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Filter Design HDL Coder Product Description
Generate HDL code for fixed-point filters

Filter Design HDL Coder generates synthesizable, portable VHDL® and Verilog® code for
implementing fixed-point filters designed with MATLAB® on FPGAs or ASICs. It automatically creates
VHDL and Verilog test benches for simulating, testing, and verifying the generated code.

Key Features
• Generation of synthesizable IEEE® 1076 compliant VHDL code and IEEE 1364-2001 compliant

Verilog code
• Control over generated code content, optimization, and style
• Distributed arithmetic and other options for speed vs. area tradeoff and architecture exploration
• VHDL and Verilog test-bench generation for quick verification and validation of generated HDL
filter code

• Simulation and synthesis script generation

1 Getting Started
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Automated HDL Code Generation
HDL code generation accelerates the development of application-specific integrated circuit (ASIC)
and field programmable gate array (FPGA) designs by bridging the gap between system-level design
and hardware development.

Traditionally, system designers and hardware developers use hardware description languages
(HDLs), such as VHDL and Verilog, to develop hardware filter designs. HDLs provide a proven
method for hardware design, but coding filter designs is labor-intensive. Also, algorithms and system-
level designs created using HDLs are difficult to analyze, explore, and share.

The Filter Design HDL Coder workflow automates the implementation of designs in HDL. First, using
DSP System Toolbox™ features (apps, filter System objects), an architect or designer develops a filter
algorithm targeted for the hardware. Then, using the Generate HDL dialog box (fdhdltool) or
command-line tool (generatehdl) of Filter Design HDL Coder, a designer configures code
generation options and generates a VHDL or Verilog implementation of the design. Designers can
easily modify these designs and share them between teams, in HDL or MATLAB formats.

The generated HDL code adheres to a clean, readable coding style. The optional generated HDL test
bench confirms that the generated code behaves as expected, and can accelerate system-level test
bench implementation. Designers can also use Filter Design HDL Coder software to generate test
signals automatically and validate models against standard reference designs.

This workflow enables designers to fine-tune algorithms and models through rapid prototyping and
experimentation, while spending less time on HDL implementation.

See Also
generatehdl | fdhdltool | filterBuilder | filterDesigner

Related Examples
• “Starting Filter Design HDL Coder” on page 2-2
• “Generating HDL Code” on page 2-12
• “Generate HDL Code for Filter System Objects” on page 2-16
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Supported Filter System Objects
Filter Design HDL Coder supports these System objects from DSP System Toolbox.

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade
• dsp.VariableFractionalDelay

Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter

You can also model hardware behavior, and generate HDL code by using System objects or Simulink®

blocks from DSP HDL Toolbox™. These objects and blocks include hardware-friendly control signals
and architecture options. To generate HDL code from “DSP HDL Toolbox” objects and blocks, you
must also have the HDL Coder™ product. See “HDL-Optimized Filters and Transforms” (DSP HDL
Toolbox).

See Also
generatehdl | fdhdltool

Related Examples
• “Generate HDL Code for Filter System Objects” on page 2-16
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Basic FIR Filter

In this section...
“Create a Folder for Your Tutorial Files” on page 1-5
“Design a FIR Filter in Filter Designer” on page 1-5
“Quantize the Filter” on page 1-7
“Configure and Generate VHDL Code” on page 1-10
“Explore the Generated VHDL Code” on page 1-15
“Verify the Generated VHDL Code” on page 1-16

Note The Filter Design HDL Coder product will be discontinued in a future release. Instead, you can
model hardware behavior, and generate HDL code by using System objects or Simulink blocks from
DSP HDL Toolbox. These objects and blocks include hardware-friendly control signals and
architecture options. To generate HDL code from “DSP HDL Toolbox” objects and blocks, you must
also have the HDL Coder product.

For examples of modeling an FIR filter for hardware, see “Fully Parallel Systolic FIR Filter
Implementation” (DSP HDL Toolbox) and “Partly Serial Systolic FIR Filter Implementation” (DSP HDL
Toolbox). These examples use the Discrete FIR Filter block. Equivalent functionality is also available
in the dsphdl.FIRFilter System object™.

Create a Folder for Your Tutorial Files
Set up a writable working folder outside your MATLAB installation folder to store files that will be
generated as you complete your tutorial work. The tutorial instructions assume that you create the
folder hdlfilter_tutorials on drive C.

Design a FIR Filter in Filter Designer

This section assumes that you are familiar with the MATLAB user interface and the Filter Designer.
These instructions guide you through designing and creating a basic FIR filter using Filter Designer.

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial Files” on

page 1-5.
3 Start Filter Designer by entering the filterDesigner command in the MATLAB Command

Window. The Filter Design & Analysis Tool appears.
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4 In the Filter Design & Analysis Tool, check that these filter options are set.

Option Value
Response Type Lowpass
Design Method FIR Equiripple
Filter Order Minimum order
Options Density Factor: 20
Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
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Option Value
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the Filter Designer creates for you. If you do
not have to change the filter, and Design Filter is grayed out, you are done and can skip to
“Quantize the Filter” on page 1-7.

5 If you modified options listed in step 4, click Design Filter. The Filter Designer creates a filter
for the specified design and displays this message in the Filter Designer status bar when the task
is complete.

Designing Filter... Done

For more information on designing filters with the Filter Designer, see the DSP System Toolbox
documentation.

Quantize the Filter

You must quantize filters for HDL code generation. To quantize your filter,

1 Open the basic FIR filter design you created in “Design a FIR Filter in Filter Designer” on page 1-
5.

2
Click the Set Quantization Parameters button  in the left-side toolbar. The Filter Designer
displays a Filter arithmetic menu in the bottom half of the window.
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3 Select Fixed-point from the Filter arithmetic list. Then select Specify all from the Filter
precision list. The Filter Designer displays the first of three tabbed panels of quantization
parameters across the bottom half of the window.
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Use the quantization options to test the effects of various settings on the performance and
accuracy of the quantized filter.

Set the quantization parameters as follows:

Tab Parameter Setting
Coefficients Numerator word length 16
 Best-precision fraction lengths Selected
 Use unsigned representation Cleared
 Scale the numerator coefficients to fully

utilize the entire dynamic range
Cleared

Input/Output Input word length 16
 Input fraction length 15
 Output word length 16
Filter Internals Rounding mode Floor
 Overflow mode Saturate
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Tab Parameter Setting
 Accum. word length 40

4 Click Apply.

For more information on quantizing filters with the Filter Designer, see the DSP System Toolbox
documentation.

Configure and Generate VHDL Code
After you quantize your filter, you are ready to configure coder options and generate VHDL code for
the filter. This section guides you through starting the Filter Design HDL Coder UI, setting options,
and generating the VHDL code and test bench for the basic FIR filter you designed and quantized in
“Design a FIR Filter in Filter Designer” on page 1-5 and “Quantize the Filter” on page 1-7.

1 Start the Filter Design HDL Coder UI by selecting Targets > Generate HDL in the Filter
Designer tool. The Filter Designer displays the Generate HDL tool.
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2 Find the Filter Design HDL Coder online help.

a In the MATLAB window, click the Help button in the toolbar or click Help > Product Help.
b In the Contents pane of the Help browser, select the Filter Design HDL Coder entry.
c Minimize the Help browser.

3 In the Generate HDL tool, click the Help button. A small context-sensitive help window opens.
The window displays information about the tool.

4 Close the Help window.
5 Place your cursor over the Folder label or text box in the Target pane of the Generate HDL tool,

and right-click. A What's This? button appears.

6 Click What's This? The context-sensitive help window displays information describing the
Folder option. Configure the contents and style of the generated HDL code, using the context-
sensitive help to get more information as you work. A help topic is available for each option.

7 In the Name text box of the Target pane, replace the default name with basicfir. This option
names the VHDL entity and the file that contains the VHDL code for the filter.

8 Select the Global settings tab of the UI. Then select the General tab of the Additional
settings section of the UI. Type Tutorial - Basic FIR Filter in the Comment in header
text box. The coder adds the comment to the end of the header comment block in each generated
file.
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9 Select the Ports tab of the Additional settings section of the UI.

10 Change the names of the input and output ports. In the Input port text box, replace filter_in
with data_in. In the Output port text box, replace filter_out with data_out.
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11 Clear the check box for the Add input register option. The Ports pane now looks like this
figure.

12 Click the Test Bench tab in the Generate HDL tool. In the File name text box, replace the
default name with basicfir_tb. This option names the generated test bench file.
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13 Click Generate to start the code generation process.

The coder displays messages in the MATLAB Command Window as it generates the filter and test
bench VHDL files:
### Starting VHDL code generation process for filter: basicfir
### Generating: C:\hdlfilter_tutorials\hdlsrc\basicfir.vhd
### Starting generation of basicfir VHDL entity
### Starting generation of basicfir VHDL architecture
### HDL latency is 2 samples
### Successful completion of VHDL code generation process for filter: basicfir

### Starting generation of VHDL Test Bench
### Generating input stimulus
### Done generating input stimulus; length 3429 samples.
### Generating Test bench: C:\hdlfilter_tutorials\hdlsrc\basicfir_tb.vhd
### Please wait ...
### Done generating VHDL Test Bench

As the messages indicate, the coder creates the folder hdlsrc under your current working folder
and places the files basicfir.vhd and basicfir_tb.vhd in that folder.

Observe that the messages include hyperlinks to the generated code and test bench files. By
clicking these hyperlinks, you can open the code files directly into the MATLAB Editor.

The generated VHDL code has these characteristics:

• VHDL entity named basicfir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• The table shows the names of the ports.

VHDL Port Name
Input data_in
Output data_out
Clock input clk
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VHDL Port Name
Clock enable input clk_enable
Reset input reset

• An extra register for handling filter output.
• Clock input, clock enable input, and reset ports are of type STD_LOGIC and data input and

output ports are of type STD_LOGIC_VECTOR.
• Coefficients are named coeffn, where n is the coefficient number, starting with 1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• Registers are generated with the statement ELSIF clk'event AND clk='1' THEN rather

than with the rising_edge function.
• The postfix '_process' is appended to process names.

The generated test bench:

• Is a portable VHDL file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5 nanoseconds.
• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
• Applies a hold time of 2 nanoseconds to data input signals.
• For a FIR filter, applies impulse, step, ramp, chirp, and white noise stimulus types.

14 When you have finished generating code, click Close to close the Generate HDL tool.

Explore the Generated VHDL Code
Get familiar with the generated VHDL code by opening and browsing through the file basicfir.vhd
in an ASCII or HDL simulator editor.

1 Open the generated VHDL filter file basicfir.vhd.
2 Search for basicfir. This line identifies the VHDL module, using the value you specified for the

Name option in the Target pane. See step 5 in “Configure and Generate VHDL Code” on page 1-
10.

3 Search for Tutorial. This section is where the coder places the text you entered for the
Comment in header option. See step 10 in “Configure and Generate VHDL Code” on page 1-10.

4 Search for HDL Code. This section lists coder options you modified in “Configure and Generate
VHDL Code” on page 1-10.

5 Search for Filter Settings. This section describes the filter design and quantization settings
as you specified in “Design a FIR Filter in Filter Designer” on page 1-5 and “Quantize the Filter”
on page 1-7.

6 Search for ENTITY. This line names the VHDL entity, using the value you specified for the Name
option in the Target pane. See step 5 in “Configure and Generate VHDL Code” on page 1-10.

7 Search for PORT. This PORT declaration defines the clock, clock enable, reset, and data input and
output ports. The ports for clock, clock enable, and reset signals are named with default
character vectors. The ports for data input and output are named as you specified on the Input
port and Output port options on the Ports tab of the Generate HDL tool. See step 12 in
“Configure and Generate VHDL Code” on page 1-10.
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8 Search for Constants. This section defines the coefficients. They are named using the default
naming scheme, coeffn, where n is the coefficient number, starting with 1.

9 Search for Signals. This section of code defines the signals for the filter.
10 Search for process. The PROCESS block name Delay_Pipeline_process includes the default

PROCESS block postfix '_process'.
11 Search for IF reset. This code asserts the reset signal. The default, active high (1), was

specified. Also note that the PROCESS block applies the default asynchronous reset style when
generating VHDL code for registers.

12 Search for ELSIF. This code checks for rising edges when the filter operates on registers. The
default ELSIF clk'event statement is used instead of the optional rising_edge function.

13 Search for Output_Register. This section of code writes the filter data to an output register.
Code for this register is generated by default. In step 13 in “Configure and Generate VHDL
Code” on page 1-10, you cleared the Add input register option, but left the Add output
register selected. Also note that the PROCESS block name Output_Register_process
includes the default PROCESS block postfix '_process'.

14 Search for data_out. This section of code drives the output data of the filter.

Verify the Generated VHDL Code
This section explains how to verify the generated VHDL code for the basic FIR filter with the
generated VHDL test bench. This tutorial uses the Mentor Graphics® ModelSim® software as the tool
for compiling and simulating the VHDL code. You can also use other VHDL simulation tool packages.

To verify the filter code, complete these steps:

1 Start your Mentor Graphics ModelSim simulator.
2 Set the current folder to the folder that contains your generated VHDL files. For example:

3 If desired, create a design library to store the compiled VHDL entities, packages, architectures,
and configurations. In the Mentor Graphics ModelSim simulator, you can create a design library
with the vlib command.
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4 Compile the generated filter and test bench VHDL files. In the Mentor Graphics ModelSim
simulator, you compile VHDL code with the vcom command. These commands compile the filter
and filter test bench VHDL code.

vcom basicfir.vhd
vcom basicfir_tb.vhd

This screen display shows the command sequence and informational messages displayed during
compilation.

5 Load the test bench for simulation. The procedure for loading the test bench varies depending on
the simulator you are using. In the Mentor Graphics ModelSim simulator, you load the test bench
for simulation with the vsim command. For example:

vsim work.basicfir_tb

This figure shows the results of loading work.basicfir_tb with the vsim command.

6 Open a display window for monitoring the simulation as the test bench runs. In the Mentor
Graphics ModelSim simulator, use this command to open a wave window and view the results of
the simulation as HDL waveforms.
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This wave window opens.

7 To start running the simulation, issue the start simulation command for your simulator. For
example, in the Mentor Graphics ModelSim simulator, you can start a simulation with the run
command.

This figure shows starting a simulation with the run -all command.
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As your test bench simulation runs, watch for error messages. If error messages appear,
interpret them as they pertain to your filter design and the HDL code generation options you
selected. Determine whether the results are expected based on the customizations you specified
when generating the filter VHDL code.

This wave window shows the simulation results as HDL waveforms.
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Optimized FIR Filter
In this section...
“Create a Folder for Your Tutorial Files” on page 1-21
“Design the FIR Filter in Filter Designer” on page 1-21
“Quantize the FIR Filter” on page 1-23
“Configure and Generate Optimized Verilog Code” on page 1-26
“Explore the Optimized Generated Verilog Code” on page 1-33
“Verify the Generated Verilog Code” on page 1-34

Note The Filter Design HDL Coder product will be discontinued in a future release. Instead, you can
model hardware behavior, and generate HDL code by using System objects or Simulink blocks from
DSP HDL Toolbox. These objects and blocks include hardware-friendly control signals and
architecture options. To generate HDL code from “DSP HDL Toolbox” objects and blocks, you must
also have the HDL Coder product.

For examples of modeling an FIR filter for hardware, see “Fully Parallel Systolic FIR Filter
Implementation” (DSP HDL Toolbox) and “Partly Serial Systolic FIR Filter Implementation” (DSP HDL
Toolbox). These examples use the Discrete FIR Filter block. Equivalent functionality is also available
in the dsphdl.FIRFilter System object.

Create a Folder for Your Tutorial Files
Set up a writable working folder outside your MATLAB installation folder to store files that will be
generated as you complete your tutorial work. The tutorial instructions assume that you create the
folder hdlfilter_tutorials on drive C.

Design the FIR Filter in Filter Designer
This tutorial guides you through the steps for designing an optimized quantized discrete-time FIR
filter, generating Verilog code for the filter, and verifying the Verilog code with a generated test
bench.

This section assumes that you are familiar with the MATLAB user interface and the Filter Designer.

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial Files” on

page 1-21.
3 Start the Filter Designer by entering the filterDesigner command in the MATLAB Command

Window. The Filter Design & Analysis Tool appears.
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4 In the Filter Design & Analysis Tool, set these filter options.

Option Value
Response Type Lowpass
Design Method FIR Equiripple
Filter Order Minimum order
Options Density Factor: 20
Frequency Specifications Units: Hz

Fs: 48000

Fpass: 9600

Fstop: 12000
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Option Value
Magnitude Specifications Units: dB

Apass: 1

Astop: 80

These settings are for the default filter design that the Filter Designer creates for you. If you do
not have to change the filter, and Design Filter is grayed out, you are done and can skip to
“Quantize the FIR Filter” on page 1-23.

5 Click Design Filter. The Filter Designer creates a filter for the specified design. The following
message appears in the Filter Designer status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the Filter Designer, see the DSP System Toolbox
documentation.

Quantize the FIR Filter
You must quantize filters for HDL code generation. To quantize your filter,

1 Open the FIR filter design you created in “Design the FIR Filter in Filter Designer” on page 1-21
if it is not already open.

2
Click the Set Quantization Parameters button  in the left-side toolbar. The Filter Designer
displays a Filter arithmetic menu in the bottom half of the window.
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3 Select Fixed-point from the list. Then select Specify all from the Filter precision list. The
Filter Designer displays the first of three tabbed panels of quantization parameters across the
bottom half of the window.
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Use the quantization options to test the effects of various settings on the performance and
accuracy of the quantized filter.

4 Set the quantization parameters as follows:

Tab Parameter Setting
Coefficients Numerator word length 16
 Best-precision fraction lengths Selected
 Use unsigned representation Cleared
 Scale the numerator coefficients to fully

utilize the entire dynamic range
Cleared

Input/Output Input word length 16
 Input fraction length 15
 Output word length 16
Filter Internals Rounding mode Floor
 Overflow mode Saturate
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Tab Parameter Setting
 Accum. word length 40

5 Click Apply.

For more information on quantizing filters with the Filter Designer, see the DSP System Toolbox
documentation.

Configure and Generate Optimized Verilog Code
After you quantize your filter, you are ready to configure coder options and generate Verilog code for
the filter. This section guides you through starting the UI, setting options, and generating the Verilog
code and a test bench for the FIR filter you designed and quantized in “Design the FIR Filter in Filter
Designer” on page 1-21 and “Quantize the FIR Filter” on page 1-23.

1 Start the Filter Design HDL Coder UI by selecting Targets > Generate HDL in the Filter
Designer tool. The Filter Designer displays the Generate HDL tool.
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2 Select Verilog for the Language option, as shown in this figure.

3 In the Name text box of the Target pane, replace the default name with optfir. This option
names the Verilog module and the file that contains the Verilog code for the filter.

4 In the Filter architecture pane, select the Optimize for HDL option. This option is for
generating HDL code that is optimized for performance or space requirements. When this option
is enabled, the coder makes tradeoffs concerning data types and might ignore your quantization
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settings to achieve optimizations. When you use the option, keep in mind that you do so at the
cost of potential numeric differences between filter results produced by the original filter object
and the simulated results for the optimized HDL code.

5 Select CSD for the Coefficient multipliers option. This option optimizes coefficient multiplier
operations by instructing the coder to replace them with additions of partial products produced
by a canonical signed digit (CSD) technique. This technique minimizes the number of addition
operations required for constant multiplication by representing binary numbers with a minimum
count of nonzero digits.

6 Select the Add pipeline registers option. For FIR filters, this option optimizes final summation.
The coder creates a final adder that performs pairwise addition on successive products and
includes a stage of pipeline registers after each level of the tree. When used for FIR filters, this
option can produce numeric differences between results produced by the original filter object
and the simulated results for the optimized HDL code.

7 The Generate HDL tool now appears.

8 Select the Global settings tab of the UI. Then select the General tab of the Additional
settings section.

In the Comment in header text box, type Tutorial - Optimized FIR Filter. The coder
adds the comment to the end of the header comment block in each generated file.
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9 Select the Ports tab of the Additional settings section of the UI.

10 Change the names of the input and output ports. In the Input port text box, replace filter_in
with data_in. In the Output port text box, replace filter_out with data_out.
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11 Clear the check box for the Add input register option. The Ports pane now looks as shown.

12 Click the Test Bench tab in the Generate HDL tool. In the File name text box, replace the
default name with optfir_tb. This option names the generated test bench file.
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13 In the Test Bench pane, click the Configuration tab. Observe that the Error margin (bits)
option is enabled. This option is enabled because previously selected optimization options (such
as Add pipeline registers) can potentially produce numeric results that differ from the results
produced by the original filter object. You can use this option to adjust the number of least
significant bits the test bench ignores during comparisons before generating a warning.

14 In the Generate HDL tool, click Generate to start the code generation process. When code
generation completes, click Close to close the tool.

The coder displays these messages in the MATLAB Command Window as it generates the filter
and test bench Verilog files:
### Starting Verilog code generation process for filter: optfir
### Generating: C:\hdlfilter_tutorials\hdlsrc\optfir.v
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### Starting generation of optfir Verilog module
### Starting generation of optfir Verilog module body
### HDL latency is 8 samples
### Successful completion of Verilog code generation process for filter: optfir

### Starting generation of VERILOG Test Bench
### Generating input stimulus
### Done generating input stimulus; length 3429 samples.
### Generating Test bench: C:\hdlfilter_tutorials\hdlsrc\optfir_tb.v
### Please wait ...
### Done generating VERILOG Test Bench 

As the messages indicate, the coder creates the folder hdlsrc under your current working folder
and places the files optfir.v and optfir_tb.v in that folder.

Observe that the messages include hyperlinks to the generated code and test bench files. By
clicking these hyperlinks, you can open the code files directly into the MATLAB Editor.

The generated Verilog code has these characteristics:

• Verilog module named optfir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• Generated code that optimizes its use of data types and eliminates redundant operations.
• Coefficient multipliers optimized with the CSD technique.
• Final summations optimized using a pipelined technique.
• The table shows the names of the ports.

Verilog Port Name
Input data_in
Output data_out
Clock input clk
Clock enable input clk_enable
Reset input reset

• An extra register for handling filter output.
• Coefficients named coeffn, where n is the coefficient number, starting with 1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• The postfix '_process' is appended to sequential (begin) block names.

The generated test bench:

• Is a portable Verilog file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5 nanoseconds.
• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
• Applies a hold time of 2 nanoseconds to data input signals.
• Applies an error margin of 4 bits.
• For a FIR filter, applies impulse, step, ramp, chirp, and white noise stimulus types.
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Explore the Optimized Generated Verilog Code
Get familiar with the optimized generated Verilog code by opening and browsing through the file
optfir.v in an ASCII or HDL simulator editor:

1 Open the generated Verilog filter file optcfir.v.
2 Search for optfir. This line identifies the Verilog module, using the value you specified for the

Name option in the Target pane. See step 3 in “Configure and Generate Optimized Verilog
Code” on page 1-26.

3 Search for Tutorial. This section of code is where the coder places the text you entered for the
Comment in header option. See step 9 in “Configure and Generate Optimized Verilog Code” on
page 1-26.

4 Search for HDL Code. This section lists the coder options you modified in “Configure and
Generate Optimized Verilog Code” on page 1-26.

5 Search for Filter Settings. This section of the VHDL code describes the filter design and
quantization settings as you specified in “Design the FIR Filter in Filter Designer” on page 1-21
and “Quantize the FIR Filter” on page 1-23.

6 Search for module. This line names the Verilog module, using the value you specified for the
Name option in the Target pane. This line also declares the list of ports, as defined by options on
the Ports pane of the Generate HDL tool. The ports for data input and output are named with the
values you specified for the Input port and Output port options on the Ports tab of the
Generate HDL tool. See steps 3 and 11 in “Configure and Generate Optimized Verilog Code” on
page 1-26.

7 Search for input. This line and the four lines that follow, declare the direction mode of each
port.

8 Search for Constants. This code defines the coefficients. They are named using the default
naming scheme, coeffn, where n is the coefficient number, starting with 1.

9 Search for Signals. This code defines the signals of the filter.
10 Search for sumvector1. This area of code declares the signals for implementing an instance of a

pipelined final adder. Signal declarations for four additional pipelined final adders are also
included. These signals are used to implement the pipelined FIR adder style optimization
specified with the Add pipeline registers option. See step 7 in “Configure and Generate
Optimized Verilog Code” on page 1-26.

11 Search for process. The block name Delay_Pipeline_process includes the default block
postfix '_process'.

12 Search for reset. This code asserts the reset signal. The default, active high (1), was specified.
Also note that the process applies the default asynchronous reset style when generating code
for registers.

13 Search for posedge. This Verilog code checks for rising edges when the filter operates on
registers.

14 Search for sumdelay_pipeline_process1. This block implements the pipeline register stage
of the pipeline FIR adder style you specified in step 7 of “Configure and Generate Optimized
Verilog Code” on page 1-26.

15 Search for output_register. This code writes the filter output to an output register. The code
for this register is generated by default. In step 12 in “Configure and Generate Optimized Verilog
Code” on page 1-26 , you cleared the Add input register option, but left the Add output
register selected. Also note that the process name Output_Register_process includes the
default process postfix '_process'.
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16 Search for data_out. This code drives the output data of the filter.

Verify the Generated Verilog Code
This section explains how to verify the optimized generated Verilog code for the FIR filter with the
generated Verilog test bench. This tutorial uses the Mentor Graphics ModelSim simulator as the tool
for compiling and simulating the Verilog code. You can use other HDL simulation tool packages.

To verify the filter code, complete these steps.

1 Start your simulator. When you start the Mentor Graphics ModelSim simulator, a screen display
similar to the following appears.

2 Set the current folder to the folder that contains your generated Verilog files. For example:

cd hdlsrc
3 If desired, create a design library to store the compiled Verilog modules. In the Mentor Graphics

ModelSim simulator, you can create a design library with the vlib command.

vlib work
4 Compile the generated filter and test bench Verilog files. In the Mentor Graphics ModelSim

simulator, you compile Verilog code with the vlog command. These commands compile the filter
and filter test bench Verilog code.

vlog optfir.v
vlog optfir_tb.v

This figure shows the command sequence and informational messages displayed during
compilation.
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5 Load the test bench for simulation. The procedure for loading the test bench varies depending on
the simulator you are using. In the Mentor Graphics ModelSim simulator, load the test bench for
simulation with the vsim command. For example:

vsim optfir_tb

This figure shows the results of loading optfir_tb with the vsim command.

6 Open a display window for monitoring the simulation as the test bench runs. In the Mentor
Graphics ModelSim simulator, can use this command to open a wave window and view the
results of the simulation as HDL waveforms.

add wave *

This wave window opens.
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7 To start running the simulation, issue the start simulation command for your simulator. For
example, in the Mentor Graphics ModelSim simulator, you can start a simulation with the run
command.

This figure shows the run -all command being used to start a simulation.

As your test bench simulation runs, watch for error messages. If error messages appear,
interpret them as they pertain to your filter design and the HDL code generation options you
selected. Determine whether the results are expected based on the customizations you specified
when generating the filter Verilog code.

This wave window shows the simulation results as HDL waveforms.
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IIR Filter
In this section...
“Create a Folder for Your Tutorial Files” on page 1-38
“Design an IIR Filter in Filter Designer” on page 1-38
“Quantize the IIR Filter” on page 1-40
“Configure and Generate VHDL Code” on page 1-42
“Explore the Generated VHDL Code” on page 1-47
“Verify the Generated VHDL Code” on page 1-48

Note The Filter Design HDL Coder product will be discontinued in a future release. Instead, you can
model hardware behavior, and generate HDL code by using System objects or Simulink blocks from
DSP HDL Toolbox. These objects and blocks include hardware-friendly control signals and
architecture options. To generate HDL code from “DSP HDL Toolbox” objects and blocks, you must
also have the HDL Coder product.

For an example of modeling an IIR filter for hardware, see “High Performance DC Blocker for FPGA”
(DSP HDL Toolbox). This example uses the Biquad Filter block. Equivalent functionality is also
available in the dsphdl.BiquadFilter System object.

Create a Folder for Your Tutorial Files
Set up a writable working folder outside your MATLAB installation folder to store files that will be
generated as you complete your tutorial work. The tutorial instructions assume that you create the
folder hdlfilter_tutorials on drive C.

Design an IIR Filter in Filter Designer
This tutorial guides you through the steps for designing an IIR filter, generating Verilog code for the
filter, and verifying the Verilog code with a generated test bench.

This section guides you through the procedure of designing and creating a filter for an IIR filter. This
section assumes that you are familiar with the MATLAB user interface and the Filter Designer.

1 Start the MATLAB software.
2 Set your current folder to the folder you created in “Create a Folder for Your Tutorial Files” on

page 1-38.
3 Start the Filter Designer by entering the filterDesigner command in the MATLAB Command

Window. The Filter Design & Analysis Tool appears.
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4 In the Filter Design & Analysis Tool, set these filter options.

Option Value
Response Type Highpass
Design Method IIR Butterworth
Filter Order Specify order: 5
Frequency Specifications Units: Hz

Fs: 48000

Fc: 10800
5 Click Design Filter. The Filter Designer creates a filter for the specified design. This message

appears in the Filter Designer status bar when the task is complete.

Designing Filter... Done

For more information on designing filters with the Filter Designer, see “Use Filter Designer with
DSP System Toolbox Software”.
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Quantize the IIR Filter
You should quantize filters for HDL code generation. To quantize your filter,

1 Open the IIR filter design you created in “Design an IIR Filter in Filter Designer” on page 1-38 if
it is not already open.

2
Click the Set Quantization Parameters button  in the left-side toolbar. The Filter Designer
displays the Filter arithmetic list in the bottom half of the window.

3 Select Fixed-point from the list. The Filter Designer displays the first of three tabbed panels of
the window.
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Use the quantization options to test the effects of various settings on the performance and
accuracy of the quantized filter.

4 Select the Filter Internals tab and set Rounding mode to Floor and Overflow Mode to
Saturate.

5 Click Apply. The quantized filter appears as follows.

 IIR Filter

1-41



For more information on quantizing filters with the Filter Designer, see “Use Filter Designer with DSP
System Toolbox Software”.

Configure and Generate VHDL Code
After you quantize your filter, you are ready to configure coder options and generate VHDL code. This
section guides you through starting the Filter Design HDL Coder UI, setting options, and generating
the VHDL code and a test bench for the IIR filter you designed and quantized in “Design an IIR Filter
in Filter Designer” on page 1-38 and “Quantize the IIR Filter” on page 1-40.

1 Start the Filter Design HDL Coder UI by selecting Targets > Generate HDL in the Filter
Designer tool. The Filter Designer displays the Generate HDL tool.
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2 In the Name text box of the Target pane, type iir. This option names the VHDL entity and the
file that contains the VHDL code for the filter.

3 Select the Global settings tab of the UI. Then select the General tab of the Additional
settings section.

In the Comment in header text box, type Tutorial - IIR Filter. The coder adds the
comment to the end of the header comment block in each generated file.

4 Select the Ports tab. The Ports pane appears.
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5 Clear the check box for the Add output register option. The Ports pane now appears as in this
figure.

6 Select the Advanced tab. The Advanced pane appears.
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7 Select the Use 'rising_edge' for registers option. The Advanced pane now appears as in this
figure.

8 Click the Test Bench tab in the Generate HDL tool. In the File name text box, replace the
default name with iir_tb. This option names the generated test bench file.

9 In the Generate HDL tool, click Generate to start the code generation process. When code
generation completes, click OK to close the window.

The coder displays these messages in the MATLAB Command Window as it generates the filter
and test bench VHDL files:
### Starting VHDL code generation process for filter: iir
### Starting VHDL code generation process for filter: iir
### Generating: H:\hdlsrc\iir.vhd
### Starting generation of iir VHDL entity
### Starting generation of iir VHDL architecture
### Second-order section, # 1
### Second-order section, # 2
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### First-order section, # 3
### HDL latency is 1 samples
### Successful completion of VHDL code generation process for filter: iir

### Starting generation of VHDL Test Bench
### Generating input stimulus
### Done generating input stimulus; length 2172 samples.
### Generating Test bench: H:\hdlsrc\filter_tb.vhd
### Please wait ...
### Done generating VHDL Test Bench
### Starting VHDL code generation process for filter: iir
### Starting VHDL code generation process for filter: iir
### Generating: H:\hdlsrc\iir.vhd
### Starting generation of iir VHDL entity
### Starting generation of iir VHDL architecture
### Second-order section, # 1
### Second-order section, # 2
### First-order section, # 3
### HDL latency is 1 samples
### Successful completion of VHDL code generation process for filter: iir

As the messages indicate, the coder creates the folder hdlsrc under your current working folder
and places the files iir.vhd and iir_tb.vhd in that folder.

Observe that the messages include hyperlinks to the generated code and test bench files. By
clicking these hyperlinks, you can open the code files directly into the MATLAB Editor.

The generated VHDL code has these characteristics:

• VHDL entity named iir.
• Registers that use asynchronous resets when the reset signal is active high (1).
• The table shows the default names of the ports.

VHDL Port Name
Input filter_in
Output filter_out
Clock input clk
Clock enable input clk_enable
Reset input reset

• An extra register for handling filter input.
• Clock input, clock enable input, and reset ports are of type STD_LOGIC and data input and

output ports are of type STD_LOGIC_VECTOR.
• Coefficients are named coeffn, where n is the coefficient number, starting with 1.
• Type-safe representation is used when zeros are concatenated: '0' & '0'...
• Registers are generated with the rising_edge function rather than the statement ELSIF

clk'event AND clk='1' THEN.
• The postfix '_process' is appended to process names.

The generated test bench:

• Is a portable VHDL file.
• Forces clock, clock enable, and reset input signals.
• Forces the clock enable input signal to active high.
• Drives the clock input signal high (1) for 5 nanoseconds and low (0) for 5 nanoseconds.
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• Forces the reset signal for two cycles plus a hold time of 2 nanoseconds.
• Applies a hold time of 2 nanoseconds to data input signals.
• For an IIR filter, applies impulse, step, ramp, chirp, and white noise stimulus types.

Explore the Generated VHDL Code
Get familiar with the generated VHDL code by opening and browsing through the file iir.vhd in an
ASCII or HDL simulator editor.

1 Open the generated VHDL filter file iir.vhd.
2 Search for iir. This line identifies the VHDL module, using the value you specified for the Name

option in the Target pane. See step 2 in “Configure and Generate VHDL Code” on page 1-42.
3 Search for Tutorial. This section is where the coder places the text you entered for the

Comment in header option. See step 5 in “Configure and Generate VHDL Code” on page 1-42.
4 Search for HDL Code. This section lists coder options you modified in “Configure and Generate

VHDL Code” on page 1-42.
5 Search for Filter Settings. This section of the VHDL code describes the filter design and

quantization settings as you specified in “Design an IIR Filter in Filter Designer” on page 1-38
and “Quantize the IIR Filter” on page 1-40.

6 Search for ENTITY. This line names the VHDL entity, using the value you specified for the Name
option in the Target pane. See step 2 in “Configure and Generate VHDL Code” on page 1-42.

7 Search for PORT. This PORT declaration defines the filter's clock, clock enable, reset, and data
input and output ports. The ports for clock, clock enable, reset, and data input and output signals
are named with default character vectors.

8 Search for CONSTANT. This code defines the coefficients. They are named using the default
naming scheme, coeff_xm_sectionn, where x is a or b, m is the coefficient number, and n is
the section number.

9 Search for SIGNAL. This code defines the signals of the filter.
10 Search for input_reg_process. The PROCESS block name input_reg_process includes the

default PROCESS block postfix '_process'. This code reads the filter input from an input
register. Code for this register is generated by default. In step 7 in “Configure and Generate
VHDL Code” on page 1-42, you cleared the Add output register option, but left the Add input
register option selected.

11 Search for IF reset. This code asserts the reset signal. The default, active high (1), was
specified. Also note that the PROCESS block applies the default asynchronous reset style when
generating VHDL code for registers.

12 Search for ELSIF. This code checks for rising edges when the filter operates on registers. The
rising_edge function is used as you specified in the Advanced pane of the Generate HDL tool.
See step 10 in “Configure and Generate VHDL Code” on page 1-42.

13 Search for Section 1. This section is where second-order section 1 data is filtered. Similar
sections of VHDL code apply to another second-order section and a first-order section.

14 Search for filter_out. This code drive the filter output data.
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Verify the Generated VHDL Code
This section explains how to verify the generated VHDL code for the IIR filter with the generated
VHDL test bench. This tutorial uses the Mentor Graphics ModelSim simulator as the tool for
compiling and simulating the VHDL code. You can use other HDL simulation tool packages.

To verify the filter code, complete these steps.

1 Start your simulator. When you start the Mentor Graphics ModelSim simulator, a screen display
similar to this appears.

2 Set the current folder to the folder that contains your generated VHDL files. For example:

cd hdlsrc
3 If desired, create a design library to store the compiled VHDL entities, packages, architectures,

and configurations. In the Mentor Graphics ModelSim simulator, you can create a design library
with the vlib command.

vlib work
4 Compile the generated filter and test bench VHDL files. In the Mentor Graphics ModelSim

simulator, you compile VHDL code with the vcom command. These commands compile the filter
and filter test bench VHDL code.

vcom iir.vhd
vcom iir_tb.vhd

This figure shows the command sequence and informational messages displayed during
compilation.
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5 Load the test bench for simulation. The procedure for loading the test bench varies depending on
the simulator you are using. In the Mentor Graphics ModelSim simulator, you load the test bench
for simulation with the vsim command. For example:

vsim work.iir_tb

This figure shows the results of loading work.iir_tb with the vsim command.

6 Open a display window for monitoring the simulation as the test bench runs. In the Mentor
Graphics ModelSim simulator, use this command to open a wave window and view the results of
the simulation as HDL waveforms.

add wave *

This wave window appears.
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7 To start running the simulation, issue the start simulation command for your simulator. For
example, in the Mentor Graphics ModelSim simulator, you can start a simulation with the run
command.

This figure shows the run -all command being used to start a simulation.

As your test bench simulation runs, watch for error messages. If error messages appear,
interpret them as they pertain to your filter design and the HDL code generation options you
selected. Determine whether the results are expected based on the customizations you specified
when generating the filter VHDL code.

Note
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• The warning messages that note Time: 0 ns in the preceding display are not errors and you
can ignore them.

• The failure message that appears in the preceding display is not flagging an error. If the
message includes the textTest Complete, the test bench has run to completion without
encountering an error. The Failure part of the message is tied to the mechanism that the
coder uses to end the simulation.

This wave window shows the simulation results as HDL waveforms.
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HDL Filter Code Generation
Fundamentals

• “Starting Filter Design HDL Coder” on page 2-2
• “Selecting Target Language” on page 2-11
• “Generating HDL Code” on page 2-12
• “Capturing Code Generation Settings” on page 2-14
• “Closing Code Generation Session” on page 2-15
• “Generate HDL Code for Filter System Objects” on page 2-16
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Starting Filter Design HDL Coder

Opening the Filter Design HDL Coder UI from Filter Designer
To open the initial Generate HDL tool from Filter Designer, do this:

1 Enter the filterDesigner command at the MATLAB command prompt. The Filter Designer
tool opens.

2 If the filter design is quantized, skip to step 3. Otherwise, quantize the filter by clicking the Set

Quantization Parameters button . The Filter arithmetic menu appears in the bottom half
of the window.
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Note Supported filter structures allow both fixed-point and floating-point (double) realizations.
3 If desired, adjust the setting of the Filter arithmetic option. The Filter Designer displays the

first of three tabbed panes.
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4 Select Targets > Generate HDL. The Filter Designer displays the Generate HDL tool.
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If the coder does not support the structure of the current filter in the Filter Designer, an error
message appears.

Opening the Filter Design HDL Coder UI from the Filter Builder
If you are not familiar with the Filter Builder UI, see the DSP System Toolbox documentation.

To open the Generate HDL tool from Filter Builder, do this:

1 At the MATLAB command prompt, type a filterBuilder command that corresponds to the
filter response or filter object you want to design.

This figure shows the default settings of the main pane of the Filter Builder Lowpass Design
dialog box.
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2 Set the filter design parameters as required.
3 Optionally, select the check box Use a System object to implement filter.
4 Click the Data Types tab. Set Arithmetic to Fixed point and select data types for internal

calculations.

2 HDL Filter Code Generation Fundamentals

2-6



5 Click the Code Generation tab.
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6 In the Code Generation pane, click the Generate HDL button. This button opens the Generate
HDL tool, passing in the current filter object from Filter Builder.

2 HDL Filter Code Generation Fundamentals

2-8



7 Set the desired code generation and test bench options and generate code in the Generate HDL
tool.

Opening the Filter Design HDL Coder UI Using the fdhdltool Command
You can use the fdhdltool command to open the Generate HDL tool directly from the MATLAB
command line. The syntax is:

fdhdltool(Hd) 

where Hd is a type of filter object that is supported for HDL code generation. If the filter is a System
object, you must specify the input data type.

fdhdltool(FIRLowpass,numerictype(1,16,15))

The fdhdltool function is particularly useful when you must use the Filter Design HDL Coder UI to
generate HDL code for filter structures that are not supported by Filter Designer or Filter Builder.
For example, this code creates a Farrow fractional delay filter object farrowfilt, which is passed in
to the fdhdltool function.
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farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
inputDataType = numerictype(1,18,17);
fdDataType = numerictype(1,8,7);
fdhdltool(farrowfilt,inputDataType,fdDataType);

fdhdltool operates on a copy of the filter object, rather than the original object in the MATLAB
workspace. Changes made to the original filter object after invoking fdhdltool do not apply to the
copy and do not update the Generate HDL tool.

The name of the copied filter object by default is dobj_copy. This is reflected in the filter Name
field. Likewise, the test bench file name is dobj_tb_copy. This is reflected in the File name field on
the Test Bench pane. Update these default values to user-defined names if required.
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Selecting Target Language
HDL code is generated in either VHDL or Verilog. The language you choose for code generation is
called the target language. By default, the target language is VHDL. If you retain the VHDL setting,
the options that are specific to Verilog are disabled and are not selectable.

If you require or prefer to generate Verilog code, select Verilog for the Language option in the
Target pane of the Generate HDL tool. This setting causes the coder to enable options that are
specific to Verilog and to gray out and disable options that are specific to VHDL.

Command-Line Alternative: Use the generatehdl function with the TargetLanguage property
to set the language to VHDL or Verilog.
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Generating HDL Code
Once your filter design and HDL settings are ready, generate HDL code for your design.

Applying Your Settings
When you generate HDL, either from the UI or the command line, the coder

• Applies code generation option settings that you have edited
• Generates HDL code and other requested files, such as a test bench.

Tip To preserve your coder settings, use the Generate MATLAB code option, as described in
“Capturing Code Generation Settings” on page 2-14. Generate MATLAB code is available only in
the UI. The function generatehdl does not have an equivalent property.

Generating HDL Code from the UI
This section assumes that you have opened the Generate HDL tool. See “Starting Filter Design HDL
Coder” on page 2-2.

To initiate HDL code generation for a filter and its test bench from the UI, click Generate on the
Generate HDL tool. As code generation proceeds, a sequence of messages similar to the following
appears in the MATLAB Command Window:
### Starting VHDL code generation process for filter: iir
### Generating: D:\hdlfilter_tutorials\hdlsrc\iir.vhd
### Starting generation of iir VHDL entity
### Starting generation of iir VHDL architecture
### First-order section, # 1
### Second-order section, # 2
### Second-order section, # 3
### HDL latency is 3 samples
### Successful completion of VHDL code generation process for filter: iir

### Starting generation of VHDL Test Bench
### Generating input stimulus
### Done generating input stimulus; length 2172 samples.
### Generating: D:\hdlfilter_tutorials\hdlsrc\iir_tb.vhd
### Please wait .......
### Done generating VHDL test bench.

The messages include hyperlinks to the generated code and test bench files. Click these hyperlinks to
open the code files in the MATLAB Editor.

Generate HDL From the Command Prompt

Design a filter.

d = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60)

d = 
  lowpass with properties:

               Response: 'Lowpass'
          Specification: 'Fp,Fst,Ap,Ast'
            Description: {4x1 cell}
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    NormalizedFrequency: 1
                  Fpass: 0.2000
                  Fstop: 0.2200
                  Apass: 1
                  Astop: 60

Hd = design(d,'equiripple','filterstructure','dfsymfir','Systemobject',true)

Hd = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [-0.0011 -0.0017 -0.0025 -0.0031 -0.0031 -0.0024 -9.7703e-04 0.0010 0.0031 0.0049 0.0059 0.0057 0.0046 0.0029 9.8747e-04 -3.9494e-04 -8.8308e-04 -3.8937e-04 8.1727e-04 0.0022 0.0032 0.0033 0.0025 9.6853e-04 -6.5050e-04 ... ]
    InitialConditions: 0

  Show all properties

To generate HDL code for the filter and its test bench from the command line, use the generatehdl
function. When you call the generatehdl function, specify the filter name and (optionally) desired
property name and property value pairs. When the filter is a System object™, you must specify the
input data type property.

As code generation proceeds, a sequence of messages appears in the MATLAB Command Window.
The messages include hyperlinks to the generated code and test bench files. Click these hyperlinks to
open the code files in the MATLAB Editor.

generatehdl(Hd,'InputDataType',numerictype(1,16,15),'Name','MyFilter',...
               'TargetLanguage','Verilog','GenerateHDLTestbench', 'on')

### Starting Verilog code generation process for filter: MyFilter
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex97122369\hdlsrc\MyFilter.v
### Starting generation of MyFilter Verilog module
### Starting generation of MyFilter Verilog module body
### Successful completion of Verilog code generation process for filter: MyFilter
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 4486 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex97122369\hdlsrc\MyFilter_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
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Capturing Code Generation Settings
To save your code generation settings, you can generate a script that includes the options you
selected.

The Generate MATLAB code option makes command-line scripting of HDL filter code and test
bench generation easier. The option is located in the Target section of the Generate HDL tool, as
shown in this figure.

By default, Generate MATLAB code is cleared.

When you select Generate MATLAB code and then generate HDL code, the coder captures
nondefault HDL code and test bench generation settings from the UI and writes out a MATLAB script.
You can use this script to regenerate HDL code for the filter, with the same settings. The script
contains:

• Header comments that document the design settings for the filter object from which code was
generated.

• A function that takes a filter object as its argument, and passes the filter object in to the
generatehdl command. The property/value pairs passed to these commands correspond to the
code generation settings that applied at the time the file was generated.

The coder writes the script to the target folder. The naming convention for the file is
filter_generatehdl.m, where filter is the filter name defined in the Name option.

When code generation completes, the generated script opens automatically for inspection and
editing.

The script contains comments that describe the configuration of the input filter object. In subsequent
sessions, you can use this information to construct a filter object that is compatible with the
generatehdl command in the script. Then you can execute the script as a function, passing in the
filter object, to generate HDL code.

Note

• Generate MATLAB code is available only in the UI. The function generatehdl does not have an
equivalent property.

See Also

More About
• “Generating HDL Code” on page 2-12
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Closing Code Generation Session
The filter object in the workspace does not save the code generation settings. To preserve your coder
settings, the best practice is to select the Generate MATLAB code option, as described in
“Capturing Code Generation Settings” on page 2-14.

Click the Close button to close the Generate HDL tool and end a session with the coder.

See Also

More About
• “Starting Filter Design HDL Coder” on page 2-2
• “Generating HDL Code from the UI” on page 2-12
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Generate HDL Code for Filter System Objects
You can generate HDL code for a supported filter System object by using the Filter Builder app, the
Generate HDL tool, or by calling the generatehdl function. You can also explore filter architectures
and generate test bench stimulus for a filter System object by using the hdlfilterserialinfo,
hdlfilterdainfo, and generatetbstimulus functions. In either cases, you must specify a fixed-
point data type for the System object. The HDL code generation tool quantizes the input signal to this
data type.

Using Filter Builder
Open the Filter Builder app by calling the filterBuilder function, then set these options.

• On the Main tab, select Use a System object to implement filter.
• On the Data Types tab, set Arithmetic to Fixed point and select the internal fixed-point data

types.
• On the Code Generation tab, click Generate HDL to set HDL code generation options and

generate code.

Using Generate HDL
Open the Generate HDL tool by calling the fdhdltool function. When calling the function with a
System object, specify the input data type as a numerictype object. Create this object by calling
numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the word length in bits, and
f is the number of fractional bits. In this example, the call to numerictype(1,8,7) specifies a
signed 8-bit number with 7 fractional bits.

filt =  dsp.BiquadFilter;
fdhdltool(filt,numerictype(1,8,7));

When the tool opens, you can set HDL code generation options and generate code for the System
object.

At the Command Line
When calling the generatehdl function with a System object, specify the input data type as a
Name,Value pair argument using the InputDataType property. Specify the property value as a
numerictype object. For example:

filt =  dsp.BiquadFilter;
generatehdl(filt,'Name','HDLButter', ...
    'InputDataType',numerictype(1,8,7));

When calling generatehdl, you can set additional HDL code generation properties using
Name,Value pair arguments. For example:

coeffs = fir1(22,0.45);
firfilt = dsp.FIRFilter('Numerator',coeffs, ...
    'Structure','Direct form antisymmetric');
generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'SerialPartition',[7 4],'CoefficientMemory','DualPortRAMs', ...
    'CoefficientSource','ProcessorInterface');
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See Also
generatehdl | fdhdltool | numerictype | filterBuilder

Related Examples
• “Supported Filter System Objects” on page 1-4
• “HDL Butterworth Filter” on page 8-2
• “HDL Inverse Sinc Filter” on page 8-8
• “HDL Tone Control Filter Bank” on page 8-20
• “HDL Sample Rate Conversion Using Farrow Filters” on page 8-53
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HDL Code for Supported Filter
Structures

• “Multirate Filters” on page 3-2
• “Variable Rate CIC Filters” on page 3-6
• “Cascade Filters” on page 3-9
• “Polyphase Sample Rate Converters” on page 3-12
• “Multirate Farrow Sample Rate Converters” on page 3-15
• “Single-Rate Farrow Filters” on page 3-18
• “Programmable Filter Coefficients for FIR Filters” on page 3-23
• “Programmable Filter Coefficients for IIR Filters” on page 3-30
• “DUC and DDC System Objects” on page 3-34
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Multirate Filters

Supported Multirate Filter Types
HDL code generation is supported for these types of multirate filters:

• Cascaded Integrator Comb (CIC) Interpolator (dsp.CICInterpolator)
• Cascaded Integrator Comb (CIC) Decimator (dsp.CICDecimator)
• FIR Polyphase Decimator (dsp.FIRDecimator)
• FIR Polyphase Interpolator (dsp.FIRInterpolator)
• FIR Polyphase Sample Rate Converter (dsp.FIRRateConverter)
• CIC Compensation Interpolator (dsp.CICCompensationInterpolator)
• CIC Compensation Decimator (dsp.CICCompensationDecimator)

Generating Multirate Filter Code
To generate multirate filter code, first select and design one of the supported filter types using Filter
Designer, Filter Builder, or the MATLAB command line.

After you have created the filter, open the Generate HDL tool, set the desired code generation
properties, and generate code. See “Code Generation Options for Multirate Filters” on page 3-2.

To generate code using the generatehdl function, specify multirate filter code generation
properties that are functionally equivalent to the UI options. See “generatehdl Properties for
Multirate Filters” on page 3-5.

Code Generation Options for Multirate Filters
When a multirate filter of a supported type (see “Supported Multirate Filter Types” on page 3-2) is
designed, the enabled/disabled state of several options in the Generate HDL tool changes.

• On the Global settings tab, the Clock inputs pull-down menu is enabled. This menu provides
two alternatives for generating clock inputs for multirate filters.

Note The Clock inputs menu is not supported for:

• Filters with a Partly serial architecture
• Multistage sample rate converters: dsp.FIRRateConverter, or dsp.FilterCascade

containing multiple rates

• For CIC filters, on the Filter Architecture tab, the Coefficient multipliers option is disabled.
Coefficient multipliers are not used in CIC filters.

• For CIC filters, on the Filter Architecture tab, the FIR adder style option is disabled, since CIC
filters do not require a final adder.

This figure shows the default settings of the Generate HDL tool options for a supported CIC filter.

3 HDL Code for Supported Filter Structures

3-2



The Clock inputs options are:

• Single: When you select Single, the coder generates a single clock input for a multirate filter.
The module or entity declaration for the filter has a single clock input with an associated clock
enable input, and a clock enable output. The generated code includes a counter that controls the
timing of data transfers to the filter output (for decimation filters) or input (for interpolation
filters). The counter behaves as a secondary clock whose rate is determined by the decimation or
interpolation factor. This option provides a self-contained clocking solution for FPGA designs.

To customize the name of the clock enable output, see “Setting the Clock Enable Output Name” on
page 3-5. Interpolators also pass through the clock enable input signal to an output port named
ce_in. This signal indicates when the object accepted an input sample. You can use this signal to
control the upstream data flow. You cannot customize this port name.

This code was generated from a CIC decimation filter having a decimation factor of 4, with Clock
inputs set to Single.

The coder generates an input clock, input clock enable, and an output clock enable.
ENTITY cic_decim_4_1_single IS
   PORT( clk            :   IN    std_logic; 
         clk_enable     :   IN    std_logic; 
         reset          :   IN    std_logic; 
         filter_in      :   IN    std_logic_vector(15 DOWNTO 0); -- sfix16_En15
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         filter_out     :   OUT   std_logic_vector(15 DOWNTO 0); -- sfix16_En15
         ce_out         :   OUT   std_logic  
         );

END cic_decim_4_1_single;

The clock enable output process, ce_output, maintains the signal counter. Every 4th clock
cycle, counter toggles to 1.
ce_output : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      cur_count <= to_unsigned(0, 4);
    ELSIF clk'event AND clk = '1' THEN
      IF clk_enable = '1' THEN
        IF cur_count = 3 THEN
          cur_count <= to_unsigned(0, 4);
        ELSE
          cur_count <= cur_count + 1;
        END IF;
      END IF;
    END IF; 
  END PROCESS ce_output;

  counter <= '1' WHEN cur_count = 1 AND clk_enable = '1' ELSE '0';

This code illustrates a typical use of the counter signal to time the filter output.
output_reg_process : PROCESS (clk, reset)
  BEGIN
    IF reset = '1' THEN
      output_register <= (OTHERS => '0');
    ELSIF clk'event AND clk = '1' THEN
      IF counter = '1' THEN
        output_register <= section_out4;
      END IF;
    END IF; 
  END PROCESS output_reg_process;

• Multiple: When you select Multiple, the coder generates multiple clock inputs for a multirate
filter. The module or entity declaration for the filter has separate clock inputs (each with an
associated clock enable input) for each rate of a multirate filter. You are responsible for providing
input clock signals that correspond to the desired decimation or interpolation factor. To see an
example, generate test bench code for your multirate filter and examine the clk_gen processes
for each clock.

The Multiple option is intended for ASICs and FPGAs. It provides more flexibility than the
Single option, but assumes that you provide higher-level HDL code to drive the input clocks of
your filter.

Synchronizers between multiple clock domains are not provided.

When you select Multiple, the coder does not generate clock enable outputs; therefore the
Clock enable output port field of the Global Settings pane is disabled.

This ENTITY declaration was generated from a CIC decimation filter with Clock inputs set to
Multiple.
ENTITY cic_decim_4_1_multi IS
   PORT( clk              :   IN    std_logic; 
         clk_enable       :   IN    std_logic; 
         reset            :   IN    std_logic; 
         filter_in        :   IN    std_logic_vector(15 DOWNTO 0); -- sfix16_En15
         clk1             :   IN    std_logic; 
         clk_enable1      :   IN    std_logic; 
         reset1           :   IN    std_logic; 
         filter_out       :   OUT   std_logic_vector(15 DOWNTO 0)  -- sfix16_En15
         );

END cic_decim_4_1_multi;
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Setting the Clock Enable Output Name

The coder generates a clock enable output when you set Clock inputs to Single in the Generate
HDL tool. The default name for the clock enable output is ce_out.

To change the name of the clock enable output, modify the Clock enable output port field of the
Ports pane of the Generate HDL tool.

The coder enables the Clock enable output port field only when generating code for a multirate
filter with a single input clock.

generatehdl Properties for Multirate Filters

If you are using generatehdl to generate code for a multirate filter, you can set these properties to
specify clock generation options:

• ClockInputs: Corresponds to the Clock inputs option; selects generation of single or multiple
clock inputs for multirate filters.

• ClockEnableOutputPort: Corresponds to the Clock enable output port field; specifies the
name of the clock enable output port.

• ClockEnableInputPort corresponds to the Clock enable input port field; specifies the name
of the clock enable input port.
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Variable Rate CIC Filters
In this section...
“Supported Variable Rate CIC Filter Types” on page 3-6
“Code Generation Options for Variable Rate CIC Filters” on page 3-6

Supported Variable Rate CIC Filter Types
The coder supports HDL code generation for variable rate CIC filters, including these filter types:

• CIC Decimator (dsp.CICDecimator)
• CIC Interpolator (dsp.CICInterpolator)
• Multirate cascade with one CIC stage (dsp.FilterCascade)

Code Generation Options for Variable Rate CIC Filters
A variable rate CIC filter has a programmable rate change factor. The coder assumes that the filter is
designed with the maximum rate expected, and that the Decimation Factor (for CIC Decimators) or
Interpolation Factor (for CIC Interpolators) is set to this maximum ratio.

Two properties support variable rate CIC filters:

• AddRatePort: When AddRatePort is set 'on', the coder generates rate and load_rate ports.
When the load_rate signal is asserted, the rate port loads in a rate factor. You can only add
rate ports to a full-precision filter.

• TestBenchStimulus: Specifies the rate stimulus. If you do not specify
TestbenchRateStimulus, the coder uses the maximum rate change factor specified in the filter
object.

You can also specify these properties in the UI using the Add rate port check box and the Testbench
rate stimulus edit box.
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Cascade Filters
In this section...
“Supported Cascade Filter Types” on page 3-9
“Generating Cascade Filter Code” on page 3-9
“Limitations for Code Generation with Cascade Filters” on page 3-9

Supported Cascade Filter Types
The coder supports code generation for a multirate cascade of filter objects (dsp.FilterCascade).

Generating Cascade Filter Code
Instantiate the filter stages and cascade them in the MATLAB workspace.

hm1 = dsp.FIRDecimator('DecimationFactor',12); 
hm2 = dsp.FIRDecimator('DecimationFactor',4); 
my_cascade = dsp.FilterCascade(hm1,hm2);

For usage details, see dsp.FilterCascade in the DSP System Toolbox documentation.

The coder currently imposes certain limitations on the filter types allowed in a cascade filter. See
“Limitations for Code Generation with Cascade Filters” on page 3-9 before creating your filter
stages and cascade filter object.

Generating Cascade Filter Code with the fdhdltool Function

Call fdhdltool to open the Generate HDL tool, passing in the cascade filter System object and the
fixed-point input data type.

fdhdltool(my_cascade,numerictype(1,16,15))

Set the desired code generation properties and click the Generate button to generate code.

Generating Cascade Filter Code with the generatehdl Function

Call generatehdl to generate HDL code for your filter, passing in the cascade filter System object,
the fixed-point input data type, and code generation properties as desired.

generatehdl(my_cascade,'InputDataType',numerictype(1,16,15), ...
    'Name','MyFilter','TargetLanguage','Verilog', ...
    'GenerateHDLTestbench','on')

Limitations for Code Generation with Cascade Filters
These rules and limitations apply to cascade filters when used for code generation.

• You can generate code for cascades that combine theses filter types:

• Decimators and/or single-rate filter structures
• Interpolators and/or single-rate filter structures
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Code generation for cascades that include both decimators and interpolators is not supported. If
unsupported filter structures or combinations of filter structures are included in the cascade, code
generation returns an error.

• For code generation, only a flat (single-level) cascade structure is allowed. Nesting of cascade
filters is disallowed.

• By default, generated HDL code excludes the input and output registers from the stages of the
cascade, except for:

• The input of the first stage and the output of the final stage.
• The input registers of interpolator stages.

To generate output registers for each stage, select the Add pipeline registers option in the
Generate HDL tool. When using this option, internal pipeline registers might also be added,
depending on the filter structures.

• When a cascade filter is passed to fdhdltool, the FIR adder style option is disabled. If you
require tree adders for FIR filters in a cascade, select the Add pipeline registers option (since
pipelines require tree style FIR adders).

• The coder generates separate HDL code files for each stage of the cascade, in addition to the top-
level code for the cascade filter itself. The filter stage code files are identified by appending the
character vector '_stage1', '_stage2', ... '_stageN' to the filter name.

The figure shows the default settings of the Generate HDL tool options for a cascade filter design.
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Polyphase Sample Rate Converters
In this section...
“Code Generation for Polyphase Sample Rate Converter” on page 3-12
“HDL Implementation for Polyphase Sample Rate Converter” on page 3-12

Code Generation for Polyphase Sample Rate Converter
The coder supports HDL code generation for direct form FIR polyphase sample rate converters.
dsp.FIRRateConverter is a multirate filter structure that combines an interpolation factor and a
decimation factor. This combination enables you to perform fractional interpolation or decimation on
an input signal.

The interpolation factor (l) and decimation factor (m) for a polyphase sample rate converter are
specified as integers in the InterpolationFactor and DecimationFactor properties of a
dsp.FIRRateConverter System object. This code constructs an object with a resampling ratio of
5/3:

frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5, ...
    'DecimationFactor',3)

Fractional rate resampling can be visualized as a two-step process: interpolation by the factor l,
followed by decimation by the factor m. For a resampling ratio of 5/3, the object raises the sample
rate by a factor of 5 using a five-path polyphase filter. A resampling switch then reduces the new rate
by a factor of 3. This process extracts five output samples for every three input samples.

For general information on this filter structure, see the dsp.FIRRateConverter reference page in
the DSP System Toolbox documentation.

HDL Implementation for Polyphase Sample Rate Converter
Signal Flow, Latency, and Timing

The signal flow for the dsp.FIRRateConverter filter is similar to the polyphase FIR interpolator
(dsp.FIRInterpolator). The delay line is advanced to deliver each input after the required set of
polyphase coefficients are processed.

The diagram illustrates the timing of the HDL implementation for dsp.FIRRateConverter. A clock
enable input (ce_in) indicates valid input samples. The output data, and a clock enable output
(ce_out), are produced and delivered simultaneously, which results in a nonperiodic output.
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Clock Rate

The clock rate required to process the hardware logic is related to the input rate as:

ceil(InterpolationFactor/DecimationFactor) 

For a resampling ratio of 5/3, the clock rate is ceil(5/3) = 2, or twice the input sample rate. The
inputs are delivered at every other clock cycle. The outputs are delivered as they are produced and
therefore are nonperiodic.

Note When the generated code or hardware logic is deployed, the outputs must be taken into a FIFO
designed with outputs occurring at the desired sampling rate.

Clock Enable Ports

The HDL entity or module generated from the dsp.FIRRateConverter filter has one input and two
output clock enable ports:

• Clock enable outputs: The default clock enable output port name is ce_out. This signal indicates
when the output data sample is valid. As with other multirate filters, you can use the Clock
enable output port field on the Global Settings > Ports tab of the Generate HDL tool to specify
the port name. Alternatively, you can use the ClockEnableOutputPort property to set the port
name in the generatehdl command.

The filter also passes through the clock enable input to an output port named ce_in. This signal
indicates when the object accepted an input sample. You can use this signal to control the
upstream data flow. You cannot customize this port name.

• Clock enable input: The default clock enable input port name is clk_enable. This signal indicates
when the input data sample is valid. You can use the Clock enable input port field on the Global
Settings tab of the Generate HDL tool to specify the port name. Alternatively, you can use the
ClockEnableInputPort property to set the port name in the generatehdl command.

Test Bench Generation

Generated test benches apply the test vectors at the correct rate, then observe and verify the output
as it is available. The test benches control the data flow using the input and output clock enables.

Code Generation

This example constructs a fixed-point dsp.FIRRateConverter object with a resampling ratio of 5/3,
and generates VHDL filter code. When you generate HDL code for a System object, specify the input
fixed-point data type. The object determines internal data types based on the input type and property
settings.
frac_cvrter = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)
generatehdl(frac_cvrter,'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: filter
### Generating: H:\hdlsrc\filter.vhd
### Starting generation of filter VHDL entity
### Starting generation of filter VHDL architecture
### Successful completion of VHDL code generation process for filter: filter
### HDL latency is 2 samples 

These code generation options are not supported for dsp.FIRRateConverter filters:
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• Use of pipeline registers (AddPipelineRegisters)
• Distributed Arithmetic architecture (DARadix and (DALUTPartition))
• Fully or partially serial architectures (SerialPartition and ReuseAccum)
• Multiple clock inputs (ClockInputs)
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Multirate Farrow Sample Rate Converters
In this section...
“Code Generation for Multirate Farrow Sample Rate Converters” on page 3-15
“Generating Code for dsp.FarrowRateConverter Filters at the Command Line” on page 3-15
“Generating Code for dsp.FarrowRateConverter Filters in the UI” on page 3-16

Code Generation for Multirate Farrow Sample Rate Converters
The coder supports code generation for multirate Farrow sample rate converters
(dsp.FarrowRateConverter). dsp.FarrowRateConverter is a multirate filter structure that
implements a sample rate converter with an arbitrary conversion factor determined by its
interpolation and decimation factors.

Unlike a single-rate Farrow filter (see “Single-Rate Farrow Filters” on page 3-18), a multirate
Farrow sample rate converter does not have a fractional delay input. For general information on this
filter structure, see the dsp.FarrowRateConverter reference page in the DSP System Toolbox
documentation.

Generating Code for dsp.FarrowRateConverter Filters at the Command
Line
You can generate HDL code for either a standalone dsp.FarrowRateConverter object, or a
cascade that includes a dsp.FarrowRateConverter object. This section provides simple examples
for each case.

This example instantiates a standalone fixed-point Farrow sample rate converter. The object converts
between two standard audio rates, from 44.1 kHz to 48 kHz. The example generates both VHDL code
and a VHDL test bench.
Hm = dsp.FarrowRateConverter(48,44.1);
generatehdl(Hm,'InputDataType',numerictype(1,16,15),...
               'GenerateHDLTestbench','on')

This example generates HDL code for a cascade that includes a dsp.FarrowRateConverter filter.
The coder requires that the dsp.FarrowRateConverter filter is in the last position of the cascade.

First, interpolate the original 8-kHz signal by four, using a cascade of FIR halfband filters.
Astop = 50;         % Minimum stopband attenuation
TW = .125;          % Transition Width
f2 = fdesign.interpolator(4,'Nyquist',4,'TW,Ast',TW,Astop);
hfir = design(f2,'multistage','HalfbandDesignMethod','equiripple','Systemobject',true);

Then, interpolate the intermediate 32-kHz signal to get the designer 44.1-kHz sampling frequency.
The dsp.FarrowRateConverter System object calculates a piecewise polynomial fit using
Lagrange interpolation coefficients.

N = 3;  % Polynomial Order
hfar = dsp.FarrowRateConverter(32,44.1,'PolynomialOrder',N) 

Obtain the overall filter by cascading the FIR phases with the Farrow stage. The
dsp.FarrowRateConverter filter is at the end of the cascade.
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interp_cascade.addStage(hfar);
generatehdl(interp_cascade,'InputDataType',numerictype(1,16,15),...
                           'GenerateHDLTestbench','on');

Generating Code for dsp.FarrowRateConverter Filters in the UI
filterDesigner and filterBuilder do not currently support dsp.FarrowRateConverter
filters. To generate code for a dsp.FarrowRateConverter filter in the HDL code generation UI, use
the fdhdltool command, as in this example:

m = dsp.FarrowRateConverter(48,44.1);
fdhdltool(m,numerictype(1,16,15));

fdhdltool opens the Generate HDL tool for the dsp.FarrowRateConverter filter, as shown in
this figure.

These code generation options are not supported for dsp.FarrowRateConverter filters and are
disabled in the UI:

• Use of pipeline registers (AddPipelineRegisters)
• Distributed Arithmetic architecture (DARadix and (DALUTPartition))
• Fully or partially serial architectures (SerialPartition and ReuseAccum)
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• Multiple clock inputs (ClockInputs)

See Also
fdhdltool | generatehdl

More About
• “Single-Rate Farrow Filters” on page 3-18
• “Multirate Filters” on page 3-2
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Single-Rate Farrow Filters
In this section...
“Supported Single-Rate Farrow Filters” on page 3-18
“Code Generation Mechanics for Farrow Filters” on page 3-18
“Code Generation Properties for Farrow Filters” on page 3-19
“UI Options for Farrow Filters” on page 3-20

A Farrow filter differs from a conventional filter because it has a fractional delay input in addition to a
signal input. The fractional delay input enables the use of time-varying delays as the filter operates.
The fractional delay input receives a signal taking on values from 0 through 1.0. For general
information how to construct and use Farrow filter objects, see the DSP System Toolbox
documentation.

Supported Single-Rate Farrow Filters
You can generate HDL code for single-rate Farrow filters from these objects and structures:

• dsp.VariableFractionalDelay System object
• dfilt.farrowfd filter structure
• dfilt.farrowlinearfd filter structure

The coder provides generatehdl properties and equivalent UI options that let you:

• Define the fractional delay port name used in generated code.
• Apply various test bench stimulus signals to the fractional delay port, or define your own stimulus

signal.

Code Generation Mechanics for Farrow Filters
Filter Designer does not support the design or import of Farrow filters. To generate HDL code for a
Farrow filter, use one of these methods:

• Use the MATLAB command line to create a Farrow filter object. Initiate code generation, and set
Farrow-related properties. See “Code Generation Properties for Farrow Filters” on page 3-19.

• Use the MATLAB command line to create a Farrow filter object. Then pass this object in to
fdhdltool.

For example, these commands create a Farrow fractional delay System object, farrowfilt, and
pass it to fdhdltool, together with its input and fractional delay data types.

farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
inputDataType = numerictype(1,18,17);
fdDataType = numerictype(1,8,7);
fdhdltool(farrowfilt,inputDataType,fdDataType);

The fdhdltool tool opens the Generate HDL tool. See “UI Options for Farrow Filters” on page 3-
20 for more information how to set properties in the tool.

• Use filterBuilder to design a Farrow (fractional delay) filter object. In the Filter Builder tool,
select the Code Generation tab. To open the Generate HDL tool, click Generate HDL.
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See “UI Options for Farrow Filters” on page 3-20 for more information how to set properties in
the Generate HDL tool.

Options Disabled for Farrow Filters

When the Generate HDL tool opens with a Farrow filter, the coder disables some options or sets them
to fixed default values. The options affected are:

• Architecture. The coder sets this option to its default (Fully parallel) and disables it.
• Clock inputs. The coder sets this option to its default (Single) and disables it.

Code Generation Properties for Farrow Filters
These properties are supported for Farrow filter code generation:

• FracDelayPort (character vector). This property specifies the name of the fractional delay port
in the generated code. The default name is 'filter_fd'. In this example, the name
'FractionalDelay' is assigned to the fractional delay port.
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17),...
            'FractionalDelayDataType',numerictype(1,8,7),...
            'FracDelayPort','FractionalDelay');

• TestBenchFracDelayStimulus (character vector). This property specifies a stimulus signal
applied to the fractional delay port in the test bench code.
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By default, an internal constant value is applied to the fractional delay port. To use the default,
leave the TestBenchFracDelayStimulus property unspecified, or pass in the empty character
vector (''):
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17),...
            'FractionalDelayDataType',numerictype(1,8,7),...
            'GenerateHDLTestbench','on');

Alternatively, you can specify generation of these types of stimulus vectors:

• 'RandSweep': A vector of random values between 0 and 1. This stimulus signal has the same
duration as the input to the filter, but changes at a slower rate. Each fractional delay value
obtained from the vector is held for 10% of the total duration of the input signal. For example:
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17),...
            'FractionalDelayDataType',numerictype(1,8,7),...
            'GenerateHDLTestbench','on',...
            'TestbenchFracDelayStimulus','RandSweep');

• 'RampSweep': A vector of values incrementally increasing over the range from 0 to 1. This
stimulus signal has the same duration as the input to the filter, but changes at a slower rate.
Each fractional delay value obtained from the vector is held for 10% of the total duration of the
input signal.

• A user-defined stimulus vector. You can pass in a vector to define your own stimulus. For
example:
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
mytestv = [0.5*ones(1, 512), 0.2*ones(1, 513)];
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17),...
           'FractionalDelayDataType',numerictype(1,8,7),...
           'GenerateHDLTestbench','on',...
           'TestBenchStimulus',{'chirp'},...
           'TestbenchFracDelayStimulus',mytestv);

Note A user-defined fractional delay stimulus signal must have the same length as the test
bench input signal. If the two signals do not have equal length, test bench generation
terminates with an error message. The error message displays the signal lengths. For example:
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
mytestv = [0.5*ones(1, 512), 0.2*ones(1, 513)];
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17),...
           'FractionalDelayDataType',numerictype(1,8,7),...
           'GenerateHDLTestbench','on',...
           'TestBenchStimulus',{'chirp' 'noise'},...
           'TestbenchFracDelayStimulus',mytestv);

Error using hdlfilter.abstractfarrow/genVecDataforFarrow
The lengths of specified vectors for FracDelay (1025) and Input (2050) do not match.

UI Options for Farrow Filters
The Filter Design HDL Coder UI provides options for generating Farrow filter code. These options
correspond to the properties described in “Code Generation Properties for Farrow Filters” on page 3-
19.

Note The Farrow filter options are displayed only when a Farrow filter is selected for HDL code
generation.

These properties are supported for Farrow filter code generation:
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• In the Generate HDL tool, on the Global Settings > Ports tab, Fractional delay port specifies
the name of the fractional delay port in the generated code. The default name is filter_fd.

• In the Generate HDL tool, on the Test Bench > Stimuli tab, use the Fractional delay stimulus
to select a stimulus signal. This signal is applied to the fractional delay port in the generated test
bench.

Use the Fractional delay stimulus to select the type of stimulus signal in the generated code:
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• Get value from filter (default). An internal constant value is applied to the fractional delay
port.

• Ramp sweep. A vector of values incrementally increasing over the range from 0 to 1. This
stimulus signal has the same duration as the input to the filter, but changes at a slower rate.
Each fractional delay value obtained from the vector is held for 10% of the total duration of the
input signal.

• Random sweep. A vector of random values between 0 and 1. This stimulus signal has the
same duration as the input to the filter, but changes at a slower rate. Each fractional delay
value obtained from the vector is held for 10% of the total duration of the input signal.

• User defined. When you select this option, the User defined stimulus box is enabled. You
can enter a vector to define your own stimulus as shown in this figure:

See Also

Related Examples
• “HDL Fractional Delay (Farrow) Filter” on page 8-47
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Programmable Filter Coefficients for FIR Filters

Note The Filter Design HDL Coder product will be discontinued in a future release. Instead, you can
model hardware behavior, and generate HDL code by using System objects or Simulink blocks from
DSP HDL Toolbox. These objects and blocks include hardware-friendly control signals and
architecture options. To generate HDL code from DSP HDL Toolbox objects and blocks, you must also
have the HDL Coder product.

For examples of modeling a programmable FIR filter for hardware, see “Programmable FIR Filter for
FPGA” and “Optimize Programmable FIR Filter Resources” (DSP HDL Toolbox). These examples use
the Discrete FIR Filter block. Equivalent functionality is also available in the dsphdl.FIRFilter
System object.

By default, the coder obtains filter coefficients from a filter object and hard-codes them into the
generated code. An HDL filter realization generated in this way cannot be used with a different set of
coefficients.

For direct form FIR filters, the coder provides UI options and corresponding command-line properties
that let you:

• Generate an interface for loading coefficients from memory. Coefficients stored in memory are
called programmable coefficients.

• Test the interface.

Programmable filter coefficients are supported for these direct form FIR filter types:

• Direct form
• Direct form symmetric
• Direct form antisymmetric

To use programmable coefficients, a port interface (referred to as a processor interface) is generated
for the filter entity or module. Coefficient loading is assumed to be under the control of a
microprocessor that is external to the generated filter. The filter uses the loaded coefficients for
processing input samples.

Programmable filter coefficients are supported for these filter architectures:

• Fully parallel
• Fully serial
• Partly serial
• Cascade serial

When you choose a serial FIR filter architecture, you can also specify how the coefficients are stored.
You can select a dual-port or single-port RAM, or a register file. See “Programmable Filter
Coefficients for FIR Filters” on page 3-23.

You can also generate a processor interface for loading IIR filter coefficients. See “Programmable
Filter Coefficients for IIR Filters” on page 3-30.

 Programmable Filter Coefficients for FIR Filters

3-23



UI Options for Programmable Coefficients
These UI options let you specify programmable coefficients.

• The Coefficient source list on the Generate HDL tool lets you select whether coefficients are
obtained from the filter object and hard-coded (Internal), or from memory (Processor
interface). The default is Internal.

The corresponding command-line property is CoefficientSource.

• The Coefficient stimulus option on the Test Bench pane of the Generate HDL tool specifies how
the test bench tests the generated memory interface.

The corresponding command-line property is TestBenchCoeffStimulus.
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Generating a Test Bench for Programmable FIR Coefficients
This section describes how to use the TestBenchCoeffStimulus property to specify how the test
bench drives the coefficient ports. You can also use the Coefficient stimulus option for this purpose.

When a coefficient memory interface has been generated for a filter, the coefficient ports have
associated test vectors. The TestbenchCoeffStimulus property determines how the test bench
drives the coefficient ports.

The TestBenchStimulus property determines the filter input stimuli.

The TestbenchCoeffStimulus property selects from two types of test benches.
TestbenchCoeffStimulus takes a vector argument. The valid values are:

• []: Empty vector. (default)

When the value of TestbenchCoeffStimulus is an empty vector, the test bench loads the
coefficients from the filter object, and then forces the input stimuli. This test verifies that the
interface writes one set of coefficients into the memory without encountering an error.

• [coeff1,coeff2,...coeffN]: Vector of N coefficients, where N is determined as follows:
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• For symmetric filters, N must equal ceil(length(filterObj.Numerator)/2).
• For antisymmetric filters, N must equal floor(length(filterObj.Numerator)/2).
• For other filters, N must equal the length of the filter object.

In this case, the filter processes the input stimuli twice. First, the test bench loads the coefficients
from the filter object and forces the input stimuli to show the response. Then, the filter loads the
set of coefficients specified in the TestbenchCoeffStimulus vector, and shows the response by
processing the same input stimuli for a second time. In this case, the internal states of the filter, as
set by the first run of the input stimulus, are retained. The test bench verifies that the interface
writes two different sets of coefficients into the coefficient memory. The test bench also provides
an example of how the memory interface can be used to program the filter with different sets of
coefficients.

Note If a coefficient memory interface has not been previously generated for the filter, the
TestbenchCoeffStimulus property is ignored.

For an example, see “Test Bench for FIR Filter with Programmable Coefficients” on page 10-21.

Using Programmable Coefficients with Serial FIR Filter Architectures
This section discusses special considerations for using programmable filter coefficients with FIR
filters that have one of these serial architectures.

• Fully serial
• Partly serial
• Cascade serial

Specifying Memory for Programmable Coefficients

By default, the processor interface for programmable coefficients loads the coefficients from a
register file. The Coefficient memory pull-down menu lets you specify alternative RAM-based
storage for programmable coefficients.

You can set Coefficient memory when:

• The filter is a FIR filter.
• You set Coefficient source to Processor interface.
• You set Architecture to Fully serial, Partly serial, or Cascade serial.

The figure shows the Coefficient memory option for a fully serial FIR filter. You can select an option
using the drop-down list.
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The table summarizes the Coefficient memory options.

Coefficient memory Selection Description
Registers default: Store programmable coefficients in a register file.
Single Port RAMs Store programmable coefficients in single-port RAM.

The coder writes each RAM and its interface to a separate file.
The number of generated RAMs depends on the filter
partitioning.

Dual Port RAMs Store programmable coefficients in dual-port RAM.

The coder writes each RAM and its interface to a separate file.
The number of generated RAMs depends on the filter
partitioning.

Timing Considerations

In a serial implementation of a FIR filter, the rate of the system clock (clk) is generally a multiple of
the input data rate (the sample rate of the filter). The exact relationship between the clock rate and
the data rate depends on your choice of serial architecture and partitioning options.
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Programmable coefficients load into the coeffs_in port at either the system clock rate (faster) or
the input data (slower) rate. If your design requires loading of coefficients at the faster rate, observe
these points.

• When write_enable asserts, coefficients load from the coeffs_in port into coefficient memory
at the address specified by write_address.

• write_done can assert for anynumber of clock cycles. If write_done asserts at least two clk
cycles before the arrival of the next data input value, new coefficients will be applied with the next
data sample. Otherwise, new coefficients will be applied for the data after the next sample.

These two examples illustrate how serial partitioning affects the timing of coefficient loading.

Create a direct form filter with 11 coefficients.
rng(13893,'v5uniform');
b = rand(1,11);
filt = dsp.FIRFilter('Numerator',b,'Structure','Direct form');

Generate VHDL code for filt, using a partly serial architecture with the serial partition [7 4]. Set
CoefficientSource to generate a processor interface.
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'SerialPartition',[7 4],'CoefficientSource','ProcessorInterface');

### Clock rate is 7 times the input sample rate for this architecture.
### HDL latency is 3 samples

This partitioning results in a clock rate that is seven times the input sample rate.

The timing diagram illustrates the rate of coefficient loading relative to the rate of input data
samples. While write_enable is asserted, 11 coefficient values are loaded, via coeffs_in, to 11
sequential memory addresses. On the next clk cycle, write_enable is deasserted and write_done
is asserted for one clock period. The coefficient loading operation is completed within two cycles of
data input, allowing 2 clk cycles to elapse before the arrival of the data value 07FFF. Therefore the
newly loaded coefficients are applied to that data sample.

Now define a serial partition of [6 5] for the same filter. This partition results in a slower clock rate,
six times the input sample rate.
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'SerialPartition',[6 5],'CoefficientSource','ProcessorInterface');
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### Clock rate is 6 times the input sample rate for this architecture.
### HDL latency is 3 samples

The timing diagram illustrates that write_done deasserts too late for the coefficients to be applied
to the arriving data value 278E. They are applied instead to the next sample, 7FFF.
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Programmable Filter Coefficients for IIR Filters
By default, the coder obtains filter coefficients from a filter object and hard-codes them into the
generated code. An HDL filter realization generated in this way cannot be used with a different set of
coefficients.

For IIR filters, the coder provides UI options and corresponding command-line properties that let you:

• Generate an interface for loading coefficients from memory. Coefficients stored in memory are
called programmable coefficients.

• Test the interface.

To use programmable coefficients, a port interface (referred to as a processor interface) is generated
for the filter entity or module. Coefficient loading is assumed to be under the control of a
microprocessor that is external to the generated filter. The filter uses the loaded coefficients for
processing input samples.

These IIR filter types support programmable filter coefficients.

• Second-order section (SOS) infinite impulse response (IIR) Direct Form I
• SOS IIR Direct Form I transposed
• SOS IIR Direct Form II
• SOS IIR Direct Form II transposed

Limitations

• Programmable filter coefficients are supported for IIR filters with fully parallel architectures only.
• The generated interface assumes that the coefficients are stored in a register file.
• When you generate a processor interface for an IIR filter, the OptimizeScaleValues property

must be between 1 and 0. For example:

filt.OptimizeScaleValues = 0

Check that the filter still has the desired response, using the fvtool and filter, commands.
Disabling filt.OptimizeScaleValues may add quantization at section inputs and outputs.

You can also generate a processor interface for loading FIR filter coefficients.“Specifying Memory for
Programmable Coefficients” on page 3-26 for further information.

Generate a Processor Interface for a Programmable IIR Filter
You can specify a processor interface using the Coefficient source menu on the Generate HDL tool.

• The Coefficient source list on the Generate HDL tool lets you select whether coefficients are
obtained from the filter object and hard-coded (Internal), or from memory (Processor
interface). The default is Internal.

The corresponding command-line property is CoefficientSource.
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• The Coefficient stimulus option on the Test Bench pane of the Generate HDL tool specifies how
the test bench tests the generated memory interface.

The corresponding command-line property is TestBenchCoeffStimulus.

Generating a Test Bench for Programmable IIR Coefficients
This section describes how to use the TestBenchCoeffStimulus property to specify how the test
bench drives the coefficient ports. You can also use the Coefficient stimulus option for this purpose.

When a coefficient memory interface has been generated for a filter, the coefficient ports have
associated test vectors. The TestbenchCoeffStimulus property determines how the test bench
drives the coefficient ports.

The TestBenchStimulus property determines the filter input stimuli.

The TestbenchCoeffStimulus specified the source of coefficients used for the test bench. The
valid values for TestbenchCoeffStimulus are:

• []: Empty vector. (default)

When the value of TestbenchCoeffStimulus is an empty vector, the test bench loads the
coefficients from the filter object, and then forces the input stimuli. This test shows the response
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to the input stimuli and verifies that the interface writes one set of coefficients into the memory
without encountering an error.

• A cell array containing these elements:

• New_filt.ScaleValues: column vector of scale values for the IIR filter
• New_filt.sosMatrix: second-order section (SOS) matrix for the IIR filter

You can specify the elements of the cell array in these forms:

• {New_filt.ScaleValues,New_filt.sosMatrix}
• {New_filt.ScaleValues;New_filt.sosMatrix}
• {New_filt.sosMatrix,New_filt.ScaleValues}
• {New_filt.sosMatrix;New_filt.ScaleValues}
• {New_filt.ScaleValues}
• {New_filt.sosMatrix}

In this case, the filter processes the input stimuli twice. First, the test bench loads the coefficients
from the filter object and forces the input stimuli to show the response. Then, the filter loads the
set of coefficients specified in the TestbenchCoeffStimulus cell array, and shows processes the
same input stimuli again. The internal states of the filter, as set by the first run of the input
stimulus, are retained. The test bench verifies that the interface writes two different sets of
coefficients into the register file. The test bench also provides an example of how the memory
interface can be used to program the filter with different sets of coefficients.

If you omit New_filt.ScaleValues, the test bench uses the scale values loaded from the filter
object twice. Likewise, if you omit New_filt.sosMatrix, the test bench uses the SOS matrix
loaded from the filter object twice.

Addressing Scheme for Loading IIR Coefficients
This table gives the address generation scheme for the write_address port when loading IIR
coefficients into memory. This addressing scheme allows the different types of coefficients (scale
values, numerator coefficients, and denominator coefficients) to be loaded via a single port
(coeffs_in).

Each type of coefficient has the same word length, but can have different fractional lengths.

The address for each coefficient is divided into two fields:

• Section address: Width is ceil(log2N) bits, where N is the number of sections.
• Coefficient address: Width is three bits.

The total width of the write_address port is therefore ceil(log2N) + 3bits.

Section Address Coefficient
Address

Description

S S ... S 000 Section scale value
S S ... S 001 Numerator coefficient: b1
S S ... S 010 Numerator coefficient: b2
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Section Address Coefficient
Address

Description

S S ... S 011 Numerator coefficient: b3
S S ... S 100 Denominator coefficient: a2
S S ... S 101 Denominator coefficient: a3 (if order = 2; otherwise

unused)
S S ... S 110 Unused
0 0 ... 0 111 Last scale value
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DUC and DDC System Objects
You can generate HDL code for Digital Up Converter (DUC) and Digital Down Converter (DDC)
System objects. This capability is limited to code generation at the command line only.

When calling generatehdl for a System object, you must specify the data type of the input signal.
Set the InputDataType property to a numerictype object.

hDDC = dsp.DigitalDownConverter('Oscillator','NCO')
generatehdl(hDDC,'InputDataType',numerictype(1,8,7))

The software generates a data valid signal at the top DDC or DUC level:

• For DDC, the signal is named ce_out. Filter Design HDL Coder software ties that signal to the
corresponding ce_out signal from the decimating filtering cascade.

• For DUC, the signal is named ce_out_valid. The coder software ties that signal to the
corresponding ce_out_valid signal from the interpolating filtering cascade.

Limitations
You cannot set the input and output port names. These ports have the default names of ddc_in and
ddc_out. The coder inserts registers on input and output signals. If you attempt to turn them off, the
coder returns a warning.

You can implement filtering stages in DDC and DUC with the default fully parallel architecture only.
For these objects, the coder software does not support optimization and architecture-specific
properties such as:

• SerialPartition
• DALUTPartition
• DARadix
• AddPipelineRegisters
• MultiplierInputPipeline
• MultiplierOutputPipeline
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Optimization of HDL Filter Code

• “Speed vs. Area Tradeoffs” on page 4-2
• “Distributed Arithmetic for FIR Filters” on page 4-16
• “Architecture Options for Cascaded Filters” on page 4-23
• “CSD Optimizations for Coefficient Multipliers” on page 4-24
• “Improving Filter Performance with Pipelining” on page 4-25
• “Overall HDL Filter Code Optimization” on page 4-29
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Speed vs. Area Tradeoffs
In this section...
“Overview of Speed or Area Optimizations” on page 4-2
“Parallel and Serial Architectures” on page 4-3
“Specifying Speed vs. Area Tradeoffs via generatehdl Properties” on page 4-5
“Select Architectures in the Generate HDL Tool” on page 4-7

Overview of Speed or Area Optimizations
The coder provides options that extend your control over speed vs. area tradeoffs in the realization of
filter designs. To achieve the desired tradeoff, you can either specify a fully parallel architecture for
generated HDL filter code, or choose one of several serial architectures. These architectures are
described in “Parallel and Serial Architectures” on page 4-3.

This table summarizes the filter types that are available for parallel and serial architecture choices.

Architecture Available for Filter Types...
Fully parallel (default) Filter types that are supported for HDL code

generation
Fully serial • direct form

• direct form symmetric
• direct form asymmetric
• direct form I SOS
• direct form II SOS

Partly serial • direct form
• direct form symmetric
• direct form asymmetric
• direct form I SOS
• direct form II SOS

Cascade serial • direct form
• direct form symmetric
• direct form asymmetric

The coder supports the full range of parallel and serial architecture options via properties passed in
to the generatehdl function, as described in “Specifying Speed vs. Area Tradeoffs via generatehdl
Properties” on page 4-5.

Alternatively, you can use the Architecture pop-up menu on the Generate HDL tool to choose
parallel and serial architecture options, as described in “Select Architectures in the Generate HDL
Tool” on page 4-7.

Note The coder also supports distributed arithmetic (DA), another highly efficient architecture for
realizing filters. See “Distributed Arithmetic for FIR Filters” on page 4-16.
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Parallel and Serial Architectures
Fully Parallel Architecture

This option is the default selection. A fully parallel architecture uses a dedicated multiplier and adder
for each filter tap; the taps execute in parallel. This type of architecture is optimal for speed.
However, it requires more multipliers and adders than a serial architecture, and therefore consumes
more chip area.

Serial Architectures

Serial architectures reuse hardware resources in time, saving chip area. The coder provides a range
of serial architecture options. These architectures have a latency of one clock period (see “Latency in
Serial Architectures” on page 4-4).

You can select from these serial architecture options:

• Fully serial: A fully serial architecture conserves area by reusing multiplier and adder resources
sequentially. For example, a four-tap filter design would use a single multiplier and adder,
executing a multiply/accumulate operation once for each tap. The multiply/accumulate section of
the design runs at four times the input/output sample rate. This type of architecture saves area at
the cost of some speed loss and higher power consumption.

In a fully serial architecture, the system clock runs at a much higher rate than the sample rate of
the filter. Thus, for a given filter design, the maximum speed achievable by a fully serial
architecture is less than the maximum speed of a parallel architecture.

• Partly serial: Partly serial architectures cover the full range of speed vs. area tradeoffs that lie
between fully parallel and fully serial architectures.

In a partly serial architecture, the filter taps are grouped into serial partitions. The taps within
each partition execute serially, but the partitions execute together in parallel. The outputs of the
partitions are summed at the final output.

When you select a partly serial architecture for a filter, you can define the serial partitioning in
these ways:

• Define the serial partitions directly, as a vector of integers. Each element of the vector specifies
the length of the corresponding partition.

• Specify the desired hardware folding factor ff, an integer greater than 1. Given the folding
factor, the coder computes the serial partition and the number of multipliers.

• Specify the desired number of multipliers nmults, an integer greater than 1. Given the
number of multipliers, the coder computes the serial partition and the folding factor.

The Generate HDL tool lets you specify a partly serial architecture in terms of these three
parameters. You can then view how a change in one parameter interacts with the other two. The
coder also provides hdlfilterserialinfo, an informational function that helps you define an
optimal serial partition for a filter.

• Cascade-serial: A cascade-serial architecture closely resembles a partly serial architecture. As in a
partly serial architecture, the filter taps are grouped into several serial partitions that execute
together in parallel. However, the accumulated output of each partition cascades to the
accumulator of the previous partition. The output of the partitions is therefore computed at the
accumulator of the first partition. This technique is termed accumulator reuse. You do not require
a final adder, which saves area.
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The cascade-serial architecture requires an extra cycle of the system clock to complete the final
summation to the output. Therefore, the frequency of the system clock must be increased slightly
with respect to the clock used in a noncascade partly serial architecture.

To generate a cascade-serial architecture, you specify a partly serial architecture with
accumulator reuse enabled. If you do not specify the serial partitions, the coder automatically
selects an optimal partitioning.

Latency in Serial Architectures

Serialization of a filter increases the total latency of the design by one clock cycle. The serial
architectures use an accumulator (an adder with a register) to add the sequential products. An
additional final register is used to store the summed result of each of the serial partitions. The
operation requires an extra clock cycle.

Holding Input Data in a Valid State

Serial architectures implement internal clock rates higher than the input rate. In such filter
implementations, there are N cycles (N >= 2) of the base clock for each input sample. You can specify
how many clock cycles the test bench holds the input data values in a valid state.

• When you select Hold input data between samples (the default), the test bench holds the input
data values in a valid state for N clock cycles.

• When you clear Hold input data between samples, the test bench holds input data values in a
valid state for only one clock cycle. For the next N-1 cycles, the test bench drives the data to an
unknown state (expressed as 'X') until the next input sample is clocked in. Forcing the input data
to an unknown state verifies that the generated filter code registers the input data only on the first
cycle.

The figure shows the Test Bench pane of the Generate HDL tool, with Hold input data between
samples set to its default setting.
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Use the equivalent HoldInputDataBetweenSamples property when you call the generatehdl
function.

Specifying Speed vs. Area Tradeoffs via generatehdl Properties
By default, generatehdl generates filter code using a fully parallel architecture. If you want to
generate filter code with a fully parallel architecture, you do not have to specify this architecture
explicitly.

Two properties specify serial architecture options to the generatehdl function:

• SerialPartition: This property specifies the serial partitioning of the filter.
• ReuseAccum: This property enables or disables accumulator reuse.

The table summarizes how to set these properties to generate the desired architecture.

To Generate This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Fully parallel Omit this property Omit this property
Fully serial N, where N is the length of the filter Not specified, or 'off'
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To Generate This
Architecture...

Set SerialPartition to... Set ReuseAccum to...

Partly serial [p1 p2 p3...pN]: a vector of Ninteger elements, where
N is the number of serial partitions. Each element of the
vector specifies the length of the corresponding partition.
The sum of the vector elements must be equal to the
length of the filter. When you define the partitioning for a
partly serial architecture, consider these points.

• The filter length should be divided as uniformly as you
can into a vector of length equal to the number of
multipliers intended. For example, if your design
requires a filter of length 9 with 2 multipliers, the
recommended partition is [5 4]. If your design
requires 3 multipliers, the recommended partition
is[3 3 3] rather than some less uniform division
such as [1 4 4] or [3 4 2].

• If your design is constrained by having to compute
each output value (corresponding to each input value)
in an exact number N of clock cycles, use N as the
largest partition size and partition the other elements
as uniformly as you can. For example, if the filter
length is 9 and your design requires exactly 4 cycles
to compute the output, define the partition as [4 3
2]. This partition executes in 4 clock cycles, at the
cost of 3 multipliers.

You can also specify a serial architecture in terms of a
desired hardware folding factor, or in terms of the
optimal number of multipliers. See
hdlfilterserialinfo for detailed information.

'off'

Cascade-serial with
explicitly specified
partitioning

[p1 p2 p3...pN]: a vector of integers having N
elements, where N is the number of serial partitions. Each
element of the vector specifies the length of the
corresponding partition. The sum of the vector elements
must equal the length of the filter. The values of the
vector elements must appear in descending order, except
that the last two elements must be equal. For example,
for a filter of length 9, partitions such as[5 4] or [4 3
2] would be legal, but the partitions [3 3 3] or [3 2
4] raise an error at code generation time.

'on'

Cascade-serial with
automatically
optimized
partitioning

Omit this property 'on'

You can use the helper function hdlfilterserialinfo to explore possible partitions for your filter.

For an example, see “Generate Serial Partitions for FIR Filter” on page 10-9.
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Serial Architectures for IIR SOS Filters

To specify a partly or fully serial architecture for an IIR SOS filter structure (df1sos or
dsp.BiquadFilter), specify either one of these parameters:

• 'FoldingFactor',ff: Specify the desired hardware folding factor ff, an integer greater than 1.
Given the folding factor, the coder computes the number of multipliers.

• 'NumMultipliers',nmults: Specify the desired number of multipliers nmults, an integer
greater than 1. Given the number of multipliers, the coder computes the folding factor.

To obtain information about the folding factor options and the corresponding number of multipliers
for a filter, call the hdlfilterserialinfo function.

For an example, see “Generate Serial Architectures for IIR Filter” on page 10-13.

Select Architectures in the Generate HDL Tool
The Architecture pop-up menu, in the Generate HDL tool, lets you select parallel and serial
architecture. These topics describe the UI options you must set for each Architecture choice.

Specifying a Fully Parallel Architecture

The default Architecture setting is Fully parallel, as shown.
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Specifying a Fully Serial Architecture

When you select the Fully serial, Architecture options, the Generate HDL tool displays
additional information about the folding factor, number of multipliers, and serial partitioning.
Because these parameters depend on the length of the filter, they display in a read-only format, as
shown in this figure.

The Generate HDL tool also displays a View details link. When you click this link, the coder displays
an HTML report in a separate window. The report displays an exhaustive table of folding factor,
multiplier, and serial partition settings for the current filter. You can use the table to help you choose
optimal settings for your design.
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Specify Partitions for a Partly Serial Architecture

When you select the Partly serial Architecture option, the Generate HDL tool displays
additional information and data entry fields related to serial partitioning.

The Generate HDL tool also displays a View details link. When you click this link, the coder displays
an HTML report in a separate window. The report displays an exhaustive table of folding factor,
multiplier, and serial partition settings for the current filter. You can use the table to help you choose
optimal settings for your design.
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The Specified by drop-down menu lets you decide how you define the partly serial architecture.
Select one of these options:

• Folding factor: The drop-down menu to the right of Folding factor contains an exhaustive
list of folding factors for the filter. When you select a value, the display of the current folding
factor, multiplier, and serial partition settings updates.

• Multipliers: The drop-down menu to the right of Multipliers contains an exhaustive list of
value options for the number of multipliers for the filter. When you select a value, the display of
the current folding factor, multiplier, and serial partition settings updates.
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• Serial partition: The drop-down menu to the right of Serial partition contains an
exhaustive list of serial partition options for the filter. When you select a value, the display of the
current folding factor, multiplier, and serial partition settings updates.

Specifying a Cascade Serial Architecture

When you select the Cascade serial Architecture option, the Generate HDL tool displays the
Serial partition field, as shown in this figure.
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The Specified by menu lets you define the number and size of the serial partitions according to
different criteria, as described in “Specifying Speed vs. Area Tradeoffs via generatehdl Properties” on
page 4-5.

Specifying Serial Architectures for IIR SOS Filters

To specify a partly or fully serial architecture for an IIR SOS filter structure in the UI, set these
options:

• Architecture — Select Fully parallel (the default), Fully serial, or Partly serial. If
you select Partly serial, the UI displays the Specified by drop-down menu.

• Specified by — Select one of these methods:

• Folding factor — Specify the desired hardware folding factor, ff, an integer greater than
1. Given the folding factor, the coder computes the number of multipliers.

• Multipliers — Specify the desired number of multipliers, nmults, an integer greater than 1.
Given the number of multipliers, the coder computes the folding factor.

Example: Direct Form I SOS Filter

This example creates a Direct Form I SOS (df1sos) filter design and opens the UI. The figure
following the code example shows the coder options configured for a partly serial architecture
specified with a Folding factor of 18.
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Fs = 48e3             % Sampling frequency 
Fc = 10.8e3           % Cut-off frequency 
N = 5                 % Filter Order 
f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs) 
filt = design(f_lp,'butter','FilterStructure','df1sos','SystemObject',true)
fdhdltool(filt,numerictype(1,16,15))

Example: Direct Form II SOS Filter

This example creates a Direct Form II SOS (df2sos) filter design using Filter Builder.

 Speed vs. Area Tradeoffs

4-13



The filter is a lowpass df2sos filter with a filter order of 6. The filter arithmetic is set to Fixed-
point.

On the Code Generation tab, the Generate HDL button activates the Filter Design HDL Coder UI.
This figure shows the HDL coder options configured for this filter, using partly serial architecture
with a Folding factor of 9.
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Specifying a Distributed Arithmetic Architecture

The Architecture pop-up menu also includes the Distributed arithmetic (DA) option. See
“Distributed Arithmetic for FIR Filters” on page 4-16) for information about this architecture.

Interactions Between Architecture Options and Other HDL Options

Selecting certain Architecture menu options can change or disable other options.

• When the Fully serial option is selected, these options are set to their default values and
disabled:

• Coefficient multipliers
• Add pipeline registers
• FIR adder style

• When the Partly serial option is selected:

• The Coefficient multipliers option is set to its default value and disabled.
• If the filter is multirate, the Clock inputs option is set to Single and disabled.

• When the Cascade serial option is selected, these options are set to their default values and
disabled:

• Coefficient multipliers
• Add pipeline registers
• FIR adder style

 Speed vs. Area Tradeoffs

4-15



Distributed Arithmetic for FIR Filters

In this section...
“Distributed Arithmetic Overview” on page 4-16
“Requirements and Considerations for Generating Distributed Arithmetic Code” on page 4-17
“Distributed Arithmetic via generatehdl Properties” on page 4-18
“Distributed Arithmetic Options in the Generate HDL Tool” on page 4-19

Distributed Arithmetic Overview
Distributed Arithmetic (DA) is a widely used technique for implementing sum-of-products
computations without the use of multipliers. Designers frequently use DA to build efficient Multiply-
Accumulate Circuitry (MAC) for filters and other DSP applications.

The main advantage of DA is its high computational efficiency. DA distributes multiply and
accumulate operations across shifters, lookup tables (LUTs), and adders in such a way that
conventional multipliers are not required.

The coder supports DA in HDL code generated for several single-rate and multirate FIR filter
structures for fixed-point filter designs. (See “Requirements and Considerations for Generating
Distributed Arithmetic Code” on page 4-17. )

This section briefly summarizes of the operation of DA. Detailed discussions of the theoretical
foundations of DA appear in these publications.

• Meyer-Baese, U., Digital Signal Processing with Field Programmable Gate Arrays, Second Edition,
Springer, pp 88–94, 128–143.

• White, S.A., Applications of Distributed Arithmetic to Digital Signal Processing: A Tutorial Review.
IEEE ASSP Magazine, Vol. 6, No. 3.

In a DA realization of a FIR filter structure, a sequence of input data words of width W is fed through
a parallel to serial shift register. This feedthrough produces a serialized stream of bits. The serialized
data is then fed to a bit-wide shift register. This shift register serves as a delay line, storing the bit
serial data samples.

The delay line is tapped (based on the input word size W), to form a W-bit address that indexes into a
lookup table (LUT). The LUT stores the possible sums of partial products over the filter coefficients
space. A shift and adder (scaling accumulator) follow the LUT. This logic sequentially adds the values
obtained from the LUT.

A table lookup is performed sequentially for each bit (in order of significance starting from the LSB).
On each clock cycle, the LUT result is added to the accumulated and shifted result from the previous
cycle. For the last bit (MSB), the table lookup result is subtracted, accounting for the sign of the
operand.

This basic form of DA is fully serial, operating on one bit at a time. If the input data sequence is W bits
wide, then a FIR structure takes W clock cycles to compute the output. Symmetric and asymmetric
FIR structures are an exception, requiring W+1 cycles, because one additional clock cycle is required
to process the carry bit of the preadders.
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Improving Performance with Parallelism

The inherently bit serial nature of DA can limit throughput. To improve throughput, the basic DA
algorithm can be modified to compute more than one bit-sum at a time. The number of
simultaneously computed bit sums is expressed as a power of two called the DA radix. For example, a
DA radix of 2 (2^1) indicates that a one bit-sum is computed at a time. A DA radix of 4 (2^2) indicates
that a two bit-sums are computed at a time, and so on.

To compute more than one bit-sum at a time, the coder replicates the LUT. For example, to perform
DA on two bits at a time (radix 4), the odd bits are fed to one LUT and the even bits are
simultaneously fed to an identical LUT. The LUT results corresponding to odd bits are left-shifted
before they are added to the LUT results corresponding to even bits. This result is then fed into a
scaling accumulator that shifts its feedback value by two places.

Processing more than one bit at a time introduces a degree of parallelism into the operation, which
can improve performance at the expense of area. The DARadix property lets you specify the number
of bits processed simultaneously in DA.

Reducing LUT Size

The size of the LUT grows exponentially with the order of the filter. For a filter with N coefficients, the
LUT must have 2^N values. For higher-order filters, LUT size must be reduced to reasonable levels.
To reduce the size, you can subdivide the LUT into several LUTs, called LUT partitions. Each LUT
partition operates on a different set of taps. The results obtained from the partitions are summed.

For example, for a 160 tap filter, the LUT size is (2^160)*W bits, where W is the word size of the LUT
data. You can achieve a significant reduction in LUT size by dividing the LUT into 16 LUT partitions,
each taking 10 inputs (taps). This division reduces the total LUT size to 16*(2^10)*W bits.

Although LUT partitioning reduces LUT size, the architecture uses more adders to sum the LUT data.

The DALUTPartition property lets you specify how the LUT is partitioned in DA.

Requirements and Considerations for Generating Distributed
Arithmetic Code
The coder lets you control how DA code is generated using the DALUTPartition and DARadix
properties (or equivalent Generate HDL tool options). Before using these properties, review these
general requirements, restrictions, and other considerations for generation of DA code.

Supported Filter Types

The coder supports DA in HDL code generated for these single-rate and multirate FIR filter
structures:

• direct form (dfilt.dffir or dsp.FIRFilter)
• direct form symmetric (dfilt.dfsymfir or dsp.FIRFilter)
• direct form asymmetric (dfilt.dfasymfir or dsp.FIRFilter)
• dsp.FIRDecimator
• dsp.FIRInterpolator
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Fixed-Point Quantization Required

Generation of DA code is supported only for fixed-point filter designs.

Specifying Filter Precision

The data path in HDL code generated for the DA architecture is optimized for full precision
computations. The filter casts the result to the output data size at the final stage. If your filter object
is set to use full precision data types, numeric results from simulating the generated HDL code are
bit-true to the output of the original filter object.

If your filter object has customized word or fraction lengths, the generated DA code may produce
numeric results that are different than the output of the original filter object.

Coefficients with Zero Values

DA ignores taps that have zero-valued coefficients and reduces the size of the DA LUT accordingly.

Considerations for Symmetric and Asymmetric Filters

For symmetric and asymmetric FIR filters:

• A bit-level preadder or presubtractor is required to add tap data values that have coefficients of
equal value and/or opposite sign. One extra clock cycle is required to compute the result because
of the additional carry bit.

• The coder takes advantage of filter symmetry. This symmetry reduces the DA LUT size
substantially, because the effective filter length for these filter types is halved.

Holding Input Data in a Valid State

Partitioned distributed arithmetic architectures implement internal clock rates higher than the input
rate. In such filter implementations, there are N cycles (N >= 2) of the base clock for each input
sample. You can specify how many clock cycles the test bench holds the input data values in a valid
state.

• When you select Hold input data between samples (the default), the test bench holds the input
data values in a valid state for N clock cycles.

• When you clear Hold input data between samples, the test bench holds input data values in a
valid state for only one clock cycle. For the next N-1 cycles, the test bench drives the data to an
unknown state (expressed as 'X') until the next input sample is clocked in. Forcing the input data
to an unknown state verifies that the generated filter code registers the input data only on the first
cycle.

Distributed Arithmetic via generatehdl Properties
Two properties specify distributed arithmetic options to the generatehdl function:

• DALUTPartition — Number and size of lookup table (LUT) partitions.
• DARadix — Number of bits processed in parallel.

You can use the helper function hdlfilterdainfo to explore possible partitions and radix settings
for your filter.

For examples, see
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• “Distributed Arithmetic for Single Rate Filters” on page 10-15
• “Distributed Arithmetic for Multirate Filters” on page 10-15
• “Distributed Arithmetic for Cascaded Filters” on page 10-16

Distributed Arithmetic Options in the Generate HDL Tool
The Generate HDL tool provides several options related to DA code generation.

• The Architecture pop-up menu, which lets you enable DA code generation and displays related
options.

• The Specify folding drop-down menu, which lets you directly specify the folding factor, or set a
value for the DARadix property.

• The Specify LUT drop-down menu, which lets you directly set a value for the DALUTPartition
property. You can also select an address width for the LUT. If you specify an address width, the
coder uses input LUTs as required.

The Generate HDL tool initially displays default DA-related option values that correspond to the
current filter design. For the requirements for setting these options, see DALUTPartition and
DARadix.

To specify DA code generation using the Generate HDL tool, follow these steps:

1 Design a FIR filter (using Filter Designer, Filter Builder, or MATLAB commands) that meets the
requirements described in “Requirements and Considerations for Generating Distributed
Arithmetic Code” on page 4-17.

2 Open the Generate HDL tool.
3 Select Distributed Arithmetic (DA) from the Architecture pop-up menu.

When you select this option, the related Specify folding and Specify LUT options are displayed
below the Architecture menu. This figure shows the default DA options for a direct form FIR
filter.
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4 Select one of these options from the Specify folding drop-down menu.

• Folding factor (default): Select a folding factor from the drop-down menu to the right of
Specify folding. The menu contains an exhaustive list of folding factor options for the filter.

• DA radix: Select the number of bits processed simultaneously, expressed as a power of 2.
The default DA radix value is 2, specifying processing of one bit at a time, or fully serial DA.
If desired, set the DA radix field to a nondefault value.

5 Select one of these options from the Specify LUT drop-down menu.

• Address width (default): Select from the drop-down menu to the right of Specify LUT. The
menu contains an exhaustive list of LUT address widths for the filter.

• Partition: Select, or enter, a vector specifying the number and size of LUT partitions.
6 Set other HDL options as required, and generate code. Invalid or illegal values for LUT Partition

or DA Radix are reported at code generation time.

Viewing Detailed DA Options

As you interact with the Specify folding and Specify LUT options you can see the results of your
choice in three display-only fields: Folding factor, Address width, and Total LUT size
(bits).

In addition, when you click the View details hyperlink, the coder displays a report showing complete
DA architectural details for the current filter, including:
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• Filter lengths
• Complete list of applicable folding factors and how they apply to the sets of LUTs
• Tabulation of the configurations of LUTs with total LUT Size and LUT details

This figure shows a typical report.

DA Interactions with Other HDL Options

When Distributed Arithmetic (DA) is selected in the Architecture menu, some other HDL
options change automatically to settings that correspond to DA code generation:
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• Coefficient multipliers is set to Multiplier and disabled.
• FIR adder style is set to Tree and disabled.
• Add input register (in the Ports pane) is selected and disabled. (An input register, used as part

of a shift register, is used in DA code.)
• Add output register (in the Ports pane) is selected and disabled.
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Architecture Options for Cascaded Filters
You can specify unique serial, distributed arithmetic, or parallel architectures for each stage of
cascade filters. These options lead to area efficient implementations of cascade filters, including
Digital Down Converter (DDC), and Digital Up Converter (DUC) objects. You can use this feature only
with the command-line interface (generatehdl). When you use the Generate HDL tool, each stage of
a cascade uses the same architecture options.

You can pass a cell array of values to the SerialPartition, DALUTPartition, and DARadix
properties, with each element corresponding to its respective stage. To skip the corresponding
specification for a stage, specify the default value of that property. When you set a partition to a size
of -1, the coder implements a parallel architecture for that stage.

Property Default Value
SerialPartition –1
DALUTPartition –1
DARadix 2

When you create a cascaded filter, Filter Design HDL Coder software performs these actions:

• Generates code for each stage as per the inferred architecture.
• Generates an timing controller at the top level. This controller then produces clock enables for the

module in each stage, which corresponds to the rate and folding factor of that module.

Tip Use the hdlfilterserialinfo function to display the effective filter length and partitioning
options for each filter stage of a cascade.

For examples, see

• “Distributed Arithmetic for Cascaded Filters” on page 10-16
• “Generate Serial Partitions of Cascaded Filter” on page 10-11
• “Cascaded Filter with Multiple Architectures” on page 10-19
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CSD Optimizations for Coefficient Multipliers

By default, the coder produces code that includes coefficient multipliers. You can optimize these
operations to decrease the area and maintain or increase clock speed. You can replace multiplier
operations with additions of partial products produced by canonical signed digit (CSD) or factored
CSD techniques. These techniques minimize the number of addition operations required for constant
multiplication by representing binary numbers with a minimum count of nonzero digits. The
optimization you can achieve depends on the binary representation of the coefficients used.

Note The coder does not use coefficient multiplier operations for multirate filters. Therefore,
Coefficient multipliers options are disabled for multirate filters.

To optimize coefficient multipliers (for nonmultirate filter types):

1 Select CSD or Factored-CSD from the Coefficient multipliers menu in the Filter
architecture pane of the Generate HDL tool.

2 To account for numeric differences, consider setting an error margin for the generated test
bench. When comparing the results, the test bench ignores the number of least significant bits
specified in the error margin. To set an error margin,

a Select the Test Bench pane in the Generate HDL tool. Then click the Configuration tab.
b Set the Error margin (bits) field to an integer that indicates the maximum acceptable

number of bits of difference in the numeric results.
3 Continue setting other options or click Generate to initiate code generation.

If you are generating code for an FIR filter, see “Multiplier Input and Output Pipelining for FIR
Filters” on page 4-26 for information on a related optimization.

Command-Line Alternative: Use the generatehdl function with the property
CoeffMultipliers to optimize coefficient multipliers with CSD techniques.
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Improving Filter Performance with Pipelining
In this section...
“Optimizing the Clock Rate with Pipeline Registers” on page 4-25
“Multiplier Input and Output Pipelining for FIR Filters” on page 4-26
“Optimizing Final Summation for FIR Filters” on page 4-26
“Specifying or Suppressing Registered Input and Output” on page 4-27

Optimizing the Clock Rate with Pipeline Registers
You can optimize the clock rate used by filter code by applying pipeline registers. Although the
registers increase the overall filter latency and space used, they provide significant improvements to
the clock rate. These registers are disabled by default. When you enable them, the coder adds
registers between stages of computation in a filter.

For... Pipeline Registers Are Added
FIR, antisymmetric FIR, and symmetric FIR filters Between levels of the final summation tree
Transposed FIR filters Between coefficient multipliers and adders
IIR filters Between sections
CIC Between comb sections

For example, for a sixth order IIR filter, the coder adds two pipeline registers. The coder inserts a
pipeline register between the first and second section, and between the second and third section.

For FIR filters, the use of pipeline registers optimizes filter final summation. For details, see
“Optimizing Final Summation for FIR Filters” on page 4-26.

Note Pipeline registers in FIR, antisymmetric FIR, and symmetric FIR filters can produce numeric
results that differ from the results produced by the original filter object, because they force the tree
mode of final summation.

To use pipeline registers,

1 Select the Add pipeline registers option in the Filter architecture pane of the Generate HDL
tool.

2 For FIR, antisymmetric FIR, and symmetric FIR filters, consider setting an error margin for the
generated test bench to account for numeric differences. The error margin is the number of least
significant bits the test bench ignores when comparing the results. To set an error margin:

a Select the Test Bench pane in the Generate HDL tool. Then click the Configuration tab.
b Set the Error margin (bits) field to an integer that indicates the maximum acceptable

number of bits of difference in the numeric results.
3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property
AddPipelineRegisters to optimize the filters with pipeline registers.
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Multiplier Input and Output Pipelining for FIR Filters

If you retain multiplier operations for a FIR filter, you can achieve higher clock rates by adding
pipeline stages at multiplier inputs or outputs.

This figure shows the UI options for multiplier pipelining options. To enable these options,
Coefficient multipliers to Multiplier.

• Multiplier input pipeline: To add pipeline stages before each multiplier, enter the desired
number of stages as an integer greater than or equal to 0.

• Multiplier output pipeline: To add pipeline stages after each multiplier, enter the desired
number of stages as an integer greater than or equal to 0.

Command-Line Alternative: Use the generatehdl function with the
MultiplierInputPipeline and MultiplierOutputPipeline properties to specify multiplier
pipelining for FIR filters.

Optimizing Final Summation for FIR Filters

If you are generating HDL code for an FIR filter, consider optimizing the final summation technique to
be applied to the filter. By default, the coder applies linear adder summation, which is the final
summation technique discussed in most DSP text books. Alternatively, you can instruct the coder to
apply tree or pipeline final summation. When set to tree mode, the coder creates a final adder that
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performs pairwise addition on successive products that execute in parallel, rather than sequentially.
Pipeline mode produces results similar to tree mode with the addition of a stage of pipeline registers
after processing each level of the tree.

In comparison,

• The number of adder operations for linear and tree mode are the same. The timing for tree mode
can be better due to parallel additions.

• Pipeline mode optimizes the clock rate, but increases the filter latency. The latency increases by
log2(number of products), rounded up to the nearest integer.

• Linear mode helps attain numeric accuracy in comparison to the original filter object. Tree and
pipeline modes can produce numeric results that differ from the results produced by the filter
object.

To change the final summation to be applied to an FIR filter:

1 Select one of these options in the Filter architecture pane of the Generate HDL tool.

For... Select...
Linear mode (the default) Linear from the FIR adder style menu
Tree mode Tree from the FIR adder style menu
Pipeline mode The Add pipeline registers check box

2 If you specify tree or pipelined mode, consider setting an error margin for the generated test
bench to account for numeric differences. The error margin is the number of least significant bits
the test bench ignores when comparing the results. To set an error margin,

a Select the Test Bench pane in the Generate HDL tool. Then click the Configuration tab.
b Set the Error margin (bits) field to an integer that indicates the maximum acceptable

number of bits of difference in the numeric results.
3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property FIRAdderStyle or
AddPipelineRegisters to optimize the final summation for FIR filters.

Specifying or Suppressing Registered Input and Output
The coder adds an extra input register (input_register) and an extra output register
(output_register) during HDL code generation. These extra registers can be useful for timing
purposes, but they add to the overall latency.

This process block writes to extra input register input_register when a clock event occurs and
clk is active high (1):

Input_Register_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    input_register <= (OTHERS => '0');
  ELSIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      input_register <= input_typeconvert;
    END IF;
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  END IF;
END PROCESS Input_Register_Process ;

This process block writes to extra output register output_register when a clock event occurs and
clk is active high (1):

Output_Register_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    output_register <= (OTHERS => '0');
  ELSIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      output_register <= output_typeconvert;
    END IF;
  END IF;
END PROCESS Output_Register_Process;

If overall latency is a concern for your application and you do not have timing requirements, you can
suppress generation of the extra registers as follows:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Ports tab in the Additional settings pane.
3 Clear Add input register and Add output register as required. This figure shows the setting

for suppressing the generation of an extra input register.

Command-Line Alternative: Use the generatehdl and function with the properties
AddInputRegister andAddOutputRegister to add an extra input or output register.
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Overall HDL Filter Code Optimization
In this section...
“Optimize for HDL” on page 4-29
“Set Error Margin for Test Bench” on page 4-29

Optimize for HDL
By default, generated HDL code is bit-compatible with the numeric results produced by the original
filter object. The Optimize for HDL option generates HDL code that is slightly optimized for clock
speed or space requirements. However, this optimization causes the coder to:

• Implement an adder-tree structure
• Make tradeoffs concerning data types.
• Avoid extra quantization.
• Generate code that produces numeric results that are different than the results produced by the

original filter object.

To optimize generated code for clock speed or space requirements:

1 Select Optimize for HDL in the Filter architecture pane of the Generate HDL tool.
2 Consider setting an error margin for the generated test bench. The error margin is the number of

least significant bits the test bench ignores when comparing the results. To set an error margin,

a Select the Test Bench pane in the Generate HDL tool. Then click the Configuration tab.
b Set the Error margin (bits) field to an integer that indicates the maximum acceptable

number of bits of difference in the numeric results.
3 Continue setting other options or click Generate to initiate code generation.

Command-Line Alternative: Use the generatehdl function with the property OptimizeForHDL
to enable these optimizations.

Set Error Margin for Test Bench
Customizations that provide optimizations can generate test bench code that produces numeric
results that differ from results produced by the original filter object. These options include:

• Optimize for HDL
• FIR adder style set to Tree
• Add pipeline registers for FIR, asymmetric FIR, and symmetric FIR filters

If you choose to use these options, consider setting an error margin for the generated test bench to
account for differences in numeric results. The error margin is the number of least significant bits the
test bench ignores when comparing the results. To set an error margin:

1 Select the Test Bench pane in the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
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3 For fixed-point filters, the initial Error margin (bits) field has a default value of 4. To change
the error margin, enter an integer in the Error margin (bits) field. In the figure, the error
margin is set to 4 bits.

Command-Line Alternative: Use the generatehdl function with the property ErrorMargin to set
the comparison tolerance.
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Customization of HDL Filter Code

• “HDL File Names and Locations” on page 5-2
• “HDL Identifiers and Comments” on page 5-7
• “Ports and Resets” on page 5-16
• “HDL Constructs” on page 5-21
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HDL File Names and Locations
In this section...
“Setting the Location of Generated Files” on page 5-2
“Naming the Generated Files and Filter Entity” on page 5-3
“Set HDL File Name Extensions” on page 5-3
“Splitting Entity and Architecture Code Into Separate Files” on page 5-5

Setting the Location of Generated Files
By default, the coder places generated HDL files in the subfolder hdlsrc under your current working
folder. To direct the coder output to a folder other than the default target folder, use either the Folder
field or the Browse button in the Target pane of the Generate HDL tool.

Clicking the Browse button opens a browser window that lets you select (or create) the folder where
the coder puts generated files. When the folder is selected, the full path and folder name are
automatically entered into the Folder field.

Alternatively, you can enter the folder specification directly into the Folder field. If you specify a
folder that does not exist, the coder creates the folder for you before writing the generated files. Your
folder specification can be one of these formats.

• Folder name. In this case, the coder looks for the subfolder under your current working folder. If it
cannot find the specified folder, the coder creates it.

• An absolute path to a folder under your current working folder. If the coder cannot find the
specified folder, the coder creates it.

• A relative path to a higher-level folder under your current working folder. For example, if you
specify ../../../myfiltvhd, the coder checks whether a folder named myfiltvhd exists three
levels up from your current working folder. The coder then creates the folder if it does not exist,
and writes generated HDL files to that folder.

In this figure, the folder is set to MyFIRBetaVHDL.

Given this setting, the coder creates the subfolder MyFIRBetaVHDL under the current working folder
and writes generated HDL files to that folder.

Command-Line Alternative: Use the generatehdl function with the TargetDirectory property
to redirect coder output.
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Naming the Generated Files and Filter Entity
To set the character vector that the coder uses to name the filter entity or module and generated
files, specify a new value in the Name field of the Filter settings pane of the Generate HDL tool. The
coder uses Name to:

• Label the VHDL entity or Verilog module for your filter.
• Name the file containing the HDL code for your filter.
• Derive names for the filter's test bench and package files.

Derivation of File Names

By default, the coder creates the HDL files listed in the table. File names in generated HDL code
derive from the name of the filter for which the HDL code is being generated and the file type
extension .vhd or .v for VHDL and Verilog, respectively. The table lists example file names based on
filter name Hq.

Language Generated File File Name Example
Verilog Source file for the

quantized filter
filt_name.v firfilt.v

Source file for the test
bench

filt_name_tb.v firfilt_tb.v

VHDL Source file for the
quantized filter

filt_name.vhd firfilt.vhd

Source file for the test
bench

filt_name_tb.vhd firfilt_tb.vhd

Package file, if required
by the filter design

filt_name_pkg.vhd firfilt_pkg.vhd

By default, the coder generates a single test bench file, containing test bench helper functions, data,
and test bench code. You can split these elements into separate files, as described in “Splitting Test
Bench Code and Data into Separate Files” on page 6-10.

By default, the code for a VHDL entity and architecture is written to a single VHDL source file.
Alternatively, you can specify that the coder write the generated code for the entity and architectures
to separate files. For example, if the filter name is filt_name, the coder writes the VHDL code for
the filter to files filt_name_entity.vhd and filt_name_arch.vhd (see “Splitting Entity and
Architecture Code Into Separate Files” on page 5-5).

Derivation of Entity Names

The coder also uses the filter name to name the VHDL entity or Verilog module that represents the
quantized filter in the HDL code. Assuming a filter name of filt, the name of the filter entity or
module in the HDL code is filt.

Set HDL File Name Extensions
• “Set File Name Extension Via the Generate HDL Tool” on page 5-4
• “Set HDL File Name Extensions Via the Command-Line” on page 5-5
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Set File Name Extension Via the Generate HDL Tool

When you select VHDL code generation, by default the filter HDL files are generated with a .vhd file
extension. When you select Verilog, the default file extension is .v. To change the file extension,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Type the new file extension in either the VHDL file extension or Verilog file extension field.

The field for the language you have not selected is disabled.

This figure shows how to specify an alternate file extension for VHDL files. The coder generates the
filter file MyFIR.vhdl.

Note When specifying character vectors for file names and file type extensions, consider platform-
specific requirements and restrictions. Also consider postfix character vectors that the coder appends
to the Name, such as '_tb' and'_pkg'.
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Set HDL File Name Extensions Via the Command-Line

Command-Line Alternative: Use the generatehdl function with the Name property to set the
name of your filter entity and the base character vector for generated HDL file names. To specify an
alternative file type extension for generated files, call the function with the VerilogFileExtension
or VHDLFileExtension property.

Splitting Entity and Architecture Code Into Separate Files
By default, the coder includes a VHDL entity and architecture code in the same generated VHDL file.
Alternatively, you can instruct the coder to place the entity and architecture code in separate files.
For example, instead of generated code residing in MyFIR.vhd, you can specify that the code reside
in MyFIR_entity.vhd and MyFIR_arch.vhd.

The names of the entity and architecture files derive from:

• The base file name, as specified by the Name field in the Target pane of the Generate HDL tool.
• Default postfix values '_entity' and '_arch'.
• The VHDL file type extension, as specified by the VHDL file extension field on the General pane

of the Generate HDL tool.

To split the filter source file, do these steps.

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Select Split entity and architecture. The Split entity file postfix and Split arch. file postfix

fields are now enabled.

4 Specify new character vectors in the postfix fields if you want to use postfixes other than
'_entity' and '_arch' to identify the generated VHDL files.

Note When specifying a character vector for use as a postfix value in file names, consider the
size of the base name and platform-specific file naming requirements and restrictions.
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Command-Line Alternative: Use the generatehdl function with the property SplitEntityArch
to split the VHDL code into separate files. To modify the file name postfix for the separate entity and
architecture files, use the SplitEntityFilePostfix and SplitArchFilePostfix properties.
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HDL Identifiers and Comments
In this section...
“Specifying a Header Comment” on page 5-7
“Resolving Entity or Module Name Conflicts” on page 5-8
“Resolving HDL Reserved Word Conflicts” on page 5-9
“Setting the Postfix for VHDL Package Files” on page 5-11
“Specifying a Prefix for Filter Coefficients” on page 5-12
“Specifying a Postfix for Process Block Labels” on page 5-13
“Setting a Prefix for Component Instance Names” on page 5-14
“Setting a Prefix for Vector Names” on page 5-15

Specifying a Header Comment
The coder includes a header comment block at the top of the files it generates. The header comment
block contains the specifications of the generating filter and the coder options that were selected at
the time HDL code was generated.

You can use the Comment in header option to add a comment to the end of the header comment
block in each generated file. For example, use this option to add “This module was
automatically generated”. With this change, the preceding header comment block would appear
as follows:

-- -------------------------------------------------------------
--
-- Module: Hlp
--
-- Generated by MATLAB(R) 7.11 and the Filter Design HDL Coder 2.7.
--
-- Generated on: 2010-08-31 13:32:16
--
-- This module was automatically generated
--
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- HDL Code Generation Options:
--
-- TargetLanguage: VHDL
-- Name: Hlp
-- UserComment:  User data, length 47

-- Filter Specifications:
--
-- Sampling Frequency : N/A (normalized frequency)
-- Response           : Lowpass
-- Specification      : Fp,Fst,Ap,Ast
-- Passband Edge      : 0.45
-- Stopband Edge      : 0.55
-- Passband Ripple    : 1 dB
-- Stopband Atten.    : 60 dB
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- HDL Implementation    : Fully parallel
-- Multipliers           : 43
-- Folding Factor        : 1
-- -------------------------------------------------------------
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure  : Direct-Form FIR

 HDL Identifiers and Comments

5-7



-- Filter Length     : 43
-- Stable            : Yes
-- Linear Phase      : Yes (Type 1)
-- Arithmetic        : fixed
-- Numerator         : s16,16 -> [-5.000000e-001 5.000000e-001)
-- Input             : s16,15 -> [-1 1)
-- Filter Internals  : Full Precision
--   Output          : s33,31 -> [-2 2)  (auto determined)
--   Product         : s31,31 -> [-5.000000e-001 5.000000e-001)  (auto determined)
--   Accumulator     : s33,31 -> [-2 2)  (auto determined)
--   Round Mode      : No rounding
--   Overflow Mode   : No overflow
-- -------------------------------------------------------------

To add a header comment,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Type the comment text in the Comment in header field, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property UserComment to
add a comment to the end of the header comment block in each generated HDL file.

Resolving Entity or Module Name Conflicts
The coder checks whether multiple entities in VHDL or multiple modules in Verilog share the same
name. If a name conflict exists, the coder appends the postfix '_block' to the second of the two
matching character vectors.

To change the postfix:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Entity conflict postfix field, as shown in this figure.
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Command-Line Alternative: Use the generatehdl function with the property
EntityConflictPostfix to change the entity or module conflict postfix.

Resolving HDL Reserved Word Conflicts

The coder checks whether character vectors that you specify as names, postfix values, or labels are
VHDL or Verilog reserved words. See “Reserved Word Tables” on page 5-10 for listings of VHDL and
Verilog reserved words.

If you specify a reserved word, the coder appends the postfix _rsvd to the character vector. For
example, if you try to name your filter mod, for VHDL code, the coder adds the postfix _rsvd to form
the name mod_rsvd.

To change the postfix:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Reserved word postfix field, as shown in this figure.
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Command-Line Alternative: Use the generatehdl function with the property
ReservedWordPostfix to change the reserved word postfix.

Reserved Word Tables

The tables list VHDL and Verilog reserved words.

VHDL Reserved Words

abs access after alias all
and architecture array assert attribute
begin block body buffer bus
case component configuration constant disconnect
downto else elsif end entity
exit file for function generate
generic group guarded if impure
in inertial inout is label
library linkage literal loop map
mod nand new next nor
not null of on open
or others out package port
postponed procedure process pure range
record register reject rem report
return rol ror select severity
signal shared sla sll sra
srl subtype then to transport
type unaffected units until use
variable wait when while with
xnor xor    
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Verilog Reserved Words

always and assign automatic begin
buf bufif0 bufif1 case casex
casez cell cmos config deassign
default defparam design disable edge
else end endcase endconfig endfunction
endgenerate endmodule endprimitive endspecify endtable
endtask event for force forever
fork function generate genvar highz0
highz1 if ifnone incdir include
initial inout input instance integer
join large liblist library localparam
macromodule medium module nand negedge
nmos nor noshowcancelled not notif0
notif1 or output parameter pmos
posedge primitive pull0 pull1 pulldown
pullup pulsestyle_onevent pulsestyle_ondetect rcmos real
realtime reg release repeat rnmos
rpmos rtran rtranif0 rtranif1 scalared
showcancelled signed small specify specparam
strong0 strong1 supply0 supply1 table
task time tran tranif0 tranif1
tri tri0 tri1 triand trior
trireg unsigned use vectored wait
wand weak0 weak1 while wire
wor xnor xor

Setting the Postfix for VHDL Package Files
By default, the coder appends the postfix _pkg to the base file name when generating a VHDL
package file. To rename the postfix for package files, do these steps.

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Specify a new value in the Package postfix field.
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Note When specifying a character vector for use as a postfix in file names, consider the size of
the base name and platform-specific file naming requirements and restrictions.

Command-Line Alternative: Use the generatehdl function with the PackagePostfix property
to rename the file name postfix for VHDL package files.

Specifying a Prefix for Filter Coefficients
The coder declares the coefficients for the filter as constants within a rtl architecture. The coder
derives the constant names adding the prefix coeff. The coefficient names depend on the type of
filter.

For... The Prefix Is Concatenated with...
FIR filters Each coefficient number, starting with 1.

Examples: coeff1, coeff22
IIR filters An underscore (_) and an a or b coefficient name (for example, _a2, _b1, or _b2)

followed by _sectionn, where n is the section number.

Example: coeff_b1_section3 (first numerator coefficient of the third section)

For example:
ARCHITECTURE rtl OF filt IS
  -- Type Definitions
  TYPE delay_pipeline_type IS ARRAY(NATURAL range <>) OF signed(15 DOWNTO 0);-- sfix16_En15
  CONSTANT coeff1               : signed(15 DOWNTO 0) := to_signed(-30, 16); -- sfix16_En15
  CONSTANT coeff2               : signed(15 DOWNTO 0) := to_signed(-89, 16); -- sfix16_En15
  CONSTANT coeff3               : signed(15 DOWNTO 0) := to_signed(-81, 16); -- sfix16_En15
  CONSTANT coeff4               : signed(15 DOWNTO 0) := to_signed(120, 16); -- sfix16_En15

To use a prefix other than coeff,
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1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Coefficient prefix field, as shown in this figure.

The character vector that you specify

• Must start with a letter.
• Cannot include a double underscore (__).

Note If you specify a VHDL or Verilog reserved word, the coder appends a reserved word postfix
to the character vector to form a valid identifier. If you specify a prefix that ends with an
underscore, the coder replaces the underscore character with under. For example, if you specify
coef_, the coder generates coefficient names such as coefunder1.

Command-Line Alternative: Use the generatehdl function with the property CoeffPrefix to
change the base name for filter coefficients.

Specifying a Postfix for Process Block Labels
The coder generates process blocks to modify the content of the registers. The label for each of these
blocks is derived from a register name and the postfix _process. For example, the coder derives the
label delay_pipeline_process in the following block from the register name delay_pipeline
and the postfix '_process'.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
  ELSIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in)
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS delay_pipeline_process;
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The Clocked process postfix property lets you change the postfix to a value other than
'_process'. For example, to change the postfix to '_clkproc', do these steps.

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Clocked process postfix field, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property
ClockProcessPostfix to change the postfix appended to process labels.

Setting a Prefix for Component Instance Names
Instance prefix specifies a character vector to be prefixed to component instance names in
generated code. The default is 'u_'.

You can set the prefix to a value other than 'u_'. To change the prefix:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Instance prefix field, as shown in this figure.
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Command-Line Alternative: Use the generatehdl function with the property InstancePrefix
to change the instance prefix.

Setting a Prefix for Vector Names
Vector prefix specifies a character vector to be prefixed to vector names in generated VHDL code.
The default is 'vector_of_'.

Note Vector prefix is not supported for Verilog code generation.

You can set the prefix to a value other than 'vector_of_'. To change the prefix:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the General tab in the Additional settings pane.
3 Enter a new character vector in the Vector prefix field, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property VectorPrefix to
change the instance prefix.

 HDL Identifiers and Comments

5-15



Ports and Resets
In this section...
“Naming HDL Ports” on page 5-16
“Specifying the HDL Data Type for Data Ports” on page 5-17
“Selecting Asynchronous or Synchronous Reset Logic” on page 5-18
“Setting the Asserted Level for the Reset Input Signal” on page 5-19
“Suppressing Generation of Reset Logic” on page 5-20

Naming HDL Ports
The default names for filter HDL ports are as follows:

HDL Port Default Port Name
Input port filter_in
Output port filter_out
Clock port clk
Clock enable port clk_enable
Reset port reset
Fractional delay port (Farrow
filters only)

filter_fd

For example, this code shows the default VHDL declaration for entity filt.
ENTITY filt IS
   PORT( clk               :     IN    std_logic;
         clk_enable        :     IN    std_logic;
         reset             :     IN    std_logic;
         filter_in         :     IN    std_logic_vector (15 DOWNTO 0); -- sfix16_En15
         filter_out        :     OUT   std_logic_vector (15 DOWNTO 0); -- sfix16_En15
         );
END filt;

To change port names,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Ports tab in the Additional settings pane. This figure highlights the port name fields

for Input port, Output port, Clock input port, Reset input port, and Clock enable output
port.
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3 Enter new character vectors in the port name fields.

Command-Line Alternative: Use the generatehdl function with the properties InputPort,
OutputPort, ClockInputPort, ClockEnableInputPort, and ResetInputPort to change the
names of the filter ports in the generated HDL code.

Specifying the HDL Data Type for Data Ports
By default, filter input and output data ports have data type std_logic_vector in VHDL and type
wire in Verilog. If you are generating VHDL code, alternatively, you can specify signed/unsigned,
and for output data ports, Same as input data type. The coder applies type SIGNED or
UNSIGNED based on the data type specified in the filter design.

To change the VHDL data type setting for the input and output data ports,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Ports tab in the Additional settings pane.
3 Select a data type from the Input data type or Output data type menu identified in this figure.

By default, the output data type is the same as the input data type.

The type for Verilog ports is wire, and cannot be changed.
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Note The setting of Input data type does not apply to double-precision input, which is
generated as type REAL for VHDL and wire[63:0] for Verilog.

Command-Line Alternative: Use the generatehdl function with the properties InputType and
OutputType to change the VHDL data type for the input and output ports.

Selecting Asynchronous or Synchronous Reset Logic
By default, generated HDL code for registers uses asynchronous reset logic. Select asynchronous or
synchronous reset logic depending on the type of device you are designing (for example, FPGA or
ASIC) and preference.

This code fragment illustrates the use of asynchronous resets. The process block does not check for
an active clock before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
  ELSIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in);
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS delay_pipeline_process;

To change the reset type to synchronous, select Synchronous from the Reset type menu in the
Global settings pane of the Generate HDL tool.
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Code for a synchronous reset follows. This process block checks for a clock event, the rising edge,
before performing a reset.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  IF rising_edge(clk) THEN
    IF reset = '1' THEN
      delay_pipeline (0 To 50) <= (OTHERS => (OTHERS => '0'));
    ELSIF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in);
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS delay_pipeline_process;

Command-Line Alternative: Use the generatehdl function with the property ResetType to set
the reset style for the registers in the generated HDL code.

Setting the Asserted Level for the Reset Input Signal
The asserted level for the reset input signal determines whether that signal must be driven to active
high (1) or active low (0) for registers to be reset in the filter design. By default, the coder sets the
asserted level to active high. For example, this code fragment checks whether reset is active high
before populating the delay_pipeline register:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
.
.
.

To change the setting to active low, select Active-low from the Reset asserted level menu in the
Global settings pane of the Generate HDL tool.

With this change, the IF statement in the preceding generated code changes to

IF reset = '0' THEN
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Note The Reset asserted level setting also determines the reset level for test bench reset input
signals.

Command-Line Alternative: Use the generatehdl function with the property
ResetAssertedLevel to set the asserted level for the reset input signal.

Suppressing Generation of Reset Logic
For some FPGA applications, it is desirable to avoid generation of resets. The Remove reset from
option in the Global settings pane of the Generate HDL tool lets you suppress generation of resets
from shift registers.

To suppress generation of resets from shift registers, select Shift register from the Remove
reset from pull-down menu in the Global settings pane of the Generate HDL tool.

If you do not want to suppress generation of resets from shift registers, leave Remove reset from
set to its default, which is None.

Command-Line Alternative: Use the generatehdl function with the property RemoveResetFrom
to suppress generation of resets from shift registers.
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HDL Constructs

In this section...
“Representing VHDL Constants with Aggregates” on page 5-21
“Unrolling and Removing VHDL Loops” on page 5-22
“Using the VHDL rising_edge Function” on page 5-22
“Suppressing the Generation of VHDL Inline Configurations” on page 5-23
“Specifying VHDL Syntax for Concatenated Zeros” on page 5-24
“Specifying Input Type Treatment for Addition and Subtraction Operations” on page 5-25
“Suppressing Verilog Time Scale Directives” on page 5-26
“Using Complex Data and Coefficients” on page 5-26

Representing VHDL Constants with Aggregates
By default, the coder represents constants as scalars or aggregates depending on the size and type of
the data. The coder represents values that are less than 232 – 1 as integers and values greater than or
equal to 232 – 1 as aggregates. These VHDL constant declarations are examples of declarations
generated by default for values less than 32 bits:
CONSTANT coeff1: signed(15 DOWNTO 0) := to_signed(-60, 16); -- sfix16_En16
CONSTANT coeff2: signed(15 DOWNTO 0) := to_signed(-178, 16); -- sfix16_En16

If you prefer that constant values be represented as aggregates, set the Represent constant values
by aggregates as follows:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab.
3 Select Represent constant values by aggregates, as shown this figure.

The preceding constant declarations would now appear as follows:
CONSTANT coeff1: signed(15 DOWNTO 0) := (5 DOWNTO 3 => '0',1 DOWNTO 0 => '0,OTHERS =>'1');
CONSTANT coeff2: signed(15 DOWNTO 0) := (7 => '0',5 DOWNTO 4 => '0',0 => '0',OTHERS =>'1');
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Command-Line Alternative: Use the generatehdl function with the property
UseAggregatesForConst to represent constants in the HDL code as aggregates.

Unrolling and Removing VHDL Loops
By default, the coder supports VHDL loops. However, some EDA tools do not support them. If you are
using such a tool along with VHDL, you can unroll and remove FOR and GENERATE loops from the
generated VHDL code. Verilog code is already unrolled.

To unroll and remove FOR and GENERATE loops,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Loop unrolling, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property LoopUnrolling to
unroll and remove loops from generated VHDL code.

Using the VHDL rising_edge Function
The coder can generate two styles of VHDL code for checking for rising edges when the filter
operates on registers. By default, the generated code checks for a clock event, as shown in the ELSIF
statement of this VHDL process block.

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
  ELSEIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in);
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS Delay_Pipeline_Process ;
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If you prefer, the coder can produce VHDL code that applies the VHDL rising_edge function
instead. For example, the ELSIF statement in the preceding process block would be replaced with
this statement:

  ELSIF rising_edge(clk) THEN

To use the rising_edge function,

1 Click Global Settings in the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Use 'rising_edge' for registers, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property UseRisingEdge to
use the VHDL rising_edge function to check for rising edges during register operations.

Suppressing the Generation of VHDL Inline Configurations
VHDL configurations can be either inline with the rest of the VHDL code for an entity or external in
separate VHDL source files. By default, the coder includes configurations for a filter within the
generated VHDL code. If you are creating your own VHDL configuration files, suppress the
generation of inline configurations.

To suppress the generation of inline configurations,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Inline VHDL configuration, as shown in this figure.

 HDL Constructs

5-23



Command-Line Alternative: Use the generatehdl function with the property
InlineConfigurations to suppress the generation of inline configurations.

Specifying VHDL Syntax for Concatenated Zeros
In VHDL, the concatenation of zeros can be represented in two syntax forms. One form, '0' & '0',
is type-safe. This syntax is the default. The alternative syntax, "000000...", can be easier to read
and is more compact, but can lead to ambiguous types.

To use the syntax "000000..." for concatenated zeros,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Concatenate type safe zeros, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property SafeZeroConcat
to use the syntax "000000...", for concatenated zeros.
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Specifying Input Type Treatment for Addition and Subtraction
Operations
By default, generated HDL code operates on input data using data types as specified by the filter
design, and then converts the result to the specified result type.

Typical DSP processors type cast input data to the result type before operating on the data.
Depending on the operation, the results can be different. If you want generated HDL code to handle
result typing in this way, use the Cast before sum option as follows:

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Select Cast before sum, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property CastBeforeSum to
cast input values to the result type for addition and subtraction operations.

Relationship With Cast Before Sum in Filter Designer

The Cast before sum option is related to the Filter Designer setting for the quantization option Cast
signals before sum as follows:

• Some filter object types do not have the Cast signals before sum property. For such filter
objects, Cast before sum is effectively off when HDL code is generated; it is not relevant to the
filter.

• Where the filter object does have the Cast signals before sum property, the coder by default
follows the setting of Cast signals before sum in the filter object. This setting is visible in the UI.
If you change the setting of Cast signals before sum, the coder updates the setting of Cast
before sum.

• However, by explicitly setting Cast before sum, you can override the Cast signals before sum
setting passed in from Filter Designer.
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Suppressing Verilog Time Scale Directives
In Verilog, the coder generates time scale directives (ˋtimescale) by default. This compiler directive
provides a way of specifying different delay values for multiple modules in a Verilog file.

To suppress the use of ˋtimescale directives,

1 Select the Global Settings tab on the Generate HDL tool.
2 Select the Advanced tab. The Advanced pane appears.
3 Clear Use Verilog ˋtimescale directives, as shown in this figure.

Command-Line Alternative: Use the generatehdl function with the property
UseVerilogTimescale to suppress the use of time scale directives.

Using Complex Data and Coefficients
The coder supports complex coefficients and complex input signals.

Enabling Code Generation for Complex Data

To generate ports and signal paths for the real and imaginary components of a complex input signal,
set Input complexity to Complex. The default setting for Input complexity is Real, disabling
generation of ports for complex input data.

The corresponding command-line property is InputComplex. By default, InputComplex is set to
'off', disabling generation of ports for complex input data. To enable generation of ports for
complex input data, set InputComplex to 'on', as in this code example:
filt = design(fdesign.lowpass,'equiripple','Filterstructure','dffir','SystemObject',true);
generatehdl(filt,numerictype(1,16,15),'InputComplex','on')

This VHDL code excerpt shows the entity definition generated by the preceding commands:
ENTITY firfilt IS
   PORT( clk                :   IN    std_logic; 
         clk_enable         :   IN    std_logic; 
         reset              :   IN    std_logic; 
         filter_in_re       :   IN    std_logic_vector(15 DOWNTO 0); -- sfix16_En15
         filter_in_im       :   IN    std_logic_vector(15 DOWNTO 0); -- sfix16_En15
         filter_out_re      :   OUT   std_logic_vector(37 DOWNTO 0); -- sfix38_En31
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         filter_out_im      :   OUT   std_logic_vector(37 DOWNTO 0)  -- sfix38_En31
         );

END firfilt;

In the code excerpt, the port names generated for the real components of complex signals have the
default postfix '_re', and port names generated for the imaginary components of complex signals
have the default postfix '_im'.

Setting the Port Name Postfix for Complex Ports

Two code generation properties let you customize naming conventions for the real and imaginary
components of complex signals in generated HDL code. These properties are:

• The Complex real part postfix option (corresponding to the ComplexRealPostfix command-
line property) specifies a character vector to be appended to the names generated for the real part
of complex signals. The default postfix is '_re'.

• The Complex imaginary part postfix option (corresponding to the ComplexImagPostfix
command-line property) specifies a character vector to be appended to the names generated for
the imaginary part of complex signals. The default postfix is '_im'.
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Verification of Generated HDL Filter
Code

• “Testing with an HDL Test Bench” on page 6-2
• “Cosimulation of HDL Code with HDL Simulators” on page 6-21
• “Integration with Third-Party EDA Tools” on page 6-28
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Testing with an HDL Test Bench
In this section...
“Workflow for Testing with an HDL Test Bench” on page 6-2
“Enabling Test Bench Generation” on page 6-7
“Renaming the Test Bench” on page 6-9
“Splitting Test Bench Code and Data into Separate Files” on page 6-10
“Configuring the Clock” on page 6-11
“Configuring Resets” on page 6-12
“Setting a Hold Time for Data Input Signals” on page 6-15
“Setting an Error Margin for Optimized Filter Code” on page 6-16
“Setting an Initial Value for Test Bench Inputs” on page 6-17
“Setting Test Bench Stimuli” on page 6-18
“Setting a Postfix for Reference Signal Names” on page 6-19

Workflow for Testing with an HDL Test Bench
Generating the Filter and Test Bench HDL Code

Use the Filter Design HDL Coder UI or command-line interface to generate the HDL code for your
filter design and test bench. The UI generates a VHDL or Verilog test bench file, depending on your
language selection for the generated HDL code. You can specify a different test bench language by
selecting the Test bench language option in the Test Bench pane of the Generate HDL tool. You
cannot specify a different test bench language when using the command-line interface.

This figure shows settings for generating the filter (VHDL) and test bench (Verilog) files
MyFilter.vhd, and MyFilter_tb.v. The tool also specifies the location for the generated files, in
this case, the folder hdlsrc under the current working folder.
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After you click Generate, the coder displays progress information similar to the following in the
MATLAB Command Window:
### Starting VHDL code generation process for filter: MyFilter
### Generating: C:\Work\sl_hdlcoder_work\hdlsrc\MyFilter.vhd
### Starting generation of MyFilter VHDL entity
### Starting generation of MyFilter VHDL architecture
### HDL latency is 2 samples
### Successful completion of VHDL code generation process for filter: MyFilter

### Starting generation of VERILOG Test Bench
### Generating input stimulus
### Done generating input stimulus; length 3429 samples.
### Generating Test bench: C:\Work\sl_hdlcoder_work\hdlsrc\MyFilter_tb.v
### Please wait ...
### Done generating VERILOG Test Bench
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Note The length of the input stimulus samples varies from filter to filter. For example, the value
3429 in the preceding message sequence is not fixed; the value depends on the filter under test.

If you call the generatehdl function from the command-line interface, set code and test bench
generation options with property name and value pairs. You can also use the function
generatetbstimulus to return the test bench stimulus to a workspace variable.

Starting the Simulator

After you generate your filter and test bench HDL files, start your simulator. When you start the
Mentor Graphics ModelSim simulator, a screen display similar to this appears:

After starting the simulator, set the current folder to the folder that contains your generated HDL
files.

Compiling the Generated Filter and Test Bench Files

Using your choice of HDL compiler, compile the generated filter and test bench HDL files. Depending
on the language of the generated test bench and the simulator you are using, you may have to
complete some precompilation setup. For example, in the Mentor Graphics ModelSim simulator, you
might choose to create a design library to store compiled VHDL entities, packages, architectures, and
configurations.

This Mentor Graphics ModelSim command sequence changes the current folder to hdlsrc, creates
the design library work, and compiles VHDL filter and filter test bench code. The vlib command
creates the design library work and the vcom commands initiate the compilations.

cd hdlsrc
vlib work
vcom MyFilter.vhd
vcom MyFilter_tb.vhd

Note  For VHDL test bench code that has floating-point (double) realizations, use a compiler that
supports VHDL-93 or VHDL-02. For example, in the Mentor Graphics ModelSim simulator, specify the
vcom command with the -93 option. Do not compile the generated test bench code with a VHDL-87
compiler. VHDL test benches using double-precision data types do not support VHDL-87. The test
bench code uses the image attribute, which is available only in VHDL-93 or higher.

6 Verification of Generated HDL Filter Code

6-4



This figure shows this command sequence and informational messages displayed during compilation.

Running the Test Bench Simulation

Once your generated HDL files are compiled, load and run the test bench. The procedure varies
depending on the simulator you are using. In the Mentor Graphics ModelSim simulator, you load the
test bench for simulation with the vsim command. For example:

vsim work.MyFilter_tb

This figure shows the results of loading work.MyFilter_tb with the vsim command.

Once the design is loaded into the simulator, consider opening a display window for monitoring the
simulation as the test bench runs. For example, in the Mentor Graphics ModelSim simulator, you can
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use the add wave * command to open a wave window to view the results of the simulation as HDL
waveforms.

To start running the simulation, issue the start simulator command. For example, in the Mentor
Graphics ModelSim simulator, you can start a simulation with the run -all command.

This figure shows the add wave * command being used to open a wave window and the -run all
command being used to start a simulation.

As your test bench simulation runs, watch for error messages. If error messages appear, interpret
them as they pertain to your filter design and the code generation options you applied. For example,
some HDL optimization options can produce numeric results that differ from the results produced by
the original filter object. For HDL test benches, expected and actual results are compared. If they
differ (excluding the specified error margin), an error message similar to this is returned:

Error in filter test: Expected xxxxxxxx Actual xxxxxxxx

You must determine whether the actual results are expected based on the customizations you
specified when generating the filter HDL code.

Note The failure message that appears in the preceding display is not flagging an error. If the
message includes the text Test Complete, the test bench has run to completion without
encountering an error. The Failure part of the message is tied to the mechanism the coder uses to
end the simulation.

This wave window shows the simulation results as HDL waveforms.
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Enabling Test Bench Generation
To enable generation of an HDL test bench:

1 Select the Test Bench pane in the Generate HDL tool.
2 Select the HDL test bench option, as shown in this figure.
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3 Click Generate to generate HDL and test bench code.

Tip By default, HDL test bench is selected.

Command-Line Alternative: Use the generatehdl function with the property
GenerateHDLTestBench to generate an HDL test bench.
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Renaming the Test Bench
The coder derives the name of the test bench file by appending the postfix _tb to the name of the
quantized filter object. The file type extension depends on the type of test bench that is being
generated.

If the Test Bench Is a... The Extension Is...
Verilog file Defined by the Verilog file extension field in the General

subpane of the Global Settings pane of the Generate HDL
tool

VHDL file Defined by the VHDL file extension field in the Global
Settings pane of the Generate HDL tool

The file is placed in the folder defined by the Folder option in the Target pane of the Generate HDL
tool.

To specify a test bench name, enter the name in the Name field of the Test bench settings pane, as
shown in this figure.
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Note If you enter a character vector that is a VHDL or Verilog reserved word, the coder corrects the
identifier by appending the reserved word postfix to the character vector.

Command-Line Alternative: Use the generatehdl property TestBenchName to specify a name
for your test bench.

Splitting Test Bench Code and Data into Separate Files
By default, the coder generates a single test bench file, containing test bench helper functions, data,
and test bench code. You can split these elements into separate files by selecting the Multi-file test
bench option in the Configuration subpane of the Test Bench pane of the Generate HDL tool.

When you select the Multi-file test bench option, the Test bench data file name postfix option is
enabled. The test bench file names are then derived from the name of the test bench and the postfix
setting, TestBenchName_TestBenchDataPostfix.

For example, if the test bench name is my_fir_filt, and the target language is VHDL, the default
test bench file names are:

• my_fir_filt_tb.vhd: test bench code
• my_fir_filt_tb_pkg.vhd: helper functions package
• my_fir_filt_tb_data.vhd: data package

If the filter name is my_fir_filt and the target language is Verilog, the default test bench file
names are:
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• my_fir_filt_tb.v: test bench code
• my_fir_filt_tb_pkg.v: helper functions package
• my_fir_filt_tb_data.v: test bench data

Command-Line Alternative: Use the generatehdl properties MultifileTestBench,
TestBenchDataPostfix, and TestBenchName to generate and name separate test bench helper
functions, data, and test bench code files.

Configuring the Clock
Based on default settings, the coder configures the clock for a filter test bench such that it:

• Forces clock enable input signals to active high (1).
• Asserts the clock enable signal 1 clock cycle after deassertion of the reset signal.
• Forces clock input signals low (0) for a duration of 5 nanoseconds and high (1) for a duration of 5

nanoseconds.

To change these clock configuration settings:

1 Click Configuration in the Test bench pane of the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
3 Make the configuration changes shown in the table.

If You Want to... Then...
Disable the forcing of clock enable input
signals

Clear Force clock enable.

Disable the forcing of clock input signals Clear Force clock.
Reset the number of nanoseconds that the
test bench drives the clock input signals
low (0)

Specify a positive integer or double (with a
maximum of 6 significant digits after the
decimal point) in the Clock low time field.

Reset the number of nanoseconds that the
test bench drives the clock input signals
high (1)

Specify a positive integer or double (with a
maximum of 6 significant digits after the
decimal point) in the Clock high time field.

Change the delay time elapsed between the
deassertion of the reset signal and the
assertion of clock enable signal.

Specify a positive integer in the Clock enable
delay field.

This figure highlights the applicable options.
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Command-Line Alternative: Use the generatehdl properties ForceClock, ClockHighTime,
ForceClockEnable, and TestBenchClockEnableDelay to reconfigure the test bench clock.

Configuring Resets
Based on default settings, the coder configures the reset for a filter test bench such that it:

• Forces reset input signals to active high (1). (Set the test bench reset input levels with the Reset
asserted level option).

• Asserts reset input signals for a duration of 2 clock cycles.
• Applies a hold time of 2 nanoseconds for reset input signals.

Hold time is the amount of time the test bench holds the reset input signals past the clock rising
edge. The figure shows the application of a hold time (thold) for reset input signals in the active high
and active low cases. The test bench asserts reset after some initial clock cycles defined by the Reset
length option. The default Reset length of 2 clock cycles is shown.
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Note The hold time applies to reset input signals only if the forcing of reset input signals is enabled.

The table summarizes the reset configuration settings.

If You Want to... Then...
Disable the forcing of reset input
signals

Clear Force reset in the Test Bench pane of the Generate HDL
tool.

Change the length of time (in
clock cycles) during which reset
is asserted

Set Reset length (in clock cycles) to an integer greater than or
equal to 0. This option is located in the Test Bench pane of the
Generate HDL tool.

Change the reset value to active
low (0)

Select Active-low from the Reset asserted level menu in the
Global Settings pane of the Generate HDL tool (see “Setting the
Asserted Level for the Reset Input Signal” on page 5-19)

Set the hold time Specify a positive integer or double (with a maximum of 6
significant digits after the decimal point), representing
nanoseconds, in the Hold time field. When the Hold time
changes, the Setup time (ns) value is updated. The Setup time
(ns) value computed as (clock period - HoldTime) in
nanoseconds. These options are in the Test Bench pane of the
Generate HDL tool.

These figures highlight the applicable options.
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Note The hold time and setup time settings also apply to data input signals.
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Command-Line Alternative: Use the generatehdl properties ForceReset, ResetLength, and
HoldTime to reconfigure test bench resets.

Setting a Hold Time for Data Input Signals
By default, the coder applies a hold time of 2 nanoseconds for filter data input signals. The hold time
is the amount of time that data input signals are to be held past the clock rising edge. This figure
shows the application of a hold time (thold) for data input signals.

To change the hold time setting,

1 Click the Test Bench tab in the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
3 Specify a positive integer or double (with a maximum of 6 significant digits after the decimal

point), representing nanoseconds, in the Hold time field. In this figure, the hold time is set to 2
nanoseconds.

When the Hold time changes, the Setup time (ns) value updates. The coder computes the
Setup time (ns) value as (clock period - HoldTime) in nanoseconds. Setup time (ns) is a
display-only field.
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Note When you enable forcing of reset input signals, the hold time and setup time settings also apply
to the reset signals.

Command-Line Alternative: Use the generatehdl property HoldTime to adjust the hold time
setting.

Setting an Error Margin for Optimized Filter Code
Customizations that provide optimizations can generate test bench code that produces numeric
results that differ from results produced by the original filter object. These options include:

• Optimize for HDL
• FIR adder style set to Tree
• Add pipeline registers for FIR, asymmetric FIR, and symmetric FIR filters

To account for differences in numeric results, consider setting an error margin for the generated test
bench. The error margin is the number of least significant bits the test bench ignores when
comparing the results. To set an error margin:

1 Select the Test Bench pane in the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
3 For fixed-point filters, the initial Error margin (bits) field has a default value of 4. To change

the error margin, enter an integer in the Error margin (bits) field. In this figure, the error
margin is set to 4 bits.
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Command-Line Alternative: Use the generatehdl property ErrorMargin to specify the number
of bits of tolerable error.

Setting an Initial Value for Test Bench Inputs
By default, the initial value driven on test bench inputs is 'X' (unknown). Alternatively, you can
specify that the initial value driven on test bench inputs is 0, as follows:

1 Select the Test Bench pane in the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
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3 To set an initial test bench input value of 0, select the Initialize test bench inputs option.

To set an initial test bench input value of 'X', clear the Initialize test bench inputs option.

Command-Line Alternative: Use the generatehdl property InitializeTestBenchInputs to
set the initial test bench input value.

Setting Test Bench Stimuli
By default, the coder generates a filter test bench that includes stimuli that correspond to the given
filter type. However, you can adjust the stimuli settings or specify user-defined stimuli, if desired.

To modify the stimuli included in a test bench, select one or more response types on the Stimuli
subpane of the Test bench tab of the Generate HDL tool. The figure highlights this pane of the tool.
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If you select User defined response, specify an expression or function that returns a vector of
values to be applied to the filter. The values specified in the vector are quantized and scaled based on
the quantization settings of the filter.

Command-Line Alternative: Use the generatehdl properties TestBenchStimulus and
TestBenchUserStimulus to adjust stimuli settings.

Setting a Postfix for Reference Signal Names
Reference signal data is represented as arrays in the generated test bench code. The character vector
specified by Test bench reference postfix is appended to the generated signal names. The default is
'_ref'.

You can set the postfix to a value other than '_ref'. To change this parameter:

1 Select the Test Bench pane in the Generate HDL tool.
2 Within the Test Bench pane, select the Configuration subpane.
3 Enter a new character vector in the Test bench reference postfix field, as shown in this figure.
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Command-Line Alternative: Use the generatehdl property TestBenchReferencePostfix to
change the postfix character vector.

See Also

More About
• “Integration with Third-Party EDA Tools” on page 6-28
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Cosimulation of HDL Code with HDL Simulators
In this section...
“Generating HDL Cosimulation Blocks for Use with HDL Simulators” on page 6-21
“Generating a Simulink Model for Cosimulation with an HDL Simulator” on page 6-22

Generating HDL Cosimulation Blocks for Use with HDL Simulators
The coder supports generation of Simulink HDL Cosimulation blocks. You can use the generated HDL
Cosimulation blocks to cosimulate your filter design using Simulink with an HDL simulator. To use
this feature, you must have an HDL Verifier™ license.

The generated HDL Cosimulation blocks are configured to conform to the port and data type
interface of the filter selected for code generation. By connecting an HDL Cosimulation block to a
Simulink model in place of the filter, you can cosimulate your design with the desired HDL simulator.

To generate HDL Cosimulation blocks:

1 Select the Test Bench pane in the Generate HDL tool.
2 Select the Cosimulation blocks option.

When this option is selected, the coder generates and opens a Simulink model that contains an
HDL Cosimulation block for each supported HDL simulator.

3 If you want to generate HDL Cosimulation blocks only (without generating HDL test bench code),
clear HDL test bench.

This figure shows both HDL test bench and Cosimulation blocks selected.
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4 In the Generate HDL tool, click Generate to generate HDL and test bench code.
5 In addition to the usual code files, the coder generates a Simulink model containing an HDL

Cosimulation block for each HDL simulator supported by HDL Verifier.

6 The generated model is untitled and exists in memory only. Be sure to save it to a destination
folder if you want to preserve the model and blocks for use in future sessions.

To configure HDL Cosimulation block parameters, such as timing, latency, and data types, see “Define
HDL Cosimulation Block Interface” (HDL Verifier).

Command-Line Alternative: Use the generatehdl function with the property
GenerateCosimBlock to generate HDL Cosimulation blocks.

Generating a Simulink Model for Cosimulation with an HDL Simulator

Note To use this feature, you must have an HDL Verifier license.

The coder generates a Simulink model, that runs a Simulink simulation of your filter design, and also
a cosimulation of your design with an HDL simulator. The model compares the outputs of the
Simulink filter with the results of the HDL simulation.

The generated model includes:

• A behavioral model of the filter design, realized in a Simulink subsystem. The subsystem
implements the filter design using basic blocks such as adders and delays.

• A corresponding HDL Cosimulation block. The coder configures this block to cosimulate the filter
design using Simulink with either of these HDL simulators.

• Mentor Graphics ModelSim
• Cadence Incisive®

• Test input data, calculated from the test bench stimulus you specify. The coder stores the test data
in the model workspace variable inputdata. A From Workspace block routes test data to the
filter subsystem and HDL Cosimulation blocks.

• A Scope block that lets you observe and compare the test input signal with the outputs of the
Filter block and the HDL cosimulation. The scope also shows the difference (error) between these
two outputs.

Generating the Model

Generation of a cosimulation model requires registered inputs and/or outputs (see “Limitations” on
page 6-26). Before generating the model, make sure that your model meets this requirement, as
follows:
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1 Select the Global Settings pane the Generate HDL tool.
2 In the Global Settings pane, click the Ports tab. Port options appear.
3 Select both of these options.

• Add input register
• Add output register

To generate the model:

1 In the Generate HDL tool, configure other code generation and test bench parameters as
required by your design.

2 Select the Test bench pane of the Generate HDL tool.
3 Select the Cosimulation model for use with: option. Selecting this option enables the adjacent

drop-down menu, where you can select Mentor Graphics ModelSim or Cadence Incisive.

 Cosimulation of HDL Code with HDL Simulators

6-23



4 Using the drop-down menu, select which type of HDL Cosimulation block you want in the
generated model. Select either Mentor Graphics ModelSim (the default) or Cadence
Incisive.

In this figure, the cosimulation model type is Mentor Graphics ModelSim, and the stimulus
signal is White noise response.

5 In the Generate HDL tool, click Generate to generate HDL and test bench code.

In addition to the usual code files, the coder generates and opens a Simulink model. This figure
shows the model generated from the coder configuration shown in the previous step.

6 The generated model is untitled and exists in memory only. Be sure to save it to a destination
folder if you want to preserve the model and blocks for use in future sessions.

To configure HDL Cosimulation block parameters, such as timing, latency, and data types, see “Define
HDL Cosimulation Block Interface” (HDL Verifier).
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Details of the Generated Model

The generated model contains these blocks.

• Test Stimulus: This From Workspace block routes test data in the model workspace variable
inputdata to the filter subsystem and HDL Cosimulation blocks.

• Filter: This subsystem realizes a behavioral model of the filter design.
• HDL Cosimulation: This block cosimulates the generated HDL code. The table HDL

Cosimulation Block Settings describes how the coder configures the cosimulation block
parameters.

• Reset Delay: The Tcl commands specified in the HDL Cosimulation block apply the reset
signal. Reset is high at 0 ns and low at 22 ns (before the third rising clock edge). The Simulink
simulation starts feeding the input at 0, 10, 20 ns. The Reset Delay block adds a delay such that
the first sample is available to the RTL simulation when it is ready after the reset is applied.

• HDL Latency: This delay represents the difference between the latency of the RTL simulation
and the Simulink behavioral block.

• Error: Computes the difference between the outputs of the Filter block and the HDL
Cosimulation block.

• Abs: Absolute value of the error computation.
• Error margin:: Indicator comparing the absolute value of the error with the test bench error

margin value (see “Setting an Error Margin for Optimized Filter Code” on page 6-16).
• Scope: Displays the input signal, outputs from the Filter block and the HDL Cosimulation

blocks, and the difference (if one exists) between the two.
• Start HDL Simulator button: Starts your HDL cosimulation software.
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HDL Cosimulation Block Settings

Pane Settings
Ports Port names: same as the names in the generated code for the filter.

Input/Output data types: Inherit

Input sample time: Inherit

Output sample time: Same as Simulink fixed step size.
Clocks Clock port name: same as the name in the generated code for the filter.

Active clock edge: Rising

Period: same as the Simulink sample time.
Timescales 1 second in Simulink corresponds to 1 tick in the HDL simulator
Connection Connection Mode: Full Simulation

Connection Method: Shared memory
Tcl (Pre-simulation
commands)

force /Hlp/clk_enable 1;
force /Hlp/reset 1 0 ns, 0 22 ns;
puts -----------------------------------------
puts "Running Simulink Cosimulation block.";
puts [clock format [clock seconds]]

Tcl (Post-simulation
commands)

force /Hlp/reset 1
puts [clock format [clock seconds]]

Generated Model Settings

The generated model has these nondefault settings:

• Solver: Discrete (no continuous states).
• Solver Type: Fixed-step.
• Stop Time: Ts * StimLen, where Ts is the Simulink sample time and StimLen is the stimulus

length.
• Sample Time Colors: enabled
• Port Data Types: enabled
• Hardware Implementation: ASIC/FPGA

Limitations

• A cosimulation that runs without encountering errors requires that outputs from the generated
HDL code are synchronous with the clock. Before generating code, make sure that both of these
options are selected:

• Add input register
• Add output register

If you do not select either of these options, the coder terminates model generation with an error.
However, test bench code generation is completed.
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• The coder does not support generation of a cosimulation model when the target language is
Verilog and data of type double is generated.

Command-Line Alternative

Use the generatehdl function, passing in one of these values for the property
GenerateCosimModel.

• generatehdl(filtSysObj,'InputDataType',numerictype(1,16,15), ...
    'GenerateCosimModel','Incisive');

• generatehdl(filtSysObj,'InputDataType',numerictype(1,16,15), ...
    'GenerateCosimModel','ModelSim'); 
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Integration with Third-Party EDA Tools
In this section...
“Generate a Default Script” on page 6-28
“Customize Scripts for Compilation and Simulation” on page 6-29

Generate a Default Script
The coder generates scripts as part of the code and test bench generation process. Script files are
generated in the target folder.

When HDL code is generated for a filter, filt, the coder writes these script files.

• filt_compile.do: Mentor Graphics ModelSim compilation script. This script contains
commands to compile the generated filter code, but not to simulate it.

When test bench code is generated for a filter filt, the coder writes these script files.

• filt_tb_compile.do: Mentor Graphics ModelSim compilation script. This script contains
commands to compile the generated filter and test bench code.

• filt_tb_sim.do: Mentor Graphics ModelSim simulation script. This script contains commands
to run a simulation of the generated filter and test bench code.

You can enable or disable script generation and customize the names and content of generated script
files by:

• Passing properties as 'Name',Value arguments to the generatehdl function. See Compilation
and Simulation.

• Setting the corresponding options in the Generate HDL tool. Select the EDA Tool Scripts tab,
and click Compilation script or Simulation script from the menu in the left column. See
“Customize Scripts for Compilation and Simulation” on page 6-29.

Structure of Generated Script Files

A generated EDA script consists of three sections, which are generated and executed in this order.

1 An initialization (Init) phase. The Init phase performs required setup actions, such as creating
a design library or a project file.

2 A command-per-file phase (Cmd). This phase of the script is called iteratively, once per generated
HDL file.

3 A termination phase (Term). This phase is the final execution phase of the script. One application
of this phase is to execute a simulation of HDL code that was compiled in the Cmd phase.

The coder generates scripts by passing format character vectors to the fprintf function. Using the
UI options (or generatehdl properties) summarized in these sections, you can pass in customized
format character vectors to the script generator. Some of these format character vectors take
arguments, such as the top-level entity or module name.

You can use valid fprintf formatting characters. For example, '\n' inserts a newline into the script
file.
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Customize Scripts for Compilation and Simulation
To view and set options for generated scripts:

1 Open the Generate HDL tool.
2 Click the EDA Tool Scripts tab.

The Compilation script options group is selected, as shown.
3 The Generate EDA scripts option controls the generation of script files. By default, this option

is selected, as shown in the preceding image.

If you want to disable script generation, clear this check box.
4 The list on the left of the tool lets you select from several categories. Select a category and set

the options as desired. The categories are:

• Compilation script: customize scripts for compilation of generated VHDL or Verilog code.
See “Compilation Script Options” on page 6-29.

• Simulation script: customize scripts for HDL simulators. See “Simulation Script Options” on
page 6-31 .

• Synthesis script: customizing scripts for synthesis tools. See “Automation Scripts for Third-
Party Synthesis Tools” on page 7-2 .

5 The custom character vectors for each section are passed to fprintf to write each section of
the selected script. You can use format character vectors supported by the fprintf function.
Some of the character vectors include implicit arguments.

Option Implicit arguments
Compile initialization Library name
Compile command for VHDL and Compile
command for Verilog

• Contents of the Simulator flags option
(an empty character vector, '', by
default)

• File name of the current module
Compile termination No implicit argument
Compile initialization No implicit argument
Simulation command • Library name

• Top-level module or entity name
Simulation termination No implicit argument

Compilation Script Options

The figure shows the Compilation script pane, with the options set to their default values.

 Integration with Third-Party EDA Tools

6-29



The coder generates a script called firfilt_copy_compile.do:

vlib work
vcom  firfilt_copy.vhd

If you generate a test bench for your filter, the coder also generates a script called
firfilt_copy_tb_compile.do

vlib work
vcom  firfilt_copy.vhd
vcom  firfilt_copy_tb.vhd

Setting Simulator Flags for Compilation Scripts

You have the option of inserting simulator flags into your generated compilation scripts. This option is
included in the compilation scripts for both the standalone filter and the test bench. For example, you
can specify a compiler version. To specify the flags:

1 Click Test Bench in the Generate HDL tool.
2 Type the flags of interest in the Simulator flags field. In the figure, the tool specifies that the

Mentor Graphics ModelSim simulator use the -93 compiler option for compilation.
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Command-Line Alternative: Specify simulator flags with the SimulatorFlags property of the
generatehdl function.

Simulation Script Options

The coder generates a simulation script when you generate a test bench. The figure shows the
Simulation script pane, with the options set to their default values.
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The coder generates a script called firfilt_copy_tb_sim.do:

onbreak resume
onerror resume
vsim -voptargs=+acc work.firfilt_copy_tb
add wave sim:/firfilt_copy_tb/u_firfilt_copy/clk
add wave sim:/firfilt_copy_tb/u_firfilt_copy/clk_enable
add wave sim:/firfilt_copy_tb/u_firfilt_copy/reset
add wave sim:/firfilt_copy_tb/u_firfilt_copy/filter_in
add wave sim:/firfilt_copy_tb/u_firfilt_copy/filter_out
add wave sim:/firfilt_copy_tb/filter_out_ref
run -all

Synthesis Script Options

For information about synthesis script options, see “Automation Scripts for Third-Party Synthesis
Tools” on page 7-2.
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Automation Scripts for Third-Party Synthesis Tools
In this section...
“Select a Synthesis Tool” on page 7-2
“Customize Synthesis Script Generation” on page 7-2
“Programmatic Synthesis Automation” on page 7-3

Select a Synthesis Tool
You can enable or disable generation of synthesis scripts, and select the synthesis tool for which the
coder generates scripts. To do so, in the Generate HDL tool, select the EDA Tool Scripts tab. Then
select Synthesis script from the menu on the left side, and select your synthesis tool from the
Choose synthesis tool drop-down menu.

Supported Synthesis Tools
Xilinx ISE
Xilinx Vivado
Microsemi Libero
Mentor Graphics Precision
Altera Quartus II
Synopsis Synplify Pro

When you select a synthesis tool, the coder:

• Enables the fields in the Synthesis script pane.
• Sets Synthesis file postfix to correspond with the tool you selected.
• Fills in the Synthesis initialization, Synthesis command, and Synthesis termination fields

with default Tcl script code for the tool.

If you select None, the coder does not generate a synthesis script. The coder clears and disables the
fields in the Synthesis script pane.

You can also select 'Custom', and set the Synthesis initialization, Synthesis command, and
Synthesis termination Tcl code fields to generate a script that supports your tool.

Customize Synthesis Script Generation
You can customize the script according to your target device, constraints, etc., by modifying the Tcl
code in the Synthesis initialization, Synthesis command, and Synthesis termination fields. To
see these options in the Generate HDL tool, select the EDA Tool Scripts tab, and click Synthesis
script from the menu in the left column.

The coder prints the three sections of the script in the order shown in the tool. The script file is
named according to the name of your module or entity combined with the text in Synthesis file
postfix. The custom character vectors for each section are passed to fprintf to write each section
of the synthesis script. You can use format character vectors supported by the fprintf function. In
Synthesis initialization, you can use an implicit argument that is the name of your top-level module
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or entity. In Synthesis command, you can use an implicit argument that is the name of the file that
contains your generated HDL code.

The figure shows the Synthesis script pane, with the options set to their default values.

The coder generates a script called firfilt_copy_synplify.tcl:

project -new firfilt_copy.prj
add_file firfilt_copy.vhd
set_option -technology VIRTEX4
set_option -part XC4VSX35
set_option -synthesis_onoff_pragma 0
set_option -frequency auto
project -run synthesis

Programmatic Synthesis Automation
You can also specify the synthesis tool and script options as 'Name',Value arguments to the
generatehdl function. For programmatic use with generatehdl, see Synthesis and Workflow
Automation Properties.
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HDL Butterworth Filter

This example illustrates how to generate HDL code for a 5th order Butterworth filter. The cutoff-
frequency for this filter is very low relative to the sample rate, leading to a filter that is difficult to
make practical. Also, because the filter has small input (8-bit) and output (9-bit) word sizes, the
quantized filter requires scaling to be realizable.

Design the Filter

Use the CD sampling rate of 44.1 kHz and a cut-off frequency of 500 Hz. First, create the filter design
object, then create a biquad filter System object™. Finally, use fvtool to examine the response in
log frequency.

Fs = 44100;
F3db = 500;
filtdes = fdesign.lowpass('n,f3db', 5, F3db, Fs);
butterFilter = design(filtdes,'butter',...
    'SystemObject',true,'FilterStructure','df1sos','UseLegacyBiquadFilter',true);

fvtool(butterFilter,'Fs',Fs,'FrequencyScale','log');

Create the Quantized Filter

Apply the fixed point settings to the filter object. This example uses 9-bit fixed-point output data with
12-bit coefficients, 20-bit states, full-precision products, and 32-bit adders. Check the response by
using fvtool.
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butterFilter.NumeratorCoefficientsDataType = 'Custom';
butterFilter.CustomNumeratorCoefficientsDataType = numerictype([],12);
butterFilter.CustomDenominatorCoefficientsDataType = numerictype([],12);
butterFilter.CustomScaleValuesDataType = numerictype([],12);
butterFilter.SectionInputDataType = 'Custom';
butterFilter.CustomSectionInputDataType = numerictype([],20,15);
butterFilter.SectionOutputDataType = 'Custom';
butterFilter.CustomSectionOutputDataType = numerictype([],20,15);
butterFilter.NumeratorProductDataType = 'Full precision';
butterFilter.DenominatorProductDataType = 'Full precision';
butterFilter.NumeratorAccumulatorDataType = 'Custom';
butterFilter.CustomNumeratorAccumulatorDataType = numerictype([],32,24);
butterFilter.DenominatorAccumulatorDataType = 'Custom';
butterFilter.CustomDenominatorAccumulatorDataType = numerictype([],32,25);
butterFilter.OutputDataType = 'Custom';
butterFilter.CustomOutputDataType = numerictype([],9,7);
butterFilter.RoundingMethod = 'nearest';
butterFilter.OverflowAction = 'wrap';
fvtool(butterFilter,'Fs',Fs,'FrequencyScale','log','Arithmetic','fixed');

Requantize the Filter

In the plot above, fvtool shows that the quantized passband is approximately 2 dB lower than the
desired response. Adjust the coefficient word length from 12 to 16 to get the quantized response
closer to the reference double-precision response and zoom in on the passband response. The
quantized filter is now just over 0.1 dB lower than the reference filter.
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butterFilter.CustomNumeratorCoefficientsDataType = numerictype([],16);
butterFilter.CustomDenominatorCoefficientsDataType = numerictype([],16);
butterFilter.CustomScaleValuesDataType = numerictype([],16);

h = fvtool(butterFilter,'Fs',Fs,'FrequencyScale','log','Arithmetic','fixed');
h.zoom([0 1.0 -1 1]);

Examine the Scale Values

A key step for hardware realization of the filter design is to check whether the scale values are
reasonable and adjust the scale value if needed. First, examine the quantized scale values relative to
the input specification. The input data are 8-bit values with fraction length of 7 bits. Since the first
two scale values are smaller than can be represented with these input settings, most of the input
values are quantized away. To correct this behavior, the filter must be scaled.

scaless = butterFilter.ScaleValues .* 2^7 %#ok<*NASGU> 

scaless = 4×1

    0.1588
    0.1535
    4.4042
  128.0000

Now scale the filter using the frequency domain infinity norm. In this case, after scaling, the scale
values are all equal to one.
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scale(butterFilter,'Linf');
scaless = butterFilter.ScaleValues

scaless = 4×1

    1.0000
    1.0000
    1.0000
    1.0000

Generate HDL Code and Test Bench from the Quantized Filter

Starting with the correctly quantized filter, generate VHDL® or Verilog® code. You have the option of
generating a VHDL or Verilog test bench to verify that the HDL design matches the MATLAB® filter.

To generate Verilog instead, change the value of the TargetLanguage property, from 'VHDL' to
'Verilog'.

Since the passband of this filter is low relative to the sampling rate, a custom input stimulus is a
better way to test the filter implementation. Build the test input with one cycle of each of 50 to 300
Hz, in 50 Hz steps.

Generate 8-bit signed fixed-point input with 7 bits of fractional length.

Generate VHDL code for the filter and a VHDL test bench to verify that the results match the
MATLAB results exactly.

userstim = [];
for n = [50, 100, 150, 200, 250, 300]
  userstim = [userstim,sin(2*pi*n/Fs*(0:Fs/n))]; %#ok
end

generatehdl(butterFilter,'Name','hdlbutter', ...
    'TargetLanguage','VHDL', ...
    'GenerateHDLTestbench','on', ...
    'TestBenchUserStimulus',userstim, ...
    'InputDataType',numerictype(1,8,7));

### Starting VHDL code generation process for filter: hdlbutter
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex42204542\hdlsrc\hdlbutter.vhd
### Starting generation of hdlbutter VHDL entity
### Starting generation of hdlbutter VHDL architecture
### First-order section, # 1
### Second-order section, # 2
### Second-order section, # 3
### Successful completion of VHDL code generation process for filter: hdlbutter
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 2166 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex42204542\hdlsrc\hdlbutter_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.
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Generate HDL Code and Test Bench Using FDHDLTool

Alternatively, you can generate HDL code and test bench by using the fdhdhltool command. This
command opens a dialog that allows you to customize and generate Verilog or VHDL code and test
benches for the quantized filter.

When you specify a type of filter, the tool is customized to show only the relevant options for that
filter type.

fdhdltool(butterFilter,numerictype(1,8,7));

You can modify the default settings and click Generate to generate HDL code and/or a test bench.

ModelSim® Simulation Results

The image shows the ModelSim HDL simulator after running the VHDL test bench. Compare the
ModelSim result with the MATLAB result.

xrange = (0:length(userstim) - 1);
y = butterFilter(fi(userstim.',1,8,7));
subplot(2,1,1); plot(xrange,userstim); 
axis([0 length(userstim) -1.1 1.1]);
title('HDL Butterworth Filter Input Stimulus');
xlabel('Sample #');
subplot(2,1,2); plot(xrange, y); 
axis([0 length(userstim) -1.1 1.1]);
title('HDL Butterworth Filter Output Response');
xlabel('Sample #');
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Conclusion

You designed a Butterworth filter to meet the given specification. You then quantized the filter and
discovered that the passband requirement was not met. Requantizing the coefficients and scaling the
filter fixed this issue. You then generated VHDL code for the filter and a VHDL test bench.

You can use the ModelSim HDL Simulator, to verify these results. You can also experiment with VHDL
and Verilog for both filters and test benches.
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HDL Inverse Sinc Filter

This example illustrates how to generate HDL code for an inverse sinc (sin x/x) peaking filter that
adds preemphasis to compensate for the inherent sinc response of the digital-to-analog converter
(DAC). The input is a 10-bit video signal and the output is scaled to accommodate the gain of the
inverse sinc response.

Design the Filter

Use a video sampling rate of 27 MHz and a passband edge frequency of 7.2 MHz. Set the allowable
peak-to-peak passband ripple to 0.1 dB and the stopband attenuation to -66 dB. Then, design the filter
using firceqrip, and create a symmetric FIR filter. Finally, examine the response using fvtool.

Fs           = 27e6;                  % Sampling Frequency in MHz
N            = 20;                    % Order
Fpass        = 7.2e6;                 % Passband Frequency in MHz
slope        = 0;                     % Stopband Slope
spectype     = 'passedge';            % Frequency Specification Type
isincffactor = 1;                     % Inverse Sinc Frequency Factor
isincpower   = 1;                     % Inverse Sinc Power
Dstop        = 10^(-66/20);           % Stopband Attenuation -66 dB
ripple       = 10^(0.1/20);           % Passband Ripple 0.1 dB p-p
Dpass        = (ripple - 1) / (ripple + 1);

% Calculate the coefficients using the FIRCEQRIP function.
b  = firceqrip(N, Fpass/(Fs/2), [Dpass, Dstop], 'slope', slope, ...
               spectype, 'invsinc', isincffactor, isincpower);
inverseSincFilter = dsp.FIRFilter('Numerator',b,'Structure','Direct form symmetric');
h = fvtool(inverseSincFilter,'Fs',Fs);
h.zoom([0 Fs/2e6 -80 10]);
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Create the Quantized Filter

Use the infinity norm of freqz to find the maximum inverse sinc gain, and then scale this gain into
bits, rounding up. Next, apply fixed point settings to the filter. Check the response with fvtool.

Gbits = ceil(log2(norm(freqz(inverseSincFilter), inf)));

specifyall(inverseSincFilter);
inverseSincFilter.CustomCoefficientsDataType = numerictype(1,16,15);
inverseSincFilter.CustomOutputDataType = numerictype(1,10+Gbits,9);
inverseSincFilter.CustomProductDataType = numerictype(1,32,30);
inverseSincFilter.CustomAccumulatorDataType = numerictype(1,33,30);

h = fvtool(inverseSincFilter,'Fs',Fs,'Arithmetic','fixed');
h.zoom([0 Fs/2e6 -80 10]);
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Generate HDL Code from the Quantized Filter

Starting with the quantized filter, generate VHDL or Verilog code. You also have the option of
generating a VHDL or Verilog test bench to verify that the HDL design matches the MATLAB® filter.

To generate VHDL instead, change the value of the property 'TargetLanguage', from 'Verilog' to
'VHDL'.

Generate a Verilog test bench to make sure that the result match the response you see in MATLAB
exactly. Since this is a video filter, build and specify a stimulus similar to a line of video as the test
stimulus.

Create a temporary work directory. After generating the HDL code (selecting Verilog in this case) and
test bench, open the generated Verilog files in the editor.

workingdir = tempname;

Fsub        = 5e6*63/88;                     % 3.579545 MHz
VoltsperIRE = (7 + 1/7)/1000;                % IRE steps are 7.14mV
Nsamples    = 1716;                          % 27 MS/s video line
userstim = zeros(1,Nsamples);                % predefine our array

% 8 Sample raised-cosine -40 IRE
syncedge = ((cos(pi/2 *(0:7)/8).^2) - 1) * 40 * VoltsperIRE;
burst    = 20 * VoltsperIRE * sin(2*pi * Fsub/Fs * (0:Fs/(Fsub/9)));

userstim(33:40)    = syncedge;
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userstim(41:170)   = repmat(-40 * VoltsperIRE, 1, 130);
userstim(171:178)  = syncedge(end:-1:1);
userstim(180:247)  = burst;
% Ramp with chroma over 1416 samples from 7.5 to 80 IRE with a 20 IRE chroma
actlen = 1416;
active = 1:actlen;
userstim(260:1675) = (((active/actlen * 72.5)+7.5) + ...
                      20 * sin(2*pi * Fsub/Fs * active)) * VoltsperIRE;
userstim(1676:Nsamples) = 72.5 * VoltsperIRE * (41:-1:1)/41;

generatehdl(inverseSincFilter, 'Name', 'hdlinvsinc', 'TargetLanguage', 'Verilog',...
    'GenerateHDLTestbench','on', ...
    'TestBenchUserStimulus', userstim,...
    'TargetDirectory', workingdir,...
    'InputDataType',numerictype(1,10,9));

### Starting Verilog code generation process for filter: hdlinvsinc
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp60b72018_afff_43ac_8d64_e118b973feac\hdlinvsinc.v
### Starting generation of hdlinvsinc Verilog module
### Starting generation of hdlinvsinc Verilog module body
### Successful completion of Verilog code generation process for filter: hdlinvsinc
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1716 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp60b72018_afff_43ac_8d64_e118b973feac\hdlinvsinc_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.

To open the generated Verilog source and test bench files in the MATLAB editor, use these
commands.

edit(fullfile(workingdir,'hdlinvsinc.v'));

edit(fullfile(workingdir,'hdlinvsinc_tb.v'));

ModelSim® Simulation Results

The following display show the ModelSim HDL simulator waveform after running the test bench.
Compare the ModelSim result with the MATLAB result below.
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xrange = 0:Nsamples-1;
y = inverseSincFilter(fi(userstim.',1,10,9));
subplot(2,1,1); plot(xrange, userstim); 
axis([0 500 -0.4 1.1]);
title('HDL Inverse Sinc Filter In Stimulus.');
xlabel('Sample #');
subplot(2,1,2); plot(xrange, y); 
axis([0 500 -0.4 1.1]);
title('HDL Inverse Sinc Filter Out Response.');
xlabel('Sample #');
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Conclusion

You designed an inverse sinc filter to meet the given specification. You generated Verilog code and a
Verilog test bench using an approximation of a video line as the test stimulus.

You can use an HDL Simulator, to verify these results. You can also experiment with VHDL and
Verilog for both filters and test benches.
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HDL Minimum Phase FIRT Filter

This example illustrates how to generate HDL code for a minimum phase FIRT filter with 10-bit input
data. This is a bandpass filter with sample rate of 96 kHz and passband from approximately 19 kHz to
29 kHz. This type of filter is commonly used in feedback loops where linear phase is not sufficient and
minimum phase or as close as is achievable is required.

Set up the Coefficients

Design the filter using firgr, which uses the generalized Remez design method. The use of the
'minphase' argument to firgr forces a minimum phase filter design. Then, use fvtool to visualize the
filter response.

Fs  = 96000;
Fn  = Fs/2;
f   = [0 17000 20000 28000 31000 Fn]/Fn;
a   = [0     0     1     1     0  0];
w   = [5 1 5];
b   = firgr(44, f, a, w, 'minphase');
hfvt = fvtool(b,'Fs', Fs,...
              'MagnitudeDisplay', 'Magnitude (dB)',...
              'legend','on');
legend(hfvt,'Min Phase');
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Examine the Phase Response

Check the phase response of the filter.

hfvt = fvtool(b,'Fs', Fs,...
              'Analysis', 'phase',...
              'legend','on');
legend(hfvt, 'Min Phase');

Create the Quantized FIRT Fixed-Point Filter

Having checked the minimum phase filter design, construct a FIR filter System object with 'Direct
form transposed' structure. Set the coefficient word length to 15, and use full precision for the other
filter settings.

b_fixed = fi(b,1,15); % use best precision fraction length
T_coeff = numerictype(b_fixed);
minPhaseFilter = dsp.FIRFilter('Structure','Direct form transposed');
minPhaseFilter.Numerator = double(b_fixed);
minPhaseFilter.FullPrecisionOverride = false;
minPhaseFilter.CoefficientsDataType = 'Custom';
minPhaseFilter.CustomCoefficientsDataType = T_coeff;
minPhaseFilter.ProductDataType = 'Full precision';
minPhaseFilter.AccumulatorDataType = 'Full precision';
minPhaseFilter.OutputDataType = 'Same as accumulator';
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Check the Fixed-Point Filter Relative to the Reference Design

Check the quantized filter relative to the reference design. The magnitude response is correct but the
phase response is no longer min-phase, due to quantization.

hfvt = fvtool(minPhaseFilter, 'Fs', Fs, ...
              'Analysis', 'freq', ...
              'legend', 'on', ...
              'Arithmetic', 'fixed');
legend(hfvt, 'Min Phase');

Check the Impulse Response

Plot the impulse response of the quantized filter. Many of the coefficients have quantized to zero and
the overall response still meets the specification, even though the zeros have made the phase
response non-minimum. These zeros lead to a smaller implementation because HDL code is not
generated for multiplies by zero.

hfvt = fvtool(minPhaseFilter, 'Fs', Fs, ...
              'Analysis', 'Impulse', ...
              'legend', 'on', ...
              'Arithmetic', 'fixed');
legend(hfvt, 'Min Phase');
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Generate HDL Code and Test Bench from the Quantized Filter

Starting from the quantized filter, generate VHDL or Verilog.

Create a temporary work directory. After generating the HDL code (Verilog in this case), open the
generated file in the editor.

Generate a Verilog test bench to verify that the results match the results in MATLAB. Use the chirp
predefined input stimulus.

To generate VHDL code and VHDL test bench instead, change the value for 'TargetLanguage'
property from 'Verilog' to 'VHDL'.

Assume an input of 10-bit word length with 9-bit fractional bits.

workingdir = tempname;
generatehdl(minPhaseFilter,'Name', 'hdlminphasefilt', ...
               'TargetLanguage', 'Verilog', ...
               'GenerateHDLTestbench','on', ...
               'TestBenchStimulus', 'chirp', ...
               'TargetDirectory', workingdir, ...
               'InputDataType', numerictype(1,10,9));

### Starting Verilog code generation process for filter: hdlminphasefilt
### Starting Verilog code generation process for filter: hdlminphasefilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp73a4108a_7571_46fc_98b6_1d789b21b8d8\hdlminphasefilt.v
### Starting generation of hdlminphasefilt Verilog module
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### Starting generation of hdlminphasefilt Verilog module body
### Successful completion of Verilog code generation process for filter: hdlminphasefilt
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1069 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp73a4108a_7571_46fc_98b6_1d789b21b8d8\hdlminphasefilt_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.

edit(fullfile(workingdir, 'hdlminphasefilt.v'));

Plot the Test Bench Stimulus and the Filter Response

Plot the filter input stimulus and output response on separate plots.

x = generatetbstimulus(minPhaseFilter,'TestBenchStimulus','chirp','InputDataType', numerictype(1,10,9));
xrange = (0:length(x) - 1).*( Fn / (length(x) - 1))/1e3;
y = minPhaseFilter(x.');
subplot(2,1,1); plot(xrange, x); ylim(ylim.*1.1);
axis([0,50,-1.2,1.2]);
title('HDL Min Phase Filter Chirp Stimulus.');
xlabel('Frequency in kHz');
subplot(2,1,2); plot(xrange, y); ylim(ylim.*1.1);
axis([0,50,-1.2,1.2]);
title('HDL Min Phase Filter Response.');
xlabel('Frequency in kHz');
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Conclusion

You designed a minimum phase filter and then converted it to a FIR filter System object with
transposed structure. You then generated Verilog code for the filter design and a Verilog test bench to
functionally verify the results.

You can use a Verilog simulator, such as ModelSim®, to verify these results.
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HDL Tone Control Filter Bank

This example illustrates how to generate HDL code for bank of 24 first-order shelving filters that
implement an audio tone control with 1 dB steps from -6 dB to +6 dB for bass and treble.

The filters are analytically designed using a simple formula for a first-order filter with one pole and
one zero on the real axis.

A filter bank is designed since changing the filter coefficients on-the-fly can lead to transients in the
audio (clicks and pops) as the boost/cut control is moved. With a bank of filters running continuously,
the appropriate filter is selected from the bank of filters when the output is near any zero crossing to
avoid these transients.

Set up the Parameters

Use the CD sampling rate of 44.1 kHz with bass and treble corners at 100 Hz and 1600Hz.

Fs  = 44100;                            % all in Hz
Fcb =   100;
Fct =  1600;

Define the Tangent Frequency Mapping Parameters

Map the corner frequencies by the tangent to move from the analog to the digital domain. Then,
define the range of cut and boost to be applied, choosing a 12 dB total range in 1 dB steps. Convert
decibels to linear gain and separate the boost and cut vectors.

basstan   = tan(pi*Fcb/Fs);
trebletan = tan(pi*Fct/Fs);

dbrange  = [-6:-1, +1:+6];              % -6 dB to +6 dB 
linrange = 10.^(dbrange/20);
boost = linrange(linrange>1);
cut   = linrange(linrange<=1);
Nfilters = 2 * length(dbrange);         % 2X for bass and treble

Design the Filter Bank

Complete the bilinear transform on the poles, then compute the zeros of the filters based on the
desired boost or cut. Since boost and cut are vectors, we can design all the filters at the same time
using vector arithmetic. Note that a1 is always one in these filters.

a2_bass_boost    = (basstan - 1) / (basstan + 1);
b1_bass_boost   = 1 + ((1 + a2_bass_boost) .* (boost - 1)) / 2;
b2_bass_boost   = a2_bass_boost + ...
                  ((1 + a2_bass_boost) .* (boost - 1)) / 2;

a2_bass_cut      = (basstan - cut) / (basstan + cut);
b1_bass_cut     = 1 + ((1 + a2_bass_cut) .* (cut - 1)) / 2;
b2_bass_cut     = a2_bass_cut + ((1 + a2_bass_cut) .* (cut - 1)) / 2;

a2_treble_boost  = (trebletan - 1) / (trebletan + 1); 
b1_treble_boost   = 1 + ((1 - a2_treble_boost) .* (boost - 1)) / 2;
b2_treble_boost   = a2_treble_boost + ...
                    ((a2_treble_boost - 1) .* (boost - 1)) / 2;
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a2_treble_cut      = (cut .* trebletan - 1) / (cut .* trebletan + 1);
b1_treble_cut     = 1 + ((1 - a2_treble_cut) .* (cut - 1)) / 2;
b2_treble_cut     = a2_treble_cut + ...
                    ((a2_treble_cut - 1) .* (cut - 1)) / 2;

Build the Filter Bank

Build the numerator and denominator arrays for the entire filter bank. Then build a cell array of
filters in {b,a,b,a,...} form for fvtool. Preallocate the cell array for speed.

filterbank = cell(1, 2*Nfilters);     % 2X for numerator and denominator
% Duplicate a2's into vectors
a2_bass_boost   = repmat(a2_bass_boost,   1, length(boost));
a2_bass_cut     = repmat(a2_bass_cut,     1, length(cut));
a2_treble_boost = repmat(a2_treble_boost, 1, length(boost));
a2_treble_cut   = repmat(a2_treble_cut,   1, length(cut));

filterbank_num = [b1_bass_cut, b1_bass_boost, b1_treble_cut, b1_treble_boost ; ...
                  b2_bass_cut, b2_bass_boost, b2_treble_cut, b2_treble_boost ]';
% a1 is always one
filterbank_den = [ones(1, Nfilters); ...
                  a2_bass_cut, a2_bass_boost, a2_treble_cut, a2_treble_boost]';

filterbank(1:2:end) = num2cell(filterbank_num, 2);
filterbank(2:2:end) = num2cell(filterbank_den, 2);

Check the Response of the Filter Bank

Use fvtool in log frequency mode to see the audio band more clearly. Also set the sampling frequency.

fvtool(filterbank{:}, 'FrequencyScale', 'log', 'Fs', Fs);
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Create the Quantized Filter Bank

Create a quantized filter for each double-precision filter designed above. Assume CD-quality input of
16 bits and an output word length of 18 bits to allow for the +6 dB gain with some headroom.

quantizedfilterbank = cell(1, Nfilters);
for n = 1:Nfilters
  quantizedfilterbank{n} = dsp.BiquadFilter('Structure','Direct Form I');
  quantizedfilterbank{n}.SOSMatrix = [filterbank_num(n,:),0,...
                                      filterbank_den(n,:),0];

  quantizedfilterbank{n}.NumeratorCoefficientsDataType         = 'Custom';
  quantizedfilterbank{n}.CustomNumeratorCoefficientsDataType   = numerictype([],16);
  quantizedfilterbank{n}.CustomDenominatorCoefficientsDataType = numerictype([],16);
  quantizedfilterbank{n}.CustomScaleValuesDataType             = numerictype([],16);
  
  quantizedfilterbank{n}.OutputDataType       = 'Custom';
  quantizedfilterbank{n}.CustomOutputDataType = numerictype([],18,15);
  
  quantizedfilterbank{n}.SectionOutputDataType       = 'Custom';
  quantizedfilterbank{n}.CustomSectionOutputDataType = numerictype([],18,15);
  quantizedfilterbank{n}.NumeratorProductDataType    = 'Full precision';
  quantizedfilterbank{n}.DenominatorProductDataType  = 'Full precision';
  
  quantizedfilterbank{n}.NumeratorAccumulatorDataType         = 'Custom';
  quantizedfilterbank{n}.CustomNumeratorAccumulatorDataType   = numerictype([],34,30);
  quantizedfilterbank{n}.DenominatorAccumulatorDataType       = 'Custom';
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  quantizedfilterbank{n}.CustomDenominatorAccumulatorDataType = numerictype([],34,29);
  
  quantizedfilterbank{n}.RoundingMethod  = 'Floor';
  quantizedfilterbank{n}.OverflowAction  = 'Wrap';
end

Check the Response of the Quantized Filter Bank

Check the quantized filter bank using fvtool again in log frequency mode with the sampling rate set.

fvtool(quantizedfilterbank{:}, 'FrequencyScale', 'log', 'Fs', Fs,'Arithmetic','fixed');

Generate HDL for the Filter Bank and Test Benches

Generate HDL for each of the 24 first-order filters and test benches to check each design. The target
language here is Verilog.

Use the canonic sign-digit (CSD) techniques to avoid using multipliers in the design. Specify this with
the 'CoeffMultipliers', 'CSD' property-value pair. Since the results of using this optimization are not
always numerically identical to regular multiplication that results in overflows, set the test bench
'ErrorMargin' property to 1 bit of allowable error.

Create a custom stimulus to illustrate the gain of filters by generating one-half cycle of a 20 Hz tone
and 250 cycles of a 10 kHz tone. Use the low frequency tone for the bass boost/cut filters and the
high frequency tone for the treble boost/cut filters.

Create a temporary work directory.
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To generate VHDL code instead, change the property 'TargetLanguage', from 'Verilog' to 'VHDL'.

bassuserstim = sin(2*pi*20/Fs*(0:Fs/40));
trebuserstim = sin(2*pi*10000/Fs*(0:Fs/40));
workingdir   = tempname;

for n = 1:Nfilters/2
  generatehdl(quantizedfilterbank{n},...
              'Name', ['tonecontrol', num2str(n)],...
              'TargetDirectory', workingdir,...
              'InputDataType', numerictype(1,16,15),...
              'TargetLanguage', 'Verilog',...
              'CoeffMultipliers','CSD', ...
              'GenerateHDLTestbench','on', ...
              'TestBenchUserStimulus', bassuserstim, ...
              'ErrorMargin', 1);           
end

### Starting Verilog code generation process for filter: tonecontrol1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol1.v
### Starting generation of tonecontrol1 Verilog module
### Starting generation of tonecontrol1 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol1
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol1_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol2.v
### Starting generation of tonecontrol2 Verilog module
### Starting generation of tonecontrol2 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol2
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol2_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol3.v
### Starting generation of tonecontrol3 Verilog module
### Starting generation of tonecontrol3 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol3
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol3_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol4

8 Filter Design HDL Coder Featured Examples

8-24



### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol4.v
### Starting generation of tonecontrol4 Verilog module
### Starting generation of tonecontrol4 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol4
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol4_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol5
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol5.v
### Starting generation of tonecontrol5 Verilog module
### Starting generation of tonecontrol5 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol5
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol5_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol6
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol6.v
### Starting generation of tonecontrol6 Verilog module
### Starting generation of tonecontrol6 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol6
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol6_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol7
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol7.v
### Starting generation of tonecontrol7 Verilog module
### Starting generation of tonecontrol7 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol7
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol7_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol8
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol8.v
### Starting generation of tonecontrol8 Verilog module
### Starting generation of tonecontrol8 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol8
### HDL latency is 2 samples
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### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol8_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol9
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol9.v
### Starting generation of tonecontrol9 Verilog module
### Starting generation of tonecontrol9 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol9
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol9_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol10
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol10.v
### Starting generation of tonecontrol10 Verilog module
### Starting generation of tonecontrol10 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol10
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol10_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol11
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol11.v
### Starting generation of tonecontrol11 Verilog module
### Starting generation of tonecontrol11 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol11
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol11_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol12
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol12.v
### Starting generation of tonecontrol12 Verilog module
### Starting generation of tonecontrol12 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol12
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol12_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.

8 Filter Design HDL Coder Featured Examples

8-26



for n = Nfilters/2+1:Nfilters
  generatehdl(quantizedfilterbank{n},...
              'Name', ['tonecontrol', num2str(n)],...
              'TargetDirectory', workingdir,...
              'InputDataType', numerictype(1,16,15),...
              'TargetLanguage', 'Verilog',...
              'CoeffMultipliers','CSD', ...
              'GenerateHDLTestbench','on', ...
              'TestBenchUserStimulus', bassuserstim, ...
              'ErrorMargin', 1);
end

### Starting Verilog code generation process for filter: tonecontrol13
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol13.v
### Starting generation of tonecontrol13 Verilog module
### Starting generation of tonecontrol13 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol13
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol13_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol14
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol14.v
### Starting generation of tonecontrol14 Verilog module
### Starting generation of tonecontrol14 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol14
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol14_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol15
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol15.v
### Starting generation of tonecontrol15 Verilog module
### Starting generation of tonecontrol15 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol15
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol15_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol16
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol16.v
### Starting generation of tonecontrol16 Verilog module
### Starting generation of tonecontrol16 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol16
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### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol16_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol17
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol17.v
### Starting generation of tonecontrol17 Verilog module
### Starting generation of tonecontrol17 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol17
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol17_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol18
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol18.v
### Starting generation of tonecontrol18 Verilog module
### Starting generation of tonecontrol18 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol18
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol18_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol19
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol19.v
### Starting generation of tonecontrol19 Verilog module
### Starting generation of tonecontrol19 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol19
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol19_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol20
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol20.v
### Starting generation of tonecontrol20 Verilog module
### Starting generation of tonecontrol20 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol20
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol20_tb.v
### Creating stimulus vectors ...
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### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol21
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol21.v
### Starting generation of tonecontrol21 Verilog module
### Starting generation of tonecontrol21 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol21
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol21_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol22
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol22.v
### Starting generation of tonecontrol22 Verilog module
### Starting generation of tonecontrol22 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol22
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol22_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol23
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol23.v
### Starting generation of tonecontrol23 Verilog module
### Starting generation of tonecontrol23 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol23
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol23_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.
### Starting Verilog code generation process for filter: tonecontrol24
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol24.v
### Starting generation of tonecontrol24 Verilog module
### Starting generation of tonecontrol24 Verilog module body
### First-order section, # 1
### Successful completion of Verilog code generation process for filter: tonecontrol24
### HDL latency is 2 samples
### Starting generation of VERILOG Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1103 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp46415296_8ed3_4bfa_bd2d_ba6c62838017\tonecontrol24_tb.v
### Creating stimulus vectors ...
### Done generating VERILOG Test Bench.

ModelSim® Simulation Results

The following display shows the ModelSim® HDL simulator running these test benches.
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Bass response to the 20 Hz tone:

Treble response to the 10 kHz tone:
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Conclusion

You designed a filter bank of double-precision bass and treble boost/cut first order filters directly
using the bilinear transform. You then used the filter coefficients to create a bank of quantized filters
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with CD-quality 16-bit inputs and 18-bit outputs. After checking the response of the quantized filters,
you generated Verilog code for each filter in the filter bank along with a Verilog test bench that used
a custom input stimulus for the bass and treble filters.

To complete the solution of providing tone controls to an audio system, you can add a cross-fader to
the outputs of each section of the filter bank. These cross-faders should take several sample times to
switch smoothly from one boost or cut step to the next.

Using a full bank of filters is only one approach to solving this type of problem. Another approach
would be to use two filters for each band (bass and treble) with programmable coefficients that can
be changed under software control. One of the two filters would be the current setting, while the
other would be the next setting. As you adjusted the tone controls, the software would ping-pong
between the filters exchanging current and next with a simple fader. The trade-off is that the constant
coefficient filter bank shown above is uses no multipliers while the seemingly simpler ping-pong
scheme requires several multipliers.
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HDL Video Filter

This example illustrates how to generate HDL code for an ITU-R BT.601 luma filter with 8-bit input
data and 10-bit output data. This filter is a low-pass filter with a -3 dB point of 3.2 MHz with a 13.5
MHz sampling frequency and a specified range for both passband ripple and stopband attenuation
shown in the ITU specification. The filter coefficients were designed using the DSP System Toolbox™.
This example focuses on quantization effects and generating HDL code for the System object filter.

Set up the Coefficients

Assign the previously designed filter coefficients to variable b. This is a halfband filter and, therefore,
every other coefficient is zero with the exception of the coefficient at the filter midpoint, which is
exactly one-half.

Check that double-precision filter design meets the ITU-R BT.601 template for passband ripple and
stopband attenuation using freqz and plot the passband. The red lines show the allowed variation in
the specification.

b = [0.00303332064210658,  0,...
    -0.00807786494715095,  0,...
     0.0157597395206364,   0,...
    -0.028508691397868,    0,...
     0.0504985344927114,   0,...
    -0.0977926818362618,   0,...
     0.315448742029959,...
     0.5,...
     0.315448742029959,    0,...
    -0.0977926818362618,   0,...
     0.0504985344927114,   0,...
    -0.028508691397868,    0,...
     0.0157597395206364,   0,...
    -0.00807786494715095,  0,...
     0.00303332064210658];

f = 0:100:2.75e6;
H = freqz(b,1,f,13.5e6);
plot(f,20*log10(abs(H)));
title('HDL Video Filter Double-Precision Passband');
axis([0 2.75e6 -.8 .8]);
passbandrange = {[2.75e6;  1e6;   0;  1e6; 2.75e6],...
                 [  -0.5; -0.5;   0;  0.5;    0.5]};
line(passbandrange{:}, 'Color', 'red');
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Plot the Stopband

The red line shows a "not to exceed" limit on the stopband.

f = 4e6:100:6.75e6;
H = freqz(b,1,f,13.5e6);
plot(f,20*log10(abs(H)));
title('HDL Video Filter Double-Precision Stopband');
axis([4e6 6.75e6 -70 -35]);
stopbandrange = {[4e6;   6.25e6;  6.75e6],...
                 [-40;      -55;     -55]};
line(stopbandrange{:}, 'Color', 'red');
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Create the Quantized Filter

Create a FIR filter System object filter with previously defined coefficients. Experiment with the
coefficient word length to get the desired response for 8-bit input data and 10-bit output data.

videoFilter = dsp.FIRFilter;
videoFilter.Numerator = b;
videoFilter.Structure = 'Direct form symmetric';

%Try 10-bit coefficients
videoFilter.CoefficientsDataType = 'Custom';
videoFilter.CustomCoefficientsDataType = numerictype(1,10);

Plot the Quantized Filter Response

Now examine the passband and stopband response of the quantized filter relative to the specification.
Plot and check the quantized passband first.

The quantized design meets the passband specifications except at DC, where it misses the
specification by about 0.035 dB.

f = 0:100:2.75e6;
H = freqz(videoFilter,f,13.5e6,'Arithmetic','fixed');
plot(f,20*log10(abs(H)));
title('HDL Video Filter Quantized Passband');
axis([0 2.75e6 -.8 .8]);
line(passbandrange{:}, 'Color', 'red');
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Plot the Quantized Stopband

The red lines again show a "not to exceed" limit on the stopband.

The stopband limit is violated, which indicates a problem with the quantization settings.

f = 4e6:100:6.75e6;
H = freqz(videoFilter,f,13.5e6,'Arithmetic','fixed');
plot(f,20*log10(abs(H)));
title('HDL Video Filter Quantized Stopband');
axis([4e6 6.75e6 -70 -35]);
line(stopbandrange{:}, 'Color', 'red');
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Change the Coefficient Quantizer Settings

Adding more bits to the coefficient word length enables the filter to meet the specification. Increment
the word length by one and replot the stopband.

This just misses the specification at the end of the stopband. This small deviation from the
specification might be acceptable if you know that some other part of your system applies a lowpass
filter to this signal.

videoFilter.CustomCoefficientsDataType = numerictype(1,11);
f = 4e6:100:6.75e6;
H = freqz(videoFilter,f,13.5e6,'Arithmetic','fixed');
plot(f,20*log10(abs(H)));
title('HDL Video Filter Quantized Stopband');
axis([4e6 6.75e6 -70 -35]);
line(stopbandrange{:}, 'Color', 'red');
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Set the Final Coefficient Quantizer Word Length

Add one more bit to the coefficient quantizer word length and replot the stopband. This should meet
the specification.

videoFilter.CustomCoefficientsDataType = numerictype(1,12);
f = 4e6:100:6.75e6;
H = freqz(videoFilter,f,13.5e6,'Arithmetic','fixed');
plot(f,20*log10(abs(H)));
title('HDL Video Filter Final Quantized Stopband');
axis([4e6 6.75e6 -70 -35]);
line(stopbandrange{:}, 'Color', 'red');
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Perform a Final Check on the Passband Response

Recheck the passband to be sure the changes have improved the problems in the response near DC.
The response now passes the specification.

f = 0:100:2.75e6;
H = freqz(videoFilter,f,13.5e6,'Arithmetic','fixed');
plot(f,20*log10(abs(H)));
title('HDL Video Filter Final Quantized Passband');
axis([0 2.75e6 -.8 .8]);
line(passbandrange{:}, 'Color', 'red');
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Generate HDL Code and Test Bench from the Quantized Filter

Starting from the quantized filter, generate VHDL or Verilog code.

Create a temporary work directory. After generating the HDL (selecting VHDL in this case), open the
generated VHDL file in the editor.

Generate a VHDL test bench to make sure that it matches the response in MATLAB exactly. Select the
default input stimulus, which for FIR is impulse, step, ramp, chirp, and noise inputs.

To generate Verilog code and Verilog test bench instead, change value for 'TargetLanguage' property
from 'VHDL' to 'Verilog'.

The warnings indicate that by selecting the symmetric structure for the filter and generating HDL,
may result in smaller area or a higher clock rate.

Assume an input of 8-bit word length with 7-bit fractional bits.

workingdir = tempname;
generatehdl(videoFilter, 'Name', 'hdlvideofilt', ...
                'InputDataType' ,numerictype(1,8,7), ...
                'TargetLanguage', 'VHDL', ...
                'TargetDirectory', workingdir, ... 
                'GenerateHDLTestbench', 'on');

### Starting VHDL code generation process for filter: hdlvideofilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp7cbc97b7_1222_4086_9998_e6bc953e9b81\hdlvideofilt.vhd
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### Starting generation of hdlvideofilt VHDL entity
### Starting generation of hdlvideofilt VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlvideofilt
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 3261 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp7cbc97b7_1222_4086_9998_e6bc953e9b81\hdlvideofilt_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

edit(fullfile(workingdir, 'hdlvideofilt.vhd'));

Plot the Test Bench Stimulus

Plot the default test bench stimulus used by the above command, using the generatetbstimulus
function.

tbstim = generatetbstimulus(videoFilter,'InputDataType', numerictype(1,8,7));
plot(tbstim);
title('HDL Video Filter Test Bench Stimulus');

Conclusion

You designed a double precision filter to meet the ITU-R BT.601 luma filter specification and then
created a FIR filter System object that also met the specification. You generated VHDL code and a
VHDL test bench that functionally verified the filter.
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You can use a VHDL simulator, such as ModelSim®, to verify these results. You can also experiment
with Verilog. You can use many optimizations to get smaller and faster HDL results by removing the
constraint that the generated HDL be exactly true to MATLAB. When you use these optimizations, the
HDL test bench can check the filter response to be within a specified error margin of the MATLAB
response.
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HDL Digital Up-Converter (DUC)

This example illustrates how to generate HDL code for a Digital Up-Converter (DUC). A DUC is a
digital circuit which converts a digital baseband signal to a passband signal. The input baseband
signal is sampled at a relatively low sampling rate, typically the digital modulation symbol rate. The
baseband signal is filtered and converted to a higher sampling rate before modulating a direct
digitally synthesized (DDS) carrier frequency.

The input signals are passed through three filtering stages. Each stage first filters the signals with a
lowpass interpolating filter and then performs a sampling rate change. The DUC in this example is a
cascade of two FIR Interpolation Filters and one CIC Interpolation Filter. The first FIR Interpolation
Filter is a pulse shaping FIR filter that increases the sampling rate by 2 and performs transmitter
Nyquist pulse shaping. The second FIR Interpolation Filter is a compensation FIR filter that increases
the sampling rate by 2 and compensates for the distortion of the following CIC filter. The CIC
Interpolation Filter increases the sampling rate by 32.

The filters are implemented in fixed-point mode. The input/output word length and fraction length are
specified. The internal settings of the first two filters are specified, while the internal settings of the
CIC filter are calculated automatically to preserve full precision.

Create Pulse Shaping FIR Filter

Create a 32-tap FIR Interpolator with interpolation factor of 2.

pulseShapingFIR = dsp.FIRInterpolator;
pulseShapingFIR.InterpolationFactor = 2;
pulseShapingFIR.Numerator = [...
     0.0007    0.0021   -0.0002   -0.0025   -0.0027    0.0013    0.0049    0.0032 ...
    -0.0034   -0.0074   -0.0031    0.0060    0.0099    0.0029   -0.0089   -0.0129 ...
    -0.0032    0.0124    0.0177    0.0040   -0.0182   -0.0255   -0.0047    0.0287 ...
     0.0390    0.0049   -0.0509   -0.0699   -0.0046    0.1349    0.2776    0.3378 ...
     0.2776    0.1349   -0.0046   -0.0699   -0.0509    0.0049    0.0390    0.0287 ...
    -0.0047   -0.0255   -0.0182    0.0040    0.0177    0.0124   -0.0032   -0.0129 ...
    -0.0089    0.0029    0.0099    0.0060   -0.0031   -0.0074   -0.0034    0.0032 ...
     0.0049    0.0013   -0.0027   -0.0025   -0.0002    0.0021    0.0007 ];

Create Compensation Fir Filter

Create an 11-tap FIR Interpolator with interpolation factor of 2.

compensationFIR = dsp.FIRInterpolator;
compensationFIR.InterpolationFactor = 2;
compensationFIR.Numerator = [...
    -0.0007   -0.0009    0.0039    0.0120    0.0063   -0.0267   -0.0592   -0.0237 ...
     0.1147    0.2895    0.3701    0.2895    0.1147   -0.0237   -0.0592   -0.0267 ...
     0.0063    0.0120    0.0039   -0.0009   -0.0007];

Create CIC Interpolating Filter

Create a 5-stage CIC Interpolator with interpolation factor of 32.

CICFilter = dsp.CICInterpolator;
CICFilter.InterpolationFactor = 32;
CICFilter.NumSections = 5;
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Cascade of the Filters

Create a cascade filter including the above three filters. Check the frequency response of the cascade
filter.

DUC = dsp.FilterCascade(pulseShapingFIR, compensationFIR, CICFilter);
fvtool(DUC);

Generate VHDL Code for DUC and Test Bench

Generate synthesizable and portable VHDL code for the cascade filter.

You have the option of generating a VHDL, Verilog, or ModelSim® .do file test bench to verify that
the HDL design matches the MATLAB® filter.

To generate Verilog instead of VHDL, change the value of the property 'TargetLanguage', from 'VHDL'
to 'Verilog'.

Generate a stimulus signal for the filter. The length of the stimulus should be greater than the total
latency of the filter.

Generate a VHDL test bench to verify that the results match the MATLAB results exactly. This is done
by passing another property 'GenerateHDLTestbench' and setting its value to 'on'. The stimulus to
test bench is specified using the 'TestBenchUserStimulus' property.

Assume 16-bit signed fixed-point input with 15 bits of fraction.
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t = 0.005:0.005:1.5;
stim = chirp(t, 0, 1, 150);

workingdir = tempname;
generatehdl(DUC, 'Name', 'hdlduc',...
                  'TargetLanguage', 'VHDL',...
                  'TargetDirectory', workingdir, ...
                  'GenerateHDLTestbench', 'on', ...
                  'TestBenchUserStimulus', stim, ...
                  'InputDataType', numerictype(1,16,15));

### Starting VHDL code generation process for filter: hdlduc
### Cascade stage # 1
### Starting VHDL code generation process for filter: hdlduc_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa7eb6849_683d_4fb8_add2_797b5f7b5f9f\hdlduc_stage1.vhd
### Starting generation of hdlduc_stage1 VHDL entity
### Starting generation of hdlduc_stage1 VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlduc_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: hdlduc_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa7eb6849_683d_4fb8_add2_797b5f7b5f9f\hdlduc_stage2.vhd
### Starting generation of hdlduc_stage2 VHDL entity
### Starting generation of hdlduc_stage2 VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlduc_stage2
### Cascade stage # 3
### Starting VHDL code generation process for filter: hdlduc_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa7eb6849_683d_4fb8_add2_797b5f7b5f9f\hdlduc_stage3.vhd
### Starting generation of hdlduc_stage3 VHDL entity
### Starting generation of hdlduc_stage3 VHDL architecture
### Section # 1 : Comb
### Section # 2 : Comb
### Section # 3 : Comb
### Section # 4 : Comb
### Section # 5 : Comb
### Section # 6 : Integrator
### Section # 7 : Integrator
### Section # 8 : Integrator
### Section # 9 : Integrator
### Section # 10 : Integrator
### Successful completion of VHDL code generation process for filter: hdlduc_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa7eb6849_683d_4fb8_add2_797b5f7b5f9f\hdlduc.vhd
### Starting generation of hdlduc VHDL entity
### Starting generation of hdlduc VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlduc
### HDL latency is 225 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 300 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa7eb6849_683d_4fb8_add2_797b5f7b5f9f\hdlduc_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

ModelSim® Simulation Results

The following display shows the ModelSim HDL simulator running these test benches.

DUC response to a chirp stimulus:
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Conclusion

In this example, you designed three individual interpolation filters, cascaded them into a Digital-Up
Converter, verified the frequency response of the filter, and called Filter Design HDL Coder™
functions to generate VHDL code for the filter and a VHDL test bench to verify the VHDL code
against its MATLAB result. The simulation result of the VHDL code proved that the generated VHDL
filter produced a bit-true implementation of the MATLAB filter.
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HDL Fractional Delay (Farrow) Filter

This example illustrates how to generate HDL code for a fractional delay (Farrow) filter for timing
recovery in a digital modem. A Farrow filter structure provides variable fractional delay for the
received data stream prior to downstream symbol sampling. This special FIR filter structure permits
simple handling of filter coefficients by an efficient polynomial interpolation formula implementation
to provide variable fractional resampling.

In a typical digital modem application, the fractionally resampled data output from a Farrow filter is
passed along to a symbol sampler with optional carrier recovery. For more details of this complete
application please refer to "Timing Recovery Using Fixed-Rate Resampling" for Simulink® and
Communications Toolbox™.

Design the Filter

To design a fractional delay filter using the Cubic Lagrange interpolation method, first create a
specification object with filter order 3 and an arbitrary fractional delay of 0.3. Next, create a farrow
filter object Hd, using the design method of the specification object with argument lagrange. This
method is also called with property FilterStructure and its value fd. You can look into the details
of the filter object Hd by using the info command.

fDelay = 0.3;
filtdes = fdesign.fracdelay(fDelay, 'N', 3);
Hd = design(filtdes,'lagrange', 'FilterStructure', 'farrowfd');
info(Hd)

Discrete-Time FIR Farrow Filter (real)     
--------------------------------------     
Filter Structure  : Farrow Fractional Delay
Filter Length     : 4                      
Stable            : Yes                    
Linear Phase      : No                     
                                           
Arithmetic        : double                 

The fractional delay for the Farrow filter is tunable and can be altered to lead a different magnitude
response. You can see this by creating a set of filters that are copies of the pre-designed filter Hd with
each differing in their fracdelay values.

h = repmat(Hd,1,10); % preallocating size
for d=0:9
    h(d+1) = copy(Hd); % create unique filter objects
    h(d+1).fracdelay = d/10;
end
fvtool(h)
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fvtool(h,'Analysis','PhaseDelay')
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Quantize the Filter

Set the filter object to fixed-point mode to quantize it. Assume eight-bit input data with eight-bit
coefficients and six-bit fractional delay. Modify the fixed-point data word lengths and fraction lengths
accordingly. The CoeffFracLength property is set automatically because coefficient autoscaling is
set to on by default by the property CoeffAutoscale. Switch off FDAutoScale and set
FDFracLength to six, allowing a fractional delay in the range 0 to 1 to be represented.

Hd.arithmetic            = 'fixed';
Hd.InputWordLength       = 8;
Hd.InputFracLength       = 7;
Hd.CoeffWordLength       = 8;
Hd.FDWordLength          = 6;
Hd.FDAutoScale           = false;
Hd.FDFracLength          = 6;

Generate HDL Code from the Quantized Filter

Starting with the correctly quantized filter, you can generate VHDL or Verilog code using the
generatehdl command. You create a temporary work directory and then use the generatehdl
command using the appropriate property-value pairs. After generating the HDL code using VHDL for
the TargetLanguage property in this case, you can open the generated VHDL file in the editor by
clicking on the hyperlink displayed in the command line display messages.

workingdir = tempname;
generatehdl(Hd, 'Name', 'hdlfarrow', ...  
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                'TargetLanguage', 'VHDL',...
                'TargetDirectory', workingdir);

### Starting VHDL code generation process for filter: hdlfarrow
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow.vhd
### Starting generation of hdlfarrow VHDL entity
### Starting generation of hdlfarrow VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlfarrow
### HDL latency is 2 samples

Generate HDL Test Bench

To verify the HDL code, you can generate an HDL test bench to simulate the HDL code using an HDL
simulator. The test bench will verify the results of the HDL code with the results of the MATLAB®
filter command. The stimuli for the filter input filter_in port and fractional delay filter_fd
port can be specified using properties TestbenchStimulus, TestbenchUserStimulus and
TestbenchFracDelayStimulus.

Predefined stimulus for the filter input filter_in port can be specified for input data stimulus using
the property TestbenchStimulus as with the other filter structures. You can specify your own
stimulus for the input data by using the property TestbenchUserStimulus and passing a MATLAB
vector as the value.

You can specify the fractional delay stimulus using the property TestbenchFracdelayStimulus. A
vector of double between 0 and 1 is generated automatically by specifying either RandSweep or
RampSweep. The default behavior is to provide a fractional delay stimulus of a constant set to the
fracdelay value of the filter object.

The following command specifies the input stimulus to chirp, and the fractional delay vector is set to
a constant 0.3 for all the simulation time. This is the default behavior when the
TestbenchFracDelayStimulus property is not set otherwise.

generatehdl(Hd, 'Name', 'hdlfarrow', ...
    'GenerateHDLTestbench', 'on', ...
    'TestBenchName', 'hdlfarrow_default_tb',...
    'TargetLanguage', 'VHDL',...
    'TargetDirectory', workingdir);

### Starting VHDL code generation process for filter: hdlfarrow
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow.vhd
### Starting generation of hdlfarrow VHDL entity
### Starting generation of hdlfarrow VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlfarrow
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 3100 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow_default_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

To automatically generate the test vector for a fractional delay port, specify RampSweep for
TestBenchFracDelayStimulus. It generates a vector of values between 0 and 1 sweeping in a
linear fashion. The length of this vector is equal to the input stimulus vector.

generatehdl(Hd, 'Name', 'hdlfarrow', ...
    'GenerateHDLTestbench', 'on', ...
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    'TestBenchName', 'hdlfarrow_rampsweep_tb',...
    'TargetLanguage', 'VHDL',...
    'TestBenchStimulus', 'chirp',...
    'TestbenchFracDelaystimulus', 'Rampsweep', ...
    'TargetDirectory', workingdir);

### Starting VHDL code generation process for filter: hdlfarrow
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow.vhd
### Starting generation of hdlfarrow VHDL entity
### Starting generation of hdlfarrow VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlfarrow
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 1028 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow_rampsweep_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

You can generate a customized input stimulus vector using MATLAB commands and pass it to the test
bench stimulus properties for the user defined input and fracdelay stimuli. An input test vector
userinputstim is generated using the chirp command and the fractional delay test vector
userfdstim is generated of length equal to the input test vector.

t=-2:0.01:2;                           % +/-2 secs @ 100 Hz sample rate
userinputstim = chirp(t,100,1,200,'q'); % Start @100Hz, cross 200Hz at t=1sec 
leninput = length(userinputstim);
samplefdvalues = [0.1, 0.34, 0.78, 0.56, 0.93, 0.25, 0.68, 0.45];
samplesheld = ceil(leninput/length(samplefdvalues));
ix = 1;
for n = 1:length(samplefdvalues)-1
    userfdstim(ix: ix + samplesheld-1) =  repmat(samplefdvalues(n),1, samplesheld);
    ix = ix + samplesheld;
end
userfdstim(ix:leninput)= repmat(samplefdvalues(end),1 , leninput-length(userfdstim));

generatehdl(Hd, 'Name', 'hdlfarrow', ...
    'GenerateHDLTestbench', 'on', ...
    'TestBenchName', 'hdlfarrow_userdefined_tb',...
    'TargetLanguage', 'VHDL',...
    'TestBenchUserStimulus', userinputstim,...
    'TestbenchFracDelaystimulus', userfdstim, ...
    'TargetDirectory', workingdir);

### Starting VHDL code generation process for filter: hdlfarrow
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow.vhd
### Starting generation of hdlfarrow VHDL entity
### Starting generation of hdlfarrow VHDL architecture
### Successful completion of VHDL code generation process for filter: hdlfarrow
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 401 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpaff7e366_b07b_4f62_820c_6e1efc68c5a3\hdlfarrow_userdefined_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.
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ModelSim® Simulation Results

The following display shows the ModelSim® HDL simulator after running the VHDL test bench.

Conclusion

In this example, we showed how you can design a double-precision fractional delay filter to meet the
given specifications. We also showed how you can quantize the filter and generate VHDL code. Then
we showed how you can generate VHDL test benches using several options to specify the input and
fracdelay stimulus vector.

You can use any HDL simulator to verify these results. You can also experiment with Verilog for both
filters and test benches.
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HDL Sample Rate Conversion Using Farrow Filters

This example shows how you can design and implement hardware efficient sample rate converters for
an arbitrary factor using polynomial-based (Farrow) structures. Sample rate conversion (SRC)
between arbitrary factors is useful for many applications including symbol synchronizations in digital
receivers, speech coding, audio sampling, etc. This example shows how you can convert the sampling
rate of an audio signal from 8kHz to 44.1 kHz.

Overview

To resample the incoming signal from 8 kHz to 44.1 kHz, you must interpolate by 441 and decimate
by 80. This SRC can be implemented using polyphase structures. However using the polyphase
structures for any arbitrary factor usually results in large number of coefficients leading to a lot of
memory requirement and area. This example shows how to efficiently implement SRC with a mix of
polyphase and Farrow filter structures.

Design of Interpolating Stages

First, interpolate the original 8 kHz signal by a factor of 4 using a cascade of FIR halfband filters.
This interpolation results in an intermediate signal of 32 kHz. Polyphase filters are particularly well
adapted for interpolation or decimation by an integer factor and for fractional rate conversions when
the interpolation and the decimation factors are low. Design the interpolating stages for the
specifications given.

L     = 4;                     % Interpolation factor
FsOut = 32e3;                  % Output sample rate
TW    = 0.125 * 2 * FsOut / L; % Transition width (Hz)
Astop = 50;                    % Minimum stopband attenuation (dB)

FIRCascade = designMultistageInterpolator(L,FsOut,TW,Astop,'CostMethod','design');

Design of Farrow Filter

The signal output from the above interpolating stages needs to be further interpolated from 32 kHz
to 44.1 kHz. This operation is done by a Farrow rate converter filter designed with a cubic Lagrange
polynomial.

FsInp = 32e3;   % Input sample rate
FsOut = 44.1e3; % Output sample rate
TOL   = 0;      % Output rate tolerance
NP    = 3;      % Polynomial order

farrowFilter = dsp.FarrowRateConverter(FsInp, FsOut, TOL, NP);

To prevent the datapath from growing to very large word lengths, quantize the filter stages such that
the inputs to each stage are 12 bits and the outputs are 12 bits.

cascadeOutNT = numerictype([],12,11);
FIRCascade.Stage1.FullPrecisionOverride = false;
FIRCascade.Stage1.OutputDataType        = 'Custom';
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FIRCascade.Stage1.CustomOutputDataType  = cascadeOutNT;
FIRCascade.Stage2.FullPrecisionOverride = false;
FIRCascade.Stage2.OutputDataType        = 'Custom';
FIRCascade.Stage2.CustomOutputDataType  = cascadeOutNT;

farrowOutNT = numerictype(1,12,11);
farrowFilter.OutputDataType = farrowOutNT;

Cascade of Complete SRC and Magnitude Response

The overall filter is obtained by creating a cascade of the interpolating stages and the Farrow filter.

sampleRateConverter = cascade(FIRCascade.Stage1, FIRCascade.Stage2, farrowFilter);

The magnitude response of the cascaded SRC filter shows that it meets the 50 dB minimum stopband
attenuation specification.

Fs = 32e3*441;                % The highest clock rate is 14.112 MHz
W = linspace(0,44.1e3,2048);  % Define the frequency range analysis

fvt = fvtool(sampleRateConverter,'FrequencyRange','Specify freq. vector', ...
    'FrequencyVector',W,'Fs',Fs, ...
    'NormalizeMagnitudeto1','on', 'Color', 'white');

legend(fvt,'Cascade of FIR and Farrow Rate Converter Response',...
    'Location','NorthEast')
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Generate HDL & Test Bench

You can now generate VHDL code for the cascaded SRC using the generatehdl command. You can
also generate the VHDL test bench by passing the 'TestBenchUserStimulus' and
'GenerateHDLTestbench' properties into the generatehdl command. The VHDL code can be
simulated in any HDL simulator to verify the results.

workingdir = tempname;
inpFrameSz = 640;
tVector    = linspace(0.005, 7.5, inpFrameSz);
srcTBStim  = (chirp(tVector, 0, 1, 150))';

generatehdl(sampleRateConverter, ...
    'TargetDirectory',       workingdir, ...
    'InputDataType',         numerictype(1,12,11), ...
    'OptimizeForHDL',        'on', ...
    'GenerateHDLTestbench',  'on', ...
    'TestBenchUserStimulus', srcTBStim, ...
    'ErrorMargin',           2);

### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa1204d4a_923f_4ed2_bcd9_4bc09578f42e\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa1204d4a_923f_4ed2_bcd9_4bc09578f42e\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Cascade stage # 3
### Starting VHDL code generation process for filter: casfilt_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa1204d4a_923f_4ed2_bcd9_4bc09578f42e\casfilt_stage3.vhd
### Starting generation of casfilt_stage3 VHDL entity
### Starting generation of casfilt_stage3 VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa1204d4a_923f_4ed2_bcd9_4bc09578f42e\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 1325 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 640 samples.

Warning: HDL optimization may cause small numeric differences that will be flagged as errors when running this testbench.

### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tpa1204d4a_923f_4ed2_bcd9_4bc09578f42e\casfilt_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

ModelSim® Simulation Results

The following display shows the ModelSim® HDL simulator results after running the VHDL test
bench.
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Conclusion

This example showed how you can design a sample rate converter using a Farrow structure, and how
to analyze the response, quantize it, and generate bit-accurate VHDL code and test bench.
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HDL Serial Architectures for FIR Filters

This example illustrates how to generate HDL code for a symmetrical FIR filter with fully parallel,
fully serial, partly serial, and cascade-serial architectures for a lowpass filter for an audio filtering
application.

Design the Filter

Use an audio sampling rate of 44.1 kHz and a passband edge frequency of 8.0 kHz. Set the allowable
peak-to-peak passband ripple to 1 dB and the stopband attenuation to -90 dB. Then, design the filter
using fdesign.lowpass, and create the FIR filter System object™ using the 'equiripple'
method with the 'Direct form symmetric' structure.

Fs           = 44.1e3;         % Sampling Frequency in Hz
Fpass        = 8e3;            % Passband Frequency in Hz
Fstop        = 8.8e3;          % Stopband Frequency in Hz
Apass        = 1;              % Passband Ripple in dB
Astop        = 90;             % Stopband Attenuation in dB

fdes = fdesign.lowpass('Fp,Fst,Ap,Ast',...
    Fpass, Fstop, Apass, Astop, Fs);
lpFilter = design(fdes,'equiripple', 'FilterStructure', 'dfsymfir', ...
    'SystemObject', true);

Quantize the Filter

Assume that the input for the audio filter comes from a 12 bit ADC and output is a 12 bit DAC.

nt_in = numerictype(1,12,11);
nt_out = nt_in;
lpFilter.FullPrecisionOverride = false;
lpFilter.CoefficientsDataType = 'Custom';
lpFilter.CustomCoefficientsDataType = numerictype(1,16,16);
lpFilter.OutputDataType = 'Custom';
lpFilter.CustomOutputDataType = nt_out;

% Check the response with fvtool.
fvtool(lpFilter,'Fs',Fs, 'Arithmetic', 'fixed');
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Generate Fully Parallel HDL Code from the Quantized Filter

Starting with the correctly quantized filter, generate VHDL® or Verilog® code. Create a temporary
work directory. After generating the HDL code (selecting VHDL in this case), open the generated
VHDL file in the editor by clicking on the link displayed in the command line display messages.

The default settings generate a fully parallel architecture. There is a dedicated multiplier for each
filter tap in direct form FIR filter structure and one for every two symmetric taps in symmetric FIR
structure. This results in a lot of chip area (78 multipliers, in this example). You can implement the
filter in a variety of serial architectures to obtain the desired speed/area trade-off. These architecture
options are shown in further sections of this example.

workingdir = tempname;
% fully parallel (default)
generatehdl(lpFilter, 'Name', 'fullyparallel', ...
            'TargetLanguage', 'VHDL', ...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);

### Starting VHDL code generation process for filter: fullyparallel
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\fullyparallel.vhd
### Starting generation of fullyparallel VHDL entity
### Starting generation of fullyparallel VHDL architecture
### Successful completion of VHDL code generation process for filter: fullyparallel
### HDL latency is 2 samples
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Generate a Test Bench from the Quantized Filter

Generate a VHDL test bench to make sure that the result matches the response you see in MATLAB®
exactly. The generated VHDL code and VHDL test bench can be compiled and simulated using a
simulator.

Generate DTMF tones to be used as test stimulus for the filter. A DTMF signal consists of the sum of
two sinusoids - or tones - with frequencies taken from two mutually exclusive groups. Each pair of
tones contains one frequency of the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz) and one frequency
of the high group (1209 Hz, 1336 Hz, 1477Hz) and represents a unique symbol. This code generates
all the DTMF signals and uses only one of them (digit 1 here) for test stimulus. This choice keeps the
length of test stimulus to reasonable limit.

symbol = {'1','2','3','4','5','6','7','8','9','*','0','#'};

lfg = [697 770 852 941]; % Low frequency group
hfg = [1209 1336 1477];  % High frequency group

% Generate a matrix containing all possible combinations of high and low 
% frequencies, where each column represents one combination.
f  = zeros(2,12);
for c=1:4
    for r=1:3
        f(:,3*(c-1)+r) = [lfg(c); hfg(r)];
    end
end

Next, let's generate the DTMF tones

Fs  = 8000;       % Sampling frequency 8 kHz
N = 800;          % Tones of 100 ms
t   = (0:N-1)/Fs; % 800 samples at Fs
pit = 2*pi*t;

tones = zeros(N,size(f,2));
for toneChoice=1:12
    % Generate tone
    tones(:,toneChoice) = sum(sin(f(:,toneChoice)*pit))';
end

% Taking the tone for digit '1' for test stimulus.
userstim = tones(:,1);

generatehdl(lpFilter, 'Name', 'fullyparallel',...
            'GenerateHDLTestbench','on', ...
            'TestBenchUserStimulus', userstim,...
            'TargetLanguage', 'VHDL',...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);

### Starting VHDL code generation process for filter: fullyparallel
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\fullyparallel.vhd
### Starting generation of fullyparallel VHDL entity
### Starting generation of fullyparallel VHDL architecture
### Successful completion of VHDL code generation process for filter: fullyparallel
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
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### Generating input stimulus
### Done generating input stimulus; length 800 samples.

Warning: Wrap on overflow detected. This originated from 'DiscreteFir'
Suggested Actions:
    • Suppress future instances of this diagnostic from this source. - Suppress

### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\fullyparallel_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

Information Regarding Serial Architectures

Serial architectures present a variety of ways to share the hardware resources at the expense of
increasing the clock rate with respect to the sample rate. In FIR filters, we will share the multipliers
between the inputs of each serial partition. This will have an effect of increasing the clock rate by a
factor known as folding factor.

You can use the hdlfilterserialinfo function to get information regarding various filter lengths
based on the value of coefficients. This function also displays an exhaustive table of possible options
to specify SerialPartition property with corresponding values of folding factor and number of
multipliers.

hdlfilterserialinfo(lpFilter, 'InputDataType', nt_in);

   | Total Coefficients | Zeros | A/Symm | Effective |
   ---------------------------------------------------
   |         156        |   0   |   78   |     78    |

Effective filter length for SerialPartition value is 78.

  Table of 'SerialPartition' values with corresponding values of 
  folding factor and number of multipliers for the given filter.

   | Folding Factor | Multipliers |   SerialPartition   |
   ------------------------------------------------------
   |        1       |      78     |ones(1,78)           |
   |        2       |      39     |ones(1,39)*2         |
   |        3       |      26     |ones(1,26)*3         |
   |        4       |      20     |[ones(1,19)*4, 2]    |
   |        5       |      16     |[ones(1,15)*5, 3]    |
   |        6       |      13     |ones(1,13)*6         |
   |        7       |      12     |[ones(1,11)*7, 1]    |
   |        8       |      10     |[ones(1,9)*8, 6]     |
   |        9       |      9      |[9 9 9 9 9 9 9 9 6]  |
   |       10       |      8      |[ones(1,7)*10, 8]    |
   |       11       |      8      |[ones(1,7)*11, 1]    |
   |       12       |      7      |[ones(1,6)*12, 6]    |
   |       13       |      6      |[13 13 13 13 13 13]  |
   |       14       |      6      |[14 14 14 14 14 8]   |
   |       15       |      6      |[15 15 15 15 15 3]   |
   |       16       |      5      |[16 16 16 16 14]     |
   |       17       |      5      |[17 17 17 17 10]     |
   |       18       |      5      |[18 18 18 18 6]      |
   |       19       |      5      |[19 19 19 19 2]      |
   |       20       |      4      |[20 20 20 18]        |
   |       21       |      4      |[21 21 21 15]        |
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   |       22       |      4      |[22 22 22 12]        |
   |       23       |      4      |[23 23 23 9]         |
   |       24       |      4      |[24 24 24 6]         |
   |       25       |      4      |[25 25 25 3]         |
   |       26       |      3      |[26 26 26]           |
   |       27       |      3      |[27 27 24]           |
   |       28       |      3      |[28 28 22]           |
   |       29       |      3      |[29 29 20]           |
   |       30       |      3      |[30 30 18]           |
   |       31       |      3      |[31 31 16]           |
   |       32       |      3      |[32 32 14]           |
   |       33       |      3      |[33 33 12]           |
   |       34       |      3      |[34 34 10]           |
   |       35       |      3      |[35 35 8]            |
   |       36       |      3      |[36 36 6]            |
   |       37       |      3      |[37 37 4]            |
   |       38       |      3      |[38 38 2]            |
   |       39       |      2      |[39 39]              |
   |       40       |      2      |[40 38]              |
   |       41       |      2      |[41 37]              |
   |       42       |      2      |[42 36]              |
   |       43       |      2      |[43 35]              |
   |       44       |      2      |[44 34]              |
   |       45       |      2      |[45 33]              |
   |       46       |      2      |[46 32]              |
   |       47       |      2      |[47 31]              |
   |       48       |      2      |[48 30]              |
   |       49       |      2      |[49 29]              |
   |       50       |      2      |[50 28]              |
   |       51       |      2      |[51 27]              |
   |       52       |      2      |[52 26]              |
   |       53       |      2      |[53 25]              |
   |       54       |      2      |[54 24]              |
   |       55       |      2      |[55 23]              |
   |       56       |      2      |[56 22]              |
   |       57       |      2      |[57 21]              |
   |       58       |      2      |[58 20]              |
   |       59       |      2      |[59 19]              |
   |       60       |      2      |[60 18]              |
   |       61       |      2      |[61 17]              |
   |       62       |      2      |[62 16]              |
   |       63       |      2      |[63 15]              |
   |       64       |      2      |[64 14]              |
   |       65       |      2      |[65 13]              |
   |       66       |      2      |[66 12]              |
   |       67       |      2      |[67 11]              |
   |       68       |      2      |[68 10]              |
   |       69       |      2      |[69 9]               |
   |       70       |      2      |[70 8]               |
   |       71       |      2      |[71 7]               |
   |       72       |      2      |[72 6]               |
   |       73       |      2      |[73 5]               |
   |       74       |      2      |[74 4]               |
   |       75       |      2      |[75 3]               |
   |       76       |      2      |[76 2]               |
   |       77       |      2      |[77 1]               |
   |       78       |      1      |[78]                 |

 HDL Serial Architectures for FIR Filters

8-61



You can use the optional properties 'Multipliers' and 'FoldingFactor' to display the specific
information.

hdlfilterserialinfo(lpFilter, 'Multipliers', 4, ...
                    'InputDataType', nt_in);

Serial Partition: [20 20 20 18], Folding Factor:   20, Multipliers:    4

hdlfilterserialinfo(lpFilter, 'Foldingfactor', 6, ...
                    'InputDataType', nt_in);

Serial Partition: ones(1,13)*6, Folding Factor:    6, Multipliers:   13

Fully Serial Architecture

In fully serial architecture, instead of having a dedicated multiplier for each tap, the input sample for
each tap is selected serially and is multiplied with the corresponding coefficient. For symmetric (and
antisymmetrical) structures the input samples corresponding to each set of symmetric taps are
preadded (for symmetric) or pre-subtracted (for anti-symmetric) before multiplication with the
corresponding coefficients. The product is accumulated sequentially using a register and the final
result is stored in a register before the next set of input samples arrive. This implementation needs a
clock rate that is as many times faster than input sample rate as the number of products to be
computed. This results in reducing the required chip area as the implementation involves just one
multiplier with a few additional logic elements like multiplexers and registers. The clock rate will be
78 times the input sample rate (foldingfactor of 78) equal to 3.4398 MHz for this example.

To implement fully serial architecture, use the hdlfilterserialinfo function and set the
'Multipliers' property to 1. You can also set the 'SerialPartition' property equal to the
effective filter length, which in this case is 78. The function also returns the folding factor and
number of multipliers used for that serial partition setting.

[spart, foldingfact, nMults] = hdlfilterserialinfo(lpFilter, 'Multipliers', 1, ...
                                    'InputDataType', nt_in); %#ok<ASGLU>
                      
generatehdl(lpFilter,'Name', 'fullyserial', ...
           'SerialPartition', spart, ...
           'TargetLanguage', 'VHDL', ...
           'TargetDirectory', workingdir, ...
           'InputDataType', nt_in);

### Starting VHDL code generation process for filter: fullyserial
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\fullyserial.vhd
### Starting generation of fullyserial VHDL entity
### Starting generation of fullyserial VHDL architecture
### Clock rate is 78 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: fullyserial
### HDL latency is 3 samples

Generate the test bench the same way, as in the fully parallel case. It is important to generate a test
bench again for each architecture implementation.

Partly Serial Architecture

Fully parallel and fully serial represent two extremes of implementations. While Fully serial is very
low area, it inherently needs a faster clock rate to operate. Fully parallel takes a lot of chip area but
has very good performance. Partly serial architecture covers all the cases that lie between these two
extremes.
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The input taps are divided into sets. Each set is processed in parallel by a serial partition consisting
of multiply accumulate and a multiplexer. Here, a set of serial partitions process a given set of taps.
These serial partitions operate in parallel with respect to each other but process each tap
sequentially to accumulate the result corresponding to the taps served. Finally, the result of each
serial partition is added together using adders.

Partly Serial Architecture for Resource Constraint

Let us assume that you want to implement this filter on an FPGA which has only 4 multipliers
available for the filter. You can implement the filter using 4 serial partitions, each using one multiply
accumulate circuit.

hdlfilterserialinfo(lpFilter, 'Multipliers', 4, ...
                    'InputDataType', nt_in);

Serial Partition: [20 20 20 18], Folding Factor:   20, Multipliers:    4

The input taps that are processed by these serial partitions will be [20 20 20 18]. You will specify
SerialPartition with this vector indicating the decomposition of taps for serial partitions. The clock
rate is determined by the largest element of this vector. In this case the clock rate will be 20 times
the input sample rate, 0.882 MHz.

[spart, foldingfact, nMults] = hdlfilterserialinfo(lpFilter, 'Multipliers', 4, ...
                                    'InputDataType', nt_in);

generatehdl(lpFilter,'Name', 'partlyserial1',...
            'SerialPartition', spart,...
            'TargetLanguage', 'VHDL', ...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);

### Starting VHDL code generation process for filter: partlyserial1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\partlyserial1.vhd
### Starting generation of partlyserial1 VHDL entity
### Starting generation of partlyserial1 VHDL architecture
### Clock rate is 20 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: partlyserial1
### HDL latency is 3 samples

Partly Serial Architecture for Speed Constraint

Assume that you have a constraint on the clock rate for filter implementation and the maximum clock
frequency is 2 MHz. This means that the clock rate can't be more than 45 times the input sample
rate. For such a design constraint, specify the 'SerialPartition' as [45 33]. Note that this
results in an additional serial partition hardware, implying additional circuitry to multiply-accumulate
33 taps. You can specify the 'SerialPartition' property using hdlfilterserialinfo and its
property 'Foldingfactor' as follows.

spart = hdlfilterserialinfo(lpFilter, 'Foldingfactor', 45, ...
                            'InputDataType', nt_in);

generatehdl(lpFilter,'Name', 'partlyserial2', ...
            'SerialPartition', spart,...
            'TargetLanguage', 'VHDL',...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);
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### Starting VHDL code generation process for filter: partlyserial2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\partlyserial2.vhd
### Starting generation of partlyserial2 VHDL entity
### Starting generation of partlyserial2 VHDL architecture
### Clock rate is 45 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: partlyserial2
### HDL latency is 3 samples

In general, you can specify any arbitrary decomposition of taps for serial partitions depending on
other constraints. The only requirement is that the sum of elements of the vector should be equal the
effective filter length.

Cascade-Serial Architecture

The accumulators in serial partitions can be re-used to add the result of the next serial partition. This
is possible if the number of taps being processed by one serial partition must be more than that by
serial partition next to it by at least 1. The advantage of this technique is that the set of adders
required to add the result of all serial partitions are removed. However, this increases the clock rate
by 1, as an additional clock cycle is required to complete the additional accumulation step.

Cascade-Serial architecture can be specified using the property 'ReuseAccum'. This can be done in
two ways.

Add 'ReuseAccum' to generatehdl method and specify it as 'on'. Note that the value specified for
'SerialPartition' property has to be such that the accumulator reuse is feasible. The elements of
the vector must be in descending order except for the last two which can be same.

If the property 'SerialPartition' is not specified and 'ReuseAccum' is specified as 'on', the
decomposition of taps for serial partitions is determined internally. This decomposition minimizes the
clock rate and reuses the accumulator logic. For this audio filter, the serial partitions are [12 11 10
9 8 7 6 5 4 3 3]. Note that it uses 11 serial partitions, implying 11 multiply accumulate circuits.
The clock rate will be 13 times the input sample rate, 573.3 kHz.

generatehdl(lpFilter,'Name', 'cascadeserial1',...
            'SerialPartition', [45 33],...
            'ReuseAccum', 'on', ...
            'TargetLanguage', 'VHDL', ...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);

### Starting VHDL code generation process for filter: cascadeserial1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\cascadeserial1.vhd
### Starting generation of cascadeserial1 VHDL entity
### Starting generation of cascadeserial1 VHDL architecture
### Clock rate is 46 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: cascadeserial1
### HDL latency is 3 samples

Optimal decomposition into as many serial partitions required for minimum clock rate possible for
reusing accumulator.

generatehdl(lpFilter,'Name', 'cascadeserial2', ...
            'ReuseAccum', 'on',...
            'TargetLanguage', 'VHDL',...
            'TargetDirectory', workingdir, ...
            'InputDataType', nt_in);
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### Starting VHDL code generation process for filter: cascadeserial2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp064f4a40_b74c_4933_861a_1c1014e59248\cascadeserial2.vhd
### Starting generation of cascadeserial2 VHDL entity
### Starting generation of cascadeserial2 VHDL architecture
### Clock rate is 13 times the input sample rate for this architecture.
### Serial partition # 1 has 12 inputs.
### Serial partition # 2 has 11 inputs.
### Serial partition # 3 has 10 inputs.
### Serial partition # 4 has 9 inputs.
### Serial partition # 5 has 8 inputs.
### Serial partition # 6 has 7 inputs.
### Serial partition # 7 has 6 inputs.
### Serial partition # 8 has 5 inputs.
### Serial partition # 9 has 4 inputs.
### Serial partition # 10 has 3 inputs.
### Serial partition # 11 has 3 inputs.
### Successful completion of VHDL code generation process for filter: cascadeserial2
### HDL latency is 3 samples

Conclusion

You designed a lowpass direct form symmetric FIR filter to meet the given specification. You then
quantized and checked your design. You generated VHDL code for fully parallel, fully serial, partly
serial and cascade-serial architectures. You generated a VHDL test bench using a DTMF tone for one
of the architectures.

You can use an HDL simulator to verify the generated HDL code for different serial architectures. You
can use a synthesis tool to compare the area and speed of these architectures. You can also
experiment with and generating Verilog code and test benches.
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HDL Distributed Arithmetic for FIR Filters

This example illustrates how to generate HDL code for a lowpass FIR filter with Distributed
Arithmetic (DA) architecture.

Distributed Arithmetic

Distributed Arithmetic is a popular architecture for implementing FIR filters without the use of
multipliers. DA realizes the sum of products computation required for FIR filters efficiently using
LUTs, shifters and adders. Since these operations map efficiently onto an FPGA, DA is a favored
architecture on these devices.

Design the Filter

Use a sampling rate of 48 kHz, passband edge frequency of 9.6 kHz and stop frequency of 12k. Set
the allowable peak-to-peak passband ripple to 1 dB and the stopband attenuation to -90 dB. Then,
design the filter using fdesign.lowpass, and create the System object filter as a direct form FIR filter.

Fs           = 48e3;         % Sampling Frequency in Hz
Fpass        = 9.6e3;        % Passband Frequency in Hz
Fstop        = 12e3;         % Stopband Frequency in Hz
Apass        = 1;            % Passband Ripple in dB
Astop        = 90;           % Stopband Attenuation in dB

lpSpec = fdesign.lowpass( 'Fp,Fst,Ap,Ast',...
    Fpass, Fstop, Apass, Astop, Fs);

lpFilter = design(lpSpec, 'equiripple', 'filterstructure', 'dffir',...
    'SystemObject', true);

Quantize the Filter

Since DA implements the FIR filter by serializing the input data bits, it requires a quantized filter.
Assume that 12 bit input and output word lengths with 11 fractional bits are required (due to of fixed
data path requirements or input ADC/output DAC widths). Apply these fixed point settings.

inputDataType = numerictype(1,12,11);
outputDataType = inputDataType;
coeffsDataType = numerictype(1,16,16);

lpFilter.FullPrecisionOverride = false;
lpFilter.CoefficientsDataType = 'Custom';
lpFilter.CustomCoefficientsDataType = coeffsDataType;
lpFilter.OutputDataType = 'Custom';
lpFilter.CustomOutputDataType = outputDataType;

% Now check the filter response with fvtool.
fvtool(lpFilter,'Fs',Fs,'Arithmetic','fixed');
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Generate HDL Code with DA Architecture

To generate HDL Code with DA architecture, invoke the generatehdl command, passing in a valid
value to the 'DALUTPartition' property. The 'DALUTPartition' property directs the code generator to
use DA architecture, and divides the LUT into a specified number of partitions. The 'DALUTPartition'
property specifies the number of LUT partitions, and the number of the taps associated with each
partition. For a filter with many taps it is best to divide the taps into a number of LUTs, with each LUT
storing the sum of coefficients for only the taps associated with it. The sum of the LUT outputs is
computed in a tree structure of adders.

Check the filter length by getting the number of coefficients.

FL = length(lpFilter.Numerator);

Assume that you have 8 input LUTs; calculate the value of the DALUTPartition property such that you
use as many of these LUTs as possible per partition.

dalut = [ones(1, floor(FL/8))*8, mod(FL, 8)];

Generate HDL with DA architecture. By default, VHDL code is generated. To generate Verilog code,
pass in the 'TargetLanguage' property with the value 'Verilog'.

workingdir = tempname;
generatehdl(lpFilter, 'DALUTPartition', dalut, ...
                'TargetDirectory', workingdir, ...
                'InputDataType', inputDataType);
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### Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.
### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp60801870_710e_42c1_9a68_3d7d4c05e436\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 12 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples

Convert the Filter Structure to 'Direct form symmetric' and Generate HDL

A symmetrical filter structure offers advantages in hardware, as it halves the number of coefficients
to work with. This reduces the hardware complexity substantially. Create a new FIR filter System
object 'lpSymFilter' with a 'Direct form symmetric' structure and the same fixed point settings.

lpSymFilter = design(lpSpec, 'equiripple', 'filterstructure', 'dfsymfir',...
    'SystemObject', true);

lpSymFilter.FullPrecisionOverride = false;
lpSymFilter.CoefficientsDataType = 'Custom';
lpSymFilter.CustomCoefficientsDataType = coeffsDataType;
lpSymFilter.OutputDataType = 'Custom';
lpSymFilter.CustomOutputDataType = outputDataType;

% Calculate filter length FL for lpSymFilter for the purpose of calculating 'DALUTPartition'
FL = ceil(length(lpSymFilter.Numerator)/2);

% Generate the  value for 'DALUTPartition' as done previously for lpFilter.
dalut_sym = [ones(1, floor(FL/8))*8, mod(FL, 8)];

% Generate HDL code for default radix of 2
generatehdl(lpSymFilter, 'DALUTPartition', dalut_sym, ...
                   'TargetDirectory', workingdir, ...
                   'InputDataType', inputDataType);

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp60801870_710e_42c1_9a68_3d7d4c05e436\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 13 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples

Notice that a symmetrical filter takes one additional clock cycle before the output is obtained. This is
because of the carry bit that is added to the input word length as the input data from the symmetrical
taps are summed together. The clock rate for 'lpSymFilter' is 13 times the input sample rate, whereas
for 'lpFilter' the clock rate was 12 times the input sample rate.

DARadix

The default architecture is a Radix 2 implementation, which operates on one bit of input data on each
clock cycle. The number of clock cycles elapsed before an output is obtained is equal to the number
of bits in the input data. Thus DA can potentially limit the throughput. To improve the throughput of
DA, you can configure DA to process multiple bits in parallel. The 'DARadix' property is provided for
this purpose. For example, you can set 'DARadix' to 2^3 to operate on 3 bits in parallel. For a 12 bit
input word length, you can specify processing of 1, 2, 3, 4, 6 or 12 bits at a time by specifying
corresponding 'DARadix' values of 2^1, 2^2, 2^3, 2^4, 2^6, or 2^12 respectively.
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In selecting different 'DARadix' values, you trade off speed vs. area within the DA architecture. The
number of bits operated in parallel determines the factor by which the clock rate needs to be
increased. This is known as folding factor. For example, the default 'DARadix of 2^1, implying 1 bit at
a time, results in a clock rate 12 times the input sample rate or a folding factor of 12. A 'DARadix' of
2^3 results in a clock rate only 4 times the input sample rate, but requires 3 identical sets of LUTs,
one for each bit being processed in parallel.

Information Regarding DA Architecture

As explained in previous section, DA architecture presents a lot of options both in terms of LUT sizes
and the folding factor. You can use hdlfilterdainfo function to get information regarding various filter
lengths based on the value of coefficients. This function also displays two other tables, one for all
possible values of DARadix property with corresponding folding factors. The second table displays
details of LUT sets with the corresponding values of DALUTPartition property.

hdlfilterdainfo(lpFilter, 'InputDataType', inputDataType);

   | Total Coefficients | Zeros | Effective |
   ------------------------------------------
   |         58         |   0   |     58    |

Effective filter length for SerialPartition value is 58.

  Table of 'DARadix' values with corresponding values of 
  folding factor and multiple for LUT sets for the given filter.

   | Folding Factor | LUT-Sets Multiple | DARadix |
   ------------------------------------------------
   |        1       |         12        |   2^12  |
   |        2       |         6         |   2^6   |
   |        3       |         4         |   2^4   |
   |        4       |         3         |   2^3   |
   |        6       |         2         |   2^2   |
   |       12       |         1         |   2^1   |

  Details of LUTs with corresponding 'DALUTPartition' values.

   | Max Address Width | Size(bits) |                          LUT Details                         |    DALUTPartition   |
   -----------------------------------------------------------------------------------------------------------------------
   |         12        |   259072   |1x1024x13, 1x4096x13, 1x4096x14, 1x4096x15, 1x4096x18         |[12 12 12 12 10]     |
   |         11        |   147544   |2x2048x13, 2x2048x14, 1x2048x18, 1x8x11                       |[11 11 11 11 11 3]   |
   |         10        |    78080   |3x1024x13, 1x1024x16, 1x1024x18, 1x256x13                     |[10 10 10 10 10 8]   |
   |         9         |    43712   |1x16x12, 1x512x12, 2x512x13, 1x512x14, 1x512x15, 1x512x18     |[9 9 9 9 9 9 4]      |
   |         8         |    25384   |4x256x13, 1x256x14, 1x256x15, 1x256x18, 1x4x10                |[8 8 8 8 8 8 8 2]    |
   |         7         |    14248   |2x128x12, 3x128x13, 1x128x14, 1x128x16, 1x128x18, 1x4x10      |[7 7 7 7 7 7 7 7 2]  |
   |         6         |    8000    |1x16x12, 4x64x12, 1x64x13, 2x64x14, 1x64x16, 1x64x17          |[ones(1,9)*6, 4]     |
   |         5         |    4696    |1x32x11, 4x32x12, 3x32x13, 1x32x14, 1x32x15, 1x32x17, 1x8x11  |[ones(1,11)*5, 3]    |
   |         4         |    2904    |3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10  |[ones(1,14)*4, 2]    |
   |         3         |    1926    |1x2x7, 5x8x11, 8x8x12, 1x8x13, 2x8x14, 2x8x15, 1x8x17         |[ones(1,19)*3, 1]    |
   |         2         |    1412    |2x4x10, 12x4x11, 6x4x12, 2x4x13, 4x4x14, 2x4x15, 1x4x17       |ones(1,29)*2         |

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
   implies 1 LUT of 1024 18-bit wide locations.
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You can use optional properties for LUT and folding factors to display specific information. You can
choose one of the two LUT properties, 'LUTInputs' or 'DALUTPartition' to display all the folding factor
options available for the specific LUT inputs.

hdlfilterdainfo(lpFilter, 'InputDataType', inputDataType, ...
                    'LUTInputs', 4);

   | Folding Factor | LUT Inputs | LUT Size |                             LUT Details                             |
   ----------------------------------------------------------------------------------------------------------------
   |        1       |      4     |   34848  |12 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)  |
   |        2       |      4     |   17424  |6 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)   |
   |        3       |      4     |   11616  |4 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)   |
   |        4       |      4     |   8712   |3 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)   |
   |        6       |      4     |   5808   |2 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)   |
   |       12       |      4     |   2904   |1 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)   |

You can also choose one of the two folding factor related properties, 'FoldingFactor' or 'DARadix' to
display all the LUT options for the specific folding factor.

hdlfilterdainfo(lpFilter, 'InputDataType', inputDataType, ...
                    'Foldingfactor', 6);

   | Folding Factor | LUT Inputs | LUT Size |                             LUT Details                            |
   ---------------------------------------------------------------------------------------------------------------
   |        6       |     12     |  518144  |2 x (1x1024x13, 1x4096x13, 1x4096x14, 1x4096x15, 1x4096x18)         |
   |        6       |     11     |  295088  |2 x (2x2048x13, 2x2048x14, 1x2048x18, 1x8x11)                       |
   |        6       |     10     |  156160  |2 x (3x1024x13, 1x1024x16, 1x1024x18, 1x256x13)                     |
   |        6       |      9     |   87424  |2 x (1x16x12, 1x512x12, 2x512x13, 1x512x14, 1x512x15, 1x512x18)     |
   |        6       |      8     |   50768  |2 x (4x256x13, 1x256x14, 1x256x15, 1x256x18, 1x4x10)                |
   |        6       |      7     |   28496  |2 x (2x128x12, 3x128x13, 1x128x14, 1x128x16, 1x128x18, 1x4x10)      |
   |        6       |      6     |   16000  |2 x (1x16x12, 4x64x12, 1x64x13, 2x64x14, 1x64x16, 1x64x17)          |
   |        6       |      5     |   9392   |2 x (1x32x11, 4x32x12, 3x32x13, 1x32x14, 1x32x15, 1x32x17, 1x8x11)  |
   |        6       |      4     |   5808   |2 x (3x16x11, 5x16x12, 2x16x13, 2x16x14, 1x16x15, 1x16x17, 1x4x10)  |
   |        6       |      3     |   3852   |2 x (1x2x7, 5x8x11, 8x8x12, 1x8x13, 2x8x14, 2x8x15, 1x8x17)         |
   |        6       |      2     |   2824   |2 x (2x4x10, 12x4x11, 6x4x12, 2x4x13, 4x4x14, 2x4x15, 1x4x17)       |

Notice that LUT details indicate a factor by which the LUT sets need to be replicated to achieve the
corresponding folding factor. Also, total LUT size is calculated with above factor.

You can use output arguments to return the values of DALUTPartition and DARadix for a specific
configuration and use it with generatehdl command. Let us assume that you can intend to raise the
clock rate by 4 times the sample rate and want to use 6 input LUTs. You can verify that the LUT
details meet your area requirements.

hdlfilterdainfo(lpFilter, 'InputDataType', inputDataType, ...
                    'FoldingFactor', 4, ...
                    'LUTInputs',  6);

   | Folding Factor |     LUT Size     |                         LUT Details                        |  DALUTPartition  | DARAdix |
   -------------------------------------------------------------------------------------------------------------------------------
   |        4       | 3 x 8000 = 24000 |3 x (1x16x12, 4x64x12, 1x64x13, 2x64x14, 1x64x16, 1x64x17)  | [ones(1,9)*6, 4] |   2^3   |

Now generate HDL with the above constraints by first storing the required values of DALUTPartition
and DARadix in variables by using the output arguments to the hdlfilterdainfo function. You can then
invoke generatehdl command using these variables.

[dalut, dr] = hdlfilterdainfo(lpFilter, 'InputDataType', inputDataType, ...
                                  'FoldingFactor', 4, ...

8 Filter Design HDL Coder Featured Examples

8-70



                                  'LUTInputs', 6);

generatehdl(lpFilter, 'InputDataType', inputDataType, ...
                'DALUTPartition', dalut, ...
                'DAradix', dr, ...
                'TargetDirectory', workingdir);

### Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.
### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp60801870_710e_42c1_9a68_3d7d4c05e436\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 4 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples

Conclusion

You designed a lowpass direct form FIR filter to meet the given specification. You then quantized and
checked your design. You generated VHDL code for DA with various radices and explored speed vs.
area trade-offs within DA by replicating LUTs and operating on multiple bits in parallel.

You can generate a test bench with a standard stimulus and/or your own defined stimulus, and use an
HDL Simulator to verify the generated HDL code for DA architectures. You can use a synthesis tool to
compare the area and speed of these architectures.
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HDL Programmable FIR Filter

This example illustrates how to generate HDL code for an FIR filter with a processor interface for
loading coefficients. The filter can be programmed to any desired response by loading the coefficients
into an internal coefficient memory using the processor interface.

Let us assume that we need to implement a bank of filters, having different responses, on a chip. If all
of the filters have a direct-form FIR structure, and the same length, then we can use a processor
interface to load the coefficients for each response from a RAM or register file when needed.

This design will add latency of a few cycles before the input samples can be processed with the
loaded coefficients. However, it has the advantage that the same filter hardware can be programmed
with new coefficients to obtain a different filter response. This saves chip area, as otherwise each
filter would be implemented separately on the chip.

In this example, we will consider two FIR filters, one with a highpass response and the other with a
lowpass response. We will show how the same filter hardware can be programmed for each response
by loading the corresponding set of coefficients. We will generate VHDL code for the filter and show
the two responses using the generated VHDL test bench.

Design the Filters

Create the lowpass filter design object, then create the FIR Filter System object (Hlp). Then,
transform it to create a FIR Filter System object with a highpass response (Hhp).

Fpass = 0.45; % Passband Frequency
Fstop = 0.55; % Stopband Frequency                                                                                         
Apass = 1;    % Passband Attenuation (dB)
Astop = 60;   % Stopband Attenuation (dB)

f = fdesign.lowpass('Fp,Fst,Ap,Ast',Fpass,Fstop,Apass,Astop);
lpFilter = design(f, 'equiripple','FilterStructure', 'dfsymfir','SystemObject',true); % Lowpass

hpcoeffs = firlp2hp(lpFilter.Numerator); 
hpFilter = dsp.FIRFilter('Numerator', hpcoeffs); % Highpass

Quantize the Filters

Assume the coefficients need be stored in a memory of bit width 14. Using this information, apply
fixed point settings to the System object filter.

lpFilter.FullPrecisionOverride=false;
lpFilter.CoefficientsDataType='Custom';
lpFilter.CustomCoefficientsDataType=numerictype(1,14,13);
lpFilter.OutputDataType='Same as Accumulator';
lpFilter.ProductDataType='Full precision';
lpFilter.AccumulatorDataType='Full precision';

hpFilter.FullPrecisionOverride=false;
hpFilter.CoefficientsDataType='Custom';
hpFilter.CustomCoefficientsDataType=numerictype(1,14,13);
hpFilter.OutputDataType='Same as Accumulator';
hpFilter.ProductDataType='Full precision';
hpFilter.AccumulatorDataType='Full precision';
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After applying fixed point settings, it is important to verify that the System object filter still meets the
specifications. We will use the function 'measure' to check if this is true.

measure(lpFilter,'Arithmetic','fixed')

ans = 
Sample Rate      : N/A (normalized frequency)
Passband Edge    : 0.45                      
3-dB Point       : 0.46957                   
6-dB Point       : 0.48314                   
Stopband Edge    : 0.55                      
Passband Ripple  : 0.89243 dB                
Stopband Atten.  : 55.3452 dB                
Transition Width : 0.1                       
 

Verify the Filter Output

Generate a linear swept-frequency stimulus signal using chirp. Use this input stimulus for filtering
through the lowpass FIR filter first. Then change the coefficients of the filter to obtain a highpass
response and use the same input sample to filter again.

For the above two-stage filtering operation our goal is to compare the filter output from MATLAB®
with that from the generated HDL code.

Plotting the input samples and the filtered output shows the lowpass and highpass behavior.

x = chirp(0:199,0,199,0.4);

lpcoeffs = lpFilter.Numerator;            % store original lowpass coefficients
y1 = lpFilter(fi(x,1,14,13).');           % filter the signal

lpFilter.Numerator = hpFilter.Numerator;  % load the highpass filter coefficients
y2 = lpFilter(fi(x,1,14,13).');           % filter the signal

y = [y1; y2];                             % concatenate output signals

lpFilter.Numerator = lpcoeffs;            % restore original lowpass coefficients

subplot(2,1,1);plot([x,x]);
xlabel('Time [samples]');ylabel('Amplitude'); title('Input Stimulus');
subplot(2,1,2);plot(y);
xlabel('Time [samples]');ylabel('Amplitude'); title('Filtered Output');
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Generate VHDL Code with Processor Interface and Test Bench

For the quantized lowpass filter, we will generate the VHDL code with a processor interface by
setting the property 'CoefficientSource' to 'ProcessorInterface'. This will result in the generated code
having additional ports for write_address, write_enable, coeffs_in, and write_done signals. This
interface can be used to load the coefficients from a host processor into an internal register file. The
HDL has an additional shadow register that is updated from the register file when the 'write_done'
signal is high. This enables simultaneous loading and processing of data by the filter entity.

To verify that the filter entity can be successively loaded with two different sets of filter coefficients,
we will generate a VHDL test bench. First, the test bench loads the lowpass coefficients and
processes the input samples. Then the test bench loads the coefficients corresponding to the highpass
filter response, and processes the input samples again.

The generated VHDL code and VHDL test bench can be compiled and simulated using an HDL
simulator such as ModelSim®. Notice that the loading of the second set of coefficients and the
processing of the last few input samples are performed simultaneously.

In order to generate the required test bench, we set the property 'GenerateHDLTestbench' to 'on' and
pass 'TestbenchCoeffStimulus' in the call to the generatehdl command. The value passed in for
'TestbenchCoeffStimulus' is a vector of coefficients that are to be used for subsequent processing of
input samples. This example passes in a vector of coefficients corresponding to a highpass filter.

Assume 14-bit signed fixed-point input with 13 bits of fraction precision is needed due to fixed data
path requirements of input ADC.
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%As the symmetric structure is selected, the field 'TestbenchCoeffStimulus'
% has to be the half of length of filter.

workingdir = tempname;

generatehdl(lpFilter,'Name','FilterProgrammable', ...
                 'InputDataType',numerictype(1,14,13), ...
                 'TargetLanguage','VHDL', ...
                 'TargetDirectory',workingdir, ...
                 'CoefficientSource','ProcessorInterface', ...
                 'GenerateHDLTestbench','on', ...
                 'TestBenchUserStimulus',x, ...
                 'TestbenchCoeffStimulus',hpFilter.Numerator(1:(length(hpFilter.Numerator)+1)/2));

### Starting VHDL code generation process for filter: FilterProgrammable
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp7f286531_6eac_4e49_9b1f_a240c5083220\FilterProgrammable.vhd
### Starting generation of FilterProgrammable VHDL entity
### Starting generation of FilterProgrammable VHDL architecture
### Successful completion of VHDL code generation process for filter: FilterProgrammable
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 200 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp7f286531_6eac_4e49_9b1f_a240c5083220\FilterProgrammable_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

ModelSim® Simulation Results

The following display shows the ModelSim HDL simulator after running the generated .do file scripts
for the test bench. Compare the ModelSim result with the MATLAB result as plotted before.
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Conclusion

We designed highpass and lowpass FIR filters to meet the given specifications. We then quantized the
filter and generated VHDL code for the filter, with an interface to load the coefficients from a
processor. We then generated a VHDL test bench that showed the processing of input samples after
loading lowpass coefficients, repeating the operation with the highpass coefficients. We showed how
to generate the VHDL code that implements filter hardware that is reusable for different responses
when different sets of coefficients are loaded via the port interface from a host processor.
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Fundamental HDL Code Generation Properties
Customize filter name, destination folder, and specify target language

Description
With the fundamental HDL code generation properties, you can customize filter name, destination
folder, and specify the target language.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'TargetLanguage','Verilog');

Properties
Target

TargetLanguage — HDL language of generated filter code
'VHDL' (default) | 'Verilog'

HDL language of generated filter code, specified as 'VHDL' or 'Verilog'.

Name — File name of generated HDL code
character vector | string scalar

File name of generated HDL code, specified as a character vector or a string scalar. The coder adds a
file type extension to the file name, as specified by the VerilogFileExtension or
VHDLFileExtension properties. The file name also determines the name of the generated VHDL
entity or Verilog module for the filter. The file is located in the folder specified by the
TargetDirectory property.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

TargetDirectory — Location of generated files
'hdlsrc' (default) | character vector | string scalar

Location of generated files, specified as a character vector or a string scalar. Specify the location as a
subfolder under the current working folder, or as a complete path to the files.

Language-Specific

VerilogFileExtension — File type extension of generated Verilog file
'.v' (default) | character vector | string scalar

File type extension of generated Verilog file, specified as a character vector or a string scalar.
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VHDLFileExtension — File type extension of generated VHDL file
'.vhd' (default) | character vector | string scalar

File type extension of generated VHDL file, specified as a character vector or a string scalar.

Data Types

InputDataType — Input data type for System object
numerictype object

Input data type for System object, specified as a numerictype object. This argument is required only
when the input filter is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0
for unsigned, w is the word length in bits, and f is the number of fractional bits. For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15));

FractionalDelayDataType — Fractional delay data type
numerictype object

Fractional delay data type, specified as a numerictype object. This argument is required only when
the input filter is a dsp.VariableFractionalDelay System object. Call numerictype(s,w,f),
where s is 1 for signed and 0 for unsigned, w is the word length in bits, and f is the number of
fractional bits. For example:
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17), ...
    'FractionalDelayDataType',numerictype(1,8,7));

Tips
If you use the fdhdltool function to generate HDL code, you can specify the input and fractional
delay data types as arguments, and then set additional properties in the Generate HDL dialog box.

Property Location in Dialog Box
Language Target section at top of dialog box
Name
Folder
Verilog file extension Global Settings tab
VHDL file extension

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool

Topics
“Code Generation Fundamentals”
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HDL Filter Configuration Properties
Configure coefficients, complex input ports, and optional ports for specific filter types

Description
With the HDL filter configuration properties, you can configure coefficients, complex input ports, and
optional ports for specific filter types. For filter serialization and pipeline properties, see
Optimization.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'CoefficientSource','ProcessorInterface');

Properties
Coefficients

CoefficientSource — Source of programmable filter coefficients
'Internal' (default) | 'ProcessorInterface'

Source of programmable filter coefficients, specified as 'Internal' or 'ProcessorInterface'.
This property applies only to “Programmable Filter Coefficients for FIR Filters” on page 3-23 and
“Programmable Filter Coefficients for IIR Filters” on page 3-30.

• 'Internal' — The coder obtains the filter coefficients from the filter object. The coefficients are
hard-coded in the generated HDL code.

• 'ProcessorInterface' — The coder generates a memory interface for the filter coefficients.
You can drive this interface with an external microprocessor. The generated VHDL entity or
Verilog module for the filter includes these ports for the processor interface:

• coeffs_in — Input port for coefficient data
• write_address — Write-address for coefficient memory
• write_enable — Write-enable signal for coefficient memory
• write_done — Signal to indicate completion of coefficient write operation

If you generate a test bench, you can specify the input stimulus for this interface by using the
TestBenchCoeffStimulus property.

For serial FIR filter, you can also specify the memory type for storing the programmable
coefficients by setting the CoefficientMemory property.

CoefficientMemory — Memory type for programmable filter coefficients
'Registers' (default) | 'DualPortRAMs' | 'SinglePortRAMs'
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Memory type for programmable filter coefficients, specified as 'Registers', 'DualPortRAMs', or
'SinglePortRAMs'. This property applies only to “Programmable Filter Coefficients for FIR Filters”
on page 3-23 with a fully serial, partly serial, or cascade serial architecture.

• 'Registers' — The coder generates a register file for storing programmable coefficients.
• 'SinglePortRAMs' or 'DualPortRAMs' — The coder generates the respective RAM interface

for storing programmable coefficients.

Dependencies

This property applies only when you set CoefficientSource to 'ProcessorInterface'. If the
coder does not generate an interface for programmable coefficients, this CoefficientMemory
property is ignored.

Optional Ports

InputComplex — Generate complex input data ports
'off' (default) | 'on'

Generate complex input data ports, specified as 'off' or 'on'. Use this option when your filter
design requires complex input data. See “Using Complex Data and Coefficients” on page 5-26. When
you set this property to 'on', the coder generates ports and signal paths for the real and imaginary
components of a complex signal.

You can customize the port names by setting the ComplexRealPostfix and ComplexImagPostfix
properties.
Dependencies

To generate complex inputs, you must also set CoefficientSource to 'Internal'. Complex
inputs are not supported when filter coefficients are obtained from a processor interface.

ClockInputs — Type of generated clock inputs
'Single' (default) | 'Multiple'

Type of generated clock inputs, specified as 'Single' or 'Multiple'. This property applies only to
“Multirate Filters” on page 3-2.

• 'Single' — The generated VHDL entity or Verilog module for the filter has a single clock input,
an associated clock enable input, and a clock enable output. The generated code includes a
counter that controls the timing of data transfers to the filter output (for decimation filters) or
input (for interpolation filters). The counter behaves as a secondary clock. The decimation or
interpolation factor determines the clock rate of the counter. This option provides a self-contained
clocking solution for FPGA designs.

To customize the names of these clock inputs and outputs, see the ClockInputPort,
ClockEnableInputPort, and ClockEnableOutputPort properties.

Interpolators also pass through the clock enable input signal to an output port named ce_in. This
signal indicates when the object accepted an input sample. You can use this signal to control the
upstream data flow. You cannot customize this port name.

• 'Multiple' — The generated VHDL entity or Verilog module for the filter has separate clock
inputs for each rate of the multirate filter. Each clock input has an associated clock enable input.
The coder does not generate a clock enable output. Provide input clock signals that correspond to
the desired decimation or interpolation factor.
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This option provides more flexibility than a single clock input. However, multiple clock inputs
assume that you provide higher-level HDL code to drive the input clocks of your filter. The coder
does not generate synchronizers between multiple clock domains. If you generate a test bench,
examine the clk_gen processes for each clock.

The following filters do not support 'Multiple':

• Filters with a partly serial architecture
• Multistage sample rate converters: dsp.FIRRateConverter, dsp.FarrowRateConverter,

or multirate dsp.FilterCascade

For an example, see “Clock Ports for Multirate Filters” on page 10-22.

AddRatePort — Generate rate ports
'off' (default) | 'on'

Generate rate ports, specified as 'off' or 'on'. This property applies only to “Variable Rate CIC
Filters” on page 3-6.

When you set this property to 'on', the coder generates rate and load_rate ports for the filter. A
variable-rate CIC filter has a programmable rate change factor. When you assert the load_rate
signal, the rate port loads in a rate factor. You can generate rate ports only for a full-precision filter.

If you generate a test bench, you can customize the rate port stimulus by setting the
TestBenchRateStimulus property.

FracDelayPort — Name of fractional delay input port
'filter_fd' (default) | character vector | string scalar

Name of fractional delay input port, specified as 'filter_fd', a character vector, or a string scalar.
This property applies only to “Single-Rate Farrow Filters” on page 3-18. For example:
farrowfilt = dsp.VariableFractionalDelay('InterpolationMethod','Farrow');
generatehdl(farrowfilt,'InputDataType',numerictype(1,18,17), ...
    'FractionalDelayDataType',numerictype(1,8,7), ...
    'FracDelayPort','fractional_delay');

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

If you generate a test bench, you can customize the fractional delay stimulus by setting the
TestBenchFracDelayStimulus property.

Tips
If you use the fdhdltool function to generate HDL code, you can set the corresponding properties
in the Generate HDL dialog box.

Filter Type Property Location in Dialog Box
FIR or IIR filter with
programmable coefficients

Coefficient source Filter Architecture tab
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Filter Type Property Location in Dialog Box
FIR filter with serial
architecture and programmable
coefficients

Coefficient memory Filter Architecture tab, when
Coefficient source is set to
Processor interface

Filter with complex input data Input complexity Global Settings tab > Ports
tab

Multirate filter Clock inputs Global Settings tab
CIC filter Add rate port Filter Architecture tab
Single-rate Farrow filter Fractional delay port Global Settings tab > Ports

tab

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool

Topics
“Filter Configuration Options”
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HDL Optimization Properties
Optimize speed or area of generated HDL code

Description
With the HDL optimization properties, you can specify speed vs. area tradeoffs in the generated code.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'AddPipelineRegisters','on');

Properties
Speed Optimization

AddPipelineRegisters — Optimize clock rate with pipeline registers
'off' (default) | 'on'

Optimize clock rate with pipeline registers, specified as 'off' or 'on'. You cannot use this property
with fully serial or cascade serial filters. When you set this property to 'on', the coder adds pipeline
registers between filter computation stages. Although the registers add to the overall filter latency,
they provide significant improvements to the clock rate.

Filter Type Location of Added Pipeline Register
FIR transposed Between coefficient multipliers and adders
Direct form FIR, antisymmetric FIR, and
symmetric FIR

Between levels of a tree-based final adder

For an alternative tree-based summation technique,
see also the property FIRAdderStyle.

IIR Between sections
CIC Between comb sections

For more details, see “Optimizing the Clock Rate with Pipeline Registers” on page 4-25.

FIRAdderStyle — Optimize clock rate with summation technique
'linear' (default) | 'tree' | 'pipelined'

Optimize clock rate with summation technique, specified as 'linear', 'tree', or 'pipelined'.
This property applies only to direct form FIR, antisymmetric FIR, and symmetric FIR filters. You
cannot use this property with fully serial or cascade serial filters. When you set this property to
'tree', the coder creates a final adder that performs pairwise addition on successive products that
execute in parallel, rather than sequentially. When you set this property to 'pipelined', the coder
creates a tree-based final adder with pipeline registers between the levels of the tree.

For more details, see “Optimizing Final Summation for FIR Filters” on page 4-26.
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Dependencies

This property applies only when the AddPipelineRegisters property is set to 'off'.

AddInputRegister — Extra input register
'on' (default) | 'off'

Extra input register, specified as 'on' or 'off'. When this property is set to 'on', the coder
generates a signal named input_register and includes a process statement that controls the
register. If the incurred latency is a concern, or if the filter is incorporated into a code that has an
existing input register, set this property to 'off'. For more details, see “Specifying or Suppressing
Registered Input and Output” on page 4-27.

AddOutputRegister — Extra output register
'on' (default) | 'off'

Extra output register, specified as 'on' or 'off'. When this property is set to 'on', the coder
generates a signal named output_register and includes a process statement that controls the
register. If the incurred latency is a concern, or if the filter is incorporated into a code that has an
existing output register, set this property to 'off'. For more details, see “Specifying or Suppressing
Registered Input and Output” on page 4-27.

MultiplierInputPipeline — Number of pipeline stages on multiplier inputs
0 (default) | nonnegative integer

Number of pipeline stages on multiplier inputs, specified as a nonnegative integer. This property
applies only to FIR filters. Multiplier pipelining can significantly increase clock rates. For more
details, see “Multiplier Input and Output Pipelining for FIR Filters” on page 4-26.

Dependencies

To enable this property, set CoeffMultipliers to 'multipliers'.

MultiplierOutputPipeline — Number of pipeline stages on multiplier outputs
0 (default) | nonnegative integer

Number of pipeline stages on multiplier outputs, specified as a nonnegative integer. This property
applies only to FIR filters. Multiplier pipelining can significantly increase clock rates. For more
details, see “Multiplier Input and Output Pipelining for FIR Filters” on page 4-26.

Dependencies

To enable this property, set CoeffMultipliers to 'multipliers'.

Area Optimization

OptimizeForHDL — HDL code optimization
'off' (default) | 'on'

HDL code optimization, specified as 'off' or 'on'. By default, the coder generates the literal
implementation of the filter with numeric behaviour that matches the filter object exactly. This
implementation is not necessarily an optimal HDL implementation. When this property is set to 'on',
the coder reduces the area of the hardware implementation and optimizes data types and
quantization effects. For more details about the underlying tradeoffs, see “Optimize for HDL” on page
4-29.
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CoeffMultipliers — Implementation of coefficient multiplications
'multiplier' (default) | 'csd' | 'factored-csd'

Implementation of coefficient multiplications, specified as 'multiplier', 'csd', or 'factored-
csd'. You cannot use this property with multirate or serial filters.

• 'multiplier' — The coder retains multiplier logic in the generated HDL code.
• 'csd' or 'factored-csd'— The coder implements multiplication using canonical signed digit

(CSD) logic. The CSD technique replaces multipliers with shift and add logic. This technique also
minimizes the number of adders used for constant multiplication by representing binary numbers
with a minimum count of nonzero digits. This optimization decreases the area used by the filter
while maintaining or increasing clock speed.

• 'factored-csd' — The coder implements multiplication using factored CSD logic. Factored CSD
replaces multiplier operations with shift and add operations on prime factors of the coefficients.
This option achieves a greater area reduction than CSD, at the cost of decreasing clock speed.

For more details, see “CSD Optimizations for Coefficient Multipliers” on page 4-24.

SerialPartition — Partitions for serial filter architectures
-1 (default) | effective filter length | [p1 p2 ... pN] | cell array of serial partitions

Partitions for serial filter architectures, specified as one of the following:

• -1 — The coder generates a fully parallel architecture. This architecture is equivalent to a serial
partition defined as a vector of ones of the size of the effective filter length.

• Effective filter length — The coder generates a fully serial architecture.
• [p1 p2 ... pN] — The coder generates a partly serial architecture with N partitions. The

integers in the vector specify the length of each partition. The sum of the vector elements must be
equal to the effective filter length. To reduce the area further, you can generate a cascade-serial
architecture by enabling the ReuseAccum property. For some examples, see “Generate Serial
Partitions for FIR Filter” on page 10-9.

• Cell array of serial partitions — The coder generates partitions for each filter stage in a cascaded
filter. Specify the partitions for each filter stage as -1, the effective filter length, or a vector of
integers. The elements of each vector must sum to the effective filter length of the associated filter
in the cascade. For an example, see “Generate Serial Partitions of Cascaded Filter” on page 10-
11.

When the serial partition of a filter stage is set to -1, you can specify a LUT partition for that
stage by using the DALUTPartition and DARadix properties. For more details, see “Architecture
Options for Cascaded Filters” on page 4-23.

You cannot use this property with IIR SOS filters. To generate serial architectures for IIR SOS filters,
use the FoldingFactor or NumMultipliers properties instead.

Use this table as a guide for calculating the effective filter length. Alternatively, you can use the
hdlfilterserialinfo function to display the effective filter length and possible partitions for a
filter.

Filter Type Effective Filter Length Calculation
Direct form FL = length(find(filt.Numerator~= 0))
Direct form symmetric FL = ceil(length(find(filt.Numerator~= 0))/2)

9 Properties

9-10



Filter Type Effective Filter Length Calculation
Direct form antisymmetric

For more details, see “Specifying Speed vs. Area Tradeoffs via generatehdl Properties” on page 4-5.

For an overview of parallel and serial architectures and a list of filter types supported for each
architecture, see “Speed vs. Area Tradeoffs” on page 4-2.

ReuseAccum — Accumulator reuse for cascade-serial architecture
'off' (default) | 'on'

Accumulator reuse for cascade-serial architecture, specified as 'off' or 'on'. When this property is
set to 'on', the coder groups filter taps into several serial partitions. The accumulated output of each
partition is cascaded to the accumulator of the previous partition. The output of the partitions is
therefore computed at the accumulator of the first partition. This technique, called accumulator
reuse, saves chip area. If the property SerialPartition is not defined, the coder generates an
optimal partition. For more details, see “Specifying Speed vs. Area Tradeoffs via generatehdl
Properties” on page 4-5.

For an overview of parallel and serial architectures and a list of filter types supported for each
architecture, see “Speed vs. Area Tradeoffs” on page 4-2.

DALUTPartition — Lookup table partitions for distributed arithmetic
-1 (default) | effective filter length | [p1 p2 ... pN] | {p1 p2 ... pN; q1 q2 ... qN; ... }
| cell array of DALUT partitions

Lookup table (LUT) partitions for distributed arithmetic (DA), specified as one of the following:

• -1 — The coder generates a fully parallel architecture.
• Effective filter length — The coder generates a DA implementation without LUT partitioning.
• [p1 p2 ... pN] — The coder generates a DA implementation with N LUT partitions. The

integers in the vector specify the size of each partition. The maximum size for an individual
partition is 12. The sum of the vector elements must be equal to the effective filter length. For
multirate filters, each polyphase subfilter uses the same LUT partitions. For an example, see
“Distributed Arithmetic for Single Rate Filters” on page 10-15.

• {p1 p2 ... pN; q1 q2 ... qN; ... } — The coder generates a DA implementation with N
unique LUT partitions for each polyphase subfilter of a multirate filter. Each row of the matrix
specifies the partitions for one subfilter. The elements in each row must sum to the associated
subfilter length, FLi. For an example, see “Distributed Arithmetic for Multirate Filters” on page
10-15.

• Cell array of DALUT partitions — The coder generates DA implementation with different LUT
partitions for each filter stage of the cascade. Specify the LUT partitions for each filter stage as
-1, the effective filter length, or a vector of integers. The elements of each vector must sum to the
effective filter length of the associated filter in the cascade. For an example, see “Distributed
Arithmetic for Cascaded Filters” on page 10-16.

When the LUT partition of a filter stage is set to -1, you can specify a serial partition for that
stage by using the SerialPartition property. For more details, see “Architecture Options for
Cascaded Filters” on page 4-23.
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Use this table as a guide for calculating the effective filter length. Alternatively, you can use the
hdlfilterdainfo function to display the effective filter length, LUT partitioning options, and
possible DARadix values for the filter.

Filter Type Effective Filter Length Calculation
Direct form FL = length(find(filt.Numerator~= 0))
Direct form symmetric FL = ceil(length(find(filt.Numerator~= 0))/2)
Direct form antisymmetric
Multirate with uniform LUT partitions for
each polyphase subfilter

FL = size(polyphase(filt),2)

Multirate with unique LUT partitions for
each polyphase subfilter

p = polyphase(filt)
FLi = length(find(p(i,:))), where i is the index to the ith
row of the polyphase matrix of the filter. The ith row of the matrix
p represents the ith subfilter.

For more details, see “Distributed Arithmetic for FIR Filters” on page 4-16.

DARadix — Number of bits processed simultaneously in distributed arithmetic
2 (default) | 2N | {2N,2M,...}

Number of bits processed simultaneously in distributed arithmetic (DA), specified as 2, 2N, or
{2N,2M,...} where:

• N > 0
• mod(W,N) = 0, where W is the input word size of the filter
• 2N <= 2W

This property specifies a degree of parallelism in the DA architecture which can improve clock speed
at the expense of area.

• 21 — The coder implements a fully serial DA architecture that processes 1 bit at a time.
• 2N — The coder generates a partly serial DA architecture when 1 < N < W.
• 2W — The coder generates a fully parallel DA architecture.
• {2N,2M,...} — The coder generates a DA implementation with different DARadix values for each
filter stage in a cascaded filter. For an example, see “Distributed Arithmetic for Cascaded Filters”
on page 10-16.

When the DARadix value of a filter stage is set to 2, you can specify a serial architecture for that
stage by using the SerialPartition property. For more details, see “Architecture Options for
Cascaded Filters” on page 4-23.

For more details, see “Distributed Arithmetic for FIR Filters” on page 4-16.

FoldingFactor — Folding factor for IIR filter
1 (default) | positive integer

Folding factor for IIR filter, specified as 1 or a positive integer. Use this property to define a serial
architecture for direct form I or direct form II SOS filters. To reduce area in a serial architecture
implementation, you can share multipliers at the cost of latency. The folding factor specifies the factor
by which the clock rate increases in response to area optimization.
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You can specify either the FoldingFactor property or the NumMultipliers property, but not both.
If you do not specify either property, the coder generates a fully parallel architecture.

For an example, see “Generate Serial Architectures for IIR Filter” on page 10-13. To obtain
information about the FoldingFactor options and the corresponding NumMultipliers, call the
hdlfilterserialinfo function.

NumMultipliers — Number of shared multipliers for IIR filter
positive integer

Number of shared multipliers for IIR filter, specified as a positive integer. Use this property to define
a serial architecture for direct form I or direct form II SOS filters. Shared multipliers reduce area at
the cost of an increased clock rate.

You can specify either the NumMultipliers property or the FoldingFactor property, but not both.
If you do not specify either property, the coder generates a fully parallel architecture.

For an example, see “Generate Serial Architectures for IIR Filter” on page 10-13. To obtain
information about the NumMultipliers options and the corresponding FoldingFactor, call the
hdlfilterserialinfo function.

Tips
If you use the fdhdltool function to generate HDL code, you can set the corresponding properties
in the Generate HDL dialog box.

Property Location in Dialog Box
Add input register Global Settings tab > Ports tab
Add output register
Additional optimization properties Filter Architecture tab

See also:

• “Select Architectures in the Generate HDL
Tool” on page 4-7

• “Distributed Arithmetic Options in the
Generate HDL Tool” on page 4-19

See Also
generatehdl | fdhdltool

Topics
“Optimization”
“Cascaded Filter with Multiple Architectures” on page 10-19
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HDL Port and Identifier Properties
Customize ports, identifiers, and comments

Description
With the HDL port and identifier properties, you can customize ports, identifiers, and comments in
the generated code.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'ClockInputPort','clk_input');

Properties
Clocks, Inputs, and Outputs

ClockEnableInputPort — Name of clock enable input port
'clk_enable' (default) | character vector | string scalar

Name of clock enable input port, specified as 'clk_enable', a character vector, or a string scalar.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

ClockEnableOutputPort — Name of clock enable output port
'ce_out' (default) | character vector | string scalar

Name of clock enable output port, specified as 'ce_out', a character vector, or a string scalar. This
property applies only to “Multirate Filters” on page 3-2 that use a single input clock (default behavior
of ClockInputs). For an example, see “Clock Ports for Multirate Filters” on page 10-22. For more
details, see “Code Generation Options for Multirate Filters” on page 3-2.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

ClockInputPort — Name of clock input port
'clk' (default) | character vector | string scalar

Name of clock input port, specified as 'clk', a character vector, or a string scalar.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.
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InputPort — Name of filter input port
'filter_in' (default) | character vector | string scalar

Name of filter input port, specified as 'filter_in', a character vector, or a string scalar.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

InputType — Data type of filter input port
'std_logic_vector' (default) | 'signed/unsigned' | 'wire'

Data type of filter input port, specified as one of the following:

• 'std_logic_vector' or 'signed/unsigned' (when the target language is VHDL)
• 'wire' (when the target language is Verilog)

OutputPort — Name of filter output port
'filter_out' (default) | character vector | string scalar

Name of filter output port, specified as 'filter_out', a character vector, or a string scalar.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

OutputType — Data type of filter output port
'Same as input data type' (default) | 'std_logic_vector' | 'signed/unsigned' | 'wire'

Data type of filter output port in generated HDL code, specified as one of the following:

• 'Same as input data type', 'std_logic_vector', or 'signed/unsigned' (when the
target language is VHDL)

• 'wire' (when the target language is Verilog)

Resets

ResetInputPort — Name of filter reset port
'reset' (default) | character vector | string scalar

Name of filter reset port, specified as 'reset', a character vector, or a string scalar. Use the
ResetAssertedLevel property to control the behaviour of this port.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

RemoveResetFrom — Suppress generation of resets from shift registers
'none' (default) | 'ShiftRegister'

Suppress the generation of resets from the shift registers, specified as 'none' or
'ShiftRegister'. To omit reset signals from shift registers, set this property to
'ShiftRegister'. Disabling reset signals from shift registers can result in a more efficient FPGA
implementation. For more details, see “Suppressing Generation of Reset Logic” on page 5-20.
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ResetAssertedLevel — Asserted (active) level of reset input signal
'active-high' (default) | 'active-low'

Asserted (active) level of reset input signal, specified as one of the following:

• 'active-high' — To reset registers in the filter design, the reset input signal must be driven
high (1).

For example, this code checks whether reset is active high before populating the
delay_pipeline register.

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

• 'active-low' — To reset registers in the filter design, the reset input signal must be driven low
(0).

For example, this code checks whether reset is active low before populating the
delay_pipeline register.

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '0' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));

ResetType — Reset style for registers
'async' (default) | 'sync'

Reset style for registers, specified as one of the following:

• 'async' — The coder uses asynchronous resets. The HDL process block does not check for an
active clock before performing a reset. For example:
delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  IF Reset_Port = '1' THEN
    delay_pipeline (0 To 50) <= (OTHERS =>(OTHERS => '0'));
  ELSIF Clock_Port'event AND Clock_Port = '1' THEN
    IF ClockEnable_Port = '1' THEN
      delay_pipeline(0) <= signed(Fin_Port);
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS delay_pipeline_process;

• 'sync' — The coder uses a synchronous reset style. In this case, the HDL process block checks
for the rising edge of the clock before performing a reset. For example:
delay_pipeline_process : PROCESS (clk, reset)
BEGIN
  IF rising_edge(Clock_Port) THEN
    IF Reset_Port = '0' THEN
     delay_pipeline(0 To 50) <= (OTHERS =>(OTHERS => '0'));
    ELSIF ClockEnable_Port = '1' THEN
     delay_pipeline(0) <= signed(Fin_Port);
     delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS delay_pipeline_process;

Identifiers and Comments

BlockGenerateLabel — Postfix to the block section labels
'_gen' (default) | character vector | string scalar
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Postfix to the block section labels, specified as '_gen', a character vector, or a string scalar. This
property applies only when the target language is VHDL. The coder appends this postfix to the block
section labels of VHDL GENERATE statements.

InstanceGenerateLabel — Postfix to the instance section labels
'_gen' (default) | character vector | string scalar

Postfix to the instance section labels, specified as '_gen', a character vector, or a string scalar. This
property applies only when the target language is VHDL. The coder appends this postfix to the
instance section labels of VHDL GENERATE statements.

OutputGenerateLabel — Postfix to output assignment block labels
'outputgen' (default) | character vector | string scalar

Postfix to output assignment block labels, specified as 'outputgen', a character vector, or a string
scalar. This property applies only when the target language is VHDL. The coder appends this postfix
to the output assignment block labels of VHDL GENERATE statements.

ClockProcessPostfix — Postfix to HDL clock process names
'_process' (default) | character vector | string scalar

Postfix to HDL clock process names, specified as '_process', a character vector, or a string scalar.
The coder uses HDL process blocks to modify the content of the registers in the filter. The block label
is derived from the register name and this postfix. For example, in the following block declaration, the
coder derives the process label from the register name delay_pipeline and the default postfix
'_process'.

delay_pipeline_process : PROCESS (clk, reset)
BEGIN

CoeffPrefix — Prefix for filter coefficient names
'coeff' (default) | character vector | string scalar

Prefix for filter coefficient names, specified as 'coeff', a character vector, or a string scalar. The
coder derives the coefficient names by appending filter-specific characteristics to this prefix.

Filter Type Coefficient Name
FIR The coder appends the coefficient number to CoeffPrefix,

starting with 1. For example, the default for the first coefficient is
coeff1.

IIR The coder appends the following characters to CoeffPrefix:

1 underscore (_)
2 a or b coefficient name (for example, _a2, _b1, or _b2)
3 _sectionN, where N is the section number.

For example, the default for the first numerator coefficient of the
third section is coeff_b1_section3.

For example:

firfilt = design(fdesign.lowpass,'equiripple', ...
    'FilterStructure','dfsymfir','SystemObject',true);
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generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'CoefficientSource','Internal','CoeffPrefix','mycoeff');

The coder replaces the default coefficient name prefix with the custom value:
ARCHITECTURE rtl OF firfilt IS
  -- Local Functions
  -- Type Definitions
  TYPE delay_pipeline_type IS ARRAY (NATURAL range <>) OF signed(15 DOWNTO 0); -- sfix16_En15
  -- Constants
  CONSTANT mycoeff1   : signed(15 DOWNTO 0) := to_signed(-159, 16); -- sfix16_En16
  CONSTANT mycoeff2   : signed(15 DOWNTO 0) := to_signed(-137, 16); -- sfix16_En16
  CONSTANT mycoeff3   : signed(15 DOWNTO 0) := to_signed(444, 16); -- sfix16_En16
  CONSTANT mycoeff4   : signed(15 DOWNTO 0) := to_signed(1097, 16); -- sfix16_En16
  ...

Dependencies

This property applies only when you set CoefficientSource to 'Internal'.

ComplexImagPostfix — Postfix to imaginary part of complex signal names
'_im' (default) | character vector | string scalar

Postfix to imaginary part of complex signal names, specified as '_im', a character vector, or a string
scalar. See “Using Complex Data and Coefficients” on page 5-26.

ComplexRealPostfix — Postfix to real part of complex signal names
'_re' (default) | character vector | string scalar

Postfix to real part of complex signal names, specified as '_re', a character vector, or a string scalar.
See “Using Complex Data and Coefficients” on page 5-26.

EntityConflictPostfix — Postfix to duplicate entity or module names
'_block' (default) | character vector | string scalar

Postfix to duplicate entity or module names, specified as '_block', a character vector, or a string
scalar. The coder appends this postfix to resolve duplicate VHDL entity or Verilog module names. For
example, if the coder detects two entities with the name MyFilt, the coder names the first entity
MyFilt and the second instance MyFilt_block.

InstancePrefix — Prefix for component instance name
'u_' (default) | character vector | string scalar

Prefix for component instance name, specified as 'u_', a character vector, or string scalar.

PackagePostfix — Postfix to VHDL package file name
'_pkg' (default) | character vector | string scalar

Postfix to VHDL package file name, specified as '_pkg', a character vector, or a string scalar. The
coder derives the package name by appending this postfix to the filter name. This option applies only
if a package file is required for the design.

ReservedWordPostfix — Postfix to reserved words
'_rsvd' (default) | character vector | string scalar

Postfix to reserved words, specified as '_rsvd', a character vector, or a string scalar. This property
applies to name, postfix, or label values specified as a character vector or a string scalar in
Name,Value pair arguments to generatehdl. If a specified value is a reserved word in the target
language, the coder appends this postfix to the value. For example, if you call generatehdl with the

9 Properties

9-18



argument pair 'Name','mod', the coder forms the name mod_rsvd in the generated filter code. See
“Reserved Word Tables” on page 5-10.

SplitEntityArch — Split VHDL entity and architecture code
'off' (default) | 'on'

Split VHDL entity and architecture code, specified as 'off' or 'on'. When this property is set to
'on', the coder generates the VHDL entity and architecture code of the filter in two separate files.
The coder derives the file names from the filter name by appending the postfixes _entity and _arch
to the base file name. To specify custom postfix values, set the SplitEntityFilePostfix and
SplitArchFilePostfix properties.

SplitArchFilePostfix — Postfix to VHDL architecture file name
'_arch' (default) | character vector | string scalar

Postfix to VHDL architecture file name, specified as '_arch', a character vector, or a string scalar.

Dependencies

This property applies only when you set SplitEntityArch to 'on'.

SplitEntityFilePostfix — Postfix to VHDL entity file name
'_entity' (default) | character vector | string scalar

Postfix to VHDL entity file name, specified as '_entity', a character vector, or a string scalar.

Dependencies

This property applies only when you set SplitEntityArch to 'on'.

UserComment — Add user comments to generated HDL code
character vector | string scalar

Add user comments to generated HDL code, specified as a character vector or string vector. The user
comments appear in the header comment block at the top of the generated files, preceded by leading
comment characters specific to the target language. When you include new lines or line feeds in the
user comments, the coder emits single-line comments for each new line. For example:
firfilt = dsp.FIRFilter;
generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'UserComment','This is a comment line.\nThis is a second line.')

The resulting header comment block for the filter firfilt is as follows:
-- -------------------------------------------------------------
--
-- Module: firfilt
-- Generated by MATLAB(R) 9.1 and the Filter Design HDL Coder 3.1.
-- Generated on: 2016-11-08 15:28:25
-- This is a comment line.
-- This is a second line.
--
-- -------------------------------------------------------------

-- -------------------------------------------------------------
-- HDL Code Generation Options:
--
-- TargetLanguage: VHDL
-- Name: firfilt
-- InputDataType: numerictype(1,16,15)
-- UserComment:  User data, length 47
-- GenerateHDLTestBench: off

-- -------------------------------------------------------------
-- HDL Implementation    : Fully parallel
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-- Folding Factor        : 1
-- -------------------------------------------------------------
-- Filter Settings:
--
-- Discrete-Time FIR Filter (real)
-- -------------------------------
-- Filter Structure  : Direct-Form FIR
-- Filter Length     : 2
-- Stable            : Yes
-- Linear Phase      : Yes (Type 2)
-- Arithmetic        : fixed
-- Numerator         : s16,15 -> [-1 1)
-- -------------------------------------------------------------

VectorPrefix — Prefix for VHDL vector signal names
'vector_of_' (default) | character vector | string scalar

Prefix for VHDL vector signal names, specified as 'vector_of_', a character vector, or a string
scalar.

Tips
If you use the function fdhdltool to generate HDL code, you can set the corresponding properties
in the Generate HDL dialog box.

Property Location in Dialog Box
Input data type

Output data type

Clock enable output port

Input port

Output port

Global Settings tab > Ports tab

Additional port and identifier properties Top section of Global Settings tab, and Global
Settings tab > General tab

Check out the main Global Settings tab, and the Ports and General tabs of the Global Settings
tab.

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool

Topics
“Customization”
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HDL Construct Properties
Customize HDL constructs in generated code

Description
With the HDL construct properties, you can customize VHDL and Verilog constructs in the generated
code.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'CastBeforeSum','off');

Properties
HDL Coding Style

CastBeforeSum — Type casting before addition or subtraction
'on' | 'off'

Type casting before addition or subtraction, specified as one of the following:

• 'on' — The generated code type-casts input values of addition and subtraction operations to the
desired result type before operating on the values. This setting produces numeric results that are
typical of DSP processors.

• 'off' — The generated code preserves the input value types during addition and subtraction
operations and then converts the result to the desired type.

By default, the coder sets CastBeforeSum based on the Cast signals before sum Filter Designer
setting of the filter object. Use this property to override the inherited setting, see “Relationship With
Cast Before Sum in Filter Designer” on page 5-25. For System objects, the default setting depends on
the filter type and structure.

InlineConfigurations — Generate inline VHDL configurations
'on' (default) | 'off'

Generate inline VHDL configurations, specified as one of the following:

• 'on' — The coder includes configurations for the filter entity within the generated VHDL code.
• 'off' — The coder omits the generation of configurations. Use this option if you are creating

your own VHDL configuration files.

LoopUnrolling — Loop unrolling in generated VHDL code
'off' (default) | 'on'

Loop unrolling in generated VHDL code, specified as one of the following:
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• 'off' — The coder includes FOR and GENERATE loops in the generated VHDL code.
• 'on' — The coder unrolls and omits FOR and GENERATE loops in the generated VHDL code. Use

this option if your EDA tool does not support GENERATE loops.

SafeZeroConcat — Type-safe syntax for concatenated zeros
'on' (default) | 'off'

Type-safe syntax for concatenated zeros, specified as one of the following:

• 'on' — The coder uses the '0' & '0' syntax for concatenated zeros. This syntax is
recommended because it is unambiguous.

• 'off' — The coder uses the "000000..." syntax for concatenated zeros. This syntax can be
easier to read and is more compact, but it can lead to ambiguous types.

UseAggregatesForConst — Represent constant values by aggregates
'off' (default) | 'on'

Represent constant values by aggregates, specified as one of the following:

• 'off' — The coder represents constants less than 32 bits as scalars, and constants greater than
or equal to 32 bits as aggregates. The following example shows the default scalar declaration for
constants of less than 32 bits.

CONSTANT coeff1: signed(15 DOWNTO 0) := to_signed(-60, 16); -- sfix16_En16
CONSTANT coeff2: signed(15 DOWNTO 0) := to_signed(-178, 16); -- sfix16_En16

• 'on' — The coder represents constants by aggregates, including constants that are less than 32
bits wide. The following example shows constants of less than 32 bits declared as aggregates.
CONSTANT c1: signed(15 DOWNTO 0):= (5 DOWNTO 3 =>'0',1 DOWNTO 0 => '0',OTHERS =>'1');
CONSTANT c2: signed(15 DOWNTO 0):= (7 => '0',5 DOWNTO 4 =>'0',0 => '0',OTHERS =>'1');

UseRisingEdge — VHDL coding style to check for rising edges
'off' (default) | 'on'

VHDL coding style to check for rising edges when operating on registers, specified as one of the
following:

• 'off' — The generated code checks for clock events when operating on registers. For example:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
  ELSIF clk'event AND clk = '1' THEN
    IF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in);
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS Delay_Pipeline_Process ;

• 'on' — The generated code uses the VHDL rising_edge function to check for rising edges
when operating on registers. For example:

Delay_Pipeline_Process : PROCESS (clk, reset)
BEGIN
  IF reset = '1' THEN
    delay_pipeline(0 TO 50) <= (OTHERS => (OTHERS => '0'));
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  ELSIF rising_edge(clk) THEN
    IF clk_enable = '1' THEN
      delay_pipeline(0) <= signed(filter_in);        
      delay_pipeline(1 TO 50) <= delay_pipeline(0 TO 49);
    END IF;
  END IF;
END PROCESS Delay_Pipeline_Process ;

When the clock transitions from 'X' to '1', the two coding styles have different simulation behavior.

UseVerilogTimescale — Use Verilog ˋtimescale compiler directive
'on' (default) | 'off'

Use Verilog ˋtimescale compiler directive, specified as 'on' or 'off'. The ˋtimescale directive
provides a way of specifying different delay values for multiple modules in a Verilog file. When this
property is set to 'off', the coder excludes the directive in the generated Verilog code.

Tips
If you use the fdhdltool function to generate HDL code, you can set the corresponding properties
on the Global Settings > Advanced tab in the Generate HDL dialog box.

See Also
generatehdl | fdhdltool

Topics
“HDL Constructs” on page 5-21
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HDL Test Bench Properties
Generate and customize HDL test bench

Description
With the HDL test bench properties, you can enable and customize test bench generation.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15), ...
    'GenerateHDLTestBench','on','MultifileTestBench','on');

Properties
General

GenerateHDLTestBench — Generate HDL test bench
'off' (default) | 'on'

Generate HDL test bench for your HDL filter code, specified as 'off' or 'on'. The test bench
applies generated input stimuli to the generated filter code and compares the output with stored
MATLAB simulation results.

TestBenchName — File name of generated test bench
filtername_tb (default) | character vector | string scalar

File name of generated test bench, specified as filtername_tb, a character vector, or a string
scalar. filtername is the name of the generated VHDL entity or Verilog module. You can customize
this name by setting the Name property. The coder adds a file type extension to the test bench name,
as specified by the VerilogFileExtension or VHDLFileExtension properties. The test bench file
is located in the folder specified by the TargetDirectory property.

If you specify a value that is a reserved word in the target language, the coder adds the postfix _rsvd
to this value. You can update the postfix value by using the ReservedWordPostfix property. For
more details, see “Resolving HDL Reserved Word Conflicts” on page 5-9.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

ErrorMargin — Error margin for test bench comparison in bits
4 (default) | positive integer

Error margin for test bench comparison in bits, specified as 4 or a positive integer. The test bench
compares results with reference signals. These HDL optimizations can generate test bench code that
produces numeric results that differ from the results produced by the original filter function:
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• CastBeforeSum
• OptimizeForHDL
• FIRAdderStyle set to 'tree' or 'pipelined'
• AddPipelineRegisters with FIR, asymmetric FIR, and symmetric FIR filters

The error margin specifies an acceptable minimum number of bits by which the numeric results can
differ before the test bench issues a warning.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

MultifileTestBench — Generate multifile test bench
'off' (default) | 'on'

Generate multifile test bench, specified as 'off' or 'on'. When this property is set to 'on', the
coder generates separate files for test bench code, helper functions, and test bench data instead of a
single file. The file names are derived from the TestBenchName and TestBenchDataPostfix
properties. For example, if the name of the generated VHDL entity or Verilog module is
my_fir_filt, the default test bench file names are:

• my_fir_filt_tb — Test bench code
• my_fir_filt_tb_pkg — Helper functions package
• my_fir_filt_tb_data — Test vector data package

The coder appends to these file names the file type extension defined by the
VerilogFileExtension or VHDLFileExtension properties.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

TestBenchDataPostfix — Postfix to file name of test bench data
'_data' (default) | character vector | string scalar

Postfix to file name of test bench data, specified as '_data', a character vector, or a string scalar.
The coder generates a test bench data file with a file name obtained by appending this postfix to the
TestBenchName property value.

Dependencies

This property applies only when the GenerateHDLTestBench and MultifileTestBench
properties are set to 'on'.

TestBenchReferencePostfix — Postfix to reference signal names
'_ref' (default) | character vector | string scalar

Postfix to reference signal names, specified as '_ref', a character vector, or string scalar. The coder
applies this postfix to the reference output signal in the test bench. The coder represents reference
signal data as arrays.

CONSTANT filter_out_expected : filter_in_data_log_type :=
    (
         -2.4228738523269194E-03,
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         -2.0832449820793104E-03,
         6.7703446401186345E-03,...

For comparison, the test bench accesses one array value at a time.

 SIGNAL filter_out_ref                   : real := 0.0; -- double
...
 filter_out_ref <= filter_out_expected(TO_INTEGER(filter_out_addr));

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

Clocks and Resets

ClockHighTime — Period during which the test bench drives clock input signals high (1) in
ns
5 (default) | positive scalar

Period during which the test bench drives clock input signals high (1) in ns, specified as 5 or a
positive scalar. You can specify an integer or a double-precision floating-point value with a maximum
of 6 significant digits after the decimal point.

Dependencies

This property applies only when the GenerateHDLTestBench and ForceClock properties are set to
'on'.

ClockLowTime — Period during which the test bench drives clock input signals low (0) in ns
5 (default) | positive scalar

Period during which the test bench drives clock input signals low (0) in ns, specified as 5 or a positive
scalar. You can specify an integer or a double-precision floating-point value with a maximum of 6
significant digits after the decimal point.

Dependencies

This property applies only when the GenerateHDLTestBench and ForceClock properties are set to
'on'.

ForceClock — Test bench forces clock input signals
'on' (default) | 'off'

Test bench forces clock input signals, specified as one of these values.

• 'on' — The test bench forces the clock input signals. The values of the ClockHighTime and
ClockLowTime properties control the clock waveform.

• 'off' — You must drive the clock input signals from an external source.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

ForceClockEnable — Test bench forces clock enable input signals
'on' (default) | 'off'

Test bench forces clock enable input signals, specified as one of these values.
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• 'on' — The test bench forces the clock enable input signals. The polarity is active high (1). This
signal also obeys the setting of the HoldTime property.

• 'off' — You must drive the clock enable input signals from an external source.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

TestBenchClockEnableDelay — Clock cycles between deassertion of reset and assertion of
clock enable
1 (default) | positive integer

Clock cycles between deassertion of reset and assertion of clock enable, specified as 1 or a positive
integer. The test bench waits this number of cycles between deasserting the reset signal and
asserting the clock enable signal. The HoldTime property also applies.

In the figure, the test bench deasserts an active-high reset signal after the interval labeled Hold
Time. The test bench then asserts clock enable after a further interval, labeled Clock enable
delay.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

ForceReset — Test bench forces the reset input signals
'on' (default) | 'off'

Test bench forces the reset input signals, specified as one of these values.

• 'on' — The test bench forces the reset input signals. You can also specify a hold time to control
the timing of reset by setting the HoldTime property.

• 'off' — You must drive the reset input signals from an external source.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

HoldTime — Hold time for input data values and forced reset signals in ns
2 (default) | positive scalar

Hold time for input data values and forced reset signals in ns, specified as 2 or a positive scalar. The
test bench holds filter data input signals and forced reset input signals for the specified time interval
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past the rising clock edge. You can specify an integer or a double-precision floating-point value with a
maximum of 6 significant digits after the decimal point.

These figures show the application of a hold time, thold, for reset and data input signals. The signals
are forced to active high and active low. The ResetLength property is set to 2 cycles, and the test
bench asserts the reset signal for a total of 2 cycles plus thold.

Hold Time for Reset Input Signals

Hold Time for Data Input Signals
Dependencies

This property applies only when the GenerateHDLTestBench and ForceReset properties are set to
'on'.

ResetLength — Number of clock cycles that the test bench asserts the reset signal
2 (default) | positive integer

Number of clock cycles that the test bench asserts the reset signal, specified as 2 or a positive
integer.

The default test bench asserts an active-high reset signal for 2 clock cycles.
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Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

HoldInputDataBetweenSamples — Test bench holds input data of over-clocked filters in a
valid state
'off' (default) | 'on'

Test bench holds input data of over-clocked filters in a valid state, specified as 'off' or 'on'. Serial
architectures and distributed arithmetic architectures implement internal clock rates higher than the
input rate. In such filter implementations, the base clock runs N cycles (N >= 2) for each input
sample. This property relates to the number of clock cycles that the test bench holds the input data in
a valid state.

• 'off' — The test bench holds data values in a valid state for one clock cycle. For the next N-1
cycles, data is in an unknown state (expressed as 'X'). Forcing the input data to an unknown
state verifies that the generated filter code registers the input data only on the first cycle.

• 'on' — The test bench holds input data values in a valid state across N clock cycles.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

InitializeTestBenchInputs — Initialize test bench input
'off' (default) | 'on'

Initialize test bench input, specified as one of these values.

• 'off' — At the start of the simulation, the test bench drives an unknown state (expressed as 'X')
to the input ports.

• 'on' — At the start of the simulation, the test bench drives zeros to the input ports.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.
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Stimulus

TestBenchStimulus — Input stimuli applied to generated filter
{'impulse','step','ramp','chirp','noise'} (default) | cell array of character vectors |
string array

Input stimuli applied to generated filter, specified as
{'impulse','step','ramp','chirp','noise'}, a cell array of character vectors, or a string
array. The cell or string array must be a subset of the default set of stimuli. You can specify
combinations of stimuli in any order. For example:

generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'GenerateHDLTestbench','on', ...
    'TestBenchStimulus',{'ramp','impulse','noise'})

You can specify a custom input stimulus by using the TestBenchUserStimulus property. When
TestBenchUserStimulus is a nonempty vector, it takes priority over TestBenchStimulus.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

TestBenchUserStimulus — Custom input stimulus
[] (empty vector) (default) | vector of input data

Custom input stimulus, specified as one of these values.

• [] (empty vector) — The test bench uses the TestBenchStimulus property to generate input
data.

• Vector of input data — The test bench applies this input stimulus to the generated filter. You can
specify the vector as a function call returning a vector.

For example, this function call generates a square wave with a sample frequency of 8 bits per
second (Fs/8).

repmat([1 1 1 1 0 0 0 0],1,10)

Specify this stimulus when calling generatehdl.

generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
   'GenerateHDLTestbench','on', ...
   'TestBenchUserStimulus',repmat([1 1 1 1 0 0 0 0],1,10))

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

TestBenchCoeffStimulus — Coefficient stimulus for FIR or IIR filters
[] (empty vector) (default) | vector of coefficients (FIR filters only) | cell array of coefficient and scale
values (IIR filters only)

Coefficient stimulus for FIR or IIR filters, specified as one of these values.

• [] (empty vector) — The test bench uses the filter object coefficients and forces the input stimuli.
This sequence shows the response to the input stimuli and verifies that the interface writes one
set of coefficients into the coefficient memory as expected.
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• Vector of coefficients (FIR filters only) — The filter processes the input stimuli twice: once with the
filter object coefficients and once with the coefficient stimulus. The test bench verifies that the
interface writes two different sets of coefficients into the coefficient memory. For more details, see
“Generating a Test Bench for Programmable FIR Coefficients” on page 3-25.

• Cell array of coefficient and scale values (IIR filters only) — Specify the stimulus as a column
vector of scale values and a second-order section (SOS) matrix. The filter processes the input
stimuli twice: once with the filter object coefficients and once with the coefficient stimulus. The
test bench verifies that the interface writes two different sets of coefficients into the coefficient
memory. For more details, see “Generating a Test Bench for Programmable IIR Coefficients” on
page 3-31.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on' and the
CoefficientSource property is set to 'ProcessorInterface'.

TestBenchFracDelayStimulus — Fractional delay stimulus for single-rate Farrow filters
constant numeric value (default) | vector of numeric values | 'RandSweep' | 'RampSweep'

Fractional delay stimulus for single-rate Farrow filters, specified as one of these values.

• Constant numeric value— The test bench drives the fractional delay input signal with a constant
value obtained from the filter object.

• Vector of numeric values — The test bench drives the fractional delay input signal from this vector.
You can specify the vector as a function call returning a vector. The vector must be of the same
length as the test bench input signal.

• 'RandSweep' — The test bench drives the fractional delay input signal by using a vector of values
incrementally increasing over the range from 0 to 1. This stimulus signal has the same duration as
the input signal to the filter, but changes at a slower rate. Each fractional delay value obtained
from the vector is held for 10% of the total duration of the input signal.

• 'RampSweep' — The test bench drives the fractional delay input signal by using a vector of
random values from 0 through 1. This stimulus signal has the same duration as the input signal to
the filter, but it changes at a slower rate. Each fractional delay value obtained from the vector is
held for 10% of the total duration of the input signal.

See “Code Generation Properties for Farrow Filters” on page 3-19.

Dependencies

This property applies only when the GenerateHDLTestBench property is set to 'on'.

TestBenchRateStimulus — Rate input stimulus for CIC filters
maximum rate change factor (default) | integer

Rate input stimulus for Cascaded Integrator-Comb (CIC) filters, specified as the maximum rate
change factor or an integer. If you do not specify TestBenchRateStimulus, the coder assumes that
the filter is designed with the maximum rate expected. The decimation factor (for CIC decimators) or
interpolation factor (for CIC interpolators) is set to this maximum rate-change factor.

See “Variable Rate CIC Filters” on page 3-6.
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Dependencies

This property applies only to variable-rate CIC filters, when the GenerateHDLTestBench and
AddRatePort properties are set to 'on'.

Cosimulation

GenerateCosimBlock — Generate Simulink model of HDL Cosimulation blocks
'off' (default) | 'on'

Generate Simulink model of HDL Cosimulation blocks, specified as 'off' or 'on'. The generated
Simulink model contains two HDL Cosimulation blocks: one for Mentor Graphics ModelSim and one
for Cadence Incisive. The coder configures these blocks to conform to the port and data type
interface of the selected filter. Use these blocks to cosimulate your design with the desired HDL
simulator in Simulink.

Dependencies

This feature requires an HDL Verifier license.

GenerateCosimModel — Generate Simulink model of realized filter and HDL Cosimulation
block
'none' (default) | 'ModelSim' | 'Incisive'

Generate Simulink model of realized filter and HDL Cosimulation block, specified as 'none',
'ModelSim', or 'Incisive'. When you set this property to 'ModelSim' or 'Incisive', the
coder generates and opens a Simulink model. The model contains an HDL cosimulation block for the
selected simulator, and a behavioral implementation of the filter design. The model applies generated
input stimuli and compares the output of the EDA simulator with the output of the behavioral filter
subsystem. You can customize the input stimulus and error margin using the same properties as you
would for the generated HDL test bench.

See “Generating a Simulink Model for Cosimulation with an HDL Simulator” on page 6-22.

Dependencies

This feature requires an HDL Verifier license.

Tips
If you use the function fdhdltool to generate HDL code, you can set the corresponding properties
on the Test Bench tab in the Generate HDL tool.

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool

Topics
“Enabling Test Bench Generation” on page 6-7
“Testing with an HDL Test Bench” on page 6-2
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HDL Synthesis and Workflow Automation
Properties
Integrate third-party EDA tools into filter design workflow

Description
With the synthesis and workflow automation properties, you can enable and customize the generation
of script files for third-party Electronic Design Automation (EDA) tools.

These scripts let you compile, simulate, and synthesize the generated HDL code. You can modify the
commands that the coder prints to the scripts by setting the properties on this page. The coder
passes the property values to fprintf to create the script. You can use control characters supported
by the fprintf function. For example, '\n' inserts a new line into the script file.

Specify these properties as name-value arguments to the generatehdl function. Name is the
property name and Value is the corresponding value. You can specify several name-value arguments
in any order as 'Name1',Value1,...,'NameN',ValueN.

For example:
fir = dsp.FIRFilter('Structure','Direct form antisymmetric');
generatehdl(fir,'InputDataType',numerictype(1,16,15),'VHDLLibraryName','my_work');

Properties
Generate Scripts

EDAScriptGeneration — Enable script generation for EDA tools
'on' (default) | 'off'

Enable script generation for EDA tools, specified as one of the following:

• 'on' — The coder generates a compilation script for Mentor Graphics ModelSim. In addition:

• If the GenerateHDLTestBench property is set to 'on', the coder generates compilation and
simulation scripts for the test bench.

• If the HDLSynthTool property is set to a value other than 'none', the coder generates a
synthesis script.

• 'off' — Disables script generation, including compilation, simulation, and synthesis scripts.

See “Integration with Third-Party EDA Tools” on page 6-28.

Compilation Scripts

VHDLLibraryName — Library name used in initialization section of compilation script
'work' (default) | character vector | string scalar

Library name used in initialization section of compilation script, specified as 'work', a character
vector, or a string scalar. Use this property to avoid library name conflicts with your existing VHDL
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code. The coder inserts this name into the HDLCompileInit property value. By default, the coder
generates the library specification 'vlib work/n'.

HDLCompileFilePostfix — Postfix to file name of compilation script
'_compile.do' (default) | character vector | string scalar

Postfix to file name of compilation script, specified as '_compile.do', a character vector, or a string
scalar. The coder derives the name of the script by appending this postfix to the generated filter name
or test bench name. For example, if the generated filter name is my_design, the coder adds the
postfix _compile.do to form the name my_design_compile.do.

HDLCompileInit — Initialization section of compilation script
'vlib %s\n' (default) | character vector | string scalar

Initialization section of compilation script, specified as 'vlib %s\n', a character vector, or a string
scalar. The coder prints this command to the beginning of the compilation script. The implicit
argument, %s, is the name of the library specified by the VHDLLibraryName property. By default, this
property generates the library specification 'vlib work/n'. If you compile your filter design with
code from other libraries, update the VHDLLibraryName property to avoid library name conflicts.

HDLCompileVerilogCmd — Command written to compilation script for each Verilog file
'vlog %s %s\n' (default) | character vector | string scalar

Command written to compilation script for each Verilog file, specified as 'vlog %s %s\n', a
character vector, or a string scalar. This command adds the generated HDL source file to the list of
files to be compiled. The coder prints this command to the script once for each generated HDL file.
The first implicit argument, %s, takes the value of the SimulatorFlags property. The second
implicit argument is the file name of the current module.

HDLCompileVHDLCmd — Command written to compilation script for each VHDL file
'vcom %s %s\n' (default) | character vector | string scalar

Command written to compilation script for each VHDL file, specified as 'vcom %s %s\n', a
character vector, or a string scalar. This command adds the generated HDL source file to the list of
files to be compiled. The coder prints this command to the script once for each generated HDL file.
The first implicit argument, %s, takes the value of the SimulatorFlags property. The second
implicit argument is the file name of the current entity.

SimulatorFlags — Simulator options
'' (default) | character vector | string scalar

Simulator options, specified as '', a character vector, or a string scalar. Specify options that are
specific to your application and the simulator you are using. For example, if you use the 1076-1993
VHDL compiler, specify the flag '-93'. The coder adds the flags you specify with this option to the
compilation command in the generated EDA tool scripts. The HDLCompileVHDLCmd or
HDLCompileVerilogCmd properties determine the compilation command.

HDLCompileTerm — Termination section of compilation script
'' (default) | character vector | string scalar

Termination section of compilation script, specified as '', a character vector, or a string scalar. The
coder prints this character sequence to the end of the compilation script.
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Simulation Scripts

HDLSimFilePostfix — Postfix to file name of simulation script
'_sim.do' (default) | character vector | string scalar

Postfix to file name of simulation script, specified as '_sim.do', a character vector, or a string
scalar. The coder derives the name of the script by appending this postfix to the generated test bench
name. For example, if the name of the test bench is my_design_tb, the coder adds the postfix
_sim.do to form the name my_design_tb_sim.do.

Dependencies

This property applies only when the EDAScriptGeneration and GenerateHDLTestBench
properties are set to 'on'.

HDLSimInit — Initialization section of simulation script
'onbreak resume\nonerror resume\n' (default) | character vector | string scalar

Initialization section of simulation script, specified as 'onbreak resume\nonerror resume\n', a
character vector, or a string scalar. The coder prints this command to the beginning of the simulation
script.

Dependencies

This property applies only when the EDAScriptGeneration and GenerateHDLTestBench
properties are set to 'on'.

HDLSimCmd — Command written to simulation script
'-voptargs=+acc %s.%s\n' (default) | character vector | string scalar

Command written to simulation script, specified as a character vector or a string scalar to be
combined with vsim, like vsim -voptargs=+acc %s.%s\n. The first implicit argument, %s, is the
library name. The second implicit argument is the generated test bench name. For Verilog, the library
name is 'work' and cannot be changed. For VHDL, the library name is the value of the
VHDLLibraryName property. If you compile your filter design with code from other libraries, update
VHDLLibraryName to avoid library name conflicts.

Note Prior to R2020b, the default HDL simulation command was vsim -novopt %s.%s\n. Mentor
Graphics ModelSim versions prior to 10.7 support the former syntax. If you use a more recent
ModelSim version, you must use the -voptargs=+acc syntax.

Dependencies

This property applies only when the EDAScriptGeneration and GenerateHDLTestBench
properties are set to 'on'.

HDLSimViewWaveCmd — Waveform-viewing command written to simulation script
'add wave sim:%s\n' (default) | character vector | string scalar

Waveform-viewing command written to simulation script, specified as 'add wave sim:%s\n', a
character vector, or a string scalar. The implicit argument, %s, is a command that adds the signal
paths for the DUT top-level input signals, output signals, and output reference signals.
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Dependencies

This property applies only when the EDAScriptGeneration and GenerateHDLTestBench
properties are set to 'on'.

HDLSimTerm — Termination section of simulation script
'run -all\n' (default) | character vector | string scalar

Termination section of simulation script, specified as 'run -all\n', a character vector, or a string
scalar. The coder prints this command to the end of the simulation script.

Dependencies

This property applies only when the EDAScriptGeneration and GenerateHDLTestBench
properties are set to 'on'.

Synthesis Scripts

HDLSynthTool — Generate script for synthesis tool
'none' (default) | 'Vivado' | 'ISE' | 'Libero' | 'Precision' | 'Quartus' | 'Synplify' |
'Custom'

Generate script for synthesis tool, specified as one of the following.

HDLSynthTool Value Synthesis Tool
'none' N/A. The coder does not generate a synthesis script.
'Vivado' Xilinx® Vivado®

'ISE' Xilinx ISE
'Libero' Microsemi™ Libero®

'Precision' Mentor Graphics Precision
'Quartus' Altera® Quartus II
'Synplify' Synopsys® Synplify Pro®

'Custom' The coder generates a script that supports your tool, based on the
settings of HDLSynthCmd, HDLSynthInit, and HDLSynthTerm
properties.

When generating the script, the coder uses tool-specific values set by the HDLSynthCmd,
HDLSynthInit, and HDLSynthTerm properties. Customize these properties according to your target
device and constraints.

Dependencies

This property applies only when the EDAScriptGeneration property is set to 'on'.

HDLSynthFilePostfix — Postfix to file name of synthesis script
character vector | string scalar

Postfix to file name of synthesis script, specified as a character vector or a string scalar. The coder
derives the name of the script by appending this postfix to the generated filter name.

The default postfix value depends on the synthesis tool specified by the HDLSynthTool property. For
example, if the value of HDLSynthTool is 'Synplify', then HDLSynthFilePostfix defaults to
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'_synplify.tcl'. Therefore, if the generated filter name is my_design, the coder adds the postfix
_synplify.tcl to form the synthesis script file name my_design_synplify.tcl.

HDLSynthTool Value Default HDLSynthFilePostfix Value
none N/A
'Vivado' '_vivado.tcl'
'ISE' '_ise.tcl'
'Libero' '_libero.tcl'
'Precision' '_precision.tcl'
'Quartus' '_quartus.tcl'
'Synplify' '_synplify.tcl'
'Custom' '_custom.tcl'

Dependencies

This property applies only when the EDAScriptGeneration property is set to 'on' and the
HDLSynthTool property is set to a value other than 'none'.

HDLSynthInit — Initialization section of synthesis script
character vector | string scalar

Initialization section of synthesis script, specified as a character vector or a string scalar. The default
value of this property depends on the synthesis tool specified by the HDLSynthTool property. For
example, if you set HDLSynthTool to 'ISE', this property defaults to:

set src_dir [pwd]\nset prj_dir "synprj"\n
file mkdir ../$prj_dir\n
cd ../$prj_dir\n
project new %s.xise\n
project set family Virtex4\n
project set device xc4vsx35\n
project set package ff668\n
project set speed -10\n

The implicit argument, %s, is the top-level module or entity name.

Dependencies

This property applies only when the EDAScriptGeneration property is set to 'on' and the
HDLSynthTool property is set to a value other than 'none'.

HDLSynthCmd — Command written to synthesis script for each HDL file
character vector | string scalar

Command written to synthesis script for each HDL file, specified as a character vector or a string
scalar. The command adds the generated HDL source file to the list of files to be compiled. The coder
prints this command to the script once for each generated HDL file. The default value of this property
depends on the synthesis tool specified by the HDLSynthTool property. For example, when
HDLSynthTool is set to 'Quartus', this property defaults to 'set_global_assignment -name
%s_FILE "$src_dir/%s"\n'. The first implicit argument is the TargetLanguage. The second
implicit argument is the name of the HDL file.

 HDL Synthesis and Workflow Automation Properties

9-37



Dependencies

This property applies only when the EDAScriptGeneration property is set to 'on' and the
HDLSynthTool property is set to a value other than 'none'.

HDLSynthTerm — Termination section of synthesis script
character vector | string scalar

Termination section of synthesis script, specified as a character vector or a string scalar. The coder
prints this character sequence to the end of the synthesis script. The default value depends on the
synthesis tool specified by the HDLSynthTool property. For example, if you set HDLSynthTool to
'Synplify', this property defaults to:

set_option -technology VIRTEX4\n
set_option -part XC4VSX35\n
set_option -synthesis_onoff_pragma 0\n
set_option -frequency auto\n
project -run synthesis\n

Dependencies

This property applies only when the EDAScriptGeneration property is set to 'on' and the
HDLSynthTool property is set to a value other than 'none'.

Tips
If you use the function fdhdltool to generate HDL code, you can set the corresponding properties
in the Generate HDL dialog box.

Property Location in Dialog Box
Compilation script EDA Tool Scripts tab, left pane.

(VHDLLibraryName property does not have a
corresponding option in the dialog box.)

Simulation script EDA Tool Scripts tab, left pane. To access
simulation flags, see Test Bench >
Configuration tab.

Synthesis script EDA Tool Scripts tab, left pane.

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool

Topics
“Integration with Third-Party EDA Tools” on page 6-28
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fdhdltool
Open Generate HDL dialog box

Syntax
fdhdltool(filtSO,nt)
fdhdltool(filtSO,nt,fd)
fdhdltool(filterObj)

Description
fdhdltool(filtSO,nt) opens the Generate HDL dialog box to set options and generate HDL code
for the specified filter System object and the input data type, specified by nt.

When the dialog box opens, it displays default values for code generation options that apply to the
filter. You can then specify code generation options and generate HDL code. You can also use this
dialog box to generate HDL test bench code and scripts for third-party EDA tools.

fdhdltool operates on a copy of the filter, not the original object in the workspace. After you call
fdhdltool, changes made to the original filter do not apply to the copy. The Generate HDL dialog
box does not update either. The naming convention for the copied filter is filt_copy, where filt is
the name of the original filter.

fdhdltool(filtSO,nt,fd) opens the Generate HDL dialog box to set options and generate HDL
code for a dsp.VariableFractionalDelay filter System object. Specify the input data type by nt,
and the fractional delay data type by fd.

fdhdltool(filterObj) opens the Generate HDL dialog box to set options and generate HDL code
for the specified dfilt filter object.

Examples

Open Generate HDL Dialog Box for FIR Equiripple Filter

Design a direct form symmetric equiripple filter with these specifications:

• Passband frequency of 20 kHz
• Stopband frequency of 24 kHz
• Passband ripple of 0.01 dB
• Stopband attenuation of 80 dB
• Sampling frequency of 96 kHz

The design function returns a dsp.FIRFilter System object™ that implements the specification.

filtSpecs = fdesign.lowpass(20e3,24e3,0.01,80,96e3);
FIRLowpass = design(filtSpecs,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

FIRLowpass = 
  dsp.FIRFilter with properties:
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            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [1.0908e-04 2.1016e-05 -2.3369e-04 -2.8798e-04 9.0899e-05 3.6470e-04 -5.3240e-05 -5.8338e-04 -1.6344e-04 7.4544e-04 4.8812e-04 -8.4772e-04 -9.5828e-04 7.9705e-04 0.0015 -5.2252e-04 -0.0022 -4.9607e-05 0.0028 9.6719e-04 ... ]
    InitialConditions: 0

  Show all properties

When the filter is a System object, you must specify a fixed-point data type for the input data.

T = numerictype(1,16,15);

Open the Generate HDL dialog box by passing the filter and the data type as arguments.

fdhdltool(FIRLowpass,T)

Input Arguments
filtSO — Filter
filter System object

Filter from which to generate HDL code, specified as a filter System object. To create a filter System
object, use the design function or see the reference page of the object. You can use the following
System objects from DSP System Toolbox:

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade
• dsp.VariableFractionalDelay

Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter
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nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

fd — Fractional delay data type
numerictype object

Fractional delay data type, specified as a numerictype object. This argument applies only when the
input filter is a dsp.VariableFractionalDelay System object. Call numerictype(s,w,f),
where s is 1 for signed and 0 for unsigned, w is the word length in bits, and f is the number of
fractional bits.

filterObj — Filter
dfilt object

Filter from which to generate HDL code, specified as a dfilt object. You can create this object by
using the design function. For an overview of supported filter features, see “Filter Configuration
Options”.

Version History
Introduced in R2007a

See Also
generatehdl | generatetbstimulus

Topics
“Opening the Filter Design HDL Coder UI Using the fdhdltool Command” on page 2-9
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generatehdl
Generate HDL code for quantized filter

Syntax
generatehdl(filtSO,'InputDataType',nt)
generatehdl(filtSO,'InputDataType',nt,'FractionalDelayDataType',fd)
generatehdl(filterObj)

generatehdl( ___ ,Name,Value)

Description
generatehdl(filtSO,'InputDataType',nt) generates HDL code for the specified filter System
object and the input data type, nt.

The generated file is a single source file that includes the entity declaration and architecture code.
You can find this file in your current working folder, inside the hdlsrc subfolder.

generatehdl(filtSO,'InputDataType',nt,'FractionalDelayDataType',fd) generates
HDL code for a dsp.VariableFractionalDelay filter System object. Specify the input data type,
nt, and the fractional delay data type, fd.

generatehdl(filterObj) generates HDL code for the specified dfilt filter object using default
settings.

generatehdl( ___ ,Name,Value) uses optional name-value arguments, in addition to the input
arguments in previous syntaxes. Use these properties to override default HDL code generation
settings.

• To customize filter name, destination folder, and to specify target language, see Fundamental HDL
Code Generation Properties.

• To configure coefficients, complex input ports, and optional ports for specific filter types, see HDL
Filter Configuration Properties.

• To optimize the speed or area of generated HDL code, see HDL Optimization Properties.
• To customize ports, identifiers, and comments, see HDL Ports and Identifiers Properties.
• To customize HDL constructs, see HDL Constructs Properties.
• To generate and customize test bench, see HDL Test Bench Properties.
• To integrate third-party EDA tools into the filter design workflow, see Synthesis and Workflow

Automation Properties.

Examples

Generate HDL Code for FIR Equiripple Filter

Design a direct form symmetric equiripple filter with these specifications:

 generatehdl
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• Normalized passband frequency of 0.2
• Normalized stopband frequency of 0.22
• Passband ripple of 1 dB
• Stopband attenuation of 60 dB

The design function returns a dsp.FIRFilter System object™ that implements the specification.

filtSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60);
FIRe = design(filtSpecs,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

FIRe = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [-0.0011 -0.0017 -0.0025 -0.0031 -0.0031 -0.0024 -9.7703e-04 0.0010 0.0031 0.0049 0.0059 0.0057 0.0046 0.0029 9.8747e-04 -3.9494e-04 -8.8308e-04 -3.8937e-04 8.1727e-04 0.0022 0.0032 0.0033 0.0025 9.6853e-04 -6.5050e-04 ... ]
    InitialConditions: 0

  Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input using the “InputDataType” on page 9-0  property. The
coder generates the file MyFilter.vhd in the default target folder, hdlsrc.

generatehdl(FIRe,'InputDataType',numerictype(1,16,15),'Name','MyFilter');

### Starting VHDL code generation process for filter: MyFilter
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex48836167\hdlsrc\MyFilter.vhd
### Starting generation of MyFilter VHDL entity
### Starting generation of MyFilter VHDL architecture
### Successful completion of VHDL code generation process for filter: MyFilter
### HDL latency is 2 samples

Generate HDL Code and Test Bench for FIR Equiripple Filter

Design a direct form symmetric equiripple filter with these specifications:

• Normalized passband frequency of 0.2
• Normalized stopband frequency of 0.22
• Passband ripple of 1 dB
• Stopband attenuation of 60 dB

The design function returns a dsp.FIRFilter System object™ that implements the specification.

filtSpecs = fdesign.lowpass('Fp,Fst,Ap,Ast',0.2,0.22,1,60);
FIRe = design(filtSpecs,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

FIRe = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
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            Numerator: [-0.0011 -0.0017 -0.0025 -0.0031 -0.0031 -0.0024 -9.7703e-04 0.0010 0.0031 0.0049 0.0059 0.0057 0.0046 0.0029 9.8747e-04 -3.9494e-04 -8.8308e-04 -3.8937e-04 8.1727e-04 0.0022 0.0032 0.0033 0.0025 9.6853e-04 -6.5050e-04 ... ]
    InitialConditions: 0

  Show all properties

Generate VHDL code and a VHDL test bench for the FIR equiripple filter. When the filter is a System
object, you must specify a fixed-point data type for the input data type. The coder generates the files
MyFilter.vhd and MyFilterTB.vhd in the default target folder, hdlsrc.

generatehdl(FIRe,'InputDataType',numerictype(1,16,15),'Name','MyFilter',...
    'GenerateHDLTestbench','on','TestBenchName','MyFilterTB')

### Starting VHDL code generation process for filter: MyFilter
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex63281302\hdlsrc\MyFilter.vhd
### Starting generation of MyFilter VHDL entity
### Starting generation of MyFilter VHDL architecture
### Successful completion of VHDL code generation process for filter: MyFilter
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 4486 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex63281302\hdlsrc\MyFilterTB.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

Generate HDL Code for Fully Parallel FIR Filter with Programmable Coefficients

Design a direct form symmetric equiripple filter with fully parallel (default) architecture and
programmable coefficients. The design function returns a dsp.FIRFilter System object™ with
default lowpass filter specification.

firfilt = design(fdesign.lowpass,'equiripple','FilterStructure','dfsymfir','SystemObject',true)

firfilt = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [-0.0024 -0.0021 0.0068 0.0167 0.0111 -0.0062 -0.0084 0.0093 0.0130 -0.0101 -0.0183 0.0114 0.0262 -0.0125 -0.0380 0.0134 0.0582 -0.0140 -0.1027 0.0145 0.3172 0.4854 0.3172 0.0145 -0.1027 -0.0140 0.0582 0.0134 -0.0380 -0.0125 ... ]
    InitialConditions: 0

  Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data. To generate a processor interface for the
coefficients, you must specify an additional name-value pair argument.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15),'CoefficientSource','ProcessorInterface')

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex74213987\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
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### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 2 samples

The coder generates this VHDL entity for the filter object.

Generate Partly Serial FIR Filter with Programmable Coefficients

Create a direct form antisymmetric filter with coefficients:

coeffs = fir1(22,0.45);
firfilt = dsp.FIRFilter('Numerator',coeffs,'Structure','Direct form antisymmetric')

firfilt = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form antisymmetric'
      NumeratorSource: 'Property'
            Numerator: [3.6133e-04 0.0031 8.4473e-04 -0.0090 -0.0072 0.0203 0.0272 -0.0341 -0.0794 0.0455 0.3078 0.4490 0.3078 0.0455 -0.0794 -0.0341 0.0272 0.0203 -0.0072 -0.0090 8.4473e-04 0.0031 3.6133e-04]
    InitialConditions: 0

  Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data. To generate a partly serial architecture, specify a
serial partition. To enable CoefficientMemory property, you must set CoefficientSource to
ProcessorInterface.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'SerialPartition',[7 4],'CoefficientMemory','DualPortRAMs', ...
    'CoefficientSource','ProcessorInterface')

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex21465785\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 7 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples
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The generated code includes a dual-port RAM interface for the programmable coefficients.

Generate Serial Partitions for FIR Filter

Explore clock rate and latency for different serial implementations of the same filter. Using a
symmetric structure also allows the filter logic to share multipliers for symmetric coefficients.

Create a direct form symmetric FIR filter with these specifications:

• Filter order 13
• Normalized cut-off frequency of 0.4 for the 6-dB point

The design function returns a dsp.FIRFilter System object™ that implements the specification.

FIR = design(fdesign.lowpass('N,Fc',13,.4),'FilterStructure','dfsymfir','SystemObject',true)

FIR = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [0.0037 0.0045 -0.0115 -0.0417 1.0911e-17 0.1776 0.3674 0.3674 0.1776 1.0911e-17 -0.0417 -0.0115 0.0045 0.0037]
    InitialConditions: 0

  Show all properties

To generate HDL code, call the generatehdl function. When the filter is a System object, you must
specify a fixed-point data type for the input data.

For a baseline comparison, first generate a default fully parallel architecture.

generatehdl(FIR,'Name','FullyParallel', ...
    'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: FullyParallel
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex94948885\hdlsrc\FullyParallel.vhd
### Starting generation of FullyParallel VHDL entity
### Starting generation of FullyParallel VHDL architecture
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### Successful completion of VHDL code generation process for filter: FullyParallel
### HDL latency is 2 samples

Generate a fully serial architecture by setting the partition size to the effective filter length. The
system clock rate is six times the input sample rate. The reported HDL latency is one sample greater
than the default parallel implementation.

generatehdl(FIR,'SerialPartition',6,'Name','FullySerial', ...
    'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: FullySerial
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex94948885\hdlsrc\FullySerial.vhd
### Starting generation of FullySerial VHDL entity
### Starting generation of FullySerial VHDL architecture
### Clock rate is 6 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: FullySerial
### HDL latency is 3 samples

Generate a partly serial architecture with three equal partitions. This architecture uses three
multipliers. The clock rate is two times the input rate, and the latency is the same as the default
parallel implementation.

generatehdl(FIR,'SerialPartition',[2 2 2],'Name','PartlySerial', ...
    'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: PartlySerial
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex94948885\hdlsrc\PartlySerial.vhd
### Starting generation of PartlySerial VHDL entity
### Starting generation of PartlySerial VHDL architecture
### Clock rate is 2 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: PartlySerial
### HDL latency is 3 samples

Generate a cascade-serial architecture by enabling accumulator reuse. Specify the three partitions in
descending order of size. Notice that the clock rate is higher than the rate in the partly serial
(without accumulator reuse) example.

generatehdl(FIR,'SerialPartition',[3 2 1],'ReuseAccum','on','Name','CascadeSerial', ...
    'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: CascadeSerial
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex94948885\hdlsrc\CascadeSerial.vhd
### Starting generation of CascadeSerial VHDL entity
### Starting generation of CascadeSerial VHDL architecture
### Clock rate is 4 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: CascadeSerial
### HDL latency is 3 samples

You can also generate a cascade-serial architecture without specifying the partitions explicitly. The
coder automatically selects partition sizes.

generatehdl(FIR,'ReuseAccum','on','Name','CascadeSerial', ...
    'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: CascadeSerial
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex94948885\hdlsrc\CascadeSerial.vhd
### Starting generation of CascadeSerial VHDL entity
### Starting generation of CascadeSerial VHDL architecture

10 Functions

10-10



### Clock rate is 4 times the input sample rate for this architecture.
### Serial partition # 1 has 3 inputs.
### Serial partition # 2 has 3 inputs.
### Successful completion of VHDL code generation process for filter: CascadeSerial
### HDL latency is 3 samples

Generate Serial Partitions of Cascaded Filter

Create a two-stage cascaded filter with these specifications for each filter stage:

• Direct form symmetric FIR filter
• Filter order 8
• Normalized cut-off frequency of 0.4 for the 6-dB point

Each call of the design function returns a dsp.FIRFilter System object™ that implements the
specification. The cascade function returns a two-stage cascaded filter.

lp = design(fdesign.lowpass('N,Fc',8,.4),'FilterStructure','dfsymfir','SystemObject',true)

lp = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [-0.0061 -0.0136 0.0512 0.2657 0.4057 0.2657 0.0512 -0.0136 -0.0061]
    InitialConditions: 0

  Show all properties

hp = design(fdesign.highpass('N,Fc',8,.4),'FilterStructure','dfsymfir','SystemObject',true)

hp = 
  dsp.FIRFilter with properties:

            Structure: 'Direct form symmetric'
      NumeratorSource: 'Property'
            Numerator: [0.0060 0.0133 -0.0501 -0.2598 0.5951 -0.2598 -0.0501 0.0133 0.0060]
    InitialConditions: 0

  Show all properties

casc = cascade(lp,hp)

casc = 
  dsp.FilterCascade with properties:

         Stage1: [1x1 dsp.FIRFilter]
         Stage2: [1x1 dsp.FIRFilter]
    CloneStages: true

To generate HDL code, call the generatehdl function for the cascaded filter. When the filter is a
System object, you must specify a fixed-point data type for the input data.

 generatehdl
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Specify different partitions for each cascade stage as a cell array.

generatehdl(casc,'InputDataType',numerictype(1,16,15),'SerialPartition',{[3 2],[4 1]})

### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 3 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 4 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 2 samples

To explore the effective filter length and partitioning options for each filter stage of a cascade, call
the hdlfilterserialinfo function. The function returns a partition vector corresponding to a
desired number of multipliers. Request serial partition possibilities for the first stage, and choose a
number of multipliers.

hdlfilterserialinfo(casc.Stage1,'InputDataType',numerictype(1,16,15))

   | Total Coefficients | Zeros | A/Symm | Effective |
   ---------------------------------------------------
   |          9         |   0   |    4   |     5     |

Effective filter length for SerialPartition value is 5.

  Table of 'SerialPartition' values with corresponding values of 
  folding factor and number of multipliers for the given filter.

   | Folding Factor | Multipliers | SerialPartition |
   --------------------------------------------------
   |        1       |      5      |[1 1 1 1 1]      |
   |        2       |      3      |[2 2 1]          |
   |        3       |      2      |[3 2]            |
   |        4       |      2      |[4 1]            |
   |        5       |      1      |[5]              |

Select a serial partition vector for a target of two multipliers, and pass the vectors to the
generatehdl function. Calling the function this way returns the first possible partition vector, but
there are multiple partition vectors that achieve a two-multiplier architecture. Each stage uses a
different clock rate based on the number of multipliers. The coder generates a timing controller to
derive these clocks.

sp1 = hdlfilterserialinfo(casc.Stage1,'InputDataType',numerictype(1,16,15),'Multiplier',2)

sp1 = 1×2
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     3     2

sp2 = hdlfilterserialinfo(casc.Stage2,'InputDataType',numerictype(1,16,15),'Multiplier',3)

sp2 = 1×3

     2     2     1

generatehdl(casc,'InputDataType',numerictype(1,16,15),'SerialPartition',{sp1,sp2})

### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 3 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 2 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex16715237\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 2 samples

Generate Serial Architectures for IIR Filter

Create a direct form I SOS filter with these specifications:

• Sampling frequency of 48 kHz
• Filter order 5
• Cut-off frequency of 10.8 kHz for the 3 dB point

The design function returns a dsp.BiquadFilter System object™ that implements the
specification. The custom accumulator data type avoids quantization error.

Fs = 48e3;
Fc = 10.8e3;
N = 5;
lp = design(fdesign.lowpass('n,f3db',N,Fc,Fs),'butter', ...
    'FilterStructure','df1sos','SystemObject',true,'UseLegacyBiquadFilter',true) 

lp = 
  dsp.BiquadFilter with properties:

                       Structure: 'Direct form I'
                 SOSMatrixSource: 'Property'

 generatehdl
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                       SOSMatrix: [3x6 double]
                     ScaleValues: [4x1 double]
      NumeratorInitialConditions: 0
    DenominatorInitialConditions: 0
        OptimizeUnityScaleValues: true

  Show all properties

nt_accum = numerictype('Signedness','auto','WordLength',20, ...
    'FractionLength',15);
nt_input = numerictype(1,16,15);
lp.NumeratorAccumulatorDataType = 'Custom';
lp.CustomNumeratorAccumulatorDataType = nt_accum;
lp.DenominatorAccumulatorDataType = 'Custom';
lp.CustomDenominatorAccumulatorDataType = nt_accum;

To list all possible serial architecture specifications for this filter, call the hdlfilterserialinfo
function. When the filter is a System object, you must specify a fixed-point data type for the input
data.

hdlfilterserialinfo(lp,'InputDataType',nt_input)

  Table of folding factors with corresponding number of multipliers for the given filter.

   | Folding factor | Multipliers |
   --------------------------------
   |        6       |      3      |
   |        9       |      2      |
   |       18       |      1      |

To generate HDL code, call the generatehdl function with one of the serial architectures. Specify
either the NumMultipliers or FoldingFactor property, but not both. For instance, using the
NumMultipliers property:

generatehdl(lp,'NumMultipliers',2,'InputDataType',nt_input)

### Starting VHDL code generation process for filter: lp
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex90334139\hdlsrc\lp.vhd
### Starting generation of lp VHDL entity
### Starting generation of lp VHDL architecture
### Successful completion of VHDL code generation process for filter: lp
### HDL latency is 2 samples

Alternatively, specify the same architecture with the FoldingFactor property.

generatehdl(lp,'FoldingFactor',9,'InputDataType',nt_input)

### Starting VHDL code generation process for filter: lp
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex90334139\hdlsrc\lp.vhd
### Starting generation of lp VHDL entity
### Starting generation of lp VHDL architecture
### Successful completion of VHDL code generation process for filter: lp
### HDL latency is 2 samples

Both these commands generate a filter that uses a total of two multipliers, with a latency of nine
clock cycles. This architecture uses less area than the parallel implementation, at the expense of
latency.
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Distributed Arithmetic for Single Rate Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create a direct-form FIR filter and calculate the filter length, FL.

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
firfilt = design(filtdes,'FilterStructure','dffir','SystemObject',true);
FL = length(find(firfilt.Numerator ~= 0))

FL = 31

Specify a set of partitions such that the partition sizes add up to the filter length. This is just one
partition option, you can specify other combinations of sizes.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'DALUTPartition',[8 8 8 7])

### Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.
### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex00198568\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 16 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples

For comparison, create a direct-form symmetric FIR filter. The filter length is smaller in the
symmetric case.

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
firfilt = design(filtdes,'FilterStructure','dfsymfir','SystemObject',true);
FL = ceil(length(find(firfilt.Numerator ~= 0))/2)

FL = 16

Specify a set of partitions such that the partition sizes add up to the filter length. This is just one
partition option, you can specify other combinations of sizes. Tip: Use the hdlfilterdainfo
function to display the effective filter length, LUT partitioning options, and possible DARadix values
for a filter.

generatehdl(firfilt,'InputDataType',numerictype(1,16,15), ...
    'DALUTPartition',[8 8])

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex00198568\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 17 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples
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Distributed Arithmetic for Multirate Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create a direct-form FIR polyphase decimator, and calculate the filter length.

d = fdesign.decimator(4);
filt = design(d,'SystemObject',true);
FL = size(polyphase(filt),2)

FL = 27

Specify distributed arithmetic LUT partitions that add up to the filter size. When you specify
partitions as a vector for a polyphase filter, each subfilter uses the same partitions.

generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'DALUTPartition',[8 8 8 3])

### Starting VHDL code generation process for filter: firdecim
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex51670151\hdlsrc\firdecim.vhd
### Starting generation of firdecim VHDL entity
### Starting generation of firdecim VHDL architecture
### Clock rate is 4 times the input and 16 times the output sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firdecim
### HDL latency is 16 samples

You can also specify unique partitions for each subfilter. For the same filter, specify subfilter
partitioning as a matrix. The length of the first subfilter is 1, and the other subfilters have length 26.
Tip: Use the hdlfilterdainfo function to display the effective filter length, LUT partitioning
options, and possible DARadix values for a filter.

d = fdesign.decimator(4);
filt = design(d,'SystemObject',true);
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'DALUTPartition',[1 0 0 0; 8 8 8 2; 8 8 6 4; 8 8 8 2])

### Starting VHDL code generation process for filter: firdecim
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex51670151\hdlsrc\firdecim.vhd
### Starting generation of firdecim VHDL entity
### Starting generation of firdecim VHDL architecture
### Clock rate is 4 times the input and 16 times the output sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firdecim
### HDL latency is 16 samples

Distributed Arithmetic for Cascaded Filters

Use distributed arithmetic options to reduce the number of multipliers in the filter implementation.

Create Cascaded Filter

Create a two-stage cascaded filter. Define different LUT partitions for each stage, and specify the
partition vectors in a cell array.

lp = design(fdesign.lowpass('N,Fc',8,.4),'filterstructure','dfsymfir', ...
    'SystemObject',true);
hp = design(fdesign.highpass('N,Fc',8,.4),'filterstructure','dfsymfir', ...
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    'SystemObject',true);
casc = cascade(lp,hp);
nt1 = numerictype(1,12,10);
generatehdl(casc,'InputDataType',nt1,'DALUTPartition',{[3 2],[2 2 1]})

### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 13 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 29 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 4 samples

Distributed Arithmetic Options

Use the hdlfilterdainfo function to display the effective filter length, LUT partitioning options,
and possible DARadix values for each filter stage of a cascade. The function returns a LUT partition
vector corresponding to a desired number of address bits.

Request LUT partition possibilities for the first stage.

 hdlfilterdainfo(casc.Stage1,'InputDataType',nt1);

   | Total Coefficients | Zeros | A/Symm | Effective |
   ---------------------------------------------------
   |          9         |   0   |    4   |     5     |

Effective filter length for SerialPartition value is 5.

  Table of 'DARadix' values with corresponding values of 
  folding factor and multiple for LUT sets for the given filter.

   | Folding Factor | LUT-Sets Multiple | DARadix |
   ------------------------------------------------
   |        1       |         12        |   2^12  |
   |        3       |         6         |   2^6   |
   |        4       |         4         |   2^4   |
   |        5       |         3         |   2^3   |
   |        7       |         2         |   2^2   |
   |       13       |         1         |   2^1   |

  Details of LUTs with corresponding 'DALUTPartition' values.

   | Max Address Width | Size(bits) |      LUT Details      | DALUTPartition |
   ---------------------------------------------------------------------------
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   |         5         |     416    |1x32x13                |[5]             |
   |         4         |     216    |1x16x12, 1x2x12        |[4 1]           |
   |         3         |     124    |1x4x13, 1x8x9          |[3 2]           |
   |         2         |     104    |1x2x12, 1x4x12, 1x4x8  |[2 2 1]         |

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
   implies 1 LUT of 1024 18-bit wide locations.

To request LUT partition possibilities for the second stage, you must first determine the input data
type of the second stage.

y = casc.Stage1(fi(0,nt1));
nt2 = y.numerictype;
hdlfilterdainfo(casc.Stage2,'InputDataType',nt2);

   | Total Coefficients | Zeros | A/Symm | Effective |
   ---------------------------------------------------
   |          9         |   0   |    4   |     5     |

Effective filter length for SerialPartition value is 5.

  Table of 'DARadix' values with corresponding values of 
  folding factor and multiple for LUT sets for the given filter.

   | Folding Factor | LUT-Sets Multiple | DARadix |
   ------------------------------------------------
   |        1       |         28        |   2^28  |
   |        3       |         14        |   2^14  |
   |        5       |         7         |   2^7   |
   |        8       |         4         |   2^4   |
   |       15       |         2         |   2^2   |
   |       29       |         1         |   2^1   |

  Details of LUTs with corresponding 'DALUTPartition' values.

   | Max Address Width | Size(bits) |       LUT Details      | DALUTPartition |
   ----------------------------------------------------------------------------
   |         5         |     896    |1x32x28                 |[5]             |
   |         4         |     488    |1x16x27, 1x2x28         |[4 1]           |
   |         3         |     304    |1x4x28, 1x8x24          |[3 2]           |
   |         2         |     256    |1x2x28, 1x4x23, 1x4x27  |[2 2 1]         |

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
   implies 1 LUT of 1024 18-bit wide locations.

Different LUT Partitions for Each Stage

Select address widths and folding factors to obtain LUT partition for each stage. The first stage uses
LUTs with a maximum address size of five bits. The second stage uses LUTs with a maximum address
size of three bits. They run at the same clock rate, and have different LUT partitions.

dp1 = hdlfilterdainfo(casc.Stage1,'InputDataType',nt1, ...
    'LUTInputs',5,'FoldingFactor',3);
dp2 = hdlfilterdainfo(casc.Stage2,'InputDataType',nt1, ...
    'LUTInputs',3,'FoldingFactor',5);
generatehdl(casc,'InputDataType',nt1,'DALUTPartition',{dp1,dp2});
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### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 13 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 29 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 4 samples

Different DARadix Values for Each Stage

You can also specify different DARadix values for each filter in a cascade. You can only specify
different cascade partitions on the command-line. When you specify partitions in the Generate HDL
dialog box, all cascade stages use the same partitions. Inspect the results of hdlfilterdainfo to
set DARadix values for each stage.

generatehdl(casc,'InputDataType',nt1, ...
'DALUTPartition',{[3 2],[2 2 1]},'DARadix',{2^3,2^7})

### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 5 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 5 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex17169310\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 4 samples
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Cascaded Filter with Multiple Architectures

Specify different filter architectures for the different stages of a cascaded filter. You can specify a mix
of serial, distributed arithmetic (DA), and parallel architectures depending upon your hardware
constraints.

Create Cascaded Filter

Create a three-stage filter. Each stage is a different type.

h1 = dsp.FIRFilter('Numerator',[0.05 -.25 .88 0.9 .88 -.25 0.05]);
h2 = dsp.FIRFilter('Numerator',[-0.008 0.06 -0.44 0.44 -0.06 0.008], ...
    'Structure','Direct form antisymmetric');
h3 = dsp.FIRFilter('Numerator',[-0.008 0.06 0.44 0.44 0.06 -0.008], ...
    'Structure','Direct form symmetric');
casc = cascade(h1,h2,h3);

Specify Architecture for Each Stage

Specify a DA architecture for the first stage, a serial architecture for the second stage, and a fully
parallel (default) architecture for the third stage.

To obtain DARadix values for the first architecture, use hdlfilterdainfo, then pick a value from
dr.

nt = numerictype(1,12,10);
[dp,dr,lutsize,ff] = hdlfilterdainfo(casc.Stage1, ...
    'InputDataType',numerictype(1,12,10));
dr

dr = 6x1 cell
    {'2^12'}
    {'2^6' }
    {'2^4' }
    {'2^3' }
    {'2^2' }
    {'2^1' }

Set the property values as cell arrays, where each cell applies to a stage. To disable a property for a
particular stage, use default values (-1 for the partitions and 2 for DARadix).

generatehdl(casc,'InputDataType',nt, ...
    'SerialPartition',{-1,3,-1}, ...
    'DALUTPartition',{[4 3],-1,-1}, ...
    'DARadix',{2^6,2,2});

### Structure fir has symmetric coefficients, consider converting to structure symmetricfir for reduced area.
### Starting VHDL code generation process for filter: casfilt
### Cascade stage # 1
### Starting VHDL code generation process for filter: casfilt_stage1
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex13094988\hdlsrc\casfilt_stage1.vhd
### Starting generation of casfilt_stage1 VHDL entity
### Starting generation of casfilt_stage1 VHDL architecture
### Clock rate is 2 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage1
### Cascade stage # 2
### Starting VHDL code generation process for filter: casfilt_stage2
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### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex13094988\hdlsrc\casfilt_stage2.vhd
### Starting generation of casfilt_stage2 VHDL entity
### Starting generation of casfilt_stage2 VHDL architecture
### Clock rate is 3 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: casfilt_stage2
### Cascade stage # 3
### Starting VHDL code generation process for filter: casfilt_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex13094988\hdlsrc\casfilt_stage3.vhd
### Starting generation of casfilt_stage3 VHDL entity
### Starting generation of casfilt_stage3 VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt_stage3
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex13094988\hdlsrc\casfilt.vhd
### Starting generation of casfilt VHDL entity
### Starting generation of casfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: casfilt
### HDL latency is 3 samples

Test Bench for FIR Filter with Programmable Coefficients

You can specify input coefficients to test a filter with programmable coefficients.

Create a direct-form symmetric FIR filter with a fully parallel (default) architecture. Define the
coefficients for the filter object in the vector b. The coder generates test bench code to test the
coefficient interface using a second set of coefficients, c. The coder trims c to the effective length of
the filter.

b = [-0.01 0.1 0.8 0.1 -0.01];
c = [-0.03 0.5 0.7 0.5 -0.03];
c = c(1:ceil(length(c)/2));
filt = dsp.FIRFilter('Numerator',b,'Structure','Direct form symmetric');
generatehdl(filt,'InputDataType',numerictype(1,16,15), ...
    'GenerateHDLTestbench','on', ...
    'CoefficientSource','ProcessorInterface','TestbenchCoeffStimulus',c)

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex66247050\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 2 samples
### Starting generation of VHDL Test Bench.
### Generating input stimulus
### Done generating input stimulus; length 3107 samples.
### Generating Test bench: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex66247050\hdlsrc\firfilt_tb.vhd
### Creating stimulus vectors ...
### Done generating VHDL Test Bench.

IIR Filter with Programmable Coefficients

Create a filter specification. When you generate HDL code, specify a programmable interface for the
coefficients.

Fs = 48e3;  
Fc = 10.8e3;
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N = 5;
f_lp = fdesign.lowpass('n,f3db',N,Fc,Fs);
filtiir = design(f_lp,'butter','FilterStructure','df2sos','SystemObject',true,'UseLegacyBiquadFilter',true);
filtiir.OptimizeUnityScaleValues = 0;
generatehdl(filtiir,'InputDataType',numerictype(1,16,15), ...
    'CoefficientSource','ProcessorInterface')

### Starting VHDL code generation process for filter: filtiir
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex92389569\hdlsrc\filtiir.vhd
### Starting generation of filtiir VHDL entity
### Starting generation of filtiir VHDL architecture
### Second-order section, # 1
### Second-order section, # 2
### First-order section, # 3
### Successful completion of VHDL code generation process for filter: filtiir
### HDL latency is 2 samples

The coder generates this VHDL entity for the filter object.

Clock Ports for Multirate Filters

Explore various ways to specify clock ports for multirate filters.

Default Setting

Create a polyphase sample rate converter. By default, the coder generates a single input clock (clk),
an input clock enable (clk_enable), and a clock enable output signal named ce_out. The ce_out
signal indicates when an output sample is ready. The ce_in output signal indicates when an input
sample was accepted. You can use this signal to control the upstream data flow.

firrc = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3);
generatehdl(firrc,'InputDataType',numerictype(1,16,15))

### Starting VHDL code generation process for filter: firrc
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex09049114\hdlsrc\firrc.vhd
### Starting generation of firrc VHDL entity
### Starting generation of firrc VHDL architecture
### Successful completion of VHDL code generation process for filter: firrc
### HDL latency is 2 samples
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The generated entity has the following signals:

Custom Clock Names

You can provide custom names for the input clock enable and the output clock enable signals. You
cannot rename the ce_in signal.

firrc = dsp.FIRRateConverter('InterpolationFactor',5,'DecimationFactor',3)

firrc = 
  dsp.FIRRateConverter with properties:

   Main
    InterpolationFactor: 5
       DecimationFactor: 3
        NumeratorSource: 'Property'
              Numerator: [0 -6.6976e-05 -1.6044e-04 -2.2552e-04 -1.8884e-04 0 3.2095e-04 6.5785e-04 8.2104e-04 6.2531e-04 0 -9.1992e-04 -0.0018 -0.0021 -0.0015 0 0.0021 0.0039 0.0045 0.0032 0 -0.0042 -0.0077 -0.0087 -0.0061 0 0.0076 0.0138 0.0154 ... ]

  Show all properties

generatehdl(firrc,'InputDataType',numerictype(1,16,15),...
            'ClockEnableInputPort','clk_en1', ...
            'ClockEnableOutputPort','clk_en2')

### Starting VHDL code generation process for filter: firrc
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex09049114\hdlsrc\firrc.vhd
### Starting generation of firrc VHDL entity
### Starting generation of firrc VHDL architecture
### Successful completion of VHDL code generation process for filter: firrc
### HDL latency is 2 samples

The generated entity has the following signals:
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Multiple Clock Inputs

To generate multiple clock input signals for a supported multirate filter, set the ClockInputs
property to 'Multiple'. In this case, the coder does not generate any output clock enable ports.

decim = dsp.CICDecimator(7,1,4);
generatehdl(decim,'InputDataType',numerictype(1,16,15), ...
    'ClockInputs','Multiple')

### Starting VHDL code generation process for filter: cicDecOrIntFilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex09049114\hdlsrc\cicDecOrIntFilt.vhd
### Starting generation of cicDecOrIntFilt VHDL entity
### Starting generation of cicDecOrIntFilt VHDL architecture
### Section # 1 : Integrator
### Section # 2 : Integrator
### Section # 3 : Integrator
### Section # 4 : Integrator
### Section # 5 : Comb
### Section # 6 : Comb
### Section # 7 : Comb
### Section # 8 : Comb
### Successful completion of VHDL code generation process for filter: cicDecOrIntFilt
### HDL latency is 7 samples

The generated entity has the following signals:
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Generate Default Altera Quartus II Synthesis Script

Create a filter object. Then call generatehdl , and specify a synthesis tool.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);
firfilt = design(lpf,'equiripple','FilterStructure','dfsymfir', ...
    'SystemObject',true);
generatehdl(firfilt,'InputDataType',numerictype(1,14,13), ...
    'HDLSynthTool','Quartus');

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex92219095\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 2 samples

The coder generates a script file named firfilt_quartus.tcl, using the default script properties
for the Altera® Quartus II synthesis tool.

type hdlsrc/firfilt_quartus.tcl

load_package flow
set top_level firfilt
set src_dir "./hdlsrc"
set prj_dir "q2dir"
file mkdir ../$prj_dir
cd ../$prj_dir
project_new $top_level -revision $top_level -overwrite
set_global_assignment -name FAMILY "Stratix II"
set_global_assignment -name DEVICE EP2S60F484C3
set_global_assignment -name TOP_LEVEL_ENTITY $top_level
set_global_assignment -name vhdl_FILE "../$src_dir/firfilt.vhd"
execute_flow -compile
project_close
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Construct Customized Synthesis Script

You can set the script automation properties to dummy values to illustrate how the coder constructs
the synthesis script from the properties.

Design a filter and generate HDL. Specify a synthesis tool and custom text to include in the synthesis
script.

lpf = fdesign.lowpass('fp,fst,ap,ast',0.45,0.55,1,60);
firfilt = design(lpf,'equiripple','FilterStructure','dfsymfir', ...
    'Systemobject',true);
generatehdl(firfilt,'InputDataType',numerictype(1,14,13), ...
    'HDLSynthTool','ISE', ...
    'HDLSynthInit','init line 1 : module name is %s\ninit line 2\n', ...
    'HDLSynthCmd','command : HDL filename is %s\n', ...
    'HDLSynthTerm','term line 1\nterm line 2\n');

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex64737676\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 2 samples

The coder generates a script file named firfilt_ise.tcl. Note the locations of the custom text
you specified. You can use this feature to add synthesis instructions to the generated script.

type hdlsrc/firfilt_ise.tcl

init line 1 : module name is firfilt
init line 2
command : HDL filename is firfilt.vhd
term line 1
term line 2

Input Arguments
filtSO — Filter
filter System object

Filter from which to generate HDL code, specified as a filter System object. To create a filter System
object, use the design function or see the reference page of the object. You can use the following
System objects from DSP System Toolbox:

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade
• dsp.VariableFractionalDelay
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Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter

nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

fd — Fractional delay data type
numerictype object

Fractional delay data type, specified as a numerictype object. This argument applies only when the
input filter is a dsp.VariableFractionalDelay System object. Call numerictype(s,w,f),
where s is 1 for signed and 0 for unsigned, w is the word length in bits, and f is the number of
fractional bits.

filterObj — Filter
dfilt object

Filter from which to generate HDL code, specified as a dfilt object. You can create this object by
using the design function. For an overview of supported filter features, see “Filter Configuration
Options”.

Alternatives
You can use the fdhdltool function to generate HDL code instead (requires Filter Design HDL
Coder). Specify the input and fractional delay data types as arguments, and then set additional
properties in the Generate HDL dialog box.

Version History
Introduced before R2006a

See Also
generatetbstimulus | fdhdltool
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generatetbstimulus
Generate HDL test bench stimulus

Syntax
dataIn = generatetbstimulus(filtSO,'InputDataType',nt)
dataIn = generatetbstimulus(filterObj)

dataIn = generatetbstimulus( ___ ,Name,Value)

Description
dataIn = generatetbstimulus(filtSO,'InputDataType',nt) generates a test bench
stimulus for the specified filter System object and the input data type, specified by nt.

The coder chooses a default set of stimuli, depending on your filter type. The default set is
{'impulse','step','ramp','chirp','noise'}. For IIR filters, 'impulse' and 'step' are
excluded.

dataIn = generatetbstimulus(filterObj) generates a test bench stimulus for the specified
dfilt filter object.

dataIn = generatetbstimulus( ___ ,Name,Value) uses optional name-value arguments, in
addition to any of the input arguments in previous syntaxes. Use these options to change the default
set of stimuli used by the coder.

Examples

Generate Test Bench Stimulus for FIR Filter

Design a lowpass filter and construct a direct-form FIR filter System object™, fir_lp .

filtdes = fdesign.lowpass('N,Fc,Ap,Ast',30,0.4,0.05,0.03,'linear');
fir_lp = design(filtdes,'FilterStructure','dffir','SystemObject',true);

Generate test bench input data. The call to generatetbstimulus generates ramp and chirp stimuli
and returns the results. Specify the fixed-point input data type as a numerictype object.

rc_stim = generatetbstimulus(fir_lp,'InputDataType',numerictype(1,12,10),'TestBenchStimulus',{'ramp','chirp'});

Apply the quantized filter to the data and plot the results. The call to the step function computes the
filtered response to the input stimulus. The input data for the step function must be a column-vector
to indicate samples over time. A row-vector would represent independent data channels.

plot(step(fir_lp,rc_stim'))
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Input Arguments
filtSO — Filter
filter System object

Filter for which to generate a test bench stimulus, specified as a filter System object. To create a filter
System object, use the design function or see the reference page of the object. You can use the
following System objects from DSP System Toolbox:

Single Rate Filters

• dsp.FIRFilter
• dsp.BiquadFilter
• dsp.HighpassFilter
• dsp.LowpassFilter
• dsp.FilterCascade
• dsp.VariableFractionalDelay

Multirate Filters

• dsp.FIRDecimator
• dsp.FIRInterpolator
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• dsp.FIRRateConverter
• dsp.FarrowRateConverter
• dsp.CICDecimator
• dsp.CICInterpolator
• dsp.CICCompensationDecimator
• dsp.CICCompensationInterpolator
• dsp.FilterCascade
• dsp.DigitalDownConverter
• dsp.DigitalUpConverter

nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

filterObj — Filter
dfilt object

Filter for which to generate a test bench stimulus, specified as a dfilt object. You can create this
object by using the design function. For an overview of supported filter features, see “Filter
Configuration Options”.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'TestBenchStimulus',{'ramp','impulse'}

TestBenchStimulus — Input stimuli
'impulse' | 'step' | 'ramp' | 'chirp' | 'noise' | cell array of character vectors | string array

Input stimuli that the generated test bench applies to the filter, specified as 'impulse', 'step',
'ramp', 'chirp', or 'noise'. You can specify combinations of these stimuli in a cell array of
character vectors or string array, in any order.

You can also specify a custom input vector by using the TestBenchUserStimulus property. When
TestBenchUserStimulus is a non-empty vector, it takes priority over TestBenchStimulus.
Example: 'TestBenchStimulus',{'ramp','impulse','noise'}

TestBenchUserStimulus — Custom vector of input data
[] (default) | function call

Custom vector of input data that the generated test bench applies to the filter, specified as the empty
vector or a function call that returns a vector. When this argument is set to the empty vector, the test
bench uses the TestBenchStimulus property to generate input data.
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For example, this function call generates a square wave with a sample frequency of 8 bits per second
(Fs/8).

repmat([1 1 1 1 0 0 0 0],1,10)

Specify this stimulus when you call generatetbstimulus.

generatetbstimulus(filt,'InputDataType',numerictype(1,16,15), ...
    'TestBenchUserStimulus',repmat([1 1 1 1 0 0 0 0],1,10))

Output Arguments
dataIn — Test bench stimulus
single array | double array | fi array

Test bench stimulus for the filter, returned as a single, double, or fi array. If the input filter is a
dfilt filter object, the results are quantized using the arithmetic property of the filter object. If the
input filter is a filter System object, the stimulus is quantized by nt.

Version History
Introduced before R2006a

See Also
generatehdl | fdhdltool
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hdlfilterdainfo
Distributed arithmetic information for filter architectures

Syntax
hdlfilterdainfo(filtSO,'InputDataType',nt)
hdlfilterdainfo(filtObj)
hdlfilterdainfo( ___ ,Name,Value)

[dp,dr,lutsize,ff] = hdlfilterdainfo( ___ )

Description
hdlfilterdainfo(filtSO,'InputDataType',nt) displays distributed arithmetic (DA)
information for the specified filter System object and the input data type, specified by nt. The
information consists of an exhaustive table of DARadix values with corresponding folding factors and
multiplies for LUT sets, and a table with details of LUTs with corresponding DALUTPartition values.
This information helps you to define optimal DA settings for the filter.

hdlfilterdainfo(filtObj) displays DA information for the specified dfilt filter object.

hdlfilterdainfo( ___ ,Name,Value) uses optional name-value arguments, in addition to any of
the input arguments in previous syntaxes. Use these options to query for DA LUT partition and DA
radix information calculated for a given folding factor or LUT specification.

[dp,dr,lutsize,ff] = hdlfilterdainfo( ___ ) stores filter architecture details in output
variables.

Examples

Explore DA Options for a Filter

Construct a direct-form FIR filter, and pass it to hdlfilterdainfo. The command displays the
results at the command line.

firfilt = design(fdesign.lowpass('N,Fc',8,.4),'SystemObject',true);
hdlfilterdainfo(firfilt,'InputDataType',numerictype(1,12,10))

   | Total Coefficients | Zeros | Effective |
   ------------------------------------------
   |          9         |   0   |     9     |

Effective filter length for SerialPartition value is 9.

  Table of 'DARadix' values with corresponding values of 
  folding factor and multiple for LUT sets for the given filter.

   | Folding Factor | LUT-Sets Multiple | DARadix |
   ------------------------------------------------
   |        1       |         12        |   2^12  |
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   |        2       |         6         |   2^6   |
   |        3       |         4         |   2^4   |
   |        4       |         3         |   2^3   |
   |        6       |         2         |   2^2   |
   |       12       |         1         |   2^1   |

  Details of LUTs with corresponding 'DALUTPartition' values.

   | Max Address Width | Size(bits) |             LUT Details             | DALUTPartition |
   -----------------------------------------------------------------------------------------
   |         9         |    7168    |1x512x14                             |[9]             |
   |         8         |    3596    |1x256x14, 1x2x6                      |[8 1]           |
   |         7         |    1824    |1x128x14, 1x4x8                      |[7 2]           |
   |         6         |     904    |1x64x13, 1x8x9                       |[6 3]           |
   |         5         |     608    |1x16x12, 1x32x13                     |[5 4]           |
   |         4         |     412    |1x16x12, 1x16x13, 1x2x6              |[4 4 1]         |
   |         3         |     248    |1x8x13, 2x8x9                        |[3 3 3]         |
   |         2         |     180    |1x2x6, 1x4x12, 1x4x13, 1x4x8, 1x4x9  |[2 2 2 2 1]     |

Notes:
1. LUT Details indicates number of LUTs with their sizes. e.g. 1x1024x18
   implies 1 LUT of 1024 18-bit wide locations.

Generate Code for Filter with Distributed Arithmetic Settings

Create a direct-form FIR filter.

firfilt = design(fdesign.lowpass('N,Fc',8,.4),'filterstructure','dfsymfir','SystemObject',true);

Call hdlfilterdainfo.

lutip = 4;
ff = 3;
[dp,dr,lutsize,ff] = hdlfilterdainfo(firfilt, ...
    'InputDataType',numerictype(1,12,10), ...
    'FoldingFactor',ff,'LUTInputs', lutip);

Pass the returned DA LUT partition ( dp ) and DA radix ( dr ) values into generatehdl. The
generated HDL code has DA architecture and implements LUTs with the specified max address width
( lutip ) and folding factor ( ff ).

generatehdl(firfilt,'InputDataType',numerictype(1,12,10), ...
    'DALUTPartition',dp,'DARadix',dr);

### Starting VHDL code generation process for filter: firfilt
### Generating: C:\TEMP\Bdoc23a_2213998_3568\ib570499\33\tp913ae594\hdlfilter-ex76912192\hdlsrc\firfilt.vhd
### Starting generation of firfilt VHDL entity
### Starting generation of firfilt VHDL architecture
### Clock rate is 3 times the input sample rate for this architecture.
### Successful completion of VHDL code generation process for filter: firfilt
### HDL latency is 3 samples
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Input Arguments
filtSO — Filter
filter System object

Filter for which to display distributed arithmetic information, specified as a filter System object. To
create a filter System object, use the design function or see the reference page of the object. The
following System objects from DSP System Toolbox support distributed arithmetic:

• dsp.FIRFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator

For more information, see “Distributed Arithmetic for FIR Filters” on page 4-16.

nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

filtObj — Filter
dfilt object

Filter for which to display distributed arithmetic information, specified as a dfilt object. See
“Distributed Arithmetic for FIR Filters” on page 4-16 for filter types that support distributed
arithmetic. You can create this object using the design function.

Name-Value Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'FoldingFactor',2,'DALUTPartition',9.

You can only specify one folding factor argument and one LUT argument at a time.

Folding Factor Arguments

FoldingFactor — Hardware folding factor
integer greater than 1 | Inf

Hardware folding factor, specified as Inf or an integer greater than 1. Given the folding factor, the
coder displays an exhaustive table of corresponding LUT input values, sizes, and details. If the folding
factor is inf, the coder uses the maximum folding factor.
Example: 'FoldingFactor',2

DARadix — DA radix value
integer power of 2
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DA radix value, specified as an integer power of 2. Given the DA radix, the coder displays for the
corresponding folding factor value an exhaustive table of LUT input values, sizes, and details.
Example: 'DARadix',4

LUT Arguments

LUTInputs — LUT input value
integer greater than 1

LUT input value, specified as an integer greater than 1. Given the LUT input value, the coder displays
an exhaustive table of the corresponding folding factor values, LUT sizes, and details.
Example: 'LUTInputs',3

DALUTPartition — DA LUT partition value
integer greater than 1

DA LUT partition value, specified as an integer greater than 1. Given the DA LUT partition value, the
coder displays an exhaustive table of the corresponding folding factor values, LUT sizes, and details.
Example: 'DALUTPartition',9

Output Arguments
dp — DA LUT partition
cell array

DA LUT partition values, returned as a cell array.

dr — DA radix
cell array

DA radix values, returned as a cell array.

lutsize — LUT size
cell array

LUT size values, returned as a cell array.

ff — Folding factor
cell array

Folding factor values, returned as a cell array.

Version History
Introduced in R2011a

See Also
hdlfilterserialinfo

Topics
“Distributed Arithmetic for FIR Filters” on page 4-16
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hdlfilterserialinfo
Serial partition information for filter architectures

Syntax
hdlfilterserialinfo(filtSO,'InputDataType',nt)
hdlfilterserialinfo(filtSO,'InputDataType',nt,'FoldingFactor',ff)
hdlfilterserialinfo(filtSO,'InputDataType',nt,'Multipliers',mult)
hdlfilterserialinfo(filtSO,'InputDataType',nt,'SerialPartition',[p1 ... pN])

hdlfilterserialinfo(filtObj)
hdlfilterserialinfo(filtObj,'FoldingFactor',ff)
hdlfilterserialinfo(filtObj,'Multipliers',mult)
hdlfilterserialinfo(filtObj,'SerialPartition',[p1 ... pN])

[sp,fold,nm] = hdlfilterserialinfo( ___ )

Description
hdlfilterserialinfo(filtSO,'InputDataType',nt) displays an exhaustive table of serial
partition values with corresponding folding factors and numbers of multipliers for the specified filter
System object and the input data type, specified by nt. This information helps you to define optimal
serial architecture for the filter in the generated HDL code.

hdlfilterserialinfo(filtSO,'InputDataType',nt,'FoldingFactor',ff) displays only
those serial partition values that correspond to the specified folding factor.

hdlfilterserialinfo(filtSO,'InputDataType',nt,'Multipliers',mult) displays only
those serial partition values that correspond to the specified number of multipliers.

hdlfilterserialinfo(filtSO,'InputDataType',nt,'SerialPartition',[p1 ... pN])
displays the folding factor and number of multipliers corresponding to the serial partition vector.

hdlfilterserialinfo(filtObj) displays serial partition information for the specified dfilt
filter object.

hdlfilterserialinfo(filtObj,'FoldingFactor',ff) displays only those serial partition
values that correspond to the specified folding factor.

hdlfilterserialinfo(filtObj,'Multipliers',mult) displays only those serial partition
values that correspond to the specified number of multipliers.

hdlfilterserialinfo(filtObj,'SerialPartition',[p1 ... pN]) displays the folding
factor and number of multipliers corresponding to the serial partition vector.

[sp,fold,nm] = hdlfilterserialinfo( ___ ) captures serial partition values with their
corresponding folding factors and numbers of multipliers, for any of the input argument combinations
in previous syntaxes.

10 Functions

10-36



Examples

Explore Serial Partition Options

To display valid serial partitions, pass the filter, with no other arguments, to hdlfilterserialinfo.

filt = design(fdesign.lowpass('N,Fc',8,.4),'SystemObject',true);
hdlfilterserialinfo(filt,'InputDataType',numerictype(1,12,10))

   | Total Coefficients | Zeros | Effective |
   ------------------------------------------
   |          9         |   0   |     9     |

Effective filter length for SerialPartition value is 9.

  Table of 'SerialPartition' values with corresponding values of 
  folding factor and number of multipliers for the given filter.

   | Folding Factor | Multipliers |   SerialPartition   |
   ------------------------------------------------------
   |        1       |      9      |[1 1 1 1 1 1 1 1 1]  |
   |        2       |      5      |[2 2 2 2 1]          |
   |        3       |      3      |[3 3 3]              |
   |        4       |      3      |[4 4 1]              |
   |        5       |      2      |[5 4]                |
   |        6       |      2      |[6 3]                |
   |        7       |      2      |[7 2]                |
   |        8       |      2      |[8 1]                |
   |        9       |      1      |[9]                  |

Explore Serial Partitions for a Fixed Number of Multipliers

Design a filter and pass it to hdlfilterserialinfo. Request serial partition parameters for a
design that uses three multipliers.

filt = design(fdesign.lowpass('N,Fc',8,.4),'SystemObject',true);
hdlfilterserialinfo(filt,'InputDataType',numerictype(1,12,10),'Multipliers',3)

Serial Partition: [3 3 3], Folding Factor:    3, Multipliers:    3

Explore Serial Partitions for a Fixed Folding Factor

Design a filter and pass it to hdlfilterserialinfo. Request serial partition parameters for a
design that uses a folding factor of four.

filt = design(fdesign.lowpass('N,Fc',8,.4),'SystemObject',true);
hdlfilterserialinfo(filt,'InputDataType',numerictype(1,12,10),'FoldingFactor',4)

Serial Partition: [4 4 1], Folding Factor:    4, Multipliers:    3
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Return Serial Partition Options to a Cell Array

Pass the filter and data type, with no additional arguments, to hdlfilterserialinfo. You can
return the results to a cell array.

filt = design(fdesign.lowpass('N,Fc',8,.4),'SystemObject',true);
[sp,ff,nm] = hdlfilterserialinfo(filt,'InputDataType',numerictype(1,12,10))

sp = 9x1 cell
    {'[1 1 1 1 1 1 1 1 1]'}
    {'[2 2 2 2 1]'        }
    {'[3 3 3]'            }
    {'[4 4 1]'            }
    {'[5 4]'              }
    {'[6 3]'              }
    {'[7 2]'              }
    {'[8 1]'              }
    {'[9]'                }

ff = 9x1 cell
    {'1'}
    {'2'}
    {'3'}
    {'4'}
    {'5'}
    {'6'}
    {'7'}
    {'8'}
    {'9'}

nm = 5x1 cell
    {'1'}
    {'2'}
    {'3'}
    {'5'}
    {'9'}

You can also use this syntax while specifying a number of multipliers or folding factor.

[sp_ff4,ff4,nm_ff4] = hdlfilterserialinfo(filt,'InputDataType',numerictype(1,12,10), ...
    'FoldingFactor',4)

sp_ff4 = 1×3

     4     4     1

ff4 = 4

nm_ff4 = 3

Input Arguments
filtSO — Filter
filter System object
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Filter for which to display serial partition information, specified as a filter System object. To create a
filter System object, use the design function or see the reference page of the object. The following
System objects from DSP System Toolbox support serial architectures:

• dsp.FIRFilter
• dsp.FIRDecimator
• dsp.FIRInterpolator
• dsp.BiquadFilter

For more information, see “Speed vs. Area Tradeoffs” on page 4-2.

nt — Input data type
numerictype object

Input data type, specified as a numerictype object. This argument applies only when the input filter
is a System object. Call numerictype(s,w,f), where s is 1 for signed and 0 for unsigned, w is the
word length in bits, and f is the number of fractional bits.

filtObj — Filter
dfilt object

Filter for which to display serial partition information, specified as a dfilt object. See “Speed vs.
Area Tradeoffs” on page 4-2 for filter types that support serial architectures. You can create this
object using the design function.

ff — Hardware folding factor
integer greater than 1 | Inf

Hardware folding factor, specified as an integer greater than 1 or Inf. Given the folding factor, the
coder computes the serial partition and the number of multipliers. If the folding factor is Inf, the
coder uses the maximum folding factor.

mult — Desired number of multipliers
integer greater than 1 | Inf

Desired number of multipliers, specified as an integer greater than 1 or Inf. Given the number of
multipliers, the coder computes the serial partition and the folding factor. If the number of multipliers
is inf, the coder uses the maximum number of multipliers.

[p1 ... pN] — Serial partitions
vector of N integers

Serial partitions, specified as a vector of N integers, where N is the number of serial partitions. Each
element of the vector specifies the length of the corresponding partition.

Output Arguments
sp — Serial partition
cell array of vectors

Available serial partitioning options, returned as a cell array of vectors.

fold — Folding factor
cell array
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Available folding factor values, returned as a cell array.

nm — Number of multipliers
cell array

Available multiplier values, returned as a cell array.

Version History
Introduced in R2010b

See Also
hdlfilterdainfo

Topics
“Speed vs. Area Tradeoffs” on page 4-2
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