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PREFACE TO THE FIRST EDITION 


The primary goal of this book is to use organic reaction mechanisms as a means 

of facilitating the mastery and understanding of the fundamental principles of organic 

chemistry, while at the same time sharpening a student's reasoning ability and critical 

thinking. This is achieved through the judicious selection and use of a large number of 

problems selected from the chemical literature. Each question is meant to illustrate one 

or more fundamental principles of mechanistic organic chemistry. The level of difficulty 

and suitability of the questions in this book have been tested by including them in exams 

and/or as homework assignments in the undergraduate organic chemistry course (Part 

A}, or the first year graduate-level course in organic chemistry (Part B). 

Special emphasis has been placed on the organization of the book. Part A contains 

questions geared toward students taking the sophomore-level organic chemistry course. 

The questions and principles illustrated thereof, are organized in the same sequence as 

they are normally discussed in a standard textbook of organic chemistry. A series of 

minireviews that summarize and reinforce fundamental principles that underlie a 

particular set of related problems have been included at the beginning of each set of 

questions. Thus, Part A can serve as a supplement to a standard textbook used in the 

first year organic chemistry course, and is intended to meet an existing need, since only 

a token number of end-of-chapter mechanism questions is included in most textbooks of 

organic chemistry. 

The questions included in Part B are suitable for students in an honors course in 

organic chemistry, and beginning graduate students in chemistry, medicinal chemistry, 

biochemistry and related disciplines. A limited number of applied problems has been 

included (Part C) to demonstrate how a knowledge of basic organic reaction mechanisms 

can be used to understand problems related to everyday life. 

I am deeply indebted to professor Richard A Bunce (Oklahoma State University) 

for his diligence in reviewing the manuscript, and his many valuable comments. I am also 

grateful to Jennifer Yee for her editorial assistance, guidance and constant 

encouragement throughout the preparation of the workbook. Any errors that may have 

crept in is the responsibility of the author. 
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PREFACE TO THE SECOND EDITION 


As in the first edition, our overarching goal is to use organic reaction mechanisms to help 

students master the fundamental principles of organic chemistry and sharpen their 

thinking and reasoning skills. In doing so, we have focused on mechanisms that involve 

Lewis acid/Lewis base reactions. The revised book is aimed at undergraduates and 

beginning graduate students in organic and medicinal chemistry, biochemistry, and 

related disciplines, and the questions are organized in the same general sequence as in 

a standard textbook of organic chemistry. 

The second edition contains several important changes. The scope of each minireview 

has been expanded and the number of problems has been increased considerably (from 

210 to 500 problems). The questions are graded in difficulty with part A containing 

questions aimed at students taking the sophomore-level organic chemistry class while 

part B contains questions of somewhat greater difficulty suitable for students taking an 

honors course in organic chemistry and beginning graduate students. Special emphasis 

has been placed on the selection of questions to ensure that each question illustrates one 

or more fundamental principles of organic chemistry. 

We hope that the second edition will enhance the understanding of organic reaction 

mechanisms and minimize rote learning. Finally, we would like to thank Hilary LaFoe for 

her editorial assistance and encouragement, and Sukirti Singh and the CRC press 

production team for their help and support. 
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GLOSSARY 


Name Abbreviation Structure 

p-Toluenesulfonic acid p-TSA/p-

TsOH 

0 
0.;-S~OH 

9 

4-Dimethylaminopyridine DMAP 'N/ 

6

N 

Polyphosphoric acid PPA 

HOrt+ 

n 

1 ,8-Diazabicyclo[5.4. O]undec-7 -ene DBU 

c9 

Tetra n-butyl ammonium fluoride TABF 

~~ 
+N 

~ 

1 ,4-Diazabicyclo[2.2.2]octane DAB CO 

(~)

N 

Lithium diisopropylamide LOA ~N_( 

Lr 

N-Chlorosuccinimide NCS Cl

o\j=o 

2,4-Bis(4-methoxyphenyl)-1 ,3,2,4

dithiadiphosphetane-2,4-disulfide 

Lawesson's 

reagent 

s 

o-Q-P-s


I I1-o- I 
s-~ ~ J o 

s 
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Sulfonic acid polymer resin Amberlyst-15 

(strongly acidic cation exchanger} 

Lithium bis(trimethylsilyl}amide LHMDS u+ 
I -

'gi-N, riI 
1 

N ,N'-Dicyclohexylcarbodiimide DCC N._c-ND 

6 
(7, 7 -dimethyl-2-oxobicyclo[2.2.1 ]heptan

1-yl)methanesulfonic acid 

CSA 

HO~ 

" 0 

Diethyl azodicarboxylate DEAD 0 
_..............O)lN.. N 1(0--.._./ 

0 

1-methoxy-N Burgess 0 


(triethylazaniumyl}sulfonylmethanimidate reagent 'o)lNH 

I +r-

0=8-N..../ 

6~ 
Tetrabutylammonium iodide TB AI 

~~
+\ 
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A NOTE ON WRITING MECHANISMS 

The majority of organic reactions can be viewed as being Lewis acid/Lewis base 

reactions. Recall that a Lewis base (LB) is any substance that can donate a pair of non

bonded or pi electrons to a Lewis acid (LA) to form a covalent bond, and a Lewis acid is 

any substance that can accept a pair of electrons to form a covalent bond (see 

Mini reviews 1 and 2 for a general discussion of Lewis structures, Lewis acids and Lewis 

bases, and Lewis acid/ Lewis base reactions). 

In writing mechanisms, the following general approach should be followed: 

(a) add a sufficient number ofnon-bonded electrons pairs on any heteroatoms (atoms 

other than carbon, such as, 0, N, S, etc.) to complete their octets, since chemical 

structures are customarily drawn without the non-bonded electron pairs shown. By doing 

so, you will immediately identify the atom(s) in a given reactant that, in principle, can 

donate a pair of electrons to a Lewis acid. With just a little practice this will turn out to be 

a trivial task and, furthermore, in many cases you'll only be needing to add non-bonded 

electron pairs to the atoms that are directly involved in the reaction. 

EXAMPLES 

d
•• H 

..CCOH 
C~O.COOH •• H 
" :a: 

(b) Identify the reactant that functions as a Lewis base, and the reactant that 

functions as a Lewis acid in a given reaction and use curved arrows to indicate the flow 

of electrons from the atom that donates the pair of non-bonded or pi electrons to the 

receiving electron deficient atom, as illustrated below. The reactant that acts as a Lewis 
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acid (LA) typically has an atom that is electron deficient, namely, it may have a positive 

charge, or a partial positive charge (i5+) if it is bonded to one or more electronegative 

atoms, or it may have an atom that lacks an octet of electrons. 

0,. Y-Z 

(or :v) 

LB 

Examples illustrating these ideas are shown below. 

EXAMPLE 1 

Lewis acid (LA) 
Lewis base (LB) n 
~ ,H~V, HH 

~wFI 

EXAMPLE 2 

H__ H
.~H 0.. B'a0: + ~-H 0 ....... ' 


+ H
H 

LB LA 

Note In general, compounds of group IliA elements (B, AI, etc.) typically have an 

incomplete octet of electrons and invariably function as Lewis acids. Examples include 

boron trifluoride (BF3), aluminum chloride (AICb), boron tribromide (8Br3), etc. 
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EXAMPLE 3 


H-c): 
vv 

EXAMPLE 4 

.n 
~9-H + :s"r:I H .• 

LA LB 

EXAMPLE 5 

H 
(>--~-H + HCI (>--±~-H 

H H 

lt is helpful to remember that strong mineral acids (HCI, HBr, HN03, etc.) or strong 

organic acids (for example RS03H, CF3COOH) are fully or predominantly ionized in 

solution. Thus, the reaction shown above can be viewed as shown below, making it easier 

to identify the Lewis acid(s) and Lewis base(s). 

.. H 
+ :c1:.. (>--±~-H 

H ··LB :Cl:
LB .. 
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EXAMPLE 6 


0 0 

:0 .. 
~Q-H 

EXAMPLE 7 

EXAMPLE 8 

:Cl: 
.. 1 00 

0-AI-CI:
I .. 

:Cl:.. 
LA 

(c) Assign formal charges to the atoms directly involved in the reaction (the formal 

charges on atoms that are not directly involved in the reaction do not change). Recall that 

the formal charge can be readily determined as follows: 

Formal charge on an atom = X - Y - Z 

where X =number of valence electrons 

Y =number of non-bonded electrons 

Z = half the number of bonded electrons 
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The number of valence electrons for an atom corresponds to its group number in 

the periodic table. For example, sulfur is in group VI in the periodic table, therefore it has 

six valence electrons (see also Minireview 1 ). 

(d) If a reactant has more than one functional group which can donate a pair of 

non-bonded or pi electrons, then inspection of the structures of the reactant and product 

will usually reveal which functional group will react initially. Other considerations coming 

into play in deciding which functional group in a reactant is involved in the first step of a 

reaction include, for example, the stability of the initial carbocation. The more stable a 

carbocation is, the easier it is to form (see Minireview 4 for a discussion of carbocation 

chemistry). In the example shown below, while a pair of non-bonded electrons can be 

donated from either hydroxyl group, reaction takes place preferentially at the one that 

leads to the formation of the more stable benzylic carbocation, as opposed to the less 

stable primary carbocation. 

+ 

C\(i_H+ 
.. 

benzylic carbocation 

(e) Most mechanisms, particularly those involving skeletal rearrangements, may 

involve several sequential steps. Most of the steps are consecutive Lewis acid/Lewis base 

reactions which can be intermolecular (reaction involves two separate molecules that can 

be the same or different) or intramolecular (reaction takes place within the same 

molecule) in nature. The driving force behind these steps is the resulting gain in stability 

in going from one transient species to another such as, for example, from a less stable 

carbocation to a more stable carbocation, relief of ring strain, etc. 

The following examples are meant to serve as a guide on how to write a reasonable 

mechanism for a reaction you may have never seen before using the Lewis acid/Lewis 

base approach. The same approach can be used to understand and explain how a 
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reagent mediates a particular transformation. The thought processes underlining the 

general approach used in writing mechanisms are explicitly stated. 

EXAMPLE 1 Write a mechanism for the following reaction. 

CIJOH HCI + 
/;V 

O 
Answer 

The first step in writing a mechanism for any chemical reaction is the identification 

of the Lewis acid and Lewis base. This can be readily accomplished by placing a sufficient 

number of non-bonded electron pairs on the heteroatom (oxygen in this case) in a 

reactant to complete its octet. This immediately reveals that the alcohol will function as a 

Lewis base and the oxygen atom of the hydroxyl group will donate a pair of non-bonded 

electrons to the Lewis acid. Since mineral assets are fully ionized in solution, the second 

reactant can be viewed as existing as H+ (a Lewis acid) and Cl- (a Lewis base) ions. 

Therefore, the first step of the mechanism for this reaction involves a Lewis base /Lewis 

acid reaction to yield a protonated alcohol. The second step involves the loss of a 

molecule of water via the cleavage of the C-O bond (the pair of electrons ends up on the 

oxygen atom of water as a pair of non-bonded electrons), at the same time relieving the 

positive charge on the electronegative atom. The second step in this mechanism is the 

rate-determining step, namely, the step with the highest free energy of activation (see 

Mini review 4 for a full discussion of carbocation chemistry). The third step completes the 

mechanism of the reaction. lt involves a straightforward Lewis acid/Lewis base reaction 

between the carbocation (LA) and the chloride ion (LB). 

H •• H ··-g, 6-: <?.1: (LB) 
• + H H~-H H (LA) +Q-H ___l__ ~+ 

LB - I H 


} Step 1 oa Step 2 --" (LA} Step 3 

benzylic carbocation 
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EXAMPLE 2 Write a mechanism for the following reaction. 

HBr ~r 
Answer 

By definition, any substance that can donate a pair of non-bonded or pi electrons 

is a Lewis base. Thus, alkenes (as well as alkynes) invariably function as Lewis bases by 

donating a pair of pi electrons to a Lewis acid. In the first step of this reaction, the pair of 

pi electrons in the C=C bond is donated to H+ (Lewis acid) to form a covalent bond yielding 

a carbocation (a Lewis acid). Notice that in this instance the pair of pi electrons can 

potentially be used to form a covalent bond with either one of the carbon atoms of the 

C=C bond. Recall that, the reaction of an alkene with H+ always leads to the initial 

formation of the most stable carbocation. In order to form the most stable carbocation, 

the H+ will have to bond to the carbon of the C=C bond that bears the greater number of 

hydrogens (Markovnikov's rule). The second step of the mechanism involves the reaction 

of a carbocation (LA) with a Lewis base (bromide ion). 

~H+(LA} 
(LB) H Step 1 

~H 
Step 2l~.: 

: ~.r: (LB) 

EXAMPLE 3 Write a mechanism for the following reaction. 

0 CH30H 
0-ocH3 

Answer 

Unlike examples 1 and 2 which involve the reaction of either an alcohol or an 

alkene with a Lewis acid, this example involves the participation of two Lewis Bases (an 
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alkene and an alcohol) and a Lewis acid (H+), leading to the formation of an ether. Prior 

to writing a mechanism for this reaction the following question must be addressed: which 

one of the two Lewis bases will react with H+ and how do you go about deciding that? 

While the alcohol (LB) can potentially react with H+ (LA), this is an unproductive process 

(it cannot lead to the formation of the observed product). Note also that methyl 

carbocations are highly unstable (see Minireview 4). Thus, the reaction is initiated via a 

Lewis base/Lewis acid reaction between the alkene and H+ forming a secondary 

carbocation. Further reaction of the carbocation (a Lewis acid) with the alcohol (a Lewis 

base) leads to the formation of a protonated ether (Step 2). Loss of a H+ yields the 

observed product (step 3). The hydrogen in the protonated ether is acidic, consequently 

step 3 is essentially an ionization step. 

HQ 
H :o-CH3~+(LA} 

Ostep1 Step30 

(LB) 

Exercise Write a mechanism for the following reaction 

EXAMPLE 4 Write a mechanism for the following reaction. 

~(~;,0 HBr 
l_)--oH 

Answer 

Once the appropriate number of pairs of non-bonded electrons are placed on the 

oxygen to complete its octet, it can be readily seen that ethers (like alcohols), can function 

as Lewis bases. Thus, the first step of this reaction is a Lewis acid/Lewis base reaction 

16 




leading to the formation of a protonated ether. This is followed by cleavage of the C-0 

bond in a way that yields the most stable carbocation (tertiary vs secondary). A Lewis 

acid/Lewis base reaction between the carbocation and bromide ion completes the 

mechanism for this reaction. Note Three and four-membered cyclic ethers readily 

undergo ring-opening reactions in the presence of Lewis acids. The relief of ring strain 

serves as the driving force for these reactions (see Minireview 7). 

_)..n•(LA) .)(Ji: (LA~ • .JLB) :~O..H
lJ LJ+ .::;;:==~ L_)--QH =~r: --- l)-.. 
(LB) 

EXAMPLE 5 Write a mechanism for the following reaction. 

Answer 

Once the Lewis acid and the Lewis base are identified, casual inspection of the 

Lewis base indicates that, in principle, three different functional groups (OH, alkene C=C 

bond and aromatic ring C=C bonds) can act as a Lewis base, namely, donate a pair of 

non-bonded or pi electrons to the Lewis acid (H+). At this point a decision has to be made 

as to which of these will react with the Lewis acid. As a general rule, it is useful to 

remember that (a) non-bonded electrons are more available for donation than pi electrons 

(since pi electrons are held by two nuclei) and, (b) an alkene C=C bond is more reactive 

than the C=C bond of an aromatic ring, since reaction of an aromatic ring C=C bond 

results in the loss of the aromatic character of the ring (30 kcal/mol loss in resonance 

stabilization energy). 

Thus, in step 1 of this reaction the hydroxyl group of the Lewis base donates a pair 

of non-bonded electrons to the Lewis acid, which is then followed by cleavage of the C

17 




0 bond and the loss of a molecule of water (step 2), leading to the formation of a 

carbocation (notice that when the C-0 bond is cleaved, the pair of electrons making up 

the bond goes with the oxygen). Step 1 (LB/LA reaction) and step 2 (loss of water) are 

common to all reactions involving an alcohol and acid. The carbocation formed in step 2 

is resonance-stabilized, thus, reaction of the carbocation (LA) with water (LB) gives rise 

to a protonated alcohol (step 3). The final step (Step 4) in this reaction involves the loss 

of hydrogen ion (H+) to give the observed product Step 4 is a simple ionization step, 

analogous to the ionization of the hydronium ion (H30+ = H20 + H+)_ 

Step4 

EXAMPLE 6 Write a mechanism for the following reaction. 

Answer 

lt is always a good idea to inspect the structures of the starting material and 

product, since in many instances this will quickly reveal which functional group(s) are 

involved in the reaction. In this instance, it is evident that it's the hydroxyl group and C=C 

bond, and not the carboxyl group. With the non-bonded electrons added on the 
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heteroatoms, and recalling the fundamental definition of a Lewis base, it is apparent that 

either the hydroxyl group or the C=C bond can donate a pair of electrons to the Lewis 

acid. In example 5, it was stated that, as a general rule, a pair of non-bonded electrons is 

more available for donation than a pair of pi electrons. This example was chosen to (a) 

demonstrate that this is not always true, and (b) emphasize the need for you to keep an 

open (flexible) mind as you consider plausible mechanistic pathways. In other words, 

organic reactions frequently follow an unpredictable course, and the task on hand is to 

use fundamental principles to account for the formation of the observed product Indeed, 

herein lies the pedagogical value of writing mechanisms. In so doing, you will be forced 

to look at a situation in many ways and consider plausible pathways within a framework 

of principles. Thus, in step 1 of this reaction, a Lewis base (C=C)/Lewis acid (H+) reaction 

gives rise to the 3° carbocation (Markovnikov's rule). In step 3, the carbocation (LA) 

accepts a pair of non-bonding electrons from the Lewis base to form a product that ionizes 

to give the observed product 

Notice that an initial reaction between the hydroxyl group and H+, followed by loss 

of a molecule of water also leads to the formation of 3° carbocation, however, this pathway 

cannot account for the observed product (unproductive pathway) . 

H-R;&(i. H 

""""s=te=p=1~ :o: :±5 
Step 2 

~=~HOOC~: + 
Step3 ~ 

.. 

EXAMPLE 7 Write a mechanism for the following reaction. 

V 
(2 mols) 
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Answer 

As stated previously {example 2), the C=C bond of an alkene functions as a Lewis 

base by donating a pair of pi electrons to a Lewis acid. However, in this instance the pi 

bonds in the phenyl {aromatic) ring could potentially behave the same way. Since the 

reaction of a ring C=C with a Lewis acid would result in the formation of a much less 

stable non-aromatic species, the alkene C=C bond reacts preferentially (step 1 ). The 

carbocation formed is a Lewis acid which then reacts with a second molecule of the 

alkene {a Lewis base) to give rise to a second benzylic carbocation (step 2). Besides 

reacting with a Lewis base, a carbocation can lose a H+ from an adjacent carbon atom to 

form an alkene {Minireview 3). Thus, step 3 leads to the formation of a new alkene. 

~~w ~ l) ,. ~-=:;=Step 1 

(LB) benzylic carbocation 

~(LB)
U Step2 I 

(LA) 
benzylic carbocation 

Step 3 

EXAMPLE 8 Write a mechanism for the following reaction. 

0 

0 

if8 
OH 
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Answer 

A mechanism question must always be approached from first principles, namely, 

it is not necessary for you to be able to realize that this particular reaction is an example 

of an aldol condensation reaction, in order to write a reasonable mechanism. Thus, the 

approach is always the same: first add non-bonded electron pairs to the two reactants, 

and classify each as a Lewis base and a Lewis acid. The stronger Lewis base (-OH, since 

it has a negative charge) is going to react with the second reactant which, by necessity, 

must function as a Lewis acid (LA). The carbon of the C=O group is electron-deficient 

(oxygen is more electronegative than carbon, consequently the electrons connecting the 

carbon and oxygen are not equally shared, and hence the carbon has a partial positive 

charge and oxygen a partial negative charge, o+c=0°-). Thus, one possibility is for the 

hydroxide ion to donate a pair of electrons to the electron deficient carbon (nucleophilic 

addition) or, since the hydrogens on the alpha carbon of a ketone are acidic, an acid-base 

reaction can take place instead, yielding an anion (a Lewis base or nucleophile). As a 

general rule, Bronsted acid-base reactions are faster than most other types of organic 

reactions. Thus, a Bronsted acid-base reaction in step 1 yields an anion, which then 

reacts in a Lewis base/Lewis acid reaction (step 2) to form the product. This product is 

the conjugate base of an alcohol and can be viewed as being in equilibrium with the acid 

(step 3). Step 4 is a (3-elimination reaction that leads to the formation ofthe product. Step 

4 is facile because it leads to the formation of a highly stable conjugated system (a system 

that consists of an array of alternating double and single bonds). 
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{\ 
~:H~ :QH 

Step 2 U :8: Step 1 

EXAMPLE 9 Write a mechanism for the following reaction. 

Answer 

The carbonyl carbon is electron deficient, i.e., has a partial positive charge, 

because it is bonded to two electronegative atoms. Any atom that bears either a full 

positive charge (such as a carbocation, for example) or partial positive charge, is capable 

of accepting a pair of electrons from a Lewis base to form a covalent bond. Thus, an initial 

LAILB reaction leads to the formation of a tetrahedral intermediate (step 1 ). Subsequent 

collapse of this intermediate leads to a ring-opened product (step 2). The ring-opened 

product has an acidic group (COOH) and a basic group, thus a fast Lewis acid/base 

reaction (H+ transfer) takes place, leading to the formation of the final product (step 3). 

• 0H~ H-N~c,,o:
Step 3 I I~~-H Step 2 H :o:..

I 

H 
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EXAMPLE 10 Write a mechanism for the following reaction. 

+ -
NaO~ 

Answer 

The Lewis base (ethoxide ion, CH3CH20-) reacts with the reactant to generate an 

anion (step 1 ). Notice that the ethoxide ion reacts with the most acidic hydrogen (see 

Mini review 5 for a discussion of acidity). The pKa of the reactant acid is -11, while that of 

the product acid (HOCH2CH3) is -16. Thus, the equilibrium lies to the right, i.e., favors 

the formation of the anion derived from the stronger acid. Once the anion (nucleophile) is 

formed, an intramolecular LB/LA reaction (nucleophilic acyl substitution) takes place 

(Steps 2 and 3), forming the product. 

..o: 

~~••H 
\d~ Step 2 

( r' q·~ 
~9:

rR= .. 
.. .. 

o· ~N~O: + -:g~~~·HO: 
~ . :g~ Step3 ~ L-{ :g~

:a::o:o:(' .. 
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Minireviews 1-4 are intended to provide a quick review of the fundamental principles 

related to Lewis structures, Lewis acid/Lewis base reactions, and carbocation chemistry. 

These should be studied prior to attempting questions 1-34, Part A. 
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PART A 
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1. Lewis Structures 

A sound understanding of mechanistic 

organic chemistry requires a proficiency in 

writing Lewis structures. Without the ability to 

draw Lewis structures correctly and with facility, 

a student is so severely handicapped that he or 

she will ultimately resort to learning organic 

chemistry by rote (a tedious, frustrating, and 

minimally-successful endeavor). The 

importance of this will become apparent 

momentarily. 

A Lewis structure is a type of structural 

formula that shows the way in which the atoms 

are bonded together and depicts the bonding 

between atoms using pairs of non-bonded 

electrons (shown as dots) and bonded electrons 

(shown as dashes). In writing Lewis structures, 

the general approach outlined below should be 

followed. 

1. Determine the total number of valence 

electrons. 

For neutral molecules, this is simply 

accomplished by adding up the valence 

electrons of the individual atoms. In the case of 

ions, an electron is added for each negative 

charge (anions), and an electron is subtracted 

for each positive charge (cations). Recall that 

the number of valence electrons for an element 

corresponds to the group number of that 

element in the periodic table. For example, 

26 

Minireview 1 



Formal charge= X -Y- Z 

where, 

X= number of valence 
electrons (of atom under 
consideration) 

Y= number of non-bonded 

electrons, and 


Z= half the number of 

bonded electrons 


CC14 

1C 1 X 4 =4 

4 Cl 4 X 7= 28 

32 Total 
number of 
valence 
electrons 

nitrogen has five valence electrons (nitrogen 

is located in group five of the periodic table), 

fluorine has seven valence electrons (fluorine 

is located in group seven), etc. 

2. Connect the atoms in the given 

molecular formula using single lines 

(dashes). 

lt's helpful to remember that in the case of 

polyatomic molecules or ions, the atom of 

lower electronegativity is typically the central 

atom. Recall that electronegativity follows the 

order F > 0 >Cl, N > Br > C, H. 

3. Place a sufficient number of non

bonded electron pairs on each atom to 

give each atom an octet ofelectrons (octet 

rule) (keep in mind that hydrogen can only 

share a pair of electrons). If at this point the 

total number of valence electrons used is 

greater than that computed in step 1 above, 

use double or triple bonds or rings to arrive at 

a Lewis structure that has the correct total 

number of valence electrons and all the 

atoms have an octet electrons. 

4. Determine the formal charge on each 

atom. 

As stated earlier, the formal charge can be 

readily determined as follows (see sidebar). 
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Notes 

a) The Lewis structures of compounds 

derived from group IliA elements (B, AI, etc.), 

Summary 

Species that lack an 

octet of electrons (electron

deficient species) have two 
distinct characteristics: they 
function as Lewis acids and 
are highly reactive (vide 
infra) . 

have an incomplete octet (six electrons). As 

expected, these compounds invariably function 

as 	Lewis acids and are also highly reactive 

(because of their incomplete octet, they tend to 

readily accept a pair of electrons from a Lewis 

base, thereby acquiring an octet of electrons). 

b) Many chemical reactions proceed 

through the transient formation of highly reactive species. For example, 

carbocations, as well as other species that lack an octet of electrons, have high 

energy (low stability) and, consequently, are highly reactive. 

c) 	 Lewis structures in which all the atoms have an octet of electrons cannot be written 

for molecules and ions that have an odd total number of valence electrons (for 

example, nitric oxide, NO). As might be expected, such species also exhibit high 

chemical reactivity. 

d) The atoms of elements that have empty d orbitals can expand their octets, namely, 

they can accommodate more than eight electrons. Sulfur and phosphorus are the 

two elements most commonly encountered in organic chemistry capable of 

accommodating more than eight electrons. 
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Examples 

H 

PH3 P =1 X 3 =5 I C2H2 C = 2 X 4 = 8 
H 
\ I 

H 

H-P:H=3X1=3 H=4X1=4 C=C 

I I \
8 12 H HH 

00 

:o: :0:SOCI2 S =1 X 6 = 6 
0=1X6= 6 11 I ..0 0 

Cl= 2 X 7 = 14 :CI-S-CI: or : CI-S+-CI: 

26 

I NOCI N=1X5= 5 .. .. ..
B=1X3=3 00 :ci-N=o:0=1X6= 6 

00F =3 X 7 =21 : F-8I Cl= 1 X 7 = 7_ 00 

24 : F: 18 

CH3N02 C 1 X 4 = 4 H •• 
H o·H 3X1=3 I +'lo.• I +/•• 0 

H-C-N or H-C-NN 1X5=5 I \
02X6=12 H :9: HI '':0.. 

24 

C 1X4=4 

H 2X1=2 

0 1X6=6 


12 

NO£ N 1X5= 5 
0 2 X 6 = 12 

= 1 (one negative charge) : 0-N==O: 
00 

18 
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eN- C 1 X 4 =4 
N 1X5=5 

= 1 (one negative charge) : C N: 

10 

col- c 1 X4 = 4 
:0:

0 3 X 6 	= 18 11 .. c .. = 2 (two negative charges) :o_..... 'o-: .. 
24 

CH30-	 c 1 X4 =4 
H 3X1=3 

H0 1 X 6 	= 6 ..I 
= 1 (one negative charge) H-C-0: ..I 

14 H 

NaBH4 This is the same as Na+ BH4-. Thus, the Lewis structure that 

we want is that of BH4

B 1X3=3 _I
H 

H 4X1=4 H-B-H 
1 ( one negative charge) I 

H
8 

• • •.+ 
N 1X5= 5 N 0---- Formal charge on 0 
0 1X6= 6 6-2-3 = +1 

11 
-1 {subtract one electron for each positive charge) 

10 

H H 

I IC2Hs+ 	 c 2X4= 8 H-C--C+ 

H 1 X5 = 5 
 I I 

H H13 

:..!_(subtract one electron for each positive charge) 


12 
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Notes 

1) Compounds having a molecular formula that includes a group I or group 11 element 

are ionic compounds, namely, they consist of a cation and an anion. For example, 

NaBH4, NaCN, BaS04, etc. In drawing a Lewis structure for an ionic compound, 

write the cation and anion first, and then draw the Lewis structure of the non

metallic component {usually the anion). By way of illustration, BaS04 consists of 

Ba2+ and 8042- and you simply draw the Lewis structure of the sulfate ion. 

2) 	On occasion, instead of being asked to draw the Lewis structure of a compound, 

you may be asked to deduce its relative stability, in which case you draw the Lewis 

structure and deduce its stability using the octet rule. 
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A Lewis base is substance that can 

1 . 	Lewis acids 

2. 	Lewis bases 

3. 	 Lewis acid/Lewis 
base reactions 

A Lewis acid/Lewis 
base reaction can be 
generally described as 
shown below. 

~ 
Y: + z+ ~ Y-Z 

Lewis Lewis 
base acid 
(LB) (LA) 

When orgamc 
reactions are described 
this way, the product of 
an organic reaction can 
be readily predicted, 
without recourse to 
memorization. 

donate a pair ofnon-bonded or pi electrons to 

a Lewis acid to form a covalent bond. Lewis 

bases that have a negative charge are 

stronger Lewis bases than those without a 

negative charge. For example, CH30- is a 

stronger Lewis base than CH30H and, 

consequently, will react faster with a Lewis 

acid. 

Furthermore, Lewis basicity is directly 

related to the availability of the pair of non

bonded electrons. A pair of non-bonded 

electrons on a less electronegative atom is 

more available for donation than a pair of non

bonded electrons on a more electronegative 

atom. This is the reason, for example, why 

amines are stronger Lewis bases than 

alcohols and ethers. Likewise, aliphatic 

amines are stronger Lewis bases than 

aromatic amines because the pair of non

bonded electrons on the nitrogen in aromatic 

amines is delocalized over the aromatic ring 

via resonance and, consequently, is not as 

available for donation. 

In Lewis acid/Lewis base reactions where 

a Lewis acid can bond to either of two atoms 

that differ in electronegativity, the stability of 

the product determines the site of the reaction. 

For example, the reaction of an amide 

(R(C=O)NH2) with H+ takes place on the 0 
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(more electronegative atom) than nitrogen (less electronegative atom) because the 

product is resonance-stabilized (vide infra). 

A Lewis acid is a substance that can accept a pair of non-bonded or pi 

electrons from a Lewis base to form a covalent bond. Lewis acids are electron deficient, 

namely, an atom in a Lewis acid may have a positive charge, or it may have a partial 

positive charge because it is bonded to one or more electronegative atoms. An atom with 

an incomplete octet of electrons also acts as a Lewis acid, readily accepting a pair of 

electrons from a Lewis base. Recall that group IliA elements are trivalent, namely, form 

compounds with three covalent bonds and, consequently, they lack an octet of electrons. 

Example 1 


- + 

H3B-NH3 

or 

H H H _....----...... H 1- I+
H-B)"' + ":N-H H-B-N-H 

I I I IH H H H 
LA LB 

Note that the overall process involved in a Lewis acid/Lewis base reaction entails 

(a) writing the Lewis structures of the two reactants and identifying the reactant which 

functions as a Lewis acid and the reactant that functions as a Lewis base; 

(b) using a curved arrow to show how the non-bonded or pi electron pair of electrons 

in the Lewis base is used to form a covalent bond with the electron-deficient atom 

in the Lewis acid and 

(c) determining the formal charges on the two atoms involved in the formation of the 

new covalent bond. 
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Example 2 

-++ BrHBr 

- :sr:=Br: .. 
LA LBLB 



Notes 

(a) As mentioned earlier, strong mineral acids (HCI, HBr, HN03, etc.) and strong organic 

acids (RS03H, RCOOH, etc.} are ionized in solution, therefore it's best to represent 

them as ions (for the sake of simplicity, H+ instead of HJO+ is used throughout the 

book}. When written that way, it can be readily ascertained which is the Lewis acid 

and which is the Lewis base. Strong bases and ionic compounds should be treated 

the same way. 

(b) Recall that a Lewis base will only react with a Lewis acid, but not with another Lewis 

base. 

Example 3 

HCI Cl"+ 

H H 
- I I+ 

+ :c1:---- H-C-N-H + :c1:.. ..I I
H H 

LB LA LB 
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Example4 

H 6
1 ,,0 H 0 

H-C-C + CN I I 
H-C-C-H

HI "'+' 
u 'H I I 

H CN 

HQ·. H :o:I 70• 
H-C-C~ /:c==N· I I 

I ' ·-.___...-- - • H-C-C-H 
I IH H H C:::N: 

LA LB 



Notice that in this example the carbonyl carbon is electron-deficient because it is bonded 

to an electronegative atom and, consequently, has a partial positive charge; Thus, the 

molecule can behave as a Lewis acid and accept a pair of electrons from the Lewis base. 

In general, an atom that is bonded to one or more electronegative atoms will have a partial 

positive charge and can, in principle, function as a Lewis acid by accepting a pair of 

electrons from a Lewis base. 
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Resonance 

Resonance involves the 
alternate placement of non
bonded or pi electrons o ver 
the same a tomic s keleton, 
without any change in the 
position of the atoms. 

A general familiarity with the concept of 

resonance and a facility in writing resonance 

structures is very helpful in 

a) assessing the stability of an individual 

species (anion, cation, or radical) 

b) assessing the relative stability of two 

similar species, thereby enabling one to predict 

the pathway that a reaction will likely to follow 

and/or which species is likely to form (since the 

greater the stability of a species is, the easier 

it is to form) and, 

c) predicting the site of reaction in a 

molecule. 

When a molecule or ion can be 

represented by two or more Lewis structures 

that differ only in the position of the electrons, 

a) none of those Lewis structures 

represents the actual structure of the molecule 

or ion and, 

b) the actual structure of the molecule or ion 

is best represented by a hybrid (called resonance 

hybrid) of these resonance structures. 

In writing resonance structures, the following general rules should be followed: 

a) the greater the number of resonance structures that can be written for a species, 

the more stable the species is; 

b) resonance structures in which all the atoms have an octet of electrons are more 

stable; 
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c) 	 other things being equal, a resonance structure with a negative charge on the most 

electronegative atom will have greater stability. Conversely, a resonance structure 

with a positive charge on the least electronegative atom will be more stable; 

d) 	maximum stabilization of a species (anion or cation) is achieved when the 

contributing resonance structures are equivalent, namely, they have the same 

energy. 

Examples illustrating these rules are given below. 

Resonance structures involving anions 

Example 1 

The two resonance structures that can be 

written for the carboxyl anion (RCOO-) are 

shown here (in writing resonance structures for 

.. 	 anions, the movement of the electrons is 

initiated from the atom bearing the negative 

charge toward the pi bond and the other 

electronegative atom). 

Note that these structures are equivalent, namely, they have the same energy (they 

both have a negative charge on the same kind of atom) [Rule 4]. Notice also that the 

delocalization of the negative charge over the two oxygen atoms via resonance stabilizes 

the anion and is the reason for the acidity of carboxylic acids. In other words, the 

hydrogen ion in a carboxylic acid (RCOOH) is acidic and readily donated to a base 

because a resonance-stabilized anion is formed in the process (see also Minireview 5 

for a full discussion of the relationship between acid strength and resonance stabilization 

of the conjugate base). 
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Example 2 

The resonance structures shown here are non

eo: :o: 
R~C.-.H2....•1l---~~~~ A 

\...../ R CH2 

equivalent, since the negative charge is on two 

different atoms (carbon and oxygen). The 

resonance structure with the negative charge 

on the more electronegative atom is more 

stable [Rule 3]. 

Recall that electronegativity follows the order F > 0 > N, Br >Cl> C, H. 

Example 3 

·a· 
-------;-o~c~: 

H 

(Ill)(I) (11) 

The order of stability in resonance structures (I) to (Ill) parallels the order of 

electronegativity of the three atoms bearing the negative charge [Rule 3]. Thus, 

(11) > (Ill) > (I) 

Increasing stability 

0 > N > C 

Increasing electronegativity 

As stated earlier, the greater the number of resonance structures that can be 

written for an anion, the greater the stability of the anion [Rule 1]. Put differently, the 

greater the delocafization of the negative charge, the greater the stability of an anion. 

Consequently, in comparing the relative stability of two anions, the more stable anion will 

be the one for which a greater number of resonance structures can be written. 
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coronary 

Resonance-stabilized anions have h igher stability and, 
therefore, are easier t o form. Thus, the relative acidity of a acid is 
determined by the s tability of the corresponding an ion. 

Example 4 

When ethyl acetoacetate is treated with base it readily forms the resonance

stabilized anion shown below: 

..eo: j:o:

c¥o
H3
H 

Exercise 

a) 	 Rank the resonance structures in example 4 in order of decreasing stability (most 
stable first). 

b) 	The three methyl hydrogens in ethyl acetoacetate are less acidic than the two 
methylene hydrogens. Why? 
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Example 5 Assess the relative stability of anions A and B below: 

A .. 
(Q· (0:

~~: ~N: ~~: 

. . .a· eo··.. ·o·.. • 


B 
 .. 
aQ·Q 

... 



Three resonance structures can be written for anion A versus two resonance structures 

for anion B. Hence, anion A is more stable than anion B [Rule 1]. 

Exercise Write all the major resonance structures for the following anions. 


a) H H 


yYH 
0 H 

b) OyO- _ 

~p,Q 
Il 'o
0 
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Resonance structures involving cations 

Allylic and benzylic carbocations, as well as carbocations having a heteroatom 

directly bonded to the carbon bearing the positive charge, are stabilized by resonance. 

When writing resonance structures for cations, the movement of the non-bonded orpi 

electrons is toward the positively charged atom (electrons are negatively-charged and 

are therefore attracted to the positive charge). 

Example 1 

H c-c 0cH + 
3 H H 2 

Example 2 

Example 3 

;z)+
H3C-O-CH•• 2 

Example 4 

r'ir:::H + 
H 

l!!~H .. .......:-----•.,.. QH 
0 H 0 H.. 
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Example 5 

Example 6 


In this example, the first resonance structure is more stable than the others because the 

ring is aromatic, which is not the case with the other three structures. 

Example 7 


H3C,N-;::::-CH2 _____. I 


CH3 

Example 8 
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Resonance structures involving neutral molecules 

Example 1 

A B 

Structure A is more stable than structure B, however, structure B is a significant 

contributor that accounts for a} the observed restricted rotation around the C-N bond 

in am ides and peptides and, b} the decreased Lewis basicity of am ides verses amines 

(arising from the lower availability of the non-bonded electron pair on the nitrogen in 

am ides}. 

In thiourea and thioamides, SN2 reactions occur at sulfur because of the contribution of 

the resonance structures shown below and the high nucleophilicity of sulfur (see 

Minireview 6 for a discussion of nucleophilicity}. 

Resonance structures can be used to predict the site of reaction in neutral 

molecules. For example, the course of the reaction of a,~-unsaturated compounds with 

a Lewis base (Michael addition reaction} can be predicted by considering the resonance 

structure shown below. The resonance structure clearly indicates that the ~ carbon is 

electron-deficient (Lewis acid} and can accept a pair of electrons from a nucleophile 

(Lewis base). 
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------site of reaction with 
:a:/ a Lewis acid 

Q-------------- site of reaction with 
H a Lewis base 

Likewise, the following resonance structures identify the sites of reaction of vinyl 

ethers and enamines with Lewis acids and provide a better understanding of the 

chemical behavior of these classes of compounds. 

.. . . 
...-0-::::- ...-CH2

R + C 
H 

Q
trH 
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The reaction of alkenes, alkynes, or alcohols (all 

Lewis bases}with H+ (a strong Lewis acid) leads 

to the initial formation of a carbocation. 

Carbocations are transient, electron-deficient, 
Carbocation 

and highly-reactive species. Once formed, they 
Chemistry 

function as Lewis acids that react rapidly with 

Lewis bases (in the process the carbon atom 
HH-Y 

R-C=CH2 R-C- CH3H 1 

y 

bearing the positive charge completes its octet). 

Some noteworthy characteristics of 

carbocations are the following: 

~ {LA) 

R'(q_'CH~ 
(LB) (LA) "--:v 

(LB) 

1) Carbocations vary in stability depending on their structure. The greater the stability 

of a carbocation is, the easier it is to form. Thus, the initial carbocation formed in a 

given reaction is invariably the one with the highest stability. The order of stability 

of carbocations is as follows: 
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R R 
R-1+ > H2C=C-CH2 + _ R-1 + > R-CH2+ > CH3+6' R H H 

{benzylic) (tertiary) (allylic) (secondary) (primary) 

increasing stability 

increasing ease of formation 



Methyl, vinyl and phenyl carbocations are highly unstable. Consequently, although 

the hydroxyl group of a phenol can, in principle, function as a Lewis base (just like the 

hydroxyl group of an alcohol}, it never yields a phenyl carbocation. 

H,0,H 

x·Q+H2a0 	
+ 

As mentioned earlier, carbocations that have a positive charge on a carbon atom 

which is bonded to a heteroatom (0, N, S} are stabilized by resonance. 

+0· + 
-C-X-R -C=X-R (X;:;: 0, S, N} 

I 	 I 

2} 	Carbocations frequently undergo rearrangements via 1,2-hydride or 1,2-alkyl shifts 

to form carbocations of equal or greater stability. These carbocations may on 

occasion arise via consecutive 1 ,2-hydride and/or 1 ,2-alkyl shifts. Further reaction 

with a Lewis base, or loss of a H+ from an adjacent carbon (E1}, ultimately yields 

the observed product(s). 
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In certain cases, initial formation of a carbocation is followed by ring 

expansion to form a new carbocation. The driving force behind the observed ring 

expansion is the relief of ring strain and the formation of a more stable species. Recall 

that as ring size decreases, ring strain increases. Thus, 3- and 4-membered rings have 

considerable ring strain and tend to undergo ring expansion. Recall also that as ring 

strain increases, chemical reactivity increases. 

An interesting variation of this theme involves the cyclopropylmethyl 

carbocation. 

+ 
(relief of ring strain via ring expansion) cP 

+ 

0 

(homoallylic carbocation) 
~+ 	 +~ 

+D (ring expansion) ~+ 

3) 	Carbocations are planar (flat), since the carbon bearing the positive charge is sp2 

hybridized. Consequently, a carbocation derived from an optically active reactant 

will ordinarily yield an optically inactive product (a racemic mixture) upon reaction 

with a Lewis base. Since attack on an sp2 hybridized carbon by a Lewis base is 

equally likely from either side, this leads to a 1:1 mixture of the Rand S isomers. 

Example 

When (S) 2-butanol is treated with a trace amount of acid, it undergoes 

racemization. Write a plausible mechanism that accounts for this observation. 

(RS) 2-butanol H~>V 
(R) 


47 




CH2CH3 ....6 (S) 2-butanol 

H''' j "Q--H 
H3C ·· 

(R) 2-butanol 

4) 	An e/ectrophilic aromatic substitution reaction can be viewed as a two-step Lewis 

base/Lewis acid reaction involving an aromatic compound (acting as a Lewis base) 

and a transiently-generated Lewis acid (also called an electrophile). Recall that the 

first step in an electrophilic aromatic substitution reaction is the rate-determining 

step (has the highest free energy of activation). Typical transient Lewis acids 

include carbocations and other electron-deficient species such as N02+, R+, etc. 

a R HQ):-...::::::R 
H -•-•• ~ H ...•--•~ 

H 
~ 

HLB LA 

In the familiar Friedei-Craft alkylation reaction a carbocation is generated 

by mixing an alkyl halide (RX) with a Lewis acid (AIX3), or by mixing an alcohol (ROH) 
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or alkene with acid. As expected, the formation of a carbocation in this reaction may 

lead to the formation of rearranged products. 

R-X ~R0 V
AICI3 

•• ~.et ~Cl .• Cl 
1R-X:" 'AI-CI 

I R~X-Ai=CI : X-AI-Cl 
o o ICl I

Cl Cl 

~R
V 

The reaction of an aromatic compound with an acid chloride (RCOCI) in the 

presence of a Lewis acid is referred to as the Friedei-Craft acylation reaction_ An 

initial Lewis acid/ Lewis base reaction leads to the transient formation of a 

resonance-stabilized carbocation (also called an acylium ion) which then reacts with 

the aromatic compound (illustrated below). In contrast to ordinary carbocations, 

acylium ions do not undergo rearrangements. 

0 

0 AICI3 
erR

49 




Mechanism 

LA 

Cl 
I 

•• rAI-CI:o Cl eo:Jl()c1 AICI4+R)l_~l: R c1 Ai=cl R:JJ++ •• I 

Cl
LB 

I 
R-C::O: 

+ 

0 0 

cf>~R erR d'RI + H+ 
+H 

In the nitration and halogenation reactions the Lewis acid (electrophile) is 

transiently generated via a sequence of Lewis acid/ Lewis base reactions using 

concentrated HN03/H2S04 and Br2 (or Cb) with FeBr3 (or FeCb), respectively. Recall 

that the presence and nature of substituent on the aromatic ring has a profound 

effect on reactivity and orientation. Electron-donating groups (R, OR, NHCOR, OH, 

NH2, etc.) enhance Lewis basicity and, hence, the reactivity of an aromatic 

compound. Furthermore, these groups direct the Lewis acid (electrophile) to the 

ortho and para positions. In contrast, electron-withdrawing groups (N02, CN, CHO, 

COR, COOR, etc.) decrease reactivity and direct the electrophile to the meta 

position. Halogens are deactivating, but ortho and para-directing. Activating groups 

have one or more pairs of non-bonded elctrons on the attom that is directly bonded 

to an aromatic carbon. 

6 
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Exercise 1 Is the nitroso group (-NO) an activating or deactivating group? 

Exercise 2 Predict the product of the following reaction 

CI~CI 

0 0 
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Questions 1 - 34 

Questions 1-34 aim at reviewing and gaining a better understanding of the 

following topics. 

:> Lewis structures 

> Lewis acids and Lewis bases 

:> Lewis acid/ Lewis base reactions 

:> Resonance (rules of resonance, writing resonance structures, assessment of 

relative stability of anions and cations using resonance) 

> Carbocation chemistry (formation, stability, rearrangements, 

stereochemistry, and reactions of carbocations) 

:> Lewis acid/ Lewis base reactions of alcohols, alkenes, alkynes, and epoxides 

:> Lewis acid/ Lewis base reactions involving aromatic rings (electrophilic 

aromatic substitution reactions, including Friedei-Craft alkylation and 

acylation reactions) 
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1 
~s, CH3CH20H

H2S04 (cat) F~ V 

2 

OH 

3 

4 

5 
HBr

6 
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7 
.6~ H2S04 -- ~ 

I 
.6- 0 

+ H20 

8 ~H 
OH 

H+ 

H20 
I 

0~

9 ~ 
OH 

HBr __ Br~

10 

0 0 0 0 

H+ ~0/ ~0/HO 
H20I 

OH 

11 H+~ 0 0
12 

OH aq HCOOH 
...... scc:u SH ~ 
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13 
OH 0H+ 

~ "-'::::: 
H20_..-:;, I _..-:;, ~

14 

qH+ Q 
s 

(p-TSA)
~OH 

OH C9 + H20 

15 
HCI 

HO QOCl:::oP 
16 

~ ~ 

OH \ H+ \ ,0- ,0

0 
(p-TSA)

~ ~ I I OH ...--::;. .....,;:;. 

+ H20

17 
H+ 

C)Q=o WoH H20 

18 HX8°'-""+ ~o---/ CF3cooH ~0'--/

'o~ o 
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19 0 HCI
Cl 

0 

20 0 + 

HF 

21 

22 

0 

0 

23 

OH 

(H3P04 / toluene 
reflux, 2h 

OH 

+ 

24 
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25 
6H3 + CI~C~AICI3 

0 
~3

O Cl 

26 \ 
I 

-

~ !J 

j_ 
OH

H2S04 

~ + H20

27 
CF3COOH D q

0 

0 

c6 N 
' H

28 
H+ (cat) 

~ +0 
0 Oo~

29 0 Br2 

CCI4

Br 

c>
Br 

30 

0OH 

H+ 0 -9'1
-9'1

::::.-...::::.-... 

COOHCOOH 
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31 us ~ 
Cl 

SnCI4 -- -.;;: 

# cr/0
0 

32 +:\ COOH 

H+ 

~0 
OH 

OH 

33 ~ OH I 

H3P04 -- ~ 

I 
~

~ 

34 dv HCI - CP 
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Answers to Questions 1-34 
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1 H 
H_o:' .. 

00 

:oH ___l_~s, 
Jl) V 

F 
F 

F 

An initial LAILB reaction leads to the formation of a resonance stabilized benzylic 

carbocation (a Lewis acid), which then reacts with ethyl alcohol (a Lewis base) to form 

the product Recall that (a) non-bonded electrons are more available for donation than 

bonded electrons (pi electrons); (b) reaction of the LA with either aromatic ring would 

result in the formation of a non-aromatic species and the loss of resonance stabilization 

energy. 

H 
' 

H,Q: 
0 0 

OH{)
•. H+

:oH 

Although either oxygen atom can donate a pair of electrons to the Lewis acid, 

initial formation of the more stable species (a 2° benzylic carbocation) is preferred. A 

subsequent intramolecular LAILB reaction leads to the formation of the product 

60 


1 



H 


~ 


Note that although the phenolic-OH can, in principle, react with the Lewis acid, 

formation of a phenyl carbocation does not take place because of the low stability of this 

carbocation. Consequently, only the much more stable tertiary carbocation is formed. 

This is then followed by an intramolecular LA/LB reaction to form the product. 

OH 

A LAILB reaction between the pi-bond and the hydrogen ion (LA) yields a tertiary 

carbocation. This is followed by an intramolecular LAILB reaction, leading to the 

formation of the observed product. As stated earlier, non-bonded electrons are more 

available for donation than pi electrons, however, in this instance donation of a pair of pi 

electrons results in the formation of a highly stable 3° carbocation. 
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+""0'H 

~COOCHa~==~ 

H 
~COOCHa___ ~COOCHa 

..-)
:sr=.. 


Recall that strong acids are fully ionized in solution. Formation of the resonance

stabilized benzylic and allylic carbocation is followed by a LAILB reaction to form the 

product. 

..
OH OH 

r- QH 

::J 
+ 

M~~H 
Although either -OH group can react in a LAILB reaction, the one that leads to 

formation of the more stable carbocation reacts preferentially (General principle to 

remember: most organic reactions proceed through the formation of the more stable 

intermediate species and, ultimately, the more stable final product). A subsequent 

intramolecular LAILB reaction leads to the formation of the product 
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OH OH OH 


1 ,2-hydride shift 

benzylic 

carbocation 


Initial formation of the more stable 2° carbocation is followed by a 1 ,2-hydride shift to 

ield a benzylic carbocation. This is followed by an intramolecular LAILB reaction to yield 

he product. 

OH 

resonance-stabilized 

3° and allylic 

Initial formation of a resonance-stabilized 3° and allylic carbocation is followed by an 

intramolecular LAILB reaction to yield the product. 
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See Minireview 4 for a discussion of cyclopropyl methyl carbocations. 

+

CH 0 0 0 0 0 0 

Hi:i ~OCHa H~bJ ~OCH3 H ~~OCH3 ··D -::;;::::::=~ • • D -=:;;=====~ U 
0 0 

1,2-hydride shift 
------H + 

OCH3 

H cl 
3° and allylic 

0 0 
0 0

~O-CH3- ~OCH3 

+ H

+ 

+~ OoH
H .. 

10 

While the initial LNLB reaction can also take place at the carbonyl oxygens, that's 

an unproductive process, namely, it does not lead to the formation of the observed 

product 
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Although the starting material has three functional groups or reactive sites where 

a LA/LB reaction can take place, the more stable resonance-stabilized cation is initially 

formed preferentially_ 

+·· H
(0'-Ho:::u 

I~ I~ 
.--:::; .. .--:::; .. 

s~+ .. 
H 

Formation of the 3° carbocation is followed by an intramolecular LAILB reaction to yield 

he product 
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1 

Either one of the two alkene double bonds can react to form a secondary 

carbocation (notice that simultaneous reaction of both double bonds would give rise to a 

highly unstable species having two positive charges, therefore, it never happens). As 

noted earlier, while the aromatic ring can react in a LAILB reaction, this is energetically 

unfavorable (loss of aromaticity). 

OH 

q Q
~OH 0;$

H 

Initial formation of the 2° carbocation is followed by a LAILB reaction to form a highly 

reactive episulfonium ion. Ring opening leads to the formation of a 3° carbocation which 

ubsequently undergoes an intramolecular LAILB reaction to form the observed product. 
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1 

Qp Yco 
·+ H :OH OH.. 

resonance-stabilized 
benzylic carbocation 

This is an example of acid-catalyzed ring opening of an epoxide. A LA/LB reaction 

is followed by ring-opening to yield the most stable carbocation (benzylic instead of the 

less stable secondary carbocation}. A second LA/LB reaction yields the observed 

product. 

Both alcohols are benzylic, consequently, either one can form a benzylic carbocation 

hich can form the product following an intramolecular LA/LB reaction. 
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..
H +· :OH 

ringg g 
expansion 

The driving force for this reaction is primarily due to the formation of the aromatic 

ring. Recall that aromatic compounds are cyclic, planar, satisfy Huckel's 4n+2 rule, 

where n is the number of pi and non-bonded electron pairs, and can sustain a ring current 

in a magnetic field. 

1B 

:a·· .. ffi-,~~H/ -......./--· ;:o~ 
 ~· 
+ U ~ 

0 

H \ •• 
0 H +b'.) Q.
~----\-

0 

\ 
0 H •• -t0 

~-\ 
~ ~ 

A LA/LB reaction yields the most stable carbocation, which then reacts in a 

second LAILB reaction to furnish the product. Note that this reaction proceeds with 

retention of configuration, namely, the atoms or groups bonded directly to the 

stereogenic (chiral) center are oriented in space the same way in the product, as in the 

starting material, since none of the bonds to the stereogenic center is broken during the 

course of the reaction. 
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1 H 


~ 

resonance-stabilized 

allyl cation 

Conjugated dienes undergo electrophilic addition reactions to yield 1 ,2- and 1 ,4

ddition products. In this example, the 1 ,2- and 1 ,4-addition products are the same. 

3" carbocation resonance-stabilized 
(Lewis acid) cation 

A LAILB reaction leads to the formation of the most stable carbocation. This is 

followed by an electrophilic aromatic substitution reaction, specifically, a Friedei-Craft's 

alkylation reaction (see Minireview 4 ). 

+H .. 
~~/~-- '-J-----/~1 
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A LAILB reaction is followed by ring opening ofthe epoxide (oxirane) ring to form 

a resonance-stabilized allyl carbocation. Ring expansion results in the relief of ring strain 

and the formation of a resonance-stabilized carbocation. 

0 
00 

0 

An initial LAILB reaction yields the most stable carbocation (note that 

carbocations with a positive charge on a carbon alpha to a carbonyl group are highly 

unstable because the positive charge is next to the partial positive charge on the carbonyl 

carbon. Repulsion of the adjacent positive charges raises the energy). This is followed 

by an intramolecular Friedei-Craft alkylation reaction. 
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1 ,2-hydride shift 

+
20 


~hydride shift 


$:)OH~OH 

H 3 

Formation of the 2° carbocation is followed by a 1 ,2-hydride shift to form a more 

stable 3° carbocation which undergoes an intramolecular Friedei-Craft alkylation 

reaction. 
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H 

1 


benzylic carbocation 

The initial2° carbocation follows two pathways in forming the observed products. 
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·~ 

Cl~9.1: 

0 

AICI3 c1~~-c1~: 
Ill • • Ill 

LB LA resonance-stabilized 
cation 

OCH3 OCH3 

Cl Cl 

This is an example of the Friedei-Craft acylation reaction (see Minireview 4 ). 

Since the methoxy group is an activating, o- and p-directing group, the major product 

formed is that shown above. Note also that while either chlorine can function as Lewis 

base by donating a pair of electrons to the Lewis acid, the more stable species is formed 

(a resonance-stabilized acylium ion). 
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A LA/LB reaction leads to the formation of a 3° carbocation, which is followed by 

an intramolecular Friedei-Craft alkylation reaction. 

~7 relief of ring 0.}) 
straino.r:· ('.5

.. 

+Nti 0 Et o: 
H 
~ 

H 
0 

er) Io. L 
H (}.. IJ 

N dJ+NH H 

resonance-stabilized resonance-stabilized 
acylium ion (Lewis acid) carbocation 

The pair of non-bonded electrons on the nitrogen is more available for donation 

than in acyclic amides because of ring strain. 

Q .. 
0 +0~ 

t.--1 

H 

Two consecutive LAILB reactions lead to the formation of the product Note that 

a LAILB reaction at the oxygen atom of the starting material is an unproductive process. 

CJ
·.0 
H 
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intramolecular 
LNLB reaction 

0 


0 0·-0:sr-Br: 00· 
~-· .. 
 ~~r: 

Formation of the highly reactive bromonium ion is followed by a transannular 

LA/LB reaction to form a 2° carbocation. A subsequent LAILB reaction yields the 

observed product 

75 


29 

30 

31 



SnC14 behaves as a Lewis acid (Sn has a partial positive charge), like AICI3 and 

related compounds, initiating the formation of an acylium ion that subsequently 

undergoes an intramolecular Friedei-Craft acylation reaction . 

.C} :~XH H+ ~COO_H__ Ar~COOH~COOH 

Ar1i -~0~0 
Formation of the 3° and allylic carbocation is followed by a LAILB reaction to form 

the product. 

1,2-methyl shift 

OH 
~OH UOH 

Hv-1--\ -- +< 
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~ H,+· 
ring expansion crH+ CfJ ~& 

.. ..Ho0 :o 

c)=7cP ~ 
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Minireviews 5-7 discuss briefly some basic principles related to the formation of 

anions (nucleophiles), nucleophilic substitution (SN2) and elimination (E2) reactions, 

chemical reactivity and ring strain. These should be studied prior to attempting questions 

35-50. 
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Before discussing anions (Lewis bases/ 

nucleophiles), it is helpful to remember that the 

chemistry of alkyl halides, aldehydes and 

ketones, carboxylic acid derivatives (acid 

halides, anhydrides, thioesters, esters, amides 

and epoxide) can be simply described and best 
Formation of Anions 
(Nucleophiles) understood by equations (1-4) below, without 

recourse to memorization. Thus, the typical 

reaction of alkyl halides is nucleophilic 

substitution (SN2) (eq 1) (see Minireviews 6 and 

7 for more details and some variations of the 

same theme), the typical reaction of aldehydes 

and ketones is nucleophilic addition (eq 2) 

(Minireview 8), and the typical reaction of 

carboxylic acid derivatives is nucleophilic acyl 

substitution (eq 3) (Minireview 9). Nucleophilic 

ring opening reactions of epoxides are 

illustrated by eq 4. These four general reactions 

can be viewed as Lewis base/Lewis acid 

reactions and are discussed in greater detail in Minireviews 6-9. Recall that SN2 reactions 

proceed most readily when the Lewis base (nucleophile) has a negative charge. In the 

case of S and P nucleophiles and amines, because of their large size and high basicity, 

respectively, they can participate in SN2 reactions as such. Anions (Y:-) are typically 

generated by reacting a molecule with an acidic hydrogen (Y-H) with an appropriate base 

(B:-) for subsequent use in reactions of the type shown below. 
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R-Y + :X 
eq 1 

nucleophilic substitution 

=-a·ea: ~H(R) eq 2 
:s R y- RfH(R)Y-H v:~ nucleophilic addition 

eq 3: L 
L 

nucleophilic acyl substitution 

V=- o·vT·-··- eq4
R 

R 
nucleophilic ring opening 

Factors to consider prior to generating an anion include the relative acidity of the 

starting material (HA) and type of base (B-) to use. Acid strength is dependent on the 

following factors: a) electronic effects: resonance and inductive effects. Anions (Y:-) 

that are stabilized by resonance and/or inductive effects are more stable and easier to 

form; b) size. The greater the size of the atom (Y) to which the hydrogen is bonded, the 

higher the acidity of a hydrogen; c) electronegativity. The higher the electronegativity of 

Y, the higher the acidity of a hydrogen. The following examples illustrate the 

aforementioned factors and acid strength. 
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Exercise 1 Rank the hydrogens in the structure shown below in order of decreasing 

acidity. 

lt can be readily shown that the equilibrium constant (Keq) for the general acid/base 

reaction shown below (equation 5) is given by equation 6, where pKa is the acidity 

constant of the reactant acid (HY) and pKa' is the acidity constant of the product acid (HB ). 

Since the pKas of a large number of acids have been determined and are readily available, 

an approximate Keq for any acid-base reaction can be readily calculated using equation 6 

(vide infra). In order for the aforementioned reactions to proceed readily, a high 

concentration of the anion (nucleophile) is desirable. Hence, a sufficiently strong base is 

typically selected to generate (v-) rapidly and quantitatively. 

f) -8: + H-Y H-8 + :y eq 5'-....,
productLewis base reactant 

acidacid 
(pKa) (pKa') 

1QPKa'- pKa eq 6 Keq 

Recall that the pKa of an acid is an index of the relative strength of the acid. The 

lower the pKa is, the stronger the acid. Table 1 lists the pKa values of some common 

types of organic compounds 
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Table 1: pKa values of some common classes of organic compounds* 

RS03H -6.5 

RCOOH 4-6 

ArSH 6-8 

RSH 10-11 

ArOH 8-11 

ROH 16-18 

RCONH2 17 

RCH2CHO 19-20 

RCH2COR 19-20 

RCH2COOR 25 

*values are approximate 

The acidity of substances is greatly affected by the presence of one or more 

functional groups capable of delocalizing the negative charge in the corresponding anion 

via resonance (Minireview 3). Common functional groups that enhance acidity include 

N02, COR, CN, COOR, S02R and phenyl (Ph). These groups differ in their ability to 

delocalize the negative charge in the anion, hence the extent to which acidity is affected 

is dependent on the nature and number of such functional groups. For example, in a 

series of compounds of the type RCH2X, the pKa varies as follows: X= N02 (1 0), (C=O)R 

(20), CN (25), COOR (25) and S02R (29). The presence of two such groups reduces the 

pKa further. 
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Selection of Base 

In selecting a base to be used in the generation of an anion, the strength of the 

base and its compatibility with any other functional groups that might present in the 

molecule, are factors of paramount importance. In general, a sufficiently strong base is 

selected so that the desired anion is generated rapidly and quantitatively. Secondly, 

depending on the structure of the acidic molecule (HY), the base used may have to be 

non-nucleophilic (vide infra). Common bases used to generate anions include the 

following: 

a) Alkoxide ions (RO-M+, where M+= Na+ or K+) 

Alkoxide ions are conveniently generated by reacting dry methanol (pKa -15.5), ethanol 

(pKa -16), or t-butyl alcohol (pKa -18) with sodium or potassium metal under a nitrogen 

atmosphere. The generated base is then used in situ (in the flask, without isolation). Note 

that alkoxides can function as both bases and nucleophiles . 

.. 
EtOO-CH2-COOEt + CHaCH2o- EtOO-<?H-COOEt + CH3CH20H 

n u 

pK8 13 pK8 16 

Using equation (6), Keq = 1016-13 =103, therefore the formation of the anion (:Y-) is 

greatly favored (equilibrium lies to the right). 

In cases where a reactant having more than one acidic hydrogen is treated with 

base, the most acidic hydrogen will react faster, since it leads to the formation of the more 

stable anion. The following examples illustrate this concept 
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-
:B 

pK 	-3 

~o!a Ho ~o-
~OH 	 ~OH 


Lt 
pK8 - 10 

t;::::l pK8 6-8 
SH 	 s· S-R 

Q 	 Q Q 

OH 	 OHOH~ 

pK8 - 10 

b) Alkyl lithium reagents {:R· Lj+) 

Alkyl lithium bases, such as methyl lithium, n-butyl lithium, and t-butyl lithium, 

are strongly basic and nucleophilic. Because alkyl lithium reagents are the conjugate 

bases of the corresponding hydrocarbons {pKa - 50), their high basicity and reactivity 

requires the use of an inert atmosphere and anhydrous conditions. Recall that the 

lower the pKa is, the stronger the acid and the weaker the conjugate base. Conversely, 

the higher the pKa is, the weaker the acid and the stronger the conjugate base. 

c) 	 If a much stronger, non-nucleophilic base is needed, then use of one of the following 

bases is preferred: 
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). Lithium diisopropyl amide (LOA) 

LOA can be generated in situ by treating diisopropyl amine 

with n-butyl lithium (the pKa of diisopropyl amine is - 36), 

however, it is also commercially available. 

). Lithium hexamethyldisilane (LHMOS) 

). Sodium or potassium hydride NaH or KH (:H-) 

). Sodium amide (NaNH2) 

d) Amines 

Recall that the basicity of amines follows the order 

3o > 2° > 1°> NH3> Ar-NH2 

Increasing base strength 

(in other words, aliphatic amines are more basic than aromatic amines and, secondly, 3° 

aliphatic amines are more basic than 2° aliphatic amines which in turn are more basic 

than 1° amines). 

Triethylamine (TEA), pyridine and N-methylmorpholine (NMM) are organic bases 

that are widely used in organic synthesis. 

0 (
0 

..)
N N 

I 
When the objective is to generate an anion via an acid-base reaction, or to induce 

an E2 elimination reaction (vide infra), the use of a sterically hindered, non-nucleophilic 
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base, such as diisopropylethyl amine (OlEA), 1 ,8-diazabicyclo[5.4.0)undecen-7-ene 

(DBU), or 1 ,5-diazabicyclo[4.3.0]non-5-ene (DBN) should be considered. 

q) 
OlEA DBU DBN 

Example 1 

The following transformation was
0 

DBN cd
Br 

successfully achieved using a bulkyo:;r  and non-nucleophilic base, greatly 

minimizing competing SN2 and ring-

opening reactions between the base and the highly reactive functionalities in the 

starting material and product. 

Example 2 

Br\___!j> 

Br~OCH3 

The objective here was to induce an E2 elimination only, leading to the formation 

of the desired product. The selection of base was critical for the success of this reaction 

because of the high reactivity of the product. The latter is an allylic bromide (highly 

reactive in SN2 reactions), thereby necessitating the use of a bulky and non-nucleophilic 

base. 
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e) Miscellaneous bases 

These include bases such as sodium or potassium bicarbonate, carbonate or 

hydroxide. The pKa values of carbonic acid, bicarbonate and water are 6.4, 10.3 and 15.7, 

respectively. Consequently, base strength follows the order HO"> C032"> HC03-. 

Examples illustrating the rationale underlying the selection of a particular base are 

given below. See Minireview 5 for additional examples. lt would be very beneficial to 

consider the logic behind the use of a particular base, or reaction conditions, as you work 

through the problems in this workbook. 
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The SN2 reaction is a concerted, one-step 

reaction involving backside attack by a strong 

Lewis base (nucleophile) on an sp3-hybridized 

carbon bearing a partial positive charge (o+) 
~Nucleophilic 

Substitution Reactions (Lewis acid) and a leaving group (L). The 

(SN2) reaction proceeds with inversion of 

configuration (eq 1). 
~ Elimination Reactions 

(E2) SN2 reactions are greatly influenced by 

the nature of the alkylating agent {R-L}, 

nucleophile (:Y}, leaving group (L), and solvent. 

.(\ 
 -
Y: + R-L R-Y + :L eq 1 
nucleophile 0 

(lewis base) 

a) Alkylating agent (R-L) 

The order of reactivity of halides in SN2 reactions is 

Unreactive 

benzyl halide > CH3X - allyl > 1° > 2° > 3° > vinyl halide, aryl halide, R-F 

increasing reactivity 

Note: 

1) Tertiary alkyl halides undergo E2 reactions, while vinyl , aryl h alides, and alkyl 

f luoride do not undergo SN2 reactions. 

2) The reactivity profile o f a-haloesters, a-haloethers and a-haloketones is sim ilar to 

that of benzylic halides. 
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b) Strength and Nature of Lewis Base (Nucleophile) 

In general, nucleophilicity increases with increasing basicity, provided nucleophiles 

with a common nucleophilic atom are compared. Thus, a nucleophile with a negative 

charge (Y:-) will always be more basic and, therefore, more nucleophilic than a neutral 

nucleophile (Y:). With the exception of amine, phosphorus, and sulfur nucleophiles, 

nucleophiles used in SN2 reactions are anions, namely, they have a negative charge 

(Y:-). As pointed out earlier, the lower the pKa is, the stronger the acid and the weaker the 

conjugate base. 

R-o- > Ho- > Ar-o- > 

increasing base strength 

The size of the atom that donates the pair of electrons has a profound effect on its 

nucleophilicity. The larger the atom is, the greater its nucleophilicity. Thus, 

R-s- > R-o

increasing size 

increasing nucleophilicity 

Nucleophiles that are capable of reacting at more than one atom, thereby giving 

rise to two different products, are referred to as ambident nucleophiles. The site of 

reaction in ambident nucleophiles is primarily determined by the nature of the solvent 

used in an SN2 reaction, and the size of the atom. Some examples of ambident anions 

are shown below. 
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reaction at oxygen gives reaction at nitrogen gives 
an a-alkylation product ~n N-alkylation product 

~ 

-
R-X + Na2 + R-0-N=O 

an alkyl nitrite a nitro compound 
(a-alkylation)(N-alkylation) 

OCN" o=c=N (Nand a-alkylation) 

(a and C-alkylation) 

.. 

c·6o: 
0 

* (a and C-alkylation) ~I 
0 

6 
1:\0·o--~H IJ.r~:

N N 

(N and 5-alkylation, 
S-alkylation predominates. Why?) 

* 
Note that C-alkylation leads to loss of aromaticity 

c) Nature of the Leaving Group (L) 

The group that is displaced by the nucleophile (Y:-) in an SN2 reaction is referred 

to as the leaving group. Good leaving groups are stable anions, namely, they are 
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conjugate bases derived from strong acids. For example, halide ions (1-, Br, Cl-, except 

F-) are good leaving groups since they are the conjugate bases of strong acids. Many 

other good leaving groups are derived from strong organic acids and are stabilized by 

resonance (Minireview 3). These include the triflate, mesylate and tosylate groups (vide 

infra). The hydroxyl group of an alcohol (a poor leaving group that is not displaced by any 

nucleophile) is frequently transformed into one of these leaving groups prior to carrying 

out an SN2 reaction (Scheme I below). 

0 
"F c~s~o· 

3 " 
0 

triflate tosylate mesylate 

> F.1· > sr- > er 

increasing leaving group ability 

Scheme 1 

pyridine 

d) Nature of the Solvent 

The nature of the solvent used in carrying out an SN2 reaction can have a dramatic 

effect on the rate and success of the reaction. SN2 reactions are greatly facilitated by 

dipolar aprotic solvents such as dimethyl sulfoxide (DMSO), dimethyl fornamide (DMF) 
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and acetonitrile. These solvents enhance the nucleophilicity of anions by solvating the 

cation (solvation refers to the clustering of solvent molecules around the anion or cation). 

0 
11 

8
H3C"' 'CH3 

DMSO acetonitrile 

The nucleophilicity of an anion can also be enhanced by using a crown ether that 

complexes with the cation, as shown below. The size of the cavity in a polyether 

determines the type of cation that is complexed. Inorganic reagents, such as potassium 

permanganate, which are ordinarily insoluble in organic solvents, become soluble in 

organic solvents in the presence of a crown ether. 

12-crown-4 18-crown-6 

Note: 

SN2 reactions can be intermolecular (eq 2) or intramolecular (eq 3). 

Intramolecular SN2 reactions take p lace within the same molecule. Reactions 

in which the nucleophile a nd reactive center are tethered together, are favored 

entropically and proceed at a m uch higher rate than the corresponding 

intermolecular reactions. 
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Note: 

Intramolecular reactions lead to t he formation of cyclic structu res, 

consequently, 5- and 6-membered ring structures are favored since they are 

free of ring stra in. 

(\ 
y: + R-L :L eq 2 R-Y +I..J 

~ 
+ :L eq 3 Y - (CH2)n- CH2G 

Elimination (E2) Reactions 

As mentioned earlier, when an alkyl halide or similar type of compound (R-L, where 

L= halogen or other good leaving group) is treated with a strong base (:Y-), an SN2 

reaction take place. This is the course that an SN2 reaction typically follows when a 

methyl, allylic, or benzylic halide is used. However, when a 3° R-L is used, the reaction 

follows a different cause due to steric reasons. An E2 elimination reaction takes place, 

leading to a formation of a C=C bond (eq 4). An E2 reaction is a concerted 1,2- or {3-anti 

elimination reaction (the term anti means that the (3-hydrogen removed by the base and 

the leaving group are opposite to each other). Secondary alkyl halides undergo competing 

substitution (SN2) and elimination (E2) reactions. The rate of an E2 reaction increases 

with increasing base strength, leaving group ability, and the relative stability of the 

product(s). Typical bases used in E2 reactions include HO-, RO-, and bulky organic bases 

such as diisopropyl ethyl amine, DBU, and DBN. 
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eq 4 

(L= halogen, OS02R, etc.) 

Thermal Syn Elimination Reaction 

Thermal syn elimination reactions constitute another somewhat less common type 

of (3-elimination reaction. This type of reaction proceeds thermally through a cyclic 

transition state, and does not require the use of base {the term syn means that the (3

hydrogen and the leaving group are on the same side). Syn eliminations involving 

sulfoxides and selenoxides are widely used in the facile formation of C=C bonds. While 

other leaving groups have been used in the past {acetate, amine oxide, etc.), elimination 

occurs at a much higher temperature. 

0 

Y'\\0
H"' X eq 5 H2C==CH2 + HOX\_I' I

H2C-CH2 

(X= SR or SeR) 
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Three and four membered rings have 

considerable ring strain, namely, the ring bonds 

are weak because of poor overlap of the atomic 

orbitals and, consequently, exhibit high
>- Chemical Reactivity 

and Ring Strain reactivity. They are highly reactive toward

Lewis bases (nucleophiles), giving rise to ring

opened products. Note that nucleophilic ring 

opening of an epoxide, for example, involves 

back-side attack at the least substituted (least 

congested) carbon, and proceeds with inversion of configuration (eq 1 ). Transient 3

membered species, such as halonium and selinarium ions, behave similarly (eq 2 and 3). 

R (':Y
''x)--- eq 1 

X= 0 (epoxide), S (episulfide) 

R = R xr-:x eq 2R-= n ~-=-=··-- r 
~ X 

R-= PhSeCI eq 3 

3-and 4- membered cyclic esters (lactones) and cyclic amides (lactams) also react 

rapidly with nucleophiles (eq 4). 

~ 0
.---f~:Y 

eq 4 L{ --• asv---x;-fy 
(X= 0, NH, NR) 

eo-
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Example 1 

The highly reactive (3-lactam ring of penicillins and related antibacterial agents 

undergoes ring opening rapidly. Hydrolysis of the (3-lactam ring in penicillins results in 

total loss of antibacterial activity (in practical terms, suspensions of penicillins, such as 

pivampicillin, are kept refrigerated in order to slow down the hydrolysis reaction. They 

are thrown away after a week or so since they contain mostly inactive penicillin). 

inactive penicillin 

Example 2 

The toxicity associated with a drug or substance is frequently due to the 

formation of a highly reactive metabolite. For example, the toxicity and carcinogenicity 

of polycyclic aromatic hydrocarbons and other aromatic compounds is attributed to 

the formation of highly reactive epoxides by liver-metabolizing enzymes, and their 

subsequent reaction with nucleophilic cellular components, including DNA. 

6 
Br 

6 
Br 


liver 
 ___ toxic ring opened 
products 

0 
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Questions 35 - 50 

Questions 35-50 are meant to help you gain a better understanding of following 

topics. 

> Generation of anions/acidity 


> SN2 reactions (mechanism, nucleophilicity, ambident nucleophiles, 


leaving groups, stereochemistry, solvent effects, etc.) 


> E2 reactions (anti and thermal syn elimination reactions} 


> Nucleophilic ring-opening reactions 
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aq NaOHAOOH ~:35 

Br Br Br 

0 K2C03 
36 CI~OH 

0 
c) 

0 

DMSO 
0 

~==========================================~ 
0 

37 HO~CI __ ~N_a_O_H__ 

HOJ.l.AO) 

~============================================~ 

O..,o
)=I 

CNNaH/THF 

'''0 

r===============================================~ 

Br 
39 ~ 

~==============================================~ 

0 0 
40 ~NHO"K+ + BrJ--" 
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41 
s 11 TEA err 
N 

~==========================================~ 

42 

0 0 +Na-o~ 
)l00 (2 mols) 

) 

43 
(CH3hCO-K+ ~Br 
(CH3)JCOH QJ

OH 0 

44 
.....-..o-Q Q

d:s~oO=S~ 'b0 
CN 0 O NH 

45 


0 00 aq KOH 
 - I 
~ OH# ~0 Cl~ 

0 OH 0 

46 

0 SH 0 
NaOCH3 CI~COOCH3 OS~COOCH

I~ 3 
,46 0 °C/ RT 

1,..__ 
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1) NaH (1 eq)/ DMF 

47 ~F~NH 2) BrCHFCOOEt 
HN-i HN-iN-<cooEt 

0 0 

0 1) Ho
48 (:(00~ vcooH ()1 -

2) H+ 

H Na+ NCO" 


ON'!'CI
49 H20 ON~
oJ-o 

~==========================================~ 

~OH _c_H_3s_o_2_c_l___
50 c.$= 
 + (CH3),NHCH3S03
~ excess (CH3)JN 


COO Et COO Et 
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Answers to Questions 35-50 
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~5 ~1\~:Q-Ho-.H •• 

Br Br 

0 

D' 
Br ("sr:.. 

.·
~

0 (q:
Br 

An initial fast acid-base reaction yields the anion (LB or nucleophile). This is 

followed by an intramolecular SN2 reaction. The reaction proceeds readily at room 

temperature despite the fact that the carboxylate anion is a weak nucleophile because 

(a) the reaction is intramolecular (reaction takes place within the same molecule) and is 

therefore favored entropically; (b) the reacting groups are arranged in a favorable 

geometric alignment and, (c) the reaction involves a highly reactive allyl bromide 

(Minireview 6). 

~5 0 

c) g. 
0 

Formation of the anion is followed by an intramolecular SN2 reaction. In general, 

intramolecular ring formation (cyclization) is favored when the reaction is carried out in 

high dilution. The relative ease of ring formation is dependent on many factors, including 

the stability of the ring to be formed, with lowest yields obtained with medium size (8 to 

11-membered) rings. 

~7 0 

~Cl 
.Q. \_:o-H 

.. 
o c_c1: cc:;
.. -

..
:c1: 
"") I

0 

00
-~· .. 

Formation of the anion of phenol (pKa-1 0) is rapid and quantitative. This is 

followed by an intramolecular SN2 reaction. Note that the hydroxide ion could, in 

principle, displace the chloride first lt should be remembered, however, that the rates of 

acid/base reactions are extremely fast 
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~g 

O,,,Q CN 
)=I 

'''0 

..
+ :er:..

Rapid and quantitative formation of the anion using sodium hydride is followed by 

an intramolecular SN2 reaction. As expected, the reaction proceeds with inversion of 

configuration, accounting for the observed stereochemistry. See Minireview 5 for a 

discussion of acidity and anion formation. 

~g .. 
c_Br: + .. 

I : CQ:_.r;'Q 
:Br: .. 



Epoxide (oxiranes) are highly reactive because of ring strain and, consequently, 

undergo ring opening reactions with the nucleophile attacking the least substituted (least 

congested) carbon. 
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42 

..~ q: f . 
:o: \J 

.. , 0 :o-l ____,.,~ Ho\ 
0

• ~~-0 ------..~~ ~N-0 

Epoxides are more reactive toward nucleophiles than 1a halides. Thus, 

nucleophilic ring opening is followed by epoxide formation which undergoes ring opening 

to form the observed product. 

42 

- .. 
:Br: 

1 

The anion generated in the first step (see Minireview 5) is an ambident anion, i.e., 

it can react at either the N or S atom. The SN2 reaction takes place on S (the larger 

atom), attesting to the greater nucleophilicity of sulfur (see Minireview 6). Recall that size 

trumps basicity in SN2 reactions. 
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Formation of the ambident anion is followed by C-alkylation. A subsequent 

acid/base reaction leads to a second ambident anion which undergoes 0-alkylation, 

leading to the formation of the observed cyclic product. Note that C-alkylation would be 

less favorable since it would result in the formation of a highly-strained 4-membered ring. 

45 


Br---
Br H .. Br 

0 8 

-~8-r- ~ 
0 0 

c 

The first step involves a rapid and quantitative formation of a resonance-stabilized 

ambident anion. A subsequent intramolecular SN2 reaction (C-alkylation) leads to the 

observed tricyclic non-aromatic product. As pointed out earlier, the nature of the product 

formed in reactions involving ambident anions is dependent on a range of factors. 
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~7 


The base reacts preferentially with the more acidic hydrogen leading to the 

formation of the more stable anion (3 resonance structures). Removal of the less acidic 

hydrogen would result in the formation of a less stable anion (2 resonance structures). 

Note also that the nucleophile displaces the bromide ion (better leaving group) instead 

of the fluoride anion (a poor leaving group). 

f4B 

03;
0 

The driving force for the reaction is the ring opening of the cyclobutane ring and 

the relief of ring strain. 
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E2 
0 

0=
C02Et C02 Et 

Formation of the sulfonate ester transforms the hydroxyl group from a poor 

leaving group into a good leaving group (see also Minireview 6). 
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Minireview 8 focuses on nucleophilic addition reactions (the typical reaction of 

aldehydes and ketones). This should be studied prior to attempting questions 51-70. 
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The typical reaction of aldehydes and 

ketones is nucleophilic addition. Notice that the 

nucleophilic addition reaction is essentially a 

Lewis acid/Lewis base reaction involving a 
>- Nucleophilic Addition 

Reactions of 
Aldehydes and 
Ketones 

Lewis base (:Y- or :Y) with the electron

deficient carbon (Lewis acid) of the carbonyl 

group. The addition product arising from strong 

nucleophiles is then protonated (typically 

during the workup of the reaction) and the final 

product isolated (eq 1). Typical strong 

nucleophiles including Grignard reagents (RMgX or R:- Mg2+x- ), alkyl lithium reagents 

(Rli or R:- Lj+), cyanide ion, alkyne anions (Rc=c:-), reducing agents that deliver 

hydride (H:-) ions, etc. 

\ + ··
C=Q: e-o:•I .. .. '" I 

eq 1 

In the familiar aldol condensation reaction, an aldehyde or ketone having an acidic 

a-hydrogen reacts with dilute base to yield a carbon anion (Lewis base), which then adds 

to the carbonyl carbon of a second molecule of the aldehyde or ketone, leading to the 

formation of a ~-hydroxy aldehyde or ketone (an a,~-unsaturated aldehyde or ketone may 

also form depending on the reaction conditions) (Scheme 1). 
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Minireview 1 



Scheme 1 

R 
R~ ~/0
·H~-1 
(R) H(R) 

RR~o R~o 

OH H(R) (R)H H(R) 

In the case of some nucleophilic addition reactions, the initial nucleophilic addition 

product reacts further to yield a more stable product. For example, the reaction of an 

aldehyde or ketone with a Wittig reagent involves an initial nucleophilic addition reaction. 

An intramolecular Lewis acid/base reaction yields a 4-membered intermediate which 

collapses, forming an alkene (Scheme 11}. 

Scheme 11 
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Likewise, primary amines react rapidly with aldehydes and ketones, however, the 

initial adduct loses a molecule of water to form an imine (Scheme Ill). lmines undergo 

addition reactions with Lewis bases. These reactions proceed readily when the imine is 

protonated (Scheme IV). Secondary amines react with aldehydes and ketones to form 

enamines (Scheme V). 

Scheme ill 

R 
(Rti--h-6

H-N-H 
' R1 

(prototropic imine 
shift) 

Schemen£ 

R .. H+ 
)=N-H 

(R)H (pH< 7) 

t 


Scheme V 

R~NR1 + 

R2 
en amine 
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The reaction of aldehydes and ketones with weak nucleophiles (:Y), such as 

alcohols, requires acid catalysis (Scheme VI). Recall that the reaction of two mols of an 

alcohol with an aldehyde or ketone in the presence of acid (dry HCI) leads to the formation 

of an acetal or ketal, respectively (Scheme VI). 

Scheme VI 

!! 

a,j3-Unsaturated aldehydes and ketones undergo the Michael addition reaction 

with Lewis bases (nucleophiles) (Scheme VII). Related conjugated systems, R-CH=CH

X, where X=COOR, CN, S02R and N02, behave similarly. 

Scheme VII 

Rn 

y~V')-H(R) 

Lastly, the pKa of the a-hydrogens in aldehydes and ketones is about 20. 

Consequently, treatment with a strong base leads to the formation of the corresponding 

anion (a Lewis base or nucleophile). The anion can then participate in nucleophilic 
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displacement reactions {SN2), nucleophilic addition reactions, or nucleophilic substitution 

reactions {see Minireview 6). 
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Questions 51 - 70 

Questions 51-70 are meant to help you gain a better understanding of following 

topics. 

» Acid and base-catalyzed addition reactions 


)> Aldol condensation reactions 


» Michael addition reactions 


> Keto-enol tautomeric equilibria 
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Answers to Questions 51-70 
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~1 


~ ~~ ~ ro_.)Br 
:c=N 

... - -9·

A straightforward nucleophilic addition is followed by an intramolecular SN2 

reaction. 

~2 

0 

Note that once the anion is generated, what happens next is determined by the 

nature of the other reactant (see Minireview 5). Since the reactant in this case is a 

conjugated carbonyl compound, a Michael addition reaction takes place. 

This is an example of an intramolecular aldol condensation reactio 
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~4 0 


I 
0 OEt c6:-Et--•~~Et 

PI~· 
~ H2N~ 

Ger: ~ 6 3
--• (X)bCOOEt 

lj ~ 

An SN2 reaction is followed by an intramolecular Michael addition reaction. 

55 
--N 

r\~ I~OH
H-..kNH __.-I t!· 

--N
_ _____,.. r\~ 'qti 
~JHN.iJ 

'-:QH2 
+ •• 

+ '»

56 

122 




57 

~..1
~-H0 :Q o :~:r: 

~H -
 ~H 


OAc 
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59 

0 
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~ H 

60 H 

rTl 
~ Ho·H ' ..• 

H 

~ (trans isomer, more stable) 

HQ: 

61 
1~ 

O H H 

)(9.'__) 

124 




62 
0 0 0 

H t 
0 H

:aJlo:0. . . . 

c~ 

~
0 

0 

OEt 

EID2:$ 
0 

H+/ H20 

(work-up) Et02C-$ 
0 

62 

0 

;j~
..

CH3~: 

0

ori+
JJ:/ 

0 
0 

Two consecutive Michael addition reactions are followed by a prototropic shift (an 

acid-base reaction) and elimination of the methoxide ion to yield the product 
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67 
HQ:) (~

H 0 
H 

HO 

0 

HO 0 

:0: 

0 ~
HO 

-H;£ ·67 intramolecular 
nucleophilic 

addition 
. 
0rn 

N02 

A 

Species A is the expected nucleophilic addition product, however, instead of 

becoming protonated, A reforms the strong carbonyl bond, yielding a highly stable anion 

B. 

Exercise: Write all the resonance structures that can be written for anion B. 
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Minireview 9 focuses on nucleophilic acyl substitution reactions, the typical reaction of 
carboxylic acid derivatives. This should be studied prior to attempting questions 71-200. 
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The typical reaction of carboxylic acid 

derivatives (acid halides, anhydrides, esters, 

thioesters, and amides) with Lewis bases is 

nucleophilic acyl substitution. The mechanism 
);;>- Nucleophil ic Acyl 

Substitution 

Reactions 


of this reaction is shown below (eq 1 ).

Mechanism 

.. :q) :0: -Rfl _ R~ :L eq 1 
y

"--:v 



Reactions involving weak nucleophiles (:Y) can be speeded up by acid catalysis 

(eq 2). With the exception of amines and phosphorus nucleophiles, nucleophiles that do 

not bear a negative charge (:Y) are classified as weak, while those having a negative 

charge are classified as strong nucleophiles. 

:Y 0 

R)lY + HL eq 2 

Mechanism 

.. 
:Y (9H

Rio 

l 
y 
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Exercise 

1) Using general mechanistic principles, write a mechanism for each of the following reactions 

a) 

0 HN0 
b)~cl 

0 

c) ~0 ~COOH 

~COOH 
0 

2) Predict the product of the following reaction: 

Br 

~Br 
0 

131 




Questions 71-200 
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The following decarboxylation occurs spontaneously. Explain. 
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Simple cyclopropanes do not react with nucleophilic reagents. 

In contrast, "activated" cyclopropanes undergo nucleophilic cleavage. 

156 Write a mechanism that accounts for this observation. 
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Answers to Questions 71-200 
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A Michael addition reaction is followed by an intramolecular nucleophilic acyl 

substitution reaction to yield the product. 

172 eo .. - o: 

C?) 
COO Et 

=?213 t.=(JC02Et ---- A_C02EtY.
:g:

0<:rC02Et 
:gH 

Rapid formation of the anion is followed by an intramolecular acyl substitution 

reaction. 
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In the first step of this reaction, the nucleophile attacks the ketone carbonyl 

instead of the ester carbonyl. Why? 

~4 

f:))0~ 
· · oAoet 

!a-eH•• 3 

~~HaC~~ 
·.-.! oAoet 

A nucleophilic acyl substitution reaction is followed by an intramolecular Michael 

addition reaction. 

76. 

~ Br .o _: 0 t!J= ~d-
I Br _: ~ f:QH

I ~· 

Br~C02CH3 
Cil..... 

Br~C02CH3


An acid-catalyzed acyl substitution reaction is followed by epoxide fonnation. 
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~6 0~+ 

Q_OH 
(o·-H q 

OH 
Q~

QH 

cjH+

H+ 


Q)H 

G3 
A 

0
:s: .. 

0

0
:SH.. 

B 

When tetrahedral intermediate A reforms the strong C=O bond, it yields B instead 

of the compound shown below. Why? 

+ 

o-:.. 
H-0·u·· 
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~7 


H :o· 0 ,+ .. HQ: 0 

~N~~ ~N~ 
0 0 0 0 

• cctiH' 
~0: 

An acyl substitution reaction is followed nucleophilic ring opening of the epoxide 

to form an oxazolidine. 

Formation of the anion is followed by an intramolecular acyl substitution reaction. 
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79. (0: 


o~,J"o 

o=(H 

OEt 

o: 

Formation of the anion (nucleophile) is followed by nucleophilic ring opening of 

the epoxide (note that attack is on the least congested carbon of the epoxide ring) and 

a subsequent intramolecular acyl substitution reaction. 

80. (6: 

~ ___=0~~'---- .. 
v--\_g: 

H 

o~o'-- .. 
v--\_QH 

Reducing agents, such as NaBH4, LiAIH4, etc. function by delivering hydride (-:H) 

ions. Addition of the hydride to the ketone carbonyl is followed by a transannular 

nucleophilic acyl substitution reaction. 
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82. 

'o 

~ 0 


~=~ ___J COCH 

0 


2 3 
:Q) 

Initial formation of the anion is followed by a Michael addition reaction. A 

prototropic shift yields a new anion that undergoes an intramolecular acyl substitution 

reaction. 
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Acid-catalyzed hydrolysis of the lactone yields an a-hydroxymethyl ketone which 

undergoes elimination of water to form the a-methylene ketone. 

Reaction of the most acidic hydrogen yields an anion that participates in a 

nucleophilic acyl substitution reaction. This is followed by a base-catalyzed ~-elimination 

reaction to form the a,~-unsaturated lactone. 
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84. 0 



85. -. o Go: 
0 ~ ---~Ha 

\ \ OCH3 C02CH3 

HaC02C 9.: 

The pKa of malonic ester is -13 and the a-H of the ketone is -18. Why do you 

think the reaction proceeds as shown? 

86. 
sr Co: -=-·· 

~~....,·R=H=±-
Br @: 
~~H----

0 

Hott 
0 

0 

Note that in the first step of the reaction the Lewis base (nucleophile) attacks the 

most electron-deficient (most electrophilic) carbonyl carbon. The electron-withdrawing 

inductive effect of the electronegative atom (Br) renders the top carbonyl group more 

electrophilic (higher partial positive charge). 
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0 rJoEt 

o:fH 
o-

Formation of the anion is followed by a Michael addition reaction, a prototropic 

shift and an intramolecular acyl substitution reaction. 

88. OEt 

o=r~ 
OEt- OJOEt 

01:?0~=~ O~OEt---
EtO 

EtO 0
EtO 

OEt 
o~o: 0~0 _H 
)=o~OEt 

EtO 0 
)ro~oEt

EtO '-Jo 
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An intermolecular Claisen condensation reaction is followed by an intramolecular 

condensation reaction (a Dieckman condensation). A double transesterification reaction 

yields the final product. 

~9 ~ (COOEt 
~:NH2 

NAO 
H 

HH
~N~co2Et

CO: 

N~O 
H 

0

cCNryo
NHH OEt

$LQ_ 
0 Q: 

0 o: 
a:.~ OEt

0 

cLNH 
N}§: 
H :OEt.. 


0 

cl~H 
~ 0

Exercise The top carbonyl carbon in this mixed anhydride is more reactive than the 

bottom one. Explain. 

~0 0 

)j:H 
0 

~ 
0 

H+

H * resonance-stabilized 

0 

)6= 

anion 

Recall that, unlike ordinary carboxylic acids, (3-ketoacids and gem-clicarboxylic 

acids (malonic acids) undergo facile loss of C02 to form a stable product (a resonance

stabilized anion). This unusual keto acid loses C02 for the same reason. 

Exercise Draw all the resonance structures of the anion shown above. 
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Base-catalyzed hydrolysis of the ester yields an anion that undergoes a retro aldol 

reaction (recall that the aldol condensation reaction is reversible). 

92. 
0 

~~0'•• • NEt3 

Activation by the acid (changing the hydroxyl group from a poor leaving group to 

a good leaving) is followed by an intramolecular acyl substitution reaction. 
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93. 
Cl Cl Cl 

___. />-. r:C~COOH=

lAQ:" 

coo· 

~ 
(Q_ 

·ooc r;H ·· H 
~-y-

UJ 
:oJ
UJ 

Base-catalyzed hydrolysis of the lactone yields an oxygen nucleophile that 

undergoes an SN2 reaction with the allyl chloride. This is followed by a base-catalyzed 

isomerization to form the product. 

94. H 
J 

+N 
~Ill c 0 

~a:H··\
' NH

H " +C 0

~OEI ~OEt

f-! NH
m"H·""'-c o 

~OEt 
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95. 0 

~9 
~~N 


Ph 

Formation of the anion is followed by a Michael addition reaction and trapping of 

the anion via reaction with the mixed anhydride. 

96. OBzl 
OBzl OBzl 

OBzl OBzl OBzl 

1"<: 
.,;:; .,;:; ..

:o 
O ~~OCH3 N~ 

Ph--./o oJ.--Q 0 
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97. 

0 

98. I 0 

:~ 
s 

:o 0 

9:) 
99. oyCO 

(Q:H •• 

'? ..JHO_,......,or... 

This is an example of the iodolactonization reaction. 
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101 

0 

~OOH 

This is a variant of the Friedei-Craft acylation reaction. 
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0 
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+ 

$ 
0 

0 

a-Lapachone 

0 
0 0 

H-Q: 

0 

H-O H-O OH

0 0 0 

b-Lapachone 

The starting material can exist in two enol forms each capable of reacting with the 

3° carbocation in a LA/LB reaction to form two different products. 
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Ph~Ph 
Ph~COMe 

yCOPh 

~Ph Ph

o (oAc 

Formation of the anion is followed by a Michael addition reaction and tandem 

elimination. 
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··~H\ s -···D :QH 

··.- :8~.0 5• '- •• 41. . "'----"".

106 

CHO ~CHO 

N 
,---;··~----. 
Cl ·~ ~N~S~

This is a two-step substitution reaction at an electron-deficient sp2 hybridized 

carbon. 
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This is an example of the Fries rearrangement 
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Acid-catalyzed isomerization to the more stable trans isomer 
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(B= DBU base) 

Base-catalyzed isomerization to form the more stable conjugated product. 
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Formation of the ambident anion and subsequent reaction with the acid chloride 

yields the product. 
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CH300~~H •• CH OOCH
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H 0 H 

This is an example of an intramolecular aldol condensation reaction. 
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This is a Dieckmann condensation reaction (the intramolecular counterpart of the 

intermolecular Claisen condensation reaction) 
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work-up. 
H+/H20 

This is a general reaction involving the cleavage of an aryl alkyl ether. 
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Resonance stabilized 
carbocation 

Exercise Draw all the resonance structuers of the p-methoxybenzyl carbocation. 
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~+EtOH+ C02
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OCH3 V 
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0 
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0 
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__H_+_ ~ + 3 CH,OH 
244 ~? 

0 
OH 

245 

OH 00 
DABCO (cat) __

246 I~ + (ocH3 ()YocHa 6 ...: 
N N 

~COOHH202 
247 JYo --NaOH 

OH 

0 

Q BrYOEt 
H+/ H20248 EtO~ 6 

0 
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249 

1 ~ ~ - Idil NaOH .6 +0 HS~COOH
COOCH3 

0 OCH3 
s 

250 

0 
,0- N.....- aq H2S04 + HN......9'1 

I I ~ 
OH ~ 

251 

I 0 

_ 
01 HBr /o+Et 
~ ~b CH3CH20H 

OH COOEt 

252 

CF3 
C(OCH3h 

~~NH r- TEA )_~NH r- +CI)LS }-N CH OH0 \._ 3 Cl S }-N
0 \._ 

253 

254 

COO Et 
(CH3)oCO-:~ + NO,
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The compound shown below is stable when isolated as the 

hydrochloride salt. However, chromatography on silica gel yields the 

products shown below. Write a mechanism that explains the 

formation of these products (Hint: silica gel tends to absorb moisture) 

255 Cl 

0 

Cl-:?' 
I 

~ 

Cl 

Cl 

0 

-:?' 

~ 
I 

Cl H 

+ (N) 0 
+HJlH 

~ 

I ,.;; NH+ Cl- ~ 

I ,.;; 
Cl

0 

(oj 
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0 0 0 


('oEt

~OEt 6 DBU (cat)/ DMF 

Br 0 0 

257 0 W/H20 ~+ CNH (\N0 VocH3 

0 OCH3 

1\ 
0 0 0 

258 
OHp-TSA

+ 2HQ~OH
'o I~ -:?'

H3CO ~ I
~~0 

259 
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I 

.....:::::: 

0 NH 
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.....:::::: 
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0 

HJlH 

H+ 

,.......o

.....:::::: 

..... I 
0 N'o 

.....:::::: 

I 
0 

OH 

0/ 
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EtOH 

0
HOOC~2 

262 + ~OH
HO 

263 

SO ·Na+ 0 2 
I er/ + ~~o EIO"Na+ ~OEt + ~ 
~OEt 1-1 I X y 

~ 

0;::6(264 
, I ,lt cYa

0 
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~ 

0 

!J 

CN 
I

H+/ H20
0C\SN

0 

267 
HO 

I 
~ 

.6 

OH A 
H+ 

~ 0 I 
.6

HO

N 
I N 

I 

268 

( 9--< (CH3CH2hNH. HCI/ H(C=O)H ~N--/ 

0 BOH O 0 

Aldehydes can be converted into alpha-chloromethyl ketones 

by reacting an aldehyde with the reagent shown below, and refluxing 

the product formed in toluene. Write a mechanism for this 

transformation. 
269 

0 

~H 
heat 
~Cl 

THF/-78 °C 0 

0 

270 ~OCH3
0 

(mechanism must account for the location of(*) carbon) 
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0 0 aq NaOH 
I 

.6271 
Iheat 

00 

272 Phse-Na+& QSePh 
0 

0~ 0 
HN I 

CN 
OH

H2N)(_.CNros9 I273 "0 ~ ~ 

I 
~ 

+I 
0 NaOAc .6- 0~S;=O 6b 

0/0 0/ 
0 

CNHo:XrBr ~274 I . I~ 
.6-

~ 

0 00 0K2C03 
/0 /0 

Cl s~HS~NH2 
275 .,.-O~QCH3 .,.-O~NH + CH30H 

.6- s 0 DBU .6- s 0 

_..-: 

0 D-/N N, (cat) h 
276 ~ OOR 

"::: 0I 0&.6- 0 }-OR 0 
0 
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278 

~H loEt277 V + ~OEt 
0 

I~ 

Q,....::::. 0 + 
OEt 

OEt coo·0 0 

Primary and secondary alcohols can be readily oxidized by 

dimethyl sulfoxide/phosphorus pentoxide/triethylamine under mild 

conditions {an example is shown below). Use your knowledge of 

Lewis structures and Lewis acid/base reactions to write a reasonable 

mechanism for this reaction. 
279 

RH
)l__ 


(R}H OH 


0 
)l 


R H (R} 


~COOCH3 
HO ~COOCH3 

0 

280 

281 

Ph-& H COOEt H:_H COOEt O~ 	 (n-Bu}aP • 
PhSSPh {n-Bu)aP=O + PhSH 0+ 
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Cl OH 

.);-----{-·· 

~N(CH3)aCI-

+-	
KOCN 	

-----

0 

c1 o---{

·);-----{- ~H 
~ + N(CH3)J

~ 
283 

0 

~~OOH HOOOC~COOH HOOCI 

<-~ ~. (Nx~COOHroo H2-Pd N~--OAN S

HOOC )__[ 
Hoocf 1\ d 

11 

284 

N 
HOOC COOH () 0 H 

N.)-{ N THF 
2 ( f + C02U + o==( Heat o:t+ N - tJ 	 0 

N 

285 ~ 
OH 

286 DMSO
(CF3COhO 
TEA 
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Alcohols can be readily converted to alkyl chlorides or 

bromides under mild conditions using PPh3 /CC14 or PPh31CHBr3, 

respectively (a specific example is shown below). Write a mechanism 

for this transformation 

287 
R-CH2-0H 

PPh3 
" R-CH2-X + O=PPh3 (X=CI. Br) CX4 

I 
0 

COOH COOH

0 

288 

0 

289 I + NaCI + NaCN + 2H2 

Primary amides can be readily dehydrated under mild 

conditions using chloromethylene iminium salts called Vilsmeier 

reagents to form the corresponding nitriles. When dimethyl 

formamide (DMF) is treated with oxalyl chloride it forms a Vilsmeier 
290 

reagent which is then reacted with primary amines in the presence 

of pyridine to yield the corresponding nitrile as shown below. Write 

a mechanism for the formation of the Vilsmeier reagent and a second 

mechanism for the formation of the nitrile. 
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0 \ Cl + 'N)lH N+=< (Cr + C02 +CO)CI~CII I H 

0 
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R-CN 
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H3CO~NH2 H3CO~CN 


ToH 
NaHqs291 coq:JH3H3CO Cl 

Cl Cl 
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HN 0 NaH 292 eoeo s s 

0 

O~Br293 O ~ + (CH3CH20)JP 0~+ CH3CH2Br 

PO(OCH2CH3h 

0 OH __rCOOEtLOA/ THF ~OOEI 294 + PhS02CXo -78°C 
S02Ph OH 
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yyo" 295 
0 0 

1) NaH

2) n-Buli/ THF
~CH3

0 OCH3 

296 H3cPs + KOCN + C02 
H 

297 
DMSO/ (CICOh CXO 

TEA Cl 

~
PPh3/ DEAD 

298 
OH ~ 

PhSH SPh 

299 

300 Q 

q,o 
t;>H OH lfYS:
N~--v Cl

J8 0 ~ 
OH TEA 

0 H SO . 
H 0 3

VN>=o + I ~ + 6~
~0 h- h

t-Butyl ethers and esters can be readily made from the 

corresponding alcohols and carboxylic acids by mixing the reagent 

shown below with t-butanol in the presence of a catalytic amount of 

BF3 etherate. Write a mechanism for these transformations. 
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325 w 0
N 
H 

326 MeOH/~flux ~t?
H 0 

0 

327 ~J0)
0 

When the antibiotic Emycin F is treated with acid, it 

rearranges to Emycin E. Write a mechanism for this transformation. 
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, p-TsOH 
Ph 

o-k o oH 
373 ,...o~O HCI/ MeOH "("-,£.__ 

0 Ph ~Ph OH 

Ph 

Ph~ Ho+PhW'-'::::3 I374 .4- .4

Ph 

0 
AcOH/AcONH4 ~ ~ Ph375 

0 0 
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412 

2) BF3.Et20 ~ 
3) HCI/acetone 0 

NHCbz 
\j NH2 Mel/60 °CCbzHN .... n 413 _. 0--i 

S acetone N .HI 

cf[CO:Et §)Et
C02Et TBAF/THF 

n=1 H 11 

414 0 
C02Et 

TBAFfT_!:IF cJ5
)n 

n=2 + ?§' 
H 


~ ~ 
I I o A mCPBA 
415 OH0 Ao~ 

CH2CI2 ····o 
0 

265 




416 

0 

C\No2 

DBU/CH3CN

60 °C 

0

C\o
417 

0.---010 0 
\

NH 0 HN ~ 
Et3N/CH2CI2 

~ ~ 

I 
4 0 0 ~ 

418 

0OOH + {o piperidinium acetate cr:xo
CHO 0 0~ EtOH COOH 

419 

420 

\ 0 

o=<N~ iAr 

N-{X
1 0 NH 

I 

421 

/ 0 00 0 0 ,, ,, 
o~'s:N1 .---s~oH 

UF ~0 NaH/DMF 

266 




422 

423 00
_)lO~OH 

424 

0 

BocHN 
0 

0 
\

425 

426 

_......s 

I 
0 0 

-:?" 

::::::-... 0 

~~ 
::::::-... 

F 

0 

+ 

0 Q1) NaOH/DMF/25 °C 

O 0 2) HCOOH/25 °C y 
_......s 

0 o, 

-....::::: 

I
0 

-?'I 
::::::-... 

F 

0 

427 

267 




428 

429 Ph~ 
TMS 

BF3Et20 w 
430 Cb CH3CN/ -20 to 0 °C OH 0 

11::
+ W-1


431 

0 0 0 -7' 

~OEt ~I
432 ~H 

OEt

433 

268 




434 
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Note The reactivity of the nitrogen is higher than in an acyclic amide because it cannot 

engage in resonance (ring strain) 
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Exercise Why is the carbocation on the carbon next to the oxygen formed? 
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This is an example of the Bay/iss-Hi/1 reaction 
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Exercise 

a) Why did the initial proton abstraction happen on the carbon next to the nitre group? 

b) Why is N02- a good leaving group? 
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Exercise Write a mechanism for step 2 
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This is an example of the Favorskii rearrangement 
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This is an example of the Pictet-Spengler reaction 
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Exercise Write a mechanism for the formation of the imine. 
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This is an example of a sulfoxide syn elimination reaction 
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(prototropic shift refers to the equlibration of two anions with equal stability) 
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This is an example of the Stobbe condensation reaction 
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This is a variant of the S wern oxidation . . reaction 
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This is a variant of the Swern oxidation reaction 
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This is an example of a macrolactonization reaction 
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This is an example of the Arbusov reaction 
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Exercise The keto tautomer is ordinarily more stable than the enol form. In this example, the 

enol form is favored. Why? 
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This is an example of the Mitsonobu reaction 
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Exercise Write the mechanism for the conversion of A to the final product 
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When the antibiotic emycin F is treated with acid, it rearranges to 

emycin E. Write a mechanism for this transformation. 

OH 
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1'<:::: H20/ H+ 	 -...: 
_.-:::; p 	

HO 
0 

~ 	 '<:::: ~ ~ 	 #I::--	 _.-:::; HO 
HO 

emycin F 	 emycin E 

491 

Mechlorethamine hydrochloride (Mustargen) is a drug used in the 

treatment of Hodgkins disease and lymphosarcoma. Mustargen is 

administered intravenously, and its action lasts for only a few minutes. 

Its short duration of action is due to its rapid non-enzymatic hydrolysis. 

Write a mechanism that accounts for its rapid hydrolysis (recall that 

492 	 ordinary alkyl halides do not react with weak nucleophiles, such as 

water). 

OH 
~ 2HC1H C-N +

3~ 
OH 

A prodrug is a biologically inactive form of a drug that in vivo yields the 

active form of the drug. The liberation of the drug from the prod rug can 

be a non-enzymatic or enzyme-catalyzed process. Prodrugs are 

typically used because of their greater chemical stability, better 

transport and/or lower toxicity. 

The antibiotic cycloserine has a tendency to dimerize, forming an 
493 

inactive dimer (see below). In order to lower the instability of cycloserine 

the prodrug shown below was synthesized. lt was found to be an 

efficacious prod rug of increased stability. The prod rug releases the 

active ingredient in phosphate buffer, pH 7 .0. Write a mechanism for 

the hydrolysis of the prodrug to the formation of the cycloserine and a 

mechanism for the formation of the cycloserine dimer. 
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0 

HOHNYNH 
--------~ HN~NHOH 

0 

Mammalian cells produce a range of bioactive substances, including 

prostaglandins, prostacyclins, thromboxanes, and leukotrienes. These 

hormone-like substances act as mediators of inflammation, pain, fever, 

blood clotting, etc. 

Prostacyclin is a potent vasodilator and inhibitor of platelet aggregation 

produced by vascular endothelial cells. Decreased production of 

prostacyclin is associated with platelet aggregation and the formation 

of blood clots (thrombosis). The latter is the primary cause of heart 

attacks and stroke. Prostacyclin is transformed into the compound 

494 shown below in vivo. Write a mechanism for this reaction. 

COOH 

HQ 
h 

Q 0 .. 
OH 


HO 

HO 

Prostacyclin 
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The antitumor antibiotic leinamycin cleaves DNA, however, it does so 

only in the presence of added thiols. The precise mechanism of action 

of leinamycin is not known. lt has been suggested that nucleophilic 

attack of a thiol on the 1 ,2-dithiolan-3-one 1-oxide heterocycle present 

in leinamycin triggers DNA cleavage. 

The thiol-activated DNA-cleavage chemistry of leinamycin was probed 

using 1,2,-dithiolan-3-one 1-oxide as a model compound and n

propane thiol (see reaction below). Write a plausible mechanism for this 

reaction. 
495 

0 

~ 

I ~OH -:.,_OH 
0 

-ks
0 

0 

The prodrug shown below yields the active ingredient (chloral, a 

sedative) in the stomach. Write a mechanism for this transformation. 

OH HO 
CI3C--< )-CCI3 

0H+/ H20 4 )l + 

0 0 H CCI3 


c13c--< )-ccl3 

OH HO 


496 oxo
Solutions of the broad-spectrum antibiotic chlortetracycline 

hydrochloride lose their therapeutic potency with time. This is due to 

497 	 rapid epimerization at the C-4 position, forming an epimerized product 

having greatly reduced antibiotic activity. Write a mechanism for the 

epimerization reaction. 
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498 

Cl -=--.OH 

Chlortetracycline hydrochloride 

(Aureomycin) 


The intracellular enzyme CMP-KDO synthetase is the key enzyme in 

the biosynthesis of the lipopolysaccharide (LPS) of gram-negative 

bacteria. Compounds that inhibit this enzyme are of potential 

therapeutic value as antibacterial agents. 

Compound 1 is a potent inhibitor of CMP-KDO synthetase in vitro but is 

inactive as an antibacterial agent in vivo. In an effort to circumvent this 

problem a series of simple esters were synthesized and investigated for 

their antibacterial activity. None of the esters showed any activity. 

Ultimately, compound 2 was conceived which was found to be a highly 

effective antibacterial agent The design of prod rug 2 was based on the 

following biological and chemical considerations. 

(a) gram-negative bacteria contain significant quantities of 

glutathione (gama-glu-cys-gly); 

(b) in vitro disulfide exchange reactions are facile; 

(c) the disulfide exchange was expected to be irreversible 

because of the "peri" effect; 

(d) when model compound 3 was reacted with n-propanethiol in 

the presence of triethylamine at room temperature, compound 4 

[(C11HaS; 1H NMR: 4.78 (S,2H), 7.20-7.60 (m,4H)] was formed. 

Write a mechanism for the in vivo conversion of 2 to 1, and comment 

on the biochemical and chemical rationale underlying the design of 

compound 2. 
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OH 
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lsoilludin M behave as a bifunctional alkylating agent, yielding the 

aromatic product shown below. Write a plausible mechanism for this 

reaction. 

499 
Cl 

0 
isoilludin M 

The natural product Bripiodionen is an inhibitor of human 

cytomegalovirus protease. When dissolved in methanol for a prolonged 

period of time, bripiodionen undergoes geometric isomerization to 

compound X. The chemical shift of H-8 in bripiodionen is 7.45 and 7.61 

in compound X. What is the structure of X? Write a mechanism for the 

500 formation of X. 

Bripiodionen 
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