators are fail-fast: their methods check for any structural

modifications made since the last iterator method call, throwing

ConcurrentModificationException  if they detect one.

Although this restriction rules out some sound programs, it rules out many

more unsound ones.



The concurrent collections have other strategies for handling concurrent

modification, such as weakly consistent iterators. We discuss them in more

detail in “Collections and Thread Safety”.

Implementations

We have looked briefly at the interfaces of the Collections Framework,

which define the behavior that we can expect of each collection. But as we

mentioned in the introduction to this chapter, there are several ways of

implementing each of these interfaces. Why doesn’t the Framework just use

the best implementation for each interface? That would certainly make life

simpler—too simple, in fact, to be anything like life really is. If an

implementation is a greyhound for some operations, Murphy’s Law tells us

that it will be a tortoise for others. Because there is no “best”

implementation of any of the interfaces, you have to make a tradeoff,

judging which operations are used most frequently in your application and

choosing the implementation that optimizes those operations.

The three main kinds of operations that most collection interfaces require

are insertion and removal of elements by position, retrieval of elements by

content, and iteration over the collection elements. The implementations

provide many variations on these operations, but the main differences

among them can be discussed in terms of how they carry out these three. In

this section, we’ll briefly survey the four main structures used as the basis



of the implementations and later, as we need them, we will look at each in

more detail. The four structures are:

Arrays

These are the structures familiar from the Java language—and just about

every other programming language since Fortran. Because arrays are

implemented directly in hardware, they have the properties of random-

access memory: very fast for accessing elements by position and for

iterating over them, but slower for inserting and removing elements at

arbitrary positions (because that may require adjusting the position of

other elements). Arrays are used in the Collections Framework as the

backing structure for ArrayList , CopyOnWriteArrayList ,

EnumSet  and EnumMap , and for many of the Queue  and Deque

implementations. They also form an important part of the mechanism for

implementing hash tables (discussed shortly).

Linear linked lists

As the name implies, these consist of chains of linked cells. Each cell

contains a reference to data and a reference to the next cell in the list

(and, in some implementations, the previous cell). Linked lists perform

quite differently from arrays: accessing elements by position is slow,

because you have to follow the reference chain from the start of the list,

but insertion and removal operations can be performed in constant time

by rearranging the cell references. Linked lists are the primary backing



structure used for the classes ConcurrentLinkedQueue ,

LinkedBlockingQueue , and LinkedList .

Other linked data structures

Linked structures are particularly suitable for representing nonlinear

types like trees and skip lists, especially if they need to be rearranged as

new elements are added. Such structures provide an inexpensive way of

maintaining sorted order in their data, allowing fast searching by content.

Trees are the backing structures for TreeSet  and TreeMap . Skip

lists are used in SkipListSet  and SkipListMap . Priority heaps,

used in the implementation of PriorityQueue  and

PriorityBlockingQueue , are tree-related structures.

Hash tables

These provide a way of storing elements indexed on their content rather

than on an integer-valued index, as with lists. In contrast to arrays and

linked lists, hash tables provide no support for accessing elements by

position, but access by content is usally very fast, as are insertion and

removal. Hash tables are the backing structure for many Set  and Map

implementations, including HashSet  and LinkedHashSet

together with the corresponding maps HashMap  and

LinkedHashMap , as well as WeakHashMap ,

IdentityHashMap  and ConcurrentHashMap .



The content-based indexing of hashed collections depends on two

Object  methods, hashCode  and equals , which are applied in

succession to position an element for insertion or to locate it for retrieval.

So it is in the contracts for these methods, specifically for

Object.hashCode , that we find the requirements that hashed

collections place on their relationship. The crucial requirement, sometimes

overlooked—with disastrous consequences—by Java programmers, is that

if two objects are equal according to the equals  method, then calling

hashCode  on each must produce the same result. If hashCode

depends on an instance field—or any other data about an object—that is not

used by the equals  method, then the first stage of a retrieval operation

will very likely be misdirected. One way in which this can occur is if you

do not override Object.hashCode  at all; the value that it returns in

this case will be implementation-dependent (in OpenJDK it is usually

randomly generated), but is in any case highly unlikely to be the same for

two different instances.

The toy class Person  is a case in point:

    class Person { 

        private String name; 

        public Person(String name) { 

            this.name = name; 

        } 

        public boolean equals(Object o) { 

            return o instanceof Person p && name



This class should override hashCode  so that it depends only on the same

field, i.e. name , that equals  depends on. But it does not; as a result,

hashed collections will not work correctly with it:

Views

In the Collections Framework, a view of a data structure provides a way of

working with it as though it had been transformed in some way—either into

a differently-organised structure of the same type, or a structure of another

type completely. The most obvious examples of this, in a general sense, are

the backing structures discussed in the last section. But even though

replacing an element in an ArrayList , for example, is implemented by

replacing an element in the underlying array, we don’t normally refer to an

ArrayList  as a view of an array. That’s because ArrayList  is more

than just a view; it’s capable of insulating its user from the limitations of

arrays: for example, you frequently want to add elements to a list. Arrays

        } 

    }

    Set<Person> people = new HashSet<>(); 

    people.add(new Person("Alice")); 

    assert ! people.contains(new Person("Alice"))



can’t support that, but ArrayList  hides that limitation, if necessary by

transferring all its elements to a new and larger backing array. So an

ArrayList  is much more than a simple view of a single array, and that

term isn’t usually used to describe it.

Sometimes, however, a simple view is what is needed. For example,

suppose we want to test for the presence of a particular object in an array.

One obvious way to do this is to iterate over the array elements, testing each

for equality with the search target. An alternative would be to use the

contains  method of the List  interface to do that work instead. An

array is not a List , though, so how can a List  method be useful in

handling it? We might well want to avoid the overhead of creating a new

ArrayList  object, physically copying all the elements of the array into

a new collection. In this situation, a better answer is to get a List  view of

the array—an object that “looks like” a List , but implements all its

operations directly on the underlying array. The method asList  of the

utility class Arrays  provides such a view. The simple view that it returns

supports some List  operations, such as contains , and methods like

get  and set  which access or replace the array elements, but it won’t

allow you to make structural modifications, like adding or removing

elements, which aren’t supported by the underlying array.

The data “of” the view actually resides in the underlying structure, so

changes made to that structure are immediately visible in the view, and vice

versa. For example, the following code compiles and runs without errors:



Integer[] arr = {1,2,3}; 

var list = Arrays.asList(arr); 

list.set(0,3); 

assert arr[0] == 3; 

arr[2] = 0; 

assert list.get(2) == 0;

The Collections API exposes many methods returning views—for example,

the keys of a Map  can be viewed as a Set , as can its entries; collections

can be viewed as unmodifiable, and so on. Each of these views has different

rules dictating which modifications they will allow: some allow certain

structural modifications, some allow only non-structural modifications, and

some are fully unmodifiable. So the interfaces that these views implement

have some of their operations labelled optional: this is perhaps the most

controversial aspect of the Java Collections Framework design. We’ll

discuss it further in the section “Contracts” and in Chapter [Link to Come].

The views themselves will be discussed in subsequent chapters, each one in

the context of its backing collection.

Performance

The usefulness of a collections library depends on the impact of the

performance of its collections as part of a working system. Unfortunately,



this is very difficult both to predict in theory and to assess in practice. Many

factors contribute to it, including:

how often any of the collection’s operations are executed

which operations are executed most frequently

the time cost of each of the operations that are executed

how much garbage each produces, and what overhead is incurred in

collecting it

the locality properties (see “Memory”) of the collection

how much parallelism is involved, both at instruction and thread level

The study of how these factors combine to affect the speed of a real-life

system belongs to the subject of performance tuning, of which the most

important rule is often quoted in the form provided by Donald Knuth

([Knuth74]): “premature optimization is the root of all evil.” The

explanation of this remark is twofold: firstly, for many programs,

performance is just not a critical issue. If a program is rarely executed or

already uses few resources, optimization is a waste of effort, and indeed

may well be harmful. Secondly, even for performance-critical programs,

assessing which part is critical normally requires accurate measurement: in

the same paper, Knuth added “It is often a mistake to make a priori

judgments about what parts of a program are really critical, since the

universal experience of programmers who have been using measurement

tools has been that their intuitive guesses fail.”



This carries an important implication about comparing the performance of

different collections. For example, CopyOnWriteArrayList  provides

highly efficient concurrent read operations, at the cost of very expensive

writes. So to use it in a system that requires highly performant concurrent

access to a List  you have to have confidence, gained by measurement if

necessary, that read operations greatly outnumber writes.

Memory

Traditionally, an algorithm was assessed on the basis of its use of two

resources: time and space. With the forty-year exponential decrease in the

cost of memory from the 1970s onwards, space complexity became less

important, and the focus sharpened on time complexity (see “Instruction

Count and the O-notation”). But modern trends in both software and

hardware systems architecture have complicated the picture by

reintroducing memory concerns as a major focus. The software concern is

relatively straightforward: for Java programs, memory temporarily

allocated in the course of program execution must be reclaimed by the

garbage collector, and garbage collection is an expensive overhead to the

operation of any program.

The effects of modern trends in hardware design require more explanation.

For four decades, from the 1970s onwards, processor speeds rose

exponentially, far outstripping the speed increase of every other component.

These include memory and the memory bus, the components that together



are responsible for keeping processors supplied with data and instructions

to work on. The different grades of memory available conform to the same

rule that governs storage technologies of all kinds, including on-board

memory, disk drives of all kinds, and even tape (still in use for archival

storage): the cost of storage is inversely correlated with the speed of the

medium. The faster the medium can store and retrieve data, the greater the

cost per byte of capacity. This leads designers to create memory hierarchies,

with large amounts of cheap storage, like disk and even tape, at the bottom,

and small amounts of expensive static RAM located on-chip, physically

close to the processor, at the top. Figure Figure 5-1 shows a highly

simplified view of the top part—the on-board and on-chip components—of

the hierarchy. On-chip memory is organised in caches called Level 1, Level

2, and (sometimes) Level 3, each one slower and larger (and less power-

hungry) than its predecessor.



Figure 5-1. The memory hierarchy

If a data item is not available at one level, lower levels are searched until it

is found. If the level is a cache, this is called a cache miss. Data in caches is

organised in units called cache lines, commonly 64 bytes. If a failure to find

one byte of data causes a cache miss, an entire cache line must be discarded

in order to load that byte from a lower level in the hierarchy, along with the

63 bytes adjacent to it in memory. Such expensive cache misses will occur

less often for programs that conform to the principle of spatial locality,



which says that programs tend to reuse data and instructions near to those

that they have used recently. Two programs, each of which execute the

same number of instructions, may have very different execution times if one

exhibits spatial locality and the other does not.

Object-oriented programs often exhibit poor spatial locality, because objects

can be located anywhere in memory, but some are worse than others. For

example, a program iterating over an array of primitives will show good

spatial locality, and also a predictable pattern of data access, enabling

predictive retrieval of data leading to reduction of cache miss overheads.

Iterating over an array of reference types will be worse, because although

access to the array itself is predictable and localized, access to the

referenced objects is not. A linked structure is worse still; memory access is

in general not predictable or localized at all, so cache misses will typically

be frequent and expensive. Every further level of indirection increases the

likelihood of cache misses and, even more expensively, of page faults.

Instruction Count and the O-notation

Although, as we observed in the previous section, memory usage can no

longer be separated cleanly from execution time, there is still merit in trying

to make a separate estimate of the latter. Traditionally, execution time was

assumed to be proportional to the count of CPU operations needed to

complete a program. This assumption is also subject to some qualifications,

which we’ll discuss at the end of this section. First, though, how is the



execution count estimated? Detailed analysis can be complex. A relatively

simple example is provided in Donald Knuth’s classic book Sorting and

Searching ([Knuth98]), where the worst-case execution time for a multiple

list insertion sort program on Knuth’s notional MIX machine is derived as

3.5N + 24.5N+ 4M+ 2

where N is the number of elements being sorted and M is the number of

lists.

As a shorthand way of describing algorithm efficiency, this isn’t very

convenient. Clearly we need a broader brush for general use. The one most

commonly used is the O-notation (pronounced “big-oh notation”). The O-

notation is a way of describing the performance of an algorithm in an

abstract way, without the detail required to predict the precise performance

of a particular program running on a particular machine. the main reason for

using it is that it gives us a way of describing how the execution time for an

algorithm depends on the size of its data set, provided the data set is large

enough. For example, in the previous expression the first two terms are

comparable for low values of N; in fact, for N < 8, the second term is larger.

But as N grows, the first term increasingly dominates the expression and, by

the time it reaches 100, the first term is 15 times as large as the second one.

Using a very broad brush, we say that the worst case for this algorithm

takes time O(N ). We don’t care too much about the coefficient because that

doesn’t make any difference to the single most important question we want

2
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to ask about any algorithm: what happens to the execution count when the

data size increases—say, when it doubles? For the worst-case insertion sort,

the answer is that the execution count goes up fourfold. That makes O(N )

pretty bad—worse than any we will meet in practical use in this book.

2



Table 5-1. Some common Big-O classes

Time
Common

name

Effect on the

execution

count if N is

doubled

Example

algorithms

O(1) Constant Unchanged Insertion into 

hash table (“S

Implementatio

O(log N) Logarithmic Increased by a

constant

amount

Insertion into 

tree (“TreeSet

O(N) Linear Doubled Linear search

O(N log N) Doubled plus

an amount

proportional to

N

Merge sort

(“Changing th

Order of List

Elements”)

O(N ) Quadratic Increased

fourfold

Bubble sort2



Table 5-1 shows some commonly found execution counts, together with

examples of algorithms to which they apply. For example, many other

execution counts are possible, including some that are much worse than

those in the Figure. Many important problems can be solved only by

algorithms that take O(2 )—for these, when N doubles, the execution count

is squared! For all but the smallest data sets, such algorithms are infeasibly

slow.

Sometimes we have to think about situations in which the cost of an

operation varies with the state of the data structure. For example, adding an

element to the end of an ArrayList  can normally be done in constant

time, unless the ArrayList  has reached its capacity. In that case, a new

and larger array must be allocated, and the contents of the old array

transferred into it. The cost of this operation is linear in the number of

elements in the array, but it happens relatively rarely. In situations like this,

we calculate the amortized cost of the operation—that is, the total cost of

performing it n times divided by n, taken to the limit as n becomes

arbitrarily large. In the case of adding an element to an ArrayList , the

total cost for N elements is O(N), so the amortized cost is O(1).

Big-O analysis of execution counts is often very useful for a broad-brush

comparisons of the running times of programs and, for that reason, each

interface chapter of this book includes big-O analysis of common

N



operations for each implementation. All the same, there are reasons for

caution in treating O-numbers as a proxy for running times. They include:

the assumption in determining the dominant term is that the data size

will always be sufficiently large to outweigh constant factors and

multipliers; for example, O(N + c) is taken to be O(N) for constant c, on

the assumption that in situations where it matters, N >> c. This may not

be true for very large factors;

machine instructions do not all have the same execution time; for

example, inserting an element at the first position of an ArrayList

has complexity O(N), because every element must be moved to a

position one place higher in the array. But if it is possible for that

operation to be executed with a single hardware instruction, then the

actual execution time may compare favorably with the same operation

on a LinkedList , even though there it has complexity of O(1);

parallelism complicates the picture further. With instruction-level

parallelism, instructions are processed in stages, with the different stages

of successive instructions being executed simultaneously. So the elapsed

execution time of a program is normally much less than the summed

execution times of its individual instructions. The same applies, on a

larger scale to thread-level parallelism, in which different threads can

process their tasks simultaneously except when they are in contention for

some resource;

the time complexity of single operations is not important in itself; what

matters is the time required to execute an entire use case: for example,



iterating an entire data structure, replacing all its elements (if that is the

usage scenario for your application) rather than simply advancing an

iterator by one element. Calculating the time required for such a use case

requires you to take into account factors such as the cost of cache misses

and the amortized cost of garbage collection, which depend on

characteristics of a data structure that are not captured by the time

complexity of single operations. This point is explored further in

Table 10-2.

In conclusion, it is worth repeating the value of theoretical performance

analysis, including O-numbers: it can provide valuable guidance at the

design stage. You would never choose an O(N ) algorithm over an O(N) one

for a large data set. But if you have a running system with a performance

problem, there is no substitute for accurate measurement to compare

different candidate implementations.

Immutability and Unmodifiability

Functional programming is an attractive style; at their best, functional

programs are elegant and demonstrably sound, much more so than object-

oriented programs. For this reason, some of the features of functional

languages that provide these advantages have been gradually adopted into

Java, starting with generics, continuing with streams and lambdas (see

“Lambdas and Streams”), and culminating with pattern-matching, at the

2



time of this writing still a work in progress. One important feature of the

functional style is that its data structures are immutable—that is, their state

cannot be modified after their creation. Immutability confers a number of

advantages on a program:

Immutable objects are thread-safe

Immutable objects are perfectly encapsulated, so removing the need for

defensive copying

Immutability guarantees stable lookup in keyed and ordered collections

(see “Contracts”)

Immutability reduces the number of states that a program can be in,

making it simpler, clearer, and easier to understand and reason about

Realising these advantages in a Java program is difficult, however. For an

object to be truly immutable, its entire object graph—that is, the object

itself and everything it refers to, directly or indirectly—must not observably

change after construction. Obviously, immutable graph components like

wrapper objects and strings present no problem, but for mutable

components the often difficult (and rarely achieved) requirement is that the

graph must have guaranteed exclusive access to them.

This has led to alternative conflicting terminologies for describing

immutability of collections:



Frameworks like Guava and Eclipse collections refer to immutability of

an entire object graph as deep immutability. They refer to a collection

that refuses modification at the first level—that is, an attempt to add,

remove, or replace an element—as shallow immutability, or often just

immutability.

The Java collections documentation uses immutability to mean

immutability of the entire object graph. What the other frameworks refer

to as “shallow immutability”, the Java documentation—and this book—

call unmodifiability.

Unmodifiability is a kind of partial immutability that doesn’t fully confer

any of the advantages of immutability listed above, so you might well

question its usefulness. But it does confer real advantages:

collections of immutable objects, including wrapper objects and strings,

are not uncommon, and unmodifiable collections of these provide the

full benefits of immutability;

even partial immutability reduces the number of program states that you

have to consider when understanding a program and reasoning about its

correctness;

because unmodifiable sets and maps can be backed by arrays instead of

hashed structures, they can provide very significant space savings

Chapter [Link to Come] discusses further the situations in which you would

choose to use unmodifiable collections.



Contracts

In reading about software design, you are likely to come across the term

contract, often without any accompanying explanation. In fact, software

engineering gives this term a meaning that is very close to what people

usually understand a contract to be. In everyday usage, a contract defines

what two parties can expect of each other—their obligations to each other

in some transaction. Obviously, a contract must specify the obligations of a

service supplier to a client. But the client, too, may have obligations—

including, but not only, the obligation to pay—and failing to meet them will

automatically release the supplier from their obligations as well. For

example, airlines’ conditions of carriage—for the class of tickets that your

authors can afford, anyway—release them from the obligation to carry

passengers who have failed to turn up on time. This allows the airlines to

plan their service on the assumption that all the passengers they are carrying

are punctual; they do not have to incur extra work to accommodate clients

who have not fulfilled their side of the contract.

Contracts work the same way in software. If the contract for a method lays

down preconditions on its arguments (i.e. the obligations that a client must

fulfill), the method is required to return its contracted results only when

those preconditions are fulfilled. For example, binary search (see “Finding

Specific Values in a List”) is a fast algorithm to find an element, but only

within an ordered list, and it is entitled to fail if you apply it to an unordered



list. So the contract for Collections::binarySearch  can say, “if

the list is unsorted, the results are undefined”, and the implementer of

binary search is free to write code which, given an unordered list, returns

random results, throws an exception, or even enters an infinite loop. In

practice, this situation is relatively rare in the contracts of the JDK classes

because, instead of restricting input validity, they mostly allow for error

states in the preconditions and specify the exceptions that the method must

throw if it gets bad input. This design is appropriate for general libraries

such as the Collections Framework, which will be very heavily used in

widely varying situations by programmers of widely varying ability. APIs

of less general libraries usually avoid it, because it restricts the flexibility of

the library unnecessarily. In principle, all that a client should need to know

is how to keep to its side of the contract; if it fails to do that, all bets are off

and there should be no need to say exactly what the library will do.

It’s good practice in Java to code to an interface rather than to a particular

implementation, to provide maximum flexibility in choosing

implementations. (This idea is explored in detail in “Balance Client and

Library Interests in API Design”.) For that to work, what does it imply

about the behavior of implementations? If your client code uses methods of

the List  interface, for example, and at run time the object doing the work

is actually an ArrayList , you would like to know that the assumptions

you have made about how Lists  behave are true for ArrayLists

also. So a class implementing an interface usually has to fulfill all the

obligations laid down by the terms of the interface contract. (A weaker form



of these obligations is already imposed by the compiler: a class claiming to

implement an interface must provide concrete method definitions matching

the declarations in the interface, but contracts take this further by specifying

the behavior of these methods as well.)

The obligations imposed by the Collections Framework interfaces are

unusual in some respects, however. A guiding principle in the design of the

Framework was that it should be simple—a vital characteristic in a library

that every Java programmer must learn. Frameworks that separate

modifiable from unmodifiable interfaces have many more types than the

Java Collections Framework, so the Framework designers decided to avoid

this separation. But since many collection views (and, since Java 9,

unmodifiable collections also) do not support all write operations, the

interface contracts label these operations optional. For example, the Set

view of a Map ’s keys can have elements removed but not added (see

Chapter 11), while other view collections can have elements neither added

nor removed (e.g. the list view returned by Arrays::asList ), or

support no modification operations at all, like collections that have been

wrapped in an unmodifiable wrapper (see “Unmodifiable Collections”). The

interface contracts provide for implementations to throw

UnsupportedOperationException  when optional methods are

called. We explore this design decision in detail in [Link to Come].

Although until now we have only discussed functional requirements,

contracts can also require performance guarantees. To fully understand the



performance characteristics of a class, however, you often need to know

detail about the algorithms of the implementation. In this Chapter, while we

concentrate mainly on contracts and how as a client programmer you can

make use of them, we also provide further implementation detail from the

platform classes where it might be of interest. This can be useful in

deciding between implementations, but remember that it is not stable; while

contracts are binding, one of the main advantages of using them is that they

allow implementations to change as better algorithms are discovered or as

hardware improvements change their relative merits. And of course, if you

are using another implementation, algorithm details not governed by the

contract may be entirely different.

Content-based Organization

The discussion of sequenced collections (“Sequenced Collections”)

introduced the idea of internally ordered sequences, in which the elements

are automatically positioned according to the order of their contents, as

defined by some ordering relation (see Chapter 2). These are not the only

collections classes to organise their elements automatically according to

their contents: hashed collections, priority queues and delay queues have

the same property. In the cases of internally ordered sequences and of the

queues, the content-based organization is observable via the operations of

the collection; not so in the case of the hashed collections, but their

organization is used when elements need to be located. What all these

collections have in common is an implicit invariant: for them to operate



correctly, the value of the fields used to position the elements must not

change once they have been inserted into the collection. For example,

consider a different version of the class Person , this time defined with a

hashCode  method, but one that depends on the value of the mutable

field name :

Now an object of the type Person  can be reliably retrieved, but only if

the value of name  is unchanged. If that field is modified, the collection

can no longer match the object with either the old or the new value:

    class Person { 

        private String name; 

        public Person(String name) { 

            this.name = name; 

        } 

        public void setName(String name) { 

            this.name = name; 

        } 

        public int hashCode() { 

            return name.hashCode(); 

        } 

        public boolean equals(Object o) { 

            return o instanceof Person p && name

        } 

    }



To avoid problems like this, the best guideline is this: whenever you are

storing objects in a Set , a Map , or an internally ordered Queue , ensure

that the fields used by the collection to organize its contents are immutable.

Lambdas and Streams

We saw, in “Immutability and Unmodifiability”, that the advantages of the

functional programming style have led object-oriented languages towards

adoption of many functional language features. Following the introduction

of generics in Java 5, the next big innovation came in Java 8, with the

introduction of lambdas and streams. Lambdas introduced a way in which

functions could be represented in Java programs. For example, the

statement:

    Set<Person> people = new HashSet<>(); 

    Person alice = new Person("Alice"); 

    people.add(alice); 

    alice.setName("Bob"); 

    assert ! people.contains(new Person("Alice"))

    assert ! people.contains(new Person("Bob"));

Function<Integer,Integer> doubleInt = x -> x * 2;



declares a function doubleInt , which takes an argument of type

Integer  and returns the Integer  result of doubling it.

The importance of lambdas for collections and collection processing comes

from their use in stream operations. Streams are a mechanism for

transporting a sequence of values from a source to a destination through a

series of operations, typically implemented as lambdas, each of which can

transform, drop, or insert values on the way. This provides an alternative

model to the traditional use of collections for aggregate data processing. A

simple, if rather contrived, example illustrates the change in thinking.

(Taken from the introduction to Mastering Lambdas, by Maurice Naftalin

(Oracle Press, 2015)). The record Point  represents a point defined by its

x and y co-ordinates, with a single method distanceFrom  that

calculates its distance from another point.

Without streams, a common model of bulk data processing is to process

collections in a series of stages: a collection is iteratively processed to

produce a new collection, which in turn is iteratively processed, and so on.

The following code starts with a collection of Integer  instances, applies

an arbitrary transformation to produce a set of Point  instances, and

record Point(int x, int y) { 

    public double distanceFrom(Point p) { .... } 

}



finally finds the maximum among the distances of each Point  from the

origin.

The real code for which this is a model has several disadvantages: it is very

verbose; the intermediate collection pointList  is an overhead on the

operation of the program, resulting in increased garbage collection costs or

even in heap space exhaustion; there is an implicit assumption, dif䏰�lt to

spot, that the minimum value of an empty list is Double.MIN_VALUE ;

perhaps worst of all, the intent of the program is hard to discern, because

the crucial operations are interspersed with the code for collection handling.

Here is the equivalent code, expressed as a pipeline processing the original

collection intList  through a series of transformations:

Point origin = new Point(0, 0); 

List<Integer> intList = Arrays.asList(1, 2, 3, 4,

List<Point> pointList = new ArrayList<>(); 

for (Integer i : intList) { 

    pointList.add(new Point(i % 3, i / 3)); 

} 

double maxDistance = Double.MIN_VALUE; 

for (Point p : pointList) { 

    maxDistance = Math.max(p.distanceFrom(origin)

}



This example shows in miniature the advantages of stream code: it is more

concise and readable, uses less intermediate storage, handles an empty

source gracefully, and can never attempt to mutate the source collection.

From here on in this book, where example collection code can benefit from

partial conversion to the use of streams, we will show stream code as an

alternative in a sidebar.

Collections and Thread Safety

When a Java program is running, it is executing one or more execution

streams, or threads. A thread is like a lightweight process, so a program

simultaneously executing several threads can be thought of as a computer

running several programs simultaneously, but with one important

difference: different threads can simultaneously access the same memory

locations and other system resources. On machines with multiple

Point origin = new Point(0, 0); 

List<Integer> intList = Arrays.asList(1, 2, 3, 4,

OptionalDouble maxDistance = 

   intList.stream() 

      .map(i -> new Point(i % 3, i / 3)) 

      .mapToDouble(p -> p.distanceFrom(origin)) 

      .max();



processors, truly concurrent thread execution can be achieved by assigning

a processor to each thread. If, however, there are more threads than

processors—the usual case—multithreading is implemented by time slicing,

in which a processor executes some instructions from each thread in turn

before switching to the next one.

There are two good reasons for using multithreaded programs. An obvious

one, in the case of multicore and multiprocessor machines, is to share the

work and get it done quicker. (This reason is becoming ever more

compelling as hardware designers turn increasingly to parallelism as the

way of improving overall performance.) A second one is that two

operations may take varying, perhaps unknown, amounts of time, and you

do not want the response to one operation to await the completion of the

other. This is particularly true for a graphical user interface GUI), where the

response to the user clicking a button should be immediate, and should not

be delayed if, say, the program happens to be running compute-intensive

part of the application at the time.

Although concurrency may be essential to achieving good performance, it

comes at a price. Different threads simultaneously accessing the same

memory location can produce unexpected results, unless you take care to

constrain their access. Consider Example 5-1, in which the class

ArrayStack  uses an array and an index to implement the interface

Stack , which models a stack of int  (despite the similarity of names,

this example is different from [Link to Come]). For ArrayStack  to



work correctly, the variable index  should always point at the top element

of the stack, no matter how many elements are added to or removed from

the stack. This is an invariant of the class. Now think about what can

happen if two threads simultaneously attempt to push an element on to the

stack. As part of the push  method, each will execute the lines //1  and

//2 , which are correct in a single-threaded environment but in a multi-

threaded environment may break the invariant. For example, if thread A

executes line //1 , thread B executes line //1  and then line //2 , and

finally thread A executes line //2 , only the value added by thread B will

now be on the stack, and it will have overwritten the value added by thread

A. The stack pointer, though, will have been incremented by two, so the

value in the top position of the stack is whatever happened to be there

before. This is called a race condition, and it will leave the program in an

inconsistent state, likely to fail because other parts of it will depend on the

invariant being true.

Example 5-1. A non-thread-safe stack implementation

interface Stack { 

  public void push(int elt); 

  public int pop(); 

  public boolean isEmpty(); 

} 

 

Stack 

class ArrayStack implements Stack { 



y p {

  private final int MAX_ELEMENTS = 10; 

  private int[] stack; 

  private int index; 

  public ArrayStack() { 

    stack = new int[MAX_ELEMENTS]; 

    index = -1; 

  } 

  public void push(int elt) { 

    if (index != stack.length - 1) { 

      index++;                                   

      stack[index] = elt;                        

    } else { 

      throw new IllegalStateException("stack over

    } 

  } 

  public int pop() { 

    if (index != -1) { 

      return stack[index]; 

      index--; 

    } else { 

      throw new IllegalStateException("stack unde

    } 

  } 

  public boolean isEmpty() { return index == -1; 

}



The increasing importance of concurrent programming during the lifetime

of Java has led to a corresponding emphasis in the collections library on

flexible and efficient concurrency policies. As a user of the Java collections,

you need a basic understanding of the concurrency policies of the different

collections in order to know how to choose between them and how to use

them appropriately. In this section, we’ll briefly outline the different ways

in which the Framework collections handle concurrency, and the

implications for the programmer. For a full treatment of the general theory

of concurrent programming, see Concurrent Programming in Java

([Lea99]), and for more detail about concurrency in Java and the collections

implementations, see Java Concurrency in Practice ([Goetz06]).

Synchronization and the Legacy Collections

Code like that in ArrayStack  is not thread-safe—it works when

executed by a single thread, but may break in a multi-threaded environment.

Since the incorrect behavior we observed involved two threads

simultaneously executing the push  method, we could change the program

to make that impossible. Using synchronized  to modify the

declaration of the push  method will guarantee that once a thread has

started to execute it, all other threads are excluded from that method until

the execution is done:

public synchronized void push(int elt) { ... }



This is called synchronizing on a critical section of code, in this case the

whole of the push  method. Before a thread can execute synchronized

code, it has to get the lock on some object—by default, as in this case, the

current object. While a lock is held by one thread, another thread that tries

to enter any critical section synchronized on that lock will block—that is,

will be suspended—until it can get the lock. This synchronized version of

push  is thread-safe; in a multi-threaded environment, each thread behaves

consistently with its behavior in a single-threaded environment.To

safeguard the invariant and make ArrayStack  as a whole thread-safe,

the methods pop  and isEmpty  must also be synchronized on the same

object. The method isEmpty  doesn’t write to shared data, so

synchronizing it isn’t required to prevent a race condition, but for a

different reason. Each thread may use a separate memory cache, which

means that writes by one thread may not be seen by another unless either

they both take place within blocks synchronized on the same lock, or unless

the variable is marked with the volatile  keyword.

Full method synchronization was, in fact, the policy of the collection

classes provided in JDK1.0: Vector , Hashtable , and their

subclasses; all methods that access their instance data are synchronized.

These are now regarded as legacy classes to be avoided because of the high

price this policy imposes on all clients of these classes, whether they require

thread safety or not. Synchronization can be very expensive: forcing threads

to queue up to enter the critical section one at a time slows down the overall



execution of the program, and the overhead of administering locks can be

very high if they are often contended.

Java 2: Synchronized Collections and Fail-Fast
Iterators

The performance cost of internal synchronization in the JDK 1.0 collections

led the designers to avoid it when the Collections Framework was first

introduced in JDK 1.2. Instead, the platform implementations of the

interfaces List , Set , and Map  widened the programmer’s choice of

concurrency policies. To provide maximum performance for single-

threaded execution, the new collections provided no concurrency control at

all. (Similar design changes were made for other synchronized classes—for

example, the synchronized class StringBuffer  was complemented in

Java 5 by its unsynchronized equivalent, StringBuilder .)

Along with this change came a new concurrency policy for collection

iterators. In multithreaded environments, a thread which has obtained an

iterator will usually continue to use it while other threads modify the

original collection. So iterator behavior has to be considered as an integral

part of a collection’s concurrency policy. The policy of the iterators for the

Java 2 collections is to fail fast, as described in “Iterable and Iterators”:

every time they access the backing collection, they check it for structural

modification (which, in general, means that elements have been added or

removed from the collection). If they detect structural modification, they



fail immediately, throwing ConcurrentModificationException

rather than continuing to attempt to iterate over the modified collection with

unpredictable results. Note that this fail-fast behavior is provided to help

find and diagnose bugs; it is not guaranteed as part of the collection

contract.

The appearance of Java collections without compulsory synchronization

was a welcome development. However, thread-safe collections were still

required in many situations, so the Framework provided an option to use the

new collections with the old concurrency policy, by means of synchronized

wrappers (see Chapter 12). These are created by calling one of the factory

methods in the Collections  class, supplying an unsynchronized

collection which it will encapsulate. For example, to make a synchronized

List , you could supply an instance of ArrayList  to be wrapped. The

wrapper implements the interface by delegating method calls to the

collection you supplied, but the calls are synchronized on the wrapper

object itself. Example 5-2 shows a synchronized wrapper for the interface

Stack  of Example 5-1. To get a thread-safe Stack , you would write:

This is the preferred idiom for using synchronized wrappers; the only

reference to the wrapped object is held by the wrapper, so all calls on the

wrapped object will be synchronized on the same lock—that belonging to

Stack threadSafe = new SynchronizedArrayStack(new



the wrapper object itself. It’s important to have the synchronized wrappers

available, but don’t use them more than you have to, because they suffer the

same performance disadvantages as the legacy collections.

Example 5-2. A synchronized wrapper for ArrayStack

Using Synchronized Collections Safely   Even a class like

SynchronizedArrayStack , which has fully synchronized methods

and is itself thread-safe, must still be used with care in a concurrent

environment. For example, this client code is not thread-safe:

public class SynchronizedArrayStack implements St

  private final Stack stack; 

  public SynchronizedArrayStack(Stack stack) { 

    this.stack = stack; 

  } 

  public synchronized void push(int elt) { stack

  public synchronized int pop() { return stack.po

  public synchronized boolean isEmpty() { return 

}

Stack stack = new SynchronizedArrayStack(new Arra

... 

// don't do this in a multi-threaded environment 

if (!stack.isEmpty()) { 

  stack.pop();              // can throw IllegalS



The exception would be raised if the last element on the stack were

removed by another thread in the time between the evaluation of

isEmpty  and the execution of pop . This is an example of a common

concurrent program bug, sometimes called test-then-act, in which program

behavior is guided by information that in some circumstances will be out of

date. To avoid it, the test and action must be executed atomically. For

synchronized collections (as for the legacy collections), this must be

enforced with client-side locking:

synchronized(stack) { 

  if (!stack.isEmpty()) { 

    stack.pop(); 

  } 

}

For this technique to work reliably, the lock that the client uses to guard the

atomic action should be the same one that is used by the methods of the

synchronized wrapper. In this example, as in the synchronized collections,

the methods of the wrapper are synchronized on the wrapper object itself.

(An alternative is to confine references to the collection within a single

client, which enforces its own synchronization discipline. But this strategy

has limited applicability.)

 

}



Client-side locking ensures thread-safety, but at a cost: since other threads

cannot use any of the collection’s methods while the action is being

performed, guarding a long-lasting action (say, iterating over an entire

array) will have an impact on throughput. This impact can be very large if

the synchronized methods are heavily used; unless your application needs a

feature of the synchronized collections, such as exclusive locking, the Java

5 concurrent collections are almost always a better option.

Java 5: Concurrent Collections

Java 5 introduced thread-safe concurrent collections as part of a much

larger set of concurrency utilities, including primitives—atomic variables

and locks—which give the Java programmer access to relatively recent

hardware innovations for managing concurrent threads, notably compare-

and-swap operations, explained below. The concurrent collections remove

the necessity for client-side locking as described in the previous section—in

fact, external synchronization is not even possible with these collections, as

there is no one object which when locked will block all methods. Where

operations need to be atomic—for example, inserting an element into a

Map  only if it is currently absent—the concurrent collections provide a

method specified to perform atomically—in this case,

ConcurrentMap.putIfAbsent .

If you need thread safety, the concurrent collections generally provide much

better performance than synchronized collections. This is primarily because



their throughput is not reduced by the need to serialize access, as is the case

with the synchronized collections. Synchronized collections also suffer the

overhead of managing locks, which can be high if there is much contention.

These differences can lead to efficiency differences of two orders of

magnitude for concurrent access by more than a few threads.

Mechanisms

The concurrent collections achieve thread-safety by several different

mechanisms. The first of these—the only one that does not use the new

primitives—is copy-on-write. Classes that use copy-on-write store their

values in an internal array, which is effectively immutable; any change to

the value of the collection results in a new array being created to

represent the new values. Synchronization is used by these classes,

though only briefly, during the creation of a new array; because read

operations do not need to be synchronized, copy-on-write collections

perform well in the situations for which they are designed—those in

which reads greatly predominate over writes. Copy-on-write is used by

the collection classes CopyOnWriteArrayList  and

CopyOnWriteArraySet .

A second group of thread-safe collections relies on compare-and-swap

(CAS), a fundamental improvement on traditional synchronization. To see

how it works, consider a computation in which the value of a single

variable is used as input to a long-running calculation whose eventual result

is used to update the variable. Traditional synchronization makes the whole



computation atomic, excluding any other thread from concurrently

accessing the variable. This reduces opportunities for parallel execution and

hurts throughput. An algorithm based on CAS behaves differently: it makes

a local copy of the variable and performs the calculation without getting

exclusive access. Only when it is ready to update the variable does it call

CAS, which in one atomic operation compares the variable’s value with its

value at the start and, if they are the same, updates it with the new value. If

they are not the same, the variable must have been modified by another

thread; in this situation, the CAS thread can try the whole computation

again using the new value, or give up, or—in some algorithms— continue,

because the interference will have actually done its work for it! Collections

using CAS include ConcurrentLinkedQueue  and

ConcurrentSkipListMap .

The third group uses implementations of

java.util.concurrent.locks.Lock , an interface introduced in

Java 5 as a more flexible alternative to classical synchronization. A Lock

has the same basic behavior as classical synchronization, but a thread can

also acquire it under special conditions: only if the lock is not currently

held, or with a timeout, or if the thread is not interrupted. Unlike

synchronized code, in which an object lock is held while a code block or a

method is executed, a Lock  is held until its unlock  method is called

(making it possible for a Lock  to be released in a different block or

method from that in which it was acquired). Some of the collection classes

in this group make use of these features to divide the collection into parts



that can be separately locked, giving improved concurrency. For example,

LinkedBlockingQueue  has separate locks for the head and tail ends

of the queue, so that elements can be added and removed in parallel. Other

collections using these locks include ConcurrentHashMap  and most of

the implementations of BlockingQueue .

Iterators   The mechanisms described above lead to iterator policies more

suitable for concurrent use than fail-fast, which implicitly regards

concurrent modification as a problem to be eliminated. Copy-on-write

collections have snapshot iterators. These collections are backed by arrays

which, once created, are never changed; if a value in the collection needs to

be changed, a new array is created. So an iterator can read the values in one

of these arrays (but never modify them) without danger of them being

changed by another thread. Snapshot iterators do not throw

ConcurrentModificationException .

Collections which rely on CAS have weakly consistent iterators, which

reflect some but not necessarily all of the changes that have been made to

their backing collection since they were created. For example, if elements in

the collection have been modified or removed before the iterator reaches

them, it definitely will reflect these changes, but no such guarantee is made

for insertions. Weakly consistent iterators also do not throw

ConcurrentModificationException .



The third group described above also have weakly consistent iterators. In

Java 6 this includes DelayQueue  and PriorityBlockingQueue ,

which in Java 5 had fail-fast iterators. This means that you cannot iterate

over the Java 5 version of these queues unless they are quiescent, at a time

when no elements are being added or inserted; at other times you have to

copy their elements into an array using toArray  and iterate over that

instead.



Chapter 6. The Collection Interface

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 12th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

The interface Collection<E>  defines the core functionality that we

expect of any collection other than a map. It provides methods in four

groups: adding elements, removing them, querying the collection’s

contents, and making its elements available for further processing.

Adding Elements

boolean add(E e)                           // add

boolean addAll(Collection<? extends E> c)  // add

mailto:shunter@oreilly.com


The contracts for these methods specify that after their execution, the

collection must contain the element or elements suppied in the argument. So

if a method call fails because, for example, it has attempted to add null

to a null -hostile collection, it must throw an exception. But calls can

succeed without changing the contents of the collection if, for example,

they attempt to add an element to a set that already contains it. In this case,

the result returned will be false, indicating that the collection was

unchanged by the call.

To maintain the type uniformity of the collection, these methods only allow

you to add elements, or element collections, of the parametric type. This is

in contrast to the methods of the next group:

Removing Elements

Apart from clear , which empties the collection, the methods in this

group, as in the first one, return a boolean result indicating whether the

collection was changed by their action.

void clear()                           // removes

boolean remove(Object o)               // removes

boolean removeAll(Collection<?> c)     // removes

boolean retainAll(Collection<?> c)     // removes

boolean removeIf(Predicate<? super E> p) 

                                       // removes



If the argument o  to remove  is null , the method will remove a single

null  from the collection if one is present. Otherwise, if an element e  is

present for which o.equals(e) , it removes it; if not, it leaves the

collection unchanged. The behavior of removing a single element is in

contrast to removeAll , which removes all occurrences in this collection

of every matching element in the supplied collection.

In contrast to the methods for adding elements, these methods—and those

of the next group—will accept as arguments elements or element

collections of any type. We’ll discuss this design choice later, in the section

“Using the Methods of Collection”.

Querying the Contents of a Collection

The decision to make size  return Integer.MAX_VALUE  for

extremely large collections was probably taken on the assumption that

collections this large—with more than two billion elements—will rarely

occur. Even so, an alternative design, throwing an exception instead of

boolean contains(Object o)            // returns 

boolean containsAll(Collection<?> c)  // returns 

                                      // are pres

boolean isEmpty()                     // returns 

int size()                            // returns 

                                      // Integer



returning an arbitrary value, would have the advantage of ensuring that the

contract for size  could clearly state that if it does succeed in returning a

value, that value will be correct.

Making a Collection’s Contents Available for Further Processing

Description for Callout 1

Description for Callout 2

Description for Callout 3

The first two methods in this group create objects that make the collection’s

elements available for processing sequentially or in parallel, as described in

(new preliminaries section). As that section explains, the most common use

of Spliterator s is internally in one of the next two methods,

stream  and parallelStream , which support the functional-style

processing of stream elements.

Iterator<E> iterator()        // returns an Itera

Spliterator<E> spliterator    // returns a Splite

Stream<E> stream()            // returns a sequen

Stream<E> parallelStream()    // returns a parall

Object[] toArray()            // copies contents 

<T> T[] toArray(T[] t)        // copies contents 

<T> T[] toArray(IntFunction<T[]> generator) 

                              // copies contents 
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The last three methods, different overloads of toArray , all return an

array containing the elements of this collection. Overload  creates a new

Object[] , while  and  take a T[] —or, respectively, a function

producing a T[]  of a given size—and return a T[]  containing the

elements of the collection. These methods are important because many

APIs, principally older ones and those for which performance is especially

important, expose methods that accept or return arrays.

As discussed in [Link to Come], the arguments of the last two methods are

required in order to provide the virtual machine with the reifiable type of

the array. The new array will be created during the method execution,

although if the array supplied as the argument to  is long enough, it is used

to receive the elements of the collection, overwriting its existing elements.

Reusing a supplied array in this way can be more efficient, particularly if

the method is being called repeatedly. But if instead you are creating a new

array, a common and straightforward idiom is to supply an array of zero

length:

Collection<String> cs = ... 

String[] sa = cs.toArray(String[]::new);

which, in Collection ’s default implementation of , results in a call to 

 with an argument of length 0:
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Collection<String> cs = ... 

String[] sa = cs.toArray(new String[0]);

If  or  is being called repeatedly in this way, a more efficient alternative

is to declare a single empty array of the required type, that can then be used

as many times as required:

Why is any type allowed for T  in the declaration of  and , rather than

restricting the type to E , the parametric type of the collection? One reason

is to allow the possibility of giving the array a more specific component

type than that of the collection, when the elements of the collection all

happen to belong to the same subtype:

List<Object> l = List.of("zero","one"); 

String[] a = l.toArray(new String[0]);

Here, a list of objects happens to contain only strings, so it can be converted

into a String[] , in an operation analogous to the promote  method

private static final String[] EMPTY_STRING_ARRAY 

Collection<String> cs = ... 

String[] sa = cs.toArray(EMPTY_STRING_ARRAY); 
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described in [Link to Come]. If the list contains an object that is not a

string, the error is caught at run time rather than compile time:

In general, you may want to copy a collection of a given type into an array

of a more specific type (for instance, copying a list of objects into an array

of strings, as just shown), or of a more general type (for instance, copying a

list of strings into an array of objects). You would never want to copy a

collection of a given type into an array of a completely unrelated type (for

instance, copying a list of integers into an array of strings is always wrong).

But since there’s no way to specify this constraint in Java, such errors are

caught at run time rather than compile time.

One drawback of this design is that, applied to collections of wrapper types,

it doesn’t accommodate automatic unboxing into the corresponding array of

primitives:

This is illegal because the parameter T  in the method call must— as for any

type parameter— be a reference type. The call would work if we replaced

List<Object> l = List.of("zero","one",2); 

String[] a = l.toArray(new String[0]);      // th

List<Integer> l = List.of(0,1,2); 

int[] a = l.toArray(new int[0]);  // compile-time



both occurrences of int  with Integer , but often this won’t do

because, for performance or compatibility reasons, we require an array of

primitive type. In such cases, there is nothing for it but to copy the array

explicitly:

The Stream API provides a neater alternative:

Using the Methods of Collection

Let’s construct a small example to illustrate the use of the collection classes.

Your authors are forever trying to get organized; we’ll imagine that our

latest effort involves writing our own to-do manager. In this example, we’ll

see how to write code in the classical Collections Framework idiom, and

also, in sidebars, the more modern functional style of the Stream API.

List<Integer> l = List.of(0,1,2); 

int[] a = new int[l.size()]; 

for (int i=0; i<l.size(); i++) a[i] = l.get(i);

l.stream().mapToInt(Integer::intValue).toArray()



We begin by defining an interface to represent tasks, and records to

represent two different kinds of tasks: writing code and making phone calls.

This is the interface that defines a task:

and the two concrete Task  types are

Tasks will need to be comparable to be used in ordered collections (such as

OrderedSet  and OrderedMap ); the other methods that they will

require— equals , hashCode , and toString —are automatically

supplied by the record implementation. The natural ordering on tasks (see

“Comparable<T>”) corresponds to the ordering on their string

representations and, as records, equality of two tasks is defined by the

equality of their string-valued fields. Since the natural ordering on strings is

consistent with equality—that is, compareTo  returns 0  exactly when

public interface Task extends Comparable<Task> { 

    default int compareTo(Task t) { 

        return toString().compareTo(t.toString())

    } 

}

record CodingTask(String spec) implements Task {}

record PhoneTask(String name, String number) impl



equals  returns true —it follows that for tasks also, the natural order is

consistent with equality.

A coding task is specified by its name, and a phone task is specified by the

name and number of the person to be called. As records whose string

components are all immutable, objects of these types are themselves

immutable (see ??).

The string representation of a record returned by the default toString

method always begins with the name of the record type. Since

" CodingTask " precedes " PhoneTask " in the alphabetic ordering on

strings, and since tasks are ordered according to the results returned by

toString , it follows that coding tasks come before phone tasks in the

natural ordering—highly appropriate for people who much prefer coding to

talking on the phone!

We also define an empty task:

record EmptyTask() implements Task { 

    public String toString() { 

        return ""; 

    } 

}

Since the empty string precedes all others in the natural ordering on strings,

the empty task comes before all others in the natural ordering on tasks. This



task will be useful when we construct range views of sorted sets (see

Getting Range Views).

PhoneTask mikePhone = new PhoneTask("Mike", "987 

PhoneTask paulPhone = new PhoneTask("Paul", "123 

CodingTask databaseCode = new CodingTask("db"); 

CodingTask guiCode = new CodingTask("gui"); 

CodingTask logicCode = new CodingTask("logic"); 

 

Collection<PhoneTask> phoneTasks = new HashSet<>(

Collection<CodingTask> codingTasks = new HashSet<

Collection<Task> mondayTasks = new HashSet<>(); 

Collection<Task> tuesdayTasks = new HashSet<>(); 

 

Collections.addAll(phoneTasks, mikePhone, paulPho

Collections.addAll(codingTasks, databaseCode, gui

Collections.addAll(mondayTasks, logicCode, mikePh

Collections.addAll(tuesdayTasks, databaseCode, gu



Using the Stream API, the two blocks of code above can be condensed into

a single block:

??? shows how we can define a series of tasks to be carried out. (In a real

system, of course, tasks would be most likely held in a database and

retrieved from there.) As part of the retrieval process, the tasks have been

organized into various categories—phone tasks, coding tasks, and so on,

represented by sets, using the method Collections.addAll

introduced in [Link to Come]. The choice of sets as the specific collection

type isn’t altogether arbitrary: although any collection type would have

served the purpose, Set  is unique in the Framework in having exactly the

same methods as the top-level Collection  interface that it inherits

var phoneTasks = Stream.of(mikePhone,paulPhone).c

var codingTasks = Stream.of(databaseCode,guiCode,

var mondayTasks = Stream.of(logicCode,mikePhone)

var tuesdayTasks = Stream.of(databaseCode,guiCode

assert phoneTasks.equals(Set.of(mikePhone, paulPh

assert codingTasks.equals(Set.of(databaseCode, gu

assert mondayTasks.equals(Set.of(logicCode, mikeP

assert tuesdayTasks.equals(Set.of(databaseCode, g



from. Now we can use the methods of Collection  to work with these

categories. The examples that follow use the methods in the order in which

they were presented earlier.

Adding Elements:    We can add new tasks to the schedule:

or we can combine schedules together:

PhoneTask ruthPhone = new PhoneTask("Ruth", "567 

mondayTasks.add(ruthPhone); 

assert mondayTasks.equals(Set.of(logicCode, mikeP

Collection<Task> allTasks = new HashSet<>(mondayT

allTasks.addAll(tuesdayTasks); 

assert allTasks.equals(Set.of(logicCode, mikePhon

        databaseCode, guiCode, paulPhone));

var allTasks = Stream.of(mondayTasks,tuesdayTasks

       .flatMap(Collection::stream) 

       .collect(toSet());



Removing Elements:    When a task is completed, we can remove it from a

schedule:

and we can clear a schedule out altogether because all of its tasks have been

done (a method that, in reality, we don’t get to use very often):

The removal methods also allow us to combine entire collections in various

ways. For example, to see which tasks other than phone calls are scheduled

for Tuesday, we can write:

boolean wasPresent = mondayTasks.remove(mikePhone

assert wasPresent; 

assert mondayTasks.equals(Set.of(logicCode, ruthP

mondayTasks.clear(); 

assert mondayTasks.equals(Collections.EMPTY_SET);

Collection<Task> tuesdayNonphoneTasks = new HashS

tuesdayNonphoneTasks.removeAll(phoneTasks); 

assert tuesdayNonphoneTasks.equals(Set.of(databas



or to see which phone calls are scheduled for that day:

This last example can be approached differently to achieve the same result:

var tuesdayNonPhoneTasks = tuesdayTasks.stream() 

   .filter(t -> ! phoneTasks.contains(t));

Collection<Task> phoneTuesdayTasks = new HashSet<

phoneTuesdayTasks.retainAll(phoneTasks); 

assert phoneTuesdayTasks.equals(Set.of(paulPhone)

var phoneTuesdayTasks = tuesdayTasks.stream() 

       .filter(phoneTasks::contains).collect(toSe

Collection<PhoneTask> tuesdayPhoneTasks = new Has

tuesdayPhoneTasks.retainAll(tuesdayTasks); 

assert tuesdayPhoneTasks.equals(Set.of(paulPhone)



Note that phoneTuesdayTasks  has the type Collection<Task> ,

while tuesdayPhoneTasks  has the more precise type

Collection<PhoneTask> .

This last example provides an explanation of the signatures of methods in

this group and the next. We have already discussed (“Wildcards Versus

Type Parameters”) why they take arguments of type Object  or

Collection<?>  whereas the methods for adding to the collection

restrict their arguments to its parametric type. Taking the example of

retainAll , its contract requires the removal of the elements of this

collection which do not occur in the argument collection. That doesn’t

justify any restriction on what the argument collection may contain; in the

example just given it can contain instances of any kind of Task , not just

PhoneTask . There is no reason even to restrict the argument in this way

to collections of supertypes of the parametric type; we actually want the

least restrictive type possible, which is Collection<?> . Similar

reasoning applies to remove , removeAll , contains , and

containsAll .

var tuesdayPhoneTasks = phoneTasks.stream() 

   .filter(tuesdayTasks::contains).collect(toSet(



Querying the Contents of a Collection:    These methods allow us to

check, for example, that the operations above have worked correctly. We’ll

use assert  here to make the system check our belief that we have

programmed the previous operations correctly. For example the first

statement will fail, throwing an AssertionError , if

tuesdayPhoneTasks  does not contain paulPhone :

Making the Collection Contents Available for Further Processing:   

The methods in this group provide an iterator over the collection, deliver its

contents into a stream, or convert it to an array.

“Iterable and Iterators” showed how most uses of iterators can be replaced

by the simpler foreach statement, which uses them implicitly. But there are

uses of iteration with which foreach can’t help: you have to use an explicit

iterator if you want to change the structure of a collection without

encountering ConcurrentModificationException , or if you

want to process two lists in parallel. For example, suppose that we decide

that we don’t have time for phone tasks on Tuesday. It may perhaps be

assert tuesdayPhoneTasks.contains(paulPhone); 

assert tuesdayTasks.containsAll(tuesdayPhoneTasks

assert mondayTasks.isEmpty(); 

assert mondayTasks.size() == 0;



tempting to use foreach to filter them from our task list, but that won’t work

for the reasons described in “Iterable and Iterators”:

// throws ConcurrentModificationException 

for (Task t : tuesdayTasks) { 

  if (t instanceof PhoneTask) { 

    tuesdayTasks.remove(t); 

  } 

}

Using an iterator explicitly is no improvement if you still use

Collection  methods to modify the structure:

But using the iterator’s structure-changing method gives the result we want:

// throws ConcurrentModificationException 

for (Iterator<Task> it = tuesdayTasks.iterator() 

  Task t = it.next(); 

  if (t instanceof PhoneTask) { 

    tuesdayTasks.remove(t); 

  } 

}

for (Iterator<Task> it = tuesdayTasks.iterator() 

  Task t = it.next(); 

  if (t instanceof PhoneTask) { 



Compared to this inelegant code, the appeal of the Stream API is obvious:

The stream version has the advantages of clarity, brevity, and the possibility

of efficiently parallelizing this operation, simply by changing the call of

stream  to parallelStream . The performance cost of these

advantages is the extra memory required to create the new collection.

A more elaborate example of the use of iterators will be shown in another

chapter, although there again we’ll see that the Stream API offers a more

concise and readable alternative.

Implementing Collection

    it.remove(); 

  } 

}

var tuesdayCodeTasks = tuesdayTasks.stream() 

        .filter(t -> !(t instanceof PhoneTask)) 

        .collect(Collectors.toSet());



There are no concrete implementations of Collection . The class

AbstractCollection , which partially implements it, is one of a

series of skeletal implementations—including AbstractSet ,

AbstractList , and so on—which provide functionality common to the

different concrete implementations of each interface. These skeletal

implementations are available to help the designer of new implementations

of the Framework interfaces. For example, Collection  could serve as

the interface for bags (unordered lists), and a programmer implementing

bags could extend AbstractCollection  and find most of the

implementation work already done.

Collection Constructors

We will go on to look at the three main kinds of collection in the next three

chapters, but we should first explain two common forms of constructor

which are shared by most collection implementations. Taking HashSet

as an example, these are:

public HashSet() 

public HashSet(Collection<? extends E> c)

The first of these creates an empty set, and the second a set that will contain

the elements of any collection of the parametric type—or one of its

subtypes, of course. Using this constructor has the same effect as creating



an empty set with the default constructor, and then adding the contents of a

collection using addAll . This is sometimes called a “copy constructor”,

but that term should really be reserved for constructors which make a copy

of an object of the same class, whereas constructors of the second form can

take any object which implements the interface Collection<?

extends E> . Joshua Bloch has suggested the term “conversion

constructor”.

Not all collection classes have constructors of both forms—

ArrayBlockingQueue , for example, cannot be created without fixing

its capacity, and SynchronousQueue  cannot hold any elements at all,

so no constructor of the second form is appropriate. In addition, many

collection classes have other constructors besides these two, but which ones

they have depends not on the interface they implement but on the

underlying implementation; these additional constructors are used to

configure the implementation.



Chapter 7. The SequencedCollection
Interface

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 13th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

The interface SequencedCollection  occupies a unique place in the

design space of the Framework. Rather than specifying the contract for a

particular data structure, it unifies behaviors exposed by a variety of

interfaces and one implementation— List , NavigableSet , Deque ,

and LinkedHashSet —that are spread across the type hierarchy and

mostly not otherwise related. What these collections have in common is that

all represent a sequence of elements whose order is semantically significant
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(sometimes called the encounter order), whether the order is internally or

externally imposed (see “Sequenced Collections”).

It was Deque  (see “Deques”), a relatively late addition to the Collections

Framework, that introduced the set of methods that has now been

generalised to all collections with an encounter order, providing the ability

to add, inspect, and remove the first and last elements of the sequence.

Some of these capabilities were previously available, unevenly and under

different names, in these collections: for example, NavigableSet

supported the removal of the first and last elements but not their inspection,

while List  directly supported only addition of a last element, all other

operations requiring a sequence position to be specified (see [Link to

Come]).

It would be impossible to unify the behavior of so many disparate

collections without some special cases. For example, it makes no sense to

add a first or last element to a NavigableSet , given that the position of

all the elements in these collections is determined by the internal sorting

algorithm. For another example, unmodifiable lists cannot support

structural modifications such as addition and removal of elements. These

special cases will be dealt with in the chapters covering the different

collection types.

The single new method provided by SequencedCollection  is

reversed , which provides a reverse-ordered view (see ??) of the



original collection. This makes the ability to process an ordered collection

in reverse (previously only available to clients of NavigableSet  via its

descendingSet  method) available to users of any collection with

encounter order.

Adding Elements

The contracts for these methods specify that after their successful

execution, the collection must contain the supplied element as the first

(respectively last) element in the encounter order.

Inspecting Elements

 

Removing Elements

void addFirst(E e)      // adds e as the first el

void addLast(E e)       // adds e as the last ele

E getFirst()            // returns the first elem

E getLast()             // returns the last eleme

E removeFirst()         // removes and returns th

E removeLast()          // removes and returns th



Calling an inspection or a removal method on an empty collection will

normally result in a NoSuchElementException .

View-Generating Method

SequencedCollection<E> reversed()

Returns a reverse-ordered view of this collection. Of course, you would

prefer that calling reversed  on, for example, a List  (an interface that

inherits from SequencedCollection ) would return a List , rather

than a generic SequencedCollection , as the declaration above

implies. For this reason, the four interfaces that inherit from

SequencedCollection — List , SequencedSet ,

NavigableSet , and Deque —all define covariant overrides for

reversed. So, for example, SequencedSet ’s declaration of reversed

is

SequencedSet<E> reversed()

Similar overrides are declared by the other three interfaces.

The reverse ordering affects iteration and other order-sensitive operations,

including those on views of the returned view. The contract states that any



successful modifications to this view must write through to the underlying

collection, but that the inverse—visibility in this view of changes to the

underlying collection—are implementation-dependent.



Chapter 8. Sets

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 14th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

A set is a collection of items that cannot contain duplicates; adding an item

that is already present in the set has no effect. The Set<E>  interface has

the same methods as those of Collection , but it is defined separately in

order to allow the contract of add  (and addAll , which is defined in

terms of add ) to be changed in this way. For example, returning to the

task manager, suppose that on Monday you have free time to carry out your

telephone tasks. You can make the new collection of tasks for Monday by

adding all your telephone tasks to the existing Monday tasks. Let
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mondayTasks  and phoneTasks  be as declared in ???. Using a set,

you can write:

This works because of the way that duplicate elements are handled. The

task mikePhone , although it is in both mondayTasks  and

phoneTasks , appears only once in phoneAndMondayTasks —

appropriately for this application: you definitely don’t want to have to start

doing tasks twice over!

This seems straightforward, but to understand exactly how different Set

implementations work, we need to look more closely at what defines a

duplicate—that is, the equivalence relation for that set. The example above

uses HashSet , for which the equivalence relation is the equals

method: in other words, for a HashSet  two objects are duplicates if and

only if the equals  method, called on one with the other as its argument,

returns true . This might seem an obvious choice, but it’s not the only

one—although the Javadoc (at JDK 20) for Set  and its implementations

often implies that it is. Some other implementations also use equals , like

CopyOnWriteArraySet  and the family of classes that we’re calling

UnmodifiableSet  (see “UnmodifiableSet”). But another choice, if

Set<Task> phoneAndMondayTasks = new HashSet<>(mon

phoneAndMondayTasks.addAll(phoneTasks); 

assert phoneAndMondayTasks.equals(Set.of(logicCod



less common, is the identity relation; a set using that relation will contain a

reference to every unique object that has been added to it. One such

example is EnumSet  (see “EnumSet”)—although since Enum s are

singletons, EnumSet  could also be said to use equals . Another is the

set view of the keys of an IdentityHashMap , or any set created from

an IdentityHashMap  (see “IdentityHashMap”) using the

Collections  method newSetFromMap .

A third alternative for an equivalence relation is specified by the contract

for NavigableSet . A NavigableSet  (see “NavigableSet”)

maintains its elements in sorted order using an ordering relation provided

by either its natural order or a Comparator  (see Chapter 2).

NavigableSet  also uses that ordering relation in another way: it

defines two objects as equivalent if, using it, they compare as equal,

regardless of whether they satisfy the equality relation.

The fact that different sets use different equivalence relations creates no

difficulties so long as the different relations are compatible (see Chapter 2)

—that is, they give the same result applied to every value pair. Confusion

arises, however, with incompatible relations; for example, two objects may

not satisfy the equality relation even though the set’s ordering relation

compares them as equal. This confusion is unfortunately compounded by

the Javadoc for Set  and its implementations, which in places fails to

recognise that some implementations use equivalence relations other than

equals . Hopefully, future Javadoc versions may correct that problem.



You can avoid the confusion by understanding the consequences of using

different equivalence relations for different sets. One consequence, obvious

once you understand the problem, is that sets may contain duplicate

elements satisfying equals  or, conversely, that they may elide

occurrences of ones that don’t. A less obvious consequence concerns

equality between sets: to determine whether two sets A  and B  are equal,

A  must test each member of B  to discover whether it is equivalent to a

member of A . If the roles are reversed, and if A  and B  are using different

equivalence relations, the results may be different, so set equality loses

symmetry.

Set Implementations

When we used the methods of Collection  in the examples of

Chapter 6, we emphasized that they would work with any implementation

of Collection , not only Set , and, even staying with Set , not only

the Set  implementation HashSet . But in practice, of course, you have

to decide on a concrete implementation. This Chapter surveys the different

Set  implementations provided by the Framework, which differ both in

how fast they perform the basic operations of add , contains , and

iteration, and in the order in which their iterators return their elements. At

the end of the Chapter, we’ll summarize the comparative performance of

the different implementations.



Of the Set  implementations in the Collections Framework, four directly

implement Set  itself; the others inherit from the subinterface

SequencedSet  (see “SequencedSet”. In this section, we will look at

these four: HashSet , CopyOnWriteArraySet , EnumSet , and the

family of implementations that we’re calling UnmodifiableSet .

HashSet

This class is the most commonly used implementation of Set . As the

name implies, it is implemented by a hash table, an array in which elements

are stored at a position derived from their contents. Since hash tables store

and retrieve elements by their content, they are well suited to implementing

the operations of Set  (the Collections Framework also uses them for

various implementations of Map ). For example, to implement

contains(Object o)  you would look for the element o  and return

true  if it were found.

An element’s position in a hash table is calculated by a hash function of its

contents. Hash functions are designed to give, as far as possible, an even

spread of results (hash codes) from the element values that might be stored.

For an example, here is code like that used in the String  class to

calculate a hash code:

int hash = 0; 

for (char ch : str.toCharArray()) { 



  hash = hash * 31 + ch; 

}

Traditionally, hash tables obtain a table index from the hash code by taking

the remainder after division by the table length. Division is a slow operation

in practice, so the Collections Framework classes use bit masking instead.

Since that means it is the pattern of bits at the low end of the hash code that

is significant, prime numbers (such as 31, here) are used in calculating the

hash code, because multiplying by primes will not tend to shift information

away from the low end, as would multiplying by a power of two, for

example.

Clearly, unless your table has more locations than there are values that

might be stored in it, sometimes two distinct values will hash to the same

location in the hash table (this is called a collision). For instance, no int -

indexed table can be large enough to store all string values without

collisions.We can minimize the problem with a good hash function—one

that spreads the elements out equally in the table—but, when collisions do

occur, we have to have a way of keeping the colliding elements at the same

table location or bucket. This is often done by storing them in a linked

structure—a list or a tree—as shown in Figure 8-1. We will look at linked

structures in more detail later, but for now it’s enough to see that elements

stored at the same bucket can still be accessed, at the cost of following a

chain of cell references. Figure 8-1 shows the situation resulting from

running this code on the OpenJDK implementation of Java 20:



Figure 8-1. A hash table with chained overflow

The index values of the table elements have been calculated by using the

bottom three bits (for a table of length 8) of the hash code of each element.

Set<Character> s1 = new HashSet<Character>(8); 

s1.add('j'); 

s1.add('i'); 

s1.add('b');



In this implementation, a Character ’s hash code is just the Unicode

value of the character it contains. (In practice, a hash table would be much

bigger than this. Also, this diagram is simplified from the real situation;

because HashSet  is actually implemented by a specialized HashMap

(see “HashMap”), each of the cells in the chain contains not one but two

references, to a key and a value (see Chapter 11). Only the key is shown in

this diagram because, when a hash table is being used to represent a set, all

values are the same—only the presence of the key is significant.)

As long as there are no collisions, the cost of inserting or retrieving an

element is constant. As the hash table fills, collisions become more likely;

assuming a good hash function, the probability of a collision in a lightly

loaded table is proportional to its load, defined as the number of elements in

the table divided by its capacity (the number of buckets). If a collision does

take place, an overflow structure—a linked list or tree—has to be created

and subsequently traversed, adding an extra cost to insertion. If the size of

the hash table is fixed, performance will worsen as more elements are added

and the load increases. To prevent this from happening, the table size is

increased by rehashing—copying to a new and larger table—when the load

reaches a specified threshold (its load factor).

Iterating over a hash table requires each bucket to be examined to see

whether it is occupied and therefore costs a time proportional to the

capacity of the hash table plus the number of elements it contains. Since the

iterator examines each bucket in turn, the order in which elements are



returned depends on their hash codes, so there is no guarantee as to the

order in which the elements will be returned. In the OpenJDK

implementation of Java 20, the hash table shown in Figure 8-1 yields its

elements in order of ascending table index and forward traversal of the

linked lists. Printing it produces the following output.

[i, j, b]

Later in this section we will look at LinkedHashSet , a variant of this

implementation with an iterator that does return elements in their insertion

order.

The chief attraction of a hash table implementation for sets is the constant-

time performance (for lightly-loaded tables) of the basic operations of

add , remove , contains , and size . Its main performance

disadvantages are the poor performance of heavily-loaded tables, and the

iteration performance: iterating through the table involves examining every

bucket, so the cost includes a factor attributable to the table length,

regardless of the size of the set it contains.

HashSet  has the standard constructors that we introduced in “Collection

Constructors”, together with two additional constructors:

HashSet(int initialCapacity) 

HashSet(int initialCapacity, float loadFactor)



Both of these constructors create an empty set but allow some control over

the size of the underlying table, creating one with a length of the next-

largest power of 2 after the supplied capacity and, optionally, with the

desired load factor. Most of the hash-based maps in the Collections

Framework have similar constructors. You can use these constructors to

create a table large enough to store all the elements you expect it to hold

without requiring expensive resizing operations. In practice, however, they

have proved confusing and difficult to use: confusing, because their int

parameter, often misunderstood to be the expected number of entries, is in

fact used to compute the table size, and difficult to use because computing

the argument correctly from the expected maximum number of entries is

implementation-dependent and error-prone. So Java 19 added static factory

methods, which take only a parameter signifying the expected maximum

number of entries. These methods are recommended as being easier to use

and less subject to implementation changes. The factory method for

HashSet  is newHashSet :

HashSet  is unsychronized and not thread-safe; its iterators are fail-fast.

CopyOnWriteArraySet

static <T> HashSet<T> newHashSet(int numElements)



In functional terms, CopyOnWriteArraySet  is another

straightforward implementation of the Set  contract, but with quite

different performance characteristics from HashSet . This class is

implemented as a thin wrapper around an instance of

CopyOnWriteArrayList , which in turn is backed by an array. The

array is treated as immutable; any modification of the set results in the

creation of an entirely new array. So add  has complexity O(n), as does

contains , which has to be implemented by a linear search. Clearly you

wouldn’t use CopyOnWriteArraySet  in a context where you were

expecting many searches or insertions. But the array implementation means

that iteration costs O(1) per element—faster than HashSet —and it has

one advantage which is really compelling in some applications: it provides

thread safety (see “Collections and Thread Safety”) without adding to the

cost of read operations. This is in contrast to those collections which use

locking to achieve thread safety for all operations (for example, the

synchronized collections of “Synchronized Collections”). Locking

operations are always a potential bottleneck in multi-threaded applications.

By contrast, read operations on copy-on-write collections are implemented

on the backing array, and thanks to its immutability they can be used by any

thread without danger of interference from a concurrent write operation.

When would you want to use a set with these characteristics? In fairly

specialized cases; one that is quite common is in the implementation of the

Subject-Observer design pattern (see [Link to Come]), which requires

events to be notified to a set of observers. This set may not be modified



during the process of notification; with locking set implementations, read

and write operations share the overhead necessary to ensure this, whereas

with CopyOnWriteArraySet  the overhead is carried entirely by write

operations. This makes sense for Subject-Observer: in typical uses of this

pattern, event notifications occur much more frequently than changes to the

listener set.

Iterators for CopyOnWriteArraySet  can be used only to read the set.

When they are created, they are attached to the instance of the backing

array being used by the set at that moment. Since no instance of this array is

ever modified, the iterators’ remove  method is not implemented. These

are snapshot iterators (see “Collections and Thread Safety”); they reflect the

state of the set at the time they were created, and can subsequently be

traversed without any danger of interference from threads modifying the set

from which they were derived.

Since there are no configuration parameters for

CopyOnWriteArraySet , the constructors are just the standard ones

discussed in “Collection Constructors”.

EnumSet

This class exists to take advantage of the efficient implementations that are

possible when the number of possible elements is fixed and a unique index

can be assigned to each. These two conditions hold for a set of elements of



the same Enum ; the number of keys is fixed by the constants of the

enumerated type, and the ordinal  method returns values that are

guaranteed to be unique to each constant. In addition, the values that

ordinal  returns form a compact range, starting from zero—ideal, in

fact, for use as array indices or, in the standard implementation, indices of a

bit vector. So add , remove , and contains  are implemented as bit

manipulations, with constant-time performance. Bit manipulation on a

single word is extremely fast, and a long  value can be used to represent

EnumSets  over enum  types with up to 64 values. Larger enums  can

be treated in a similar way, with some overhead, using more than one word

for the representation.

EnumSet  is a sealed abstract class that implements these different

representations by means of two different package-private subclasses, one

for those enums that can be represented by bit positions in a long value—

that is, those with 64 or fewer elements—and one for all others. It hides

these concrete implementation from the programmer, instead exposing

factory methods that call the constructor for the appropriate subclass. The

following group of static factory methods provide ways of creating

EnumSets  with different initial contents: empty, specified elements only,

or all elements of the enum .

<E extends Enum<E>> EnumSet<E> of(E first, E... r

        // create a set initially containing the 



An EnumSet  contains the reified type of its elements, which is used at

run time for checking the validity of new entries. This type is supplied by

the above factory methods in two different ways. The methods of  and

range  receive at least one enum  argument, which can be queried for its

declaring class (that is, the Enum  that it belongs to). For allOf  and

noneOf , which have no enum  arguments, a class token is supplied

instead.

Common cases for EnumSet  creation are optimized by the second group

of methods, which allow you to efficiently create sets with one, two, three,

four, or five elements of an enumerated type.

<E extends Enum<E>> EnumSet<E> range(E from, E to

        // create a set initially containing all 

        // the range defined by the two specified

<E extends Enum<E>> EnumSet<E> allOf(Class<E> ele

        // create a set initially containing all 

<E extends Enum<E>> EnumSet<E> noneOf(Class<E> el

        // create a set of elementType, initially

<E extends Enum<E>> EnumSet<E> of(E e) 

<E extends Enum<E>> EnumSet<E> of(E e1, E e2) 

<E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e

<E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e

<E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e



The third set of methods allows the creation of an EnumSet  from an

existing collection:

The collection supplied as the argument to the second version of copyOf

must be nonempty so that the element type can be determined.

In use, EnumSet  obeys the contract for Set , with the added

requirement that its iterators will return their elements in their natural order

(the order in which their enum  constants are declared). It is not thread-

safe, but unlike the unsynchronized general-purpose collections, its iterators

are not fail-fast: although the Javadoc (as of Java 21) states that they are

weakly consistent (see “Collections and Thread Safety”), this is only

partially true: the more commonly used concrete subclass of EnumSet —

the one for enums of 64 or fewer elements—has in fact a snapshot iterator.

<E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> 

      // create an EnumSet with the same element 

      // with the same elements 

<E extends Enum<E>> EnumSet<E> copyOf(Collection<

      // create an EnumSet from the elements of c

      // at least one element 

<E extends Enum<E>> EnumSet<E> complementOf(EnumS

      // create an EnumSet with the same element 

      // containing the elements not in s



UnmodifiableSet

You won’t find any reference to the implementation(s)

UnmodifiableSet<E>  of the Set  interface in the Javadoc or in the

code of the Collections Framework: it’s a name invented in this book for a

family of package-private classes that client programmers can never access

by name, but that are important because they provide the implementation of

the unmodifiable sets obtained from the various overloads of the factory

methods Set.of  and Set.copyOf . These methods (which are static,

like all factory methods—the keyword is omitted below for brevity) can be

divided into three groups analogous to those of EnumSet . The first

contains just an overload of the method of  that takes no arguments and

returns an empty unmodifiable set:

The second group allows you to create an unmodifiable set from up to ten

specified elements:

<E> Set<E> of() // Returns an unmodifiable list c

<E> Set<E> of(E e1) // Returns an unmodifiable se

<E> Set<E> of(E e1, E e2) // Returns an unmodifia

<E> Set<E> of(E e1, E e2, E e3) // Returns an unm

                                         // eleme

<E> Set<E> of(E e1, E e2, E e3, E e4) // Returns 

                                         // eleme



The third group allows you to create an unmodifiable set from a collection,

an array, or a varargs-supplied list of arguments:

The classes that make up UnmodifiableSet  take advantage of its

unmodifiability to use fixed-length arrays as the backing structures. Without

the overhead of empty table buckets or linked overflow structures, these

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5) // Re

                                         // five 

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6)

                                         // conta

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6,

                                         // set c

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6,

                                         // unmod

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6,

                                         // unmod

<E> Set<E> of(E e1, E e2, E e3, E e4, E e5, E e6,

                                         // unmod

<E> Set<E> copyOf(Collection<? extends E> coll) 

                                         // Retur

                                         // an ar

<E> Set<E> of(E... elements) // Returns an unmodi

                                         // numbe



implementations require much less space than a hashed structure. Iteration

is also correspondingly more efficient, with the added benefit of improved

spatial locality (see “Memory”). The tradeoff for faster iteration is that

containment can only be determined by a linear search, O(n) in complexity.

In the OpenJDK implementation, the iterators for UnmodifiableSet

have an unusual characteristic: the order of the iteration is randomly

determined for each virtual machine instance. The reason for this design is

to avoid replicating an odd sort of compatibility problem with HashSet :

in the past, developers have based tests and even production code on the

apparently fixed iteration order of HashSet . But since the contract for

HashSet  doesn’t specify the iteration order, implementers have changed

it between versions, resulting in code breaking on upgrades. The iterators

for unmodifiable sets have been designed to prevent developers being lulled

into this error.

SequencedSet

A SequencedSet  is an externally or internally ordered Set  that also

exposes the methods of SequencedCollection . It combines the

methods of these two interfaces, adding to them only in one respect: it

provides a covariant override of the method reversed  of

SequencedCollection  in order to return a value of type

SequencedSet  (see ???). It has a single direct implementation,



LinkedHashSet , and is extended by the interface NavigableSet

(actually by its parent interface SortedSet , but see the introductory

remarks in “NavigableSet”).

Figure 8-2. SequencedSet and Related Types



LinkedHashSet

This class inherits from HashSet  and, further, implements

SequencedSet  by maintaining a linked list of its elements, as shown by

the curved arrows in Figure 8-3. The situation in that figure would result

from this code:

var lhs = LinkedHashSet.<Character>newLinkedHashS

Collections.addAll(lhs, 'j', 'i', 'b'); 

 

// iterators of a LinkedHashSet return their elem

assert lhs.toString().equals("[j, i, b]"); 

 

// the methods of SequencedSet are all available

assert lhs.getLast() == 'b'; 

assert lhs.reversed().toString().equals("[b, i, j



Figure 8-3. A linked hash table

The linked structure also has a useful consequence in terms of improved

performance for iteration: next  executes in constant time, as the linked

list can be used to visit each element in turn. This is in contrast to

HashSet , for which every bucket in the hash table must be visited

whether it is occupied or not. In the case of a large table that is sparsely

occupied that would be a significant inefficiency, but in general the

overhead involved in maintaining the linked list means that you would



choose LinkedHashSet  in preference to HashSet  only if that

situation was likely to apply in your application.

The constructors for LinkedHashSet  provide the same facilities as

those of HashSet  for configuring the underlying hash table. And in the

same way as HashSet , it has a modern factory method

newLinkedHashSet  that accepts as its argument the expected number

of elements and sizes the table optimally.

This class is unsychronized and not thread-safe; its iterators are fail-fast.

NavigableSet

The interface NavigableSet  adds to the SequencedSet  contract a

guarantee that its iterator will traverse the set in ascending element order,

and adds further methods to find the elements adjacent to a target value.

Prior to Java 6, when NavigableSet  was introduced, the only

subinterface of Set  was an interface called SortedSet , which

guarantees iteration order but does not expose the closest-match methods.

SortedSet  is still in the JDK—it extends SequencedSet  and is in

its turn extended by NavigableSet —but is no longer of much interest,

since it has no direct implementations in the platform.

We can use NavigableSet  to add some useful functionality to the to-do

manager. Until now, the methods of Collection  and Set  have



provided no help in ordering our tasks—surely one of the central

requirements of a to-do manager. Example 8-1 defines a record

PriorityTask  which attaches a priority to a task. There are three

priorities, HIGH , MEDIUM , and LOW , declared so that HIGH  priority

comes first (i.e. is lowest) in the natural ordering. To compare two

PriorityTasks , the comparator priorityTaskCmpr  first

compares their priorities: if the priorities are unequal, the higher priority

tasks comes first. If the priorities are equal, it goes on to use the natural

ordering on the underlying tasks. So two objects can only compare as equal

if they actually are equal—that is, the natural ordering is consistent with

equals, and the problems discussed at the beginning of this Chapter don’t

arise. Conversely, an example of how they could arise would be if we

defined the comparator such that all tasks of equal priority compared as

equal. With that definition, a NavigableSet  could only contain at most

one task of each priority.

Example 8-1. The record PriorityTask

public enum Priority { HIGH, MEDIUM, LOW } 

public record PriorityTask(Task task, Priority pr

    implements Comparable<PriorityTask> { 

 

    static Comparator<PriorityTask> priorityTaskC

        Comparator.comparing(PriorityTask::priori

            .thenComparing(PriorityTask::task); 

 



The following code shows NavigableSet  working with a set of

PriorityTasks .

The methods defined by the NavigableSet  interface fall into six

groups:

Retrieving the Comparator

    public int compareTo(PriorityTask pt) { 

        return priorityTaskCmpr.compare(this,pt);

    } 

}

NavigableSet<PriorityTask> priorityTasks = new Tr

 

priorityTasks.add(new PriorityTask(mikePhone, Pri

priorityTasks.add(new PriorityTask(paulPhone, Pri

priorityTasks.add(new PriorityTask(databaseCode, 

priorityTasks.add(new PriorityTask(guiCode, Prior

 

assert(priorityTasks.toString()).equals(""" 

    [PriorityTask[task=PhoneTask[name=Paul, numbe

    PriorityTask[task=CodingTask[spec=db], priori

    PriorityTask[task=PhoneTask[name=Mike, number

    PriorityTask[task=CodingTask[spec=gui], prior



Comparator<? super E> comparator()

This method returns the set’s comparator if it has been given one at

construction time, or null  if the set uses the natural ordering of its

elements. The reason that the bounded type can be used for the

Comparator  parameter is because a NavigableSet  parameterized

on E  can rely for ordering on a Comparator  defined on any supertype

of E . For example, recalling “A Fruity Example”, a

Comparator<Fruit>  could be used for a

NavigableSet<Apple> .

Inspecting the First and Last Elements

If the set is empty, these operations throw

NoSuchElementException .

Removing the First and Last Elements

E first() // return the first element in the set 

E last()  // return the last element in the set

E pollFirst() // retrieve and remove the first (l

              // or return null if this set is em

E pollLast()  // retrieve and remove the last (hi

              // or return null if this set is em



These are analogous to the methods of the same name in Deque  (see

“Deques”), and help to support the use of NavigableSet  in

applications which require queue functionality. For example, in the version

of the to-do manager in this section, we could get the highest-priority task

off the list, ready to be carried out, by means of this:

Getting Range Views

An interval such as a range view can be open, half-open, or closed,

depending on how many of its limit points it contains. For example, the

range of numbers x for which 0≤x≤1 is closed, because it contains both

limit points 0 and 1. The ranges 0≤x<1 and 0<x≤1 are half-open because

they contain only one of the limit points, and the range 0<x<1 is open

because it contains neither.

This preliminary explanation is necessary because each of the methods in

this group appears in two overloads, one inherited from SortedSet  and

returning a half-open SortedSet  view, and one defined in

PriorityTask nextTask = priorityTasks.pollFirst()

assert nextTask.toString().equals( 

     "PriorityTask[task=PhoneTask[name=Paul, numb



NavigableSet  returning a NavigableSet  view that can be open,

half-open, or closed according to the user’s choice.

The SortedSet  methods return a view of the set elements starting from

the fromValue —including it if it is present—and up to but excluding

the toValue . Notice that although the Javadoc for these methods calls

the arguments to these operations “elements”— fromElement  and

toElement —this is misleading: in fact they do not themselves have to

be members of the set.

SortedSet<E> subSet(E fromValue, E toValue) 

SortedSet<E> headSet(E toValue) 

SortedSet<E> tailSet(E fromValue)

The NavigableSet  methods are similar, but allow you to specify for

each bound whether it should be included or excluded.

In our example, these methods could be useful in providing different views

of the elements in priorityTasks . For instance, we can use

NavigableSet<E> subSet(E fromValue, boolean fromI

                                      E toValue, 

NavigableSet<E> headSet(E toValue, boolean inclus

NavigableSet<E> tailSet(E fromValue, boolean incl



headSet  to obtain a view of the high- and medium-priority tasks. To do

this, we need a special task that comes before all others in the task ordering;

fortunately, we defined a class EmptyTask  for just this purpose in

“Using the Methods of Collection”. Using this, it’s easy to extract all tasks

that come before any low-priority task:

In fact, because we know that tasks with empty details will never normally

occur, we can also use one as the first endpoint in a half-open interval:

PriorityTask firstLowPriorityTask = new PriorityT

 

NavigableSet<PriorityTask> highAndMediumPriorityT

        priorityTasks.headSet(firstLowPriorityTas

 

assert(highAndMediumPriorityTasks.toString()).equ

    [PriorityTask[task=PhoneTask[name=Paul, numbe

    PriorityTask[task=CodingTask[spec=db], priori

    PriorityTask[task=PhoneTask[name=Mike, number

PriorityTask firstMediumPriorityTask = 

  new PriorityTask(new EmptyTask(), Priority.MEDI

 

NavigableSet<PriorityTask> mediumPriorityTasks = 

  priorityTasks.subSet(firstMediumPriorityTask, f

 

assert(mediumPriorityTasks.toString()).equals("""

[P i it T k[t k C di T k[ db] i



These views are completely “transparent”; all changes in the underlying set

are reflected in the view:

To understand how this works, think of all the possible values in an

ordering as lying on a line, like the number line used in arithmetic. A range

is defined as a fixed segment of that line, regardless of which values are

actually in the original set. So a subset, defined on a NavigableSet  and

a range, will allow you to work with whichever elements of the

NavigableSet  currently lie within the range.

The converse also applies: changes in the view—including structural

changes—are reflected in the underlying set:

assert priorityTasks.size() == 5; 

mediumPriorityTasks.remove(logicCodeMedium); 

    [PriorityTask[task=CodingTask[spec=db], prior

    PriorityTask[task=PhoneTask[name=Mike, number

PriorityTask logicCodeMedium = new PriorityTask(l

priorityTasks.add(logicCodeMedium); 

assert(mediumPriorityTasks.toString()).equals("""

    [PriorityTask[task=CodingTask[spec=db], prior

    PriorityTask[task=CodingTask[spec=logic], pri

    PriorityTask[task=PhoneTask[name=Mike, number



assert priorityTasks.size() == 4;

Getting Closest Matches

These methods are useful for short-distance navigation. For example,

suppose that we want to find, in a sorted set of strings, the last three strings

in the subset that is bounded above by “x-ray”, including that string itself if

it is present in the set. NavigableSet  methods make this easy:

E ceiling(E e) // return the least element x in t

               // x≥e, or null if there is no suc

E floor(E e)   // return the greatest element x i

               // x≤e, or null if there is no suc

E higher(E e)  // return the least element x in t

               // x>e, or null if there is no suc

E lower(E e)   // return the greatest element in 

               // x<e, or null if there is no suc

        NavigableSet<String> stringSet = new Tree

        Collections.addAll(stringSet, "abc", "cde

        Optional<String> last = Optional.ofNullab

        assert last.equals(Optional.of("x-ray"));

        Optional<String> secondToLast = last.map(

        assert secondToLast.equals(Optional.of("c

        Optional<String> thirdToLast = secondToLa

t thi dT L t l (O ti l f(" b



Notice that in line with a general trend in the design of the Collections

Framework, NavigableSet  returns null  values to signify the

absence of elements where, for example, the first  and last  methods

of SortedSet  would throw NoSuchElementException . For this

reason, you should avoid null  elements in NavigableSets , and in

fact the newer implementation, ConcurrentSkipListSet , does not

permit them (though TreeSet  must continue to do so, for backward

compatibility).

Navigating the Set in Reverse Order

Methods of this group make traversing a NavigableSet  equally easy in

the descending (that is, reverse) ordering. As a simple illustration, let’s

generalise the example above using the nearest-match methods. Suppose

that, instead of finding just the last three strings in the sorted set bounded

above by “x-ray”, we want to iterate over all the strings in that set, in

descending order:

        assert thirdToLast.equals(Optional.of("ab

NavigableSet<E> descendingSet()   // return a rev

                                  // the elements

Iterator<E> descendingIterator()  // return a rev

NavigableSet<String> headSet = stringSet.headSet(



If the iterative processing involves structural changes to the set, and the

implementation being used is TreeSet  (which has fail-fast iterators), we

will have to use an explicit iterator to avoid

ConcurrentModificationException :

Although it has been retrofitted to extend SequencedSet , none of the

new methods provide any different functionality: they are just renamed

versions of existing methods. Table 8-1 shows the correspondence between

the new and existing methods.

NavigableSet<String> headSet  stringSet.headSet(

NavigableSet<String> reverseHeadSet = headSet.des

assert reverseHeadSet.toString().equals("[x-ray, 

String conc = " "; 

for (String s : reverseHeadSet) { 

  conc += s + " "; 

} 

assert conc.equals(" x-ray cde abc ");

for (Iterator<String> itr = headSet.descendingIte

  itr.next(); itr.remove(); 

} 

assert headSet.isempty();



Table 8-1. SequencedCollection  methods, with their NavigableSet  equivalents

SequencedColle

ction
NavigableSet

getFirst first  (inherited from SortedSet )

getLast last  (inherited from SortedSet )

removeFirst pollFirst

removeLast pollLast

addFirst unsupported method for internally

ordered collections

addLast unsupported method for internally

ordered collections

reversed descendingSet

TreeSet

This is the first tree implementation that we have seen, so we should take a

little time now to consider how trees perform in comparison to the other



implementation types used by the Collections Framework.

Trees are the data structure you would choose for an application that needs

fast insertion and retrieval of individual elements but which also requires

that they be held in sorted order.

For example, suppose you want to match all the words from a set against a

given prefix, a common requirement in visual applications where a drop-

down should ideally show all the possible elements that match against the

prefix that the user has typed. A hash table can’t return its elements in

sorted order and a list can’t retrieve its elements quickly by their content,

but a tree can do both.

In computing, a tree is a branching structure that represents hierarchy.

Computing trees borrow a lot of their terminology from genealogical trees,

though there are some differences; the most important is that, in computing

trees, each node has only one parent—except the root, which has none. An

important class of tree often used in computing is a binary tree—one in

which each node can have at most two children. Figure 8-4 shows an

example of a binary tree containing the words of this sentence in

alphabetical order.



Figure 8-4. An ordered, balanced binary tree

The most important property of this tree can be seen if you look at any non-

leaf node—say, the one containing the word the: all the nodes below that on

the left contain words that precede the alphabetically, and all those on the

right, words that follow it. To locate a word, you would start at the root and

descend level by level, doing an alphabetic comparison at each level, so the

cost of retrieving or inserting an element is proportional to the depth of the

tree.

How deep, then, is a tree that contains n elements? The complete binary tree

with two levels has three elements (that’s 2 –1), and the one with three

levels has seven elements (2 –1). In general, a binary tree with n complete

levels will have 2 –1 elements, and the depth of a tree with n elements will

be bounded by log n (since 2^log n^ = n). Just as n grows much more

slowly than 2 , log n grows much more slowly than n. So contains  on a

large tree is much faster than on a list containing the same elements. It’s

still not as good as on a hash table—whose operations can ideally work in

2

3

n

n



constant time—but a tree has the big advantage over a hash table that its

iterator can return its elements in sorted order.

Not all binary trees will have this nice performance, though. Figure 8-4

shows a balanced binary tree—one in which each node has an equal

number of descendants (or as near as possible) on each side. An unbalanced

tree can give much worse performance—in the worst case, as bad as a

linked list (see Figure 8-5). TreeSet  uses a data type called a red-black

tree, which has the advantage that if it becomes unbalanced through

insertion or removal of an element, it can always be rebalanced in O(log n)

time.

Figure 8-5. An unbalanced binary tree

The constructors for TreeSet  include, besides the standard ones, one

which allows you to supply a Comparator  (see “Comparator<T>”) and

one which allows you to create one from another SortedSet :

TreeSet(Comparator<? super E> c) 



The second of these is rather too close in its declaration to the standard

“conversion constructor” (see “Collection Constructors”):

As Joshua Bloch explains in Effective Java (item 52 in the third edition,

“Use overloading judiciously”), calling one of two constructor or method

overloads which take parameters of related type can give confusing results.

This is because, in Java, calls to overloaded constructors and methods are

resolved at compile time on the basis of the static type of the argument, so

applying a cast to an argument can make a big difference to the result of the

call, as the following code shows:

              // construct an empty set which wil

              // specified comparator 

TreeSet(SortedSet<E> s) 

              // construct a new set containing t

              // supplied set, sorted according t

TreeSet(Collection<? extends E> c) 

              // construct a new set containing t

              // supplied set, sorted according t

// construct and populate a NavigableSet whose it

// elements in the reverse of natural order: 

NavigableSet<String> base = new TreeSet<>(Compara



This problem afflicts the constructors for all the sorted collections in the

Framework ( TreeSet , TreeMap , ConcurrentSkipListSet ,

and ConcurrentSkipListMap ). To avoid it in your own class

designs, choose parameter types for different overloads so that an argument

of a type appropriate to one overload cannot be cast to the type appropriate

to a different one. If that is not possible, the two overloads should be

designed to behave identically with the same argument, regardless of its

static type. For example, a PriorityQueue  (“PriorityQueue”)

constructed from a collection uses the ordering of the original, whether the

static type with which the constructor is supplied is one of the

Comparator -containing types PriorityQueue  or SortedSet ,

or just a plain Collection . To achieve this, the conversion constructor

uses a instanceof  tests to determine the type of the supplied

Collections.addAll(base, "b", "a", "c"); 

 

// call the two different constructors for TreeSe

// set just constructed, but with different stati

NavigableSet<String> sortedSet1 = new TreeSet<>((

NavigableSet<String> sortedSet2 = new TreeSet<>(b

// and the two sets have different iteration orde

List<String> forward = new ArrayList<>(sortedSet1

List<String> backward = new ArrayList<>(sortedSet

assert !forward.equals(backward); 

assert forward.reversed().equals(backward); 



collection, and if that is a SortedSet  or a PriorityQueue , it

extracts the Comparator , only falling back on natural ordering if there

isn’t one.

TreeSet  is unsychronized and not thread-safe; its iterators are fail-fast.

ConcurrentSkipListSet

ConcurrentSkipListSet  was introduced in Java 6 as the first

concurrent set implementation. It is backed by a skip list, a modern

alternative to the binary trees of the previous section. A skip list for a set is

a series of linked lists, each of which is a chain of cells consisting of two

fields: one to hold a value, and one to hold a reference to the next cell.

Elements are inserted into and removed from a linked list in constant time

by pointer rearrangement, as shown in Figure 8-6, parts (a) and (b)

respectively.

Figure 8-6. Modifying a linked list



Figure 8-7. Searching a skip list

Figure 8-7 shows a skip list consisting of three linked lists, labelled levels 0,

1 and 2. The first linked list of the collection (level 0 in the figure) contains

the elements of the set, sorted according to their natural order or by the

comparator of the set. Each list above level 0 contains a subset of the list

below, chosen randomly according to a fixed probability. For this example,

let’s suppose that the probability is 0.5; on average, each list will contain

half the elements of the list below it. Navigating between links takes a fixed

time, so the quickest way to find an element is to start at the beginning (the

left-hand end) of the top list and to go as far as possible on each list before

dropping to the one below it.

The curved arrows of Figure 8-7 shows the progress of a search for the

element 55. The search starts with the element 12 at the top left of level 2,

steps to the element 31 on that level, then finds that the next element is 61,

higher than the search value. So it drops one level, and then repeats the



process; element 47 is still smaller than 55, but 61 is again too large, so it

once more drops a level and finds the search value in one further step.

Inserting an element into a skip list always involves at least inserting it at

level 0. When that has been done, should it also be inserted at level 1? If

level 1 contains, on average, half of the elements at level 0, then we should

toss a coin (that is, randomly choose with probability 0.5) to decide whether

it should be inserted at level 1 as well. If the coin toss does result in it being

inserted at level 1, then the process is repeated for level 2, and so on. To

remove an element from the skip list, it is removed from each level in

which it occurs.

If the coin tossing goes badly, we could end up with every list above level 0

empty—or full, which would be just as bad. These outcomes have very low

probability, however, and analysis shows that, in fact, the probability is very

high that skip lists will give performance comparable to binary trees:

search, insertion and removal all take O(log n). Their compelling advantage

for concurrent use is that they have efficient lock-free insertion and deletion

algorithms, whereas there are none known for binary trees.

The iterators of ConcurrentSkipListSet  are weakly consistent.



*In the EnumSet  implementation for enum  types with more than 64

values, next  has worst case complexity of O(log m), where m is the

Table 8-2. Comparative performance of different Set implementations

add contains next

HashSet O(1) O(1) O(h/n)

LinkedHas

hSet
O(1) O(1) O(1)

CopyOnWri

teArraySe

t

O(n) O(n) O(1)

EnumSet O(1) O(1) O(1)*

TreeSet O(log n) O(log n) O(log n)

Concurren

tSkipList

Set

O(log n) O(log n) O(1)



number of elements in the enumeration.

Comparing Set Implementations

Table 8-2 shows the comparative performance of the different Set

implementations. When you are choosing an implementation, of course,

efficiency is only one of the factors you should take into account. Some of

these implementations are specialized for specific situations; for example,

EnumSet  should always (and only) be used to represent sets of enum .

Similarly, CopyOnWriteArraySet  should only be used where set size

will remain relatively small, read operations greatly outnumber writes,

thread safety is required, and read-only iterators are acceptable.

That leaves the general-purpose implementations: HashSet ,

LinkedHashSet , TreeSet , and ConcurrentSkipListSet .

The first three are not thread-safe, so can only be used in multi-threaded

code either in conjunction with client-side locking, or wrapped in

Collection.synchronizedSet  (see “Synchronized Collections”).

For single-threaded applications where there is no requirement for the set to

be sorted, your choice is between HashSet  and LinkedHashSet . If

your application will be frequently iterating over the set, or if you require

access ordering, LinkedHashSet  is the implementation of choice.



Finally, if you require the set to sort its elements, the choice is between

TreeSet  and ConcurrentSkipListSet . In a multi-threaded

environment, ConcurrentSkipListSet  is the only sensible choice.

Even in single-threaded code ConcurrentSkipListSet  may not

show a significantly worse performance for small set sizes. For larger sets,

however, or for applications in which there are frequent element deletions,

TreeSet  will perform better if your application doesn’t require thread

safety.



Chapter 9. Queues

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 15th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

A queue is a collection designed to hold elements for processing, yielding

them up in the order in which they are to be processed. The corresponding

Collections Framework interface Queue<E>  has a number of different

implementations embodying different rules about what this order should be.

Many of the implementations use the rule that tasks are to be processed in

the order in which they were submitted (First In First Out, or FIFO), but

other rules are possible—for example, the Collections Framework includes

queue classes whose processing order is based on task priority. The

Queue  interface was introduced in Java 5, motivated in part by the need

mailto:shunter@oreilly.com


for queues in the concurrency utilities included in that release. A glance at

the hierarchy of implementations shown in Figure 9-1 shows that, in fact,

nearly all the Queue  implementations in the Collections Framework are

in the package java.util.concurrent .

One classic requirement for queues in concurrent systems arises when a

number of tasks have to be executed by a number of threads working in

parallel. An everyday example of this situation is that of a single queue of

airline passengers being handled by a line of check-in operators. Each

operator works on processing a single passenger (or a group of passengers)

while the remaining passengers wait in the queue. As they arrive,

passengers join the tail of the queue, wait until they reach its head, and are

then assigned to the next operator who becomes free. A good deal of fine

detail is involved in implementing a queue such as this; operators have to be

prevented from simultaneously attempting to process the same passenger,

empty queues have to be handled correctly, and in computer systems there

has to be a way of defining queues with a maximum size, or bound. (This

last requirement may not often be imposed in airline terminals, but it can be

very useful in systems in which there is a maximum waiting time for a task

to be executed.) The Queue  implementations in

java.util.concurrent  look after these implementation details for

you.



Figure 9-1. Implementations of Queue in the Collections Framework

In addition to the operations inherited from Collection , the Queue

interface includes operations to add an element to the tail of the queue, to

inspect the element at its head, and to remove the element at its head. Each

of these three operations comes in two varieties, one which returns a value

to indicate failure and one which throws an exception.

Adding an Element to a Queue



The exception-throwing variant of this operation is the add method

inherited from Collection . Although add  does return a boolean

signifying its success in inserting an element, that value can’t be used to

report that a bounded queue is full; the contract for add  specifies that it

may return false  only if the reason for refusing the element is that it was

already present—otherwise, it must throw an (unchecked) exception. For a

bounded queue, the value-returning variant offer  is usually a better

option:

The value returned by offer  indicates whether the element was

successfully inserted. Note that offer  does throw an exception if the

element is illegal in some way (for example, the value null  submitted to

a queue that doesn’t permit null s). Normally, if offer  returns

false , it has been called on a bounded queue that has reached capacity.

Retrieving an Element from a Queue

The methods in this group are peek  and element  for inspecting the

head element, and poll  and remove  for removing it from the queue

and returning its value.

The methods that throw an exception for an empty queue are:

boolean offer (E  e)  // insert the given element



Notice that this is a different method from the Collection  method

remove(Object) . The methods that return null  for an empty queue

are:

Because these methods return null  to signify that the queue is empty,

you should avoid using null  as a queue element. In general, the use of

null  as a queue element is discouraged by the Queue  interface; in the

JDK, the only implementation that allows it is the legacy class

LinkedList .

Using the Methods of Queue

Let’s look at examples of the use of these methods. Queues should provide

a good way of implementing a task manager, since their main purpose is to

yield up elements, such as tasks, for processing. For the moment we’ll use

ArrayDeque  as the fastest and most straightforward implementation of

Queue  (and also of Deque , of course). But, as before, we’ll confine

E element()    // retrieve but do not remove the 

E remove()     // retrieve and remove the head el

E peek()        // retrieve but do not remove the

E poll()        // retrieve and remove the head e



ourselves to the methods of the interface—but remember that, in choosing a

queue implementation, you’re also choosing the ordering of task

processing. With ArrayDeque , you get FIFO ordering—very possibly

the best choice for the task manager: since our attempts to get organized

using fancy scheduling methods never seem to work very well, let’s try

something simpler.

ArrayDeque  is unbounded, so we could use either add  or offer  to

set up the queue with new tasks.

Queue<Task> taskQueue = new ArrayDeque<>(); 

taskQueue.offer(mikePhone); 

taskQueue.offer(paulPhone);

Any time we feel ready to do a task, we can take the one that has reached

the head of the queue:

Task nextTask = taskQueue.poll(); 

if (nextTask != null) { 

  // process nextTask 

}

The choice between using poll  and remove  depends on whether we

want to regard queue emptiness as an exceptional condition. Realistically—



given the nature of the application—that might be a sensible assumption, so

this is an alternative:

try { 

  Task nextTask = taskQueue.remove(); 

  // process nextTask 

} catch (NoSuchElementException e) { 

  // but we *never* run out of tasks! 

}

This scheme needs some refinement to allow for the nature of different

kinds of tasks. Phone tasks fit into relatively short time slots, whereas we

don’t like to start coding unless there is reasonably substantial time to get

into the task. So if time is limited—say, until the next meeting—we might

like to check that the next task is of the right kind before we take it off the

queue:

Task nextTask = taskQueue.peek(); 

if (nextTask instanceof PhoneTask) { 

  taskQueue.remove(); 

  // process nextTask 

}

These inspection and removal methods are a major benefit of the Queue

interface; Collection  has nothing like them (though



NavigableSet  does). The price we pay for this benefit is that the

methods of Queue  are useful to us only if the head element is actually one

that we want. True, the class PriorityQueue  allows us to provide a

comparator that will order the queue elements so that the one you want is at

the head, but that may not be a particularly good way of expressing the

algorithm for choosing the next task—for example, you might need to know

something about all the outstanding tasks before you can choose the next

one. So in this situation, if our to-do manager is entirely queue-based, you

may end up going for coffee until the meeting starts. As an alternative, you

could consider using the List  interface, which provides more flexible

means of accessing its elements but has the drawback that its

implementations provide much less support for multi-thread use.

This might sound overly pessimistic; after all, Queue  is a subinterface of

Collection , so it inherits methods that support traversal, like

iterator . In fact, although these methods are implemented, their use is

not recommended in normal situations. In the design of the queue classes,

efficiency in traversal has been traded against fast implementation of the

methods of Queue ; in addition, queue iterators do not guarantee to return

their elements in proper sequence and, for some concurrent queues, will

actually fail in normal conditions (see “BlockingQueue Implementations”).

In the next section we shall look at the two direct JDK implementations of

Queue — PriorityQueue  and ConcurrentLinkedList —and,

in “BlockingQueue”, at BlockingQueue  and its implementations. The



classes in these two sections differ widely in their behavior. Most of them

are thread-safe; most provide blocking facilities (that is, operations that wait

for conditions to be right for them to execute); some support priority

ordering; one— DelayQueue —holds elements until their delay has

expired, and another— SynchronousQueue —is purely a

synchronization facility. In choosing between Queue  implementations,

you would be influenced more by these functional differences than by their

performances.

Queue Implementations

PriorityQueue

PriorityQueue  is one of the two non-legacy Queue

implementations (that is, other than LinkedList ) not designed

primarily for concurrent use (the other one is ArrayDeque ). It is not

thread-safe, nor does it provide blocking behavior. It gives up its elements

for processing according to an ordering like that used by NavigableSet

—either the natural order of its elements if they implement

Comparable , or the ordering imposed by a Comparator  supplied

when the PriorityQueue  is constructed. So PriorityQueue

would be an alternative design choice (obviously, given its name) for the

priority-based to-do manager that we outlined in “NavigableSet” using

NavigableSet . Your application will dictate which alternative to



choose: if it needs to examine and manipulate the set of waiting tasks, use

NavigableSet . If its main requirement is efficient access to the next

task to be performed, use PriorityQueue .

Choosing PriorityQueue  allows us to reconsider the ordering: since it

accommodates duplicates, it does not share the requirement of

NavigableSet  for an ordering consistent with equals . To

emphasize the point, we will define a new ordering for our to-do manager

that depends only on priorities. Contrary to what you might expect,

PriorityQueue  gives no guarantee of how it presents multiple

elements with the same value. So if, in our example, several tasks are tied

for the highest priority in the queue, it will choose one of them arbitrarily as

the head element.

The constructors for PriorityQueue  are:

PriorityQueue()       // natural ordering, defaul

PriorityQueue(Collection<? extends E> c) 

                      // natural ordering of elem

                      // c is a PriorityQueue or 

                      // copy c's ordering 

PriorityQueue(int initialCapacity) 

                      // natural ordering, specif

PriorityQueue(int initialCapacity, Comparator<? s

                      // Comparator ordering, spe

PriorityQueue(PriorityQueue<? extends E> c) 

// d i d l t



Notice how the second of these constructors avoids the problem of the

overloaded TreeSet  constructor that we discussed in “TreeSet”. We can

use PriorityQueue  for a simple implementation of our to-do manager

with the PriorityTask  class defined in “NavigableSet”, and a new

Comparator  depending only on the task’s priority:

Priority queues are usually efficiently implemented by priority heaps. A

priority heap is a binary tree somewhat like those we saw implementing

TreeSet  in “TreeSet”, but with two differences: first, the only ordering

constraint is that each node in the tree should be greater than either of its

children, and second, that the tree should be complete at every level except

                      // ordering and elements co

PriorityQueue(SortedSet<? extends E> c) 

                      // ordering and elements co

final int INITIAL_CAPACITY = 10; 

Comparator<PriorityTask> priorityComp = Comparato

Queue<PriorityTask> priorityQueue = new PriorityQ

priorityQueue.add(new PriorityTask(mikePhone, Pri

priorityQueue.add(new PriorityTask(paulPhone, Pri

PriorityTask nextTask = priorityQueue.poll(); 

System.out.println(nextTask); 

... 

PriorityTask nextTask = priorityQueue.poll();



possibly the lowest; if the lowest level is incomplete, the nodes it contains

must be grouped together at the left. Figure 9-2(a) shows a small priority

heap, with each node shown only by the field containing its priority. To add

a new element to a priority heap, it is first attached at the leftmost vacant

position, as shown by the circled node in Figure 9-2(b). Then it is

repeatedly exchanged with its parent until it reaches a parent that has higher

priority. In the figure, this required only a single exchange of the new

element with its parent, giving Figure 9-2(c). (Nodes shown circled in

Figures Figure 9-2 and Figure 9-3 have just changed position.)

Figure 9-2. Adding an element to a PriorityQueue

Getting the highest-priority element from a priority heap is trivial: it is the

root of the tree. But, when that has been removed, the two separate trees

that result must be reorganized into a priority heap again. This is done by

first placing the rightmost element from the bottom row into the root

position. Then—in the reverse of the procedure for adding an element—it is

repeatedly exchanged with the larger of its children until it has a higher

priority than either. Figure 9-3 shows the process—again requiring only a



single exchange—starting from the heap in Figure 9-2(c) after the head has

been removed.

Apart from constant overheads, both addition and removal of elements

require a number of operations proportional to the height of the tree. So

PriorityQueue  provides O(log n) time for offer , poll ,

remove() , and add . The methods remove(Object)  and

contains  may require the entire tree to be traversed, so they require

O(n) time. The methods peek  and element , which just retrieve the

root of the tree without removing it, take constant time, as does size ,

which uses an object field that is continually updated.

Figure 9-3. Removing the head of a PriorityQueue

PriorityQueue  is not suitable for concurrent use. Its iterators are fail-

fast, and it doesn’t offer support for client-side locking. A thread-safe

version, PriorityBlockingQueue  (see “BlockingQueue

Implementations”), is provided instead.

ConcurrentLinkedQueue



The other nonblocking Queue  implementation is

ConcurrentLinkedQueue , an unbounded, thread-safe, FIFO-ordered

queue. It uses a linked structure, similar to those we saw in

“ConcurrentSkipListSet” as the basis for skip lists, and in “HashSet” for

hash table overflow chaining. We noticed there that one of the main

attractions of linked structures is that the insertion and removal operations

implemented by pointer rearrangements perform in constant time. This

makes them especially useful as queue implementations, where these

operations are always required on cells at the ends of the structure—that is,

cells that do not need to be located using the slow sequential search of

linked structures.

ConcurrentLinkedQueue  uses a CAS-based (see “Java 5:

Concurrent Collections”) wait-free algorithm—that is, one that guarantees

that any thread can always complete its current operation, regardless of the

state of other threads accessing the queue. It executes queue insertion and

removal operations in constant time, but requires linear time to execute

size . This is because the algorithm, which relies on co-operation

between threads for insertion and removal, does not keep track of the queue

size and has to iterate over the queue to calculate it when it is required.

ConcurrentLinkedQueue  has the two standard constructors

discussed in “Collection Constructors”. Its iterators are weakly consistent.



BlockingQueue

Java 5 added a number of classes to the Collections Framework for use in

concurrent applications. Most of these are implementations of the Queue

subinterface BlockingQueue<E> , designed primarily to be used in

producer-consumer queues.

One common example of the use of producer-consumer queues is in

systems that perform print spooling; client processes add print jobs to the

spool queue, to be processed by one or more print service processes, each of

which repeatedly consumes the task at the head of the queue. The key

facilities that BlockingQueue  provides to such systems are, as its name

implies, enqueuing and dequeueing methods that do not return until they

have executed successfully. So, in this example, a print server does not need

to constantly poll the queue to discover whether any print jobs are waiting;

it need only call the poll  method, supplying a timeout, and the system

will suspend it until either a queue element becomes available or the

timeout expires. BlockingQueue  defines seven new methods, in three

groups:

Adding an Element

boolean offer(E e, long timeout, TimeUnit unit) 

                // insert e, waiting up to the ti

void put(E e)   // add e, waiting as long as nece



The methods inherited from Queue — add  and offer —fail

immmediately if called on a bounded queue that has reached capacity:

add  by throwing an exception, offer  by returning false . These

blocking methods are more patient: the offer  overload waits for a time

specified using java.util.concurrent.TimeUnit  (an Enum

which allows timeouts to be defined in units such as milliseconds or

seconds) and put  will block indefinitely.

Removing an Element

Taking these methods together with those inherited from Queue , methods

for removing an element have the same four possible behaviors in the case

of failure as those for adding an element. In this case, failure will typically

be caused by the queue currently containing no elements. The inherited

poll  method returns null  in this situation, blocking poll  returns

null  but only after waiting until its timeout, remove  throws an

exception immediately, and take  blocks until it succeeds.

E poll(long timeout, TimeUnit unit) 

                // retrieve and remove the head, 

E take()        // retrieve and remove the head o

                // as long as necessary



Although the behavior of the various BlockingQueue  methods varies

systematically, their naming can be difficult to understand. The clearest

picture is provided by the Javadoc (Figure 9-4).

Figure 9-4. BlockingQueue  methods

Retrieving or Querying the Contents of the Queue

The drainTo  methods perform atomically and efficiently, so the second

overload is useful in situations in which you know that you have processing

capability available immediately for a certain number of elements, and the

first is useful—for example—when all producer threads have stopped

working. Their return value is the number of elements transferred.

int drainTo(Collection<? super E> c) 

                // clear the queue into c 

int drainTo(Collection<? super E> c, int maxEleme

                // clear at most the specified nu

int remainingCapacity() 

                // return the number of elements 

                // without blocking, or Integer.M



remainingCapacity  reports the spare capacity of the queue, although

as with any such value in multi-threaded contexts, the result of a call should

not be used as part of a test-then-act sequence: between the test (the call of

remainingCapacity ) and the action (adding an element to the queue)

of one thread, another thread might have intervened to add or remove

elements.

BlockingQueue  guarantees that the queue operations of its

implementations will be thread-safe and atomic. But this guarantee doesn’t

extend to the bulk operations inherited from Collection—addAll ,

containsAll , retainAll  and removeAll —unless the

individual implementation provides it. So it is possible, for example, for

addAll  to fail, throwing an exception, after adding only some of the

elements in a collection.

Using the Methods of BlockingQueue

A to-do manager that works for just one person at a time is very limited; we

really need a cooperative solution—one that will allow us to share both the

production and the processing of tasks. Example 9-1 shows

StoppableTaskQueue , a simple version of a concurrent task manager

based on PriorityBlockingQueue , that will allow its users—us—to

independently add tasks to the task queue as we discover the need for them,

and to take them off for processing as we find the time. The class

StoppableTaskQueue  has three methods: addTasks , getTask ,



and shutDown . A StoppableTaskQueue  is either working or

stopped. The method addTasks  returns a boolean  value indicating

whether it successfully added its tasks; this value will be true unless the

StoppableTaskQueue  is stopped. The method getTask  returns the

head task from the queue. If no task is available, it does not block but

returns null . The method shutDown  stops the

StoppableTaskQueue , waits until all pending addTasks

operations are completed, then drains the StoppableTaskQueue  and

returns its contents.

Example 9-1. A concurrent queue-based task manager

public class StoppableTaskQueue { 

    private final int MAXIMUM_PENDING_OFFERS = In

    private final BlockingQueue<PriorityTask> tas

    private final Semaphore semaphore = new Semap

    private volatile boolean isStopping; 

 

    // return true if the task was successfully p

    // if the queue is being shut down. 

    public boolean addTask(PriorityTask task) { 

        return addTasks(Collections.singletonList

    } 

 

    public boolean addTasks(Collection<PriorityTa

        if (isStopping) return false; 

        if (! semaphore.tryAcquire()) { 



In this example, as in most uses of the java.util.concurrent

collections, the collection itself takes care of the problems arising from the

interaction of different threads in adding or removing items from the queue.

            return false; 

        } else { 

            taskQueue.addAll(tasks); 

            semaphore.release(); 

            return true; 

        } 

    } 

 

    // return the head task from the queue, or nu

    public PriorityTask getFirstTask() { 

        return taskQueue.poll(); 

    } 

 

    // stop the queue, wait for producers to fini

    public Collection<PriorityTask> shutDown() { 

        isStopping = true; 

        // blocks until all outstanding addTasks(

        semaphore.acquireUninterruptibly(MAXIMUM_

        Set<PriorityTask> returnCollection = new 

        taskQueue.drainTo(returnCollection); 

        return returnCollection; 

    } 

}



Most of the code of Example 9-1 is instead solving the problem of

providing an orderly shutdown mechanism. The reason for this emphasis is

that when we go on to use the class StoppableTaskQueue  as a

component in a larger system, we will need to be able to stop daily task

queues without losing task information. Achieving graceful shutdown can

often be a problem in concurrent systems: for more detail, see Chapter 7 of

[Goetz06].

The larger system will model each day’s scheduled tasks over the next year,

allowing consumers to process tasks from each day’s queue. An implicit

assumption of the example of this section is that if there are no remaining

tasks scheduled for this day, a consumer will not wait for one to become

available, but will immediately go on to look for a task in the next day’s

queue. (In the real world, we would go home at this point, or more likely go

out to celebrate.) This assumption simplifies the example, as we don’t need

to invoke any of the blocking methods of PriorityBlockingQueue ,

though we will use one method, drainTo , from the BlockingQueue

interface.

There are a number of ways of shutting down a producer-consumer queue

such as this; in the one we’ve chosen for this example, the manager exposes

a shutdown  method that can be called by a “supervisor” thread in order

to stop producers writing to the queue, to drain it, and to return the

outstanding tasks. The difficulty is in ensuring that addtasks  performs

atomically—that is, it adds all of its tasks or none of them—and that once



the shutdown  method has stopped the queue and is draining or has

drained it, no other threads can subsequently gain access to it to add further

tasks.

Example 9-1 achieves this using a semaphore—a thread-safe object that

maintains a fixed number of permits. Semaphores are usually used to

regulate access to a finite set of resources—a pool of database connections,

for example. The permits the semaphore has available at any time represent

the resources not currently in use. A thread requiring a resource acquires a

permit from the semaphore, and releases it when it releases the resource. If

all the resources are in use, the semaphore will have no permits available; at

that point, a thread attempting to acquire a permit will block until some

other thread returns one.

The semaphore in this example is used differently. We don’t want to restrict

producer threads from writing to the queue—it’s a concurrent queue, after

all, quite capable of handling multi-thread access without help from us. We

just want the shutdown  method to be able to tell if there are any writes

currently in progress. So we create the semaphore with the largest possible

number of permits, which in practice will never all be required. The

producer method addTasks  first checks the volatile boolean flag

isStopping  to ensure that a shutdown has not been initiated, then calls

the semaphore method tryAcquire , which returns false

immediately if no permits are available (indicating that the shutdown is in



process or has completed). If tryAcquire  succeeds, addTasks  adds

its tasks to the queue, then releases the permit.

The shutdown  method first sets the isStopping  flag, so that no new

addTasks  method executions can begin. Then it has to wait until all the

permits previously acquired have been returned. To do that, it calls

acquireUninterruptibly , specifying that it needs all the permits;

that call will block until they are all released by the producer threads, and

shutdown can be completed by returning the unprocessed tasks.

BlockingQueue Implementations

The Collections Framework provides five implementations of

BlockingQueue .

LinkedBlockingQueue

This class is a thread-safe, FIFO-ordered queue, based on a linked node

structure. It is the implementation of choice whenever you need an

unbounded blocking queue. Even for bounded use, it may still be better

than ArrayBlockingQueue  (linked queues typically have higher

throughput than array-based queues but less predictable performance in

most concurrent applications).

The two standard collection constructors create a thread-safe blocking

queue with a capacity of Integer.MAX_VALUE . You can specify a



lower capacity using a third constructor:

LinkedBlockingQueue(int capacity)

The ordering imposed by LinkedBlockingQueue  is FIFO. Queue

insertion and removal are executed in constant time; operations such as

contains  which require traversal of the array require linear time. The

iterators are weakly consistent.

ArrayBlockingQueue

This implementation is based on a circular array—a linear structure in

which the first and last elements are logically adjacent. Figure 9-5(a) shows

the idea. The position labeled “head” indicates the head of the queue; each

time the head element is removed from the queue, the head index is

advanced. Similarly, each new element is added at the tail position,

resulting in that index being advanced. When either index needs to be

advanced past the last element of the array, it gets the value 0. If the two

indices have the same value, the queue is either full or empty, so an

implementation must separately keep track of the count of elements in the

queue.

A circular array in which the head and tail can be continuously advanced in

this way is better as a queue implementation than a noncircular one (e.g. the

standard implementation of ArrayList , which we cover in “ List



Implementations”) in which removing the head element requires changing

the position of all the remaining elements so that the new head is at position

0. Notice, though, that only the elements at the ends of the queue can be

inserted and removed in constant time. If an element is to be removed from

near the middle, which can be done for queues via the method

Iterator.remove , then all the elements from one end must be moved

along to maintain a compact representation. Figure 9-5(b) shows the

element at index 6 being removed from the queue. As a result, insertion and

removal of elements in the middle of the queue has time complexity O(n).

Constructors for array-backed collection classes generally have a single

configuration parameter, the initial length of the array. For fixed-size

classes like ArrayBlockingQueue , this parameter is necessary in

order to define the capacity of the collection. (For variable-size classes like

ArrayList , a default initial capacity can be used, so constructors are

provided that don’t require the capacity.) For ArrayBlockingQueue ,

the three constructors are:



Figure 9-5. A circular array

The Collection  parameter to the last of these allows an

ArrayBlockingQueue  to be initialized with the contents of the

specified collection, added in the traversal order of the collection’s iterator.

For this constructor, the specified capacity must be at least as great as the

size of the supplied collection, or at least 1 if the supplied collection is

empty. Besides configuring the backing array, the last two constructors also

require a boolean argument to control how the queue will handle multiple

blocked requests. These will occur when multiple threads attempt to remove

items from an empty queue or enqueue items on to a full one. When the

queue becomes able to service one of these requests, which one should it

choose? The alternatives are to provide a guarantee that the queue will

ArrayBlockingQueue(int capacity) 

ArrayBlockingQueue(int capacity, boolean fair) 

ArrayBlockingQueue(int capacity, boolean fair, Co



choose the one that has been waiting longest—that is, to implement a fair

scheduling policy—or to allow the implementation to choose one. Fair

scheduling sounds like the better alternative, since it avoids the possibility

that an unlucky thread might be delayed indefinitely but, in practice, the

benefits it provides are rarely important enough to justify incurring the large

overhead that it imposes on a queue’s operation. If fair scheduling is not

specified, ArrayBlockingQueue  will normally approximate fair

operation, but with no guarantees.

The ordering imposed by ArrayBlockingQueue  is FIFO. Queue

insertion and removal are executed in constant time; operations, such as

contains , which require traversal of the array, require linear time. The

iterators are weakly consistent.

PriorityBlockingQueue

This implementation is a thread-safe, blocking version of

PriorityQueue  (see “Queue Implementations”), with similar ordering

and performance characteristics. Its iterators are fail-fast, so in normal use

they will throw ConcurrentModificationException ; only if the

queue is quiescent will they succeed. To iterate safely over a

PriorityBlockingQueue , transfer the elements to an array and

iterate over that instead.

DelayQueue



This is a specialized priority queue, in which the ordering is based on the

delay time for each element—the time remaining before the element will be

ready to be taken from the queue. If all elements have a positive delay time

—that is, none of their associated delay times has expired—an attempt to

poll  the queue will return null . If one or more elements has an

expired delay time, the one with the longest-expired delay time will be at

the head of the queue. The elements of a DelayQueue  belong to a class

that implements java.util.concurrent.Delayed :

The getDelay  method of a Delayed  object returns the remaining

delay associated with that object. (This interface precedes the introduction

of the java.time  API but, with that now available, an obvious

improvement to this interface would be the addition of a default

getDelay  method returning a Duration .) The compareTo  method

(see “Comparable<T>”) of Comparable  must be defined to give results

that are consistent with the delays of the objects being compared. This

means that it will rarely be compatible with equals , so Delayed

objects are not suitable for use with implementations of SortedSet  and

SortedMap .

interface Delayed extends Comparable<Delayed> { 

    long getDelay(TimeUnit unit); 

}



For example, in our to-do manager we are likely to need reminder tasks, to

ensure that we follow up e-mail and phone messages that have gone

unanswered. We could define a new class DelayedTask  as in

Example 9-2, and use it to implement a reminder queue.

Example 9-2. The class DelayedTask

BlockingQueue<DelayedTask> reminderQueue = new De

reminderQueue.offer(new DelayedTask(databaseCode,

reminderQueue.offer(new DelayedTask(interfaceCode

... 

// now get the first reminder task that is ready 

DelayedTask t1 = reminderQueue.poll(); 

if (t1 == null) { 

  // no reminders ready yet 

} else { 

  // process t1 

}

public class DelayedTask implements Delayed { 

 

    private final LocalDateTime endTime; 

    private final Task task; 

    private static Comparator<Delayed> dtComparat

        Comparator.comparing(dt -> dt.getDelay(Ti

 



Most queue operations respect delay values and will treat a queue with no

unexpired elements as if it were empty. The exceptions are peek  and

remove , which, perhaps surprisingly, will allow you to examine the head

element of a DelayQueue  whether or not it is expired. Like them and

unlike the other methods of Queue , collection operations on a

DelayQueue  do not respect delay values. For example, here are two

ways of copying the elements of reminderQueue  into a set:

    public DelayedTask(Task t, int daysDelay) { 

        task = t; 

        endTime = LocalDateTime.now().plusDays(da

    } 

 

    @Override 

    public long getDelay(TimeUnit unit) { 

        return unit.convert(Duration.between(Loca

    } 

 

    @Override 

    public int compareTo(Delayed d) { 

        return dtComparator.compare(this, d); 

    } 

 

    public Task getTask() { 

        return task; 

    }



The set delayedTaskSet1  will contain all the reminders in the queue,

whereas the set delayedTaskSet2  will contain only those ready to be

used.

DelayQueue  shares the performance characteristics of the

PriorityQueue  on which it is based and, like it, has fail-fast iterators.

The comments on PriorityBlockingQueue  iterators apply to these

too.

SynchronousQueue

At first sight, you might think there is little point to a queue with no internal

capacity, which is a short description of SynchronousQueue . But, in

fact, it can be very useful; a thread that wants to add an element to a

SynchronousQueue  must wait until another thread is ready to

simultaneously take it off, and the same is true—in reverse—for a thread

that wants to take an element off the queue. So SynchronousQueue

has the function that its name suggests, that of a rendezvous—a mechanism

for synchronizing two threads. (Don’t confuse the concept of synchronizing

threads in this way—allowing them to cooperate by exchanging data—with

Set<DelayedTask> delayedTaskSet1 = new HashSet<De

delayedTaskSet1.addAll(reminderQueue); 

Set<DelayedTask> delayedTaskSet2 = new HashSet<De

reminderQueue.drainTo(delayedTaskSet2);



Java’s keyword synchronized , which prevents simultaneous execution

of code by different threads.) There are two constructors for

SynchronousQueue :

SynchronousQueue() 

SynchronousQueue(boolean fair)

A common application for SynchronousQueue  is in work-sharing

systems where the design ensures that there are enough consumer threads to

ensure that producer threads can hand tasks over without having to wait. In

this situation, it allows safe transfer of task data between threads without

incurring the BlockingQueue  overhead of enqueuing, then dequeuing,

each task being transferred.

As far as the Collection  methods are concerned, a

SynchronousQueue  behaves like an empty Collection ; Queue

and BlockingQueue  methods behave as you would expect for a queue

with zero capacity, which is therefore always empty. The iterator

method returns an empty iterator, in which hasNext  always returns

false .

TransferQueue

The interface TransferQueue<E>  provides producers with a way of

choosing between enqueuing data synchronously and asynchronously—



useful, for example, in messaging systems that allow both synchronous and

asynchronous messages. As an extension of BlockingQueue , it

provides a system with the ability to throttle production by blocking

producers from adding indefinitely to a bounded queue. (This feature is not

actually used in the only platform implementation,

LinkedTransferQueue , which is always unbounded; so, for this

class, put  always implements asynchronous queueing.) In addition,

however, it exposes a new method transfer , which a producer can call

if it wishes to block until the enqueued element has been taken by a

consumer—a synchronous handshake like that provided by

SynchronousQueue . transfer  is provided in three versions:

It also exposes two helper methods that provide a rough metric of the

waiting consumer count: like all methods summarizing the state of a

concurrent collection, these methods will at best give a snapshot value,

which may have changed by the time the results can be processed:

void transfer(E e)        // Transfers the elemen

                          // as necessary 

boolean tryTransfer(E e); // Transfers the elemen

boolean tryTransfer(E e, long timeout, TimeUnit u

                          // Transfers the elemen

                          // the  timeout



The JDK offers one implementation of TransferQueue ,

LinkedTransferQueue . This is an unbounded FIFO queue, with

some interesting properties: it is lock-free, like

ConcurrentLinkedQueue  but with the blocking methods that that

class lacks; it supports the transfer  methods of its interface via a “dual

queue” whose nodes can represent either enqueued data or outstanding

dequeue requests; and, unusually among concurrent classes, it provides

fairness without degrading performance. In fact, it outperforms

SynchronousQueue  even in the latters “unfair” mode. Relationship to

the other classes of java.util.concurrent  is discussed in [design

retrospective].

Enqueueing and dequeueing are both O(1). The iterator is weakly

consistent.

Deques

A deque (pronounced “deck”) is a double-ended queue. Unlike a queue, in

which elements can be inserted only at the tail and inspected or removed

only at the head, a deque can accept elements for insertion and present them

boolean hasWaitingConsumer();  // returns true if

int getWaitingConsumerCount(); // returns an esti



for inspection or removal at either end. Also unlike Queue , the contract

for the Collections Framework interface Deque<E>  specifies the ordering

it will use in presenting its elements: it is a linear structure in which

elements added at the tail are yielded up in the same order at the head. Used

as a queue, then, a Deque  is always a FIFO structure; the contract does

not allow for, say, priority deques. If elements are removed from the same

end (either head or tail) at which they were added, a Deque  acts as a stack

or LIFO (Last In First Out) structure.

The fast Deque  implementation ArrayDeque  uses a circular array (see

“BlockingQueue Implementations”), and is the implementation of choice

for stacks and queues. Concurrent deques have a special role to play in

parallelization, discussed in “BlockingDeque”.

The Deque  interface extends Queue  with methods symmetric with

respect to head and tail. For clarity of naming, the Queue  methods that

implicitly refer to one end of the queue acquire a synonym that makes their

behavior explicit for Deque . For example, the methods peek  and

offer , inherited from Queue , are equivalent to peekFirst  and

offerLast . (First and last refer to the head and tail of the deque; the

Javadoc for Deque  also uses “front” and “end”.)

Collection-like Methods

void addFirst(E e)      // insert e at the head i

void addLast(E e)       // insert e at the tail i



The contracts for the methods addFirst  and addLast  are similar to

the contract for the add method of Collection , but specify in addition

where the element to be added should be placed, and that the exception to

be thrown if it cannot be added is IllegalStateException . As with

bounded queues, users of bounded deques should avoid these methods in

favor of offerFirst  and offerLast , which can report “normal”

failure by means of a returned boolean  value.

The method name push  is a synonym of addFirst , provided for the

use of Deque  as a stack. The methods removeFirstOccurrence

and removeLastOccurrence  are analogues of

Collection.remove , but specify in addition exactly which

occurrence of the element should be removed. The return value signifies

whether an element was removed as a result of the call.

Queue-like Methods

( )

void push(E e)          // insert e at the head i

boolean removeFirstOccurrence(Object o); 

                        // remove the first occur

boolean removeLastOccurrence(Object o); 

                        // remove the last occurr

Iterator<E> descendingIterator() 

                        // get an iterator, retur

                        // reverse order



The method offerLast  is a renaming of the equivalent method

offer  on the Queue  interface.

The methods that return null  for an empty deque are:

The methods peekFirst  and pollFirst  are renamings of the

equivalent methods peek  and poll  on the Queue  interface.

The methods that throw an exception for an empty deque are:

boolean offerFirst(E e) // insert e at the head i

boolean offerLast(E e)  // insert e at the tail i

E peekFirst()          // retrieve but do not rem

E peekLast()           // retrieve but do not rem

E pollFirst()          // retrieve and remove the

E pollLast()           // retrieve and remove the

E getFirst()          // retrieve but do not remo

E getLast()           // retrieve but do not remo

E removeFirst()       // retrieve and remove the 

E removeLast()        // retrieve and remove the 

E pop()               // retrieve and remove the 



The methods getFirst  and removeFirst  are renamings of the

equivalent methods element  and remove  on the Queue  interface.

The method name pop  is a synonym forremoveFirst , again

provided for stack use.

Inherited from SequencedCollection

Of the seven methods of SequencedCollection , six are in fact

promoted from Deque . The only new one—which is also the only one

providing a view of a Deque —is reversed , which is a covariant

override of the SequencedCollection  method, returning a Deque .

Deque Implementations

ArrayDeque

Along with the introduction of the interface Deque  came a very efficient

implementation, ArrayDeque , based on a circular array like that of

ArrayBlockingQueue  (see “BlockingQueue Implementations”). It

fills a gap among Queue  classes; previously, if you wanted a FIFO queue

to use in a single-threaded environment, you would have had to use the

class LinkedList  (which we cover next, but which should be avoided

as a general-purpose Queue  implementation), or else pay an unnecessary

Deque<E> reversed()   // return a reverse-ordered



overhead for thread safety with one of the concurrent classes

ArrayBlockingQueue  or LinkedBlockingQueue .

ArrayDeque  is instead the general-purpose implementation of choice,

for both deques and FIFO queues. It has the performance characteristics of

a circular array: adding or removing elements at the head or tail takes

constant time. The iterators are fail-fast.

LinkedList

Among Deque  implementations LinkedList  is an oddity; for

example, it is alone in permitting null  elements, which are discouraged

by the Queue  interface because of the common use of null  as a special

value. It has been in the Collections Framework from the start, originally as

one of the standard implementations of List  (see “ List

Implementations”), and was retrofitted with the methods of Queue  when

that was introduced, and then later those of Deque . It is based on a linked

list structure similar to those we saw in “ConcurrentSkipListSet” as the

basis for skip lists, but with an extra field in each cell, pointing to the

previous entry (see Figure 9-6). These pointers allow the list to be traversed

backwards—for example, for reverse iteration, or to remove an element

from the end of the list.



Figure 9-6. A doubly linked list

As an implementation of Deque , LinkedList  is unlikely to be very

popular. Its main advantage, that of constant-time insertion and removal, is

rivalled for queues and deques by the otherwise superior ArrayDeque .

The only likely reason for using LinkedList  as a queue or deque

implementation would be that you also need to add or remove elements

from the middle of the list. With LinkedList , even that comes at a high

price; because such elements have to be found by linear search, you can’t

escape a time complexity of O(n).

The only method exposed by LinkedList  that is not inherited from its

two interfaces, Deque  and List  is a covariant override of

reversed :

The constructors for LinkedList  are just the standard ones of

“Collection Constructors”. Its iterators are fail-fast.

LinkedList<E> reversed()   // return a reverse-or



BlockingDeque

In “BlockingQueue” we saw that BlockingQueue  adds four methods to

the Queue  interface, enqueueing or dequeueing an element either

indefinitely or until a fixed timeout has elapsed. BlockingDeque

provides two new methods for each of those four, to allow for the operation

to be applied either to the head or the tail of the deque. So, for example, to

the BlockingQueue  method

BlockingDeque  adds

Clearly put  and putLast  are synonymous, as are take  and

takeFirst , and so on; the name duplication is provided for clarity of

use.

Good load balancing algorithms will be increasingly important as multicore

and multiprocessor architectures become standard. Concurrent deques are

the basis of one of the best load balancing methods, work stealing. To

understand work stealing, imagine a load-balancing algorithm that

void put(E e)   // add e to the Queue, waiting as

void putFirst(E e)  // add e to the head of the D

void putLast(E e)   // add e to the tail of the D



distributes tasks in some way—round-robin, say—to a series of queues,

each of which has a dedicated consumer thread that repeatedly takes a task

from the head of its queue, processes it, and returns for another. Although

this scheme does provide speedup through parallelism, it has a major

drawback: we can imagine two adjacent queues, one with a backlog of long

tasks and a consumer thread struggling to keep up with them, and next to it

an empty queue with an idle consumer waiting for work. It would clearly

improve throughput if we allowed the idle thread to take a task from the

head of another queue.Work stealing improves still further on this idea;

observing that for the idle thread to steal work from the head of another

queue risks contention for the head element, it changes the queues for

deques and instructs idle threads to take a task from the tail of another

thread’s deque. This turns out to be a highly efficient mechanism, and is

becoming widely used.

Implementing BlockingDeque

The interface BlockingDeque  has a single implementation, in the JDK:

LinkedBlockingDeque . LinkedBlockingDeque  is based on a

doubly linked list structure like that of LinkedList . It can optionally be

bounded so, besides the two standard constructors, it provides a third which

can be used to specify its capacity:

LinkedBlockingDeque(int capacity)



It has similar performance characteristics to LinkedBlockingQueue

—queue insertion and removal take constant time, and operations such as

contains , which require traversal of the queue, require linear time. The

iterators are weakly consistent.

Comparing Queue Implementations

Table 9-1 shows the sequential performance, disregarding locking and CAS

overheads, for some sample operations of the Deque  and Queue

implementations we have discussed. These results should be interesting to

you in terms of understanding the behavior of your chosen implementation

but, as we mentioned at the start of the chapter, they are unlikely to be the

deciding factor. Your choice is more likely to be dictated by the functional

and concurrency requirements of your application.

In choosing a Queue , the first question to ask is whether the

implementation you choose needs to support concurrent access; if not, your

choice is straightforward. For FIFO ordering, choose ArrayDeque ; for

priority ordering, PriorityQueue .

If your application does demand thread safety, you next need to consider

ordering. If you need priority or delay ordering, the choice obviously must

be PriorityBlockingQueue  or DelayQueue , respectively. If, on

the other hand, FIFO ordering is acceptable, the third



Table 9-1. Comparative performance of different Queue and Deque implementations

offer peek poll

PriorityQ

ueue
O(log n) O(1) O(log n)

Concurren

tLinkedQu

eue

O(1) O(1) O(1)

ArrayBloc

kingQueue
O(1) O(1) O(1)

LinkedBlo

ckingQueu

e

O(1) O(1) O(1)

PriorityB

lockingQu

eue

O(log n) O(1) O(log n)

DelayQueu

e
O(log n) O(1) O(log n)



question is whether you need blocking methods, as you usually will for

producer-consumer problems (either because the consumers must handle an

empty queue by waiting, or because you want to constrain demand on them

by bounding the queue, and then producers must sometimes wait). If you

don’t need blocking methods or a bound on the queue size, choose the

efficient and wait-free ConcurrentLinkedQueue .

If you do need a blocking queue, because your application requires support

for producer-consumer cooperation, pause to think whether you really need

offer peek poll

TransferQ

ueue
O(1) O(1) O(1)

LinkedLis

t
O(1) O(1) O(1)

ArrayDequ

e
O(1) O(1) O(1)

LinkedBlo

ckingDequ

e

O(1) O(1) O(1)



to buffer data, or whether all you need is to safely hand off data between the

threads. If you can do without buffering (usually because you are confident

that there will be enough consumers to prevent data from piling up), then

SynchronousQueue  is an efficient alternative to the remaining FIFO

blocking implementations, LinkedBlockingQueue  and

ArrayBlockingQueue .

Otherwise, we are finally left with the choice between these two. If you

cannot fix a realistic upper bound for the queue size, then you must choose

LinkedBlockingQueue , as ArrayBlockingQueue  is always

bounded. For bounded use, you will choose between the two on the basis of

performance. Their performance characteristics in Table 9-1 are the same,

but these are only the formulae for sequential access; how they perform in

concurrent use is a different question. As we mentioned above,

LinkedBlockingQueue  performs better on the whole than

ArrayBlockingQueue  if more than three or four threads are being

serviced. This fits with the fact that the head and tail of a

LinkedBlockingQueue  are locked independently, allowing

simultaneous updates of both ends. On the other hand, an

ArrayBlockingQueue  does not have to allocate new objects with

each insertion. If queue performance is critical to the success of your

application, you should measure both implementations with the benchmark

that means the most to you: your application itself.



Chapter 10. Lists

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 16th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

Lists are probably the most widely used Java collections in practice. A list

is a collection which—unlike a set—can contain duplicates, and which—

unlike a queue—gives the user full visibility and control over the ordering

of its elements. The corresponding Collections Framework interface is

List<E> .

The List  interface exposes methods for positional access, for searching

for a given value, for generating views, and for creating

ListIterator s—a subtype of Iterator  with additional features

mailto:shunter@oreilly.com


that take advantage of a List ’s sequential nature. In addition, the

methods inherited from SequencedCollection  provide convenient

shorter versions of common positional access calls. Finally, static factory

methods are available to create unmodifiable List s of different lengths.

Positional Access

These methods access elements based on their numerical position in the list.

Search Methods

These methods search for a specified object in the list and return its

numerical position, or -1 if the object is not present:

void add(int index, E e)           // adds elemen

boolean addAll(int index, Collection<? extends E>

                                   // adds conten

E get(int index)                   // returns ele

E remove(int index)                // removes ele

E set(int index, E e)              // replaces el

int indexOf(Object o)             // returns inde

int lastIndexOf(Object o)         // returns inde



View-Generating Methods

These methods provide different views (see “Views”) of a List :

The method subList  works in a similar way to the subSet  operations

on SortedSet  (see “NavigableSet”), but uses the position of elements in

the list rather than their values: the returned list contains the list elements

starting at fromIndex , up to but not including toIndex . The returned

list has no separate existence; it is just a view of part of the list from which

it was obtained, and all changes in it are reflected in the original list. There

is an important difference from subSet , though; changes made to the

sublist write through to the backing list, but the reverse is true only for non-

structural changes (see Ch. 11 section on structural/non-structural

modification). If any structural changes are made to the backing list by

inserting or removing elements from it, subsequent attempts to use the

sublist will result in a ConcurrentModificationException .

List<E> subList(int fromIndex, int toIndex) 

                                   // returns a v

List<E> reversed()                 // provides a 

                                   // original co



The view returned by reversed  allows any modifications that are

permitted by the original list.

List Iteration

These methods return a ListIterator , which is an Iterator  with

extended semantics that take advantage of the list’s sequential nature:

The methods added by ListIterator  support traversing a list in

reverse order, changing list elements or adding new ones, and getting the

current position of the iterator. The current position of a ListIterator

always lies between two elements, so in a list of length n, there are n+1

valid list iterator positions, from 0 (before the first element) to n (after the

last one). A call of the first overload returns a listIterator  set at

position 0. The second overload uses the supplied value to set the initial

position of the returned listIterator .

ListIterator<E> listIterator()     // returns a L

                                   // initially p

ListIterator<E> listIterator(int indx) 

                                   // returns a L

                                   // initially p



In addition to the Iterator  methods hasNext , next , and

remove , ListIterator  exposes the following methods:

Figure 10-1. ListIterator positions

public interface ListIterator<E> extends Iterator

  void add(E e);          // inserts the specifie

  boolean hasPrevious();  // returns true if this

                          // elements in the reve

  int nextIndex();        // returns the index of

                          // returned by a subseq

  E previous();           // returns the previous

  int previousIndex();    // returns the index of

                          // returned by a subseq

  void set(E e);          // replaces the last el

                          // previous with the sp

}



Figure 10-1 shows a list of three elements. Consider an iterator at position

2, either moved there from elsewhere or created there by a call to

listIterator(2) . The effect of most of the operations of this iterator

is intuitive; add  inserts an element at the current iterator position

(between the elements at index 1 and 2), hasPrevious  and hasNext

return true , previous  and next  return the elements at indices 1

and 2 respectively, and previousIndex  and nextIndex  return

those indices themselves. At the extreme positions of the list, 0 and 3 in the

figure, previousIndex  and nextIndex  would return -1 and 3 (the

size of the list) respectively, and previous  or next , respectively,

would throw NoSuchElementException .

The operations set  and remove  work differently. Their effect depends

not on the current position of the iterator, but on its “current element”, the

one last traversed over using next  or previous: set  replaces the

current element, and remove  removes it. If there is no current element,

either because the iterator has just been created, or because the current

element has been removed, these methods will throw

IllegalStateException .

Methods Inherited from SequencedCollection

Apart from the method reversed , the methods inherited from

SequencedCollection  are convenience versions of positional

methods already present in List . Table 10-1 below shows the



correspondence between calls of SequencedCollection  and those of

the positional access methods of List .

Table 10-1. SequencedCollection  method calls, with their List  equivalents

SequencedCollection

call
List  positional access

call

addFirst(el) add(0, el)

addLast(el) add(el)

getFirst() get(0)

getLast() get(size() - 1)

removeFirst() remove(0)

removeLast() remove(size() - 1)

Factory Methods

These methods create unmodifiable List  objects (see Ch. 11 section on

unmodifiable collections). Like all factory methods they are static, so for

conciseness this modifier is again omitted from the declarations below.



Using the Methods of List

Let’s look at examples of using some of these methods in the to-do

manager. In the last chapter we considered representing the organization of

<E> List<E> of() // Returns an unmodifiable list 

<E> List<E> of(E e1) // Returns an unmodifiable l

<E> List<E> of(E e1, E e2) // Returns an unmodifi

<E> List<E> of(E e1, E e2, E e3) // Returns an un

                                         // eleme

<E> List<E> of(E e1, E e2, E e3, E e4) // Returns

                                         // eleme

<E> List<E> of(E e1, E e2, E e3, E e4, E e5) // R

                                         // five 

<E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6

                                         // conta

<E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6

                                         // list 

<E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6

                                         // unmod

<E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6

                                         // unmod

<E> List<E> of(E e1, E e2, E e3, E e4, E e5, E e6

                                         // unmod

<E> List<E> of(E... elements) // Returns an unmod

                                         // numbe



a single day’s tasks in a queue-based class with shutdown capabilities. One

useful way of enlarging the scope of the application is to have a number of

objects of this type, each one representing the tasks that are scheduled for a

day in the future. We can store references to these objects in a List ,

which (to keep things simple and to avoid getting involved with the details

of java.time ) will be indexed on the number of days in the future that

it represents. So the queue of tasks scheduled for today will be stored at

element 0 of the list, the queue scheduled for tomorrow at element 1, and so

on. Example 10-1 shows the scheduler.

Example 10-1. A list-based task scheduler

public class TaskScheduler { 

private final List<StoppableTaskQueue> schedule; 

private final int FORWARD_PLANNING_DAYS = 365; 

 

    public TaskScheduler() { 

        schedule = Stream.generate(StoppableTaskQ

                .limit(FORWARD_PLANNING_DAYS) 

                .collect(Collectors.toCollection(

    } 

 

    public Optional<PriorityTask> getTopTask() { 

        return schedule.stream() 

                .map(StoppableTaskQueue::getFirst

                .filter(Objects::nonNull) 

                .findFirst(); 



()

    } 

 

    // at midnight, create a new day's queue at t

    // remove and shut down the queue for day 0, 

    // to the new day 0 

    public void rollOver() { 

        schedule.add(new StoppableTaskQueue()); 

        StoppableTaskQueue oldDay = schedule.remo

        schedule.getFirst().addTasks(oldDay.shutD

    } 

 

    public void addTask(PriorityTask task, int da

        addTasks(Collections.singletonList(task),

    } 

 

    public void addTasks(Collection<PriorityTask>

        if (day < 0 || day >= FORWARD_PLANNING_DA

            throw new IllegalArgumentException("d

 

        // if addTasks() fails, shutdown has been

        // queue. So it must be the day 0 queue t

        // removed from the schedule. The correct

        // call addTasks() on the new day 0 queue

        while (! schedule.get(day).addTasks(tasks

    } 

}



Although the example aims primarily to show the use of List  interface

methods rather than to explore any particular implementation, we can’t set

it up without choosing one. Since a major factor in the choice will be the

concurrency requirements of the application, we need to consider them now.

They are quite straightforward: clients consuming or producing tasks only

ever read the List  representing the schedule so, once it has been

constructed, it is only ever written at the end of each day. At those points

the current day’s queue is removed from the schedule, and a new one is

added at the end (at the “planning horizon”, which we have set to a year in

the example). We don’t need to exclude clients from using the current day’s

queue before that happens, because the StoppableTaskQueue  design

of Example14.1 ensures that they will be able to complete in an orderly way

once the queue is stopped. So the only exclusion required is to ensure that

clients don’t try to read the schedule itself while the rollover procedure is

changing its values.

If you recall the discussion of CopyOnWriteArrayList  in “Java 5:

Concurrent Collections”, you’ll see that it fills these requirements very

nicely. It optimizes read access, in line with one of our requirements. And

in the event of a write operation, it synchronizes just long enough to create

a new copy of its internal backing array, thus filling our other requirement

of preventing interference between read and write operations.

With the implementation chosen, we can understand the constructor of

Example15.1; writing to the list is expensive, so it is sensible to use a



conversion constructor to set it up with a year’s worth of task queues in one

operation.

The getTask  method is straightforward; we simply iterate over the task

queues, starting with today’s queue, looking for a scheduled task. If the

method finds no outstanding tasks, it returns null —and if finding a task-

free day was noteworthy, how should we celebrate a task-free year?

At midnight each day, the system will call the method rollOver , which

implements the sad ritual of shutting down the old day’s task queue and

transferring the remaining tasks in it to the new day. The sequence of events

here is important; rollOver  first removes the queue from the list, at

which time producers and consumers may still be about to insert or remove

elements. It then calls StoppableTaskQueue.shutDown  which, as

we saw in Example 9-1, returns the remaining tasks in the queue and

guarantees that no more will be added. Depending on how far they have

progressed, calls of addTask  will either complete or will return false ,

indicating that they failed because the queue was shut down.

This motivates the logic of addTask : the only situation in which the

addTask  method of StoppableTaskQueue  can return false  is

that in which the queue being called is already stopped. Since the only

queue that is stopped is the day 0 queue, a return value of false  from

addTask  must result from a producer thread getting a reference to this

queue just before a midnight rollover. In that case, the current value of



element 0 of the list is by now the new day 0, and it is safe to try again. If

the second attempt fails, the thread has been suspended for 24 hours!

Notice that the rollOver  method is quite expensive; it writes to the

schedule twice, and since the schedule is represented by a

CopyOnWriteArrayList  (see “ CopyOnWriteArrayList ”),

each write causes the entire backing array to be copied. The argument in

favour of this implementation choice is that rollOver  is very rarely

invoked compared to the number of calls made on getTask , which

iterates over the schedule. The alternative to CopyOnWriteArrayList

would be a BlockingQueue  implementation, but the improvement that

would provide in the rarely-used rollOver  method would come at the

cost of slowing down the frequently-used getTask  method, since queue

iterators are not intended to be used in performance-critical situations.

Using Range-View and Iterator Methods   Of the four List  method

groups above, Example 10-1 makes use of the methods of one group,

positional access, in several places. To see how range-view and iterator

methods could also be useful, consider how the TaskScheduler  could

export its schedule, or a part of it, for a client to modify. You would want

the client to be able to view this subschedule and perhaps to insert or

remove tasks, but you would definitely want to forbid the insertion or

removal of elements of the list itself, since these represent the sequence of

days for which tasks are being scheduled. The standard way to achieve this

would be by means of an unmodifiable list, as provided by the



Collections  class (see “Unmodifiable Collections”). An alternative in

this case would be to return a list iterator, as the snapshot iterators for copy-

on-write collections do not support modification of the backing collection.

So we could define a method to provide clients with a “planning window”:

This view will be fine for today, but we have to remember to discard it at

midnight, when the structural changes of removing and adding entries will

invalidate it.

List  Implementations

There are three concrete implementations of List  in the Collections

Framework (see Figure 10-2), differing in how fast they perform the various

operations defined by the interface and how they behave in the face of

concurrent modification; unlike Set  and Queue , however, List  has

no subinterfaces to specify differences in functional behavior. In this and

the following section we look at each implementation in turn and provide a

performance comparison.

ArrayList

listIterator<StoppableTaskQueue> getSubSchedule(i

  return schedule.subList(startDay, endDay).listI

}



Arrays are provided as part of the Java language and have a very convenient

syntax, but their key disadvantage—that, once created, they cannot be

resized—makes them increasingly less popular than List

implementations, which (if resizable at all) are indefinitely extensible. The

most commonly used implementation of List  is, in fact, ArrayList

—that is, a List  backed by an array.

The standard implementation of ArrayList  stores the List  elements

in contiguous array locations, with the first element always stored at index 0

in the array. It requires an array at least large enough (with sufficient

capacity) to contain the elements, together with a way of keeping track of

the number of “occupied” locations (the size of the List ). If an

ArrayList  has grown to the point where its size is equal to its capacity,

attempting to add another element will require it to replace the backing

array with a larger one capable of holding the old contents and the new

element, and with a margin for further expansion (the standard

implementation actually uses a new array that is double the length of the old

one). As we explained in [Link to Come], this leads to an amortized cost of

O(1).



Figure 10-2. Implementations of the List interface

The performance of ArrayList  reflects array performance for “random-

access” operations: set  and get  take constant time. The downside of an

array implementation is in inserting or removing elements at arbitrary

positions, because that may require adjusting the position of other elements.

(We have already met this problem with the remove  method of the

iterators of array-based queues—for example, ArrayBlockingQueue

(see “BlockingQueue Implementations”). But the performance of positional

add and remove methods are much more important for lists than

iterator.remove  is for queues.)

For example, Figure 10-3(a) shows a new ArrayList  after three

elements have been added by means of the following statements:

List<Character>; charList = new ArrayList<Charact

Collections.addAll(charList,  'a', 'b', 'c');



If we now want to remove the element at index 1 of an array, the

implementation must preserve the order of the remaining elements and

ensure that the occupied region of the array is still to start at index 0. So the

element at index 2 must be moved to index 1, that at index 3 to index 2, and

so on. Figure 10-3(b) shows our sample ArrayList  after this operation

has been carried out. Since every element must be moved in turn, the time

complexity of this operation is proportional to the size of the list (even

though, because this operation can usually be implemented in hardware, the

constant factor is low).

Figure 10-3. Removing an element from an ArrayList

Even so, the alert reader, recalling the discussion of the circular arrays used

to implement ArrayBlockingQueue  and ArrayDeque  (see “Deque

Implementations”) may wonder why a circular array was not chosen for the

implementation of ArrayList , too. It is true that the add  and



remove  methods of a circular array show much better performance only

when they are called with an index argument of 0, but this is such a

common case and the overhead of using a circular array is so small, that the

question remains.

Indeed, an outline implementation of a circular array list was presented by

Heinz Kabutz in The Java Specialists’ Newsletter

(http://www.javaspecialists.co.za/archive/Issue027.html). In principle it is

still possible that ArrayList  may be reimplemented in this way,

possibly leading to real performance gains in many existing Java

applications. A possible alternative is that the circular ArrayDeque  may

be retrofitted to implement the methods of List . In the meantime, if your

application is using a List  in which the performance of element insertion

and removal from the beginning of a list is more important than that of

randomaccess operations, consider writing to the Deque  interface and

taking advantage of its very efficient ArrayDeque  implementation.

As we mentioned in the discussion of ArrayBlockingQueue  (“Queue

Implementations”), variable-size array-backed collection classes can have

one configuration parameter: the initial length of the array. So besides the

standard Collections Framework constructors, ArrayList  has one that

allows you to choose the value of the initial capacity to be large enough to

accommodate the elements of the collection without frequent create-copy

operations. The initial capacity of an ArrayList  created by the default

http://www.javaspecialists.co.za/archive/Issue027.html


constructor is 10, and that of one initialized with the elements of another

collection is 110% of the size of that collection.

The iterators of ArrayList  are fail-fast.

LinkedList

We discussed LinkedList  as a Deque  implementation in “Deque

Implementations”. You will avoid it as a List  implementation if your

application makes much use of random access; since the list must iterate

internally to reach the required position, positional add  and remove

have linear time complexity, on average. Where LinkedList  does have

a performance advantage over ArrayList  is in adding and removing

elements anywhere other than at the end of the list; for LinkedList  this

takes constant time, against the linear time required for noncircular array

implementations.

CopyOnWriteArrayList

In “Set Implementations” we met CopyOnWriteArraySet , a set

implementation designed to provide thread safety together with very fast

read access. CopyOnWriteArrayList  is a List  implementation

with the same design aims. This combination of thread safety with fast read

access is useful in some concurrent programs, especially when a collection

of observer objects needs to receive frequent event notifications. The cost is



that the array which backs the collection has to be treated as immutable, so

a new copy is created whenever any changes are made to the collection.

This cost may not be too high to pay if changes in the set of observers occur

only rarely.

The class CopyOnWriteArraySet  in fact delegates all of its

operations to an instance of CopyOnWriteArrayList , taking

advantage of the atomic operations addIfAbsent  and

addAllAbsent  provided by the latter to enable the Set  methods

add  and addAll  to avoid introducing duplicates to the set. In addition

to the two standard constructors (see “Collection Constructors”),

CopyOnWriteArrayList  has an extra one that allows it to be created

using the elements of a supplied array as its initial contents. Its iterators are

snapshot iterators, reflecting the state of the list at the time of their creation.

Comparing List  Implementations

Table 10-2 gives the comparative performance for some sample operations

on List  classes. Even though the choice here is much narrower than with

queues or even sets, the same process of elimination can be used. As with

queues, the first question to ask is whether your application requires thread

safety. If so, you should use CopyOnWriteArrayList , if you can—

that is, if writes to the list will be relatively infrequent. If not, you will have



to use a synchronized wrapper (see “Synchronized Collections”) around

ArrayList  or LinkedList .

For most list applications the choice is between ArrayList  and

LinkedList , synchronized or not. Reading Table 10-2, you might think

that there will be situations—if, for example, your application needs to

frequently insert and remove elements near the start of the list—in which

LinkedList  is the better choice. In practice, however, this is rarely the

case: we explore the reasons for this in “Avoid LinkedList”. An alternative

better worth considering for single-threaded code—if the insertions and

removals are actually at the start of the list—is to write to the Deque

interface, taking advantage of its very efficient ArrayDeque

implementation. For relatively infrequent random access, use an iterator, or

copy the ArrayDeque  elements into an array using toArray . As

always, if in doubt, measure your appplication’s performance with each

implementation.



It is possible that, in a future release, ArrayDeque  will be retrofitted to

implement the List  interface; if that happens, it will become the

implementation of choice for both Queue  and List  in single-threaded

environments.

Table 10-2. Comparative performance of different list implementations

get add contains

ArrayList O(1) O(1) O(n)

LinkedLis

t
O(n) O(1) O(n)

CopyOnWri

teArrayLi

st

O(1) O(n) O(n)



Chapter 11. Maps

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 17th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

The Map  interface is the last of the major Collections Framework

interfaces, and the only one that does not inherit from Collection . A

Map  stores key-to-value associations, or entries, in which the keys are

unique. The importance of this interface lies in the fact that its

implementations provide very fast—ideally, constant-time—operations to

look up the value corresponding to a given key.

The operations of Map  can be divided according to the two ways in which

a map can be seen: as a set of entries or as a lookup mechanisms. From the

mailto:shunter@oreilly.com


first viewpoint, the first two sets of operations to consider correspond

broadly to the operations of Iterable —performing an action on each

key-value pair in turn, and Collection —adding or modifying entries,

removing them, or querying the contents of the collection. Later we’ll see

two other important operation groups: compound operations—seeing maps

very much from the second viewpoint—and factory methods.

Where Map  operations accept lambdas as parameters, the types of the

parameters to these lambdas are often bounded, above or below, by the key

or value type. Similarly, Map.Entry  is usually parameterized on

bounded types. In this section, however, the listings provide the precise

types instead, in the interests of brevity.

Iterable –like Operations

Collection –like Operations

These are broadly parallel to the first three operation groups of

Collection : adding or modifying entries, removing entries, and

querying map contents

void forEach(Consumer<K,V> action) 

                                // perform action

                                // iteration orde



Adding or Modifying Associations:

Removing Associations:

Querying the Contents of a Map:

V put(K key, V value)            // add or replac

                                 // returning the

                                 // key was prese

void putAll(Map<K,V> m)          // copy all the 

void replaceAll(BiFunction<K,V,V> remapper) 

                                 // replace each 

void clear()                    // remove all ass

V remove(Object key)            // remove the ass

                                // given key; ret

                                // was associated

V get(Object k)                 // return the val

                                // null if k is n

boolean containsKey(Object k)   // return true if

boolean containsValue(Object v) // return true if

int size()                      // return the num

boolean isEmpty()               // return true if



Providing Collection Views of the Keys, Values, or Associations:

The view collections returned by these methods are backed by the map, so

they reflect changes to the map. The connection in the opposite direction is

more limited: you can remove elements from the view collections, but

attempting to add them will result in an

UnsupportedOperationException . Removing a key from the

keyset removes the single corresponding key-value association; removing a

value, on the other hand, removes only one of the associations mapping to

it; the value may still be present as part of an association with a different

key. An iterator over the view will become undefined if the backing map is

concurrently modified.

Map.Entry

The members of the set returned by entrySet  implement the interface

Map.Entry , representing a key-value association. This interface exposes

 

Set<Map.Entry<K,V>> entrySet() // return a Set vi

Set<K> keySet()                 // return a Set v

Collection<V> values()          // return a Colle

 



factory methods for creating Comparator s by key and value, and

instance methods for accessing the components of the entry. An optional

setValue  method can be used to change the value in an entry if the

backing map is modifiable and, if so, will write changes through. According

to the Javadoc, a Map.Entry  object obtained by iterating over a set

returned by entrySet  retains its connection only for the duration of the

iteration, but in fact this is only a guaranteed minimum: implementation

behaviors vary, some preserving the connection indefinitely. However,

modern idioms for map processing depend less than before on durable

Map.Entry  objects: where in the past you might have used a

Map.Entry  set iterator to remove some entries, you would now be more

likely to call entrySet.removeIf . Alternatively, and also for use-

cases in which you want to change association values, the instance methods

of Map , listed in this section, provide a variety of ways to remove

mappings or alter their values.

You can create Map.Entry  objects using the Map.entry  factory

method; this is most commonly useful for creating unmodifiable Map s

(see ???).

Compound Operations

Because Maps  are very often used in multi-threaded environments, the

interface exposes a variety of compound actions. These fuse a conditional

test—whether a key is absent or present, possibly with a specific value—



either with a supplied value or with an action, represented by a lambda, to

compute the value lazily. They are essential for use with concurrent

implementations to avoid unsafe test-then-act operation sequences as seen

in “Java 2: Synchronized Collections and Fail-Fast Iterators”, but also

extremely useful as convenience methods for non-thread-safe maps.

If a map has values only for certain keys, this method allows you to use a

default value for all other keys without having to store that value in the map

against them all.

This method is useful if you want to write something the first time you see

it but not thereafter. For example, to record the timestamp corresponding to

the first occurrence of a particular kind of event, you could write:

V getOrDefault(Object k, V default) 

                                 // return the va

                                 // if this map c

V putIfAbsent(K key, V value)    // create a key-

                                 // absent or map

                                 // return null, 

Map<EventKind,Long> firstOccurrenceMap = ... ; 

... 



In this example, the overhead of boxing the timestamp into a Long  will be

incurred for every event, not only the first. You could avoid this

performance cost using another compound method,

computeIfAbsent , which computes the new value lazily:

This is the declaration of computeIfAbsent :

The Javadoc for computeIfAbsent  offers an example of its most

common use, creating a map from a key to a list (or other accumulation) of

multiple values:

firstOccurrenceMap.putIfAbsent(event.getKind(), S

firstOccurrenceMap.computeIfAbsent(event.getKind(

V computeIfAbsent(K k, Function<K,V> mapper) 

                                 // apply the map

                                 // result to cre

                                 // either k is c

                                 // value or the 

                                 // now associate

                                 // present in th

map.computeIfAbsent(key, k -> new ArrayList<V>())



In a different scenario, you might want to accumulate the value by means of

an operator, like addition or concatentation, that combines the old and

newly-supplied values, to create a new one to store in the map. The most

useful method in that scenario is merge:

The Javadoc for merge  gives this example, to either initialise an entry

value to a given string msg , or to append a new value to an existing one:

 map.merge(key, msg, String::concat);

The next method, compute , is similar to merge , but with the difference

that instead of an initial value it allows the contents of the key to be used in

a lazy computation of the new value:

V merge(K k, V newValue, BiFunction<V,V,V> remapp

                                 // if k is not p

                                 // with newValue

                                 // value and new

                                 // non-null, oth

V compute(K k, BiFunction<K,V,V> remapper) 

                                   // use the res

                                   // existing va

// dif



For example, suppose we want to map each word in a text to the total

character count that all its occurrences contribute to the text length:

The last member of the compute*  family is computeIfPresent :

In the same way that computeIfAbsent  is most useful where it may be

necessary to add a new key, computeIfPresent  can be used to

remove an existing one. In an earlier example, we saw how to use

putIfAbsent  to produce a map from each kind of event to the

timestamp of its first occurrence. Now suppose that we later want to process

a different phase of the event stream so that the first event—and only the

                                   // or modify a

                                   // null, remov

                                   // or null if 

map.compute(word, (s,i) -> s.length() + (i == nul

V computeIfPresent(K k, BiFunction<K,V,V> remappe

                                   // if k is cur

                                   // computed by

                                   // value, and 

                                   // remove the 



first—of each kind in this later phase triggers the writing of a log entry with

the previously recorded timestamp:

Returning null  from the lambda ensures that the key will be removed

from the map, so that the log message can only be triggered once for each

kind of event.

Commentary and examples to be supplied for last three methods:

Factory Methods

firstOccurrenceMap.computeIfPresent(event.getKind

    log.info("first occurrence of event " + kind 

    return null; 

});

V replace(K k, V newValue)         // replace exi

                                   // map. Return

boolean replace(K k, V oldValue, V newValue) 

                                   // replace exi

                                   // mapped to o

boolean remove(Object key, Object value) 

                                   // remove the 

                                   // this value,



These methods create unmodifiable Map  objects (see Ch. 11), which we

are calling UnmodifiableMap<K,V>  in “UnmodifiableMap”, where

the factory methods are also discussed.

Using the Methods of Map

One problem with basing the to-do manager on priority queues, as we have

done in the last two chapters, is that priority queues are unable to preserve

the order in which mappings are added to them (unless that can be

incorporated in the priority ordering, for example as a timestamp or

sequence number). To avoid this, we could use as an alternative model a

series of FIFO queues, each one assigned to a single priority. A Map

would be suitable for holding the association between priorities and task

queues; EnumMap  in particular is a highly efficient Map  implementation

specialized for use with keys which are members of an enum .

This model will rely on a Queue  implementation that maintains FIFO

ordering. To focus on the use of the Map  methods, let’s assume a single-

threaded client and use a series of ArrayDeques  as the implementation:

var taskMap = new EnumMap<Priority,Queue<Task>>(P

for (Priority p : Priority.values()) { 

  taskMap.put(p, new ArrayDeque<Task>()); 

} 

// populate the lists, for example: 

t kM t(P i it MEDIUM) dd( ik Ph )



Now, to get to one of the task queues—say, the one with the highest-priority

tasks—we can write:

Polling this queue will now give us the high priority to-dos, in the order in

which they were entered into the system.

To see the use of some other methods of Map , let’s extend the example a

little to allow for the possibility that some of these tasks might actually earn

us some money by being billable. One way of representing this would be by

defining a class Client :

class Client {...} 

Client acme = new Client("Acme Corp.",...);

and creating a mapping from tasks to clients:

taskMap.get(Priority.MEDIUM).add(mikePhone); 

taskMap.get(Priority.HIGH).add(databaseCode);

Queue<Task> highPriorityTaskList = taskMap.get(Pr

Map<Task,Client> billingMap = new HashMap<Task,Cl

billingMap.put(interfaceCode, acme);



Only billable tasks will appear in the domain of billingMap . Now, as

part of the code for processing a task t , we can write:

Task t = ... 

Client client = billingMap.get(t); 

if (client != null) { 

  client.bill(t); 

}

When we have finally finished all the work we were contracted to do by our

client Acme Corp., we have a couple of options for removing the map

entries that associate tasks with Acme:

The values  view of billingMap  can contain duplicate clients, if

there are multiple tasks associated with the same client. If we want to find

the set of clients that need to be billed, we can copy and deduplicate the

clients from the values  view using a Set  constructor:

billingMap.values().removeAll(List.of(acme)); 

clients.removeIf(client -> client.equals(acme));

Set<Client> billedClients = new HashSet<>(billing



Extending the example further, suppose you have created a set of tasks that

can only be accomplished when you’re on-site at the client:

Set<Task> onsiteTasks = ... ;

Now you want to determine which clients have on-site, billable tasks, so

that you can schedule visits to them. You could of course build the set of

on-site clients by iterating the entry set obtained from billingMap ,

including the client extracted from each entry if the corresponding task was

contained in onsiteTasks . However, it’s more concise, and a more

modern idiom, to copy billingMap  then use a destructive bulk

operation, retainAll , on its key set, then deduplicating the clients as

above:

Map<Task,Client> onsiteMap = new HashMap<>(billin

onsiteMap.keySet().retainAll(onsiteTasks); 

Set<Client> clientsToVisit = new HashSet<>(onsite



Streaming the entry set is also a common idiom. For example, you could

create a map associating each client with the list of their onsite tasks:

Map  Implementations

The implementations, nine in all, that the Collections Framework provides

for Map  are shown in Figure 11-1. We shall discuss HashMap ,

LinkedHashMap , WeakHashMap , IdentityHashMap ,

EnumMap , and UnmodifiableMap  here; the interfaces

NavigableMap , ConcurrentMap , and

ConcurrentNavigableMap  are discussed, along with their

implementations, in the sections following this one.

For constructors, the general rule for Map  implementations is like that for

Collection  implementations (see “Collection Constructors”). Every

implementation excluding EnumMap  has at least two constructors; taking

HashMap  as an example, they are:

Map<Client,List<Task>> tasksByClient = 

    billingMap.entrySet().stream() 

        .filter(entry -> onsiteTasks.contains(ent

        .collect(Collectors.groupingBy(Map.Entry



The first of these creates an empty map, and the second a map that will

contain the key-value mappings contained in the supplied map m . The keys

and values of map m  must have types that are the same as (or are subtypes

of) the keys and values, respectively, of the map being created. Using this

second constructor has the same effect as creating an empty map with the

default constructor, and then adding the contents of map m  using

putAll . In addition to these two constructors, HashMap ,

LinkedHashMap , and WeakHashMap  have other constructors for

configuration purposes, but these have been replaced in practice by factory

methods, for the reasons described in ???).

public HashMap() 

public HashMap(Map<? extends K,? extends V> m)



Figure 11-1. The structure of Map implementations in the Collections Framework

HashMap

In discussing HashSet  in “HashSet”, we mentioned that it delegates all

its operations to a private instance of HashMap . Figure 11-2(a) is similar



to Figure 8-1, but without the simplification that removed the value

elements from the map (all elements in a HashSet  are stored as keys

with the same constant value). The discussion in “Set Implementations” of

hash tables and their performance applies equally to HashMap . In

particular, HashMap  provides constant-time performance for put  and

get . Although in principle constant-time performance is only attainable

with no collisions, it can be closely approached by the use of rehashing to

control the load and thereby to minimize the number of collisions.

Iteration over a collection of keys or values requires time proportional to

the capacity of the map plus the number of key-value mappings that it

contains. The iterators are fail-fast.

The factory method to use when you can predict the maximum number of

entries is newHashMap :

static <K,V>> HashMap<K,V> newHashMap(int numElem



Figure 11-2. HashMap and WeakHashMap

WeakHashMap

Most Map s keep ordinary (“strong”) references to all the objects they

contain. That means that even when a key has become unreachable by any

means other than through the map itself, its mapping cannot be garbage

collected. In the example at the beginning of this chapter, that is the

situation of task–client mappings: they reference both task and client

objects, both of which occupy memory, so preserving them unnecessarily

has the potential to degrade garbage collection performance and create

memory leaks. The idea behind WeakHashMap  is to avoid this situation

by allowing a mapping and its referenced objects to be reclaimed once the

key is no longer reachable.



Internally WeakHashMap  holds references to its key objects through

references of the class java.lang.ref.WeakReference . A

WeakReference  introduces an extra level of indirection in reaching an

object (see Figure 11-2(b)). For example, to make a weak reference to the

GUI coding task you would write:

And at a later time you would recover a strong reference to it using the

get  method of WeakReference :

CodingTask recoveredRef = wref.get();

If there are no strong references to the CodingTask  object, the existence

of the weak reference will not by itself prevent the garbage collector from

reclaiming the object. So the recovered reference value recoveredRef

may, or may not, be null . (A null  value may not always indicate that

garbage collection has occurred: for example, a map might contain a key

with the value null . For this reason, when you create a

WeakReference , you can supply a queue on to which the garbage

collector can add that weak reference when it has reclaimed its referent.

WeakHashMap  makes use of this mechanism.)

WeakReference<CodingTask> wref = new WeakReferenc



To see how WeakHashMap  works, think of a tracing garbage collector

that works by determining which objects are reachable, and reclaiming all

others. The starting points for a reachability search include the static

variables of currently loaded classes and the local variables currently in

scope. Only strong references are followed to determine reachability, so the

keys of a WeakHashMap  will be available to be reclaimed if they are not

reachable by any other route. Note that a key cannot be reclaimed if it is

strongly referenced from the corresponding value (including from the

values they correspond to). Before most operations on a WeakHashMap

are executed, the map examines its reference queue and, for each key that

has been reclaimed it removes the corresponding entry.

What is a WeakHashMap  good for? Imagine you have a program that

allocates some transient system resource—a buffer, for example—on

request from a client. Besides passing a reference to the resource back to

the client, your program might also need to store information about it

locally—for example, associating the buffer with the client that requested it.

That could be implemented by means of a map from resource to client

objects. But now, even after the client has disposed of the resource, the map

will still hold a reference that will prevent the resource object from being

garbage collected—if, that is, the reference is strong. Memory will

gradually be used up by resources which are no longer in use. But if the

reference is weak, held by a WeakHashMap , the garbage collector will be

able to reclaim the object once it is no longer strongly referenced, and the

memory leak is prevented.



A more general use is in those applications—for example, caches—where

you don’t mind information disappearing if memory is low.

WeakHashMap  isn’t perfect for this purpose; one of its drawbacks is that

it weakly references the map’s keys rather than its values, which usually

occupy much more memory. So even after the garbage collector has

reclaimed a key, the real benefit in terms of available memory will not be

experienced until the map has removed the stale entry. A second drawback

is that weak references are too weak; the garbage collector is liable to

reclaim a weakly reachable object at any time, and the programmer cannot

influence this in any way. (A sister class of WeakReference ,

java.lang.ref.SoftReference , is treated differently: the garbage

collector postpones reclaiming these until it is under severe memory

pressure. Heinz Kabutz has written a SoftReference -based map that

will work better as a cache; see

http://www.javaspecialists.co.za/archive/Issue098.html.)

WeakHashMap  performs similarly to HashMap , though more slowly

because of the overheads of the extra level of indirection for keys. The cost

of clearing out unwanted key-value associations before each operation is

proportional to the number of associations that need to be removed. The

iterators over collections of keys and values returned by WeakHashMap

are fail-fast.

The factory method to use when you can predict the maximum number of

entries is newWeakHashMap :

http://www.javaspecialists.co.za/archive/Issue098.html


IdentityHashMap

The distinguishing characteristic of IdentityHashMap  is discussed in

Chapter 8: for the equivalence relation on its keys, it uses the identity

relation. In other words, every physically distinct object is a distinct key.

An IdentityHashMap  differs from an ordinary HashMap  in that two

keys are considered equal only if they are physically the same object:

identity, rather than equals , is used for key comparison. That sets the

contract for IdentityHashMap  at odds with the contract for Map , the

interface it implements, which specifies that equality should be used for key

comparison. The problem here is exactly analogous to the one we

encountered for Set : the Javadoc for Map  assumes that the equivalence

relation for maps is always defined by the equals  method, whereas in

fact IdentityHashMap  uses a different relation, as do all

implementations of NavigableMap , as we shall see (“NavigableMap”).

The main purpose of IdentityHashMap  is to support operations in

which a graph has to be traversed and information stored about each node.

Serialization is one such operation. The algorithm used for traversing the

graph must be able to check, for each node it encounters, whether that node

has already been seen; otherwise, graph cycles could be followed

static <K,V>> WeakHashMap<K,V> newWeakHashMap(int



indefinitely. For cyclic graphs, we must use identity rather than equality to

check whether nodes are the same. Calculating equality between two graph

node objects requires calculating the equality of their fields, which in turn

means computing all their successors—and we are back to the original

problem. An IdentityHashMap , by contrast, will report a node as

being present only if that same node has previously been put into the map.

Figure 11-3. Resolving collisions by linear probing

The standard implementation of IdentityHashMap  handles collisions

differently than the chaining method shown in Figure 8-1 and used by all

the other variants of HashSet  and HashMap . This implementation uses

a technique called linear probing, in which the key and value references are

stored directly in adjacent locations in the table itself rather than in cells

referenced from it. With linear probing, collisions are handled by simply

stepping along the table until the first free pair of locations is found.



Figure 11-3 shows three stages in filling an IdentityHashMap  with a

capacity of 8. In (a) we are storing a key-value pair whose key hashes to 0,

and in (b) a pair whose key hashes to 4. The third key, added in (c), also

hashes to 4, so the algorithm steps along the table until it finds an unused

location. In this case, the first one it tries, with index 6, is free and can be

used. Deletions are trickier than with chaining; if key2  and value2

were removed from the table in Figure 8-1, key3  and value3  would

have to be moved along to take their place.

Out of all the Collections Framework hash implementations, why does

IdentityHashMap  alone use linear probing when all the others use

chaining? The motivation for using probing is that it is somewhat faster

than following a linked list, but that is only true when a reference to the

value can be placed directly in the array, as in Figure 11-3. That isn’t

practical for all other hash-based collections, because they store the hash

code as well as the value. This is for reasons of efficiency: a get

operation must check whether it has found the right key, and since equality

is an expensive operation, it makes sense to check first whether it even has

the right hash code. Of course, this reasoning doesn’t apply to

IdentityHashMap , which checks object identity rather than object

equality.

There are three constructors for IdentityHashMap :

public IdentityHashMap() 

public IdentityHashMap(Map<? extends K ? extends



The first two are the standard constructors found in every general-purpose

Map  implementation. The third takes the place of the two constructors that

in other HashMaps  allow the user to control the initial capacity of the

table and the load factor at which it will be rehashed.

IdentityHashMap  doesn’t allow this, fixing it instead (at .67 in the

standard implementation) in order to protect the user from the consequences

of setting the load factor inappropriately: whereas the cost of finding a key

in a table using chaining is proportional to the load factor l, in a table using

linear probing it is proportional to 1/(1–l). So avoiding high load factors is

too important to be left to the programmer! This decision is in line with the

policy, mentioned earlier, of no longer providing configuration parameters

when new classes are introduced into the Framework.

EnumMap

Implementing a mapping from an enumerated type is straightforward and

very efficient, for reasons similar to those described for EnumSet  (see

“EnumSet”); in an array implementation, the ordinal value of each

enumerated type constant can serve as the index of the corresponding value.

The basic operations of get  and put  can be implemented as array

accesses, in constant time. An iterator over the key set takes time

public IdentityHashMap(Map<? extends K,? extends 

public IdentityHashMap(int expectedMaxSize)



proportional to the number of constants in the enumerated type and returns

the keys in their natural order (the order in which the enum  constants are

declared). Iterators over the collection views of this class are weakly

consistent.

EnumMap  has three public constructors:

An EnumMap  contains a reified key type, which is used at run time for

checking the validity of new entries being added to the map. This type is

supplied by the three constructors in different ways. In the first, it is

supplied as a class token; in the second, it is copied from the specified

EnumMap . In the third, there are two possibilities: either the specified

Map  is actually an EnumMap , in which case it behaves like the second

constructor, or the class of the first key of the specified Map  is used

(which is why the supplied Map  may not be empty).

UnmodifiableMap

EnumMap(Class<K> keyType)          // create an e

EnumMap(EnumMap<K, ? extends V> m) // create an e

                                   // key type an

EnumMap(Map<K, ? extends V> m)     // create an e

                                   // of the supp

                                   // is an EnumM

                                   // one associa



The family of implementations that we’re calling

UnmodifiableMap<K,V>  is the last of the unmodifiable collections

that we will meet in this book. They share many characteristics with their

sister collections, UnmodifiableSet  and UnmodifiableList :

keys and values cannot be added, removed or updated, null values are

disallowed, as with UnmodifiableSet  duplicate values are rejected at

creation time, and they are value-based.

The factory methods closely follow those for UnmodifiableSet : the

of  method has eleven overloads for creating unmodifiable maps

containing zero to ten mappings:

<K,V> Map<K,V> of()                   // Returns 

<K,V> Map<K,V> of(K k1, V v1)         // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2) 

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                      // Returns 



And two further methods support the creation of unmodifiable sets from

any map, or from an array or varargs-supplied list of mappings:

Like the other unmodifiable collections, unmodifiable maps are backed by

fixed-length arrays, in efficiency terms trading the advantage of reduced

memory, faster iteration, and better spatial locality, for the disadvantage of

linear-time lookup. Like UnmodifiableSet , and for the same reason,

the order of iteration over the entry or key set is randomly determined for

each virtual machine instance.

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                                 

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                                 

                                      // Returns 

<K,V> Map<K,V> of(K k1, V v1, K k2, V v2, K k3, V

                                                 

                                      // Returns 

<K,V> Map<K,V> ofEntries(Map.Entry<K,V>... entrie

                                      // Returns 

                                      // values e

<K,V> Map<K,V> copyOf(Map<K,V> map)   // Returns 

                                      // the give



SequencedMap

Figure 11-4. SequencedMap and Related Types

A SequencedMap  (see Figure 11-4) is a Map  whose keys and entries

form SequencedSet  s. This interface exposes methods to add or inspect

the first or last key or entry of a map, and to remove the first or last entry.



Four other methods provide different views of the map: reversed ,

which returns a SequencedMap , SequencedKeySet  and

SequencedEntrySet  which return SequencedSet s, and

SequencedValues , which returns a SequencedCollection ,

preserving the ordering of the entries in the map.

LinkedHashMap

Like LinkedHashSet  (“LinkedHashSet”), the class

LinkedHashMap  refines the contract of its parent class, HashMap , by

guaranteeing the order in which iterators return its elements. Like

LinkedHashSet , it implements the sequenced subinterface

( SequencedMap ) of its main interface. Unlike LinkedHashSet ,

however, LinkedHashMap  offers a choice of iteration orders; elements

can be returned either in the order in which they were inserted in the map—

the default—or in the order in which they were accessed (from least-

recently to most-recently accessed). An access-ordered

LinkedHashMap  is created by supplying an argument of true  for the

last parameter of the constructor:

public LinkedHashMap(int initialCapacity, 

                     float loadFactor, 

                     boolean accessOrder)



Supplying false  will give an insertion-ordered map. The other

constructors, which are just like those of HashMap , also produce

insertion-ordered maps. As with LinkedHashSet , iteration over a

LinkedHashMap  takes time proportional only to the number of

elements in the map, not its capacity.

Access-ordered maps are especially useful for constructing ‘least recently

used’ (LRU) caches. A cache is an area of memory that stores frequently

accessed data for fast access. In designing a cache, the key issue is the

choice of algorithm that will be used to decide what data to remove in order

to conserve memory. When an item from a cached data set needs to be

found, the cache will be searched first. Typically, if the item is not found in

the cache, it will be retrieved from the main store and added to the cache.

But the cache cannot be allowed to continue growing indefinitely, so a

strategy must be chosen for removing the least useful item from the cache

when a new one is added. If the strategy chosen is LRU, the entry removed

will be the one least recently used. This simple strategy is suitable for

situations in which access of an element increases the probability of further

access in the near future of the same element. Its simplicity and speed have

made it the most popular caching strategy. LinkedHashMap  exposes a

method specifically designed to make it easy to use as an LRU cache:

protected boolean removeEldestEntry(Map.Entry<K,V



This method is called each time entries are added, by put  or putAll .

The implementation in LinkedHashMap  simply returns false —an

indication to the calling method that no action is needed. But you can

subclass LinkedHashMap  and override removeEldestEntry  to

return true  under specific circumstances, in which case the calling

method will remove the first entry in the map—the one least recently

accessed (and if some entries have never been accessed, it is the one

amongst these which was least recently added). The Javadoc gives the

example of a map that should not grow past a given size:

Notice that in an insertion-ordered LinkedHashMap , the eldest entry

will be the one that was least recently added to the map, so overriding

removeEldestEntry  as shown above will implement a FIFO strategy.

(FIFO caching has often been used in preference to LRU because it is much

class BoundedSizeMap<K,V> extends LinkedHashMap<K

    private final int maxEntries; 

    public BoundedSizeMap1(int maxEntries) { 

        super(16, 0.75f, true); 

        this.maxEntries = maxEntries; 

    } 

    protected boolean removeEldestEntry(Map.Entry

        return size() > maxEntries; 

    } 

}



simpler to implement in maps that do not offer access ordering. However

LRU is usually more effective than FIFO, because the reduced cost of cache

refreshes outweighs the overhead of maintaining access ordering.)

If you need to modify the very specific action for which

removeEldestEntry  is specialised, you can just treat it as a callback,

adding whatever action you want, and returning false . For example, if a

method isReservedName  returned true  for elements that should

never be removed from the cache, you could implement

removeEldestEntry  like this:

protected boolean removeEldestEntry(Map.Entry<K,V

    if (size() > maxEntries) { 

        for (var itr = entrySet().iterator() ; it

            if (!isReservedName(itr.next().getKey

                itr.remove(); 

                return false; 

            } 

        } 

    } 

    return false; 

}



From Java 21, LinkedHashMap  has implemented SequencedMap ,

providing much greater flexibility in caching policies. For example, in some

applications recent access to an entry reduces rather than increasing the

likelihood of it being accessed again soon. In that case, the best strategy is

‘most recently used’ (MRU), which discards the most recently used entry.

This is straightforward to implement in a SequencedMap , which

exposes a method pollLastEntry  (analogous to

SequencedSet.removeLast ):

Extending this example one last time, we can combine the two variations

above in a bounded MRU cache with reserved names, using the method

SequencedKeySet , which provides a SequencedSet  (see

“SequencedSet”) view of the keys:

protected boolean removeEldestEntry(Map.Entry<K,V

    if (size() > maxEntries) { 

        pollLastEntry(); 

    } 

    return false; 

}

protected boolean removeEldestEntry(Map.Entry<K,V

   if (size() > maxEntries) { 

       for (var itr = sequencedKeySet().reversed(

           if (!isReservedName(itr.next())) { 

itr remove();



These examples should not be taken as realistic except for the simplest

uses: if you subclass LinkedHashMap  in a real application, you will

probably want more flexibility than can be provided by overriding

removeEldestEntry . In that case, it would make more sense to

override put  and putAll —or indeed to provide other methods to allow

users to adjust the cache, for example by using the SequencedMap

methods putFirst  or putLast  to relocate entries to the beginning or

end of the map.

Iteration over a collection of keys or values returned by a

LinkedHashMap  is linear in the number of elements. The iterators over

such collections are fail-fast.

The factory method to use when you can predict the maximum number of

entries is newLinkedHashMap :

               itr.remove(); 

               return false; 

           } 

       } 

   } 

   return false; 

}

static <K,V>> LinkedHashMap<K,V> newLinkedHashMap



NavigableMap

The interface NavigableMap  adds to SequencedMap  a guarantee

that its iterator will traverse the map in ascending key order and, like

NavigableSet , adds further methods to find the entries adjacent to a

target key value. As with NavigableSet , NavigableMap  extends,

and in effect replaces, an older interface, SortedMap , which imposes an

ordering on its keys, either that of their natural ordering or of a

Comparator . The equivalence relation on the keys of a

NavigableMap  is again defined by the ordering relation: two keys that

compare as equal will be regarded as duplicates by a NavigableMap

(see Chapter 8).

The extra methods defined by the NavigableMap  interface fall into four

groups, as described below:

Retrieving the Comparator

Comparator<? super K> comparator()

This method returns the map’s key comparator if it has been given one,

instead of relying on the natural ordering of the keys. Otherwise, it returns

null .

Getting Range Views



As with NavigableSet , each of the methods in this group appears in

two overloads, one inherited from SortedMap  and returning a half-open

SortedMap  view, and one defined in NavigableMap  returning a

NavigableSet  view that can be open, half-open, or closed according to

the user’s choice. These operations work like the corresponding operations

in SortedSet : the key arguments do not themselves have to be present

in the map, and the sets returned include the fromKey — if, in fact, it is

present in the map—and do not include the toKey .

Like the NavigableSet  methods, the NavigableMap  provide more

flexibility than the range-view methods of SortedMap . Instead of always

returning a half-open interval, these methods accept boolean  parameters

that are used to determine whether to include the key or keys defining the

interval.

Getting Closest Matches

SortedMap<K,V> subMap(K fromKey, K toKey) 

SortedMap<K,V> headMap(K toKey) 

SortedMap<K,V> tailMap(K fromKey) 

NavigableMap<K,V> subMap( 

            K fromKey, boolean fromInclusive, K t

NavigableMap<K,V> headMap(K toKey, boolean inclus

NavigableMap<K,V> tailMap(K fromKey, boolean incl



Map.Entry<K,V> ceilingEntry(K Key) 

K ceilingKey(K Key) 

Map.Entry<K,V> floorEntry(K Key) 

K floorKey(K Key) 

Map.Entry<K,V> higherEntry(K Key) 

K higherKey(K Key) 

Map.Entry<K,V> lowerEntry(K Key) 

K lowerKey(K Key)

These are similar to the corresponding closest-match methods of

NavigableSet , but they return Map.Entry  objects. If you want the

key belonging to one of these entries, use the corresponding convenience

key-returning method, with the performance benefit of allowing the map to

avoid the unnecessary creation of a Map.Entry  object.

Other Views

The SequencedMap  method reversed  is inherited by

NavigableMap , with a covariant override to allow it to return a

NavigableMap . This is a synonym for descendingMap , which

remains for historic reasons, having been present before NavigableMap

was retrofitted to inherit from SequencedMap . Similarly, the method

descendingKeySet  has almost the same effect as calling reversed

on the key set of a SequencedMap , but again returns the more precise

type of NavigableSet .



You might wonder why the method keySet , inherited from Map , could

not simply be overridden using a covariant return type to return a

NavigableSet . Indeed, the platform implementations of

NavigableMap.keySet  do return a NavigableSet . But there is a

compatibility concern: if TreeMap.keySet  were to have its return type

changed from Set  to NavigableSet , any existing TreeMap

subclasses which override that method would now fail to compile unless

they too changed their return type. (This concern is similar to those

discussed in [Link to Come].)

TreeMap

NavigableMap  is implemented in the Collections Framework by

TreeMap . We met trees as a data structure for storing elements in order

when we discussed TreeSet  (see “TreeSet”). In fact, the internal

representation of a TreeSet  is just a TreeMap  in which every key is

associated with the same standard value, so the explanation of the

mechanism and performance of red-black trees given in “TreeSet” applies

equally here.

NavigableMap<K,V> descendingMap()  // return a re

NavigableSet<K> descendingKeySet() // return a re

NavigableSet<K> navigableKeySet() // return a for



The constructors for TreeMap  include, besides the standard ones, one

that allows you to supply a Comparator  and one that allows you to

create one from another NavigableMap  (strictly speaking, from a

SortedMap ), using both the same comparator and the same mappings:

Notice that the second of these constructors suffer from a similar problem to

the corresponding constructor of TreeSet  (see “TreeSet”), because the

standard conversion constructor always uses the natural ordering of the

keys, even when its argument is actually a SortedMap .

TreeMap  has similar performance characteristics to TreeSet : the

basic operations ( get , put , and remove ) perform in O(log n) time).

The collection view iterators are fail-fast.

ConcurrentMap

Maps are often used in high-performance server applications—for example,

as cache implementations—so a high-throughput thread-safe map

implementation is an essential part of the Java platform. This requirement

cannot be met by synchronized maps such as those provided by

Collections.synchronizedMap , because with full

public TreeMap(Comparator<? super K> comparator) 

public TreeMap(SortedMap<K, ? extends V> m)



synchronization each operation needs to obtain an exclusive lock on the

entire map, effectively serializing access to it. Locking only a part of the

collection at a time—lock striping—can achieve very large gains in

throughput, as we shall see shortly with ConcurrentHashMap . But

because there is no single lock for a client to hold to gain exclusive access,

client-side locking no longer works, and clients need assistance from the

collection itself to carry out atomic actions.

That was the purpose of the interface ConcurrentMap , when it was

introduced along with the other concurrent types in Java 5. It provided

declarations for four methods— putIfAbsent , remove , and two

overloads of replace —that perform compound operations atomically.

At Java 8, new compound operations were introduced (see ???, and

ConcurrentMap  was provided with default implementations for these.

However, the existing four compound methods were promoted to the Map

interface, so ConcurrentMap  no longer exposes any new functionality.

ConcurrentHashMap

ConcurrentHashMap  provides an implementation of

ConcurrentMap  and offers a highly effective solution to the problem of

reconciling throughput with thread safety. It is optimized for reading, so

retrievals do not block even while the table is being updated (to allow for

this, the contract states that the results of retrievals will reflect the latest

update operations completed before the start of the retrieval). Updates also



can often proceed without blocking, because a ConcurrentHashMap

consists of not one but a set of tables, called segments, each of which can be

independently locked. If the number of segments is large enough relative to

the number of threads accessing the table, there will often be no more than

one update in progress per segment at any time. The constructors for

ConcurrentHashMap  are similar to those of HashMap , but with an

extra one that provides the programmer with control over the number of

segments that the map will use (its concurrency level):

The class ConcurrentHashMap  is a useful implementation of Map  in

any application where it is not necessary to lock the entire table; this is the

one capability of SynchronizedMap  which it does not support. That

can sometimes present problems: for example, the size  method attempts

to count the entries in the map without using locks. If the map is being

concurrently updated, however, the size  method will not succeed in

obtaining a consistent result. In this situation, it obtains exclusive access to

the map by locking all the segments, obtaining the entry count from each,

ConcurrentHashMap() 

ConcurrentHashMap(int initialCapacity) 

ConcurrentHashMap(int initialCapacity, float load

ConcurrentHashMap( 

  int initialCapacity, float loadFactor, int conc

ConcurrentHashMap(Map<? extends K,? extends V> m)



then unlocking them again. The performance cost involved in this is a

justifiable tradeoff against the highly optimized performance for common

operations, especially reads. Overall, ConcurrentHashMap  is

indispensable in highly concurrent contexts, where it performs far better

than any available alternative.

Disregarding locking overheads such as those just described, the cost of the

operations of ConcurrentHashMap  are similar to those of HashMap .

The collection views return weakly consistent iterators.

Figure 11-5. ConcurrentNavigableMap

ConcurrentNavigableMap

ConcurrentNavigableMap  (see Figure 11-5) inherits from both

ConcurrentMap  and NavigableMap , and contains just the methods

of these two interfaces with a few changes to make the return types more

precise. The range-view methods inherited from SortedMap  and

NavigableMap  now return views of type



ConcurrentNavigableMap . The compatibility concerns that

prevented NavigableMap  from overriding the methods of

SortedMap  don’t apply here to overriding the range-view methods of

NavigableMap  or SortedMap ; because neither of these has any

implementations that have been retrofitted to the new interface, the danger

of breaking implementation subclasses does not arise. For the same reason,

it is now possible to override keySet  to return NavigableSet .

ConcurrentSkipListMap

The relationship between ConcurrentSkipListMap  and

ConcurrentSkipListSet  is like that between TreeMap  and

TreeSet ; a ConcurrentSkipListSet  is implemented by a

ConcurrentSkipListMap  in which every key is associated with the

same standard value, so the mechanism and performance of the skip list

implementation given in “ConcurrentSkipListSet” applies equally here: the

basic operations ( get , put , and remove ) perform inO(log n) time);

iterators over the collection views execute next  in constant time. These

iterators are fail-fast.

Comparing Map Implementations

Table 11-1 shows the relative performance of the different platform

implementations of Map  (the column headed “next” shows the cost of the



next  operation of iterators over the key set). As with the implementations

of queue, your choice of map class is likely to be influenced more by the

functional requirements of your application and the concurrency properties

that you need.

Some specialized situations dictate the implementation: EnumMap  should

always (and only) be used for mapping from enums. Problems such as the

graph traversals described in “IdentityHashMap” call for

IdentityHashMap . For a sorted map, use TreeMap  where thread

safety is not required, and ConcurrentSkipListMap  otherwise.



Table 11-1. Comparative performance of different Map implementations

+ + get containsKey next

HashMap O(1) O(1) O(h/n)

LinkedHas

hMap
O(1) O(1) O(1)

IdentityH

ashMap
O(1) O(1) O(h/n)

EnumMap O(1) O(1) O(1)

TreeMap O(log n) O(log n) O(log n)

Concurren

tHashMap
O(1) O(1) O(h/n)

Concurren

tSkipList

Map

O(log n) O(log n) O(1)



That leaves the choice of implementation for general-purpose maps. For

concurrent applications, ConcurrentHashMap  is the only choice.

Otherwise, favor LinkedHashMap  over HashMap (and accept its

slightlyworse performance) if you need to make use of the insertion or

access order of the map—for example, to use it as a cache.



Chapter 12. The Collections Class

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 18th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

The class java.util.Collections  consists entirely of static

methods that operate on or return collections. There are three main

categories: generic algorithms, methods that return empty or prepopulated

collections, and methods that create wrappers. We discuss these three

categories in turn, followed by a number of other methods which do not fit

into a neat classification.

All the methods of Collections  are public and static, so for readability

we will omit these modifiers from the individual declarations.

mailto:shunter@oreilly.com


Generic Algorithms

The generic algorithms fall into four major categories: changing element

order in a list, changing the contents of a list, finding extreme values in a

collection, and finding specific values in a list. They represent reusable

functionality, in that they can be applied to Lists  (or in some cases to

Collections ) of any type. Generifying the types of these methods has

led to some fairly complicated declarations, so each section discusses the

declarations briefly after presenting them.

Changing the Order of List Elements

There are eight methods for reordering lists in various ways. The simplest

of these is swap , which exchanges two elements and, in the case of a

List  which implements RandomAccess , executes in constant time.

The most complex is sort , which transfers the elements into an array,

applies a merge sort to them in time O(n log n), and then returns them to the

List . All of the remaining methods execute in time O(n).

void reverse(List<?> list) 

          // reverse the order of the elements 

void rotate(List<?> list, int distance) 

          // rotate the elements of the list; the

      // i is moved to index (distance + i) % lis

void shuffle(List<?> list) 



For each of these methods, except sort  and swap , there are two

algorithms, one using iteration and another using random access. The

method sort  transfers the List  elements to an array, where they are

sorted using—in the current implementation—a mergesort algorithm with n

log n performance. The method swap  always uses random access. The

standard implementations for the other methods in this section use either

iteration or random access, depending on whether the list implements the

RandomAccess  interface (see [Link to Come]). If it does, the

implementation chooses the random-access algorithm; even for a list that

does not implement RandomAccess , however, the random-access

algorithms are used if the list size is below a given threshold, determined on

a per-method basis by performance testing.

          // randomly permute the list elements 

void shuffle(List<?> list, Random rnd) 

          // randomly permute the list using the 

void shuffle(List<?> list, RandomGenerator rnd) 

          // randomly permute the list using the 

<T extends Comparable<? super T>> void sort(List<

          // sort the supplied list using natural

<T> void sort(List<T> list, Comparator<? super T>

          // sort the supplied list using the sup

void swap(List<?> list, int i, int j) 

          // swap the elements at the specified p



Changing the Contents of a List

These methods change some or all of the elements of a list. The method

copy  transfers elements from the source list into an initial sublist of the

destination list (which has to be long enough to accommodate them),

leaving any remaining elements of the destination list unchanged. The

method fill  replaces every element of a list with a specified object, and

replaceAll  replaces every occurrence of one value in a list with

another—where either the old or new value can be null —returning

true  if any replacements were made.

The signatures of these methods can be explained using the Get and Put

Principle (see “The Get and Put Principle”). The signature of copy  was

discussed in “Wildcards with super”. It gets elements from the source list

and puts them into the destination, so the types of these lists are,

respectively, ? extends T  and ? super T . This fits with the

intuition that the type of the source list elements should be a subtype of the

destination list. Although there are simpler alternatives for the signature of

<T> void copy(List<? super T> dest, List<? extend

          // copy all of the elements from one li

<T> void fill(List<? super T> list, T obj) 

          // replace every element of list with o

<T> boolean replaceAll(List<T> list, T oldVal, T 

          // replace all occurrences of oldVal in



copy , “Wildcards with super” makes the case that using wildcards where

possible widens the range of permissible calls.

For fill , the Get and Put Principle dictates that you should use super

if you are putting values into a parameterized collection and, for

replaceAll , it states that if you are putting values into and getting

values out of the same structure, you should not use wildcards at all.

Finding Extreme Values in a Collection

The methods min  and max  are supplied for this purpose, each with two

overloads—one using natural ordering of the elements, and one accepting a

Comparator  to impose an ordering. They execute in linear time.

<T extends Object & Comparable<? super T>> 

  T max(Collection<? extends T> coll)  // return 

                                       // using n

<T> T max(Collection<? extends T> coll, Comparato

                                       // return 

                                       // using t

<T extends Object & Comparable<? super T>> 

  T min(Collection<? extends T> coll)  // return 

                                       // using n

<T> T min(Collection<? extends T> coll, Comparato

                                       // return 

                                       // using t



Sections “Multiple Bounds” and [Link to Come] explain these methods and

the types assigned to them.

Finding Specific Values in a List

Methods in this group locate elements or groups of elements in a List ,

again choosing between alternative algorithms on the basis of the list’s size

and whether it implements RandomAccess .

The signature of the first binarySearch  overload says that you can use

it to search for a key of type T  in a list of objects that can have any type

that can be compared with objects of type T . The second is like the

Comparator  overloads of min  and max  except that, in this case, the

type parameter of the Collection  must be a subtype of the type of the

<T> int binarySearch(List<? extends Comparable<? 

          // search for key using binary search 

<T> int binarySearch(List<? extends T> list, T ke

          // search for key using binary search 

int indexOfSubList(List<?> source, List<?> target

          // find the first sublist of source whi

int lastIndexOfSubList(List<?> source, List<?> ta

          // find the last sublist of source whic



key, which in turn must be a subtype of the type parameter of the

Comparator .

Binary search requires a sorted list for its operation. At the start of a search,

the range of indices in which the search value may occur corresponds to the

entire list. The binary search algorithm samples an element in the middle of

this range, using the value of the sampled element to determine whether the

new range should be the part of the old range above or the part below the

index of the element. A third possibility is that the sampled value is equal to

the search value, in which case the search is complete. Since each step

halves the size of the range, m steps are required to find a search value in a

list of length 2 , and the time complexity for a list of length n is O(log n).

The methods indexOfSubList  and lastIndexOfSubList  do not

require sorted lists for their operation. Their signatures allow the source and

target lists to contain elements of any type (remember that the two

wildcards may stand for two different types). The design decision behind

these signatures is the same as that behind the Collection  methods

containsAll , retainAll , and removeAll  (see “Wildcards

Versus Type Parameters”).

Collection Factories

m



The Collections  class provides convenient ways of creating some

kinds of collections containing zero or more references to the same object.

The simplest possible such collections are empty:

In this section, and in the following section on wrapper factories, we have

omitted the methods relating to SortedSet  and SortedMap , as these

have been made effectively obsolete by the introduction of

NavigableSet  and NavigableMap .

Empty collections can be useful in implementing methods to return

collections of values, where they can be used to signify that there were no

values to return. Each method returns a reference to an instance of a

singleton inner class of Collections . Because these instances are

immutable, they can safely be shared, so calling one of these factory

methods does not result in object creation. The Collections  fields

EMPTY_SET , EMPTY_LIST , and EMPTY_MAP  were commonly used

for the same purpose in Java before generics, but are less useful now

<T> List<T> emptyList()                     // re

<K,V> Map<K,V> emptyMap()                   // re

<T> Set<T> emptySet()                       // re

<T> Iterator<T> emptyIterator()             // re

<T> ListIterator<T> emptyListIterator()     // re

<T> NavigableSet<T> emptyNavigableSet()     // re

<K,V> NavigableMap<K,V> emptyNavigableMap() // re



because their raw types generate unchecked warnings whenever they are

used. These methods have themselves become less useful as their function

has been duplicated by the unmodifiable factory methods Set.of() ,

List.of() , and Map.of() . The methods emptyNavigableSet

and emptyNavigableMap  may become similarly redundant in the

future if factory methods for unmodifiable NavigableSet s and

NavigableMap s are introduced.

The Collections  class also provides you with ways of creating

collection objects containing only a single member:

Again, these can be useful in providing a single input value to a method that

is written to accept a Collection  of values and, again, they have been

duplicated by the unmodifiable factory methods.

Finally, it is possible to create a list containing a number of copies of a

given object.

<T> Set<T> singleton(T o) 

        // return an immutable set containing onl

<T> List<T> singletonList(T o) 

        // return an immutable list containing on

<K,V> Map<K,V> singletonMap(K key, V value) 

        // return an immutable map, mapping only 

<T> List<T> nCopies(int n T o)



Because the list produced by nCopies  is immutable, it need contain only

a single physical element to provide a list view of the required length. Such

lists are often used as the basis for building further collections—for

example, as the argument to a constructor or an addAll  method.

Wrappers

The Collections  class provides wrapper objects that modify the

behavior of standard collections classes in one of three ways—by

synchronizing them, by making them unmodifiable, or by checking the type

of elements being added to them. These wrapper objects implement the

same interfaces as the wrapped objects, and they delegate their work to

them. Their purpose is to restrict the circumstances under which that work

will be carried out. These are examples of the use of protection proxies (see

Design Patterns by Gamma, Helm, Johnson, and Vlissides, Addison-

Wesley), a variant of the Proxy pattern in which the proxy controls access to

the real subject.

Proxies can be created in different ways. Here, they are created by factory

methods that wrap the supplied collection object in an inner class of

Collections  that implements the collection’s interface. Subsequently,

<T> List<T> nCopies(int n, T o) 

        // return an immutable list containing n 



method calls to the proxy are (mostly) delegated to the collection object, but

the proxy controls the conditions of the call: in the case of the synchronized

wrappers, all method calls are delegated but the proxy uses synchronization

to ensure that the collection is accessed by only one thread at a time. In the

case of unmodifiable and checked collections, method calls that break the

contract for the proxy fail, throwing the appropriate exception.

Synchronized Collections

As we explained in “Collections and Thread Safety”, most of the

Framework classes are not thread-safe—by design—in order to avoid the

overhead of unnecessary synchronization (as incurred by the legacy classes

Vector  and Hashtable ). But for the occasions when you do need to

provide a small number of threads with concurrent access to the same

collection, these synchronized wrappers are provided by the

Collections  class:

<T> Collection<T> synchronizedCollection(Collecti

<T> Set<T> synchronizedSet(Set<T> s); 

<T> List<T> synchronizedList(List<T> list); 

<K, V> Map<K, V> synchronizedMap(Map<K, V> m); 

<T> NavigableSet<T> synchronizedNavigableSet(Navi

<K, V> NavigableMap<K, V> synchronizedNavigableMa



The classes that provide these synchronized views are conditionally thread-

safe (see “Collections and Thread Safety”); although each of their

operations is guaranteed to be atomic, you may need to synchronize

multiple method calls in order to obtain consistent behavior. In particular,

iterators must be created and used entirely within a code block

synchronized on the collection; otherwise, the result will at best be failure

with ConcurrentModificationException . This is very coarse-

grained synchronization; if your application makes heavy use of

synchronized collections, its effective concurrency will be greatly reduced.

In this situation, you should turn to the appropriate concurrent collection

(see [Link to Come]).

Unmodifiable Collections

An unmodifiable collection will throw

UnsupportedOperationException  in response to any attempt to

change its structure or the elements that compose it. Used with care, this

can be useful when you want to allow clients read access to an internal data

structure: passing the structure in an unmodifiable wrapper will prevent a

client from changing it, but it will not prevent the client from changing the

objects it contains, if they are modifiable. Often, you will have to protect

your internal data structure by providing clients instead with a defensive

copy made for that purpose, or by also placing these objects in



unmodifiable wrappers. We explore these options in more detail in “Respect

the “Ownership” of Collections”.

There are unmodifiable wrapper factory methods corresponding to the

major interfaces of the Collections Framework:

In many situations where you want an unmodifiable view of a modifiable

Set , List , or Map , you have a choice between wrapping the

collection using one of these methods, and copying it into a new

unmodifiable collection created using the appropriate of  factory method.

The tradeoffs involved in this choice are discussed in [Link to Come].

Checked Collections

Unchecked warnings from the compiler are a signal to us to take special

care to avoid runtime type violations. For example, after we have passed a

typed collection reference to an ungenerified library method, we can’t be

<T> Collection<T> unmodifiableCollection(Collecti

<T> Set<T> unmodifiableSet(Set<? extends T> s) 

<T> List<T> unmodifiableList(List<? extends T> li

<K, V> Map<K, V> unmodifiableMap(Map<? extends K,

<T> NavigableSet<T> unmodifiableNavigableSet(Navi

<K, V> NavigableMap<K, V> unmodifiableNavigableMa



sure that it has added only correctly typed elements to the collection.

Instead of losing confidence in the collection’s type safety, we can pass in a

checked wrapper, which will test every element added to the collection for

membership of the type supplied when it was created. [Link to Come]

shows an example of this technique.

Other Methods

The Collections  class provides a number of utility methods, some of

which we have already seen in use. Here we review them in alphabetical

<E> Collection<E> 

    checkedCollection(Collection<E> c, Class<E> e

<E> List<E> 

    checkedList(List<E> c, Class<E> elementType) 

<E> Set<E> 

    checkedSet(Set<E> c, Class<E> elementType) 

<E> NavigableSet<E> 

    checkedNavigableSet(NavigableSet<E> c, Class<

<K, V> Map<K, V> 

    checkedMap(Map<K, V> c, Class<K> keyType, Cla

<K, V> NavigableMap 

    checkedNavigableMap(NavigableMap<K, V> c, Cla

<E> Queue<E> 

    checkedQueue(Queue<E> c, Class<E> elementType



order.

addAll

We have used this method a number of times as a convenient and efficient

way of initializing a collection with individual elements, or with the

contents of an array.

asLifoQueue

Recall from Chapter 9 that while queues can impose various different

orderings on their elements, there is no standard Queue  implementation

that provides LIFO ordering. Deque  implementations, on the other hand,

all support LIFO ordering if elements are removed from the same end of the

dequeue as they were added. The method asLifoQueue  allows you to

use this functionality through the conveniently concise Queue  interface.

disjoint

<T> boolean addAll(Collection<? super T> c, T... 

        // adds all of the specified elements to 

<T> Queue<T> asLifoQueue(Deque<T> deque) 

        // returns a view of a Deque as a Last-in



The implementation of this method in the OpenJDK iterates over one of

these collections, testing each element for membership in the other and

returning true  if none are found. This is straightforward for non-set

collections, which generally use the equals  method to test for

membership; some sets, however, use other equivalence relations to

characterise membership (see Chapter 8). So if two sets using different

equivalence relations are being tested for disjointness, the result may

depend on which of the two has been chosen by the implementation to test

for membership. As with equality of sets, you should avoid using

disjoint  on sets with different equivalence relations.

enumeration

This method is provided for interoperation with APIs whose methods take

arguments of type Enumeration , a legacy version of Iterator . The

Enumeration  it returns yields the same elements, in the same order, as

the Iterator  provided by c . This method forms a pair with the

boolean disjoint(Collection<?> c1, Collection<?> 

        // returns true if c1 and c2 have no elem

<T> Enumeration<T> enumeration(Collection<T> c) 

        // returns an enumeration over the specif



method list , which converts an Enumeration  value to an

ArrayList .

frequency

If the supplied value o  is null , then frequency  returns the number

of null  elements in the collection c .

list

This method is provided for interoperation with APIs whose methods return

results of type Enumeration , a legacy version of Iterator . The

ArrayList  that it returns contains the same elements, in the same order,

as provided by e . This method forms a pair with the method

enumeration , which converts a Framework collection to an

Enumeration .

newSetFromMap

int frequency(Collection<?> c, Object o) 

        // returns the number of elements in c th

<T> ArrayList<T> list(Enumeration<T> e) 

        // returns an ArrayList containing the el



As we saw earlier, many sets (such as TreeSet  and

NavigableSkipListSet ) are implemented by maps, and share their

ordering, concurrency, and performance characteristics. Some maps,

however (such as WeakHashMap  and IdentityHashMap ) do not

have standard Set  equivalents. The purpose of the method

newSetFromMap  is to provide equivalent Set  implementations for

such maps. The method newSetFromMap  wraps its argument, which

must be empty when supplied and should never be subsequently accessed

directly. This code shows the standard idiom for using it to create a weak

HashSet , one whose elements are held via weak references:

reverseOrder

<E> Set<E> newSetFromMap(Map<E, Boolean> map) 

        // returns a set backed by the specified 

Set<Object> weakHashSet = Collections.newSetFromM

    new WeakHashMap<Object, Boolean>());

<T> Comparator<T> reverseOrder() 

        // returns a comparator that reverses nat



This method provides a simple way of sorting or maintaining a collection of

Comparable  objects in reverse natural order. Here is an example of its

use:

This method predates Java 8, which introduced the feature of static

interface methods. The Comparator  method reverseOrder , which

has exactly the same functionality as Collections.reverseOrder ,

was provided in Java 8 as an alternative that developers would find more

easily when looking for ways of manipulating Comparator s.

There is also a second overload of this method:

This method is like the preceding one, but instead of reversing the natural

order of an object collection, it reverses the order of the Comparator

supplied as its argument. Its behaviour when supplied with null  is

unusual for a method of the Collections  class. The contract for

Collections  states that its methods throw a

NullPointerException  if the collections or class objects provided

SortedSet<Integer> s = new TreeSet<Integer>(Colle

Collections.addAll(s, 1, 2, 3); 

assert s.toString().equals("[3, 2, 1]");

<T> Comparator<T> reverseOrder(Comparator<T> cmp)



to them are null, but if this method is supplied with null  it returns the

same result as a call of reverseOrder() —that is, it returns a

Comparator  that reverses the natural order of a collection of objects.

This method too has an equivalent in the Comparator  interface: in this

case, it is the default (i.e. instance) method

Comparator.reversed() , in which the receiver takes the place of

the parameter to the static Collections  method.



Chapter 13. Guidance for Using the Java
Collections Framework

A NOTE FOR EARLY RELEASE READERS

With Early Release ebooks, you get books in their earliest form—the

author’s raw and unedited content as they write—so you can take advantage

of these technologies long before the official release of these titles.

This will be the 19th chapter of the final book. Please note that the GitHub

repo will be made active later on.

If you have comments about how we might improve the content and/or

examples in this book, or if you notice missing material within this chapter,

please reach out to the editor at shunter@oreilly.com.

The Java Collections Framework has been heavily used by millions of

working Java programmers since it first appeared in 1998, a quarter-century

ago at the time of this writing. The material in this chapter will identify

some lessons we can derive from this collective experience. Even items that

may seem elementary are worth stating explicitly; all the guidance in this

chapter is based on experience with real-world code, where ignoring it has

resulted in systems that are fault-prone or difficult to maintain.

mailto:shunter@oreilly.com


In this chapter, the terms library, API, and client are used with the

following meanings: a library is any class that exposes a public method, its

API is the collection of the public methods that it exposes, and a client is

any class that calls methods in the API.

Avoid Anemic Domain Models

The term “anemic domain model” was coined by Martin Fowler (???) to

describe designs in which objects of the domain model are essentially data

carriers, containing little or no business logic. In the standard model of

object-oriented design, this leads to business logic becoming concentrated

in the service layer. Fowler notes that “the problem with anemic domain

models is that they incur all the costs of a domain model [in particular the

need for persistence mappings], without yielding any of the benefits”. The

scenario described in ??? allows for these objects to be named for nouns in

the domain space, whereas in the Collections Framework this anti-pattern

appears as nameless collection structures, directly containing other

collections, sometimes deeply nested, with no provision for custom

behavior. The object design failure is fundamentally the same in each case.

A simple example should help to clarify this. Suppose that you decide to

introduce a new entity into the task management system: projects, which

group tasks together under a single named heading. The service layer to

manage projects for a user could simply model them as a map from project



name to a collection of tasks. Including a single sample method—to add a

task—the service layer could look, in outline, like this:

Here the central problem of the anemic domain model is apparent: logic

that should belong to the domain object is not expressed there—indeed, in

this representation, cannot be expressed there. So instead it must be

captured by the service layer. This problem grows as the domain logic

becomes more complex. For example, suppose that the design of tasks

changes to include a duration:

public class ServiceLayer { 

 

    Map<String,Set<Task>> projects = new HashMap<

 

    public void addTask(String projectName, Task 

        projects.merge(projectName, new HashSet<>

                (oldValue,newValue) -> {oldValue

    } 

    ... 

}

interface Task extends Comparable<Task> { 

    @Override 

    default int compareTo(Task t) { 

       return toString().compareTo(t.toString());

    } 



and that projects are frequently queried for the total duration of the tasks

they contain, so that it makes sense for this total to be cached. Now the

service layer has to contain a separate data structure to record the cached

value for each project:

    Duration duration(); 

} 

record CodingTask(String spec, Duration duration)

record PhoneTask(String name, String number, Dura

public class ServiceLayer { 

 

    Map<String,Set<Task>> projects = new HashMap<

    Map<String,Duration> durations = new HashMap<

 

    public void addTask(String projectName, Task 

        projects.merge(projectName, new HashSet<>

                (oldValue,newValue) -> {oldValue

        durations.merge(projectName, task.duratio

    } 

    ... 

}



The implicit invariant for the application includes the requirement that

every value in the durations  map should be the sum of the

corresponding task durations in the projects  map—an invariant that is

quite difficult to express, and that, without encapsulation, will be even more

difficult to maintain consistently. This invariant governs the components of

a single project, so encapsulating the logic for a project within a single

object can focus the requirement in a more comprehensible and

maintainable way:

Although locating the responsibilities of Project  objects in the

Project  class conforms to standard object-oriented design techniques, it

public class Project { 

 

    private final String name; 

    private final Set<Task> tasks; 

    private Duration totalDuration; 

 

    public void addTask(Task task) { 

        tasks.add(task); 

        totalDuration = totalDuration.plus(task.g

    } 

    ... 

} 



is useful to be able to recognise nested collection types as a code smell,

alerting you to the need to refactor your design in this way.

Respect the “Ownership” of Collections

The most significant decisions in the design of the Collections Framework,

once it had been resolved that collections were to be mutable, were around

the control of mutation. Of these decisions, the most important one was that

the interfaces should expose both read and write operations, rather than

separating them in different interfaces. In this section, we explore the

consequences for developers wishing to ensure encapsulation of collection

data in their objects.

Other consequences include the presence of optional operations, in some

cases unsupported by unmodifiable and partially-modifiable collections and

collection views. The presence of optional operations has led to criticism of

the decision to combine read and write operations in the same interfaces:

we shall see, however, when we investigate this question in <<???>>, that

no approach to the problem of guaranteeing encapsulation is without trade-

offs.

So, given that collections are mutable and the interfaces expose mutation

methods, how can an object safely encapsulate its data? We can explore

answers to this question through the Project  class introduced in the



previous section. In designing the API for this class, we would want to

consider the operations a client might need to perform. Obviously it might

be necessary to add or remove a task from a Project :

But suppose that we anticipate that a client might also need to iterate over

the contents of tasks , or to stream them. Anticipating all possible uses of

the data is difficult, so we might be tempted to replace all these methods by

one method that simply exposes the field itself:

public class Project { 

   ... 

   public Set<Task> getTasks() { 

        return tasks; 

   } 

public class Project { 

   ... 

   public void addTask(Task task) { 

        tasks.add(task); 

        totalDuration = totalDuration.plus(task.g

    } 

    public void removeTask(Task task) { 

        tasks.remove(task); 

        totalDuration = totalDuration.minus(task

    } 

}



   ... 

} 

The problem with this (very common) approach is that there is no way to

ensure that a client will respect the need to maintain the class invariant.

Perhaps it will only perform read operations, in which case there is no

problem. But writing to the collection can create subtle bugs, hard to detect,

with symptoms that can appear with no obvious connection to their actual

cause. In this example, if a client adds or removes a task without updating

totalDuration , that field will no longer provide an accurate reflection

of the total duration of the tasks in the project.

As the API designer, do you trust the client? You may do if it’s part of the

same closely-coupled system that will be maintained by the same person or

team as your library code. But if the client is unaware of the internal logic

of your code, or if you’re concerned about accidental mutation, then you

need to make an extra effort to maintain encapsulation. The best way is to

protect Project ’s state by only exposing it in an unmodifiable wrapper.

That then makes it necessary to restore the individual mutation methods, as

in Example 13-1. (We have added equals  and hashCode

implementations to this example, to be used in a later discussion.)

Example 13-1. Accessor Returning an Unmodifiable Collection

public class Project { 



 

    private final String name; 

    private final Set<Task> tasks; 

    private Duration totalDuration; 

 

    public Project(String name, Set<Task> tasks) 

        this.name = name; 

        this.tasks = tasks; 

        totalDuration = tasks.stream() 

            .map(Task::getDuration) 

            .reduce(Duration.ZERO, Duration::plus

    } 

 

    public String getName() { return name; } 

 

    public Duration getTotalDuration() { return t

 

    public Set<Task> getTasks() { 

        return Collections.unmodifiableSet(tasks)

    } 

    public void addTask(Task task) { 

        tasks.add(task); 

        totalDuration = totalDuration.plus(task.g

    } 

    public void removeTask(Task task) { 

        tasks.remove(task); 

        totalDuration = totalDuration.minus(task

    } 

    @Override 



Wrapping the exposed state in this way ensures that Project  objects

cannot be corrupted by clients receiving references to it via accessor

methods.

The principle that clients should not be able to mutate the internal state of

an object is quite general, only to be relaxed in the case of closely co-

operating system components. When, as here, the state being exposed is a

member of the Collections Framework, the unmodifiable wrappers of the

Collections  class are exactly what is needed to implement the

principle. This technique may not be available for other kinds of mutable

data; in these cases defensive copying can instead be used to protect

exposed object state. With defensive copying, accessors create a copy of the

    public boolean equals(Object o) { 

        if (this == o) return true; 

        if (!(o instanceof Project project)) retu

        if (!name.equals(project.name)) return fa

        return tasks.equals(project.tasks); 

    } 

    @Override 

    public int hashCode() { 

        int result = name.hashCode(); 

        result = 31 * result + tasks.hashCode(); 

        return result; 

    } 

} 



object’s state and return a reference to that. This copy is distinct from the

state itself, and so can be modified by a client without danger of corrupting

the object.

One situation in which this is necessary is when an array is a component of

object state. Arrays are mutable, but the inconvenience of having to copy

them at every accessor call is lessened by the fact that they expose a public

clone  method. If the task collection of projects had to be represented by

an array, for reasons of compatibility or performance, the code should look

something like this:

public class ProjectWithArray { 

 

    private final String name; 

    private final Task[] tasks; 

    private Duration totalDuration; 

 

    public ProjectWithArray(String name, Task[] t

        this.name = name; 

        this.tasks = tasks; 

        totalDuration = Arrays.stream(tasks).map(

    } 

 

    public Task[] getTasks() { 

        return tasks.clone(); 

    } 

    ... 



In general, providing a public clone  method requires a class to

implement Cloneable , and is not straightforward (see ???), item ??:

“Override clone Judiciously”). Simpler alternatives are to provide a copy

constructor, or—the modern idiom—a static copy factory.

Defensive copying is also used—more commonly, in fact—to protect an

object’s state from mutation of input data. For example, the encapsulation

of Project  state is not yet complete, as shown by this code:

Supplying two different projects with the same collection of tasks has

coupled them so that adding or removing a task in project1  will

unexpectedly affect project2 , and vice versa. Here is another way in

which objects can fail to control their own state, in this case because it is

not unambiguously their own state: rather, it is shared with another object.

You can avoid this problem by making a defensive copy, decoupling each

project’s state from the collection supplied to its constructor. This also

}

var tasks = new HashSet<Task>(); 

tasks.add(new CodingTask("code ui", Duration.ofHo

tasks.add(new CodingTask("code db", Duration.ofHo

var project1 = new Project("Project1", tasks); 

var project2 = new Project("Project2", tasks); 



allows the constructor to choose its own representation of the data; for

example, we might choose to maintain the tasks in sorted order within the

project, without necessarily affecting clients in any way:

In summary, we have considered two techniques for encapsulating object

data: unmodifiable wrappers and defensive copying.

For protection of an object’s state from mutation of input data, there is

no alternative to defensive copying for ensuring exclusive access to an

object reference;

For protection of state that would otherwise be exposed on output, there

are two possibilities:

Where possible, as with collections, return them wrapped in an

unmodifiable wrapper. This is the better alternative when it is

private final NavigableSet<Task> tasks; 

... 

public Project(String name, Set<Task> tasks) { 

    this.name = name; 

    this.tasks = new TreeSet<>(tasks); 

    totalDuration = tasks.stream() 

        .map(Task::getDuration) 

        .reduce(Duration.ZERO, Duration::plus); 

} 



available, as defensive copying is a potentially expensive operation to

repeat for every accessor call;

When no unmodifiable wrapper is available, defensive copying on

output may be necessary.

Prefer Immutable Objects as Set
Elements or Map Keys

Many errors in code using the Collections Framework can be traced to the

same cause: a failure to prevent mutation of elements of hashed and ordered

collections. Data structures that store their elements by value rely on using

the same value to retrieve them. Although it might seem obvious, this rule

is easily broken, and the results can be surprising. For example, suppose

that we wished to store a collection of Project  objects, as defined in

Example 13-1, in a HashSet . This reasonable-seeming goal can produce

strange results:

var tasks = new HashSet<Task>(Set.of(new CodingTa

var myProject = new Project("My Project", tasks);

var projectSet = new HashSet<>(Set.of(myProject))

assert projectSet.contains(myProject); 

myProject.addTask(new CodingTask("code db", Durat

assert ! projectSet.contains(myProject); 



The final assert may seem even more surprising in light of the fact that the

first line of Project::equals  is an identity check (added to that

method for efficiency). The set myProjects  is failing to find the very

object that was present in it only two lines earlier! This failure is easily

understood by reference to Figure 8-1. The choice of the bucket that

determines the starting point for the search for a matching element is made

by the hash code of the object: the stored object can never be found if the

wrong overflow chain is being searched. In this case,

Project::hashCode  includes the hash code for the tasks

component in its calculation so, when that component changes, the hash

code changes, and a different bucket may be chosen for the search starting

point.

A natural train of thought leads to the idea of excluding the mutable

tasks  component from the hash code calculation. That may solve the

problem in some cases, but only at the cost of reducing the performance of

the hashing algorithm: here, we might be reasonably confident that different

projects will have different names, but excluding significant parts of an

object may lead in real-life examples to unacceptable concentrations of

entries in a small number of buckets.

Any collection that stores its elements by value is subject to the same

restriction. For example, something similar can happen with TreeSet :

var tasks1 = new TreeSet<Task>(Set.of(new CodingT

var project2 = new Project("project1" tasks1);



Figure 13-1 shows the state of the TreeSet  after lines //1 and //2.

var project2 = new Project( project1 , tasks1); 

var tasks2 = new TreeSet<Task>(Set.of(new CodingT

var project1 = new Project("project2", tasks2); 

var projectSet = new TreeSet<>( 

    Comparator.comparing(Project::getTotalDuratio

projectSet.addAll(List.of(project1,project2));   

assert projectSet.contains(project2);            

project2.addTask(new CodingTask("code ai", Durati

assert ! projectSet.contains(project2);          



Figure 13-1. TreeSet before and after its invariant is broken

project2  is in the left-hand subtree of the TreeSet , because the total

duration of the tasks in it is less than that of the root element, project1 .

But with the changed state of project2  after a new task is added to it, at

line //2, it belongs properly in the right-hand subtree. That is where the

contains  method is looking for it at line //3, and of course is failing to

find it. The search algorithm for the TreeSet  depends on its invariant,

which asserts, in part, that elements comparing as greater than a node

should always be in its right-hand subtree. That invariant has been broken



by the code at line //2, so the search algorithm is no longer guaranteed to

work.

Any collection that organises its elements according to their values will

show the same effects. This also applies to maps like HashMap  and

TreeMap  that organise their keys according to their values. Of the

common collection classes, only List  implementations are immune to

these problems, since their elements are organised by the actions of client

code. The other collection classes are simply not suitable for storage of

elements that will be mutated; in fact, to be certain of avoiding these

problems, elements to be stored in them should, where possible, be

immutable.

Balance Client and Library Interests in
API Design

In one sense, this section is about API design in general, rather than about

collections. The common slogan for object-oriented design is “Program to

the Interface”; the question addressed here is “which interface?”. This

question arises any time you are designing a method that receives a

parameter or returns a value, when the type of either lies somewhere within

a type hierarchy. This happens more often with APIs that transmit

collections than elsewhere, because the collections type hierarchy is

unusually deep. For example, possible return types for the method



Project::getTasks  in the previous section include Iterable ,

Collection , SequencedCollection , Set , SequencedSet ,

and NavigableSet , and even the concrete type: TreeSet .

Deciding where on the type hierarchy to place the parameter or return type

is an exercise in balancing the interests of the destination—which lie in the

direction of the most specific type—with those of the source, which are

about retaining maximum flexibility by supplying the most abstract type.

For example, the developer of the Project  class might prefer to return a

Collection<Task> , as that would provide the most flexibility to the

implementation. It would leave the library maintainers free to change the

implementation to any other kind of collection—a list, say—if that provided

an advantage later on. The problem for the client is that this choice deprives

it of possibly useful information about the returned collection: that it is

ordered and that it has no duplicates.

Going to the opposite extreme, we could type the value returned from

getTasks  with the concrete implementation type: TreeSet . Now the

problem is that the Project  class is severely constrained. For example, a

later stage of the development might require the task collection to be

thread-safe, forcing a change of implementation to the thread-safe

collection ConcurrentSkipListSet . However, it would be

impossible make that change to Project  if the return type exposed had

previously been TreeSet , allowing existing clients to depend on that

specific type.



So the key questions to balance are how much flexibility the library

implementation (or implementations, in the case of an interface that may

have multiple implementations) requires, with what semantics the

destination actually needs. In this case, will it benefit a client to know that

the returned collection is sorted, in which case getTasks  should return a

NavigableSet , or is it only necessary for it to be able to access the first

and last elements, in which case we could return a SequencedSet  and

leave open the possibility of changing the implementation to a

LinkedHashSet ? (Refer to Figure 8-2 for a refresher on the

relationship between these types.) If clients will not require the information

that the task elements are unique, we could return a

SequencedCollection .

Similar considerations apply to the choice of parameter types. In this case

the balance is between broadening the applicability of the API to a diversity

of clients against the constraints that this imposes on the library. To

maximize the usability of the API, it should accept a type high on the

hierarchy. This also makes sense in terms of the balance of development

effort: the work of handling a supertype need only be done once in the

library code, whereas adapting client code to library requirements must be

done at every method call. In the case of the Project  constructor, this

reasoning might lead to accepting a Collection  of tasks.

In general, the best balance is achieved with a type chosen from among the

middle layers of the hierarchy, but the deciding question in each specific



case should be the semantics of the API.

Exploit the Features of Records

It wasn’t easy to define tuples in Java before records were given final and

permanent status in JDK 16. In general the primary use of tuples is as data

carriers. If you wanted a data carrier before JDK 16, you had to define a

class for the purpose, requiring explicit declarations of a constructor to

initialise the fields, together with methods for equality, hash code

calculation, field access, and string representation. Further, it is desirable

for data carriers to be immutable (see “Immutability and Unmodifiability”).

Satisfying these requirements makes for a very heavyweight representation

of a simple tuple, so Java developers used various workarounds in order to

avoid tuples altogether. With the advent of records, which satisfy those

requirements automatically—as well as being able to define behaviour

when that is also required—these workarounds are no longer needed.

Prefer Records to Parallel Lists

One useful role for records is in replacing parallel lists. Here the term

‘parallel’ refers not to the action of multiple threads, but to data structures

that implicitly combine several lists in which elements at the same index in

each list represent components of the same object . For example, consider

the problem of modeling a club competition ladder in which a player can

1



move upwards by successfully challenging the player directly above them.

One plausible representation is by two parallel lists: a list of players and, in

parallel, a list of their ranking on the ladder. In Example 13-2, the

exchange  method modifies only the list of player rankings; the players

list, initially ordered alphabetically by name, is not subsequently modified.

Example 13-2. Representing a competition ladder by parallel lists

record Person(String name, int age) {} 

public class Ladder { 

    final private List<Person> people; 

    final private List<Integer> rankings; 

    public Ladder(List<Person> people, List<Integ

        this.people = people; 

        this.rankings = rankings; 

    } 

    public List<Integer> getRankings() { 

        return rankings; 

    } 

    public void exchange(Person winner, Person lo

        int winnerLocation = people.indexOf(winne

        int loserLocation = people.indexOf(loser)

        int winnerRanking = rankings.get(loserLoc

        rankings.set(winnerLocation, winnerRankin

        rankings.set(loserLocation, winnerRanking

    } 

    public static void main(String[] args) { 

        final Person george = new Person("george"



The drawbacks of this representation become clear when we consider other

operations on the ladder. For example, to sort the data differently, say by the

age of the players, requires you to first sort the people  list, recording the

changes that you have made in a permutation vector—a new list whose

value at each index corresponds to the new position of the element formerly

at that index. The permutation can then be used to make the same changes

to the rankings list. A more attractive alternative is to transfer the data to a

sorted map, suggesting that a sorted map might be a better representation,

but this carries the disadvantage that any given sorted map you might

choose would restrict you to a single sort key.

A record declared for the purpose provides greater flexibility:

g g ( g g

        final Person john = new Person("john", 31

        final Person paul = new Person("paul", 30

        Ladder ladder = new Ladder(new ArrayList<

                                   new ArrayList<

        ladder.exchange(john, george); 

        assert ladder.getRankings().equals(List.o

    } 

}

record PlayerRanking(Person player, int ranking) 

public class RecordLadder { 

    final private List<PlayerRanking> ladder = ne

    public RecordLadder(List<Person> people, List



Now the exchange  method is a little more clumsy, because a new helper

method must be defined to replace indexOf  as the way to locate an

element of the ladder:

        for (int i = 0; i < people.size(); i++) {

            ladder.add(new PlayerRanking(people.g

        } 

    } 

 

    public List<PlayerRanking> getLadder() { 

        return ladder; 

    } 

    ... 

}

private int locate(Person p) { 

    for (int i = 0; i < ladder.size(); i++) { 

        if (ladder.get(i).player().equals(p)) ret

    } 

    return -1; 

} 

public void exchange(Person winner, Person loser)

    int winnerLocation = locate(winner); 

    int loserLocation = locate(loser); 

    int winnerRanking = ladder.get(loserLocation)

    ladder.set(winnerLocation, new PlayerRanking(

    ladder.set(loserLocation, new PlayerRanking(l



But sorting is now straightforward:

It is not surprising that sorting, along with other operations, is simpler in the

version using records, because records explicitly represent the relationship

between the data elements, requiring no extra work to maintain it. This is in

contrast to the implicit relation in parallel lists, which has to be manually

maintained.

Use Records as Composite Keys

}

public static void main(String[] args) { 

    final Person peter = new Person("peter", 33);

    final Person paul = new Person("paul", 31); 

    final Person mary = new Person("mary", 30); 

    RecordLadder ladder = new RecordLadder(new Ar

            new ArrayList<>(List.of(2, 3, 1))); 

    ladder.exchange(paul, peter); 

    assert ladder.getLadder().get(ladder.locate(p

            ladder.getLadder().get(ladder.locate(

    ladder.getLadder().sort(Comparator.comparing(

    assert ladder.getLadder().stream().map(Player

            List.of(mary, paul, peter)); 

} 



Records provide a good solution to a common problem, that of representing

collections of objects which are uniquely identified by a subset of their

properties. For example, consider how to represent a library consisting of

instances of a Book  class:

class Book { 

    private String title; 

    private String author; 

    private String publisher; 

    private int pageCount; 

    ... 

}

Instances of Book  are uniquely identified by a combination of title ,

author  and edition . Suppose that the primary use case is to quickly

retrieve all editions of a Book , as identified by its author and title. What

fields should equality be defined on, and what collection of Book  should

be chosen to serve that purpose best?

For a large collection, a hashed data structure, like a set or a map, will be

preferable to one with linear search time, like a list. In the interests of

speed, you will want to reduce the number of fields used to define equality

and the hash code, and since author and title together define a Book

uniquely, it seems reasonable to use only those fields. This is especially



compelling in the common case where there are many other fields besides

the ones that uniquely characterise instances.

So one common solution to this problem is to provide Book  with these

methods:

But now consider how, given an author and title, you would query a set of

Book  objects to discover whether it contained that book? The only way to

do that is to create a dummy Book  object containing only the author and

class Book { 

 

    ... 

 

    public boolean equals(Object o) { 

        if (this == o) return true; 

        if (!(o instanceof Book book)) return fal

        if (!title.equals(book.title)) return fal

        return author.equals(book.author); 

    } 

 

    public int hashCode() { 

        return Objects.hash(title, author); 

    } 

}



title, with the value of other fields being irrelevant. Now there are two kinds

of book in your system: real books and dummy books; it is easy to see how

this can lead to errors. Worse still, this design is not resilient to

modification: for example, suppose Book  is enhanced with a new field to

represent the edition:

class Book { 

    private String title; 

    private String author; 

    private int edition; 

    private String publisher; 

    private int pageCount; 

    ... 

} 

Now it is the combination of title, author, and edition that uniquely

identifies a Book  object. And in addition to the need to find the object

with those fields, you may now also have a requirement to quickly find all

the editions of a given book.

A solution to this problem is provided by defining a record containing the

composite key:

record TitleAuthor(String title, String author) {



In the first part of the example, when title and author uniquely identify a

Book  object, a collection of these can be modeled with a map:

Map<TitleAuthor,Book>

allowing fast retrieval given only the key fields. Now, when the edition

field is added, the representation can be modified (there will likely only be

a relatively small number of editions):

Map<TitleAuthor,List<Book>>

Of course, the same effect can be achieved without records, by defining a

class TitleAuthor , but records have the great advantage of concisely

providing exactly the characteristics we want: unmodifiability and

appropriate definitions of equals  and hashCode .

Aim for Immutability of Records

Whether they are used as data carriers or as map keys (as in “Use Records

as Composite Keys”), immutability is a desirable characteristic of records;

the various mutation problems shown “Respect the “Ownership” of

Collections” and “Prefer Immutable Objects as Set Elements or Map Keys”

simply cannot occur with immutable (as opposed to unmodifiable, see

“Immutability and Unmodifiability”) objects. One requirement for



immutability of a class is that it should have exclusive access to any

mutable components—or, said differently, that its components should be

strictly encapsulated. The rules for ensuring this, given in “Respect the

“Ownership” of Collections”, can be summarized as follows:

1. Create and store a defensive copy of any data structures supplied to your

object. This is now part of your state;

2. Mutate your state as necessary;

3. Whenever you need to expose your state, for example in the return value

of accessor methods, protect it by wrapping it in an unmodifiable

wrapper or, if that is not available, returning a defensive copy.

Since records will not, in general, mutate their contents, step 2 can be

eliminated. This is especially convenient when a collection forms part of

the state of a record, because then steps 1 and 3 can be combined in the

constructor. If the record constructor is supplied with a Set , List , or

Map , this can conveniently be achieved in a single step using the

copyOf  method, which is a copy factory with the added feature that the

copy created is unmodifiable—exactly what is needed in this situation.

Slightly less conveniently, the constructor parameter might be a

subinterface of Set , List , or Map  , for example NavigableSet ;

subinterfaces do not expose copyOf  methods. In that case, you would

need to implement steps 1 and 3 separately, first making a defensive copy in

a suitable Collection Framework implementation, then wrapping that in an

unmodifiable wrapper. For example, if we wanted to preserve project



snapshots with tasks in sorted order, a record might be a suitable

representation:

Whether this technique, or the simpler copyOf  technique, is used, there is

no longer any need to override the accessor method to wrap the exposed

data structure in an unmodifiable wrapper.

Protecting mutable state other than collections is less convenient: not only

must a defensive copy br made at construction time, but where there is no

unmodifiable wrapper available, a defensive copy must also be made each

time the accessor is called.

Avoid Legacy Implementations

When an API as large and complex as the Collections Framework develops

over a period of many years, it is inevitable that new ideas will appear and

record ProjectWithNavigableSet(String name, Navig

    ProjectWithNavigableSet(String name, Navigabl

        this.name = name; 

        var defensiveCopy = new TreeSet<>(tasks);

        this.tasks = Collections.unmodifiableNavi

    } 

}



evolve, sometimes replacing older ones. Indeed, it was the appearance in

Java 2 of the Collections Framework that made the collections from earlier

Java versions— Vector , Stack , and Hashtable —obsolete. We’ll

omit discussion of the design defects of these classes, as you’re unlikely

ever to encounter them unless you have the misfortune to need to

interoperate with Java code written in the dawn of history, before 1998.

This section discusses some implementations from the Collections

Framework itself, that are also now best avoided.

Avoid synchronized wrapper collections

We saw in “Java 2: Synchronized Collections and Fail-Fast Iterators” how

relinquishing thread safety in the newly-introduced Java 2 collections—

ArrayList , HashSet , and so on—created the necessity for a layer of

thread safety that could be added on to these collections when the situation

demanded it. This layer is provided by factory methods in the

Collections  class, which wrap the supplied collection in an object that

acts as a global lock, permitting access to only one thread at a time. Until

Java 5, these objects provided the only approximation to thread-safety in

the Collections Framework.

For example, to make a synchronized List , you could supply an instance

of ArrayList  to be wrapped. The wrapper object returned from

Collections::synchronizedList  implements the interface by



delegating method calls to the collection you supplied, but the calls are

synchronized on the wrapper object itself.

To illustrate how this works, Example 5-2 shows a very simple

synchronized wrapper for the interface Stack  of Example 5-1. To get a

thread-safe Stack , you would write:

This is the preferred idiom for using synchronized wrappers; the only

reference to the wrapped object is held by the wrapper, so all calls on the

wrapped object will be synchronized on the same lock—that belonging to

the wrapper object itself.

Example 13-3. A synchronized wrapper for ArrayStack

Stack threadSafeStack = new SynchronizedArrayStac

public class SynchronizedArrayStack implements St

  private final Stack stack; 

  public SynchronizedArrayStack(Stack stack) { 

    this.stack = stack; 

  } 

  public synchronized void push(int elt) { stack

  public synchronized int pop() { return stack.po

  public synchronized boolean isEmpty() { return 

} 



Using Synchronized Collections Safely

Even a class like SynchronizedArrayStack , which has fully

synchronized methods and is itself thread-safe, must still be used with care

in a concurrent environment. For example, this client code is not thread-

safe:

The exception would be thrown if the last element on the stack were

removed by another thread in the time between the evaluation of

isEmpty  and the execution of pop . This is an example of a common

concurrent program bug, variously called test-then-act, check-then-act, or

TOCTOU (Time Of Check versus Time Of Use), in which program

behavior is guided by information that will sometimes be out of date. To

avoid it, the test and action must be executed atomically. For synchronized

wrapper collections, this must be enforced with client-side locking: for

example, if we decided to make Stack  extend Iterable  so as to

}

Stack stack = new SynchronizedArrayStack(new Arra

... 

// don't do this in a multi-threaded environment 

if (!stack.isEmpty()) { 

  stack.pop();              // can throw IllegalS

}



allow iteration over SynchronizedArrayStack , the Javadoc

recommendation (for a different but equivalent form of iteration) would be

for client code to take this form, warning that failure to do so may result in

non-deterministic behavior:

synchronized(stack) { 

   for (int element : stack) { 

     // process element 

   } 

}

From this it should be clear that the thread safety provided by client-side

locking comes at a high cost: since other threads cannot use any of the

collection’s methods while the action is being performed, guarding a long-

lasting action (say, iterating over an entire array) will have an impact on

throughput, potentially losing all the benefits of concurrency.

A further disadvantage of client-side locking is that all clients must use the

same lock. (The convention is to use the same lock that is used by the

methods of the synchronized collection—that is, the wrapper object itself.)

The problem is enforcing that discipline on every client: this kind of

convention is notoriously fragile under maintenance. And since the types of

the synchronized wrappers are the same as those of the underlying

interfaces (e.g. List ), a client has no way, apart from API documentation,



of knowing that it must apply locks on the wrapper objects around iteration

and compound operations.

There are circumstances in which synchronized collections are still useful,

for example, if you need a list that is relatively frequently modified (so that

CopyOnWriteArrayList  is not suitable) but not heavily contended,

or if your application needs a feature of the synchronized collections such

as exclusive locking. In these circumstances, you should usually

encapsulate client-side locking in a higher-level application object that co-

ordinates locking of the synchronized wrapper. But, outside of these use

cases, the concurrent collections are almost always a better option.

Avoid LinkedList

The table Table 10-2 provides an excellent example of the reasons why the

time complexity of individual data structure operations cannot be sensibly

considered in isolation. On the face of the values in that table, it would

appear that LinkedList  should be the list implementation of choice

when the primary use case will be addition or removal of elements at or

near the beginning of the list—for example, in implementing a stack. In a

LinkedList  such operations, taken in isolation, have constant time

complexity, whereas in ArrayList  they take linear time, owing to the

need to maintain contiguity and 0-indexing by moving all the higher-

indexed elements of the collection. This fact, however, must be taken in



context with other characteristics of LinkedList , which taken together

weigh the balance decisively against its use:

It is very memory intensive: because it is doubly linked, every node has

to contain two references, one each to the previous and to the next node

in the list. As a result, each node requires at least 24 bytes (the exact

amount depends on how the VM is representing object pointers and on

memory alignment considerations), compared to a typical 4-byte

overhead for ArrayList . Even allowing for the possibility that the

backing array for ArrayList  may be as much as twice what the

collection actually requires, this still gives ArrayList  a 3x advantage

in raw memory utilisation. This may be significant for very large

collections and, besides requiring larger heaps and potentially more

physical memory, can lead to increased garbage collection overheads and

pause times.

Even for smaller collections, however, this greater memory usage is

significant, especially if progressive allocation of nodes results in them

being widely spaced in memory. As the section “Memory” described, a

key element of modern hardware architectures is a memory hierarchy, in

which CPU caches play a crucial role. Refreshing caches following a

cache miss can cost hundreds of CPU cycles, so minimising cache

misses is a vital part of performance optimization. Cache lines have

limited capacity, typically 64 bytes, and their contents always reflect a

contiguous block of memory. So in a favorable case, a single cache line

could hold 16 ArrayList  references, compared to—at best—two



LinkedList  ones. Since, in many practical situations, the cost of

cache misses dominates program performance, this is a huge

disadvantage for LinkedList .

The most compelling argument in favour of LinkedList  is its ability

to add and remove a single element in constant time. However, any

realistic scenario involving these operations always involves accessing

the list position to be managed either by index or by a linear search of

the collection. Even in the case of a linear search, ArrayList  will

give better performance for the reasons discussed above and, if it can be

sorted, then binary search on an ArrayList  gives log(N)

performance. In practice, the cost of iterating over a large collection far

outweighs the cost of a single modification, even if for ArrayList

that involves a call of System.arraycopy  to keep the elements

contiguous.

One scenario that is often proposed as a compelling reason to keep

LinkedList  in a developer’s toolbox is its use as a stack or a queue.

But the Collections Framework has better alternatives to offer for that

purpose, in ArrayDeque  and, since Java 21, a reversed

ArrayList .

Customize Collections Using the
Abstract Classes



In Item 18 of Effective Java (???), Joshua Bloch sets out the arguments

against the indiscriminate use of implementation inheritance to achieve

software reuse. The most compelling of these is the fragile base class

problem, in which the dependence of a subclass on implementation detail of

its superclass leads to unexpected behavior when the superclass

implementation changes. This simplified code illustrates the problem:

Calling Sub::bar  results in this output:

called a superclass method 

called a subclass method

class Super { 

    public void foo() { System.out.println("calle

    public void bar() { System.out.println("calle

} 

 

class Sub extends Super { 

    @Override 

    public void bar() { 

        super.foo(); 

        System.out.println("called a subclass met

    } 

}



but the maintainers of Super::foo  could change its implementation to

conform with the DRY principle (Don’t Repeat Yourself):

    public void foo() { bar(); }

Although the behavior of Super  is unchanged by this implementation

change, calling Sub::bar  now results in an infinite recursion, because

its declaration overrides the declaration of bar  in Super . The fragile

base class problem has the same basic cause in all variations:

implementation detail of a class is exposed to classes inheriting from it, so

their behavior is liable to change unexpectedly when the superclass

implementation changes. For this reason, item 17 of Effective Java advises

strongly that classes should be designed for subclassing or else should

prohibit it. As a primary initial designer of the Collections Framework,

Bloch went some distance to implementing this principle: even though the

concrete classes of the framework are neither designed for inheritance nor

do they prevent it, the framework also provides abstract classes that are

specifically designed for this purpose and form an excellent basis for

customization of existing collection classes.

An example will help to illustrate this. Suppose that your application needs

a collection that behaves like ArrayList  except for a new invariant: a

single element, supplied at construction time, is to be held at all times in the

zeroth position (the position with index 0). You might initially think that



you only have to override the two remove  overloads, along with

clear , removeIf , and removeAll . But since the value of the fixed

element isn’t permitted to change, the set  method must also be

overridden. Then you might remember that there is an overload of add

that would allow a new element to be inserted at the zeroth position. After

that, you should recall that the iterators returned from iterator  and

listIterator  both expose a remove  method, so these must take

account of the collection’s invariant. And list iterators also expose an add

method, so that too must check for insertion at the zeroth position.

Clearly there is a great deal of room for errors and omissions in making

these changes. But the really compelling argument against this strategy is

the fragile base class problem. Suppose you had made these changes before

Java 21. Even though you know that in that release the introduction of

sequenced collections provided ArrayList  with new methods

addFirst , removeFirst , and removeLast , you might

reasonably hope that these would be implemented on top of the methods

that you have overridden, so not affecting the invariant. If that was your

hope, you would be disappointed: removeFirst  follows an optimized

path that avoids calling remove : instead, it omits checking validity of the

index and directly calls System.arrayCopy . As a result of this

implementation detail in the new release of ArrayList , the invariant of

your collection no longer always holds—unless you override

removeFirst . And the implication is that you will have to inspect

every future release of ArrayList  to ensure that no similar problems



recur. And because inheritance couples a subclass to the exact behavior of

its superclass methods, you will have to inspect not only new superclass

methods like removeFirst , but all the existing ones as well, in order to

ensure that refactoring or optimization has not exposed your subclass to

change behavior.

Fortunately, there is a better alternative. As a primary designer of the

Collections Framework, Bloch took his own advice in providing each of the

main interfaces— Collection , Set , List , Map , and Queue —

with a corresponding abstract class— AbstractCollection ,

AbstractSet , and so on. These partial implementations—the Javadoc

calls them “skeletal implementations”—are designed for subclassing, most

importantly by providing implementations for all but a few of the

corresponding interface methods. For our current example, the Javadoc for

AbstractList  tells us that to extend it to create a concrete modifiable

list, we need only override size  and the indexed variants of get , set ,

add , and remove . Example 13-4 shows a minimal implementation.

Example 13-4. Implementing a Custom List

public class ListWithFixedFirstElement<E> extends

 

    List<E> backingList; 

 

    public ListWithFixedFirstElement(E fixedEleme

        this.backingList = new ArrayList<>(); 



g y ()

        backingList.add(fixedElement); 

    } 

 

    @Override 

    public E set(int index, E element) { 

        if (index != 0) { 

            return backingList.set(index, element

        } else { 

            throw new IllegalArgumentException("C

        } 

    } 

 

    @Override 

    public void add(int index, E element) { 

        if (index != 0) { 

            backingList.add(index, element); 

        } else { 

            throw new IllegalArgumentException("C

        } 

    } 

 

    @Override 

    public E remove(int index) { 

        if (index != 0) { 

            return backingList.remove(index); 

        } else { 

            throw new IllegalArgumentException("C

        } 



The class ListWithFixedFirstElement  of Example 13-4 creates a

backing list, in this case an ArrayList —although any List

implementation would be functionally equivalent—and handles a call to

one of the overridden methods by first checking, if necessary, that it doesn’t

break the class invariant, and then delegating the required action to this

backing list. For other methods from the List  interface,

AbstractList  provides implementations, all of which call the

overriding methods at some point.

This implementation is immune to the fragile base class problem. Taking

the example above, besides its optimized implementation in ArrayList ,

removeFirst  is also implemented as a default method on the List

interface, to support subclasses which—unlike ArrayList —have not

}

    } 

 

    @Override 

    public E get(int index) { 

        return backingList.get(index); 

    } 

 

    @Override 

    public int size() { 

        return backingList.size(); 

    } 

}



been modified to take account of its introduction. This default method calls

remove(0) , thus encountering the invariant check in

ListWithFixedFirstElement .

You might have noticed that the reliance on implementations provided by

the abstract collection means that this technique may fail to take advantage

of any performance optimizations provided by the backing collection. But it

does provide a quick, easy and reliable way of customizing a collection,

while still allowing the option, in case of performance problems, of

correcting this problem by overriding performance-critical methods to

delegate calls to the optimized method of the backing data structure.

Bag/Multimap (weak maybe)

Nested/Bare collections (maybe, given the right example)

Avoid Using Nulls (leave until after design review)

 In other languages, parallel arrays may have performance advantages,

but these are small compared to their other problems and are in any case not

available to Java lists, of the component elements are always objects rather

than primitive values.
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