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Chapter 1
Introduction

Current communications systems cannot be conceivedwithout error-correcting codes
in their composition due to different propagation environments affected by distur-
bances (noise, fading, interference, etc.).

The bit error probability (or bit error rate (BER)) is a widely used measure which
assesses the performance of error-correcting codes. It is the ratio between the number
of erroneous bits remaining after decoding and the total number of information bits
transmitted.

Another measure used in assessing the performance of error correcting codes is
the frame error probability (or frame error rate (FER)) representing the ratio between
the number of erroneous frames remaining after decoding and the total number of
frames transmitted. BER and FER values are expressed by curves depending on the
signal to noise ratio (SNR), usually expressed in deciBells (dB).

In Shannon (1948a, b), Claude E. Shannon demonstrated that for a certain channel
there is a minimum value for SNR required to achieve a given BER. This value of
SNR is called Shannon limit.

The coding gain of a coded system is the difference between the SNR required
to achieve a given BER or FER for a non-coded system and the SNR for the coded
system.

Error-correcting codes fall into two categories: block codes and convolutional
codes.

Block codes carry out a bijective correspondence between the set of messages to
be encoded or information words and the so-called code words. Each information
word and code word has a fixed length. The symbols from a code word depend only
on the symbols from the information word, i.e. the encoding is done on blocks of
symbols, hence the name of these codes. The most popular error correcting block
codes are Hamming codes (Hamming 1950), BCH codes (the name comes from the
three researchers who discovered them, Bose, Chauduri and Hocquenghem) Bose
and Ray-Chaudhuri (1960a, b), Hocquenghem (1959), and Reed–Solomon codes
(Reed and Solomon 1960).
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2 1 Introduction

In the case of convolutional codes (Elias 1955), the coding is no longer performed
on symbol blocks. The symbols at the encoder output at a given time does not depend
only on the input symbols from that time instant, but also on a number of previous
input symbols. Therefore, convolutional codes have memory.

Shannon limit may be reached by increasing the length of information sequence
to be coded, in the case of block codes, or by increasing the memory of the con-
volutional encoder, in the case of convolutional codes. However, in both cases, the
decoding complexity becomes too large to be implemented, so that for a long time
the performance of error correcting codes was quite far from the theoretical Shannon
limit. Approaching this limit was made once the “turbo revolution” came into being,
through the discovery of turbo codes in 1993 by three French researchers (Berrou
et al. 1993).

The core concept of turbo codes is based on two main elements: parallel con-
catenated encoding of two or more recursive convolutional codes with one or more
interleavers and the iterative decoding at reception. Iterative decoding is suboptimal,
but it has a reasonable complexity for practical implementation and leads to very
good performance. In (Berrou et al. 1993), the performance achieved by a turbo code
with the information block length of 65536 bits and 18 iterations of turbo decoding
was 0.5dB far from the Shannon limit, which was an outstanding result.

The crucial component of turbo codes is the interleaver, a device that interlaces
a block of symbols. The interleaver role in decoding is to decorrelate the inputs in
the component decoders of the turbo decoder, which proves essential for turbo code
suboptimal decoding.During encoding, the interleaver combines the lowweight code
words provided by a component encoder with those of high weight provided by the
other component encoder, so that the codeword from the turbo encoder output has
an overall large weight.

Since 1993 when turbo codes were discovered, many efforts have been made in
finding performative interleavers. Research has been conducted in two main direc-
tions: generic interleavers, which do not take into account the component codes
and are especially focused on its random behaviour and code matched interleavers,
which consider the component codes and improve significantly the performance of
turbo codes.

The search in a class of interleavers aims at reducing the number of interleavers.
This is made using some metrics, out of which the best known are those that measure
the spread and the randomization.

The main direction in code-matched interleaver design consists in considering the
distance spectrum.

The interleavers can also be classified as: deterministic interleavers, which are
described by mathematical laws, random interleavers and combined interleavers
(described both by mathematical laws and random permutations). Deterministic
interleavers are of particular interest, as they can be mathematically analyzed and
designed. Out of the deterministic interleavers, the PP ones are among the best known
and the most used, due to their outstanding performance and simple, practical imple-
mentation with high-speed, low-power consumption and little memory requirements
(Takeshita 2007).
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In addition to some general aspects regarding turbo codes, described in Chap.2,
this book attempts to present PP interleavers, focusing on the following issues:

• conditions on the coefficients of a polynomial so that it is PP (in Chap.3),
• determining the number of true different PP interleavers of a certain degree for a
certain length (in Chap.4),

• results regarding the minimum distance of turbo codes with PP interleavers (in
Chap.5),

• the contention–free property of PP interleavers (in Chap.6),
• reduced complexity methods to search PP interleavers (in Chap.7) and
• presenting PP interleaver performances on channels with additive white Gaussian
noise (AWGN) (in Chap.7).
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Chapter 2
Fundamentals of Turbo Codes

2.1 Convolutional Codes

As mentioned in the Introduction section, for block codes the bits from a code word
depend only on the bits from the information word. If k is the number of information
bits and n is the number of bits from the corresponding code word, then we have a
(n, k) block code. The ratio Rc = k/n is named the coding rate of the block code
and it is a measure of the redundancy introduced by the code.

Unlike block codes, where the output bits depend only on the input bits at the
current time, convolutional codes are non-block codes, where the output bits depend
both on the input bits at the current time, and on a number of bits from earlier
times. Non-recursive convolutional codes are structures without feedback, while the
recursive ones are structures with feedback. Turbo codes use recursive convolutional
codes, because of the interleaver gain. It means that the coding gain increases along
with interleaver length (Benedetto and Montorsi 1996).

A binary convolutional encoder is a finite memory system, which provides n0
output bits for k0 input bits. It is composed of a shift register with N · k0 delay
elements, n0 modulo 2 adders and another shift register of n0 elements for the output
bits, as shown in Fig. 2.1.

The coding rate of a convolutional code, denoted by Rc, is the ratio between the
number of information bits k0 and the number of output bits n0:

Rc = k0
n0

(2.1)

The current n0 output bits are linear combinations of the present k0 input bits and
the previous (N − 1) · k0 input bits. Beside the coding rate, the convolutional codes
are characterized by the memory order of the encoder,

m = (N − 1) · k0 (2.2)
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6 2 Fundamentals of Turbo Codes

Fig. 2.1 The structure of a convolutional encoder

and the constraint length N . A convolutional code (n0, k0, N ) provides n0 output
bits for k0 information (input) bits and its constraint length is N .

The generator matrix of a convolutional code can be composed of N submatrices
G1, G2, . . . , GN , each of them with k0 rows and n0 columns. Submatrix Gi , of size
k0 × n0, describes the connections of the “ith” structure of k0 elements to the n0
modulo 2 adders. The semi-infinite generator matrix of the convolutional code is of
the form:

G∞ =

⎡
⎢⎢⎢⎢⎣

G1 G2 . . . GN

G1 G2 . . . GN

G1 G2 . . . GN

G1 G2 . . . GN

. . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎦
. (2.3)

The coded output sequence is given by:

c = u · G∞, (2.4)

where u is the input (information) sequence and the sums in thematrix multiplication
are modulo 2.

Alternatively, the structure of the encoder can be given by n0 generator vectors
gi , i = 1, n0, of size N · k0, describing the connections between the delay elements
of the shift register from the input to each of the n0 modulo 2 adders (they are usually
given as polynomials or in octal form).

Example 2.1 For the convolutional code (3, 1, 3) (i.e. n0 = 3, k0 = 1, N = 3),
equivalent representations of the encoder are given in Fig. 2.2.

In this case, the generator submatrices are of the form:

G1 = [1 0 1]
G2 = [1 1 1]
G3 = [0 1 1]

(2.5)
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Fig. 2.2 Equivalent
representations of the
encoder in Example2.1

For this particular case, the semi-infinite generator matrix becomes:

G∞ =

⎡
⎢⎢⎣
101 111 011 000 . . . . . . . . .

000 101 111 011 000 . . .

000 000 101 111 011 000 . . .

. . . . . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎦ . (2.6)

For the input sequence u = (1011), the output sequence c = (101 111 110 010)
results.

The generator vectors for the encoder in this example are:

g1 = [1 1 0]
g2 = [0 1 1]
g3 = [1 1 1]

(2.7)

In polynomial form, we can write:

g1(D) = 1 ⊕ D

g2(D) = D ⊕ D2 (2.8)

g3(D) = 1 ⊕ D ⊕ D2,

where D is the delay operator.
In octal representation, with the least significant bit (LSB) in the right side, we

have:

g1 = 6
g2 = 3
g3 = 7

(2.9)

�

A convolutional code can be equivalently described by:

• generator submatrices Gi , or generator vectors gi ;
• state diagram;
• trellis diagram.
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Fig. 2.3 State diagram of
the encoder in Example2.1

Table 2.1 Table describing
the state diagram of the
encoder in Example2.1

ul σl σl+1 cl

0 00 (S0) 00 (S0) 000

1 00 (S0) 10 (S2) 101

0 10 (S2) 01 (S1) 111

1 10 (S2) 11 (S3) 010

0 01 (S1) 00 (S0) 011

1 01 (S1) 10 (S2) 110

0 11 (S3) 01 (S1) 100

1 11 (S3) 11 (S3) 001

The description by generator submatrices Gi or generator vectors gi was given
above.

A convolutional encoder is a finite memory system, whose output depends on the
input sequence and its state. The state of the encoder is defined as the content of
its shift register at a certain time. The operations of a convolutional encoder can be
described by a state diagram. The number of the encoder states is NS = 2m , wherem
is the encoder memory order. There are 2k0 branches leaving any state, corresponding
to all entries at a time. 2k0 branches enter the encoder states. The transition from one
state to the other is through a branch that is labelled with the output sequence and
the input bits at that time.

For the encoder in Example2.1, we denote by σl = (ul−1, ul−2) the state at time
l. There are NS = 22 = 4 states, denoted by S0 = (00), S1 = (01), S2 = (10), S3 =
(11). The corresponding state diagram is given in Fig. 2.3, as well as in Table2.1.
The branches with solid line indicate transitions due to input bit “0” and those with
dashed line indicate transitions corresponding to “1”. The size of diagram grows
exponentially with memory order m.

The trellis diagram describes the time evolution of the state diagram. For the
code presented in Example2.1, the trellis is given in Fig. 2.4. The four nodes on each
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Fig. 2.4 Trellis diagram of
the encoder in Example2.1

vertical direction represent the four states at the discrete time l, which is called the
depth of the trellis. The representations with solid and dashed lines have the same
meaning as for the state diagram. The path with bold line corresponds to the input
sequence u = (1011).

2.1.1 Systematic Recursive Convolutional Encoders

These types of encoders present feedback branches and were introduced by Costello
(1969) and Forney Jr. (1970).

For example, two encoders with memory of order 2 (two delay elements required
for implementation) are given in Fig. 2.5, both in non-recursive and recursive ver-
sions. The coding rate of the two encoders is 1/2. The second encoder is systematic
because the input sequence appears in the codeword, whereas the first encoder is
non-systematic.

Let g1,1(D) and g1,2(D) be the generator polynomials of a convolutional encoder
of rate 1/2. These polynomials describe the connections of delay elements of the
encoder at each of modulo 2 adders (this information can also be given as generator
vectors or in octal form), as shown in Example2.1.

When the entry in polynomial form is u(D), the output sequences are:

c1(D) = u(D) · g1,1(D)

c2(D) = u(D) · g1,2(D)
(2.10)

Fig. 2.5 Convolutional encoder: a non-recursive non-systematic; b recursive systematic
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To get a systematic code with c1(D) = u(D), we divide (2.10) by g1,1(D), obtain-
ing:

c̃1(D) = c1(D)

g1,1(D)
= u(D)

c̃2(D) = c2(D)

g1,1(D)
= u(D)

g1,1(D)
· g1,2(D)

(2.11)

Considering the new input sequence

ũ(D) = u(D)

g1,1(D)
(2.12)

relations (2.11) become:
c̃1(D) = ũ(D) · g1,1(D)

c̃2(D) = ũ(D) · g1,2(D)
(2.13)

As ũ(D) is the reordered sequence u(D) (according to a recursive digital filter),
from (2.10) and (2.13) it results that the set of code sequences c̃(D) is the same as the
set c(D) and thus the two codes have the same weight enumeration function (Proakis
1995).

For the non-recursive non-systematic (NRNS) encoder in Fig. 2.5, the generators
can be written in polynomial form as:

gN RNS
1 (D) = 1 ⊕ D2

gN RNS
2 (D) = 1 ⊕ D ⊕ D2 (2.14)

and for the recursive systematic (RS) encoder, equivalent to the former, the generators
are:

gRS
1 (D) = 1

gRS
2 (D) = 1 ⊕ D ⊕ D2

1 ⊕ D2

(2.15)

The generator vectors are:

gN RNS
1 = [1 0 1]

gN RNS
2 = [1 1 1] (2.16)

and the octal representation for the non-recursive non-systematic encoder is:

gN RNS
1 = 5

gN RNS
2 = 7

(2.17)
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and for the recursive systematic encoder:

gRS
1 = 1

gRS
2 = 7

5
.

(2.18)

2.2 Turbo Code Structure

Turbo codes are composed by the parallel concatenation of two ormore convolutional
codes, where the encoder input sequences are interleaved versions of the information
sequence. They are obtained with the so-called interleaver devices. The structure of
a turbo encoder of coding rate 1/3 is given in Fig. 2.6.

To increase the coding rate, some output bits can be removed (usually from the
parity check bits cp1k and cp2k). This operation is known as puncturing.

In general, the number of component codes can be greater than two, with an
appropriate number of interleavers, resulting the so-called multiple turbo codes.

The interleavers and their complementary devices, de-interleavers, were previ-
ously used to correct error bursts by concatenating with an independent error correc-
tion code. The role of these devices in the turbo code structure is to obtain statistically
independent encoded sequences at the output of the component encoders, which is
essential for the iterative decoding. The interleavers take symbol blocks of size L
from the input and provide at output the same block, but in a different order, perform-
ing the so-called entry permutation. De-interleavers perform the inverse operation,
restoring the original order of symbols.

A block interleaver is described by an invertible function:

π : ZL → ZL (2.19)

Fig. 2.6 Structure of a turbo encoder of coding rate 1/3
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which is a permutation of the integers from the setZL = {0, 1, 2, . . . , L − 1}, so that
the symbol on position i , with i ∈ ZL , at the output is the symbol on position π(i)
from the input.

The inverse device, the de-interleaver, acts on the output interleaver symbols and
places them back in the original order. The permutation describing the de-interleaver
is μ = π−1.

Thus, the turbo code becomes a block code (3L , L) (for the case shown inFig. 2.6),
where L is the length of the information bit block, and 3L is the length of the
codeword. Convolutional encoders are systematic and their coding rate is 1/2; the
input sequence is transmitted once. Besides block interleavers, there is another class
called convolutional interleavers, working with continuous data flow, as code name.

2.3 Trellis Termination

The interleaver size and type influence the turbo code performance and for a good
decoding it is required that the trellises of the two codes start from the same state
(usually the null state) for every block of information bits. This imposes the operation
named trellis termination.

If the trellis is truncated in an unknown state, the decoding performance is weak
towards its end.

Assume the convolutional encoders have the memory of order m. If only the
first trellis is terminated with m bits included in the interleaver, the equivalent block
code corresponding to the turbo-code in Fig. 2.6 is (3L , L − m). If both trellises are
terminated withm bits after the interleaver, the equivalent block code corresponding
to the turbo-code in Fig. 2.6 is (3(L + m), L).

There are five main classes of trellis termination. Assuming that the two encoders
have m1 and m2 memory elements, respectively, the trellis termination methods can
be briefly described as follows (Hokfelt et al. 2001):

I.Without trellis termination

In this case, none of the trellises is finished and the decoding performance is the

weakest. The coding rate is Rc = 1

3
.

II. Termination of the first encoder

The first encoder closes the trellis while the second does not. The termination is
carried out by adding m1 tail bits to the input sequence, so that the first encoder
reaches state 0. These bits are included in the sequence entering the interleaver and
therefore after permutation they no longer correspond to the termination bits of the

second encoder. For m1 = m2 = m the coding rate is Rc = L − m

3L
.
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Fig. 2.7 Scheme for
generating “flush” bits by a
recursive convolutional
encoder

III. Termination of both encoders (dual termination)
This can be accomplished in at least two ways:

(1) Imposing constraints to the interleaver, so that the second encoder can be
forced in the same state as the first encoder, namely:

π(i) = i mod p, i = 0, L − 1, (2.20)

where p is the period of the impulse response of the encoder and π(·) is the permu-
tation describing the interleaver (Breiling et al. 1999). Then, a single sequence of
“tail bits” is required to end both encoders.

For m1 = m2 = m, the coding rate is Rc = L − m

3L
.

(2) Identifying specific input positions, dependent on the interleaver, in order to
bring the encoders in state 0, independently of one another. This is achieved without
constraints on the interleaver, but with a slight increase in the number of input bits
required to close the trellis (mt bits, where max(m1,m2) ≤ mt ≤ m1 + m2). The
method is called dual termination (Guinand and Lodge 1994).

For mt = m1 + m2 and m1 = m2 = m, the corresponding coding rate is Rc =
L − 2m

3L
.

IV. Post-interleaver flushing

With thismethod both encoders are brought into the same state independently of each
other, after encoding the input bit sequence of length L . A scheme for generating the
“flush” bits is given in Fig. 2.7 (Divsalar and Pollara 1995).

The switch is in position A for L tact periods and in position B for m additional
tact periods (m = 2 for the case shown in Fig. 2.7), thereby determining the input
bits that bring the encoder in state 0.

In this case, for m1 = m2 = m the coding rate is Rc = L

3L + 3m
if the ending

bits of the second trellis are not transmitted and Rc = L

3L + 4m
if these bits are

transmitted.
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V. Tailbiting termination

In this method both encoders start and end in the same state (Berrou et al. 1999).
The drawback of this method is that the data sequence has to be encoded twice:
firstly from the state “all-zero” and secondly from a state Sc, determined according
to the block of input bits and the final states of the encoders in the first coding step.
However, in most cases, the double encoding operation is done at a much higher
frequency than the data rate, so that the delay effects are reduced.

This terminationmethod is called circular termination. In this terminationmethod

the coding rate is Rc = 1

3
.

2.4 Calculation of Turbo Code Distance Spectrum

The distance spectrum of a turbo code represents the values of triplets (di , Ni , wi ),
with d1 < d2 < d3 < · · · . di is the Hamming distance of code words to the
“all-zero” word (consisting of all zeros) or the weight of the codeword (because
the turbo code is linear), i.e. the number of bit 1 in the word. Ni represents the multi-
plicity of codewords of weight di , i.e. the number of such codewords. wi represents
the overall weight of information words generating codewords of weight di , i.e. the
sum of the weights of all the information words leading to codewords of weight di .
Sometimes index 1 is replaced by “min”, specifying the minimum distance, or with
free, specifying the free distance (similar to convolutional codes) (Proakis 1995).

Knowing the exact first few values of the distance spectrum for a particular inter-
leaver is useful because we can assess the performance of turbo code (BER, FER) at
medium to large SNR. It is known that for this range of SNR the “error-floor” phe-
nomenon appears. It consists in flattening the curve of error probability according to
SNR. We can also design turbo codes requiring that the upper bounds of BER/FER
be as small as possible for a certain SNR. Especially in the case of large interleaver
lengths, it has been shown by simulations that, even if the decoding of turbo codes
is suboptimal, the curves BER/FER converge for medium to high SNR to the upper
bounds (UBs) of BER/FER.

The truncated upper bounds (TUB) of the bit and frame error rate on AWGN
channel, to the first M terms of distance spectrum, are given by the relationships
below

TU B(BER) � 0.5 ·
M∑
i=1

wi

L
· er f c

(√
di · Rc · Eb/N0

)
, (2.21)

TU B(FER) � 0.5 ·
M∑
i=1

Ni · er f c
(√

di · Rc · Eb/N0

)
, (2.22)

where SN R = Eb/N0, Eb is the uncoded bit energy, and N0 is the power spectral
density of AWGN noise, equal to twice its variance, Rc is the coding rate, and the
error function is defined by
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er f c(x) = 2√
π

·
∫ ∞

x
e−t2dt (2.23)

For the independent Rayleigh fading channel with known channel state informa-
tion, the upper bounds of the BER and FER are given by the following relationships,
respectively:

TU B(BER) � 0.5 ·
M∑
i=1

wi

L
·
(

1

1 + Rc · SN R

)di

, (2.24)

TU B(FER) � 0.5 ·
M∑
i=1

Ni ·
(

1

1 + Rc · SN R

)di

, (2.25)

where SN R is the signal to noise ratio for the above mentioned channel.
An efficient method for the exact calculation of the first terms of the distance

spectrum was given by Garello et al. (2001). This method was implemented in C
programming language and it was used to determine the distance spectra for PP
interleavers presented in this book. Previous inaccurate methods for determining the
distance spectrum of a turbo code were given in Perez et al. (1996) and Daneshgaran
and Mondin (1997).

Garello’s algorithm is based on the computation of the minimum distance (or
distance spectrum) of a constrained subcode, i.e., a subset of a code defined via
constraints on the edges of its trellis. Further, we introduce notations and concepts
necessary for the algorithm presentation.

We denote by u(i) = (u0, u1, . . . , ui−1) a binary input sequence of length i ≤ L .
The main idea of the algorithm is the computation of the minimumHamming weight
of a turbo codeword generated by a L-bit information frame u = (u0, u1, . . . , uL−1),
whose first i bits coincide with u(i). This minimum weight, denoted by v

(
u(i)

)
,

consists of two parts, one for each constituent code: v
(
u(i)

) = v1
(
u(i)

) + v2
(
u(i)

)
.

To evaluate v1
(
u(i)

)
, we firstly encode u(i) by the first encoder to produce c(i)1 = (

u(i),
p(i)1

)
, where p(i)1 = (p1,0, p1,1, . . . , p1,i−1) denotes the parity check bits added by the

first encoder, and then we compute its Hamming weight wH
(
c(i)1

)
.

Let σ(i)
1 be the state reached by the first encoder at time i after encoding u(i). We

add to wH
(
c(i)1

)
the minimum weight of the parity check sequence of the code path

through the trellis of the first encoder, starting from σ(i)
1 and reaching the all-zero

state, denoted by v
(
σ(i)
1

)
.

Therefore:
v1

(
u(i)

) = wH
(
c(i)1

) + v
(
σ(i)
1

)
. (2.26)

The bit uk ∈ {0, 1} forces a multiple constraint in the second encoder trellis on
position j = π−1(k), where π(·) is the permutation that describes the interleaver.
Thereby, according to Garello et al. (2001), the input sequence u(i) induces a con-
straint set V

(
u(i)

)
of cardinality i . Then
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v2
(
u(i)

) = min
{
wH

(
p2

) + wH

(
u( j �=π−1(k))
2

)}
, (2.27)

where p2 is the parity check sequence at the output of the second encoder, and

u( j �=π−1(k))
2 is the sequence of information bits on the positions j �= π−1(k), k =

0, 1, . . . , i − 1, of the interleaver output, for which the minimum in the previous
relation is achieved.

In the following, we present Garello’s algorithm approach derived from (Garello
(C program) 2001).

Algorithm Description

• Set the value d∗ for which all distances in the final computed spectrum are less
than or equal to d∗, that is:
d1 < d2 · · · < dM ≤ d∗, where M is the number of distances in the spectrum to be
calculated and d1, d2, . . . , dM are the computed distances.

• Initialize the distances with a very large value and the multiplicities with 0, i.e.
d1 = d2 = · · · = dM = 10, 000,
N1 = N2 = · · · = NM = 0,
w1 = w2 = · · · = wM = 0.

• Start with the sequences u(L) =
(
0, 0, . . . , 0︸ ︷︷ ︸
L−1 zeroes

, 1
)
, then

(
0, 0, . . . , 0︸ ︷︷ ︸
L−2 zeroes

, 1,×
)

= (
u(L−1),×)

,
(
0, 0, . . . , 0︸ ︷︷ ︸
L−3 zeroes

, 1,×,×
)

=
(
u(L−2),×,×)

, . . . ,
(
0, 1,×,×, . . . ,×︸ ︷︷ ︸

L−2 of ×

)
=

(
u(2),×,×, . . . ,×︸ ︷︷ ︸

L−2 of ×

)
,

(
1,×,×, . . . ,×︸ ︷︷ ︸

L−1 of ×

)
=

(
u(1),×,×, . . . ,×︸ ︷︷ ︸

L−1 of ×

)
, where × denotes the unknown bits,

determined by the encoding of the sequence at the second encoder input, so that
v2

(
u(i)

)
is minimum.

• Initialize j = L

(1) Set i = j
(2) For the sequencesu(i) and those formed from these in step (3), computev

(
u(i)

) =
v1

(
u(i)

) + v2
(
u(i)

)
. Then

• If v
(
u(i)

)
> dM , eliminate the sequence u(i).

• If v
(
u(i)

) ≤ dM , keep the sequence u(i). Let c be the turbo-coded sequence resulted

by encoding the information sequence consisting of u(i) together with u( j �=π−1(k))
2 ,

k = 0, 1, . . . , i − 1. Denote byw the Hamming weight of the formed information
sequence and by wH

(
c
)
, the Hamming weight of the turbo-coded sequence.

• If wH
(
c
) = dl , for an l ∈ {1, 2, . . . ,M}, update the multiplicities for the distance

dl , thus Nl → Nl + 1 and wl → wl + w.
• If dl−1 < wH

(
c
)
< dl , for an l ∈ {1, 2, . . . ,M}, update the distance spectrum as

follows:
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o Let unmodified the distances d1, d2, . . . , dl−1 with afferent multiplicities, and
o Set
dM = dM−1, dM−1 = dM−2, . . . , dl+1 = dl , dl = wH

(
c
)
,

NM = NM−1, NM−1 = NM−2, . . . , Nl+1 = Nl , Nl = 1,
wM = wM−1, wM−1 = wM−2, . . . , wl+1 = wl, wl = w.

(3) Add to the set of sequences u(i), of length i < L , to be tested, a 0 and a 1,
respectively, forming sequences u(i+1) with ui = 0 or ui = 1. Then i → i + 1.
If i ≤ L , go to step (2), otherwise, go to step (4).

(4) Set j → j − 1. If j ≥ 1, go to step (1), otherwise, go to step (5).
(5) For j = 0 the final distance spectrum is obtained.

Garello’s algorithm has been improved in Rosnes and Ytrehus (2005) by reducing
the processing average cost of each constrained set (changing the method for deter-
mining the weight v2

(
u(i)

)
in (2.27) and reducing the total number of the investigated

constraint set (i.e. the number of iterations in steps 3 and 4).
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Chapter 3
Permutation Polynomial Based
Interleavers. Conditions on Coefficients

3.1 Definition of a Permutation Polynomial Interleaver

The PP based interleavers for turbo codes were introduced by Jing Sun and Oscar
Y. Takeshita in 2003 (Sun et al. 2003; Sun and Takeshita 2005). They are preferred
because of several advantages: outstanding performance, complete analytical struc-
ture and simple, practical implementation with high-speed, low-power consumption
and low memory requirements (Takeshita 2007).

A PP-based interleaver of degree d and length L is defined as:

π(x) = q0 + q1 · x + q2 · x2 + · · · + qd · xd (mod L), x = 0, L − 1, (3.1)

where the coefficients q1, q2, . . . , qd are chosen so that the polynomialπ(x) of degree
d from (3.1), for x = 0, L − 1, performs a permutation of the set ZL and q0 deter-
mines only a shift of the permutation elements. As q0 has no influence on whether
π(x) in (3.1) is or is not a permutation polynomial modulo L , we will consider
q0 = 0.

3.2 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of Any Degree so that It Is PP Modulo
a Number Equal to a Power of 2

For the particular case L = 2n , with n ∈ N
∗, the necessary and sufficient conditions

on the coefficients of a polynomial of any degree so that it is PPwere given by Ronald
L. Rivest in (2001). Before giving the main theoremwith this result, we present some
helpful lemmas also given in Rivest (2001). The authors have tried to give detailed
proofs of lemmas and theorems for their easy understanding.

Case L = 2 (n = 1) is trivial. It is given in Lemma3.1.
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Lemma 3.1 π(x) from (3.1) is PP modulo 2 if and only if (q1 + q2 + q3 + · · · + qd)
is odd.

Proof We have π(0) = 0 and π(1) = q1 + q2 + q3 + · · · + qd (mod 2). For π(x) to
be PP modulo 2 we need π(1) = 1, i.e. (q1 + q2 + q3 + · · · + qd) must be odd. �

Lemma 3.2 Let L be L = 4 · r , with r ∈ N
∗. If π(x) in (3.1) is PP then coefficient

q1 is odd.

Proof We have π(0) = 0. If q1 were even, we could write

π(2 · r) =
( ∑d

i=1 qi · (2 · r)i
)
(mod (4 · r)) =

=
(
q1 · (2 · r) + ∑d

i=2 qi · (2 · r)i
)
(mod (4 · r)) =

= q1 · (2 · r) (mod (4 · r))+

+
( d∑

i=2

qi · (4 · r) · (2i−2 · r i−1)

)
(mod (4 · r)) = 0 + 0 = 0. (3.2)

Therefore, we would have π(0) = π(2 · r), which means that π(x) in (3.1) is not PP.
This is why q1 must be odd. �

Lemma 3.3 Let L and L1 be L = 2n, with n ∈ N
∗, and L1 = L/2 = 2n−1,

respectively. If π(x) in (3.1) is PP modulo L, then π(x) is PP modulo L1.

Proof As for i ∈ N
∗, (x + L1)

i (mod L1) =
( i−1∑

k=0

Ck
i · xk · Li−k

1 + xi
)
(mod L1) =

xi (mod L1), ∀x ∈ ZL , obviously, we have π(x + L1) (mod L1) = π(x) (mod L1),
∀x ∈ ZL . We note that in the set ZL , there are only two values equal modulo L1. We
assume that π(x) in (3.1) is PP modulo L . If π(x)were not PP modulo L1, then there
are two distinct values x, x ′ ∈ ZL1 , so that π(x) (mod L1) = π(x ′) (mod L1) =
y (mod L1).

Taking into account the considerations above, we have π(x) (mod L1) = π(x +
L1) (mod L1) = π(x ′) (mod L1) = π(x ′ + L1) (mod L1). Therefore, as π(x) is PP
modulo L , to distinct values modulo L , x, x + L1, x ′, x ′ + L1, there correspond the
values π(x),π(x + L1),π(x ′),π(x ′ + L1), also distinct modulo L . The four values
π(x) (mod L),π(x + L1) (mod L),π(x ′) (mod L),π(x ′ + L1) (mod L) are distinct
in the setZL . But as we have already shown, only two values equal modulo L1 can be
in the set ZL . This is inconsistent with the fact that the four values are equal modulo
L1 and consequently with the fact that π(x) would not be PP modulo L1. Therefore,
if π(x) is PP modulo L , then π(x) is PP modulo L1 = L/2. �

Lemma 3.4 Let L be L = 2n = 2 · L1, with n ∈ N
∗. If π(x) in (3.1) is PP modulo

L, then π(x + L1) (mod L) = (π(x) + L1) (mod L), ∀x ∈ ZL .
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Proof As shown in the proof of Lemma3.3, we have π(x + L1) (mod L1) =
π(x) (mod L1), ∀x ∈ ZL . We note that π(x) (mod L) and (π(x)+ L1) (mod L) are
two distinct values in the set ZL . The values π(x) (mod L) and π(x + L1) (mod L)
are also distinct in the setZL , π(x) being PPmodulo L . As in the setZL there are only
two distinct values equal modulo L1 and π(x + L1) (mod L1) = π(x) (mod L1) =
(π(x)+L1) (mod L1), it is required that π(x+L1) (mod L) = (π(x)+L1) (mod L).

�

Lemma 3.5 Let L and L1 be L = 4 · r , with r ∈ N
∗ and L1 = L/2 = 2 · r ,

respectively. If π(x) in (3.1) is PP modulo L1, then π(x) in (3.1) is PP modulo L if
and only if (q3 + q5 + q7 + · · · ) is even.
Proof “ ⇒” Consider that π(x) in (3.1) is PP both modulo L1 and L , and prove
that (q3 + q5 + q7 + · · · ) is even. From Lemma3.2 we have that q1 is odd. From
Lemma3.4 we have π(x + L1) (mod L) = (π(x) + L1) (mod L). Using Newton’s
binomial theorem, we have:

(x + L1)
i =

i∑
k=0

Ck
i · xk · Li−k

1 , where i ∈ N
∗. (3.3)

Because

Ck
i · xk · Li−k

1 = Ck
i · xk · (2 · r)i−k =

= 2 · 2 · r · Ck
i · xk · 2−1 · (2 · r)i−k−1 = L · Ck

i · xk · 2i−k−2 · r i−k−1 (3.4)

and Ck
i is a positive integer, it follows that

(
Ck
i · xk · Li−k

1

)
(mod L) = 0, (3.5)

for any k ≤ i − 2.
If k = i − 1, we have:

Ck
i · xk · Li−k

1 = L · Ci−1
i · xi−1 · 2−1 · r0 = i · L1 · xi−1. (3.6)

If k = i , we have:

Ck
i · xk · Li−k

1 = Ci
i · xi · L0

1 = xi . (3.7)

Therefore

(
x + L1

)i
(mod L) = (

xi + i · L1 · xi−1
)
(mod L). (3.8)

Then
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π(x + L1) (mod L) =
(∑d

i=1 qi · (
x + L1

)i)
(mod L) =

=
( ∑d

i=1 qi · (
xi + i · L1 · xi−1

))
(mod L) =

=
( ∑d

i=1 qi · xi
)
(mod L) +

( ∑d
i=1 qi · (

i · L1 · xi−1
))

(mod L) =

=
(

π(x) +
d∑

i=1

qi · (
i · L1 · xi−1

))
(mod L). (3.9)

But ( d∑
i=1

qi · (
i · L1 · xi−1

))
(mod L) =

=
(
q2 · (

2 · L1 · x1) + q4 · (
4 · L1 · x3) + q6 · (

6 · L1 · x5) + · · ·
)

(mod L) +
(
q1 · (

L1 · x0) + q3 · (
3 · L1 · x2)+

+q5 · (
5 · L1 · x4) + · · ·

)
(mod L) =

(
q2 · (

L · x1) + q4 · (
2 · L · x3)+

+q6 · (
3 · L · x5) + · · ·

)
(mod L)+

+
(
q1 · L1 + q3 · L1 · x2 + q5 · L1 · x4 + · · ·

)
(mod L) =

= 0 +
(
q1 · L1 + q3 · L1 · x2 + q5 · L1 · x4 + · · ·

)
(mod L) =

=
(
L1 + q3 · L1 · x2 + q5 · L1 · x4 + · · ·

)
(mod L). (3.10)

In the last equality we used that q1 is odd and an odd number multiplied by L1,
evaluated modulo L , is equal to L1.

For any x even, we obviously have

(
L1 + q3 · L1 · x2 + q5 · L1 · x4 + · · ·

)
(mod L) =

= L1 (mod L) (3.11)

and thus

π(x + L1) (mod L) = (π(x) + L1) (mod L), (3.12)

and for x odd, as xi with i ∈ N
∗ is also odd, we have

(
L1 + q3 · L1 · x2 + q5 · L1 · x4 + · · · ) (mod L) =
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= (
L1 + q3 · L1 + q5 · L1 + · · · ) (mod L) =

= L1 · (
1 + q3 + q5 + q7 + · · · ) (mod L) (3.13)

and thus

π(x + L1) (mod L) =
(
π(x) + L1 · (

1 + q3 + q5 + q7 + · · · )) (mod L), (3.14)

Because the equality

π(x + L1) (mod L) = (π(x) + L1) (mod L) (3.15)

must be true for any x ∈ ZL , it follows that
(
1+ q3 + q5 + q7 + · · · ) should be odd,

i.e.
(
q3 + q5 + q7 + · · · ) is even. So, the first part of lemma is proved.

“ ⇐” Consider now that π(x) in (3.1) is PP modulo L1 and
(
q3 + q5 + q7 + · · · )

is even and prove that π(x) is PP modulo L . We notice that equalities (3.3)–(3.14)
also hold in this case. As

(
q3 + q5 + q7 + · · · ) is even, equality (3.15) is true for any

x ∈ ZL .
Assume that π(x) is no PPmodulo L . This means that there are two distinct values

x, x ′ ∈ ZL , so that

π(x) (mod L) = π(x ′) (mod L) (3.16)

Because the equality (3.15) is true, we have

π(x + L1) (mod L) = π(x ′ + L1) (mod L) (3.17)

The four numbers x, x ′, (x + L1) (mod L), (x ′ + L1) (mod L) are distinct in the
set ZL . Obviously, two of these four numbers are in the set ZL1 . Let these be x1 and
x ′
1. Evaluating the equality (3.15) modulo L1, it follows that

π(x + L1) (mod L1) = π(x) (mod L1) (3.18)

for any x ∈ ZL . Considering equalities (3.16)–(3.18), it follows that

π(x) (mod L1) = π(x ′) (mod L1) =

= π(x + L1) (mod L1) = π(x ′ + L1) (mod L1). (3.19)

This means that to the two distinct values x1 and x ′
1, in the set ZL1 , there corre-

sponds through permutation π(·), the same modulo L1 value, i.e.

π(x1) (mod L1) = π(x ′
1) (mod L1). (3.20)
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Equality (3.20) contradicts the hypothesis that π(x) is PP modulo L1. Therefore,
the assumption that π(x) is no PPmodulo L is false. So, the second part of the lemma
is proved. �

In the following we give the main theorem regarding the particular case L = 2n ,
with n ∈ N, n > 1.

Theorem 3.6 For L = 2n, with n ∈ N, n > 1, π(x) in (3.1) is PP if and only if q1
is odd, (q2 + q4 + q6 + · · · ) is even and (q3 + q5 + q7 + · · · ) is even.
Proof “ ⇒” Assume first that π(x) is PP modulo L . From Lemma3.2 we have that
q1 is odd. From Lemma3.3 we also have that π(x) is PP modulo L1 = L/2. Then,
from Lemma3.5 it results that (q3+q5+q7+· · · ) is even. By repeated application of
Lemma3.3 we have that π(x) is PP modulo L1 = L/2, modulo L/4, a. s. o. modulo
2. Then, from Lemma3.1 we have that (q1 +q2 +q3 +· · ·+qd) is odd. As q1 is odd
and (q3 + q5 + q7 + · · · ) is even, it results that (q2 + q4 + q6 + · · · ) is even. Thus,
the first part of the theorem is proved.

“ ⇐”Assumenow thatq1 is odd, (q2+q4+q6+· · · ) is even and (q3+q5+q7+· · · )
is even.We use themathematical induction technique to show that π(x) is PPmodulo
L . As (q1+q2+q3+· · ·+qd) is odd, fromLemma3.1we have thatπ(x) is PPmodulo
2.We assume thatπ(x) is PPmodulo 2n1 , with n1 ∈ N, n1 ≥ 2. As (q3+q5+q7+· · · )
is even, from Lemma3.5 we have that π(x) is also PP modulo 2 · 2n1 = 2n1+1. Thus,
induction is complete and the second part of the theorem is proved. �

3.3 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial so that It Is PP Modulo a Number
Equal to a Power of a Prime Number

For the particular case L = pn , with p a prime number and n ∈ N
∗, the necessary

and sufficient conditions on polynomial coefficients so that it is PP are given in the
following theorem. This theorem is a Nöbauer’s result (Nöbauer 1965), but it is also
given in Mullen and Stevens (1984); Sun and Takeshita (2005); Chen et al. (2006).
InMullen and Stevens (1984) it is mentioned that the result of this theorem is a direct
consequence of Theorem 123 from Hardy and Wright (1975).

Theorem 3.7 For L = pn, with p a prime number and n ∈ N
∗, π(x) in (3.1) is PP

modulo L if and only if π(x) is PP modulo p and π′(x) 
= 0 (mod p), ∀x ∈ Zpn ,
where π′(x) is the derivative of the polynomial π(x).

We can check that when p = 2, the conditions from Theorem3.6 can be obtained
from Theorem3.7. So, if π(x) is PP modulo 2 it results that (q1 +q2 +q3 +· · ·+qd)
is odd. Imposing the condition π′(x) 
= 0 (mod 2), ∀x ∈ Z2n , we have

(q1 + 2 · q2 · x + 3 · q3 · x2 + · · · + d · qd · xd−1) (mod 2) 
= 0,
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∀x ∈ Z2n (3.21)

Taking into account that the even terms from the left hand side of (3.21) are equal
to zero modulo 2, it results that (3.21) is equivalent to

(q1 + q3 · x2 + q5 · x4 + · · · ) (mod 2) 
= 0,∀x ∈ Z2n (3.22)

For x an even number in (3.21) or (3.22), we have that q1 is odd. For x an odd
number in (3.22) we have that (q1 + q3 + q5 + · · · ) is odd and considering that q1
is odd, we have that (q3 + q5 + q7 + · · · ) is even. As (q1 + q2 + q3 + · · · + qd) is
odd, it results that (q2 + q4 + q6 + · · · ) is even.

3.4 Simplified Necessary and Sufficient Conditions on the
Coefficients of a Polynomial so that It Is PP Modulo
Any Positive Integer

For the general case when the interleaver length L is any positive integer, Jing Sun
and Oscar Y. Takeshita gave in Sun and Takeshita (2005) a theorem that simplifies
the conditions for a polynomial to be PP modulo L . This theorem is given below.

Theorem 3.8 For any L =
nL∏
i=1

p
nL ,pi
i , where nL ∈ N

∗, pi , with i = 1, nL , are

distinct prime numbers and nL ,pi ∈ N
∗, ∀i = 1, nL , π(x) in (3.1) is PP modulo L if

and only if π(x) also is PP modulo p
nL ,pi
i , ∀i = 1, nL .

Proof “ ⇒”Assumefirst thatπ(x) in (3.1) is PPmodulo L . UsingNewton’s binomial
formula, for any l ∈ N

∗ we have:

π
(
x + l · pnL ,pi

i

)(
mod p

nL ,pi
i

) =
=

(
q0 + q1 · (

x + l · pnL ,pi
i

) + q2 · (
x + l · pnL ,pi

i

)2 + · · ·
+ · · · + qd · (

x + l · pnL ,pi
i

)d)(
mod p

nL ,pi
i

) =

= (
q0 + q1 · x + q2 · x2 + · · · + qd · xd)(mod p

nL ,pi
i

)
(3.23)

Thus

π
(
x + l · pnL ,pi

i

)(
mod p

nL ,pi
i

) = π(x)
(
mod p

nL ,pi
i

)
(3.24)

Assume that π(x) is no PP modulo p
nL ,pi
i . Then there are two numbers x1 
= x2, with

0 ≤ x1, x2 < p
nL ,pi
i , so that:
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π
(
x1

) = π
(
x2

) = y
(
mod p

nL ,pi
i

)
(3.25)

Then, ∀l ∈
{
0, 1, . . . , L

p
nL ,pi
i

− 1
}
, we would have:

π
(
x1 + l · pnL ,pi

i

)(
mod p

nL ,pi
i

) =

= π
(
x2 + l · pnL ,pi

i

)(
mod p

nL ,pi
i

) = y
(
mod p

nL ,pi
i

)
(3.26)

Thereby, it would follow that a total of
2 · L
p
nL ,pi
i

different numbers from the set ZL are

equal modulo p
nL ,pi
i . However, this cannot be true, because π(x) is PP modulo L

and, consequently, just
L

p
nL ,pi
i

different numbers from the set ZL are equal modulo

p
nL ,pi
i . Therefore, the initial assumption is false and π(x) is PP modulo p

nL ,pi
i .

“ ⇐” Let L1 and L2 be two relatively prime positive integers. Assume that π(x)
is PP both modulo L1 and modulo L2. Assume that π(x) is no PP modulo L1 · L2.
Then, there are two positive integers x and x ′, in the set ZL1·L2 , so that x 
= x ′ and

π(x) (mod (L1 · L2)) = π(x ′) (mod (L1 · L2)) (3.27)

Let there be x1 = x (mod L1), x ′
1 = x ′ (mod L1), x2 = x (mod L2), x ′

2 =
x ′ (mod L2). Evaluating (3.27) modulo L1 and modulo L2, respectively, we get:

π(x1) (mod L1) = π(x ′
1) (mod L1) (3.28)

and

π(x2) (mod L2) = π(x ′
2) (mod L2) (3.29)

respectively.
Because π(x) is PP both modulo L1 and modulo L2, we should have:

x1 (mod L1) = x ′
1 (mod L1) (3.30)

and

x2 (mod L2) = x ′
2 (mod L2) (3.31)

respectively.
Because L1 and L2 are relatively prime, from the Chinese remainder theorem (see

Theorem3.49 at the end of this Chapter), we have:

(x1 · x2) (mod (L1 · L2)) = (x ′
1 · x ′

2) (mod (L1 · L2)) (3.32)
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⇔ x (mod (L1 · L2)) = x ′ (mod (L1 · L2)) (3.33)

But the equality (3.33) contradicts the initial assumption. Therefore, π(x) is a PP
modulo L1 · L2. �

Next, we give simple necessary and sufficient criteria on the coefficients of a
polynomial of degrees 1, 2, 3, 4 and 5, so that it is PP.

3.5 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of First Degree so that It Is PP Modulo
Any Positive Integer

A PP of first degree is named LPP and it is of the form:

π(x) = (q1 · x) (mod L), x = 0, L − 1 (3.34)

Particularizing Theorem3.7 for polynomials of degree one, we get the following
theorem.

Theorem 3.9 For any L =
nL∏
i=1

p
nL ,pi
i , where nL ∈ N

∗, pi , with i = 1, nL , are

distinct prime numbers and nL ,pi ∈ N
∗, ∀i = 1, nL , a polynomial of degree one is

LPP modulo L if and only if q1 
= 0 (mod pi ), ∀i = 1, nL .

Proof According to Theorem3.8 we must show only that π(x) in (3.34) is LPP
modulo p

nL ,pi
i , ∀i = 1, nL . Further, we consider that the index i is any of the set

{1, 2, . . . , nL}.
“ ⇒” Assume that π(x) in (3.34) is LPP modulo p

npi
i . Considering Theorem3.7,

the formal derivative of the polynomial in (3.34) is

π′(x) = q1 
= 0 (mod pi ) (3.35)

“ ⇐” Assume that q1 
= 0 (mod pi ). This means that q1 and p
nL ,pi
i are relatively

prime. Therefore, from Theorem57 in Hardy and Wright (1975), the congruence
equation

q1 · x = y
(
mod p

nL ,pi
i

)
(3.36)

has only one solution modulo p
nL ,pi
i , in variable x . Because the solutions are distinct

for each y ∈ Z
p
nL ,pi
i

it means that π(x) from (3.34) is LPP modulo p
nL ,pi
i . �
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3.6 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of Second Degree so that It Is PP
Modulo Any Positive Integer

A PP of degree two is named QPP and it is of the form:

π(x) = (q1 · x + q2 · x2) (mod L), x = 0, L − 1 (3.37)

Particularizing Theorem3.8 for polynomials of degree two, the necessary and
sufficient conditions for a polynomial of degree two to be QPP can be tested using
the following algorithm in three steps which was given in Chen et al. (2006) for the
coefficients of a CPP.

(1) Decompose the interleaver length into prime factors of the form L =
nL∏
i=1

p
nL ,pi
i ,

where nL ∈ N
∗, pi , with i = 1, nL , are different prime numbers and nL ,pi ∈ N

∗,
∀i = 1, nL .

(2) For any pi , with i = 1, nL , and the corresponding exponent nL ,pi from the
previous step, check if the conditions from Table3.1 are accomplished.

(3) π(x) from (3.37) is QPP if and only if the conditions in step (2) are fulfilled for
all pi , with i = 1, nL .

The proofs for the conditions on the coefficients given in Table3.1 are presented
below.

3.6.1 Case p = 2 and nL,2 = 1

This case results by particularizing Lemma3.1 for polynomials of second degree,
requiring that q1 + q2 has to be odd.

3.6.2 Case p = 2 and nL,2 > 1, and p > 2 and nL, p ≥ 1

Particularizing Theorem3.7 for polynomials of second degree, we get the following
Corrolary (Sun and Takeshita 2005).

Table 3.1 Conditions for coefficients q1, q2 so that π(x) in (3.37) is a QPP

1(a) p = 2 nL ,2 = 1 (q1 + q2) 
= 0 (mod 2)

1(b) nL ,2 > 1 q1 
= 0, q2 = 0 (mod 2)

(2) p > 2 nL ,p ≥ 1 q1 
= 0, q2 = 0 (mod p)
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Corollary 3.10 Let the interleaver length be of the form L = pn, with p a prime
number and n ∈ N

∗, n ≥ 1 when p > 2, and n > 1 when p = 2. A polynomial
of second degree is a QPP modulo L = pn if and only if q1 
= 0 (mod p) and
q2 = 0 (mod p).

Proof For p = 2 and n > 1, this corollary is a particular case of Theorem3.6, from
where we have that q1 is odd and q2 is even, which is equivalent to q1 
= 0 (mod 2)
and q2 = 0 (mod 2). For this reason we will consider only the case when p > 2.
We check the conditions given in Theorem3.7 both for direct and reverse proof. The
formal derivative of the polynomial of second degree is:

π′(x) = q1 + 2 · q2 · x (3.38)

“ ⇒” Consider that π(x) in (3.37) is QPP modulo L = pn . From Theorem3.7
we have

π′(x) = q1 + 2 · q2 · x 
= 0 (mod p) (3.39)

Replacing x = 0 in (3.39), it follows that q1 
= 0 (mod p).
Further, assume that q2 
= 0 (mod p). Then, it follows that 2 · q2 and p are

relatively prime. Therefore, 2 · q2 · x is PP modulo p. This means there is a number
x in the set Zp so that q1 + 2 · q2 · x = 0 (mod p), which contradicts relation (3.39).
Thus, it follows that q2 = 0 (mod p).

“ ⇐”We consider that the coefficients of the polynomial of second degree satisfy
the conditions q1 
= 0 (mod p) and q2 = 0 (mod p). Then

π(x) (mod p) = (q1 · x) (mod p) (3.40)

As q1 and p are relatively prime, it follows that π(x) is PP modulo p. The formal
derivative of the polynomial in (3.40) is

π′(x) = q1 
= 0 (mod p) (3.41)

Therefore, from Theorem3.7, it results that π(x) is a QPP modulo pn . �

The conditions in Table3.1 are the same as in Proposition1 in Takeshita (2006)
or Corrolary 2.7 in Ryu and Takeshita (2006).

For example, if L = 256, then from the case Sect. 3.6.2, for p = 2 and nL ,2 = 8,
it follows that q1 ∈ {1, 2, 5, . . . , 255} (the set of numbers relatively prime with 256)
and q2 ∈ {2, 4, 6, . . . , 254} (the set of numbers containing 2 as a factor). This leads
to 128 × 127 = 16256 possible pairs of coefficients (q1, q2) which determine that
π(x) is QPP.

Further, we give the definition of normalized permutation polynomial and two
propositions that follow from Dickson (1896, 1901) needed to establish the con-
ditions on the coefficients of a polynomial of degree greater than two, so that it is
PP.
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Definition 3.11 The polynomial π(x) =
d∑

k=1

qkx
k
(

mod pn
)
is a normalized PP if

qd = 1, π(0) = 0, and, if p � d then qd−1 = 0.

Proposition 3.12 A polynomial π(x) of degree d is a PP (mod p), with p � d, if
and only if a · π(x + b) + c is a PP for all a 
= 0, b, c ∈ Zp.

Proposition 3.13 A polynomial π(x) of degree d is a PP (mod p), with p | d, if
and only if a · π(x) + c is a PP for all a 
= 0, c ∈ Zp.

3.7 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of Third Degree so that It Is PP Modulo
Any Positive Integer

A PP of third degree is named CPP and it is of the form:

π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod L), x = 0, L − 1 (3.42)

Particularizing Theorem3.8 for polynomials of degree three, we can test whether
a polynomial of degree three is CPP using the same algorithm in three steps from
Chen et al. (2006) given in Sect. 3.6. The conditions on the coefficients used in step
2 are given in Table3.2.

Table3.2 can be considered a simpler equivalent test of Theorem3.8. The proof
is given below.

Table 3.2 Conditions for coefficients q1, q2, q3 so that π(x) in (3.42) is a CPP

1(a) p = 2 nL ,2 = 1 (q1 + q2 + q3) 
= 0 (mod 2)

1(b) nL ,2 > 1 q1 
= 0, q2 = 0, q3 = 0 (mod 2)

2(a) p = 3 nL ,3 = 1 (q1 + q3) 
= 0, q2 = 0 (mod 3)

2(b) nL ,3 > 1 q1 
= 0, (q1 + q3) 
= 0, q2 = 0 (mod 3)

3(a) 3 | (p − 1) nL ,p = 1 q1 
= 0, q2 = 0, q3 = 0 (mod p)

3(b) nL ,p > 1 q1 
= 0, q2 = 0, q3 = 0 (mod p)

4(a) 3 � (p − 1),
p > 3

nL ,p = 1 (1) q22 = 3q1q3 (mod p)
if q3 
= 0 (mod p) and
(2) q1 
= 0 (mod p), q2 = 0 (mod p)
if q3 = 0 (mod p)

4(b) nL ,p > 1 q1 
= 0, q2 = 0, q3 = 0 (mod p)
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3.7.1 Case p = 2

This case follows immediately from Lemma3.1 for nL ,2 = 1 and Theorem3.6 for
nL ,2 > 1.

3.7.2 Case p = 3

3.7.2.1 Subcase p = 3 and nL,3 = 1

Theorem 3.14 The polynomial π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod 3) is a CPP
if and only if (q1 + q3) 
= 0 (mod 3) and q2 = 0 (mod 3).

Proof It is obvious that π(0) = 0. Then π(x) is CPP if π(1) 
= 0, π(2) 
= 0 and
π(1) 
= π(2). Replacing x = 1 and x = 2 in (3.42), respectively, and evaluating the
results modulo 3, we have

(q1 + q2 + q3) 
= 0 (mod 3) (3.43)

and
(2q1 + q2 + 2q3) 
= 0 (mod 3) (3.44)

Then, condition π(1) 
= π(2) is equivalent to

(q1 + q3) 
= 0 (mod 3) (3.45)

From (3.43)–(3.44) and (3.45) it follows

q2 = 0 (mod 3) (3.46)

The converse implication follows the steps from the direct implication in reverse
order. �

3.7.2.2 Subcase p = 3 and nL,3 > 1

Theorem 3.15 The polynomial π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod 3nL ,3) with
nL ,3 ∈ N

∗, nL ,3 > 1 is a CPP if and only if q1 
= 0 (mod 3), (q1 + q3) 
= 0 (mod 3)
and q2 = 0 (mod 3).

Proof “ ⇒” Let π(x) be a CPP modulo 3nL ,3 . Then, from Theorem3.7, it follows
that π(x) is CPP modulo 3 and

π′(x) = (q1 + 2q2 · x + 3q3 · x2) 
= 0 (mod 3),∀x ∈ Z3 (3.47)
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As π(x) is a CPP modulo 3, from Theorem3.14 we have (q1 + q3) 
= 0 (mod 3)
and q2 = 0 (mod 3). Replacing x = 0 in (3.47) we get q1 
= 0 (mod 3).

“ ⇐” Let there be q1 
= 0 (mod 3), (q1 + q3) 
= 0 (mod 3) and q2 = 0 (mod 3).
As (q1 + q3) 
= 0 (mod 3) and q2 = 0 (mod 3), from Theorem3.14 we have that
π(x) is CPP modulo 3. The formal derivative of π(x) in (3.47), evaluated modulo
3, is for q2 = 0 (mod 3), π′(x) = q1 
= 0 (mod 3). Therefore, from Theorem3.7 it
follows that π(x) is CPP modulo 3nL ,3 . �

3.7.3 Case 3 | ( p − 1), with p > 3

3.7.3.1 Subcase 3 | ( p − 1), with p > 3, and nL, p = 1

Theorem 3.16 Let p be a prime number so that 3 | (p−1). The polynomial π(x) =
(q1 · x + q2 · x2 + q3 · x3) (mod p) is a CPP if and only if q1 
= 0 (mod p),
q2 = 0 (mod p) and q3 = 0 (mod p).

Proof From the Corrolary given in Lidl and GL Mullen (1988) we have that if a
polynomial of degree d > 1 is PP modulo p then d � (p − 1). Therefore, if the
degree d | (p − 1), then the degree of the PP is smaller then d, or, in other words,
qd = 0 (mod p). For polynomial degree equal to 3, if 3 | (p − 1) is equivalent to
q3 = 0 (mod p). This means that the polynomial of degree 3 modulo p is equivalent
to a polynomial of degree 2. As p is odd, it follows that 2 | (p − 1). From the same
Corrolary from Lidl and GL Mullen (1988) we have that q2 = 0 (mod p). Then,
the polynomial of degree 3 modulo p is equivalent to the polynomial of degree 1,
(q1 ·x) (mod p), which, according to Theorem3.9 is PP if and only if q1 
= 0 (mod p).

�

3.7.3.2 Subcase 3 | ( p − 1) and nL, p > 1

Theorem 3.17 Let p be a prime number so that 3 | (p−1). The polynomial π(x) =
(q1 · x + q2 · x2 + q3 · x3) (mod pnL ,p ), with nL ,p ∈ N

∗, nL ,p > 1, is a CPP if and
only if q1 
= 0 (mod p), q2 = 0 (mod p) and q3 = 0 (mod p).

Proof “ ⇒” Let π(x) be a CPP modulo pnL ,p . Then, from Theorem3.8, it follows
that π(x) is CPP modulo p. From Theorem3.16 we have that q1 
= 0 (mod p),
q2 = 0 (mod p) and q3 = 0 (mod p).

“ ⇐” Let there be q1 
= 0 (mod p), q2 = 0 (mod p) and q3 = 0 (mod p).
Then, from the Theorem3.16 we have that π(x) is CPP modulo p. The formal
derivative of π(x), evaluated modulo p, for q2 = 0 (mod p) and q3 = 0 (mod p),
is π′(x) = q1 
= 0 (mod p). Therefore, from Theorem3.7 we have that π(x) is CPP
modulo pnL ,p . �
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3.7.4 Case 3 � ( p − 1) with p > 3

3.7.4.1 Subcase 3 � ( p − 1) with p > 3 and nL, p = 1

In 1897 Dickson gave all normalized polynomials of degree at most six, except those
of degree 6 modulo a power of 2 (Dickson 1896). From this list we can see that the
only normalized CPP modulo p > 3, with 3 � (p − 1), is π(x) = x3 (mod p) (see
Table3.7). This case is given in the next proposition.

Proposition 3.18 The only normalized CPP modulo p > 3, with 3 � (p − 1), is
π(x) = x3 (mod p).

The following lemma is required to get the general result from Theorem3.20 for
this subcase.

Lemma 3.19 The polynomial π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod p), where
q3 
= 0 (mod p), can be factorized in the form π(x) = a · (x + b)3 + c (mod p) if
and only if (q2)2 = 3q1q3 (mod p).

Proof “ ⇒” Assume that:

π(x) = a · (x + b)3 + c (mod p) (3.48)

We have to prove that (q2)2 = 3q1q3 (mod p). Equation (3.48) can be written as:

π(x) = a · (x3 + 3x2b + 3xb2 + b3) + c (mod p) =
= ax3 + 3abx2 + 3ab2x + ab3 + c (mod p) (3.49)

Identifying the coefficients of terms of degrees 3 and 2, we have:

q3 = a (mod p) (3.50)

q2 = 3ab (mod p) (3.51)

Considering (3.50) and that q3 
= 0 (mod p), (3.51) can be written as:

q2
3q3

= b (mod p) (3.52)

Identifying the coefficients for degree 1, we have:

q1 = 3ab2 (mod p) (3.53)

or, considering (3.50) and (3.52)

q1 = 3q3
( q2
3q3

)2
(mod p) ⇔ (q2)

2 = 3q1q3 (mod p) (3.54)
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Identifying the coefficient of the free terms, we have:

ab3 + c = 0 (mod p) ⇔ c = −ab3 (mod p) (3.55)

or, considering (3.50) and (3.52)

c = − (q2)3

27(q3)2
(mod p) (3.56)

Therefore, we have

π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod p) =

= q3 ·
(
x + q2

3q3

)3

− (q2)3

27(q3)2
(mod p) (3.57)

whence, the obvious equality

q1 = (q2)2

3q3
(mod p) ⇔ (q2)

2 = 3q1q3 (mod p) (3.58)

“ ⇐” The reciprocal is shown in reverse way. Thus, assuming that equality (3.58)
is true, π(x) can be written as in (3.57), as follows

π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod p) =
=

(
(q2)2

3q3
· x + q2 · x2 + q3 · x3

)
(mod p) =

= q3 ·
(
x3 + 3 · q2

3q3
· x2 + 3 ·

(
q2
3q3

)2

· x +
(

q2
3q3

)3)
−

− (q2)3

27(q3)2
(mod p) = q3 ·

(
x + q2

3q3

)3

− (q2)3

27(q3)2
(mod p) (3.59)

Therefore π(x) can be written as in (3.48), where a, b, and c, are those from
(3.50), (3.52), and (3.56), respectively. �

Theorem 3.20 The polynomial π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod p), with
3 � (p − 1), is PP if and only if one of the following conditions is fulfilled:

(1) For q3 
= 0 (mod p), then (q2)2 = 3q1q3 (mod p).
(2) For q3 = 0 (mod p), then q2 = 0 (mod p) and q1 
= 0 (mod p).

Proof From Propositions3.12 and 3.18 we have that all CPPs modulo p > 3, with
3 � (p − 1), when q3 
= 0 (mod p), can be obtained using the formula π(x) =
a · (x + b)3 + c (mod p), for all a 
= 0, b, c ∈ Zp. From Lemma3.19 it follows that
for q3 
= 0 (mod p), π(x) is CPP if and only if (q2)2 = 3q1q3 (mod p).
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Ifq3 = 0 (mod p), thenwe can apply the conditions forQPPs fromCorrolary3.10,
getting the conditions q2 = 0 (mod p) and q1 
= 0 (mod p). �

3.7.4.2 Subcase 3 � ( p − 1) with p > 3 and nL, p > 1

The next proposition and lemma are needed to get the general result from Theo-
rem3.23 for this subcase.

Proposition 3.21 The equation y2 = 0 (mod p) has y = 0 (mod p) as single
solution.

Lemma 3.22 Let p > 3 be a prime number so that 3 � (p − 1). If (q2)2 =
3q1q3 (mod p), with q3 
= 0 (mod p), then the equation π′(x) = (q1 + 2q2 ·
x + 3q3 · x2) = 0 (mod p) has always the solution x = − q2

3q3
(mod p).

Proof We rearrange π′(x) in terms of a perfect square:

π′(x) = q1 + 2q2 · x + 3q3 · x2 =
= 3q3 ·

(
x2 + 2q2

3q3
· x

)
+ q1 =

= 3q3 ·
(
x2 + 2 · q2

3q3
· x +

(
q2
3q3

)2)
+ q1 − (q2)2

3q3
=

= 3q3 ·
(
x + q2

3q3

)2

+ q1 − (q2)2

3q3
(3.60)

Considering that (q2)2 = 3q1q3 (mod p), (3.60) becomes

π′(x) = 3q3 ·
(
x + q2

3q3

)2

+ q1 − q1 = 3q3 ·
(
x + q2

3q3

)2

(3.61)

We make the change of variable y = x + q2
3q3

in (3.61), and the equation π′(x) =
0 (mod p) becomes y2 = 0 (mod p). From Proposition3.21 we have that equation
y2 = 0 (mod p) has always the solution y = 0 (mod p). Therefore, the equation

π′(x) = 0 (mod p) has always the solution x = − q2
3q3

. �

Theorem 3.23 The polynomial π(x) = (q1 · x + q2 · x2 + q3 · x3) (mod pnL ,p ),
with 3 � (p − 1) and nL ,p > 1, is PP if and only if q3 = q2 = 0 (mod p) and
q1 
= 0 (mod p).

Proof “ ⇒” Let π(x) be a PP (mod pnL ,p ), with 3 � (p − 1) and nL ,p > 1. From
Theorem3.7 we have that π(x) is PP (mod p) and π′(x) = q1 +2q2 · x +3q3 · x2 
=
0 (mod p), ∀x ∈ Zp.
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As π(x) is PP (mod p), from Theorem3.20 we have that when q3 
= 0 (mod p),
the equality (q2)2 = 3q1q3 (mod p) is true. But from Lemma3.22, equation π′(x) =
q1 + 2q2 · x + 3q3 · x2 = 0 (mod p) has always one solution in this case. Therefore,
there is no CPP (mod pnL ,p ), with 3 � (p − 1) and nL ,p > 1, when q3 
= 0 (mod p),
because, otherwise Theorem3.7 would be contradicted.

When q3 = 0 (mod p), from Theorem3.20 we have that q2 = 0 (mod p) and
q1 
= 0 (mod p). In this case π′(x) = q1 
= 0 (mod p), ∀x ∈ Zp. Thus, if π(x) is
PP (mod pnL ,p ), with 3 � (p − 1) and nL ,p > 1, then q3 = q2 = 0 (mod p) and
q1 
= 0 (mod p).

“ ⇐” Converse proof is obvious, considering Theorem3.7. Indeed, for q3 =
q2 = 0 (mod p) and q1 
= 0 (mod p) we have that π(x) = q1x (mod p), which, for
q1 
= 0 (mod p), is a LPP, according to Theorem3.9, and π′(x) = q1 
= 0 (mod p),
∀x ∈ Zp. �

3.8 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of Fourth Degree so that It Is PP
Modulo Any Positive Integer

A PP of fourth degree is denoted by 4-PP and it is of the form:

π(x) = (q1 · x + q2 · x2 + q3 · x3 + q4 · x4) (mod L),

x = 0, L − 1 (3.62)

Particularizing Theorem3.8 for polynomials of degree four, the necessary and
sufficient conditions for a polynomial of degree four to be a 4-PP can be tested using
the same algorithm in three steps from Chen et al. (2006) given in Sect. 3.6, where
the conditions on the coefficients are given in Table3.3 (Trifina and Tarniceriu 2016).

In the following, we prove the conditions on the coefficients given in Table3.3.
Because of the similarities of the cases p = 7 and nL ,7 > 1, 3 | (p − 1) with p > 7
and nL ,p ≥ 1, 3 � (p − 1) with p = 5 or p > 7 and nL ,p > 1, they are addressed
together in Sect. 3.8.4.

3.8.1 Case p = 2

This case follows immediately from Lemma3.1, for nL ,2 = 1 and from Theorem3.6
for nL ,2 > 1.
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Table 3.3 Conditions for coefficients q1, q2, q3, q4 so that π(x) in (3.62) is a 4-PP

1(a) p = 2 nL ,2 = 1 (q1 + q2 + q3 + q4) 
= 0 (mod 2)

1(b) nL ,2 > 1 q1 
= 0 (mod 2),
(q2 + q4) = 0 (mod 2),
q3 = 0 (mod 2)

2(a) p = 3 nL ,3 = 1 (q1 + q3) 
= 0 (mod 3),
(q2 + q4) = 0 (mod 3)

2(b) nL ,3 > 1 q1 
= 0 (mod 3),
(q1 + q3) 
= 0 (mod 3),
q2 = q4 = 0 (mod 3)

3(a) p = 7 nL ,7 = 1 (1) If q4 
= 0 (mod 7), then
(1.1) 3(q3)2 = q2q4 (mod 7), and
(1.2) 2q1(q4)2 =

= (q3)3 + (q4)3 (mod 7)
or 2q1(q4)2 =
= (q3)3 + 6(q4)3 (mod 7)

(2) If q4 = 0 (mod 7) then
q1 
= 0 (mod 7) and
q2 = q3 = 0 (mod 7)

3(b) nL ,7 > 1 q1 
= 0 (mod 7),
q2 = q3 = q4 = 0 (mod 7)

4(a) 3 � (p − 1)
(p = 5 or
p > 7)

nL ,p = 1 q4 = 0 (mod p) and
(1) If q3 = 0 (mod p) then
q1 
= 0 (mod p) and
q2 = 0 (mod p)

(2) If q3 
= 0 (mod p) then
(q2)2 = 3q1q3 (mod p)

4(b) nL ,p > 1 q1 
= 0 (mod p),
q2 = q3 = q4 = 0 (mod p)

5 3 | (p − 1)
(p > 7)

nL ,p ≥ 1 q1 
= 0 (mod p),
q2 = q3 = q4 = 0 (mod p)

3.8.2 Case p = 3

3.8.2.1 Subcase p = 3 and nL,3 = 1

Theorem 3.24 π(x) = (q1x + q2x2 + q3x3 + q4x4) (mod 3) is a 4-PP if and only
if (q1 + q3) 
= 0 (mod 3) and (q2 + q4) = 0 (mod 3).

Proof As π(0) = 0, it is required that

π(1) = q1 + q2 + q3 + q4 
= 0 (mod 3), (3.63)

π(2) = 2q1 + q2 + 2q3 + q4 
= 0 (mod 3), (3.64)
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and
π(1) 
= π(2) (mod 3). (3.65)

Replacing (3.63) and (3.64) in (3.65), we have

(q1 + q3) 
= 0 (mod 3). (3.66)

If q1 + q3 = 1 (mod 3), then, from (3.63) it follows that q2 + q4 = 0 (mod 3)
or q2 + q4 = 1 (mod 3), and from (3.64) it follows that q2 + q4 = 0 (mod 3) or
q2 +q4 = 2 (mod 3). Therefore, q2 +q4 = 0 (mod 3). For case q1 +q3 = 2 (mod 3)
we can obtain the same result in a similar way. �

3.8.2.2 Subcase p = 3 and nL,3 > 1

Theorem 3.25 π(x) = (q1x + q2x2 + q3x3 + q4x4) (mod 3nL ,3), with nL ,3 ∈ N,
nL ,3 > 1, is 4-PP if and only if q1 
= 0 (mod 3), (q1 + q3) 
= 0 (mod 3) and
q2 = q4 = 0 (mod 3).

Proof “ ⇒” For the direct proof, we consider that π(x) is a PP (mod 3nL ,3), with
nL ,3 > 1. Then, according to Theorem3.7, π(x) is a PP (mod 3) and

π′(x) = q1 + 2q2x + 3q3x
2 + 4q4x

3 (mod 3) =

= q1 + 2q2x + q4x
3 
= 0 (mod 3). (3.67)

As π(x) is a PP (mod 3), from Theorem3.24, we have (q1+q3) 
= 0 (mod 3) and
(q2+q4) = 0 (mod 3). Replacing x = 0 in (3.67), we have π′(0) = q1 
= 0 (mod 3).
Replacing x = 1 in (3.67), we have π′(1) = q1 + 2q2 + q4 
= 0 (mod 3). As
(q2 + q4) = 0 (mod 3), it follows that

π′(1) = q1 + q2 
= 0 (mod 3). (3.68)

Replacing x = 2 in (3.67), we have π′(2) = q1+q2+2q4 
= 0 (mod 3) and, because
(q2 + q4) = 0 (mod 3), it follows that

π′(2) = q1 + q4 
= 0 (mod 3). (3.69)

Relations (3.68) and (3.69)must hold for any q1 
= 0 (mod 3). For q1 = 1 (mod 3),
from (3.68) it follows that q2 = 0 (mod 3) or q2 = 1 (mod 3), and from (3.69) that
q4 = 0 (mod 3) or q4 = 1 (mod 3). For q1 = 2 (mod 3), from (3.68), it follows
that q2 = 0 (mod 3) or q2 = 2 (mod 3), and from (3.69) that q4 = 0 (mod 3) or
q4 = 2 (mod 3). Therefore, only the values q2 = 0 (mod 3) and q4 = 0 (mod 3)
meet (3.68) and (3.69) for any q1 
= 0 (mod 3).
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“ ⇐” For the converse proof, because (q1 + q3) 
= 0 (mod 3) and q2 = q4 =
0 (mod 3), from Theorem 3.24 it follows that π(x) is a PP (mod 3).

For q2 = q4 = 0 (mod 3), from (3.67) we have that π′(x) = q1 
= 0 (mod 3).
Then, according to Theorem3.7, it results that π(x) is a PP (mod 3nL ,3), with
nL ,3 > 1. �

3.8.3 Case p = 7 and nL,7 = 1

From the list with normalized PPs from Dickson (1896) we see that the only normal-
ized 4-PPs modulo p = 7 are π̄(x) = x4 ± 3x (mod 7) (see Table3.7). This aspect
is presented in the following proposition.

Proposition 3.26 The only normalized 4-PPs (mod 7) are π̄(x) = x4±3x (mod 7).

The next lemma is needed to get the general result from Theorem3.28 for this
subcase.

Lemma 3.27 Let there be π(x) = q1x + q2x2 + q3x3 + q4x4 (mod 7), where q4 
=
0 (mod 7). Then,π(x) can be factorized asπ(x) = a

(
(x+b)4±3(x+b)

)+c (mod 7),
if and only if the following two conditions are fulfilled:

(1) 3(q3)2 = q2q4 (mod 7) and
(2) 2q1(q4)2 = (q3)3 + (q4)3 (mod 7) or

2q1(q4)2 = (q3)3 + 6(q4)3 (mod 7).

Proof We consider that π(x) = a
(
(x + b)4 ± 3(x + b)

) + c (mod 7). Then, we can
write

π(x) = ax4 + 4abx3 + 6ab2x2+

+a(4b3 ± 3)x + ab4 ± 3ab + c (mod 7) (3.70)

By identifying the coefficients of terms of degree 4, 3, and 0 and using q4 
=
0 (mod 7), we have

a = q4, (3.71)

b = q3
4q4

(mod 7), (3.72)

c = −q4

(
q3
4q4

)4

∓ 3q4

(
q3
4q4

)
(mod 7). (3.73)
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Then, we have

π(x) = q4

((
x + q3

4q4

)4

± 3

(
x + q3

4q4

))
−

−q4

(
q3
4q4

)4

∓ 3q4

(
q3
4q4

)
(mod 7) =

= q4x
4 + q3x

3 + 3(q3)2

q4
x2 +

(
4
(q3)3

(q4)2
± 3q4

)
x (mod 7). (3.74)

Therefore, it is required that

q2 = 3(q3)2

q4
(mod 7), (3.75)

q1 = 4
(q3)3

(q4)2
± 3q4 (mod 7). (3.76)

Equation (3.75) is equivalent to

3(q3)
2 = q2q4 (mod 7), (3.77)

and (3.76) is equivalent to

2q1(q4)
2 = (q3)

3 + (q4)
3 (mod 7), (3.78)

or
2q1(q4)

2 = (q3)
3 + 6(q4)

3 (mod 7). (3.79)

The reciprocal is proved in the reverse way. �

Theorem 3.28 π(x) = q1x + q2x2 + q3x3 + q4x4 (mod 7) is a PP if and only if:

(1) If q4 
= 0 (mod 7), then

(1.1) 3(q3)2 = q2q4 (mod 7) and
(1.2) 2q1(q4)2 = (q3)3 + (q4)3 (mod 7) or 2q1(q4)2 = (q3)3 + 6(q4)3 (mod 7).

(2) If q4 = 0 (mod 7), then q1 
= 0 (mod 7) and q2 = q3 = 0 (mod 7).

Proof FromPropositions3.12 and3.26,wehave that all 4-PPs,whenq4 
= 0 (mod 7),
can be obtained with the formula aπ̄(x + b) + c, where π̄(x) = x4 ± 3x (mod 7)
and a 
= 0, b, c ∈ Z7. Then, according to Lemma3.27, π(x) is a (mod 7) PP
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if and only if the equalities (1.1) and (1.2) from the theorem statement are true.
When q4 = 0 (mod 7), we can use the test for CPP coefficients when 3 | (p−1) and
nL ,p = 1, given in Sect. 3.7.3.1. This is q1 
= 0 (mod 7), q2 = q3 = 0 (mod 7). �

3.8.4 Cases p = 7 and nL,7 > 1, 3 | ( p − 1) with p > 7 and
nL, p ≥ 1, 3 � ( p − 1) with p = 5, or p > 7 and
nL, p > 1

Theorem 3.29 Let p be a prime number and nL ,p a positive integer so that: a)
3 | (p − 1) and nL ,p > 1 if p = 7 and nL ,p ≥ 1 if p > 7 or b) 3 � (p − 1) and
nL ,p > 1, with p = 5 or p > 7. Then, π(x) = q1x+q2x2+q3x3+q4x4 (mod pnL ,p )

is a PP if and only if q1 
= 0 (mod p) and q2 = q3 = q4 = 0 (mod p).

Proof Because all 4-PPs (mod 7), when q4 
= 0 (mod 7), can be obtained with the
formula π(x) = aπ̄(x+b)+c, where π̄(x) = x4±3x (mod 7) and a 
= 0, b, c ∈ Z7,
when p = 7 and nL ,7 > 1,we have to show that equation π̄′(x) = 4x3±3 = 0 always
has solutions (mod 7). Obviously, if x is a solution of equation π̄′(x) = 0 (mod 7),
then x − b is a solution of equation π′(x) = 0 (mod 7). It is easy to check that
x = 1, x = 2, and x = 4 are solutions for the equation 4x3 + 3 = 0 (mod 7) and
that x = 3, x = 5, and x = 6 are solutions for the equation 4x3 − 3 = 0 (mod 7).
Because in the others cases there are no fourth degree normalized PPs, it follows
that q4 = 0 (mod p) and, therefore, we can use the test for CPP coefficients when
3 | (p − 1), p > 3, and nL ,p ≥ 1, given in Sect. 3.7.3.1, or when 3 � (p − 1) and
nL ,p > 1, given in Sect. 3.7.4.2. This is q1 
= 0 (mod p), q2 = q3 = 0 (mod p). �

3.8.5 Cases 3 � ( p − 1) with p = 5 or p > 7 and nL, p = 1

Theorem 3.30 Let p be a prime number so that 3 � (p−1) (p = 5 or p > 7). Then,
π(x) = q1x + q2x2 + q3x3 + q4x4 (mod p) is a PP, if and only if q4 = 0 (mod p)
and

(1) If q3 = 0 (mod p), then q1 
= 0 (mod p) and q2 = 0 (mod p).
(2) If q3 
= 0 (mod p), then (q2)2 = 3q1q3 (mod p).

Proof Since in this case there are also no fourth degree normalized PPs, we have that
q4 = 0 (mod p) and, therefore, we can use the test for the CPP coefficients when
3 � (p − 1) and nL ,p = 1, given in Sect. 3.7.4.1, which represents the statement of
the theorem. �
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3.9 Necessary and Sufficient Conditions on the Coefficients
of a Polynomial of Fifth Degree so that It Is PP Modulo
Any Positive Integer

A PP of fifth degree is denoted by 5-PP (named quintic PP) and it is of the form:

π(x) = (q1 · x + q2 · x2 + q3 · x3 + q4 · x4 + q5 · x5) (mod L),

x = 0, L − 1 (3.80)

Particularizing Theorem3.8 for polynomials of degree five, the necessary and
sufficient conditions for a polynomial of degree five to be 5-PP can be tested using
the same algorithm in three steps from Chen et al. (2006) given in Sect. 3.6, where
the conditions on the coefficients are given in Table3.4 (Trifina and Tarniceriu 2018).

The proofs for the conditions on the coefficients are given in the following. The
cases p = 2, p = 3, p = 5, p = 7, and p = 13 are addressed in Sects. 3.9.1–3.9.5,
respectively, and the cases p = 1 (mod 5), p = 2, 3 (mod 5), with p > 13, and
p = 4 (mod 5), in Sects. 3.9.6–3.9.8, respectively.

3.9.1 Case p = 2

This case is identical to that from Lemma3.1 for nL ,2 = 1 and to that from Theo-
rem3.6 for nL ,2 > 1.

3.9.2 Case p = 3

3.9.2.1 Subcase p = 3 and nL,3 = 1

Theorem 3.31 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod 3) is a PP if and
only if (q1 + q3 + q5) 
= 0 (mod 3) and (q2 + q4) = 0 (mod 3).

Proof As π(0) = 0, it is required that

π(1) = q1 + q2 + q3 + q4 + q5 
= 0 (mod 3), (3.81)

π(2) = 2q1 + q2 + 2q3 + q4 + 2q5 
= 0 (mod 3), (3.82)

and
π(1) 
= π(2) (mod 3). (3.83)
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Replacing (3.81) and (3.82) in (3.83), we have

(q1 + q3 + q5) 
= 0 (mod 3). (3.84)

If (q1+q3+q5) = 1 (mod 3), then, from (3.81) it follows that (q2+q4) = 0 (mod 3)
or (q2 + q4) = 1 (mod 3), and from (3.82) it follows that (q2 + q4) = 0 (mod 3) or
(q2 +q4) = 2 (mod 3). Therefore, (q2 +q4) = 0 (mod 3). The case (q1 +q3 +q5) =
2 (mod 3) is approached similarly and leads to the same result. �

3.9.2.2 Subcase p = 3 and nL,3 > 1

Theorem 3.32 π(x) = q1x+q2x2+q3x3+q4x4+q5x5 (mod 3nL ,3), with nL ,3 > 1, is
a PP if and only if q1 
= 0 (mod 3), (q1+q3+q5) 
= 0 (mod 3), (q2+q4) = 0 (mod 3),
(q1 + q2 + 2 · q5) 
= 0 (mod 3) and (q1 + q4 + 2 · q5) 
= 0 (mod 3).

Proof “ ⇒” To prove the necessity, we assume that π(x) is a PP (mod 3nL ,3), with
nL ,3 > 1. Then, according to Theorem3.7, π(x) is a PP (mod 3) and

π′(x) = q1 + 2q2x + 3q3x
2 + 4q4x

3 + 5q5x
4 (mod 3) =

= q1 + 2q2x + q4x
3 + 2q5x

4 
= 0 (mod 3) (3.85)

As π(x) is a PP (mod 3), from Theorem3.31, we have that (q1 + q3 + q5) 
=
0 (mod 3) and (q2 + q4) = 0 (mod 3). Replacing x = 0 in (3.85), we have that
π′(0) = q1 
= 0 (mod 3). Replacing x = 1 in (3.85), we have that π′(1) = q1 +
2q2 + q4 + 2q5 
= 0 (mod 3). As (q2 + q4) = 0 (mod 3), it follows that

π′(1) = q1 + q2 + 2 · q5 
= 0 (mod 3) (3.86)

Replacing x = 2 in (3.85), we have that π′(2) = q1 + q2 + 2q4 + 2q5 
= 0 (mod 3)
and, as (q2 + q4) = 0 (mod 3), it follows that

π′(2) = q1 + q4 + 2 · q5 
= 0 (mod 3) (3.87)

“ ⇐” To prove the sufficiency, we assume that q1 
= 0 (mod 3), (q1 + q3 +
q5) 
= 0 (mod 3), (q2 + q4) = 0 (mod 3), (q1 + q2 + 2 · q5) 
= 0 (mod 3) and
(q1 +q4 +2 ·q5) 
= 0 (mod 3). Then, from Theorem3.31, it follows that π(x) is a PP
(mod 3). For x = 0, from (3.85),we have thatπ′(0) = q1 
= 0 (mod 3). For x = 1 and
x = 2, and taking into account the equality (q2 + q4) = 0 (mod 3), from (3.85), we
have thatπ′(1) = q1+q2+2·q5 
= 0 (mod 3) andπ′(2) = q1+q4+2·q5 
= 0 (mod 3),
respectively. Then, according to Theorem3.7, it results that π(x) is a PP (mod 3nL ,3).

�
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3.9.3 Case p = 5

3.9.3.1 Subcase p = 5 and nL,5 = 1

Proposition 3.33 (Dickson 1896) The only normalized quintic PPs (mod 5) are
π̄(x) = x5 (mod 5), π̄(x) = x5 − αx (mod 5) (α not a fourth power) and π̄(x) =
x5 − 2αx3 + α2x (mod 5) (α not a square).

Theorem 3.34 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod 5) is PP if and only
if:

(1) q4 = q2 = 0 (mod 5) and (q1 + q5) 
= 0 (mod 5), when q3 = 0 (mod 5),
or if and only if:

(2) q4 = 0 (mod 5) and (q2)2 = 3(q1 + q5)q3 (mod 5), when q3 
= 0 (mod 5).

Proof From Propositions3.13 and 3.33, we have that, when q5 
= 0 (mod 5), all
5-PPs can be obtained with the formula aπ̄(x) + c, where π̄(x) = x5 (mod 5) or
π̄(x) = x5−αx (mod 5) (α not a fourth power) or π̄(x) = x5−2αx3+α2x (mod 5)
(α not a square). We note that if α is not a fourth power modulo 5, then α ∈ {

2, 3, 4
}

and, if α is not a square modulo 5, then α ∈ {
2, 3

}
.

When π̄(x) = x5 (mod 5), it follows that q5 
= 0 (mod 5), q4 = 0 (mod 5),
q3 = 0 (mod 5), q2 = 0 (mod 5) and q1 = 0 (mod 5).

When π̄(x) = x5 − αx (mod 5) (α ∈ {
2, 3, 4

}
), it follows that q5 
= 0 (mod 5),

q4 = 0 (mod 5), q3 = 0 (mod 5), q2 = 0 (mod 5) and q1 + αq5 = 0 (mod 5) for
only one α ∈ {

2, 3, 4
}
.

When π̄(x) = x5 − 2αx3 + α2x (mod 5) (α ∈ {
2, 3

}
), we have that q5 
=

0 (mod 5), q4 = 0 (mod 5), q3 = −2αq5 (mod 5), q2 = 0 (mod 5) and q1 = α2q5 =
4q5 (mod 5). For α ∈ {

2, 3
}
, the equality q3 = −2αq5 (mod 5) is equivalent to

q3 + q5 = 0 (mod 5) or q3 − q5 = 0 (mod 5), and the equality q1 = 4q5 (mod 5) is
equivalent to (q1 + q5) = 0 (mod 5).

There are four null quintic polynomials modulo 5 (π(x) is a null polynomial
modulo L if π(x) = 0 (mod L), ∀x ∈ ZL ). These null polynomials modulo 5 are
x5 + 4x (mod 5), 2x5 + 3x (mod 5), 3x5 + 2x (mod 5) and 4x5 + x (mod 5), and
therefore we have that a quintic polynomial π(x) = q1x + q2x2 + q3x3 + q4x4 +
q5x5 (mod 5) is equivalent to the polynomial π(x) + q5x + (5 − q5)x5 (mod 5),
∀q5 ∈ Z

∗
5. There are two normalized PPs modulo 5 of degree less than five (Dickson

1896), i.e. π̄(x) = x (mod 5) and π̄(x) = x3 (mod 5). Therefore, a 5-PP can also
result when π(x)+ q5x + (5− q5)x5 (mod 5) = a(x + b)+ c, or π(x)+ q5x + (5−
q5)x5 (mod 5) = a(x + b)3 + c, with a 
= 0, b, c ∈ Z5.

Considering the analysis for CPPs from Sect. 3.7 or for 4-PPs from Sect. 3.8, for
the normalized PP π̄(x) = x (mod 5), it follows that q5 
= 0 (mod 5), q4 = 0 (mod 5),
q3 = 0 (mod 5), q2 = 0 (mod 5) and q1 + q5 
= 0 (mod 5).

We note that for the normalized PPs π̄(x) = x5 (mod 5), π̄(x) = x5−αx (mod 5)
(α ∈ {

2, 3, 4
}
) and π̄(x) = x (mod 5), the common conditions on the coefficients

q5, q4, q3, q2 are q5 
= 0 (mod 5), q4 = 0 (mod 5), q3 = 0 (mod 5) and q2 =
0 (mod 5). The condition for the coefficient q1 is just q1+q5 
= 0 (mod 5), because it



48 3 Permutation Polynomial Based Interleavers. Conditions on Coefficients

includes the conditions for all the normalized PPs above. Indeed, for q1 = 0 (mod 5),
we have q1 + q5 
= 0 (mod 5), ∀q5 
= 0 (mod 5), and the condition q1 + αq5 =
0 (mod 5) for any α ∈ {

2, 3, 4
}
and for only one q5 
= 0 (mod 5) is equivalent

to q1 ∈ {
Z

∗
5 − {−q5}

}
and, therefore, q1 + q5 
= 0 (mod 5). Thus, for the three

normalized PPs, the conditions in (1) result for q5 
= 0 (mod 5).
For the normalized PP π̄(x) = x3 (mod 5), we have q5 
= 0 (mod 5), q4 =

0 (mod 5), q3 
= 0 (mod 5) and (q2)2 = 3(q1 + q5)q3 (mod 5). We note that for
the normalized PP π̄(x) = x5 − 2αx3 + α2x (mod 5) (α ∈ {

2, 3
}
), the conditions

on the coefficients are included in those for the normalized PP π̄(x) = x3 (mod 5),
because for q2 = 0 (mod 5) and q1 + q5 = 0 (mod 5), we have that (q2)2 =
3(q1 + q5)q3 (mod 5) = 0 (mod 5). Thus, for the two normalized PPs, conditions
(2) result for q5 
= 0 (mod 5).

When q5 = 0 (mod 5), we can use the test on the coefficients of a 4-PP from
Sect. 3.8.5, for the case 3 � (p − 1) and nL ,p = 1. This is given by conditions (1) or
(2) for q5 = 0 (mod 5). �

3.9.3.2 Subcase p = 5 and nL,5 > 1

Theorem 3.35 π(x) = q1x+q2x2+q3x3+q4x4+q5x5 (mod 5nL ,5), with nL ,5 > 1,
is PP if and only if:

(1) q4 = q3 = q2 = 0 (mod 5), q1 
= 0 (mod 5) and (q1 + q5) 
= 0 (mod 5),
or if and only if:

(2) q4 = 0 (mod 5), (q2)2 = 3(q1 + q5)q3 (mod 5) and

(2.1) q3 + q5 = 0 (mod 5),
or

(2.2) q3 − q5 = 0 (mod 5),

when q5 
= 0 (mod 5),
or if and only if:

(3) q4 = q3 = q2 = 0 (mod 5) and q1 
= 0 (mod 5), when q5 = 0 (mod 5).

Proof “ ⇒” To prove the necessity, we assume that π(x) is a PP (mod 5nL ,5), with
nL ,5 > 1. Then, from Theorem3.7, it follows that π(x) is a PP (mod 5) and

π′(x) = q1 + 2q2x + 3q3x
2 + 4q4x

3 + 5q5x
4 (mod 5) =

= q1 + 2q2x + 3q3x
2 + 4q4x

3 
= 0 (mod 5) (3.88)

Because π(x) is PP (mod 5), q4 = 0 (mod 5) and, consequently

π′(x) = q1 + 2q2x + 3q3x
2 
= 0 (mod 5). (3.89)

As in the proof of Theorem3.34, from Propositions3.13 and 3.33, when q5 
=
0 (mod 5), it follows that all 5-PPs can be obtained with the formula aπ̄(x) + c,
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with a 
= 0, c ∈ Z5, where π̄(x) = x5 (mod 5) or π̄(x) = x5 − αx (mod 5)
(α ∈ {

2, 3, 4
}
) or π̄(x) = x5 − 2αx3 + α2x (mod 5) (α ∈ {

2, 3
}
). Thus, we have

that π′(x) = aπ̄′(x) = q5π̄′(x). In the following we will consider each normalized
PP.

When π̄(x) = x5 (mod 5), it follows that π′(x) = q5π̄′(x) = 5q5x4 (mod 5) =
0 (mod 5). Therefore, the value q1 = 0 (mod 5), under conditions (1) from Theo-
rem3.34, is invalid for this case.

When π̄(x) = x5 − αx (mod 5) (α ∈ {
2, 3, 4

}
), we have π′(x) = q5π̄′(x) =

q5(5x4 − α) (mod 5) = −αq5 (mod 5) 
= 0 (mod 5), ∀q5 
= 0 (mod 5) for
α ∈ {

2, 3, 4
}
.

When π̄(x) = x5−2αx3+α2x (mod 5) (α ∈ {
2, 3

}
), we haveπ′(x) = q5π̄′(x) =

q5(5x4−2α ·3x2+α2) (mod 5) = 4q5(αx2+1) (mod 5). It is easy to verify that the
equation (αx2+1) = 0 (mod 5) has no solutions forα = 2 orα = 3. Because in this
case π′(x) 
= 0, ∀x ∈ Z5, conditions (2) from Theorem3.34, for q5 
= 0 (mod 5), are
still valid when q3 + q5 = 0 (mod 5) or q3 − q5 = 0 (mod 5), and result conditions
(2) from Theorem3.35.

For the two normalized PPsmodulo 5 of degree less than 5, when q5 
= 0 (mod 5),
all 5-PPs can be obtainedwith the formulaπ(x)+q5x+(5−q5)x5 (mod 5) = aπ̄(x+
b)+c, with a 
= 0, b, c ∈ Z5. Thus, it follows thatπ′(x) = (aπ̄′(x+b)−q5) (mod 5).

When π̄(x) = x (mod 5), a = q1 + q5 and we have that π′(x) = q1 (mod 5).
Therefore, beside conditions (1) from Theorem3.34, when q5 
= 0 (mod 5) we
have additionally to impose q1 
= 0 (mod 5), resulting in conditions (1) from Theo-
rem3.35.

When π̄(x) = x3 (mod 5), then a = q3 and we have π′(x) = q3π̄′(x + b)− q5 =
3q3(x + b)2 − q5. As q3 
= 0 (mod 5) then from the proof of Lemma3.19, it

follows that b = q2
3q3

. The equation 3q3(x + b)2 − q5 = 0 (mod 5) is equivalent

to (x + b)2 = q5
3q3

(mod 5). For this equation to have no solution,
q5
3q3

cannot be a

square modulo 5, that is
q5
3q3

= 2 (mod 5) or
q5
3q3

= 3 (mod 5). These equalities are

equivalent to q3 − q5 = 0 (mod 5) or q3 + q5 = 0 (mod 5), respectively. Therefore,
besides equalities (2) from Theorem3.34, when q5 
= 0 (mod 5), we have to impose
the equalities q3 + q5 = 0 (mod 5) or q3 − q5 = 0 (mod 5), resulting in conditions
(2) of Theorem3.35.

When q5 = 0 (mod 5), we can apply the coefficient test on a 4-PPwhen 3 � (p−1)
and nL ,p > 1 from Sect. 3.8.4. This is given by conditions (3) from Theorem3.35.

“ ⇐” To prove the sufficiency, we assume that the conditions on the coefficients
from the theorem statement are fulfilled. From these conditions, according to Theo-
rem3.34, we have that π(x) is PP (mod 5). According to Theorem3.7, we still need
to show that π′(x) 
= 0 (mod 5), ∀x ∈ Z5, where π′(x) is that from (3.89).

In cases (1) and (3), as q3 = q2 = 0 (mod 5), we have that π′(x) = q1 
=
0 (mod 5), ∀x ∈ Z5.

Case (2) follows from the equivalence of equations π′(x) = 0 (mod 5) and

(x + b)2 = q5
3q3

(mod 5), with b = q2
3q3

. Therefore, for conditions (2.1) or (2.2) the
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Table 3.5 Quintic Normalized PPs modulo p for p > 5

Normalized PP p

π̄(x) = x5 p 
= 1 (mod 5)

π̄(x) = x5 ± 2x2 p = 7

π̄(x) = x5 + αx3 ± x2 + 3α2x , α not a square p = 7

π̄(x) = x5 + αx3 + 5−1α2x , α arbitrary p = 2, 3 (mod 5)

π̄(x) = x5 + αx3 + 3α2x , α not a square p = 13

equation has no solution modulo 5. Thus, π′(x) 
= 0 (mod 5), ∀x ∈ Z5, also in this
case. �

Because for p > 5 there are seven normalized quintic PPs (Dickson 1896) (given
in Table3.5), we give a unified approach for the conditions on the coefficients of a
5-PP, when the normalized PP has the form:

π̄(x) = x5 + a3x
3 + a2x

2 + a1x . (3.90)

Lemma 3.36 Let there be π(x) = q1x+q2x2+q3x3+q4x4+q5x5 (mod p), where
q5 
= 0 (mod p). Then, π(x) can be factorized as π(x) = a

(
(x +b)5 +a3(x +b)3 +

a2(x + b)2 + a1(x + b)
) + c (mod p) if and only if the following three conditions

are fulfilled:

(1) 5q3q5 = 2(q4)2 + 5a3(q5)2 (mod p),
(2) 25q2(q5)2 = 2(q4)3 + 15a3q4(q5)2 + 25a2(q5)3 (mod p),
(3) 125q1(q5)3 = (q4)4 + 15a3(q4)2(q5)2 + 50a2q4(q5)3+

+125a1(q5)4 (mod p).

Proof We consider that π(x) = a
(
(x + b)5 + a3(x + b)3 + a2(x + b)2 + a1(x +

b)
) + c (mod p). Then, we can write

π(x) = ax5 + 5abx4 + a(10b2 + a3)x3+
+a(10b3 + 3a3b + a2)x2+

+a(5b4 + 3a3b2 + 2a2b + a1)x+
+a(b5 + a3b

3 + a2b
2 + a1b)x + c (mod p) (3.91)

By identifying the coefficients of terms of degree 5, 4, 3, 2, 1 and 0, we have

a = q5, (3.92)

b = q4
5q5

(mod p), (3.93)
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q3 = 10q5

(
q4
5q5

)2

+ a3q5 (mod p), (3.94)

q2 = 10q5

(
q4
5q5

)3

+ 3a3q5
q4
5q5

+ a2q5 (mod p), (3.95)

q1 = 5q5

(
q4
5q5

)4

+ 3a3q5

(
q4
5q5

)2

+ 2a2q5
q4
5q5

+ a1q5 (mod p), (3.96)

c = −q5

((
q4
5q5

)5

+ a3

(
q4
5q5

)3

+ a2

(
q4
5q5

)2

+ a1
q4
5q5

)
(mod p), (3.97)

Equations (3.94)–(3.96) are equivalent to:

5q3q5 = 2(q4)
2 + 5a3(q5)

2 (mod p), (3.98)

5q2(q5)
2 = 2(q4)

3 + 15a3q4(q5)
2 + 25a2(q5)

3 (mod p), (3.99)

and

125q1(q5)
3 = (q4)

4+15a3(q4)
2(q5)

2+50a2q4(q5)
3+125a1(q5)

4 (mod p), (3.100)

respectively.
Then, we have

π(x) = q5

((
x + q4

5q5

)5

+ a3

(
x + q4

5q5

)3

+ a2

(
x + q4

5q5

)2

+

+a1

(
x + q4

5q5

))
− q5

((
q4
5q5

)5

+ a3

(
q4
5q5

)3

+ a2

(
q4
5q5

)2

+ a1
q4
5q5

)

(mod p) = q5x5 + q4x4 +
(
10q5

(
q4
5q5

)2

+ a3q5

)
x3+

+
(
10q5

(
q4
5q5

)3

+ 3a3q5
q4
5q5

+ a2q5

)
x2+

+
(
5q5

(
q4
5q5

)4

+ 3a3q5

(
q4
5q5

)2

+ 2a2q5
q4
5q5

+ a1q5

)
x (mod p) (3.101)

Therefore, conditions (3.98), (3.99) and (3.100) have to be met, that is, the three
conditions of the lemma statement.

The reciprocal is proved in the reverse way. �
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To facilitate the handling of cases for PPs modulo pnL ,p , with p > 5 and nL ,p > 1,
we remark that when a quintic PP has a corresponding normalized quintic PP, π̄(x),
according to Proposition3.12, it is of the form π(x) = aπ̄(x + b) + c, with a 
=
0, b, c ∈ Zp. According to Theorem3.7, it is required that π′(x) = aπ̄′(x + b) 
=
0 (mod p), ∀x ∈ Zp. Therefore, if x is a solution for the equation π̄′(x) = 0 (mod p),
then x−b is a solution for the equationπ′(x) = 0 (mod p). The next lemma addresses
the solving of equation π̄′(x) = 0 (mod p), for each normalized PP from Table3.5.

We note that if α is not a square modulo 7, then α ∈ {3, 5, 6}, and if α is not a
square modulo 13, then α ∈ {2, 5, 6, 7, 8, 11}.
Lemma 3.37 Let π̄(x) be a normalized PP from Table3.5. The equation π̄′(x) =
0 (mod p) has always solutions modulo p, except for π̄(x) = x5 + αx3 + 5−1α2x,
with α ∈ Z

∗
p and p = 2, 3 (mod 5).

Proof For π̄(x) = x5 (mod p), with p 
= 1 (mod 5), we have π̄′(x) = 5x4 =
0 (mod p), with solution x = 0.

For π̄(x) = x5 ± 2x2 (mod 7), we have π̄′(x) = 5x4 ± 4x = 0 (mod 7), with
solution x = 0.

For π̄(x) = x5 + αx3 ± x2 + 3α2x (mod 7), with α ∈ {3, 5, 6}, we have π̄′(x) =
5x4 + 3αx2 ± 2x + 3α2 = 0 (mod 7). It can be easily verified that for α = 3, the
solutions are x = 2 and x = 5, for α = 5, the solutions are x = 3 and x = 4, and
for α = 6, the solutions are x = 1 and x = 6.

For π̄(x) = x5 + αx3 + 3α2x (mod 13), with α ∈ {2, 5, 6, 7, 8, 11}, we have
π̄′(x) = 5x4 + 3αx2 + 3α2 = 0 (mod 13). It can be easily verified that for α = 2,
the solutions are x = 6 and x = 7, for α = 5, the solutions are x = 5 and x = 8,
for α = 6, the solutions are x = 2 and x = 11, for α = 7, the solutions are x = 3
and x = 10, for α = 8, the solutions are x = 1 and x = 12, and for α = 11, the
solutions are x = 4 and x = 9.

For π̄(x) = x5 +αx3 + 5−1α2x (mod p), with p = 2, 3 (mod 5) and arbitrary α,
we have π̄′(x) = 5x4 +3αx2 +5−1α2 = 0 (mod p). We use the substitution x2 = y
and one of the following equivalent equations result: 5y2+3αy+5−1α2 = 0 (mod p)
or 25y2 + 15αy + α2 = 0 (mod p) or (5y)2 + 2 · 5y · 2−1 · 3α + (2−1 · 3α)2 +
α2 − (2−1 · 3α)2 = 0 (mod p) or (5y + 2−1 · 3α)2 + α2 − (2−1 · 3α)2 = 0 (mod p)
or (10y + 3α)2 + 4α2 − (3α)2 = 0 (mod p) or (10y + 3α)2 = 5α2 (mod p).
The last equation has solutions modulo p for α 
= 0 (mod p) if 5α2 is a quadratic
residuemodulo p. Asα2 is a quadratic residue, according to Theorem 85 fromHardy
and Wright (1975), 5α2 is a quadratic residue, only if 5 is a quadratic residue. But,
according to Theorem97 in Hardy and Wright (1975), 5 is a quadratic non-residue
for p = 2, 3 (mod 5). Therefore, the equation (10y + 3α)2 = 5α2 (mod p) has no
solution for p = 2, 3 (mod 5) and α 
= 0 (mod p). �
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3.9.4 Case p = 7

3.9.4.1 Subcase p = 7 and nL,7 = 1

Theorem 3.38 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod 7) is PP if and only
if:

(1) 4q2(q5)2 = 2(q4)3 (mod 7) and 6q1(q5)3 = (q4)4 (mod 7),
or if and only if:

(2) 4q2(q5)2 = 2(q4)3 ± (q5)3 (mod 7) and
6q1(q5)3 = (q4)4 ± 2q4(q5)3 (mod 7),
when q5 
= 0 (mod 7) and 5q3q5 = 2(q4)2 (mod 7),
or if and only if:

(3) 4q2(q5)2 = 2(q4)3 + αq4(q5)2 (mod 7) and
6q1(q5)3 = (q4)4 + α(q4)2(q5)2 + 4α2(q5)4

(mod 7), where α = (q3q5 + (q4)2) · (
(q5)2

)−1
(mod 7),

when q5 
= 0 (mod 7) and 5q3q5 
= 2(q4)2 (mod 7),
or if and only if:

(4) 4q2(q5)2 = 2(q4)3 + αq4(q5)2 ± 4(q5)3 (mod 7) and
6q1(q5)3 = (q4)4 + α(q4)2(q5)2 ± q4(q5)3 + 4α2(q5)4 (mod 7),
where α = (q3q5 + (q4)2) · (

(q5)2
)−1

(mod 7),
when α ∈ {3, 5, 6}, q5 
= 0 (mod 7) and 5q3q5 
= 2(q4)2 (mod 7),

(5) 3(q3)2 = q2q4 (mod 7) and 2q1(q4)2 = (q3)3 + (q4)3,
or if and only if:

(6) 3(q3)2 = q2q4 (mod 7) and 2q1(q4)2 = (q3)3 + 6(q4)3 (mod 7),
when q5 = 0 (mod 7) and q4 
= 0 (mod 7),
or if and only if:

(7) q3 = q2 = 0 (mod 7) and q1 
= 0 (mod 7),
when q5 = q4 = 0 (mod 7).

Proof If q5 
= 0 (mod 7), considering Proposition3.12, Lemma3.36 and the nor-
malized PPs modulo 7 from Table3.5, the next conditions result:

(1) 5q3q5 = 2(q4)2 (mod 7), 4q2(q5)2 = 2(q4)3 ± (q5)3 (mod 7) and
6q1(q5)3 = (q4)4 ± 2q4(q5)3 (mod 7),
or

(2) 5q3q5 = 2(q4)2 + 5α(q5)2 (mod 7),
4q2(q5)2 = 2(q4)3 + αq4(q5)2 ± 4(q5)3 (mod 7) and
6q1(q5)3 = (q4)4 + α(q4)2(q5)2 ± q4(q5)3 + 4α2(q5)4 (mod 7), for only one
α ∈ {3, 5, 6},
or

(3) 5q3q5 = 2(q4)2 + 5α(q5)2 (mod 7),
4q2(q5)2 = 2(q4)3 + αq4(q5)2 (mod 7) and
6q1(q5)3 = (q4)4 + α(q4)2(q5)2 + 4α2(q5)4 (mod 7), for only one α ∈ Z7.
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Because conditions (2) and (3) above need up to three and seven sets of checking
conditions, respectively, it is more efficient to compute the value of α from the
first congruence equation in these sets of conditions. This congruence equation is
equivalent to:

α(q5)
2 = q3q5 + (q4)

2 (mod 7) (3.102)

Because q5 
= 0 (mod 7), we have (q5)2 
= 0 (mod 7). Then, the congruence
equation (3.102) has only one solution (Hardy and Wright 1975), which is α =
0 (mod 7) if 5q3q5 = 2(q4)2 (mod 7), andα 
= 0 (mod 7) if 5q3q5 
= 2(q4)2 (mod 7).
To find out the solution, we need to compute the inverse modulo 7 of (q5)2. An
algorithm for finding the arithmetic inverse of an integer modulo another integer is
given in Table II from Ryu and Takeshita (2006) (see Algorithm2 from Chap. 5).
The six values of the inverses modulo 7 for {1, 2, 3, 4, 5, 6} are {1, 4, 5, 2, 3, 6},
respectively, in this order. These values can be stored in an array before proceeding
to find 5-PPs modulo a number which contains 7 as a prime factor. Thus, if q5 
=
0 (mod 7), the conditions (1) or (2) and (3) or (4) from the theorem result.

If q5 = 0 (mod 7), we can apply the test coefficient for 4-PPs from Sect. 3.8.3,
resulting the conditions (5) or (6) or (7) from Theorem3.38. �

3.9.4.2 Subcase p = 7 and nL,7 > 1

Theorem 3.39 π(x) = q1x+q2x2+q3x3+q4x4+q5x5 (mod 7nL ,7), with nL ,7 > 1,
is PP if and only if:

(1) 5q3q5 
= 2(q4)2 (mod 7), 4q2(q5)2 = 2(q4)3 + αq4(q5)2 (mod 7) and
6q1(q5)3 = (q4)4 + α(q4)2(q5)2 + 4α2(q5)4 (mod 7), where α = (q3q5 +
(q4)2) · (

(q5)2
)−1

(mod 7), when q5 
= 0 (mod 7),
or if and only if:

(2) q4 = q3 = q2 = 0 (mod 7) and q1 
= 0 (mod 7), when q5 = 0 (mod 7).

Proof If q5 
= 0 (mod 7), according to Theorem3.7 and Lemma3.37, π(x) is
PP if and only if the normalized PP leading to π(x) (mod 7) is π̄(x) = x5 +
αx3 + 5−1α2x (mod 7), with α ∈ Z

∗
7. Because α 
= 0 (mod 7), it is required that

5q3q5 
= 2(q4)2 (mod 7). Then, the conditions on the coefficients are those from (3)
in Theorem3.38.

If q5 = 0 (mod 7), we can apply the conditions on the coefficients for 4-PPs
(mod 7nL ,7)with nL ,7 > 1 from Sect. 3.8.4. They are those in (2) from Theorem3.39.

�
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3.9.5 Case p = 13

3.9.5.1 Subcase p = 13 and nL,13 = 1

Theorem 3.40 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod 13) is PP if and
only if:

(1) 12q2(q5)2 = 2(q4)3 (mod 13) and 8q1(q5)3 = (q4)4 (mod 13),
when q5 
= 0 (mod 13) and 5q3q5 = 2(q4)2 (mod 13),
or if and only if:

(2) 12q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13) and
8q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 + 12α2(q5)4 (mod 13),
where α = (q3q5 + 10(q4)2) · (

(q5)2
)−1

(mod 13),
when q5 
= 0 (mod 13) and 5q3q5 
= 2(q4)2 (mod 13),
or if and only if:

(3) 12q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13) and
8q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 + 11α2(q5)4 (mod 13),
where α = (q3q5 + 10(q4)2) · (

(q5)2
)−1

(mod 13),
when α ∈ {2, 5, 6, 7, 8, 11}, q5 
= 0 (mod 13) and
5q3q5 
= 2(q4)2 (mod 13),
or if and only if:

(4) q4 = q3 = q2 = 0 (mod 13) and q1 
= 0 (mod 13),
when q5 = 0 (mod 13).

Proof If q5 
= 0 (mod 13), considering Proposition3.12, Lemma3.36 and the nor-
malized PPs modulo 13 from Table3.5, the next conditions result:

(1) 5q3q5 = 2(q4)2 + 5α(q5)2 (mod 13),
12q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13) and
8q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 + 12α2(q5)4 (mod 13), for only one α ∈ Z13,
or

(2) 5q3q5 = 2(q4)2 + 5α(q5)2 (mod 13),
12q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13) and
8q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 + 11α2(q5)4 (mod 13), for only one α ∈
{2, 5, 6, 7, 8, 11}.

Because the conditions above need up to 13 and six sets of checking conditions,
respectively, it is more efficient to compute the value of α from the first congruence
equation in these sets of conditions. This congruence equation is equivalent to:

α(q5)
2 = q3q5 + 10(q4)

2 (mod 13) (3.103)

Because q5 
= 0 (mod 13), we have (q5)2 
= 0 (mod 13). Then, the congruence equa-
tion (3.103) has only one solution (Hardy andWright 1975), which isα = 0 (mod 13)
if 5q3q5 = 2(q4)2 (mod 13), and α 
= 0 (mod 13) if 5q3q5 
= 2(q4)2 (mod 13).
The 12 values of the inverses modulo 13 for {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} are
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{1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12}, in this order, and they can be stored in an array
before to proceed for finding 5-PPs modulo a number which contains 13 as prime
factor. Thus, if q5 
= 0 (mod 13), the conditions (1) or (2) or (3) in the theorem result.

If q5 = 0 (mod 13), we can apply the test for 4-PPs from Sect. 3.8.4. This is given
by conditions (4) from Theorem3.40. �

3.9.5.2 Subcase p = 13 and nL,13 > 1

Theorem 3.41 π(x) = q1x+q2x2+q3x3+q4x4+q5x5 (mod 13nL ,13), with nL ,13 >

1, is PP if and only if:

(1) 5q3q5 
= 2(q4)2 (mod 13),
12q2(q5)2 = 2(q4)3 + 2αq4(q5)2 (mod 13) and
8q1(q5)3 = (q4)4 + 2α(q4)2(q5)2 + 12α2(q5)4 (mod 13),
where α = (q3q5 + 10(q4)2) · (

(q5)2
)−1

(mod 13),
when q5 
= 0 (mod 13),
or if and only if:

(2) q4 = q3 = q2 = 0 (mod 13) and q1 
= 0 (mod 13),
when q5 = 0 (mod 13).

Proof If q5 
= 0 (mod 13), according to Theorem3.7 and Lemma3.37, π(x) is PP
if and only if the normalized PP leading to π(x) (mod 13) is π̄(x) = x5 + αx3 +
5−1α2x (mod 13), with α ∈ Z

∗
13. Because α 
= 0 (mod 13), it is required that

5q3q5 
= 2(q4)2 (mod 13). Then, the conditions on the coefficients are those from
(2) in Theorem3.40.

If q5 = 0 (mod 13), we can apply the conditions on the coefficients for 4-PPs
(mod 13nL ,13) with nL ,13 > 1 from Sect. 3.8.4. They are those in (2) from Theo-
rem3.41. �

3.9.6 Case p = 1 (mod 5)

3.9.6.1 Subcase p = 1 (mod 5) and nL, p = 1

Theorem 3.42 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod p), with p =
1 (mod 5), is PP if and only if:

(1) q5 = q4 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 � (p − 1) and q3 = 0 (mod p),
or if and only if:

(2) q5 = q4 = 0 (mod p) and (q2)2 = 3q1q3 (mod p),
when 3 � (p − 1) and q3 
= 0 (mod p),
or if and only if:
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(3) q5 = q4 = q3 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 | (p − 1).

Proof Because in this case there are no normalized PPs of fifth or fourth degree, we
can apply the coefficient test for CPPs from Sect. 3.7.4.1. �

3.9.6.2 Subcase p = 1 (mod 5) and nL, p > 1

Theorem 3.43 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod pnL ,p ), with p =
1 (mod 5) and nL ,p > 1, is PP if and only if q5 = q4 = q3 = q2 = 0 (mod p) and
q1 
= 0 (mod p).

Proof Because in this case there are no normalized PPs of fifth or fourth degree, we
can apply the coefficient test for CPPs from Sect. 3.7.4.2. �

3.9.7 Case p = 2, 3 (mod 5) with p > 13

3.9.7.1 Subcase p = 2, 3 (mod 5) with p > 13 and nL, p = 1

Theorem 3.44 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod p), with p =
2, 3 (mod 5) and p > 13, is PP if and only if:

(1) 25q2(q5)2 = 2(q4)3 (mod p) and 125q1(q5)3 = (q4)4 (mod p),
when q5 
= 0 (mod p) and 5q3q5 = 2(q4)2 (mod p),
or if and only if:

(2) 25q2(q5)2 = 2(q4)3 + 15αq4(q5)2 (mod p) and
125q1(q5)3 = (q4)4 + 15α(q4)2(q5)2 + 25α2(q5)4 (mod p),
where α = (5q3q5 + (p − 2) · (q4)2) · (

5(q5)2
)−1

(mod p),
when q5 
= 0 (mod p) and 5q3q5 
= 2(q4)2 (mod p),
or if and only if:

(3) q4 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 � (p − 1) and q5 = q3 = 0 (mod p),
or if and only if:

(4) q4 = 0 (mod p) and (q2)2 = 3q1q3 (mod p),
when 3 � (p − 1), q5 = 0 (mod p) and q3 
= 0 (mod p),
or if and only if:

(5) q4 = q3 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 | (p − 1) and q5 = 0 (mod p).

Proof If q5 
= 0 (mod p), by considering Proposition3.12, Lemma3.36 and the
normalized PPs modulo p from Table3.5, when p = 2, 3 (mod 5) and p > 13, that
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is π̄(x) = x5 (mod p) and π̄(x) = x5 + αx3 + 5−1α2x (mod p), with α ∈ Z
∗
p, the

next conditions result:

5q3q5 = 2(q4)2 + 5α(q5)2 (mod p),
25q2(q5)2 = 2(q4)3 + 15αq4(q5)2 (mod p) and
125q1(q5)3 = (q4)4 + 15α(q4)2(q5)2 + 25α2(q5)4 (mod p), for only one α ∈ Zp.

Because the conditions above need up to p sets of checking conditions, it is more
efficient to compute the value of α from the first congruence equation from this set
of conditions. This congruence equation is equivalent to:

α · 5(q5)2 = 5q3q5 + (p − 2) · (q4)2 (mod p) (3.104)

Becauseq5 
= 0 (mod p), we have (q5)2 
= 0 (mod p). Then, the congruence equa-
tion (3.104) has only one solution (Hardy andWright 1975), which isα = 0 (mod p)
if 5q3q5 = 2(q4)2 (mod p), and α 
= 0 (mod p) if 5q3q5 
= 2(q4)2 (mod p). Thus,
if q5 
= 0 (mod p), conditions (1) or (2) in the theorem result.

If q5 = 0 (mod p), we can apply the test for 4-PPs from Sect. 3.8.4. This is given
by conditions (3) or (4) or (5) from Theorem3.44. �

3.9.7.2 Subcase p = 2, 3 (mod 5) with p > 13 and nL, p > 1

Theorem 3.45 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod pnL ,p ), with p =
2, 3 (mod 5), p > 13 and nL ,p > 1, is PP if and only if:

(1) 5q3q5 
= 2(q4)2 (mod p),
25q2(q5)2 = 2(q4)3 + 15αq4(q5)2 (mod p) and
125q1(q5)3 = (q4)4 + 15α(q4)2(q5)2 + 25α2(q5)4 (mod p),
where α = (5q3q5 + (p − 2) · (q4)2) · (

5(q5)2
)−1

(mod p),
when q5 
= 0 (mod p),
or if and only if:

(2) q4 = q3 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when q5 = 0 (mod p).

Proof If q5 
= 0 (mod p), according to Theorem3.7 and Lemma3.37, π(x) is PP if
and only if the normalized PP leading to π(x) (mod p) is π̄(x) = x5 + αx3 +
5−1α2x (mod p), with α ∈ Z

∗
p. Because α 
= 0 (mod p), it is required that

5q3q5 
= 2(q4)2 (mod p). Then, the conditions for the coefficients are those in
(2) from Theorem3.44.

If q5 = 0 (mod p), we can apply the conditions on coefficients for 4-PPs
(mod pnL ,p ) with nL ,p > 1 from Sect. 3.8.4. They are those in (2) from Theo-
rem3.45. �
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3.9.8 Case p = 4 (mod 5)

3.9.8.1 Subcase p = 4 (mod 5) and nL, p = 1

Theorem 3.46 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod p), with p =
4 (mod 5), is PP if and only if:

(1) 5q3q5 = 2(q4)2 (mod p), 25q2(q5)2 = 2(q4)3 (mod p) and
125q1(q5)3 = (q4)4 (mod p),
when q5 
= 0 (mod p),
or if and only if:

(2) q4 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 � (p − 1) and q5 = q3 = 0 (mod p),
or if and only if:

(3) q4 = 0 (mod p) and (q2)2 = 3q1q3 (mod p),
when 3 � (p − 1), q5 = 0 (mod p) and q3 
= 0 (mod p),
or if and only if:

(4) q4 = q3 = q2 = 0 (mod p) and q1 
= 0 (mod p),
when 3 | (p − 1) and q5 = 0 (mod p).

Proof If q5 
= 0 (mod p), the conditions in the theorem result by considering Propo-
sition3.12, Lemma3.36 and the normalized PP modulo p from Table3.5, when
p = 4 (mod 5), i.e. π̄(x) = x5 (mod p).

If q5 = 0 (mod p), we can apply the test for 4-PPs from Sect. 3.8.4. �

3.9.8.2 Subcase p = 4 (mod 5) and nL, p > 1

Theorem 3.47 π(x) = q1x + q2x2 + q3x3 + q4x4 + q5x5 (mod pnL ,p ), with p =
4 (mod 5) and nL ,p > 1, is PP if and only if q5 = q4 = q3 = q2 = 0 (mod p) and
q1 
= 0 (mod p).

Proof Because in this case the only normalized quintic PP is π̄(x) = x5 (mod p) and
the equation π̄′(x) = 0 (mod p) has always solutions, we have that q5 = 0 (mod p)
and thus, we can apply the coefficient test for 4-PPs from Sect. 3.8.4. �

3.10 Sufficient Conditions on the Coefficients of a
Polynomial of Any Degree so that It Is PP Modulo
Any Positive Integer

Hongyu Zhao and Pingzhi Fan gave in (2007) sufficient conditions on the coefficients
of a polynomial of any degree so that it is PP modulo any positive integer. These are
given in Table3.6, which is similar to Theorem 1 in Zhao and Fan (2007).
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Table 3.6 Sufficient conditions for coefficients q1, q2, . . . , qd so that π(x) in (3.1) is a PP

1(a) p = 2 nL ,2 = 1 (q1 + q2 + · · · + qd ) 
= 0 (mod 2)

1(b) nL ,2 > 1 q1 
= 0, q2 + q4 + q6 + · · · = 0 (mod 2),

q3 + q5 + q7 + · · · = 0 (mod 2)

(2) p > 2 nL ,p ≥ 1 q1 
= 0, q2 = q3 = · · · = qd = 0 (mod p)

In the following we give the proof of the sufficiency for conditions on the coeffi-
cients given in Table3.6.

3.10.1 Case p = 2

This case is identical to that from Lemma3.1 for nL ,2 = 1 and to that from Theo-
rem3.6 for nL ,2 > 1.

3.10.2 Case p > 2

Theorem 3.48 π(x) from (3.1) is PP modulo pnL ,p , with p > 2 and nL ,p ≥ 1, if
q1 
= 0 (mod p) and q2 = q3 = · · · = qd = 0 (mod p).

Proof In this case, as q2 = q3 = · · · = qd = 0 (mod p), for nL ,p = 1 we have

π(x) = q1 · x (mod p) (3.105)

As q1 
= 0 (mod p), from Theorem3.9 it results that π(x) is PP (mod p).
For nL ,p > 1, because the conditions are the same as for nL ,p = 1, it follows that

π(x) is PP (mod p). According to Theorem3.7, we have to show additionally that
π′(x) 
= 0, ∀x ∈ Zp. Considering π(x) from (3.105), it follows that

π′(x) = q1 (mod p) (3.106)

But q1 
= 0 (mod p), thus also π′(x) 
= 0, ∀x ∈ Zp. Therefore, π(x) is PP
(mod pnL ,p ). �

Considering the conditions on the coefficients from Theorem3.6 for PPs of any
degree modulo 2n , from Theorem3.9 for LPPs and from Table3.1 for QPPs, it fol-
lows that for these particular cases, the sufficient conditions of Zhao and Fan, from
Table3.6, also become necessary.

Wemention that Zhao and Fan sufficient conditions were also given, in a different
form, by Jing Sun and Oscar Y. Takeshita in Corollarry 2.5 from Sun and Takeshita
(2005).
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3.11 Getting all Permutation Polynomials of Degrees
up to Five by Weng and Dong Algorithm

In Weng and Dong (2008) an algorithm for getting all PPs of degree no more than
six overZL is derived on the base of normalized PPs, Theorems3.7 and 3.8, Proposi-
tions3.12 and 3.13 and on the Chinese Remainder Theorem (Theorem3.49 below).

In Dickson (1896), all normalized PPs of degree no more than six are given,
except for odd powers of two. The PPs modulo p, for p > 5, of degrees up to five,
which are of interest in this chapter, are given in Table3.7. We mention that the
normalized PP of degree three from Table3.7 was used in Sect. 3.7.4.1 to obtain the
coefficient conditions for a CPPmodulo p > 3, with 3 � (p−1). The two normalized
PPs of degree four from Table3.7 were used in Sect. 3.8.3 to obtain the coefficient
conditions for a 4-PP modulo 7. The normalized PPs of degree five from the last
five rows of Table3.7 were used in Sect. 3.9 to obtain the coefficient conditions for
a 5-PP modulo p with p > 5, or for a 5-PP modulo pnL ,p with p > 5 and nL ,p > 1.

For the primes p = 2, p = 3 and p = 5, the coefficient conditions for PPs of
degrees no more than five were given in Table3.4. We mention that, unlike Table II
from Weng and Dong (2008), the coefficient conditions from Table3.4 provide all
PPs modulo 2, 3 or 5.

ConsideringTheorem3.7, the permutationpolynomials fromTable3.7 canbeused
to get the PPs over a prime at a power greater than one, by imposing the condition
π′(x) 
= 0 (mod p) for every integer x . The PPs modulo p, for p > 5, of degrees up
to five, that fulfill this constraint are given in Table3.8. The proof that the PP from

Table 3.7 Normalized PPs modulo p of degree up to five, for p > 5

Normalized PP p

π̄(x) = x any p

π̄(x) = x3 p 
= 1 (mod 3)

π̄(x) = x4 ± 3x2 p = 7

π̄(x) = x5 p 
= 1 (mod 5)

π̄(x) = x5 ± 2x2 p = 7

π̄(x) = x5 + αx3 ± x2 + 3α2x , p = 7

α not a square

π̄(x) = x5 + αx3 + 5−1α2x , p = 2, 3 (mod 5)

α ∈ Zp

π̄(x) = x5 + αx3 + 3α2x , p = 13

α not a square

Table 3.8 Normalized PPs
modulo p of degree up to
five, for p > 5, that permute
ZpnN ,p , with nN ,p > 1

Normalized PP p

π̄(x) = x any p

π̄(x) = x5 + αx3 + 5−1α2x , p = 2, 3 (mod 5)

α ∈ Z
∗
p
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the third line in Table3.8 fulfills the constraint π′(x) 
= 0 (mod p),∀x ∈ Zp, was
given in Lemma3.37. The proof for the PP π̄(x) = x (mod p) is trivial. For powers
greater than one of the primes 2, 3 or 5, the coefficient conditions are also given in
Table3.4. Unlike Table IV from Weng and Dong (2008), these conditions provide
all PPs modulo a power greater than one of the primes 2, 3 or 5.

If we consider c = 0 and π̄(x) any normalized PP from Table3.7, from Proposi-
tion3.12 all PPs (mod p) of degree d (d ≤ 5) are obtainedwith formula aπ̄(x+b) for
all a 
= 0, b ∈ Zp, when p � d. When p | d, from Proposition3.13 all PPs (mod p)
of degree d (d ≤ 5) are obtainedwith formula aπ̄(x) for all a ∈ Z

∗
p.We recall that for

primes 2, 3 or 5, Table3.4 provides all PPs modulo 2, 3 or 5. Further we consider the
PPs obtained above where π̄(x) is any normalized PP given in Table3.8. To obtain
all PPs (mod pnL ,p ) with nL ,p > 1, we have to add to the previously obtained PPs a
polynomial p ·ρ(x), where ρ(x) is any polynomial over ZpnL ,p−1 . In this way we have
(π(x)+ p ·ρ(x))′ (mod p) = π′(x) (mod p)+ p ·ρ′(x) (mod p) = π′(x) (mod p) 
=
0 (mod p).

In the following, we recall the result of the Chinese remainder theorem.

Theorem 3.49 (Chinese remainder theorem) Suppose n1, n2, . . . , nk are k positive
integers (k ∈ N

∗) that are pairwise coprime. Then, for any given sequence of integers
(a1, a2, . . . , ak), there is an integer x solving the following system of simultaneous
congruencies: ⎧⎪⎪⎨

⎪⎪⎩

x = a1 (mod n1)
x = a2 (mod n2)
..........................

x = ak (mod nk)

(3.107)

Furthermore, all solutions x of this system are congruent modulo the product N =
n1 · n2 · . . . · nk. Hence

x = y (mod ni ), for an i,with 1 ≤ i ≤ k ⇔ x = y (mod N ) (3.108)

Theorem3.49 ensures that for two different sequences a1, a2, . . . , ak , two distinct
modulo N solutions exist.

Below, we give the algorithm for getting all PPs of degrees up to five. This is
a detailed version of the algorithm from Weng and Dong (2008), where we have
considered c = 0.

1. Factor the interleaver length as

L =
nL 1∏
k=1

pk ·
nL 1+nL 2∏
k=nL 1+1

p
nL ,pk
k , (3.109)

where nL ,pk > 1, ∀k = nL 1 + 1, . . . , nL 1 + nL 2, nL1 ≥ 0 is the number of
primes at power of one from the decomposition of L , nL2 ≥ 0 is the number
of primes at powers greater than one from the decomposition of L , and nL1 +
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nL2 ≥ 1. Theorem3.8 assures that if π1(x), π2(x), . . . , πnL 1
(x), πnL 1+1(x), . . . ,

πnL 1+nL 2
(x) is a set of PPsmodulo p1, p2, · · · , pnL 1

, p
nL ,pnL 1+1

nL 1+1 , · · · , and p
nL ,pnL 1+nL 2
nL 1+nL 2

,
respectively, then the corresponding PP π(x) (mod L) is the polynomial which
fulfills the following equalities:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(x) (mod p1) = π1(x) (mod p1)
π(x) (mod p2) = π2(x) (mod p2)
............................................................

π(x) (mod pnL 1
) = πnL 1

(x) (mod pnL 1
)

π(x)
(
mod p

nL ,pnL 1+1

nL 1+1

) = πnL 1+1(x)
(
mod p

nL ,pnL 1+1

nL 1+1

)
.................................................................................

π(x)
(
mod p

nL ,pnL 1+nL 2
nL 1+nL 2

) = πnL 1+nL 2
(x)

(
mod p

nL ,pnL 1+nL 2
nL 1+nL 2

)

(3.110)

2. For k = 1, . . . , nL 1, to get all PPs over Zpk , if pk ≥ 7 one can use the following
formula:

aπ̄(x + b), ∀a 
= 0, b ∈ Zpk , (3.111)

where π̄(x) is any normalized PP (mod pk) from Table3.7. If pk ∈ {2, 3, 5},
Table3.4 provides all PPs (mod pk).

3. For k = nL1 + 1, . . . , nL 1 + nL2, to get all PPs over Zpk
nL ,pk , if pk ≥ 7 one can

use the following formula:

aπ̄(x + b) + p · ρ(x), ∀a 
= 0, b ∈ Zpk , (3.112)

where π̄(x) is any normalized PP (mod pk) from Table3.8 and ρ(x) is any poly-
nomial over Zpk

nL ,pk
−1 . If pk ∈ {2, 3, 5}, Table3.4 provides all PPs (mod p

nL ,pk
k ).

4. Because the numbers p1, . . . , pnL1
, p

nL ,pnL 1+1

nL 1+1 , . . . , p
nL ,pnL 1+nL 2
nL 1+nL 2

, are pairwise
coprime, after Steps 2 and 3, one can get all PPs over ZL by the Chinese
remainder theorem. Thus, if qi,1, qi,2, . . ., qi,nL 1

, qi,nL 1+1, . . ., qi,nL 1+nL 2
, with

i ∈ {1, 2, 3, 4, 5}, is a coefficients’ set of PPs obtained in Steps 2 and 3, then
the coefficient qi of the resulting PP (mod L) is given by the solution of the
following system of simultaneous congruencies:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi = qi,1 (mod p1)
qi = qi,2 (mod p2)
..................................

qi = qi,nL 1
(mod pnL 1

)

qi = qi,nL 1+1
(
mod p

nL ,pnL 1+1

nL 1+1

)
...................................................

qi = qi,nL 1+nL 2

(
mod p

nL ,pnL 1+nL 2
nL 1+nL 2

)

(3.113)

At the end of this chapter we mention that the algorithm above gets all PPs
of degree up to five without any coefficient ordering. If we want to see if a set
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of coefficients of a polynomial of degree no more than five determine a PP, then
the coefficient conditions obtained in the previous sections of this chapter allow to
directly decide in this matter. Using these coefficient conditions, the coefficients of
PPs modulo any positive integer can be obtained in a desired order, which is tractable
in computer processing.
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Chapter 4
Determining the Number of Permutation
Polynomial-Based Interleavers in Terms
of Their Length

4.1 Preliminaries

True PP interleavers are those that cannot be reduced to the same PP interleaver of
smaller degree. This is of interest when we are looking for interleavers of a certain
length.

These numbersmay have a practical application in the search of PP interleavers for
turbo codes, as follows. If we intend to optimize a PP interleaver of a certain length
using a certain criterion, e.g., the distance spectrum of turbo codes, the optimization
can be done among all possible interleavers, if their number is not too large. If the
number of interleavers for a certain length is too large, a random search of a good
interleaver or an optimization in a reduced search space, as in Tarniceriu et al. (2009,
2011), Trifina and Tarniceriu (2014, 2013), is the more practical solution.

The number of all true PP interleavers is given for at most degree 5. For degrees
of PPs of 1, 2, and 3, we will firstly give explicit formulas for the number of all
true different PPs, for each required prime factorization of interleaver length. For
the true PP interleavers of degree from 3 to 5, we will also give and prove formulas
for the number of such interleavers that fulfill only the sufficient conditions of Zhao
and Fan from Sect. 3.10. In each case, according to the prime decomposition of the
interleaver length, we identify the lengths for which the number of such true PPs is
equal to zero. Some comments are made for the lengths used for QPP interleavers in
the LTE standard (3GPP 2008).

The method used is based on the Chinese remainder theorem and is very simple
to be applied.

Because we want to determine the true number of different PP interleavers of a
certain degree we need equivalence conditions between PPs. They will be given in
Sect. 4.2. In Sect. 4.3we describe themethod used, after which in the next subsections
we apply this method and determine the number of all true different LPPs, QPPs and
CPPs and then the number of true different CPPs, 4-PPs and 5-PPs under Zhao and
Fan sufficient conditions.

© Springer Nature Singapore Pte Ltd. 2019
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The number of PPs with degree at most six was addressed in Weng and Dong
(2008), but this approach did not consider the equivalence conditions, nor the number
of polynomials, separately, for each polynomial degree. At the end of this chapter,
in Sect. 4.7, we will give an algorithm, based on the Weng and Dong algorithm
given in Weng and Dong (2008), to compute the number of all true different PP
interleavers of degree at most 5. The algorithm can be easily modified to compute
the number of true different PPs under Zhao and Fan sufficient conditions. Reference
Number of 1-5-PPs (2016) is a link to a file where we computed the number of true
different LPPs,QPPs,CPPs, 4-PPs and 5-PPs, for any interleaver length L ≤ 100000,
using the mentioned algorithm. The number of true different LPPs, QPPs and CPPs
determined with counting formulas given in Sects. 4.3–4.5 can be found in a file at
the link in reference (Number of LPPs/QPPs/CPPs 2015) and they are the same as
those from the file at the link in reference (Number of 1-5-PPs 2016).

4.2 The Equivalence Conditions Between Permutation
Polynomials

The equivalence conditions between permutation polynomials modulo L involve the
notion of NPs modulo L .

In the following we give some essential results regarding NPs from Li (2005), but
with some different notations.

Definition 4.1 (Definition 7 in Li 2005) A polynomial z(x) =
d∑

k=0

qkx
k (mod L) of

degree d ≥ 0 is aNP of degree d modulo L if, ∀x ∈ Z, z(x) = 0 (mod L). Especially,
z(x) = 0 is a trivial null polynomial of degree 0 modulo L .

Theorem 4.2 (Theorem 1 in Li 2005) Assume p1, p2, . . . , pnL are nL distinct prime
numbers and nL ,p1 , nL ,p2 , . . . , nL ,pnL

≥ 1. A polynomial z(x) is a NP modulo L =
nL∏

i=1

p
nL ,pi
i , if and only if z(x) is a NP modulo p

nL ,pi
i , ∀i = 1, nL .

Theorem 4.3 (Theorem 35 in Li 2005) Let π1(x) and π2(x) denote two integer
polynomials of any degrees modulo L, π1(x) is equivalent to π2(x), i.e. π1(x) ≡
π2(x) (mod L) if and only if π1(x) − π2(x) (mod L) is a NP modulo L.

We mention that there are no non-trivial linear null polynomials (LNPs). This
follows from the fact that the equation q1 · x = 0 (mod L) has exactly gcd(q1, L)

solutions in variable x (Theorem 57 from Hardy and Wright 1975). For an LNP, the
previous congruence equation must have L different solutions modulo L . Because
gcd(q1, L) = L only for q1 = 0, L , 2 · L , . . . , i.e. for q1 (mod L) = 0, only the
trivial LNP results.

The necessary and sufficient conditions for quadratic null polynomials (QNPs)
modulo L are given in the next theorem.
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Theorem 4.4 (Theorem 5 in Zhao et al. 2010) z(x) = q0 + q1x + q2x2 (mod L) is
a QNP different from the trivial z(x) = 0 if and only if L is an even integer, q0 = 0,
and q1 = q2 = L/2.

Proof “ ⇒” To prove the sufficiency of the theorem we have to show that
L

2
·

x + L

2
· x2 = 0 (mod L), ∀x ∈ ZL . We can write

L

2
· x + L

2
· x2 = L

2
· x · (x + 1).

As x · (x + 1) is the product of two successive numbers, it is always even and
x · (x + 1)

2
∈ N and thus

L

2
· x · (x + 1) = 0 (mod L), ∀x ∈ ZL .

“ ⇐” To prove the necessity of the theorem, we assume that z(x) is QNP. For
x = 0, it follows that z(0) = q0 (mod L). From z(0) = 0 (mod L), it follows that
q0 = 0. Therefore, from the condition z(x) = 0 (mod L), ∀x ∈ Z

∗
L , it follows:

q2n
2 + q1n = 0 (mod L), n = 1, 2, . . . , L − 1 (4.1)

Summing up the equations in (4.1) for the first n natural numbers, we get the
equivalent equations

q2

n∑

k=1

k2 + q1

n∑

k=1

k = 0 (mod L), n = 1, 2, . . . , L − 1 (4.2)

For each n = 1, 2, . . . , L − 1, (4.2) is equivalent to

q2 · n(n + 1)(2n + 1)

6
+ q1 · n(n + 1)

2
= 0 (mod L) (4.3)

or
n(n + 1)

2
·
(
q2 · 2n + 1

3
+ q1

)
= 0 (mod L) (4.4)

For n = 1 and n = 2, (4.4) becomes

q2 + q1 = 0 (mod L) (4.5)

and
5q2 + 3q1 = 0 (mod L) (4.6)

respectively.
Considering (4.5), (4.6) becomes

2q2 = 0 (mod L) (4.7)
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According to Theorem 57 from Hardy and Wright (1975), Eq. (4.7) has solutions
different from zero only if L is even. In this case gcd(2, L) = 2 and the only solution
different from zero of Eq. (4.7) is q2 = L/2. Then, from (4.5), q1 = L/2 follows
naturally. Considering the sufficiency of the theorem, it is obvious that the solution
q1 = q2 = L/2 satisfies all equations from (4.1) and thus also those from (4.4). In
this way, the theorem is proved. �

Toprove the necessary and sufficient conditions for cubic null polynomials (CNPs)
modulo L the next lemma is needed.

Lemma 4.5 The sum of the first n natural numbers is:

n(n + 1)

2
= 3m if n = 3p or n = 3p + 2, with m, p ∈ N (4.8)

or
n(n + 1)

2
= 3m + 1 if n = 3p + 1, with m, p ∈ N (4.9)

Proof If n = 3p, we have

n(n + 1)

2
= 3p(3p + 1)

2
= 3m,m ∈ N (4.10)

because p(3p + 1) is an even number.
If n = 3p + 2, we have

n(n + 1)

2
= (3p + 2)(3p + 3)

2
= 3(p + 1)(3p + 2)

2
= 3m,m ∈ N (4.11)

because (p + 1)(3p + 2) is an even number.
If n = 3p + 1, we have

n(n + 1)

2
= (3p + 1)(3p + 2)

2
= 9p2 + 9p + 2

2
= 9p(p + 1)

2
+ 1 =

= 3m + 1,m ∈ N (4.12)

because p(p + 1) is an even number. �

The necessary and sufficient conditions for CNPs modulo L are given in the next
theorem from Trifina and Tarniceriu (2013) in a slightly changed form.

Theorem 4.6 The third degree polynomial

z(x) = q0 + q1x + q2x
2 + q3x

3 (mod L), x = 0, 1, . . . , L − 1 (4.13)

is a CNP with q3 > 0, if and only if q0 = 0 and the coefficients q1, q2, q3 are:
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(a) if 2 | L and 3 � L those in cases (I) or (II)

(I) q1 = L

2
, q2 = 0, q3 = L

2

(II) q1 = 0, q2 = L

2
, q3 = L

2

(b) if 2 � L and 3 | L those in cases (III) or (IV)

(III) q1 = 2L

3
, q2 = 0, q3 = L

3

(IV) q1 = L

3
, q2 = 0, q3 = 2L

3
(c) if 6 | L, those in cases (I), (II), (III), (IV) or (V)–(X)

(V) q1 = 5L

6
, q2 = 0, q3 = L

6

(VI) q1 = L

3
, q2 = L

2
, q3 = L

6

(VII) q1 = L

6
, q2 = L

2
, q3 = L

3

(VIII) q1 = 5L

6
, q2 = L

2
, q3 = 2L

3

(IX) q1 = L

6
, q2 = 0, q3 = 5L

6

(X) q1 = 2L

3
, q2 = L

2
, q3 = 5L

6

Proof The proof of the theorem is based on the idea in Zhao et al. (2010) used for
QNP.

So, for a CNP with q0 = 0, we must have

q3n
3 + q2n

2 + q1n = 0 (mod L), n = 1, 2, . . . , L − 1 (4.14)

Summing up the relations in (4.14) for the first n natural numbers, we have:

q3

n∑

k=1

k3 + q2

n∑

k=1

k2 + q1

n∑

k=1

k = 0 (mod L), n = 1, 2, . . . , L − 1 (4.15)

Equation (4.15) can be equivalently written as:

q3 ·
(
n(n + 1)

2

)2

+ q2 · n(n + 1)(2n + 1)

6
+ q1 · n(n + 1)

2
=

= 0 (mod L), n = 1, 2, . . . , L − 1 (4.16)
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or
n(n + 1)

2
·
(
q3 · n(n + 1)

2
+ q2 · 2n + 1

3
+ q1

)
= 0 (mod L),

n = 1, 2, . . . , L − 1 (4.17)

“ ⇒” In the following we prove the sufficiency for each of the cases I–X.
Cases I and II follow directly because of the next relations:

L

2
(x3 + x) = L

2
x(x2 + 1) = 0 (mod L), x = 0, 1, . . . , L − 1 (4.18)

L

2
(x3 + x2) = L

2
x2(x + 1) = 0 (mod L), x = 0, 1, . . . , L − 1 (4.19)

They are true due to the fact that the numbers x(x2 + 1) and x2(x + 1) are even,
∀x ∈ N.

For cases III and IV, as 3 | L , we consider L = 3r , ∀r ∈ N. We have to check the
condition in (4.17).

For case III:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(r · 3m + 2r) = 3rm(3m + 2)
...(3r) (4.20)

• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(r · (3m + 1) + 2r) = 3r(m + 1)(3m + 2)
...(3r) (4.21)

As L = 3r the condition in (4.17) is fulfilled.

For case IV:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(2r · 3m + r) = 3rm(6m + 1)
...(3r) (4.22)

• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(2r · (3m + 1) + r) = 3r(2m + 1)(3m + 1)
...(3r) (4.23)

Thus, in this case the condition in (4.17) is fulfilled.
For cases V–X, as 6 | L , we consider L = 6r , r ∈ N. We have to check the con-

dition in (4.17).
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For case V:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(r · 3m + 5r) = 3rm(3m + 5)
...(6r) (4.24)

because m(3m + 5) is even.
• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(r · (3m + 1) + 5r) = 3rm(3m + 1) + 6r(3m + 1)
...(6r) (4.25)

because m(3m + 1) is even.

For case VI:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(r · 3m + r(2n + 1) + 2r) = 9rm2 + 6rmn + 9rm =

= 9rm(m + 1) + 6rmn
...(6r) (4.26)

because 3 | 9 and m(m + 1) is even.
• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(r · (3m + 1) + r(2n + 1) + 2r) =

= (3m + 1)(3rm + 2rn + 4r) =

= 9rm2 + 6rmn + 15rm + 2rn + 4r =

= 6rmn + 3rm(3m + 5) + 2r(n + 2) =

= 6rmn + 3rm(3m + 5) + 6r(p + 1)
...(6r) (4.27)

because m(3m + 5) is even.

For case VII:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(2r · 3m + r(2n + 1) + r) = 18rm2 + 6rmn + 6rm =

= 6r(3m2 + mn + m)
...(6r) (4.28)
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• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(2r · (3m + 1) + r(2n + 1) + r) =

= (3m + 1)(6rm + 2rn + 4r) =

= 18rm2 + 6rmn + 18rm + 2rn + 4r =

= 6rmn + 18rm(m + 1) + 2r(n + 2) =

= 6rmn + 18rm(m + 1) + 6r(p + 1) =

= 6r(mn + 3rm(m + 1) + p + 1)
...(6r) (4.29)

For case VIII:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(4r · 3m + r(2n + 1) + 5r) = 36rm2 + 6rmn + 18rm =

= 6r(6m2 + mn + 3m)
...(6r) (4.30)

• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(4r · (3m + 1) + r(2n + 1) + 5r) =

= (3m + 1)(12rm + 2rn + 10r) =

= 36rm2 + 6rmn + 42rm + 2rn + 10r =

= 6rmn + 6rm(6m + 7) + 2r(n + 5) =

= 6rmn + 6rm(6m + 7) + 6r(p + 2) =

= 6r(mn + m(6m + 7) + p + 2)
...(6r) (4.31)

For case IX:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(5r · 3m + r) = 3rm(15m + 1)
...(6r) (4.32)

because m(15m + 1) is even.
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• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(5r · (3m + 1) + r) =

= 15rm(3m + 1) + 6r(3m + 1)
...(6r) (4.33)

because 3 | 15 and m(3m + 1) is even.

For case X:

• if condition (4.8) is fulfilled, the sum in (4.17) becomes

3m(5r · 3m + r(2n + 1) + r) = 45rm2 + 6rmn + 15rm =

= 6rmn + 15rm(3m + 1)
...(6r) (4.34)

because 3 | 15 and m(3m + 1) is even.
• if condition (4.9) is fulfilled, the sum in (4.17) becomes

(3m + 1)(5r · (3m + 1) + r(2n + 1) + 4r) =

= (3m + 1)(15rm + 2rn + 10r) =

= 45rm2 + 6rmn + 45rm + 2rn + 10r =

= 6rmn + 45rm(m + 1) + 2r(n + 5) =

= 6rmn + 45rm(m + 1) + 6r(p + 2)
...(6r) (4.35)

because 3 | 45 m(m + 1) is even (for this case n = 3p + 1).

In this way the sufficiency of the theorem is proved.
“ ⇐” In order to prove the necessity of the theorem, we write relation (4.17) for

n = 1, n = 2 and n = 3, obtaining

q3 + q2 + q1 = 0 (mod L), (4.36)

9q3 + 5q2 + 3q1 = 0 (mod L), (4.37)

36q3 + 14q2 + 6q1 = 0 (mod L). (4.38)

Considering (4.36), relations (4.37) and (4.38) become:

6q3 + 2q2 = 0 (mod L), (4.39)

30q3 + 8q2 = 0 (mod L). (4.40)
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Relations (4.39) and (4.40) are equivalent to

6q3 + 2q2 = k1L , k1 ∈ N
∗ (4.41)

30q3 + 8q2 = k2L , k2 ∈ N
∗ (4.42)

Multiplying (4.41) by 4 and subtracting it from (4.42), we get:

6q3 = (k2 − 4k1)L (4.43)

Obviously, from (4.41) and (4.42) we have k2 − 4k1 > 0, and, thus, (4.43) is
equivalent to linear congruence equation:

6q3 = 0 (mod L) (4.44)

which has gcd(L , 6) distinct solutions modulo L (Theorem 57 in Hardy and Wright
1975). They are of the form:

q3 = L · i
gcd(L , 6)

, i = 0, 1, . . . , gcd(L , 6) − 1 (4.45)

Considering (4.44), (4.39) becomes

2q2 = 0 (mod L) (4.46)

whose solutions are

q2 = L · i
gcd(L , 2)

, i = 0, 1, . . . , gcd(L , 2) − 1 (4.47)

The solutions for q1 are obtained from (4.36), taking into account (4.45) and
(4.47). The fact that q0 = 0 results from the condition z(0) = 0 (mod L) and from
(4.13) for x = 0. As gcd(L , 6) can take the values 1, 2, 3 or 6, and gcd(L , 2) can
take the values 1 or 2, we see immediately that all solutions (different from zero) are
those given in the theorem statement. Thus, the theorem is proven. �

In Ryu (2007), Ryu and Takeshita (2011) Jonghoon Ryu gave the number and the
general form of NPs of degree up to d. These are given in the next theorems.

Theorem 4.7 The number of NPs modulo L of degree up to d is
d∏

k=1

gcd(k!, L).
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Theorem 4.8 NPs of degree up to d are of the form

z(x) =
d∑

k=1

{
L

gcd(k!, L)
· τk ·

k−1∏

m=0

(x − m)

}
,

where 0 ≤ τk ≤ gcd(k!, L) − 1 (4.48)

4.3 The Method Used for Determining the Number of True
Different Permutation Polynomial-Based Interleavers
Using the Chinese Remainder Theorem

The Chinese remainder theorem was given in Sect. 3.11 (Theorem 3.49). We recall
that Theorem 3.49 ensures that if n1, n2, . . . , nk are k positive integers (k ∈ N

∗) that
are pairwise coprime and (a1, a2, . . . , ak) is any given sequence of integers, then the
following system of simultaneous congruencies

⎧
⎪⎪⎨

⎪⎪⎩

x = a1 (mod n1)
x = a2 (mod n2)
...........................

x = ak (mod nk)

(4.49)

has exactly one solution x modulo N = n1 · n2 · · · · · nk . Theorem3.49 also ensures
that for two different sequences a1, a2, . . . , ak , exactly two distinct modulo N =
n1 · · · · · nk solutions of system (4.49) exist.

Assume that π(x) from (3.1) is a PP and the prime decomposition of L is L =
nL∏

j=1

p
nL ,p j

j . Let there be:

qi, j = qi
(
mod p

nL ,p j

j

)
,∀ j = 1, nL ,∀i = 1, d. (4.50)

Since the numbers p
nL ,p j

j , ∀ j = 1, nL , are relatively prime to each other, from

the Chinese remainder theorem it follows that for ∀i = 1, d , if we know the values
qi, j ∈ Z

p
nL ,p j
j

, ∀ j = 1, nL , then there is a single number qi ∈ ZL that is precisely the

coefficient qi for the assumed PP.

Since

( d∑

i=1

qi · xi
)(

mod p
nL ,p j

j

) =
( d∑

i=1

qi, j · xi
) (

mod p
nL ,p j

j

)
, from Theorem

3.8, it results that if the coefficients qi, j ∈ Z
p
nL ,p j
j

, i = 1, d , j = 1, nL , are chosen so

that the polynomials

( d∑

i=1

qi, j · xi
)(

mod p
nL ,p j

j

)
are PPsmodulo p

nL ,p j

j ,∀ j = 1, nL ,

then the coefficients qi ∈ ZL , i = 1, d , determine a modulo L PP. Therefore, we can
determine the number of modulo L PPs in the following way:
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(a) We decompose the interleaver length in prime factors

L =
nL∏

j=1

p
nL ,p j

j , so that nL ,p j ∈ N
∗, nL ,p j ≥ 1, ∀ j = 1, nL .

(b) For any j = 1, nL , we find all the coefficients qi, j ∈ Z
p
nL ,p j
j

, i = 1, d , so that the

polynomial

( d∑

i=1

qi, j · xi
)(

mod p
nL ,p j

j

)
is a PP modulo p

nL ,p j

j . This can be done

easily if we know the conditions the coefficients of the PP must meet depending
on p j and nL ,p j . We calculate the number of such PPs modulo p

nL ,p j

j from the
coefficient conditions.

(c) To determine the number of true different PPs, we must take into account the
equivalence conditions imposed for PPs of degree d and considering qd 
= 0.
For QPPs and CPPs, these equivalence conditions are given in Theorems4.3,
4.4 and 4.3, 4.6, respectively. The condition qd = 0 is met only when qd, j = 0,
∀ j = 1, nL . For the remaining number of coefficients qi, j ∈ Z

p
nL ,p j
j

, j = 1, nL ,

we compute the total number of combinations that can lead to a PP modulo L .
It will be the product of numbers of all coefficient combinations for j = 1, nL .

In the next subsections, we apply themethod described above for the case of QPPs
and CPPs and determine the true number of different QPPs and CPPs, respectively,
depending on the types of factors that appear in prime factor decomposition of L . As
in Zhao et al. (2010), we denote by �(L) the Euler function, which is the number
of numbers relatively prime with L , smaller than L . It is given by the following
equation:

�(L) = L ·
∏

p∈P,
p|L

(
1 − 1

p

)
, (4.51)

where P is the set of prime numbers.
Considering Theorem 3.9, the number of LPPs is

CL ,LPPs = �(L) (4.52)

4.4 Determining the Number of All True Different
Quadratic Permutation Polynomial-Based Interleavers

We mention that the equivalence condition of QPPs given in Theorems 4.3 and 4.4
requires that q2 < L/2, when 2 | L .

In the case of QPPs, we have three types of factors, as shown in Table 3.1. These
are considered in the following and for each type of prime factor, the number of
QPPs is determined. The prime factor 2 is considered the first one and the other
prime factors are considered with arbitrary indices j ≥ 2.

Case 1. (a) If p = 2 and nL ,2 = 1, the coefficients qi,1 ∈ Z2, i = 1, 2. The con-
dition (q1,1 + q2,1) 
= 0 (mod 2) is met for q1,1 = 0, q2,1 = 1 or q1,1 = 1, q2,1 = 0.
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Since the two sets of coefficients lead to equivalent QPPs, from the two combinations
only one must be kept, for example q1,1 = 1, q2,1 = 0, combined with other prime
factors.

Case 1. (b) If p = 2 and nL ,2 > 1, the coefficients qi,1 ∈ Z2nL ,2 , i = 1, 2. The
condition q1,1 
= 0 (mod 2) is met for �(2nL ,2) = 2nL ,2−1 coefficients. The condition

q2,1 = 0 (mod 2) is met for
2nL ,2

2
= 2nL ,2−1 coefficients, out of which one is zero. In

this case, from the equivalence conditions of QPPs it results that all values greater

than or equal to
2nL ,2

2
= 2nL ,2−1 have to be removed, i.e.

2nL ,2−1

2
= 2nL ,2−2 values,

leading to
2nL ,2−1

2
= 2nL ,2−2 values for q2,1, out of which one is zero.

Case 2. If p j > 2 and nL ,p j ≥ 1, the coefficients qi, j ∈ Z
p
nL ,p j
j

, i = 1, 2. The

condition q1, j 
= 0 (mod p j ) is met for �(p
nL ,p j

j ) = p
nL ,p j −1

j · (p j − 1) coefficients.

The condition q2, j = 0 (mod p j ) is met for
p
nL ,p j

j

p j
= p

nL ,p j −1

j coefficients, from

which one is zero.
We apply the method described in Sect. 4.3 and distinguish three situations for

the prime decomposition of L . The results regarding the number of all true different
QPPs are given in Theorems 4.9–4.11 below and are summarized in Table 4.1 at the
end of this section.

Table 4.1 Number of all true different QPP-based interleavers

Case Decomposition of L CL ,QPPs Theorems

(1) L =
nL∏

j=1

p
nL ,p j
j , p j > 2 and

nL ,p j ≥ 1, ∀ j = 1, nL

CL ,QPPs =
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)
)

·
( nL∏

j=1

p
nL ,p j −1

j − 1

)

4.9

(2) L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j
j ,

nL ,2 > 1, p j > 2 and
nL ,p j ≥ 1, ∀ j = 2, nL

CL ,QPPs = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)

·
(
2nL ,2−2 ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.10

(3) L = 2 ·
nL∏

j=2

p
nL ,p j
j , p j > 2 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,QPPs =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)

·
( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.11
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Theorem 4.9 If 2 � L, i.e. L =
nL∏

j=1

p
nL ,p j

j , with p j > 2 and nL ,p j ≥ 1, ∀ j = 1, nL ,

the number of QPPs will be equal to:

CL ,QPPs =
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)
)

·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.53)

Proof From case 2 above, the number of possible combinations for the coefficient q1

results equal to
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)
)
and the number of coefficients q2 is equal

to
nL∏

j=1

p
nL ,p j −1

j . The value q2 = 0 results only when q2, j = 0, ∀ j = 1, nL , that is for

only one combination of the coefficients q2, j , j = 1, nL , which has to be removed.
The number of QPPs will be that in (4.53). �

Equation (4.53) is equivalent to Theorem 6, case (a), from Zhao et al. (2010).
From (4.53) we see that the number of QPPs is equal to 0, when the interleaver

length is a product of prime numbers greater than 2, each of them to the power of 1.

Theorem 4.10 If 4 | L, i.e. L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j

j , with nL ,2 > 1, p j > 2 and nL ,p j ≥

1, ∀ j = 2, nL , the number of QPPs will be equal to:

CL ,QPPs = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠

(4.54)

Proof From cases 1.b and 2 above, the number of possible combinations for coeffi-

cient q1 is equal to 2
nL ,2−1 ·

nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)
and the number of coefficients

q2 is equal to 2
nL ,2−1 ·

nL∏

j=2

p
nL ,p j −1

j . Since from the equivalence condition of QPPs we

must have q2 < L/2, a number of
1

2
· 2nL ,2−1 ·

nL∏

j=2

p
nL ,p j −1

j = 2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

coefficients remain, from which the value q2 = 0 has to be removed, finally remain-

ing 2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1 values for true different QPPs. The number of QPPs

will be that in (4.54). �
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Equation (4.54) is equivalent to Theorem 6, case (b), from Zhao et al. (2010).
From (4.54), we see that the number of QPPs is equal to 0, when the interleaver

length is a multiple of 4 of a product of prime numbers greater than 2, each of them
to the power of 1.

Theorem 4.11 If 2 | L and 4 � L, i.e. L = 2 ·
nL∏

j=2

p
nL ,p j

j , with p j > 2 and nL ,p j ≥ 1,

∀ j = 2, nL , the number of QPPs will be equal to:

CL ,QPPs =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.55)

Proof From cases 1. (a) and 2 above, the number of possible combinations for

coefficient q1 is equal to
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)
and the number of coefficients

q2 is equal to
nL∏

j=2

p
nL ,p j −1

j . We mention that in this case, the
nL∏

j=2

p
nL ,p j −1

j coefficients

q2 have
nL∏

j=2

p
nL ,p j −1

j modulo L different values, all smaller than L/2. Therefore,

we have only to remove the value q2 = 0, finally leading to
nL∏

j=2

p
nL ,p j −1

j − 1 values

for the coefficient q2 of true different QPPs. The number of QPPs will be that in
(4.55). �

Equation (4.55) is equivalent to Theorem 6, case (c), from Zhao et al. (2010).
From (4.55) we see that the number of QPPs is equal to 0, when the interleaver

length is a multiple of 2 of a product of prime numbers greater than 2, each of them
to the power of 1.

From Theorems 4.9–4.11, we conclude that the number of true different QPPs is
0, when the interleaver length is

L = 2nL ,2 ·
nL∏

j=2

p j , with nL ,2 = 0, 2, p j > 2,∀ j = 2, nL (4.56)

Such lengths have to be avoided in designing QPP-based interleavers.
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4.5 Determining the Number of All True Different Cubic
Permutation Polynomial-Based Interleavers

We note that from the equivalence conditions for CPPs given in Theorems 4.3 and
4.6, we must have:

• q2 < L/2 and q3 < L/2, when 2 | L and 3 � L .
• q3 < L/3, when 3 | L and 2 � L .
• q2 < L/2 and q3 < L/6, when 6 | L .

In the case of CPPs, there are four types of prime factors, as shown in Table 3.2,
each of them with two distinct sets of powers of the prime number. As the conditions
for cases 3. (a), 3. (b) and 4. (b) are the same, they are analyzed together.Wedetermine
the number of CPPs for each type of prime factor. The prime factor 2 is considered
the first one, the prime factor 3 is considered the second one and the other prime
factors are considered with arbitrary indices j ≥ 3.

Case 1. (a) If p = 2 and nL ,2 = 1, the coefficients qi,1 ∈ Z2, i = 1, 3. The condi-
tion (q1,1 + q2,1 + q3,1) 
= 0 (mod 2) is met for the following coefficient combina-
tions qi,1 ∈ Z2, i = 1, 3: q1,1 = 0, q2,1 = 0, q3,1 = 1 or q1,1 = 0, q2,1 = 1, q3,1 = 0
or q1,1 = 1, q2,1 = 0, q3,1 = 0 or q1,1 = 1, q2,1 = 1, q3,1 = 1. Since the four sets
of coefficients lead to equivalent CPPs, only one must be kept in combination with
other types of prime factors.

Case 1. (b) If p = 2 and nL ,2 > 1, the coefficients qi,1 ∈ Z2nL ,2 , i = 1, 3. The
condition q1,1 
= 0 (mod 2) is met for �(2nL ,2) = 2nL ,2−1 coefficients. The condition

q2,1 = 0 (mod 2) or q3,1 = 0 (mod 2) is met for
2nL ,2

2
= 2nL ,2−1 coefficients. From

the equivalence conditions of CPPs for 2 | L and 3 � L , it results that from the 2nL ,2−1

values of q2,1 and q3,1 only
2nL ,2−1

2
= 2nL ,2−2 lead to different permutations.

Case 2. (a) If p = 3 and nL ,3 = 1, the coefficients qi,2 ∈ Z3, i = 1, 3. The con-
dition (q1,2 + q3,2) 
= 0 (mod 3) is met for the following coefficient combinations
(q1,2, q3,2): q1,2 = 0, q3,2 = 1 or q1,2 = 0, q3,2 = 2 or q1,2 = 1, q3,2 = 0 or q1,2 = 1,
q3,2 = 1 or q1,2 = 2, q3,2 = 0 or q1,2 = 2, q3,2 = 2. The condition q2,2 = 0 (mod 3)
is met only for q2,2 = 0. From the equivalence conditions of CPPs for 2 � L and
3 | L , it results that the six sets of coefficients qi,2, i = 1, 3, lead only to two distinct
permutations. The corresponding two sets of coefficients can be considered q1,2 = 1,
q2,2 = 0, q3,2 = 0, and q1,2 = 2, q2,2 = 0, q3,2 = 0. Because for these two sets we
have q3,2 = q2,2 = 0, only q1,2 being different, we must consider two coefficients
for q1,2 and only one for q2,2 and q3,2, respectively, in combination with other prime
factors.

Case 2. (b) If p = 3 and nL ,3 > 1, the coefficients qi,2 ∈ Z3nL ,3 , i = 1, 3. The
condition q2,2 = 0 (mod 3) is met for 3nL ,3−1 values. The condition q1,2 
= 0 (mod 3)
is met for �(3nL ,3) = 2 · 3nL ,3−1 values. The set of values for q1,2 is
{1, 2, 4, 5, 7, 8, . . . , 3nL ,3 − 2, 3nL ,3 − 1}, out of which 3nL ,3−1 values are equal to
1 modulo 3 and also 3nL ,3−1 values are equal to 2 modulo 3. As q3,2 ∈ Z3nL ,3 , the
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condition (q1,2 + q3,2) 
= 0 (mod 3), for a fixed value of q1,2, will be fulfilled for
3nL ,3−1 + 3nL ,3−1 = 2 · 3nL ,3−1 coefficients q3,2. However, when 3nL ,3−1 is multiple of
3, from the equivalence conditions of CPPs for 2 � L and 3 | L , it results that of the
2 · 3nL ,3−1 coefficients q3,2 only

1

3
· 2 · 3nL ,3−1 = 2 · 3nL ,3−2 lead to distinct permuta-

tions.
Cases 3. (a), 3. (b), 4. (b) If p j > 3 and nL ,p j ≥ 1 when p j = 3k + 1, k ∈ N and

nL ,p j > 1 when p j = 3k + 2, k ∈ N, the coefficients qi, j ∈ Z
p
nL ,p j
j

, i = 1, 3. The

condition q1, j 
= 0 (mod p j ) is met for �(p
nL ,p j

j ) = p
nL ,p j −1

j · (p j − 1) coefficients.

The condition q2, j = 0 (mod p j ) or q3, j = 0 (mod p j ) is met for
p
nL ,p j

j

p j
= p

nL ,p j −1

j

coefficients, out of which one is zero.
Case 4. (a) If 3 � (p j − 1), p j > 3 and nL ,p j = 1, the coefficients qi, j ∈ Zp j ,

i = 1, 3. The condition q1, j 
= 0 (mod p j ) is met for �(p j ) = p j − 1 coefficients.
The condition q2, j = 0 (mod p j ) or q3, j = 0 (mod p j ) is obviously met only for
the value zero. When q3, j 
= 0 (mod p j ) (for�(p j ) = p j − 1 values), the condition
q2
2, j = 3q1, j q3, j (mod p j ) has to be fulfilled. This congruence equation, for fixed q2, j
and q3, j , has only one solution modulo p j in the variable q1, j (Hardy and Wright
1975). Therefore, by considering all the p j possible values for q2, j , a number of
p j · (p j − 1) coefficient combinations qi, j ∈ Zp j , i = 1, 3, results. The coefficients
verify the condition q2

2, j = 3q1, j q3, j (mod p j ).
For this case, it is useful to see howmany coefficient combinations result when the

factorization of L contains a product of factors of type 4. (a). The factors of type 4. (a)
will be considered with the last n4a ∈ N

∗ indices in writing of L as a product of prime

factors. Thus, L will be of the form L =
nL−n4a∏

j=1

p
nL ,p j

j ·
nL∏

j=nL−n4a+1

p j , with nL ∈ N
∗,

nL ≥ n4a (if nL = n4a the first product in L is considered equal to 1), p j ≥ 2 and
nL ,p j ≥ 1, p j 
= 3k + 2, k ∈ N

∗, if nL ,p j = 1, ∀ j = 1, nL − n4a , and p j = 3k + 2,

k ∈ N
∗, ∀ j = nL − n4a + 1, nL . We denote by

nL∏

j=nL−n4a+1

p j = L(4a) the product

from the factorization of L consisting only of factors of type 4. (a). The product of

the remaining factors from the decomposition of L will be
nL−n4a∏

j=1

p
nL ,p j

j = L/L(4a).

The conditions q1, j 
= 0 (mod p j ), q2, j = 0 (mod p j ) and q3, j = 0 (mod p j )

have to be considered for each group of n4a,0 prime factors of type 4. (a), with
n4a,0 = 1, n4a . We denote by In4a = {nL − n4a + 1, nL − n4a + 2, . . . , nL} the set
of indices corresponding to those n4a prime factors.

We firstly consider the case of groups consisting only of one prime factor,
p j1 , with j1 ∈ In4a . Thus, if q3, j1 = 0 (mod p j1), the following conditions must be
met q1, j1 
= 0 (mod p j1) and q2, j1 = 0 (mod p j1). For ∀ j ∈ In4a , j 
= j1 we have
q3, j1 
= 0 (mod p j1), and the condition q

2
2, j = 3q1, j q3, j (mod p j ), ∀ j ∈ In4a , j 
= j1
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must be met. The first set of conditions is met for p j1 − 1 coefficients q1 and a
single value for q2 and q3, respectively, which is zero. The second set of condi-

tions is met for
nL∏

j=nL−n4a+1,
j 
= j1

(p j − 1) coefficients q3, and the congruence equation

has one solution in the variable q1, j , for each of the
nL∏

j=nL−n4a+1,
j 
= j1

p j coefficients

q2, and the
nL∏

j=nL−n4a+1,
j 
= j1

(p j − 1) coefficients q3. Therefore, in total, for the groups

consisting of one factor p j1 , for which q3, j1 = 0 (mod p j1), we have (p j1 − 1) ·
nL∏

j=nL−n4a+1,
j 
= j1

p j ·
nL∏

j=nL−n4a+1,
j 
= j1

(p j − 1) =
nL∏

j=nL−n4a+1,
j 
= j1

p j ·
nL∏

j=nL−n4a+1

(p j − 1) combina-

tions of coefficients qi , i = 1, 3.
In the following, we consider the case of groups consisting of two prime fac-

tors, p j1 and p j2 , with j1, j2 ∈ In4a and j1 
= j2. Thus, if q3, j = 0 (mod p j ),
∀ j ∈ { j1, j2} the conditions q1, j 
= 0 (mod p j ) and q2, j = 0 (mod p j ) must be
met for j ∈ { j1, j2}. For ∀ j ∈ In4a , j 
= j1 and j 
= j2, we have q3, j 
= 0 (mod p j ),
and the condition q2

2, j = 3q1, j q3, j (mod p j ), ∀ j ∈ In4a , j 
= j1 and j 
= j2, must
be met. The first set of conditions is met for (p j1 − 1) · (p j2 − 1) coefficients
q1 and a single value for q2 and q3, respectively, which is zero. The second

set of conditions is met for
nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

(p j − 1) coefficients q3, and the congru-

ence equation has one solution in the variable q1, j , for each of the
nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

p j

coefficients q2 and the
nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

(p j − 1) coefficients q3. Thus, in total, for the

groups consisting of two factors, p j1 and p j2 , for which q3, j = 0 (mod p j ),

∀ j ∈ { j1, j2}, we have (p j1 − 1) · (p j2 − 1) ·
nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

p j ·
nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

(p j − 1) =

nL∏

j=nL−n4a+1,
j 
= j1, j 
= j2

p j ·
nL∏

j=nL−n4a+1

(p j − 1) combinations of coefficients qi , i = 1, 3.

Now, let there be the set In4a,0 ⊆ In4a , with 1 ≤ n4a,0 ≤ n4a , consisting of n4a,0

different indices (the notation 0 derives from the fact that q3, j = 0 (mod p j ), for
j ∈ In4a,0 ). Then, if there are groups of n4a,0 prime factors of type 4. (a), it means
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that the following conditions have to be met: q1, j 
= 0 (mod p j ), q2, j = 0 (mod p j ),
q3, j = 0 (mod p j ), ∀ j ∈ In4a,0 , and q2

2, j = 3q1, j q3, j (mod p j ), q3, j 
= 0 (mod p j ),

∀ j ∈ {
In4a − In4a,0

}
. The first set of conditions is met for

∏

j∈In4a,0

(p j − 1) coefficients

q1 and one value for q2 and q3, respectively, which is zero. The second set of con-
ditions is met for

∏

j∈{In4a −In4a,0 }
(p j − 1) coefficients q3, and the congruence equation

has one solution in the variable q1, j , for each of the
∏

j∈{In4a −In4a,0 }
p j coefficients q2

and the
∏

j∈{In4a −In4a,0 }
(p j − 1) coefficients q3. Thus, in total, for groups consisting of

n4a,0 factors, for which q3, j = 0 (mod p j ), ∀ j ∈ In4a,0 , we will have
∏

j∈In4a,0

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j ·

∏

j∈{In4a −In4a,0 }
(p j − 1) =

∏

j∈In4a
(p j − 1) ·

∏

j∈{In4a −In4a,0 }
p j =

nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j combinations of coefficients qi , i = 1, 3. If

In4a,0 = In4a , that is n4a,0 = n4a , we have
∏

j∈In4a
(p j − 1) =

nL∏

j=nL−n4a+1

(p j − 1) coef-

ficients q1 and one coefficient q2 and q3, respectively (namely, the value zero that
will be removed from the combinations with other prime factors).

The total number of combinations of coefficients qi , i = 1, 3, for all groups
consisting of n4a,0 factors, with n4a,0 = 1, n4a , for which q3, j = 0 (mod p j ),

∀ j ∈ In4a,0 , is equal to
nL∏

j=nL−n4a+1

(p j − 1) +
n4a−1∑

n4a,0=1

( ∑

In4a,0⊂In4a

( nL∏

j=nL−n4a+1

(p j − 1) ·

∏

j∈{In4a −In4a,0 }
p j

))
, where the sum

∑

In4a,0⊂In4a

( nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j

)

is over all different sets of distinct indices In4a,0 ⊂ In4a .
Since the above expression is hard to read, in the following we will give more

detailed formulas for n4a = 2, n4a = 3, and n4a = 4, respectively (for n4a = 1 the
formula is direct), because the smallest number containing at least four factors of
type 4. (a) is 5 · 11 · 17 · 23 = 21505, which is a large enough value for an interleaver
length. We specify that the smallest number containing at least five factors of type
4. (a) is 21505 · 29 = 623645, which is a value too large for an interleaver length.

The number of combinations of coefficients qi , i = 1, 3, resulted for the groups
consisting only of n4a,0 = r0 ∈ N

∗ factors from the product L(4a), where n4a,0 ∈
{1, 2, . . . , n4a − 1}, with some n4a = r ∈ N

∗, for which q3, j = 0 (mod p j ), ∀ j ∈
In4a,0 , will be denoted by CL(4a),n4a=r,n4a,0=r0 , where r0 < r . As noted above, for some
n4a ∈ N

∗, we have
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CL(4a),n4a=r,n4a,0=r0 =
∑

Ir0⊂Ir

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{Ir−Ir0 }
p j

⎞

⎠ (4.57)

For r ∈ {2, 3, 4}, the values CL(4a),n4a=r,n4a,0=r0 are written in detail as

CL(4a),n4a=2,n4a,0=1 = (pnL−1 − 1) · pnL · (pnL − 1)+

+(pnL − 1) · pnL−1 · (pnL−1 − 1) (4.58)

CL(4a),n4a=3,n4a,0=1 = (pnL−2 − 1) · pnL−1 · pnL · (pnL−1 − 1) · (pnL − 1)+

+(pnL−1 − 1) · pnL−2 · pnL · (pnL−2 − 1) · (pnL − 1)+

+(pnL − 1) · pnL−2 · pnL−1 · (pnL−2 − 1) · (pnL−1 − 1) (4.59)

CL(4a),n4a=3,n4a,0=2 = (pnL−2 − 1) · (pnL−1 − 1) · pnL · (pnL − 1)+

+(pnL−2 − 1) · (pnL − 1) · pnL−1 · (pnL−1 − 1)+

+(pnL−1 − 1) · (pnL − 1) · pnL−2 · (pnL−2 − 1) (4.60)

CL(4a),n4a=4,n4a,0=1 =

= (pnL−3 − 1) · pnL−2 · pnL−1 · pnL ·

·(pnL−2 − 1) · (pnL−1 − 1) · (pnL − 1)+

+(pnL−2 − 1) · pnL−3 · pnL−1 · pnL ·

·(pnL−3 − 1) · (pnL−1 − 1) · (pnL − 1)+

+(pnL−1 − 1) · pnL−3 · pnL−2 · pnL ·

·(pnL−3 − 1) · (pnL−2 − 1) · (pnL − 1)+

+(pnL − 1) · pnL−3 · pnL−2·

·pnL−1 · (pnL−3 − 1) · (pnL−2 − 1) · (pnL−1 − 1) (4.61)

CL(4a),n4a=4,n4a,0=2 =

= (pnL−3 − 1) · (pnL−2 − 1) · pnL−1 · pnL · (pnL−1 − 1) · (pnL − 1)+

+(pnL−3 − 1) · (pnL−1 − 1) · pnL−2 · pnL · (pnL−2 − 1) · (pnL − 1)+
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+(pnL−3 − 1) · (pnL − 1) · pnL−2 · pnL−1 · (pnL−2 − 1) · (pnL−1 − 1)+

+(pnL−2 − 1) · (pnL−1 − 1) · pnL−3 · pnL · (pnL−3 − 1) · (pnL − 1)+

+(pnL−2 − 1) · (pnL − 1) · pnL−3 · pnL−1 · (pnL−3 − 1) · (pnL−1 − 1)+

+(pnL−1 − 1) · (pnL − 1) · pnL−3 · pnL−2 · (pnL−3 − 1) · (pnL−2 − 1) (4.62)

CL(4a),n4a=4,n4a,0=3 =

= (pnL−3 − 1) · (pnL−2 − 1) · (pnL−1 − 1) · pnL · (pnL − 1)+

+(pnL−3 − 1) · (pnL−2 − 1) · (pnL − 1) · pnL−1 · (pnL−1 − 1)+

+(pnL−3 − 1) · (pnL−1 − 1) · (pnL − 1) · pnL−2 · (pnL−2 − 1)+

+(pnL−2 − 1) · (pnL−1 − 1) · (pnL − 1) · pnL−3 · (pnL−3 − 1) (4.63)

We denote by CL/L(4a)
the number of combinations of coefficients qi , i = 1, 3,

resulted from the product L/L(4a). Then, the total number of combinations of coef-
ficients qi , i = 1, 3, resulted by considering the groups consisting of n4a,0 fac-
tors from the product L(4a), for which q3, j = 0 (mod p j ), ∀ j ∈ In4a,0 , with n4a,0 ∈
{1, 2, . . . , n4a − 1}, where n4a = r ∈ N

∗, will be equal to
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 ·

CL/L(4a)

)
. The previous sum is equal to zerowhenn4a = 1. Someof the following the-

orems give the formulas for the number of true different CPPswhen the prime decom-
position of L contains prime factors of type 4. (a). For some n4a = r ∈ N

∗, the value
CL(4a),n4a=r,n4a,0=r0 is that in (4.57), and for n4a ∈ {2, 3, 4} the valuesCL(4a),n4a=r,n4a,0=r0
can be easily computed from relations (4.58)–(4.63). The expression CL/L(4a)

will
appear explicitly in formulas, according to the prime factors of decomposition of
L/L(4a).

In the case of CPPs, there are four types of prime numbers that are considered in
stating the conditions in Table 3.2, each with two distinct sets of values of power of
the prime number. As the conditions for cases 1. (b), 3. (a), 3. (b) and 4. (b) are the
same, there are 23 possible cases of decomposition of the number L in prime factors,
which lead to combinations of different conditions on the coefficients q1, q2, q3.
Since the formulas resulted for the cases when the decomposition of L contains
the factors 2 and 3 with powers 0 or 1 are very similar, we provide these formulas
combined into only one, in terms of powers of factors 2 and 3, denoted by n2 ∈ {0, 1}
and n3 ∈ {0, 1}, respectively. Three of these 23 cases are for very small values of the
number L , being trivial cases. The results regarding the number of all true different
CPPs are given in Theorems 4.12–4.27 and are summarized in Table 4.2 at the end
of this section.
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Theorem 4.12 If the decomposition of L is of the form L = 2n2 · 3n3 ·
nL∏

j=nL 1

p
nL ,p j

j ,

with n2 ∈ {0, 1}, n3 ∈ {0, 1}, nL1 = n2 + n3 + 1, nL ≥ nL1, p j > 3,
nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2, k ∈ N

∗,
j = nL1, nL , the number of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2n3 ·
nL∏

j=nL 1

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.64)

Proof For n2 = 0 and n3 = 0, we have nL1 = 1, and the factors from the decom-
position of L are of type 3. (a) and/or 3. (b) and/or 4. (b). From cases 3. (a),
3. (b) and 4. (b) above, the number of possible combinations for q1 is equal

to �(L) =
nL∏

j=1

p
nL ,p j −1

j · (p j − 1) and the total number of coefficients q2 and q3,

respectively, are equal to
nL∏

j=1

p
nL ,p j −1

j . The value q3 = 0 results only when q3, j = 0,

∀ j = 1, nL , i.e., for a single combination of coefficients q3, j , j = 1, nL , that has to
be removed. The number of CPPs will be equal to

CL ,CPPs =
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ =
⎛

⎝
nL∏

j=1

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠

(4.65)
i.e., the one from (4.64), for n2 = 0 and n3 = 0.

For n2 = 1 and n3 = 0, we have nL 1 = 2, and the factors from the decomposition
of L are of type 1. (a) and 3. (a) and/or 3. (b) and/or 4. (b). From the analysis for
cases 1. (a) and 3. (a), 3. (b), 4. (b) above, the number of possible combinations for

coefficient q1 is equal to 1 · �(L/2) =
nL∏

j=2

p
nL ,p j −1

j · (p j − 1) and the total number

of coefficients q2 and q3, respectively, is equal to 1 ·
nL∏

j=2

p
nL ,p j −1

j =
nL∏

j=2

p
nL ,p j −1

j , out

of which one value is 0. By removing the value q3 = 0, the number of CPPs will be
equal to:

CL ,CPPs =
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠

(4.66)
i.e., the one from (4.64), for n2 = 1 and n3 = 0.

For n2 = 0 and n3 = 1, we have nL 1 = 2, and the factors from the decomposition
of L are of type 2. (a) and 3. (a) and/or 3. (b) and/or 4. (b). In determining the number
of coefficients, we consider that for the two sets of coefficients valid for the factor
of type 2. (a), we have only a single value for q2 and q3. The number of possible

combinations for coefficient q1 is equal to 2 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1), the number of

coefficients q2 is equal to
nL∏

j=2

p
nL ,p j −1

j and the number of coefficients q3 is equal to

nL∏

j=2

p
nL ,p j −1

j , out of which one is 0. By removing the value q3 = 0, the number of

CPPs will be equal to:

CL ,CPPs =
⎛

⎝2 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =
⎛

⎝2 ·
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.67)

i.e., the one from (4.64), for n2 = 0 and n3 = 1.
For n2 = 1 and n3 = 1, we have nL1 = 3, and the factors from the decomposition

of L are of type 1. (a) and 2. (a) and 3. (a) and/or 3. (b) and/or 4. (b). The number of

possible combinations for coefficient q1 is equal to 1 · 2 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) =

2 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1), the number of coefficients q2 and q3 is equal to 1 · 1 ·
nL∏

j=3

p
nL ,p j −1

j =
nL∏

j=3

p
nL ,p j −1

j , out of which one is 0. After removing the value q3 = 0,

the number of CPPs will be equal to:
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CL ,CPPs =
⎛

⎝2 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =
⎛

⎝2 ·
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.68)

i.e., the one from (4.64), for n2 = 1 and n3 = 1. �

From (4.64), we see that the number of CPPs is equal to 0 if the interleaver length
is one, two, three or six times a product of prime numbers greater than 3, of the form
3 · k + 1, k ∈ N, each of them to the power of 1.

Theorem 4.13 If the decomposition of L is of the form L = 2nL ,2 · 3n3 ·
nL∏

j=nL 1

p
nL ,p j

j ,

with nL ,2 > 1, n3 ∈ {0, 1}, nL1 = n3 + 2, nL ≥ nL1, p j > 3, nL ,p j ≥ 1, when p j =
3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2, k ∈ N

∗, j = nL 1, nL , the num-
ber of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2n3 · 22·nL ,2−3 ·
nL∏

j=nL 1

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.69)

Proof For n3 = 0, we have nL1 = 2, and the factors from the decomposition of
L are of type 1. (b) and 3. (a) and/or 3. (b) and/or 4. (b). From cases 1. (b),
3. (a), 3. (b) and 4. (b) above, the number of possible combinations for coeffi-

cient q1 is equal to �(L) = 2nL ,2−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1) and the total number

of coefficients q2 and q3, respectively, is equal to 2nL ,2−1 ·
nL∏

j=2

p
nL ,p j −1

j . As this case

requires from the equivalence conditions that q2 < L/2 and q3 < L/2 , a number

of
1

2
· 2nL ,2−1 ·

nL∏

j=2

p
nL ,p j −1

j = 2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j possible coefficients q2 and q3,

respectively, remains, out of which one is zero. By removing the value q3 = 0, the
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number of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2nL ,2−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝22·nL ,2−3 ·
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.70)

i.e., the one from (4.69), for n3 = 0.
For n3 = 1, we have nL1 = 3, and the factors from the decomposition of L are of

type 1. (b) and 2. (a) and 3. (a) and/or 3. (b) and/or 4. (b). In determining the number of
coefficients, we consider that for the two sets of coefficients valid for the factor of type
2. (a) we always have q2,1 = q3,1 = 0. From the two sets we have to keep only one for
the coefficients q2 and q3. The number of possible combinations for the coefficient

q1 is equal to 2
nL ,2−1 · 2 ·

nL∏

j=3

p
nL ,p j −1

j · (p j − 1) = 2nL ,2 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1), the

number of coefficients q2 and q3 is equal to 2nL ,2−2 ·
nL∏

j=3

p
nL ,p j −1

j , out of which one

is 0. By removing the value q3 = 0, the number of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2nL ,2 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝22·(nL ,2−1) ·
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.71)

i.e., the one from (4.69), for n3 = 1. �

From (4.69), we see that the number of CPPs is equal to 0 if the interleaver length
is 4 or 12 times a product of prime numbers greater than 3, of the form 3 · k + 1,
k ∈ N, each of them to the power of 1.
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Theorem 4.14 If the decomposition of L is of the form L = 2n2 · 3nL ,3 ·
nL∏

j=nL 1

p
nL ,p j

j ,

with n2 ∈ {0, 1}, nL ,3 > 1, nL 1 = n2 + 2, nL ≥ nL1, p j > 3, nL ,p j ≥ 1, when p j =
3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2, k ∈ N

∗, j = nL 1, nL , the num-
ber of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2 · 32·(nL ,3−1) ·
nL∏

j=nL 1

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.72)

Proof For n2 = 0, we have nL1 = 2, and the factors from the decomposition of
L are of type 2. (b) and 3. (a) and/or 3. (b) and/or 4. (b). The number of possi-

ble combinations for coefficient q1 is equal to 2 · 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1),

the number of coefficients q2 is equal to 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j and the number of

coefficients q3 is equal to 2 · 3nL ,3−2 ·
nL∏

j=2

p
nL ,p j −1

j for 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

of the 2 · 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1) values of coefficients q1 and it is equal to

2 · 3nL ,3−2 ·
nL∏

j=2

p
nL ,p j −1

j for the other 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1) values of coeffi-

cients q1, out of which one is 0. By removing the value q3 = 0, the number of CPPs
will be equal to:

CL ,CPPs =
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ +
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =
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=
⎛

⎝2 · 32·(nL ,3−1) ·
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.73)

i.e., the one from (4.72), for n2 = 0.
For n2 = 1, we have nL1 = 3, and the factors from the decomposition of L

are of type 1. (a) and 2. (b) and 3. (a) and/or 3. (b) and/or 4. (b). From the
analysis of cases 1. (a), 2. (b) and 3. (a), 3. (b), 4. (b) above, it follows that
the number of possible combinations for coefficient q1 is equal to 1 · 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) = 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1), the number of coeffi-

cients q2 is equal to 1 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j = 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j and the number

of coefficients q3 is equal to 1 · 2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j = 2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j for

3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) values of the 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) ones

of coefficient q1 and equal to 1 · 2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j = 2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j

for the other 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) values of coefficient q1, out of which

one is 0. By removing the value q3 = 0, the number of CPPs results equal to:

CL ,CPPs =
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ +
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =
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=
⎛

⎝2 · 32·(nL ,3−1) ·
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.74)

i.e., the one from (4.72), for n2 = 1. �

From (4.72) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.15 If the decomposition of L is of the form L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j ,

with nL ,2 > 1, nL ,3 > 1, nL ≥ 3, p j > 3, nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N

and nL ,p j > 1 when p j = 3 · k + 2, k ∈ N
∗, j = 3, nL , the number of CPPs will be

equal to:

CL ,CPPs =
⎛

⎝22·(nL ,2−1) · 32·(nL ,3−1) ·
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.75)

Proof In this case, the factors from the decomposition of L are of type 1. (b) and
2. (b) and 3. (a) and/or 3. (b) and/or 4. (b). The numbers of possible combina-

tions for coefficientq1 is equal to 2
nL ,2−1 · 2 · 3nL ,3−1 ·

nL∏

j=3

p
nL ,p j −1

j · (p j − 1) = 2nL ,2 ·

3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1), the number of coefficients q2 is equal to 2nL ,2−2 ·

3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j and the number of coefficients q3 is equal to 2
nL ,2−2 · 2 · 3nL ,3−2 ·

nL∏

j=3

p
nL ,p j −1

j = 2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j for 2nL ,2−1 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j −

1) of 2nL ,2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) values for coefficient q1 and equal to

2nL ,2−2 · 2 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j = 2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j for the other 2nL ,2−1 ·
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3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1) values of coefficient q1, out of which one is 0. By

removing the value q3 = 0, the number of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2nL ,2−1 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−1 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝22·(nL ,2−1) · 32·(nL ,3−1) ·
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.76)

i.e., the one from (4.75). �

From (4.75), we see that in this case the number of CPPs is always greater than 0.

Theorem 4.16 If the decomposition of L is of the form L = 2n2 · 3n3 ·
nL−n4a∏

j=nL 1

p
nL ,p j

j ·
nL∏

j=nL−n4a+1

p j , with n2 ∈ {0, 1}, n3 ∈ {0, 1}, nL1 = n2 + n3 + 1, n4a ∈ N
∗, nL ≥

n4a + nL1, p j > 3, nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N and nL ,p j > 1 when
p j = 3 · k + 2, k ∈ N

∗, j = nL 1, nL − n4a and p j = 3 · k + 2, k ∈ N
∗,

j = nL − n4a + 1, nL , the number of CPPs will be equal to:

CL ,CPPs = 2n3 ·
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

)·
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·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+2n3 ·
n4a−1∑

r0=1

⎛

⎝CL(4a),n4a=r,n4a,0=r0 ·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2n3 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.77)

Proof For n2 = 0 and n3 = 0, we have nL1 = 1, and the factors from the decomposi-
tion of L are of type 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b).Weconsider the analysis
of case 4. (a) above. It follows that for a group of n4a,0 prime factors of type 4.a), with
n4a,0 < n4a , for which q3, j = 0 (mod p j ), ∀ j ∈ In4a,0 , the number of possible com-

binations for coefficient q1 is equal to
∏

j∈In4a,0

(p j − 1) ·
nL−n4a∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)
,

the number of coefficients q2 is equal to
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=1

p
nL ,p j −1

j and the num-

ber of coefficients q3 is equal to
∏

j∈{In4a −In4a,0 }
(p j − 1) ·

nL−n4a∏

j=1

p
nL ,p j −1

j . In total, for

a group of n4a,0 prime factors of type 4. (a), with n4a,0 ∈ {1, 2, . . . , n4a − 1}, the
number of CPPs will be equal to:

CL ,CPPs,n4a,0 =
⎛

⎝
∏

j∈In4a,0

(p j − 1) ·
nL−n4a∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=1

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) ·

nL−n4a∏

j=1

p
nL ,p j −1

j

⎞

⎠ =
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=
∏

j∈In4a
(p j − 1) ·

∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
=

=
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
(4.78)

For a group of n4a prime factors of type 4. (a), we have to remove the case when
q3 = 0 and the number of CPPs will be:

CL ,CPPs,n4a =
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=1

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL−n4a∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.79)

When the condition q3, j = 0 (mod p j ) is not met for any of the n4a prime factors
of type 4. (a), according to condition 4. (a) above, the number of CPPs will be:

CL ,CPPs,0 =
⎛

⎝
nL−n4a∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j ·
nL−n4a∏

j=1

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=1

p
nL ,p j −1

j

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
(4.80)
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The final number of CPPs results by summing up the quantities in (4.78), for
n4a,0 = 1, 2, . . . , n4a − 1, (4.79) and (4.80):

CL ,CPPs =
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

⎛

⎝CL(4a),n4a=r,n4a,0=r0 ·
nL−n4a∏

j=1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.81)

i.e., the one from (4.77), for n2 = 0 and n3 = 0.
For n2 = 1 and n3 = 0, we have nL 1 = 2, and the factors from the decomposition

of L are of type 1. (a) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). The number of
CPPs results by considering the previous case (for n2 = 0 and n3 = 0) and case 1.
(a) above:
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CL ,CPPs =
⎛

⎝1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ +

+
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 1 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 1 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠

⎤

⎦ + .

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +
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+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

⎛

⎝CL(4a),n4a=r,n4a,0=r0 ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.82)

i.e., the one from (4.77), for n2 = 1 and n3 = 0.
For n2 = 0 and n3 = 1, we have nL 1 = 2, and the factors from the decomposition

of L are of type 2. (a) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). We consider
the analysis from the proof of this theorem for n2 = 0 and n3 = 0 and the conditions
from case 2. (a) above. For a group of n4a,0 prime factors of type 4. (a), with n4a,0 ∈
{1, 2, . . . , n4a − 1}, the number of CPPs is equal to:

CL ,CPPs,n4a,0 =
⎛

⎝
∏

j∈In4a,0

(p j − 1) · 2 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ =
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=
∏

j∈In4a
(p j − 1) · 2 ·

∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
=

=
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
(4.83)

For a group of n4a prime factors of type 4. (a), we have to remove the case when
q3 = 0 and the number of CPPs will be equal to:

CL ,CPPs,n4a =
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.84)

When the condition q3, j = 0 (mod p j ) is not met for any of the n4a prime factors
of type 4. (a), the number of CPPs will be:

CL ,CPPs,0 =
⎛

⎝2 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ =
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=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 2 ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
(4.85)

The number of CPPs results by summing up the quantities in (4.83), for n4a,0 =
1, 2, . . . , n4a − 1, (4.84) and (4.85):

CL ,CPPs =
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

)·

·2 ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 ·
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+2 ·
n4a−1∑

r0=1

⎛

⎝CL(4a),n4a=r,n4a,0=r0 ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·
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·
⎛

⎝
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.86)

i.e., the one from (4.77), for n2 = 0 and n3 = 1.
For n2 = 1 and n3 = 1, we have nL1 = 3, and the factors from the decomposition

of L are of type 1. (a) and 2. (a) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). In
determining the number of CPPs, we consider the proof of this theorem for n2 = 0
and n3 = 1 and the analysis for case 1. (a) above. The number of CPPs will be:

CL ,CPPs =
⎛

⎝2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ +

+
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎤

⎦ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =
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=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 2 ·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j ·

·2 ·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 ·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 ·
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) ·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+2 ·
n4a−1∑

r0=1

⎛

⎝CL(4a),n4a=r,n4a,0=r0 ·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.87)

i.e., the one from (4.77), for n2 = 1 and n3 = 1. �

From (4.77) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.17 If the decomposition of L is of the form L = 2nL ,2 · 3n3 ·
nL−n4a∏

j=nL 1

p
nL ,p j

j ·
nL∏

j=nL−n4a+1

p j , with nL ,2 > 1, n3 ∈ {0, 1}, nL1 = n3 + 2, n4a ∈ N
∗, nL ≥ n4a + nL 1,
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p j > 3, nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2,
k ∈ N

∗, j = nL 1, nL − n4a and p j = 3 · k + 2, k ∈ N
∗, j = nL − n4a + 1, nL , the

number of CPPs will be equal to:

CL ,CPPs = 2n3 ·
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·nL ,2−5·

·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+2n3 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·nL ,2−5·

·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2n3 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·nL ,2−3 ·
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.88)

Proof For n3 = 0, we have nL1 = 2, and the factors from the decomposition of L
are of type 1. (b) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). We consider the
proof of Theorem 4.16 for n2 = 0 and n3 = 0 and the additional case 1. (b) above.
The number of CPPs will be equal to:

CL ,CPPs =
⎛

⎝2nL ,2−1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 2nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ +
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+
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 2nL ,2−1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 2nL ,2−2 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 2nL ,2−2 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠

⎤

⎦+

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·nL ,2−5 ·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j · 23·nL ,2−5·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·nL ,2−3 ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·nL ,2−5·
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·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·nL ,2−5·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·nL ,2−3 ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.89)

i.e., the one from (4.88), for n3 = 0.
For n3 = 1, we have nL1 = 3, and the factors from the decomposition of L are of

type 1. (b) and 2. (a) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). We consider the
proof of Theorem 4.16 for n2 = 0 and n3 = 1 and the additional case 1. (b) above.
The number of CPPs is equal to:

CL ,CPPs =
⎛

⎝2nL ,2−1 · 2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 2nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ +

+
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 2nL ,2−1 · 2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 2nL ,2−2 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 2nL ,2−2 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎤

⎦+

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−1 · 2 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·nL ,2−4 ·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j · 23·nL ,2−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·(nL ,2−1) ·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·nL ,2−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·nL ,2−4·
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·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·(nL ,2−1) ·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2·nL ,2−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.90)

i.e., the one from (4.88), for n3 = 1. �

From (4.88) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.18 If the decomposition of L is of the form L = 2n2 · 3nL ,3 ·
nL−n4a∏

j=nL 1

p
nL ,p j

j ·
nL∏

j=nL−n4a+1

p j , with n2 ∈ {0, 1}, nL ,3 > 1, nL 1 = n2 + 2, n4a ∈ N
∗, nL ≥ n4a + nL 1,

p j > 3, nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2,
k ∈ N

∗, j = nL 1, nL − n4a and p j = 3 · k + 2, k ∈ N
∗, j = nL − n4a + 1, nL , the

number of CPPs will be equal to:

CL ,CPPs = 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·

·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+4 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 33·nL ,3−4·

·
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1)·
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·
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=nL 1

p
nL ,p j −1

j − 1

⎞

⎠ (4.91)

Proof For n2 = 0, we have nL 1 = 2, and the factors from the decomposition of L are
of type 2. (b) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). We consider the analysis
from the proof of the Theorem 4.16 for n2 = 0 and n3 = 0 and the conditions from
the case 2. (b) above. For a group of n4a,0 prime factors of the type 4. (a), with
n4a,0 ∈ {1, 2, . . . , n4a − 1}, the number of CPPs is equal to:

CL ,CPPs,n4a,0 = 2 ·
⎛

⎝
∏

j∈In4a,0

(p j − 1) · 3nL ,3−1·

·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 3nL ,3−1 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 2 · 3nL ,3−2 ·

nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ =

=
∏

j∈In4a
(p j − 1) · 33·nL ,3−4 ·

∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
=

=
nL∏

j=nL−n4a+1

(p j − 1) · 33·nL ,3−4 ·
∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
(4.92)
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For a group of n4a prime factors of the type 4. (a), we have to remove the case
when q3 = 0 and the number of CPPs will be equal to:

CL ,CPPs,n4a = 2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 3nL ,3−1·

·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.93)

When the condition q3, j = 0 (mod p j ) is not met for any of the n4a prime factors
of the type 4. (a), the number of CPPs will be:

CL ,CPPs,0 = 2 ·
⎛

⎝3nL ,3−1 ·
nL−n4a∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 3nL ,3−1 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 · 3nL ,3−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j

⎞

⎠ =

= 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·
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·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ (4.94)

The number of CPPs results by summing up the quantities in (4.92), for n4a,0 =
1, 2, . . . , n4a − 1, (4.93) and (4.94):

CL ,CPPs = 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+4 ·
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 33·nL ,3−4 ·
∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·

·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+4 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 33·nL ,3−4·
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·
nL−n4a∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1) ·
nL−n4a∏

j=2

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.95)

i.e., the one from (4.91), for n2 = 0.
For n2 = 1, we have nL1 = 3, and the factors from the decomposition of L are of

type 1. (a) and 2. (b) and 4. (a) and 3. (a) and/or 3. (b) and/or 4. (b). In determining the
number of CPPs we consider the proof of this theorem for n2 = 0 and the analysis
for case 1. (a) above. The number of CPPs will be:

CL ,CPPs = 2 ·
⎛

⎝3nL ,3−1 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 3nL ,3−1 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ +

+2 ·
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 3nL ,3−1 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 3nL ,3−1 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 2 · 3nL ,3−2 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎤

⎦ +
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+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 3nL ,3−1 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+4 ·
n4a−1∑

n4a,0=1

⎛

⎝
∏

j∈In4a
(p j − 1) · 33·nL ,3−4 ·

∏

j∈{In4a −In4a,0 }
p j ·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1)·

·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 ·
⎛

⎝
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+4 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 33·nL ,3−4·
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·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 32·(nL ,3−1) ·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.96)

i.e., the one from (4.91), for n2 = 1. �
From (4.91) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.19 If the decomposition of L is of the form L = 2nL ,2 · 3nL ,3 ·
nL−n4a∏

j=3

p
nL ,p j

j ·
nL∏

j=nL−n4a+1

p j , with nL ,2 > 1, nL ,3 > 1, n4a ∈ N
∗, nL ≥ n4a + 3, p j >

3, nL ,p j ≥ 1, when p j = 3 · k + 1, k ∈ N and nL ,p j > 1 when p j = 3 · k + 2, k ∈
N

∗, j = 3, nL − n4a and p j = 3 · k + 2, k ∈ N
∗, j = nL − n4a + 1, nL , the number

of CPPs will be equal to:

CL ,CPPs =
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·(nL ,2−1) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·(nL ,2−1) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·(nL ,2−1) · 32·(nL ,3−1)·

·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·
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·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.97)

Proof We consider the proof of Theorem 4.18 for n2 = 0 and the additional case 1.
(b) above. The number of CPPs is equal to:

CL ,CPPs =
⎛

⎝2 · 2nL ,2−1 · 3nL ,3−1 ·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

p j · 2nL ,2−2 · 3nL ,3−1 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−2 · 2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ +

+2 ·
n4a−1∑

n4a,0=1

⎡

⎣

⎛

⎝
∏

j∈In4a,0

(p j − 1) · 2nL ,2−1 · 3nL ,3−1·

·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
p j · 2nL ,2−2 · 3nL ,3−1 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
∏

j∈{In4a −In4a,0 }
(p j − 1) · 2nL ,2−2 · 2 · 3nL ,3−2 ·

nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎤

⎦+

+2 ·
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 2nL ,2−1 · 3nL ,3−1·

·
nL−n4a∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)⎞

⎠ ·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL−n4a∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝2nL ,2−2 · 2 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·(nL ,2−1) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+4 ·
n4a−1∑

n4a,0=1

⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) ·
∏

j∈{In4a −In4a,0 }
p j · 23·(nL ,2−1) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·(nL ,2−1) · 32·(nL ,3−1)·

·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=nL−n4a+1

(
p j · (p j − 1)

) · 23·(nL ,2−1) · 33·nL ,3−4·

·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
+

+
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·(nL ,2−1) · 33·nL ,3−4·
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·
nL−n4a∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ +

+
⎛

⎝
nL∏

j=nL−n4a+1

(p j − 1) · 22·(nL ,2−1) · 32·(nL ,3−1)·

·
nL−n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)⎞

⎠ ·

·
⎛

⎝2nL ,2−1 · 3nL ,3−2 ·
nL−n4a∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.98)

�
From (4.97) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.20 If the decomposition of L is of the form L = 2n2 · 3n3 ·
n4a+nL 1−1∏

j=nL 1

p j ,

with n2 ∈ {0, 1}, n3 ∈ {0, 1}, nL1 = n2 + n3 + 1, n4a ∈ N
∗, p j = 3 · k + 2, k ∈ N

∗,
j = nL1, n4a + nL 1 − 1, the number of CPPs will be equal to:

CL ,CPPs = 2n3 ·
n4a+nL 1−1∏

j=nL 1

(
p j · (p j − 1)

) + 2n3 ·
n4a−1∑

r0=1

CL(4a),n4a=r,n4a,0=r0 (4.99)

Proof This is a particular case of Theorem 4.16, therefore we can use Eq. (4.77) in

which the products
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
,
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)

and
nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced by 1, and nL = n4a + nL1 − 1. �

From (4.99) we see that in this case the number of CPPs is always greater than 0.

Theorem 4.21 If the decomposition of L is of the form L = 2nL ,2 · 3n3 ·
n4a+nL 1−1∏

j=nL 1

p j ,

with nL ,2 > 1, n3 ∈ {0, 1}, nL1 = n3 + 2, n4a ∈ N
∗, p j = 3 · k + 2, k ∈ N

∗, j =
nL1, n4a + nL1 − 1, the number of CPPs will be equal to:

CL ,CPPs = 2n3 ·
n4a+nL 1−1∏

j=nL 1

(
p j · (p j − 1)

) · 23·nL ,2−5+
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+2n3 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·nL ,2−5

)
+

+2n3 ·
⎛

⎝
n4a+nL 1−1∏

j=nL 1

(p j − 1) · 22·nL ,2−3

⎞

⎠ ·
(
2·nL ,2−2 − 1

)
(4.100)

Proof This is a particular case of Theorem 4.17, therefore we can use Eq. (4.88), in

which the products
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
,
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)

and
nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced by 1, and nL = n4a + nL1 − 1. �

From (4.100) we see that in this case the number of CPPs is always greater
than 0.

Theorem 4.22 If the decomposition of L is of the form L = 2n2 · 3nL ,3 ·
n4a+nL 1−1∏

j=nL 1

p j ,

with n2 ∈ {0, 1}, nL ,3 > 1, nL1 = n2 + 2, n4a ∈ N
∗, p j = 3 · k + 2, k ∈ N

∗, j =
nL1, n4a + nL1 − 1, the number of CPPs will be equal to:

CL ,CPPs = 4 ·
⎛

⎝
n4a+nL 1−1∏

j=nL 1

(
p j · (p j − 1)

) · 33·nL ,3−4

⎞

⎠ +

+4 ·
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 33·nL ,3−4

)
+

+2 ·
⎛

⎝
n4a+nL 1−1∏

j=nL 1

(p j − 1) · 32·(nL ,3−1)

⎞

⎠ ·
(
2 · 3·nL ,3−2 − 1

)
(4.101)

Proof This is a particular case of Theorem 4.18, therefore we can use Eq. (4.91), in

which the products
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
,
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)

and
nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced by 1, and nL = n4a + nL1 − 1. �

From (4.101) we see that in this case the number of CPPs is always greater
than 0.
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Theorem 4.23 If the decomposition of L is of the form L = 2nL ,2 · 3nL ,3 ·
n4a+2∏

j=3

p j ,

with nL ,2 > 1, nL ,3 > 1, n4a ∈ N
∗, p j = 3 · k + 2, k ∈ N

∗, j = 3, n4a + 2, the num-
ber of CPPs will be equal to:

CL ,CPPs =
n4a+2∏

j=3

(
p j · (p j − 1)

) · 23·(nL ,2−1) · 33·nL ,3−4+

+
n4a−1∑

r0=1

(
CL(4a),n4a=r,n4a,0=r0 · 23·(nL ,2−1) · 33·nL ,3−4

)
+

+
⎛

⎝
n4a+2∏

j=3

(p j − 1) · 22·(nL ,2−1) · 32·(nL ,3−1)

⎞

⎠ ·
(
2nL ,2−1 · 3·nL ,3−2 − 1

)
(4.102)

Proof This is a particular case of Theorem 4.19, therefore we can use Eq. (4.97), in

which the products
nL−n4a∏

j=nL 1

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
,
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)

and
nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced by 1, and nL = n4a + nL1 − 1. �

From (4.102) we see that in this case the number of CPPs is always greater
than 0.

Theorem 4.24 If the decomposition of L is of the form L = 2nL ,2 · 3n3 , with nL ,2 > 1,
n3 ∈ {0, 1}, the number of CPPs will be equal to:

CL ,CPPs = 2n3 · 22·nL ,2−3 ·
(
2nL ,2−2 − 1

)
(4.103)

Proof This is a particular case of Theorem 4.13, therefore we can use Eq. (4.69), in

which the products
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)
and

nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced

by 1. �

From (4.103) we see that the number of CPPs is equal to 0 if the interleaver length
is 4 or 12.

Theorem 4.25 If the decomposition of L is of the form L = 2n2 · 3nL ,3 , with n2 ∈
{0, 1}, nL ,3 > 1, the number of CPPs will be equal to:

CL ,CPPs = 2 · 32·(nL ,3−1) ·
(
2 · 3nL ,3−2 − 1

)
(4.104)
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Proof This is a particular case of Theorem 4.14, therefore we can use Eq. (4.72), in

which the products
nL−n4a∏

j=nL 1

(
p
2·(nL ,p j −1)

j · (p j − 1)

)
and

nL−n4a∏

j=nL 1

p
nL ,p j −1

j are replaced

by 1. �

From (4.104) we see that in this case the number of CPPs is always greater
than 0.

Theorem 4.26 If the decomposition of L is of the form L = 2nL ,2 · 3nL ,3 , with nL ,2 >

1, nL ,3 > 1, the number of CPPs will be equal to:

CL ,CPPs = 22·(nL ,2−1) · 32·(nL ,3−1) ·
(
2nL ,2−1 · 3nL ,3−2 − 1

)
(4.105)

Proof This is a particular case of Theorem 4.15, therefore we can use Eq. (4.75),

in which the products
n4a∏

j=3

(
p
2·(nL ,p j −1)

j · (p j − 1)

)
and

n4a∏

j=3

p
nL ,p j −1

j are replaced

by 1. �

From (4.105) we see that in this case the number of CPPs is always greater
than 0.

Theorem 4.27 If L = 2 or L = 3 or L = 6, the number of CPPs is equal to zero.

Proof Since L = 2 is even, it is required that q3 < L/2 = 1. As q3 can not be 0,
there is no true CPP in this case, i.e. C2,CPPs = 0.

When L = 3, from the equivalence conditions, it is required that q3 < L/3 = 1.
As q3 cannot be 0, there is no true CPP in this case, i.e. C3,CPPs = 0.

When L = 6, from the equivalence conditions of CPPs, it is required that q3 <

L/6 = 1. As q3 cannot be 0, there is no trueCPP, i.e. C6,CPPs = 0. �

We bring together the conclusions from Theorems 4.12–4.27 and conclude that
the number of CPPs is equal to 0 if the interleaver length is of the form:

L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p j , with nL ,2 = 0, 2, nL ,3 = 0, 1, p j > 3,

with p j = 3 · k + 1, k ∈ N, j = 3, nL (4.106)

Such lengths have to be avoided in designing CPP-based interleavers.
By comparing Eqs. (4.56) and (4.106), it can be concluded that for any interleaver

length for which the number of CPPs is 0, the number of QPPs is also 0. But there
are lengths for which the number of QPPs is 0 and the number of CPPs is greater
than 0. Such lengths are generated by multiplying by one, two or four products of
prime numbers greater than 2, each to the power of 1. In each product, there should
be at least a prime number of the form 3 · k + 2, k ∈ N

∗, so that:
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L = 2nL ,2 · 3nL ,3 ·
nL−n4a∏

j=3

p j ·
nL∏

j=nL−n4a+1

p j , with nL ,2 = 0, 2, nL ,3 = 0, 1,

p j > 3, with p j = 3 · k + 1, k ∈ N, if j = 3, nL − n4a and

p j = 3 · k + 2, k ∈ N
∗, if j = nL − n4a + 1, nL , nL ≥ n4a ≥ 1 (4.107)

For the lengths of the type in (4.107) the CPP-based interleavers can be used
instead of QPP-based ones. The number of lengths for which the number of QPPs is
0 is significantly greater than the number of lengths for which the number of CPPs
is equal to 0. For example, from 2 to 1,00,000 there are 7098 lengths for which the
number of QPPs is 0 and only 2264 lengths for which the number of CPPs is 0.

In the following, we give an example of checking the formula for the number
of true different CPPs, for a more comprehensive case, i.e., when the prime-factor
decomposition of the interleaver length contains almost all types of prime factors that
appear in the theorems presented in the paper. The chosen length of the interleaver
corresponds to the decomposition from Theorem 4.16, when n2 = 1 and n3 = 1.

Example 4.1 Let L = 16170 = 2 · 3 · 5 · 72 · 11. According to Theorem 4.16, we
have n2 = 1, n3 = 1, nL1 = 3, n4a = 2. We mention that the two factors of type 4.
(a) are 5 and 11, and the only factor of type 3. (b) is 72.

The quantity CN(4a),n4a=2,n4a,0=1 used in (4.77), is given in (4.58). It is equal to

CN(4a),n4a=2,n4a,0=1 = (5 − 1) · 11 · (11 − 1) + (11 − 1) · 5 · (5 − 1) = 640

According to (4.77), the number of all true different CPPs is equal to:

C16170,CPPs = 2 · 5 · (5 − 1) · 11 · (11 − 1) · 73·(2−1) · (7 − 1)+

+2 · 640 · 73·(2−1) · (7 − 1)+

+2 · (5 − 1) · (11 − 1) · 72·(2−1) · (7 − 1) · (72−1 − 1) = 11830560

In the following, we detail the coefficients of the 11830560 true different CPPs.
Because 6 | L , it is required that q3 < L/6 = 2695 and q2 < L/2 = 8085.
Because of the factor of type 3. (b) from the decomposition of 16170, coef-

ficients q3 and q2 have to be multiples of 7, and coefficient q1 has to be rela-
tively prime with 7. Because of the factor of type 2. (a) from the decomposition
of 16170, coefficient q2 also has to be multiple of 3. Therefore, q3 can take val-
ues in the set {7, 14, 21, . . . , 2688} (with cardinality 384), q2 can take values in the
set {0, 21, 42, . . . , 8064} (with cardinality 385), and q1 can take values in the set

{1, 2, 3, 4, 5, 6, 8, 9, . . . , 16169} (with cardinality 16170 · 6
7

= 13860).
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Because of the factor of type 2. (a), the condition (q1 + q3) 
= 0 (mod 3) must
be fulfilled. Because of the factor of type 1. (a), the condition (q1 + q2 + q3) 
=
0 (mod 2) must be fulfilled. Thus, when q2 is even, (q1 + q3) is required to be odd,
and when q2 is odd, (q1 + q3) is required to be even.

Because of the two factors of type 4. (a) (5 and 11), the analysis has to be performed
for four different cases: (a) q3 is a multiple of 5 · 11 = 55; (b) q3 is a multiple of 5,
but not a multiple of 11; (c) q3 is a multiple of 11, but not a multiple of 5; and (d) q3
is neither a multiple of 5, nor a multiple of 11.

(a) When q3 is multiple of 5 · 11 = 55, q2 has to be multiple of 5 · 11 = 55, and
q1 has to be relatively prime with 5 and 11. This situation happens for six values from
the set of 384 possible values for q3 (namely, {385, 770, 1155, 1540, 1925, 2310}),
for 7 values from the set of 385 possible values for q2

(namely, {0, 1155, 2310, 3465, 4620, 5775, 6930}) and for 16170 · 6
7

· 4
5

· 10
11

=
10080 values from the set of 13860 possible values for q1
(namely, {1, 2, 3, 4, 6, 8, 9, 12, 13, . . . , 16169}).

From the six previous values for q3, two are multiples of 3 (namely, 1155 and
2310), two are multiples of 3 plus 1 (namely 385 and 1540) and two are multi-
ples of 3 plus 2 (namely, 770 and 1925). From the 10080 values for q1, there are
10080/3 = 3360 values multiples of 3, multiples of 3 plus 1, and multiples of 3
plus 2, respectively. Therefore, the condition (q1 + q3) 
= 0 (mod 3) is fulfilled for
2 · 3360 · 2 · 3 = 40320 pairs of values for the coefficients (q3, q1). Of the seven val-
ues for q2, four values are even and three are odd. From each of the three groups of
two values for q3, one is even and one is odd and from each of three groups of 3360
values for q1, 1680 are even and 1680 are odd. It follows that from the 40320 pairs of
values for the coefficients (q3, q1), the sum (q1 + q3) is even for 40320/2 = 20160
pairs of values and odd for 40320/2 = 20160 pairs. Therefore, when q3 is multi-
ple of 5 · 11 = 55, we will have 4 · 20160 + 3 · 20160 = 141120 sets of coefficients
(q3, q2, q1) leading to true different CPPs modulo 16170.

(b) When q3 is a multiple of 5, but not a multiple of 11, q2 has to be a mul-
tiple of 5, q1 has to be relatively prime with 5, and the three coefficients must
fulfill the condition q2

2 = 3q1q3 (mod 11). q3 is a multiple of 5, but not a mul-
tiple of 11, for 70 values from the set of 384 possible values for q3 (namely,
{35, 70, 105, . . . , 350, 420, 455, . . . , 735, 805, . . . , 2660}). q2 is a multiple of 5 for
77values from the set of 385possible values forq2 (namely, {0, 105, 210, . . . , 7980}).
For each two coefficients q3 and q2, from the sets previously mentioned, the con-
gruence equation q2

2 = 3q1q3 (mod 11) has only one solution modulo 11, in vari-
able q1 and, thus, 16170/11 = 1470 solutions modulo 16170. Of these, we have to
remove those that are multiples of 5 or multiples of 7. In this way, 1470 − 1470/5 −
1470/7 + 1470/35 = 1008 valid solutions remain. For example, for q3 = 35 and
q2 = 105, the possible values for q1 are from the set {6, 17, 39, 61, . . . , 16154}.

From the 70 possible solutions for q3, 23 values aremultiples of 3 andmultiples of
3 plus 1, respectively, and 24 values are multiples of 3 plus 2. From the 1008 possible
values for q1, 1008/3 = 336 values are multiples of 3, multiples of 3 plus 1, and
multiples of 3 plus 2, respectively. Therefore, the condition (q1 + q3) 
= 0 (mod 3) is
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fulfilled for 2 · 23 · 336 · 2 + 24 · 336 · 2 = 47040 pairs of values of the coefficients
(q3, q1). From the 77 values for q2, 39 values are even and 38 values are odd. From
each of the three groups of 336 values for q1, 168 values are even and 168 values
are odd. From the two groups of 23 values for q3, one contains 11 even values and
12 odd values and the other group contains 12 even values and 11 odd values. The
group of 24 values for q3 contains 12 even and odd values, respectively. It follows
that from the 47040 pairs of values for the coefficients (q3, q1), the sum (q1 + q3) is
even and odd for 2 · 11 · 168 · 2 + 2 · 12 · 168 · 2 + 2 · 12 · 168 · 2 = 23520 pairs of
values, respectively. Therefore, the condition (q1 + q2 + q3) 
= 0 (mod 2) is fulfilled
for 39 · 23520 + 38 · 23520 = 1811040 sets of coefficients (q3, q2, q1). Thus, when
q3 is a multiple of 5, but not a multiple of 11, we will have 1811040 true different
CPPs modulo 16170.

(c) When q3 is a multiple of 11, but not a multiple of 5, q2 has to be a mul-
tiple of 11, q1 has to be relatively prime with 11, and the three coefficients must
fulfill the condition q2

2 = 3q1q3 (mod 5). q3 is a multiple of 11, but not a mul-
tiple of 5, for 28 values from the set of 384 possible values for q3 (namely,
{77, 154, 231, 308, 462, 539, 616, 693, . . . , 2387, 2464, 2541, 2618}). q2 is a mul-
tiple of 11 for 35 values from the set of 385 possible values for q2 (namely,
{0, 231, 462, . . . , 7854}). For each two coefficients q3 and q2, fixed in the sets pre-
viously mentioned, the congruence equation q2

2 = 3q1q3 (mod 5) has only one solu-
tion modulo 5, in variable q1, and thus, 16170/5 = 3234 solutions modulo 16170.
From these, we have to remove those that are multiples of 11 or multiples of 7.
In this way, 3234 − 3234/11 − 3234/7 + 3234/77 = 2520 valid solutions remain.
For example, for q3 = 77 and q2 = 231, the possible values for q1 are from the set
{1, 6, 16, 26, . . . , 16166}.

From the 28 possible values for q3, nine values aremultiples of 3 andmultiples of 3
plus 1, respectively, and 10 values are multiples of 3 plus 2. From the 2520 possible
values for q1, 2520/3 = 840 values are multiples of 3, multiples of 3 plus 1, and
multiples of 3 plus 2, respectively. Therefore, the condition (q1 + q3) 
= 0 (mod 3)
is fulfilled by 2 · 9 · 840 · 2 + 10 · 840 · 2 = 47040 pairs of values of coefficients
(q3, q1). From the 35 values for q2, 18 values are even and 17 values are odd. From
each of the three groups of 840 values for q1, 420 values are even and 420 are odd.
From the two groups of nine values for q3, one contains four even and five odd values
and the other contains five even and four odd values. The group of 10 values for q3
contains five even and five odd values. It follows that from the 47040 pairs of values
of coefficients (q3, q1), the sum (q1 + q3) is even and odd for 2 · 4 · 420 · 2 + 2 ·
5 · 420 · 2 + 2 · 5 · 420 · 2 = 23520 pairs of values (q3, q1), respectively. Therefore,
the condition (q1 + q2 + q3) 
= 0 (mod 2) is fulfilled for 18 · 23520 + 17 · 23520 =
823200 sets of coefficients. Thus, when q3 is a multiple of 11, but not a multiple of
5, we have 823200 true different CPPs modulo 16170.

(d) When q3 is neither a multiple of 5 nor a multiple of 11, the three coeffi-
cients have to fulfill the conditions q2

2 = 3q1q3 (mod 5) and q2
2 = 3q1q3 (mod 11).

q3 is neither a multiple of 5 nor of 11, but is a multiple of 7, for 384 − 6 −
70 − 28 = 280 values from the initial set of 384 possible values for q3 (namely,
{7, 14, 21, 28, 42, 49, 56, 63, 84, . . . , 2688}). q2 should have only 3 or 7 as prime
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factors; thus, it can take 385 values, as it was stated at the beginning of this exam-
ple. For each two coefficients q3 and q2 from the sets previously mentioned, the
congruence equations q2

2 = 3q1q3 (mod 5) and q2
2 = 3q1q3 (mod 11) have a sin-

gle solution modulo 55, in variable q1, and thus, 16170/55 = 294 solutions modulo
16170. From these, we have to remove those that are multiples of 7. In this way
294 − 294/7 = 252 valid solutions remain. For example, for q3 = 7 and q2 = 21,
the possible values for q1 are from the set {76, 131, 186, . . . , 16136}.

Out of the 280 possible values for q3, 94 are multiples of 3 and multiples of 3 plus
1, respectively and 92 values are multiples of 3 plus 2. Out of the 252 possible values
for q1, 252/3 = 84 values are multiples of 3, multiples of 3 plus 1, and multiples
of 3 plus 2, respectively. Therefore, the condition (q1 + q3) 
= 0 (mod 3) is fulfilled
by 2 · 94 · 84 · 2 + 92 · 84 · 2 = 47040 pairs of values of coefficients (q3, q1). Out of
the 385 values for q2, 193 are even and 192 are odd. Out of each of the three groups
of 84 values for q1, 42 are even and 42 are odd. Out of the two groups of 94 values for
q3, one contains 46 even values and 48 odd values and the other one contains 48 even
values and 46 odd values. The group of 92 values for q3 contains 46 even and odd
values, respectively. It follows that, from the 47040 pairs of values of coefficients
(q3, q1), the sum (q1 + q3) is even and odd for 2 · 46 · 42 · 2 + 2 · 48 · 42 · 2 + 2 ·
46 · 42 · 2 = 23520 pairs of values (q3, q1), respectively. Therefore the condition
(q1 + q2 + q3) 
= 0 (mod 2) is fulfilled for 193 · 23520 + 192 · 23520 = 9055200
sets of coefficients (q3, q2, q1). Thus, when q3 is neither a multiple of 11 nor of 5,
we will have 9055200 true different CPPs modulo 16170.

The total number of true different CPPs modulo 16170 results by summing
up the number of CPPs from the four cases. It is equal to 141120 + 1811040 +
823200 + 9055200 = 11830560, which is the one determined by the formula in
Theorem 4.16. �

4.6 Determining the Number of True Different Permutation
Polynomial-Based Interleavers Under Zhao and Fan
Sufficient Conditions for Degrees 3, 4 and 5

The method used to determine the number of different true PPs under Zhao and
Fan sufficient conditions (denoted ZF PPs) is that given in Sect. 4.3. However the
equivalence conditions for PPs fulfilling Zhao and Fan sufficient conditions at point
(c) can be different from those for general PPs.

The form of NPs of degree up to d is given in (4.48) from Theorem 4.8. We
have checked that (4.48) includes all NPs of degree d or less, for d = 5, which is
of interest, using the method from Sect. 4.2 for QNPs and CNPs. The number of all

NPs of degree up to d is equal to
d∏

k=1

gcd(k!, L), as it was shown in Theorem 4.7. We

notice that always one of the NPs has all coefficients null, named trivial NP.
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Let

z(x) =
d∑

k=1

zk · xk (mod L) (4.108)

be a NP modulo L of degree d.
We define a NP valid under Zhao and Fan sufficient conditions (denoted a ZF

NP) a NP z(x) (denoted zZF (x)) fulfilling the condition that if π(x) is a ZF PP then
π(x) + zZF (x) is also a ZF PP. From Table 3.6 we can determine the conditions on
the coefficients of a valid NP under Zhao and Fan sufficient conditions. Since Zhao
and Fan sufficient conditions are also necessary for the prime p = 2 we have to take
into account only the conditions for primes p > 2 (i.e. the last row in Table 3.6).
This means:

z1 
= (−q1) (mod p), z2 = z3 = · · · = zd = 0 (mod p),∀p | L , p > 2. (4.109)

In the following, we explain how the coefficients qk in (4.108), with k = 1, d , take
values according to (4.48), for d = 2, d = 3, d = 4 or d = 5. Since gcd(1!, L) = 1,
it follows that τ1 = 0 and, consequently, there are no non-trivial NPs of degree 1 and
therefore the index k can take values from 2 to d in the sum in (4.48). As the NPs
obtained for d = 5 in (4.48) include all NPs of degree up to 5, we will detail the
Eq. (4.48) only for d = 5. zd=5(x) denotes z(x) for d = 5. Thus, we have

zd=5(x) = L

gcd(2!, L)
· τ2 · x · (x − 1)+

+ L

gcd(3!, L)
· τ3 · x · (x − 1) · (x − 2)+

+ L

gcd(4!, L)
· τ4 · x · (x − 1) · (x − 2) · (x − 3)+

+ L

gcd(5!, L)
· τ5 · x · (x − 1) · (x − 2) · (x − 3) · (x − 4) =

= L

gcd(5!, L)
· τ5 · x5 +

(
L

gcd(4!, L)
· τ4 − L

gcd(5!, L)
· 10 · τ5

)
· x4+

+
(

L

gcd(3!, L)
· τ3 − L

gcd(4!, L)
· 6 · τ4 + L

gcd(5!, L)
· 35 · τ5

)
· x3+

+
(

L

gcd(2!, L)
· τ2 − L

gcd(3!, L)
· 3 · τ3 + L

gcd(4!, L)
· 11 · τ4−

− L

gcd(5!, L)
· 50 · τ5

)
· x2 +

(
L

gcd(3!, L)
· 2 · τ3 − L

gcd(2!, L)
· τ2−
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− L

gcd(4!, L)
· 6 · τ4 + L

gcd(5!, L)
· 24 · τ5

)
· x,

with 0 ≤ τ2 ≤ gcd(2!, L) − 1, 0 ≤ τ3 ≤ gcd(3!, L) − 1,

0 ≤ τ4 ≤ gcd(4!, L) − 1 and 0 ≤ τ5 ≤ gcd(5!, L) − 1. (4.110)

In (4.110), τ2 can take any value between 0 and gcd(2!, L) − 1, τ3 can take
any value between 0 and gcd(3!, L) − 1, τ4 can take any value between 0 and
gcd(4!, L) − 1, and τ5 can take any value between 0 and gcd(5!, L) − 1. Non-trivial
NPs of degree 5 result if τ5 > 0, non-trivial NPs of degree 4 if τ5 = 0 and τ4 > 0,
non-trivial NPs of degree 3 (CNPs) if τ5 = 0, τ4 = 0 and τ3 > 0, and non-trivial
NPs of degree 2 (QNPs) if τ5 = 0, τ4 = 0, τ3 = 0 and τ2 > 0. As the coefficients
of a non-trivial NP have to be integers, and the coefficient of the maximum degree
term has to be positive, there are non-trivial NPs of degree 5, only if 2 | L or/and
3 | L or/and 5 | L , non-trivial NPs of degree 4, only if 2 | L or/and 3 | L , non-trivial
CNPs only if 2 | L or/and 3 | L , and non-trivial QNPs only if 2 | L . With the above
considerations, it follows that the number of non-trivial NPs of degree 5 is equal
to gcd(2!, L) · gcd(3!, L) · gcd(4!, L) · (gcd(5!, L) − 1), the number of non-trivial
NPs of degree 4 is equal to gcd(2!, L) · gcd(3!, L) · (gcd(4!, L) − 1), the number of
non-trivial CNPs is equal to gcd(2!, L) · (gcd(3!, L) − 1), and the number of non-
trivial QNPs is equal to gcd(2!, L) − 1. Thus, according to the value of L , the number
of non-trivial QNPs may be 0 or 1 (as it also results from Theorem 4.4), the number
of non-trivial CNPs may be 0, 2 or 10 (as it also results from Theorem 4.6), the
number of non-trivial NPs of degree 4 may be 0, 4, 6, 12, 28, 60, 132 or 276, and
the number of non-trivial NPs of degree 5 may be 0, 4, 8, 18, 48, 72, 126, 224, 304,
360, 1248, 1584, 2088, 6624, 8496 or 34272.

We have to impose additional constraints for zn=5(x) to be a valid ZF NP only if
3 | L and/or 5 | L because for every prime p > 5, with p | L , the five coefficients
of zn=5(x) will be divisible by p, and thus they fulfill the conditions (4.109).

We denote by gk the value gcd(k!, L), for k ∈ N
∗, k < L . Let the prime factor-

ization of gk , for k = 3, 4, 5, be of the form

gk = gcd(k!, L) = 2ngk ,2 · 3ngk ,3 · 5ngk ,5 ,

where 0 ≤ ngk ,2 ≤ 3, 0 ≤ ngk ,3 ≤ 1, and 0 ≤ ngk ,5 ≤ 1. (4.111)

Obviously, for k = 3 or k = 4 we have ngk ,5 = 0 in (4.111).
We write the prime factorization of L as

L = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j

j ,

with nL ,p ≥ 0 for p = 2, 3, 5, and nL ,p j ≥ 1 ∀ j = 4, nL . (4.112)
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We note that if nL ,3 = 0 then 3 � L and we not have to impose additional con-
straints for prime p = 3 for zd=k(x), k = 3, 4, 5, to be a valid ZFNP. Also if nL ,5 = 0
then 5 � L and we not have to impose additional constraints for prime p = 5 for
zd=5(x).

If nL ,3 > 1 we have 3 | L

gcd(k!, L)
,∀k = 2, 3, 4, 5, and from (4.110) it results

that 3 divides all coefficients of zd=5(x), thus fulfilling the conditions for prime

p = 3 for a valid ZF NP. If nL ,5 > 1 we have 5 | L

gcd(5!, L)
, ∀k = 2, 3, 4, 5, and

from (4.110) it results that 5 divides all coefficients of zd=5(x), thus fulfilling the
conditions for prime p = 5 for a valid ZF NP.

From those above it results that we have to impose additional constraints for
zd=5(x) to be a valid ZF NP only if nL ,3 = 1 and/or nL ,5 = 1. We analyze these
cases below.

Ifπ(x) is a ZF PPmodulo L of degree d, and zZF (x) is a non-trivial ZFNPmodulo
L of degree less than or equal to d, then π(x) + zZF (x) is also a ZF PP modulo L
of degree d, with coefficients different from those of π(x). From (4.48), we note
that the coefficient of the maximum degree term of a NP (denoted by dN P ) is any

multiple of
L

gcd(dN P !, L)
, i.e.

L

gcd(dN P !, L)
· τN P , with 0 ≤ τN P ≤ gcd(dN P !, L) −

1. It follows that any PP modulo L of degree d ≥ dN P is equivalent to a PP having

the coefficient of the dN P degree term qdNP <
L

gcd(dN P !, L)
. We assume that the

coefficient of the dN P degree term of the initial PP is in the range

[
L

gcd(dN P !, L)
·

τN P ,
L

gcd(dN P !, L)
· (τN P + 1)

)
for a fixed τN P with 0 ≤ τN P ≤ gcd(dN P !, L) − 1.

We obtain the equivalent PP by subtracting the NP of the maximum degree dN P

with the leading coefficient
L

gcd(dN P !, L)
· τN P from the initial PP. However the

coefficient of the maximum degree term of a ZF NP (denoted by dZF−N P ) is not

any multiple of
L

gcd(dZF−N P !, L)
because this coefficient, i.e.

L

gcd(dZF−N P !, L)
·

τZF−N P , have to be a multiple of any prime greater than 2 which is a divisor of
L . Then, for π(x) in (3.1) a ZF PP, we can consider only those PP coefficients for

which qk <
L

gcd(k!, L)
· τk , ∀k = 2, d , where τk is the least positive integer such that

p |
(

L

gcd(k!, L)
· τk

)
, for every prime p | L with 2 < p ≤ k. In this way we get the

conditions on the maximum values of the coefficients for a ZF CPP, a ZF PP of fourth
degree (denoted by ZF 4-PP) and a ZF PP of fifth degree (denoted by ZF 5-PP) in
Sects. 4.6.1–4.6.3, respectively. Thus, the number of ZF NPs for a certain degree will
also give the number of combinations of maximum values for the coefficient of ZF
PPs we are interested in.

We detail below the conditions for a ZF NP of degree three, four, and five.
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If nL ,3 = 1 then 3 �
L

gcd(k!, L)
, ∀k = 3, 4, 5. In this case for zd=k(x), ∀k =

3, 4, 5, to be a valid ZF NP we have to impose the condition that 3 | τk , ∀k = 3, 4, 5.

Similarly, if nL ,5 = 1 then 5 �
L

gcd(5!, L)
. In this case for zd=5(x) to be a valid ZF

NP we have to impose the condition that 5 | τ5.
Thus, when nL ,3 = 1 any ZF PP modulo L is equivalent to a ZF PP having the

coefficient of the third degree term q3 < 3 · L

gcd(3!, L)
.

For similar reasons when nL ,3 = 1 any ZF PP modulo L is equivalent to a ZF PP

having the coefficient of the fourth degree term q4 < 3 · L

gcd(4!, L)
.

When nL ,3 = 1 and nL ,5 = 0 any ZF PPmodulo L is equivalent to a ZF PP having

the coefficient of the fifth degree term q5 < 3 · L

gcd(5!, L)
.

When nL ,3 = 0 and nL ,5 = 1 any ZF PPmodulo L is equivalent to a ZF PP having

the coefficient of the fifth degree term q5 < 5 · L

gcd(5!, L)
.

When nL ,3 = 1 and nL ,5 = 1 any ZF PPmodulo L is equivalent to a ZF PP having

the coefficient of the fifth degree term q5 < 15 · L

gcd(5!, L)
.

We have not to impose additional constraints for the coefficients z1 and z2 of the

NP zd=5(x) because when 3 | τk · L

gcd(k!, L)
, ∀k = 3, 4, 5 and 5 | τ5 · L

gcd(5!, L)
,

then p | z1 and p | z2, for p = 3 or 5. Thus z2 = z1 = 0 (mod p), p = 3 or 5, and
the conditions from (4.109) for primes 3 and 5 are fulfilled.

From the Zhao and Fan sufficient conditions on the coefficients of a PP from
Sect. 3.10, there are three types of prime factors, as shown in Table 3.6. These condi-
tions are considered in the following and for each type of prime factor, the number of
ZF PPs is determined. The notation ZF stands for Zhao and Fan sufficient conditions.

Wemention that aswewant to determine the number of trueZFPPs, the coefficient
of the term of maximum degree has to be different from zero. Therefore, whenever
appropriate, we will mention when a coefficient is zero as a consequence of the
conditions we imposed. This zero value will be eliminated in counting.

CaseZF1. (a) If p = 2 andnL ,2 = 1, the coefficientsqi,1 ∈ Z2 = {0, 1},∀i = 1, d .
In this case, there are two distinct permutations. The ZF NPs of degree d result

by imposing L = 2. Since gcd(k!, L) = 2, ∀k = 2, d , it follows that
L

gcd(k!, L)
=

1, ∀k = 2, d , and we can consider qi,1 = 0, ∀i = 2, d . We take into account the
condition (q1,1 + q2,1 + · · · + qd,1) 
= 0 (mod 2), resulting q1,1 = 1 and, therefore,
we have only a single combination of coefficients qi,1 ∈ Z2, i = 1, d , that has to be
considered in combinations with other prime factors.

Case ZF1. (b) If p = 2 and nL ,2 > 1, the coefficients qi,1 ∈ Z2nL ,2 , ∀i = 1, d .
The condition q1,1 
= 0 (mod 2) is met for �(2nL ,2) = 2nL ,2−1 coefficients. In the
following, we will consider thee particular cases for d = 3, d = 4 and d = 5.
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For d = 3, the conditions 1. (b) in Table 3.6 become q2,1 = q3,1 = 0 (mod 2).
By considering ZF NPs of third degree (ZF CNPs), we have q2,1, q3,1 < 2nL ,2−1 and
there are 2nL ,2−2 coefficients q2,1 and q3,1, respectively, out of which one is zero.

For d = 4, the conditions 1. (b) from Table 3.6 become (q2,1 + q4,1) = 0 (mod 2)
and q3,1 = 0 (mod 2). By considering ZF NPs of fourth degree, we have q2,1, q3,1 <

2nL ,2−1, q4,1 <
2nL ,2

gcd(24, 2nL ,2)
= 2nL ,2−min(3,nL ,2).

If nL ,2 ≥ 4, the condition (q2,1 + q4,1) = 0 (mod 2) will be met by 2nL ,2−2 and
2nL ,2−4 even coefficients q2,1, and q4,1, respectively, out of which one is zero and by
2nL ,2−2 and 2nL ,2−4 odd coefficients q2,1 and q4,1, respectively. If nL ,2 = 2 or nL ,2 = 3
the only possible value for q4,1 is 0, and the possible values for q2,1 are 0 for nL ,2 = 2,
and 0 and 2, respectively, for nL ,2 = 3. The condition q3,1 = 0 (mod 2) is met for
2nL ,2−2 coefficients q3,1.

For d = 5, the conditions 1. (b) from Table 3.6 become (q2,1 + q4,1) = 0 (mod 2)
and (q3,1 + q5,1) = 0 (mod 2). By considering the ZF NPs of fifth degree,

we have q2,1, q3,1 < 2nL ,2−1, q4,1 <
2nL ,2

gcd(24, 2nL ,2)
= 2nL ,2−min(3,nL ,2), q5,1 <

2nL ,2

gcd(120, 2nL ,2)
= 2nL ,2−min(3,nL ,2).

If nL ,2 ≥ 4, the condition (q2,1 + q4,1) = 0 (mod 2) will be met by 2nL ,2−2 and
2nL ,2−4 even coefficients q2,1 and q4,1, respectively and by 2nL ,2−2 and 2nL ,2−4 odd
coefficients q2,1 and q4,1, respectively.

Similarly, the condition (q3,1 + q5,1) = 0 (mod 2) will be met by 2nL ,2−2 and
2nL ,2−4 even coefficients q3,1 and q5,1, respectively, out of which one is zero, and by
2nL ,2−2 and 2nL ,2−4 odd coefficients q3,1 and q5,1, respectively. If nL ,2 = 2 or nL ,2 = 3,
the single possible value for q4,1 and q5,1 is 0, and the possible values for q2,1 and
q3,1 will be 0 for nL ,2 = 2, and 0 and 2, respectively, for nL ,2 = 3.

Case ZF2. If p j > 2 and nL ,p j ≥ 1, the coefficients qi, j ∈ Z
p
nL ,p j
j

, ∀i = 1, d . The

condition q1, j 
= 0 (mod p j ) is met for �(p
nL ,p j

j ) = p
nL ,p j −1

j · (p − 1) coefficients.

The condition qi, j = 0 (mod p j ), ∀i = 2, d is met for
p
nL ,p j

j

p j
= p

nL ,p j −1

j coefficients,

out of which one is zero. We also impose here the equivalence conditions for degrees
d = 3, d = 4 and d = 5.

For d = 3, ZF CNPs depend on whether the prime factor p j is equal to 3. If
p j = 3, we have q3, j < 3nL ,3−1 if nL ,3 ≥ 2 and q3, j < 3 if nL ,3 = 1. Therefore, there
are 3nL ,3−1 coefficients q2, j and 3nL ,3−2 coefficients q3, j if nL ,3 ≥ 2, out of which
one is zero. If nL ,3 = 1, q2, j and q3, j can be only zero. Summarizing, for nL ,3 ≥ 1
there are 3nL ,3−1 coefficients q2, j and 3max{0;nL ,3−2} coefficients q3, j , out of which one
is zero. If p j 
= 3, there are no ZF NPs of degree less than or equal to three and,

therefore, there are p
nL ,p j −1

j coefficients q2, j and q3, j , respectively, out of which one
is zero.

For d = 4, the ZF NPs of fourth degree depend on whether p j = 3. If p j = 3,
we have q3, j , q4, j < 3nL ,3−1 if nL ,3 ≥ 2 and q3, j , q4, j < 3 if nL ,3 = 1. Thus, there
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will be 3nL ,3−1 coefficients q2, j and if nL ,3 ≥ 2, 3nL ,3−2 coefficients q3, j and q4, j ,
respectively, out of which one is zero. Summarizing, for nL ,3 ≥ 1 there are 3nL ,3−1

coefficients q2, j and 3max{0;nL ,3−2} coefficients q3, j and q4, j , respectively, out of which
one is zero. If nL ,3 = 1, q2, j , q3, j and q4, j can take only the value zero. If p j 
= 3,
there are no ZF NPs of degree less than or equal to four and, therefore, there will be

p
nL ,p j −1

j coefficients q2, j , q3, j , and q4, j , respectively, out of which one is zero.
For d = 5, the ZF NPs of fifth degree depend on whether p j = 3, as well as

whether p j = 5.
If p j = 3, we have q3, j , q4, j , q5, j < 3nL ,3−1 and, thus, there will be 3nL ,3−1 coef-

ficients q2, j and 3nL ,3−2 (if nL ,3 ≥ 2) coefficients q3, j , q4, j and q5, j , respectively, out
of which one is zero. If nL ,3 = 1, q2, j , q3, j , q4, j and q5, j can take only the value
zero. Summarizing, for nL ,3 ≥ 1 there are 3nL ,3−1 coefficients q2, j and 3max{0;nL ,3−2}
coefficients q3, j , q4, j and q5, j , respectively, out of which one is zero.

If p j = 5, we have q5, j < 5nL ,5−1 if nL ,5 ≥ 2 and q5, j < 5 if nL ,5 = 1. Thus, there
will be 5nL ,5−1 coefficients q2, j , q3, j and q4, j respectively, and 5nL ,5−2 (if nL ,5 ≥ 2)
coefficients q5, j , out of which one is zero. If nL ,5 = 1, q5, j can take only the value
zero. Summarizing, for nL ,5 ≥ 1 there are 5nL ,5−1 coefficients q2, j , q3, j and q4, j
respectively, and 5max{0;nL ,5−2} coefficients q5, j , respectively, out of which one is
zero.

If p j 
= 3 and p j 
= 5, there are no ZFNPs of degree less than or equal to five and,

therefore, there will be p
nL ,p j −1

j coefficients q2, j , q3, j , q4, j and q5, j , respectively, out
of which one is zero.

In the following, we apply the method described in Sect. 4.3 to determine the
number of true different ZF PPs of degrees 3, 4 and 5.

4.6.1 Determining the Number of True Different Cubic
Permutation Polynomial-Based Interleavers Under
Zhao and Fan Sufficient Conditions

From the equivalence conditions for ZF CPPs, given in Theorems 4.3 and 4.6 with
the additional constraints from the beginning of this section, we must have:

• q2 < L/2 and q3 < L/2, when 2 | L and 3 � L;
• q3 < L/3, when 9 | L and 2 � L;
• q2 < L/2 and q3 < L/2, when 6 | L and 9 � L;
• q2 < L/2 and q3 < L/6, when 18 | L .

For CPPs, we distinguish six cases for prime decomposition of L . The results
regarding the number of true different ZF CPPs are given in Theorems 4.28–4.33
below and are summarized in Table 4.3 at the end of this subsection.
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Theorem 4.28 If 2 � L and 3 � L, i.e. L =
nL∏

j=1

p
nL ,p j

j , with p j > 3 and nL ,p j ≥ 1,

∀ j = 1, nL , the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝
nL∏

j=1

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.113)

Proof From case ZF2 at the beginning of Sect. 4.6, it follows that the number of

possible combinations for the coefficient q1 is equal to
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)

and the number of coefficients q2 and q3, respectively, is equal to
nL∏

j=1

p
nL ,p j −1

j . The

value q3 = 0 results only when q3, j = 0 , ∀ j = 1, nL , i.e. for a single combination
of coefficients q3, j , j = 1, nL , that has to be removed. The number of ZF CPPs will
be equal to that in (4.113). �

From (4.113) we see that the number of ZF CPPs is equal to 0 if L is a product
of prime numbers greater than three, each of them to the power of 1.

Theorem 4.29 If 2 | L, 4 � L and 3 � L, i.e. L = 2 ·
nL∏

j=2

p
nL ,p j

j , with p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.114)

Proof From the analysis for cases ZF1. (a) and ZF2 at the beginning of Sect. 4.6,
the number of possible combinations for coefficient q1 is equal to 1 · �(L/2) =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, and the number of coefficients q2 and q3, respectively,

is equal to 1 ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q3 = 0, the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠

(4.115)
�

From (4.114) we see that the number of ZF CPPs is equal to 0 if L is two times a
product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.30 If 4 | L and 3 � L, i.e. L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j

j , with nL ,2 > 1, p j > 3

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF CPPs will be equal to:

CL ,CPPs,ZF = 22·nL ,2−3 ·
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.116)

Proof From cases ZF1. (a) and ZF2 at the beginning of Sect. 4.6, it follows that
the number of possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, and the number of coefficients q2 and q3, respectively, is

equal to 2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q3 = 0, the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝2nL ,2−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 22·nL ,2−3 ·
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.117)

�
From (4.116) we see that the number of ZF CPPs is equal to 0 if L is four times

a product of prime numbers greater than three, each of them to the power of 1.
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Theorem 4.31 If 2 � L and 3 | L, i.e. L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j

j , with nL ,3 ≥ 1, p j > 3

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF CPPs will be equal to:

CL ,CPPs,ZF = 2 · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.118)

Proof The number of possible combinations for coefficient q1 is equal to 2 ·
3nL ,3−1 ·

nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2 is equal to 3

nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j , and the number of coefficients q3 is equal to 3
max{0;nL ,3−2} ·

nL∏

j=2

p
nL ,p j −1

j ,

out of which one value is zero. By removing the value q3 = 0, the number of ZF
CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝2 · 3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.119)

�

From (4.118) we see that the number of ZF CPPs is equal to 0, if L is three or
nine times a product of prime numbers greater than three, each of them to the power
of 1.
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Theorem 4.32 If 2 | L, 4 � L and 3 | L, i.e. L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥ 1,

p j > 3 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF CPPs will be equal to:

CL ,CPPs,ZF = 2 · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.120)

Proof The proof for Theorem 4.32 is similar to that of Theorem 4.31, by replacing
L by L/2. Therefore, the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.121)

�

From (4.120) we see that the number of ZF CPPs is equal to 0 if L is 6 or 18 times
a product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.33 If 4 | L and 3 | L, i.e. L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,2 > 1,

nL ,3 ≥ 1, p j > 3 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF CPPs will be equal
to:

CL ,CPPs,ZF = 22·(nL ,2−1) · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·



4.6 Determining the Number of True Different Permutation … 141

·
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.122)

Proof The number of possible combinations for coefficient q1 is equal to �(L) =
2nL ,2−1 · 2 · 3nL ,3−1 ·

nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2 is equal

to 2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j and the number of coefficients q3 is equal to 2
nL ,2−2 ·

3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j , out of which one is zero. By removing the value q3 = 0,

the number of ZF CPPs will be equal to:

CL ,CPPs,ZF =
⎛

⎝2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 22·(nL ,2−1) · 32·(nL ,3−1) ·
⎛

⎝
nL∏

j=3

p
2·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.123)

�

From (4.122) we see that the number of ZF CPPs is equal to 0, if L is 12 or 36
times a product of prime numbers greater than three, each of them to the power of 1.

From Theorems 4.28–4.33 above, we conclude that under Zhao and Fan sufficient
conditions the number of CPPs is 0, when the interleaver length is

L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p j , nL ,2 = 0, 2, nL ,3 = 0, 2, p j > 3,∀ j = 3, nL (4.124)
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Fig. 4.1 The ratio (in
percentage) between the
number of true different ZF
CPPs and the number of all
true different CPPs, for all
lengths of LTE standard

Such lengths have to be avoided in designing CPP-based interleavers, under Zhao
and Fan sufficient conditions.

Because all the lengths from the LTE standard (3GPP 2008) are multiples of 8,
from (4.124) it results that for all these lengths there exist CPPs, under Zhao and Fan
sufficient conditions.

The necessary and sufficient conditions that the coefficients of CPPs must fulfill
are given in Table 3.2. By comparing them with those in Table 3.6, we notice that
Zhao and Fan sufficient conditions become necessary when 3 at any power, or a
prime number greater than 2, of the form 3 · k + 2, k ∈ N, at the power 1, are not
prime factors in the decomposition of the interleaver length. LTE standard contains
58 such lengths. However, for all lengths for which in their prime factorization there
exists the prime 3 at power of 1, the number of all true different CPPs is equal to
the number of true different ZF CPPs. There exist 25 such lengths among the LTE
lengths. Thus for 83 lengths from the LTE standard the number of all true different
CPPs is equal to the number of true different ZF CPPs.

Figure 4.1 shows the ratio (in percentage) between the number of true different
ZF CPPs and the number of all true different CPPs, for all the 188 lengths of the LTE
standard. For 105 lengths (others than the 83 ones for which the number of all true
different CPPs is equal to the number of true different ZF CPPs), this percentage is
less than 50%.

In the following, we give an example with related comments for the most com-
prehensive case, i.e. for Theorems 4.33. The example provides information about all
the values the coefficients of polynomials of degree 3 can take, so that they are CPPs
modulo the considered length.

Example 4.2 (Example for Theorem 4.33) Let the length be L = 2100 = 22 · 3 · 52 ·
7. According to (4.122), the number of CPPs will be equal to:

C2100,CPPs,ZF = 22·(2−1) · 32·(1−1) · 52·(2−1) · (5 − 1) · 72·(1−1) · (7 − 1)·
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·(22−2 · 3max{0;1−2} · 52−1 · 71−1 − 1
) =

= 4 · 1 · 25 · 4 · 1 · 6 · (1 · 30 · 5 · 1 − 1
) = 2400 · (5 − 1) = 9600.

Further, we detail the coefficients of the 9600 true different ZF CPPs. As 6 | L
and 9 � L , it is required that q3 < 3 · L/6 = L/2 = 1050 and q2 < L/2 = 1050. The
coefficients q2 and q3 have to be multiples of 2 · 3 · 5 · 7 = 210, and coefficient q1
has to be relatively prime with 2100. Therefore, coefficient q3 can take 4 values:
210, 420, 630 and 840, q2 can take 5 values: 0, 210, 420, 630 and 840, and coeffi-

cient q1 can take �(2100) = 2100 · 1
2

· 2
3

· 4
5

· 6
7

= 480 values. The total number

of ZF CPPs is equal to 4 · 5 · 480 = 9600, just the number found by the formula
we determined. We note that the number of all true different CPP is also 9600.
However the equivalence conditions for CPPs, in this case, are: q3 < L/6 = 350
and q2 < L/2 = 1050. We note that every ZF CPP having coefficient q3 > 350
(i.e. 420, 630, or 840) has a equivalent CPP having coefficient q3 < 350 and
coefficient q2 < 1050. For example, ZF CPP 1 · x + 0 · x2 + 420 · x3 (mod 2100)
is equivalent to CPP 351 · x + 0 · x2 + 70 · x3 (mod 2100) only by NP z(x) =
350 · x + 0 · x2 + 1750 · x3 (mod 2100). This NP is not a ZF NP since 3 � 350 and
3 � 1750. �

4.6.2 Determining the Number of True Different Fourth
Degree Permutation Polynomial-Based Interleavers
Under Zhao and Fan Sufficient Conditions

As it is shown at the beginning of Sect. 4.6, from the equivalence conditions for ZF
4-PPs we must have:

• q2 < L/2, q3 < L/2 and q4 < L/2, when 2 | L , 3 � L and 4 � L;
• q2 < L/2, q3 < L/2 and q4 < L/4, when 3 � L , 4 | L and 8 � L;
• q2 < L/2, q3 < L/2 and q4 < L/2, when 4 � L , 6 | L , and 9 � L;
• q2 < L/2, q3 < L/2 and q4 < L/8, when 3 � L and 8 | L;
• q3 < L/3 and q4 < L/3, when 2 � L and 9 | L;
• q2 < L/2, q3 < L/2 and q4 < L/4, when 8 � L , 9 � L , and 12 | L;
• q2 < L/2, q3 < L/6 and q4 < L/6, when 4 � L and 18 | L;
• q2 < L/2, q3 < L/6 and q4 < L/12, when 8 � L and 36 | L;
• q2 < L/2, q3 < L/2 and q4 < L/8, when 9 � L and 24 | L;
• q2 < L/2, q3 < L/6 and q4 < L/24, when 72 | L .
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Table 4.3 Number of true different CPP-based interleavers under Zhao and Fan sufficient condi-
tions

Case Decomposition of L CL ,CPPs,ZF Theorems

(1) L =
nL∏

j=1

p
nL ,p j
j , p j > 3 and

nL ,p j ≥ 1, ∀ j = 1, nL

CL ,CPPs,ZF =
( nL∏

j=1

p
2·(nL ,p j −1)

j ·

(p j − 1)

)
·
( nL∏

j=1

p
nL ,p j −1

j − 1

)

4.28

(2) L = 2 ·
nL∏

j=2

p
nL ,p j
j , p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,CPPs,ZF =
( nL∏

j=2

p
2·(nL ,p j −1)

j ·

(p j − 1)

)
·
( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.29

(3) L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j
j , nL ,2 > 1,

p j > 3 and nL ,p j ≥ 1, ∀ j = 2, nL

CL ,CPPs,ZF = 22·nL ,2−3 ·
( nL∏

j=2

p
2·(nL ,p j −1)

j · (p j − 1)

)
·

(
2nL ,2−2 ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.30

(4) L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j
j , nL ,3 ≥ 1,

p j > 3 and nL ,p j ≥ 1, ∀ j = 2, nL

CL ,CPPs,ZF =
2 · 32·(nL ,3−1) ·

( nL∏

j=2

p
2·(nL ,p j −1)

j ·

(p j − 1)

)
·
(
3max{0;nL ,3−2} ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.31

(5) L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1, p j > 3 and nL ,p j ≥ 1,

∀ j = 3, nL

CL ,CPPs,ZF =
2 · 32·(nL ,3−1) ·

( nL∏

j=3

p
2·(nL ,p j −1)

j ·

(p j − 1)

)
·
(
3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.32

(6) L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,2 > 1, nL ,3 ≥ 1, p j > 3 and
nL ,p j ≥ 1, ∀ j = 3, nL

CL ,CPPs,ZF = 22·(nL ,2−1) ·
32·(nL ,3−1) ·

( nL∏

j=3

p
2·(nL ,p j −1)

j ·

(p j − 1)

)
·
(
2nL ,2−2 ·

3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

)

4.33
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For ZF PPs of fourth degree, there are eight cases for the prime decomposition of
L . The results regarding the number of true different ZF 4-PPs are given in Theorems
4.34–4.41 below and are summarized in Table 4.4 at the end of this subsection.

Table 4.4 Number of true different 4-PP-based interleavers under Zhao and Fan sufficient condi-
tions

Case Decomposition of L CL ,4−PPs,ZF Theorems

(1) L =
nL∏

j=1

p
nL ,p j
j , p j > 3 and

nL ,p j ≥ 1, ∀ j = 1, nL

CL ,4−PPs,ZF =⎛

⎝
nL∏

j=1

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
( nL∏

j=1

p
nL ,p j −1

j − 1

)

4.34

(2) L = 2 ·
nL∏

j=2

p
nL ,p j
j , p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,4−PPs,ZF =
( nL∏

j=2

p
3·(nL ,p j −1)

j · (p j − 1)

)
·

( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.35

(3) L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j
j , nL ,3 ≥

1,
p j > 3 and nL ,p j ≥ 1,

∀ j = 2, nL

CL ,4−PPs,ZF =
2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.36

(4) L = 4 ·
nL∏

j=2

p
nL ,p j
j , p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,4−PPs,ZF =
2 ·

nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j −

1)

)
·
( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.37

(5) L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1,
p j > 3 and nL ,p j ≥ 1,

∀ j = 3, nL

CL ,4−PPs,ZF =
2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·( nL∏

j=3

p
3·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.38

(continued)
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Table 4.4 (continued)

Case Decomposition of L CL ,4−PPs,ZF Theorems

(6) L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j
j , nL ,2 ≥

3,
p j > 3 and nL ,p j ≥ 1,

∀ j = 2, nL

CL ,4−PPs,ZF = 23·nL ,2−5 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

(
2nL ,2−3 ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.39

(7) L = 4 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1,
p j > 3 and nL ,p j ≥ 1,

∀ j = 3, nL

CL ,4−PPs,ZF =
4 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.40

(8) L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,2 ≥ 3, nL ,3 ≥ 1, p j > 3 and
nL ,p j ≥ 1, ∀ j = 3, nL

CL ,4−PPs,ZF = 23·nL ,2−4 ·
32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

(
2nL ,2−3 · 3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.41

Theorem 4.34 If 2 � L and 3 � L, i.e. L =
nL∏

j=1

p
nL ,p j

j , with p j > 3 and nL ,p j ≥ 1,

∀ j = 1, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF =
⎛

⎝
nL∏

j=1

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.125)

Proof From case ZF2 at the beginning of Sect. 4.6, the number of possible com-

binations for coefficient q1 is equal to
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)
and the number of

coefficients q2, q3 and q4, respectively, is equal to
nL∏

j=1

p
nL ,p j −1

j . By removing the value

q4 = 0, the number of ZF 4-PPs will be equal to that in (4.125). �
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From (4.125) we see that the number of ZF 4-PPs is equal to 0 if L is a product
of prime numbers greater than three, each of them to the power of 1.

Theorem 4.35 If 2 | L, 3 � L and 4 � L, i.e. L = 2 ·
nL∏

j=2

p
nL ,p j

j , with p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF =
⎛

⎝
nL∏

j=2

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.126)

Proof From the analysis for cases ZF1. (a) and ZF2 at the beginning of Sect. 4.6,
the number of possible combinations for coefficient q1 is equal to 1 · �(L/2) =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, and the number of coefficients q2, q3 and q4, respectively,

is equal to 1 ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q4 = 0, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF =
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
⎛

⎝
nL∏

j=2

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.127)

�

From (4.126) we see that the number of ZF 4-PPs is equal to 0 if L is two times
a product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.36 If 2 � L and 3 | L, i.e. L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j

j , with nL ,3 ≥ 1, p j > 3

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
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·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.128)

Proof The number of possible combinations for coefficient q1 is equal to 2 ·
3nL ,3−1 ·

nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2 is equal to 3

nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j , and the number of coefficients q3 and q4, respectively, is equal to

3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q4 = 0, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 2 · 3nL ,3−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ · 3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.129)

�

From (4.128) we see that the number of ZF 4-PPs is equal to 0 if L is three or
nine times a product of prime numbers greater than three, each of them to the power
of 1.

Theorem 4.37 If 3 � L, 4 | L and 8 � L, i.e. L = 4 ·
nL∏

j=2

p
nL ,p j

j , with p j > 3 and

nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 4-PPs will be equal to:
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CL ,4−PPs,ZF = 2 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.130)

Proof From cases ZF1. (a) and ZF2 at the beginning of Sect. 4.6, it follows
that the number of possible combinations for coefficient q1 is equal to �(L) =
2 ·

nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, and the number of coefficients q2, q3 and q4, respec-

tively, is equal to
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q4 = 0, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 2 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.131)

�

From (4.130) we see that the number of ZF 4-PPs is equal to 0 if L is four times
a product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.38 If6 | L and4 � L, i.e. L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥ 1, p j > 3

and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
⎛

⎝
nL∏

j=3

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.132)

Proof The proof for Theorem 4.38 is similar to that of Theorem 4.36, by replacing
L by L/2. Thus, the number of ZF 4-PPs will be equal to:
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CL ,4−PPs,ZF = 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
⎛

⎝
nL∏

j=3

p
3·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.133)

�

From (4.132) we see that the number of ZF 4-PPs is equal to 0 if L is 6 or 18
times a product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.39 If 8 | L and 3 � L, i.e. L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j

j , with nL ,2 ≥ 3, p j > 3

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 23·nL ,2−5 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.134)

Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of

possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j ·

(p j − 1)

)
, the number of coefficients q3 is equal to 2

nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j , the number

of even or odd coefficients q2 is equal to 2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j , and the number of
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even or odd coefficients q4 is equal to 2
nL ,2−4 ·

nL∏

j=2

p
nL ,p j −1

j if nL ,2 ≥ 4, out of which

one value is zero. If nL ,2 = 3, there are
nL∏

j=2

p
nL ,p j −1

j coefficients q4 (all even), and

2 ·
nL∏

j=2

p
nL ,p j −1

j coefficients q2 (all even). Therefore, if nL ,2 ≥ 4, the number of ZF

4-PPs will be equal to:

CL ,4−PPs,ZF = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
· (
2nL ,2−2·

·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ +

+2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ =

= 23·nL ,2−5 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝2nL ,2−3 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.135)

We mention that if nL ,2 = 3, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 23−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝23−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 16 ·
nL∏

j=2

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.136)

so that the relation (4.135) is also true. �
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From (4.134) we see that the number of ZF 4-PPs is equal to 0 if L is eight times
a product of prime numbers greater than three, each of them to the power of 1.

Theorem 4.40 If 12 | L and 8 � L, i.e. L = 4 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥ 1, p j >

3 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 4 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.137)

Proof Fromcases ZF1. (b) andZF2 at the beginning of Sect. 4.6, the number of possi-

ble combinations for coefficientsq1 is equal to�(L) = 2 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j ·

(p j − 1)

)
, the number of coefficients q3 is equal to 3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j , the

number of coefficients q2 is equal to 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j and the number of coeffi-

cients q4 is equal to 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j , out of which one is zero. Therefore,

the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 4 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
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·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.138)

�

From (4.137) we see that the number of ZF 4-PPs is equal to 0 if L is 12 or 36
times a product of prime numbers, greater than three, each of them to the power
of 1.

Theorem 4.41 If 24 | L, i.e. L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,2 ≥ 3, nL ,3 ≥ 1,

p j > 3 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 23·nL ,2−4 · 32·(nL ,3−1)+max{0;nL ,3−2}·

·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠

(4.139)

Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of
possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q3 is equal to 2nL ,2−2 ·

3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j , the number of even or odd coefficients q2 is equal to

2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j , and the number of coefficients q4 is equal to 2nL ,2−4 ·

3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j if nL ,2 ≥ 4, from which one is zero. If nL ,2 = 3, there are

2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j coefficients q3, 3
max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j coefficients

q4 (all even), and 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j coefficients q2 (all even). Therefore, if

nL ,2 ≥ 4, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·
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·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ +

+2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ =

= 23·nL ,2−4 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.140)

We mention that, if nL ,2 = 3, the number of ZF 4-PPs will be equal to:

CL ,4−PPs,ZF = 23−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 32 · 32·(nL ,3−1)+max{0;nL ,3−2} ·
nL∏

j=3

(
p
3·(nL ,p j −1)

j · (p j − 1)

)
·
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Fig. 4.2 The ratio (in
percentage) between the
number of true different ZF
4-PPs and the number of all
true different 4-PPs, for all
lengths used in LTE standard

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.141)

so that relation (4.140) is also true. �

From (4.139) we see that the number of ZF 4-PPs is equal to 0 if L is 24 or 72
times a product of prime numbers greater than three, each of them to the power of 1.

From Theorems 4.34–4.41 above, we conclude that the number of ZF 4-PPs is
equal to zero, when the interleaver length L is of the form:

L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p j , nL ,2 = 0, 3, nL ,3 = 0, 2, p j > 3,∀ j = 3, nL (4.142)

Such lengths have to be avoided in designing 4-PP-based interleavers, under Zhao
and Fan sufficient conditions. We notice that the LTE standard (3GPP 2008) contains
27 lengths (multiples of 8, of the form (4.142) with nL ,2 = 3) for which there are no
ZF 4-PPs, viz. the lengths 0, 56, 72, 88, 104, 120, 136, 152, 168, 184, 232, 248, 264,
280, 296, 312, 328, 344, 360, 376, 408, 424, 440, 456, 472, 488, and 504.

We compared the total number of true different 4-PPs, obtainedwith the algorithm
from Sect. 4.7, for all lengths from the LTE standard with the number of true different
ZF 4-PPs. Figure 4.2 shows the ratio (in percentage) between the number of true
different ZF 4-PPs and the number of all true different 4-PPs for all the 188 lengths
of the LTE standard. We note that for 23 from the 188 lengths the number of all true
different 4-PPs is zero (i.e. there are no true 4-PPs for these lengths) and thus, the
percentage is 100%. For 84 from the 188 lengths (from which 23 lengths are those
mentioned above), the Zhao and Fan sufficient conditions are also necessary (i.e. this
percentage is 100%). For other 4 lengths, this percentage is 0% (i.e. there are no true
4-PPs under Zhao and Fan sufficient conditions, but there are true different 4-PPs,
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for these lengths, namely 56, 168, 280, and 504), for 12 lengths the percentage is
equal to 50% and for the other 88 lengths, the percentage is less than 20%.

In the following, we give an example with related comments for the most com-
prehensive case, i.e. for Theorem 4.41. The example provides information about all
the values the coefficients of polynomials of degree 4 can take, so that they are 4-PPs
modulo the considered length.

Example 4.3 (Example for Theorem 4.41) Let the interleaver length be L = 1080 =
23 · 33 · 5.

According to (4.139), the number of ZF 4-PPs will be equal to:

C1080,4−PPs,ZF = 23·3−4 · 32·(3−1)+max{0;3−2} · 53·(1−1) · (5 − 1)·

·(23−3 · 3max{0;3−2} · 51−1 − 1
) = 32 · 243 · 1 · 4 · (3 − 1) = 62208.

Since 72 | L , it is required that q4 < L/24 = 45, q3 < L/6 = 180 and q2 <

L/2 = 540. The coefficients q4 and q2 have to be multiples of 3 · 5 = 15, coeffi-
cient q3 has to be multiple of 2 · 3 · 5 = 30, and the coefficient q1 has to be rel-
atively prime with 1080. Moreover, the coefficients q4 and q2 have to meet the
condition that the sum q4 + q2 is even. Therefore, coefficient q3 can take 6 val-
ues: 0, 30, 60, 90, 120, 150, the pair of coefficients (q4, q2) can take the values
(15, 15), (15, 45), (15, 75), . . . , (15, 525) (18 pairs with both coefficients odd) and
(30, 0), (30, 30), (30, 60), . . . , (30, 510) (18 pairs with both coefficients even), i.e. a

total of 36 pairs. Coefficient q1 can take �(1080) = 1080 · 1
2

· 2
3

· 4
5

= 288 values.

The total number of ZF 4-PPs is equal to 36 · 6 · 288 = 62208, just the number found
by the formula we determined. �

4.6.3 Determining the Number of True Different Fifth
Degree Permutation Polynomial-Based Interleavers
Under Zhao and Fan Sufficient Conditions

As shown at the beginning Sect. 4.6, from the equivalence conditions for 5-PPs we
must have:

• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/2 when 2 | L , 3 � L , 4 � L , and 5 � L;
• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/4when 3 � L , 4 | L , 5 � L , and 8 � L;
• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/2 when 4 � L , 5 � L , 6 | L , and 9 � L;
• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/8 when 3 � L , 5 � L , and 8 | L;
• q3 < L/3, q4 < L/3, and q5 < L/3 when 2 � L , 5 � L , and 9 | L;
• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/2 when 3 � L , 4 � L , 10 | L , and
25 � L;

• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/4 when 5 � L , 8 � L , 9 � L , and 12 |
L;
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• q2 < L/2, q3 < L/6, q4 < L/6, and q5 < L/6 when 4 � L , 5 � L , and 18 | L;
• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/4 when 3 � L , 8 � L , 20 | L , and
25 � L;

• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/8 when 5 � L , 9 � L , and 24 | L;
• q5 < L/5 when 2 � L , 3 � L , and 25 | L;
• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/2 when 4 � L , 9 � L , 25 � L , and
30 | L;

• q2 < L/2, q3 < L/6, q4 < L/12, and q5 < L/12 when 5 � L , 8 � L , and 36 | L;
• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/8 when 3 � L , 25 � L , and 40 | L;
• q3 < L/3, q4 < L/3, and q5 < L/3 when 2 � L , 25 � L , and 45 | L;
• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/10 when 3 � L , 4 � L , and 50 | L;
• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/4 when 8 � L , 9 � L , 25 � L , and
60 | L;

• q2 < L/2, q3 < L/6, q4 < L/24, and q5 < L/24 when 5 � L and 72 | L;
• q5 < L/5 when 2 � L , 9 � L , and 75 | L;
• q2 < L/2, q3 < L/6, q4 < L/6, and q5 < L/6 when 4 � L , 25 � L , and 90 | L;
• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/20 when 3 � L , 8 � L , and 100 | L;
• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/8 when 9 � L , 25 � L , and 120 | L;
• q2 < L/2, q3 < L/2, q4 < L/2, and q5 < L/10 when 4 � L , 9 � L , and 150 | L;
• q2 < L/2, q3 < L/6, q4 < L/12, and q5 < L/12when 8 � L , 25 � L , and 180 | L;
• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/40 when 3 � L and 200 | L;
• q3 < L/3, q4 < L/3, and q5 < L/15 when 2 � L and 225 | L;
• q2 < L/2, q3 < L/2, q4 < L/4, and q5 < L/20 when 8 � L , 9 � L , and 300 | L;
• q2 < L/2, q3 < L/6, q4 < L/24, and q5 < L/24 when 25 � L and 360 | L;
• q2 < L/2, q3 < L/6, q4 < L/6, and q5 < L/30 when 4 � L and 450 | L;
• q2 < L/2, q3 < L/2, q4 < L/8, and q5 < L/40 when 9 � L and 600 | L;
• q2 < L/2, q3 < L/6, q4 < L/12, and q5 < L/60 when 8 � L and 900 | L;
• q2 < L/2, q3 < L/6, q4 < L/24, and q5 < L/120 when 1800 | L .

For ZF PPs of fifth degree, there are sixteen cases for the prime decomposition of
L . The results regarding the number of true different ZF 5-PPs are given in Theorems
4.42–4.57 below and are summarized in Table 4.5 at the end of this subsection.

Theorem 4.42 If 2 � L, 3 � L and 5 � L, i.e. L =
nL∏

j=1

p
nL ,p j

j , with p j > 5 and nL ,p j ≥

1, ∀ j = 1, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF =
nL∏

j=1

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=1

p
nL ,p j −1

j − 1

⎞

⎠ (4.143)

Proof From case ZF2 at the beginning of Sect. 4.6, the number of possible combi-

nations for coefficient q1 is equal to
nL∏

j=1

(
p
nL ,p j −1

j · (p j − 1)

)
and the number of
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coefficients q2, q3, q4 and q5, respectively, is equal to
nL∏

j=1

p
nL ,p j −1

j , out of which one

is zero. By removing the value q5 = 0, the number of ZF 5-PPs will be equal to that
in (4.143). �

From (4.143) we see that the number of ZF 5-PPs is equal to 0 if L is a product
of prime numbers greater than five, each of them to the power of 1.

Theorem 4.43 If 2 | L, 3 � L, 4 � L and 5 � L, i.e. L = 2 ·
nL∏

j=2

p
nL ,p j

j , with p j > 5

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF =
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.144)

Proof From the analysis of cases ZF1. (a) and ZF2 at the beginning of Sect. 4.6,
the number of possible combinations for coefficient q1 is equal to 1 · �(L/2) =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, and the number of coefficients q2, q3, q4 and q5, respec-

tively, is equal to 1 ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the

value q5 = 0, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF =
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

=
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.145)

�

From (4.144) we see that the number of ZF 5-PPs is equal to 0 if L is two times
a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.44 If 2 � L, 3 | L and 5 � L, i.e. L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j

j , with nL ,3 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 5-PPs will be equal to:
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CL ,5−PPs,ZF = 2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.146)

Proof The number of possible combinations for coefficient q1 is equal to 2 ·
3nL ,3−1 ·

nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2 is equal to 3

nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j , and the number of coefficients q3, q4 and q5, respectively, is equal to

3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q5 = 0, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 3nL ,3−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ · 3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j ·

·3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.147)

�

From (4.146) we see that the number of ZF 5-PPs is equal to 0 if L is three or
nine times a product of prime numbers greater than five, each of them to the power
of 1.
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Theorem 4.45 If 3 � L, 4 | L, 5 � L and 8 � L, i.e. L = 4 ·
nL∏

j=2

p
nL ,p j

j , with p j > 5

and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.148)

Proof From cases ZF1. (a) andZF2 at the beginning of Sect. 4.6, the number of possi-

ble combinations for coefficient q1 is equal to�(L) = 2 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
,

and the number of coefficients q2, q3, q4 and q5, respectively, is equal to
nL∏

j=2

p
nL ,p j −1

j ,

out of which one value is zero. By removing the value q5 = 0, the number of ZF
5-PPs will be equal to:

CL ,5−PPs,ZF = 2 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.149)

�

From (4.148) we see that the number of ZF 5-PPs is equal to 0 if L is four times
a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.46 If 2 � L, 3 � L and 5 | L, i.e. L = 5nL ,5 ·
nL∏

j=2

p
nL ,p j

j , with nL ,5 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 54·(nL ,5−1) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.150)
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Proof The number of possible combinations for coefficient q1 is equal to 4 · 5nL ,5−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2, q3, and q4, respectively,

is equal to 5nL ,5−1 ·
nL∏

j=2

p
nL ,p j −1

j and the number of coefficients q5 is equal to

5max{0;nL ,5−2} ·
nL∏

j=2

p
nL ,p j −1

j , out of which one value is zero. By removing the value

q5 = 0, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 5nL ,5−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5nL ,5−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 · 54·(nL ,5−1) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.151)

�

From (4.150) we see that the number of ZF 5-PPs is equal to 0 if L is 5 or 25
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.47 If 4 � L, 5 � L and 6 | L, i.e. L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.152)



162 4 Determining the Number of Permutation Polynomial-Based Interleavers …

Proof The proof for Theorem 4.47 is similar to that of Theorem 4.44, by replacing
L by L/2. Therefore, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j ·

·3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.153)

�

From (4.152) we see that the number of ZF 5-PPs is equal to 0 if L is 6 or 18
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.48 If 3 � L, 5 � L and 8 | L, i.e. L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j

j , with nL ,2 ≥ 3,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 24·(nL ,2−2) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.154)

Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of

possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j ·

(p j − 1)

)
, the number of even or odd coefficients q2 and q3, respectively, is equal to
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2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j , the number of even or odd coefficients q4 and q5, respectively, is

equal to 2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j if nL ,2 ≥ 4, out of which one value is zero. If nL ,2 = 3,

there are
nL∏

j=2

p
nL ,p j −1

j coefficients q4 and q5, respectively, all of them even, out of

which one is zero, and 2 ·
nL∏

j=2

p
nL ,p j −1

j coefficients q2 and q3, respectively, all of them

even. Therefore, if nL ,2 ≥ 4, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)
)

·

·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎡

⎣

⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠

⎤

⎦+

+2nL ,2−1 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎡

⎣

⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠

⎤

⎦ =
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= 24·(nL ,2−2) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 ·
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.155)

and, if nL ,2 = 3, this number will be:

CL ,5−PPs,ZF = 4 ·
nL∏

j=2

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2 ·
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ =

= 16 ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝
nL∏

j=2

p
nL ,p j −1

j − 1

⎞

⎠ (4.156)

so that relation (4.155) is also true. �

From (4.154) we see that the number of ZF 5-PPs is equal to 0 if L is eight times
a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.49 If 2 | L, 3 � L, 4 � L and 5 | L, i.e. L = 2 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j

j , with

nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPs will be equal
to:

CL ,5−PPs,ZF = 4 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.157)

Proof The proof for Theorem 4.49 is similar to that of Theorem 4.46, by replacing
L by L/2. Therefore, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·
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·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.158)

�

From (4.157) we see that the number of ZF 5-PPs is equal to 0 if L is 10 or 50
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.50 If 5 � L, 8 � L and 12 | L, i.e. L = 4 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.159)

Proof Fromcases ZF1. (b) andZF2 at the beginning of Sect. 4.6, the number of possi-

ble combinations for coefficientsq1 is equal to�(L) = 2 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j ·

(p j − 1)

)
, the number of coefficients q2 is equal to 3

nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j , the number

of coefficients q3, q4 and q5, respectively, is equal to 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j , out

of which one is zero. Therefore, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·
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·
⎛

⎝3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j ·

·3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 4 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.160)

�

From (4.159) we see that the number of ZF 5-PPs is equal to 0 if L is 12 or 36
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.51 If 2 � L, 3 | L and 5 | L, i.e. L = 3nL ,3 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j

j , with nL ,3 ≥

1, nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPswill be equal
to:

CL ,5−PPs,ZF = 8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·

·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.161)

Proof The number of possible combinations for coefficients q1 is equal to 2 · 4 ·
3nL ,3−1 · 5nL ,5−1 ·

nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of coefficients q2 is equal to

3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j , the number of coefficients q3 and q4, respectively, is

equal to 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j . The number of coefficients q5 is equal
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to 3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j , out of which one is zero. By removing

the value q5 = 0, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 8 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.162)

�

From (4.161) we see that the number of ZF 5-PPs is 0 if L is 15, 45, 75, or 225
times a product of prime numbers greater than 5, each of them to the power of 1.

Theorem 4.52 If 3 � L, 4 | L, 5 | L and 8 � L, i.e. L = 4 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j

j , with

nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPs will be equal
to:

CL ,5−PPs,ZF = 8 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.163)
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Proof From cases ZF1. (a) andZF2 at the beginning of Sect. 4.6, the number of possi-

ble combinations for coefficient q1 is equal to�(L) = 2 · 4 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j ·

(p j − 1)

)
, the number of coefficients q2, q3 and q4, respectively, is equal to 5

nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j and the number of coefficients q5 is equal to 5
max{0;nL ,5−2} ·

nL∏

j=3

p
nL ,p j −1

j ,

out of which one is zero. Therefore, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 8 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 8 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.164)

�

From (4.163) we see that the number of ZF 5-PPs is equal to 0 if L is 20 or 100
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.53 If 8 | L, 3 | L and 5 � L, i.e. L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j

j , with nL ,2 ≥

3, nL ,3 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPswill be equal
to:

CL ,5−PPs,ZF = 24·nL ,2−7 · 32·(nL ,3−1)+2·max{0;nL ,3−2}·

·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠

(4.165)
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Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of
possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of even or odd coefficients q2 is equal to

2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j , the number of even or odd coefficients q3 is equal

to 2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j , and the number of even or odd coefficients

q4 and q5, respectively, is equal to 2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j if nL ,2 ≥ 4,

out of which one is zero. If nL ,2 = 3, there are 2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j coefficients

q2, all of them even, 2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j coefficients q3, all of them even,

and 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j coefficients q4 and q5, respectively, all of them even.

Therefore, if nL ,2 ≥ 4, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 2nL ,2−1 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎧
⎨

⎩

⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎫
⎬

⎭ =

= 24·nL ,2−7 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.166)

If nL ,2 = 3, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 2 · 3nL ,3−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2 · 3nL ,3−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 32 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ , (4.167)

so that relation (4.166) is also true. �

From (4.165) we see that the number of ZF 5-PPs is equal to 0 if L is 24 or 72
times a product of prime numbers greater than five, each of them to the power of 1.

Theorem 4.54 If2 | L,3 | L and4 � L and5 | L, i.e. L = 2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j

j ,

with nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 4, nL , the number of ZF 5-PPs
will be equal to:

CL ,5−PPs,ZF = 8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·
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·
⎛

⎝
nL∏

j=4

p
4·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ (4.168)

Proof The proof for Theorem 4.54 is similar to that of Theorem 4.51, by replacing
L by L/2. Thus, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 8 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ =

= 8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1) ·
⎛

⎝
nL∏

j=4

p
4·(nL ,p j −1)

j · (p j − 1)

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ (4.169)

�

From (4.168) we see that the number of ZF 5-PPs is 0 if L is 30, 90, 150, or 450
times a product of prime numbers greater than 5, each of them to the power of 1.

Theorem 4.55 If 3 � L, 5 | L and 8 | L, i.e. L = 2nL ,2 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j

j , with nL ,2 ≥

3, nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL , the number of ZF 5-PPswill be equal
to:
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CL ,5−PPs,ZF = 24·nL ,2−6 · 54·(nL ,1−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.170)

Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of
possible combinations for coefficient q1 is equal to �(L) = 2nL ,2−1 · 4 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of even or odd coefficients q2 and q3, respec-

tively, is equal to 2nL ,2−2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j , the number of even or odd coefficients

q4 is equal to 2nL ,2−4 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j , and the number of even or odd coeffi-

cients q5 is equal to 2
nL ,2−4 · 5max{0;nL ,5−2} ·

nL∏

j=3

p
nL ,p j −1

j if nL ,2 ≥ 4, out of which one

value is zero. If nL ,2 = 3, there are 2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j coefficients q2 and q3,

respectively, all of them even, 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j coefficients q4, all of them even,

and 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j coefficients q5, all of them even, out of which one is

zero. Therefore, if nL ,2 ≥ 4, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 2nL ,2−1 · 4 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2nL ,2−4 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎧
⎨

⎩

⎛

⎝2nL ,2−2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
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·
⎛

⎝2nL ,2−4 · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠

⎫
⎬

⎭ =

= 24·nL ,2−6 · 54·(nL ,1−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ (4.171)

If nL ,2 = 3, the number of ZF 5-PPs will be equal to:

CL ,5−PPs,ZF = 4 · 4 · 5nL ,5−1 ·
nL∏

j=3

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝2 · 5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝5nL ,5−1 ·
nL∏

j=3

p
nL ,p j −1

j

⎞

⎠ ·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ =

= 64 · 54·(nL ,1−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝5max{0;nL ,5−2} ·
nL∏

j=3

p
nL ,p j −1

j − 1

⎞

⎠ , (4.172)

so that relation (4.171) is also true. �

From (4.170) we see that the number of ZF 5-PPs is equal to 0 if L is 40 or 200
times a product of prime numbers greater than five, each of them to the power of 1.
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Theorem 4.56 If 3 | L, 4 | L, 5 | L and 8 � L, i.e. L = 4 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j

j ,

with nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 4, nL , the number of ZF 5-PPs
will be equal to:

CL ,5−PPs,ZF = 16 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·

·
nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ (4.173)

Proof The proof for Theorem 4.56 is similar to that of Theorem 4.51, by replacing
L with L/4 and multiplying the number of coefficients q1 by 2. The number of ZF
5-PPs will be equal to:

CL ,5−PPs,ZF = 16 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ =

= 16 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1) ·
nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·
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·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ (4.174)

�

From (4.173) we see that the number of ZF 5-PPs is equal to 0 if L is 60, 180,
300, or 900 times a product of prime numbers greater than 5, each of them to the
power of 1.

Theorem 4.57 If 3 | L, 5 | L and 8 | L, i.e. L = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j

j , with

nL ,2 ≥ 3, nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and nL ,p j ≥ 1, ∀ j = 4, nL , the number of ZF
5-PPs will be equal to:

CL ,5−PPs,ZF = 24·nL ,2−5 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·

·
nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ . (4.175)

Proof From cases ZF1. (b) and ZF2 at the beginning of Sect. 4.6, the number of
possible combinations for coefficient q1 is equal to 2nL ,2−1 · 2 · 3nL ,3−1 · 4 · 5nL ,5−1 ·
nL∏

j=4

(
p
nL ,p j −1

j · (p j − 1)

)
, the number of even or odd coefficients q2 is equal to

2nL ,2−2 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j and the number of even or odd coefficients q3

is equal to 2nL ,2−2 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j . The number of even or odd

coefficients q4 is equal to 2nL ,2−4 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j if nL ,2 ≥ 4. If

nL ,2 = 3, the number of coefficientsq4 is equal to 3
max{0;nL ,3−2} · 5nL ,5−1 ·

nL∏

j=4

p
nL ,p j −1

j ,

all of them even. The number of even or odd coefficients q5 is equal to 2nL ,2−4 ·
3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·

nL∏

j=4

p
nL ,p j −1

j if nL ,2 ≥ 4. If nL ,2 = 3, the number of coef-
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ficients q5 is equal to 3
max{0;nL ,3−2} · 5max{0;nL ,5−2} ·

nL∏

j=4

p
nL ,p j −1

j , all of them even, out

of which one is zero. By removing the value q5 = 0, if nL ,2 ≥ 4, the number of ZF
5-PPs will be equal to:

CL ,5−PPs,ZF = 2 · 8 · 2nL ,2−1 · 3nL ,3−1 · 5nL ,5−1·

·
nL∏

j=4

(
p
nL ,p j −1

j · (p j − 1)

)
·
⎛

⎝2nL ,2−2 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎧
⎨

⎩

⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ +

+
⎛

⎝2nL ,2−2 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2nL ,2−4 · 3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠

⎫
⎬

⎭ =

= 24·nL ,2−5 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·

·
nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝2nL ,2−3 · 3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ (4.176)

If nL ,2 = 3, the number of ZF 5-PPs will be equal to:
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CL ,5−PPs,ZF = 8 · 4 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

(
p
nL ,p j −1

j · (p j − 1)

)
·

·
⎛

⎝2 · 3nL ,3−1 · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝2 · 3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5nL ,5−1 ·
nL∏

j=4

p
nL ,p j −1

j

⎞

⎠ ·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ =

= 128 · 32·(nL ,3−1)+2·max{0;nL ,3−2} · 54·(nL ,5−1)·

·
nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

·
⎛

⎝3max{0;nL ,3−2} · 5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

⎞

⎠ , (4.177)

so that relation (4.176) is also true. �

From (4.175) we see that the number of ZF 5-PPs is equal to 0 if L is 120, 360,
600, or 1800 times a product of prime numbers greater than five, each of them to the
power of 1.

From Theorems 4.42–4.57 above, we conclude that the number of ZF 5-PPs is
equal to 0 if the interleaver length L is of the form:

L = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p j , nL ,2 = 0, 3, nL ,3 = 0, 2, nL ,5 = 0, 2,

p j > 5, j = 4, nL (4.178)

Such lengths have to be avoided in designing 5-PP-based interleavers under Zhao
and Fan sufficient conditions. We notice that the LTE standard (3GPP 2008) contains
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Fig. 4.3 The ratio (in
percentage) between the
number of true different ZF
5-PPs and the number of all
true different 5-PPs, for all
lengths used in LTE standard

28 lengths (of the form (4.178) with nN ,2 = 3) for which there are no 5-PPs under
Zhao and Fan sufficient conditions, viz. the lengths 40, 56, 72, 88, 104, 120, 136,
152, 168, 184, 200, 232, 248, 264, 280, 296, 312, 328, 344, 360, 376, 408, 424, 440,
456, 472, 488, and 504.

We compared the total number of true different 5-PPs obtained with the algoritm
from Sect. 4.7 for all lengths from the LTE standard with the number of true different
ZF 5-PPs. Figure 4.3 shows the ratio (in percentage) between the number of true
different ZF 5-PPs and the number of all true different 5-PPs, for all the 188 lengths
of the LTE standard. We note that for 8 of the 188 lengths the number of all true
different 5-PPs is zero (i.e. there are no true different 5-PPs for these lengths, namely
40, 88, 120, 248, 264, 328, 440, and 488) and thus the percentage is 100%. For 31
from the 188 lengths (from which 8 lengths are those mentioned above), the Zhao
and Fan sufficient conditions are also necessary (i.e. this percentage is 100%). For
other 20 lengths, this percentage is 0% (i.e. there are no true 5-PPs under Zhao and
Fan sufficient conditions, but there are true different 5-PPs, for these lengths) and
for the other 137 lengths, the percentage is less than 20%.

In the following, we give two examples with related comments for the most
comprehensive case, i.e. for Theorem 4.57. The examples provide information about
all the values the coefficients of polynomials of degree 5 can take, so that they are
5-PPs modulo the considered length.

Example 4.4 (Example 1 for Theorem 4.57) Let the interleaver length be L =
25200 = 24 · 32 · 52 · 7. According to (4.175), the number of ZF 5-PPs will be equal
to:

C25200,5−PPs,ZF = 24·4−5 · 32·(2−1)+2·max{0;2−2} · 54·(2−1) · 74·(1−1) · (7 − 1)·

·(24−3 · 3max{0;2−2} · 5max{0;2−2} · 71−1 − 1
) =
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= (2048 · 9 · 625 · 1 · 6) · (2 · 1 · 1 · 1 − 1) = 69120000.

Since 1800 | L , it is required that q5 < L/120 = 210, q4 < L/24 = 1050, q3 <

L/6 = 4200 and q2 < L/2 = 12600. Coefficients q5, q4, q3 and q2 have to be mul-
tiples of 3 · 5 · 7 = 105, and coefficient q1 has to be relatively prime with 25200.
Moreover, the coefficients q5 and q3 have to meet the condition that the sum
q5 + q3 be even and the coefficients q4 and q2 have to meet the condition that the
sum q4 + q2 be even. Therefore, the pair of coefficients (q5, q3) can take the val-
ues (105, 105), (105, 315), (105, 525), . . . , (105, 4095) (20 pairs with both coef-
ficients odd), and the pair of coefficients (q4, q2) can take the values (105, 105),
(105, 315), (105, 425), . . . , (105, 12495), (315, 105), (315, 315), (315, 425), . . . ,
(315, 12495), (525, 105), (525, 315), (525, 425), . . . , (525, 12495), (735, 105),
(735, 315), (735, 425), . . . , (735, 12495), (945, 105), (945, 315), (945, 425), . . . ,
(945, 12495) (5 · 60 = 300 pairs with both coefficients odd) and (0, 0), (0, 210),
(0, 420), . . . , (0, 12390), (210, 0), (210, 210), (210, 420), . . . , (210, 12390),
(420, 0), (420, 210), (420, 420), . . . , (420, 12390), (630, 0), (630, 210), (630, 420),
. . . , (630, 12390), (840, 0), (840, 210), (840, 420), . . . , (840, 12390), (5 · 60 = 300
pairs with both coefficients even), i.e. a total of 600 pairs. Coefficient q1 can take

�(25200) = 25200 · 1
2

· 2
3

· 4
5

· 6
7

= 5760 values. The total number of ZF 5-PPs is

equal to 20 · 600 · 5760 = 69120000, just the number we found by the formula we
determined. �

Example 4.5 (Example 2 for Theorem 4.57) Let the interleaver length be L =
2400 = 25 · 3 · 52. According to (4.175), the number of ZF 5-PPs will be equal to:

C2400,5−PPs,ZF = 24·5−5 · 32·(1−1)+2·max{0;1−2} · 54·(2−1)·

·(25−3 · 3max{0;1−2} · 5max{0;2−2} − 1
) =

= 32768 · 1 · 625 · (4 · 1 · 1 − 1) = 61440000.

In this case, since 9 � L and 600 | L , it is required that q5 < L/40 = 60, q4 <

L/8 = 300, q3 < L/2 = 1200 and q2 < L/2 = 1200. Coefficients q5, q4, q3 and
q2 have to be multiples of 3 · 5 = 15. The other conditions coefficients q5, q4, q3
and q2 have to meet are the same as those for L = 25200 (in Example 4.4), and
coefficient q1 has to be relatively prime with 2400. Therefore, the pair of coef-
ficients (q5, q3) can take the values (15, 15), (15, 45), (15, 75), . . . , (15, 1185),
(45, 15), (45, 45), (45, 75), . . . , (45, 1185) (2 · 40 = 80 pairs with both coefficients
odd) and (30, 0), (30, 30), (30, 60), . . . (30, 1170) (40 pairs with both coefficients
even), i.e. a total of 120 pairs. The pair of coefficients (q4, q2) can take the val-
ues (15, 15), (15, 45), (15, 75), . . . , (15, 1185), (45, 15), (45, 45), (45, 75), . . . ,
(45, 1185), (75, 15), (75, 45), (75, 75), . . . , (75, 1185), . . . , (285, 15), (285, 45),
(285, 75), . . . , (285, 1185) (10 · 40 = 400 pairs with both coefficients odd) and
(0, 0), (0, 30), (0, 60), . . . , (0, 1170), (30, 0), (30, 30), (30, 60), . . . , (30, 1170),
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(60, 0), (60, 30), (60, 60), . . . , (60, 1170), (90, 0), (90, 30), (90, 60), . . . , (90,
1170), . . . , (270, 0), (270, 30), (270, 60), . . . , (270, 1170) (10 · 40 = 400 pairs
with both coefficients even), i.e. a total of 800 pairs. Coefficient q1 can take

�(2400) = 2400 · 1
2

· 2
3

· 4
5

= 640 values. The total number of ZF 5-PPs is equal

to 120 · 800 · 640 = 61440000, just the number we found by the formula we deter-
mined.

We note that the equivalence conditions for 5-PPs in this case are: q5 < L/120 =
20, q4 < L/24 = 100, q3 < L/6 = 400 and q2 < L/2 = 1200. We note that every
ZF 5-PP having coefficient q5 > 20 (i.e. 30 or 45) and/or coefficient q4 > 100
and/or coefficient q3 > 400 and/or coefficient q2 > 1200 has a equivalent 5-PP
having coefficients q5 < 20, q4 < 100, q3 < 400, and q2 < 1200. For example,
ZF 5-PP 1 · x + 0 · x2 + 1185 · x3 + 270 · x4 + 45 · x5 (mod 2400) is equivalent
to 5-PP 1041 · x + 200 · x2 + 185 · x3 + 70 · x4 + 5 · x5 (mod 2400) only by NP
z(x) = 1040 · x + 200 · x2 + 1400 · x3 + 2200 · x4 + 2360 · x5 (mod 2400). This
NP is not a ZF NP since 3 � 2360, 3 � 2200, 3 � 1400, and 3 � 200. �

4.7 Determining the Number of True Different
Permutation Polynomials of Degrees up to Five by
Weng and Dong Algorithm

Section 3.11 presents an algorithm from Weng and Dong (2008) for getting all PPs
of degrees up to five over ZL . It was derived on the base of normalized PPs given
in Dickson (1896), Theorems 3.8 and 3.7, Propositions 3.12 and 3.13 and on the
Chinese Remainder Theorem (Theorem 3.49).

We recall that if we consider c = 0 and π̄(x) any normalized PP from Table 3.7,
fromProposition 3.12 all PPs (mod p) of degree d (d ≤ 5) are obtainedwith formula
aπ̄(x + b) for all a 
= 0, b ∈ Zp, when p � d. When p | d, from Proposition 3.13 all
PPs (mod p) of degree d (d ≤ 5) are obtained with formula aπ̄(x) for all a ∈ Z

∗
p.

We recall that for primes 2, 3 or 5, Table 3.4 provides all PPs of degree smaller than
or equal to 5 modulo 2, 3 or 5. Further we consider the PPs obtained above where
π̄(x) is any normalized PP given in Table 3.8. To obtain all PPs (mod pnL ,p ) with
nL ,p > 1, we have to add to the previously obtained PPs a polynomial p · ρ(x), where
ρ(x) is any polynomial over ZpnL ,p−1 . This means that each coefficient of ρ(x) can
take pnL ,p−1 different values. Then, for ρ(x) a polynomial of degree d, the number
of all different polynomials ρ(x) is pd·(nL ,p−1).

The considerations above can be used to determine the number of all PPs of any
degree from one to five over ZL by means of the normalized PPs given in Tables
3.7 and 3.8, for p > 5. For p = 2, p = 3 and p = 5 we can use the coefficient
conditions in Table 3.4. Tables 3.7 and 3.8 and the coefficient conditions in Table 3.4
are particularized for degrees up to five for every prime p. The numbers of PPs of
degrees d from one to five over Zp that permute ZpnL ,p , denoted by Cp,d−PPs , with
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Table 4.5 Number of true different 5-PP-based interleavers under Zhao and Fan sufficient condi-
tions

Case Decomposition of L CL ,5−PPs,ZF Theorems

(1) L =
nL∏

j=1

p
nL ,p j
j , p j > 5 and

nL ,p j ≥ 1, ∀ j = 1, nL

CL ,5−PPs,ZF =
nL∏

j=1

(
p
4·(nL ,p j −1)

j ·

(p j − 1)

)
·
( nL∏

j=1

p
nL ,p j −1

j − 1

)

4.42

(2) L = 2 ·
nL∏

j=2

p
nL ,p j
j , p j > 5 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,5−PPs,ZF =
nL∏

j=2

(
p
4·(nL ,p j −1)

j ·

(p j − 1)

)
·
( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.43

(3) L = 3nL ,3 ·
nL∏

j=2

p
nL ,p j
j , nL ,3 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL

CL ,5−PPs,ZF =
2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.44

(4) L = 4 ·
nL∏

j=2

p
nL ,p j
j , p j > 5 and

nL ,p j ≥ 1, ∀ j = 2, nL

CL ,5−PPs,ZF =
2 ·

nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

( nL∏

j=2

p
nL ,p j −1

j − 1

)

4.45

(5) L = 5nL ,5 ·
nL∏

j=2

p
nL ,p j
j , nL ,5 ≥ 1,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL

CL ,5−PPs,ZF = 4 · 54·(nL ,5−1) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
5max{0;nL ,5−2} ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.46

(6) L = 2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1,
p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF =
2 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.47

(continued)
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Table 4.5 (continued)

Case Decomposition of L CL ,5−PPs,ZF Theorems

(7) L = 2nL ,2 ·
nL∏

j=2

p
nL ,p j
j , nL ,2 ≥ 3,

p j > 5 and nL ,p j ≥ 1, ∀ j = 2, nL

CL ,5−PPs,ZF = 24·(nL ,2−2) ·
nL∏

j=2

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
2nL ,2−3 ·

nL∏

j=2

p
nL ,p j −1

j − 1

)

4.48

(8) L = 2 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,5 ≥ 1,
p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF = 4 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
5max{0;nL ,53−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.49

(9) L = 4 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1,
p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF =
4 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.50

(10) L = 3nL ,3 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and
nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF =
8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
54·(nL ,5−1) ·

nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j −

1)

)
·
(
3nL ,3−2 · 5nL ,5−2 ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.51

(11) L = 4 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,5 ≥ 1,
p j > 5 and nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF = 8 · 54·(nL ,5−1) ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
5max{0;nL ,5−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.52

(continued)
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Table 4.5 (continued)

Case Decomposition of L CL ,5−PPs,ZF Theorems

(12) L = 2nL ,2 · 3nL ,3 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,2 ≥ 3, nL ,3 ≥ 1, p j > 5 and
nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF =
24·nL ,2−7 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j − 1)

)
·

(
2nL ,2−3 · 3max{0;nL ,3−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

(13) L = 2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j
j ,

nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and
nL ,p j ≥ 1, ∀ j = 4, nL

CL ,5−PPs,ZF =
8 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
54·(nL ,5−1) ·

( nL∏

j=4

p
4·(nL ,p j −1)

j ·

(p j − 1)

)
·
(
3max{0;nL ,3−2} ·

5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

)

4.54

(14) L = 2nL ,2 · 5nL ,5 ·
nL∏

j=3

p
nL ,p j
j ,

nL ,2 ≥ 3, nL ,5 ≥ 1, p j > 5 and
nL ,p j ≥ 1, ∀ j = 3, nL

CL ,5−PPs,ZF = 24·nL ,2−6 ·
54·(nL ,1−1) ·

nL∏

j=3

(
p
4·(nL ,p j −1)

j · (p j −

1)

)
·
(
2nL ,2−3 · 5max{0;nL ,5−2} ·

nL∏

j=3

p
nL ,p j −1

j − 1

)

4.55

(15) L = 4 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j
j ,

nL ,3 ≥ 1, nL ,5 ≥ 1, p j > 5 and
nL ,p j ≥ 1, ∀ j = 4, nL

CL ,5−PPs,ZF =
16 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
54·(nL ,5−1) ·

nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j −

1)

)
·
(
3max{0;nL ,3−2} ·

5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

)

4.56

(16) L = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

j=4

p
nL ,p j
j ,

nL ,2 ≥ 3, nL ,3 ≥ 1, nL ,5 ≥ 1,
p j > 5 and nL ,p j ≥ 1, ∀ j = 4, nL

CL ,5−PPs,ZF =
24·nL ,2−5 · 32·(nL ,3−1)+2·max{0;nL ,3−2} ·
54·(nL ,5−1) ·

nL∏

j=4

(
p
4·(nL ,p j −1)

j · (p j −

1)

)
·
(
2nL ,2−3 · 3max{0;nL ,3−2} ·

5max{0;nL ,5−2} ·
nL∏

j=4

p
nL ,p j −1

j − 1

)
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Table 4.6 The number of all LPPs and QPPs over Zp that permute ZpnL ,p , with nL ,p ≥ 1

p nL ,p = 1 nL ,p > 1

Cp,LPPs Cp,QPPs Cp,LPPs Cp,QPPs

2 1 2 1 1

p > 2 p − 1 p − 1 p − 1 p − 1

Table 4.7 The number of all CPPs and 4-PPs over Zp that permute ZpnL ,p , with nL ,p ≥ 1

p nL ,p = 1 nL ,p > 1

Cp,CPPs Cp,4−PPs Cp,CPPs Cp,4−PPs

2 4 8 1 2

3 6 18 4 4

5 24 24 4 4

7 6 90 6 6

1 (mod 3), p − 1 p − 1 p − 1 p − 1

p > 7

2 (mod 3), p2 − 1 p2 − 1 p − 1 p − 1

p > 5

nL ,p = 1 or nL ,p > 1, are given in Tables 4.6, 4.7 and 4.8 (Trifina and Tarniceriu
2018a). In these tables and in the algorithm from this section, by 1-PPs, 2-PPs and
3-PPs, we mean LPPs, QPPs and CPPs, respectively. In the following, we give an
example to show the computing of the value Cp,d−PPs , when p = 7 and d = 5.

Example 4.6 For p = 7, the normalized PPs of degree up to five are all normalized
PPs from Table 3.7, except those for p 
= 1 (mod 3) from the second line, and for
p = 13 from the last line.

From the normalized PP π̄(x) = x , six 5-PPs result, namely the PPs of the form
a · x , ∀a ∈ Z

∗
7.

As only 3, 5 and 6 are not square numbers in Z7, it results that 17 normal-
ized PPs remain, viz. x4 + 3x2, x4 − 3x2, x5, x5 + 2x2, x5 − 2x2, x5 + αx3 +
x2 + 3α2x , with α ∈ {3, 5, 6}, x5 + αx3 − x2 + 3α2x , with α ∈ {3, 5, 6}, and x5 +
αx3 + 5−1α2x , with α ∈ Z

∗
7. Each normalized PP π̄(x) from the previous 17, leads

to 6 · 7 = 42 PPs, namely the PPs aπ̄(x + b), ∀a 
= 0, b ∈ Z7. Totally, the 17 nor-
malized PPs lead to 17 · 6 · 7 = 714 5-PPs over Z7.

Thus, overall, we have 714 + 6 = 720 5-PPs over Z7.
To obtain the 5-PPs overZ7 that permuteZ7nL ,7 , with nL ,7 > 1,we have to take into

account only the normalized PPs from Table 3.8, i.e. one normalized PP of degree
one (π̄(x) = x) and six normalized PPs of degree five (π̄(x) = x5 + αx3 + 5−1α2x ,
with α ∈ Z

∗
7). They lead to 6 + 6 · 6 · 7 = 258 5-PPs. �

To determine the number of different PPs using the considerations above, we
have to take into account the equivalence conditions between PPs. These equivalence
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Table 4.8 The number of all 5-PPs over Zp that permute ZpnL ,p , with nL ,p ≥ 1

p nL ,p = 1 nL ,p > 1

Cp,5−PPs Cp,5−PPs

2 16 4

3 54 16

5 120 56

7 720 258

13 2976 1884

1 (mod 15) p − 1 p − 1

11 (mod 15) p2 − 1 p − 1

7 (mod 15) or
13 (mod 15)

p3 − p2 + p − 1 p3 − 2p2 + 2p − 1

2 (mod 15) or
8 (mod 15)

p3 − 1 p3 − 2p2 + 2p − 1

4 (mod 15) p2 − 1 p − 1

14 (mod 15) (p − 1)(2p + 1) p − 1

conditionswere given in Theorem4.8 in terms ofNPs of any degree. Particular results
for QNPs and CNPs were given in Theorems 4.4 and 4.6, respectively.

According to Sect. 4.6, for π(x) given in (3.1), we can consider only those coef-

ficients of different PPs for which qk <
L

gcd(k!, L)
, ∀k = 2, . . . , d. Then, we can

obtain the number of different PPs of any degree d ≤ 5, by dividing the number of

all PPs obtained with the above algorithm by the quantity
d∏

k=2

gcd(k!, L).

Taking into account the equivalence conditions for QPPs from Theorem 4.4, for
CPPs from Theorem 4.6, and for 4-PPs and 5-PPs from Sect. 4.6, a PP of degree

d ≤ 5, with the coefficient of the maximum degree term qd = L

gcd(d!, L)
< L , can

be reduced to a PP of degree smaller than d. We remark that there are no NPs of
degree one, so that LPPs cannot be further reduced and thus, the number of true
different LPPs is equal to the number of different LPPs. The number of true different
PPs of a certain degree d, with 2 ≤ d ≤ 5, is obtained by subtracting the number
of true different PPs of degrees smaller than d from the number of different PPs of
degree d.

Below, we give the algorithm for determining the number of all true different PPs
of any degree from one to five (Trifina and Tarniceriu 2018a).

1. Factor the interleaver length as

L =
nL 1∏

k=1

pk ·
nL 1+nL 2∏

k=nL 1+1

p
nL ,pk
k , (4.179)
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where nL ,pk > 1,∀k = nL1 + 1, . . . , nL 1 + nL2, nL1 ≥ 0 is the number of primes
at the power of one from the decomposition of L , nL2 ≥ 0 is the number of primes
at power greater than one from the decomposition of L , and nL1 + nL 2 ≥ 1.

2. According to the previous considerations from this section, compute the number
of all PPs of degree d with formula:

CL ,d−PPs,all =
nL 1∏

k=1

Cpk ,d−PPs ·
nL 1+nL 2∏

k=nL 1+1

Cpk ,d−PPs · (pk)
d·(nL ,pk −1), (4.180)

where Cpk ,d−PPs are given in Tables 4.6, 4.7 and 4.8 for every prime type at the
power of one or greater than one and for any degree from one to five. Cpk ,d−PPs

in the first product from (4.180) is taken from columns with nL ,p = 1 in Tables
4.6, 4.7 and 4.8 and Cpk ,d−PPs in the second product from (4.180) is taken from
columns with nL ,p > 1 in Tables 4.6, 4.7 and 4.8.

3. Compute the number of different PPs of degree d, for 2 ≤ d ≤ 5, with formula:

CL ,d−PPs,diff = CL ,d−PPs,all

d∏

k=2

gcd(k!, L)

(4.181)

4. Compute the number of true different PPs of degree d, for 2 ≤ d ≤ 5, with recur-
sive formula:

CL ,d−PPs,true diff = CL ,d−PPs,diff −
d−1∑

k=1

CL ,d−PPs,true diff, (4.182)

where CL ,1−PPs,true diff = CL ,1−PPs,all.

Reference (Number of 1-5-PPs 2016) is a link to a file where we posted the
number of true different LPPs, QPPs, CPPs, 4-PPs and 5-PPs, for any interleaver
length L ≤ 100000, using the above algorithm.

Using the algorithm from this section we can determine the number of true differ-
ent ZF PPs for arbitrary degree d of PPs (Trifina and Tarniceriu 2018b). We denote
by Cpk ,d−PPs,ZF the values used in formula (4.180) in this case. To find the values
for Cpk ,d−PPs,ZF , depending on the degree d of PPs, we consider the coefficient
conditions from Table 3.6.

For p = 2 and nL ,p = 1 the condition is (q1 + q2 + · · · + qd) 
= 0 (mod 2). It is
fulfilled for 2d/2 = 2d−1 combinations of coefficients (q1, q2, . . . , qd).

For p = 2 and nL ,p > 1 the conditions are q1 
= 0 (mod 2), (q2 + q4 + q6 +
· · · ) = 0 (mod 2) and (q3 + q5 + q7 + · · · ) = 0 (mod 2).

The condition q1 
= 0 (mod 2), with q1 ∈ Z2, is fulfilled only for q1 = 1.
For the other two conditions we consider the cases when the degree d is odd and

even, respectively.
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Table 4.9 The number of d-PPs (d ≥ 3) under Zhao and Fan sufficient conditions over Zp that
permute ZpnL ,p , with nL ,p ≥ 1

p nL ,p = 1 nL ,p > 1

Cp,d−PPs,ZF Cp,d−PPs,ZF

2 2d−1 2d−3

p > 2 p − 1 p − 1

For d an odd number (d ≥ 3), i.e. d = 2 · k + 1, with k ∈ N
∗, each of the sums

(q2 + q4 + q6 + · · · ) and (q3 + q5 + q7 + · · · ) contains k coefficients. Thus, each
of the sum is fulfilled for 2k/2 = 2k−1 combinations of coefficients. It results that
Cpk ,d−PPs,ZF = 1 · 2k−1 · 2k−1 = 22k−2 = 2d−3, for d odd.

For d an even number (d ≥ 4), i.e. d = 2 · k, with k ∈ N, k ≥ 2, the sum
(q2 + q4 + q6 + · · · ) contains k coefficients and the sum (q3 + q5 + q7 + · · · ) con-
tains k − 1 coefficients. Thus, the first sum is fulfilled for 2k/2 = 2k−1 combina-
tions of coefficients and the second sum is fulfilled for 2k−1/2 = 2k−2 combinations
of coefficients. It results that Cpk ,d−PPs,ZF = 1 · 2k−1 · 2k−2 = 22k−3 = 2d−3, for d
even.

For p > 2 and nL ,p ≥ 1 the conditions are q1 
= 0 (mod p) and q2 = q3 = · · · =
qd = 0 (mod p). The condition q1 
= 0 (mod p), with q1 ∈ Zp, is fulfilled for p − 1
values. The condition q2 = q3 = · · · = qd = 0 (mod p), with qi ∈ Zp, ∀i = 2, d , is
fulfilled only for q2 = q3 = · · · = qd = 0. Thus, in this case Cpk ,d−PPs,ZF = (p −
1) · 1 = p − 1.

The values of Cpk ,d−PPs used in formula (4.180) in the case of Zhao and Fan
sufficient conditions are summarized in Table 4.9.

We mention that for LPPs and QPPs, the Zhao and Fan sufficient conditions
become also necessary and, thus, we can use the same values of Cpk ,d−PPs from
Table 4.6.

As we pointed in the beggining of Sect. 4.6 the NPs under Zhao and Fan sufficient
conditions have to fulfill the conditions from Eq. (4.109).

Therefore, the number of NPs of degrees up to d under Zhao and Fan sufficient

conditions will not be equal to
d∏

k=2

gcd(k!, N ) as used in formula (4.181). In the

following we obtain the number of NPs of degrees up to d under Zhao and Fan
sufficient conditions. We know that the general form of NPs of degrees up to d is
that from (4.48).

We denote by gk the quantity gcd(k!, L), k ≥ 3. Let the prime factorization of gk
be of the form

gk = gcd(k!, L) = 2ngk ,2 ·
ngk∏

j=2

p
ngk ,p j

j,gk
, with ngk ≥ 2, ngk ,2 ≥ 1, ngk ,p j ≥ 1,

and p j,gk > 2,∀ j = 2, 3, . . . , ngk . (4.183)
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We define the truth value function ||x • y||, with • an operator between two
positive integers x and y, as

||x • y|| =
{
1, if x • y is true;
0, if x • y is not true.

(4.184)

In the followingwewill use the function in (4.184) with “equality operator” (==)
and “greater than or equal to” operator (≥).

Similarly as in the beggining of Section 4.6, if there exists a prime p ≤ d so
that ngd ,p = nL ,p, then for NPs under Zhao and Fan sufficient conditions we have
to impose that p | τk , ∀k = k ′, k ′ + 1, . . . , d, where k ′ is the least integer so that
ngk′ ,p = ngd ,p. Therefore this prime will reduce the number of NPs of pd−k ′+1 times.
If gd is factorized as in (4.183) with k = d, then the number of NPs under Zhao and
Fan sufficient conditions will be equal to

CNPs,ZF =

d∏

k=2

gcd(k!, L)

ngd∏

k=2

(pk,gd )
(d−k ′

d+1)·||ngd ,pk ==nL ,pk ||
, (4.185)

where k ′
d is the least integer such that ngk′d ,pk = ngd ,pk .

The quantity from (4.185) must be used in formula (4.181) when we compute the
number of true different ZF PPs using the algorithm from this section.

4.8 Determining the Lengths for Which the Number of
True Different PPs of Degree up to Five is Equal to 0

In this section we determine the prime factorization for the lengths for which the
number of true different PPs of degree up to five is equal to 0, using the algorithm
from Sect. 4.7 (Trifina and Tarniceriu 2018b). Firstly, we obtain below a formula
equivalent to (4.182) which is more convenient for this goal. For d = 2, using (4.181)
in (4.182), we obtain:

CL ,QPPs,true diff = CL ,2−PPs,all

gcd(2, L)
− CL ,1−PPs,all (4.186)

For d = 3, using (4.181) and (4.186) in (4.182), we obtain:

CL ,CPPs,true diff = CL ,3−PPs,all

gcd(2, L) · gcd(6, L)
− CL ,2−PPs,all

gcd(2, L)
(4.187)
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Similarly, for d = 4 and d = 5, we obtain:

CL ,4−PPs,true diff = CL ,4−PPs,all

gcd(2, L) · gcd(6, L) · gcd(24, L)
−

− CL ,3−PPs,all

gcd(2, L) · gcd(6, L)
(4.188)

and

CL ,5−PPs,true diff = CL ,5−PPs,all

gcd(2, L) · gcd(6, L) · gcd(24, L) · gcd(120, L)
−

− CL ,4−PPs,all

gcd(2, L) · gcd(6, L) · gcd(24, L)
(4.189)

We note that formula

CL ,d−PPs,true diff = CL ,d−PPs,all

d∏

k=2

gcd(k!, L)

− CL ,(d−1)−PPs,all

d−1∏

k=2

gcd(k!, L)

(4.190)

is valid for each degree d ≥ 2, but we don’t know the quantities Cp1,k ,d−PPs and
Cp2,k ,d−PPs in (4.180), as in Tables 4.6, 4.7 and 4.8, for each degree d.

Now, using equations (4.180) and (4.186)–(4.189) and Tables 4.6, 4.7 and 4.8 we
can obtain the lengths for which the number of true different PPs of degree up to five
is equal to 0.

Before to proceed, we give in the following a lemma which states a necessary
condition to obtain CL ,d−PPs,true diff = 0.

Lemma 4.58 The number of true different PPs of degree d is equal to 0 only

if nL ,pk = 1 and only if Cpk ,d−PPs = Cpk ,(d−1)−PPs or at most
Cpk ,d−PPs

Cpk ,(d−1)−PPs
|

gcd(d!, L) for each pk | L so that pk � gcd(d!, L).

Proof Condition CL ,d−PPs,true diff = 0 in (4.182) is equivalent to

CL ,d−PPs,all

CL ,(d−1)−PPs,all
= gcd(d!, L), (4.191)

or taking into account (4.180),

nL1∏

k=1

Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
·
nL1+nL2∏

k=nL1+1

Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
· (p2,k)

(nL ,p2,k −1) = gcd(d!, L),

(4.192)
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Table 4.10 The values
Cp,d−PPs

Cp,(d−1)−PPs
for d = 2, 3

p nL ,p = 1 nL ,p > 1 nL ,p = 1 nL ,p > 1
Cp,QPPs
Cp,LPPs

Cp,QPPs
Cp,LPPs

Cp,CPPs
Cp,QPPs

Cp,CPPs
Cp,QPPs

2 2 1 2 1

3 1 1 3 2

5 1 1 6 1

1 (mod 3),
p > 5

1 1 1 1

2 (mod 3),
p > 5

1 1 p + 1 1

Table 4.11 The values
Cp,4−PPs
Cp,CPPs

p nL ,p = 1 nL ,p > 1
Cp,4−PPs
Cp,CPPs

Cp,4−PPs
Cp,CPPs

2 2 2

3 3 1

5 1 1

7 15 1

p > 7 1 1

It is clear that Cp1,k ,d−PPs ≥ Cp1,k ,(d−1)−PPs ∀k = 1, nL1 , and Cp2,k ,d−PPs ≥
Cp2,k ,(d−1)−PPs , and (p2,k)

(nL ,p2,k −1) > 1 for nL ,p2,k > 1 ∀k = nL1 + 1, nL1 + nL2 .
Then, if p2,k � gcd(d!, L) for some k ∈ {nL1 + 1, . . . , nL1 + nL2}, Eq. (4.192) can
be fulfilled only if nL ,p2,k = 1, and Cp2,k ,d−PPs = Cp2,k ,(d−1)−PPs or

Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
|

gcd(d!, L), and if p1,k � gcd(d!, L) for some k ∈ {1, . . . , nL1}, Eq. (4.192) can be

fulfilled only if Cp1,k ,d−PPs = Cp1,k ,(d−1)−PPs or
Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
| gcd(d!, L). �

We approach the cases when pk | L and pk | gcd(d!, L), for degrees of 2 up to 5,
separately in the next subsections. To help in this goal we give in Tables 4.10, 4.11

and 4.12 the values of
Cp1,k ,d−PPs

Cp1,k ,(d−1)−PPs
and

Cp2,k ,d−PPs

Cp2,k ,(d−1)−PPs
, for d = 2, 3, 4, 5.

4.8.1 Determining the Lengths for Which the Number of
True Different QPPs is Equal to 0

From Table 4.10 we see that the conditions from Lemma 4.58 are fulfilled for each
prime p > 2.
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Table 4.12 The values
Cp,5−PPs
Cp,4−PPs

p nL ,p = 1 nL ,p > 1
Cp,5−PPs
Cp,4−PPs

Cp,5−PPs
Cp,4−PPs

2 2 2

3 3 4

5 5 14

7 8 43

13 248 157

1 (mod 15) 1 1

11 (mod 15) 1 1

7 (mod 15) or
13 (mod 15),
p > 13

p2 + 1 p2 − p + 1

2 (mod 15) or
8 (mod 15),
p > 2

(p2 + p +
1)/(p + 1)

p2 − p + 1

4 (mod 15) p + 1 1

14 (mod 15) (2p + 1)/(p + 1) 1

If gcd(2!, L) = 2 it means that 2 | L . In this case we have two subcases.
If p = 2 and nL ,2 = 1, the conditionCL ,QPPs,true diff = 0 is fulfilled if

C2,QPPs

C2,LPPs
=

2, which, as we see in Table 4.10, is true.

If p = 2 and nL ,2 > 1, the condition CL ,QPPs,true diff = 0 is fulfilled if
C2,QPPs

C2,LPPs
·

2nL ,2−1 = 2, or, equivalently, 1 · 2nL ,2−1 = 2, which is true for nL ,2 = 2.
Thus, we conclude that the number of true different QPPs is 0, for the lengths of

the form:

LCL ,QPPs,true diff=0 = 2nL ,2 ·
nL∏

k=2

pk, with nL ,2 = 0, 2, pk > 2,∀k = 2, nL , (4.193)

as it was previously obtained in Eq. (4.56).

4.8.2 Determining the Lengths for Which the Number of
True Different CPPs is Equal to 0

From Table 4.10 we see that the conditions from Lemma 4.58 are fulfilled for primes

p of type p = 1 (mod 3). Also, if gcd(3!, L) = 6, the condition
Cp,CPPs

Cp,QPPs
| gcd(3!, L)

is fulfilled for p = 5.
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If gcd(3!, L) > 1, we have the following cases.

(1) gcd(3!, L) = 2, i.e. 2 | L and 3 � L .

If p = 2 andnL ,2 = 1, the conditionCL ,CPPs,true diff = 0 is fulfilled if
C2,CPPs

C2,QPPs
=

2, which, as we see in Table 4.10, is true.

If p = 2 and nL ,2 > 1, the conditionCL ,CPPs,true diff = 0 is fulfilled if
C2,CPPs

C2,QPPs
·

2nL ,2−1 = 2, or, equivalently, 1 · 2nL ,2−1 = 2, which is true for nL ,2 = 2.
(2) gcd(3!, L) = 3, i.e. 2 � L and 3 | L .

If p = 3 andnL ,3 = 1, the conditionCL ,CPPs,true diff = 0 is fulfilled if
C3,CPPs

C3,QPPs
=

3, which, as we see in Table 4.10, is true.

If p = 3 and nL ,3 > 1, the conditionCL ,CPPs,true diff = 0 is fulfilled if
C3,CPPs

C3,QPPs
·

3nL ,3−1 = 3, or, equivalently, 2 · 3nL ,3−1 = 3, which is not true ∀ nL ,3 > 1.
(3) gcd(3!, L) = 6, i.e. 2 | L and 3 | L .

Since each of the cases when p = 2 and nL ,2 ∈ {1, 2}, and when p = 3 and
nL ,3 = 1 have one solution, we have to consider only the case when nL ,2 > 2
and nL ,3 > 1.
If nL ,2 > 2 and nL ,3 > 1, the condition CL ,CPPs,true diff = 0 is fulfilled if
C2,CPPs

C2,QPPs
· 2nL ,2−1 · C3,CPPs

C3,QPPs
· 3nL ,3−1 = 2 · 3, or, equivalently, 1 · 2nL ,2−1 · 2 ·

3nL ,3−1 = 2 · 3, which is not true ∀ nL ,2 > 2 and ∀ nL ,3 > 1. If 5 | L , nL ,5 = 1,

nL ,2 > 2 and nL ,3 > 1, the conditionCL ,CPPs,true diff = 0 is fulfilled if
C2,CPPs

C2,QPPs
·

2nL ,2−1 · C3,CPPs

C3,QPPs
· 3nL ,3−1 · C5,CPPs

C5,QPPs
= 2 · 3, or, equivalently, 1 · 2nL ,2−1 · 2 ·

3nL ,3−1 · 6 = 2 · 3, which, is also not true ∀ nL ,2 > 2 and ∀ nL ,3 > 1.

Thus, we conclude that the number of true different CPPs is equal to 0 for the
lengths of the form:

LCL ,CPPs,true diff=0 = 2nL ,2 · 3nL ,3 ·
nL∏

k=3

pk,

with nL ,2 = 0, 2, nL ,3 = 0, 1, pk > 3, with pk = 1 (mod 3), k = 3, nL , (4.194)

as it was previously obtained in Eq. (4.106).



4.8 Determining the Lengths for Which the Number of True Different PPs of Degree … 193

4.8.3 Determining the Lengths for Which the Number of
True Different 4-PPs is Equal to 0

From Table 4.11 we see that the conditions from Lemma 4.58 are fulfilled for each
prime p > 7, and for prime p = 5.

If gcd(4!, L) > 1, we have the following cases.

(1) gcd(4!, L) = 2nL ,2 , with nL ,2 ∈ {1, 2, 3}, i.e. 2nL ,2 | L .
If p = 2 and nL ,2 = 1, the condition CL ,4−PPs,true diff = 0 is fulfilled if
C2,4−PPs

C2,CPPs
= 2, which, as we see in Table 4.11, is true.

If p = 2 and nL ,2 ∈ {2, 3}, the condition CL ,4−PPs,true diff = 0 is fulfilled if
C2,4−PPs

C2,CPPs
· 2nL ,2−1 = 2nL ,2 , or, equivalently, 2 · 2nL ,2−1 = 2nL ,2 , which is true both

for nL ,2 = 2 and nL ,2 = 3.

If p = 2 andnL ,2 > 3, the conditionCL ,4−PPs,true diff = 0 is fulfilled if
C2,4−PPs

C2,CPPs
·

2nL ,2−1 = 23, or, equivalently, 2 · 2nL ,2−1 = 23, which is not true ∀ nL ,2 > 3.
(2) gcd(4!, L) = 3, i.e. 2 � L and 3 | L .

If p = 3 and nL ,3 = 1, the condition CL ,4−PPs,true diff = 0 is fulfilled if
C3,4−PPs

C3,CPPs
= 3, which, as we see in Table 4.11, is true.

If p = 3andnL ,3 > 1, the conditionCL ,4−PPs,true diff = 0 is fulfilled if
C3,4−PPs

C3,CPPs
·

3nL ,3−1 = 3, or, equivalently, 1 · 3nL ,3−1 = 3, which is true for nL ,3 = 2.
(3) gcd(4!, L) = 2nL ,2 · 3, with nL ,2 ∈ {1, 2, 3}, i.e. 2nL ,2 | L and 3 | L .

Since each of the above cases have solutions, we have not to consider this case
because it will lead to the same solutions.

Thus, we conclude that the number of true different 4-PPs is equal to 0 for the
lengths of the form:

LCL ,4−PPs,true diff=0 = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

k=4

pk,

with nL ,2 = 0, 3, nL ,3 = 0, 2, nL ,5 = 0, 1, pk > 7, k = 4, nL . (4.195)

4.8.4 Determining the Lengths for Which the Number of
True Different 5-PPs is Equal to 0

FromTable 4.12we see that the conditions fromLemma4.58 are fulfilled for primes p
of types p = 1 (mod 15) and p = 11 (mod 15). Also, if 8 | gcd(5!, L), the condition
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Cp,5−PPs

Cp,4−PPs
| gcd(5!, L) is fullfilled for p = 7 and if 20 | gcd(5!, L), the condition

Cp,5−PPs

Cp,4−PPs
| gcd(5!, L) is fullfilled for p = 19.

If gcd(5!, L) > 1, we have the following cases.

(1) gcd(5!, L) = 2nL ,2 , with nL ,2 ∈ {1, 2, 3}, i.e. 2nL ,2 | L , 3 � L , and 5 � L .
If p = 2 and nL ,2 = 1, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
= 2, which, as we see in Table 4.12, is true.

If p = 2 and nL ,2 ∈ {2, 3}, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
· 2nL ,2−1 = 2nL ,2 , or, equivalently, 2 · 2nL ,2−1 = 2nL ,2 , which is true both

for nL ,2 = 2 and nL ,2 = 3.

If p = 2 andnL ,2 > 3, the conditionCL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
·

2nL ,2−1 = 23, or, equivalently, 2 · 2nL ,2−1 = 23, which is is not true ∀ nL ,2 > 3.
If 7 | L , nL ,7 = 1, and nL ,2 > 3, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
· 2nL ,2−1 · C7,5−PPs

C5,4−PPs
= 23, or, equivalently, 2 · 2nL ,2−1 · 8 = 23, which,

is also not true ∀ nL ,2 > 3.
(2) gcd(3!, L) = 3, i.e. 2 � L , 3 | L , and 5 � L .

If p = 3 and nL ,3 = 1, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C3,5−PPs

C3,4−PPs
= 3, which, as we see in Table 4.12, is true.

If p = 3andnL ,3 > 1, the conditionCL ,5−PPs,true diff = 0 is fulfilled if
C3,5−PPs

C3,4−PPs
·

3nL ,3−1 = 3, or, equivalently, 4 · 3nL ,3−1 = 3, which is not true ∀ nL ,3 > 1.
(3) gcd(5!, L) = 2nL ,2 · 3, with nL ,2 ∈ {1, 2, 3}, i.e. 2nL ,2 | L , 3 | L , and 5 � L .

Since each of the cases when p = 2 and nL ,2 ∈ {1, 2, 3}, and when p = 3 and
nL ,3 = 1 have one solution, we have to consider only the case when nL ,2 > 3
and nL ,3 > 1.
If nL ,2 > 3 and nL ,3 > 1, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
· 2nL ,2−1 · C3,5−PPs

C3,4−PPs
· 3nL ,3−1 = 23 · 3, or, equivalently, 2 · 2nL ,2−1 · 4 ·

3nL ,3−1 = 23 · 3, which is not true ∀ nL ,2 > 3 and ∀ nL ,3 > 1.
If 7 | L , nL ,7 = 1, nL ,2 > 3 and nL ,3 > 1 the condition

CL ,5−PPs,true diff = 0 is fulfilled if
C2,5−PPs

C2,4−PPs
· 2nL ,2−1 · C3,5−PPs

C3,4−PPs
· 3nL ,3−1 ·

C7,5−PPs

C5,4−PPs
= 23 · 3, or, equivalently, 2 · 2nL ,2−1 · 4 · 3nL ,3−1 · 8 = 23 · 3, which, is

also not true ∀ nL ,2 > 3 and ∀ nL ,3 > 1.
(4) gcd(5!, L) = 5, i.e. 2 � L , 3 � L , and 5 | L .

If p = 5 and nL ,5 = 1, the condition CL ,5−PPs,true diff = 0 is fulfilled if
C5,5−PPs

C5,4−PPs
= 5, which, as we see in Table 4.12, is true.
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If p = 5andnL ,5 > 1, the conditionCL ,5−PPs,true diff = 0 is fulfilled if
C5,5−PPs

C5,4−PPs
·

5nL ,5−1 = 5, or, equivalently, 14 · 5nL ,5−1 = 5, which is not true ∀ nL ,5 > 1.

We do not have to consider the cases of other combinations of prime factors 2, 3,
and 5, as they will lead to the same solutions.

Thus, we conclude that the number of true different 5-PPs is equal to 0 for the
lengths of the form:

LCL ,5−PPs,true diff=0 = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

k=4

pk, with nL ,2 = 0, 3,

nL ,3 = 0, 1, nL ,5 = 0, 1, pk > 5, with pk = 1 (mod 15) or

pk = 11 (mod 15), k = 4, nL . (4.196)

4.9 Determining the Lengths for Which the Number of
True Different d-PPs Under Zhao and Fan Sufficient
Conditions is Equal to 0

In this section we determine the prime factorization for the lengths for which the
number of true different PPs of any degree under Zhao and Fan sufficient conditions
is equal to 0, using the algorithm from Sect. 4.7 (Trifina and Tarniceriu 2018b). The
formula analog to (4.190) for the number of true different d − PPs under Zhao and
Fan sufficient conditions is

CL ,d−PPs,ZF,true diff = CL ,d−PPs,ZF,all ·

ngd∏

k=2

(pk,gd )
(d−k ′

d+1)·||ngd ,pk ==nL ,pk ||

d∏

k=2

gcd(k!, L)

−

−CL ,(d−1)−PPs,all ·

ngd−1∏

k=2

(pk,gd−1)
(d−k ′

d−1)·||ngd−1,pk ==nL ,pk ||

d−1∏

k=2

gcd(k!, L)

(4.197)

The values
Cp1,k ,d−PPs,ZF

Cp1,k ,(d−1)−PPs,ZF
and

Cp2,k ,d−PPs,ZF

Cp2,k ,(d−1)−PPs, ZF
, for d ≥ 3, are given in

Table 4.13 .
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Table 4.13 The values
Cp,d−PPs

Cp,(d−1)−PPs
for d-PPs (d ≥ 3)

under Zhao and Fan sufficient
conditions

p nN ,p = 1 nN ,p > 1
Cp,d−PPs

Cp,(d−1)−PPs

Cp,d−PPs
Cp,(d−1)−PPs

2 2

{
2, if d > 3,

1, if d = 3.

p > 2 1 1

Theorem 4.59 (Lengths for which CL ,d−PPs,ZF,true diff = 0) Let the prime factor-
ization of d! be

d! = 2nd!,2 ·
nd!∏

k=2

p
nd!,pk
k,d! ,

with nd! ≥ 2, nd!,2 ≥ 1, nd!,pk ≥ 1, and 2 < pk,d! ≤ d,∀k = 2, 3, . . . , nd!.
(4.198)

Then the number of true different PPs of degree d under Zhao and Fan sufficient
conditions is equal to zero (CL ,d−PPs,ZF,true diff = 0) if L is of the form

LCL ,d−PPs,ZF,true diff=0 = 2nL ,2 ·
nd!∏

k=2

p
nL ,pk
k,d! ·

nL∏

k=nd!+1

pk,

with 0 ≤ nL ,2 ≤ nd!,2 for d > 3 and 0 ≤ nL ,2 ≤ 2 for d = 3,

0 ≤ nL ,pk ≤ nd!,pk + 1, 2 < pk,d! < d,∀k = 2, 3, . . . , nd!, and pk > d,

∀k = nd! + 1, . . . , nL . (4.199)

Proof Imposing that CL ,d−PPs,ZF,true diff = 0 in (4.197), we obtain

CL ,d−PPs,ZF,all

CL ,(d−1)−PPs,all
= gcd(d!, L) ·

ngd−1∏

k=2

(pk,gd−1)
(d−k ′

d−1)·||ngd−1,pk ==nL ,pk ||

ngd∏

k=2

(pk,gd )
(d−k ′

d+1)·||ngd ,pk ==nL ,pk ||
(4.200)

In the following we will analyze the cases when d is a prime number and d is not
a prime number.

(1) d - a prime number
If d is a prime number then the prime factorizations of gd−1 and gd/d(||nL ,d≥1||)
are the same. Further ngd ,d = 1 and k ′

d = d. Thus we have
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ngd−1∏

k=2

(pk)
(d−k ′

d−1)·||ngd−1,pk ==nL ,pk ||

ngd∏

k=2

(pk)
(d−k ′

d+1)·||ngd ,pk ==nL ,pk ||
= 1

d(||nL ,d==1||) (4.201)

In this case condition (4.200) becomes

CL ,d−PPs,ZF,all

CL ,(d−1)−PPs,all
= gcd(d!, L)

d(||nL ,d==1||) (4.202)

Taking into account Eq. (4.180) and the values from Table 4.13, we obtain for
d = 3 CL ,CPPs,ZF,true diff = 0 if L is of the form

LCL ,CPPs,ZF,true diff=0 = 2nL ,2 · 3nL ,3 ·
nL∏

k=3

pk, with nL ,2 = 0, 2,

nL ,3 = 0, 2, pk > 3,∀k = 3, nL , (4.203)

as in (4.199) for d = 3. The same result was obtained in Eq. (4.124).
Then, if d is a prime number, d > 3, from (4.180) and the values from Table
4.13, (4.202) is equivalent to

2 · 2nL ,2−1 ·
nL1+nL2∏

k=nL1+1

1 · (p2,k)
(nL ,p2,k −1) = 2ngd ,2 ·

nd!−1∏

k=2

p
ngd ,pk
k,d! ·

·d(||nL ,d≥1||)−(||nL ,d==1||), with 0 ≤ ngd ,2 ≤ nd!,2, 0 ≤ ngd ,pk ≤ nd!,pk ,

and 2 < pk,d! < d,∀k = 2, 3, . . . , nd! − 1. (4.204)

From (4.204) it results that for d a prime number, d > 3,CL ,d−PPs,ZF,true diff = 0
if L is of the form

LCL ,d−PPs,ZF,true diff=0 = 2nL ,2 ·
nd!−1∏

k=2

p
nL ,pk
k,d! · dnL ,d ·

nL∏

k=nd!+1

pk,

with 0 ≤ nL ,2 ≤ nd!,2, 0 ≤ nL ,pk ≤ nd!,pk + 1, and

2 < pk,d! < d,∀k = 2, 3, . . . , nd! − 1, 0 ≤ nL ,d ≤ 2, pk > d,

∀k = nd! + 1, . . . , nL . (4.205)

Equation (4.205) is the same as (4.199) for d a prime number.
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(2) d - not a prime number
If d is not a prime number then the prime factors from the prime factorization
of gd are the same as those from the prime factorization of gd−1, possibly with
greater powers of some factors. The maximum powers of the primes pk,d! in the
factorization of gd are nd!,pk , ∀k = 2, 3, . . . , nd!.
If pk,d! | gd , pk,d! � d, and nd!,pk ≥ nL ,pk , then ngd−1,pk = ngd ,pk = nL ,pk and
k ′
d−1 = k ′

d . Thus the term corresponding to factor pk,d! in the ratio from the

right hand side of (4.200) is
1

pk,d!
. The same observation is valid if pk,d! | gd ,

pk,d! | d, and nd!,pk − nd,pk ≥ nL ,pk .
If pk,d! | gd , pk,d! | d, and nd!,pk − nd,pk < nL ,pk ≤ nd!,pk , then ngd−1,pk <

ngd ,pk = nL ,pk , ||ngd−1,pk == nL ,pk || = 0, ||ngd ,pk == nL ,pk || = 1, and k ′
d = d.

Thus the term corresponding to factor pk,d! in the ratio from the right hand side

of (4.200) is also
1

pk,d!
.

If pk,d! | gd and nL ,pk > nd!,pk , then ngd−1,pk < nL ,pk , ngd ,pk < nL ,pk ,
||ngd−1,pk == nL ,pk || = 0, and ||ngd ,pk == nL ,pk || = 0. Thus the term corre-
sponding to factor pk,d! in the ratio from the right hand side of (4.200) is equal
to 1.
From those above it results that if d is not a prime number, then (4.200) is
equivalent to

CL ,d−PPs,ZF,all

CL ,(d−1)−PPs,all
= gcd(d!, L) · 1

nd!∏

k=2

(pk,d!)||nd!,pk ≥nL ,pk || (4.206)

Similarly to (4.204), (4.206) is equivalent to

2 · 2nL ,2−1 ·
nL1+nL2∏

k=nL1+1

1 · (p2,k)
(nL ,p2,k −1) = 2ngd ,2 ·

nd!∏

k=2

p
ngd ,pk
k,d!

nd!∏

k=2

(pk,d!)||nd!,pk ≥nL ,pk ||
,

with 0 ≤ ngd ,2 ≤ nd!,2, 0 ≤ ngd ,pk ≤ nd!,pk , and 2 < pk,d! < d,

∀k = 2, 3, . . . , nd!. (4.207)

From (4.207) it results that if d is not a prime number, CL ,d−PPs,ZF,true diff = 0
if L is of the form

LCL ,d−PPs,ZF,true diff=0 = 2nL ,2 ·
nd!∏

k=2

p
nL ,pk
k,d! ·

nL∏

k=nd!+1

pk,
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with 0 ≤ nL ,2 ≤ nd!,2, 0 ≤ nL ,pk ≤ nd!,pk + 1, and 2 < pk,d! < d,

∀k = 2, 3, . . . , nd!, pk > d,∀k = nd! + 1, . . . , nL . (4.208)

We note that formula (4.208) is also valid if d is a prime number. Thus the
theorem is proved. �

In the following we will give two examples for the form of L when d is a prime
number and when d is not a prime number.

Example 4.7 (Example of L for whichCL ,11−PPs,ZF,true diff = 0) For d = 11we have

11! = 28 · 34 · 52 · 71 · 111, (4.209)

and CL ,11−PPs,ZF,true diff = 0 if L is of the form

LCL ,11−PPs,ZF,true diff=0 = 2nL ,2 · 3nL ,3 · 5nL ,5 · 7nL ,7 · 11nL ,11 ·
nL∏

k=6

pk,

with 0 ≤ nL ,2 ≤ 8, 0 ≤ nL ,3 ≤ 5, 0 ≤ nL ,5 ≤ 3, 0 ≤ nL ,7 ≤ 2,

0 ≤ nL ,11 ≤ 2, and pk > 11,∀k = 6, . . . , nL . (4.210)

�

Example 4.8 (Example of L for whichCL ,12−PPs,ZF,true diff = 0) For d = 12we have

12! = 210 · 35 · 52 · 71 · 111, (4.211)

and CL ,12−PPs,ZF,true diff = 0 if L is of the form

LCL ,12−PPs,ZF,true diff=0 = 2nL ,2 · 3nL ,3 · 5nL ,5 · 7nL ,7 · 11nL ,11 ·
nL∏

k=6

pk,

with 0 ≤ nL ,2 ≤ 10, 0 ≤ nL ,3 ≤ 6, 0 ≤ nL ,5 ≤ 3, 0 ≤ nL ,7 ≤ 2,

0 ≤ nL ,11 ≤ 2, and pk > 11,∀k = 6, . . . , nL . (4.212)

�

We note that for d = 4 and d = 5 we obtain the same results as in Eqs. (4.142)
and (4.178), respectively, i.e.

LCL ,4−PPs,ZF,true diff=0 = 2nL ,2 · 3nL ,3 ·
nL∏

k=3

pk,



200 4 Determining the Number of Permutation Polynomial-Based Interleavers …

with 0 ≤ nL ,2 ≤ 3, 0 ≤ nL ,3 ≤ 2,

and pk > 3,∀k = 3, . . . , nL . (4.213)

and

LCL ,5−PPs,ZF,true diff=0 = 2nL ,2 · 3nL ,3 · 5nL ,5 ·
nL∏

k=4

pk,

with 0 ≤ nL ,2 ≤ 3, 0 ≤ nL ,3 ≤ 2, 0 ≤ nL ,5 ≤ 2,

and pk > 5,∀k = 4, . . . , nL . (4.214)
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Chapter 5
Minimum Distance of Turbo Codes with
Permutation Polynomial-Based
Interleavers

5.1 Inverse Permutation Polynomials of a QPP

First, in this section, the necessary and sufficient condition for a QPP to admit at least
one quadratic inverse is given (Ryu and Takeshita 2006). The necessary lemmas and
the main theorems along with their proofs follow the same pattern as in Ryu and
Takeshita (2006).

In the following lemma it is shown that for any QPP there exists at least one
quadratic polynomial that inverts it at three points x = 0, 1, 2. The reason for this
partially inverting polynomial is because it becomes the basis for the quadratic inverse
polynomial if it exists.

Lemma 5.1 Let L be a positive integer and let π(x) = q1 · x + q2 · x2 (mod L)

be a QPP. Then there exists at least one quadratic polynomial ρ(x) = r1 · x + r2 ·
x2 (mod L) that inverts π(x) at these three points: x = 0, 1, 2. If L is odd, there is
exactly one quadratic polynomial ρ(x) = r1 · x + r2 · x2 (mod L) and its coefficients
can be obtained by solving the linear congruences:

r2(q1 + q2)(q1 + 2q2)(q1 + 3q2) ≡ (−q2) (mod L) (5.1)

r1(q1 + q2) + r2(q1 + q2)
2 ≡ 1 (mod L) (5.2)

If L is even, there are exactly two quadratic polynomials ρ1(x) = r1,1 · x + r1,2 ·
x2 (mod L), ρ2(x) = r2,1 · x + r2,2 · x2 (mod L) and the coefficients of the poly-
nomial ρ1(x) = r1,1 · x + r1,2 · x2 (mod L) can be obtained by solving the linear
congruences:

r1,2(q1 + q2)(q1 + 2q2)(q1 + 3q2) ≡ (−q2)
(
mod

L

2

)
(5.3)

r1,1(q1 + q2) + r1,2(q1 + q2)
2 ≡ 1 (mod L) (5.4)
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After computing coefficients (r1,1, r1,2)of the polynomialρ1(x), coefficients (r2,1, r2,2)
of the polynomial ρ2(x) can be obtained by r2,1 ≡ (r1,1 + L/2) (mod L) and
r2,2 ≡ (r1,2 + L/2) (mod L).

Proof Let ρ ◦ π the operation of composing functions ρ and π. Then ρ(x) = r1 ·
x + r2 · x2 (mod L) inverts π(x) at the points: x = 1 and x = 2 if and only if the
following two congruences have at least one solution set (r1, r2):

(ρ ◦ π)(1) = ρ(π(1)) = ρ(q1 + q2) =
= r1 · (q1 + q2) + r2 · (q1 + q2)2 ≡ 1 (mod L)

(5.5)

(ρ ◦ π)(2) = ρ(π(2)) = ρ(2q1 + 4q2) =
= r1 · (2q1 + 4q2) + r2 · (2q1 + 4q2)2 ≡ 2 (mod L)

(5.6)

It is trivial that ρ(x) inverts π(x) at the third point x = 0, because (ρ ◦ π)(0) =
ρ(π(0)) = ρ(0) = 0 (mod L).

By multiplying (5.5) by (2q1 + 4q2) and (5.6) by (q1 + q2), we get

r1 · (2q1 + 4q2)·(q1 + q2) + r2 · (2q1 + 4q2) · (q1 + q2)
2 ≡

≡ (2q1 + 4q2) (mod L) (5.7)

r1 · (2q1 + 4q2)·(q1 + q2) + r2 · (2q1 + 4q2)
2 · (q1 + q2) ≡

≡ 2 · (q1 + q2) (mod L) (5.8)

By subtracting (5.7) from (5.8), we obtain

r2 · (2q1 + 4q2) · (q1 + q2) · (2q1 + 4q2 − q1 − q2) ≡
≡ (2q1 + 2q2 − 2q1 − 4q2) (mod L) ⇔

⇔ 2r2 · (q1 + q2) · (q1 + 2q2) · (q1 + 3q2) ≡ (−2q2) (mod L) (5.9)

It can be shown that there exists at least one r2 that satisfies (5.9), as follows.
If either 2 � L or 4 | L , from Table3.1, cases 1(b) and (2), it results that for all

p’s so that p | L , we have p � q1 and p | q2. Thus p � (q1 + q2). Therefore gcd(q1 +
q2, L) = 1. Similarly, since p | (2q2) and p | (3q2), we have gcd(q1 + 2q2, L) = 1
and gcd(q1 + 3q2, L) = 1. Thus

gcd
(
(q1 + q2)(q1 + 2q2)(q1 + 3q2), L

) = 1 (5.10)

Consequently, if 2 � L ,

gcd
(
2(q1 + q2)(q1 + 2q2)(q1 + 3q2), L

) = 1 (5.11)

and if 4 | L ,
gcd

(
2(q1 + q2)(q1 + 2q2)(q1 + 3q2), L

) = 2 (5.12)
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If 2 | L or 4 � L , gcd(2, L) = 2 and, as above

gcd
(
(q1 + q2)(q1 + 2q2)(q1 + 3q2), p

) = 1 (5.13)

for every p’s, with p �= 2, so that p | L . Thus

gcd
(
2(q1 + q2)(q1 + 2q2)(q1 + 3q2), L

) = 2 (5.14)

To summarize, from Theorem 57 in Hardy and Wright (1975), if L is an even
number, we have exactly two solution sets, and if L is an odd number we have
exactly one solution set.

When L is an even number, let (r1,1, r1,2) and (r2,1, r2,2) be the two solution sets.
Then,

r1,2(q1 + q2)(q1 + 2q2)(q1 + 3q2) ≡ (−q2)
(
mod

L

2

)
(5.15)

and r2,2 ≡ (r1,2 + L/2) (mod L) according to the same theorem.
When L is an odd number, let (r1, r2) be the solution set. Then, according to

Theorem 55 from Hardy and Wright (1975), the congruence (5.9) can be rewritten
as

r2(q1 + q2)(q1 + 2q2)(q1 + 3q2) ≡ (−q2) (mod L) (5.16)

since gcd(2, L) = 1.
After computing r2 using (5.16), or (r1,2, r2,2) using (5.15) and Theorem 57 from

Hardy and Wright (1975), we can compute the corresponding r1 or (r1,1, r2,1) using
(5.5). Specifically, it can be verified that r2,1 ≡ (r1,1 + L/2) (mod L). Thus, for
a given QPP π(x), we can find at least one quadratic polynomial that inverts the
polynomial π(x) at three points: x = 0, 1, 2.

It is well known that linear congruences can be efficiently solved by using the
extended Euclidean algorithm. We denote by s∗ the arithmetic inverse of s modulo
L , i.e. a number s∗ so that s · s∗ ≡ 1 (mod L). The Algorithm2 provided at the end
of this section can be used to calculate such an inverse. Thus, given q1 and q2, from
(5.1) we compute r2, as follows

r2 ≡ {
(−q2) · [(q1 + q2)(q1 + 2q2)(q1 + 3q2)]∗

}
(mod L), (5.17)

and then r1, as

r1 ≡ {[1 − r2(q1 + q2)
2] · (q1 + q2)

∗} (mod L). (5.18)

The congruences (5.3) and (5.4) are similarly solved. �

In the following lemma, it is shown that the polynomials ρ(x), ρ1(x), and ρ2(x)
obtained by solving the congruences (5.1), (5.2), (5.3) and (5.4) are PPs.
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Lemma 5.2 The polynomials ρ(x), ρ1(x), and ρ2(x) obtained in Lemma5.1 are
permutation polynomials.

Proof In the proof we will use the obvious fact that, from u ≡ v (mod L) and K | L
it results u ≡ v (mod K ).

Case (a) 2 � L
If 2 � L , for p a prime number so that p | L , we can reduce (5.9) to

2r2 · q1 · q1 · q1 ≡ 0 (mod p), (5.19)

since, from Table3.1, q2 = 0 (mod p). Thus r2 = 0 (mod p), since q1 �= 0 (mod p)
and then gcd(2 · q1 · q1 · q1, p) = 1, ∀p such that p | L .

By multiplying (5.5) by (2q1 + 4q2)2 and (5.6) by (q1 + q2)2 we have

r1 · (2q1 + 4q2)
2·(q1 + q2) + r2 · (2q1 + 4q2)

2 · (q1 + q2)
2 ≡

≡ (2q1 + 4q2)
2 (mod L) (5.20)

r1 · (2q1 + 4q2)·(q1 + q2)
2 + r2 · (2q1 + 4q2)

2 · (q1 + q2)
2 ≡

≡ 2(q1 + q2)
2 (mod L) (5.21)

By subtracting (5.21) from (5.20), we obtain

r1 · (q1 + q2) · (2q1 + 4q2) · (q1 + 3q2) ≡
≡ (4q2

1 + 16q2
2 + 16q1q2 − 2q2

1 − 2q2
2 − 4q1q2) (mod L) ⇔

2r1 · (q1 + q2) · (q1 + 2q2) · (q1 + 3q2) ≡ (2q2
1 + 14q2

2 + 12q1q2) (mod L)

(5.22)
Considering Table3.1 we can reduce (5.22) to

2r1 · q1 · q1 · q1 ≡ (2q2
1 ) (mod p), (5.23)

Since gcd(2 · q1 · q1 · q1, p) = 1, if p | r1, from (5.23) we have that p | (2q2
1 ),

which contradicts the condition for q1 from Table3.1 when p �= 2. Therefore p � r1
or r1 �= 0 (mod p). Since r1 �= 0 (mod p) and r2 = 0 (mod p), from Table3.1 it
results that ρ(x) is a QPP.

Case (b) 2 | L and 4 � L
For p a prime number so that p | L and p �= 2, similarly to the previous case, it

can be shown that ρ1(x) and, thus, also ρ2(x), are QPPs modulo L/2.
Nowwe show that ρ1(x) and ρ2(x) are QPPs modulo 2. Since π(x) is a QPP, from

Table3.1 it results that q1 + q2 is an odd number. Thus (q1 + q2)2 is also odd. Let us
assume that r1,1 + r1,2 is even, i.e., both r1,1 and r1,2 are even or odd numbers. Then
the quantity r1,1 · (q1 + q2) + r1,2 · (q1 + q2)2 from (5.5) becomes an even number,
being the sum of two numbers, both of them even or odd. But from (5.5) we have a
contradiction, since L is even and an even number modulo an even number is also
even, but 1 (mod L) is odd. Therefore, r1,1 + r1,2 must be an odd number. Thus,
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from Table3.1 it results that ρ1(x) is a QPP modulo 2. Because r1,1 + r1,2 is odd,
and r2,1 ≡ (r1,1 + L/2) (mod L) and r2,2 ≡ (r1,2 + L/2) (mod L), we have that
r2,1 + r2,2 is also odd, being the sum of an odd number (r1,1 + r1,2) and an even
number (L/2 + L/2 = L). As a result, ρ2(x) is a QPP modulo 2. Finally, since both
ρ1(x) and ρ2(x) are QPPs modulo 2 and modulo L/2, from Theorem3.8 it results
that they are QPPs modulo L .

Case (c) 4 | L
This case is approached similarly to case (a). For p a prime number so that p | L

and p �= 2 it can be shown that ρ1(x), and thus also ρ2(x), are QPPs modulo L/2nL ,2 ,
where nL ,2 ≥ 2 is the power of 2 from the factorization of L .

Now we show that ρ1(x) and ρ2(x) are QPPs modulo 2nL ,2 . Since π(x) is a QPP,
from Table3.1 it results that q1 is an odd number and q2 is an even number. Then
q1 + q2, q1 + 2q2 and q1 + 3q2 are all odd numbers and the product (q1 + q2)(q1 +
2q2)(q1 + 3q2) is also an odd number. Consequently, from (5.3) r1,2 must be an even

number, since (−q2)
(
mod

L

2

)
is an even number, and an even number modulo an

evennumbermust be even. From (5.5)wehave that r1,1 · (q1 + q2) + r1,2 · (q1 + q2)2

is odd. Since r1,2 · (q1 + q2)2 is even and q1 + q2 is odd, r1,1 must be an odd number.
Since r1,1 is odd and r1,2 is even, from Table3.1 it results that ρ1(x) is a QPP modulo
2nL ,2 . Since L/2 is even, it results that r2,1 ≡ (r1,1 + L/2) (mod L) is odd and r2,2 ≡
(r1,2 + L/2) (mod L) is even. Thus ρ2(x) is a QPP modulo 2nL ,2 . Finally, from
Theorem3.8, ρ1(x) and ρ2(x) are QPPs modulo L . �

Considering Lemmas5.1 and 5.2, at least one QPP ρ(x) exists that inverts any
QPP π(x) at three points x = 0, 1, 2. It does not necessarily mean that ρ(x) is an
inverse polynomial of π(x).

Some exponents nρ,ps of r2 obtained in Lemma5.1 are determined by exponents
nπ,p, as the next lemma shows.

Lemma 5.3 Let the interleaver length be L =
∏
p∈P

pnL ,p . Let π(x) = q1 · x + q2 ·

x2 (mod L) be a QPP and let ρ(x) = r1 · x + r2 · x2 (mod L) be a QPP as in
Lemmas5.1 and 5.2. Then, q2 =

∏
p∈P

pnπ,p and r2 =
∏
p∈P

pnρ,p satisfy the conditions

from Table 3.1. Moreover, the following holds.
Case (a) 2 � L (i.e. nL ,2 = 0)
If p is a factor of L (i.e. nL ,p ≥ 1), we have

{
nρ,p = nπ,p, if 1 ≤ nπ,p < nL ,p

nρ,p ≥ nL ,p, if nπ,p ≥ nL ,p
(5.24)

Case (b) 2 | L and 4 � L (i.e. nL ,2 = 1)
p = 2 is a factor of L, but for the moment we make no considerations how nρ,2

is determined by nπ,2. This will be explained in the proof of Theorem5.6.
If p �= 2 and L contains p as a factor (i.e. nL ,p ≥ 1), we have
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{
nρ,p = nπ,p, if 1 ≤ nπ,p < nL ,p

nρ,p ≥ nL ,p, if nπ,p ≥ nL ,p
(5.25)

Case (c) 4 | L (i.e. nL ,2 ≥ 2)
22 is a factor of L (i.e. nL ,2 ≥ 2).
If p = 2, {

nρ,2 = nπ,2, if 1 ≤ nπ,2 < nL ,2 − 1
nρ,2 ≥ nL ,2 − 1, if nπ,2 ≥ nL ,2 − 1

(5.26)

If p �= 2 and p is a factor of L (i.e. nL ,p ≥ 1), we have

{
nρ,p = nπ,p, if 1 ≤ nπ,p < nL ,p

nρ,p ≥ nL ,p, if nπ,p ≥ nL ,p
(5.27)

Proof Case (a) 2 � L
We consider that nπ,p < nL ,p and nπ,p < nρ,p, where p is a prime number so

that p | L . Reducing (5.16) modulo pmin(nρ,p,nL ,p), since r2 ≡ 0 (mod pmin(nρ,p,nL ,p)),
we have 0 ≡ (−q2) (mod pmin(nρ,p,nL ,p)). This is a contradiction since nπ,p <

min(nρ,p, nL ,p).
Now, we consider that nπ,p < nL ,p and nρ,p < nπ,p. Reducing (5.16) modulo

pnπ,p , we have r2 · q1 · q1 · q1 ≡ 0 (mod pnπ,p ). But, from Table3.1 gcd(q1 · q1 ·
q1, pnπ,p ) = 1, and then it would result that r2 = 0, which is a contradiction. There-
fore, nρ,p = nπ,p.

If nπ,p ≥ nL ,p, reducing (5.16) modulo pnL ,p , we have r2 · q1 · q1 · q1 ≡
0 (mod pnL ,p ), which forces nρ,p ≥ nL ,p, for r2 �= 0, since gcd(q1 · q1 · q1,
pnL ,p ) = 1.

Case (b) 2 | L and 4 � L
The proof is similar to that in previous case, taking into account (5.15) instead of

(5.16).
Case (c) 4 | L
The proof for p �= 2 is similar to that in case (a), taking into account (5.15) instead

of (5.16).
Now we give the proof for p = 2.
Suppose that nπ,2 < nL ,2 − 1 and nπ,2 < nρ,2. Reducing (5.15) modulo

2min(nρ,2,nL ,2−1), since r2 ≡ 0
(
mod 2min(nρ,2,nL ,2−1)

)
, we have 0 ≡ (−q2)(

mod 2min(nρ,2,nL ,2−1)
)
(at exponent appears nL ,2 − 1, and not nL ,2, since (5.15) is

evaluated modulo L/2). This is a contradiction since nπ,2 < min(nρ,2, nL ,2 − 1).
Now we suppose that nπ,2 < nL ,2 − 1 and nρ,2 < nπ,2. Reducing (5.15) mod-

ulo 2nπ,2 , we have r2 · q1 · q1 · q1 ≡ 0 (mod 2nπ,2). But, from Table3.1, gcd(q1 · q1 ·
q1, 2nπ,2) = 1, and then it would result that r2 = 0, which is a contradiction. Thus
nρ,2 = nπ,2.

If nπ,2 ≥ nL ,2 − 1, reducing (5.15) modulo 2nL ,2−1, we have r2 · q1 · q1 · q1 ≡
0 (mod 2nL ,2−1), which forces nρ,2 ≥ nL ,2 − 1, for r2 �= 0, since gcd(q1 · q1 · q1,
2nL ,2−1) = 1. �
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Before proceeding further, we need the following lemma.

Lemma 5.4 Let there be F(x) = f1x + f2x2 + f3x3 + f4x4 (mod L) and F(0) ≡
F(1) ≡ F(2) ≡ 0 (mod L). Then F(x) ≡ 0 (mod L), ∀x ∈ ZL if and only if 24 f4 ≡
0 (mod L) and 6 f3 + 36 f4 ≡ 0 (mod L).

Proof “ ⇒” Define

F0(x) = F(x) = f1x + f2x
2 + f3x

3 + f4x
4 (mod L) (5.28)

and
Fn(x) = Fn−1(x + 1) − Fn−1(x),∀n ≥ 1 (5.29)

If F(x) = F0(x) ≡ 0 (mod L), ∀x ∈ ZL , then Fn(x) ≡ 0 (mod L), ∀x ∈ ZL ,
∀n ≥ 0. We have

F1(x) = F0(x + 1) − F0(x) = f1(x + 1) + f2(x + 1)2 + f3(x + 1)3+
+ f4(x + 1)4 − f1x − f2x2 − f3x3 − f4x4 =

= f1(x + 1) + f2(x2 + 2x + 1) + f3(x3 + 3x2 + 3x + 1)+

+ f4(x4 + 4x3 + 6x2 + 4x + 1) − f1x − f2x2 − f3x3 − f4x4 =
= ( f1 + f2 + f3 + f4) + (2 f2 + 3 f3 + 4 f4)x+

+(3 f3 + 6 f4)x2 + 4 f4x3 ≡ 0 (mod L) (5.30)

F2(x) = F1(x + 1) − F1(x) = ( f1 + f2 + f3 + f4)+
+(2 f2 + 3 f3 + 4 f4)(x + 1) + (3 f3 + 6 f4)(x + 1)2 + 4 f4(x + 1)3−

−( f1 + f2 + f3 + f4) − (2 f2 + 3 f3 + 4 f4)x − (3 f3 + 6 f4)x2 − 4 f4x3 =
= (2 f2 + 6 f3 + 14 f4) + (6 f3 + 24 f4)x + 12 f4x2 ≡ 0 (mod L)

(5.31)
F3(x) = F2(x + 1) − F2(x) = (2 f2 + 6 f3 + 14 f4)+

+(6 f3 + 24 f4)(x + 1) + 12 f4(x + 1)2 − (2 f2 + 6 f3 + 14 f4)−
−(6 f3 + 24 f4)x − 12 f4x2 =

= (6 f3 + 36 f4) + 24 f4x ≡ 0 (mod L) (5.32)

In order to demonstrate F3(x) ≡ 0 (mod L), ∀x ∈ ZL , we must have

24 f4 ≡ 0 (mod L) (5.33)

and
6 f3 + 36 f4 ≡ 0 (mod L) (5.34)

“ ⇐”We define F0(x), F1(x), F2(x) and F3(x) as above. Then, we have F3(x) ≡
0 (mod L), ∀x ∈ ZL , and F2(0) = F1(1) − F1(0) = F0(2) − F0(1) − F0(1) +
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F0(0) = F(2) − 2F(1) + F(0) ≡ 0 (mod L). Using the mathematical induction
method, we have F2(x) ≡ 0 (mod L), ∀x ∈ ZL , since F2(x + 1) = F2(x) + F3(x).
Similarly, F1(0) = F0(1) − F0(0) = F(1) − F(0) ≡ 0 (mod L) and F1(x) ≡
0 (mod L), ∀x ∈ ZL , since F1(x + 1) = F1(x) + F2(x). Finally F(x) = F0(x) ≡
0 (mod L) as above. �

The following theorem results as a combination of Lemmas5.1 and 5.4.

Theorem 5.5 Let π(x) be a QPP and let ρ(x) be a quadratic polynomial given in
Lemma5.1. ρ(x) is a quadratic inverse polynomial of π(x) if and only if 12q2r2 ≡
0 (mod L).

Proof We have (ρ ◦ π)(x) ≡ x (mod L) if and only if ρ(x) is the quadratic inverse
polynomial of π(x).

(ρ ◦ π)(x) = ρ(π(x)) = r1 · π(x) + r2 · (π(x))2 ≡
≡ r1 · (q1x + q2x

2) + r2 · (q1x + q2x
2)2 ≡

≡ r1 · (q1x + q2x
2) + r2 · (q2

1 x
2 + 2q1q2x

3 + q2
2 x

4) ≡

≡ q1r1x + (q2r1 + q2
1r2)x

2 + 2q1q2r2x
3 + q2

2r2x
4 ≡ x (mod L) (5.35)

ρ(x) results the quadratic inverse polynomial of π(x) if and only if the following
condition is satisfied:

(q1r1 − 1)x + (q2r1 + q2
1r2)x

2 + 2q1q2r2x
3 + q2

2r2x
4 ≡ 0 (mod L) (5.36)

Let there be
F(x) = (ρ ◦ π)(x) − x =

= (q1r1 − 1)x + (q2r1 + q2
1r2)x

2 + 2q1q2r2x
3 + q2

2r2x
4 (5.37)

According to Lemma5.1, we have

F(0) = ρ(π(0)) − 0 ≡ 0 (mod L) (5.38)

F(1) = ρ(π(1)) − 1 ≡ 0 (mod L) (5.39)

F(2) = ρ(π(2)) − 2 ≡ 0 (mod L) (5.40)

According to Lemma5.4, taking into account that f3 = 2q1q2r2 and f4 = q2
2r2,

F(x) = 0 (mod L), ∀x ∈ ZL , if and only if

24q2
2r2 ≡ 0 (mod L) (5.41)

and
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12q1q2r2 + 36q2
2r2 ≡ 0 (mod L) (5.42)

The congruence (5.42) is equivalent to

12q2r2(q1 + 3q2) ≡ 0 (mod L) (5.43)

which, considering Theorem 57 in Hardy andWright (1975), is true only if 12q2r2 ≡
0 (mod L), since gcd(q1 + 3q2, L) = 1, from the conditions in Table3.1. Since for
12q2r2 ≡ 0 (mod L), (5.41) trivially holds, the congruences (5.41) and (5.42) can
be reduced to

12q2r2 ≡ 0 (mod L) (5.44)

�

The next theorem states the necessary and sufficient condition for the existence of
a quadratic inverse polynomial for a QPP π(x), by simply checking the inequalities
involving the exponents for the prime factors of L and the second degree coefficient
of π(x).

Theorem 5.6 Let the interleaver length be L =
∏
p∈P

pnL ,p . Let π(x) = q1 · x + q2 ·

x2 (mod L) be a QPP and let q2 =
∏
p∈P

pnπ,p be the second degree coefficient of π(x).

Then, π(x) has at least one quadratic inverse polynomial if and only if

nπ,2 ≥
{
max

(⌈
nL ,2−2

2

⌉
, 1

)
, if nL ,2 > 1

0, if nL ,2 = 0, 1
(5.45)

nπ,3 ≥
{
max

(⌈
nL ,3−1

2

⌉
, 1

)
, if nL ,3 > 0

0, if nL ,3 = 0
(5.46)

nπ,p ≥
⌈nL ,p

2

⌉
, if p �= 2, 3 (5.47)

Proof “ ⇒” Considering Lemmas5.1 and 5.2, there exists at least one QPP ρ(x) =
r1 · x + r2 · x2 (mod L) that inverts a QPP π(x) at three points x = 0, 1, 2. As ρ(x)
must invert π(x) at these points, we only need to check whether ρ(x) is a quadratic
inverse polynomial or not.

Now we show that if ρ(x) is a quadratic inverse polynomial, then the condition
on nπ,p holds for p = 2.

If nL ,2 = 0, 1, irrespective of whether ρ(x) is or not a quadratic inverse, nπ,2 ≥ 0
trivially holds and this is why we do not need to determine nρ,2 in Lemma5.3, case
(b), when nL ,2 = 1.
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If nL ,2 = 2, 3, 4 we have max

(⌈
nL ,2 − 2

2

⌉
, 1

)
= 1. Since π(x) is a QPP, from

Table3.1 it results that nπ,2 ≥ 1 and thus the condition in Theorem5.6 is satisfied.
Assume that ρ(x) is a quadratic inverse polynomial, but

nπ,2 <

⌈
nL ,2 − 2

2

⌉
, for nL ,2 ≥ 5 (5.48)

Because ρ(x) is a quadratic inverse polynomial, according to Theorem5.5,
12q2r2 ≡ 0 (mod L) holds, i.e.

( ∏
p∈P

pnL ,p

)
|
(
22 · 3 ·

∏
p∈P

pnπ,p ·
∏
p∈P

pnρ,p

)
(5.49)

We consider two cases
(1) nL ,2 is odd⌈
nL ,2 − 2

2

⌉
= nL ,2 − 1

2
and consequently, nπ,2 ≤ nL ,2 − 1

2
− 1 = nL ,2 − 3

2
<

nL ,2 − 1.
Considering Lemma5.3, nρ,2 = nπ,2, thus 2 + nπ,2 + nρ,2 ≤ nL ,2 − 1 < nL ,2,

which is a contradiction, since L | (12q2r2) implies nL ,2 ≤ 2 + nπ,2 + nρ,2.
(2) nL ,2 is even⌈
nL ,2 − 2

2

⌉
= nL ,2 − 2

2
and consequently, nπ,2 ≤ nL ,2 − 2

2
− 1 = nL ,2 − 4

2
<

nL ,2 − 1.
Considering Lemma5.3, nρ,2 = nπ,2, thus 2 + nπ,2 + nρ,2 ≤ nL ,2 − 2 < nL ,2,

which is a contradiction, since L | (12q2r2) implies nL ,2 ≤ 2 + nπ,2 + nρ,2.
Now we show that if ρ(x) is a quadratic inverse polynomial, then the condition

on nπ,p for p = 3 holds.
If nL ,3 = 0, irrespective of ρ(x) is a quadratic inverse or not, nπ,3 ≥ 0 trivially

holds.

If nL ,3 = 1, 2, 3 we have max

(⌈
nL ,3 − 1

2

⌉
, 1

)
= 1. Since π(x) is a QPP, from

Table3.1 it results that nπ,3 ≥ 1 and thus the condition in Theorem5.6 is satisfied.
Suppose that ρ(x) is a quadratic inverse polynomial, but

nπ,3 <

⌈
nL ,3 − 1

2

⌉
, for nL ,2 ≥ 4 (5.50)

Since ρ(x) is a quadratic inverse polynomial, according to Theorem5.5 12q2r2 ≡
0 (mod L) holds, i.e. (5.49) is true.

Then, when
(1) nL ,3 is odd⌈
nL ,3 − 1

2

⌉
= nL ,3 − 1

2
, thus, nπ,3 ≤ nL ,3 − 1

2
− 1 = nL ,3 − 3

2
< nL ,3.
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Taking into account Lemma5.3, nρ,3 = nπ,3, thus 1 + nπ,3 + nρ,3 ≤ nL ,3 − 2 <

nL ,3, which is a contradiction, since L | (12q2r2) implies nL ,3 ≤ 1 + nπ,3 + nρ,3.
(2) nL ,3 is even⌈
nL ,3 − 1

2

⌉
= nL ,3

2
, thus, nπ,3 ≤ nL ,3

2
− 1 = nL ,3 − 2

2
< nL ,3.

Taking into account Lemma5.3, nρ,3 = nπ,3, thus 1 + nπ,3 + nρ,3 ≤ nL ,3 − 1 <

nL ,3, which is a contradiction, since L | (12q2r2) implies nL ,3 ≤ 1 + nπ,3 + nρ,3.
Finally, we show that if ρ(x) is a quadratic inverse polynomial, then the condition

on nπ,p for p �= 2, 3 holds.
In this case, we have nL ,p ≥ 1.

If nL ,p = 1, 2, we have

⌈
nL ,p

2

⌉
= 1. Since π(x) is a QPP from Table 3.1, it

results that nπ,p ≥ 1 and thus the condition in Theorem5.6 is satisfied.
Assume that ρ(x) is a quadratic inverse polynomial, but

nπ,p <

⌈
nL ,p

2

⌉
, for nL ,p ≥ 3 (5.51)

Since ρ(x) is a quadratic inverse polynomial, considering Theorem5.5 12q2r2 ≡
0 (mod L) holds, i.e. (5.49) is true.

Then when
(1) nL ,p is odd⌈
nL ,p

2

⌉
= nL ,p + 1

2
, thus, nπ,p ≤ nL ,p + 1

2
− 1 = nL ,p − 1

2
< nL ,p.

Taking into account Lemma5.3, nρ,p = nπ,p, thus nπ,p + nρ,p ≤ nL ,p − 1 <

nL ,p, which is a contradiction, since L | (12q2r2) implies nL ,p ≤ nπ,p + nρ,p.
(2) nL ,p is even⌈
nL ,p

2

⌉
= nL ,p

2
, thus, nπ,p ≤ nL ,p

2
− 1 = nL ,p − 2

2
< nL ,p.

Taking into account Lemma5.3, nρ,p = nπ,p, thus nπ,p + nρ,p ≤ nL ,p − 2 <

nL ,p, which is a contradiction, since L | (12q2r2) implies nL ,p ≤ nπ,p + nρ,p.
“ ⇐” We show that if the conditions on nπ,p in theorem hold, then 12q2r2 ≡

0 (mod L), i.e. (5.49) is true. We will separately show that (5.49) holds for p = 2,
for p = 3 and for p �= 2, 3 so that p | L .

For p = 2 we have to show that 2nL ,2 | (
22 · 2nπ,2 · 2nρ,2

)
.

We consider three cases.
(1) nL ,2 = 0, 1
If nπ,2 ≥ 0, then nL ,2 ≤ 2 + nπ,2. Thus, 2nL ,2 | (

22 · 2nπ,2 · 2nρ,2
)
.

(2) nL ,2 = 2, 3, 4

If nπ,2 ≥ max
(⌈

nL ,2−2
2

⌉
, 1

)
= 1, then as it is required by Lemma5.3, nρ,2 ≥ 1.

Thus, nL ,2 ≤ 2 + nπ,2 + nρ,2 holds and, consequently, 2nL ,2 | (
22 · 2nπ,2 · 2nρ,2

)
.

(3) nL ,2 ≥ 5

In this case,

⌈
nL ,2 − 2

2

⌉
> 1.
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ConsideringLemma5.3, ifnL ,2 − 1 > nπ,2 ≥
⌈
nL ,2 − 2

2

⌉
, thennρ,2 = nπ,2.Con-

sequently, if nL ,2 is even,

⌈
nL ,2 − 2

2

⌉
= nL ,2 − 2

2
, and then 2 + nπ,2 + nρ,2 =

2 + 2 · nπ,2 ≥ 2 + nL ,2 − 2 = nL ,2. If nL ,2 is odd,

⌈
nL ,2 − 2

2

⌉
= nL ,2 − 1

2
, and

then 2 + nπ,2 + nρ,2 = 2 + 2 · nπ,2 ≥ 2 + nL ,2 − 1 = nL ,2 + 1 > nL ,2. Therefore,
2nL ,2 | (

22 · 2nπ,2 · 2nρ,2
)
.

If nπ,2 ≥ nL ,2 − 1, considering Lemma5.3, nρ,2 ≥ nL ,2 − 1. Thus 2 + nπ,2 +
nρ,2 ≥ 2 · nL ,2 > nL ,2, and, consequently, 2nL ,2 | (

22 · 2nπ,2 · 2nρ,2
)
.

For p = 3 we have to show that 3nL ,3 | (
3 · 3nπ,3 · 3nρ,3

)
.

We consider three cases.
(1) nL ,3 = 0
If nπ,3 ≥ 0, then nL ,3 ≤ 1 + nπ,3. Thus, 3nL ,3 | (

3 · 3nπ,3 · 3nρ,3
)
.

(2) nL ,3 = 1, 2, 3

If nπ,3 ≥ max
(⌈

nL ,3−1
2

⌉
, 1

)
= 1, then as it is required by Lemma5.3, nρ,3 ≥ 1.

Thus, nL ,3 ≤ 1 + nπ,3 + nρ,3 holds and, consequently, 3nL ,3 | (
3 · 3nπ,3 · 3nρ,3

)
.

(3) nL ,3 ≥ 4

In this case,

⌈
nL ,3 − 1

2

⌉
> 1.

Considering Lemma5.3, if nL ,3 > nπ,3 ≥
⌈
nL ,3 − 1

2

⌉
, then nρ,3 = nπ,3. Con-

sequently, if nL ,3 is even,

⌈
nL ,3 − 1

2

⌉
= nL ,3

2
, and then 1 + nπ,3 + nρ,3 = 1 + 2 ·

nπ,3 ≥ 1 + nL ,3 > nL ,3. If nL ,3 is odd,

⌈
nL ,3 − 1

2

⌉
= nL ,3 − 1

2
, and then 1 + nπ,3 +

nρ,3 = 1 + 2 · nπ,3 ≥ 1 + nL ,3 − 1 = nL ,3. Thus 3nL ,3 | (
3 · 3nπ,3 · 3nρ,3

)
.

For p | L and p �= 2, 3, we have to show that pnL ,p | (
pnπ,p · pnρ,p

)
.

We consider two cases.
(1) nL ,p = 1, 2

If nπ,p ≥
⌈
nL ,p

2

⌉
= 1, then as it is required by Lemma5.3, nρ,p ≥ 1. Thus,

nL ,p ≤ nπ,p + nρ,p holds and, consequently, pnL ,p | (
pnπ,p · pnρ,p

)
.

(2) nL ,p ≥ 3

In this case,

⌈
nL ,p

2

⌉
> 1.

Considering Lemma5.3, if nL ,p > nπ,p ≥
⌈
nL ,p

2

⌉
, then nρ,p = nπ,p. Conse-

quently, if nL ,p is even,

⌈
nL ,p

2

⌉
= nL ,p

2
, and then nπ,p + nρ,p = 2 · nπ,p ≥ nL ,p.

If nL ,p is odd,

⌈
nL ,p

2

⌉
= nL ,p + 1

2
, and then nπ,p + nρ,p = 2 · nπ,p ≥ nL ,p + 1 >

nL ,p. Thus pnL ,p | (
pnπ,p · pnρ,p

)
.
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Ifnπ,p ≥ nL ,p, consideringLemma5.3,nρ,p ≥ nL ,p. Thusnπ,p + nρ,p ≥ 2 · nL ,p >

nL ,p, and, consequently, pnL ,p | (
pnπ,p · pnρ,p

)
. �

Algorithm 1: An algorithm for finding the inverse QPP(s) for a QPP π(x) =
q1 · x + q2 · x2 (mod L)

1 Factor L and q2 as products of prime powers and find the respective exponents of each prime

factor (i.e., find nL ,p’s and nπ,p’s for L =
∏
p∈P

pnL ,p and q2 =
∏
p∈P

pnπ,p );

2 Using the nL ,p’s and nπ,p’s obtained in step 1, determine if they satisfy the inequalities in
Theorem5.6;

3 if yes then
4 Check if L is an odd or an even number;
5 if L is an odd number, then
6 There is exactly one inverse QPP for π(x);
7 Let the inverse QPP be ρ(x) = r1 · x + r2 · x2 (mod L);
8 r2 ≡ {

(−q2) · [(q1 + q2)(q1 + 2q2)(q1 + 3q2)]−1
}

(mod L), where (·)−1 (mod L) is
given in Algorithm2;

9 r1 ≡ {[1 − r2(q1 + q2)2] · (q1 + q2)−1
}

(mod L);
10 return ρ(x) and the algorithm ends;
11 else
12 if L is an even number, then
13 There are exactly two inverse QPPs for π(x);
14 Let the inverse QPPs be ρ1(x) = r1,1 · x + r1,2 · x2 (mod L) and

ρ2(x) = r2,1 · x + r2,2 · x2 (mod L), respectively;

15 r1,2 ≡ {
(−q2) · [(q1 + q2)(q1 + 2q2)(q1 + 3q2)]−1}(mod

L

2

)
;

16 r1,1 ≡ {[1 − r1,2 · (q1 + q2)2] · (q1 + q2)−1
}

(mod L);

17 (r2,1, r2,2) is obtained by r2,1 ≡ r1,1 + L

2
(mod L), r2,2 ≡ r1,2 + L

2
(mod L);

18 return ρ1(x) and ρ2(x) and the algorithm ends;
19 end
20 end
21 else
22 There exists no inverse QPP for π(x);
23 return no inverse QPP and the algorithm ends;
24 end

An algorithm for finding the inverse QPP(s) for a QPP π(x) = q1 · x + q2 ·
x2 (mod L) is Algorithm1.

Now we give, without proof, a theorem from Ryu (2007), Ryu and Takeshita
(2011) which allows us to determine all inverse permutation polynomials of a QPP,
with the least degree d2−inv . We consider a QPP described by Eq. (3.37) and

ρ(x) = π−1(x) = r1 · x + r2 · x2 + · · · + rd2−inv
· xd2−inv (mod L) (5.52)

its inverse polynomial of degree d2−inv .
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Algorithm 2:An algorithm for finding the arithmetic inverse s−1 for s (mod L)

1 s−1 = 1;
2 r = 0;
3 while L �= 0 do
4 c = s (mod L);

5 q =
⌊
s

L

⌋
;

6 s = L;
7 L = c;
8 r ′ = s−1 − q · r ;
9 s−1 = r ;

10 r = r ′;
11 end
12 return s−1.

Theorem 5.7 (Ryu 2007) Let the interleaver length be L =
∏
p∈P

pnL ,p ≤ 250 and

let it be φ(k) =
2k−2∏
l=k

l. Let π(x) = q1x + q2x2 (mod L) be a QPP.

Decompose φ(k) into prime factors and denote each exponent of prime factors

as nφ(k),p. Then π(x) has
d2−inv∏
k=1

gcd(k!, L) inverse polynomials with the least degree

d2−inv if and only if there is a smallest integer d2−inv so that

nπ,2 ≥
⎧⎨
⎩
max

(⌈
nL ,2−nφ(d2−inv+1),2

d2−inv

⌉
, 1

)
, if nL ,2 > 1

0, if nL ,2 = 0, 1
(5.53)

nπ,p ≥
⎧⎨
⎩
max

(⌈
nL ,p−nφ(d2−inv+1),p

d2−inv

⌉
, 1

)
, if nL ,p > 0

0, if nL ,p = 0
(5.54)

We note that, if d2−inv = 2, Theorem5.7 is reduced to Theorem5.6.

5.2 Upper Bounds on Minimum Distance of Turbo Codes
with QPP-Based Interleavers

In 2006, in Rosnes and Takeshita (1992), Eirik Rosnes and Oscar Y. Takeshita tabu-
lated optimum QPPs (in terms of the induced minimum distance and its correspond-
ing multiplicity) for a large number of short interleaver lengths between 32 and 512
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and for conventional nominal rate-1/3 binary turbo codes with 8-state constituent
encoders (the turbo code from LTE standard 3GPP 2008) and 16-state constituent
encoders (the turbo code from CCSDS standard 2002).

In 2012 Eirik Rosnes continued the study reported in Rosnes and Takeshita (1992)
and gave some partial upper bounds on the minimum distance of turbo codes with
QPP-based interleavers dependent on the interleaver length and an general upper
bound independent on the interleaver length when QPP interleavers admit an inverse
QPP interleaver.

These upper bounds can be used in the selection of lengths of good QPP-based
interleavers and also to efficiently reject bad QPP candidates in a computer search.
For all partial upper bounds on minimum distance, we consider that the generator
matrix of the component convolutional codes of the turbo code is G = [1, 15/13]
(in octal form) and the turbo code is unpunctured (i.e. the turbo code used in the LTE
standard 3GPP 2008).

These upper bounds are given in Theorems5.8–5.13 taken from Rosnes (2012),
but with more detailed proofs. They were obtained by identifying certain critical
interleaver patterns. An interleaver pattern I (�) is a set {(i,π(i) : i ∈ �)}, where
π(·) indicates the interleaver and � is a subset of {0, 1, . . . , L − 1}. The inter-
leaver pattern size is the same as that of �. There are critical interleaver patterns
that generate small weight codewords for certain generator matrices of compo-
nent codes of the turbo code. As a result, the turbo codeword has ones in the
bit positions in � and zeros elsewhere. For this reason, the bit positions in � are
called systematic 1-positions in the upper constituent codeword, while the inter-
leaved bit positions in � are called systematic 1-positions in the lower constituent
codeword. The term systematic refers to the information sequence part of the code-
word. Figure5.1 shows an interleaver pattern of size six. In this figure, the points
x1, x1 + a, x2, x2 + a, x3, x3 + a in the upper layer represent the positions in � and
the points π(x1),π(x1 + a),π(x2),π(x2 + a),π(x3),π(x3 + a) in the lower layer
represent the positions in π(�). The arrows represent the actual interleaver operation
and the arcs represent a grouping of bit positions that generate an error event or a
fundamental path in a constituent trellis for certain generator matrices of component
codes of the turbo code. The index differences of bit positions from � or π(�), are
indicated in figures by horizontal lines. In Fig. 5.1, the horizontal line above the first
arc (or fundamental path) in the upper constituent codeword indicates that the differ-
ence between the bit positions x1 and x1 + a is a. In the sameway, the first horizontal
line below the first arc in the lower constituent codeword indicates that the difference
between the bit positions π(x1) and π(x2) is b and the second horizontal line below
the first arc in the lower constituent codeword indicates that the difference between
the bit positions π(x1) and π(x3) is c.

All the critical interleaver patterns used in the derivation of the upper bounds in
Rosnes (2012)were identified by using a tailored version of the triple impulsemethod
(Crozier et al. 2004). This modified version gives the information words leading to
low weight codewords. Consequently, knowing the information words, we know the
positions of bits 1.
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Fig. 5.1 Critical interleaver pattern of size six for QPP-based interleavers

The prime decomposition of the interleaver length is of the form L =
nL∏
i=1

p
nL ,pi
L ,i ,

where nL ∈ N∗, pL ,i , with i = 1, nL , are different prime numbers and nL ,pi ∈ N∗,
∀i = 1, nL , as in Sect. 3.6.

Theorem 5.8 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) with generator matrix G = [1, 15/13] is upper bounded by

dmin ≤ 38 + 12 · l (5.55)

for all nonnegative integers l and for all interleaver lengths L that satisfy

nL ,p ≤
⎧
⎨
⎩
l + 4, if p = 2
2, if p = 7
1, otherwise

(5.56)

when using QPP interleavers.

Proof Figure5.1 displays an interleaver pattern of size six. The interleaver pattern
generates an upper constituent codeword containing 3 input-weight 2 fundamental
paths, and a lower constituent codeword containing 2 input-weight 3 fundamental
paths. As it was explained previously, the interleaving of the systematic 1-positions
of the upper constituent codeword is indicated by arrows in the figure. For the input-
weight 2 fundamental paths in the upper constituent codeword, the index difference
between the second and first systematic 1-positions is denoted by a. For the input-
weight 3 fundamental paths in the lower constituent codeword, the index differences
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between the second and first systematic 1-positions and the third and first system-
atic 1-positions are denoted by b and c, respectively. For convenience, these index
differences are also indicated in Fig. 5.1 by horizontal lines.

The six elements of permutation π(·) indicated in Fig. 5.1 are written in detail
below ⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 → π(x1)
x1 + a → π(x1 + a)

x2 → π(x2) = π(x1) + b
x2 + a → π(x2 + a) = π(x1 + a) + b
x3 → π(x3) = π(x1) + c
x3 + a → π(x3 + a) = π(x1 + a) + c

(5.57)

Writing x1 = ρ(π(x1)), x2 = ρ(π(x2)) and x3 = ρ(π(x3)), the equations corre-
sponding to points x2 + a and x3 + a in (5.57) can be written

{
π(ρ(π(x2)) + a) = π(ρ(π(x1)) + a) + b (mod L)

π(ρ(π(x3)) + a) = π(ρ(π(x1)) + a) + c (mod L)
(5.58)

Considering the equations corresponding to points x2 and x3 from (5.57), (5.58)
becomes:

{
π(ρ(π(x1) + b) + a) = π(ρ(π(x1)) + a) + b (mod L)

π(ρ(π(x1) + c) + a) = π(ρ(π(x1)) + a) + c (mod L)
(5.59)

With π(x1) = x in (5.59), we have

{
π(ρ(x + b) + a) = π(ρ(x) + a) + b (mod L)

π(ρ(x + c) + a) = π(ρ(x) + a) + c (mod L)
(5.60)

where x ∈ ZL denotes the first systematic 1-position (the point x1 in Fig. 5.1). When
x = 0, the two congruences in (5.60) are equivalent to

{
π(ρ(b) + a) = π(ρ(0) + a) + b = π(a) + b (mod L)

π(ρ(c) + a) = π(ρ(0) + a) + c = π(a) + c (mod L)
⇔ (5.61)

⎧⎪⎪⎨
⎪⎪⎩

q1 · ρ(b) + q1 · a + q2 · (ρ(b))2 + 2 · a · q2 · ρ(b) + q2 · a2 =
= π(a) + b (mod L)

q1 · ρ(c) + q1 · a + q2 · (ρ(c))2 + 2 · a · q2 · ρ(c) + q2 · a2 =
= π(a) + c (mod L)

⇔ (5.62)

⎧
⎪⎪⎨
⎪⎪⎩

π(ρ(b))︸ ︷︷ ︸
=b

+π(a) + 2 · a · q2 · ρ(b) = π(a) + b (mod L)

π(ρ(c))︸ ︷︷ ︸
=c

+π(a) + 2 · a · q2 · ρ(c) = π(a) + c (mod L)
⇔ (5.63)
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{
2 · a · q2 · ρ(b) = 0 (mod L)

2 · a · q2 · ρ(c) = 0 (mod L)
(5.64)

With (5.52), (5.64) is written as

{
2 · a · b · q2 · (r1 + r2 · b + · · · + rd2−inv

· bd2−inv−1) = 0 (mod L)

2 · a · c · q2 · (r1 + r2 · c + · · · + rd2−inv
· cd2−inv−1) = 0 (mod L)

(5.65)

The two congruences from (5.65) are satisfied if

{
2 · a · b · q2 = 0 (mod L)

2 · a · c · q2 = 0 (mod L)
(5.66)

For a = 2l · 7, with l ∈ N, and b = 8 and c = 12 in (5.66), we have

{
2l+4 · 7 · q2 = 0 (mod L)

2l+3 · 3 · 7 · q2 = 0 (mod L)
(5.67)

Then the two congurences from (5.67) are fulfilled only if

⎧⎨
⎩
nL ,2 ≤ nq2,2 + l + 3
nL ,7 ≤ nq2,7 + 1
nL ,p ≤ nq2,p,∀p �= 2, 7

(5.68)

For nL ,2 = 1, the first inequality from (5.68) is always satisfied. From conditions 1.b)
and 2) in Table 3.1, we have nq2,2 ≥ 1 when nL ,2 ≥ 2, and nq2,p ≥ 1 when nL ,p ≥ 1,
for p > 2. Thus, the conditions from (5.68) are equivalent to

⎧⎨
⎩
nL ,2 ≤ l + 4
nL ,7 ≤ 2
nL ,p ≤ 1,∀p �= 2, 7

(5.69)

The conditions from (5.69) are the same as those from (5.56).
The Hamming weight of the turbo codeword generated by the interleaver pattern

in Fig. 5.1 can be computed as the sum of the parity weight of the upper constituent
codeword, the parity weight of the lower constituent codeword, and the input weight.

The parityweight for an input-weight 2 sequence, as those from fundamental paths
of the upper constituent codeword, with a = 2l · 7, l ∈ N, results from Table5.1,
where a constituent RSC code of LTE turbo code was considered. In Table5.1 k is
the instant time, uk is the input bit to the RSC encoder at time k, ck is the parity output
bit at time k, and B(k)

1 , B(k)
2 , and B(k)

3 are the contents of the three memory cells of
the RSC encoder at time k. From Table5.1 we remark that, if l = 0, then the parity
weight (i.e. the weight of sequence ck) is equal to 6 = 1+4+1, and if l = 1, the parity
weight is equal to 10 = 1+4+4+1. In general, for l ∈ N, the parity weight is equal
to 1 + (l + 1) · 4 + 1 = (l + 1) · 4 + 2 = 4 · l + 6. Similarly, for an RSC encoder
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Table 5.1 Determining the parity weight for an input-weight 2 sequence with the two bits 1
separated by a = 2l · 7 positions

k uk B(k)
1 B(k)

2 B(k)
3 ck

1 1 0 0 0 1

2 0 1 0 0 1

3 0 0 1 0 1

4 0 1 0 1 1

5 0 1 1 0 0

6 0 1 1 1 0

7 0 0 1 1 1

8 0 0 0 1 0

9 0 1 0 0 1

10 0 0 1 0 1

11 0 1 0 1 1

12 0 1 1 0 0

13 0 1 1 1 0

14 0 0 1 1 1

15 1/0 0 0 1 1/0

16 0 0/1 0 0 0/1

with a primitive feedback polynomial of arbitrary degree ν and a monic feedforward
polynomial, and for a = 2l · (2ν − 1), the parityweight is equal to (l + 1) · 2ν−1 + 2.

The parityweight for an input-weight 3 sequence, as those from fundamental paths
of the lower constituent codeword, with b = 8 and c = 12, results from Table5.2,
where a constituent RSC code of LTE turbo code was considered. From Table5.2
we note that the parity weight is equal to 7.

Finally, the input weight is six, since the size of the interleaver pattern is six. Thus,
the total Hamming weight of the turbo codeword generated by the interleaver pattern
in Fig. 5.1 is 6 + 3 · (4 · l + 6) + 2 · 7 = 12 · l + 38. Note that the aforementioned
argument for the calculation of theHammingweight of the turbo codeword generated
by the interleaver pattern assumes that the fundamental paths of the constituent
codewords do not overlap. Otherwise, the calculated weight is an upper bound on
the Hamming weight of the generated codeword. �

Theorem 5.9 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) with generator matrix G = [1, 15/13] is upper bounded by

dmin ≤ 51 (5.70)



222 5 Minimum Distance of Turbo Codes with Permutation …

Table 5.2 Determining the parity weight for an input-weight 3 sequence with the first and the
second bits 1 separated by b = 8 positions, and the first and the third bits 1 separated by c = 12
positions

k uk B(k)
1 B(k)

2 B(k)
3 ck

1 1 0 0 0 1

2 0 1 0 0 1

3 0 0 1 0 1

4 0 1 0 1 1

5 0 1 1 0 0

6 0 1 1 1 0

7 0 0 1 1 1

8 0 0 0 1 0

9 1 1 0 0 0

10 0 1 1 0 0

11 0 1 1 1 0

12 0 0 1 1 1

13 1 0 0 1 1

14 0 0 0 0 0

Fig. 5.2 Critical interleaver pattern of size nine for QPP-based interleavers

for all interleaver lengths L that satisfy

nL ,p ≤
{
6, if p = 2
1, otherwise

(5.71)

when using QPP interleavers.

Proof An interleaver pattern of size nine is shown in Fig. 5.2. The interleaver pattern
generates an upper and a lower constituent codeword containing 3 input-weight
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3 fundamental paths. The interleaving of the systematic 1-positions (of the upper
constituent codeword) is indicated by arrows. Now, let the index differences between
the second and the first and the third and the first systematic 1-positions of all the
fundamental paths in both the upper and lower constituent codewords be denoted by
b and c, respectively. For convenience, these index differences are also indicated in
Fig. 5.2 by horizontal lines.

The nine elements of permutation π(·) indicated in Fig. 5.2 are written in detail
below ⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 → π(x1)
x1 + b → π(x1 + b)
x1 + c → π(x1 + c)
x2 → π(x2) = π(x1) + c
x2 + b → π(x2 + b) = π(x1 + b) + c
x2 + c → π(x2 + c) = π(x1 + c) + c
x3 → π(x3) = π(x1) + b
x3 + b → π(x3 + b) = π(x1 + b) + b
x3 + c → π(x3 + c) = π(x1 + c) + b

(5.72)

Writing x = ρ(π(x)), for x = x1, x = x2, and x = x3, the equations correspond-
ing to points x2 + b, x2 + c, x3 + b, and x3 + c from (5.72) are written as

⎧⎪⎪⎨
⎪⎪⎩

π(ρ(π(x2)) + b) = π(ρ(π(x1)) + b) + c (mod L)

π(ρ(π(x2)) + c) = π(ρ(π(x1)) + c) + c (mod L)

π(ρ(π(x3)) + b) = π(ρ(π(x1)) + b) + b (mod L)

π(ρ(π(x3)) + c) = π(ρ(π(x1)) + c) + b (mod L)

(5.73)

Using the equations corresponding to points x2 and x3 from (5.72) in (5.73), and
then replacing π(x1) by x , we have

⎧⎪⎪⎨
⎪⎪⎩

π(ρ(x + c) + b) = π(ρ(x) + b) + c (mod L)

π(ρ(x + c) + c) = π(ρ(x) + c) + c (mod L)

π(ρ(x + b) + b) = π(ρ(x) + b) + b (mod L)

π(ρ(x + b) + c) = π(ρ(x) + c) + b (mod L)

(5.74)

Thus, the interleaver pattern in Fig. 5.2 generates a turbo codeword if the four
congruences from (5.74) are satisfied, where x ∈ ZL denotes the first systematic 1-
position (the point x1 in Fig. 5.2) of the first fundamental path in the lower constituent
codeword.

For x = 0 in (5.74), we have

⎧⎪⎪⎨
⎪⎪⎩

π(ρ(c) + b) = π(b) + c (mod L)

π(ρ(c) + c) = π(c) + c (mod L)

π(ρ(b) + b) = π(b) + b (mod L)

π(ρ(b) + c) = π(c) + b (mod L)

(5.75)
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Similarly as in (5.61)–(5.64), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π(b) + π(ρ(c))︸ ︷︷ ︸
=c

+2 · b · q2 · ρ(c) = π(b) + c (mod L)

π(c) + π(ρ(c))︸ ︷︷ ︸
=c

+2 · c · q2 · ρ(c) = π(c) + c (mod L)

π(b) + π(ρ(b))︸ ︷︷ ︸
=b

+2 · b · q2 · ρ(b) = π(b) + b (mod L)

π(c) + π(ρ(b))︸ ︷︷ ︸
=b

+2 · c · q2 · ρ(b) = π(c) + b (mod L)

⇔ (5.76)

⎧⎪⎪⎨
⎪⎪⎩

2 · b · q2 · ρ(c) = 0 (mod L)

2 · c · q2 · ρ(c) = 0 (mod L)

2 · b · q2 · ρ(b) = 0 (mod L)

2 · c · q2 · ρ(b) = 0 (mod L)

⇔ (5.77)

⎧⎪⎪⎨
⎪⎪⎩

2 · b · c · q2 · (r1 + r2 · c + · · · + rd2−inv
· cd2−inv−1) = 0 (mod L)

2 · c2 · q2 · (r1 + r2 · c + · · · + rd2−inv
· cd2−inv−1) = 0 (mod L)

2 · b2 · q2 · (r1 + r2 · b + · · · + rd2−inv
· bd2−inv−1) = 0 (mod L)

2 · b · c · q2 · (r1 + r2 · b + · · · + rd2−inv
· bd2−inv−1) = 0 (mod L)

(5.78)

The four congruences in (5.78) are satisfied if

⎧⎨
⎩
2 · b · c · q2 = 0 (mod L)

2 · b2 · q2 = 0 (mod L)

2 · c2 · q2 = 0 (mod L)

(5.79)

For b = 8 and c = 12 in (5.79), we have

⎧⎨
⎩
26 · 3 · q2 = 0 (mod L)

27 · q2 = 0 (mod L)

25 · 32 · q2 = 0 (mod L)

(5.80)

The three congruences in (5.80) are satisfied if

25 · q2 = 0 (mod L) (5.81)

Equation (5.81) is equivalent to

{
nL ,2 ≤ nq2,2 + 5
nL ,p ≤ nq2,p,∀p �= 2

(5.82)
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Fig. 5.3 Critical interleaver pattern of size four for QPP-based interleavers

Taking into account the comments after Eqs. (5.68), (5.82) becomes

{
nL ,2 ≤ 6
nL ,p ≤ 1,∀p �= 2

(5.83)

Conditions (5.83) are the same as those from (5.71).
From Table5.2 it follows that the parity weight for the input-weight 3 error pat-

tern, as well as those from the fundamental paths of the upper or lower constituent
codewords in Fig. 5.2 for b = 8 and c = 12 is equal to 7. Then, because the input
weight is nine, the Hamming weight of the codeword generated by the interleaver
pattern in Fig. 5.2 is equal to 9 + 6 · 7 = 51, i.e. the upper bound given in (5.70). �

Figure5.3 shows an interleaver pattern of size four. Both the upper and the lower
constituent codewords generated by the interleaver pattern contain 2 input-weight
2 fundamental paths. The interleaving of the systematic 1-positions (of the upper
constituent codeword) is indicated by arrows. Furthermore, the index differences
between the second and the first systematic 1-positions of the first and the second
fundamental paths in the lower constituent codeword are denoted by a and d, respec-
tively. The corresponding index differences for the upper constituent codeword are
denoted by c and b, respectively. These index differences are also indicated in Fig. 5.3
by horizontal lines.

The four elements of permutation π(·) indicated in Fig. 5.3 are written in detail
below ⎧⎪⎪⎨

⎪⎪⎩

x1 → π(x1)
x1 + c → π(x1 + c)
x2 → π(x2) = π(x1) + a
x2 + b → π(x2 + b) = π(x1 + c) + d

(5.84)

Writing x2 = ρ(π(x2)), the equation corresponding to point x2 + b in (5.84) can
be written as
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π(ρ(π(x2)) + b) = π(x1 + c) + d (mod L) (5.85)

Considering the equation corresponding to point x2 from (5.84), (5.85) becomes:

π(ρ(π(x1) + a) + b) = π(x1 + c) + d (mod L) (5.86)

With x1 = ρ(π(x1)) and then π(x1) = x in (5.86), we have

π(ρ(x + a) + b) = π(ρ(x) + c) + d (mod L) (5.87)

where x ∈ ZL denotes the first systematic 1-position (the point x1 in Fig. 5.3) of the
first fundamental path in the lower constituent codeword. With a primitive feedback
polynomial of degree ν, all the numbers a, b, c, and d are multiples of 2ν − 1.
From the fact that the feedback polynomial of RSC encoder is primitive, of degree
ν, and the feedforward polynomial of RSC encoder is monic, it follows that for
an input-weight 2 sequence, with the index difference between the second and the

first 1-positions equal to a, a multiple of 2ν − 1, the parity weight is 1 + a · 2ν−1

2ν − 1
+

1 = 2 + a · 2ν−1

2ν − 1
. An example in this sense is shown in Table5.1 for ν = 3 and

a = 14 = 2 · (23 − 1). Then the Hamming weight of the codeword generated by

the interleaver pattern in Fig. 5.3 is at most 4 + 4 · 2 + (a + b + c + d) · 2ν−1

2ν − 1
=

12 + (a + b + c + d) · 2ν−1

2ν − 1
.

For x = 0, the congruence (5.87) is equivalent to

π(ρ(a) + b) = π(ρ(0) + c) + d = π(c) + d (mod L) ⇔
q1 · (ρ(a) + b) + q2 · (ρ(a) + b)2 = q1 · c + q2 · c2 + d (mod L) ⇔

⇔ q1 · (ρ(a) + b) + q2 · (
(ρ(a))2 + b2 + 2 · ρ(a) · b)−

−q1 · c − q2 · c2 − d ≡ 0 (mod L) ⇔
⇔ q1 · ρ(a) + q2 · (ρ(a))2 + q1 · b + q2 · b2 + 2 · q2 · ρ(a) · b−

−q1 · c − q2 · c2 − d ≡ 0 (mod L) ⇔
⇔ π(ρ(a))︸ ︷︷ ︸

=a

+q2 · (b2 − c2) + q1 · (b − c)+

+2 · q2 · ρ(a) · b − d ≡ 0 (mod L) ⇔
⇔ q2 · (b2 − c2) + q1 · (b − c) + a − d+

+2 · q2 · a · b · (r1 + r2 · a + · · · + rd2−inv
· ad2−inv−1) ≡ 0 (mod L)

(5.88)

If we choose c = b and d = a, (5.88) becomes

2 · q2 · a · b · (r1 + r2 · a + · · · + rd2−inv
· ad2−inv−1) ≡ 0 (mod L) (5.89)
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Table 5.3 Summary of conditions that make the interleaver pattern in Fig. 5.3 to be critical and the
upper bounds on the weight of the corresponding codewords generated by this interleaver pattern

(|a′|, |b′|) Simplified congruence (5.91) Upper bound on the weight

(1, 1) 2 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 2ν+1

(1, 2) 22 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 3 · 2ν

(2, 1) 22 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 3 · 2ν

(2, 2) 23 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 2ν+2

(1, 3) 2 · 3 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 2ν+2

(3, 1) 2 · 3 · q2 · (2ν − 1)2 ≡ 0 (mod L) 12 + 2ν+2

In the following, let there be a = (2ν − 1) · a′ and b = (2ν − 1) · b′, with a′, b′ ∈
Z∗. Then, the Hamming weight of the codeword generated by the interleaver pattern
in Fig. 5.3 is (at most) 12 + 2 · (|a′| + |b′|) · 2ν−1 = 12 + (|a′| + |b′|) · 2ν and the
congruence (5.89) is written as

2 · q2 · |a′| · |b′| · (2ν − 1)2 · (
r1 ± r2 · (2ν − 1) · |a′| + · · · +

+rd2−inv
· (2ν − 1)d2−inv−1 · (±|a′|)d2−inv−1

) ≡ 0 (mod L) (5.90)

The congruence (5.90) is true if

2 · q2 · |a′| · |b′| · (2ν − 1)2 ≡ 0 (mod L) (5.91)

In Table5.3, the simplified congruence in (5.91) with different values of the pair
(|a′|, |b′|) is listed in the second column. The last column contains an upper bound on
the weight of the corresponding turbo codeword generated by the interleaver pattern
in Fig. 5.3.

For ν = 3 the simplified congruence (5.91) becomes

2 · 72 · q2 · |a′| · |b′| ≡ 0 (mod L) (5.92)

For different values of the pair (|a′|, |b′|), from the congruence (5.92) we can
get the conditions on L for which the congruence is true and thus, for which the
corresponding upper bound of the minimum distance is 12 + 8 · (|a′| + |b′|). The
conditions on L for the values of the pair (|a′|, |b′|) from Table5.3 are given in
Table5.4.

We show below how the conditions on L in Table5.4 were obtained. If |a′| =∏
p∈P

pn|a′ |,p and |b′| =
∏
p∈P

pn|b′ |,p are the prime factorizations of |a′| and |b′|, respec-
tively, then the congruence (5.92) is fulfilled if
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Table 5.4 Summary of conditions on L for various upper bounds on the minimum distance when
ν = 3 (derived from the congruence (5.92) for different values of pair (|a′|, |b′|))
(|a′|, |b′|) nL ,2 nL ,3 nL ,7 nL ,p ,

p �= 2, 3, 7
Upper bound
on dmin

(1, 1) ≤ 2 ≤ 1 ≤ 3 ≤ 1 28

(1, 2) or (2, 1) ≤ 3 ≤ 1 ≤ 3 ≤ 1 36

(2, 2) ≤ 4 ≤ 1 ≤ 3 ≤ 1 44

(1, 3) or (3, 1) ≤ 2 ≤ 2 ≤ 3 ≤ 1 44

⎧⎨
⎩
nL ,2 ≤ nq2,2 + n|a′|,2 + n|b′ |,2 + 1
nL ,7 ≤ nq2,7 + n|a′|,7 + n|b′ |,7 + 2
nL ,p ≤ nq2,p + n|a′|,p + n|b′|,p,∀p �= 2, 7

(5.93)

Taking into account the conditions for q2 from Table3.1, we have that nq2,2 ≥ 1
when nL ,2 ≥ 2 and nq2,p ≥ 1 when nL ,p ≥ 1, ∀p > 2. Then the conditions from
(5.93) are equivalent to

⎧⎨
⎩
nL ,2 ≤ n|a′|,2 + n|b′ |,2 + 2
nL ,7 ≤ n|a′|,7 + n|b′ |,7 + 3
nL ,p ≤ n|a′|,p + n|b′|,p + 1,∀p �= 2, 7

(5.94)

The conditions on nL ,p from Table5.4 result immediately taking into account the
factorizations of the values for |a′| and |b′| (i.e. of 1, 2 and 3).

If the QPP has an inverse QPP, then, taking into account the conditions from
Theorem5.6, the conditions from (5.93) are equivalent to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nL ,2 ≤ n|a′|,2 + n|b′|,2 + 1 + max
(⌈

nL ,2−2
2

⌉
, 1

)

nL ,3 ≤ n|a′|,3 + n|b′|,3 + max
(⌈

nL ,3−1
2

⌉
, 1

)

nL ,7 ≤ n|a′|,7 + n|b′|,7 + 2 +
⌈
nL ,7

2

⌉

nL ,p ≤ n|a′|,p + n|b′ |,p +
⌈
nL ,p

2

⌉
,∀p �= 2, 3, 7

(5.95)

For nL ,2 ≤ 2, the first inequality from (5.95) is always fulfilled. For nL ,2 ≥ 3 we

have max

(⌈
nL ,2 − 2

2

⌉
, 1

)
=

⌈
nL ,2 − 2

2

⌉
and we consider two cases.

If nL ,2 = 2 · k, with k ∈ N and k ≥ 2, the first inequality from (5.95) becomes

2 · k ≤ n|a′|,2 + n|b′|,2 + 1 + k − 1 ⇔ k ≤ n|a′|,2 + n|b′ |,2 ⇔

⇔ 2 · k ≤ 2 · (n|a′|,2 + n|b′ |,2) (5.96)
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If nL ,2 = 2 · k + 1, with k ∈ N∗, the first inequality from (5.95) becomes

2 · k + 1 ≤ n|a′|,2 + n|b′|,2 + 1 + k ⇔ k ≤ n|a′|,2 + n|b′ |,2 ⇔

⇔ 2 · k + 1 ≤ 2 · (n|a′|,2 + n|b′ |,2) + 1 (5.97)

The last inequalities from (5.96) and (5.97) can be written as:

nL ,2 ≤ 2 · (n|a′|,2 + n|b′ |,2) + 1, for nL ,2 ≥ 3 (5.98)

Because for nL ,2 ≤ 2 the first inequality from (5.95) is always fulfilled, then the
first inequality from (5.95) is equivalent to

nL ,2 ≤ max
(
2 · (n|a′|,2 + n|b′ |,2) + 1, 2

)
(5.99)

For nL ,3 ≤ 1, the second inequality from (5.95) is always fulfilled. For nL ,3 ≥ 2

we have max

(⌈
nL ,3 − 1

2

⌉
, 1

)
=

⌈
nL ,3 − 1

2

⌉
and we consider two cases.

If nL ,3 = 2 · k, with k ∈ N∗, the second inequality from (5.95) becomes

2 · k ≤ n|a′|,3 + n|b′|,3 + k ⇔ k ≤ n|a′|,3 + n|b′|,3 ⇔

⇔ 2 · k ≤ 2 · (n|a′|,3 + n|b′ |,3) (5.100)

If nL ,3 = 2 · k + 1, with k ∈ N∗, the second inequality from (5.95) becomes

2 · k + 1 ≤ n|a′|,3 + n|b′|,3 + k ⇔ k ≤ n|a′|,3 + n|b′|,3 − 1 ⇔

⇔ 2 · k + 1 ≤ 2 · (n|a′|,3 + n|b′ |,3) − 1 (5.101)

The last inequalities from (5.100) and (5.101) can be written as:

nL ,3 ≤ 2 · (n|a′|,3 + n|b′ |,3), for nL ,3 ≥ 2 (5.102)

Because for nL ,3 ≤ 1 the second inequality from (5.95) is always fulfilled, then
the second inequality from (5.95) is equivalent to

nL ,3 ≤ max
(
2 · (n|a′|,3 + n|b′ |,3), 1

)
(5.103)

For nL ,7 ≤ 5, the third inequality from (5.95) is always fulfilled. For nL ,7 ≥ 6 we
consider two cases.

If nL ,7 = 2 · k, with k ∈ N and k ≥ 3, the third inequality from (5.95) becomes

2 · k ≤ n|a′|,7 + n|b′ |,7 + 2 + k ⇔ k ≤ n|a′|,7 + n|b′|,7 + 2 ⇔
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⇔ 2 · k ≤ 2 · (n|a′|,7 + n|b′|,7) + 4 (5.104)

If nL ,7 = 2 · k + 1, with k ∈ N and k ≥ 3, the third inequality from (5.95)
becomes

2 · k + 1 ≤ n|a′|,7 + n|b′ |,7 + 2 + k + 1 ⇔ k ≤ n|a′|,7 + n|b′|,7 + 2 ⇔

⇔ 2 · k + 1 ≤ 2 · (n|a′|,7 + n|b′ |,7) + 5 (5.105)

The last inequalities from (5.104) and (5.105) can be written as:

nL ,7 ≤ 2 · (n|a′|,7 + n|b′ |,7) + 5, for nL ,7 ≥ 6 (5.106)

Because for nL ,7 ≤ 5 the inequality from (5.106) is always fulfilled, then the third
inequality from (5.95) is equivalent to

nL ,7 ≤ 2 · (n|a′|,7 + n|b′|,7) + 5 (5.107)

For nL ,p ≤ 1, the fourth inequality from (5.95) is always fulfilled, ∀p �= 2, 3, 7.
For nL ,p ≥ 2 we consider two cases.

If nL ,p = 2 · k, with k ∈ N∗, the fourth inequality from (5.95) becomes

2 · k ≤ n|a′|,p + n|b′ |,p + k ⇔ k ≤ n|a′|,p + n|b′|,p ⇔

⇔ 2 · k ≤ 2 · (n|a′|,p + n|b′ |,p) (5.108)

If nL ,p = 2 · k + 1, with k ∈ N∗, the fourth inequality from (5.95) becomes

2 · k + 1 ≤ n|a′|,p + n|b′ |,p + k + 1 ⇔ k ≤ n|a′|,p + n|b′|,p ⇔

⇔ 2 · k + 1 ≤ 2 · (n|a′|,p + n|b′ |,p) + 1 (5.109)

The last inequalities from (5.108) and (5.109) can be written as:

nL ,p ≤ 2 · (n|a′|,p + n|b′ |,p) + 1, for nL ,p ≥ 2 and p �= 2, 3, 7 (5.110)

Because for nL ,p ≤ 1 the inequality from (5.110) is always fulfilled, then the
fourth inequality from (5.95) is equivalent to

nL ,p ≤ 2 · (n|a′|,p + n|b′ |,p) + 1,∀p �= 2, 3, 7 (5.111)

Taking into account the factorizations of the values for |a′| and |b′| and the inequal-
ities (5.99), (5.103), (5.107), and (5.111), we can obtain the conditions on L for
different values of the pair (|a′|, |b′|), when the QPP has an inverse QPP. For the
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Table 5.5 Summary of conditions on L for various upper bounds on the minimum distance when
ν = 3 and when the QPP has an inverse QPP (derived from the inequalities (5.99), (5.103), (5.107),
and (5.111), for different values of the pair (|a′|, |b′|))
(|a′|, |b′|) nL ,2 nL ,3 nL ,7 nL ,p ,

p �= 2, 3, 7
Upper bound
on dmin

(1, 1) ≤ 2 ≤ 1 ≤ 5 ≤ 1 28

(1, 2) or (2, 1) ≤ 3 ≤ 1 ≤ 5 ≤ 1 36

(2, 2) ≤ 5 ≤ 1 ≤ 5 ≤ 1 44

(1, 3) or (3, 1) ≤ 2 ≤ 2 ≤ 5 ≤ 1 44

Fig. 5.4 Critical interleaver pattern of size six for QPP-based interleavers

values of the pair (|a′|, |b′|) from Tables5.3 and 5.4, the conditions on L are given
in Table5.5.

Theorem 5.10 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) using primitive feedback and monic feedforward polynomials of degree
ν and a QPP with a quadratic inverse is upper bounded by

dmin ≤ 2 · (2ν+1 + 9) (5.112)

Proof In Fig. 5.4, an interleaver pattern of size six is shown. Each of the upper
and the lower constituent codewords generated by the interleaver pattern contain
3 input-weight 2 fundamental paths. The interleaving of the systematic 1-positions
(of the upper constituent codeword) is indicated by arrows. The index difference
between the second and the first systematic 1-positions of the first and the third
fundamental paths in both the upper and lower constituent codewords is denoted by
a. The corresponding index difference for the second, i.e. the middle fundamental
path in both constituent codewords is 2a. For convenience, these index differences
are also indicated in Fig. 5.4 by horizontal lines.
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The six elements of permutation π(·) indicated in Fig. 5.4 are written in detail
below ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x1 → π(x1)
x1 + a → π(x1 + a)

x2 → π(x2) = π(x1) + a
x2 + 2a → π(x2 + 2a)

x3 → π(x3) = π(x1 + a) + 2a
x3 + a → π(x3 + a) = π(x2 + 2a) + a

(5.113)

Writing x2 = ρ(π(x2)) and x3 = ρ(π(x3)), the equation corresponding to point
x3 + a in (5.113) can be written as

π(ρ(π(x3)) + a) = π(ρ(π(x2)) + 2a) + a (mod L) (5.114)

Considering the equations corresponding to points x2 and x3 from (5.113), (5.114)
becomes:

π(ρ(π(x1 + a) + 2a) + a) = π(ρ(π(x1) + a) + 2a) + a (mod L) (5.115)

With x1 = x in (5.115), we have

π(ρ(π(x + a) + 2a) + a) = π(ρ(π(x) + a) + 2a) + a (mod L) (5.116)

where x ∈ ZL denotes the first systematic 1-position (the point x1 in Fig. 5.4). Now,
the congruence in (5.116) is equivalent to

4 · a3 · q2 · r2 · (1 + 2q1 + 2aq2 + 4xq2) ≡ 0 (mod L) (5.117)

which again is equivalent to

4 · a3 · q2 · r2 · (1 + 2q1 + 2aq2) ≡ 0 (mod L) (5.118)

since 4 · q2
2 · r2 ≡ 0 (mod L). This follows from Theorem5.5, which states that

12 · q2 · r2 ≡ 0 (mod L). Indeed, if L = 2nL ,2 ·
nL∏
i=2

p
nL ,pi
i , with nL ,2 ≥ 0 and nL ,pi ≥

1, ∀i = 2, nL , then, because π(x) and ρ(x) are QPPs, we have q2 = 2nπ,2 ·
nL∏
i=2

p
nπ,pi
i ·

Lq2 , r2 = 2nρ,2 ·
nL∏
i=2

p
nρ,pi
i · Lr2 , where nπ,2, nρ,2 ≥ 0 if nL ,2 ∈ {0, 1} and nπ,2, nρ,2 ≥

1 ifnL ,2 ≥ 2,nπ,pi , nρ,pi ≥ 1,∀i = 2, nL , and Lq2 , Lr2 ∈ N∗ are positive integers cor-
responding to other prime numbers than pi , with i = 2, nL . Then, from 12 · q2 · r2 ≡
0 (mod L), it results that nπ,2 + nρ,2 + 2 ≥ nL ,2, nπ,pi + nρ,pi ≥ nL ,pi , ∀i = 2, nL

with pi > 3, and, if 3 | L , nπ,3 + nρ,3 + 1 ≥ nL ,3. Therefore, if 3 � L , the congruence
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4 · q2
2 · r2 ≡ 0 (mod L) results immediately because 2 · nπ,2 + nρ,2 + 2 ≥ nL ,2 and

2 · nπ,pi + nρ,pi ≥ nL ,pi , ∀i = 2, nL . If 3 | L we have nπ,3, nρ,3 ≥ 1 because π(x)
and ρ(x) are QPPs. Then, because nπ,3 ≥ 1 and nπ,3 + nρ,3 ≥ nL ,3 − 1, we have
nπ,3 + nπ,3 + nρ,3 ≥ 1 + nL ,3 − 1 = nL ,3 and, thus, the congruence 4 · q2

2 · r2 ≡
0 (mod L) is also true.

From Theorem5.5, we know that 12 · q2 · r2 ≡ 0 (mod L), and it follows that 4 ·
q2 · r2 ≡ 0 (mod L) if 27 is not a divisor of L . Indeed, if 3 � L , the congruence 4 · q2 ·
r2 ≡ 0 (mod L) results immediately as we have explained above for the congruence
4 · q2

2 · r2 ≡ 0 (mod L). If 3 | L , for the congruence 4 · q2 · r2 ≡ 0 (mod L) to be
true, it is required that nπ,3 + nρ,3 ≥ nL ,3. But from 12 · q2 · r2 ≡ 0 (mod L)we have
nπ,3 + nρ,3 ≥ nL ,3 − 1, and because π(x) and ρ(x) are QPPs we have nπ,3, nρ,3 ≥ 1.
Therefore, the inequality nπ,3 + nρ,3 ≥ nL ,3 is always held if nL ,3 ≤ 2, i.e. if 27 � L .
Thus, the congruence in (5.118) holds for all QPPs with a quadratic inverse, for a
given value of L if 27 is not a divisor of L .

Since the feedback polynomial is primitive, we can choose a = 2ν − 1, and with
a monic feedforward polynomial of degree ν, the parity weight for the first and
the third fundamental paths in both constituent codewords in Fig. 5.4 is 2 + 2ν−1

(see the proof of Theorem5.8). The corresponding parity weight for the second,
i.e. the middle fundamental path in both constituent codewords is 2 + 2ν . Then the
Hamming weight of the codeword generated by the interleaver pattern in Fig. 5.4 is
at most 4 · (2 + 2ν−1) + 2 · (2 + 2ν) + 6 = 2 · (2ν+1 + 9). The equality holds if the
fundamental paths do not interfere with each other as in Fig. 5.4.

Figure5.5 presents another interleaver pattern of size six. Each of the upper and
the lower constituent codewords generated by the interleaver pattern contain 3 input-
weight 2 fundamental paths. The interleaving of the systematic 1-positions of the
upper constituent codeword is indicated by arrows. Furthermore, the index difference
between the second and the first systematic 1-positions of the first and the third fun-
damental paths in the upper constituent codeword, and of the second and the third
fundamental paths in the lower constituent codeword is denoted by a. The corre-

Fig. 5.5 Critical interleaver pattern of size six for QPP-based interleavers
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sponding index difference for the second fundamental path in the upper constituent
codeword, and for the first fundamental path in the lower constituent codeword is
2a. These index differences are also indicated in Fig. 5.5 by horizontal lines.

The six elements of permutation π(·) indicated in Fig. 5.5 are written in detail
below ⎧

⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 → π(x1)
x1 + a → π(x1 + a)

x2 → π(x2)
x2 + 2a → π(x2 + 2a) = π(x1 + a) + a
x3 → π(x3) = π(x2) + a
x3 + a → π(x3 + a) = π(x1) + 2a

(5.119)

Writing x2 = ρ(π(x2)) the equation corresponding to point x2 + 2a in (5.119)
can be written as

π(ρ(π(x2)) + 2a) = π(x1 + a) + a (mod L) (5.120)

Considering the equation corresponding topoint x3 from (5.119), (5.120) becomes:

π(ρ(π(x3) − a) + 2a) = π(x1 + a) + a (mod L) (5.121)

Writing x3 + a = ρ(π(x3 + a)), the equation corresponding to point x3 + a from
(5.119) is equivalently written as

x3 + a = ρ(π(x1) + 2a) ⇔ x3 = ρ(π(x1) + 2a) − a ⇔

⇔ π(x3) = π(ρ(π(x1) + 2a) − a) (5.122)

With (5.122), (5.121) becomes:

π(ρ(π(ρ(π(x1) + 2a) − a) − a) + 2a) = π(x1 + a) + a (mod L) ⇔
ρ(π(ρ(π(x1) + 2a) − a) − a) + 2a = ρ(π(x1 + a) + a) (mod L) ⇔
ρ(π(ρ(π(x1) + 2a) − a) − a) = ρ(π(x1 + a) + a) − 2a (mod L) ⇔

π(ρ(π(x1) + 2a) − a) − a = π(ρ(π(x1 + a) + a) − 2a) (mod L) (5.123)

With x1 = x in (5.123), we have

π(ρ(π(x) + 2a) − a) = π(ρ(π(x + a) + a) − 2a) + a (mod L), (5.124)

where x ∈ ZL is the leftmost systematic 1-position (the point x1 in Fig. 5.5) in the
upper constituent codeword. Now, the congruence (5.124) is equivalent to

4 · a3 · q2 · r2 · (1 − 2q1 − 2aq2 − 4xq2) ≡ 0 (mod L) (5.125)
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which again is equivalent to

4 · a3 · q2 · r2 · (1 − 2q1 − 2aq2) ≡ 0 (mod L) (5.126)

since 4 · q2
2 · r2 ≡ 0 (mod L). This follows from Theorem5.5, which states that

12 · q2 · r2 ≡ 0 (mod L), as we have explained after Eq. (5.118). As for the codeword
generated by the interleaver pattern in Fig. 5.4, the Hamming weight of the codeword
generated by the interleaver pattern in Fig. 5.5 is at most 2 · (2ν+1 + 9).

Assume 27 | L . Then, q2 = 3 · c, for some integer c, since, from Table3.1, 3 | q2.
Furthermore, q1 = 1 + 3 · k or 2 + 3 · k, for some integer k, since, fromTable3.1, 3 �
q1. If q1 = 1 + 3 · k, then the congruence in (5.118) reduces to 4 · a3 · q2 · r2 · (1 +
2 · (1 + 3 · k) + 2a · 3 · c) = 12 · a3 · q2 · r2 · (1 + 2 · k + 2a · c) ≡ 0 (mod L),
which is always true, since 12 · q2 · r2 ≡ 0 (mod L) from Theorem5.5. Furthermore,
if q1 = 2 + 3 · k, then the congruence in (5.126) reduces to 4 · a3 · q2 · r2 · (1 − 2 ·
(2 + 3 · k) − 2a · 3 · c) = 12 · a3 · q2 · r2 · (−1 − 2 · k − 2a · c) ≡ 0 (mod L),
which is always true, since 12 · q2 · r2 ≡ 0 (mod L) from Theorem5.5. Thus, there
is an upper bound of 2 · (2ν+1 + 9) on the dmin for QPPs with a quadratic inverse for
all values of L . �

We note that Theorem5.10 applies for all interleaver lengths L . It is achievable
for a range of values L , at least for ν = 3. For ν = 3, the degree of all inverse
permutations should be at least three, to achieve a dmin strictly larger than 2 · (2ν+1 +
9) = 50.

Theorem 5.11 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) with generator matrix G = [1, 15/13] is upper bounded by

dmin ≤ 38 + 12 · l (5.127)

for all nonnegative integers l and for all interleaver lengths L that satisfy

nL ,p ≤
⎧⎨
⎩
2 · l + 5, if p = 2
3, if p = 7
1, otherwise

(5.128)

when using QPP interleavers with a quadratic inverse.

Proof In this case the proof is based on interleaver pattern in Fig. 5.1. When there
exists an inverse polynomial of degree two, the congruences in (5.65) reduce to

{
2 · a · b · q2 · (r1 + r2 · b) = 0 (mod L)

2 · a · c · q2 · (r1 + r2 · c) = 0 (mod L)
(5.129)

For a = 2l · 7, b = 8, and c = 12 in (5.129), we have

{
2l · 24 · 7 · q2 · (r1 + 23 · r2) = 0 (mod L)

2l · 23 · 3 · 7 · q2 · (r1 + 22 · 3 · r2) = 0 (mod L)
⇔ (5.130)
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{
2l · 112 · q2 · (r1 + 8 · r2) = 0 (mod L)

2l · 168 · q2 · (r1 + 12 · r2) = 0 (mod L)
(5.131)

From Theorem5.5 we have that 12 · q2 · r2 = 0 (mod L) when a QPP admits an
inverse QPP. Using this congruence, the second equation from (5.130) or (5.131) is
equivalent to 2l · 23 · 3 · 7 · q2 · r1 = 0 (mod L) or 2l · 168 · q2 · r1 = 0 (mod L). If
2l · 23 · 3 · 7 · q2 · r1 = 0 (mod L) and 22 · 3 · q2 · r2 = 0 (mod L), then also 2l · 24 ·
3 · 7 · q2 · r1 + 2l · 27 · 3 · 7 · q2 · r2 = 0 (mod L). The last congruence is equivalent
to 2l · 24 · 3 · 7 · q2 · (r1 + 23 · r2) = 0 (mod L) or 2l · 3 · 112 · q2 · (r1 + 8 · r2) =
0 (mod L), whence it follows that 2l · 112 · q2 · (r1 + 8 · r2) = 0 (mod L) if 9 is not
a divisor of L , i.e. if nL ,3 ≤ 1. The congruence 2l · 23 · 3 · 7 · q2 · r1 = 0 (mod L),
for nL ,3 ≤ 1, is satisfied if

⎧⎨
⎩
nL ,2 ≤ nq2,2 + l + 3
nL ,7 ≤ nq2,7 + 1
nL ,p ≤ nq2,p,∀p �= 2, 3, 7

(5.132)

Using Theorem5.6, it follows that the congruences in (5.132) are satisfied for all
valid values of q2, for a given value of L , if the following conditions are satisfied

nL ,2 ≤
⎧⎨
⎩
l + 3 + max

(⌈
nL ,2−2

2

⌉
, 1

)
, if nL ,2 > 1

l + 3, if nL ,2 = 0, 1
(5.133)

nL ,7 ≤ 1 +
⌈nL ,7

2

⌉
(5.134)

nL ,p ≤
⌈nL ,p

2

⌉
,∀p �= 2, 3, 7 (5.135)

If nL ,2 = 2 · k, with k ∈ N, (5.133) can be written as

2 · k ≤ l + 3 + max
(
k − 1, 1

)
(5.136)

For k ≤ 2, (5.136) is obviously satisfied, and for k ≥ 3 (5.136) becomes

2 · k ≤ l + k + 2 ⇔ k ≤ l + 2 ⇔ 2 · k ≤ 2 · l + 4 (5.137)

If nL ,2 = 2 · k + 1, with k ∈ N, (5.133) can be written as

2 · k + 1 ≤ l + 3 + max
(�k − 1/2�, 1) (5.138)

For k ≤ 2, (5.138) is obviously satisfied, and for k ≥ 3 it results that �k − 1/2� = k.
Then, (5.138) becomes
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2 · k + 1 ≤ l + 3 + k ⇔ k ≤ l + 2 ⇔ 2 · k + 1 ≤ 2 · l + 5 (5.139)

From (5.137) and (5.139), the first inequality in (5.128) results.
If nL ,7 = 2 · k, with k ∈ N, (5.134) can be written as

2 · k ≤ 1 + k ⇔ k ≤ 1 ⇔ 2 · k ≤ 2 (5.140)

If nL ,7 = 2 · k + 1, with k ∈ N, (5.134) can be written as

2 · k + 1 ≤ 1 + �k + 1/2� ⇔ 2 · k + 1 ≤ 1 + k + 1 ⇔ k ≤ 1 ⇔
2 · k + 1 ≤ 3

(5.141)

From (5.140) and (5.141) it follows that nL ,7 ≤ 3 always satisfies (5.134), which
is the same as the second inequality from (5.128).

If nL ,p = 2 · k, with k ∈ N, (5.135) can be written as

2 · k ≤ k ⇔ k ≤ 0 ⇔ k = 0 (5.142)

If nL ,p = 2 · k + 1, with k ∈ N, (5.135) can be written as

2 · k + 1 ≤ �k + 1/2� ⇔ 2 · k + 1 ≤ k + 1 ⇔ k ≤ 0 ⇔ 2 · k + 1 ≤ 1 (5.143)

From (5.142) and (5.143) it follows that nL ,p ≤ 1 always satisfies (5.135), which
fits with the third inequality in (5.128).

From the proof of Theorem5.8, the Hamming weight of the codeword generated
by the interleaver pattern in Fig. 5.1 is at most 38 + 12 · l and, thus, the theorem is
proved. �

We remark that Theorem5.11 is useful only when l = 0, since the upper bound of
dmin is at least 50 when l ≥ 1. This follows from Theorem5.10 (with ν = 3), which
gives a general upper bound of 50.

Theorem 5.12 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) with generator matrix G = [1, 15/13] is upper bounded by

dmin ≤ 38 + 12 · l (5.144)

for all nonnegative integers l and for all interleaver lengths L that satisfy

nL ,p ≤

⎧⎪⎪⎨
⎪⎪⎩

⌊
3l

2

⌋
+ 4, if p = 2

2, if p = 7
1, otherwise

(5.145)

when using QPP interleavers with a cubic inverse.
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Proof The proof is similar to the proof of Theorem5.11.When there exists an inverse
polynomial of degree three, the congruences in (5.65) reduce to

{
2 · a · b · q2 · (r1 + r2 · b + r3 · b2) = 0 (mod L)

2 · a · c · q2 · (r1 + r2 · c + +r3 · c2) = 0 (mod L)
(5.146)

For a = 2l · 7, b = 8, and c = 12 in (5.146), we have

{
2l · 24 · 7 · q2 · (r1 + 23 · r2 + 26 · r3) = 0 (mod L)

2l · 23 · 3 · 7 · q2 · (r1 + 22 · 3 · r2 + 24 · 32 · r3) = 0 (mod L)
⇔ (5.147)

{
2l · 112 · q2 · (r1 + 8 · r2 + 64 · r3) = 0 (mod L)

2l · 168 · q2 · (r1 + 12 · r2 + 144 · r3) = 0 (mod L)
(5.148)

The two congruences from (5.147) or (5.148) are satisfied if

⎧⎨
⎩
nL ,2 ≤ nq2,2 + l + 3
nL ,7 ≤ nq2,7 + 1
nL ,p ≤ nq2,p,∀p �= 2, 7

(5.149)

For d2−inv = 3, φ(d2−inv + 1) from Theorem5.7 is factorized as φ(d2−inv +
1) = φ(4) = 4 · 5 · 6 = 23 · 3 · 5 and thus nφ(4),2 = 3, nφ(4),3 = 1, nφ(4),5 = 1, and
nφ(4),p = 0, ∀p �= 2, 3, 5, p ∈ P . Then, when a QPP admits a CPP inverse (i.e.
d2−inv = 3), from Theorem5.7 we have

nq2,2 ≥
{
max

(⌈
nL ,2−3

3

⌉
, 1

)
, if nL ,2 > 1

0, if nL ,2 = 0, 1
(5.150)

nq2,3 ≥
{
max

(⌈
nL ,3−1

3

⌉
, 1

)
, if nL ,3 > 0

0, if nL ,3 = 0
(5.151)

nq2,5 ≥
{
max

(⌈
nL ,5−1

3

⌉
, 1

)
, if nL ,5 > 0

0, if nL ,5 = 0
(5.152)

and for p �= 2, 3, 5

nq2,p ≥
{
max

(⌈
nL ,p

3

⌉
, 1

)
, if nL ,p > 0

0, if nL ,p = 0
(5.153)

With (5.150)–(5.153), the conditions from (5.149) can be written as
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nL ,2 ≤
{
l + 3 + max

(⌈
nL ,2−3

3

⌉
, 1

)
, if nL ,2 > 1

l + 3, if nL ,2 = 0, 1
(5.154)

nL ,3 ≤
{
max

(⌈
nL ,3−1

3

⌉
, 1

)
, if nL ,3 > 0

0, if nL ,3 = 0
(5.155)

nL ,5 ≤
{
max

(⌈
nL ,5−1

3

⌉
, 1

)
, if nL ,5 > 0

0, if nL ,5 = 0
(5.156)

nL ,7 ≤
{
1 + max

(⌈
nL ,7

3

⌉
, 1

)
, if nL ,7 > 0

1, if nL ,7 = 0
(5.157)

and for p �= 2, 3, 5, 7

nL ,p ≤
{
max

(⌈
nL ,p

3

⌉
, 1

)
, if nL ,p > 0

0, if nL ,p = 0
(5.158)

For nL ,2 = 3 · k, with k ∈ N, in (5.154), we have

3 · k ≤ l + 3 + max(k − 1, 1) (5.159)

For k ≤ 1, (5.159) is obviously satisfied. For k ≥ 2, (5.159) is equivalent to

3 · k ≤ l + 3 + k − 1 ⇔ 2 · k ≤ l + 2 ⇔ k ≤ l

2
+ 1 ⇔

3 · k ≤ 3 · l
2

+ 3 (5.160)

For nL ,2 = 3 · k + 1, with k ∈ N, in (5.154), we have

3 · k + 1 ≤ l + 3 + max(k, 1) ⇔ 3 · k + 1 ≤ l + 3 + k ⇔

2 · k ≤ l + 2 ⇔ k ≤ l

2
+ 1 ⇔ 3 · k + 1 ≤ 3 · l

2
+ 4 (5.161)

For nL ,2 = 3 · k + 2, with k ∈ N, in (5.154), we have

3 · k + 2 ≤ l + 3 + max(k, 1) ⇔ 3 · k + 2 ≤ l + 3 + k ⇔

2 · k ≤ l + 1 ⇔ k ≤ l + 1

2
⇔ 3 · k + 2 ≤ 3 · l

2
+ 7

2
(5.162)
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For l = 2 · s, with s ∈ N, the last inequalities in (5.160), (5.161), and (5.162)
become

⎧⎨
⎩
3 · k ≤ 3 · s + 3
3 · k + 1 ≤ 3 · s + 4
3 · k + 2 ≤ 3 · s + 3

⇔
⎧⎨
⎩
3k ∈ {3 · s + 3, 3 · s, . . . }
3k + 1 ∈ {3 · s + 4, 3 · s + 1, . . .}
3k + 2 ∈ {3 · s + 2, 3 · s − 1, . . .}

⇔

nL ,2 ≤ 3 · s + 4 = 3 · l
2

+ 4 ⇔ nL ,2 ≤
⌊
3 · l
2

⌋
+ 4 (5.163)

For l = 2 · s + 1, with s ∈ N, the last inequalities in (5.160), (5.161), and (5.162)
become

⎧
⎨
⎩
3 · k ≤ 3 · s + 3
3 · k + 1 ≤ 3 · s + 4
3 · k + 2 ≤ 3 · s + 5

⇔
⎧
⎨
⎩
3k ∈ {3 · s + 3, 3 · s, . . . }
3k + 1 ∈ {3 · s + 4, 3 · s + 1, . . .}
3k + 2 ∈ {3 · s + 5, 3 · s + 2, . . .}

⇔

nL ,2 ≤ 3 · s + 5 = 3 · l
2

− 1

2
+ 4 ⇔ nL ,2 ≤

⌊
3 · l
2

⌋
+ 4 (5.164)

Thus, (5.154) is equivalent to the first inequality in (5.145).
For nL ,3 = 3 · k in (5.155) or nL ,5 = 3 · k in (5.156), with k ∈ N, we have

3 · k ≤ max(k, 1) ⇔ 3 · k ≤ k ⇔ k = 0 ⇔ nL ,3 = 0 or nL ,5 = 0 (5.165)

For nL ,3 = 3 · k + 1 in (5.155) or nL ,5 = 3 · k + 1 in (5.156), with k ∈ N, we have

3 · k + 1 ≤ max(k, 1) ⇔ k = 0 ⇔ nL ,3 = 1 or nL ,5 = 1 (5.166)

For nL ,3 = 3 · k + 2 in (5.155) or nL ,5 = 3 · k + 2 in (5.156), with k ∈ N, we have

3 · k + 2 ≤ max(k + 1, 1) ⇔ 3 · k + 2 ≤ k + 1 ⇔ 2 · k + 1 ≤ 0 ⇔ k ∈ ∅
(5.167)

Thus, (5.155) and (5.156) are equivalent to the third inequality in (5.145), for
p = 3 and p = 5, respectively.

For nL ,7 = 3 · k, with k ∈ N, in (5.157), we have

3 · k ≤ 1 + k ⇔ 2 · k ≤ 1 ⇔ k = 0 ⇔ nL ,7 = 0 (5.168)

For nL ,7 = 3 · k + 1, with k ∈ N, in (5.157), we have

3 · k + 1 ≤ 1 + k + 1 ⇔ 2 · k ≤ 1 ⇔ k = 0 ⇔ nL ,7 = 1 (5.169)

For nL ,7 = 3 · k + 2, with k ∈ N, in (5.157), we have
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3 · k + 2 ≤ 1 + k + 1 ⇔ 2 · k ≤ 0 ⇔ k = 0 ⇔ nL ,7 = 2 (5.170)

Thus, (5.157) is equivalent to the second inequality in (5.145).
For nL ,p = 3 · k, with k ∈ N, in (5.158), we have

3 · k ≤ k ⇔ 2 · k ≤ 0 ⇔ k = 0 ⇔ nL ,p = 0 (5.171)

For nL ,p = 3 · k + 1, with k ∈ N, in (5.158), we have

3 · k + 1 ≤ k + 1 ⇔ 2 · k ≤ 0 ⇔ k = 0 ⇔ nL ,p = 1 (5.172)

For nL ,p = 3 · k + 2, with k ∈ N, in (5.158), we have

3 · k + 2 ≤ k + 1 ⇔ 2 · k + 1 ≤ 0 ⇔ k ∈ ∅ (5.173)

Thus, (5.158) is equivalent to the third inequality in (5.145), for p > 7.
From the proof of Theorem5.8, the Hamming weight of the codeword generated

by the interleaver pattern in Fig. 5.1 is at most 38 + 12 · l and, thus, the theorem is
proved. �

Theorem 5.13 The minimum distance of a conventional binary turbo code (of nom-
inal rate 1/3) using primitive feedback and monic feedforward polynomials of degree
ν and QPPs that have a cubic inverse is upper bounded by

dmin ≤ 2 · (2ν+1 + 9) (5.174)

for all nonnegative integers l and for all interleaver lengths L that satisfy

nL ,p ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

4, if p = 2⌊
9nα,p

2

⌋
+ 2, if p = 3, 5

⌈
9nα,p

2

⌉
+ 2, otherwise

(5.175)

where α = 2ν − 1 is a short-hand notation for the period of the feedback polynomial
of the constituent encoders.

Proof The proof is similar to the first part of the proof of Theorem5.10. When there
exists a cubic inverse of QPP, the congruence in (5.117) (with x = 0) is generalized
to

4 · a3 · q2 · (
r2 · (1 + 2q1 + 2aq2) + 3 · r3 · a · (1 + q1 + aq2)

2) ≡ 0 (mod L),

(5.176)
where a = α. Taking into account that for α = 2ν − 1 always nα,2 = 0, the congru-
ence (5.176) is true if
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

nL ,2 ≤ nq2,2 + nr2,2 + 2
nL ,2 ≤ nq2,2 + nr3,2 + 2
nL ,3 ≤ nq2,3 + nr2,3 + 3 · nα,3

nL ,3 ≤ nq2,3 + nr3,3 + 4 · nα,3 + 1
nL ,p ≤ nq2,p + nr2,p + 3 · nα,p,∀p �= 2, 3
nL ,p ≤ nq2,p + nr3,p + 4 · nα,p,∀p �= 2, 3

(5.177)

When aQPP admits aCPP inverse, fromTheorem5.7 it results that the inequalities
(5.150)–(5.153) are true.

For nL ,2 = 0, 1 the first two inequalities in (5.177) are always true. If 4 is a factor
in L decomposition, i.e. if nL ,2 ≥ 2, then 2 is a factor in both r2 and r3, i.e. nr2,2 ≥ 1
and nr3,2 ≥ 1 (see condition 1.b) in Table3.2). In these conditions (i.e. for nL ,2 ≥ 2),
taking into account the inequality (5.150), the first two inequalities in (5.177) are
true if

nL ,2 ≤ max

(⌈
nL ,2 − 3

3

⌉
, 1

)
+ 3, (5.178)

which is equivalent to nL ,2 ≤ 4, i.e. the inequality for p = 2 from (5.175).
In the following we consider the case when p = 3 or p = 5.
We note that for p = 3, the third and the fourth inequalities in (5.177) are always

true when nL ,3 = 1 and for p = 5, the last two inequalities in (5.177) are always
true when nL ,5 = 1. This follows from the fact that when 3 or 5 is a factor of L , then
it is also a factor of q2, i.e. nq2,3 ≥ 1 when nL ,3 = 1 and nq2,5 ≥ 1 when nL ,5 = 1,
because π(x) is a QPP (see condition 2) from Table3.1).

If 3 is a factor in L , i.e. if nL ,3 ≥ 1, then 3 is also a factor of r2, i.e. nr2,3 ≥ 1 (see
condition 2.a) or 2.b) Table3.2). If 5 is a double factor of L , i.e. if nL ,5 ≥ 2, then 5 is
a factor of both r2 and r3, i.e. nr2,5 ≥ 1 and nr3,5 ≥ 1 (see condition 4.b) Table3.2).

In the following, by p3,5 we understand only the prime 3 or only the prime 5. For
p3,5 = 3 and nL ,3 ≥ 2, we take into account the inequality (5.151) and we will write
the condition for which the third and the fourth inequalities in (5.177) are true. For
p3,5 = 5 and nL ,5 ≥ 2, we take into account the inequality (5.152) and we will write
the condition for which the last two inequalities in (5.177) are true, for p = 5. Thus
we have

nL ,p3,5 ≤ max

(⌈
nL ,p3,5 − 1

3

⌉
, 1

)
+ 1 + 3 · nα,p3,5 , (5.179)

If nL ,p3,5 ≥ 2 we have that max

(⌈
nL ,p3,5 − 1

3

⌉
, 1

)
=

⌈
nL ,p3,5 − 1

3

⌉
. We con-

sider three cases.
If nL ,p3,5 = 3 · k, with k ∈ N∗, (5.179) becomes

3 · k ≤ k + 1 + 3 · nα,p3,5 ⇔ 2 · k ≤ 3 · nα,p3,5 + 1 ⇔

⇔ 3 · k ≤
⌊
9 · nα,p3,5 + 3

2

⌋
(5.180)
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If nL ,p3,5 = 3 · k + 1, with k ∈ N∗, (5.179) becomes

3 · k + 1 ≤ k + 1 + 3 · nα,p3,5 ⇔ 2 · k ≤ 3 · nα,p3,5 ⇔

⇔ 3 · k + 1 ≤
⌊
9 · nα,p3,5

2

⌋
+ 1 (5.181)

If nL ,p3,5 = 3 · k + 2, with k ∈ N∗, (5.179) becomes

3 · k + 2 ≤ k + 1 + 1 + 3 · nα,p3,5 ⇔ 2 · k ≤ 3 · nα,p3,5 ⇔

⇔ 3 · k + 2 ≤
⌊
9 · nα,p3,5

2

⌋
+ 2 (5.182)

If nα,p3,5 = 2 · s, with s ∈ N, the last inequalities in (5.180), (5.181), and (5.182)
become

⎧⎨
⎩
3 · k ≤ 9 · s + 1
3 · k + 1 ≤ 9 · s + 1
3 · k + 2 ≤ 9 · s + 2

⇔
⎧⎨
⎩
3 · k ∈ {9 · s, 9 · s − 3, . . .}
3 · k + 1 ∈ {9 · s + 1, 9 · s − 2, . . .}
3 · k + 2 ∈ {9 · s + 2, 9 · s − 1, . . .}

(5.183)

Thus, when nα,p3,5 = 2 · s, with s ∈ N, (5.183) is equivalent to

nL ,p3,5 ≤ 9 · s + 2 ⇔ nL ,p3,5 ≤
⌊
9 · nα,p3,5

2

⌋
+ 2, (5.184)

i.e. the second inequality from (5.175).
If nα,p3,5 = 2 · s + 1, with s ∈ N, the last inequalities from (5.180), (5.181), and

(5.182) become

⎧⎨
⎩
3 · k ≤ 9 · s + 6
3 · k + 1 ≤ 9 · s + 5
3 · k + 2 ≤ 9 · s + 6

⇔
⎧⎨
⎩
3 · k ∈ {9 · s + 6, 9 · s + 3, . . .}
3 · k + 1 ∈ {9 · s + 4, 9 · s + 1, . . .}
3 · k + 2 ∈ {9 · s + 5, 9 · s + 2, . . .}

(5.185)

Thus, when nα,p3,5 = 2 · s + 1, with s ∈ N, (5.185) is equivalent to

nL ,p3,5 ≤ 9 · s + 6 ⇔ nL ,p3,5 ≤ 9 · nα,p3,5

2
+ 3

2
⇔

⇔ nL ,p3,5 ≤
⌊
9 · nα,p3,5

2

⌋
+ 2, (5.186)

i.e. the second inequality from (5.175).
We note that for p > 5 a factor of L , the last two inequalities from (5.177) are

always truewhen nL ,p = 1. This follows, as for p = 5, from the fact that when p > 5
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is a factor of L , then it is also a factor of q2, i.e. nq2,p ≥ 1, because π(x) is a QPP
(see condition 2) from Table3.1).

If p > 5 is at least a double factor in L , i.e. nL ,p ≥ 2, then p is a factor of both
r2 and r3, i.e. nr2,p ≥ 1 and nr3,p ≥ 1 (see conditions 3) or 4.b) in Table3.2). In
these conditions, for nL ,p ≥ 2, taking into account the inequality (5.153), the last
two inequalities in (5.177), for p > 5, are true if

nL ,p ≤ max

(⌈
nL ,p

3

⌉
, 1

)
+ 1 + 3 · nα,p. (5.187)

If nL ,p ≥ 2, we have max

(⌈
nL ,p

3

⌉
, 1

)
=

⌈
nL ,p

3

⌉
. We consider three cases.

If nL ,p = 3 · k, with k ∈ N∗, (5.187) becomes

3 · k ≤ k + 1 + 3 · nα,p ⇔ 2 · k ≤ 3 · nα,p + 1 ⇔ 3 · k ≤
⌊
9 · nα,p + 3

2

⌋

(5.188)
If nL ,p = 3 · k + 1, with k ∈ N∗, (5.187) becomes

3 · k + 1 ≤ k + 1 + 1 + 3 · nα,p ⇔ 2 · k ≤ 3 · nα,p + 1 ⇔

⇔ 3 · k + 1 ≤
⌊
9 · nα,p + 5

2

⌋
(5.189)

If nL ,p = 3 · k + 2, with k ∈ N, (5.187) becomes

3 · k + 2 ≤ k + 1 + 1 + 3 · nα,p ⇔ 2 · k ≤ 3 · nα,p ⇔

⇔ 3 · k + 2 ≤
⌊
9 · nα,p + 6

2

⌋
(5.190)

If nα,p = 2 · s, with s ∈ N, the last inequalities in (5.188), (5.189), and (5.190)
become

⎧⎨
⎩
3 · k ≤ 9 · s + 1
3 · k + 1 ≤ 9 · s + 2
3 · k + 2 ≤ 9 · s + 3

⇔
⎧⎨
⎩
3 · k ∈ {9 · s, 9 · s − 3, . . .}
3 · k + 1 ∈ {9 · s + 1, 9 · s − 2, . . .}
3 · k + 2 ∈ {9 · s + 2, 9 · s − 1, . . .}

(5.191)

Thus, when nα,p = 2 · s, with s ∈ N, (5.191) is equivalent to

nL ,p ≤ 9 · s + 2 ⇔ nL ,p ≤
⌈
9 · nα,p

2

⌉
+ 2, (5.192)

i.e. the third inequality from (5.175).
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If nα,p = 2 · s + 1, with s ∈ N, the last inequalities from (5.188), (5.189), and
(5.190) become

⎧⎨
⎩
3 · k ≤ 9 · s + 6
3 · k + 1 ≤ 9 · s + 7
3 · k + 2 ≤ 9 · s + 7

⇔
⎧⎨
⎩
3 · k ∈ {9 · s + 6, 9 · s + 3, . . .}
3 · k + 1 ∈ {9 · s + 7, 9 · s + 4, . . .}
3 · k + 2 ∈ {9 · s + 5, 9 · s + 2, . . .}

(5.193)

Thus, when nα,p = 2 · s + 1, with s ∈ N, (5.193) is equivalent to

nL ,p ≤ 9 · s + 7 ⇔ nL ,p ≤ 9 · nα,p

2
+ 5

2
⇔ nL ,p ≤

⌈
9 · nα,p

2

⌉
+ 2, (5.194)

i.e. the third inequality from (5.175).
Thus the theorem is proven. �

We note that the upper bounds from Theorems5.8–5.13 will appear generally
with high multiplicity, i.e. there will be many codewords of weight equal to the upper
bound when it is reached. This means that in many cases, when the dmin is slightly
below the bound, with low multiplicity, the turbo code error floor performance is
likely to be dominated by the bound instead of the dmin . This is considered in finding
of good QPP interleavers by the method described in Sect. 7.5 (Trifina and Tarniceriu
2014).

In Rosnes (2012) is it remarked that the upper bounds on the dmin in Theorems
5.8–5.13 can be shown to hold when the dual termination (Guinand and Lodge 1994)
(see Sect. 2.3) is used and the length of interleaver, L , is sufficiently large.

In Rosnes (2012) the exact minimum distances for the turbo code with all lengths
from the LTE standard (3GPP 2008) and the corresponding QPP interleavers are
given when using dual trellis termination (Guinand and Lodge 1994).

Some dmin-optimal LTE QPPs (3GPP 2008), reported in Table IV from Rosnes
(2012), are given in Tables5.6, 5.7, 5.8 and 5.9. For each QPP, the exact multiplicity
Ndmin , i.e. the number of minimum-weight codewords, is also enlisted.

LTEQPPs fromTable5.6 reach the upper bound of dmin equal to 36 (from the third
row in Table5.5), because for the lengths 312 = 23 · 3 · 13, 344 = 23 · 43, 440 = 23 ·
5 · 11, and 488 = 23 · 61, we have nL ,2 = 3, nL ,3 ≤ 1, and nL ,p ≤ 1, for p �= 2, 3.

LTE QPPs from Table5.7 reach the upper bound of dmin equal to 38 = 38 +
12 · l, for l = 0, from Theorem 5.8, because for the lengths 496 = 24 · 31, 624 =
24 · 3 · 13, 656 = 24 · 41, 688 = 24 · 43, 752 = 24 · 47, 816 = 24 · 3 · 17, 848 = 24 ·
53, 880 = 24 · 5 · 11, 912 = 24 · 3 · 19, 944 = 24 · 59, and 976 = 24 · 61, we have
nL ,2 = 4 ≤ l + 4, for l = 0, and nL ,p ≤ 1, for p �= 2, 7.

LTE QPPs from Table5.8 reach the upper bound of dmin equal to 50 = 38 +
12 · l, for l = 1, from Theorem5.8, because for the lengths 1696 = 25 · 53, 1760 =
25 · 5 · 11, and 1952 = 25 · 61, we have nL ,2 = 5 ≤ l + 4, for l = 1, and nL ,p ≤ 1,
for p �= 2, 7. We note that LTE QPPs from Table5.8 do not reach the upper bound
of dmin equal to 50 from Theorem5.9 because they have no QPP inverses, but CPP
inverses (given in the third column in Table5.8).
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Table 5.6 Some dmin-optimal LTE QPPs that reach the upper bound of dmin equal to 36 (from the
third row in Table5.5)

L π(x) dmin Ndmin

312 19x + 78x2 36 1654

344 193x + 86x2 36 1846

440 91x + 110x2 36 2422

488 91x + 122x2 36 2710

Table 5.7 Some dmin-optimal LTE QPPs that reach the upper bound of dmin equal to 38 from
Theorem5.8, for l = 0

L π(x) dmin Ndmin

496 157x + 62x2 38 906

624 41x + 234x2 38 1162

656 185x + 82x2 38 1226

688 21x + 86x2 38 1290

752 23x + 94x2 38 1418

816 127x + 102x2 38 1546

848 239x + 106x2 38 1610

880 137x + 110x2 38 1674

912 29x + 114x2 38 1738

944 21x + 86x2 38 1290

976 59x + 122x2 38 1866

Table 5.8 Some dmin-optimal LTE QPPs that reach the upper bound of dmin equal to 50 from
Theorem5.8, for l = 1

L π(x) π−1(x) dmin Ndmin

1696 55x + 954x2 663x + 530x2 + 424x3 50 3264

1760 27x + 110x2 163x + 990x2 + 1320x3 50 3392

1952 59x + 610x2 579x + 1586x2 + 488x3 50 3776

Table 5.9 Some dmin-optimal LTE QPPs that reach the upper bound of dmin equal to 51 from
Theorem5.9

L π(x) dmin Ndmin

4288 33x + 134x2 51 4484

4544 357x + 142x2 51 4476

5056 39x + 158x2 51 5300

5312 41x + 166x2 51 5244

5568 43x + 174x2 51 5500

6080 47x + 190x2 51 6012
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Table 5.10 Some dmin-optimal LTE QPPs that reach the upper bound of dmin equal to 50, in the
class of QPPs with inverse QPPs, from Theorem5.10

L π(x) π−1(x) dmin Ndmin

2496 181x + 468x2 1117x + 1404x2 50 9748

2624 27x + 164x2 1555x + 2132x2 50 10259

2752 143x + 172x2 943x + 1548x2 50 10771

3264 443x + 204x2 2483x + 2652x2 50 12819

3392 51x + 212x2 3259x + 1060x2 50 13331

3456 451x + 192x2 2539x + 3264x2 50 6802

3520 257x + 220x2 2753x + 1540x2 50 13843

3648 313x + 228x2 1993x + 3420x2 50 14355

3712 271x + 232x2 2671x + 232x2 50 14611

3776 179x + 236x2 443x + 1180x2 50 14867

3904 363x + 244x2 1667x + 3172x2 50 15379

3968 375x + 248x2 455x + 2232x2 50 15635

6144 263x + 480x2 5303x + 5856x2 50 12179

Table 5.11 dmin - optimal QPPs with improved error performance for two particular interleaver
lengths

L π(x) π−1(x) dmin Ndmin

1504 49x + 658x2 353x + 470x2 + 1128x3 50 3241

2048 21x + 128x2 1853x + 1408x2 50 9198

LTE QPPs from Table5.9 reach the upper bound of dmin equal to 51 from The-
orem5.9, because for the lengths 4288 = 26 · 67, 4544 = 26 · 71, 5056 = 26 · 79,
5312 = 26 · 83, 5568 = 26 · 3 · 29, and 6080 = 26 · 5 · 19, we have nL ,2 = 6 and
nL ,p ≤ 1, for p �= 2.

LTE QPPs from Table5.10 reach the upper bound of dmin equal to 50, in the class
of QPPs with inverse QPPs, from Theorem5.10. The inverse QPPs for the reported
QPPs are given in the third column in Table5.10.

In Rosnes (2012), for some lengths, there are also tabulated dmin-optimal or
improved QPPs found by computer search. To quickly reject bad QPPs during the
search, the special version of the triple impulse method (Crozier et al. 2004), men-
tioned at the beginning of this section, was used. Furthermore, the size of the search
space can be reduced by using Theorems5.8–5.13. For instance, Theorems5.8 and
5.9 can be used to terminate the search when a QPP has been found that led to a
minimum distance equal to one of the upper bounds provided in the theorems. Fur-
thermore, Theorems5.10 and 5.11 can be used to terminate the search within the
class of QPPs with a QPP inverse when a QPP achieving one of the upper bounds
provided by the theorems has been found. Similarly, Theorems5.12 and 5.13 can
be used to terminate the search within the class of QPPs with a CPP inverse. In the
final stage, the best QPP candidate can be checked using the exhaustive algorithm for



248 5 Minimum Distance of Turbo Codes with Permutation …

Table 5.12 Some dmin-optimal QPPs with improved error rate performance which do not have an
inverse QPP

L π(x) π−1(x) dmin Ndmin

2496 119x + 702x2 215x + 390x2 + 218x3 51 3034

2624 125x + 1066x2 677x + 246x2 + 2296x3 51 2556

2752 21x + 430x2 557x + 1634x2 + 344x3 51 2853

3008 143x + 94x2 1951x + 470x2 + 1128x3 51 2940

3264 55x + 102x2 2359x + 2958x2 + 2856x3 51 3396

3392 81x + 106x2 513x + 2862x2 + 2968x3 51 3324

3520 27x + 110x2 1923x + 2750x2 + 3080x3 51 3452

3648 43x + 114x2 403x + 1026x2 + 2280x3 51 3580

3776 1359x + 826x2 1151x + 354x2 + 1416x3 51 3708

3904 1283x + 854x2 2715x + 2806x2 + 2440x3 51 3836

computing the distance spectrum of a turbo code from Rosnes and Ytrehus (2005)
or Garello et al. (2001).

In Table5.11, which is a part of TableV from Rosnes (2012), two dmin-optimal
QPPs are given for two medium interleaver lengths. For each QPP, the exact mul-
tiplicity Ndmin is also listed. These polynomials were selected based on error-rate
performance through simulations. The inverse polynomial, denoted by π−1(x), is
tabulated in the third column of the table. We can verify that the minimum dis-
tance for the QPP of length 2048 from Table5.11 reaches the general upper bound
given by Theorem5.10 above because this QPP has an inverse QPP and for ν = 3,
dmin ≤ 2 · (23+1 + 9) = 50 results. The minimum distance for the QPP of length
1504 from Table5.11 reaches the partial upper bound given in Theorem5.12 above
because this QPP has an inverse CPP, 1504 = 25 · 47 and for l = 1, it follows that⌊
3 · l
2

⌋
+ 4 = 5, and dmin ≤ 38 + 12 · l = 50.

Table5.12, which is a part of TableVI from Rosnes (2012), gives some dmin-
optimal improved QPPs for medium-to-long interleaver lengths. For each QPP, the
corresponding exact multiplicity Ndmin is also listed. In the third column of the table,
an inverse polynomial, denoted by π−1(x), is tabulated. Because for the lengths
2496 = 26 · 3 · 13, 2624 = 26 · 41, 2752 = 26 · 43, 3008 = 26 · 47, 3264 = 26 · 3 ·
17, 3392 = 26 · 53, 3520 = 26 · 5 · 11, 3648 = 26 · 3 · 19, 3776 = 26 · 59 and
3904 = 26 · 61, the exponents of the factors from their prime decomposition meet

the equality nL ,p =
{
6, if p = 2
1, otherwise.

, the minimum distances for QPPs lengths from

Table5.12 reach the partial upper bound given in Theorem5.9, namely 51. From
Table5.12 we note that QPPs of the same lengths as those from Table 5.10 have
significantly smaller multiplicities Ndmin . This is due to the fact that the QPPs from
Table5.12 have inverse CPPs, while QPPs from Table5.10 have inverse QPPs.

Deriving a general upper bound on the dmin (if it exists) that holds for any
interleaver length without any constraints on the minimum degree of the inverse
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polynomials is still an open problem. Even finding a general upper bound when
the minimum degree of the inverse polynomials is three is also an open prob-
lem. At the end of the paper (Rosnes 2012) the author has remarked that the QPP
39x + 760x2 (mod 9728) (which has a CPP inverse) gives an estimated dmin of 56,
which indicates that 51 is probably not a universal bound on the dmin when the min-
imum degree of the inverse polynomials is three. This fact is also indicated by the
QPP 59x + 1680x2 (mod 6144), which has a CPP inverse, a minimum distance of
51 and a very low multiplicity of 94.

5.3 Upper Bound on Minimum Distance of Turbo Codes
with Interleavers Based on PPs of Any Degree

In this section we give an upper bound on the minimum distance of an interleaver
based on a PP of any degree, for lengthsmultiples of 8, that is of the form L = 23 · M ,
with M a positive integer (Ryu et al. 2015).

Firstly, we define the notion of PLPP.

Definition 5.14 A PLPP interleaver is an interleaver π(x) of length L so that

π(x) =

⎧⎪⎪⎨
⎪⎪⎩

P1,0 · x + P0,0, for x (mod R) = 0
P1,1 · x + P0,1, for x (mod R) = 1
· · · · · · · · · · · · · · ·
P1,R−1 · x + P0,R−1, for x (mod R) = R − 1,

(5.195)

which can be also represented in the following form

π(x) =

⎧⎪⎪⎨
⎪⎪⎩

P1,0 · Ry + P ′
0,0, for x = Ry

P1,1 · Ry + P ′
0,1, for x = Ry + 1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
P1,R−1 · Ry + P ′

0,R−1, for x = Ry + R − 1,

(5.196)

with 1 ≤ R < L , R | L and P ′
0,l = P0,l + P1,l · l, ∀l = 0, R − 1.

The efficient address generation method in Ryu (2012a) can be used for imple-
menting a PLPP.

The following lemma from Ryu (2012a) is useful to show that all PPs are equiv-
alent to PLPPs when the interleaver lengths are of the form L = 23 · M , with M a
positive integer.

Lemma 5.15 (Ryu 2012a) Let π(x) =
d∑

i=1

qi x
i (mod L) be a PP, where

gcd(q1, L) = 1 and all factors of L divide qi , ∀i = 2, d. Then, π(x) is a PP. Let



250 5 Minimum Distance of Turbo Codes with Permutation …

π′(x) =
d∑

i=1

iqi x
i−1 be the formal derivative of π(x) and let also R be an integer so

that L | (qi R2),∀i = 2, d. Thenπ(x) is decomposed into a PLPP so that P1,l = π′(l)
and P ′

0,l = π(l), with l = 0, 1, · · · , R − 1.

Proof For x = Ry + l, the i th degree term of π(x) can be written as

qi x
i = qi (Ry + l)i = qi ·

i∑
m=0

Cm
i · (Ry)m · li−m =

= qi · li + qi · i · (Ry) · li−1 + qi ·
i∑

m=2

Cm
i · (Ry)m · li−m (5.197)

Since L | (qi R2), ∀i = 2, d , it follows that L | (qi Rn), where 2 ≤ i ≤ d and n ≥
3. Thus qi xi (mod L) = iqi li−1 · Ry + qi · li (mod L). Then, π(Ry + l) = (Ry) ·
d∑

i=1

(iqi l
i−1) +

d∑
i=1

(qi l
i ) = π′(l) · Ry + π(l). Consequently P1,l =

d∑
i=1

iqi l
i−1 =

π′(l) and P ′
0,l =

d∑
i=1

qi l
i = π(l), l = 0, 1, · · · , R − 1. �

Lemma 5.16 (Ryu 2012b) Let π(x) =
d∑

i=1

qi x
i (mod L) be a PP. Assume that

L = 23 · M, with M a positive integer. Then, π(x) is equivalent to a PLPP and
R ≤ L/2.

Proof Wechoose a positive integer R so that L | R2 and R | L . Assume that the prime

decomposition of L is L = 2nL ,2 ·
nL∏
i=2

pnL ,i

L ,i , with nL ,2 ≥ 3, nL ∈ N∗ and nL ,i ≥ 1,

∀i = 2, nL . Then, a valid choice for R is the value 2nR,2 ·
nL∏
i=2

pnR,i

i , where nR,2 =

�nL ,2/2� and nR,i =
{
nL ,i , if nL ,i = 1,
�nL ,i/2�, if nL ,i ≥ 2

, ∀i = 2, nL .

For this choice of R, as 2 · �nL ,i/2� ≥ nL ,i , for nL ,i ≥ 2, we have L | R2, and as
�nL ,i/2� < nL ,i , for nL ,i ≥ 2, we have R | L .

Because L | R2, we have L | (qi R2), for 2 ≤ i ≤ d, and according to Lemma5.15
it follows that π(x) can be decomposed into a PLPP so that P1,l = π′(l) and P ′

0,l =
π(l), with l = 0, 1, · · · , R − 1.

The fact that R ≤ L/2 follows from nR,2 ≤ nL ,2 − 1 and nR,i ≤ nL ,i , ∀i = 2, nL .
�

Lemma5.17 gives the upper bound of minimum distance for an interleaver based
on PP of any degree, for lengths multiples of 8.
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Fig. 5.6 Critical interleaver pattern of size 4

Lemma 5.17 (Ryu et al. 2015) Let there be aPPof arbitrary degreemodulo a length
multiple of 8 and let the first coefficients of the equivalent PLPP be equal for all l,
i.e., P1,0 = P1,1 = ... = P1,R−1 = P. Let m and n be positive integers and R|(m ·
(2ν − 1)), where ν is the degree of the primitive feedback and monic feedforward
polynomials of RSC codes, which are component codes of a conventional turbo code.
Under these conditions, there exists a critical interleaver pattern of size 4 as shown
in Fig.5.6 and the minimum distance of the turbo code with this PP (or PLPP)
interleaver is upper bounded by (m + n) · 2ν + 12.

Proof Consider the codeword generated by the interleaver pattern shown in Fig. 5.6.
For both constituent codes the interleaver pattern contains two fundamental paths
with input sequences of weight 2. The difference between 1-positions in the two input
sequences of weight 2 ism · (2ν − 1) for the upper constituent code, and n · (2ν − 1)
for the lower constituent code, respectively.

The four elements of permutation π(·), indicated in Fig. 5.6, are written in detail
below

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi → π(xi )
xi + m · (2ν − 1) → π(xi + m · (2ν − 1))
x j → π(x j ) = π(xi ) + n · (2ν − 1)
x j + m · (2ν − 1) → π(x j + m · (2ν − 1)) =
= π(xi + m · (2ν − 1)) + n · (2ν − 1)

(5.198)

Since the distance between the first two points for the upper constituent code is
m · (2ν − 1) and R|(m · (2ν − 1)), the two points are in the same i th component
LPP of the PLPP. Thus, the two points are mapped into π(xi ) = Pxi + Ri and
π(xi + m · (2ν − 1)) = P(xi + m · (2ν − 1)) + Ri , respectively.
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Since the input sequences for the upper and lower constituent codes are mapped
by an interleaver, there is a point in the input for the upper constituent code that is
mapped into the point Pxi + Ri + n · (2ν − 1) in the input for the lower constituent
code. Let us call it x j , where j is the number of the corresponding component
LPP of the PLPP. Then, π(x j ) = Px j + R j = Pxi + Ri + n · (2ν − 1). Since the
distance between the last two points for the upper constituent code is m · (2ν − 1)
and R|(m · (2ν − 1)), the two points are in the same j th component LPP of the PLPP.

From those above, we have

P(x j + m · (2ν − 1)) + R j = Px j + R j + Pm · (2ν − 1) =
= Pxi + Ri + n · (2ν − 1) + Pm · (2ν − 1) =

= P(xi + m · (2ν − 1)) + Ri + n · (2ν − 1) (5.199)

But (5.199) is the equation corresponding to the fourth point from (5.198). Thus,
an input sequence of weight 4, shown by the interleaver pattern from Fig. 5.6, exists
for PLPP with R LPPs, when R|(m · (2ν − 1)).

It is easy to check that the parity weight of codeword generated by the upper
constituent code is 2 · (m · 2ν−1 + 2) (see the proof ofTheorem5.8). Then, theweight
of the corresponding turbo codeword is at most 2 · (m · 2ν−1 + 2) + 2 · (n · 2ν−1 + 2)
+ 4 = (m + n) · 2ν + 12. �

In Table5.13 upper bounds on the minimum distance for turbo codes with PPs
when ν = 3 are shown. The result in Lemma5.17 is similar to Tables5.4 and 5.5
(Tables II and III in Rosnes 2012). However, Lemma5.17 can also be applied to
higher order PPs.

Reference Trifina et al. (2017) gives up to five degree PPs of short LTE lengths
(from 40 to 512) with optimum minimum distances, when using LTE turbo codes
with dual trellis termination. Four CPPs and two 4-PPs obtained in Trifina et al.
(2017) reaching the upper bound of minimum distance equal to 36 (their PLPP rep-
resentations have R = 2) are given in Table5.14. Many PPs of degree greater than
two better than QPPs in terms of TUB(FER) at high SNR for AWGN channel (see
Eq. (2.22)), considering only the first term in the distances spectra, were found in
Trifina et al. (2017). For the PPs found in Trifina et al. (2017), the authors have
computed the number of component LPPs from their PLPP representation under the
constraint that the coefficients of linear terms of the LPPs are equal to each other (R).
From the results given in Tables I and II from Trifina et al. (2017) it can be observed
that if some PPs of a certain length haveminimum distances close to each other, then,
for those with greater values of R for their PLPP representation, the multiplicities are
smaller. Thus, an important conclusion resulting from Trifina et al. (2017) is that the
value of R highlights a tradeoff between the error rate performance and implementa-
tion complexity. For very good error rate performance the values of R, and thus the
complexity, should increase, and for lower implementation complexity the values of
R should decrease, but in this case the error rate performance is compromised.
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Table 5.13 Upper Bounds (UBs) for the minimum distance of turbo codes using PP based inter-
leavers. Generator matrix of recursive systematic convolutional codes is as in the LTE turbo
code (3GPP 2008)

The upper bound in Lemma5.17 shows some interesting points, specifically, for
R = 4. In Rosnes (2012) (see Theorems5.9 and 5.10 in this chapter), it was shown
that the upper bound on the minimum distance of turbo codes with QPP based
interleavers, when QPPs have a quadratic inverse, is 50 and for some QPPs with
non-QPP inverse, 51. In it is shown that for every PP, not just for QPPs, the upper
bound on the minimum distance is 52 when R = 4. Although the PPs that achieve
the upper bound 52 have not been identified Lemma5.17 shows that the upper bound
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Table 5.14 Four dmin - optimal CPPs and two dmin - optimal 4-PPs for some short LTE lengths,
which reach the upper bound of minimum distance equal to 36 for R = 2 (from Table5.13)

L π(x) dmin Ndmin

288 211x + 36x2 + 24x3 36 1511

304 67x + 38x2 + 76x3 36 1607

320 47x + 40x2 + 80x3 36 1702

368 57x + 46x2 + 92x3 36 1990

256 183x + 96x2 + 64x3 + 16x4 36 1422

288 79x + 120x2 + 0x3 + 6x4 36 1511

will increase only with 1 or 2 for any degree of polynomials when R = 4, i.e., no
large difference in terms of minimum distance.

Finally, wemention that, to avoid the limitation of PPs previously shown, dithered
LPP interleavers are proposed in Ryu et al. (2015). These interleavers are, actu-
ally, PLPPs as in (5.195), but the coefficients of the component LPPs are relaxed
(“dithered”) to allow improving the performance of a specific turbo code. In Ryu
et al. (2015) it is shown that for some short lengths, good dithered LPP interleavers
were found, which outperform good QPPs from 3GPP (2008), Rosnes and Takeshita
(1992) or Trifina and Tarniceriu (2014) or CPPs from Trifina and Tarniceriu (2013).
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Chapter 6
Parallel Turbo Decoding for Permutation
Polynomial Interleavers

6.1 Preliminaries

The very good error correction properties of turbo codes make them an attractive
choice for all types of communication systems. However, in applications requiring
high data rate, there is a problem related to the overall large delay of the iterative
decoder. In fact, each frame must be processed through several iterations before
estimating the corresponding data. Consequently, the implementation of the decoder
should be optimized so that the delay should be kept as low as possible.

A direct way to increase the throughput of an iterative decoder consists in using
many parallel iterative decoders. The use of M iterative decoders leads to an increase
ofM times of the throughput, but the complexity also increasesM times. Particularly,
the memory used, that becomes a significant portion of the overall complexity for
the medium-to-long interleaver lengths, will increase linearly with M .

A more efficient solution to increase the throughput of an iterative decoder is
a parallelized structure where the operations for decoding a turbo-codeword are
performed at the same time by different processors.

The turbo decoder iterates for a certain number of iterations between two decoders
with a soft-input soft-output (SISO) decoding algorithm (Trifina and Munteanu
2008). At a given iteration, decoder 1 accepts at its input what decoder 2 supplies at
its output in the previous iteration (except for the first iteration, when there is no input
from decoder 2). Actually, decoder 1 sends its output to decoder 2, which accepts
it as input for the current iteration. Between the two decoders, an interleaver and a
de-interleaver rearrange the information corresponding to the permutation π and to
the inverse permutation π−1, respectively. In parallel concatenation the information
exchanged (called extrinsic information) belongs to input bits of both encoders.

When convolutional codes are constituent codes of the turbo encoder, the algo-
rithmcarried in eachSISOdecoder is usually theBahl–Cocke–Jelinek–Raviv (BCJR)
(Bahl et al. 1974). Ideally it requires two recursions on the code trellis, a forward
one, from the beginning to the end of the block, and a backward one, from the end to

© Springer Nature Singapore Pte Ltd. 2019
L. Trifina and D. Tarniceriu, Permutation Polynomial Interleavers
for Turbo Codes, Signals and Communication Technology,
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(a)

(b)

Fig. 6.1 a Avoiding collisions; b A collision

the beginning of the block. Practically, in low delay implementations the algorithm
is “windowed” by dividing the entire block into sub-blocks and making some shorter
recursions within sub-blocks, all of them associated to distinct processors working
in parallel.

Since every processor performs the same algorithm, all of them access the mem-
ory at the same time. Then, collisions can occur, weakening the effectiveness of
implementation. It is assumed that the memory is divided into a number of banks. A
collision occurs when two (or more) processors access the same memory bank at the
same time. There are no collisions when processors access different memory banks
at the same time. If there are P processors and each of them accesses the memory
once at a time, then there will be at most P simultaneous accesses to memory. To
ensure an implementation without collisions, there must be at least P memory banks.
A schematic view of collisions is shown in Fig. 6.1.

The memory access is performed when the SISO decoder reads input variables
and when it writes output variables. Actually, the output variables are an update of
input variables and it is assumed that the update of a given variable is written on the
same memory element where it has been stored. It is also assumed that the cost for
reading and writing operations of corresponding updates coincide, thus the reading
and writing operations are considered equivalent in terms of memory access.

The problem of parallelism consists in that there are two schemes of read-
ing/writing operations, one associated with decoder 1, which reads and writes vari-
ables in natural order, the other one associated with decoder 2, which reads and
writes in an interleaved (permuted) order. In other words, the two semi-iterations of
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turbo decoding algorithm impose different constraints on processing variables in the
memory banks. This is the main problem of parallelism in turbo decoders.

Thus, the interleaver has the main role in this scenario. If the interleaver is
defined by the identity permutation, i.e., π(i) = i,∀i ∈ ZL , the problem of paral-
lelism becomes considerably easier, since both decoder 1 and decoder 2 work in
the same way, at least in what concerns the memory access scheme. Both decoders
write/read in a natural order. But in this case the turbo code performance is weaker
compared to a well designed interleaver.

Many researchers have tried to find good interleavers that allow a parallel imple-
mentation of the turbo decoder without collisions. Out of these we mention: block or
multi-stage interleavers for parallel decoding (Giulietti et al. 2002), divisible inter-
leavers for parallel decoding (Kwak and Lee 2002), inter-window randomization
(IWR) interleavers for parallel decoding (Nimbalker et al. 2003). For more refer-
ences concerning collision-free interleaver design we refer the reader to Benedetto
et al. (2006).

When a specific permutation must be implemented in a parallel decoder, as it is
the case for standards as LTE (3GPP 2008) or Digital Video Broadcasting (DVB)
(DVB-RCS 2003), or if a decoder must work with multiple interleavers and/or with
different types of parallel processing, then particular collision-free interleavers as
those mentioned above are not viable. However, the solution of collision-free inter-
leavers has been successfully applied to LTE standard (3GPP 2008) since QPP inter-
leavers are contention-free for any number of processors divisible by interleaver
length (Takeshita 2006). We present the proof for this property of any degree PP
interleavers in Sect. 6.2. Almost regular permutation (ARP) interleavers (Berrou et al.
2004) can be designed so that they have high degree parallel processing and good
error correction performance.

Another method to solve the collision problem is to use a scheme which maps the
inputs to be read or written in the memory, in a desired order so that collisions are
avoided.

In Tarable and Benedetto (2004, 2005) and Tarable et al. (2004), the authors
proposed an algorithm based on the permutation decomposition which allows to
implement a parallel decoder based on an arbitrary interleaver with any parallelism
degree.

A method with the same approach to avoid collisions was proposed in Nieminen
(2014), but it uses a butterfly network of 2-by-2 crossbar switches for the mapping
scheme between processors and memories. The use of a butterfly network of 2-by-2
crossbar switches involves that the number of processors used in parallel iterative
decoding is a power of 2, but in this case the complexity is smaller than that for the
solution previously mentioned. Actually, the solution is optimal in terms of address
information. In Nieminen (2014) the control bits needed for routing the inputs in a
butterfly network are obtained in a quite complicated way. In Nieminen (2017) it is
shown that the control bits are obtained in an easier way for QPP interleavers. The
same easy way to obtain the control bits is proved to be valid for any degree PP
interleavers and ARP interleavers in Trifina and Tarniceriu (2017). This solution is
presented in Sect. 6.3 of this chapter.
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6.2 Maximum Contention-Free Property of Any Degree PP
Interleavers

In this section we show that PP interleavers are without collision for any number of
processors divisible by interleaver length (i.e. they are “MCF”). The condition for
collision-free interleavers for window size W and permutation π(·) describing the
interleaver is Nimbalker et al. (2004, 2008)

�π( j + tW )/W� �= �π( j + vW )/W� and (6.1)

�π−1( j + tW )/W� �= �π−1( j + vW )/W�, (6.2)

where 0 ≤ j < W , 0 ≤ t < v < L/W , and π−1(·) is the inverse permutation. In
Nimbalker et al. (2004, 2008), it is shown that the number of collision-free inter-
leavers A(W,M) is lower and upper bounded by

W ! · (M !)W + M ! · (W !)M − M ! · W ! < A(W,M) < (M !)W · (W !)M (6.3)

The fact that the upper bound is smaller than (MW )! (the total number of inter-
leavers of length MW ) shows that the fraction of collision-free interleavers is small.
This upper bound is represented in Fig. 6.2 on a logarithmic scale. It is divided by
to the total number of interleavers for the first 17 lengths from LTE standard (3GPP
2008) when the number of processors for parallel decoding is M = 2, M = 4 or
M = 8.

The fact that all PP interleavers are MCF is given by the following theorem
(Takeshita 2006).

Theorem 6.1 (MCF Property of PP interleavers) Let π(x) = q0 + q1 · x + q2 ·
x2 + · · · + qd · xd (mod L), 0 ≤ x ≤ L − 1, be a permutation polynomial inter-
leaver of degree d. Then, π(x) generates an MCF interleaver.

Proof Firstly, we check condition (6.1) for this interleaver.
Let there be

Qt =
⌊

π( j + tW )

W

⌋
and Qv =

⌊
π( j + vW )

W

⌋
(6.4)

Then
π( j + tW ) = Qt · W + (

π( j + tW ) (mod W )
)
and

π( j + vW ) = Qv · W + (
π( j + vW ) (mod W )

) (6.5)

We have to show that Qt �= Qv for t − v �= 0 (mod M) and any 0 ≤ j < W .
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Fig. 6.2 The upper bound of the number of collision-free interleavers from (6.3) (UB(A(W,M)))
divided by to the total number of interleavers of length L = MW , for the first 17 lengths of LTE
standard, when the number of processors is M = 2, M = 4 or M = 8

Assume that Qt = Qv . Then

Qt − Qv = π( j + tW ) − (
π( j + tW ) (mod W )

)
W

−

− π( j + vW ) − (
π( j + vW ) (mod W )

)
W

= 0 (6.6)

But

π( j + tW ) = q0 + q1 · j + q2 · j2 + · · · + qd · j d (mod W ) and

π( j + vW ) = q0 + q1 · j + q2 · j2 + · · · + qd · j d (mod W ),
(6.7)

sinceW = L/M is integer and, in this case, for x and y integers, from x ≡ y (mod L)
it follows that x ≡ y (mod W ). Thus

π( j + tW ) (mod W ) = π( j + vW ) (mod W ) (6.8)
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and the absolute value of (6.6) can be simplified as

|Qt − Qv| = |π( j + tW ) − π( j + vW )|
W

= 0 (6.9)

As0 ≤ j < W and0 ≤ tW < vW < L , it follows that 0 ≤ j + tW < j + vW <

L + W . Obviously, we have ( j + tW ) (mod L) �= ( j + vW ) (mod L). Therefore,
π( j + tW ) �= π( j + vW ), because π(x) generates a permutation polynomial and in
this way a contradiction exists in (6.9).

To verify condition (6.2), we note that the permutation polynomials form a finite
group G under the operation of function composing, i.e. π(π(x)) is a permutation
polynomial and the inverse function π−1(x) can be found by a sufficient number
of function composition of π(x) to itself. Then, it is sufficient to show that each
element from G which includes the inverse function π−1(x) satisfies (6.1). This
implies the same steps as in the first part of the theorem proof, replacing π( j + tW )

by π(π( j + tW )) and π( j + vW ) by π(π( j + tW )). We have:

π
(
π( j + tW )

) = q0 + q1 · π( j + tW ) + q2 · (
π( j + tW )

)2 + · · · +
+qd · (

π( j + tW )
)d

(mod W ) (6.10)

or, using (6.7),

π
(
π( j + tW )

) = q0 + q1 · π( j) + q2 · (
π( j)

)2 + · · · +
+qd · (

π( j)
)d

(mod W ) (6.11)

Similarly

π
(
π( j + vW )

) = q0 + q1 · π( j) + q2 · (
π( j)

)2 + · · · +
+qd · (

π( j)
)d

(mod W ) = π
(
π( j + tW )

)
(mod W ) (6.12)

Therefore, (6.9) becomes

|Qt − Qv| =
∣∣π(

π( j + tW )
) − π

(
π( j + vW )

)∣∣
W

= 0 (6.13)

As ( j + tW ) (mod L) �= ( j + vW ) (mod L), and π(x) generates a permuta-
tion polynomial, it follows thatπ( j + tW ) �= π( j + vW ) and thusπ

(
π( j + tW )

) �=
π
(
π( j + vW )

)
. So, the assumption that Qt = Qv is not true.

Finally, we use the mathematical induction method to show that every function
obtained by successively composing π(x) (which after a number of steps generate
inverse function π−1(x)) generates a MCF interleaver. �
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6.3 Parallel Access by Butterfly Networks for Any Degree
Permutation Polynomials

Let the interleaver length be factorized as L = M · W for positive integers M and
W . In this section we denote by IL , L ∈ N

∗, the set {0, 1, . . . , L − 1}. Let functions
a j (k) : IM × IW → IL be defined so that a j (k) �= ai (k), ∀k ∈ IW , ∀i, j ∈ IM with
j �= i , and ∀x ∈ IL , there is a unique function a jx , so that a jx (kx ) = x . For a parallel
turbo decoding implementation, the linear and interleaved accesses to the memory
banks at time k ∈ IW are defined by the address vectors

(
a0(k), a1(k), . . . , aM−1(k)

)
and

(
π(a0(k)),π(a1(k)), . . . ,π(aM−1(k))

)
, respectively. To avoid the collisions at a

certainmoment in the samememory bank, theremust exist a function FM : IL → IW ,
so that

(1) FM
(
ai (k)

) �= FM
(
a j (k)

)
(linear parallel access)

(2) FM
(
π(ai (k))

) �= FM
(
π(a j (k))

)
(interleaved parallel access)

∀i, j ∈ IM , i �= j , and k ∈ IW . If there exists a function FM for an interleaver over
IL , then we say that the interleaver is contention-free for parameters M and W . We
note that this definition is different from that given by Eqs. (6.1) and (6.2). In this
case, a parallel turbo decoding implementation is possible with M processors and
M memory banks, each of them with W memory cells.

The linear parallel access for any degree PP interleaver with functions a j (k) =
j · W + k was proved in Theorem6.1 (Takeshita 2006).

In Theorem6.3 it is proved that any PP interleaver of length L = 2n · W , with n
and W positive integers, is contention-free by the function

F2n (x) = x (mod 2n), (6.14)

and the function (6.14) provides exactly the same mapping of addresses as a 2n × 2n

butterfly network does.
In Fig. 6.3 a 8 × 8-butterfly network and eight memories are shown. The 8 ×

8-butterfly network consists of twelve 2-by-2 crossbar switches (i.e. log2(8) = 3
columns multiplied by 8/2 = 4 switches per column). Each 2-by-2 crossbar switch
is controlled by one bit. If the bit is zero, a direct connection is performed, and if
the bit is one, a cross connection is performed. In Fig. 6.3 the twelve control bits
x0, x1, . . . , x11 are set to zero. Hence all 2-by-2 crossbar switches perform a direct
connection. To get from an input bit i to an output bit j , three control bits are required
(Lawrie 1975). If the binary representations of decimal numbers i and j are (i2i1i0)2
and ( j2 j1 j0)2, respectively, then the control bits cbk , with k = 0, 1, 2, are computed
by cbk = ik ⊕ jk , where ⊕ is the modulo 2 operator. The bit with index 0 in a binary
representation is the least significant bit. The first control bit used is cb0, then cb1,
and then cb2, i.e. the three control bits are applied from the left to the right side of
the butterfly network.

Before proving the main theorem in this section we give the definition of a uni-
formly pn-dyadic vector, where p is a prime number.
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Fig. 6.3 8 × 8-butterfly network with eight memories

Definition 6.2 Let p be a prime number. A vector
(
a0(k), a1(k), . . . , apn−1(k)

)
of

integer components al ≥ 0, l ∈ Ipn , is uniformly pn-dyadic if

apqk+i �= apqk+ j (mod pq), (6.15)

∀i, j ∈ Ipq with i �= j , ∀k ∈ Ipn−q , and ∀q = 1, 2, . . . , n.

For example, the vector
(
a0(k), a1(k), . . . , a32−1(k)

) = (0, 1, 2, 3, 4, 5, 6, 7, 8)
is uniformly 9-dyadic because a0(k) �= a1(k) �= a2(k) (mod 3) (i.e. 0 �= 1 �=
2 (mod 3)), a3(k) �= a4(k) �= a5(k) (mod 3) (i.e. 3 �= 4 �= 5 (mod 3)), a6(k) �=
a7(k) �= a8(k) (mod 3) (i.e. 6 �= 7 �= 8 (mod 3)), and a0(k) �= a1(k) �= · · · �= a8(k)
(mod 32) (i.e. 0 �= 1 �= · · · �= 8 (mod 9)). Vector

(
a0(k), a1(k), . . . , a32−1(k)

) =
(3, 7, 11, 6, 4, 5, 9, 10, 2) fulfills the conditions a3k+i �= a3k+ j (mod 3), ∀i, j ∈ I3
with i �= j , ∀k ∈ I3, but it is not uniformly 9-dyadic because a2(k) = a8(k) (mod 32)
(i.e. 11 = 2 (mod 9)). Vector

(
a0(k), a1(k), . . . , a32−1(k)

) = (17, 7, 11, 6, 4, 5, 9,
10, 3) also fulfills the conditions a3·0+i �= a3·0+ j (mod 32), ∀i, j ∈ I9 with i �= j ,
but it is not uniformly 9-dyadic because a0(k) = a2(k) (mod 3) (i.e. 17 = 11 =
2 (mod 3)).

The classes on IL modulo pn are denoted by

Ui (p) = {x ∈ IL |x = i (mod pn)} (6.16)
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for all i ∈ Ipn . The Cartesian product of the sets Ui (p) is denoted by U pn , i.e.,
U pn = U0(p) ×U1(p) ×U2(p) × · · · ×Upn−1(p). Obviously, from (6.16) it results
that the sets Ui (p) are disjoint.

For the interleaver length L = 2n · W vectors Aa(k) and Aπ(k) are written as

Aa(k) = (
a0(k), a1(k), . . . , a2n−1(k)

)
(6.17)

and
Aπ(k) = (

π(a0(k)),π(a1(k)), . . . ,π(a2n−1(k))
)

(6.18)

for all k ∈ IW and components al(k) ∈ IL .
The main theorem is given below.

Theorem 6.3 (Contention-free (CF) property of PP interleavers by the function
(6.14) Nieminen 2017) Let n and W be positive integers and L = 2n · W. Let π(·)
be a PP interleaver on IL of arbitrary degree, as in (3.1). Then it holds that

(1) Aa(k) is uniformly 2n-dyadic
if and only if

(2) Aπ(k) is uniformly 2n-dyadic
if and only if

(3) there exists the transition matrix Bk of a 2n × 2n butterfly network so that
Bk Aa(k) ∈ U 2n

if and only if
(4) there exists the transition matrix Ck of a 2n × 2n butterfly network so that

Ck Aπ(k) ∈ U 2n

for al k ∈ IW .

From Theorem6.3 it follows that any PP interleaver on IL , with L = 2n · W , is
contention-free by the function F2n given in (6.14). On the base of this theorem
we may construct many kinds of vectors of component functions a j to access the
extrinsic memories without collisions for PP interleavers on I2nM . We have only
to check that the designed vectors of component functions the a j are uniformly
2n-dyadic according to (6.15) for p = 2.

To prove the theorem, three lemmas are firstly stated and proved.

Lemma 6.4 Let n and W be positive integers and L = 2nW . Assume that A =
(a0, a1, . . . , a2n−1) is a vector whose components al ∈ IL , ∀l ∈ I2n . Then A is uni-
formly 2n-dyadic if and only if there exists the transition matrix B of a 2n × 2n

butterfly network so that
BA belongs to U 2n . (6.19)

The assumption that al ∈ IL , ∀l ∈ I2n , can be replaced by the requirement that al are
non-negative integers, i.e. al ≥ 0, ∀l ∈ I2n .

Proof “⇒” For the direct proof, we assume that vector A is uniformly 2n-dyadic.
We show that, if al is applied to the input pin l of the 2n × 2n butterfly network,
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then it is mapped to the output Ui (2) with i = al (mod 2n). Let l0, l1, . . . , ln−1 and
al;0, al;1, . . . , al;n−1, be the least n significant bits of l and al , respectively. From
Lawrie (1975) the n control bits cb j , with j ∈ In , which make an interconnection
along the 2n × 2n butterfly network from the input pin l to the output pin al (mod 2n)
are determined by the modulo 2 sums cb j = (l j ⊕ al; j ), with j ∈ In .

We beginwith the least significant bit al;0 of the component al .We denote the orig-
inal vector by A0, that is, A0 = A = (a0, a1, . . . , a2n−1). Since A0 = A is uniformly
2n-dyadic by assumption, from (6.15) for p = 2 and q = 1, we have that a2k �=
a2k+1 (mod 2), ∀k ∈ I2n−1 . We note that if l = 2k then l0 = 0 and the first control bit
is al;0 and if l = 2k + 1 then l0 = 1 and the first control bit is al;0 ⊕ 1. We derive the
vector A1 = (a10, a

1
1, . . . , a

1
2n−1) from A0 by the following rule: assign a12k = a2k and

a12k+1 = a2k+1 if a2k = 0 (mod 2) (i.e. if cb0 = a2k;0 ⊕ 0 = 0 ⊕ 0 = a2k+1;0 ⊕ 1 =
1 ⊕ 1 = 0), otherwise (i.e. if cb0 = a2k;0 ⊕ 0 = 1 ⊕ 0 = a2k+1;0 ⊕ 1 = 0 ⊕ 1 = 1)
a12k = a2k+1 and a12k+1 = a2k , ∀k ∈ I2n−1 . We denote by B0 the permutation matrix
which permutes A0 to get A1 according to this rule, that is, A1 = B0A0.

In Table6.1 the two least significant bits are shown for the components a0l and
a1l , for an arbitrary sequence of four successive components al , l = 4k, 4k + 1, 4k +
2, 4k + 3, with k ∈ I2n−2 . By the fact that A is uniformly 4-dyadic, from (6.15) for
p = 2 and q = 2, we have that a4k �= a4k+1 �= a4k+2 �= a4k+3 (mod 4). For the case
shown in Table6.1 this means that a4k;1 �= a4k+3;1 and a4k+1;1 �= a4k+2;1. From the
columna1l (mod 4) inTable6.1wehave thata14k;0 = a14k+2;0 = 0,a14k+1;0 = a14k+3;0 =
1. Thus, because a4k �= a4k+1 �= a4k+2 �= a4k+3 (mod 4), it results that a14k;1 �= a14k+2;1
and a14k+1;1 �= a14k+3;1. Equations a

1
4k;0 = a14k+2;0 = 0, a14k+1;0 = a14k+3;0 = 1, a14k;1 �=

a14k+2;1, and a14k+1;1 �= a14k+3;1 can be shown to be also fulfilled for the other three
cases of sequences a4k;0, a4k+1;0, a4k+2;0, a4k+3;0, consisting in the least significant
bit of the four successive components al , namely 0101, 1001, and 1010. Thus we
have that a14k+i �= a14k+2+i (mod 4) and a14k+i = a14k+2+i = i (mod 2), ∀ i ∈ I2. Now
we derive the vector A2 = (a20, a

2
1, . . . , a

2
2n−1) from A1 based on second least signif-

icant bits al;1 of the components al , as follows. For i ∈ I2, we assign a24k+i = a14k+i
and a24k+2+i = a14k+2+i if a14k+i = i (mod 4) (i.e. if cb1 = a4k;1 ⊕ 0 = 0 ⊕ 0 =
a4k+2;1 ⊕ 0 = 0 ⊕ 0 = a4k+1;1 ⊕ 1 = 1 ⊕ 1 = a4k+3;1 ⊕ 1 = 1 ⊕ 1 = 0) and other-
wise (i.e. if cb1 = a4k;1 ⊕ 0 = 1 ⊕ 0 = a4k+2;1 ⊕ 0 = 1 ⊕ 0 = a4k+1;1 ⊕ 1 = 0 ⊕
1 = a4k+3;1 ⊕ 1 = 0 ⊕ 1 = 1) a24k+i = a14k+2+i and a

2
4k+i = a14k+2+i , ∀k ∈ I2n−2 . We

note that condition a14k+i = i (mod 4) is equivalent to a4k;1 = a4k+1;1 = 0 and
a4k+2;1 = a4k+3;1 = 1, and condition a14k+i �= i (mod 4) is equivalent to a4k;1 =
a4k+1;1 = 1 and a4k+2;1 = a4k+3;1 = 0. So it follows that a24k+ j = j (mod 4), ∀k ∈

Table 6.1 The two least
significant bits for the
components a0l and a1l , for an
arbitrary sequence of four
successive components al

l a0l (mod 4) a1l (mod 4)

4k a4k;10 a4k;10
4k + 1 a4k+1;11 a4k+1;11
4k + 2 a4k+2;11 a4k+3;10
4k + 3 a4k+3;10 a4k+2;11
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I2n−2 and ∀ j ∈ I4. We denote by B1 the permutation matrix which permutes A1 to
get A2. Then we have A2 = B1A1 = B1B0A0.

We continue in the same way by assigning the components of the vectors Aq ,
with q = 3, 4, . . . , n. In general, ∀k ∈ I2n−q and ∀i ∈ I2q−1 , the components of vec-
tor Aq−1 satisfy conditions aq−1

2q k+i �= aq−1
2q k+2q−1+i (mod 2q), since vector A is uni-

formly 2q -dyadic, and aq−1
2q k+i = aq−1

2q k+2q−1+i = i (mod 2q−1), by the construction of
vector Aq−1. Therefore for i ∈ I2q−1 , we choose the components of Aq from Aq−1

by aq2q k+i = aq−1
2q k+i and aq2q k+2q−1+i = aq−1

2q k+2q−1+i if aq2q−1k+i = i (mod 2q) (i.e. if

cbq−1 = 0) and otherwise (i.e. if cbq−1 = 1) aq2q k+i = aq−1
2q k+2q−1+i and aq2q k+2q−1+i =

aq−1
2q k+i , ∀k ∈ I2n−q . Then the components of vector An will satisfy conditions ani =

i (mod 2n), i.e. ani ∈ Ui (2), ∀i ∈ I2n . As an example, in Table6.2 the components aql
for q = 1, 2, 3, for the 8-dyadic vector of eight components A = (a0, a1, . . . , a7) =
(7, 4, 1, 6, 0, 3, 5, 2) at the input of an 8 × 8 butterfly network (Fig. 6.4) and the
corresponding control bits at each of the three columns of switches are given. In
parenthesis binary representations are shown. For each of the three columns consist-
ing in four 2-by-2 crossbar switches the values at the input of the top switch (x0, x4,
and x8 in Fig. 6.4) are colored in blue, the values at the input of the second switch
(x1, x5, and x9 in Fig. 6.4) are coloured in red, the values at the input of the third
switch (x2, x6, and x10 in Fig. 6.4) are coloured in green, and the values at the input
of the fourth (bottom) switch (x3, x7, and x11 in Fig. 6.4) are coloured in magenta.
For each switch, the control bits in Table6.2 and the routing paths in Fig. 6.4 are
coloured in the same way. The corresponding permutation matrices B0, B1, B2, and
B = B2B1B0 are given below.

B0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6.20)

As it was previously shown by the control bits, one choice of two new components
of Aq amounts to the permutation by one 2-by-2 crossbar switch in the qth column of
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Table 6.2 The components aql for q = 1, 2, 3, for an arbitrary 8-dyadic vector of eight components
al , l = 0, 1, . . . , 7, at the input of an 8 × 8 butterfly network and the corresponding control bits at
each of the three columns of switches. Binary representations are shown in parenthesis

l al = a0l cb0 a1l cb1 a2l cb2 a3l
0 (000) 7 (111) 1 4 (100) 0 4 (100) 1 0 (000)

1 (001) 4 (100) 1 7 (111) 1 1 (001) 0 1 (001)

2 (010) 1 (001) 1 6 (110) 0 6 (110) 1 2 (010)

3 (011) 6 (110) 1 1 (001) 1 7 (111) 1 3 (011)

4 (100) 0 (000) 0 0 (000) 0 0 (000) 1 4 (100)

5 (101) 3 (011) 0 3 (011) 1 5 (101) 0 5 (101)

6 (110) 5 (101) 1 2 (010) 0 2 (010) 1 6 (110)

7 (111) 2 (010) 1 5 (101) 1 3 (011) 1 7 (111)

Fig. 6.4 Routing the 8-dyadic vector A = (7, 4, 1, 6, 0, 3, 5, 2) by an 8 × 8-butterfly network with
eight memories

the 2n × 2n butterfly network. It holds that Aq = Bq−1Aq−1. Therefore we have that
An = Bn−1Bn−2 . . . B0A. The matrix B = Bn−1Bn−2 . . . B0 is the required transition
matrix of a 2n × 2n butterfly network and thus (6.19) holds.

“⇐” For the inverse proofwe assume that (6.19) holdswith some transitionmatrix
of a 2n × 2n butterfly network and we prove that vector A is uniformly 2n-dyadic.We
suppose that there exists four integers q, k, i, j , with q ≤ n, i, j ∈ I2q , i �= j , and
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k ∈ I2n−q , so that (6.15) does not hold for p = 2, i.e. a2q k+i = a2q k+ j (mod 2q). This
means that the least significant q bits of values a2q k+i and a2q k+ j are identical. By
assumption (6.19)we have that the inputsa2q k+i anda2q k+ j end up into two setsUi1(2)
andUj1(2), with i1 �= j1 (mod 2n). Since a2q k+i ∈ Ui1(2) and a2q k+ j ∈ Uj1(2), from
(6.16) with p = 2, we have a2q k+i = i1 (mod 2n) and a2q k+ j = j1 (mod 2n). Since
the least significant q bits of values a2q k+i and a2q k+ j are identical, we have i1;0 =
j1;0 = oq0 , i1;1 = j1;1 = oq1 , . . . , i1;q−1 = j1;q−1 = oqq−1, where we have denoted by
oq0 , o

q
1 , . . . , o

q
q−1 these identical least significant q bits.

We consider now the (k + 1)th group, k ∈ I2n−q , of the 2q inputs in the 2n × 2n

butterflynetwork.Wenote that the valuesa2q k+i anda2q k+ j belong to this set of inputs.
Since these values get to the outputs i1 and j1 of the network, from Lawrie (1975) it
results that the first q control bits for input a2q k+i are cbi;0 = i0 ⊕ oq0 , cbi;1 = i1 ⊕
oq1 , . . . , cbi;q−1 = iq−1 ⊕ oqq−1 and the first q control bits for input a2q k+ j are cb j;0 =
j0 ⊕ oq0 , cb j;1 = j1 ⊕ oq1 , . . . , cb j;q−1 = jq−1 ⊕ oqq−1. In the previous equations we
used the fact that the term 2qk does not affect the least significant q bits of the input
positions 2qk + i and 2qk + j . Without loss of generality we may assume i < j . If
i = 2k1 and j = 2k1 + 1, with k1 ∈ I2q−1 , then the values a2q k+i and a2q k+ j are at
the inputs of the same 2-by-2 crossbar switch in the first column of switches of the
network. Moreover, we have i0 = 0 and j0 = 1 and the control bit of the previously
mentioned switch is cbi;0 = oq0 for the input a2q k+i and cb j;0 = oq0 ⊕ 1 for the input
a2q k+ j . If i ∈ {4k1, 4k1 + 1} and j ∈ {4k1 + 2, 4k1 + 3}, where k1 ∈ I2q−2 , then the
values a2q k+i and a2q k+ j get at the inputs of the same 2-by-2 crossbar switch in the
second column of switches of the network. Moreover, we have i1 = 0 and j1 = 1 and
the control bit of the previouslymentioned switch is cbi;1 = oq1 for the inputa2q k+i and
cb j;1 = oq1 ⊕ 1 for the input a2q k+ j . In general, if i ∈ {2q1k1, 2q1k1 + 1, . . . , 2q1k1 +
2q1−1 − 1} and j ∈ {2q1k1 + 2q1−1, 2q1k1 + 2q1−1 + 1, . . . , 2q1k1 + 2q1 − 1}, where
k1 ∈ I2q−q1 , q1 ∈ {1, 2, . . . , q}, then the values a2q k+i and a2q k+ j get at the inputs
of the same 2-by-2 crossbar switch in the q1th column of switches of the network.
Moreover, we have iq1−1 = 0 and jq1−1 = 1 and the control bit of the previously
mentioned switch is cbi;q1−1 = oqq1−1 for the input a2q k+i and cb j;q1−1 = oqq1−1 ⊕ 1
for the input a2q k+ j . We see that in all previous cases we have two different control
bits for the same 2-by-2 crossbar switch. But this is not possible because, by the
construction of the butterfly network, each switch has only one control bit. Thus the
assumption a2q k+i = a2q k+ j (mod 2q) is not valid and the vector A is uniformly 2n-
dyadic. We note that if a2q k+i �= a2q k+ j (mod 2q), ∀i, j ∈ I2q , i �= j , and ∀k ∈ I2n−q ,
then, according to direct proof, the routing to the outputs i1 and j1 of the 2n × 2n

butterfly network is possible. Thus the lemma is proved. �

Before proceeding further, we prove a property of a PP of any degree.

Lemma 6.5 Consider a PP of degree d as in (3.1). Then, ∀N ∈ IL , so that N | L,
and ∀x ∈ IL , we have π(x) (mod N ) = π

(
x (mod N )

)
(mod N ).

Proof Let x be
x = xN + k · N , (6.21)

so that xN ∈ IN and k ∈ N, i.e. xN = x (mod N ).
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Then we can write the i th power of x from (6.21) modulo N , with i ∈ Id , as

xi (mod N ) = (xN + k · N )i (mod N ) =
=

i∑
j=0

C j
i · (xN ) j · (k · N )i− j (mod N ) =

=
i−1∑
j=0

C j
i · (xN ) j · (k · N )i− j (mod N ) + (xN )i (mod N ) =

= (xN )i (mod N ) (6.22)

The last equality is true since C j
i ∈ N and i − j > 0, ∀ j = 0, 1, . . . , i − 1, the

indexes in the sum from the second line of (6.22). With (6.22) and (3.1) the lemma
results immediately. �

Now we restate Lemmas 3, 4, and 5 from Nieminen (2017) for a PP of any degree
(Trifina and Tarniceriu 2017). In fact, in Lemmas6.6 and 6.7 we prove more general
results for any degree PP.

Lemma 6.6 Let n and M be positive integers and L = pn · M,where p is any prime
number. Assume that π is a PP of arbitrary degree d on IL , as in (3.1). Let x and y
be in IM . Then

x �= y (mod pn), (6.23)

if and only if
π(x) �= π(y) (mod pn). (6.24)

Proof Let nmax be the greatest positive integer so that pnmax | L . From Theorem3.8
we have that π is a PP of degree d on Ipnmax . If nmax > 1, from Theorem3.7 we have
that π is a PP of degree d on Ip and π′(x) �= 0 (mod p), ∀x ∈ Ip. With the previous
considerations, from Theorem3.7 it also results that π is a PP of degree d on Ipq ,
∀q ∈ N with q ≥ 2. Taking into account Lemma6.5 this means that Eqs. (6.23) and
(6.24) imply each other, ∀n ∈ N

∗, so that pn | L . �

For p = 2, Lemma6.6 gives the same result as Lemma 3 from Nieminen (2017),
but for a PP of any degree.

Lemma 6.7 Let n and M be positive integers and L = pn · M,where p is any prime
number. Assume that π is a PP of arbitrary degree d on IL , as in (3.1). Assume that
ai are in IL for every i in Ipn . Then Aa = (a0, a1, . . . , apn−1) is uniformly pn-dyadic
if and only if Aπ = (

π(a0),π(a1), . . . ,π(apn−1)
)
is uniformly pn-dyadic.

Proof As Lemma 4 from Nieminen (2017), Lemma6.7 is a direct consequence of
Lemma6.6.

If we detail Eq. (6.15) for any q = 1, 2, . . . , n, we have

apk �= apk+1 �= · · · �= apk+p−1 (mod p),∀k ∈ Ipn−1 , (6.25)
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ap2k �= ap2k+1 �= · · · �= ap2k+p2−1 (mod p2),∀k ∈ Ipn−2 , (6.26)

a.s.o.

apn−1k �= apn−1k+1 �= · · · �= apn−1k+pn−1−1 (mod pn−1),∀k ∈ Ip, (6.27)

a0 �= a1 �= · · · �= apn−1 (mod pn). (6.28)

Taking into account Lemma6.6, Eqs. (6.25)–(6.28) hold if and only if

π(apk) �= π(apk+1) �= · · · �= π(apk+p−1) (mod p),∀k ∈ Ipn−1 , (6.29)

π(ap2k) �= π(ap2k+1) �= · · · �= π(ap2k+p2−1) (mod p2),∀k ∈ Ipn−2 , (6.30)

a.s.o.

π(apn−1k) �= π(apn−1k+1) �= · · · �= π(apn−1k+pn−1−1) (mod pn−1),∀k ∈ Ip, (6.31)

π(a0) �= π(a1) �= · · · �= π(apn−1) (mod pn). (6.32)

But Eqs. (6.29)–(6.32) mean that vector Aπ is uniformly pn-dyadic. Thus the
lemma is proved. �

For p = 2, Lemma6.7 gives the same result as Lemma 4 from Nieminen (2017),
but for a PP of any degree.

Now we can prove Theorem6.3.
Proof of Theorem6.3. The equivalences (1) ⇔ (3) and (2) ⇔ (4) follow from
Lemma6.4. Finally, the equivalence (1) ⇔ (2) follows from Lemma6.7. �

The next lemma allows an easy deriving of control bits of a 2n × 2n butterfly
network for a PP of any degree.

Lemma 6.8 Let n and M be positive integers and L = 2n · M. Assume that π is a
PP of arbitrary degree d on IL , as in (3.1). Then for any x ∈ IL , we have

π(x + k2n−1) = π(x) + (
k (mod 2)

)
2n−1 (mod 2n),∀k ∈ IL . (6.33)

Proof We have

π(x + k2n−1) =
d∑

i=1
qi · (x + k2n−1)i (mod 2n) =

=
d∑

i=1
qi ·

( i∑
j=0

C j
i · x j · (k2n−1)i− j

)
(mod 2n) =

=
d∑

i=1
qi ·

(
xi +

i−1∑
j=0

C j
i · x j · (k2n−1)i− j

)
(mod 2n) =
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= π(x) +
d∑

i=1
qi ·

( i−1∑
j=0

C j
i · x j · (k2n−1)i− j

)
(mod 2n) =

= π(x) + q1 · k · 2n−1 +
d∑

i=2
qi ·

( i−1∑
j=0

C j
i · x j · (k2n−1)i− j

)
(mod 2n). (6.34)

If k = 0 (mod 2), i.e. k = 2 · l, with l ∈ N, from (6.34) we have

π(x + k2n−1) = π(x) (mod 2n), (6.35)

i.e. (6.33) for k = 0 (mod 2).
If k = 1 (mod 2), i.e. k = 2 · l + 1, with l ∈ N, from (6.34) we have

π(x + k2n−1) = π(x) + q1 · 2n−1 +
d∑

i=2

qi ·
( i−1∑

j=0

C j
i · x j · (2n−1)i− j

)
(mod 2n).

(6.36)
For i − j ≥ 2 and n ≥ 2 we have (i − j)(n − 1) ≥ n, and thus (2n−1)i− j =

0 (mod 2n). Then, for n ≥ 2, (6.36) reduces to

π(x + k2n−1) = π(x) + q1 · 2n−1 +
d∑

i=2
qi · Ci−1

i · xi−1 · 2n−1 (mod 2n) =

= π(x) + q1 · 2n−1 +
d∑

i=2
qi · i · xi−1 · 2n−1 (mod 2n) =

= π(x) + 2n−1 ·
(
q1 +

d∑
i=2

qi · i · xi−1

)
(mod 2n). (6.37)

For x = 0 (mod 2), (6.37) becomes

π(x + k2n−1) = π(x) + 2n−1 ·
(
q1 +

d∑
i=2

qi · i · (2l)i−1

)
(mod 2n) =

= π(x) + 2n−1 · q1 (mod 2n) = π(x) + 2n−1 (mod 2n), (6.38)

i.e. (6.33) for k = 1 (mod 2). The last equality in (6.38) is true because π is PP on
I2n , and thus, considering Theorem3.6, q1 = 1 (mod 2).

For x = 1 (mod 2), (6.37) becomes

π(x + k2n−1) = π(x) + 2n−1 ·
(
q1 +

d∑
i=2

qi · i · (2l + 1)i−1

)
(mod 2n) =

= π(x) + 2n−1 ·
(
q1 +

d∑
i=2

qi · i
)
(mod 2n) =

= π(x) + 2n−1 · (
q1 + 2q2 + 3q3 + · · · + dqd

)
(mod 2n) =

= π(x) + 2n−1 · (
q1 + 3q3 + 5q5 + 7q7 + · · · )+
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+ 2n−1 · (
2q2 + 4q4 + 6q6 + · · · )︸ ︷︷ ︸

=0 (mod 2n)

(mod 2n) =

= π(x) + 2n−1 · (
q1 + q3 + q5 + q7 + · · · )+

+ 2n−1 · (
2q3 + 4q5 + 6q7 + · · · )︸ ︷︷ ︸

=0 (mod 2n)

(mod 2n) =

= π(x) + 2n−1 · q1︸︷︷︸
=1 (mod 2)

+2n−1 · (
q3 + q5 + q7 + · · · )︸ ︷︷ ︸

=0 (mod 2)

(mod 2n) =

= π(x) + 2n−1 (mod 2n), (6.39)

i.e. (6.33) for k = 1 (mod 2). The last equality in (6.38) is true because π is PP on I2n ,
and thus q1 = 1 (mod 2) and

(
q3 + q5 + q7 + · · · ) = 0 (mod 2) from Theorem3.6.

Equations (6.37)–(6.39) are valid for n ≥ 2. For n = 1, (6.36) becomes

π(x + k) = π(x) + q1 + ∑d
i=2 qi ·

(
i−1∑
j=0

C j
i · x j

)
(mod 2) =

= π(x) + q1 + ∑d
i=2 qi + ∑d

i=2 qi ·
(

i−1∑
j=1

C j
i · x j

)
(mod 2) =

= π(x) +
d∑

i=1
qi +

d∑
i=2

qi ·
(

i−1∑
j=1

C j
i · x j

)
(mod 2) =

= π(x) + 1 +
d∑

i=2
qi ·

(
i−1∑
j=1

C j
i · x j

)
(mod 2). (6.40)

The last equality in (6.40) is true because π is PP on I2, and thus
d∑

i=1

qi = 1 (mod 2)

from Lemma3.1.
For x = 0 (mod 2), (6.40) becomes

π(x + k) = π(x) + 1 (mod 2), (6.41)

i.e. (6.33) for k = 1 (mod 2) and n = 1.
For x = 1 (mod 2), (6.40) becomes

π(x + k) = π(x) + 1 +
d∑

i=2
qi ·

(
i−1∑
j=1

C j
i

)
(mod 2) =

= π(x) + 1 +
d∑

i=2
qi ·

(
i∑

j=0
C j
i − 1 − 1

)
(mod 2) =

= π(x) + 1 +
d∑

i=2
qi · (

(1 + 1)i − 2
)
(mod 2) =



274 6 Parallel Turbo Decoding for Permutation Polynomial Interleavers

= π(x) + 1 +
d∑

i=2
qi · (

2i − 2
)
(mod 2) = π(x) + 1 (mod 2) (6.42)

i.e. (6.33) for k = 1 (mod 2) and n = 1. Thus the proof is completed. �

The usefulness of Lemma6.8 is shown in the following. Let there be x ∈ I2n . Let
x = (

xn−1xn−2 . . . x1x0
)
2 and π(x) (mod 2n) = (

πx,n−1πx,n−2 . . .πx,1πx,0
)
2 be the

writing in base 2 of x and π(x) (mod 2n), respectively. The bit with index 0 is the
least significant bit and the bit with index n − 1 is the most significant bit. From
Lawrie (1975) we know that to get from an input pin x of a 2n × 2n butterfly network
to the output pin π(x) (mod 2n), the control bits are obtained by equation

cbx, j = x j ⊕ πx, j ,∀ j = 0, 1, . . . , n − 1,∀x ∈ I2n , (6.43)

where the control bits cbx, j for j = 0, 1, . . . , n − 1 are taken from the left to the right
of the butterfly network. The decimal value of the control bits (cbx,n−1cbx,n−2 . . .

cbx,1cbx,0) for the input pin x and the output pin π(x) (mod 2n) is denoted by cbx .
From (6.33), we have

cbx+2n−1 = (
π(x + 2n−1) (mod 2n)

)
2 ⊕ (

x + 2n−1 (mod 2n)
)
2 =

= (
(π(x) + 2n−1) (mod 2n)

)
2 ⊕ (

x + 2n−1 (mod 2n)
)
2 =

= (
(πx,n−1πx,n−2 · · · πx,1πx,0)2 + (1 0 · · · 00︸ ︷︷ ︸

n−1 bits 0

)
2 (mod 2n)

)⊕
⊕ (

(xn−1xn−2 · · · x1x0)2 + (1 0 · · · 00︸ ︷︷ ︸
n−1 bits 0

)2 (mod 2n)
)
2 =

= (
(πx,n−1 ⊕ 1)πx,n−2 · · · πx,1πx,0

)
2 ⊕ (

(xn−1 ⊕ 1)xn−2 · · · x1x0
)
2 =

= (πx,n−1πx,n−2 · · ·πx,1πx,0)2 ⊕ (xn−1xn−2 · · · x1x0)2. (6.44)

Using Eq. (6.44) for n = 1, 2, . . . , we have

cb0,0 = cb1,0 = · · · = cbn−1,0 = π0,0,

cb0,1 = cb2,1 = cb4,1 = · · · = cb2n−2,1 = π0,1,

cb1,1 = cb3,1 = cb5,1 = · · · = cb2n−1,1 = π1,1,

cb0,2 = cb4,2 = cb8,2 = · · · = cb2n−4,2 = π0,2,

cb1,2 = cb5,2 = cb9,2 = · · · = cb2n−3,2 = π1,2,

cb2,2 = cb6,2 = cb10,2 = · · · = cb2n−2,2 = π2,2,

cb3,2 = cb7,2 = cb11,2 = · · · = cb2n−1,2 = π3,2,

.....................................................................



6.3 Parallel Access by Butterfly Networks for Any Degree … 275

Table 6.3 The interleaved addresses for 5-PP interleaver π(x) = 65x + 38x2 + 16x3 + 10x4 +
12x5 (mod 112)

k π(16k + i) for i = 0, 1, . . . , 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 29 58 103 52 97 46 91 8 37 82 31 76 25 70 99

1 16 61 10 55 4 49 78 107 40 101 34 95 28 57 86 19

2 80 13 74 7 36 65 110 59 104 53 98 15 44 89 38 83

3 32 77 106 23 68 17 62 11 56 85 2 47 108 41 102 35

4 64 93 26 87 20 81 14 43 72 5 66 111 60 105 22 51

5 96 45 90 39 84 1 30 75 24 69 18 63 92 9 54 3

6 48 109 42 71 100 33 94 27 88 21 50 79 12 73 6 67

cb0,n−1 = cb2n−1,n−1 = π0,n−1, cb1,n−1 = cb2n−1+1,n−1 = π1,n−1, . . .

cb2n−1−1,n−1 = cb2n−1,n−1 = π2n−1−1,n−1. (6.45)

From (6.45) it results that, of all n · 2n control bits, only 2n − 1 values need to be
stored.

In the following we exemplify the determination of control bits of a 16 × 16
butterfly network for a 5-PP interleaver.

Example 6.1 We consider the five degree PP (5-PP) interleaver π(x) = 65x +
38x2 + 16x3 + 10x4 + 12x5 (mod 112) of length L = 112 found by the method
in Trifina and Tarniceriu (2014). This 5-PP interleaver also leads to optimum min-
imum distance as that given in Trifina et al. (2017), when using LTE turbo codes
(3GPP 2008), but offers better performance since it is optimized by distance spec-
trum with nine terms not only by the first term. For maximum degree of paral-
lelism M = 24 = 16. For address vectors ai (k) = 16k + i ∀i ∈ I16 and ∀k ∈ I7,
the interleaved addresses are mapped to the memories π(i) = 65i + 38i2 + 16i3 +
10i4 + 12i5 (mod 16) = i + 6i2 + 10i4 + 12i5 (mod 16) ∀i ∈ I16. The interleaved
address vectors π(ai (k)) are given in Table6.3 and the physical interleaved address
vectors are given in Table6.4. π(i) in Table6.4 shows the index of the memory
accessed for physical interleaved addresses. In the last row “cb” gives the control
bits for the 16 × 16 butterfly network. We observe that these control bits follow
Eq. (6.45) for n = 4. For example, at time k = 4, the value π(16k + i) for i = 3, i.e.
π(67) = 87, is routed from the input i = 3 of the 16 × 16-butterfly network to the
output π(3) (mod 16) = 7. The control bits for this routing path are given by the
value (4)10 = (0100)2 (the value from the last row in the column corresponding to
i = 3 in Table6.4), i.e. the first control bit is equal to 0, the second control bit is
equal to 0, the third control bit is equal to 1, and the last control bit is equal to 0. �
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Table 6.4 The physical interleaved addresses for 5-PP interleaver π(x) = 65x + 38x2 + 16x3 +
10x4 + 12x5 (mod 112)

k �π(16k + i)/16� for i = 0, 1, . . . , 15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 3 6 3 6 2 5 0 2 5 1 4 1 4 6

1 1 3 0 3 0 3 4 6 2 6 2 5 1 3 5 1

2 5 0 4 0 2 4 6 3 6 3 6 0 2 5 2 5

3 2 4 6 1 4 1 3 0 3 5 0 2 6 2 6 2

4 4 5 1 5 1 5 0 2 4 0 4 6 3 6 1 3

5 6 2 5 2 5 0 1 4 1 4 1 3 5 0 3 0

6 3 6 2 4 6 2 5 1 5 1 3 4 0 4 0 4

π(i) (mod 16) 0 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3

cb 0 12 8 4 0 4 8 12 0 12 8 4 0 4 8 12
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Chapter 7
Methods to Search Permutation
Polynomial Interleavers for Turbo Codes

7.1 Preliminaries

Themain problem infinding an interleaver for a turbo code consists in that the number
of interleavers of a certain length is very large. The number of all interleavers of length
L is L! and the number of all true different PP of degree d interleavers, with d = 1, 5,
was given in Chap.4. Therefore finding metrics or methods that reduce the searching
complexity is a key issue in designing a turbo code.

In Sects. 7.2 and 7.3, we present two metrics to search generic QPP interleavers
proposed by Takeshita (2007). Generic interleavers are those that are not tailored to
a specific component convolutional code of turbo code. The most part of Sect. 7.2
is from Section II in Takeshita (2007) and Sect. 7.3 is from Section III in Takeshita
(2007). In Takeshita (2007) an interleaver is represented by an interleaver-code,
which is the geometric representation of an interleaver by pairs of coordinates
(x,π(x)) forming points in the set Z2

L .
In Sects. 7.4 and7.5wepresent somemethods of searchingPP interleavers adapted

to a specific component code of the turbo code. These methods aim to increase the
minimum distance or to improve the distance spectrum for turbo codes with PP
interleavers. Numerical results are given for the component code of the turbo code
from the LTE standard, whose generator matrix in octal form is G = [1, 15/13].

7.2 The Spread Factor of a QPP Interleaver

A well-known measure of merit in turbo coding applications is the spread factor
(Divsalar and Pollara 1995). The spread factor of an interleaver is defined as

DE = min
i �= j,

i, j∈ZL

{
δ(pi , p j )

}
,

(7.1)
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where δ(pi , p j ) is the L1 or Manhattan metric between the points pi = (i,π(i)) and
p j = ( j,π( j)):

δ(pi , p j ) = |i − j | + |π(i) − π( j)|. (7.2)

The spread factor was initially proposed by Dolinar and Divsalar. The defini-
tion in (7.1) was introduced in Crozier (2000) to avoid self-terminating information
sequences which lead to low-weight turbo codewords. In Divsalar and Pollara (1995)
the authors have proposed a construction of linear interleavers achieving spread fac-
tors DE equal to or close to

√
2L . The minimum distance of turbo codes obtained

only for weight-two self-terminating information sequences grows approximately as√
2L when LPP interleavers are used. Further results show that the true minimum

distance grows asymptotically, at most logarithmically, along with the interleaver
length for all interleavers (Breiling 2004; Perotti and Benedetto 2004).

Takeshita gave in Takeshita (2007) an easily modified definition for the spreading
factor beside that from Crozier (2000), in the following way:

D = min
i �= j,

i, j∈ZL

{
δL(pi , p j )

}
,

(7.3)

where δL(pi , p j ) is the Lee metric (Lee 1958) between points pi = (i,π(i)) and
p j = ( j,π( j)):

δL(pi , p j ) = |i − j |L + |π(i) − π( j)|L (7.4)

and
|i − j |L = min

{
(i − j) (mod L), ( j − i) (mod L)

}
(7.5)

The upper bound of D, denoted by ubD(L), was proved in Boutillon and Gnaedig
(2005) to be

√
2L . According to definitions of δ(pi , p j ) and δL(pi , p j ) in (7.2) and

(7.4), respectively, we have D ≤ DE . An upper bound of DE was found in Takeshita
(2007). It is denoted by ubDE (L), and it is close to ubD(L). It is given below

ubDE (L) =

⎧
⎪⎪⎨

⎪⎪⎩

2(L − 1)√
2L − 1

, L = 2p2, p = 2, 3, 4, . . .

2(L − 1)√
2L − 1 − 1

, L = p2 + (p − 1)2, p = 2, 3, 4, . . .
(7.6)

In Fig. 7.1 the difference ubD(L) − ubDE (L), for the lengths in (7.6) smaller than
10,000, is plotted. It can be seen that this difference goes to 1 as L grows.

The definition of a maximum-spread interleaver is given below.

Definition 7.1 A maximum-spread interleaver is an interleaver which achieves a
spread factor D equal to the upper bound

√
2L , where L is the interleaver length. In

fact the maximum spread can be equal to �√2L�, because the spread factor must be
an integer.
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Fig. 7.1 The difference ubD(L) − ubDE (L)

In Dolinar and Divsalar (1995) have stated that LPP interleavers either achieve
or closely approximate a spread factor of

√
2L for any L . When L is twice a perfect

square
L = 2n2, n = 1, 2, 3, . . . (7.7)

then all maximum-spread interleavers are of the form

π(x) = q1 · x (mod L = 2n2) (7.8)

These maximum-spread interleavers are obtained for

q1 = l · √
2L ± 1, (7.9)

for positive integers l <
√
L/2 relatively prime to

√
L/2. The resulting interleavers

are not appropriate for turbo coding because of their high regularity. The linear in-
terleaver asymptote in Takeshita and Costello (2000) refers to this matter. It implies
the existence of low-weight codewords of input-weight four and a high multiplicity,
close to L . Consequently, they proposed an algorithm for construction of a semi-
random interleaver (Dolinar and Divsalar 1995), named S-random interleaver with
parameter S. The algorithm for generating S-random interleavers is Algorithm 1.

The searching time for the above algorithm increases with S, and it is not guar-
anteed to finish successfully. However, it was observed that choosing S <

√
L/2

usually produces a solution in reasonable time.



282 7 Methods to Search Permutation Polynomial Interleavers for Turbo Codes

Algorithm 1: Algorithm for the generation of S-random interleavers
input : The interleaver length L and the value of parameter S.
output: The set {π(0),π(1), . . . ,π(L − 1)}, describing the S-random interleaver of length

L .

1 Select randomly an arbitrary integer i from the set ZL ;
2 π(0) ← i ;
3 k ← 1;
4 Ak ← ZL − {i};
5 while (Ak �= ∅) do
6 repeat
7 bool_valid_i pres ← true ;
8 Select randomly an arbitrary integer i pres from the set Ak ;
9 for j ← max{k − S, 0} to k − 1 do

10 if (|π(k) − π( j)| ≥ S) then
11 bool_valid_i pres ← f alse ;
12 break ;
13 end
14 end
15 until (bool_valid_i pres = true);
16 π(k) = i pres ;
17 k ← k + 1 ;
18 Ak ← Ak−1 − {i pres} ;
19 end

The algorithm for S-random interleaver sacrifices the spread factor D, which typ-
ically is D = S + 1 ≤ √

L/2 + 1, i.e., smaller than about 50% of the upper bound
ubD(L) = �√2L�. Turbo codes using S-random interleavers have very good error
rate performance, becoming typical benchmark interleavers. Their main drawbacks
consists in expensive storage of a sequence of S integers that characterize the in-
terleaver. Due to the construction algorithm based on a pseudorandom number gen-
erator, the compression capability of the sequence is very low. This leads to the
imposibility to reproduct accurately other simulation results with S-random inter-
leavers because, in general, only parameter S is reported in literature. However, for a
given parameter S, different S-random interleavers perform similarly for error rates
that are not very low, which also reflects a good minimum distance of the associated
turbo codes. Thus the repeatability problem is not so critical.

In Crozier (2000) has proposed two interleaver construction algorithms for maxi-
mization of the spread factor, but avoiding orminimizing the regularity of linear inter-
leavers. They are high-spread construction and the dithered-diagonal construction.
For interleaver sizes given in (7.7) the dithered-diagonal interleavers are maximum-
spread and have large spread factors for others (Crozier 2000). n = √

L/2 integer
parameters are needed to define dithered-diagonal interleavers. In Crozier (2000)
it is shown a spectacular error performance that exceeds S-random interleavers
for L = 512. The progress of dithered-diagonal interleaver construction consists
in achieving a large spread factor D combined with sufficient irregularity leading to



7.2 The Spread Factor of a QPP Interleaver 283

Table 7.1 The three stages for generating DRP interleavers

1. The input vector vin is dithered (permuted locally), using a small read dither vector r , of length
R (the vector r is a permutation of indexes 0, 1, . . . , R − 1)

2. The resulting vector va is permuted using a relativelly prime interleaver (or an interleaver with
cyclic shift) to obtain a good spread

3. The resulting vector vb is dithered using a small write dither vectorw, of lengthW , to generate
the output vector vout

Fig. 7.2 Design approach of a DRP interleaver

very high error performance. The number of integer parameters characterizing the
interleaver is much smaller compared with S-random interleavers.

In Crozier and Guinand (2001), Stewart Crozier and Paul Guinand proposedDRP
interleavers, which are among the best known ones in terms of error rate perfor-
mance. The approach to design DRP interleavers consists of three stages (Crozier
and Guinand 2001) given in Table 7.1.

The DRP interleaver length L must be a multiple of both R and W .
The above approach is depicted in Fig. 7.2.
The equations which describe the DRP interleaver are:

va(i) = vin
(
πa(i)

)
, vb(i) = va

(
πb(i)

)
, vout (i) = vb

(
πc(i)

)
,

i = 0, 1, . . . , L − 1 (7.10)

πa(i) = R · �i/R� + r(i (mod R)), i = 0, 1, . . . , L − 1 (7.11)

πb(i) = (s + i · p) (mod L), i = 0, 1, . . . , L − 1 (7.12)

πc(i) = W · �i/W� + w(i (mod W )), i = 0, 1, . . . , L − 1 (7.13)
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vout (i) = vin
(
π(i)

)
, i = 0, 1, . . . , L − 1 (7.14)

π(i) = πa
(
πb

(
πc(i)

))
, i = 0, 1, . . . , L − 1 (7.15)

Thus,DRP interleavers require R + W + 2 integers for their specification, namely
values r(0), r(1), . . . , r(R − 1), w(0), w(1), . . . , w(W − 1), s, and p. With the
above equations, for R = W = 4 they require 10 integers and for R = W = 8 they
require 18 integers for their generation.

It is shown that DRP interleavers are very efficient in terms of storage require-
ments. Let M be the least common multiple of R and W . It can be shown that the
following equation holds for a DRP interleaver:

π
(
(i + M) (mod L)

) = (
π(i) + M · p) (mod L), i = 0, 1, . . . , L − 1 (7.16)

It follows that the interleaver indexes can be recursively computed by equation:

π(i) = (
π(i − 1) + P(i (mod M)

)
(mod L), i = 1, 2, . . . , L − 1, (7.17)

where π(0) is arbitrary, and the M index increments in vector P are defined by (7.16)
and

P(i (mod M)) = (
π(i) − π(i − 1)

)
(mod L), i = 1, 2, . . . , M. (7.18)

Thus, DRP interleavers require a much smaller number of integer parameters for
their specification compared to previous interleavers. If M = R = W , DRP inter-
leavers require M + 1 integers for their generation, namely π(0), and values P(0),
P(1), . . . , P(M − 1). Thus, considering Eq. (7.17), for M = R = W = 4 they re-
quire 5 integers and forM = R = W = 8 they require 9 integers for their generation.

Figure7.3 shows an exhaustive search over true different QPP interleavers for the
largest achievable spread Dmax(L) for 2 ≤ L ≤ 4096. From Fig. 7.3 we see that the
majority QPP interleavers, more exactly 83.2%, with the largest spreads lie between
ubD(L) = √

2L and
√
L (which means about 70% of the upper bound). For 2 ≤

L ≤ 4096, there are 1190 values of L for which there exist true QPPs (Number of
LPPs/QPPs/CPPs 2015) (i.e. roughly 29%of lengths values).Due to several algebraic
and geometric properties of QPP interleavers, explained in Sect. 7.3, the exhaustive
search is efficiently completed in a very short time using Theorem 7.10.

A few of the polynomials for some interleaver lengths (smaller than or equal to
1024) are given in Table 7.2. Some of the QPPs in Table 7.2 result in very good
turbo codes. Section7.5 presents QPPs that do not simply attempt maximization of
the spread factor. To compare these interleavears with those found by methods from
Sect. 7.5, in Table 7.2 we also give the first term in the distance spectra of turbo codes
of 1/3 nominal coding rate using these interleavers, generator matrixG = [1, 15/13]
and post-interleaver trellis termination. In Table 7.2 the nonlinearity degree ζ and the
refined nonlinearity degree ζ ′ are also given for the reported QPPs. These metrics
are defined in the next section.
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Table 7.2 QPP interleavers with the largest spread (LS-QPP) (Takeshita 2007) and the first term
in the distance spectra of turbo codes of 1/3 nominal coding rate using these interleavers, generator
matrix G = [1, 15/13] and post-interleaver trellis termination

L π(x) D ζ ζ ′ dmin /Ndmin / wdmin

40 x + 10x2 4 2 2 11/1/1

80 9x + 20x2 10 2 2 14/1/2

128 15x + 32x2 16 2 2 16/1/2

160 19x + 40x2 16 2 2 19/2/4

256 15x + 32x2 16 4 3 16/1/2

320 19x + 40x2 20 4 3 20/3/6

400 17x + 100x2 20 2 2 23/1/2

408 25x + 102x2 24 2 2 25/1/1

512 31x + 64x2 32 4 3 27/1/1

640 39x + 80x2 32 4 3 31/4/8

752 31x + 188x2 32 2 2 28/2/4

800 17x + 80x2 32 5 5 31/3/9

1024 123x + 256x2 34 2 2 27/1/2

From Fig. 7.3 we note that the fraction of maximum-spread QPP interleavers is
very small. The range between ubD(L) = √

2L and
√
L contains the most of QPP

interleavers with the largest spreads. We note that the value
√
L is about 70% of the

upper bound and S-random interleavers typically achieve only 50% of ubD(L).
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The minimization of the number of low-weight codewords caused by self-
terminating weight-2 input sequences or by short bursts of self-terminating input
sequences is useful and it is related to the maximization of the spread factor D. To
understand if we should always maximize the spread factor, the following observa-
tions are done in Takeshita (2007):

• many linear interleavers are maximum-spread, but undergo high-multiplicity low-
weight codewords (Takeshita and Costello 2000).

• at least one dithered diagonal interleaver (Crozier 2000) is maximum-spread and
assures a significant error performance.

• DRP interleavers which maximize error performance are typically not maximum-
spread (Crozier and Guinand 2001).

Considering the second observation, from an error rate perspective the best in-
terleavers may be those that achieve or closely approximate a maximum-spread
interleaver and simultaneously have a large degree of “randomness”. The same prin-
ciple was used to find theWelch–Costas permutation-based interleavers from Trifina
et al. (2006a, b). Interleavers with a certain degree of regularity or of low entropy,
such DRP or PP interleavers, require a decrease of the spread factor to increase their
entropy or “randomness”.

The following theorem, given without proof, provides an infinite sequence of
maximum-spread QPP interleavers (Takeshita 2007).

Theorem 7.2 (Theorem 2 from Takeshita 2007) The following sequence is an infi-
nite sequence of QPPs that generate maximum-spread interleavers:

π(x) = (
2k − 1

) · x + 2k+1 · x2(mod 22k−1), k = 1, 2, 3, . . . (7.19)

There are true QPPs in (7.19) only when k > 3. For k = 1 and k = 2, the second
coefficient of π(x) in (7.19) is q2 = 4 (mod 2) = 0 and q2 = 8 (mod 8) = 0. For k =
3,we haveq2 = 16 (mod 32) = 32/2 and sinceπ(x) = 16 · x + 16 · x2 (mod 32) is a
QNP (see Theorem 4.4), then π(x) in (7.19) can be reduced to a LPP. For k > 3, π(x)
in (7.19) cannot be reduced to a LPP because it has a degree of nonlinearity ζ > 1
(see Sect. 7.3). The first six terms of maximum-spread QPP sequence in Theorem
7.2, that are not reducible to first-degree polynomials, are shown in Table 7.3.

Table 7.3 QPP interleavers with maximum spread (MS-QPP) (Takeshita 2007)

k L π(x) D = ubD(L) ζ ζ ′ ε

4 128 15x + 32x2 16 2 2 64

5 512 31x + 64x2 32 4 3 128

6 2048 63x + 128x2 64 8 4 256

7 8192 127x + 256x2 128 16 7 512

8 32768 255x + 512x2 256 32 12 1024

9 131072 511x + 1024x2 512 64 23 2048
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7.3 �′ Metric for Searching QPP Inter-leavers

The following concepts, well known in the context of geometrically uniform codes
(Forney 1991), are useful for finding the metric in this section.

A symmetry of a metric space T = (
Z
2
L , δL

)
is a mapping of T to itself so that the

distance between points is preserved. The set of symmetries which present interest
are those obtained by translations of the space Z

2
L , meaning circular “slides” in

the vertical, horizontal directions, and their combinations. The symmetries obtained
by translations are exactly those tied by the multiplicity of codewords in a turbo
code. Other possible symmetries, but not allowed for our situation, are rotations
and reflections. The algebraic equivalent of a translation A(k0, k1) : Z2

L → Z
2
L that

circularly “slides” to the right by k0 and upwards by k1 is given by:

A(k0, k1) : (x0, x1) → (x0 + k0, x1 + k1), k0, k1 ∈ ZL (7.20)

The set of symmetry functions forms a group G under function composition. As
translations are the only allowed symmetries, G is a commutative group isomorphic
to G2

c,L (the Cartesian product of two cyclic groups of order L). An isometry of an
interleaver code Q is a symmetryA of T inducingA : Q → G so that Q = G. The
set of isometries of Q form a subgroup H of G. Two points px1 ∈ Q and px2 ∈ Q
are equivalent when there exists an isometry A of F so that px1 is mapped into px2 .

We give below the definitions for the orbit of a point from the interleaver code and
those of the nonlinearity degree and of the degree of shift-invariance of an interleaver.

Definition 7.3 The orbit of a point px ∈ Q is the set of pointsOpx equivalent under
the action of the isometry group H.

The next two definitions are valid because there is just one way to express Q as
the disjoint union of a family of orbits and all orbits have the same size.

Definition 7.4 The number of distinct orbits represents the degree of nonlinearity ζ
of an interleaver.

Definition 7.5 The degree of shift-invariance ε of an interleaver represents the size
of the orbits.

Because the number of points from Q is equal to L , all orbits have the same size
and there is just one way to express Q as a disjoint union of a family of orbits, it
results that

ζ = L/ε (7.21)

The next theorem gives a formula for computing the degree of nonlinearity of a
QPP interleaver.

Theorem 7.6 (Theorem 3 from Takeshita 2007) The degree of nonlinearity of a
QPP interleaver given by π(x) = q1 · x + q2 · x2 (mod L) is

ζ = L/ gcd(2q2, L) (7.22)
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Proof If A(k0, k1) is an isometry of the interlevear code Q for a QPP interleaver
described by π(x) = q1 · x + q2 · x2 then, from (7.20), we must have π(x + k0) =
π(x) + k1 (mod L). Developing it, we have

q2 · (x + k0)
2 + q1 · (x + k0) = q2 · x2 + q1 · x + k1 (mod L) ⇔

⇔ q2 · x2 + (q1 + 2 · q2 · k0) · x + q1 · k0 + q2 · k20 − k1 =
= q2 · x2 + q1 · x (mod L) ⇔

⇔ (2 · q2 · k0) · x + q1 · k0 + q2 · k20 − k1 = 0 (mod L) (7.23)

Thus, we just need to ensure that 2 · q2 · k0 = 0 (mod L). This is a linear congru-
ence and its solution is given by Theorem 57 from Hardy and Wright (1975)

k0(i) = L · i
gcd(2q2, L)

, i = 0, 1, 2, . . . , gcd(2q2, L) − 1 (7.24)

With k0 determined from (7.24), k1 results from (7.23) as

k1(i) = q1 · k0(i) + q2 · (
k0(i)

)2 (7.25)

There are exactly gcd(2q2, L) distinct solutions, meaning that each point in
Q belongs to an orbit of size gcd(2q2, L), i.e., the degree of shift invariance is
ε(Q) = gcd(2q2, L). Using (7.21), the degree of nonlinearity for QPPs is ζ(Q) =
L/ gcd(2q2, L). �

Considering the proof of Theorem 7.6, and because p0 = (0, 0) ∈ Q, under the
assumption that a QPP has q0 = 0, the set

Op0 = {(
k0(i), k1(i)

)|i = 0, 1, . . . , gcd(2q2, L) − 1
}

(7.26)

is exactly one of the orbits in Q.
The next theorem gives a lower bound for the Lee metric between two different

points of the interleaver code.

Theorem 7.7 (Theorem 5 from Takeshita 2007) Let there be px1 , px2 ∈ O(0,0) and
px1 �= px2 . A lower bound on the distance δL(px1 , px2) is 2L/ gcd(2q2, L).

Proof From (7.24) it follows that the minimum distance in the set
{
k0(i)|i =

0, 1, . . . , gcd(2q2, L) − 1
}
is L/ gcd(2q2, L). From the proof of Theorem 6.1 it fol-

lows that π( j + tW ) �= π( j + vW ), for 0 ≤ j < W , 0 ≤ t < v < L/W , whereW |
L . Then, because L/ gcd(2q2, L) is a valid value forW , it follows that L/ gcd(2q2, L)

is the minimum distance in the set
{
k1(i)|i = 0, 1, . . . , gcd(2q2, L) − 1

}
. Be-

cause the points from the same orbit are equivalent under the isometry group
of translations, it results that there is a pair of values (k0(i), k1(i)), with i ∈
{0, 1, 2, . . . , gcd(2q2, L) − 1}, so that for two points px1 , px2 ∈ O(0,0), we have
x2 = x1 + k0(i) and π(x2) = π(x1) + k1(i). Then
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Fig. 7.4 The interleaver π(x) = 29x + 168x2 (mod 448) and its four orbits

δL(px1 , px2) = |x2 − x1|L + |π(x2) − π(x1)|L = |k1(i)|L + |k2(i)L ≤
≤ L

gcd(2q2, L)
+ L

gcd(2q2, L)
= 2 · L

gcd(2q2, L)

(7.27)

This is even the result in the theorem. �

To find the other orbits except (7.26), we only need a representative from each
one.

Theorem 7.8 (Theorem 6 from Takeshita 2007) A complete set of representatives
for the distinct orbits of Q is

{(
i,π(i)

)|i = 0, 1, . . . , L/ gcd(2q2, L) − 1
}

(7.28)

Proof The set (7.28) is a complete set of representatives because the orbits are disjoint
and in order to have a point belonging to the same orbit, they must be no closer than
L/ gcd(2q2, L) in each coordinate, as results from Theorem 7.7. These must cover
all representatives because the number of distinct orbits is L/ gcd(2q2, L). �

The interleaver defined by π(x) = 29x + 168x2 (mod 448) can be decomposed
into ε = 448/ gcd(2 · 168, 448) = 448/112 = 4 disjoint orbits, shown in Fig. 7.4.
We note that the placements of the points in plots in Fig. 7.4a, b are exactly the same.
The regularity (linearity) of the interleaver gets clearly emphasized on the plot in
Fig. 7.4b.

The next definition is for local spread of a point px in an interleaver code Q.

Definition 7.9 Let Q be an interleaver code generated by an arbitrary PP. The local
spread of a point px ∈ Q is

Dpx = min
{
δL(px , py) | δL(px , py) ≤ √

2L,
√
2L

}
(7.29)
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The following theorem gives an efficient computation procedure for the spread
factor D of PP interleavers.

Theorem 7.10 (Theorem 7 from Takeshita 2007) Let Q be an interleaver code
generated by an arbitrary PP and let {px } be a set of representatives for each orbit
in Q. The spread factor Q can be computed by

D = min
{
Dpy | py ∈ {px }

}
. (7.30)

Proof All points are equivalent under translations in a particular orbit and a local
spread cannot exceed the upper bound on D. �

The randomness of an interleaver was assessed in Heegard and Wicker (1999)
by a quantity named dispersion, denoted �. It is given by the number of distinct
displacement vectors (�x ,�y) (Heegard and Wicker 1999):

� =
∣∣∣
{
(�x ,�y) ∈ Z

2
∣∣�x = j − i,�y = π( j) − π(i),

0 ≤ i < j ≤ L − 1
}∣∣∣. (7.31)

The normalized dispersion is the value of � normalized to its maximum value,
i.e.:

γ = 2�

L(L − 1)
(7.32)

The dispersion of an interleaver influences the multiplicities of the low weight
code words; therefore a high dispersion is desirable. This desideratum was relieved
in Trifina et al. (2006a, b), where interleavers with high dispersion have been pro-
posed. However, this is not enough for a good performance, a good spread being also
necessary.

In Takeshita (2007) the notion of randomness is replaced by degree of nonlinearity
ζ (see Definition 7.4 and Eq. (7.22)). The nonlinearity metric ζ was shown to be
inversely related to the degree of shift-invariance ε of an interleaver (see Eq. (7.21)).
For QPP interleavers, the degree of nonlinearity ζ is computed in closed form as a
function of the second-degree coefficient (see Eq. (7.22)), which gives a complete
control of this parameter.When tail-biting convolutional codes are used as constituent
codes, turbo codes using QPP interleavers become quasi-cyclic; for those codes,
it is predicted that the multiplicity of many low-weight codewords is typically a
multiple of the degree of shift invariance ε. Thus, for low multiplicities, the degree
of nonlinearity ζ should be high.

It was shown in Sect. 7.2 that the maximization of the spread factor D is bene-
ficial in the minimization of the number of low-weight codewords caused by self-
terminating weight-2 input sequences or by short bursts of self-terminating input
sequences. Thus, this parameter controls the effective free distance of the turbo code.
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Taking into account that the minimum distance of a turbo code grows at most loga-
rithmically with the interleaver length, the following metric is proposed in Takeshita
(2007) to be maximized for a good interleaver:

� = ln(D) · ζ (7.33)

The nonlinearity metric ζ does not capture the notion of orbits that are disjoint
but there exists a linear curve that interpolates them. This can represent a problem.
Consequently, in Takeshita (2007) the author proposed another nonlinearity metric
ζ ′ ≤ ζ that fixes part of this problem. A QPP can be decomposed in two monomials,
one corresponding to the first degree term q1 · x (mod L) and the other to the second
degree term q2 · x2 (mod L). In most cases, gcd(q1, L) = 1 for a valid QPP, which
means that q1 · x (mod L) is a LPP. When gcd(q1, L) �= 1, a generalization is possi-
ble. Therefore, a QPP can be viewed as a LPP that is “affected” by q2 · x2 (mod L)

at every position x . For example, the point at coordinate x = 0 gets affected by
q2 · 02 = 0, the point at coordinate x = 1 gets disturbed by q2 · 12 = q2, and so on.
Considering Theorem 7.8, the periodicity of the disturbance is at most ζ. The refined
nonlinearity degree ζ ′ simply measures how many distinct elements are in the set
{q2x2 (mod L) | x = 0, 1, . . . , ζ − 1}. It is a very simple measure. From the values
of ζ ′ in Table 7.3 we see that they do not grow as fast as ζ. With refined nonlinearity
degree, the metric � becomes:

�′ = ln(D) · ζ ′ (7.34)

To minimize edge effects in the case of post-interleaver trellis termination, named
uninterleaved dual termination in Takeshita (2007), the following metric is desirable
to be maximized:

C = min
x∈ZL

δ
(
(L − 1, L − 1), (x,π(x))

)
, (7.35)

where δ(pi , p j ) is the Manhattan metric, given by relation (7.2).
The metric C is called the corner merit of an interleaver because geometrically it

means avoiding points in the right upper corner of code interleaver Q.
Table 7.4 lists polynomials for which �′ is maximized and with a spread factor

D larger or equal to β · ubD(L); the associated interleavers will be called �′-QPP
interleavers. The threshold β makes sure that the spread factor does not get too small
for small block lengths. A reasonable threshold has been determined experimentally
in Takeshita (2007). For the lengths given in Table 7.4, β = 0.45. For lengths greater
than or equal to 2048, β = 0.30 is suggested in Takeshita (2007). In fact, as the
block size increases, β is allowed to become smaller; this means that a maximization
of the spread factor is considered less important for larger block lengths. When
multiple polynomials with the same product merit�′ exist, the one with the smallest
coefficient q2 and then q1 is listed in Table 7.4.
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Table 7.4 QPP interleavers with the best �′ metric and D ≥ 0.45 · ubD(L) (�′-QPP) (Takeshita
2007) and the first term in the distance spectra of turbo codes of 1/3 nominal coding rate using these
interleavers, generator matrix G = [1, 15/13] and post-interleaver trellis termination

L q0 π(x) D ζ ′ �′ C dmin /Ndmin / wdmin

40 14 x + 10x2 4 2 2.77 16 12/24/96

80 72 9x + 20x2 10 2 4.61 16 14/1/2

128 89 7x + 16x2 8 3 6.24 21 12/1/2

160 115 9x + 20x2 10 3 6.91 23 16/2/4

256 240 15x + 32x2 16 3 8.32 30 16/1/2

320 304 19x + 40x2 20 3 8.99 34 20/3/6

400 375 7x + 40x2 16 5 13.86 39 16/1/2

408 273 25x + 102x2 24 2 6.36 37 28/1/2

512 433 15x + 32x2 16 4 11.09 45 20/1/2

640 549 19x + 40x2 20 4 11.98 49 24/1/2

752 619 23x + 94x2 26 3 9.77 51 25/1/3

800 786 17x + 80x2 32 5 17.33 50 25/1/3

1024 992 31x + 64x2 32 4 13.86 62 28/2/4

As in Table 7.2, to compare these interleavears with those found by methods
presented in Sect. 7.5, we also give in Table 7.4 the first term in the distance spectra
of turbo codes with these interleavers, 1/3 nominal coding rate, the generator matrix
G = [1, 15/13] and post-interleaver trellis termination.

7.4 A Method for Searching QPP Interleavers That
Improve the Distance Spectrum of Turbo Codes Using
the Spread Factor and Garrelo’s Method

In Tarniceriu et al. (2009) two methods to obtain QPP interleavers with minimum
distances superior to those given in Takeshita (2007) are proposed. The aim of these
methods is to find QPP polynomials which lead to superior minimum distance and,
concurrently, require less computation time than the exhaustive search over all QPP
polynomials. The methods consider the spread factor, �′ and corner merit metrics to
reduce the search space for QPP interleavers. However, these methods only consider
the minimum distance to enhance the performance of a QPP interleaver matched to
the component codes of the turbo code.

In Trifina et al. (2011) a method for searching QPP interleavers which extends the
second method in Tarniceriu et al. (2009) is presented. The search method of QPP
interleavers for lengths up to 512, consists firstly in selecting polynomials with max-
imum D. In the second method in Tarniceriu et al. (2009), in the second step, QPPs
with the highest minimum distance and lowest multiplicities were chosen, but in Tri-
fina et al. (2011) QPPs with the best distance spectrum are chosen. The best spectrum
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of turbo codes is considered thatwhichminimizes the truncated upper bound of frame
error rate (TUB(FER)) for the independent Rayleigh fading channel with known
channel state information (Eq. (2.25) in Chap.2). SNR is considered high enough,
so that TUB(FER) is a good approximation for real FER. In (2.25) more than one
term in distance spectrum is considered (i.e. M > 1), because only the minimum
distance and its multiplicities have proved to be insufficient in some cases, leading
to polynomials with weaker performances. For example, for the interleaver length
equal to 40, searching QPPs with the distance spectrum with only one term leads to
the polynomial π(x) = 19x + 30x2, for which the minimum distance is dmin = 14
and the multiplicities are Ndmin = 2 and wdmin = 4. This polynomial, for 9 terms
in distance spectrum, leads to TUB(FER)·105 = 0.8106. Searching QPPs with 9
terms in distance spectrum leads to the polynomial π(x) = 13x + 30x2, for which
TUB(FER)·105 = 0.6539, a value smaller than the previous one.

The complexity of themethods presented in Tarniceriu et al. (2009) can be reduced
if in finding PP interleavers the equivalence between PPs is taken into account, thus
avoiding to compute the distance spectrum more times for the same interleaver. This
approach was used in Trifina and Tarniceriu (2013) for finding good CPP interleavers
for LTE lengths up to 352.

7.5 Improved Method for Searching Interleavers
in a Certain Class Using a Modified Version
of Garrelo’s Method

In Trifina et al. (2011) it was shown that there are lengths in the LTE standard for
which the chosen QPP-based interleavers can be improved. The lengths considered
in Trifina et al. (2011) are up to 512. The method used to find QPP interleavers
consisted in minimizing the TUB(FER) metric in the class of interleavers with the
largest spreading.

However, for medium and large lengths, the complexity of this method has to be
reduced in order to find better QPPs in a reasonable time. In this section we present a
method from Trifina and Tarniceriu (2014), which is an improvement of the method
in Trifina et al. (2011), by reducing its complexity, allowing also to be applied for
longer lengths.

Themethod consists in the calculation ofTUB(FER) (orTUB(BER)), based on the
distance spectrumcalculatedwithGarello’s algorithm, described in Sect. 2.4, for each
j = L , L − 1, . . . , 1. Steps (1)–(5) calculate the complete distance spectrum and
this algorithm is done in the C program given in Garello (C program) (2001), by the
function named gamma. In the presented algorithm, somemodifications of step (4) of
gamma function are operated, resulting in the function named modi f ied_gamma.
This modification allows to stop the distance spectrum calculation for j > 0. In the
algorithm of the improved method both functions gamma and modi f ied_gamma
are used.
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The search of interleavers based on the above mentioned method consists in:

• For the first set of interleavers, identical in terms of the distance spectrum, the
complete distance spectrum is calculated with the original gamma function and we
denote FERmin = TU B(FER).

• For the following sets of interleavers we call the modi f ied_gamma function, as
follows:

(1) At each decrement of j , we compute TU Bj (FER)with the spectrum computed
for sequences u( j).
– If TU Bj (FER) ≤ FERmin, the calculation of the spectrum continues on the
base of sequences u( j−1).

– If TU Bj (FER) > FERmin, we check if there are next spectra possibly lead-
ing to lower TU Bj (FER). Since the M distances in the spectrum are dif-
ferent, we choose the most optimistic case. Since for a smaller TU B(FER)

the distances should be as big as possible and the multiplicities as small as
possible, the most optimistic case is when the real possible minimum distance
is smaller only by 1 and its multiplicity is the smallest, i.e., 1.
Thus in the first step, the temporary spectrum update is made as

d1_temp = d1 − 1, d2_temp = d1, . . . , dM_temp = dM−1 (7.36)

The multiplicity for the first distance is set to the most favorable case, i.e. 1,
and the other M − 1 multiplicities are updated similarly to the distances, i.e.

N1_temp = 1, N2_temp = N1, . . . , NM_temp = NM−1 (7.37)

For a TU Bj (FER) > FERmin, the spectrum update continues until

d1_temp = d1 − M, d2_temp = d1 − (M − 1), . . . ,

dM_temp = d1 − 1 (7.38)

with multiplicities

N1_temp = 1, N2_temp = 1, . . . , NM_temp = 1 (7.39)

This is the last from the most optimistic cases of spectrum update.
If, finally, TU Bj (FER) > FERmin, we quit the loop for calculating the
distance spectrum for the initial sequences u( j−1), u( j−2), . . . and so on. In
this way the search time is reduced, especially if TU Bj (FER) > FERmin,
for j as close to L as possible.

(2) Continue similarly for the other sets of interleavers. Finally, we obtain the set
of interleavers with the lowest TU B(FER).
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Themethod used in Trifina et al. (2011) to findQPPswith improved performances
involved calculation of distance spectra using Garello’s basic method (Garello et al.
2001). This was done for each QPP, as in the second method in Tarniceriu et al.
(2009), or for a group of QPPs, leading to identical permutations, with the largest
spreading factor D. This was done according to the condition provided in Trifina
et al. (2011) and Zhao et al. (2010).

A reduction of the number of permutation polynomials, also including QPPs, for
which the distance spectrum is calculated, has been given in Trifina and Tarniceriu
(2013), where CPPs interleavers of small lengths have been found. One can note
that for classical symmetric turbo codes the inverse interleaver results in the same
distance spectrum. Thus, if a QPP admits an inverse QPP (Ryu and Takeshita 2006),
different from the initial one or from one equivalent to it, then the distance spectrum
was calculated only once for each group of such four QPPs. These are the groups of
interleavers for which we apply step (1) in this section.

Furthermore, the complexity reduces especially if the QPP set with the lowest
TUB(FER) is among the first in the search.

Themethod abovewas applied inTrifina andTarniceriu (2014) toQPP interleavers
able to outperform those chosen for the LTE standard, for lengths up to 1504.Amodel
of independent Rayleigh fading wireless channel has been considered. Three classes
of interleavers have been analyzed. They are described below.

For short lengths, maximizing the parameter D leads to better performance, there-
fore the first class examined was the one that maximizes the spread (denoted LS-
QPP).

For longer lengths (greater than approximately 450), the simulation results did
not show any improvement for the LS-QPP class. Therefore, it has been required to
consider another class of QPP interleavers. Since the goal was to find interleavers
better than those in LTE standard, the QPP class with the parameter as in the LTE
standard (DLT E -QPP) and the highest ζ ′ was considered. The condition to have the
highest ζ ′ ensures a lower multiplicity in the distance spectrum and reduces the
number of QPPs from the class. However, it can also affect the performance for
smaller lengths.

The third class, consisting of all QPP interleavers, can be considered only for
not too large lengths (up to 1008); it has been considered to verify if the metric
TUB(FER) is sufficient to find the best interleavers.

Large tables with QPP interleavers found from the three classes were given in
Trifina andTarniceriu (2014). These results show that for lengths up to approximately
450, the best interleavers were found in the first class. For longer lengths, the second
class contained the best ones.

Table 7.5 below displays QPP interleavers with minimum TUB(FER) from the
class of largest spread, for the same lengths as in Tables 7.2 and 7.4, smaller than
or equal to 408. The values of spread (D), nonlinearity degree (ζ), refined nonlin-
earity degree (ζ ′) and corner merit (C) for the reported interleavers are also given in
Table 7.5.

Table 7.6 displays QPP interleavers with minimum TUB(FER) from the class of
QPPs with parameter D as in the LTE standard (DLT E -QPP) and the highest ζ ′, for
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Table 7.5 QPP interleavers with the largest spread and minimum TUB(FER) (LS-QPP-
TUB(FER)min) (Trifina and Tarniceriu 2014) and the first term in the distance spectra of turbo
codes with these interleavers, 1/3 nominal coding rate, the generator matrix G = [1, 15/13] and
post-interleaver trellis termination

L π(x) D ζ ζ ′ C dmin /Ndmin / wdmin

40 33x + 10x2 4 2 2 10 12/1/2

80 11x + 20x2 10 2 2 14 19/3/5

128 17x + 32x2 16 2 2 14 18/1/2

160 99x + 40x2 16 2 2 18 19/1/1

256 159x + 64x2 16 2 2 30 27/2/4

320 21x + 80x2 20 2 2 28 25/1/3

400 47x + 100x2 20 2 2 26 24/1/2

408 229x + 102x2 24 2 2 30 27/2/4

Table 7.6 QPP interleavers with D = DLT E and minimum TUB(FER) (DLT E -QPP-
TUB(FER)min) (Trifina and Tarniceriu 2014) and the first term in the distance spectra of turbo
codes with these interleavers, 1/3 nominal coding rate, the generator matrix G = [1, 15/13] and
post-interleaver trellis termination

L π(x) D ζ ′ �′ C dmin /Ndmin / wdmin

512 289x + 192x2 32 3 10.40 30 27/1/1

640 359x + 240x2 32 3 10.40 38 31/2/6

752 165x + 94x2 26 3 9.77 46 26/1/2

800 17x + 80x2 32 5 17.33 48 31/3/9

1024 31x + 192x2 32 4 13.86 30 29/1/1

the same lengths as in Tables 7.2 and 7.4, greater than or equal to 512. The values of
spread (D), refined nonlinearity degree (ζ ′), �′ metric and corner merit (C) for the
reported interleavers are also given in Table 7.6.

Comparing the interleavers of the same lengths fromTables 7.5 and 7.2we observe
that in all cases, with themethod from this section, higherminimumdistances (except
the length of 160, for which the minimum distance is the same, but with smaller
multiplicities) are obtained. It is interesting to observe that for the lengths of 256 and
320, we have obtained smaller values for ζ or ζ ′, but significantly higher minimum
distances for the samemaximum spread. The same effect can be observed comparing
the interleavers of lengths 256 and 320 from Tables 7.5 and 7.4, even if the corner
merit is maximized by the coefficient q0 for the QPP in Table 7.4. This shows that,
for the same spread, smaller values of the nonlinearity degree may lead to increasing
the minimum distance. We have to mention that this effect is beneficial only for
relatively short lengths.

Comparing the interleavers of lengths 128, 160 and 400 from Tables 7.5 and
7.4 we observe that a greater value of the spread (D) leads to a higher minimum
distance. For length of 408 we observe that, for the same spread and the same refined
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nonlinearity degree, maximizing the corner merit by the coefficient q0, for the QPP
in Table 7.4, leads to a slightly higher minimum distance. However, this is not the
case for the lengths of 40 and 80.

Comparing the interleavers of lengths 512 and 640 from Tables 7.6 and 7.2 we
observe that, even if the spread and the refined nonlinearity degree values are the
same, the interleavers from Table 7.6 have a better distance spectrum. For lengths of
752 and 1024, decreasing the spread and increasing the refined nonlinearity degree
lead to a better distance spectrum for interleavers from Table 7.6.

Comparing the interleavers of lengths 512 and 640 from Tables 7.6 and 7.4, we
observe that increasing the spread leads to higher minimum distance and a better
distance spectrum for the interleavers from Table 7.6. The interleavers of lengths
752, 800 and 1024 from Tables 7.6 and 7.4 have the same values of �′ metric (the
same spread D and the same nonlinearity degree ζ ′), but those from Table 7.6 have
a better distance spectrum, considering the first three terms.

Tables 7.7 and7.8display somegoodQPP interleavers,withminimumTUB(FER),
from the class of largest spread and from the class of QPPs with the parameter D as
in the LTE standard (DLT E -QPP) and the highest ζ ′, respectively. These good QPPs
found have the simulated FER, for AWGN channel at high SNR, at least two times
smaller compared to the simulated FER of LTE-QPP, as shown in Tables 7.7 and
7.8.

Finally, in Table 7.9, we give some CPPs better than some good QPPs or LPPs in
terms of FER at high SNR for AWGN channels. The spread factor (D parameter),
the refined nonlinearity degree (ζ ′) and the minimum distance with its multiplicity
are also listed in Table 7.9. These QPPs/LPPs and CPPs were reported in Trifina and
Tarniceriu (2017) and they were found using the method from this section applied
for two different classes of interleavers, as follows:

• for lengths smaller than or equal to 448, by maximizing the spread factor and then
by minimizing the TUB(FER) value;

• for lengths greater than or equal to 592, by maximizing the �′ metric among
the interleavers with spread factor greater than or equal to 0.45 · √2L (Takeshita
2007) and then, by minimizing the TUB(FER) value.

From Table 7.9 we observe that CPPs of medium lengths can achieve a FER
at high SNR of approximately 3 up to 9 times smaller than for QPPs. For these
lengths, the spread factor of CPPs is always greater than or equal to that of QPPs,
while the refined nonlinearity degree ofCPPs is always greater than that of QPPs.
This fact togheter with smaller TUB(FER) values for these CPPs explains the FER
performance differences (Takeshita 2007). For small lengths, the FER for CPPs is
slightly smaller than the FER for good QPPPs or LPPs.
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