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Preface

This book introduces computation and modeling of problems in physical sciences with
emphasis on interactive just-in-time computing, data analysis, and effective visualization.
Computational modeling has long been an established practice in science and engi-
neering and is regarded as the third pillar alongside experimentation and theory. It is
also becoming increasingly inseparable and integral in a wide range of industry sectors.
In education, computational thinking—broadly construed as the mindset and skillset of
problem-solving with computational methodologies including modeling, abstraction, sym-
bolic and algorithmic representations, and numeric processing—is being embraced as a
standard component, and even a requirement, at all levels.1

Experience and evidence from physics educators and physics education research have
shown that computation and integration thereof into physics has many positive ben-
efits including increasing student engagement, active learning, and improved learning
outcomes and understanding. However, there are also well-documented challenges to
effective implementation in terms of pedagogical consideration and practical constraints.
We developed this book with the goal of lowering such barriers. In terms of coverage,
we have carefully selected a set of topics, drawn from experience and best practice in the
physics education community, that is pedagogically significant and also reflective of the
current trend in academia and in industry. In terms of access to computing resources, we
have adopted a COD (computing on demand) and JIT-C (just-in-time computing) model
where nearly all programs are cloud-based, requiring no software installation of any kind
for easily accessing or running them in a web browser on any machine, especially on
mobile devices. Running a simulation, or sharing one, is just a click away. We designed
most programs as minimally working programs (MWP) as part of intentional scaffolding
to help beginners develop computational problem-solving and thinking skills. MWPs are
effective pedagogically to teaching and learning computational modeling. They may be
used as basis templates to be modified, extended, or combined for further exploration in
projects and exercises.

1 See J. M. Wing, Computational thinking, Communications of the ACM, 49, 33–35 (2006).
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The book is broadly organized into two parts. Part one consists of Chaps. 1 to 4 and
describes basic programming and tools, including programming environments, Python
tutorial, interactive computing, and elementary algorithms. Part two includes Chaps. 5 to
9 and focuses on application of computational modeling of select problems in fundamental
areas of physical and data science including classical mechanics, modern physics, thermal
and complex systems, as well as from contemporary topics including quantum computing,
neural networks and machine learning, and global warming and energy balance.

The materials are arranged as follows. In Chap. 1, we introduce programming and
development environments including Jupyter notebook—the recommended environment,
its cloud-based counterpart Binder, a close variant Colab, the native Python IDLE—inte-
grated development and learning environment, Spyder, and sharing-friendly GlowScript
and Trinket. We also describe the online program repository, how to access and run
programs in the cloud, and optional software installation to run programs locally. An
interactive Python tutorial is given in Chap. 2 on basic programming elements, including
the important aspect of error handling, debugging, and troubleshooting. Next, Chap. 3
focuses on interactive computing and visualization methods with Python widgets and
VPython animation libraries. Key scientific computing libraries are also described with
interactive examples including symbolic and numeric computation with Sympy, Numpy,
Scipy, as well as Numba for optimization. Rounding out part one, we introduce in Chap. 4
common elementary algorithms such as finite difference, numerical integration including
that of differential equations, finding of roots and minima or maxima, and curve fitting.

We begin part two with Chap. 5 on force and motion where we pedagogically intro-
duce kinematic concepts, and discuss projectile motion with and without air resistance,
harmonic oscillation, planetary motion, and motion in electromagnetic fields. In Chap. 6
we discuss classical coupled oscillations and wave propagation and introduce linear sys-
tems and fundamental modes, leading up to simulations of matter waves in modern
and quantum physics next in Chap. 7 where we consider relativity of space and time,
diffraction and double-slit interference, formation of discrete quantum states and its visu-
alization. We also introduce quantum information processing and quantum computing
with an interactive quantum simulator and a step-by-step walkthrough of a nontrivial real-
world example: quantum search—the Grover algorithm. We consider random processes
and thermal physics in Chap. 8 such as nuclear decay, Brownian motion, Monte Carlo
simulations of thermal energy distribution and spin systems. We close the chapter with a
discussion of greenhouse effect, energy balance, and global warming. Lastly, we discuss
complex systems in Chap. 9 including cellular automata, traffic modeling, and nonlinear
dynamics and chaos. We conclude with an introduction to neutral network and machine
learning, and describe a worked example with details in the training and prediction of
game of life.

In terms of background and preparation, readers without prior programming experience
should start with part one, focusing on the interactive tutorial (Chap. 2) and moving on to
Python libraries (Chap. 3) and basic algorithms (Chap. 4). To get the most out of part two,
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the reader should be calculus-ready, having studied precalculus if not calculus already. We
took care to make the book as self-contained as possible in terms of explaining physical
concepts necessary for a particular simulation. Even so, a basic understanding of physics
at introductory level is very helpful such as familiarity with basic concepts of motion and
Newton’s second law. We recommend covering Chap. 5, not necessarily in its entirety,
before Chap. 6. The other individual chapters are sufficiently decoupled from each other
that they may be used as separate modules and studied independently.

Integral to the main content, the book contains extensive sets of carefully designed and
tested exercises at the end of each chapter. Most exercises are closely related to the MWPs
discussed in the main text, and can be used for further exploration of a given problem, as
project assignments or self-paced study. Exercises vary in depth and difficulty levels, and
the more challenging ones are marked by asterisks.

We thank Susanne Filler, Executive Editor at Springer Nature, and her team for the
assistance and timely guidance in this project. JW is grateful to his colleagues at UMass
Dartmouth and in the PICUP community (Partnership for Integration of Computation into
Undergraduate Physics, http://gopicup.org) for their support and inspiration; and to the
countless students who participated in research projects or through coursework and pro-
vided feedback in various ways: you have had more impact on this project than you ever
knew. Finally, we are fortunate to have the unwavering encouragement, understanding,
and patience of our loved ones: Huihua, Kathy, and Greg. Thank you.

Dartmouth, USA
Nashville, USA

Jay Wang
Adam Wang

http://gopicup.org
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1Programming Environments

Computing hardware has changed dramatically from the vacuum-tube computers of 1950s,
to sharedmainframes of 1980s, and now to portable devices of presentwith computing power
that far exceed the supercomputers of 1990s. Correspondingly, computational environments
have also evolved from central computing in the early days to distributed computing, and
from text-based terminal interfaces to graphical and web- or cloud-based development envi-
ronments at present. We briefly describe several programming environments and take a side
by side glance over Jupyter notebook, Colab, Spyder, and so on. Each has its pros and cons,
and the choice often comes down to personal preference, familiarity, or workflow. We rec-
ommend the Jupyter notebook environment because it is an all-around good environment:
friendly interface, easy to use, selective code-cell execution, self-documenting with code,
graphics, LATEX style text, and readily suitable for project reports. See Table1.1 for a quick
summary of program types and suitable environments.

1.1 Jupyter Notebook Environments

We first describe browser-based programming environments for developing and running
Jupyter notebook programs that end with the file extension .ipynb.

1.1.1 Jupyter Notebook

Jupyter notebook (or simply Jupyter) is a browser-based graphical programming devel-
opment environment (the latest version is called JupyterLab). It is included in all-in-one

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Table 1.1 Program type and development environment

Program type Environment URL

Notebook (.ipynb) Jupyter/JupyterHub https://jupyter.org/try, https://
jupyter.org/hub

Binder https://github.com/com-py/
intro, https://mybinder.org

Colab https://colab.research.google.
com

Standard (.py) IDLE, Spyder, terminal In terminal mode, edit
(e.g. with notepad++) and

run programs with command
python prog.py

https://notepad-plus-plus.org/

GlowScript GlowScript, Trinket https://www.glowscript.org,
https://trinket.io

Fig. 1.1 Jupyter notebook environment. Left: home screen; right: program screen

packages such as Anaconda1 or can be custom-installed. One can also try it out on the web
(see Table1.1). It is also possible to run Jupyter notebook programs remotely using Jupyter-
Hub (see end of this section). Jupyter notebook supports multiple programming languages,
although we will focus on Python.

Figure1.1 shows the basic layout of Jupyter notebook. The home screen has two tabs
listing files and folders (from the specified home directory of Jupyter when it was launched)
and programs currently running, respectively.2 Clicking on a folder opens that folder, and
clicking a program launches the program in a separate tab. Selecting an item initiates a set
of action buttons to rename, copy, or delete the item. Above the folders and files to the
right are two buttons labeled Upload and New. We can upload a program (or file) on the
local machine with the Upload button. This is useful if you want to run a program found
elsewhere, one from this book for example. You download it and the upload to Jupyter to

1 https://www.anaconda.com.
2 The cluster tab would show parallel processing information that is not applicable to our discussion.

https://jupyter.org/try
https://jupyter.org/hub
https://jupyter.org/hub
https://github.com/com-py/intro
https://github.com/com-py/intro
https://mybinder.org
https://colab.research.google.com
https://colab.research.google.com
https://notepad-plus-plus.org/
https://www.glowscript.org
https://trinket.io
https://www.anaconda.com
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run it. The New buttons opens a menu where we can create a new program or folder, or open
a terminal window. We can shut down Jupyter and quit with the Quit button.

To launch a program from the home screen, click on tutorial. The browser will
switch to a new tab, the program screen (Fig. 1.1, right). There are a number of standard
menu items and icons below them to perform various tasks (mouse over each icon to see a
popup description). The help menu can be quite handy, and brings us to external links to
learn more about a topic.

The main work area beneath show either code or markdown cells. A currently selected
cell can be executed by clicking on the run icon or by shift-enter (holding down shift while
pressing the enter key). The output (if any) is shown below, and the next cell is selected
(highlighted). Graphics output will be automatically saved.

A cell type can be changed from the dropdown box (only code or markdown will be of
interest to us). The markdown cell type allows for any text or documentation including
LATEX formatted mathematical expressions, embedded graphics or links to websites. Learn
more about it by selecting markdown from the help menu.

We should keep in mind that Jupyter notebook remembers all the variables and their cur-
rent values at the point of execution. Sometimes this memory has unintended consequences
(left over or improperly initiated variables). To clear Jupyter of memory effects, choose from
the Kernel menu and restart the kernel. If a program appears unresponsive as sometimes
happens with VPython graphics, or program output seems wrong, try to fix it by restarting
the kernel.

JupyterHub
If onewishes to run Jupyter notebook programswithout software installation by the end user,
there are two possibilities. The first option is to install JupyterHub (see Table1.1) on your
own server or other hosting service. A user can access Jupyter notebook remotely and run
programs in a web browser. The JupyterHub setup is a popular choice at many institutions.
The second option is to use a cloud service like Colab (see Sect. 1.1.2).

Binder
Most of Jupyter notebook programs in this book can be run from Binder, a platform that
converts Github repositories into interactive notebooks on demand. There is no need to
install anything. Simply go to the book repository on Github3 (also see Table1.1), click on
a program, and follow the instructions and the link.

3 https://github.com/com-py/intro.

https://github.com/com-py/intro
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Fig. 1.2 Colab programming
environment

1.1.2 Colaboratory

Colaboratory (or just Colab) is a repackaged Jupyter platform offered by Google (see
Table1.1) that runs Python notebook programs in a web browser.4 The basic service is
free, and requires no installation of software.

Colab imitates the Jupyter user interface (Fig. 1.2) butwith significant alterations in layout
and functionality. The advantages are that access is simple, requiring only a Google account
without any software installation or configuration. One can open a notebook program with
a shared link or click on one stored on Google drive. The latter will launch Colab in the
browser. Members of a group can collaborate and leave comments.

The disadvantages are that Colab can be sluggish because resources are not guaranteed
with the free service. The altered user interface and functionality could be a hindrance to
those familiar with the standard Jupyter operations. Colab has not and does not support
VPython programs. Also, data privacy and where it is hosted may be a concern to some
users.

The biggest drawback for some usersmay be the limitations (andwhims) of Colab beyond
users’ control. One of the limitations is the lack of support of certain libraries. For example,
VPython, a popular 3D graphics and animation library used in education and research, does
not work in Colab, though it works fine in Jupyter. If one wishes to run Jupyter notebook
programs in the cloud, consider the JupyterHub or the Binder option (see Sect. 1.1.1).

1.2 Integrated Development Environments

We describe two integrated development environments for developing and running standard
Python programswith the extension.py. Both comewith a program editor and an integrated
debugger.

4 Microsoft had a similar service calledAzureNotebooks now renamedAzureMLStudio. See https://
studio.azureml.net.

https://studio.azureml.net
https://studio.azureml.net
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Fig. 1.3 IDLE programming environment. Left: shell window; right: editor window

1.2.1 IDLE

The IDLE (integrated development and learning environment) is a basic programming envi-
ronment provided and automatically installed with Python or all-in-one packages like Ana-
conda. It includes an interactive shell, a program editor, and a debugger (Fig. 1.3).

When the IDLE is launched, the shell window starts (Fig. 1.3, left). We can type a Python
statement at the prompt »>, and execute it with the enter key. This would be an ideal place
to learn or use Python as a calculator (see Sect. 2.1). Text output is written after the prompt
within the shell. Graphics output such asMatplotlib is displayed in a separate popupwindow
or in a browser tab for VPython output (see Sect. 3.2.2).

One can open an existing program (.py type) or start a new one with the program editor
(Fig. 1.3, right). When ready (after saving changes), we can run the program from the menu.
Text output will appear in the shell window and graphics output in external windows as
usual.

To use the debugger, turn it on from the shell windowmenu. A separate debugger window
will appear. Now if a program is run from the editor, the debugger allows for stepping through
the program line by line, setting break points, or examining variables (Spyder has a more
advanced debugger, see Sect. 1.2.2 next). For most short programs we deal with here, a more
practical way of error fixing is to place the print function at key locations to look at the
contents of a variable, and use it as clues to deduce potential problems (more on error fixing
in Sect. 2.11.4).

1.2.2 Spyder

Like the IDLE, Spyder is an integrated development environment for Python.But its interface
is highly customizable. At its core, it includes a program editor, launcher, and a debugger.
Figure1.4 shows a particular layout with the program editor, an output window, and a file
window. It is prepackaged with Anaconda and may also be installed separately.

Standard menu items are at the top of the interface. Immediately below are several sets of
icons to perform tasks including opening or saving files in the editor, launching programs,
debugging, and so on.

As with the IDLE, Spyder can run only standard Python programs (.py, not Jupyter
notebook .ipynb), and it does not output the result like a calculator the way Jupyter
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Fig. 1.4 Spyder programming
environment. Left: text editor;
middle: output window; right:
file window

does. Instead, we must use the print function for text output. However, Spyder also has
internal hooks to intercept and redirect graphical output such as fromMatplotlib to the output
window. VPython animation will appear in a web browser window and not in-page as with
Jupyter notebook (see Chap. 3).

By default, Spyder runs the whole program. But it is possible to selectively execute
statement blocks or cells markedwith special directives (#%%). It has an advanced debugger
that enables one to step through statements, set break points where code execution is paused,
and inspect contents of variables. As stated earlier, for our purpose, most errors can be traced
and fixed with the help of print function (see error fixing, Sect. 2.11.4).

1.3 GlowScript andTrinket

GlowScript
GlowScript (renamed toWeb VPython now) is a programming environment for creating 3D
animations. It is a free service running in the cloud calling the VPython graphics library that
also runs in a standard local Python installation (see Sect. 3.2.2).

Any device, be it a laptop or a smart phone, can run GlowScript programs because they
run in a standard web browser (see Program A.7.1 for an example). GlowScript programs
can be accessed with a shared link, or they can be created in a web browser after setting up
a free account.

The GlowScript interface is simple. It has two modes, the editor mode and the execution
mode (output). One can switch between the two with a single click. Only the owner of
a program can make changes or create sharable links. Nonowners can run the program,
download it, or make changes to a copy.

Trinket
Trinket is another programming environment in the cloud that can run GlowScript pro-
grams unmodified (plus programs in Python and several other programming languages).
Like GlowScript, it runs in a web browser with a simple interface (Fig. 1.5).

Figure1.5 shows a GlowScript program in Trinket (the same program animating an
oscillating ball discussed later in Sect. 3.2.2). Trinket has a couple of unique features. One
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Fig.1.5 Trinket (GlowScript) programming environment. Left: programeditor; right: outputwindow.
The output is post-processed with POV-Ray to include ray tracing effects

is that it displays the code and the output side-by-side in the browser. making it easy to
compare changes to the code and the difference in the outcome. Another is that Trinket can
save changes to a program and create a new sharable link, even if a user is not the owner
of the originally shared program and does not have a Trinket account. This makes sharing
really easy (of course, it is recommended to create an account to keep track of programs and
changes made).

The biggest advantage of GlowScript and Trinket is that both enable nonspecialist users
to easily incorporate 3D animation to enhance the simulations that can be shared just as
easily. The disadvantage, though, is that we cannot use standard Python libraries in these
environments.5 This limitation is not as severe for sharing short simulations or demonstra-
tions.

Summary
We have briefly introduced several programming environments. Table1.1 lists the program
types and suitable development environments.

Each environment has its advantages and disadvantages relative to the others. As stated
earlier, depending on your workflow, choose the ones according to your personal preference,
familiarity, and efficiency. More likely, you will find a combination of several environments
to be useful.

5 For non-GlowScript, standard Python programs, Trinket supports a limited set of libraries to be
imported such as Matplotlib, Numpy and a few more, but not many others like Scipy or Sympy.
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1.4 Program Access and Installation

Accessing and running programs

Most Python programs to be discussed in the following chapters are given in both standard
Python format (extension .py) and Jupyter notebook format (extension .ipynb). The two
formats are functionally the same in terms of core computation, namelymethods and results,
but are different in terms of appearance and presentation owing to the different environments.
These programs are accessible in several different ways.

• Program listing: Appendix A
Standard Python format (.py) programs are listed in Appendix A for easy reference and
study aid. We provide discussions and explanations in the text utilizing Jupyter notebook
cell structure for code snippets or short but full programs.

• Online repository: https://github.com/com-py/intro
All the programs discussed in the text are accessible through the online repository. It is
recommended to use online access because it will be actively updated as warranted. Fur-
thermore, where appropriate, a VPython version of a program is also provided, enabling
3D animation in the simulation (see Sect. 3.2.2). As a result, some programs have four
functionally-equivalent versions: standard and notebook formats, each with and without
VPython enabled.
A user can run Jupyter notebook programs on a just-in-time basis in-situ at the online
repository because they are linked to Binder (Table1.1). It requires just a click, and no
download or installation of any kind is necessary.
To run a program locally, follow the instructions at the repository to download and save
the program, and run it from your machine. For notebook programs, upload it to Jupyter
to examine and run it (Sect. 1.1.1).

For the purpose of demonstration and easy sharing, some programs are also given in
supplementary GlowScript and Trinket formats. They are available online.

• GlowScript set: https://www.glowscript.org/#/user/jaywang/folder/intro/
The link contains a set of programs closely related to the counter parts such as Pro-
gram A.3.4 and Program A.7.1. The set is continually updated. Anyone can view,
run, share, or download GlowScript programs. The downloaded programs are standard
VPython programs that can be run locally.

• Trinket set: Online repository
A set of Trinket programs may be found at the online repository discussed earlier. Like
GlowScript programs, one can run and share them freely.

https://github.com/com-py/intro
https://www.glowscript.org/#/user/jaywang/folder/intro/
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Installation

As stated earlier, the programs presented in this book can be accessed and run from the
online repository without any software installation. Still, in many cases, a local installation
is preferred or required.

The easiest method is to install the all-in-one Python distribution Anaconda mentioned
earlier.6 Download the installer from theURL (Sect. 1.1.1) and run it. TheAnaconda installa-
tion includes everythingweneed (andmuchmore)with onenotable exception, unfortunately:
it does not include VPython by default. To install VPython afterward, open an Anaconda
terminal (different than the DOS terminal on Windows), use one of the commands

pip install vpython

or

conda install −c vpython vpython

Now, this will complete the installation with all we need.
The next easiestmethod is to install Python and associated librariesmanually. First, install

base Python.7 Second, download the file requirements.txt from the online repository
given earlier. Then open a system terminal and issue the command

pip install −r requirements.txt

This will complete a custom Python installation for our every need. Should an error such as
pip is not found occur, prefix pipwith the right path where base Python is installed
into. On Windows, for example, this could be

C:\Python3\Scripts\pip install −r requirements.txt

Now we have everything ready, go forth and simulate. If you are new to Python or need
a refresher, start with the interactive tutorial in Chap. 2. However, like driving, the most
effective way to learn is to just do it. Pick a template program (e.g., Program 2.1) or snippet,
make small, one-line-at-a-time changes, run, and see what you get. If an error pops up, do
not be discouraged, follow debugging tips in Sect. 2.11. Otherwise, skip back and forth as
you wish.

6 As an alternative, try the more customizable all-in-one package WinPython, https://winpython.
github.io/.
7 https://www.python.org.

https://winpython.github.io/
https://winpython.github.io/
https://www.python.org
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This chapter introduces the fundamental concepts of the Python language and will teach you
to read and write Python code. Later chapters will build off the material covered here.

To help you learn, we recommend trying the examples yourself and testing any modifi-
cations you are curious about. You can use any of the IDEs mentioned in Chap. 1. If you are
more comfortable starting out in a web browser environment without installing anything,
you can try Jupyter Notebook on the web at https://jupyter.org/try.

2.1 Python as a Calculator

2.1.1 Arithmetic Operators

Python performs arithmetic with the familiar operators +, -, *, and /. Expressions can be
grouped with parenthesis () to change the order of operations. For example,

In [1]: 1 + 2*3

Out[1]: 7

In [2]: (1 + 2)*3

Out[2]: 9

Powers are calculated with **. The following evaluates 23 × 32 = 8 × 9 = 72.

In [3]: 2**3 * 3**2

Out[3]: 72

Note that ** precedes * in the order of operations. Perhaps less familiar are the floor and
modulus operators // and %, which complete the set of arithmetic operators. The floor
discards the remainder after division while the modulus only keeps the remainder.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.Wang andA.Wang, Introduction toComputation inPhysical Sciences, Synthesis Lectures
on Computation and Analytics,
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In [4]: 9 / 4

Out[4]: 2.25

In [5]: 9 // 4

Out[5]: 2

In [6]: 9 % 4

Out[6]: 1

In terms of order of operations: ** has first priority; *,/,//,% are tied for second
priority; and +,- are tied for last priority. Operators with tied priorities are evaluated left to
right. Parenthesis can override these defaults and are useful in complicated expressions to
avoid mistakes, even when not necessary. For instance, (5 * 2**3)/2 + (1/2 + 3)
is far more readable than 5*2**3/2+1/2+3.

2.1.2 Types of Numbers

Python treats integers, i.e. whole numbers, and floating-point numbers, i.e. numbers with
decimal points, differently. They are represented byint andfloat data types, respectively.
To check any value’s type, use the type() function:

In [7]: type(1)

Out[7]: int

In [8]: type(2/3)

Out[8]: float

A value’s type effects how it is stored in memory and what operations can be performed on
it.1

Technicalities aside, precision is a major distinction. While integer arithmetic is exact
and has its use cases, physical systems are continuous and floating-points are necessary. We
must be aware of their limitations, however, shown in simple example 1 + 2/3 = 5/3. In
Python,

In [9]: 1 + 2/3

Out[9]: 1.6666666666666665

In [10]: 5/3

Out[10]: 1.6666666666666667

the results are not equal!

1 For instance, it is perfectly valid to multiply two numbers, but what does it mean to multiply two
words?
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Python supports mixed arithmetic between different types of numbers. Expressions with
integers and floating-points result in floating-points as we saw in Out[9]. Division always
results in a floating-point, even in cases like 2/1.

Complex numbers have their own complex type. They are created using j as a suffix
representing the imaginary part, e.g.

In [11]: type(1 + 1j)

Out[11]: complex

Arithmetic operators apply as usual, and they can be combined with int and float types.

In [12]: (1+2j)*(1-2j) + .5j

Out[12]: (5+0.5j)

2.2 Variables

It is helpful to store the result of a calculation in a variable for future use. Variable names
also provide insight into the values they represent, which is especially useful in complicated
calculations.

2.2.1 AssigningVariables

In Python, the equal sign = assigns a value to a variable.

In [13]: var1 = 1

The variable var1 now has value 1. Note that no output is displayed when assigning
variables. By default, the last line in a Jupyter Notebook cell is displayed if it is a value.
Thus if output is desired, we can write an extra line of code, e.g.

In [14]: var2 = 2

var2

Out[14]: 2

Code is executed sequentially line by line. Alternatively, we could use the print() func-
tion.

In [15]: var3 = 3/1

print(var3)

3.0

Once a variable has been assigned a value, it can be used in expressions with other variables
and values. Variables can also be over-written. The following variable assignment may seem
strange if we thought strictly mathematically:
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In [16]: var1 = var1 + var2**var3 + 1

var1

Out[16]: 10.0

Python first evaluates the expression on the right, at which point var1 has value 1, then
overwrites var1, assigning it the value 10.0. A single equal sign does not test for equality
of two expressions; we will learn about logical operators in Sect. 2.6.1 that do.

2.2.2 Variable Names

Variable names can only contains letters, digits, and underscores, but cannot start with a digit.
Variable names are case sensitive, e.g. var is different from VAR. Names should be mean-
ingful so the code is more readable. For instance, if a variable represents an object’s mass,
it is reasonable to name it mass or m. Long variable names should not looklikethis,
but should lookLikeThis or look_like_this; we will adopt the second convention
in this book.

Python has certain built-in special words, like print; they are typically colored in IDEs.
Variable names should not match these words, otherwise errors like the following will arise.

In [17]: print = 5

print(1)

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-17-5747096be880> in <module>

1 print = 5
----> 2 print(1)

TypeError: 'int' object is not callable

The second line results in a TypeError because print is no longer a function (it now has
type int), so we cannot call it with parenthesis like a usual function. We will learn more
about errors and troubleshooting in Sect. 2.11. Default behavior can be restored by deleting
the variable using del.

In [18]: del print

print(1)

1

2.3 Comments

While a computer may read and execute Python code with no trouble, it may not be easily
understood by a human; this can be remedied by writing comments. Comments are text
mixed with code that are ignored by Python. The hash symbol # denotes the start of a
comment. The rest of the line starting from # is not executed as Python code. For example,
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In [19]: # Compute force, assuming constant mass and acceleration.

m = 5 # mass in kg

a = 2 # acceleration in m/s^2

F = m*a # Force in N

print(F)

10

In this example, the comments are not necessary because it is simple and we chose mean-
ingful variable names. However, as programs get more complicated, it is important to add
comments to make the code easier to understand and troubleshoot.

2.4 Text Strings

Text strings, or simply strings, are used frequently. Some examples include loading/saving
files, labeling figures, and displaying messages. This section covers the essentials of string
manipulation.

2.4.1 Syntax

Strings are enclosed with either single quotes ('a string') or double quotes
("a string"); the behavior is the same, but they cannot be mixed ('not a valid
string").

In [20]: 'This is string #1 with numbers and symbols. 1 + 2 = 3.'

Out[20]: 'This is string #1 with numbers and symbols. 1 + 2 = 3.'

In [21]: "This is string #2. Double quotes work _just_ as well."

Out[21]: "This is string #2. Double quotes work _just_ as well."

To use quotes within a string they must be prefixed by a \. For example,

In [22]: "\"Here\'s a backlash \\\", they said."

Out[22]: '"Here\'s a backlash \\", they said.'

The output may surprise you; the outer quotes are displayed as single quotes and the prefix
\ is not displayed for the inner doubles quotes. The print() function parses a string and
produces a more readable output.

In [23]: print("\"Here\'s a backlash \\\", they said.")

"Here's a backlash \", they said.

Sometimes it is desirable to print over multiple lines. This is accomplished by \n within a
string:
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In [24]: print('Line 1.\nLine 2.')

Line 1.
Line 2.

Alternatively, we could use triple quotes (either single or double), which support multiline
strings.

In [25]: """Line 1

Line 2

Line 3"""

Out[25]: 'Line 1\nLine 2\nLine 3'

There are a few other characters whose meaning is changed with a \ prefix. We will not
be using them, but you can avoid this behavior by using a raw string, which is prefixed with
an r. It is particularly useful for referring to directories like

In [26]: print(r'C:\some\directory\name')

C:\some\directory\name

What happens without the r?

2.4.2 String Operations and Indexing

Two strings can be combined with the + operator and a single string can be duplicated by
multiplying with an integer.

In [27]: lower_letters = 'abc'

upper_letters = 'ABC'

lower_letters + upper_letters

Out[27]: 'abcABC'

In [28]: lower_letters*3 + 2*upper_letters

Out[28]: 'abcabcabcABCABC'

Individual characters in a string can be accessed with square brackets []. The first character
has index 0, the second character has index 1, and so on.

In [29]: lower_letters[0] # First character.

Out[29]: 'a'

In [30]: lower_letters[2] # Third character.

Out[30]: 'c'

Negative indexes parse a string in reverse order, index −1 being the last character.

In [31]: lower_letters[-1] # Last character.

Out[31]: 'c'

In [32]: lower_letters[-2] # Second to last character.

Out[32]: 'b'
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Substrings can be obtained by slicing from two indexes up to, but not including, the second
index.

In [33]: phrase = 'Hello, world!'

phrase[0:5] # First character to, but not including, 6th character.

Out[33]: 'Hello'

In [34]: phrase[1:-1] # Second character to, but not including, last character.

Out[34]: 'ello, world'

Omitting the first index slices from the beginning while omitting the second index slices
until the end. Thus, phrase[:i] + phrase[i:] returns the entire phrase for any i
and is equivalent to omitting both indexes, phrase[:]. Indexes can be out of bounds when
slicing, but not when referring to a single element.

In [35]: phrase[-100:100]

Out[35]: 'Hello, world!'

In [36]: phrase[100]

---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-36-c9fd83362889> in <module>
----> 1 phrase[100]

IndexError: string index out of range

2.5 Functions

Wewill often repeat the same calculations, just with different parameters. Rather than typing
out a small variant of the same code numerous times, we can define a function in Python
to do the work for us. Functions have the added benefits of making code more readable
(with proper name choices) and easier to troubleshoot. A good function name describes
the essence of the operations it is performing. We have already encountered two built-in
functions: type() and print(). We will learn how to define and use our own functions
in this section.

2.5.1 Defining Custom Functions

A Python function can be similar to a mathematical function, say f (x) = x2. It takes an
argument x and returns its square, so f (3) = 9. Such a function is defined as follows.

In [37]: def f(x):

square = x**2

return square

f(3) # Try our function.

Out[37]: 9
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The term def is a Python keyword indicating a function is being defined, here named f
with one argument x.2 A colon indicates the function definition is complete. The rest of the
code makes up the body of the function, and must be indented. The square of the argument
is stored in a variable square, then square is returned using the return keyword.
Reverting to normal indentation begins code that is no longer part of the function.

In general after a return statement, Python exits the function and does not execute
the remainder of the code; this can be useful in complicated functions with conditional
statements as we will see in Sect. 2.6.

For convenience, we can also define a single-line function called a lambda function,

In [38]: h = lambda x: x**2

h(3)

Out[38]: 9

It is functionally equivalent to f() but simpler. Arguments are placed between the key-
word lambda and the colon (separated by commas in case of multiple arguments), and the
return value comes after the colon. A lambda function does not have a return statement.

Function names follow the same rules as variable names: they can only contain letters,
digits, and underscores, but cannot start with a digit. Functions can have multiple arguments
by separating arguments with commas, and can also have zero arguments.

In [39]: def complete_right_triangle(a, b):

return (a**2 + b**2)**.5

print('This line is never executed.')

complete_right_triangle(3, 4)

Out[39]: 5.0

In [40]: def greet():

print("Hello, there. Welcome to the world of Python!")

greet()

Hello, there. Welcome to the world of Python!

Note that greet() does not have an explicit return value. By default, keyword None is
returned, representing the absence of a value; it can only be displayed using print().

In [41]: value = greet()

value

Hello, there. Welcome to the world of Python!

In [42]: type(value)

Out[42]: NoneType

Functions can have a variable number of arguments; the print() function is one such
example.

2 Since functions are always used with a pair of parenthesis, to distinguish functions we will refer to
them like f(), rather than just by name f.
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In [43]: print('Hello,', 'there.') # 2 arguments.

print() # No arguments (empty line).

print(1, 2, 3, 'a', 'b', 'c') # 6 arguments.

hello world

1 2 3 a b c

This can be done using variable packing and unpacking with syntax like *args or
**kwargs. Though we will not be heavily relying on this syntax, a basic example is
used in Sect. 3.2.1.

2.5.2 Variable Scope

Variables that are defined inside a function can only be used within that function; they are
called local variables. Variables defined outside functions can be used anywhere including
within functions; they are called global variables. Consider free-fall to illustrate this distinc-
tion, with vertical position y(t) = − 1

2gt
2 + v0t + y0, where g ≈ 9.8m/s2 and v0, y0 are

the initial speed and height.

In [44]: g = 9.8 # Free-fall acceleration. Global variable.

def get_freefall_ypos(t, y0, v0):

y = -(g/2)*f(t) + v0*t + y0 # Local variable. Recall f(t) = t**2.

return y

print(get_freefall_ypos(2, 1, 0))

print(y)

-18.6

---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-44-b344a94dcf5f> in <module>

6
7 print(get_freefall_ypos(2, 1, 0))

----> 8 print(y)

NameError: name 'y' is not defined

g is a global variable while y is a local variable within get_freefall_ypos(). The
function works as intended and has no issue using g, but an error in line 8 results from
using y outside its scope. Also note that we used a previously defined function f() within
get_freefall_ypos(). Any variables used in f() have their own local scope within
f(), and cannot be used anywhere else.
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2.5.3 Default ArgumentValues and Keyword Arguments

Often times functions contain many arguments, but only a few are commonly changed. For
example, if the most common initial condition is y0 = 1m and v0 = 0m/s, then we could
specify these as default values by defining

In [45]: def get_freefall_ypos(t, y0=1, v0=0): # Default argument values.

y = -(g/2)*f(t) + v0*t + y0

return y

The new get_freefall_ypos() can be called with only one mandatory argument. If
desired, one or more of the default arguments can be specified.

In [46]: get_freefall_ypos(0)

Out[46]: 1.0

In [47]: get_freefall_ypos(2, 0) # Override one default argument, y0.

Out[47]: -19.6

Rather than keeping track of the positions of each argument when calling a function, we
can reference keyword arguments by their names, e.g.

In [48]: get_freefall_ypos(t=2, y0=0, v0=0) # Keyword arguments.

Out[48]: -19.6

Keyword arguments must follow positional arguments, but otherwise can be specified in any
order. Additionally, no argument can be assigned more than one value.

In [49]: #get_freefall_ypos(t=2, 0, 0) # Invalid; positional arg follows keyword arg.

#get_freefall_ypos(2, 1, y0=1) # Invalid; y0 assigned two values.

get_freefall_ypos(y0=1, t=2, v0=0) # Valid.

get_freefall_ypos(2, v0=0, y0=1) # Valid.

Out[49]: -18.6

2.6 Conditional Statements

So far all the code we have written has executed sequentially, line by line. Often times this is
not sufficient to write a useful program. For instance, if we needed to compute the absolute
value of x , we know mathematically

|x | =
{

x if x ≥ 0
−x otherwise

.

That is, the returned value depends on the value of x itself. In Python, such a function relies
on the if conditional statement and can be coded as follows.
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In [50]: def abs_val(x):

if x >= 0:

return x

else:

return -x

If x < 0, then the line return x is skipped over entirely.

2.6.1 Comparison and Logical Operators

Conditions that evaluate to true or false, represented inPython as keywordsTrue andFalse
(of type bool), are known as Boolean expressions. These conditions can be composed of
six comparison operators, illustrated below.

In [51]: 1 == 2 # 1 is equal to 2? False.

1 != 2 # 1 is not equal to 2? True.

1 > 2 # 1 is greater than 2? False.

1 < 2 # 1 is less than 2? True.

1 >= 2 # 1 is greater than or equal to 2? False.

1 <= 2 # 1 is less than or equal to 2? True.

Out[51]: True

The operators >, <, >=, and <= only work for values of type int or float, while == and
!= apply to any type. Note the equality operator == has an extra equal sign, distinguishing
it from the assignment operator =. This can be confusing, and is important to remember to
avoid errors.

Boolean expressions can be chained together to formmore complex conditions using log-
ical operators and and or. A third logical operator not returns the opposite of a Boolean
expression. The following example shows these, using parenthesis to group Boolean expres-
sions.

In [52]: (1.2 > 0) and (1.2 < 1) # False.

(1.2 > 0) or (1.2 < 1) # True.

not (1.2 > 0) # False.

Out[52]: False

From highest to lowest priority, we have: (1) arithmetic operators (2) comparison operators
(3) not (4) and (5) or. In practice, it is a good idea to use parenthesis to avoid errors.

2.6.2 if Statements

To execute code conditioned on a Boolean expression, use an if statement. For example,
the following function returns True if x is positive.

In [53]: def is_positive(x):

if x > 0:

return True
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The if keyword begins an if statement. It is followed by a Boolean condition and requires
an ending colon. The body of the if statement, i.e. the code to execute if the condition
is True, must be indented just like in a function. Python uses white space to distinguish
blocks of code; each block indent is recommended to be 4 spaces wide for readability.

The is_positive() function has a limitation if x ≤ 0, as None is returned. It
would be better to return a Boolean value if we wanted to, for example, use the result of
is_positive() in a Boolean expression. To cover all the cases when x is not positive,
we can use an else part:

In [54]: def is_positive(x):

if x > 0:

return True

else: # x is not positive, i.e. x <= 0.

return False

The body of is_positive() could actually be coded in a single line with no if
statement: return x > 0. However, this would only apply to functions with two possible
conditions. We will often encounter functions that cannot partitioned this way, for instance
the sign function

sign(x) =
⎧⎨
⎩

1 if x > 0
0 if x = 0

−1 if x < 0
.

To code sign(x), we can use elif parts, short for else if.

In [55]: def sign(x):

if x > 0:

return 1

elif x == 0:

return 0

elif x < 0:

return -1

Each condition is checked in order until a True condition is met. Only the True condition’s
code is executed; the remaining conditions are not checked. Thus, the order of elif parts
matters if the conditions are not mutually exclusive. Any number of elif parts can be used,
and the else part is optional. If no else part is present, it is possible that nothing in the
if statement is executed.

if statements can be nested.

In [56]: def is_positive_even(x):

if is_positive(x):

if (x % 2) == 0: # x is even.

return True

else:

return False

else:

return False

Many nested if statements should be avoided for readability if there is a simpler alternative.
The above can be simplified as follows.
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In [57]: def is_positive_even(x):

return (x % 2 == 0) and (x > 0)

2.7 Loops

This section covers while and for loops to repeatedly execute code, and how to break
out of them early if needed.

2.7.1 while Loops

Unlike if statements that execute code a single time if a condition is True, while loops
execute code over and over while a condition is True. Their syntax is similar, shown in the
following function that computes factorials for integer n:

n! =
{

1 if n = 0
n × (n − 1) × · · · × 1 if n > 0

.

In [58]: def factorial(n):

if n == 0:

return 1

prod = 1

while n > 0:

prod = prod * n

n = n - 1

return prod

The familiar if statement treats the n = 0 case separately. The while loop executes as
long as n > 0 and eventually terminates because at each iteration, n is decremented by one.
Be careful, as it is possible to enter an infinite loop if the condition checked will never be
false.

2.7.2 for Loops

It is often useful to loop through a known sequence. The range() function is particularly
useful in for loops to iterate over sequences of integers. A simple for loop iterating over
i = 0, 1, 2 is as follows.

pagebreak

In [59]: for i in range(0, 3):

print(i)

Out[59]: 0
1
2
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The syntax reads similar to its English meaning. for and in are Python keywords, and i
is a variable representing an element in the sequence range(0, 3). In the first iteration
of the for loop, i is assigned the first element of the sequence. The next iteration assigns
i to be the next element of the sequence and so on, until all elements of the sequence are
looped through. The above example simply prints each element.

The range() function arguments behave like string slicing.range(a, b) represents
the sequence of integers starting from a up to, but not including, b. Omitting an argument,
e.g. range(n), assumes the sequence begins from zero up to, but not including, n.

Strings can be viewed as a sequence of letters, and thus can also be used in a for loop.

In [60]: for letter in 'xyz':

print(letter)

Out[60]: x
y
z

We used a relevant variable name letter, although any variable name would do. We will
learn about other sequences that can be looped through, e.g. lists, in Sects. 2.7.3 and 2.9.

2.7.3 break and continue Statements

Loops can be terminated early using a break statement. The next iteration of a loop can
be forced without executing the remainder of the code using a continue statement. The
following code checks for commas in a phrase, and exits the loop after a comma is found.

In [61]: for char in 'Hello, world!':

if char == ',':

print('No commas allowed!')

break # Break out of loop.

else:

continue # Immediately continue next iteration of loop.

print('This line is never executed.')

No commas allowed!

A break statement breaks out of the current loop. This is an important distinction with
nested loops:

In [62]: for vowel in 'aeiou':

for char in 'Hello, world!':

if char == vowel:

break # Break out of (current) loop.

print(vowel) # This line is always executed.

a
e
i
o
u

If wewanted to break out of all loops, we should insert the loops into a function andreturn
out of the function.
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2.8 Lists

We’ve encountered two types of sequences so far: the range() function for numeric
sequences and strings. Lists are common sequences used to group together values.

2.8.1 Syntax

Lists are denoted by square brackets, with elements separated by commas.

In [63]: nums = [1, 2, 3] # nums is a list of numbers.

letts = ['a', 'b', 'c'] # letts is a list of letters.

nums_and_letts = [1, 'a', 2, 'b']

nums_and_letts

Out[63]: [1, 'a', 2, 'b']

List elements can be any data type, including nested lists. The len() function returns the
number of elements. A list can contain zero elements.

In [64]: empty_list = []

diverse_list = [[1, 2, 3], 4, '5', 'xyz']

len(diverse_list)

Out[64]: 4

2.8.2 List Operations and Indexing

Lists operations are similar to strings; they can be combinedwith + and duplicated by integer
multiplication.

In [65]: nums + letts

Out[65]: [1, 2, 3, 'a', 'b', 'c']

In [66]: diverse_list*2

Out[66]: [[1, 2, 3], 4, '5', 'xyz', [1, 2, 3], 4, '5', 'xyz']

Indexing and slicing return sublists, with syntax just like in strings.

In [67]: diverse_list[0][-1] # Last element of diverse_list's first element.

Out[67]: 3

In [68]: diverse_list[1:-1] # Second element to, but not including, last element.

Out[68]: [4, '5']

In [69]: diverse_list[2:] # Third element to the end.

Out[69]: ['5', 'xyz']

Elements of lists, and even slices, can be updated using the assignment operator.

In [70]: nums[-1] = 4 # Reassign last element.

nums
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Out[70]: [1, 2, 4]

In [71]: nums[1:3] = [3, 9] # Reassign second and third element.

nums

Out[71]: [1, 3, 9]

Lists are mutable data types, meaning their contents can be changed. In contrast, strings are
immutable data types and do not support reassignment of elements.

In [72]: 'abc'[0] = 'A' # Try reassigning first element of a string.

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-72-94a5227817b6> in <module>
----> 1 'abc'[0] = 'A' # Try reassigning first element of a string.

TypeError: 'str' object does not support item assignment

To check if a particular value is in a list, we can use the in operator.

In [73]: 9 in nums

Out[73]: True

In [74]: 3 not in nums

Out[74]: False

2.8.3 List Methods

Amethod is like a function, only it belongs to a specific object and is called using dot syntax.
List methods belong to objects with data type list. For example, the append() method
adds a new element to the end of a list, and can be used as follows.

In [75]: nums = [1, 2, 3]

nums.append(4) # Append 4 to the end of the list nums.

nums

Out[75]: [1, 2, 3, 4]

In conjunction with a for loop, a list of integers can be easily generated.

In [76]: ints = []

for i in range(100):

ints.append(i)

The append() method is useful in many calculations to store results. For example, using
our function to compute free-fall positions, we can store a trajectory y(t) for 0 ≤ t < 1 in
a list.

In [77]: y = []

t = 0

while t < 1:

y.append(get_freefall_ypos(t, y0=0, v0=0))

t = t + .01
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To insert an element at a specific position, use the insert() method.

In [78]: i = 2

x = 5

nums.insert(i, x) # Insert x before the i-th index of nums.

nums

Out[78]: [1, 2, 5, 3, 4]

In contrast to appending, pop() removes an element of the list and returns its value. An
optional argument specifies the index of the element to remove and return; by default, it is
the last element.

In [79]: nums.pop() # Remove and return last element of nums.

Out[79]: 4

In [80]: nums

Out[80]: [1, 2, 5, 3]

To remove a particular value (rather than remove by index), the remove()method should
be used. Only the first instance of the argument value is removed. If there is no such value,
an error occurs.

In [81]: nums.remove(2) # Remove the first element with value 2.

nums

Out[81]: [1, 5, 3]

To return the index of the value instead, use the index() method.
Lists can be sorted in either ascending or descending order with the sort() method.

In [82]: nums.sort() # Sort nums from smallest to largest.

nums

Out[82]: [1, 3, 5]

In [83]: nums.sort(reverse=True) # Sort nums from largest to smallest.

nums

Out[83]: [5, 3, 1]

The methods mentioned with the exception of pop() do not have return values. Therefore
code like nums = nums.sort() may not perform what you expect it to. The list is
sorted, but nothing is returned; thus after reassignment, nums would have the value None.

2.9 Tuples, Sets, and Dictionaries

So far we have encountered the following built-in data types: integers, floating-point num-
bers, complex numbers, strings, Booleans, range, and lists. There are three more we will be
using, all introduced in this section.
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2.9.1 Tuples

Tuples are similar to lists. They are denoted by parenthesis, with elements separated by
commas.

In [84]: tup = (1, 'a', [2, 'b'], (3, 'c'))

len(tup)

Out[84]: 4

Tuples of length one must have a comma like t = (1,) to differentiate from an arithmetic
expression. Indexing works just like in lists.

Unlike lists, tuples are immutable. Their elements cannot be reassigned, although they
can contain mutable elements whose subelements can be reassigned, for instance

In [85]: tup[2][0] = 222

tup

Out[85]: (1, 'a', [222, 'b'], (3, 'c'))

Tuples can be used for multiple assignment. The following assigns a = 3, b = 4, and
c = 5 as if each assignment was made on a separate line.

In [86]: (a, b, c) = (3, 4, 5) # Multiple assignment.

a**2 + b**2 == c**2

Out[86]: True

This is technically known as sequence packing and unpacking, and requires an equal number
of elements on both sides. When defining tuples, the parenthesis are optional (except for
empty tuples), so sometimes you will see code like the following.

In [87]: a, b = b, a # Swap values of a and b.

2.9.2 Sets

The sequences encountered so far have all been ordered. Python sets are unorderedmuch like
mathematical sets, e.g. a set representing the outcomes of a coin toss S = {H,T} = {T,H}.
Because sets are unordered, their elements cannot be indexed. However, a for loop can
iterate through all its elements. Sets are denoted with curly braces.

In [88]: {'H', 'T'} == {'T', 'H'} # Are these sets equal?

Out[88]: True

In [89]: ['H', 'T'] == ['T', 'H'] # Are these lists equal?

Out[89]: False

Sets have no duplicate elements, and support set operations like union and intersection.
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In [90]: s1 = {8, 1, 3, 3, 5, 3}

s1

Out[90]: {1, 3, 5, 8}

In [91]: s2 = {2, 3, 4, 5}

s1 & s2 # Set intersection.

Out[91]: {3, 5}

In [92]: s1 | s2 # Set union.

Out[92]: {1, 2, 3, 4, 5, 8}

An easy way to remove duplicates from a sequence is to convert to a set using the set()
function.

In [93]: nums = [1, 1, 2, 3, 4, 4]

unique_nums = set(nums) # Convert nums to a set.

unique_nums

Out[93]: {1, 2, 3, 4}

Similarly, list() and tuple() convert a sequence to a list and tuple, respectively. These
functions with no argument return empty sequences. In particular, set() is the only way
to create an empty set; a pair of curly braces returns an empty dictionary.

2.9.3 Dictionaries

Python dictionaries store key and value pairs, similar to word dictionaries. For example, a
Python dictionary mimicking a simple word dictionary is as follows.

In [94]: word_dict = {

'programming': 'The action or process of writing computer programs.',

'Python': 'A high-level general-purpose programming language.'

}

word_dict['Python'] # Return value associated with the key 'Python'.

Out[94]: 'A high-level general-purpose programming language.'

This dictionary’s keys are words, and the associated value of each key is a definition. To
use the dictionary, we can reference by keys to return the associated values. This dictio-
nary definition also introduced code that spans multiple lines but acts as a single line; we
saw similar syntax in multiline strings (In [25]). Python gracefully handles so called
line continuations inside parentheses (), brackets [], and braces {}; we added optional
indentation to make the line continuations clear.3

In general the syntax of a Python dictionary arekey: valuepairs separated by commas
inside curly braces. The keysmust be immutable and should be unique,while values are flexi-
ble. Elements can be added after a dictionaryd is declaredwith syntaxd[key] = value.

3 For expressions, conditions, or many argument functions that would result in a long line, an outer
pair of parenthesis with indentation can be used for line continuation.
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As another example, suppose we perform a simulationwhere we flip two coins and record
the outcome many times. The sample space is the set {HH,HT,TH,TT}. A dictionary is a
natural data type to record the frequency of each outcome.

In [95]: results = {'HH': 24, 'HT': 19, 'TH': 26, 'TT': 31}

A for loop can iterate over key and value pairs using a dictionary’s items() method.

In [96]: for key, val in results.items():

print(key, ':', val)

Out[96]: HH : 24
HT : 19
TH : 26
TT : 31

Keys and values are obtained individually from the keys() and values() methods,
which can be converted into other sequences with the list(), tuple(), and set()
functions.

2.10 Modules and Packages

We will often use the same code, e.g. common functions, in programs we write. Rather than
copying and pasting into every program, we can import a module. Think of a module as a
single program that contains several definitions within. As an example, we will frequently
use themathmodule, which is in the standard library ofmodules that comeswith Python. To
access its functions and mathematical constants like π = 3.14159... and e = 2.71828..., we
must first import the module and then use dot syntax. For example, the following computes
cos(π).

In [97]: import math # Import math module.

math.cos(math.pi) # Compute cos(π).

Out[97]: -1

(We typeset math in the comments using LaTeX rather than something like cos(pi) =
-1. Only the latter is possible when writing Python code.) The math module contains
definitions for cos() and pi. Note that math.pi is not a function, hence no parenthesis,
while math.cos() is.

Wewill use therandommodule, also in the standard library, for all things randomnumber
generation related. The following code generates a list of ten random integers between 1
and 5.

In [98]: import random

random_ints = []

for i in range(10):

random_ints.append(random.randint(1, 5))

We will also frequently use modules (and packages, see below and Chap. 3) not in the
standard library. These require additional installation; see Sect. 3.2.2 for an example.
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Modules generally group together a similar set of definitions. As they becomemore com-
plex, it can be convenient to structure a collection of modules into a package. Submodules
of the package are accessed using dot syntax. We will frequently use the pyplot module
for plotting, which is in the matplotlib package. To import it (assuming it is installed),
type

In [99]: import matplotlib.pyplot

To avoid name conflicts with variables, functions, or other modules, we can import a module
as a particular name. This is also convenient for nested modules or long module names. For
example, it is conventional to import pyplot using

In [100]: import matplotlib.pyplot as plt

Now rather than typing matplotlib.pyplot.function() every time we want to
use function(), we can type plt.function(). A basic plot is created as follows.

In [101]: %matplotlib inline

plt.plot(random_ints)

plt.xlabel('trial')

plt.ylabel('random integer')

The first line is necessary in Jupyter Notebook to output the figure directly after the cell. If
you are running your program as a script, you may need the line plt.show() at the end
to display your figure. We will learn more about plotting and visualization in Sect. 3.2.1.

2.11 Error Handling andTroubleshooting

Errors that prevent a program from executing are common among beginner and experienced
programmers alike and are often referred to as bugs. This section will discuss a few common
errors, how to interpret error messages and use them to fix code, and how to write code that
can handle errors without preventing the program from crashing over minor bugs.
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2.11.1 Syntax Errors

Syntax errors occur when code is not understandable to the computer, and thus unable to
be executed. They are common, but generally straightforward to troubleshoot due to the
resulting error message. The process of debugging, namely tracking down and fixing errors,
is important and not to be afraid of, and every coder from the novice to the expert makes
mistakes.

For example, mathematically the expression 5x + 2 is valid, but in Python

In [102]: x = 5

5x + 2

File "<ipython-input-102-53ff5f61ab1a>", line 2
5x + 2
^

SyntaxError: invalid syntax

results in a syntax error. The error message tells us the line and character the syntax error is
detected. The expression 5x is invalid, and can be fixed by adding an explicit multiplication
operator 5*x. A more subtle error is as follows.

In [103]: if x > 5

print(x)

File "<ipython-input-103-b44ee23f11de>", line 1
if x > 5

^
SyntaxError: invalid syntax

Every if statement needs a colon to terminate the condition in question; no colon is found,
so this code is unable to execute.

If there are multiple syntax errors, the first detected one will be located in the error
message.

In [104]: if 5x > 5 # Errors: 5x is invalid, missing colon.

print(5*x larger than 5) # Error: Space separated expressions.

File "<ipython-input-104-68cae071cbe3>", line 1
if 5x > 5 # Errors: 5x is invalid, missing colon.

^
SyntaxError: invalid syntax

2.11.2 Exceptions

Errors not related to syntax are known as exceptions. They can be more difficult to trou-
bleshoot because the code looks correct at a glance. There are many kinds of exceptions, all
with a different error message. For example,
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In [105]: x = 5

1/(x-5)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
<ipython-input-105-7dff629e6398> in <module>

1 x = 5
----> 2 1/(x-5)

ZeroDivisionError: division by zero

indicates there is a division by zero error detected on line 2. More complicated errors have
longer tracebacks that propagate the error, making it easier to troubleshoot. As an example,
recall our abs_val() function which computes absolute values. Suppose we had a list of
values and tried the following to compute all their absolute values:

In [106]: abs_val([-1, 0, 1])

---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input--106-68ac0f640e22> in <module>
----> 1 abs_val([-1, 0, 1])

<ipython-input--50-ecc5f98eaf28> in abs_val(x)
1 def abs_val(x):

----> 2 if x >= 0:
3 return x
4 else:
5 return -x

TypeError: '>=' not supported between instances of 'list' and 'int'

The most recent call results in the TypeError because it does not make sense to use the
comparison operator>= between a list and an integer. The error is traced back to the previous
function call erroneously using a list as an argument to abs_val().

Two other common exceptions are IndexError, from accessing an index in a sequence
that does not exist (e.g. In [36]), and NameError, from calling a variable that does not
exist (e.g. In [44]). As code gets more complicated, the number of errors will increase
and tracebacks become longer. For this reason, it is a good idea to test small code segments
as you program.

2.11.3 Handling Exceptions

Suppose we were interested in converting strings like '123' to integers; this can be
done using the int() function. However, if the string is not integer-like, e.g. 'abc',
a ValueError occurs. To handle this exception smoothly, we can use a try and except
statement, whose syntax is similar to if (and elif) statements.
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In [107]: string = 'not an integer'

try:

x = int(string)

except ValueError: # In case string is not integer-like.

x = None

except TypeError: # In case string is not actually a string.

x = None

print(x)

None

First, the code tries to assign x to int(string). If successful, the except statements
are ignored. If there is a ValueError or TypeError, x is assigned None rather than
crashing the program.

try and except statements are especially useful when repeating a similar calculation
numerous times, e.g. as a function of some parameter(s). Perhaps certain (unknown) values
of the parameter have convergence issues or division by very small numbers leading to
errors. Rather than restarting the simulation with an additional constraint on the parameters,
we could handle exceptions smoothly and store the problematic parameters in a list for later
inspection.

2.11.4 Errors with No Error Message

Sometimes code executes fine, but something about the results seems off. The reason can
vary from a forgotten minus sign, a serious logic error, or even no errors at all! These are
the hardest errors to troubleshoot, especially when you are not sure what to expect in your
results. How can we be sure our program is error free, and the result is valid? Unfortunately
we can make no guarantees, but there are tools and strategies to make us confident in our
code.

We again emphasize troubleshooting in small chunks that are simple enough to be easily
tested, for instance functions written with a purpose in mind. Functions have the added
benefit that once extensively tested are unlikely to be the source of error in the program. For
example, recall our function that computes absolute values defined in In [50]. A simple
test verifying it works for negative and positive numbers and zero is as follows.

In [108]: for x in [-1, 0, 1, -math.pi]:

print(abs(x))

1
0
1
3.141592653589793

If our program only uses it to calculate absolute values of real numbers, then we have shown
it is robust. It can still fail for other data types; see Exercise 2.14 for a generalization.

Even if all the code segments work as intended, they may interact unexpectedly. Trou-
bleshooting an entire program is more difficult, but can be managed by inserting probes
in the form of print() statements at key locations. These enable snapshots of salient
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variable values, when certain conditionals are executed, or when a function is called. Even
better, many IDEs (e.g. Spyder, see Sect. 1.2) have integrated debuggers that allow the user
to set breakpoints. The user can then step through the program, stopping at each breakpoint
to inspect variables and the flow of the program.

2.12 A Full Program

This section will combine elements of the tutorial into a single, self-contained program that
solves the following question:

A ball is thrown from height y0 = 1m at speed v0 = 3m/s. What angle should it be thrown
to maximize the horizontal distance until it hits the ground (y = 0m), in the absence of air
resistance?

While this question can be solved analytically, it cannot in the more realistic scenario with
air resistance. Meanwhile, the programmatic approach is easily modified as we will see in
Sect. 5.4.

2.12.1 Programmatic Solution

We can construct a crude algorithm relying only on the relations between position, velocity,
and acceleration. Consider one dimension for now: over a time period �t , the average
velocity and acceleration are v̄ = �y/�t and ā = �v/�t . Using �y = y(t + �t) − y(t),
the first relation can be rearranged to

y(t + �t) = y(t) + v̄�t (2.1)

which says at some time �t later, the position will be incremented by v̄�t . However given
initial conditions y0 and v0, we only know the velocity at time t and not the average velocity
over the time interval [t, t + �t]. We can make a crude assumption that for small time
intervals, the average velocity is approximately the velocity at the start of the interval v(t).
Then we have the update rule

y(t + �t) ≈ y(t) + v(t)�t . (2.2)

The same argument updates velocities as

v(t + �t) ≈ v(t) + a(t)�t . (2.3)

This algorithm is known as Euler’s method and is only exact when the underlying system
behaves linearly. More accurate methods will be discussed in Sect. 5.5.3.
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As an example to illustrate these rules, we will revisit our get_freefall_ypos()
function in In [45] and implement it using Euler’s method.

In [109]: def euler_freefall_ypos(tf, dt=.01, y0=0, v0=0):

t, y, v = 0, y0, v0

while t < tf:

t = t + dt

y = y + v*dt # Eq.(2.2)
v = v + (-g)*dt # Eq.(2.3)

return y

euler_freefall_ypos(2, dt=.01)

Out[109]: -19.502000000000027

Note the deviation from the (quadratic) analytic solution of−19.6. The error can be reduced
by lowering the timestep at the cost of longer simulation time.

In [110]: euler_freefall_ypos(2, dt=.001)

Out[110]: -19.60980000000014

We are now ready to implement a programmatic solution. In Program 2.1, we use Euler’s
method to compute two dimensional projectile motion trajectories and record the horizontal
range as a function of throw angle. Program 2.1 is divided into five labeled sections and
ends by printing the range-maximizing angle.

Program 2.1 A full program to compute range-maximizing throw angles.

1 #%% 1) Begin a program with import statements.

import math

3
#%% 2) Define functions.

5 def projectile_range(x0, y0, v0, theta, dt=.01):

"""Compute range of projectile launched from (x0, y0) at speed v0 and

7 angle theta relative to the horizontal (in radians)."""

t, x, y = 0, x0, y0

9 vx, vy = v0*math.cos(theta), v0*math.sin(theta)

while y >= 0:

11 # Update using Euler's method. (There is no horizontal acceleration.)

t = t + dt

13 x = x + dt*vx

y = y + dt*vy

15 vy = vy - dt*g

return x - x0

17
def deg_to_rad(angle):

19 """Convert an angle from degrees to radians."""

return angle * (math.pi/180)

21
#%% 3) Define and initialize parameters.

23 g = 9.8 # Free-fall acceleration.

x0, y0, v0 = 0, 1, 3 # Initial positions (m) and speed (m/s).

25 dtheta = .1 # Angle resolution (deg).

angles, ranges = [], [] # Lists to store angles and associated ranges.

27 for i in range(int(90/dtheta)):

angles.append(i*dtheta) # Append 0, dtheta, 2*dtheta, ..., up to 90 deg.

29
#%% 4) Run simulations.

31 for angle in angles:

theta = deg_to_rad(angle)

33 r = projectile_range(x0, y0, v0, theta)

ranges.append(r)
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35
#%% 5) Simulation analysis.

37 max_index = ranges.index(max(ranges))

max_angle = angles[max_index]

39 print(max_angle) # 29.0

2.12.2 Analytic Solution

The kinematic equations are

x(t) = v0x t + x0

y(t) = −1

2
gt2 + v0yt + y0

where the components of velocity are related to the launch angle θ by v0x = v0 cos θ, v0y =
v0 sin θ. The projectile reaches the ground at time4

t∗ = 1

g

(
v0y +

√
v20y + 2gy0

)
,

corresponding to a traversed range of

R(θ) = x(t∗) − x(0) = v0x

g

(
v0y +

√
v20y + 2gy0

)
.

Setting dR/dθ = 0 and performing some algebra results in the range-maximizing angle

θ∗ = cos−1

√
2 gy0 + v20

2 gy0 + 2v20
.

As we would expect, 0° ≤ θ∗ ≤ 90°. At finite speeds, the optimal angle is only 45° when
y0 = 0. For y0 > 0, θ∗ < 45° while for y0 < 0, θ∗ > 45°. With y0 = 1m and v0 = 3m/s,
θ∗ ≈ 29°.

With air resistance, the logic behind Eqs. (2.2) and (2.3) remains the same. In general,
the update rules take the form

y(t) ≈ y(t) + f (y, v, t)�t

v(t) ≈ v(t) + g(y, v, t)�t
(2.4)

where f (·) and g(·) can be more complicated functions. The analytic solutions, on the other
hand, become much more involved.

4 When y0 < −v20y/2g, the initial height is too low relative to the velocity that the height y = 0
cannot be reached, even with a vertical θ = 90° throw.
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2.13 Classes

Sometimes it is useful to explicitly bundle data and functions together. As you write more
complex programs and notice you have a group of functions that repeatedly use the same
arguments, e.g. the same set of initial conditions or parameters, then it can be useful to bundle
them together in a Python class. This paradigm is known as object oriented programming.
We illustrate with a basic example—a more involved one is deferred to Sect. 9.1.2.

Suppose we have a soccer ball and wish to track its position as we kick it forward. One
way to do this is to define initial conditions, compute the range of a kick given launch
parameters, update the conditions, and give another kick with the new conditions:

In [111]: x = 0

x = x + projectile_range(x, y0=0, v0=1, theta=.5)

x = x + projectile_range(x, y0=0, v0=2, theta=.5)

Supposing we want to throw the ball next, we must continue passing and updating the same
x parameter:

In [112]: height = 1

x = x + projectile_range(x2, y0=height, v0=1, theta=.4)

x

Out[112]: 0.9256492548033407

The object oriented approach defines a Ball object using Python keyword class:

In [113]: class Ball:

def __init__(self, x=0, height=1):

self.x, self.height = x, height

def kick(self, v0, theta, dt=.01):

self.x += projectile_range(self.x, 0, v0, theta, dt)

def throw(self, v0, theta, dt=.01):

self.x += projectile_range(self.x, self.height, v0, theta, dt)

The Ball class has three methods, which can be thought of as functions that belong to the
Ball class. The __init__() method is special—whenever a Ball object is created,
this method is called and it assigns the x and height attributes to the object itself. The
positional self argument can be accessed anywhere within the Ball class, meaning every
other method has access to the ball’s position and throw height. This is precisely how
functionality and data are bundled together.

We can create instances of the Ball object using syntax as if it were a function:

In [114]: ball = Ball()

ball.x, ball.height

Out[114]: (0, 1)

We see that its initial position and height have been properly initialized. Next, we can call the
kick() and throw() methods, which also have the self argument. This allows them
to access the position, no matter how many times its been kicked or thrown, and compute
the resultant position.
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In [115]: ball.kick(v0=1, theta=.5)

ball.kick(v0=2, theta=.5)

ball.throw(v0=1, theta=.4)

ball.x

Out[115]: 0.9256492548033407

After each kick and throw, the ball’s x position is updated and remembered for the next
kick or throw. As programs get more complex, this allows us to group functionality together
without passing the same parameters in multiple different places.

As a final note, the Ball class is not the first class we have encountered. Indeed Python
lists are themselves classes!

In [116]: x = []

print(type(x))

Out[116]: <class 'list'>

Their functionality was tied to methods like append(), which were called with the same
dot syntax. We will use many modules and packages that have a large chunk of functionality
implemented as classes. This allows for convenient usage, as we can access all relevant
functions with simple dot syntax.

2.14 Exercises

2.1. Ageneralized absolute value function.We implemented a basic version of f (x) = |x |
in Sect. 2.6 that acts on a scalar number x . Extend the function so that it can also operate
on a list of numbers as input and return a list of absolute values as output. Print the
elements and their index where an absolute value cannot be calculated, and remove
them from the final output. The following are expected behavior:

In [117]: abs_val(-2)

Out[117]: 2

In [118]: abs_val([-1, 'not_a_number', -3])

Out[118]: Warning: Dropping input index 1, cannot calculate abs of
'not_a_number' [1, 3]

2.2. Random Python practice.

(a) Generate a list of 100 random integers between 1 and 100. Calculate the mean,
median, and mode of that list.

(b) Store the number of times each integer appears in a dictionary.
(c) Assign each integer into one of ten groups, representing equal width bins [1, 10],

[11, 20], . . . , [91, 100]. Continue generating random integers until at least two
groups contain the same number of integers.
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2.3. Debugging practice. Let us take a closer look at Program 2.1. Although the program
runs and appears to give reasonable output, closer inspection shows that it does not
match analytic results exactly (within specified precision).

(a) Explain why you would expect the range-maximizing angle in Program 2.1 to be
accurate to one decimal place.

(b) With the same initial conditions as the text, y0 = 1m and v0 = 3m/s, use the ana-
lytic solution (Sect. 2.12.2) to calculate the exact range-maximizing angle, accurate
to one decimal place.

(c) The angles in the previous two parts are close, but do not match exactly. Modify
Program 2.1 to plot the range as a function of angle and describe what is unusual
about the plot. Investigate a single range calculation to determine what the issue
is. Does decreasing the timestep to dt = .001 help? Check graphically and in
comparison to the analytic solution.

(d) Implement a solution to improve the accuracy of the range calculation.

2.4. All about primes.

(a) Write a function to determine if n is a prime number. You can assume n is a positive
integer. Is 9,521,928,547 prime?

(b) What is the 104-th prime number?
(c) How many numbers less than 107 are prime?
(d) Plot the ratio nprime/n for 2 < n < 103, where nprime is the number of primes ≤ n.

Describe your results. What would you expect as n continues to increase?

2.5. Collatz sequences.Beginning with a positive integer a0, consider the Collatz sequence
generated by iteratively applying

ai+1 =
{
ai/2 if ai is even
3ai + 1 if ai is odd

, i = 0, 1, 2, . . . .

It is conjectured that all sequences eventually reach 1. For example, starting from
a0 = 10 yields the sequence [10, 5, 16, 8, 4, 2, 1] of length L = 7, i.e. it contains 7
elements until 1 is reached. In this problem, we will consider all sequences starting
from a0 = 2, 3, . . . , 106.

(a) Which a0 yields the longest sequence? What is its length?
(b) Plot L as a function of a0 and the distribution of L . Restrict the L(a0) plot to

a0 < 104.
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(c) Since every odd integer will become even after one iteration while half the even
integers remain even, the number of odd terms in a sequence nodd ≤ neven (aside
for a0 = 1). Plot the ratio r = nodd/neven for each a0 and the distribution of ratios,
restricting the r(a0) plot to 2 < a0 < 104. Show that r is bounded by log 2/ log 3
for a0 > 2.

2.6. Repeating decimals. Dividing two integers results in a rational number n/m, whose
decimal representation either repeats (e.g. 1/11 = 0.09) or terminates (e.g. 1/2 = 0.5).
Write a function that computes the cycle length of n/m, defining a terminating decimal
to have cycle length L = 0. Plot L(d) for fractions of the form 1/d, d = 2, 3, . . . , 103,
and the distribution of lengths. Comment on any patterns you observe.



3Interactive Computing andVisualization

As discussed earlier in Chap. 1, computational environments have evolved from central com-
puting in the early days to distributed computing, and from text-based terminal interfaces
to graphical and web-based development environments at present. The latter offers new and
more interesting possibilities. In this chapter, we discuss two such possibilities: interactive
computing and visualization. The advantage of interactive computing is multi-fold: a pro-
gram can be composed of simpler code blocks, each individually controlled with immediate
output displayed after execution; models can be tweaked and parameters changed freely to
see the results instantaneously to test what-if scenarios as if turning knobs in a virtual experi-
ment. Effective visualization has always been an important aspect in computer modeling, but
traditionally is treated as a separate process from computation. This, too, can be integrated
seamlessly in the web-based computing environments including in-situ data visualization
and real-time animation. In the following sections, we describe interactive elements such as
widgets, visualization and animation techniques, and useful libraries for our purpose.

3.1 Interactive Computing with PythonWidgets

We can use widgets for interactive computing in standard Python via matplotlib or in
Jupyter viaipywidgets. Typical widgets include sliders, buttons, andmenus. The user
manipulate the widgets which are associated with functions to perform computational tasks
based on the state of the widget.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
J.Wang andA.Wang, Introduction toComputation inPhysical Sciences, Synthesis Lectures
on Computation and Analytics,
https://doi.org/10.1007/978-3-031-17646-3_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-17646-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-17646-3_3


44 3 Interactive Computing and Visualization

3.1.1 Widgets in Jupyter Notebooks

We discuss ipywidgets first because it is easier to build a functional user interface with
minimum delay. Follow Program A.1.1 to manipulate the widgets discussed next.

To use ipywidgets, we import it first and rename it to wgt

In [1]: import ipywidgets as wgt

Next let us create a button object assigned to the variable b

In [2]: b = wgt.Button(description='a button')
b

We should see a gray button like the one shown in Fig. 3.1. The button object takes
only a description name. A button becomes functional when it is bound to a function to do
something useful,

In [3]: def hello(dummy):
print('hello world')

b.on_click(hello)

Here we define a function hello that just prints “hello world” when called. We bind it
to the button via the on_click() method by passing the name hello to it. Now if we click on
the button, we should see hello world printed below the button. The dummy argument
needs to be there because a button object is passed to hello which just ignores it.

To choose an item from a menu, we have the select widget,

In [4]: menu = wgt.Select(options=['a', 'b', 'c'], description='select menu')
menu

The Selectmenu gets its list of items from options, and its name from the descrip-
tion. The selected item can be obtained with the value attribute,

In [5]: menu.value

Out[5]: 'a'

All items in the select menu are visible at once as shown in Fig. 3.1. The dropdown menu is
functionally the same except it shows only the selected item

Fig.3.1 Sample Jupyter notebookwidgets. From left to right: a button, selectionmenu, radio buttons,
a check box, and a float slider
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In [6]: drop = wgt.Dropdown(options=['a', 'b', 'c'], description='dropdown')
drop

Again, the menu item can be read from the value attribute. Yet another alternative method
of menu selection is accomplished with the radio button,

In [7]: rb = wgt.RadioButtons(options=['a', 'b', 'c'], description='radio')
rb

The radio buttons are more compact compared to the select menu (see Fig. 3.1).
For binary choices, the checkbox widget can be used,

In [8]: chk = wgt.Checkbox(description='yes')
chk

Its value will return either true or false

In [9]: chk.value

Out[9]: False

The toggle button does the same thing,

In [10]: tb = wgt.ToggleButton(description='boolean')
tb

The button changes its shade between clicks.
For continuous values, the slider widget is useful,

In [11]: slider = wgt.FloatSlider(min=0, max=1, step=0.01, value=0.5)
slider

The input parameters to the FloatSlider are self explanatory. The initial value can
also be specified. Like menu widgets, its value is read from the value attribute

In [12]: slider.value

Out[12]: 0.5

An equivalent widget exists for integers,

In [13]: intslider = wgt.IntSlider(min=0, max=10, step=1, value=5)
intslider

3.1.2 Interactive Computing

Now we can combine some of the widgets to do something meaningful. Jupyter notebook
makes it easy through the interactive function which automatically builds appropriate
widgets. Here is an example for interactive plotting,
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In [14]: import matplotlib.pyplot as plt
import numpy as np
def plotf(k, func, refresh):

if (func == 'sin'):
f = np.sin(k*np.pi*x)

else:
f = np.cos(k*np.pi*x)

if refresh:
plt.plot(x, f)

x = np.linspace(-1,1,101)
wgt.interactive(plotf, k=(0,2,.1), func=['sin', 'cos'], refresh=(True))

In the above example, we define a function plotf to graph either sin(kπx) or cos(kπx)
depending on the parameter func. The plotf function is passed to interactive along
with the parameters. Based on the type of parameter, the interactive function will build
an appropriate widget to obtain its value, see Fig. 3.2. Here, the first parameter k is inferred
to be a real value because it is passed with k = (min,max, step), so a float slider is chosen.
The second parameter func is a list, so interactive draws a select menu of two items.
The third parameter refresh is a boolean, and a checkbox is used. All this is automatically
done for us.

Theinteractive function effectively binds theplotf function to thewidgets.When
any widget value is changed, the user-defined function is called. In this case, a sine or
cosine function is plotted based on the values of k and the function selection. The boolean
parameter refresh controls whether actual graphing is carried out. This can be useful
to avoid lagging in complex calculations because when the slider is being dragged to a
new value, every intermediate value in-between triggers fresh calculation and plotting. If
refresh is set to false, we can modify the values of k and other parameters without having
to redraw the curve every time.

We can also use a manual switch to interactive to achieve a similar goal. Insert
’manual’:True as the second argument to interactive after plotf in Pro-
gram A.1.1 as

Fig. 3.2 Interactive plotting
with widgets. Either sin(kπx)
or cos(kπx) is graphed
depending on the parameters k
and the type of function. See
text

k 1.00

func

refresh

sin



3.2 Interactive Visualization and Animation 47

In [15]: intslider

wgt.interactive(plotf, {'manual':True}, k=(0,2,.1), func=['sin', 'cos'], refresh=(True))

We will get another button labeled Run Interact underneath the refresh button. As
we change the slider value or the function selection, the figure is not drawn unless we click
on the run button, even if the refresh button is checked. The latter is redundant in this case,
and can be removed from plotf and from interactive.

3.1.3 PythonWidgets

Interactive widgets are also available in standard Python through matplotlib. Except
for menus, they are similar to the IPywidgets counterparts such as sliders and buttons.
Unlike IPywidgets, the matplotlib library does not have an interactive function which
automatically builds widgets within the context of parameters. Users must place the widgets
on the plot area. It takes time to arrange everything in the right place, but once you have
a template, the time can be minimized. But the advantage is that the interaction is more
responsive and less lagging, and that the user has more control.

Program A.1.2 does functionally the same job as Program A.1.1. To build radio buttons,
for instance, this code is used

In [16]: fs = ['sin', 'cos'] # radio buttons
rbox =fig.add_axes([.15, .02, .15, .15]) # list = [x, y, dx, dy]
func = RadioButtons(rbox, fs, 0) # active = sin (0)

Like before, the function choices are contained in the variable fs. The variable rbox
draws a box for the radio buttons at one corner (x, y) = (0.15, 0.02) extended to dx =
dy = 0.15 at the other corner. Here the coordinates refer to the plot area which has the
origin at (0, 0) and extends to (1, 1) in x and y directions. Actual buttons are drawn by
the next statement with RadioButtons. The layout is very similar to Fig. 8.10. In fact,
Program A.1.2 uses Program A.6.6 as a template. As usual, the buttons func is bound to a
function that is called when it is clicked (see Program A.1.2).

3.2 InteractiveVisualization and Animation

The power of visualization cannot be understated in scientific computing. Simulations and
data come alive when accompanied with animation because it visually engages the partici-
pant andhelpswith understanding the underlyingphysical processes, and even the algorithms
sometimes. Interactive visualization deepens the engagement and understanding. We briefly
introduce two methods of visualization that are used throughout, Matplotlib animation and
vpython.
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3.2.1 Matplotlib Animation

As described earlier (Sect. 2.10), Matplotlib is an easy-to-use yet powerful plotting package
in Python. It is equally capable of animation. The basic process is to either change the data
of a plot incrementally or generate all data sets at once to be shown sequentially. We use
FuncAnimation for the former and ArtistAnimation for the latter. The two are
equivalent, and our programs use both (see Sect. 9.1.1).

To be concrete, we will discuss FuncAnimation with an example (Program A.1.3).
Suppose we wish to show a harmonic wave in real time, u(x, t) = sin(x) sin(ωt). First we
need several libraries, particularly the Matplotlib animation module aliased to am,

In [17]: import matplotlib.pyplot as plt, numpy as np
import matplotlib.animation as am
%matplotlib notebook

The magic function %matplotlib notebook is necessary so animation works in
Jupyter notebook. It is not needed in a regular Python code. Next we define a function to
update the figure data,

In [18]: def updatefig(*args): # args[0] = frame = t
t = 0.1*args[0]
u = np.sin(x) * np.sin(w*t)
plot.set_data(x, u) # update data

This functionwill be input to and called byFuncAnimation as seen shortly.Upon entering
updatefig, the first argument args[0]will be a counter registering the number of calls
made to the function, so we use that as some scaled timer. The data u is calculated, and
finally it is set to the plot.

The plot is refreshed with FuncAnimation,

In [19]: w = 1.0
x = np.linspace(0, 2*np.pi, 101)
fig = plt.figure()
plot = plt.plot(x, 0*x)[0] # create plot object
ani = am.FuncAnimation(fig, updatefig, interval=5, blit=True) # animate
plt.ylim(-1.2,1.2);

After setting ω and the x grid, we create the figure and initiate the plot object assigned to the
variable plot.1 We pass the figure fig and most important, the updater updatefig to
FuncAnimation, which periodically refreshed the plot. We should see a pulsating sinu-
soidal wave. Theblit parameter uses hardware acceleration, and can be omitted if it causes
problems. Animation with ArtistAnimation can be done similarly. See ProgramA.6.2,
Program A.7.1 and others in Appendix A for more Matplotlib animations.

1 A Matplotlib object returns a tuple of sub-objects and we need only the first one, hence the [0]
index.
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3.2.2 VPython,3DVisualization

VPython is a graphics library that makes 3D animation easy.2 It is a popular tool in physics
and mathematics education communities that integrate computation into the curriculum.We
use it in the chapters ahead, but let us dive right in with an example Program A.1.4. We
discuss running VPython locally next but it can also be run in the cloud with GlowScript
(see Sect. 1.3).

We import vpython like any other library,

In [20]: import vpython as vp

If it generates an error message, it is likely because vpython is not part of standard
Python distributions like Anaconda as of yet, so we need to install it first. Assuming your
base installation is Anaconda, open the Anaconda prompt (terminal) and type
conda install -c vpython vpython
If you have a custom Python installation, install vpython with
pip install vpython

Next we create a scene with a couple of 3D objects, a sphere and a box,

In [21]: scene = vp.canvas(title=('right drag to change camera,' +
'double drag to zoom'))

ball = vp.sphere()
box = vp.box(pos=vp.vector(0,0,-1.1), length=10, height=5, width=.2,

color=vp.color.cyan)

Graphics output is rendered via a web page, so we should see a window appearing in your
default web browser. We used canvas explicitly to create the scene and add a title to the
window, but it is not necessary because a scene is created by default.

The first object drawn is a sphere, with default attributes and assigned to the variable
ball so it can be manipulated later on. The second object is a box, with some specific
attributes to the box object. A vpython object can have a number of attributes, including
position, size, color, and so on. Some attributes like position refer to the coordinate system
of the scene. By default, we can look at the computer screen as the x − y plane, with the
x direction to the right and y direction up, and z direction coming out of the screen. The
default position of ball (center of sphere) is at the origin, so the sphere is in front of the thin
box serving as the background. There are other objects in vpython one can use, shown
in Fig. 3.3.

We can interact with the scene as the window title suggests: swing the camera around
with the mouse while holding its right button, or zoom in or out holding both buttons.

Tomake the objects move, all we have to do is changing the position. Again, let us assume
the ball moves as a harmonic oscillator, the following will cause it to move sinusoidally,

2 https://www.vpython.org.

https://www.vpython.org
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Fig. 3.3 Select vpython objects. Clockwise from upper left, they are created with cylinder,
arrow, ring, pyramid, cone, and helix. At the center is the sphere. The objects are post-
processed with POV-Ray to include ray tracing effects

In [22]: t = 0
while t<10:

vp.rate(10)
ball.pos = vp.vector(2*vp.sin(2*t),0,0)
t += 0.1

We update the ball.pos attribute as a function of time, and the scene is animated with
vp.rate. The latter also controls the speed of animation (10 frames per second here). The
camera angle and zoom can also be changed while the animation is being played.

Many of our programs either have vpython integrated into them or can be readily made
so. See Program A.3.4 and others in Appendix A for more examples of vpython.

GlowScript andTrinket animation
GlowScript is a language and platform that behaves like VPython but runs directly in a
web browser (see Sect. 1.3). Usually we need to make slight modifications of vpython
programs to run in GlowScript, such as replacing vector with vec. But the advantage is
that we do not need a Python installation to run, and simulations can be shared with a simple
web link. See select GlowScript programs available at

• https://www.glowscript.org/#/user/jaywang/folder/intro/

Also see Appendix A for examples.

https://www.glowscript.org/#/user/jaywang/folder/intro/
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Trinket is another platform similar to GlowScript, but it is easier to modify and share
Trinket programs. One can also embed Trinket program within a web page. A user with a
Trinket link can run and modify the program, create a new link to the modified version, and
share it with others. See enclosed link in Appendix A for examples.

3.3 Sympy

Scientific computing relies on well-established, common libraries. In Python, these include
the best-known ones, Sympy, Numpy, and Scipy. Additionally, Numba can help with opti-
mization to speed up calculation with little effort on our part. Each comes with thorough
documentation. We discuss each briefly, beginning with Sympy,

Sympy is a symbolic Python library for algebraic computation with symbols and vari-
ables.3 It helps us focus on the problem-solving part and avoid being side trackedwith details
such as tedious or laborious derivations or integrals (others might call it math drudgery). It
can also help find solutions that may not be evident manually. Compared to packages such as
Mathematica or Maple, Sympy is open source and works natively and seamlessly in Python.
Below we introduce a subset of sympy features with examples, all of which are contained
in Program A.1.5.

3.3.1 Mathematical Modules

Sympy contains mathematical modules and application modules. We begin with the former.

Constants
Before getting started, we import sympy as any other package,

In [23]: from sympy import *
init_printing() # pretty print math symbols

The init_printing enables LATEX formatted math output in Jupyter notebook.
Sympy contains pre-definedmathematical and physical constants. The common constants

are pi, E, I, and oo (double ‘o’),

In [24]: pi, E, I, oo

Out[24]: (π, e, i,∞)

3 https://www.sympy.org. One can run Sympy without installation at https://live.sympy.org.

https://www.sympy.org
https://live.sympy.org
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Weshouldnot redefineor override these constants.As seen earlier (Sect. 2.1.2), the imaginary
unit i is also defined as1j in Python. It is cleaner to useI insympy so its algebraic properties
are retained.

Basic Symbolic Algebra and Calculus
To be able tomanipulate symbols and variables, we first need to declare them as the algebraic
type, unlike standard Python variables that get their types from assignment,

In [25]: x, a, b, c = symbols('x a b c')
y = a*x*x + b*x + c
y

Out[25]: ax2 + bx + c

The symbolsmodule returns variables x, a, b, c that are represented by string sym-
bols x, a, b, c in quotes. The string symbols can use Greek symbols such as ’omega’ for ω
(see below).4 Next, a quadratic expression is assigned to variabley as a standard assignment.
Note that we cannot omit the multiplication sign such as b*x to produce bx , not just b x
because spaces are just separators in a programming language.

We can manipulate the expression y like any algebraic expression. We can differentiate
dy/dx with respect to x , for instance,

In [26]: dydx = Derivative(y,x)
dydx

Out[26]: ∂
∂x

(
ax2 + bx + c

)

Derivative outputs the symbolic derivative operation, but not the actual derivative. To
obtain it explicitly, we use the doit() method,

In [27]: dydx.doit(), y.diff(x)

Out[27]: (2ax + b, 2ax + b)

The y.diff(x)means taking derivative of of y and gives the same result of course. Still,
the Derivative function is useful sometimes to show the symbolic operation.

The inverse operation to differentiation is integration, obtained with

In [28]: integrate(y, x)

Out[28]: ax3
3 + bx2

2 + cx

The same results may be obtained with the integrate() method,

In [29]: y.integrate(x)

4 One could also import all letter and Greek symbols with from sympy.abc import *. The
advantage is we have no need to define symbols individually. The disadvantage is that it can override
default variables such as mathematical constants stated earlier, unless it is imported before anything
else as the very first line. Even then, it is common that a variable has been overwritten as something
else via assignment, so we have to declare it again via symbols if we wish to use it to represent
something else. So by all means use the abc module to save typing, but be careful with overwriting
variables. It is the adage again: with power comes responsibility.
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as well as with

In [30]: Integral(y, x).doit()

Like its counterpart, Integral denotes symbolic integration but does not actually carry
out the operation, so we use the doit() method. The integration constants are omitted in
these indefinite integrals.

Algebraic Solvers
Many a time we need to solve an equation for the roots. Sympy has several for the task. The
simplest is solve,5

In [31]: solve(y,x)

Out[31]:
[

1
2a

(
−b + √−4ac + b2

)
, − 1

2a

(
b + √−4ac + b2

)]

It takes as input the equation to be solved, and the variable to solve for. The expression
is implicitly assumed to be equal to zero, y(x) = 0. We have the well-known roots to a
quadratic equation.

Another example involves the roots of x3 − 1 = 0,

In [32]: solve(x**3-1,x)

Out[32]:
[
1, − 1

2 −
√
3i
2 , − 1

2 +
√
3i
2

]

We obtain three roots along the unit circle in the complex plane, exp(i2nπ/3), n = 0, 1, 2.
We can verify one of the roots by an expansion,

In [33]: expand(E**(4*pi*I/3), complex=True)

Out[33]: − 1
2 −

√
3i
2

We made use of the predefined constants in sympy. The parameter complex=True tells
expand to output the results as real plus imaginary parts.

Differential Equation Solver
Sympy also has a rudimentary differential equation solver. To use it, we need a function
variable type,

In [34]: f = Function('f')
k = symbols('k')
dsolve(diff(f(x),x)-k*f(x),f(x)) # diff(f(x),x)==f(x).diff(x)

Out[34]: f (x) = C1ekx

The Function module is similar to symbols except it returns a function type that can
take symbolic arguments likef(x). Likesolve,dsolve takes two inputs, the differential
equation as d f (x)/dx − k f (x) = 0, and the function f (x) to solve for.

5 Sympy has another powerful solver solveset, see Sect. 9.2.
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Same results are obtained if diff is replaced with Derivative,

In [35]: dsolve(Derivative(f(x),x)-k*f(x),f(x))

A second-order differential equation d2 f /dx2 = −k2 f , can be solved similarly,

In [36]: dsolve(diff(f(x),x,x)+k*k*f(x),f(x))

Out[36]: f (x) = C1e−ikx + C2eikx

Note the second derivative is specified by diff(f(x),x,x) with two x variables in a
row.

Definite Integrals
Calculation of definite integrals is also one of the most common tasks in scientific compu-
tation like in quantum mechanics. It is done by specifying limits in indefinite integrals,

In [37]: integrate(sin(x)**2/x**2,(x,-oo,oo))

Out[37]: π

The variable oo is sympy’s way of denoting infinity. Sympy can navigate quasi-singularity
in

∫ ∞
−∞ sin2(x)/x2 dx gracefully. It can also handle simple integrable singularities like∫

dx/
√
x without a hiccup,

In [38]: integrate(1/sqrt(x), (x,0,1))

Out[38]: 2

However, some apparently simple integrals in sympy are anything but simple, such as
this integral of a Lorentzian (see Exercise 3.6),

In [39]: res = integrate(1/(x*x+a*a)**2,(x,-oo,oo))
simplify(res)

Out[39]:
⎧
⎨

⎩

π
2a3

for
∣
∣∣periodicargument

(
1

polar_lift2 (a)
,∞

)∣
∣∣ < π

∫ ∞
−∞

1

(a2+x2)
2 dx otherwise

The function simplify can be very helpful in reducing the results to simple terms, but
it fails in this case (see also Sect. 6.1.2). The difficulty here is that sympy is very careful
about making assumptions. The constant a in the integrand 1/(x2 + a2)2 is meant to be real
and positive, but sympy doesn’t assume that. So we need to give it a little help if we want
the results to be as simple as possible.

The way to do so is to be explicit in declaring the symbol a, like the following,

In [40]: a = symbols('a', positive=True) # specify conditions to help simplify
integrate(1/(x*x+a*a)**2,(x,-oo,oo))

Out[40]: π
2a3

By specifying positive=True, it knows that a is real and positive, so sympy has no
need to make assumptions on the argument of a in case it was complex.
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Often, in thermodynamics we need integrals of the form,

In [41]: p=0.5
res = Integral(x**p/(exp(x)-1),(x,0,oo))
res

Out[41]:
∫ ∞
0

x0.5
ex−1 dx

These integrals are needed in blackbody radiation or inBose-Einstein condensation. They are
not analytically reducible tomore convenient terms, so a numerical value is often substituted,

In [42]: N(res), res.n(10)

Out[42]: (2.31515737339412, 2.315157373)

The N function and the n() methods give the same result. The latter has the advantage of
being able to specify the number of significant digits, 10 in this case.

Gaussian integrals are also common, and can be obtained with,

In [43]: n = symbols('n', integer=True, positive=True)
res = integrate(exp(-x*x) *x**n,(x,0,oo))
res

Out[43]: 1
2 �

( n
2 + 1

2

)

The result is given in terms of the special � function (see later). To obtain results specific to
n, we use the substitute method subs. The following gives the value for n = 2,

In [44]: res.subs(n,2), N(res.subs(n,2))

Out[44]:
( √

π
4 , 0.443113462726379

)

Note the non-numerical and numerical formats.

Expansion Coefficients
Calculations of expansion coefficients is often necessary in quantummechanics. Sympy can
simplify these tasks considerably.

Suppose we wish to expand the initial wave function ψ(x) = x(a − x) in the infinite
potential well (see Sect. 7.3.1) as

ψ(x) =
∑

n

cnψn(x), cn =
∫ a

0
ψ(x)ψ∗

n(x) dx . (3.1)

In sympy, the result is,

In [45]: psi = lambda x: x*(a-x)
psin = lambda n, x: sqrt(2/a)*sin(n*pi*x/a)
a = symbols('a', positive=True)
A = Integral(psi(x)**2,(x,0,a)) # norm
cn = Integral(psi(x)*psin(n, x),(x,0,a))/sqrt(A)
cn

Out[45]: 1√∫ a
0 x2(a−x)2 dx

∫ a
0

√
2x√
a

(a − x) sin
(

πx
a n

)
dx
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In [46]: cn = cn.doit()
cn

Out[46]: √
30

a
5
2

(
− 2(−1)n

√
2a

5
2

π3n3
+ 2

√
2a

5
2

π3n3

)

The normalization constant A needs to be calculated because the wave function ψ(x) is
unnormalized. After simplification, we have

In [47]: simplify(cn)

Out[47]: 4
√
15

π3n3
(− (−1)n + 1

)

Note that dimensioned parameters such as a drop out because the coefficients cn are dimen-
sionless. It shows that the results are nonzero only if n is odd. This is due to the symmetry
of the initial wave function. See Exercise 3.5 for a nonsymmetric wave function.

One property of the coefficients is that c2n represents the probability of finding the state
ψn(x), so all probabilities should add up to one,

∑
n c

2
n = 1. Let us go ahead and check,

In [48]: res = Sum(cn**2, (n,1,oo))
res

Out[48]:
∑∞

n=1
240
π6n6

(− (−1)n + 1
)2

It is just a summation, unevaluated. To evaluate it, we use the doit method,

In [49]: res.doit()

Out[49]: − 480
π6 Li6

(
eiπ

) + 32
63

The result is expressed in terms of a special function called logarithmic integral that we do
not want to get into here.6 Using simplify on the result also does not do much, so let us
just evaluate it numerically,

In [50]: res.doit().n()

Out[50]: 1.0

This is the expected result.

Special Functions
Historically, special functions (see Boas 2006) had been developed analytically for the main
part, but they continue to play an important role even in the age of digital computing. We
have already seen the� function earlier. Sympy has an extensive library of special functions.
Here are a few examples,

In [51]: erf(x), gamma(x), airyai(x), jn(n,x)

Out[51]: (erf (x), �(x), Ai (x) , jn (x))

6 Those who still keep tables of sums and integrals around (see Abramowitz and Stegun 1970,
Gradshteyn and Ryzhik 1980) may recall that

∑
n=1,3,5··· 1/n2 = π2/8,

∑
n=1,3,5··· 1/n4 =

π4/96,
∑

n=1,3,5··· 1/n6 = π6/960. The last sum is directly applicable to our case.
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Fig. 3.4 Output of sympy’s plot function. Left: the Airy function Ai(x). Right: Radial probability
distribution of hydrogen atom R2

20(r)r
2

They are respectively, the error erf(x), gamma �(x), Airy Ai(x), and spherical Bessel jn(x)
functions.

We will encounter a few next. To get a feel of what they look like, we can plot them with
plot,

In [52]: plot(airyai(x)) # may need to run twice

The Ai(x) is shown in Fig. 3.4 (left). By default the plot uses adaptive sampling to output
a smooth curve. The plot function is handy to graph any algebraic expression.

Some special functions are expressed in integral form,

In [53]: integrate(exp(-x*x),(x,0,a)) # error func

Out[53]:
√

π
2 erf (a)

Sympy even has a Dirac function δ(x − a),

In [54]: integrate(f(x)*DiracDelta(x-a),(x,-oo,oo))

Out[54]: f (a)

Another special function that had been forgotten for a while but has found resurgence
recently in many applications is the Lambert W function, which is defined as the solution
to the equation WeW − x = 0,

In [55]: W = symbols('W')
solve(W*exp(W)-x, W)

Out[55]: [LambertW (x)]

Sympy names this function LambertW.
As an example, Wien’s displacement law in blackbody radiation can be solved in terms

of the W function. The solution was thought to exist in numerical form only. Just recently
it was found to be solvable using the W function. The blackbody radiation spectrum in
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frequency ν is given by f (x) = x3/(exp(x) − 1), x = hν/kT . The peak frequency occurs
at d f /dxm = 0, which gives the relation ν = CT , C = kxm/h.

In [56]: eqn = Derivative(x**3/(exp(x)-1),x)
res = solve(eqn.doit(),x) # freq, x = hν/kT
res

Out[56]:
[
LambertW

(
− 3

e3

)
+ 3

]

We carry out the differentiation with the doit()method, and solve the resultant, which is
a transcendental equation, (x − 3) exp(x) + 3 = 0 solvable with the W function. Note the
solutions are given as a list of one element.

Numerically,

In [57]: N(res[0])

Out[57]: 2.82143937212208

We use res[0] because it is in a list even though there is only one solution. So we have
Wien’s law in frequency form ν = 5.88 × 1010T Hz/K. One can obtain in a similar way its
wavelength form (see Exercise 3.4).

Linear Equations and Eigenvalues
Mostmatrix and linear systemsof equations are handled numerically.But it is still instructive,
even desirable, to manipulate such problems algebraically with low dimensional systems to
understand how certain variables scale (see Sect. 6.1) or how the processes unfold.

Let us look at a two-equation problem.Nowwe introduce some variables with subscripts,

In [58]: x, y = symbols('x y')
a1, a2 = symbols('a1 a2')
b1, b2 = symbols('b1 b2')
c1, c2 = symbols('c1 c2')
eqns = [a1*x + a2*y-c1,

b1*x + b2*y-c2]
eqns

Out[58]: [a1x + a2 y − c1, b1x + b2 y − c2]

The number following a variable string is printed as a subscript. The expression eqns
contains two linear equations with unknowns x and y. They are solved as

In [59]: res = solve(eqns, x, y)
res

Out[59]:
{
x : −a2c2+b2c1

a1b2−a2b1
, y : a1c2−b1c1

a1b2−a2b1

}

We specify two unknowns to solve instead of just one.
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A more familiar way is to use matrix notation

In [60]: A = Matrix([[a1,a2],[b1,b2]])
A

Out[60]:
[
a1 a2
b1 b2

]

Matrix takes rows (list of lists) as input and stack them up to form a matrix. If a single
list is given, it is construed as a column matrix. To solve a linear system of the form Ax = c
where x and c are column matrices, we have the following,

In [61]: solve(A*Matrix([x, y])-Matrix([c1, c2]), Matrix([x, y]))

Out[61]:
{
x : −a2c2+b2c1

a1b2−a2b1
, y : a1c2−b1c1

a1b2−a2b1

}

To demonstrate eigenvalue problems, we start with a symmetric matrix (Hermitian),

In [62]: B = A.subs([[b1,a2], [b2,a1]]) # symmetric matrix
B

Out[62]:
[
a1 a2
a2 a1

]

where the substitutions are contained with a pair of lists so b1 → a2 and b2 → a1.
The eigenvalues and eigenvectors are obtained with the eigenvects method,

In [63]: B.eigenvects()

Out[63]:
[(

a1 − a2, 1,

[[−1
1

]])
,

(
a1 + a2, 1,

[[
1
1

]])]

The results are given as a list of tuples, each containing the eigenvalue, degeneracy (multi-
plicity), and unnormalized eigenvector.

3.3.2 ApplicationModules: Physics

Sympy has also several modules for specific physical systems. We now discuss select mod-
ules designed to explore the systems symbolically.

Quantum Simple Harmonic Oscillator
The quantum simple harmonic oscillator is the most important and elegant problem in
quantum mechanics. It can be explored in sympy meaningfully without getting too much
into the mathematical details.

We start with importing specific modules and some definitions,

In [64]: from sympy.physics.qho_1d import E_n, psi_n, hbar
n = symbols('n', integer=True, positive=True)
m, omega = symbols('m omega', positive=True)
x, a = symbols('x a')
E_n(n, omega), psi_n(0,x,m,omega)
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Out[64]:
(

�ω
(
n + 1

2

)
,

4√m 4√ω
4√

� 4√π
e− mωx2

2�

)

In addition to the energy En andwave functionψn , we also imported the constant� (Eq. (7.6))
from the qho_1d module. It also shows the ground state wave function explicitly.

Unlike the classical oscillator where the particle’s motion is restricted to the region
between turning points (amplitudes) for a given energy, the quantum oscillator has a nonzero
probability even in the classically forbidden region. We can explore this with the module to
find the probability of the particle in the classically forbidden region. The turning points are
defined as when the energy is equal to the potential energy V (x) = E . In sympy we solve
for them as

In [65]: V = m*omega**2 * x**2/2
tp = solve(E_n(0, omega)-V, x) # turning points
tp

Out[65]:
[
−

√
�√

m
√

ω
,

√
�√

m
√

ω

]

The two points are symmetric about the origin as expected. The probability to one side of
the forbidden region is found with

In [66]: prob = Integral(psi_n(0,x,m,omega)**2, (x,tp[1],oo))
res = prob.doit()
res

Out[66]: 1
2
√

π

(−√
π erf (1) + √

π
)

The result is in terms of the error function seen earlier. Doubling the result to account for
the other side, it is numerically

In [67]: 2*N(res)

Out[67]: 0.157299207050285

It is about 16% in the ground state. It is expected to decrease with higher excited states due
to the semiclassical limit (Exercise 3.7).

Hydrogen Atom
The hydrogen atom is the first success of quantum mechanics in explaining the experimen-
tally observed properties of an actual physical system, and it validated quantum mechanics
as a fundamentally correct theory.

The energy and wave functions of the hydrogen atom are found in the hydrogen
module,

In [68]: from sympy.physics.hydrogen import E_nl, R_nl
n, l = symbols('n l', integer=True, positive=True)
Z, r = symbols('Z r', positive=True)
E_nl(n,Z)

Out[68]: − Z2

2n2
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The energy En is given in atomic units (see Sect. 7.3.3), and depends on the quantum number
n only, not on l as an exception rather than the rule. The wave function depends on both nl,
for instance,

In [69]: R_nl(2,0,r)

Out[69]:
√
2
4 (−r + 2) e− r

2

The radius r is also given in atomic units for length (Bohr radius). We can graph the radial
probability density with

In [70]: plot((r*R_nl(2,0,r))**2, (r,0,10)) # may have to run the cell again

The output is shown in Fig. 3.4.
We can also calculate expectation values of the radius 〈r〉 = ∫

R2
nl(r) r r

2dr in a given
state,

In [71]: res = Integral(R_nl(2,0,r)**2*r**3,(r,0,oo)) # <r>
res

Out[71]:
∫ ∞
0

r3
8 (−r + 2)2 e−r dr

In [72]: res.doit()

Out[72]: 6

The expectation value of the inverse radius 〈1/r〉 is
In [73]: res = Integral(R_nl(2,0,r)**2*r,(r,0,oo)) # <1/r>

res.doit()

Out[73]: 1
4

The state n, l = n, n − 1 is a special state in that the probability is concentrated in a thin
spherical shell, called circular states. The expectations of 〈r〉 and 〈1/r〉 are
In [74]: integrate(R_nl(n,n-1,r)**2*r**3,(r,0,oo)), integrate(R_nl(n,n-1,r)**2*r,(r,0,oo))

Out[74]:
(

2·22n−2

n3(2n−1)! n
−2n+2

( 2
n

)−2n−1
�(2n + 2), 22n−2n−2n+2

n4(2n−1)!
( 2
n

)−2n+1
�(2n + 1)

)

Simplifying the results yields

In [75]: simplify(_)

Out[75]:
(
n2 + n

2 , 1
n2

)

The underscore argument to simplify(_) tells it to simplify the last result. For large n,
the value 〈r〉 ∼ n2, signifying that the size of circular states scales as n2. In fact, it is a good
estimate of the size of an atom in state n. On the other hand, the value 〈1/r〉 = 1/n2 exactly,
regardless of the quantum number l.
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3.4 Numpy Library

The numpy library can be said to be the backbone of numerical computation in Python.7

It provides advanced array capabilities and with the speed of a compiled code. It is used
throughout the later chapters. We describe several common features in this section with
working template in Program A.1.6.

Constants
The numpy package is conventionally named np,

In [76]: import numpy as np

It also defines basic mathematical constants often needed, π, e, ∞, and nan,

In [77]: np.pi, np.e, np.inf, np.nan

Out[77]: (3.141592653589793, 2.718281828459045, inf, nan)

The type nan means “not a number”, and is usually a result of ill-defined operations such
as dividing by zero or overflowing. When it appears unintended after a calculation, it means
something has very probably gone wrong, and the cause should be tracked down and fixed.

Array Creation

In [78]: np.zeros(3), np.ones(3)

Out[78]: (array([0., 0., 0.]), array([1., 1., 1.]))

The modules zeros and ones return arrays initialized to zeros and ones, respectively.
The data type is defaulted to double precision floating point numbers, or just floats, though
numpy arrays can have other common data types like integer, boolean, text, and so on
(Chap. 2). In fact, arange() creates an integer array by default,

In [79]: np.arange(3)

Out[79]: array([0, 1, 2])

It is similar to the list with range except it behaves like a numpy array.
Another useful array is that created with linspace,

In [80]: np.linspace(-1,1,5,retstep=True)

Out[80]: (array([-1. , -0.5, 0. , 0.5, 1. ]), 0.5)

This example creates an array of five equally-spaced points between [−1, 1] inclusive.
Optionally it can return the spacing with retstep=True.

7 https://numpy.org.

https://numpy.org
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We can also create a numpy array from existing array-like data,

In [81]: a = np.array([1., 2., 3.])
a

Out[81]: array([1., 2., 3.])

A list is passed to array, and a now is a three-element array instead of a list.

Array Indexing and Slicing
Like lists (Chap. 2), numpy arrays can be accessed with integer indices,

In [82]: a[0], a[1], a[-1], a[-2]

Out[82]: (1.0, 2.0, 3.0, 2.0)

We should always be clear that array indexing starts from 0, a negative index counts back-
ward, and the last element is a[-1].

Slicing of arrays can be used to select a range of elements (see Sect. 2.4.2, also Sect. 4.5
for advanced indexing),

In [83]: a[1:2]

Out[83]: array([2.])

The a[m:n] notation is inclusive of m but exclusive of n, so we get only an array of one
element above. If the first index is omitted, the selection starts from the beginning of the
array. If the second index is left out, it defaults to the end of the array.

In [84]: a[:2], a[2:]

Out[84]: (array([1., 2.]), array([3.]))

Element-Wise Arithmetic
One very useful capability of numpy arrays is the element-wise operation.

In [85]: b = np.array([2,2,2])
a + b, a-b

Out[85]: (array([3., 4., 5.]), array([-1., 0., 1.]))

Here, an integer array b is added to or subtracted from a, and the operation is done element
by element. Such operations are called element-wise, or vector operations. Note that b is
an integer array. In numerics, floats are at a higher level than integers as shown earlier
(Sect. 2.1.2), so integers are converted to floats in these operations, and the results are in
floats.

The same vector operations apply to multiplication and division,

In [86]: a * b, a/b

Out[86]: (array([2., 4., 6.]), array([0.5, 1. , 1.5]))
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Vector operations circumvent explicit looping, and can be done faster than explicit looping,
so it is preferred.8

Array Broadcasting
We can even carry out vector operations between a number (scalar) and an array (vector).
Consider the following code,

In [87]: 2 + a, np.array([2,2,2]) + a

Out[87]: (array([3., 4., 5.]), array([3., 4., 5.]))

In the first instance, we are adding an integer number to an array, and in the second instance,
we are adding an integer array. The results are the same. What is happening in the first
instance is that the scalar number is effectively (not actually) converted into an integer array
of same length, and added to the floats array via vector operation. This conversion is known
as broadcasting. Conceptually the scalar is treated as a vector with the same component in
each dimension.

Broadcasting does not extend to vectors of different length. The following will generate
an error,

In [88]: np.array([2,2]) + a

---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-28-39f07ddf6363> in <module>()
----> 1 np.array([2,2]) + a

ValueError: operands could not be broadcast together with shapes (2,) (3,)

Broadcasting with multiplication and division works the same way,

In [89]: 2*a, np.array([2,2,2])*a

Out[89]: (array([2., 4., 6.]), array([2., 4., 6.]))

Array Operations
Numpy provides several convenient modules for array operations. The following code sums
up the product of two arrays,

In [90]: a = np.arange(3)
b = np.array([2,2,2])
np.sum(a * b)

Out[90]: 6

8 Occasionally one hears phrases such as the “code is Pythonic.” It is subjective and elusive to quantify
what is Pythonic, but using vector operations where possible is considered Pythonic. If we were to
define Pythonic, we would say a code is Pythonic if it is RARE: Readable And Reasonably Efficient.
As long as it gets the job done, style points are secondary.
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The result is like the scalar product between two vectors. Indeed, there is a function for that
purpose,

In [91]: np.dot(a, b)

Out[91]: 6

The difference between the two functions showswhenmultidimensional arrays are involved.
The dot behaves like matrix multiplications.

We can take a vector product if the arrays represent the three components of a vector,

In [92]: np.cross(a, b)

Out[92]: array([-2, 4, -2])

We in fact use this function in calculating the forces in cross electromagnetic fields (see
Program A.3.5).

Sometimes we need to reverse the order of array elements. We can do so with

In [93]: np.flip([1,2,3])

Out[93]: array([3, 2, 1])

To insert an element into an array, we use the insert function,

In [94]: np.insert(a, 1, -1)

Out[94]: array([ 0, -1, 1, 2])

A call to insert(a, index, value) inserts a value before index of the array a.
This works the same way with lists (Sect. 2.7.3). The original array is not modified, only a
copy is returned. Multiple insertions are also possible. For instance,

In [95]: np.insert(a, [1,3], [-1,-2])

Out[95]: array([ 0, -1, 1, 2, -2])

In the above example, the first list contains the indices [1,3] before which the values in the
second list [−1, −2] are to be inserted. Because the original array a has only three elements,
the second index 3 is interpreted to be after last position for the insertion. So it is inserted at
the end (effectively appended).

2D Arrays
Array creation routines described above can be used to create n dimensional arrays.. For
instance, to initialize a 3 × 3 2D array,

In [96]: np.zeros((3,3))

Out[96]: array([[0., 0., 0.],
[0., 0., 0.],
[0., 0., 0.]])

For matrix calculations, special two-dimensional arrays are required. The following cre-
ates a two dimensional array that is diagonal,
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In [97]: A = np.diag([1., 2., 3.], k=0)
A

Out[97]: array([[1., 0., 0.],
[0., 2., 0.],
[0., 0., 3.]])

The parameter k indicates off-diagonal distance. It can be omitted if it is zero.
For nonzero k, an off-diagonal matrix will be created,

In [98]: B = np.diag([1., -1.], k=1)
B

Out[98]: array([[ 0., 1., 0.],
[ 0., 0., -1.],
[ 0., 0., 0.]])

The distance of 1 refers to the off-diagonal just above the main diagonal, and it requires
two values given in the list. Similarly, an off-diagonal just below the main diagonal can be
created with

In [99]: C = np.diag([1., -1.], k=-1)
C

Out[99]: array([[ 0., 0., 0.],
[ 1., 0., 0.],
[ 0., -1., 0.]])

Incidentally, we can use transpose to obtain the same result,

In [100]: np.transpose(B)

Combining the three arrays gives us a so-called tridiagonal array,

In [101]: A+B+C

Out[101]: array([[ 1., 1., 0.],
[ 1., 2., -1.],
[ 0., -1., 3.]])

Element-wise operations are apparent also with 2D arrays.

Functions
Numpy provides most elementary functions. The functions support scalar inputs and vector
operations on array inputs. For example, the following gives absolute values,

In [102]: x = np.linspace(-1,1,5)
np.abs(x)

Out[102]: array([1. , 0.5, 0. , 0.5, 1. ])

The function operates on a scalar value as well as element-wise on an array. Such functions
are called u-functions, or universal functions.

User-defined function can also be u-functions. We define a quadratic function as
follows,
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In [103]: def f(x):
return x*x

f(x)

Out[103]: array([1. , 0.25, 0. , 0.25, 1. ])

The function works as expected on an array and on a single value. This is because multipli-
cation of two arrays is a vector operation as seen earlier.

However, if there are operations that are not naturally done element-wise, passing an
array to the function can fail. Below is a step function that returns either 1 or 0 depending
on the sign of the input. It works with scalar input, but fails with array input because of the
if statement. To fix it, we use the vectorize module,

In [104]: def g(x):
if x>0: return 1
else: return 0

gvec = np.vectorize(g)
gvec(x)

Out[104]: array([0, 0, 0, 1, 1])

The vectorized function gvec now works on both scalar and vector inputs.
Finally, as described in Chaps. 2 and 8, numpy has random number generators that can

return either a single value or an array of random values between [0, 1).
In [105]: np.random.random(), np.random.random(3)

Out[105]: (0.8887652855521309, array([0.98739968, 0.20369024, 0.84627868]))

We can also generate random integers with

In [106]: np.random.randint(low=0, high=10), np.random.randint(0,10,3)

Out[106]: (7, array([0, 5, 1]))

We will use arrays of random numbers in the next section.

3.5 Scipy Library

Scipy is to numerical computation what Sympy is to symbolic computation.9 These two
libraries plus Numpy are complementary and powerful toolboxes for scientific computing
in Python. We introduce select functionalities of scipy from Program A.1.7 next.

Definite Integrals
As to be discussed later (Sect. 4.2), numerical integration is a common task in scientific
computing. Whereas sympy can perform analytic integration (Sect. 3.3), many integrals

9 https://scipy.org.

https://scipy.org
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found in practice are too complex to have analytic solutions, and numerical integration is
the only way.

Scipy has a robust routine for numerical integration, quad,

In [107]: import numpy as np
from scipy.integrate import quad

It requires us to supply the integrand as a function, and the limits of integration,

In [108]: f = lambda x: 1/np.sqrt(x)
quad(f, 0, 1)

Out[108]: (2.0000000000000004, 5.10702591327572e-15)

In this example, the integrand 1/
√
x is defined in the lambda function f() (Sect. 2.5), and

the limits of integration are [0, 1]. The results are returned as a pair of values: the integral and
the estimated absolute error. Here, the result 2 is practically exact, and the error is at the limit
of double precision. Note that x = 0 is a singularity in the integrand, but it is an integrable
singularity. Apparently quad navigates around the this integrable singularity very well.

Scipy can also handle integrals with an open range. The following Lorentzian integral is
over the range [0, ∞),

In [109]: a = 1.0
f = lambda x: 1/(x*x+a*a)**2
quad(f, 0, np.inf)

Out[109]: (0.7853981633974483, 1.9448610022155054e-09)

Recall from Sect. 3.3, the exact result should be π/4. The actual result agrees with it to 16
digits, so the estimated error is quite conservative in this case. This is because the integrand
decays rapidly with larger x so the integral converges fast.

We are not always that lucky with fast converging integrals. For instance,

In [110]: f = lambda x: np.sin(x)**2/x**2
quad(f, 0, np.inf)

Out[110]: (1.5708678849453774, 0.0015587759422626135)

This integral generated a warning message from scipy (not shown) about slow conver-
gence. Indeed, compared to the exact result of π/2 (Sect. 3.3), we now have only four
digits of accuracy. This is because this integral converges slowly like 1/a for large a, much
slower than the Lorentzian integral. As a result, quad has trouble with accuracy. Manual
intervention is necessary if higher accuracy is to be gained (see Exercise 3.3).

Expansion Coefficients Revisited
Earlier we obtained the expansion coefficients Eq. (3.1) with sympy for a particle in the
infinite potential well. We can almost just copy and paste the same code to do the same
calculation numerically in simpy as follows.
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In [111]: psi = lambda x: x*(a-x)
psi2 = lambda x: psi(x)**2
psin = lambda n, x: np.sqrt(2/a)*np.sin(n*pi*x/a)
f = lambda x: psi(x)*psin(n,x)
pi = np.pi
a = 1
A = quad(psi2, 0, a)[0] # norm
for n in range(1,5):

print(n, quad(f, 0, a)[0]/np.sqrt(A))

Out[111]: 1 0.9992772459953339
2 5.870202015831392e-17
3 0.03701026837019757
4 -6.221452546292864e-17

The only change is replacing the sine and square root functions with Numpy versions10

and combining the product of two functions psi and psin into a single lambda func-
tion because, unlike symbolic computation, the quad routine does not parse algebraic
expressions and requires a standard function as input. The results show that the coefficient
c2 = c4 	 0 (to double precision) as expected, as well as for all even n. The first term c1 is
dominant, even more so in terms of probability because c21 = 0.99855, and the next term is
only c23 = 0.00136. With these numbers, we could then turn our attention to understanding
why (Exercise 3.5) without being too occupied with manual calculations. We leave it to
the interested reader to show that the sum of probabilities approaches 1, a result proven
algebraically with Sympy (Sect. 3.3).

Differential Equation Solver
Solving ordinary differential equations (ODE) numerically is a very important task in scien-
tific computing. In fact, we will discuss solutions of physical problems expressed in terms
of ODEs in Chap. 5. We can also solve ODEs with scipy integrators. The general purpose
integrator is called odeint. To demonstrate the process, suppose we wish to find the veloc-
ity as a function of time of a particle under viscous force Eq. (8.2) (or linear drag Eq. (5.12)),
dv/dt = −bv. Due to its simplicity and because it has an analytic solution Eq. (8.3), it is
instructive to solve it numerically and compare with the exact solution.

The odeintmodule requires information about the ODE, which is supplied via a user-
defined function. The function will be called by odeint to perform the integration. It looks
like the following in our example,

In [112]: from scipy.integrate import odeint
def drag(v, t):

b = 1.0
return -b*v

The drag function just returns the right-hand side of the ODE, namely the derivative
dv/dt , which depends only on v itself in this case. It could also depend on time in general,

10 Actually we could have used Sympy functions aswell, but it is faster to use fully numerical versions
of Numpy.
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though not in this simple example. Because of this possibility, when odeint calls the
function, it will pass the time t as the second argument.

Next, we supply the name of the function to odeint, the initial conditions, and a list of
points in time where the solutions are desired,

In [113]: t = np.linspace(0,1,5) # time grid
v = 1.0 # initial velocity
odeint(drag, v, t)

Out[113]: array([[1. ],
[0.7788008 ],
[0.60653067],
[0.47236657],
[0.36787947]])

Internally, theodeintmodule calls the functiondragmany times and uses the information
returned by it to crank out solutions at the specified instants in time (see Chap. 5). Checking
against the exact velocity, the numerical solution is very accurate for this simple problem.
To solve a different problem, we only need to change the function itself to return the correct
derivative (the right-hand side).

As seen from Eq. (8.2), dx/dt = v and dv/dt = −bv are two coupled ODEs, that is
to say, the position x depends on v. We now have the velocity. Can we obtain the position
simultaneously? In fact, the ODE solver odeint works perfectly fine for coupled ODEs.
What is needed is to supply all the terms on the right-hand side via the user-defined function.
For these two ODEs, it is given as

In [114]: def drag2(y, t):
b = 1.0
v = y[1]
return [v, -b*v]

y = [0., 1.] # y=[x, v], initial pos and velocity
odeint(drag2, y, t)

Out[114]: array([[0. , 1. ],
[0.22119922, 0.77880078],
[0.39346933, 0.60653067],
[0.52763344, 0.47236656],
[0.63212055, 0.36787945]])

The new function drag2 looks like the old one, but the first argument y as passed from
odeint is a list of position and velocity values [x, v], rather than v only. This is because
the initial conditions must have two values in position and velocity, so odeint infers it is
a system of two ODEs. It also expects two derivatives from drag2, which correctly returns
them in the list [v, −bv]. Now the output array has two columns, the first one contains the
position, and the second one the velocity, which is the same as the single ODE, of course.
The number of rows is equal to the number of points in time.

Special Functions
The scipy library has a full range of special functions as sympy does. It has the usual
ones, including
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In [115]: from scipy.special import erf, gamma, lambertw, spherical_jn
x = 0.5
erf(x), gamma(x), lambertw(x)

Out[115]: (0.5204998778130465, 1.7724538509055159, (0.35173371124919584+0j))

Note the Lambert W function is named lambertw, without the capitalization used in
sympy. As useful and essential as the special functions are, we will briefly encounter two
of them in the context of our discussion next.

Equation Solver
There are several root finders in scipy including fsolve and bisect. Consider Wien’s
displacement law seen earlier (Sect. 3.3). Numerically, the solution to the defining equation
is found below,

In [116]: from scipy.optimize import fsolve, bisect
f = lambda x: (x-3)*np.exp(x)+3 # freq, x = hν/kT
fsolve(f, [1., 3.])

Out[116]: array([2.27881059e-12, 2.82143937e+00])

The equation to be solved is given by the lambda function, and input as the first argument
to fsolve. The second argument is a list of initial guesses for roots. They don’t have to
be precise, but should be as close to the real roots as possible. Equal number of roots are
returned by fsolve. Of the two guesses, one converged to the trivial root zero, and the
other one to the actual root. To have more control over the outcome, the bisection method
is better, discussed shortly.

As noted in Sect. 3.3, before the rediscovery of the Lamber W function, a numerical
solution above was thought to be the only way to solve the problem. With the solution
expressed in terms of W , we can evaluate it analytically,

In [117]: lambertw(-3/np.e**3)+3 # analytic solution

Out[117]: (2.8214393721220787+0j)

The zero imaginary part comes about because the W function has two real branches and
many complex ones, its value is complex in general.

For some equations, the initial guess could lead to a runaway root if it exists, or no root
is found at all. A sure way to locate a root that we know to exist in some range is to use the
bisection method (Sect. 4.4). In scipy, it is invoked with

In [118]: bisect(f, 1., 5.) # [1]=bracket

Out[118]: 2.821439372122768

The bisect routine uses the same user-defined function. We set the bracket at [1, 5]. In
this particular case, we know based on physics that there must be a root between [ε, ∞)

with ε being an infinitesimal positive number. If we set a bracket without a root inside, the
bisect will tell us so and quit.
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The robustness of the bisection method is very useful in other situations. For example,
to determine the zeros of the spherical Bessel functions,11 the bisection method should be
used because of possible runaway roots,

In [119]: f = lambda x: spherical_jn(n,x)
n = 1
bisect(f, 1., 5.), bisect(f, 5., 10.)

Out[119]: (4.493409457909365, 7.725251836938014)

Here we are seeing the first two nonzero roots of j1(x). Bisection is useful because they
interleave with those of j0(x) occurring at multiples of π.

Linear Equations and Eigenvalues
Scipy has complete linear system and eigenvalue solvers. To solve a system of equations
Ax = c, we use solve,

In [120]: from scipy.linalg import solve, eigh
A = np.random.random(9).reshape(3,3)
A = A + np.transpose(A) # form a symmetric matrix
A

Out[120]: array([[1.71865176, 0.78440106, 1.0647321 ],
[0.78440106, 0.70674838, 1.21531498],
[1.0647321 , 1.21531498, 1.15157901]])

We build the matrix A by generating 9 random numbers and reshape them into a 3 × 3
matrix. Then we add its transpose so the result is a symmetric matrix. The latter is necessary
for real eigenvalues later on.

The column matrix c is prepared the same way,

In [121]: c = np.random.random(3)
c

Out[121]: array([0.50965419, 0.95224918, 0.47953584])

The solution is simply obtained with,

In [122]: x = solve(A, c)
x

Out[122]: array([-0.21045712, -0.65083933, 1.29786239])

To verify the solution, we substitute it back into the linear system,

In [123]: np.dot(A, x)

Out[123]: array([0.50965419, 0.95224918, 0.47953584])

As stated in Sect. 3.3.2, the dot operation works like matrix multiplication for 2D arrays. We
see the resultant is equal to c.

The eigenvalue and eigenvectors (see Sect. 6.2.3) may be obtained with,

In [124]: vals, vecs = eigh(A)
vals, vecs

11 This is needed to find the quantum bound state energies of a particle in a spherical well in 3D.
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Out[124]: (array([-0.31107143, 0.60686089, 3.28118968]),
array([[-0.05962799, 0.76124704, -0.64571468],

[-0.7460073 , -0.46379005, -0.47788271],
[ 0.66326285, -0.45321268, -0.59555072]]))

We have three eigenvalues, and three eigenvectors. The latter are stored in columns, for
example,

In [125]: vecs[:,0]

Out[125]: array([-0.05962799, -0.7460073 , 0.66326285])

This is the first eigenvector. It is normalized,

In [126]: np.sum(vecs[:,0]**2)

Out[126]: 0.9999999999999997

It is also orthogonal to other eigenvectors,

In [127]: np.dot(vecs[:,0], vecs[:,1])

Out[127]: -2.220446049250313e-16

It is practically zero (though not mathematically), but it is the limit of double precision seen
earlier.

3.6 Speed Gain with Numba

It happens to every programmer at some point that we choose a robust algorithm for a
problem and develop a code that works well in every aspect but it is just too slow. What to
do? Code optimization, of course. Python has this undeserved perception that it is slow. It
can be, but it does not have to be. For instance, explicit, nested looping will be slow. So we
should avoid that as much as possible, by replacing explicit looping with Numpy’s implicit
looping (Sect. 3.3.2), for example. To the extent that that alone does not solve the speed
problem, we can optimize in other ways.

That is where Numba comes in. Numba12 can optimize a function with just-in-time
compilation to speed up the execution. Before using Numba, we need to know where the
speed bump is. Test the part of the code that you think is causing the slowdown. For instance,
nested loops are an obvious target but it could be something else. Isolate that part, and time
its execution with the system timer (see Program A.1.8). Once we are sure, put that part in
a function and use @jit command of Numba to compile that function on the fly.

Let us illustrate it with an example on wave propagation (Sect. 6.2). A simplified wave
model can be written as (see Eq. (6.21)),

ut2n = ut1n−1 + ut1n+1 − ut0n , (3.2)

12 https://numba.pydata.org.

https://numba.pydata.org
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where utn denotes the wave amplitude at grid n and time t . Equation (3.2) advances the
amplitudes to a later time t2 from the amplitudes at earlier times t1 and t0. It can be coded
easily with explicit looping,

def calc(u0, u1):
u2 = - u0
for n in range(1, N-1):

u2[n] += u1[n-1] + u1[n+1] # left, right
return u2

In a simple program like Program A.1.8, the function calc is the bottleneck. For many grid
points or time steps, explicit looping can take a lot of time.

Now, we can just put @jit immediately above calc as

@jit
def calc(u0, u1):

... same ...

Technically, the function calc is said to be decorated and compiled at runtime, all done
without our doing anything. With this simple, almost magic trick, we get a speedup factor
of 12 to 15 on average. If you have a working but slow program, try Numba optimization
first. It may be all you need.

3.7 Exercises

3.1. Interactive plotting of free fall motion. Consider free fall motion with the position
and velocity given by y = v0t − 1

2gt
2 and v = v0 − gt (see Sect. 2.5.2).

(a) Modify ProgramA.1.1 to interactively plot the position y or velocity v as a function
of time t using IPywidgets andinteractive. Now the slider k should be renamed
v0 that returns the initial velocity v0 in the range [−5, 5] m/s, and the selection
menu func should select either the position or the velocity. The time range should
be [0, 1] s.

*(b) Do the same but with Python widgets as in Program A.1.2.

3.2. VPython animation. Program A.1.4 shows a sphere oscillating about the origin with
the position x = 2 sin(2t). Let us add an arrow to indicate its velocity as well.

(a) Create an arrow representing the velocity vector after the box in Program A.1.4 with
the following,

velvec = vp.arrow(axis=vp.vector(2,0,0)) # axis = arrow direction
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In the loop, update the position of the arrow to that of the ball,

velvec.pos = ball.pos

You should now see the velocity vector moving with the ball.

(b) As the ball accelerates or changes direction, you will notice that the velocity vector
stays the same. The velocity is given by v = dx/dt = 4 cos(2t). To make the arrow
proportional to the velocity, you will need to update its axis accordingly,

velvec.axis = vp.vector(2*vp.cos(2*t), 0, 0)

We use an amplitude of 2 so the arrow is not too big. Describe what you observed.

*(c) Further improvement of the visualization is possible. You may notice that the arrow
becomes invisible, hidden inside the sphere when it slows down. To remedy the
situation, you can either make the minimum length of the arrow to be the radius of
the sphere, or put it in front of the sphere. Implement these strategies and comment
on the results.

3.3. Manual improvement of numerical calculations. There are times when even the
most sophisticated numerical computations need a little human help. A case in point is
the integral I = ∫ ∞

0 dx sin2(x)/x2 = π/2 encountered earlier (Sect. 3.5). The integral
converges sufficiently slow that straight numerical integration yields low accuracy. The
problem here is due to the combination of a slowly decaying integrand and the upper
limit of the integral being infinity, and it can be hard to deal with numerical infinity.
We will address this with manual intervention.

(a) Investigate the convergence first. Break up the interval of integration into smaller
pieces of size a each, and add up the contributions. Let f (x) = sin2(x)/x2 and
In = ∫ na+a

na f (x) dx , with n = 0 to m, so I 	 ∑
In . Calculate In with quad (see

Sect. 3.5, Program A.1.7), choose a = 100 and m = 4. Compare the numerical and
exact results. How many digits of accuracy is obtained? Increase m to 10, 20, and
describe how fast, or slow, the result I converges.

(b) To improve convergence, first split the integral into two parts, I = ∫ a
0 f (x) dx +∫ ∞

a f (x) dx = I0 + Ir . Show that the remainder can be written as Ir = 1/2a −
1
2

∫ ∞
a dx cos(2x)/x2. Break up the latter integral into subintervals of a as in part 3.3a

above, and sum up the the contributions for m = 4. Add Ir and I0 to obtain the full
integral I . Describe the convergence compares with part 3.3a. Also try a few different
m values, e.g., 10, 20 for comparison. Does it converge faster with the same upper
limit?
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Explain or speculate why.

3.4. Wien’s displacement law. We solved for Wien’s displacement law in the frequency
domain in Sect. 3.3 analytically and again in Sect. 3.5 numerically. Let us express it
in the wavelength domain, where the radiation spectrum is f (x) = x−5/(exp(x) −
1), x = hc/λkT .

(a) Solve for themaximum xm with Sympy in terms of the LambertW function. Express
the result in the form λT = C , and show that C = 2.9 × 10−3 m·K.

(b) Do the same in Scipy with fsolve. You can use the defining equation obtained
with Sympy above.

*(c) Optionally solve the defining equation with the bisection method bisect in Scipy.
Describe how you chose the root bracket.

3.5. Calculation of expansion coefficients. Let the wave function in the infinite potential
well be ψ(x) = Ax2(a − x), 0 ≤ x ≤ a. Carry out the following calculations with
Sympy.

(a) Find the normalization constant A such that
∫ a
0 |ψ(x)|2 dx = 1.

(b) Make a prediction whether you expect the expansion coefficient cn to be zero for
even n as was the case discussed in Sect. 3.3 (see Eq. (3.1) and also Sect. 7.3.1).
Write down your prediction.

(c) Calculate cn and the sum
∑

n c
2
n (see Program A.1.5). Explain the results and

compare them with your prediction.
*(d) Repeat the above with Scipy (see Program A.1.7) for 1 ≤ n ≤ 10. What is the

dominant term, why? Also use Numpy functions for sine and square roots first, then
replace them with Sympy ones (import the latter, of course). Optionally calculate∑

n c
2
n for the first 10 terms. Discuss your observations.

3.6. Fourier transform.

(a) Given ψ(x) = A exp(−a|x |), a > 0, compute its Fourier transform defined as
φ(k) = (2π)−1/2

∫ ∞
−∞ ψ(x) exp(−ikx) dx . Help Sympy with specific assumptions

such as a is positive and k real. The result φ(k) is known as a Lorentzian. Graph
φ(k).

(b) If ψ(x) represents a wave function in position space, then φ(k) is the wave function
in momentum space, and can also be regarded as an expansion coefficient like cn in
Exercise 3.5 but in the continuous variable k. Show that if ψ(x) is normalized, so is
φ(k), namely

∫ ∞
−∞ φ2(k) dk = 1.
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3.7. SHO in the forbidden region. Calculate the probability of the simple harmonic
oscillator in the first excited state n = 1 in the classically forbidden region. Is the
probability larger or smaller than that of the ground state (Sect. 3.3.2)? Explain.
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4Basic Algorithms

Symbolic computation discussed in the last chapter is an important component in scientific
computing where numerical methods are also essential. We discuss select, elementary algo-
rithms that are basic building blocks commonly used in scientific computing. We briefly
introduce each algorithm mainly for quick reference. Applications and more detailed dis-
cussions where appropriate can be found in the next chapters focusing on specific problems.

4.1 Finite Difference

The basic idea of finite difference is to replace infinitesimals in calculus with chunks of finite
size in numerical computation. Let us suppose we have a function f (xn) known at discrete
points xn , n = 0, 1, 2, ... is an integer. Unless noted otherwise, the points xn are assumed to
be equally spaced, but this does not have to be the case in general. The interval is usually
denoted by �x , then xn+1 = xn + �x , and often it is useful to denote fn ≡ f (xn).

Numerical Differentiation

First Derivatives
We associate the first derivative with the slope of a function at a single point. However,
because a slope indicates a trend, we cannot obtain the first derivative if the function is
known only at a single point. In the absence of a function in terms of a continuous variable,
numerical first derivatives require at least two points.

Given f (xn) and f (xn + �x), the slope is approximated by the straight line between the
two points, and the first derivative is
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f ′ = f (xn + �x) − f (xn)

�x
= fn+1 − fn

�x
. (4.1)

This is a first-order result. For example, if x = x(t) is the position of a particle as a function
of t (the independent variable), the velocity is given by the first derivative, v = dx/dt �
�x/�t with �x = xn+1 − xn (see Eq. (5.1)).

We usually think of f ′ as the first derivative at xn , but it could equally be that at xn+1.
This ambiguity cannot be resolved with only two point, and in fact it can be used to our
advantage to obtain a better approximation next.

Improved First and Second Derivatives
To obtain improved first derivatives as well as second or higher derivatives with an estimate
of local error, let us begin with the Taylor series around x to third order,

f (x ± �x) = f (x) ± f ′�x + 1

2
f ′′(�x)2 ± 1

3! f
′′′(�x)3 + O((�x)4). (4.2)

Now we can find f ′ with a cancellation trick by subtracting both sides of Eq. (4.2)
simultaneously,

f (x + �x) − f (x − �x) = 2 f ′�x + O((�x)3),

so even terms cancel out, and the local error is of the order O((�x)3). Dividing out 2�x ,
we have

f ′(x) = f (x + �x) − f (x − �x)

2�x
+ O((�x)2), or f ′

n = fn+1 − fn−1

2�x
. (4.3)

Relative to Eq. (4.1), this result is second-order accurate, and has no ambiguity as to what
point it refers. This three-point formula is just the average of f ′(xn+1) and f ′(xn−1) from
Eq. (4.1), and so appropriately named the midpoint approximation.

For the second derivative, we add both sides of Eq. (4.2) to cancel out odd terms to
obtain f ′′,

f ′′(x) = f (x − �x) − 2 f (x) + f (x + �x)

(�x)2
+ O((�x)2), or f ′′

n = fn−1 − 2 fn + fn+1

(�x)2
.

(4.4)
The above results is also accurate to second order.

Again, given the position as a function of time x(t), its second derivative is the accel-
eration, a = d2x/dt2 � (xn−1 − 2xn + xn+1)/(�t)2. Actually, it is precisely this formula
that is used in the wave equations, Eqs. (6.16), (6.19a) and (6.19b). One could continue the
process to obtain higher derivatives, see Abramowitz and Stegun (1970).
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4.2 Numerical Integration

Numerical integration, the inverse operation of numerical differentiation, is often necessary
in scientific computing. Given a function f (x), the goal of numerical integration is to find
the integral,

I =
∫ b

a
f (x) dx . (4.5)

Of course, we are assuming the integral is usually not known analytically, except for other
purposes such as for testing. It is a good idea to check whether analytic solutions exist via
tables of integrals (see Gradshteyn and Ryzhik 1980) or algebraic packages such as Sympy
(Sect. 3.3).

The integrand f (x) may be continuous, but can also exist as a set of data points. Either
way, we wish to find the approximate area under the curve efficiently and accurately. The
trapezoid method is a simple yet illustrative process.

Suppose the interval [a, b] is divided into N , equidistant subintervals, so �x = (b −
a)/N . If we connect the adjacent points fn by a straight line, each subinterval is a trapezoid,
with an area given by ( fn + fn+1) × �x/2. If we add up up all N subintervals, we have the
total integral

I =
(

f0
2

+ f1 + f2 + · · · + fN−1 + fN
2

)
× �x . (Trapezoid rule) (4.6)

Because the interior points are counted twice in the summation, the coefficients (weights)
in front of f1 to fN−1 are 1.

An easy improvement can be made to the trapezoid method. Instead of straight lines
between two adjacent points, a parabola is chosen to fit the three points over a pair of
neighboring subintervals. The area under the parabola between xn−1 and xn+1 is ( fn−1 +
4 fn + fn+1) × �x/3. This is the Simpson method. Now adding up all pairs, and counting
the edges of each pair twice, the weights would alternate between 4/3 and 2/3 for the interior
points, yielding a total integral as

I = ( f0 + 4 f1 + 2 f2 + · · · + 2 fN−2 + 4 fN−1 + fN ) × �x

3
. (Simpson rule) (4.7)

For the Simpson method, the number of subintervals N should be even because it works in
pairs.

In practice, the Simpsonmethod is efficient and accurate for smooth integrands, provided
N is sufficiently large. It is especially useful for functions that are onlypiece-wise continuous,
or in the case of discrete data points such the datasets from simulations or measurements.

One can adjust N to control accuracyof theSimpsonmethod. For oscillatory functions and
better accuracy control, more efficient integration schemes would be preferred. A general-
purpose integration routine is offered via Scipy (Sect. 3.5), called quad (quadrature, a math
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jargon for numerical integration). It also has a standard simps routine, of course. To use
quad, supply a user-defined function and the integration limits.

In [1]: import numpy as np

from scipy.integrate import quad, simps

def psi(x):

return x*(a-x)

a = 1.0

quad(psi, 0, a)[0] # [0] contains integral

Out[1]: 0.16666666666666669

Because quad returns two values in a list, the integral and an error estimate, we select the
first element only, the integral value.

The Simpson’s method is very handy for a variety of tasks on the fly. To use simpson,
simply provide the x and f data. For example, in quantum mechanics we often need to
calculate normalization and expectation values given a wave function ψ(x), such as 〈x〉 =∫ |ψ|2x dx , 〈x2〉 = ∫ |ψ|2x2 dx and the like. We can use Simpson’s method as follows.

In [2]: x = np.linspace(0, a, 21)

wf = psi(x)

norm = simps(wf**2, x)

simps(wf**2*x, x)/norm, simps((wf*x)**2, x)/norm

Out[2]: (0.5000000000000001, 0.28573191920201996)

The wave function ψ(x) = x(a − x) is assumed to be within [0, a] (infinite potential well,
see Sect. 7.3.1). We used 20 subintervals with a grid size 0.05, which appears adequate in
accuracy judging from the closeness of the results to the exact values, 〈x〉 = a/2 and 〈x2〉 =
2a2/7 (see Exercise 4.6). Because it is not normalized, we need to divide the averages by the
normalization norm. Note 〈x2〉 > 〈x〉2, so the uncertainty defined as �x = √〈x2〉 − 〈x〉2
is nonzero. The process requires us to supply only the wave function. Subsequent operations
manipulate the data points only, and no new function needs to be defined.

4.3 ODE Solvers

Ordinary differential equations (ODEs) are common in science and engineering problems.
For instance, to describe the motion of a particle (Chap. 5), we need a pair of ODEs like
Eq. (5.7) for the position x(t) and velocity v(t),

dx

dt
= v,

dv

dt
= a. (4.8)

Equation (4.8) is a typical system of coupled ODEs because the changes in position and
velocity are interdependent. If we know the net force acting on a particle, we will know
the acceleration a. The trajectory (solution) can be determined from Eq. (4.8) once the
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initial position and velocity are given. Numerical methods for solving ODEs are discussed
in context to specific problems in Chap. 5. Here, we only outline the general idea for quick
reference.

4.3.1 Euler’s Method

The solutions to a set of coupled ODEs is basically an initial-value problem. It is intuitive to
understand that a direct method would be to march forward one step at a time, starting from
the initial conditions. Equation (4.1) hints at a straightforward time-stepping scheme. For
example, applying Eq. (4.1) to dx/dt = v of Eq. (4.8), andmaking appropriate substitutions
( f → x , x → t , f ′ → v), we have for position stepping, v = (xn+1 − xn)/�t . We can
similarlyfindvelocity stepping to bea = (vn+1 − vn)/�t . Expressing the end-of-step values
in terms of the start-of-step values gives

xn+1 = xn + vn�t, vn+1 = vn + an�t . (Euler’s method) (4.9)

Equation (4.9) is the Euler’s method, the simplest way to move forward one step. If a is
nonzero, velocity will change between steps. That is why we have used vn instead of just
v in the position stepping in Eq. (4.9), in keeping with forward time-stepping. Similarly, if
acceleration changes with time, we need to use an = a(tn). By combining both the position
and velocity stepping methods, we can solve any motion with changing velocity due to
arbitrary acceleration (see Eq. (5.6), Sect. 5.2).

4.3.2 Euler-Cromer Method

Sometimes the acceleration may not depend on time explicitly but implicitly via position.
This is the case for the simple harmonic oscillator (Sect. 5.5.1) where the acceleration is a
function of position a(x) because the spring force is position dependent. Then, consistency
would seem to suggest that we use a(xn) in Eq. (4.9). It turns out that would be wrong.
Actual results show the correct way is to use a(xn+1) instead,

xn+1 = xn + vn�t, vn+1 = vn + a(xn+1)�t . (Euler-Cromer method) (4.10)

This modification, known as the Euler-Cromer method, effectively uses the latest avail-
able position in the calculation of acceleration. As later discussion in Sect. 5.5.1 shows,
this method preserves important physical properties, including energy conservation. The
Euler-Cromer method is as easy to use as standard Euler’s method, and should be used in
numerically solving conservative systems.
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4.3.3 LeapfrogMethod

TheEuler-Cromermethod is easy to use andworkswell enough for themost part in problems
to be discussed later (Chap. 5). However, it is only accurate to first order. If we want to
increase accuracy, the step size �t will need to decrease, and the method becomes less
efficient.

Luckily, there exists an easy way to make it more accurate and nearly as efficient, with
only a slight tweak. The result is the leapfrogmethod (see Sect. 5.5.3). As the name suggests,
the position and velocity updates are done at different times, leapfrogging each other.

Starting with Eq. (4.10), we first update the position for one half step to the midpoint xm ,
then use it to advance the velocity for a full step, also using xm to evaluate the acceleration
at the midpoint. Finally another half step is taken to obtain the position. One full cycle is
given as

xm = x0 + v0 × �t

2
,

v1 = v0 + a(xm) × �t,

x1 = xm + v1 × �t

2
. (Leapfrog method) (4.11)

At each stage, the method uses the latest position and velocity available. It is accurate to
second order, significantly better than the Euler-Cromer method. This increased accuracy is
achieved due to the calculation of acceleration at xm , effectively the average of the initial
and final positions, exactly the same reason as improved derivative Eq. (4.3) being more
accurate.

The leapfrog method is almost as efficient because, even though Eq. (4.11) consists of
three steps versus two for Eq. (4.10), usually the evaluation of acceleration is the most
costly step, which is the same in both methods. For results to be comparable in accuracy,
the leapfrog method is much faster, see Table 5.1 for performance comparison.

The idea of splitting the calculation of position in the leapfrog method may be used to
our advantage in other situations. One example has to do with motion in cross electromag-
netic fields where both the electric and the Lorentz forces act on an object simultaneously
(Sect. 5.5.3). To simulate themotion correctly, it is necessary to calculate the effect of electric
force in two half-steps like the position (see Eq. (5.24)).

Higher-Order Methods

There exist other higher-order ODE solvers. Among them, the most well-known are the
Runge-Kutta family of methods. In fact, the Euler’s method Eq. (4.9) is the first mem-
ber of the Runge-Kutta family. Other members of the Runge-Kutta family are of second-,
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fourth-, and higher-order accuracy. One can access those higher-order methods with the
Scipy function odeint, a general purpose ODE solver with error control.

4.4 Root Solvers

Given a function f (x), there is a need sometimes to find values of x , where the function is
zero f (x) = 0. Such values are called roots. Root solvers generally fall into two categories:
methods that require a bracket and method that require only a seed.

The bisection method requires a bracket [a, b] where a root is known to exist. A root is
bracketed if the condition f (a) × f (b) < 0 holds. The basic idea is: cut the bracket in half,
find the half where the root lies, and repeat until the bracket is sufficiently small to precisely
locate the root. The advantage of the bisection method is that it never fails to find a root if
the initial bracket is valid. The disadvantage is that it is usually not the fastest root solver.

On the other hand, Newton’s method is usually one of the fastest root solvers. It needs a
seed value to get started. It then tries to project an approximate root at the intersection of the
tangent line and the x axis. The process is repeated until it converges to a root. The success
of the Newton’s method depends on the behavior of function and the initial seed. When it
works, it can be very fast. But unlike the bisection method, Newton’s method can fail to
find a root. So, unless speed is very important, one should almost always use the bisection
method.

Scipy has several root solvers that we can use, bisect and fsolve. The former is the
bisection method just discussed. The latter is a Newton-like method, and requires an initial
seed to get started. The seed is a guess and does not have to be close to the actual root,
though the closer the better. Here we use these two root solvers to find the allowed energies
in a square well potential in quantum mechanics.

In [3]: import numpy as np

from scipy.optimize import bisect, fsolve

def f(E): # allowed energy in square well

s = np.sqrt(E + V0)

return s*np.tan(np.sqrt(2)*s*a) - np.sqrt(-E)

a = 2.0 # width

V0 = 1.0 # depth

bisect(f, -.99*V0, -.7*V0), fsolve(f, -.9*V0)

Out[3]: (-0.8342557172898887, [-0.83425572])

The potential generally supports both even and odd states, respectively referring to its
symmetric or antisymmetric wave functions about the center. The function f defines the
even state energy E satisfying the characteristic equation,

√
E + V0 tan(

√
2(E + V0)a) −√−E = 0, with V0, a being the depth and width of the square well, respectively. It is written

in atomic units where the energy unit is 27.2 eV and length unit 0.529Å (see Sect. 7.3.3).
The bracket is set to [−0.99V0, −0.7V0] for the bisection method, because the root must
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be between the bottom and the top of the well. The initial guess is −0.9V0 for the general
root solver fsolve. Both results agree with each other. For this set of parameters, there
is only one even state (the ground state). There is an odd state, however (see Exercise 4.6).
Note that fsolve returns the roots in an array. It also allows for multiple seeds contained
in an input array, and the output array will be equal in length. The roots, however, may not
be unique because different seeds can converge to the same root.

4.5 Curve Fitting

In analyzing datasets from either measurements or simulations, sometimes we wish to fit
the data points to a known model to extract the parameters, or to determine their trends
and identify possible scaling behavior. Curve fitting is useful in this aspect because it can
compute the best-fit parameters and could also help quantitatively distinguish one model
from another.

To fit to a givenmodel f (x, a, b, · · · ), we compare how close the actual data points dn are
to the predictions fn = f (xn, a, b, · · · ) of the model. The closeness is usually measured by
the least-square error, defined to be � = ∑

(dn − fn)2, where for simplicity all data points
are weighted equally. Now we minimize � to obtain the best-fit parameters.

Scipy has a curve_fit function that does all the leg work for us. An example using
it is shown in Fig. 4.1. The data points show the position as a function of time in free fall
generated with Program A.2.1. To “confuse” the fitting routine, random noise is added to
the data.

Twomodels are used to test fit, one linear and the other quadratic. The quadraticmodel fits
the data better than the linear model as expected. We can also obtain the relevant parameters
such as the initial position, velocity, and gravitational acceleration g from the quadratic fit.
With the level of noise, the best-fit gives g = 9.3 m/s2.

Fig.4.1 The position-time data
in simulated free-fall. Random
noise is added to the data
points. A linear (dashed line)
and a quadratic (solid line) fits
are also shown
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LocatingMinima andMaxima
In data analysis, we often need to find the local minimum or maximum values, or extrema in
general, in the data. Let y be a series of data points. The point yi is a local extremum if it is
either smaller or greater than its nearest (left and right) neighbors. We can write a function
to test the conditions as follows (taken from Program A.2.2).

In [4]: def minmax(y): # return indices of minima and maxima

mini = (y[1:-1]<=y[:-2])*(y[1:-1]<=y[2:]) # minima array

maxi = (y[1:-1]>=y[:-2])*(y[1:-1]>=y[2:]) # maxima array

mini = 1 + np.where(mini)[0] # indices of minima

maxi = 1 + np.where(maxi)[0] # indices of maxima

return mini, maxi

The function minmax takes a 1D input array and returns indices of minima and maxima
as arrays in mini and maxi, respectively (see Program A.2.2 for an example using it). It
checks only the interior points because end points have just one neighbor to one side so they
cannot be extrema by definition.

Index slicing is ideally suited for this problem (see Sects. 2.4.2 and 3.3.2). The condi-
tions yi ≤ yi−1 and yi ≤ yi+1 for local minimum values are checked with the product of
y[1:-1]<=y[:-2] and y[1:-1]<=y[2:], where y[1:-1] holds entries from the
second to the second last elements, y[:-2] from the first to the third last, and y[2:]
from the third to the last elements. All are truth arrays, and have the same length that is two
elements fewer than the original array. Multiplication between two truth arrays is allowed
and is equivalent to logical and. Addition of two truth arrays is also allowed, and is equiv-
alent to logical or (Subtraction and division are also defined but not meaningful in the
current context).1 The conditions yi ≥ yi−1 and yi ≥ yi+1 for local maximum values can
be checked similarly.

The function np.where(mini) returns the indices where the truth array is True.
(np.nonzero would also work as True and False are internally represented by 1 and
0, respectively.) Because array mini begins at the second element relative to the data array
y, we shift it up by 1 to obtain correct indices of minima. The process is analogous for
maxima.

Program A.2.2 illustrates the process of automatically locating minima and maxima.
Test data is generated from a decaying sine function y = exp(−x/2) sin(2πx). The result is
shown in Fig. 4.2. The method is robust and efficient. More applications can be found later
(see Exercise 7.5).

1 Conditional truth array indexing is known as advanced indexing, and is a powerful feature ofNumpy.
Basically, a conditional like a < 0 returns a truth array where elements satisfying the conditional are
set to True, and to False otherwise. The effect is that b[a < 0] selects only those elements of b
at positions where the truth array is True.
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Fig. 4.2 Automatic searching
of local minima and maxima
(Program A.2.2)

4.6 Exercises

4.1. Calculation of expectation values.

(a) Verify the exact values quoted in Sect. 4.2 for 〈x〉 = a/2 and 〈x2〉 = 2a2/7 if the
wave function is ψ = x(a − x).

(b) Using the samewave function as in Exercise 3.5, calculate the expectation values 〈x〉
and 〈x2〉with Simpson’s method. Find the uncertainty�x . Reuse the normalization
constant A if you had already done Exercise 3.5. Otherwise, make sure to account
for the normalization.

(c) Repeat the above calculation with the quad function. How do the results compare
with those of Simpson’s method? Was the grid size adequate?

(d) Calculate the expectation values of inverse powers of x , 〈1/x〉 and 〈1/x2〉. Compare
with part 4.1b, and briefly comment on why 〈1/xn〉 �= 1/〈xn〉.

4.2. Discrete states in the square well potential.

(a) In Sect. 4.4, an example was given for finding the even state energy in a square
well potential. There is another set of odd states with energy E satisfying the
defining equation (in atomic units, used in this exercise), g(E) = √

E + V0 cot[√
2(E + V0) a

] + √−E = 0. For the same parameters a = 2 and V0 = 1, find
the energy of an odd state. This should be the only odd state.

(b) Keeping V0 = 1 fixed but increasing a, devise a method to find the smallest a such
that a second odd state starts to appear.

http://dx.doi.org/10.1007/978-3-031-17646-3_3
http://dx.doi.org/10.1007/978-3-031-17646-3_3
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*(c) Now, keeping a = 2 fixed but increasing V0, find the smallest V0 such that a second
odd state barely exists. Proportionally, is it more effective to increase a or V0 for
the second odd state to appear?

4.3. Energy conserving integrator. Both the Euler and Euler-Cromer methods are first-
order differential equation integrators (Sect. 4.3). But there is a big difference between
them, namely: if the energy of a system is conserved, the Euler-Cromer method keeps
the energy constant (within its first-order accuracy, of course), and the Euler method
does not. We will investigate this next. The classical simple harmonic oscillator (SHO)
in 1D can be described by the differential equations (similar to 3D, Eq. (5.14)),

dx

dt
= v,

dv

dt
= −ω2x . (4.12)

(a) Solve Eq. (4.12) with the Euler method Eq. (4.9). Initialize �t , ω, x0 and v0 (e.g.,
0.1, 1, 1, 0, respectively), then enter the main loop to step forward in time,

In [7]: while t<20:

x = x0 + v0 * dt

v = v0 - x0 * dt

......

x0, v0 = x, v

t = t + dt

Record the position and velocity inside the loop. Plot the x − t and v − t curves.
Describe the change of the amplitudes of x and v with time.

(b) Add a statement in the loop to record the energy as E = 1
2mω2x2 + 1

2mv2 (assuming
m = 1). Plot E as a function of time. Describe the change.

(c) Next use the Euler-Cromer method Eq. (4.10). The only change would be in updating
the velocity,

In [8]: while t<20:

x = x0 + v0 * dt

v = v0 - x * dt

......

Again graph the x − t and v − t curves. How do the amplitudes of x and v change
with time? Compare with the Euler method.

(d) Finally, plot the energy as a function of time. Does the energy stay bounded? You
may notice that there are small oscillations around the initial energy. How can we
reduce them?
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5Force andMotion

In the first part of discussions up to now, we have introduced basic elements of programming
and toolboxes for scientific computing. Our goal is not computation in and of itself, although
it is an important and necessary component. Rather, we aim to solve physical and engineering
problems with computational methods. In the second part starting from this chapter, we
consider applications of computational techniques in the context of specific problems ranging
from classical to quantum mechanical, and from simple to complex systems.

5.1 Motion with Constant Velocity

Our physical world is constantly in motion, and the study of motion is called kinematics.
We begin with the simplest motion described by Newton’s first law: in the absence of a net
external force, an object stays in motion with constant speed and direction.

5.1.1 Kinematic Concepts

We can think of the object as a point particle, having a well-defined position x at time t (the
assumption of a well-defined position is challenged in quantum mechanics, see Chap. 7).
Under Newton’s first law, it necessarily follows that the particle will move along a straight
line, which we regard as the x-axis. To follow the motion, we can mark the positions of the
particles on the x-axis as position-time pairs, namely x0 at t0, x1 at t1, and so on, with the
usual convention of the initial condition starting from x0 and t0.
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What questions could be asked and what concepts developed from those data points?
The most direct question we might ask is this: how fast will the particle move from one
position to another, say x0 to x1? The answer depends on two factors: how far apart the
positions are, �x = x1 − x0 (distance, or more precisely, displacement), and how long the
time interval is, �t = t1 − t0. Within a given time interval, the larger the displacement, the
faster the motion; and within a given displacement, the smaller the time interval, the faster
the motion. This motivates us to develop a “fastness” concept, v, to measure this as a ratio

v = �x

�t
. (5.1)

We recognize this “fastness” thus defined is just the concept of velocity we first encounter in
kinematics. Either a larger�x or a smaller�t would yield a larger v, meaning faster motion
as is commonly perceived. Note, however, velocity v can be positive or negative, carrying
the same sign as�x . If we strip the sign information, we obtain speed |v|. This careful albeit
straightforward exercise shows that such concepts are constructs purposefully formulated
to characterize motion, and not simply found in nature the way objects are. Other concepts
we encounter going forward such as acceleration (Sect. 5.2) are constructed similarly.

5.1.2 Motion with Finite Time-Stepping

Let us return tomotionwith constant velocity described byNewton’s first law.Given velocity
v in Eq. (5.1), we can predict the change of position �x after time interval �t as

�x = v × �t . (5.2)

Though Eq. (5.2) is equivalent to Eq. (5.1), it implies an important concept of time
stepping, namely, given the position x0 at t0, we can obtain the position x1 at t1 as x1 =
x0 + v × �t . Subsequent positions xn may be calculated by stepping forward from the
previous position, one step at a time, assuming equal time interval:

x1 = x0 + v × �t,

x2 = x1 + v × �t,

· · · · · ·
xn = xn−1 + v × �t . (5.3)

The forward-stepping method Eq. (5.3) is also called the Euler method in numerical compu-
tation, the simplest method for solving ordinary differential equations. The discussion here
provides context to time stepping first described in Sect. 2.12.1.
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How do we track the motion computationally? Admittedly it is vastly over-complicating
matters by invoking computation for such a simple motion with constant velocity. However,
this is useful precisely because the simplified problem allows us to understand the method
(algorithm) clearly, test it against known results, and extend to nontrivial cases as we will
see shortly. It is a proven successful practice to start with simple physical models and extend
them to more complex situations.

Now is a good time for us to model the time-stepping process. First let us use the Jupyter
notebook as a calculator, stepping forward once as follows.

In [1]: x0 = 0.0
v = 2.0
dt = 0.1
x1 = x0 + v*dt
print(x1)

The code introduces three variables v, x0 and�t and assigns arbitrary values (SI units are
assumed unless stated otherwise). Then x1 is calculated according to Eq. (5.3), and the result
is printed. Make sure the result is as expected. Should an error occur, check the variable
names and other issues like statement alignment. See Sect. 2.11 for finding and fixing errors.

Usually we are interested in a series of data points. Suppose we wish to move n steps,
the code to accomplish that is logically via a loop.

In [2]: x0 = 0.0
v = 2.0
dt = 0.1
for i in range(10):

x1 = x0 + v*dt
print(x1)
x0 = x1

The initial assignment is the same as before. We have added a for loop, iterating
n = 10 steps. In each step, we calculate the position the same way as in the single-step code,
print the values, and most important, reseed the old value x0with the new x1 in preparation
for the next step. The loop block ends after the last statement within the same indentation.

Again, make sure to check the results are as expected. You will notice that scanning a
lot of numbers is not the best way to spot trends or patterns. This is where graphics and
visualization is important.

Let us now graph the results. To do so, we extend the code as follows.
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Program 5.1 Motion with constant velocity.

1 import matplotlib.pyplot as plt
x0 = 0.0

3 v = 2.0
dt = 0.1

5 t = 0.0
tlist = []

7 xlist = []
for i in range(10):

9 tlist.append(t)
xlist.append(x0)

11 x0 = x0 + v*dt
t = t + dt

13
plt.plot(tlist, xlist)

15 plt.xlabel('time (s)')
plt.ylabel('x (m)')

17 plt.show()

We first import the standard plotting library matplotlib and give it the common alias
plt for easy reference later (see Sect. 2.10). We introduce a new variable t to keep track of
time, and two lists, one for time and one for position, needed to store the results for plotting.
In the loop, the current time and position are added to the respective lists using the append
method built into Python. Next we update the position and time. Note that we get rid of
x1 used earlier. We can do this because the assignment operator = in programming is not
an equality statement in the mathematical sense. The statement takes the value of x0, add
v*dt to it, and assigns the result back to x0, such that the variable x0 has changed its
value after execution of the statement. This way we avoid having to reseed x0 like before.
Of course we could have done the same thing before as well, but for clarity we chose to use
both.

After the loop, we plot x verses t from stored values in the lists, add axis labels and units
that proper figures should have. The last line plt.show() displays the composed figure in
memory (see Sect. 2.10. It may not be needed depending on your environment, e.g., Jupyter
notebooks do not need it).

Now we have built a fully functional program complete with visualization. We should
see a straight line showing the linear increase of position with time. We will extend the
program to motion with constant acceleration next. However, we can play what-if scenarios
with different initial conditions. For instance, what effect would we expect if we change
the initial position? The velocity? Make a prediction what would happen if the velocity is
negative; sketch the predicted x vs. t curve; run the program with a negative velocity (say
−2.0) and compare the results with your prediction (also see Exercise 5.1).
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5.2 ModelingMotion with ChangingVelocity

Motion with constant velocity is a special case of Newton’s first law. Generally, we expect
the particle to speed up or slow down with changing velocity. How do we characterize the
change of velocity? Similar to change of position discussed earlier, we can record change of
velocity by setting up an axis for velocity, marking its values v0 at t0, v1 at t1, and so on. Just
as we asked how fast a particle goes from one point to another, we could ask how quickly
velocity changes from one value to another on the velocity axis. Again, the same reasoning
leads us to consider �v = v1 − v0 and �t = t1 − t0: the larger the �v for a given �t or the
smaller the �t for a given �v, the quicker the change. Consequently, we develop a concept
to measure this as a ratio a

a = �v

�t
. (5.4)

Equation (5.4) tells us the rate of change of velocity, namely, acceleration. Like velocity,
acceleration also carries a sign, the same sign as �v, and measures the change of velocity,
not of speed. So it is possible for a particle to either speed up or slow down with a positive
acceleration. For example, changing velocity from 0 to 10 m/s or from −10 m/s to 0 over
some �t leads to the same positive acceleration, but the motion is speeding up in one case
and slowing down in the other.

Newton’s second law governs directly how velocity changes with a = F/m, given the
net force F acting on a particle of mass m. Knowing a, we are able to follow change of
velocity in the same parallel way to change of position,

�v = a × �t . (5.5)

5.2.1 Dynamic Equations of Motion

Both Eqs. (5.2) and (5.5) stand on their own merit, but they present a very powerful combi-
nation that each alone would not achieve: the combination allows us to extend motion from
constant to arbitrarymotionwith changing velocity.We already know how to update position
given v, now we can also update velocity in the same way given a. This way both position
and velocity can be updated simultaneously, and we can describe any dynamic motion when
the two equations are coupled.

The recipe for the extension is similar to Eq. (5.3):

x1 = x0 + v0 × �t, v1 = v0 + a × �t,

x2 = x1 + v1 × �t, v2 = v1 + a × �t,

· · · · · ·
xn = xn−1 + vn−1 × �t, vn = vn−1 + a × �t . (5.6)
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Now we have a powerful method at our disposal with Eq. (5.6), and let us take it for
a spin. Again, consider the simplest motion with changing velocity: motion with constant
nonzero acceleration a, such as in free fall. Velocity will change at a constant rate. We aim
to extend Program 5.1 in this case as follows.

Program 5.2 Motion with constant acceleration.

1 import matplotlib.pyplot as plt
a = 1.0

3 v = 2.0
x = 0.0

5 dt = 0.1
t = 0.0

7 tlist = []
xlist = []

9 vlist = []
for i in range(20):

11 tlist.append(t)
xlist.append(x)

13 vlist.append(v)
x = x + v*dt

15 v = v + a*dt
t = t + dt

17
plt.plot(tlist, xlist)

19 plt.xlabel('time (s)')
plt.ylabel('x (m)')

21 plt.figure()
plt.plot(tlist, vlist)

23 plt.xlabel('time (s)')
plt.ylabel('v (m/s)')

25 plt.show()

This program is very similar to the previous onewith constant velocitywith several additions:
constant acceleration a, a list to store velocity, velocity update inside the loop, and an
additional figure to plot velocity-time curve. Note that now position update requires current
value of velocity, and velocity changes with each iteration. Though we assume a constant
acceleration here, in many situations the force depends on the position, so acceleration, and
hence velocity update, requires current value of position. The twovariables are co-dependent,
or coupled.

We often describe problems in physics and engineering in terms of ordinary differential
equations (ODEs). In the limit of infinitesimal change lim�t → dt ,we can rewriteEqs. (5.1)
and (5.4) as a set of ODEs,

dx

dt
= v,

dv

dt
= a. (5.7)
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Fig. 5.1 Motion with constant acceleration. Position- and velocity-time curves, respectively

We speak of these two ODEs as coupled equations. The algorithm of Eq. (5.6) is the Euler’s
method for the ODEs, which is implemented in Program 5.2.

Figure5.1 displays the results from Program 5.2. The position-time line is now curved
rather than straight, a consequence of velocity changing with time. If we choose a time
window (interval�t) and slide it back and forth on the time axis, the change of position will
be different with the same window, as expected. We also expect the amount of change (�x)
to vary depending on how curved the line is (i.e., the curvature). According to Eq. (5.1),
velocity is the slope of the position-time curve (rise over run). The slope on the x − t
curve is becoming steeper in this case, so velocity must be increasing. Indeed, we see
velocity increasing linearly with time, consistent with what we expect. The same reasoning
from Eq. (5.4) leads us to the conclusion that acceleration is the slope of the velocity-
time curve. Here the v − t curve is a straight line, meaning a constant slope and constant
acceleration, exactly what we assumed. To be precise, Eqs. (5.1) and (5.4) give average
velocity and acceleration, and Eqs. (5.7) give instantaneous velocity and acceleration (see
see Exercise 5.1).

Again one can run the program with different initial conditions to see the effects. For
instance, what if the initial velocity is negative? what if acceleration is negative? In each
case, make a prediction as to what the the position- and velocity-time curves look like, sketch
them, then run the program to check your predictions (see Exercise 5.1).

From the discussion of the results, the program seems to be working as expected. In
fact we should validate programs further against analytic solutions wherever possible. For
motion with constant acceleration, they are available from introductory physics as

x = x0 + v0t + 1

2
at2, v = v0 + at . (5.8)

The position x changes quadratically with time (a parabola) and velocity linearly with time.
To confirm, we should plot the analytic results along with the numerical ones. We leave this
task as an exercise (Exercise 5.1).
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Now that step by step we have built and validated a program with Euler’s method for
1D motion, can we extend it to 2D or 3D motion, as well as non-constant acceleration? We
discuss these extensions next.

5.3 Projectile Motion

Arguably, projectile motion is the best well-known problem in physics. It is observable in
daily life and one of the first real-world examples encountered in introductory physics. On
the one hand, although projectile motion is multidimensional, it is readily solvable if air
resistance is neglected. On the other hand, realistic projectile motion requires us to take
into account air resistance, or drag. Because inclusion of drag forces renders the problem
unsolvable analytically, wemust rely on computation to solve it. Projectile motion is an ideal
example to study computational techniques because it is relatively simple, intuitive, and its
basic features are already familiar to us. Coupled with analytic solutions in 2D, we can
readily test and validate those techniques in the limit of small air resistance where analytic
solutions are a good approximation.

In ideal projectile motion, the particle moves under gravity directed vertically downward.
Assuming x and y in the horizontal and vertical directions, respectively, the equations of
motion Eq. (5.7) are

dr
dt

= v,
dv
dt

= −gĵ . (5.9)

These equations are straightforward generalizations fromEq. (5.7), with x , v, and a replaced
by their respective vector equivalents as r = xı̂ + yĵ , v = vx ı̂ + vy ĵ , and a = −gĵ , where
ı̂ and ĵ are the usual unit vectors, and g = 9.8 m/s2 the constant gravitational acceleration.

Correspondingly, the time-stepping method takes on the vector form �r = v × �t and
�v = a × �t = −g × �t ĵ , and we can express the vector version of Eq. (5.6) as

rn = rn−1 + vn−1 × �t, vn = vn−1 − g × �t ĵ . (5.10)

Similarly, the previous program just needs to be extended via vector operations. For-
tunately, this can be achieved simply with the powerful numpy support of vector array
operations. The full program is given elsewhere (Program A.3.1). Structurally, it is materi-
ally the same as Program 5.2, but instead of scalars, we initialize acceleration, velocity and
position as 2D numpy arrays:

In [3]: a = np.array([0.0, -g])
r = np.array([0.0, 0.0])
v = np.array([4.0, 9.0])

As discussed earlier (Chap. 2), unlike lists, these arrays support vector operations. Take
this line for example,

In [4]: r = r + v*dt
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Each element of velocity is multiplied by the time step and then added to position, again
element-wise. It behaves effectively like real vector operations in r′ = r + v × �t as fol-
lows:

r′ = (x + vx × �t)ı̂ + (y + vy × �t)ĵ . (5.11)

After the calculation, we convert the lists to numpy arrays as

In [5]: rlist = np.array(rlist)

We do this so we can obtain the components via array slicing. The x− and y−components
are stored in the first and second columns, respectively, rlist[:,0] and rlist[:,1].
For example, the following graphs the x− and y−components of position versus time,

In [6]: plt.plot(tlist, rlist[:,0], tlist, rlist[:,1])

Velocity can be graphed in the sameway, and the full results (not shown here, see program
output) should be very familiar to anyone who studied projectile motion from introductory
physics. The horizontal position-time curve is a straight line because the horizontal velocity
is constant due to the fact that gravitational acceleration is in the vertical direction.

As a result, the corresponding vertical position-time curve is a downward parabola, and
the vertical velocity decreases linearly with its slope equal to −g. Note that at the top of
the trajectory, namely, maximum y−position, vy is zero but ay is still −g, not zero as is
sometimes misconstrued. This is because we cannot tell velocity looking at a single data
point in position, and we need at least two points to determine the change in position and
obtain velocity from Eq. (5.1). Likewise, we cannot determine acceleration with a single
data point in velocity, and we must look at the trend of velocity between at least two points.
In this case vy − t clearly shows a constant slope everywhere, hence constant acceleration
everywhere, including at the top.

Though the program is working as expected, we still should compare the results with
well-known analytic solutions. For example, we can test the accuracy of the trajectory and
of energy conservation, and determine what factors affect the accuracy (see Exercise 5.2).
We can also try virtual target practice (Exercise 5.3). Such validation is important because
as we will discuss next realistic projectile motion involving drag has no known solutions.

5.4 Projectile Motion with Air Resistance

Earlier we discussed ideal projectilemotion under gravity only. From everyday life, we know
air resistance, or drag, affects motion in the air, as someone observing a feather flapping up
and down can confirm. We can effectively model the force from air resistance empirically
as a velocity dependent force (see Taylor (2005)),

Fd = −b1v − b2vv. (5.12)
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In Eq. (5.12), v is the velocity of the projectile relative to air, v = |v| =
√

v2x + v2y the

speed, b1 and b2 are constants for the linear and quadratic drag forces. Note that the signs
before the terms are negative indicating the drag force being opposite to the direction of
velocity. Clearly there is no drag if v = 0.

The linear term in Eq. (5.12) is a viscous force (sticky air molecules), and is important
at low speeds when airflow is smooth (laminar flow). The origin of the quadratic force
in Eq. (5.12) comes from a moving object displacing and accelerating air mass in front
(turbulent flow). It is dominant practically at all but the lowest speeds. The coefficients b1
andb2 dependon the shape and surface properties of the object. Thoughboth canbemeasured
experimentally or modeled theoretically (Frohlich (1984)), we will assume nominal values
for illustration purposes.

The acceleration due to the drag force Eq. (5.12) is ad = Fd/m = −c1v − c2vv with
c1,2 = b1,2/m, assuming mass m. The equations of motion can be modified from Eq. (5.9)
to include this acceleration as

dr
dt

= v,
dv
dt

= −gĵ − c1v − c2vv. (5.13)

Because of the quadratic drag force, these equations no longer admit closed-form analytic
solutions, so we have to solve them numerically. But this presents no particular hurdle based
on Program A.3.1. We only need to include ad according to Eq. (5.13). The modified
Program A.3.2 is structurally similar to Program A.3.1. The main difference is this:

In [7]: speed = np.sqrt(v[0]**2 + v[1]**2)
a = ag - c1*v - c2*speed*v

The acceleration now includes both linear and quadratic drag forces. The vector nature of
the velocity array makes the calculation of acceleration straightforward. Note the main loop
is also changed to a while-loop terminating once the y-position becomes negative instead
of a fixed number of steps. We can regard the x-position at the end as the range.

The results fromProgramA.3.2 are shown in Fig. 5.2.We see immediately key differences
from ideal projectile motion. The x position is curved instead of being straight. It bends
downward, reflecting the fact the vx is decreasing because the drag force induces a negative
horizontal acceleration, as well as a vertical one, causing vx to decrease, as can be seen from
the corresponding vx line.

The y position looks roughly like a parabola, but a careful examination shows that it is
no longer front-back symmetric, namely, the rate of rising before the top is different than
rate of the falling after. The asymmetry would be also observable in the trajectory (y vs. x ,
not shown, Exercise 5.4). Of course, the range is shorter as well due to the x-position curve
bending downward. Both velocity curves show non-constant slopes because of drag force
changing with velocity. They level off with time, which, if allowed to continue sufficiently
long, will reach a constant value, or terminal velocity. In addition, drag is a dissipative force,
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Fig. 5.2 Position- and velocity-time curves, respectively, in projectile motion with drag. Only
quadratic drag is included, specifically, c1 = 0 and c2 = 0.2. The blue and orange colors correspond
to x− and y− components, respectively

and mechanical energy will not be conserved as is in the ideal case. All of these effects will
be enhanced if the drag coefficient is increased, showing the importance of drag relative to
gravity. This will be explored in Exercise 5.4.

5.5 Periodic Motion

Having applied and tested the time-stepping method with projectile motion, we now can use
the same technique to study a special kind of motion, periodic motion, which can be found
all around us. Examples include the simple pendulum, planets orbiting the sun, heart beat,
and so on. In this section we discuss two rather different yet closely related fundamental
systems, the simple harmonic oscillator and planetary motion under gravity, the only two
systems known to support closed orbits.

5.5.1 Simple Harmonic Oscillator

The simplest periodicmotion is the simple harmonic oscillator (SHO), and arguably themost
significant model in physics. The SHO consists of a particle of mass m attached to a spring
with a spring constant k. The force is described by Hooke’s law, F = −kr, where r is the
displacement from equilibrium. This force is an empirical force as a result of electromagnetic
interactions of many atoms, and not a fundamental force in nature.

We can write down the equations of motion for the SHO like before,

dr
dt

= v,
dv
dt

= a, a = −ω2r, (5.14)

whereω = √
k/m is the natural oscillation frequency. The solutions of the SHO are periodic

and well-known, but it still benefits us to simulate it numerically.
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Fig. 5.3 Position-time curves (left) and the trajectory y vs. x (right) for a 2D simple harmonic
oscillator. The blue and orange colors correspond to x− and y− components, respectively

Applying the Euler’s method to Eq. (5.14) as before in similar cases, we can write an
SHO program as shown in Program A.3.3 (also see GlowScript version in Appendix A).
Overall, it is similar to other programs developed in this chapter. The output is shown in
Fig. 5.3.

Figure5.3 indeed shows sinusoidal oscillations in the position-time curves as expected.
The frequency of oscillation is ω, and the period is T = 2π/ω. In fact, it is helpful to rewrite
the first-order ODEs of Eq. (5.14) as a compact second-order ODE,

d2r
dt2

= −ω2r, (5.15)

This is the well-known harmonic equation admitting sinusoidal solutions

ri = Ai sin(ωt + φi ), (i = x, y), (5.16)

where Ai and φi are the amplitude and the phase, respectively, two constants for a second-
order ODE to be determined from initial conditions. We leave it as an exercise to extract
these parameters from Fig. 5.3 or Program A.3.3 (Exercise 5.5).

The trajectory is closed, meaning the particle will repeat the same orbit after each period.
In fact, the orbit is an ellipse rotated about, and centered at, the origin. The shape, namely the
eccentricity, and the orientation of the ellipse depend on the initial condition. Interestingly,
the period is independent of the shape of the orbit or the initial conditions, in sharp contrast
to planetary motion under gravity to be discussed next in Sect. 5.5.2.

The core of the program concerns this segment,

In [8]: r = r + v*dt
a = - omega**2 * r
v = v + a*dt

where we update the position vector, then calculate acceleration using the latest position,
and update velocity last. This is done intentionally.
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It might seem that we should have calculated the acceleration first using the position
value at the beginning of the step before the position update. However, if we had done so,
the position would no longer be exactly sinusoidal,and the trajectory would not be a closed
ellipse. Instead, the oscillation amplitudeswould increasewith time, and the trajectorywould
spiral outward. So the order is important. We leave it as an exercise (Exercise 5.5) for the
reader to verify this.

The reason is because the Euler’s method is not exact, and a small error can grow with
each step, often growing exponentially in oscillatory motions. Fortunately, it can be shown
that the error can be constrained by using the latest position to calculate acceleration and
update velocity subsequently. Such a change of order in Euler’s method is known as the
Euler-Cromer method Eq. (4.10). The latter should be applied to physical systems whenever
possible, but it is crucial to do so in periodic motion as well as in conservative systems.

That the Euler-Cromer method works so well can be qualitatively understood as follows.
Imagine a particle connected to a spring is moving away from the equilibrium and slowing
down. Suppose xn is just one step before reaching the turning point (maximum stretch).
The predicted next position xn+1 would be the turning point where the velocity should be
zero. But if we used a(xn) to predict the next velocity, it would be close to but not be zero,
causing an overshoot. Unphysical excess energy would build up. Instead, using a(xn+1)

would prevent the overshoot, and thus conserves energy.
Incidentally, the Euler-Cromer method is a member of the so-called symplectic methods.

They preserve important physical properties including energy, closed path, and time reversal.
These methods have high physics fidelity, and should be preferred over methods which may
be of higher order but of less fidelity.

Similar to Eq. (5.6), we can express the Euler-Cromer method in vector form as follows,

r1 = r0 + v0 × �t,

v1 = v0 + a(r1) × �t . (Euler-Cromer) (5.17)

This method is simple yet powerful enough for many problems as the next related example
shows.

5.5.2 Planetary Motion

In astrophysical and planetary systems, motion is governed by Newton’s law of gravity,

F = −GMm
r
r3

. (5.18)

Here, F is the gravitational force between two bodies of masses M and m, respectively,
separated by a distance r , andG is the gravitational constant. The force is mutually attractive
as indicated by the negative sign. If we take the position vector going from M to m, then
Eq. (5.18) is the force acting on mass m. For simplicity, we assume m is much smaller than
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M , i.e., m � M in the following, such that M remains fixed in space, and m moves around
M . Unlike the spring force in SHO, gravity is a fundamental force in nature.

With gravity given by Eq. (5.18), the equations of motion become

dr
dt

= v,
dv
dt

= a, a = −GM
r
r3

. (5.19)

Note that the smaller mass m drops out after cancellation in acceleration a = F/m. Except
for the specific form of acceleration, these equations are the same as those of SHOEq. (5.14),
so we expect the simulation programs to be also analogous.

But there is one important factor to consider before jumping in, scale. Astrophysical
systems are large, so the use of SI units will be cumbersome and unnatural in numerical
computation. Furthermore, these values in SI units are so astronomically large that the
results often make little intuitive sense in terms of magnitude. It is much preferred to do the
calculations in units natural to the system being considered.

To see this, let us consider a test body of mass m moving in a circular orbit of radius a
around the larger mass M . The gravitational acceleration is equal to centripetal acceleration,
and according to Eq. (5.19), we have GMm/r2 = mv2/r , or GM = rv2. A natural unit for
length is the radius a, and because the the motion is periodic, a natural unit for time is the
period T . Furthermore, if the unit for speed is chosen to be v0 = a/T , the speed of circular
motion is 2πv0. Therefore, in these units, we have

GM = 4π2, units: av20 = a3/T 2. (5.20)

Because GM always appears as one term, there is no need to define units of G and M
separately.

For example, for the Earth-Sun system, we have a = 1 AU (astronomical unit), T = 1
year, and GM = 4π2 AU3/year. For convenience we may call these the solar unit system.
Note that these natural units are scalable to other systems. For the Moon-Earth system, for
instance, the unit of length would be the Earth-Moon separation, the unit of time approxi-
mately one month (27.3d), and GM is still 4π2 in the scaled units, with M now referring
to the mass of the Earth. We may call these the lunar unit system.

With the solar unit system, we can simulate the motion of any planet around the Sun via
changing slightly Program A.3.3 to account for gravitational acceleration Eq. (5.19). The
changes are minimal, the most essential part of the full Program A.3.4 is given below,

In [9]: rmag = np.sqrt(r[0]**2 + r[1]**2)
a = - GM * r/rmag**3

The above code just calculates acceleration from gravity instead of the spring force.
Executing Program A.3.4 will produce results much more interesting than they first appear.
For example, the program will display a closed elliptical orbit (not shown) similar to the
orbit seen in Fig. 5.3 for the SHO. It is also remarkable that the forces from Hooke’s law and
gravity are the only two forces known to support closed orbits (see Goldstein et al. 2002).
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However, there are several key differences. First, the center of gravity (Sun) is a focus of
the ellipse instead of the center of the ellipse in the case of the SHO. Despite this, Kepler’s
second law, the radial vector sweeping out an equal area in equal time, still applies to both
planetary motion and the SHO. This is because both forces are central forces so angular
momentum is conserved. Second, the period of planetary motion is dependent on the shape
and initial conditions rather than independent of either in the case of the SHO. Third, and
the most significant, a planet can escape the gravitational field with sufficient energy, while
SHO motion remains bound no matter how much energy it has. Gravity decreases as 1/r2

and when the energy is positive, the planet is deflected to infinity, also known as scattering.
The famous Rutherford scattering led to the discovery of atomic nuclei because the Coulomb
force between nuclei also decreases as 1/r2. Scattering is not possible in SHO because the
Hooke’s force increasing linearly with r is an empirical force stated earlier that does not
exist as a fundamental force in nature, unlike gravity.

Program A.3.4 is generic and applicable to any gravitationally bound binary system,
including the Earth-Sun or the Moon-Earth system (see the VPython version for animated
planetary motion). We may wonder, then, how does one determine what planet is being
simulated? The answer lies in the setting of initial conditions. For instance, if it is Earth
we are interested in, we can set initial conditions in solar unit system as r0 = [1, 0] and
v0 = [0, 2π ], corresponding to placing Earth at the right side of the unit circle moving
vertically up with Earth’s orbital speed. Explore other initial conditions in Exercise 5.7.

5.5.3 Accuracy and Higher Order Methods

We have seen the Euler and Euler-Cromer methods yield reasonably accurate results. Accu-
racy is largely controlled by the step size �t , but we have not discussed how we chose a
particular value, except that it should be small. But small relative to what?

In every system, there is a typical (characteristic) time scale. For instance, a ball in free
fall may last a few seconds, while it takes a year for the Earth moving around the Sun.
We can estimate this characteristic time as τc ∼ Lc/vc, where Lc is the characteristic size
of the problem, and vc the typical speed. To be accurate, we should choose �t/τc � 1
(say 0.01). But other factors should be considered, including highly oscillatory behavior or
singularities, which may require even a smaller ratio.

Usually a smaller step size results in higher accuracy. But there is a trade-off between
accuracy and speed. The number of steps to complete a simulation scales like N ∼ 1/�t ,
so the smaller the �t , the longer the simulation. But reducing the step size is not the only
way to increase accuracy. It is often possible to achieve the same goal with a higher-order
method.

The Euler method, and its variant Euler-Cromer method, is a first-order method, meaning
it is accurate to first order in�t , and the local error is on the order of O1 ∼ (�t)2. There are
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schemes to achieving higher accuracy, including the well-known Runge-Kutta series (see
Press et al. (2007)), with the Euler method being the first member.

Similarly, one can construct a sympletic series, with the Euler-Cromer method being the
first member. The next member is the so-called leapfrog method (see Eq. (4.11)), which
steps Eq. (5.7) forward in a leapfrogging fashion,

rm = r0 + v0 × �t

2
,

v1 = v0 + a(rm) × �t,

r1 = rm + v1 × �t

2
. (Leapfrog) (5.21)

The leapfrog method (also called the Verlet method) has three stages. First, half a step is
taken to obtain the intermediate position rm at the midpoint. Second, a full step is taken to
find the new velocity v1 using acceleration evaluated at the midpoint a(rm). Third, another
half a step is taken to obtain the new position r1 using the new velocity. Each stage uses the
newest values available from the previous stage.

The leapfrog method has one more stage than the Euler-Cromer method, but it is accurate
to second order, namely, the local error is O2 ∼ (�t)3. The advantage of the leapfrogmethod
over Euler-Cromer is significant. To see why, let h1 = (�t)1 and h2 = (�t)2 be the step
sizes of the Euler-Cromer and leapfrogmethods, respectively. If wewant numerical solutions
at a comparable error level, O1 ∼ O2, we expect the step sizes to be related by h32 ∝ h21, or

h2 ∼ αh2/31 ,whereα is a factor on the order of 1. The speed gain is given by N1/N2 ∼ h2/h1.
The following table shows the step size vs speed gain.

Table5.1 shows that with each order ofmagnitude decrease in h1, the speed gain increases
by a factor of∼2.1. This is considerable for even moderately small h1. The leapfrog method
has just one more stage than the Euler-Cromer method, has the same fidelity, but offers sig-
nificant speed gain. It is robust, accurate, and should be the method of choice for simulations
of relatively simple systems (see Exercise 5.6).

Table 5.1 The step sizes and speed gain of leapfrog over the Euler-Cromer methods at comparable
error levels

Euler-Cromer Leapfrog Speed gain

h1 N1 h2 N2 N1/N2

0.100 10.0 0.215 4.64 2.15

0.010 100 0.046 21.5 4.64

0.001 1000 0.010 100 10.0
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5.6 Motion in Cross Electromagnetic Fields

Electromagnetic forces are another type of fundamental force, like gravity. However, the
former ismuch stronger, so inmotiondrivenby electromagnetic forces,we canusually ignore
gravity. An important class of motion involves cross electromagnetic fields. We discuss this
case next.

Electromagnetic fields exert two forces on a charged particle: an electric force due to the
electric field E, and the Lorentz force due to the magnetic field B (see Taylor 2005). The
force and acceleration are

F = q(E + v × B), a = q

m
(E + v × B), (5.22)

where q is the charge of the particle, m the mass, and v its velocity.
Note that the charge to mass ratio q/m appears as a single parameter in the acceleration.

This ratio can be measured from motion in cross electromagnetic fields where the electric
and magnetic fields are typically set up to be perpendicular to each other.

Unlike previous simulations discussed so far, theLorentz force needs careful examination.
Like drag Eq. (5.12), it depends on the velocity, but unlike drag, the Lorentz force is always
perpendicular to the velocity because of the cross product. As a result, it can change the
velocity of the particle but not its speed or kinetic energy because it does no work.

In numerical integration with a finite step, the change of the velocity due to the Lorentz
force is �v = q

m v × B�t . Because �v is perpendicular to v, the resultant speed would

be |v′| = √|v|2 + |�v|2 > |v|. Unless we take this problem into consideration, the energy
would increase artificially, making the results inaccurate, or worse, causing instability.

We deal with the problem from two sides. First, as we have seen earlier Sect. 5.5.3, the
leapfrog method is easy to use yet more accurate. We choose the leapfrog method over the
first-order ones such as the Euler or Euler-Cromer methods, so overall higher accuracy can
be obtained.

Second, we treat the electric force and the Lorentz force separately. The calculation due
to the electric force can be done as usual. But in the calculation due to the Lorentz force,
only the component v⊥ perpendicular to the magnetic field B is affected, again because of
the cross product. Thus, we have v′⊥ = v⊥ + �v. We enforce speed to be constant by this
scaling

v′⊥
|v⊥|
|v′⊥| ⇒ v′⊥. (5.23)

Now the new magnitude of the velocity is equal to the old magnitude |v′⊥| = |v⊥|, and
has the correct direction. To obtain the perpendicular velocity, we first find the parallel
velocity, v‖ = (v · B̂) B̂, then subtract it from v, so v⊥ = v − v‖. See Program A.3.5 for
actual implementation.

We implement the above strategy in ProgramA.3.5 (run theVPython version for animated
motion). The results are shown in Fig. 5.4. The electric andmagnetic fields are perpendicular
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Fig.5.4 Trajectories of a positively charged particle in cross electromagnetic fields. The electric and
magnetic fields and the initial velocity are indicated by the respective arrows. The magnetic field and
the initial velocity are the same in the three cases. The solid and dashed curves correspond to zero
and intermediate electric fields, respectively. The dash-dot curve corresponds to an electric field that
balances out the Lorentz force completely

to each other shown by the arrows. The particle enters the cross fields with a horizontal initial
velocity (vz = 0).

Results for three cases are displayed for three different electric fields. In the case of zero
electric field, the only force is the Lorentz force (gravity is negligible) andmotion is a typical
spiral (helix), with circular motion in the y − z plane and translational motion along the x
direction. One can use this feature to measure the charge to mass ratio q/m if we know the
radius of the circular motion.

When the electric field is increased to intermediate level, the spiral motion persists but
it is no longer circular in the y − z plane. Rather, it is elongated in the z direction like an
ellipse. There is also a shift up and to the right due to the additional electric force. When
the electric field is further increased so that it completely cancels the Lorentz force from the
beginning, the motion is a straight line. This condition has many applications. For instance,
it can be used as a velocity selector. Unless a particle entering the field has the right velocity,
namely, vy = E/B, it will be deflected up or down. Only particles with matching velocity
will pass though unaffected.

Upon closer examination (see Exercise 5.9), we find that in the case of zero electric field,
the circle projected onto the y − z plane is closed and the speed remains constant to a high
degree of accuracy. It shows that our strategy as implemented in Program A.3.5 works well.
Compared to the standard leapfrog algorithm Eq. (5.21), the key modification occurs in the
calculation of the velocity. Letting aE = q

mE and aB = q
m v × B, the modified steps are,
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vm = v0 + aE × �t

2
v′
m = vm + aB × �t (5.24)

v1 = v′
m + aE × �t

2

We split the calculation of the electric field in two half-steps. We first take a half-step to
calculate the midpoint velocity vm due to the electric field alone. Next a full step is taken
to obtain an updated midpoint velocity v′

m due to the magnetic field alone. Here a speed
scaling Eq. (5.23) should also be applied so it remains constant after bending by the Lorentz
force (see Program A.3.5). Finally we take another half-step with aE to find the velocity
v1 at the end. By splitting the calculation due to the electric field, it amounts to effectively
using the average change of velocity due to aE in the calculation with aB . This results in a
higher accuracy. Program A.3.5 can be a template enabling further explorations of motion
in electromagnetic fields, including validation of energy conservation (Exercise 5.9), and
motion in nonuniform, even time-dependent fields.

5.7 Exercises

5.1. Kinematic parameters from fitting. Fitting motion data to obtain kinematic parame-
ters such as velocity and acceleration is an effective, and sometimes necessary, method.
We explorer data fitting in this exercise.

(a) In Sect. 5.2, motion with constant acceleration is modeled in Program 5.2 with
Euler’s method and the results are shown in Fig. 5.1. Choose your own initial val-
ues in Program 5.2. For instance, set acceleration to be negative, predict what the
position- and velocity-time curves would look like, and sketch them. Run the pro-
gram to check against your predictions.

(b) Now that we are familiar with Program 5.2, modify it to fit the position-time data
to a quadratic relation to extract initial position, velocity, and acceleration using
the curve-fitting technique discussed in Sect. 4.5. Compare the best-fit values with
the initial values assumed in Program 5.2. Overlay the analytic results Eq. (5.8).
Discuss the accuracy of the simulation (Euler’s method) in terms of the comparison.

(c) Fit the velocity-time data to a linear relation to obtain the initial velocity and acceler-
ation. Are these values consistent with the position-time fit? Explain any difference.

5.2. Validating projectile motion. Graph the analytic position- and velocity-time
results for ideal projectile motion along side the numerical ones in Program A.3.1.
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Optionally, add a statement inside the loop to calculate and record the mechanical
energy (kinetic plus potential, assuming mass m = 1 kg). Plot energy versus time.
Is it conserved as expected?

5.3. Swoosh that shot. Determine graphically the angle required to make a basketball
shot. Assume launching speed v0 = 7 m/s, and try to hit the spot at R = 3 m away
and h = 1.5 m above the release point. Neglecting drag, the trajectory of the ball
is

y(x) = tan θ x − 1

2
g

x2

v20 cos
2 θ

.

Themain plotting function should accept angle θ as the input parameter. A possible
pseudo code for it is

def ploty(theta):
convert theta to radians
compute y on the x−grid
plot y vs x
mark the height h (at x=R) with an arrow
set ylim to [0, 2] for easy visual

initialize v0, g set up x grid over [0, R]
interactive(ploty, ...)

Use the interactive function with IPywidget (Sect. 3.1.2). Drag the slider for
θ to find the angles where y(R) = h. The angles should be accurate to within 0.2◦.

Note that only at discrete angles can the trajectory bend correctly so as to hit the
right spot. Does the angle being discrete surprise you? Explain why.

Vary other parameters such as the initial speed or the target spot, and repeat. One
could call this the “quantization” of the angle. We will again see something similar
in quantum mechanics in the form of energy quantization (Sect. 7.3).

5.4. Effects of air resistance. We expand on the investigation of drag effects in realistic
projectile motion (Sect. 5.4).

(a) Using existing parameters, plot the y vs. x curve with Program A.3.2. Explain the
forward-backward asymmetry. Of the horizontal and vertical drag forces, is one
more important than the other in terms of inducing the asymmetry? How can we
test it?

(b) Calculate and graph the energy E (kinetic plus potential) as a function of time
(safely assuming unit mass m, or just think of it as E/m, energy per unit mass).

*(c) The loss of energy is due to work done by drag,Wd . The cumulative workWd can
be calculated in the loop as (again work per unit mass) Wd/m = ∑

i wi , where
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wi = ad · �r is the work done in the time interval �t . Both ad and r are available
in the loop. The pseudo code looks like this,

ad = − c1*v − c2*speed*v
dW = np.dot(ad, dr)
add dW to W and append W

Compute Wd and plot it together with E above. Also plot the difference E − Wd .
Explain the result.

*(d) In Program A.3.2, we assumed a c2 value without justification. It is given by
roughly c2 ∼ ρA/m, with ρ being the density of air (1.2kg/m3) and A the cross
sectional area of the object. Estimate the c2 value for a soccer ball of radius 0.11m
and mass 0.4kg. Find the range and height of a soccer ball kicked with 30m/s off
the ground at 40◦ angle.

*(e) Imagine a soccer ball is launched at the top of a high cliff and falls into a deep
chasm. It should eventually reach terminal velocity when drag and gravity balance
each other. Modify Program A.3.2 to find the terminal velocity.
Integrate the motion until the speed reaches a plateau. Numerically, if the change
of speed �v between two steps is smaller than certain tolerance ε, �v/v ≤ ε, we
can say it has plateaued. Test convergence with ε = 10−3 or 10−4.

5.5. SHO orbits.

(a) Instead of using the Euler-Cromermethod in ProgramA.3.3 for the simple harmonic
oscillator (SHO), change it to the Euler method. To do so, just switch the order of the
position and acceleration statements in the main loop so acceleration is calculated
first. Leave the rest unchanged. Run the program and graph the results similar to
Fig. 5.3. Is the orbit closed? Are the results physically correct? Explain (also see
Exercise 4.3).

(b) Fit the positions x and y to obtain the amplitudes Ax,y and phases φx,y according
to Eq. (5.16). Optionally graph the fitted curves with the actual ones on the same
plot. What initial condition would lead to the same amplitudes Ax = Ay? Test it.
Is it also possible to have the same phases φx = φy?

5.6. Leapfrog integrator. Implement the leapfrog method Eq. (5.21) in the SHO simula-
tion, Program A.3.3. Check that it works correctly and produces the same results as
shown in Fig. 5.3.
Calculate the energy E in the main loop and plot the difference E − E0, with E0 being
the initial energy, as a function of time with both the Euler-Cromer and the leapfrog
methods. Recall the energy per unit mass of an SHO is E/m = 1

2 (ω
2r2 + v2). A sug-

gested pseudo code is,

http://dx.doi.org/10.1007/978-3-031-17646-3_4
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def energy(r, v):
r2 = np.dot(r, r) # r squared
v2 = np.dot(v, v) # v squared
return 0.5 * (omega**2 * r2 + v2)

......
E0 = energy(r, v)
while t< 10.0:
......
E = energy (r, v)
append to E list
......

convert E list to Earray = np.array(E list)
plot Earray−E0 vs time

Comparing the small oscillations, comment on the accuracy of the two methods.

5.7. Precession of planets. Explore planet motion with Program A.3.4. The default
initial conditions lead to a nearly circular orbit. Now, change the initial position
to r = [1.0, 0.5], run the simulation. Observe the orbit shape. Next, change it to
r = [0.6, 0.0] and repeat. You should see orbits rotating around, called precession.
While orbital precession can be real in non-two-body motion, the apparent precession
here is due to low-order inaccuracy of the integrator, that is to say, it is a numerical
artifact. Optionally, investigate this artificial precession further by decreasing the step
size �t , or using a more accurate integrator (Exercise 5.8).

5.8. Planet motion.

(a) Time the main loop in the planet simulation Program A.3.4 (see Program A.1.8).
Increase the final time (e.g. to t < 10000.0) such that it takes about 10 s to
finish using the Euler-Cromer method. Also note the ring-like spread (width) of
the trajectory “belt”.
Next, implement the leapfrog method in ProgramA.3.4. Time the main loop again,
and compare the results. Especially comment on the width of the belt.

(b) Calculate the energy, and optionally the angular momentum, in planet motion with
both methods discussed above. Plot them as a function of time. Discuss the results
in terms of accuracy.

*(c) You should have noticed that the leapfrog method took about 50% more time in
part 5.7 but was much higher in accuracy. According to Table5.1, for the same
accuracy, leapfrog should be faster than the Euler-Cromer method.
Use the corresponding step sizes listed in the table for the same expected accuracy,
run the program again. Reduce the step size to 0.001 and repeat. You should record
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and plot fewer points to reduce latency, say 1 in 1000 points when �t is this small.
Describe the results of both methods in terms of speed and accuracy.

5.9. Circular motion in magnetic fields. Motion of a charged particle is circular in a pure
magnetic field (Fig. 5.4). We will investigate the motion in some detail next.

(a) Run Program A.3.5 with the same parameters except setting electric field to zero.
The only force acting on the particle is the Lorentz force. Is the energy of the particle
conserved?
Add a statement in themain loop of ProgramA.3.5 to calculate and record the kinetic
energy Ki as a function of time. Assume unit mass. Graph the kinetic energy, and
the relative error with respect to initial kinetic energy, |Ki − K0|/K0. Comment on
the result. How well is energy conserved?

(b) Again run Program A.3.5 with zero electric field. Project the trajectory onto the
y − z plane by plotting z vs. y only. You should also set equal aspect ratio (see
Program A.3.4). Does it appear circular? Is the path closed? Use the interactive
zoom tool to see finer details. Describe your observations.
Read off the graph the center of the circle and the radius. Write them down.

(c) Think about the effect of speed and the magnetic field strength on the radius. Make a
prediction on howmuch the radius will change if any of the following is doubled: (i)
the magnetic field alone, (ii) the speed alone, and (iii) both simultaneously. Discuss
with your partner or instructor if available. Write down your predictions.
Repeat part 5.9b, test your predictions, and describe your findings.

*(d) Obtain accurately the circle parameters. There are three parameters determining a
circle (y − a)2 + (z − b)2 − r2 = 0, the center being (a, b) and the radius r . We
can pick three arbitrary points (yi , zi ) to uniquely determine these parameters.
From the position data after the main loop in Program A.3.5, choose three points
some steps apart, say s = 50 steps from the start. Set up the equations as follows,

eqns = [(yi − a)2 + (zi − b)2 − r2 = 0, i = 0, s, 2s]

Solve eqns with Sympy as (Sect. 3.3)

In [10]: eqns = [(y[i*s]-a)**2 + (z[i*s]-b)**2 - r*r for i in range(0,3)]
solve(eqns, a, b, r)

Compare the numerical values a, b, r with the graphical readout of part 5.9b. Option-
ally, vary the three-point set (yi , zi ) to check the variance in the values, and compare
with theoretically expected result for the radius, r = m|v⊥|/qB.
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6Oscillations andWaves

Oscillations and waves are not only common in nature but they are also inseparable. When
one plucks a string, atoms in the immediate vicinity will start to jiggle around, pushing or
tugging neighboring atoms into similar jiggling motion. This creates a wave propagating
along the string. In essence, a mechanical wave is a result of collective oscillations of many
particles carrying energy as it propagates.

In Chap. 5 we discussed the periodic oscillation of a single simple harmonic oscillator.
Now we turn our attention first to the oscillations of few-body systems, also known as
coupled oscillators. We will study characteristics of coupled oscillators including normal
modes and frequencies. Subsequently we will discuss simulations of waves in a string where
we will see some of the same characteristics.

6.1 Coupled Oscillators

We have seen the simulation of a single simple harmonic oscillator (SHO) in Sect. 5.5.1 and
now seek to expand on it to include one or more SHOs coupled to each other.

6.1.1 Two-Body Oscillations

Let us first consider a two-body system consisting of particles of respective masses m1 and
m2 connected by a massless spring with spring constant k. For simplicity, we restrict the
motion to one dimension as illustrated in Fig. 6.1a. Unlike the 2D motion considered earlier
in Sect. 5.5.1, the spring is now connected to two moving particles instead of one end fixed
to the origin. Now both particles are coupled to each other as coupled oscillators.
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m1 m2

(a)

m1 m2 m3

(b)

Fig. 6.1 Coupled oscillators. (a) a two-body system; and (b) a three-body system

What are the equations of motion for the coupled oscillators? As seen from Eq. (5.14) for
the SHO, we need two pairs of position and velocity variables. For position, we could use
the absolute positions of the particles from the origin. Instead, it is actually more convenient
to use the relative positions of the particle from equilibrium because, to calculate the spring
force, we nowwould not need the length of the unstretched spring to figure out the amount of
stretching or compression of the spring, one fewer nonessential parameter to carry around.

Let u1 and u2 denote the positions (displacements) of m1 and m2 from their equilibrium
points, respectively. From Fig. 6.1a, the difference, u2 − u1, measures the net stretching (or
compression if it is negative) of the spring. The force on m1 from m2 is F12 = k(u2 − u1),
and fromNewton’s third law, the force onm2 fromm1 is F21 = −F12 = k(u1 − u2). Though
the forces now involve two variables, they are still restoring forces like the standard spring
force on a single particle. Take F21 for example, for a given u1, it grows more negative as
u2 becomes more positive, pulling m2 toward equilibrium harder, and vice versa.

Wehave enough information to start simulating the two-body oscillator. However,we take
a different approach here and look at a few analytic properties first because it is instructive
going forward. Here is an important example of making necessary connections between
analytical and computational approaches to fully understand the models and results.

Let us start with the second-order harmonic equation similar to Eq. (5.15),

d2u1
dt2

= − k

m1
(u1 − u2),

d2u2
dt2

= − k

m2
(u2 − u1). (6.1)

The right-hand sides are just accelerations from the respective forces.
Given the restoring nature of the forces, it is reasonable to expect harmonic oscillations

in the two-body system as well. So let us use Eq. (5.16) as trial solutions, ui = Ai sin(ωt +
φi ), i = 1, 2, withω to be determined. Using d2ui/dt2 = −λui where λ = ω2, substituting
the trial solutions into Eq. (6.1), and after some rearranging, we obtain,

k

m1
u1 − k

m1
u2 = λu1, (6.2a)

− k

m2
u1 + k

m2
u2 = λu2. (6.2b)

Here we have two linear equations to solve. Suppose we set out this way: express u2 in
terms of u1 from Eq. (6.2a), and substitute it into Eq. (6.2b) to obtain u1, we have
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[(
k

m1
− λ

) (
k

m2
− λ

)
− k2

m1m2

]
× u1 = 0. (6.3)

This relationship is interesting in that we sought to obtain u1 but ended up with a product of
two terms equal to zero, so either the term in [· · · ] = 0 or u1 = 0. The latter is a null solution,
not physically acceptable. The former would place restrictions on λ (or ω) that only select,
discrete values are possible. Evidently, the relationship Eq. (6.3) and these discrete values
are in fact well-known mathematically as the eigenequation (or characteristic equation) and
eigenvalues, respectively.

Solving the quadratic equation [· · · ] = 0 in Eq. (6.3) yields two eigenvalues,

λ1,2 =
[
0,

k

μ12

]
, μ12 = m1m2

m1 + m2
. (6.4)

We recognize thatμ12 is the reducedmass betweenm1 andm2. The characteristic frequencies
ω = √

λ = [0, √k/μ12] are called eigenfrequencies (or normal frequencies).
Before discussing the physical meaning of all this, let us take a detour briefly reviewing

the eigenvalue problem from the perspective of linear algebra, of which Eqs. (6.2a) and
(6.2b) are but one illustrative example. It is standard to rewrite those equations in matrix
form,

Au = λu, A =
[

k
m1

− k
m1− k

m2

k
m2

]
, u =

[
u1
u2

]
. (6.5)

The matrix A is square, and called the system matrix (or stiffness matrix). The column
matrix u containing the solutions is called the state vector or eigenvector. Equation (6.5)
is a special linear system because the effect of A acting on u must result in the same state
vector, up to an overall scaling factor λ. Apparently, not any but only select values of λ can
satisfy the requirement, namely,

det |A − λ1l| = 0. (6.6)

In principle the determinant of Eq. (6.6) produces a polynomial of degree N equal to the
dimension ofA, resulting in N roots, of which Eq. (6.3) is a special example of N = 2.When
N is small, such as the present case Eq. (6.4), solving the polynomial equation directly is an
option. But it is impractical for slightly larger N . Well-developed computational schemes
are ideally suited for this task as we will see next.

Once the eigenvalues are obtained, regardless of how,we can substitute them intoEq. (6.5)
to find the eigenvector corresponding to a given eigenvalue, up to an overall constant. This
constant may optionally be determined by a procedure known as normalization. In our case,
plugging the eigenvalues Eq. (6.4) into Eqs. (6.2a) and (6.2b) give us these results,

λ1 = 0 : u1 =
[
1
1

]
; λ2 = k

μ12
: u2 =

[
−m2

m1

1

]
. (6.7)
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6.1.2 Normal Modes

Together, the eigenfrequencies and eigenvectors Eq. (6.7) are called normalmodes (or eigen-
modes), and they are the fundamental modes (see Fowles and Cassiday (2004)). What kind
of motion do these normal modes represent? The eigenvectors give the relative proportion
of position u1 and u2. In the first normal mode of Eq. (6.7), ω1 = 0, the motion is not
oscillatory at all. Because u1 = u2 at all times, this mode represents two particles moving
uniformly in translational motion, either at rest or at constant velocity, i.e.,

ω1 = 0 : u1(t) =
[
1
1

]
× (ucm + vcmt). (6.8)

We can ascribe this to the motion of the center of mass because there is no net external
force. As seen earlier from Sect. 5.1, the displacements will be linear if acceleration is zero.
Consequently, the two constants ucm and vcm represent the displacement and velocity of the
center of mass, respectively.

In the second normal mode of Eq. (6.7), ω2 �= 0, the full solution must include the
sinusoidal time dependence assumed earlier,

ω2 =
√

k

μ12
: u2(t) =

[
−m2

m1

1

]
× A sin(ω2t + φ). (6.9)

This mode represents two particles oscillating in opposite directions, proportioned by
u1/u2 = −m2/m1. The negative sign indicates that u1 and u2 are 180◦ out of phasewith each
other, on the opposite sides of the center of mass. The same is also true for the velocities u̇1
and u̇2.We ascribe this to the oscillation about the center ofmass, becausem1u1 + m2u2 = 0
at all times. The constants A and φ are the amplitude and phase, respectively.

These two normal modes can completely describe the motion of the two-body system.
In other words, any motion may be broken down into a linear combination of these two
fundamental modes,

u(t) = u1(t) + u2(t) =
[
u1(t)
u2(t)

]
, (6.10)

with constants in Eqs. (6.8) and (6.9) determined from initial conditions, u1(0), u2(0), u̇1(0)
and u̇2(0) as follows (Exercise 6.1):

ucm = m1u1(0) + m2u2(0)

m1 + m2
, vcm = m1u̇1(0) + m2u̇2(0)

m1 + m2
,

φ = arctan

(
ω2

u1(0) − u2(0)

u̇1(0) − u̇2(0)

)
, A = m1[u2(0) − u1(0)]

(m1 + m2) sin φ
. (6.11)
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Fig. 6.2 Displacement versus time of a two-body coupled oscillator for u1 (left) and u2 (right). In
each case, the solid curve is the net displacement, the dash-dot curve the normal mode u1 (center
of mass motion), and the dashed curve the normal mode u2 (oscillation about center of mass). The
parameters used are m1 = 1 kg, m2 = 2 kg, and k = 1 N/m. The initial conditions are u1(0) = 0.1
m, u2(0) = 0.5 m, u̇1(0) = 0.2 m/s, u̇2(0) = 0

To illustrate these normal modes, we show simulation results in Fig. 6.2 obtained from
ProgramA.4.2 (see Exercise 6.2). The displacements u1 and u2 of each particle are shown in
separate figures. In each figure, the net displacement shows an oscillatory component on top
of a steadily increasing trend line. Indeed, the trend line is the first normal mode u1(t) due
to the center of mass motion Eq. (6.8), and the oscillation is the second normal mode u2(t)
Eq. (6.9). When the two normal modes as determined from the initial conditions Eq. (6.11)
are added together, they reproduce the net displacement.

The results and analysis illustrate a general rule that any two-body problemcan be reduced
to an effective one-body problem in the center of mass frame. Therefore, true many-body
effects must involve at least three bodies.

Symbolic Computation
Having discussed the two-body system in some detail, we are now in position to extend it to
three or more bodies. Before doing so, this is a good time to review Sect. 3.3 on symbolic
computationwithSympybecause, as stated earlier, difficulties in the eigenvalueproblemwill
increase significantly when N is even moderately larger, and manual calculations become
intractable quickly.

Numerical computation can be enhanced significantly with symbolic computation in
general, and with Sympy in particular, a versatile library for symbolic algebra in Python
(Sect. 3.3). Here we demonstrate its application in the eigenvalue problem but its scope
and capability extends way beyond this (see Chap. 7). The following codes are from Pro-
gram A.4.1.
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In [1]: from sympy import * # import symbolic lib sympy
init_printing() # pretty output

In [2]: # declare variables
m1, m2, m3, m, M = symbols("m_1 m_2 m_3 m M", real=True, positive=True)
k, k1, k2 = symbols("k k1 k2", real=True, positive=True)

In the first cell above, we import sympy and set up “pretty” printing so output can show
common math symbols including Greek letters and sub- or super-scripts. Next, we declare
variables with symbols so they can be used in algebraic expressions. Additional properties
associated with a variable can be specified with parameters such as real and positive
attributes shown.

Below we construct the system matrix A from Eq. (6.5) and simply invoke the built-in
eigenvals and eigenvects methods to obtain the eigenvalues and eigenvectors.

In [3]: A = Matrix([[k/m1,-k/m1],[-k/m2,k/m2]]) # 2 x 2 system matrix
A

Out[3]:
[

k
m1

− k
m1

− k
m2

k
m2

]

In [4]: vals = A.eigenvals() # eigenvalues only
vals

Out[4]:
{
0 : 1, k(m1+m2)

m1m2
: 1

}

In [5]: vecs = A.eigenvects() # eigenvectors
vecs

Out[5]:
[(

0, 1,

[[
1
1

]])
,

(
k(m1+m2)

m1m2
, 1,

[[
m2
k

(
k
m2

− k(m1+m2)
m1m2

)
1

]])]

The eigenvalue output cell shows two-term groups, one group for each eigenvalue. The
first term in a group is the eigenvalue, and the second term the multiplicity, namely, the
number of times the same eigenvalue occurs. In our case, each eigenvalue occurs only once,
hence the multiplicity is 1. It can happen that the multiplicity is greater than one, then the
system is said to be degenerate. The two-body system is non-degenerate. The two eigenvalues
agree with our manual calculation Eq. (6.4).

The eigenvector output is given in three-term groups: eigenvalue, multiplicity, and eigen-
vector. The first eigenvector belonging to the eigenvalue zero is exactly as before Eq. (6.8),
but the second one is not in simplified form, though it should be the same as in Eq. (6.9).

Despite the power of symbolic capability, sympy often needs a helping hand simplify-
ing the results, sometimes manually. There are built-in methods for simplification including
simplify,factor, andcombsimp, but the degree of success depends on the expression
being simplified. In our case, factorization seems to give the best result because the result
is reduced to the simplest form of Eq. (6.9).
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In [6]: factor(vecs) # simplify results, also try simplify(), combsimp()

Out[6]:
[(

0, 1,

[[
1
1

]])
,

(
k(m1+m2)

m1m2
, 1,

[[−m2
m1
1

]])]

The normal modes analysis helps us understand the fundamental motion inherent in
the two-body simulation results (Fig. 6.2). Symbolic computation for the two-body system
may be a luxury, but for N -body systems including N ≥ 3 it is indispensable. We examine
three-body oscillators next.

6.1.3 Three-Body Oscillations

As stated earlier, two-body systems are effectively one-body problems with reduced mass.
Nontrivial many-body effects would require at least three bodies, which we consider in this
section. We will first examine the normal modes with the aid of symbolic calculation. We
then simulate the three-body motion and analyze the results in terms of the normal modes.

Normal Modes
Adding a third mass m3 and the corresponding u3 to the two-body system (Fig. 6.1b), we
now have a three-body system with two springs. If we assume the spring constants to be k1
and k2, therewill be another third-law pair of forces betweenm2 andm3, F23 = k2(u3 − u2),
in addition to F12 = k1(u2 − u1) between m1 and m2.

Knowing the respective accelerations from the forces, we can generalize the equations
of motion from Eq. (6.1) and set up the eigenvalue problem similar to Eqs. (6.2a), (6.2b),
and (6.5). Solving it with sympy, and after manual simplification, the eigenvalues are (see
Exercise 6.3),

λ =
⎡
⎣0,

1

2

⎛
⎝ k1

μ12
+ k2

μ23
∓

√(
k1
μ12

− k2
μ23

)2

+ 4k1k2
m2

2

⎞
⎠

⎤
⎦ ; μi j = mim j

mi + m j
(6.12)

There are three eigenvalues as expected, including the value of zero. Again, the zero
eigenvalue indicates uniform translational motion of the center of mass. The other nonzero
ones involve collective three-body motion that cannot be reduced to two-body motion in
general, showing coupling of all three bodies and true many-body effects.

If we restrict the parameters in Eq. (6.12), we can obtain interesting special cases. Some
of these cases are listed here.
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λ Condition[
0,

k1
μ12

]
k2 = 0 (6.13a)

[
0,

k12
μ13

]
m2 = 0, k12 = k1k2

k1 + k2
(6.13b)

[
0,

k1
m1

,
k2
m3

]
m2 = ∞ (6.13c)

[
0,

k

m
,
3k

m

]
k1 = k2 = k, m1 = m2 = m3 = m (6.13d)

[
0,

k

m
,
k̃

μ̃

]
k1 = k2 = k, m1 = m3 = m, m2 = M, k̃ = 2k, μ̃ = 2m × M

2m + M

(6.13e)

In Eq. (6.13a), the spring betweenm2 andm3 is severed because k2 = 0, so the results are
the same as that of the two-body systemEq. (6.4). Similarly, in the limitm2 → 0 Eq. (6.13b),
the middle mass is removed, we again obtain a two-body system with analogous results.

Note, however, for identical springs with k1 = k2 = k in Eq. (6.13b), the effective spring
length between m1 and m3 would be doubled, and the effective spring constant would be
halved k12 = k/2. Two springs in series would make a longer spring that is easier to stretch
and thus weaker. Conversely, cutting a spring in half would make it stronger, doubling the
spring constant. Therefore, if we cut a piece of length L from a spool of uniform spring, we
expect kL = T , with k being the spring constant of the piece, and T some constant having
the dimensions of force and dependent on the type of material. (The constant turns out to
be Young’s modulus. This point is relevant to the wave equation Eq. (6.18) to be discussed
in Sect. 6.2.)

In the opposite limit m2 → ∞ Eq. (6.13c), the middle mass does not move, and m1 and
m3 behave like two single, uncoupled SHOs, discussed in Section 5.5.1. Finally, Eq. (6.13d)
represents identical springs and masses, and Eq. (6.13e) identical springs but a different
middle mass. Incidentally, the latter is a good model for studying vibrations of symmetric
triatomic molecules like CO2.

In general, except the center of mass motion (zero frequency), we need to analyze the
eigenvectors to figure out the oscillations represented by each normal mode. For example,
the normal modes corresponding to special case Eq. (6.13e) as obtained from ProgramA.4.1
are,

λ1 = 0 : u1 =
⎡
⎣1
1
1

⎤
⎦ ; λ2 = k

m
: u2 =

⎡
⎣−1

0
1

⎤
⎦ ; λ3 = k̃

μ̃
: u3 =

⎡
⎣ 1

− 2m
M
1

⎤
⎦ . (6.14)

The normal mode u2 shows that the outer masses stretches symmetrically in opposite
directions while the middle mass stays at rest. In the third normal mode u3, the outer masses
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move in the same direction and the middle mass move in the opposite direction. One spring
is being compressed and the other being stretched simultaneously.We note that these normal
modes of classical oscillation correspond to vibrational states of molecules such as CO2 in
a quantum mechanical description (Sect. 7.3.3), and are the cause of greenhouse effects via
excitation of the vibrational states (see Sect. 8.5). To see the normal modes dynamically, we
discuss numerical modeling next.

Numerical simulation
Following Eq. (6.1), we need to add the third mass and convert the second-order equations
to first-order ones to facilitate numerical integration. Denoting the velocities of m1,2,3 by
v1,2,3, respectively, the resulting equations of motion for the three-body system (Fig. 6.1b)
are,

du1
dt

= v1,
dv1

dt
= − k1

m1
(u1 − u2),

du2
dt

= v2,
dv2

dt
= − k1

m2
(u2 − u1) − k2

m2
(u2 − u3), (6.15)

du3
dt

= v3,
dv3

dt
= − k

m3
(u3 − u2).

Compared to Eq. (5.14), the number of equations is tripled and the variables are no longer
vectors. The acceleration of the middle mass has two terms due to the additional force F23.
But significantly, the variables are coupled, namely, they are interdependent because one
particle affects the motion of the other in a nontrivial manner.

However, if we treat the three variables as components of pseudo vectors, namely,
u = [u1, u2, u3] and similarly for v and a, we can just copy the template of Program A.3.3
to obtain the program for the three-body oscillator. As shown in the full Program A.4.2,
the two programs are nearly identical in structure, with one significant difference in the
time-stepping method, the leapfrog method:

In [7]: u = u + 0.5*v*dt # leapfrog
f12 = -k1*(u[0]-u[1])
f23 = -k2*(u[1]-u[2])
a = np.array([f12/m1, -f12/m2 + f23/m2, -f23/m3])
v = v + a*dt
u = u + 0.5*v*dt

To deal with potentially highly oscillatory behavior of the three-body system, we use the
leapfrog method Eq. (5.21) because it is more accurate than Euler-Cromer but requires only
one more line of code. The displacement u is first evaluated over half a step; forces and
acceleration calculated at the latest displacement are used to update the velocity over a full
step; and lastly the displacement is updated again using the latest velocity over another half
a step.
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Fig. 6.3 Displacement vs. time of a three-body coupled oscillator for different initial conditions.
All initial velocities are zero, but the initial displacements are u1, u2, u3 = [1, 0, 1] m (left) and
u1, u2, u3 = [1, 0, 0.5] m (right). In each case, the solid curve corresponds to u1, the dash-dot curve
u2, and the dashed curve u3. The u1 and u3 curves overlap each other in the left figure due to the
initial condition. The parameters used are: k1 = k2 = 1 N/m, and m1,m2,m3 = [1, 3, 1] kg.

Th similarity between Programs A.3.3 and A.4.2 is not accidental. Because u, v, a
are all numpy arrays obeying vector operations, Program A.4.2 effectively simulates an
N -dimensional oscillator, N = 3 in the present case.

The results from Program A.4.2 corresponding to the special case Eq. (6.13e) are shown
in Fig. 6.3 for different initial conditions which determine what normal modes are activated
and their mixture. Because all initial velocities are zero, the center of mass is at rest, so there
is no translation and only oscillatory normal modes u2 and u3 in Eq. (6.14) are expected.
The normal frequencies are ω2, ω3 = 1,

√
5/3 rad/s, respectively.

In the first set of initial conditions (Fig. 6.3 (left)), the two outer masses m1 and m3 start
with equal displacement, and according to Eq. (6.14), this activates normal mode u3 only.
The displacements u1 and u3 remain equal with time (overlapping curves), and oscillate
with ω2. The middle mass also oscillates with the same frequency, but it (u2) has a different
amplitude and is 180◦ out of phase. From t = 0, the outer massesmove to the left, themiddle
mass moves to the right; and just when m1 and m3 reach their left-most positions, m2 is
at its right-most position. Then, simultaneously, all three reverse directions and the cycle
is repeated all over again. This is the asymmetric stretch. The asymmetric stretch is more
clearly seen with visualization (see program in Appendix A).

Note that, though no translation, the center of mass is not at the origin. Therefore, the
oscillations are offset from the origin, and the maxima and minima are not symmetric about
the horizontal axis.

Now, the results from the second set of initial conditions as shown in Fig. 6.3 (right) are
less straightforward to interpret. Themiddle mass shows a nice, purely harmonic oscillation.
However, the oscillations of the outer masses are neither harmonic nor even periodic. To
understand this, we note that Eq. (6.14) supports only two normal modes regarding the
middle mass, u1 and u3, because its displacement is zero in normal mode u2. As a result,
the middle mass can only oscillate with frequency ω3, regardless of initial conditions.



6.2 Wave Propagation 125

In contrast, both oscillatory normal modes are open to the outer masses. The initial
conditions do not fit any pure normal mode, so both are activated in a mixture of the form
c2 sin(ω2t) + c3 sin(ω3t). Even though each sinusoidal term is periodic, the mixture is not
necessarily so, unless the frequencies are commensurate with each other, i.e., their ratio is
rational, ω3/ω2 = n : l with n and l being integers. The actual ratio for the parameters used
is ω3/ω2 = √

5/3 : 1. So the frequencies are not commensurate in this case, and u1 and u3
are not periodic as a result.1 One can also verify this by plotting u1 vs. u3 and observing
that the path is never closed. Such plots are known as Lissajous figures (see Exercise 6.4).

We have only discussed a special case Eq. (6.13e), and already it shows some interesting,
nontrivial features of collective motion. Naturally, we can expect the complexity to increase
with more masses. What happens if N is large? In the limit N 	 1, oscillations propagate
down a continuum medium, and we need to approach the problem as wave propagation. We
consider waves next.

6.2 Wave Propagation

Mechanical waves such as sound waves from the flapping wings of a hummingbird or
vibrations on a string propagate in continuum media. This involves collective oscillations
of many atoms, and general description of waves should properly fall within the realm
of continuum mechanics. Fortunately, the few-body oscillators developed in the previous
section are sufficient as a basis for us to model waves in the limit of large N , with minimal
change. We do expect, however, the properties of bulk media to enter the model at some
point.

6.2.1 TheWave Equation

Just as Newton’s second law is necessary to describe the motion of point-like particles, a
wave equation governing collective wave motion of many particles is needed here, a form
Newton’s law for the masses, so to speak.

We approach the continuum wave limit by building an N -body oscillator model approx-
imating a string, shown in Fig. 6.4. Let us imagine dividing a springy string into equal
segments of length�x , and embedding N identical massesm along the string, one for every
segment. Let us further assume that m is equal to the mass of one segment so the string
may be considered massless. Effectively, we have N masses connected to each other with
massless mini springs of length �x and spring constant k.

1 Even though aperiodic, if one performed a discrete Fourier transform (DFT) on u1 (or u3), one
would still find only two frequencies in the spectrum. Discussion of DFT or related FFT is beyond
our scope (see Ref. Cooley and Tukey (1965)).
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x0 xn−1 xn xn+1 xN−1

Fig. 6.4 A string represented by an N -body coupled oscillator model

We now consider the displacement un of the mass at xn along the string.2 It is part of a
three-body oscillator with its neighbors xn±1 (Fig. 6.4), so we already know the equation of
motion from Eq. (6.15). With only slight change of notation, and rewriting it as a second-
order equation, we obtain

m
d2un
dt2

= k(un−1 − 2un + un+1). (6.16)

We recognize the terms in the parenthesis on the right-hand side are part of a second
derivative Eq. (4.4), or more precisely, un−1 − 2un + un+1 = (�x)2u′′. Substituting into
Eq. (6.16) and dividing both sides by �x , we find

m

�x

d2un
dt2

= k�x u′′
n . (6.17)

Equation (6.17) is almost in the standard wave equation, but first we need to relate the
parameters to bulk properties. The ratio m/�x measures the linear mass density, so we set
ρ = m/�x .

From the discussion following the special case Eq. (6.13b), we saw that cutting a spring
in half doubles the spring constant. The same applies here: each time the string is divided,
the segments become shorter but the effective spring constant increases such that the product
k�x remains constant and finite, namely, k�x = T (T for tension).

A separate analysis enables us to relate T to the bulk properties of the string.3 Adopting the
analysis to each segment of the string (L = �x), we have k = Y A/�x , so k�x = Y A = T ,
T being the tension in the string as mentioned earlier. This is the relationship we need.

Because un = u(x, t) is a function of independent variables of position and time, we
should replace the ordinary derivatives with partial ones, u′′ = ∂2u/∂x2 and d2u/dt2 =
∂2u/∂t2. Finally, we rearrange Eq. (6.17) to obtain the wave equation,

2 This is a longitudinal wave where oscillations are in the direction of wave propagation. If the
oscillations are in the perpendicular direction, it is called a transverse wave. The discussion assumes
the former, but the final result Eq. (6.18) is valid for the latter as well.
3 Consider a stringmade up ofmany thin threads from end to end, each thread acting like a thin spring.
The more threads there are, the stronger the string. But as stated above and seen from Eq. (6.13b),
the longer the thread, the weaker the thread (hence the string). So the “spring” constant of the string
k should be proportional to the number of threads which in turn is proportional to the cross section
A of the string, and inversely proportional to its length L , i.e., k = Y A/L , with Y being a constant.
To stretch the string by �L , the force from Hooke’s law is F = k�L = Y A�L/L , or Y = F

A

/
�L
L ,

which is just the Young’s modulus. The constant Y is a bulk property of the material.
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∂2u(x, t)

∂x2
= 1

v2

∂2u(x, t)

∂t2
, v = √

T /ρ (Wave equation). (6.18)

The wave speed v depends on the tension and mass density. A wave moves faster on a more
rigid or lighter string. Equation (6.18) is partial differential equation (PDE) involving two
independent variables and requiring special techniques for numerical solutions discussed
shortly.

Whilst admiring the simplicity and mathematical beauty of Eq. (6.18), we should also
appreciate the physical insight the process revealed. On the one hand, the acceleration of
a segment at x is equal to a = ∂2u/∂t2. On the other hand, the force pulling the seg-
ment from either the left (FL) or the right (FR) neighbors is proportional to the respec-
tive differences in displacement (Eqs. (6.1), (4.1)): FL ∝ [u(x) − u(x − �x)] ∝ u′(x)
and FR ∝ [u(x + �x) − u(x)] ∝ u′(x + �x). The net force is given by the difference
FR − FL = Fnet , which turns out to be Fnet ∝ [u′(x + �x) − u′(x)] ∝ u′′(x) (essentially,
the difference of differences is the second derivative; see also Sect. 4.1). Therefore, Eq. (6.18)
simply implies Fnet ∝ a, Newton’s second law in disguise. Incidentally, following the same
reasoning, one can show that even though Eq. (6.18) was obtained assuming longitudinal
waves, it is equally applicable to transverse waves (see Wang (2016)).

6.2.2 Waves on a String

To simulate waves on a string, we need numerical solutions of the wave equation Eq. (6.18).
Unlike the ordinary differential equations of motion (e.g. Eq. (6.15)) we have encountered
so far, the wave equation (6.18) is a PDE. It marks a qualitatively different departure from
ODEs because a PDE has two independent variables at least whereas an ODE has only
one. The standard stepping methods for ODEs no longer work for PDEs, at least without
significant reformulation. Another difference is that boundary conditions affect the solutions
of a PDE. For instance, waves on a string behave differently when one end is fixed or open.
That means numerical methods of solution will need to consider the type of PDEs as well
as boundary conditions.

Finite DifferenceMethod
Seeing that the finite time-stepping has served us well in the time domain, it is wholly
reasonable to ask whether finite difference in the space domain can be used for solving
PDEs like Eq. (6.18). The finite difference method (FDM) is based on this idea: it utilizes
discretization of both space and time, and can work quite well for certain problems including
waves on a string.

In the FDM, regular grids are set up in both space (�x) and time (�t), and differential
operations like ∂2u/∂x2 and ∂2u/∂t2 are evaluated over the respective grids.Wehave already
seen this for space with Eq. (4.4), and if we do the same for time, we have
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∂2u(x, t)

∂x2
= u(x − �x, t) − 2u(x, t) + u(x + �x, t)

(�x)2
, (6.19a)

∂2u(x, t)

∂t2
= u(x, t − �t) − 2u(x, t) + u(x, t + �t)

(�t)2
. (6.19b)

You may notice that the FDM discretization process is essentially the reverse process of
deriving Eq. (6.18).

To tidy up notations, we label the space grid with index n as in Fig. 6.4, xn = n�x ; and
label the time gridwithm (notmass) tm = m�t , with n,m = 0, 1, 2, . . .Let umn ≡ u(xn, tm)

denote the displacement at point xn and time tm . With these notations and Eqs. (6.19a) and
(6.19b), the wave equation Eq. (6.18) at x = xn and t = tm in FDM turns into

umn−1 − 2umn + umn+1

(�x)2
= 1

v2

um−1
n − 2umn + um+1

n

(�t)2
. (6.20)

We have reduced the wave equation into a difference equation in FDM.
Let us rearrange Eq. (6.20) so the time index m is in decreasing order from left to right,

um+1
n = 2(1 − β2)umn + β2 (

umn−1 + umn+1

) − um−1
n , β = v

�x/�t
. (6.21)

This is a three-term recursion formula. Its interpretation is straightforward: the displacements
(at all space grids) at the next time tm+1 can be obtained from those at the current and previous
times, tm and tm−1, respectively. This is just the time-stepping method we are familiar with,
but it happens across all space grids.

To get the process started, we need seed values at two steps, u0n at t0 and u1n at t1, for
all space grids xn . Because the wave equation is second order in time, we need two initial
conditions to uniquely determine the solution.

Finally, we have the important pieces we need to build a FDM code like Program A.4.3
to simulate waves on a string. Executing it, we should see an energetic wave flip-flopping
like a butterfly. Snapshots of the wave are shown in Fig. 6.5 at several equal time intervals.

The wave is set up on a string of unit length. One part of the string influences its neighbors
and is influenced by them simultaneously,much like the jiggling atomicmotion stated earlier.
The result is a realistic depiction of wave motion.

Boundary and Initial Conditions
Every point on the string oscillates except the end points. This brings us to the matter of
boundary conditions: what to do at the end points of the string? We can see the problem
from Eq. (6.21): When n = 0 at the left end point, then um−1 is needed but undefined, and
likewise at the right end point.

In fact, there is freedom in the choice of the boundary conditions. The simplest is to fix
the ends, i.e., um0 = umN = 0 (or some other nonzero value, even time-dependent values like
a driven oscillator), and we do not need to update the end points. This is our default choice
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Fig. 6.5 Waves on a string of
unit length at equal time
intervals

made in Program A.4.3. Other common choices include open ends and periodic boundary
conditions (Exercise 6.7).

Having determined boundary conditions, the initial conditions should be chosen consis-
tently. In Program A.4.3, we chose the initial conditions at t0 as u0 = sin2(πx), which is
consistent with the fixed-end boundary conditions because they vanish at the end points of
a string of unit length, i.e., u(0, 0) = u(1, 0) = 0. Any other initial condition satisfying this
condition are acceptable. For the immediate next step at t1, we chose u1 = cu0. The scaling
factor c should be close to one because we assume the time step to be small and the change
should be also small for realistic waves. Of course, other choices consistent with bound-
ary conditions are permissible. However, this could result in unrealistic or even unphysical
waves.

The main calculation is done in the following module that advances the solution to the
next time step.

In [8]: def waves(u0, u1):
u2 = 2*(1-b)*u1 - u0 # unshifted terms
for i in range(1, len(u0)-1):

u2[i] += b*( u1[i-1] + u1[i+1] ) # left, right
return u2

It is natural to store the wave at a given time in an array of length equal to the number of
space grids. On input, the module assumes two arrays u0 and u1 holding the waves at times
tm−1 and tm , respectively. Then it computes the wave at tm+1, u2, according to Eq. (6.21):
first by including the terms at the space grid xn (but at different times) with vector array
operation, and then looping through interior space grids, adding the contributions from its
left and right neighbors. The end grid points x0 and xN−1 are left untouched, and remains
zero as required by our choice of boundary conditions.
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ProgramA.4.3 makes use of wave visualization viaMatplotlib’s animation feature which
automatically calls a user-supplied function,updatefig() in our case, to update graphical
data to be displayed. It calls waves() to obtain u2, then swaps the arrays with u0, u1
= u1, u2 to prepare seeds for the next iteration, and finally updates the plot data via the
set_data() method.

The main body of Program A.4.3 sets up appropriate parameters, the space grids, initial-
izes the seeds and the plot area, and passes control to matplotlib’s animationmodule running
continuously.

Stability and Optimization
Unlike time-stepping methods used up to now, we have so far not specified the step size
�t in Program A.4.3, and the program runs fine without it. Actually, the step size is woven
in the single, dimensionless parameter β in Eq. (6.21). This parameter turns out to be very
important to the stability of the FDM.

The reason is that Eq. (6.21) is a three-term recursion formula. Recursions arewell known
to be numerically either stable or unstable. If stable, a recursion relation is powerful and
efficient because errors are reduced with each iteration and do not cause problems. However,
if unstable, a recursion relation cannot be used numerically because a small error such as
the inevitable roundoff error will grow exponentially, usually ruining the true solution in a
few steps.

To check the stability of a recursion relation, one generally performs a von Neumann
stability analysis, which is beyond our scope here (see Wang (2016)). We state the result
that Eq. (6.21) is stable if β ≤ 1. Furthermore, the solutions are most accurate if β = 1, the
exact value used in Program A.4.3.4

Keepingβ ≤ 1 is equivalent to implicitly setting a�t small enough that the FDM remains
stable. There is no need to set it explicitly.

As seen earlier, the module waves() is responsible for advancing the solutions one step
forward. It is called repeatedly. It has an explicit loop running through the interior space grids.
Explicit looping is slow in Python as discussed earlier (Sect. 3.3.2), and can significantly
downgrade the speed. If speed is important, we can usually replace explicit looping with
Numpy’s implicit looping (Sect. 3.3.2), or optimize in other ways. The drawback is that the
former, though efficient, can make the code less understandable sometimes, and the latter
does not always lead to a significant speedup.

Still, it is always a good idea to have a working program that may be slow rather than
a fast program that may not work. In Program A.4.3 we chose the latter with Numba opti-
mization (Sect. 3.6). We simply decorate the module with the @jit command. Speed tests
(Exercise 6.6) showed that both Numpy’s implicit looping and Numba optimization were

4 There is an interesting connection to a broader array of phenomena including the uncertainty prin-
ciple (see Sect. 7.2).
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about 12 times faster than explicit looping. Considering the ease of use, Numba optimization
is the clear choice here.

6.2.3 Fundamental Modes

Just like there are characteristic frequencies (normal modes) in few-body oscillations
(Sect. 6.1.1), we expect similar fundamental frequencies (harmonics) to exist in waves on a
string.

To find them, let us resort to perhaps the most useful method for solving PDEs: the
separation of variables. We propose a trial solution consisting of a product of space and time
variables separately,

u(x, t) = X(x)Y (t). (6.22)

The method is successful if we can reduce the wave equation Eq. (6.18) into separate
equations, each involving only one variable x or t .

To that end, we substitute the trial solution into Eq. (6.18) and rearrange it such that x
and t appear alone on each side,

1

X

d2X

dx2
= 1

v2

1

Y

d2Y

dt2
. (6.23)

Because x and t can vary independently, Eq. (6.23) can hold if and only if each side is a
constant for all x and t , namely,

1

X

d2X

dx2
= −k2 = 1

v2

1

Y

d2Y

dt2
, or

d2X

dx2
= −k2X ,

d2Y

dt2
= −k2v2Y , (6.24)

where we set the separation constant to be −k2 for convenience. Now we just need to deal
with two ODEs.

Though we know the analytical solutions to Eq. (6.24) are sinusoidal from earlier dis-
cussions Eq. (5.16), we wish to study it numerically here. Expressing the second derivative
on the space grid as in FDM (Eq. (6.20) earlier, and letting Xn ≡ X(xn), we have

Xn−1 − 2Xn + Xn+1

(�x)2
= −k2Xn, n = 0, 1, 2, . . . , N − 1. (6.25)

These are N linear equations.
Now using the fixed-end boundary conditions X0 = XN−1 = 0we express the remaining

N − 2 interior equations implied by Eq. (6.25) in matrix form as (Exercise 6.5),
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AX = k2X, A = 1

(�x)2

⎡
⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎣

X1

X2
...

XN−1

XN−2

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.26)

This is just like the eigenequation seen earlier Eq. (6.5). The system matrix A is square
(N − 2, N − 2) and tridiagonal, with nonzero elements only on the main diagonal and one
row or column immediately off of it.

We expect Eq. (6.26) to yield eigenvalues and eigenvectors just as Eq. (6.5) does. Rather
than solving it with symbolic computation because it is impractical for even a moderate N ,
we aim to solve it numerically, which turns out to be just as easy with the Scipy library (see
Section 3.5). The implementation is given in Program A.4.4.

The main task is the preparation of the system matrix A:

In [9]: A = np.diag([2.]*(N-2)) # diagonal
A += np.diag([-1.]*(N-3),1) + np.diag([-1.]*(N-3),-1) # off diags
A = A/(x[1]-x[0])**2 # delta x = x_1 - x_0
lamb, X = eigh(A) # solve for eigenvals and eigenvecs

This task ismade easywithNumpy’sdiag(values, offset) function (Sect. 3.3.2),
which fills a diagonal with values (array). The offset parameter (default 0) is the dis-
tance from the main diagonal, so ±1 is just what is needed for a tridiagonal matrix A. Once
A is constructed, the eigenvalues and eigenvectors (fundamental modes) may be obtained
from the Scipy eigh() module.

Figure6.6 shows the first four fundamentalmodes fromProgramA.4.4. They are standing
waves because the nodes remain at zero at all times. Eachmode looks like parts of a sinusoidal
wave, all being zero at the boundaries.

Fig. 6.6 Standing waves on a
string of unit length. Only the
lowest four fundamental modes
are shown
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Allowing for a phase, the sinusoidal waves can be written as

X = a sin(kx + φ). (6.27)

Figure6.6 suggests X(0) = X(1) = 0, namely

sin(φ) = sin(k + φ) = 0. (6.28)

The first term in Eq. (6.28) requires φ = 0, reducing the second term to sin(k) = 0. Sowe
must have k = mπ , and m = 1, 2, . . ., that is, only certain, discrete km values are allowed.
Conversely, the wavelength is the period in x when kmλm = 2π , so

λm = 2

m
, m = 1, 2, 3 . . . (wavelength on unit-length string) (6.29)

These are the fundamentalwavelengths. BothEq. (6.29) andFig. 6.6 show that onlymultiples
of half-waves can fit (see also Sect. 7.3.1). Fundamental frequencies are also discrete and
related to the wavelength by fm = v/λm = mv/2. Incidentally, the quantity km = 2π/λm

is also known as the wave vector and is inversely proportional to the wavelength.
The computed k values are equal to the square root of the eigenvalues fromProgramA.4.4.

The lowest four are k/π = [0.99995888, 1.99967103, 2.99888979, 3.99736862]. These
numbers are accurate to their respective exact integer values within an error less than 0.01%
with N = 101 grid points. The accuracy will increase with larger N .

Finally we note two things about fundamental modes. First, fundamental modes are the
basic building blocks of waves. Any wave such as the one shown earlier (Fig. 6.5) can be
written as a superposition of these modes. Second, fundamental modes are discrete because
of boundary conditions. We will see discrete eigenvalues in the allowed energies later in
quantum mechanical problems precisely due to the same requirements.

6.3 Exercises

6.1. Initial conditions. Given the initial positions and velocities of the two particles, derive
the constants shown in Eq. (6.11). Consider setting up the equations and solve them
using Sympy (Sect. 3.3).

6.2 Two-body oscillator. Two-body oscillations may be decomposed in terms of funda-
mental modes Eqs. (6.8) and (6.9). The following activities illustrate the process.

(a) Determine the constants Eq. (6.11) from the initial conditions given in Fig. 6.2.
Now we have the fundamental modes Eqs. (6.8) and (6.9), and the displacements
u1(t) and u2(t) (first and second rows of Eq. (6.10), respectively). For instance,
u1(t) = ucm + vcmt − m2

m1
A sin(ω2t + φ).
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(b) Next, plot the displacement from a simulation with the same initial conditions using
Program A.4.2, where we set k2 = 0 because we need a two-body oscillator.
Also plot the fundamental modes from part 6.2a. You should have a graph similar
to Fig. 6.2. How close are the two results?

*(c) Repeat part 6.2b but for the velocities. Discuss similarities and differences in com-
parison to results for displacement.

6.3. Coupled three-body oscillator.

(a) Write down the equations of motion for a three-body coupled oscillator (Fig. 6.1 (b))
similar to Eq. (6.2a) and (6.2b). Set up the system matrixA, and find the eigenvalues
symbolicallywith Sympy,Eq. (6.12).Youneed to simplify the result furthermanually
using reduced masses μi j that Sympy does not recognize without our help.

(b) From the general expression above, verify the special cases in Eqns. (6.13a)
to (6.13e). For the special case Eq. (6.13e), find the eigenvectors Eq. (6.14), and
sketch the motion represented by the normal modes u2 and u3.

6.4. Lissajous figure. Graph the displacements u1 vs. u3 corresponding to the initial con-
dition of Fig. 6.3 (right). Use Program A.4.2 as a template, and increase the end time
of the loop so that many sweeps are plotted. Is the path closed? Comment on why.
Next, choose a different initial condition and repeat. Lastly, find amass ratio form1/m3

where you expect to see commensurate frequencies, and generate newLissajous figures.
Are the paths closed?

6.5. Fundamental modes.

(a) Verify the systemmatrixA in Eq. (6.26).Write down explicitly the second, third, and
the next to last rows of Eq. (6.25) (n = 1, 2, N − 2, respectively) to see the pattern.

(b) Overlay the fundamental modes Xm (Eq. (6.27) with λm from Eq. (6.29)) on the
same plot as the numerical ones from Program A.4.4. Normalize them at the peak.
Comment on the match.

(c) One important property of fundamental modes is that they are “orthogonal” to each
other, namely, the overlap integral

∫ 1
0 Xi X j dx = δi j , with δi= j = 1 and δi �= j = 0,

also known as the Kronecker delta function.
Calculate the overlap integrals for the lowest modes shown in Fig. 6.6. Use Simp-
son’s rule (Sect. 4.2) because the eigenvectors from Program A.4.4 are on a regular
grid. Comment on the results. Note that integrals are not necessarily unity for i = j
because the eigenvectors are not normalized.



6.3 Exercises 135

6.6. Speed optimization. Speed can be an issue in larger calculations. In wave propagation
simulations (Program A.4.3), for instance, it can be slow with larger grid size or longer
propagation time. Let us check code execution times and with optimization.

(a) Time the execution of the main module waves in Program A.4.3 with and without
Numba optimization by leaving the @jit decoration in or commenting it out.
Execute the wave updating function waves some large number of times (say 105)
to obtain accurate timing (see Sect. 3.6 and Program A.1.8). Compute the speedup
factor.

*(b) Replace explicit looping in waves with implicit looping with Numpy arrays
(Sect. 3.3.2). Note the left and right grid points (middle terms in Eq. (6.21)) can be
obtained with index slicing. Time the code again and compute the speedup factor.
Compare with results above.

6.7. Wave propagation. We explore several aspects of wave propagation more deeply here
including standing and traveling waves, boundary conditions, and energy in waves. The
template code for this exercise is Program A.4.3.

(a) Standing waves have fixed nodes where the displacement remains zero at all times.
To generate a standing wave, change the initial conditions to u(0) = sin(2πx) and
u(�t) = cu(0) (c should be close to 1, say 0.98). Run the simulation and describe
the results.
If we want a standing wave with two nodes (excluding the end points), how do you
set the initial conditions? Write down your hypothesis. Run the code and test the
hypothesis.

(b) Next, generate a traveling sinewave.A travelingwave refers to thewaveform (shape
of the wave) moving along the direction of travel and keeping the same (or nearly
the same) shape (translational motion). Based on your understanding from making
standing waves earlier, describe how you would change u(�t) to make a traveling
wave. Again write down your plan. Implement the plan and test it. Produce a few
snapshots of the wave.
Did your plan work? If so, explain your reasoning. If not, revise your plan and try
again.

*(c) Besides fixed end points, there are other common choices such as open ends and
periodic boundary conditions (PBC). The latter is easier to implement so let us
examine that.
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In PBC, we assume the string is infinite long and we are looking at one segment of
it only. This means that there are identical copies of the grids to the left and to the
right of our segment. If we are at the left end point u0, the neighbor immediately
to the left, u−1, would be equivalent to uN , the right end point. Conversely, if we
are at the right end point, the point immediately to the right, uN+1, would be equal
to the left end point, u0. Together, we have the following for PBC,

u−1 = uN , uN+1 = u0. (6.30)

Modify Program A.4.3 to use PBC. Describe the difference in the behavior of the
waves.

*(d) Waves carry energy. There are both kinetic energy due to the jiggling of each point
and potential energy due to the elasticity of the string (spring).
The kinetic energy may be calculated directly as follows. Consider a small segment
at grid n of width �x , and displacement velocity vn . The total kinetic energy is the
sum from all segments, K = ∑

n
1
2ρ�xv2n , with ρ being the mass density of the

string. The velocity vn at time tm can be calculated using the change in displace-
ment with the midpoint approximation Eq. (4.3) as vn = (um+1

n − um−1
n )/2�t (see

Eq. (6.20)). One may also use the two-point formula Eq. (4.1), at least initially
when we have only two points in time.
Substituting vn into K , show that the final result is

K = C
∑
n

(
um+1
n − um−1

n

)2
, C = 1

2

ρ3

β2�x
, (6.31)

where β is given in Eq. (6.21). Verify that K has the dimensions of energy. Note
that �t is absorbed in β.

*(e) Now compute and graph the kinetic energy Eq. (6.31). We need not be concerned
with the constant C if we are interested in only how the kinetic will change, or
equivalently, the ratio κ = K/C . Calculate κ by modifying Program A.4.3. First,
write a function to calculate the kinetic energy given the displacements at tm−1

and tm+1. Second, introduce a loop to propagate the wave and record the kinetic
energy for some time. Finally, graph the result after the loop as a function of time
(iteration number m). You can remove or comment out the animation part of the
main function to speed things up. Here is the pseudo code.
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# kinetic energy at t
def KE(u0, u2): # u0, u2 = displacements at t−dt and t+dt
for every grid point n:

cumulate sum (u2[n+1]−u0[n−1])**2
return sum

while t < tend: # or use time index m
update u2 from u0 and u1
call KE
append t and KE
increment t
reseed u0, u1

comment out animation
plot KE list vs t list

Discuss the result and features. Note the small oscillations in the curve. Are they
real or numerical artifacts? How can you check?
On average, the potential energy is equal to the kinetic energy, so the latter gives
us an idea of the total energy in the wave.
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7Modern Physics and QuantumMechanics

Physics stood at the cusp of dramatic change near the end of the nineteenth century and the
beginning of the twentieth century. Prior to that, there was a sense that physics was mature,
complete and well-established, and broad subjects like mechanics, electromagnetism, and
thermodynamics, which we call classical physics now, captured all the big ideas necessary
to understand nature. It was as if all that was left to do was to work out some details of
physics.

Then, strange things were discovered that were incompatible and could not be readily
explained with classical physics, and the sense of physics being complete was shattered. A
patchwork of ideas like a jigsaw puzzle was proposed to address various shortcomings of
classical physics, including attempts to explain the constancy of speed of light, the ultraviolet
catastrophe, the discrete atomic spectra, and so on. But none of the patchwork gave a coher-
ent, complete, or satisfactory explanation of new discoveries. More important, it was unable
to make new, testable predictions. Out of these chaos came two main theories, relativity
and quantum mechanics, which we now call modern physics. Modern physics completely
changed our understanding of space-time and laws of physics at the microscopic level. We
will discuss simulations of select topics of modern physics next.

7.1 Relativity of Space andTime

Oftentimes there are certain implicit assumptions in physics that we take for granted to
be self-evident and true. The concept of space and time in classical physics is a prime
example.Newtonian physics assumes space and time to be absolute across different reference
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frames and observers.1 This assumption seems natural and eminently reasonable, and more
important, it works well within the confines of Newtonian physics. However, mounting
experimental evidence at the of twentieth century led to the realization that space and time
are relative.

7.1.1 Einstein’s Postulates

Consideration of the speed of light is at the heart of the theory of relativity. Being a wave,
light propagation is described by Maxwell’s electromagnetic wave equation analogous to
waves on a string Eq. (6.18) with displacement u replaced by the electric field vector E,
∂2E/∂x2 = c−2∂2E/∂t2, where c is speed of light (similar to v in Eq. (6.18)). Unlike the
mechanical wave speed that depends on the tension and density, c is equal to c = 1/

√
μ0ε0,

where μ0 and ε0 are the respective permeability and permittivity constants of free space.
This means that c is the same for every observer in free space.

Let us consider the implication in a thought experiment with two observers, Stacy on a
stationary platform and Moe on a train moving with velocity v in the positive x direction.
Suppose Stacy throws a fast ball with velocity u in the direction of train motion at the
moment Moe passes her. The ball hits a pillar at a distance d from Stacy after a time interval
�t , so d = u�t . From Moe’s perspective on the train, he sees the ball travel a shorter
distance because the train has moved a distance v�t , so d ′ = d − v�t . Moe then calculates
the velocity of the ball relative to him as u′ = d ′/�t = u − v, exactly as is expected in
Newtonian mechanics.2

Now, instead of a ball, what if Stacy shines a laser light? The situation would seem
to be analogous: Stacy would see speed of light to be c, and Moe c′ = c − v (also see
Exercise 7.2). But there is a problem: the speed of light would be different to different
observers, contradicting the conclusion that it be the same for everyone. To explain this
apparent contradiction, the ether hypothesis gained considerable traction. It presumed the
existence of a particular medium called ether. In a reference frame where ether was at rest,
the speed of light would be c. In any other reference frame, there would be a ether wind
slowing down the speed of light. Elaborately designed experiments had been performed,
exemplified by the famous Michelson-Morley setup, to look for ether. All yielded a null
result, ether was never found.

One reason we have the apparent contradiction is the implicit assumption of the time
interval �t being the same in both reference frames. Einstein’s postulates of relativity
fundamentally change the concept of space and time of classical physics. Simply stated,

1 Somewould propose, light heartedly of course, but only slightly, that there ought to be an additional,
Newton’s zeroth law stating explicitly that space and time are absolute, and the positions and velocities
of particles are well-defined simultaneously so the concept of a trajectory is valid.
2 Such a relation is also known as a Galilean transformation.
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• All observers in initial reference frames (non-accelerating) are equivalent to each other.
• Speed of light is constant in all inertial reference frames.

The first postulate states that no observer can claim to be special, and the second one
just states an experimental fact. Each of the statements is eminently reasonable by itself, but
together, they lead to profound results. We simulate one such result next.

7.1.2 Time Dilation and Length Contraction

ArmedwithEinstein’s postulates,wediscuss now, and simulate afterward, a slightly different
thought experiment than the one described earlier. Now, Moe fastens on the floor of the train
a laser pointing up toward the ceiling at a height h above. He also attaches a mirror to the
ceiling facing downward and directly above the laser.

At the moment Moe passes Stacy, he switches on the laser going vertically up toward the
ceiling. Upon reaching the mirror, the laser is reflected back down and eventually returns to
the floor. To Moe, the round-trip time of travel of the laser is �t ′ = 2h/c.

Let us consider the same events from Stacy’s perspective on the platform. Because the
train ismoving, Stacywill first see the laser’s pathmoving diagonally up during the ascending
phase, and then diagonally down during the descending phase. The process is animated in
Program A.5.1 and results are shown in Fig. 7.1.

In the elapsed time �t on the platform, the train will have moved a distance v�t . The
total path length of the laser is d = 2

√
h2 + (v�t/2)2. Because speed of light is also c

Fig. 7.1 Paths of a light beam as seen on the stationary platform in a thought experiment (see text).
The time intervals as measured on the platform and on the train at different velocities are given at
the top and bottom, respectively, in units of h/c where h is the height of the train car. The length of
the box at the bottom depicts qualitatively the length of the train car as seen by an observer on the
platform
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in Stacy’s reference frame (platform), she will conclude her time interval �t = d/c =
2
√
h2/c2 + (v�t/2c)2.
Stacy and Moe will have measured different time intervals between the events. They are

related as

�t = �t ′
√
1 − β2

, β = v

c
. (7.1)

When they compare the recorded times, they will readily agree that the times are indeed
different and that each made the measurement applying the same laws of physics, i.e., the
same definition of time. They conclude that the difference is due to time being relative rather
than absolute between reference frames.

Equation (7.1) requires v ≤ c for both times to be real, so c is the speed limit of the
cosmos. Because the denominator in Eq. (7.1) is less than one, it follows that �t > �t ′,
namely, the moving clock (Moe’s) runs slower than a stationary clock (Stacy’s). This is
called time dilation.

We can model the light path and time dilation effect with Program A.5.1. The time is
measured in units of h/c, so the round-trip time is always�t ′ = 2 inMoe’s reference frame.
With increasing β, both the path length and time dilation increase in Stacy’s reference frame.
However, varying β with the slider, time dilation becomes noticeable only for β � 0.1, or
v � 3 × 107 m/s (β ∼ 0.15 would yield 1% difference). This is a very large speed rarely
encountered in classical physics, about 100,000 times faster than speed of sound in the air.
Relativistic effects are insignificant in everyday-life activities where Newtonian mechan-
ics works very well and can be regarded as the zeroth-order approximation of relativistic
mechanics. However, they are significant at high speeds such as in motion of elementary
particles where speed can approach c.

If motion and time are relative, could not Moe also claim time dilation of Stacy’s mea-
surement? Lest there is confusion, the situation is not symmetric. FromMoe’s point of view,
the events, departure and arrival of the laser pulse, occur at the same x ′ position (origin). In
Stacy’s reference frame, they occur at different positions, x = 0 and v�t . The time interval
of events occurring at the same position is known as the proper time. Only Moe can claim
to measure the proper time. Other observers will measure dilated time (see Exercise 7.1).

Let us look at relativity of space. If Stacy splashes paint marks on the platform between
the start and end of the laser pulse, the distance will be L = v�t as stated earlier. Moe will
see the platform moving in the opposite direction a distance L ′ = v�t ′. Using Eq. (7.1) the
two distances are related as

L ′ =
√
1 − β2L. (7.2)

Moe finds a shorter length, an effect called length contraction. Note that Stacy’s mea-
surement of L is with the platform at rest. Length of an object at rest is called the proper
length. Other observers like Moe will measure a contracted length, i.e., moving objects are
shorter (see Exercise 7.2).
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Now turn it around from Stacy’s point of view. The length of the train car (proper length)
will appear contracted to her. Figure7.1 shows increasing amount of contractionwith increas-
ing train velocity.

7.2 Diffraction and Double-Slit Interference

Interference is a hallmark of wave phenomena and can be observed in everyday life. For
instance, the color bands we see on a soap bubble or on an oily water surface are due to
interference between light reflected from the top and bottom of the thin layer, and the uneven
layer thickness causes constructive interference to occur at different spots for different colors.

For interference to occur, two or more coherent sources are required. The classic Young’s
double-slit setup has two slits separated by a distance d, splitting an incoming wave into two
such coherent emitters which then interfere constructively or destructively, creating bright
and dark patterns on a screen behind the slits. The double-slit interference is especially
important in understanding the wave nature of particles in modern physics.

When the incoming wave front reaches the slits, each single slit acts like a system of
secondary sources emitting outgoing spherical waves (Fig. 7.2). Conceptually it is helpful
to imagine the slit divided into N secondary sources along the width of the slit. Then we
can model the spherical wave from the j th source as

ψ j = eikr j

r j
, r j = (r2 + x2j − 2r x j sin θ)

1
2 , k = 2π

λ
. (7.3)

In Eq. (7.3), x j is the (horizontal) position of the j th secondary source relative to the origin
(or center in the case of a single slit), and x the position on the screen (Fig. 7.2). The wave
vector k is inversely proportional to the wavelength λ as usual (Sect. 6.2.3).

The advantage of spherical waves is that they preserve flux. Though plane waves (without
1/r j ) are simpler to use analytically, spherical waves are just as easy in numerical compu-

Fig. 7.2 The geometry of a
single-slit emitter. The vertical
arrows represent the incoming
wave front. The position
vectors indicate the paths of
secondary waves emitted from
different parts of the slit
converging on the screen. The
width of the slit is w, and the
distance to the screen is h

o

h

x

w/2−w/2

r1 r r2θ



144 7 Modern Physics and QuantumMechanics

tation. We note that, because the single-slit width is usually small compared to the screen
distance w � h, both types of waves produce similar results.

To find the interference pattern, we add up all the secondary waves from each slit, e.g.,

1 = ∑

j ψ j from slit 1, and similarly 
2 from slit 2 (taking into account separation d).
The total double-slit interference pattern I (intensity) is given by

I = |
|2 = |
1 + 
2|2. (7.4)

A program to calculate interference patterns from Eq. (7.4) just amounts to summing up
all the spherical waves Eq. (7.3) and is straightforward to write. Our implementation is given
in Program A.5.2. Apart from the relatively simple task of performing the sum, the bulk of
the program deals with usingMatplotlib widgets such as sliders for changing the parameters
and animating the interference pattern. Representative results are shown in Fig. 7.3.

We see symmetric patterns about the center of the screen, showing peaks from total con-
structive interference and valleys from total destructive interference. The phase differences
due to the path differences of the waves arriving at a given spot on the screen are responsible
for the patterns. When the phase differences are zero or multiples of 2π , the waves are in
phase and they interfere constructively (bright spots). Conversely, when the phase differ-
ences are oddmultiples ofπ , thewaves are out of phase and they interfere destructively (dark
spots). The first dark spot on either side of the center peak occurs at sin θ1 = λ/w. With
the parameters used in Fig. 7.3, this corresponds to positions x ∼ ±0.06m on the screen
(Exercise 7.3).

Figure7.3 also shows that the interference peaks are modulated by the single-slit diffrac-
tion envelope. We can see the latter by dragging the slit-separation slider to zero. Now
we have effectively a single slit, giving rise to the broad diffraction envelope matching the
double-slit interference profile. When the separation is finite, the slits act as two secondary
sources.When the waves from these sources reach the screen and subsequently interfere, the
envelope of single-slit intensity distribution remain. Also, with increasing slit separation,
path differences increase with angle θ (Fig. 7.2), and the number of peaks increases and also
occur more densely (see Exercise 7.4).

Fig. 7.3 Double-slit
interference pattern (solid line).
The dashed line shows the
pattern when the separation
between the slits is zero
(diffraction). The following
parameters are used:
wavelength λ = 600 nm, width
of slit w = 10 µm, slit
separation d = 50 µm
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Double-slit interferencewas awell-understoodwavephenomenon, so itwas quite a puzzle
when elementary particles such as electrons were observed to produce similar interference
patterns. The inescapable conclusion was that the particles behaved like waves. But we
classically associate properties likemass,momentum and energywith particles, notwavelike
things like wavelength.

On the other hand, photoelectric effect demonstrates that light waves also behave like
particles, or photons, with energy E = h f where h is the Planck’s constant and f the
frequency. It is instructive then to relate particle- and wave-like properties via photons.
Einstein’s energy-momentum relation states E = √

m2c4 + p2c2. Photons have no restmass
(m = 0) because there is no such thing as a photon at rest. That leaves E = pc = h f , and
with f = c/λ, we have for photons,

λ = h

p
. (de Broglie wavelength) (7.5)

It turns out Eq. (7.5) is equally valid for particles of nonzero mass. It is known as the
de Broglie wavelength, and can be associated to the wavelike property of any particle.
Sometimes we use the term matter wave to describe particles exhibiting wave behavior.

According toEq. (7.5), by choosing thewavelength of particles, say electrons,with appro-
priate energy (hence momentum), diffraction and double-slit interference effects exactly
analogous to light can be created. Because only whole, not fractional, electrons are observ-
able, the interference pattern consists of density distributions of electrons. Consideration of
diffraction and interference by particles leads to several important consequences discussed
next.

Uncertainty Principle

Let us assume a diffraction pattern as depicted in Fig. 7.3 (outline) ismadewith particles such
as electrons. Most of the distribution is contained within the central peak, so the diffracted
particles have an angular uncertainty roughly between the first minima on either side of the
peak.

The angular uncertainty is a direct result of the particles passing through the slit. Before
incident on the opening, the particles have awell-definedmomentum (vertically, see Fig. 7.2)
but not well-defined position. When we restrict the particle to within the slit, we know the
position within an uncertainty�x = w. However, in doing so, we do not have a well-defined
momentum anymore, because the diffracted particle now has an uncertainty in horizontal
momentum �px = p sin θ . The product of the uncertainties in position and momentum is
(see Exercise 7.5)

�x�px � 4π� ≥ �

2
, � = h/2π. (7.6)
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The Heisenberg uncertain principle is a fundamental theorem in quantum mechanics
stating that �x�px ≥ �/2. It may seem shrouded in mystery to beginning learners of
quantum mechanics. Diffraction clearly satisfies the uncertain principle, but also shows us
how it comes about. To the extent that particles behave like waves, any attempt to measure
its position will result in an uncertainty inmomentum, and vice versa.Measurement requires
some way of probing the particle, and this act will cause a disturbance and hence changes
its state. Diffraction is an illustrative example. Let us look at measurement in double-slit
interference.

TheMeasurement Problem

Again, let us assume the double-slit interference is created with electrons. If the interference
pattern is made up of individual-particle buildup, how does each electron choose where
to end up, one may wonder? Are the electrons correlated in some predetermined way? To
help answer this question, we might try to send one electron at a time through the slits. A
strange thing happens: the interference pattern may take longer to build up, but it is the same
nonetheless. This suggests that an electron interferes with itself, i.e., it is as if an electron
could be at two places (slits) simultaneously.

Suppose we insisted on knowing which slit the electron came through. Without blocking
any slit, we could place a detector closely behind one of the slits so that if an electron is
detected, we will know where it came from. But an even stranger thing happens: such a
detection scheme would show no interfere pattern at all. In other words, measuring where
an electron came from seems to change the state of the electron so much as to totally destroy
interference. The act of measurement induces what is known as the collapse of the wave
function. Prior to the measurement, the electron wave is a coherent sum (superposition,
Eq. (7.4)) of both slits. After the measurement, it ceases to be a superposition. Such mea-
surements amounts to transforming the coherent sum Eq. (7.4) of wave amplitudes into an
incoherent sum of intensities |
1|2 + |
2|2 without phase information, so naturally one
would not expect interference to occur. In practical terms, it is unnecessary to know where
the electron came from for making predictions, and so the question seems to be ill-posed.
However, this so-called quantum measurement problem is still not satisfactorily explained
to date. It is the main reason why quantum mechanics remains rigorous mathematically but
mysterious conceptually. More discussion on measurement follows later (Sect. 7.4).

7.3 Visualizing Quantized States

The preceding discussion barely scratches the surface of the conceptual intricacies in quan-
tum mechanics, a fascinating subject that still has an aura of mystique even though it is
over a century old. Among many puzzling aspects faced by a typical beginner in quantum
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mechanics, the fact that only discrete energy states, as opposed to continuous energies, are
allowed is one of the most unsettling concepts. It seems as if this was a foreign, and some-
what arbitrary, concept that one must accept to get anywhere in quantum mechanics. Part of
the reason certainly has to do with mathematical details obscuring the bigger picture, and
unfamiliarity of some beginners with boundary conditions and how they are applied.

7.3.1 A Quantum Particle in a Box

Here we take a visual approach to understanding the concept of discrete, or quantized, states.
The idea is to see how quantized energy comes graphically and naturally from reasonable
requirements of the solutions, the same ones to obtain waves in classical mechanics such as
waves on a string.

We choose the simplest model system known as the particle in a box. Imagine a particle
confined between two rigid walls separated by a distance a. The particle can move freely
along a straight line between the walls (no potential, V (0 < x < a) = 0), but it cannot
escape outside of the hard walls (V = ∞ for x < 0 or x > a). The classical picture is a
particle bouncing between the walls.

Quantum mechanically, the state of the particle is governed by the Schrödinger equation
(see Griffiths and Schroeter (2018)),

d2ψ(x)

dx2
= 2m(V − E)

�2
ψ(x) = −k2ψ(x), k = √

2mE/�, (0 ≤ x ≤ a, V (x) = 0)

(7.7)
where ψ(x) is the wave function describing the state of the particle, E the energy of the
particle (positive),m the mass of the particle, and � = h/2π with h being Planck’s constant
as before Eq. (7.5). In Eq. (7.7), we assume one wall is at the origin and the other at x = a.

The wave function ψ(x) is very important because every property and observable of the
system can be determined from it. Paradoxically, ψ(x) itself cannot be directly measured,
only |ψ(x)|2, the probability density of finding the particle. This is similar to the intensity
of waves Eq. (7.4) discussed earlier in interference. A reasonable and physically acceptable
wave function must be continuous throughout. Otherwise, we would find different probabil-
ities of detecting a particle depending whether the detector is placed to the left or the right
of a point in space, an unphysical outcome.

We can verify that sin(kx) and cos(kx) are solutions of Eq. (7.7) with the potential V = 0,
so is a linear combination of the two,

ψ(x) = A sin(kx) + B cos(kx), (0 ≤ x ≤ a) (7.8)

where A and B are constants.We takeψ to be a general solution, which should be continuous
throughout space.
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Because the particle is confined to within the walls, the wave function must be identi-
cally zero outside, namely, ψ(x) = 0 for x < 0 or x > a. The continuity requirement just
discussed means that the inside wave function should connect continuously to the outside
wave function at the walls,

ψ(0) = ψ(a) = 0. (continuity) (7.9)

The continuity condition is also known as the boundary condition.

7.3.2 Fitting aWave Function to the Box

We know the solution Eq. (7.8) satisfies the Schrödinger equation Eq. (7.7), but not neces-
sarily the continuity condition Eq. (7.9). To see this, we plot ψ(x) in Fig. 7.4a with a set of
arbitrary constants A, B, and the parameter k, where we rewrite k in terms of k = nπ/a for
reasons that will become clear shortly. The wave function is continuous and smooth, but is
not zero at x = 0 and a, so it is not an acceptable wave function satisfying Eq. (7.9).

We can choose to determine the constants and parameters mathematically such that the
continuity condition is satisfied (see below). However, we choose to do this directly with
Program A.5.3 which lets us adjust the parameters interactively with sliders and visually

(a) (b)

(c) (d)

Fig.7.4 Thewave functionψ in an infinite potential well as a function of the scaled variable x/a. The
output is from Program A.5.3 with different values of A, B, and n = k/π . (a) A general solution not
satisfying the continuity condition, ψ(0) 
= 0 and ψ(a) 
= 0. (b) Adjustment of A primarily affects
the amplitude of ψ , not the end values. (c) Adjustment of B is the only way to change ψ(0), and only
when B = 0 the continuity at x = 0 is satisfied, ψ(0) = 0. (d) Adjustment of n changes the number
of oscillations. Whenever n is an integer, however, continuity is satisfied at the right end ψ(a) = 0
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inspect how the wave function changes. The results are shown in Fig. 7.4 for representative
sets of parameters.

For arbitrary values of the parameters, the wave function does not satisfy the continuity
condition, at either the left end, ψ(0) 
= 0, or the right end ψ(a) 
= 0. Now, if we change
A keeping B and n fixed, mainly the amplitude of the wave function changes, not the end
values. So A acts like a scale factor, but it does nothing to meet the continuity condition.

Next, let us see what changing B does while keeping others constant. We see that the
left-end point moves most, going up or down with increasing or decreasing B. When B = 0,
it leads to ψ(0) = 0, half of the continuity condition.

Last, there is only n left to adjust. Keeping B = 0 and A fixed, increasing n values
increase the number of oscillations as more waves emerge from the right wall. Whenever
n happens to be an integer, though, the wave function vanishes at the right wall ψ(a) = 0.
This is just the other half of the continuity condition needed. We see that the formation of
discrete states.

From these explorations, we find that a physically allowed wave function satisfying the
continuity condition Eq. (7.9) can be achieved only if B = 0 and n = integer. Then the wave
function takes the form

ψ(x) = A sin(nπx/a), n = 1, 2, 3 . . . (7.10)

From Eq. (7.7), we obtain the energy as En = �
2π2n2/2ma2, also discrete. Apparently,

the continuity condition, or the boundary condition, leads to both the allowed wave function
and allowed energy together (Exercise 7.6). The allowed energies and its associated wave
function are known as eigenvalues and eigenfunctions (or eigenvectors). Together they form
eigenstates (see Sects. 6.1 and 6.2.3).

Nowwhat about A? As we have seen, it controls the amplitude of the wave function only.
It may be determined by requiring the total probability of finding the particle to be 1, or∫ |ψ |2dx = 1. The constant A is known as the normalization constant. We also see from
Eq. (7.10) that ψ(a) = A sin(nπ) = 0 if n is an integer. That is why rewriting k = nπ/a is
more convenient in this case.

We note that discrete eigenstates in quantummechanics are a result of reasonable require-
ment for a well-behaved wave function. In fact, discreteness is not new or strange. We saw
this in the discrete angles required tomake a shot (Exercise 5.3). Similar requirement leads to
discrete frequencies, or fundamental harmonics, in a string instrument. There, the boundary
condition is that the string is fixed at two ends, and only discrete fundamental frequencies
are allowed. The Schrödinger equation is a wave equation after all, and quantized energies
are expected, naturally. We discuss quantum states more generally next.
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7.3.3 Visualizing Quantum States

In the last section we have seen that in order to fit a known, general solution between
the walls, only certain discrete energies can satisfy the box boundary conditions Eq. (7.9).
The simplicity of the model shows clearly how it occurs naturally without any extraneous
assumptions other than the wave function be continuous in the domain.

Simple solvable models like the particle in a box are few and far in between. In fact, the
only other models that may be solved analytically in terms of elementary functions are the
Dirac delta potential and the simple harmonic oscillator (SHO). Most realistic problems do
not have closed-form solutions, and the boundaries can extend to infinity. Even so, the basic
ideas demonstrated through the box boundary conditions will help us understand discrete
quantum states in general potentials, via computation though.

Discrete energy levels exist in bound states where a particle’s wave function is localized
in a potential V (x). The general boundary conditions are ψ(−∞) = ψ(∞) = 0, a straight-
forward extension of the box boundary conditions Eq. (7.9). An assumed but unstated prop-
erty of the wave function is its smoothness, or the continuity of the first derivative. For
well-behaved potentials, the Schrödinger equation Eq. (7.7) ensures a well-defined second
derivative, mathematically requiring the first derivative to be continuous. Physically, the
same is required for the particle flux to be continuous. Regardless, this fact will prove very
useful in numerical computation next.

To solveEq. (7.7) for a general potential,wediscretize it over a space grid the sameway the
wave equation is solved (Sect. 6.2.2). Similar to Eqs. (4.4) and (6.19a), the second derivative
is written as d2ψ/dx2 = (ψ(x − �x) − 2ψ(x) + ψ(x + �x))/(�x)2. Substituting it into
Eq. (7.7) and rearranging it for convenience, we obtain

ψ(x + �x) =
(
2 + 2m(V (x) − E)

�2
(�x)2

)
ψ(x) − ψ(x − �x). (7.11)

Equation (7.11) is another three-term recursion relation in space, just like Eq. (6.21) in
time. Likewise, we need two seed values to get it started as expected from a second-order
differential equation. Guided by the boundary conditions ψ(±∞) = 0, we set the domain
in the range [−R, R], assuming R is sufficiently large that the wave function is negligible
beyond, that isψ(±R) ∼ 0.The range R depends on the characteristic length of the potential.

To ensure the boundary conditions are satisfied, our strategy is to start from the left
x = −R, set ψ(−R) = 0 and ψ(−R + �x) = c1, and march upward. Similarly, we set
ψ(R) = 0 and ψ(R − �x) = c2, and march downward. The nonzero constants c1,2 are
arbitrary because they affect only the overall normalization, and can be set to 1.

Now we pick a trial energy E , iterate Eq. (7.11) inward from both ends to some prede-
termined matching point xm . When the upward and downward wave functions are matched
up at xm , they either connect to each other smoothly or not. If they do, we have found the
right energy because the wave function satisfy the boundary conditions and is smooth at xm .
If they do not, we adjust the energy and repeat the process. This process of trial and error is
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known as the shooting method. As we have seen earlier, the way the wave function wiggles
depends on the energy, and not every energy is expected to make the wave functions connect
smoothly. Hence, the allowed energies will be discrete. Once the energy is found, so is the
wave function, completing the eigenstate.

To determine the smoothness quantitatively, we canmonitor the derivatives of the upward
(ψ ′

u(xm)) and downward (ψ ′
d(xm)) iterations, and accept the solution if |ψ ′

u(xm) − ψ ′
d(xm)|

is sufficiently small.
Before actual computation, we need to choose a sensical units system because the SI units

would be awkward and unnatural for quantum mechanical calculations. A suitable choice is
the atomic units (a.u.) system, in which length, mass, and angular momentum are measured
respectively in the Bohr radius (0.529Å), the electron mass, and �. In these units, the unit
of energy is 27.2 eV.

If we assume the particle to be an electron, the practical advantage of the atomic units is
that we can set m = � = 1 in Eq. (7.11), so the recursion now reads simply

ψn+1 = 2
(
1 + (Vn − E)(�x)2

)
ψn − ψn−1, (7.12)

where ψn ≡ ψ(xn) and Vn ≡ V (xn) are the respective grid values at xn as usual.
Numerically, Eq. (7.12) is readily applicable to any general potential, regardless of its

shape. As the first example, we calculate the quantum states of the SHO with the potential
V (x) = 1

2 x
2 in a.u. The exact eigenenergies for the SHO (Sect. 3.3) is En = (n + 1

2 )�ω,
ω = √

k/m. Here, the spring constant k = 1 and m = 1 in a.u., so En = n + 1
2 a.u. The

SHO is an important nontrivial problem with known analytic solutions, and is an ideal test
case.

Computation is carried out with Program A.5.4 and sample results are shown in Fig. 7.5.
The energy is selected with the slider. At each energy, the wave function is interactively
visualized separately for the upward ψu and downward ψd iterations so the connection
at the matching point may be seen more clearly. The relative difference between the first
derivatives of the two parts is calculated as ε = (ψ ′

d − ψ ′
u)/max(|ψ ′

d |, |ψ ′
u |) at xm . It is

basically a relative error with the sign information. For better accuracy, the three-point
formula Eq. (4.4) is used for the derivativesψ ′

d(xm) andψ ′
u(xm). The derivations are almost

a byproduct of the shooting method, and readily obtained from the wave functions.
An energy is allowed when the two parts smoothly join each other at the matching point.

Practically, it is unlikely for the error ε to be zero exactly because of numerical error, so we
accept the energy if the error is within some tolerance, |ε| < 0.05 in this case. As the trial
energy increases from E = 1.1 to 1.5, both parts of the wave function start to get shallower,
and the joint moves lower, eventually crossing the axis between E = 1.2 and 1.3 (mostly
due to increased oscillatory behavior of the upward iteration. Run the program to see the
interesting dynamic change and how the dashed part of the wave function flips from positive
to negative due to matching). The connection at the joint becomes smoother, accompanied
with progressively smaller error. At E = 1.5, the error |ε| = 0.002 is the smallest, and the
energy is accepted. The exact energy for this SHO is En = n + 1

2 , so we just found the
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Fig.7.5 The wave functions ψ of a simple harmonic oscillator (V = 1
2 x

2) at different trial energies
(a.u.) labeled at the top. They are scaled so the maximummagnitude is 1, and also shifted to minimize
overlap for clarity (see ProgramA.5.4 for dynamic change as energy is being selected from the slider).
The solid curve in each wave function is the result of upward iteration and the dashed curve that of
downward iteration. Both parts are matched at the dotted line (slightly off-center). The mismatch
error is shown as the relative difference between the derivatives 
 ′ of the two parts. The error is
nearly zero when E = 1.5, which is the exact result En = n + 1

2 for n = 1 in the chosen units (a.u.)

energy with n = 1, the first excited state of the SHO. Indeed, the single node (crossing zero)
in the wave function confirms it also.

With the trial energy increasing still, the joint bends other way, increasing the error ε.
Between the last two energies, the dashed part of wave function flips again due to matching,
creating another node. It is well on its way to the second excited state at E = 2.5 (n = 2, two
nodes). While these observations add insight to why discrete quantum states exist, nature
(or the Schrödinger equation) does not care one way or the other. At a given energy, a state
either exists or not.

Program A.5.4 performs well in other cases. In fact, it can be used as a robust general
Schrödinger equation solver. We just need to replace the potential function and adjust other
parameters as necessary.We leave it to the interested reader to explore other cases, including
the finite square well, the particle in a box already discussed earlier, and even some 3D
problem like the hydrogen atom (see Exercise 7.7).

7.4 Quantum Computing

From diffraction to double-slit interference, the principle of superposition is at the core of
quantum mechanics. Superposition is a natively supported form of parallel processing in
computing with quantum mechanical laws. Here we introduce the very basic elements of
quantum computing, including basis states, superposition, qubits, and quantum gates. We
put everything together with a quantum simulation of spin measurement and discussion of
a quantum search algorithm.
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7.4.1 Basis States and Principle of Superposition

As seen above, many systems can be characterized by discrete, stationary states. Given a
system, the number of such statesmay be finite or infinite, though for our purpose we assume
afinite number of states. These states are called basis states and they forma so-called basis set.
We can think of the basis states as equivalent to the unit vectors in the Cartesian coordinates,
except they represent physical states that can be selected via measurement.

For instance, electrons have spin that exists in two states (directions): up or down. The
spin state can be selected by passing an electron through a magnetic-field selector (Stern-
Gerlach apparatus, Fig. 7.6a), and the up and down states can be separated (see McIntyre
(2012)).

An important property of quantummechanics is that the system can exist in any state that
is a linear combination of the basis states. This is known at the principle of superposition, a
phenomenonwe have seen in double-slit interference Sect. 7.2.With the spin as the example,
let us denote the up and down states as | ↑〉 and | ↓〉, respectively (|0〉 and |1〉 are often used
elsewhere (see Abhijith et al. (2022)). The vertical bars and brackets are part of compact
Dirac notations that are convenient for algebraic operations. We use them here following
convention, but for our purpose they could easily be replaced with just ↑ or ↓ without the
bars and brackets). Then a possible state |ψ〉 of the electron spin is given by

|ψ〉 = c1| ↑〉 + c2| ↓〉 (qubit) (7.13)

where c1 and c2 are constants (complex in general; also known as amplitudes) subject to
|c1|2 + |c2|2 = 1. Using the vector analogy, we can think of superposition as equivalent to
a vector composed of different components along the unit vectors.

The system can be prepared in the state |ψ〉 and will remain (evolve) just fine without
external disturbance. If, however, we wish to measure the spin, we will get either | ↑〉 or
| ↓〉, not both simultaneously (in the famous Schrödinger’s cat game, we would see either a

(a) (b)

Fig.7.6 Spin selector (Stern-Gerlach apparatus). (a) The incident electron passes through amagnetic-
field selector in the z direction, separating the up and down states. (b) The magnetic-field selector is
in the x direction, separating the right and left states
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live cat or a dead cat). The probability of getting | ↑〉 is c21, and that of | ↓〉 is c22. We have no
way of knowing the outcome beforehand, only the probability. Such a state of superposition
is purely quantum mechanical, and there is no classical equivalence (Of course there is
superposition of waves in classical physics, but there the waves do not represent discrete
physical states as they do in quantum mechanics).

Suppose we obtained the | ↑〉 state in a measurement, the system will remain in the | ↑〉
state, andwill not evolve back to a superposition likeEq. (7.13). In otherwords,measurement
destroys (collapses) the superposition. But, as stated earlier, until measurement is carried
out, the system remains in perfect state of superposition. In fact, Eq. (7.13) is not limited
to two states, there can be N states (N � 1), and quantum mechanics can keep track of
them simultaneously. In other words, parallel processing is a built-in feature of quantum
mechanics. It is precisely this feature that enables quantum computing to be superior to
digital computing for certain problems.

Focusing on two-state systems like the spin, Eq. (7.13) serves as the basic unit of quantum
information, called a qubit. Unlike the 0 or 1 bit in digital computing, both | ↑〉 and | ↓〉 are
represented (or co-exist) in a qubit, until measurement. For mathematical manipulations, it
is convenient to represent the basis states by matrices

| ↑〉 =
(
1
0

)
, | ↓〉 =

(
0
1

)
, (7.14)

such that a qubit Eq. (7.13) can be expressed as

|ψ〉 = c1

(
1
0

)
+ c2

(
0
1

)
=

(
c1
c2

)
. (7.15)

A qubit can be in the basis state | ↑〉 if c1 = 1, c2 = 0, in basis state | ↓〉 if c1 = 0, c2 = 1,
or anything in between.

7.4.2 Qubit Manipulation

To obtain useful information, we need to be able to manipulate qubits. This is done by
transforming the states between different basis sets or representations. Take the spin states
for example. If we think of the up and down states as the spin orientations in the vertical
direction (z-axis), we can equally have right and left states for spin orientations in the
horizontal direction (x-axis). Physically, this can be done by having the reference direction
(e.g. the magnetic field) along the x-axis.

Alternative Basis States
Let us denote the right and left states by |+〉 and |−〉, respectively. Quantum mechanically,
if we start with the |+〉 (or |−〉) state, pass it through a magnetic-field selector in the z
direction, it will be transformed into



7.4 Quantum Computing 155

|+〉 = 1√
2
(| ↑〉 + | ↓〉) = 1√

2

(
1
1

)
, |−〉 = 1√

2
(| ↑〉 − | ↓〉) = 1√

2

(
1

−1

)
. (7.16)

Conversely, if we swap the right/left and up/down states, we obtain similar relations. For
example, | ↑〉 = 1√

2
(|+〉 + |−〉). The right/left states form an alternative basis set because

the | ↑〉 and | ↓〉 states can be expanded in the |+〉 and |−〉 states.
Equation (7.16) shows that the right/left states are in fact superpositions of the up/down

states. The implications are interesting: if we know the spin is in the right state |+〉 horizon-
tally, and subsequently measure it in the z direction (vertically), we will get either spin up
(| ↑〉) or down (| ↓〉), randomly, and with equal probability. Similarly, if the spin is in the
up (or down) state, we will get either spin right or left after passing through the selector in
the x direction, as depicted in Fig. 7.6b. There is no classical analog to this. Classically, a
vector pointing up (z-axis) will have no x-components, vice versa. Quantum mechanically,
we cannot know the z- and x-components simultaneously due to the uncertainty principle
(Eq. (7.6)), so this “weird” feature is possible (technicallywe say that the x and z components
do not commute).

QuantumGates
Themathematical operation corresponding toEq. (7.16) is called aHadamardgate, expressed
as a square matrix

H = 1√
2

(
1 1
1 −1

)
. (7.17)

The Hadamard matrix H is also its own inverse, so H2 = 1.
With Eq. (7.14) and (7.16), we can verify using matrix multiplication rule that

H | ↑〉 = |+〉, H | ↓〉 = |−〉, H |+〉 = | ↑〉, H |−〉 = | ↓〉. (7.18)

Physically, the Hadamard gate acts like a state converter that turns one state into another.
Because it is its own inverse, acting on a state twice returns it to the original state, provided
no measurement has taken place in between.

Another useful gate is the flip gate X defined as

X =
(
0 1
1 0

)
. (7.19)

When applied to the qubit Eq. (7.15), it flips the rows

X

(
c1
c2

)
=

(
c2
c1

)
. (7.20)

Wenote the special cases, X | ↑〉 = | ↓〉, X | ↓〉 = | ↑〉. Physically, it corresponds to a selector
reversing its magnetic field direction. This operation has a digital equivalent, the NOT gate.



156 7 Modern Physics and QuantumMechanics

There are plenty other gates, of course, an interested reader should consult other references
(see Exercise 7.8, and Abhijith et al. (2022)).

Measurement
Now, let us discuss the measurement of a spin or qubit to find out its state. Physically,
we just place a detector behind the selector (Fig. 7.6) to determine if a spin up or down is
detected. Mathematically, we do it through an operation called projection, again borrowing
nomenclature from ordinary vector operations.

Suppose we want to extract the amplitude c1 or c2 from Eq. (7.15). We can do so with a
matrix multiplication as

(
1 0

) (
c1
c2

)
= c1,

(
0 1

) (
c1
c2

)
= c2. (7.21)

Note that the first matrix in each term is a row matrix, identical to the matrix representation
of the up and down states Eq. (7.14), respectively, but turned sideways (transposed). In Dirac
notation, the turning operation is denoted by swapping the bar and bracket so 〈↑ | = (

1 0
)
,

such that c1 = 〈↑ |ψ〉, c2 = 〈↓ |ψ〉, and so on. Such operations are called projections, akin
to the extraction of vector components in the Cartesian coordinates.

7.4.3 A Quantum Computer Simulator

We have now the very basic elements to explore several operations in quantum computing
on qubits. Pending the arrival of a real quantum computer on everyone’s laps, we will have
to simulate the operations on the digital computer. However, the essential ideas are clearly
demonstrated in the simulator nonetheless (see Program A.5.5).3

We aim to develop a simple quantum simulator to manipulate a qubit and do some simple
measurements. See Sect. 7.4.4 on using a ready-made sympy qubit-manipulation library.
First, we need to be able to create a qubit. Instead of obtaining it from an actual quantum

computer, we can simulate this with a matrix

(
1
0

)
, as given in Eq. (7.14).

Next, if we make a measurement on this qubit, we would get 1 (spin up) always. To make
it a bit more interesting, let us apply the Hadamard gate to it. This will involve a matrix
multiplication as shown in Eq. (7.18).

Third, we can simulate a readout measurement by projection according to Eq. (7.21).
Putting it together, we have the following code to accomplish these functions.

3 There are also other resources where one can learn about the basics of quantum computing and
programming. For example, the Quantum Katas (see Microsoft (2022)) consist of a balanced range
of tutorials and exercises using the Q-sharp (Q#) programming language.
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In [1]: def Qubit(): # returns spin up [1,0]
return np.array([1, 0])

def H(qubit): # Hadamard gate
hg = np.array([[1,1], [1,-1]])/np.sqrt(2.0)
return np.dot(hg, qubit)

def M(qubit): # Measurement
return np.dot([1, 0], qubit)

Here Qubit() returns a qubit as a 2× 1 array. The function H() creates the Hadamard
matrix represented by a 2× 2 array. The Hadamard operation is performed via np.dot()
which returns the result of the matrix multiplication between the Hadamard matrix and the
input qubit. Finally M() carries out the projection of the input qubit onto the spin up state.

We now can simulate a number of computations. Let us compute the fraction of spin up
states after a Hadamard gate. The process as implemented in Program A.5.5 is as follows:
First, prepare a pure qubit | ↑〉 according to Eq. (7.14); then apply the Hadamard gate to
it. Next, a “measurement” is performed to sample whether we get a spin up or down. The
process is repeatedmany times so the fraction, or probability, can bemeaningfully calculated
from the ratio of the numbers of spin-up count to the total number of samplings. The code
segment to do this is given below.

In [2]: q = Qubit()
hq = H(q)
c1 = M(hq) # amplitude
r = random()
if (r < c1**2): # spin up

s = s + 1.0

Because we do not have a quantum gate to read out directly the spin state, the “measure-
ment” is simulated by projecting the transformed state |+〉 on | ↑〉 to extract the amplitude
c1, then comparing the probability of getting a spin up c21 with a random number. After
repeated samplings, a statistically correct fraction can be determined. A sample output of
Program A.5.5 gave the result of 0.502 with 1000 samplings. Different runs will usually
produce different results within statistical fluctuations, but it should approach the exact value
0.5 with a larger number of samplings.

True RandomNumbers and Schrödinger’s Cat
The use of a digital random number generator is the least realistic part of the simulation,
because it is only a pseudo-random number owing to the way random numbers are generated
on the digital computer (see Sect. 8.1). The sequence of pseudo-random numbers closely
resembles some statistical properties of being random, but is repeatable, hence is not truly
random. In fact, only a quantum computer could generate a true random number due to the
probabilistic nature of quantummeasurement. To do so, we can associate a quantum readout
of spin up and downwith binary bits 1 and 0, respectively. Because a Hadamard-transformed
state contains the two states with equal probability, the outcomes would be equally likely to
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be 1 or 0. We now have a random bit. To obtain a larger random number, we can generate
as many bits as desired.

As the above simulation shows, a measurement of a Hadamard-transformed state yields
either a spin up or down, not both. Repeating the measurement will tell us the probability
of getting one state or the other (equal probability in this case). However we are unable to
know which state will result just before the measurement: it is truly a random event. If we
think of the two states as a cat being alive or dead respectively, we have a system that is a
superposition of a cat in the live and dead states simultaneously, at least until measurement.
If we wish to know by doing a measurement, it will reveal the cat being either alive OR
dead. This illustrates the well-known Schrödinger’s cat problem: measurement somehow
alters the superposition (coherent state) irrecoverably: if you get a live cat, you will remain
a live cat, and the same with a dead cat. Either will not become a superposition of being
live and dead by itself. How does the act of measurement do that? Was the cat alive or dead
immediately before the measurement?

Unfortunately, the question cannot be found satisfactorily from within quantummechan-
ics itself, because it, or more precisely the Schrödinger’s equation, only describes how the
state of superposition evolves in time. It does not say anything about measurement or a par-
ticular outcome, only the probabilities of the outcomes. This is the quantum measurement
problem in a nutshell. Competing ideas (and schemes) of interpreting the measurement
have been proposed. A commonly accepted viewpoint is the Copenhagen interpretation:
The question is immaterial, and the system ceases to be a coherent superposition, which col-
lapses to one state or the other when a measurement is made. In other words, measurement
destroys the system. As unsatisfying as this answer is as to how the system stops being a
superposition of states, it is an answer nonetheless. It does not affect the actual outcomes of
predictions or measurements, only the interpretation. As stated earlier, it is in fact this very
unique property of quantum mechanics keeping track of many states simultaneously, a kind
of natural parallel processing, that makes quantum computing a powerful tool for suitable
problems. One such problem is discussed in the next section.

7.4.4 Quantum Search:The Grover Algorithm

We now discuss a nontrivial but practical task where quantum computing excels: search.
The problem is stated as follows: given an unordered list of N � 1 items, e.g., numbers,
names, and so on, find the position of a target item as efficiently as possible. Classically,
we go down the list, comparing each item with the target. The best case scenario occurs if
the target item is at the beginning, and the worst case if it is at the end, so on average N/2
operations are required, or on the order of N . As it turns out, quantum computing can find
the item with only ∼ √

N operations, a quadratic speedup. It is possible with the Grover
search algorithm discussed next.
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7.4.4.1 Qubit Operations with Sympy
For this part of the discussion, it is convenient to use a readily available qubit manipulation
library insympy (see Sect. 3.3). Having developed a basic understanding earlier in Sect. 7.4,
we can now focus on the algorithm without worrying about creating qubits, gates, and other
basic operations. Still, let us familiarize ourselves with sympy qubit operations, starting
with single-qubit manipulations. Run Program A.5.6 to follow along these operations inter-
actively.

First we import the necessary library functions,

In [3]: from sympy import *
from sympy.physics.quantum.qubit import Qubit, IntQubit, measure_partial
from sympy.physics.quantum.qubit import measure_partial_oneshot
from sympy.physics.quantum.gate import H
from sympy.physics.quantum.qapply import qapply
init_printing()

Both Qubit and IntQubit create qubits, the former taking as input a string of 0s and
1s, and the latter an integer. For instance, to create a single qubit, we do the following,

In [4]: q = Qubit(0)
q

Out[4]: |0〉
Note the output is |0〉 instead of our usual | ↑〉. For single qubits, the following notations
are equivalent, |0〉 ≡ | ↑〉, |1〉 ≡ | ↓〉.

A potential measurement of a qubit can be made with

In [5]: measure_partial(q,(0))

Out[5]: (|0〉, 1)
The measure_partial returns the result of a potential measurement of the qubit in the
|0〉 state with a probability of 1 because that is the state the qubit was initialized to. It only
predicts the probability if a measurement was carried out without actually making the mea-
surement because doing so would collapse the qubit. To actually make a measurement, we
use measure_partial_oneshot, which would reveal the outcome, not the probability
of the outcome,

In [6]: measure_partial_oneshot(q, [0])

Out[6]: |0〉
Only one outcome is possible here. In actual measurement, the qubit would be destroyed.

To mix thing up a little, we can apply a Hadamard gate to the qubit to create a |+〉 state
Eq. (7.18),

In [7]: hq = qapply(H(0)*q)
hq

Out[7]: 1√
2

(|0〉 + |1〉)



160 7 Modern Physics and QuantumMechanics

Here,H(0)*q says to apply theHadamard gate to qubit 0 of the qubit. The result is generated
only after qapply is called. It is a |+〉 state as expected from Eqs. (7.16) and (7.17).

A potential measurement of the |+〉 state yields
In [8]: measure_partial(hq,(0))

Out[8]: (|0〉, 1
2 ), (|1〉, 1

2 ))

We get both |0〉 and |1〉 with equal probability. If we conducted an actual measurement, we
would get a single outcome,

In [9]: measure_partial_oneshot(hq, [0])

Out[9]: |1〉
We got |1〉, but could have gotten |0〉 with equal probability. To confirm, let us repeat the
measurement 10 times,

In [10]: res = []
for i in range(10):

res.append(measure_partial_oneshot(hq, [0]))
res

Out[10]: [|0〉, |1〉, |1〉, |1〉, |0〉, |1〉, |0〉, |1〉, |0〉, |1〉]
Out of 10 outcomes, we obtained |0〉 4 times. If we repeated it another 10 times, we would
get different outcomes. However, in a repeat measurement, we would have to do it with
another qubit prepared in the same state because once a measurement is made, that state is
destroyed. In this case, we would repeat the measurements on an ensemble of identically
initialized states. Multiple qubits can be handled similarly, discussed in connection to the
search method next.

7.4.4.2 Grover Algorithm
We need multiple qubits to handle more than two basis states. With n qubits, the number
of such states is N = 2n . In a two-qubit system, an example we will use to illustrate the
search of a list, the possible states are |00〉, |01〉, |10〉, |11〉. For convenience, we shall label
the states sequentially as |0〉, |1〉, |2〉, |3〉. They are also called ket states in a 4-dimensional
vector space. For every ket state, there is a bra state, noted as 〈0|, 〈1|, and so on.

Any other state (state vector) can be written as a superposition of the ket states. A
particularly useful state for our purpose is the uniformly weighted state,

|ψ0〉 = 1

2

[|0〉 + |1〉 + |2〉 + |3〉]. (7.22)

Analogous to Eq. (7.13), all four coefficients (amplitudes) are equal, c1 = c2 = c3 = c4 =
1/2, ensuring |ψ0〉 is normalized, that is

∑
s c

2
s = 1. The order of the ket states in Eq. (7.22)

is unimportant quantummechanically, though it may well be if they represent items in a list.
For example, suppose the four ket states represent the letters ABCD sequentially. The list
could be scrambled to BADC, a different list with letter positions changed, but it is still the
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same quantum state. The search method discussed next can still find the correct position of
a given letter as long as they are associated with the ket state number.

Quantum Search: AWorked Example
Suppose we wish to find the position of letter B, called the target, associated with |1〉 in
Eq. (7.22). The Grover search method works to boost the target state’s amplitude, ct , and
simultaneously suppress the amplitudes of other states. When ct is sufficiently dominant
such that its probability c2t is nearly 1, a measurement is made to reveal ket state, and the
target position.

Let us now look at the Grover search method in action through a worked example and
then discuss the general approach. Also see Fig. 7.7 for a graphical overview. We start with
the uniform initial state Eq. (7.22). There are two steps involved.

First step. The amplitude of the target state is flipped but those of others are unchanged.
In Eq. (7.22), we set ct ≡ c2 → −c2,

|ψ1〉 = 1

2

[|0〉 − |1〉 + |2〉 + |3〉]. (7.23)

The normalization of |ψ1〉 remains unchanged at 1.
Second step. All amplitudes are changed to 2c̄ − cs , where c̄ = ∑

s cs/4 is the average
amplitude. With c̄ = [(1 − 1 + 1 + 1)/2]/4 = 1/4, we have

|ψ2〉 = 0 × |0〉 + 1 × |1〉 + 0 × |2〉 + 0 × |3〉. (7.24)

The effect is that the target state amplitude (magnitude) is boosted to ct = c2 = 1 and all
others are reduced to zero (c1 = c3 = c4 = 0). A measurement (projection) will reveal only
state |1〉, or B in the second position. The Grover search is successful.

Let us emphasize three points. First, the normalization of |ψ1,2〉 is unaltered through-
out as required between state to state transformations in quantum mechanics. Second, the
amplitudes are effectively flipped about the average amplitude c̄ after the operation 2c̄ − cs .
To see this, rewrite 2c̄ − cs = c̄ − d with d = cs − c̄ being the difference between cs and
c̄. If d is positive (cs above c̄), then the result c̄ − d flips d down from c̄; otherwise it flips
|d| up. Third, the target state |1〉 could be in any other position at the start in Eq. (7.22), say
at the first position, the only difference would be ct = c1 in the end. These same points are
valid in the general approach discussed next.

Grover Method:General Approach
In a general quantum search problem, we would not know beforehand the position of the
target state, noted as |qt〉, in the superposition; we only know its identity (qubit pattern, qt ).
But this is sufficient to build a transformation to flip the target state in the first step. This
magic can be achieved easier than one might have thought, at least conceptually.
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At a simplified conceptual level, we seek a transformation Ô as a diagonal matrix. For
the 2-qubit problem, it looks like

Ô =

⎡

⎢⎢⎢
⎣

(−1) f

(−1) f 0
0 (−1) f

(−1) f

⎤

⎥⎥⎥
⎦

. (7.25)

Among other things, this form of matrix preserves the normalization (namely, it is unitary).
For n qubits, the dimension of the Ô matrix would be 2n × 2n .

The function f = f (q, qt ) is a boolean function that compares the input qubits q with
the target qubits qt ,

f (q, qt ) =
{
1 if q = qt
0 otherwise

. (7.26)

We note that the qubits in the function f are not actually measured in the classical sense for
the comparison, because any measurement would collapse the state prematurely. It is part
of the quantum gate logic at the hardware level.

Now imagine we iterate through the ket states in Eq. (7.22) to build Ô , assuming the
second state |1〉 as the target, f will be 0 for all but the second diagonal, and we will obtain

Ô =

⎡

⎢⎢⎢
⎣

1

−1 0
0 1

1

⎤

⎥⎥⎥
⎦

. (7.27)

Only the second diagonal will be −1. We can verify with matrix multiplication that given a
general state |ψ〉 = [c1, c2, c3, c4]T , the result of Ô|ψ〉 is

|ψ ′〉 = Ô|ψ〉 =

⎡

⎢⎢⎢
⎣

1

−1 0
0 1

1

⎤

⎥⎥⎥
⎦

⎡

⎢⎢
⎣

c1
c2
c3
c4

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

c1
−c2
c3
c4

⎤

⎥⎥
⎦ , (7.28)

where only the target amplitude is flipped.
The transformation Ô will always flip the correct amplitude corresponding to the position

of the target state. The matrix Ô Eq. (7.25) is also known as the oracle gate. Once it
is known, the first step in the Grover method is solved, and the resultant is a new state
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|ψ ′〉 = [c′
1, c

′
2, c

′
3, c

′
4]T which can be regarded as a reflection in a two-dimensional Cartesian

space.4

In the second step, the amplitude boosting operation is carried out as

|ψ ′′〉 = Ŵ |ψ ′〉 =

⎡

⎢⎢
⎣

2c̄ − c′
1

2c̄ − c′
2

2c̄ − c′
3

2c̄ − c′
4

⎤

⎥⎥
⎦ , Ŵ = (2c̄ − 1)1l, c̄ = 1

N

∑

s

c′
s . (7.29)

Because this operation amplifies the target amplitude and diminishes others, it is known as
the winner gate, or Ŵ gate. Interestingly, it also has a geometric interpretation as a reflection
about the initial state.5

Together with the Ô transformation, the Ŵ transformation will increase the target state
amplitude, and reduce the amplitudes of other states (see Fig. 7.7). Finally, here is the Grover
algorithm:

1. Initialize the uniform state |ψ0〉, Eq. (7.22), and build the oracle gate Ô , Eq. (7.25).
2. Flip the target amplitude with |ψ ′〉 = Ô|ψ0〉.
3. Boost the target amplitude with |ψ ′′〉 = W |ψ ′〉.
4. Replace |ψ0〉 with |ψ ′′〉 and repeat step 2.

As explained in the footnotes, the iterations may be regarded as a series of successive
reflections, effectively rotating the initial state onto the target state. It can be shown that the

4 The Ô gate has a useful geometric interpretation. To see this, let us separate the target state |t〉
from the rest, |ψ ′〉 = Ô|ψ〉 = ∑

s 
=t cs |s〉 − ct |t〉 = |ψ⊥〉 − ct |t〉, where |ψ⊥〉 = ∑
s 
=t cs |s〉, the

original state minus the target state. Incidentally, |ψ⊥〉 is perpendicular to the target state because
〈ψ⊥|t〉 = ∑

s 
=t cs〈s|t〉 = 0 due to the basis states being orthogonal to each other. Thus,we can regard
|ψ⊥〉 and |t〉 as the x̂ and ŷ directions, respectively, in the two-dimensional Cartesian coordinates.
Before the transformation, we can visualize the state |ψ〉 as a vector slightly above the x̂ axis. Because
the transformation flips the ŷ component of |ψ〉 and leaves the x̂ component |ψ⊥〉 unchanged, the
transformed state |ψ ′〉 can be visualized as a reflection of |ψ〉 about the x̂ axis, so it is symmetrically
below the axis. Furthermore, the direction of |ψ⊥〉 remains unchanged in a subsequent transformation
in the second step (W gate, see discussion following Eq. (7.29)), so |ψ ′⊥〉 points to the fixed x̂ direction
throughout. Its magnitude get progressively reduced, however.
5 The Ŵ gate is equivalently defined as Ŵ = 2|ψ0〉〈ψ0| − 1, where |ψ0〉 = [1, 1, . . .]T /

√
N

is the uniform state Eq. (7.22). It follows that 〈ψ0|ψ〉 = ∑
s cs/

√
N = c̄

√
N , and Ŵ |ψ〉 =

2c̄[1, 1, . . .]T − |ψ〉, same as Eq. (7.29). Like the Ô gate in the first step, theW gate is unitary and also
has a geometric interpretation. Let |ψ ′〉 = Ŵ |ψ〉. The operation is unitary, because 〈ψ ′|ψ ′〉 = 〈ψ |ψ〉.
The projection on |ψ0〉 is unchanged, 〈ψ0|ψ ′〉 = 2〈ψ0|ψ0〉〈ψ0|ψ〉 − 〈ψ0|ψ〉 = 〈ψ0|ψ〉, so the par-
allel component remains the same. If there is a perpendicular component prior to the operation, say
|ψp〉, then afterwards, |ψ ′

p〉 = W |ψp〉 = 2|ψ0〉〈ψ0|ψp〉 − |ψp〉 = −|ψp〉 because 〈ψ0|ψp〉 = 0 by

definition. So the perpendicular component is reversed. Therefore, the Ŵ gate is a reflection about
the uniform state vector |ψ0〉. Together, the Ô and Ŵ transformations are a reflection about the x̂
axis followed by another reflection about the initial state |ψ0〉.
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target amplitude grows until π
√
N/4 iterations have been reached. The target amplitude ct

will be very close to 1 for large N (it is exactly 1 only of 2-qubit systems), and it will shrink
after that point. This is the optimal time to make a measurement to find out the target state
(position in the list).

To simulate the process on the digital computer, we would expect computational cost to
be about N

√
N , because the Ô and Ŵ gates would need N operations in each iteration, so

the Grover method offers no advantage on a digital computer, no surprise here (see Exer-
cise 7.11). But a quantum computer keeps track of all the qubits in parallel, and activates the
gates simultaneously, so the computational cost is∝ √

N . The speedup can be considerable.
Suppose a given search takes one second on both a digital and a quantum computer. If the
list is 100 times larger, it will take 100s on the digital computer, but only 10s on the quantum
computer.

Grover Search with Sympy
Whereas the Grover iterations for the minimum two-qubit system is easy to work out by
hand, three ormore qubits are not as easy. However,sympy (Sect. 3.3) provides a convenient
platform on which we could test drive a Grover search engine as if we were programming
on an actual quantum computer. We illustrate the method here with three qubits for clarity,
but more qubits could be used.We recommend the reader to run interactively ProgramA.5.6
and also refer to Fig. 7.7 about the process graphically.

First we import the necessary Grover modules from sympy,

In [11]: from sympy.physics.quantum.grover import OracleGate, WGate
from sympy.physics.quantum.grover import grover_iteration, apply_grover

The OracleGate and WGatemodules correspond to our transformations Ô Eq. (7.25)
and Ŵ Eq. (7.29), respectively. The grover_iteration completes one Grover iteration
(first and second steps), and apply_grover solves the problem complete as seen shortly.

Next we set the number of qubits and construct the Ô and Ŵ transformations,

In [12]: n = 3 # num of qubits
f = lambda basis: basis == IntQubit(Qubit('001'))
O = OracleGate(n, f) # Oracle operator
W = WGate(n)

As discussed earlier, a truth function f Eq. (7.26) is necessary for building Ô . We choose
the target state to be ‘001’, or the second ket state |1〉. We use Qubit(‘001’) to ensure
it is a three-qubit system and convert to an integer qubit with InQubit because the latter
alone would be ambiguous as to howmany qubits are used. The function compares the input
(basis) with the target state, and returns true (1) if they match, and false (0) otherwise.
The function f is passed to OracleGate along with n, the number of qubits. The WGate
function needs only the number of qubits.

We next initialize the uniform state |ψ0〉 Eq. (7.22),
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Fig. 7.7 Amplitudes in Grover iterations of a 3-qubit system. The amplitudes are scaled by 2−3/2

(initial normalization factor) for tidiness. Each row represents one iteration. The red color (second
bar) indicates the target state. The dashed line marks the average amplitude in each configuration. In
the first iteration (top row), the starting state (1a) is the uniform state Eq. (7.22). The first step (1b) flips
the target state Eq. (7.28), and the second step (1c) boosts the amplitude of the target state and reduces
the rest Eq. (7.29). The last configuration (1c) serves as the starting state of the second iteration (2a).
The optimal Grover iteration stops at (2c) where the amplitudes of the target and non-target states
are 11/8

√
2 and −1/8

√
2, respectively, yielding a ratio of probabilities to 121/1. The ratio would

become progressively larger with more qubits, so the probability of the target state being revealed in
a measurement is nearly certain (see text). The third iteration is shown for comparison purpose only,
and the target state becomes less dominant at the end (3c). Further iterations will eventually lead back
to the starting point (1a) and the cycles repeats

In [13]: c = sqrt(2)/4 # cancel factor
qs = IntQubit(Qubit('000'))
psi0 = H(2)*H(1)*H(0)*qs
psi0 = qapply(psi0)
simplify(psi0/c)

Out[13]: |0〉 + |1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉
Starting with three qubits ‘000’ (| ↑↑↑〉), three successive Hadamard transformations
Eq. (7.18) are applied to each qubit respectively. Because a single Hadamard operation
H(i) turns qubit i into an equal superposition of two states (up and down) Eq. (7.16),
three operations in a row produce a superposition of eight ket states with equal amplitudes
(Fig. 7.7, 1a) like Eq. (7.22) but with eight terms (also called outer product). Operations are
queued and actuated with qapply. The amplitudes are scaled by the overall normalization
factor 1/

√
8 to make the output tidy (actual computations use unmodified amplitudes, of

course).
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We can peek in the Grover method step by step. In the first step, we apply the Ô trans-
formation to flip the target state,

In [14]: psi1 = qapply(O*psi0) # 1st step, reverse target amplitude
simplify(psi1/c)

Out[14]: |0〉 − |1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉
The amplitude of the target state |1〉 changes sign and the rest is unchanged (Fig. 7.7, 1b).

In the second step, we apply the Ŵ transformation to boost the amplitude of the target
state and suppress the rest,

In [15]: psi2 = qapply(W*psi1) # 2st step, apply W gate
simplify(psi2/c)

Out[15]: 1
2 (|0〉 + 5|1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉)

The target state is amplified five times relative to the other states (Fig. 7.7, 1c). The latter
have the same amplitudes. The operation is equivalent to flipping the amplitude about the
average amplitude. The above two steps complete the first Grover iteration.

The last state of the first iteration (Fig. 7.7, 1c) serves as the initial state of the second
Grover iteration, now with nonuniform amplitudes. Repeating the two steps, we obtain

In [16]: psi1 = qapply(O*psi2) # repeat 1st step
simplify(psi1/c)

Out[16]: 1
2 (|0〉 − 5|1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉)

In [17]: psi2 = qapply(W*psi1) # repeat 2nd step, apply W gate
simplify(psi2/c)

Out[17]: 1
4 (−|0〉 + 11|1〉 − |2〉 − |3〉 − |4〉 − |5〉 − |6〉 − |7〉)

The intermediate state again shows the sign change of the target state (Fig. 7.7, 2b). The
amplitude of the target state is increased also (Fig. 7.7, 2c).

The amplitude of the target state reaches its maximumvalue at iteration [π√
2n] = 8/4 =

2 for a three-qubit search, so we should stop the iterations. The amplitudes of the target and
non-target states are 11/8

√
2 and −1/8

√
2, respectively, yielding a ratio of r = −11/1

after the second iteration. The ratio of probabilities is r2 = 121/1. This relative probability
is large but not overwhelming. If a measurement is made, it would reveal the target state with
a probability ∼ 0.945 (Exercise 7.10). Recall for a two-qubit search it is 1, which happens
to be accidental.

If we iterate one more time, we see that (Fig. 7.7, 3a–3c) the target amplitude actually
decreases, and if we keep on going, it would reach the uniform state and the cycle repeats.

We can combine the two steps of an iteration and skip the intermediate results,

In [18]: psi1 = qapply(grover_iteration(psi0, O)) # one iteration
simplify(psi1/c)

Out[18]: 1
2 (|0〉 + 5|1〉 + |2〉 + |3〉 + |4〉 + |5〉 + |6〉 + |7〉)



7.5 Exercises 167

In [19]: psi2 = qapply(grover_iteration(psi1, O)) # another one
simplify(psi2/c)

Out[19]: 1
4 (−|0〉 + 11|1〉 − |2〉 − |3〉 − |4〉 − |5〉 − |6〉 − |7〉)

The results are as expected.
Finally, we can even combine all necessary iterations and solve the problem automatically

with apply_grover,

In [20]: sol = qapply(apply_grover(f, n)) # fully automatic
simplify(sol/c)

Out[20]: 1
4 (−|0〉 + 11|1〉 − |2〉 − |3〉 − |4〉 − |5〉 − |6〉 − |7〉)

It relieves us of having to build the transformations manually. We just need to tell the solver
what the target state is via the f function. It stops at the optimal iteration and gives the final
results.

Lastly, let us examine the rate of convergence of the Grover method with the number
of qubits n. As seen earlier, the Grover method gets better with each iteration, reaching
the highest probability pn up to the optimal iteration, then gets worse past that. This is in
contrast to most other methods that get more accurate with more iterations. Interestingly,
the probability approaches 1 nonmonotonically. For instance, the optimal probabilities for
4 to 6 qubits searches are respectively, 4: 0.96131, 5: 0.99918, and 6: 0.99658.

Of course, practical gain within quantum search is significant only for large n. Let εn be
the error of the probability pn from unity, namely εn = 1 − pn . For larger n, the error scales
roughly as εn � 2−n . So on average, for every 3.3 qubits, we obtain an additional digit of
accuracy. Just for the fun of it, with 40 qubits (list size 1,099,511,627,776), the optimal
converging number of iterations is 823,549, and the probability to 15 significant digits (limit
of double precision) is 0.999999999999592, for an error of ε40 ∼ 10−13 (see Exercise 7.11).
The probability of finding the target state is practically a certainty. To put it in perspective,
imagine we have been watching a basketball game by two evenly-matched teams that have
been playing continuously since the early modern human era (300,000years ago, day and
night, some athletes!), and we take snapshots of the basketball court once every second. A
probability of 10−13 would be equivalent to seeing that all but one of these snapshots would
show the ball in the same half of the court. An extremely unlikely event indeed.

7.5 Exercises

7.1. Relative perspective. Relativity is all about observing and relating events from dif-
ferent perspectives but using the same laws and definitions. In Sect. 7.1.2 we discussed
time and space from Stacy’s perspective (Fig. 7.1). Here, we explore it from Moe’s
perspective.
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(a) GraphStacy’s position x ′ as a function of time t ′ inMoe’s reference frame (the train).
Assume β = 0.5. Is it different from what you would expect nonrelativistically?
Explain.

(b) Graph the times �t vs. �t ′ for different β values, e.g., β = 0, 0.2, 0.5, 0.99. Visu-
alize the graph using the slider widget and template Program A.5.1.

7.2. A thought experiment: Laser tagging. Due to the unattainable high speed needed
for relativistic effects to be noticeable under normal circumstances, we often rely on
thought experiment to examine relativistic scenarios. We consider such a scenario
involving Stacy on the platform andMoe on the trainmovingwith velocity v mentioned
in Sect. 7.1.1.

(a) Let us assume at t = 0 Stacy fires a laser pulse toward a pillar at a distance d away.
The (outgoing) laser pulse hits the pillar after t1 = d/c, and is reflected back to her
after t2 = d/c. So naturally the total round trip time is t = t1 + t2 = 2d/c. Work
out the corresponding times t ′1 and t ′2 from Moe’s perspective. Keep in mind that
(i) the speed of light is the same; (ii) during the outgoing trip the pillar is moving
toward the pulse with−v, and during the return trip Stacy is moving away from the
pulse with−v; and (iii) the pillar’s position is contracted inMoe’s reference frame.
Compare Moe’s primed times with Stacy’s unprimed ones. Which two constitute
a time-dilation pair?

*(b) Graph the positions of the laser pulse, Stacy, and the pillar as a function of time in
Moe’s reference frame for a given β value. Express distance and time in units of
d and d/c, respectively. Explain the three curves.
Once the graph looks correct, make an interactive plot with a slider for choosing
the β value. Comment on the graphs for small β < 0.1 and for large β > 0.9.

7.3. Single-slit diffraction.

(a) Investigate single-slit diffraction with Program A.5.2. Make sure the radio button
is on single slit. Observe how the diffraction patterns change when you change
the wavelength λ or the width w while keeping the other one fixed. Describe your
observations. For a givenw, choose a wavelength λ such that at least two bright and
two dark spots (maximum and minimum intensities, respectively) can be observed
on either side of center peak. Record the x positions either visually by moving
the mouse pointer to the right position and read off the value from the lower-left
corner of the plot, or more accurately with automatic searching (see Sect. 4.5 and
Program A.2.2). Next, do the same but for a chosen width w.

(b) The bright and dark spots are given by the following formulas,
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sin θmin = m
λ

w
, sin θmax = (m + 1

2
)
λ

w
, m = 1, 2, 3, . . . (7.30)

Convert the positions data recorded from part 7.3a earlier into angles, knowing the
distance of the screen h (1m, but check the program to make sure). Compare them
with theoretical values in Eq. (7.30), and discuss any differences. Optionally, derive
the relation for minimum intensities in Eq. (7.30).

7.4. Double-slit interference.

(a) Let n be the number of peaks in double-slit interference. Predict how n will change
if you: (i) increase the separation d while keeping thewavelengthλ and slit widthw

constant; and (ii) decreasewwhile keeping λ and d constant. Test your predictions
with Program A.5.2. Explain the results. Also explain how the intensities change
as w gets increasingly small.

(b) Quantify the number of peaks n in double-slit interference as a function of slit
separation d. Vary d and count the number of peaks within the central diffraction
profile. You should modify Program A.5.2 for automatic peak counting using the
method of Program A.2.2. Once you have five or more data points, plot n vs. d. Is
the trend linear? Explain.

(c) Find the conditions for minimum and maximum intensities (similar to Eq. (7.30)
in Exercise 7.3) in terms of λ, d, and θ (Fig. 7.2) for double-slit interference. Check
that they are consistent with data above.

*(d) Interference occurs when the sources are coherent (same wavelength and same
phase difference). Simulate what happens when incoherent sources are involved.
To so this, assume the same wavelength but add a random phase to the waves from
the second slit. Sum the intensities over N trials, and average them. The pseudo
code is as follows,

calc psi1 and psi2 from slit 1,2
set N trials
intensity = 0
for each trial:
set random phase = 2*pi*random()
add phase to psi2, eg e^(i phase)*psi2
add |psi1 + psi2|^2 to intensity

avg. intensity = intensity/N

Integrate the code into updatefig in Program A.5.2. Try different values of
N = 10, 20, 100, and so on. Is interference still prominent? Explain the results.

7.5. Uncertainty principle. Assume the incident wave in single-slit diffraction is a matter
wave consisting of particles with vertical momentum p. First, calculate the horizontal
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momentum px for diffraction to the first minimum angle (Eq. (7.30)). The uncertainty
in momentum is twice that,�px = 2|px |. Next, using Eq. (7.5), show that the product
of �x�px agrees with Eq. (7.6) with �x = w.

7.6. Box boundary condition.

(a) Analytically apply the box boundary condition Eq. (7.9) to the general solution
Eq. (7.8) and obtain the solutions Eq. (7.10).

(b) In Sect. 7.3.1, we chose the origin at the left wall. Because the choice of a coordinate
system should not affect the physics, let us now set the origin at the center of thewell,
so the range is − 1

2a ≤ x ≤ 1
2a. Instead of Eq. (7.9), what are the new boundary

conditions? Modify Program A.5.3 to visualize the quantum states accordingly.
Determine the allowed energies and wave functions. Explain the differences from
the old coordinate system.

7.7. Visual quantum eigenstates. Visually and directly investigate quantum eigenstates
for select potentials of varying complexity. The template program is Program A.5.4.
Use atomic units throughout.

(a) We start with SHO discussed in text. What is the expected eigenenergies if the
spring constant is doubled, k = 2? Now run Program A.5.4 with the potential
V = x2. Find at least three allowed energies, and compare with the expected
values.

(b) Let us revisit another exactly known system, the infinite potential well. It is easier
to work with a symmetric potential well extending from −a/2 to a/2, so restrict x
to− 1

2a ≤ x ≤ 1
2a where V = 0. Let a = 2, so R = a/2 = 1, and set Emax = 12.

Run the program to find the allowed energies. Make sure the energy search range
is adjusted correctly. Howmany states have you found? Compare their values with
the exact results. If you double a = 4, howmany states do you predict in the same
energy range? Test your predictions.

(c) Find the eigenenergies in the finite square potential. Use the same parameters as
that in Sect. 4.4, and compare results found there with the root solver method and
herewithwave functionmatchingmethod. Do the same for the odd states discussed
in Exercise 4.2. Compare and comment on the advantages and disadvantages of
the two methods.

*(d) Now, let us consider the Morse potential,

V = V0e
α(1−x)(eα(1−x) − 2). (7.31)

The range of x is x > 0, and we may regard V (x ≤ 0) = ∞, a hard wall at the
origin. The Morse potential is useful for modeling interactions between atoms
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in molecules in the radial direction. For this exercise, choose the parameters as
V0 = 1, α = √

2. First, sketch the Morse potential by hand, then graph it on the
computer. From the shape of the potential, what energy search range do you expect
to find bound states? Next, extend Program A.5.4 to take into consideration of the
asymmetric range and the corresponding boundary condition,ψ(0) = ψ(∞) = 0.
Find as many eigenenergies as possible, and graph the energy level diagram to
scale. Describe the results. Now examine the low-lying states (the lowest 4 or 5
states) more carefully. Does the energy spacing between these states look similar
to a certain system? Explain.

*(e) Finally, compute the energy levels of the hydrogen atom with the Coulomb poten-
tial, V = −1/x, x ≥ 0. Use the extended code from part 7.7d if already devel-
oped. Take care to manage the singularity of the potential at x = 0 (you do not
actually need V (0) when you know ψ(0) = 0). Also, this potential decays slowly,
so use a larger upper range R than normal. Increase the number of grid points
accordingly to maintain accuracy. Again, find as many allowed states as you
can. The energies calculated this way should in fact be the energies of the so-
called s-states of hydrogen. Compare your results with the exact s-state energies,
En = − 1

2n2
, of the hydrogen atom.7 Optionally, if your modified program works

well, try variations of the potential, say V = −1/x1+δ or V = − exp(−δx)/x for
some small δ � 1. Comment on your results in contrast to δ = 0.

7.8. Qubits and gates.

(a) Verify that the left and right qubit states of Eq. (7.16) are normalized and orthogonal
to each other.

(b) The phase gate is defined as,

R(φ) =
(
1 0
0 eiφ

)
. (7.32)

It can be used to add a phase to the down state. Show that (i) R is unitary; and (ii)
when applied to Eq. (7.15), we pick up a phase as

R

(
c1
c2

)
=

(
c1

eiφc2

)
.

In particular, note that R| ↑〉 = | ↑〉, and R| ↓〉 = eiφ | ↓〉.
(c) Like many other gates, the Hadamard gate H Eq. (7.17) can be interpreted in terms

of geometric operations such as rotation, reflection, and so on. Assume | ↑〉 and

7 Due to a quirk of the Coulomb potential in 3D, the s-states energies are the same for non s-states
as well because of degeneracy in angular momentum.
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| ↓〉 states act as the respective x̂ and ŷ unit vectors in the Cartesian coordinates.
Show that H | ↑〉 is equivalent to a rotation of | ↑〉 by 45◦ counterclockwise about
the origin. Sketch the operation. What geometric operation(s) is H | ↓〉 equivalent
to? Explain with a schematic sketch.

7.9. Quantum computer simulation. We will simulate spin measurement and generation
of random bits in this exercise.

(a) Compute the average spin with the simulator Program A.5.5. Run it a few times,
record the values. Adjust N if you wish.
Now, write a code to calculate it more authentically with the sympy simulator
(Sect. 7.4.4.1). The code should be pretty similar to Program A.5.5, and the pseudo
code for the main loop is

for each trial:
create a qubit q
apply Hadamard gate qapply(H(0)*q)
measure the transformed qubit with measure_partial_oneshot
add spin to sum if the outcome is the up state |0>

avg. spin = sum/N

(b) The average spin calculation process generates a random series of single qubits.
Develop a code to generate a random series of double qubits with sympy such as
|00〉, |10〉, . . .. You can create two single qubits and manipulate and measure each
independently, or create a double qubit and apply successive Hadamard gate to each
(forming an outer product, see Sect. 7.4.4.2). What is the probability of getting two
down spins, namely, |11〉? Compare your calculation with the theoretical value.

7.10. Quantum search. It is the nature of quantum mechanics that nearly everything
is stated in terms of probabilities. Quantum search is no exception. We investigate
amplitudes and probabilities in Grover search next.

(a) In a 3-qubit Grover search, the optimal number of iterations is 2 (Fig. 7.7 (2c)). Carry
out one more iteration manually and find the amplitudes shown in Fig. 7.7 (3c).
Check to make sure the state remains normalized.

(b) The probability of finding a non-target state, namely a false positive, is not negligible
in Grover search if the number of qubits is small. To reduce the chance of a false
positive, we might repeat the search again. Referring to the amplitudes in a 3-qubit
Grover search (Fig. 7.7 (2c)), calculate the probabilities in two successive searches
of finding: the target state twice; the target state and non-target state, each once; and
the non-target state twice. Another possibility of reducing the likelihood of false
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positives would be to pad the search list to increase the number of qubits artificially.
See next part.

(c) Consider a Grover search with n = 4 qubits. How many items can be handled?
What is the expected optimal number of iterations? Conduct a Grover search.
Give the final ratio of the amplitudes of the target state to non-target states, and
the probability. Repeat the process for 5 and 6 qubits, and verify the probabilities
given in the text. Push the search to 8 qubits or as high as you can depending on
your computer speed, because the simulation becomes very slow for larger n (see
Exercise 7.11). Calculate the error of the final probability from unity. Discuss how
closely it follows the 2−n scaling.

*7.11. Convergence rate of Grover search. As stated in the text, simulating Grover
search on the digital computer offers no speed advantage. Sympy is no exception as
it becomes increasingly slow with large number of qubits n > 10. But if we are only
interested in the amplitudes and probabilities without actually performing the search
(not bothering with building and applying the Ô and Ŵ transformations), then it can
be done straightforwardly.
The basic steps of the Grover algorithm still apply but in a much simplified way.
Here is a possible pseudo code, assuming the amplitudes of the target and non-target
states are a and b, respectively.

def groveramp(n):
let N = 2**n
let m = int(pi*sqrt(N)/4), optimal iteration number
initialize uniform amplitudes a=b=1/sqrt(N)
for iterations up to m:
flip a
calculate avg amplitude: avg = (a + b*(N−1))/N
boost a: a = 2*avg − a, b = 2*avg − b

return a, b

Write a program to calculate the amplitudes a, b, and the probabilities a2 for qubits
n = 10 to 40. Check that normalization is maintained at each n.
Plot the error of the probabilities from unity εn as a function of n. From the slope,
find the average number of qubits needed for each digit of improved accuracy.
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8Statistical andThermal Processes

Many processes are inherently random rather than deterministic, such as the throw of dice or
the motion of a dust particle in the air. Even so, there are often rules or statistical properties
that arise out of randomness. Thermal processes are a prime source of this phenomenon.
Seemingly random collisions of atoms and molecules producing a net heat flow is but one
of many examples. In this chapter we discuss several problems including Brownian motion
and thermal distributions.

8.1 RandomNumbers and Nuclear Decay

The first thingwe need to simulate random processes is a random number generator. Because
digital computing relies on precise digital logic, we can generate only pseudo random num-
bers that mimic some properties of true random numbers (unlike quantum computing, see
Chap. 7).

The details of pseudo random number generation need not concern us, suffice it to say
that it involves multiplication of large integers to cause an overflow, and the overflown bits
look rather random, and they are used to form pseudo random numbers.

A basic random number generator outputs a number between 0 and 1 uniformly. Python
has a random number module, but Numpy has a more versatile and convenient random num-
ber library. Specifically, random() produces a single random number, and random(N)
an array of N random numbers. Sometimes we want integer random numbers. The func-
tion randint(m, n, N) will output an array of N integer random numbers between m
(inclusive) and n (exclusive). If N is omitted, it will output just a single number between m
and n.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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Nuclear Decay

Let us simulate the nuclear decay problem, namely, the decay of unstable particles. The
problem will help us get familiarized with the use of random numbers.

Nuclear decay is fundamentally governed by quantum physics (Chap. 7), and is a true
random process. Let N (t) denote the number of nuclei remaining at time t , and N (t + �t)
later at t + �t . In the time interval �t , some nuclei will decay, so the change of remaining
nuclei is dN = N (t + �t) − N (t). Because the number of nuclei will decrease, the value
dN will be negative, i.e., dN < 0.

What does dN depend on? We expect it to be proportional to two factors: N (t) and �t ,
because more existing nuclei means more will decay, and a larger time interval also means
a greater chance of decay. So we can write the following relationship, assuming λ as the
proportional constant,

dN = −λN�t . (8.1)

The negative sign in Eq. (8.1) ensures that the change of nuclei is negative. Looking at
the relationship another way, we can rewrite it as

−dN

N
= p, p = λ�t .

Here p is the fraction of nuclei that has decayed in the interval, so we can interpret p as the
probability with which a nucleus will decay in the time interval �t .

With this interpretation, we can construct simulation of nuclear decay this way: During
an interval, for each of the remaining nuclei, we compare the probability p with a random
number x . If x < p, the nucleus decays, otherwise it survives. Because x is uniform between
0 and 1, statistically the fraction of decayed nuclei will be equal to p. The following code
illustrates core idea, taken from Program A.6.1.

In [1]: dN = 0
for _ in range(N):

if random() < p:
dN = dN - 1

N = N + dN

Figure8.1 shows the results of a nuclear decay simulation from Program A.6.1. The
linear scale shows that N decreases with time. Though exponential decay is expected from
Eq. (8.1), it is not at all clear on the linear scale. To verify it, we plot the data on the semilog
scale (Fig. 8.1, right). It shows a straight line for the most part, confirming it is indeed
exponential.

There is scatter in the data, due to the statistical fluctuations. The scatter is bigger near
the end on the semilog scale, as expected, because smaller N means larger relative fluctua-
tions. The scatter near the end is barely noticeable on the linear scale where large numbers
dominate. It is clearly visible only on a log scale where both the small and the large are
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Fig. 8.1 Decay of unstable particles as a function of time on a linear scale (left) and semilog scale
(right). The initial N is 1000, and the probability p = 0.05

represented on equal footing. The takeaway is that when presenting numbers across orders
of magnitude, we should consider the log scale. Of course, this is not the only reason. It is
also the preferred scale to reveal exponential trends or power scaling laws (see Sects. 8.2
and 8.2.2).

8.2 BrownianMotion

You may have seen how a drop of food coloring spreads in water or how a bit of fine powder
feed quickly disperses in a fish tank. Actually the naked eye misses a lot of important details.
If we could observe the process filmed through a microscope and in slow motion, we would
see the particles move about randomly, and frequently execute jerky, sudden acceleration as
if being kicked by an invisible force. The motion of small macroscopic particles in liquids is
called Brownian motion, which is often observed in biophysical systems. The importance of
Brownian motion exceeds far beyond physics or biology, with applications in mathematics,
finance and related stochastic models. Here we aim to understand Brownian motion with
simulations sans expensive equipment.

8.2.1 A Random KickModel

Let us develop a model of Brownian motion, starting with forces acting a particle. A par-
ticle immersed in water interacts with a great many number of water molecules (assuming
gravity is balanced by buoyancy), so treating each and every particle-molecule interaction
is practically impossible. Rather, we should consider collective or statistical effects.
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The first effect is the viscous force, Fd = −b1v, akin to the linear drag Eq. (5.12). The
quadratic drag force can be safely ignored because the velocity is small in Brownian motion.

The second effect is the sudden kicks delivered by the water molecules zipping around
randomly. Modeling these sudden kicks is nontrivial. In any model, we would like to keep
it as simple as possible, as long as it contains the essential physical elements for the model
to be useful. In that spirit, we will assume the kicks occur periodically. Furthermore, each
kick delivers a certain impulse so the velocity undergoes a sudden change �v.

Under such a model, the particle would move under the viscous force between the kicks.
The equations of motion are,

dx
dt

= v,
dv
dt

= −bv, (in-between kicks) (8.2)

where b = b1/m. In terms of the initial position and velocity r0 and v0, respectively, the
solutions are

v = v0 exp(−bt), r = r0 + v0
b

[1 − exp(−bt)]. (8.3)

If �t is the interval between kicks, the velocity will decrease exponentially during the
interval tov0 exp(−b�t), atwhich point itwill be changed by�v after a kick at the beginning
of the next interval. We can thus treat the motion as a discrete map as follows. Letting rn
and vn denote the respective position and velocity at the beginning of the current interval,
their values at the beginning of the next interval (right after the kick) are

rn+1 = rn + vn
b

[1 − exp(−b�t)] vn+1 = vn exp(−b�t) + �v. (8.4)

We canmarch forwardwith Eq. (8.4) one interval at a time, with each pair of (rn+1, vn+1)

serving as the initial conditions of the next interval, and so on.

8.2.2 Spatial andTemporal Evolution

Now that we have developed a model of Brownian motion, how does it work, considering
its simplicity? The simulation Program A.6.2 implements the method Eq. (8.4) in 2D and
the results are shown in Fig. 8.2. All trial particles are released at the origin from rest. They
spread outward and form clusters of different sizes at different times.

To keep it simple, the impulse �v is assumed to be constant in magnitude but random in
direction. This is done by randomly choosing an angle ϕ between [0, 2π ], and calculating
the impulse as �v = |�v|(cosϕ ı̂ + sin ϕĵ). The simulation runs forward one step, applies
a random impulse, and repeats. A procedure based on such random samplings is called
a Monte Carlo method or simulation. A Monte Carlo method approaches a problem by
breaking it down to simple, basic rules; and then applying the rules repetitively with proper
sampling to statistically build up solutions of likely outcomes. This method is a valuable
tool in scientific computing, especially in solving complex problems that are otherwise
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Fig.8.2 Cluster of Brownian particles at different times: near the beginning (left, 50 steps), interme-
diate time (middle, 250 steps), and large time (right, 500 steps). The number of trial particles is 500

intractable. Its approach is also a reflection of how complex systems are built from simple
rules (Chap. 9).

Figure8.2 shows that the particles spread out in all directions nearly uniformly. Aside
from fluctuations, the average position of the particles is expected to be zero because of
random motion. However, the rate of spread (growth of the cluster size) is much faster at
the beginning, and slows down considerably at larger times. This can be seen more clearly
from watching the animation of Program A.6.2.

The rate of the spread is related to the growth rate of the cluster size. How do we
characterize the size? Because the average position is zero, we need to consider the next
moment, the average of position squared, namely, the average distance squared as a measure
of the cluster size. We can also obtain this information from Program A.6.2. We leave the
calculation as an exercise (see Exercise 8.1) and show the results in Fig. 8.3.

The average position squared, 〈r2〉, is shown on a log-log scale (Fig. 8.3, left). There are
roughly three regions. The first region starts from zero and increases rapidly at the beginning.

Fig.8.3 Average distance squared (left) and average speed squared (right) as a function of time. The
number of trial particles is 500. The dash-dot and dashed lines are drawn to show the approximate
slopes in the respective regions
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Then it has a bent knee structure at intermediate times around t ∼ 5 × 101, we call it the
transition region. At later times after the knee, the rate of increase is slower.

The straight lines drawn over the first and the last regions show approximate slopes of
the respective regions because a log-log plot can reveal power-law scaling in the data (if
y = cxk , then log y = log c + k log x with k being the slope on a log-log scale). In the first
region, an increase of one order of magnitude between [100, 101] in time corresponds to
two orders of magnitude increase in 〈r2〉, so the slope is 2. This means

〈r2〉 ∝ t2, or rrms =
√

〈r2〉 ∝ t . (pre-transition) (8.5)

This says that the cluster size rrms grows linearly with time initially.
After the intermediate transition region, the rate of increase shows again a power law.

Now an increase of one order of magnitude between [102, 103] in time results in one order
of magnitude increase in 〈r2〉, a proportional relationship like

〈r2〉 ∝ t, or rrms =
√

〈r2〉 ∝ √
t . (post-transition) (8.6)

Comparing Eq. (8.5) with Eq. (8.6), we find the initial rate is much greater than the final
rate. To double the rrms size, the time interval needs to also double before the transition, but
it must be 4 times as long after the transition. The latter is a universal large-time behavior
in stochastic expansion, including diffusion.

We now turn our discussion to the average velocity squared 〈v2〉 (Fig. 8.3, right). It has
three regions as well, an initial rapidly climbing region, a relatively sharp transition, and a
flat post-transition. Like 〈r2〉, the pre-transition region follows a power law, but the power
is close to 1, so 〈v2〉 ∝ t . We may understand this scaling law in terms of impulse received.
Initially the velocity is very small, so we can neglect the viscous force and focus only on
the the kicks. After n kicks, the velocity is the sum of all kicks v = ∑

i �vi . The velocity
squared is given by

v2 = v · v =
∑

i, j

�vi · �v j =
∑

i

�v2i +
∑

i �= j

�vi · �v j . (8.7)

Because the magnitude of each impulse is assumed to be the same in our model, |�vi | =
|�v|, the sum of square terms add to |�v|2 × n. The sum of cross terms would add up to
zero on average because the impulses are random in direction. So we have 〈v2〉 ∝ n ∝ t in
the initial region.

In the post-transition region, the velocity has increased to the point where the viscous
force Eq. (8.2) cannot be neglected. The gain from the kicks is balanced out with the loss
from viscosity on average, so the average velocity squared remains flat, apart from statistical
fluctuations (Exercise 8.1).

Overall, despite its limited simplicity, our model works surprisingly well in reproducing
the physical properties of Brownian motion and, more important, helping us gain insight
and deeper understanding of the phenomenon.
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8.3 Thermal Equilibrium

In the preceding section we treated the Brownian particles apart from the atoms in liquid
(bulk). But in most thermal systems, it is the interactions of atoms or molecules among
themselves that determine the thermal properties of the bulk material. In this section we
discuss simulations of thermal energy exchange, thermal equilibrium, and equilibrium dis-
tributions within a simplified model. We will look at how these microscopic interactions
affect macroscopic properties.

8.3.1 AThermal InteractionModel

It is helpful to think of a generic thermal system as being made up of atoms (or molecules) of
the same kind. We can visualize these atoms interacting with each other, exchanging energy
when an interaction occurs (e.g., collisions or vibrations). To keep it simple, we can imagine
the atoms as little balls rolling around, carrying integer amount of energy. They either gain
or lose one unit of energy (discrete energy levels, a consequence of quantummechanics, see
Chap. 7) when they touch each other.

As a thermal model, consider a thermally isolated system consisting of N atoms, each
carrying discrete amount of energy but the total energy is constant. The lowest amount of
energy an atom can have is zero, and there is no upper limit. Any pair of atoms in the
system can interact with each other. When an interaction occurs, one atom can gain one
unit of energy from, or lose one unit to, the other atom. The probability of gaining or losing
energy is equal. This is called the principle of statistical postulate. It states that all internal
configurations of a system consistent with its external properties are equally accessible.
In this model the configurations are the possible ways of distributing energy among the
atoms, and the external property is the total energy. The model thus described is an entirely
egalitarian, equal energy-sharing model. It is also called an Einstein solid.

If all atoms start out with the same amount of energy, and if the rules of interaction are
equal and favor no particular atom, what results would we expect?Would every atom end up
with more or less equal amount of energy after some interactions, or something else? (Also
see Exercise 8.2.) It would be a good time for us to pause here, think about the question,
and make a prediction (and write it down). Let us find out the answer next.

8.3.2 Thermal Energy Distribution

We now consider a Monte Carlo simulation of an Einstein solid. We assume the solid has N
atoms and is thermally isolated. Interactions occur only among the atoms in the system, and
its total energy is conserved. We can represent the atoms with a list (array) of size N . The
(integer) value of the n-th element in the list gives the energy of atom n. We can initialize
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the list, then randomly iterate through pairs of elements (i, j), exchange one unit of energy
by adding 1 to element i and subtracting 1 from element j . This model is implemented in
Program A.6.3.

It may seem unrealistic that we could compute the thermal properties of any system by
following just N particles, because whatever N is allowable on a digital computer, it will
be so minuscule as to be utterly negligible relative to actual thermal systems with vastly
many more particles. In fact and for this very reason, we specifically avoided treating each
and every particle-molecule interaction in Brownian motion (Sect. 8.2) regarding the effects
of the bulk background (liquid). Rather, we considered only statistical effect of the liquid,
viscosity. As we shall see, this approach can and does work, if we are careful with doing the
simulation in a statistically meaningful way.

Now,we are ready to look at the energy distribution in terms of the number of interactions,
namely, time. Figure8.4 displays the results from the simulation Program A.6.3. The atoms
(N = 256) are arranged in a square lattice for easy visualization, with each lattice site
representing an atom and its color signifying the amount of energy it has.

All the atoms were initialized to the same amount of energy. In the early stage (Fig. 8.4,
left), not many interactions have occurred yet, and the variation in energy is visible but not
very significant. Most sites are in low-energy, blueish color. The situation changes a lot at
the intermediate stage where we see large variation in the energy, a few high-energy bright
sites start to appear, along with medium-energy ones. Still there are many low-energy darker
sites.

At the last stage (Fig. 8.4, right) after manymore interactions, there are more high-energy
sites than earlier, but their number is dwarfed by medium- to low-energy sites. In fact the
latter still dominate the lattice. The picture is that there are a few atoms having a lot of
energy (6 or 7 out of 256), but the vast majority of atoms have less energies now than at the
beginning. So a haves-and-havenots class divide is created, based on equal-energy sharing
rules. (What was your prediction?)

Fig. 8.4 Energy distribution from a Monte Carlo simulation of a solid (N = 16 × 16) at different
times: near the beginning (left), intermediate time (middle), and large time (right). Initially all atoms
have the same, 10 units of energy
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Continuing with more interactions and energy exchanges does not change the last-stage
distribution much. The high-energy atoms may be different (locations of bright sites would
change), and low-energy atoms could acquire more energy, but their relative numbers do
not change significantly. We say the system has reached equilibrium.

Boltzmann Distribution
Having discussed the energy distribution qualitatively, we now wish to characterize it quan-
titatively. Specifically, what exactly are the ratios, or probabilities, of atoms with certain
amount of energy to the total population N?

Let cn be the count of atoms with energy En , then Pn ≡ P(En) = cn/N is equal to the
probability of finding an atom with energy En . A slight modification to the simulation Pro-
gramA.6.3 can bemade to tabulate the number of atomswith certain energy (see Exercise 8.3
or Program A.6.4). After many interactions and the system is presumably in equilibrium,
the probabilities are calculated and shown in Fig. 8.5.

The probabilities vary over 3 orders of magnitude in the energy range [0, 10], so the
results are plotted on a semilog scale for similar reasons discussed following Fig. 8.1. Aside
from the scatter toward the end, most data points fall neatly in a straight line, indicating an
exponential distribution,

P(En) = exp(−βEn). (Boltzmann distribution) (8.8)

Equation (8.8) is the well-known Boltzmann distribution, and is the foundation of sta-
tistical mechanics. It can be derived vigorously using the principle of statistical postulate,
with β = 1/kT where k is the Boltzmann constant and T the absolute temperature. It is
remarkable that our tiny model is able to so accurately demonstrate the Boltzmann distri-
bution. This is in part because the atoms are sampled in a statistically meaningful way, and
also because the Boltzmann distribution is purely a probabilistic statement based on the
statistical postulate regardless of the nature of interactions.

Fig. 8.5 The probability as a
function of energy of an atom
in a solid in equilibrium,
corresponding to the large time
limit of Fig. 8.4. It is
normalized to be one at n = 0.
The straight line represents an
exponential distribution
exp(−βn), with β = ln 2
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The slope in Fig. 8.5 is determined by the parameter β. A straight line is drawn in Fig. 8.5
using Eq. (8.8), and we find that β = ln 2 best fits the data. In our solid model, kT depends
on the average energy of the atoms, which is set to be one in the simulation. It is shown
elsewhere that this lead to a kT = 1/ ln 2 energy units, hence β = 1/kT = ln 2 gives the
best fit (Exercise 8.3).

A Force Toward Equilibrium: Entropy
The simulation and results above show that the solid evolves from an initially uniform
energy distribution to a very uneven equilibrium distribution characterized by the Boltzmann
distribution. By equilibrium, we mean the solid has reached a state where the Boltzmann
distribution remains unchanged within statistical fluctuation.

We can ask a question: is the reverse possible? That is, will the system spontaneously
go back to its initial uniform configuration at some point? According to the principle of
statistical postulate stated earlier, every accessible state is equally probable, and the uniform
configuration is an accessible state. So in that sense, it is possible. But is it probable? Not
really. Given the many possible configurations even for our very tiny solid, the probability
will be so small as to be practically impossible. There is not enough time in the universe for
the reverse to happen. We will come back to this point shortly.

Now, if the thermal process is irreversible (without external interference), what drives the
system toward equilibrium? How can we be sure that equilibrium has been established? The
clue is found in terms of entropy, a physically measurable quantity in statistical mechanics
(see Exercise 8.6). Entropy can be calculated in different but equivalent ways, one of which
is given by the following expression (see Blundell and Blundell (2010)),

S = −k
∑

Pn ln Pn, (entropy) (8.9)

where Pn is the probability of finding the system in state n (another definition is given in
Exercise 8.4).

For our solid model, the probability can be taken from the Boltzmann distribution
Eq. (8.8), and Eq. (8.9) will be convenient for calculating entropy from the simulation.
Incidentally, the scaled entropy s = S/k is defined as information entropy outside of sta-
tistical mechanics. A uniform distribution like the initial state would mean zero entropy
because one state has unitary probability and all others have zero probabilities.

Figure8.6 displays the entropy of an atom obtained from Program A.6.4 as a function
of the iteration number, namely time. It is plotted on a semilog horizontal scale because
the entropy changes rapidly in the beginning but very slowly at the end. The semilog scale
accentuates both ends equally.

The entropy starts from zero because P0 = 1 and Pn �=0 = 0, so the initial state conveys
no information as discussed earlier. It rises very quickly as soon as interactions start to
occur. Afterward, it slowly levels off near the end and reaches a plateau value and does not
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Fig. 8.6 Scaled entropy S/k of
an atom as a function of
iteration number (time). The
solid system is the same as in
Fig. 8.4

change appreciably thereafter, apart from possible fluctuations. This signals that the system
has reached equilibrium when entropy is maximum.

These observations from the simulation lead us to the conclusion that entropy tends to
increase, and it is at the maximum in equilibrium. This statement is in fact the second law of
statistical mechanics. In this sense, we can view entropy as an arrow of time (Exercise 8.4).

Now we can revisit the question posed earlier about reversibility of the system. There we
made an argument that it is mathematically possible but improbable for the system to go back
to the initial uniform configuration. In terms of physics, we can answer the question much
stronger: it is not possible for the reserve process to occur spontaneously. It would imply
that entropy would decrease, and that would violate the second law of thermodynamics.

8.4 The IsingModel

In both Brownian motion (Sect. 8.2) and the solid model just discussed, the atoms are inde-
pendent of each other. They each gain or lose energy regardless of what states other atoms
are in. There are systems where the particles are interdependent (or coupled) and the state of
one particle affects other particles. For example, in a magnet, magnetic dipoles of iron atoms
in close neighborhoods align themselves spontaneously in the same direction, producing a
nonzero magnetization, called ferromagnetism, even absent an external magnetic field. We
discuss the simulation of such a coupled system known as the Ising model, and explore its
thermal behavior and properties.

8.4.1 The Spin Chain

When atoms are placed next to one another like in a lattice, electronic clouds (quantum
wave functions, see Chap. 7) can overlap with each other. Usually the overlap causes an
energy difference depending on the orientations of the atoms, resulting in a higher or lower
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electronic energy if they are parallel or antiparallel, or vice versa (resulting net repulsion or
attraction, known as exchange energy). The details of this interaction can be quite complex
and need not concern us.

For our purpose, we can think of the atoms as spins (a fundamental property of particles
like electrons, protons, and so on) arranged in 1D a chain (see Fig. 8.7). Let si denote the
spin of the i th atom. To keep it simple, we assume each spin can point either up or down, so
si = 1 (up) or si = −1 (down). The orientation-dependent interaction energy between any
two spins can be written as

Ei, j = −ε si s j , (8.10)

where ε is the pair-wise energy (coupling). If ε > 0, the interaction favors parallel spins
(ferromagnetism). In our discussion, we assume ε > 0, treating it as the basic unit of energy.
It is understood that energy and temperature kT are expressed in terms of this unit. A negative
ε < 0 is also possible, in which case antiparallel spins are preferred (antiferromagnetism,
Exercise 8.7).

Though all pairs can interact with each other, the Ising model assumes only nearest
neighbor interactions, neglecting weak, long-range interactions. We can express the total
energy of the 1D Ising model as the sum of adjacent pairs

E =
∑

i

Ei,i+1 = −
N∑

i=1

si si+1. (in units of ε) (8.11)

We run into a problem with the last term because sN+1 does not exist. Instead of just
neglecting this term, a better way is to use the so-called periodic boundary conditions,

sN+1 = s1. (spin ring) (8.12)

We can visualize Eq. (8.12) as a spin chain bent into a ring, so there is no beginning or end
and no unpaired spins. Periodic boundary conditions can minimize finite size effects in this
case, but they are also useful in other simulations like waves (see Exercise 6.7).

The total energy E can vary from−N (perfect alignment) to zero (random alignment). If
all spins were reversed simultaneously si = −si , there will be no change in the total energy.
This is because there is no preferred direction in the absence of external fields.

8.4.2 Monte Carlo Simulation

Internal interactions will not change macroscopic properties of a spin chain such as energy
or magnetization. To effect such change, it must be in thermal contact with an external envi-
ronment. The environment is assumed to be large (often called a heat bath) so its temperature
remains constant while exchanging energy with the Ising system.
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Let us picture a spin chain in thermal contact with a heat bath at temperature T . Energy
can be exchanged via collisions or vibrations but, as seen in the solid model, the specific
mechanism is unimportant. Just like atoms in the solid model (Sect. 8.3.1), the spins will
flip to reflect energy absorbed or given off, driving the Ising system toward equilibrium.

Intuitively we expect that if the energy of the system Eq. (8.11) is too low, it has the
tendency to absorb energy from the heat bath, causing the spins to align antiparallel to each
other to store the increased energy. However, if the energy is too high, it will tend to give
off energy to the heat bath, causing the spins to flip toward parallel alignment. These spin
flips will continue until the system reaches equilibrium after sufficient time passes. After
that, random flips can still occur, but on average, parallel and antiparallel flips balance each
other out. Eventually the system is expected to follow the Boltzmann distribution Eq. (8.8),
with energy, and magnetization, fluctuating around equilibrium values.

The question facing us is: how do we realize the process in a simulation? Recall in
the solid model (Sect. 8.3.1), atoms randomly exchange energy with each other, and the
Boltzmann distribution comes naturally as a result. We could attempt the same thing here,
but because the Ising chain is exchanging energy with the heat bath instead of with another
Ising chain, the process cannot be totally random. If it were random, the system would gain
or lose energy with equal probability because the heat bath is impervious to energy absorbed
or given off. The Ising chain would never reach equilibrium that we intuitively expect. A
proper bias needs to be applied.

As it turns out, a method known as the Metropolis algorithm (see Metropolis et al.
(1953)) is precisely what is needed here. It applies a proper bias to efficiently nudge the
system toward equilibrium. Using the Ising model as an example, the bias is applied in the
following manner (see Gould and Tobochnik (2021)). Starting from a given configuration, a
spin is randomly chosen for a trial flip. Let �E be the energy difference caused by the flip.
If the flip yields a lower energy, i.e., �E < 0, the trial flip is accepted. If, however, the trial
flip leads to a higher energy, �E > 0, it is not rejected outright. Rather, it is accepted with
a probability exp(−�E/kT ) according to Eq. (8.8).

The reason for accepting trialswith�E < 0 fully is because lower energy states dominate
the Boltzmann distribution (Fig. 8.5). On the other hand, higher energies above the average
value is still thermally possible, albeit with much reduced probabilities, so accepting some
trials with �E > 0 is consistent with the Boltzmann distribution. It will also ensure that
thermal fluctuations can occur.

The Metropolis method is utilized in Program A.6.5 and select configurations are shown
in Fig. 8.7 at several points in temperature. At the heart of the simulation is theway the energy
difference�E is efficiently calculated due to a trial flip. Because a single flip affects energies
with the nearest neighbors only, it is possible to find �E efficiently without summing up all
pairs from Eq. (8.11).

Suppose spin sn is to be trial-flipped. Before the flip, the residual energy from its left
and right neighbors is −sn−1sn − snsn+1. After the trial flip sn → −sn , the residual is just
negative of that, so the net change of energy is twice of the latter,
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Fig. 8.7 The Ising chain (N = 32) at select points from low to high temperature. The total energy
is shown for each configuration. The energy would be the same if all spins were reversed at once
because there is no preferred direction. It is understood both the energy E and temperature kT are in
the basic (arbitrary) unit ε characteristic of the pair-wise interaction energy

�E = 2sn(sn−1 + sn+1). (8.13)

There is no energy change if the nearest neighbors are antiparallel. Themost negative change
occurs (�E = −4) when the trial flip aligns the spin parallel to the nearest neighbors. The
opposite causes the most positive change (�E = 4).

With Eq. (8.13), the Metropolis method may be summarized as follows: Randomly pick
a spin n and compute �E ; If �E ≤ 0, accept the flip, else accept it with a probability
exp(−�E/kT ). Once accepted, update the spin state. Below is part of the code taken from
Program A.6.5.

In [2]: accept = False
if (dE <= 0.0): accept = True # flip if dE<0
else:

p = np.exp(-dE/kT) # else flip with exp(-dE/kT)
if (random() < p): accept = True

if accept: # actual flip
E = E + dE
spin[n] = -spin[n]

It is convenient to represent and manipulate the Ising chain as a list (array) spin. The
possible values of each element are ±1. The variables kT and E are the temperature and
energy, respectively, of the current state. The first if-block decides whether the trial flip is
to be accepted according to the Metropolis algorithm, and the second if-block actuates the
flip if accepted.

Note that instead of using T itself, it is more convenient to use kT in Program A.6.5
because it has the dimensions of energy, which can be expressed in the energy unit ε

(Eq. (8.10)), so it is a pure number, just like E . Also, another reason is that it is always
possible to pair energy and temperature as a ratio of E/kT (or ε/kT ) in thermal simu-
lations. Energy and temperature scales are inherently interconnected in a given physical
system.
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The results in Fig. 8.7 are snapshots after equilibrium at each temperature, which is
controlled by a slider in the simulation. It is important to sample the system after many
iterations following a temperature change to ensure equilibrium is reached. Even then, the
average values such as the energy should be calculated over a sufficient number of samplings,
given the system size (1000 used in this case) and thermal fluctuations. The snapshots show
transitions from perfect spin alignment at low temperature (kT = 0.5) to totally random
alignment (equal up and down spins) at high temperature (kT = 8). The two configurations
at intermediate temperature (kT = 2 and 4) have a similar up/down spin ratio but different
domain sizes, resulting in more antiparallel spins at the domain boundaries and a large
difference in the energy as temperature is increased.

Running the simulation, we can observe that once the perfect alignment is attained at
low temperature, it is very stable. The probability is very low for a spin to flip out of this
configuration because the energy cost is high according to Eq. (8.13). For instance, if a
spin is to flip at kT = 0.5, the energy difference would be �E = 4, and the probability of
acceptance is exp(−�E/kT ) ∼ 3 × 10−4, very rare.

It would also seem that full magnetization (average spin being 1) is possible at low
temperature because of perfect alignment. But this is misleading. If we raise the temperature,
the perfect alignment will be broken. If we then lower the temperature again, the perfect
alignment will happen, but it is not certain that the direction would be downward as shown in
Fig. 8.7. Statistically, it has an equal chance of pointing up or down, so the net magnetization
of the 1D Ising model is in fact zero.1 It turns out this is true at any temperature due to lack
of an external field (see Exercise 8.5).

Figure8.8 shows the average energy over a larger range of temperature. The results are
obtained from Program A.6.5 modified to compute the equilibrium average over sufficient
number of samplings as noted earlier (see Exercise 8.5). Also, to reduce fluctuation, a larger
Ising chain (N = 400) is used.

In contrast to zero magnetization discussed earlier, the average energy shows different
behaviors in three regimes of temperature. Because the regimes cover a large range of
temperature, Fig. 8.8 is plotted on the semilog temperature scale. At the low-temperature
regime, it is flat and approaches −1 per spin, due to all spins in perfect alignment seen
earlier (Fig. 8.7). There is a transition regime at intermediate temperature where the average
energy rapidly rises with increasing temperature, corresponding to the formation of smaller
domains with antiparallel spins (Fig. 8.7). In the last regime at large temperature, the energy
increases very slowly toward zero.

We note a few related points for further exploration. First, an important property we
have not discussed is the heat capacity, defined as the ratio of change of energy to change
of temperature. Simply stated, it is the slope of energy as a function of temperature, a

1 The simplicity of the 1D Ising model makes it an ideal system for studying nontrivial thermal
properties. But its limitation is that themodel does not exhibit phase transition, an abrupt phenomenon
where full magnetization occurs below a critical temperature. However, the Ising model in 2D does
show phase transition (see Schroeder (2021)).
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Fig. 8.8 The average energy
per spin of an Ising chain
(N = 400 ) as a function of
temperature

measure of the energy needed to raise a system’s temperature by certain amount. We can
see from Fig. 8.8 that the heat capacity will be zero at both low and high temperature, and
peaks somewhere in the intermediate regime. We leave its exploration to Exercise 8.5. The
second point of interest is the entropy of the Ising model. Instead of calculating it from
a formula, we discuss a way of “measuring” entropy from the heat energy entering the
system in Exercise 8.6. Lastly, we mentioned antiferromagnetism earlier due to antiparallel
alignment of spins when the pair-wise coupling is negative ε < 0. In this case, the so-called
staggered magnetization is a useful measure of order. Other interesting properties may be
further investigated in Exercise 8.7.

8.5 Energy Balance and GlobalWarming

We have discussed several thermal models exchanging energy with a large environment
called heat baths. The largest of them all would be mother Earth for all living creatures
including humanity. Earth is heated by the sun during the day, and excess heat is radiated back
into space mostly during the night. A delicate balance is required to maintain a hospitable
environment.

Since the industrial revolution, however, the balance has been and is still being upset. The
amount of heat trapping gases, primarily CO2, has increased dramatically in the atmosphere,
blocking radiation of excess heat back into space. This causes a rising temperature on Earth’s
surface, namely global warming, leading to melting of ice caps, extreme weather, and rising
sea levels that pose existential threat to humanity. As of this writing, it was reported in late
March, 2022 that temperatures reached unheard extremes of 40 ◦C and 30 ◦C above normal
at Antarctica and the north pole, respectively, and simultaneously.

Scientific evidence points to man-made global warming at an alarming rate relative to
natural cycles that occur over tens of thousand of years. This is evident from the temperature
change data shown in Fig. 8.9. The baseline for comparison is 1850. The pre-1850 data
is obtained from a combination of scientific modeling and reconstruction. The post-1850
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Fig. 8.9 IPCC data on change of Earth’s surface temperature as a function of time relative to tem-
perature at 1850. In the upper figure, the time axis is on the log scale. The dotted and dashed vertical
lines in the lower figure indicate respective years 1850 and 2016, the last year the data is available.
The red colored curve between 1850 and 2016 is for emphasis. The current sharp rise actually started
around 1920, merely a century ago, 70years after the reference point of 1850 (dotted line). The arrow
marks 1760, the start of the industrial revolution. The current rise in temperature is 1.1 ◦C relative to
the preindustrial era. Source: IPCC Dataset, Ref. Gillett et al. (2021)

data comes from observational data and records. Over the last 2000years, the temperature
fluctuates around zero until about 1920, when the current, sustained sharp rise in temperature
started and is continuing.Both the logarithmic and linear time scales in Fig. 8.9 accentuate the
suddenuptick.Currently, the rise in temperature is 1.1 ◦Crelative to the preindustrial era. Lest
anyone thinks this is a small warming in the abstract, it represents an enormous increase of
energy on Earth’s surface (see next), capable of influencing or even altering well established
global circulation patterns, causing more frequent extreme weather events and wreaking
catastrophic climate change unless globally coordinated action takes place immediately.
The dramatic rise over the last century is accompanied with an equally dramatic rise in
carbon dioxide (CO2) concentration in the atmosphere (not shown here; see NASA (2022)
for the latest measurement), and cannot be explained by scientifically known, naturally
occurring phenomenon.

The short amount of time over which the rise occurs is a mere blip in the history of
humanity, much less the history of Earth. In fact, a recent study shows that (see Miller
(2022)) “never in the past 24 millennia has Earth been warmer than it is today, and never has
it warmed faster than it is warming today.” More heat is being trapped because of emission
of greenhouse gases due to man-made activities, greatly accelerating the rate of warming.

Energy Balance
The physics of energy balance onEarth’s surface is broadlywell understood, albeitwith some
precise details still being investigated scientifically. The incoming sunlight energy on Earth
is transferred in many different forms including: direct reflection back into space, heating of
the surface (mostly oceans), vaporization of water, absorption via excitation or ionization of
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atmospheric molecules, photosynthesis, thermal radiation, greenhouse trapping, and so on
(see Trenberth et al. (2009)). All these mechanisms effectively reach a thermal equilibrium,
maintaining Earth’s surface temperature at T .

In thermal physics, a body at temperature T will radiate thermal energy, known as black-
body radiation, which consists of continuous electromagnetic waves peaked at a frequency
proportional to temperature T given byWien’s displacement law (see Sect. 3.3, Exercise 3.4,
also see Gould and Tobochnik (2021)). The sun is such a blackbody source radiating ther-
mal energy in the visible light spectrum, though there are other sources including infrared
emitters (holding your hand close to the face or a cup of hot beverage will attest to this fact).

The blackbody radiation of the Earth would have escaped into space unimpeded if not
for the presence of greenhouse gases such as CO2. The fact that CO2 is a heat-trapping
greenhouse gas is well understood physically. Typically, gas molecules can store energy
via translational motion (kinetic energy) and vibrational motion.2 The latter is important
for understanding the greenhouse effect. We have already seen the classical oscillations
of triatomic molecules like CO2 (see Sect. 6.1.3 and Eq. (6.13e)). At the molecular level,
molecules absorb energy via excitation of quantum vibrational states like the simple har-
monic oscillator (Sect. 7.3.3). Owing to its molecular structure, the vibrational excitation
energies of CO2 correspond to wavelengths in the range 2–15 microns (10−6 m) in the
infrared region of optical spectrum. This is the key to understanding greenhouse heat trap-
ping and its role in energy balance.

The Earth at the nominal room temperature (T ∼ 300 K) emits blackbody radiation with
peak wavelength at ∼10 microns, closely matching the vibrational excitation energies of
CO2 (see Exercise 8.8). As the blackbody radiation flux propagates outward through the
atmosphere, some portion of it will escape into space directly. The rest will encounter air
molecules such as oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and so on. However,
the vibrational states of O2 and N2 are outside the infrared region for excitation, so they
appear transparent to blackbody radiation from Earth. This is because quantum transitions
occur only if the photon energiesmatch the excitation energies, and otherwise no interactions
at all.

The situation is different with CO2 and similar greenhouse gases that can absorb infrared
photons (see Fecht (2021)). After absorbing the photons and being excited to higher vibra-
tional states, the CO2 molecules will decay back to the lower states by emitting photons of
the same energy. Now, these re-emitted photons will be distributed randomly in all direc-
tions, approximately half back to Earth and half to outer space. The re-emission of radiation
back to Earth is the heat-trapping, greenhouse effect. Without the greenhouse effect, Earth
would be too cold, so the presence of certain amount of greenhouse gases like CO2 is good
and necessary for Earth to maintain its hospitable temperature.

However, when there is increasingly more concentration of greenhouse gases in the
atmosphere, the amount of heat trapped increases, causing the surface temperature to rise.

2 Rotational motion can also store energy, but it is open only at much higher temperatures, not
applicable here.



8.5 Energy Balance and GlobalWarming 193

Even though heat-trapping is estimated to account for only a few percent of the total energy
exchange (see Trenberth et al. (2009)), it still represents a significant amount of excess heat
energy that can disrupt the delicate energy balance on Earth.

An Illustrative Example
Clearly climate science is extreme complex and multidisciplinary, but it is important to
understand the fundamental idea and effect of energy imbalance. We describe a very crude
account, by way of an oversimplified example, to illustrate this idea.

The oceans are the largest heat sink on Earth’s surface. This is because most of the
water on Earth is contained in the oceans, most of Earth is covered by oceans, and—most
significantly—heat capacity of water is among the largest. A slight change in ocean’s surface
temperature would mean a lot of thermal energy released or absorbed. Thus in our crude
example,we assumeEarth’s surface is entirely coveredwith oceans. Furthermore,we assume
a uniform ocean depth and temperature. Any excess energy is assumed to go into heating
this body of water. These assumptions are bad for sure, but not so bad as to obscure the
central idea of energy balance.

We know the energy flux, I , from the sun at the equator is I = 1300W/m2. If we assume
sunlight over roughly the cross section of Earth A = πR2 with R being the radius of Earth,
the amount of heat from the sun over a time interval �t is

Q = I A�t . (8.14)

The mass of water covering Earth’s area (4A) to depth H is given by

M = 4 AHρ, (8.15)

with ρ = 1000 kg/m3 being the density of water.
Let η be the fraction of the heat that is trapped, so the excess heat is ηQ. We shall call

η the excess coefficient. Given the heat capacity of water to be C = 4182 J/kg◦C, and with
Eqs. (8.14) and (8.15), the change in the water temperature due to the excess heat is

�T = ηQ

MC
= ηI�t

4HρC
. (8.16)

Note that the area A is canceled out. This is the final result of the example.
The result of our example Eq. (8.16) tells us that, unless the excess coefficient η is zero,

a linear increase of temperature in time is predicted. Figure8.10 shows the results from
Program A.6.6 with an adjustable η. The depth of ocean is assumed to be H = 1000 m. At
η = 0.01, one percent of the solar incident heat is trapped, and the rise in temperature over
100years is 1.2 ◦C.

Even with the unrealistic assumptions in our example, a linear increase in temperature
is also unlikely. We know with global warming, ice caps shrink or disappear altogether.
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Fig. 8.10 Change of water-covered Earth surface temperature as a function of time in the oversim-
plified example (see text). The depth of water is assumed to be H = 1000 m. The adjustable excess
coefficient is η = 0.01, meaning one percent of incoming solar energy is trapped

This will cause a secondary effect of worsened trapping because less sunlight is reflected
back into space. There is also expected release of methane from the exposed and warming
ground. There are other secondary effects. The ocean is not only a heat sink, it is also
a significant CO2 sink. With increased sea temperature, more CO2 will be released into
the atmosphere, increasing excess heat trapping. Destruction of forest, another carbon sink,
caused by extreme weather and wild fire again increases greenhouse gases. These secondary
effects would cause nonlinear, even runaway, temperature change.

We simulate the lowest-order nonlinear effects in ProgramA.6.6with a quadratic increase
by an arbitrary factor over one century (chosen to be 2 + cη in Fig. 8.10, with some factor
c ∼ [0, 10]). It is selectable in the simulation. Compared to the linear increase, a quadratic
effect would double the value over a century, or 2.5 ◦C at η = 0.01.

Given the crude and oversimplified aspects of our example, the quantitative numbers are
not to be taken too seriously (also see Exercise 8.9). However, the trend does illustrate the
fundamental idea and effect of energy balance. So long as there is excess heat, even a small
η, global warming is sure to continue. Even if we could magically stop the excess heat today,
it would take time on the order of decades for the ocean to slowly release its heat. However,
the adage that it is never too late is still true.

8.6 Exercises

8.1. Characterizing Brownian motion. We study the characteristic behaviors of position
and velocity squared over different time scales in Brownian motion.

(a) Calculate the average position and velocity squared, 〈r2〉 and 〈v2〉 as a function of
time. The position and velocity are already stored inNumpy arrays in ProgramA.6.2,



8.6 Exercises 195

so the square of them may be efficiently done using vector operations with Numpy
as follows,

for each iteration:
call move()
r_sqaured = np.sum(r*r)
v_sqaured = np.sum(v*v)
store both

Effectively, each statement computes the sum of vector components squared for all N
particles. For instance, the position squared is 〈r2〉 = ∑

i (x
2
i + y2i ) and similarly for 〈v2〉.

We could also divide these by N to obtain the averages per particle, but it is not necessary
because it is a constant scale factor and we are working with arbitrary units here.

Plot the results on a log-log scale as in Fig. 8.3. How would the graph change if we used
averages per particle (instead of sum over all particles)?

Looking at the 〈r2〉 curve, how would you identify small, intermediate, and large time
regions? Comment on the trends over these regions.

*(b) Fit 〈r2〉 and 〈v2〉 over the small and large time regions. Does a linear fit seem
reasonable? If so, assume a relation y = a + bx with y = log〈r2〉 and x = log t ,
and find the best-fit b in each region (see Sect. 4.5 and Program A.2.1).
Draw the fitted line over the simulation results. How do they match up visually?
Do the same for 〈v2〉.

(c) Hypothesize how the drag coefficient b and the impulse |�v| will affect 〈r2〉 and
〈v2〉 in their general shape including slopes and the overall shift.
Run the simulation, separately increasing b and |�v| by factors of two, four, etc.
Compare the results with your hypothesis, and discuss the changes observed in the
results. What is the main effect of increasing b or |�v|? Explain.

8.2. A game of chance. Let us play a game of chance (for a change). The rule of the game
is simple. Everyone starts out with the same amount of money, say 20 pennies. In each
turn, roll the dice twice to randomly choose two players. The first player chosen is to
give one penny to the second player. In case the former has run out of money, skip the
turn and start another one. Repeat the turns many times.

After many turns, predict what is the most likely outcome:

(a) Everyone has more or less the same amount of money
(b) A few players will end up rich and most will end up poor
(c) About half of the players will have more and the other half less
(d) Indeterminate
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What thermal model does the game remind you of? Can you simulate the game to find
out the correct answer? (Who knew physics could be this phun!)

8.3. Boltzmann distribution.
Calculate the Boltzmann distribution and fit it to obtain the temperature of an Einstein
solid.

(a) Modify Program A.6.4 to calculate the Boltzmann distribution. The probabilities
are readily returned by callingentropywhen the solid is in equilibrium. To ensure
that equilibrium is reached, let the solid cells interact for at least 10 times per cell
on average, such as

exchange(10*N)
s, pn = entropy()

Graph the probability distribution Pn on a semilog scale as in Fig. 8.5.
To reduce scatter, try to average the probabilities over several samplings, allowing for

some interactions in between sampling.Also, better statisticsmay be obtained if you increase
the size of the solid N = 1000 or 2000, for example, but keep the average energy the same
(initial energy per cell).

*(b) Fit the above probability distribution to Eq. (8.8). It is best to do a linear fit on
semilog scale similar to Exercise 8.1b as y = a − βn with y = log Pn . Compare
fitted β with theoretical value ln 2. Graph the fitted curve with the actual distribu-
tion, normalize both at n = 0.

If the average energy of the system is increased, predict how the Boltzmann distribution
will change. Will β be larger or smaller? Test it by doubling the average in the initialization
of the solid with

solid = [2]*N

Generate theBoltzmann distribution, and repeat the fit forβ. Compare it with the expected
value ln(3/2).

8.4. Arrow of time. Entropy in an isolated system tends to increase, which can be viewed
as an arrow of time. But how hard could it be to design a time machine to go back in
time? Let us estimate it from change of entropy.
An equivalent definition of entropy to Eq. (8.9), the original one proposed by Ludwig
Boltzmann himself and written on his tombstone in Vienna, is S = k logW , where W
(modern notation �) is the number of equally accessible configurations of a state (also
known as the multiplicity). We can express � in terms of entropy as � = exp(S/k).
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The ratio � f /�i = exp(�S/k), with �S = S f − Si , gives the relative probability of
finding state f to state i .
From the entropy of an Einstein solid shown in Fig. 8.6, find �S between the final
equilibrium state and the initial uniform state. Make sure to multiply it by the number
of atoms N . What is the relative probability? How likely is to go back to the initial
state?

8.5. The Ising model. Investigate certain properties of the Ising model including energy
and magnetization as a function of temperature. Use as template the Monte Carlo
simulation, Program A.6.5.

(a) Run ProgramA.6.5 with the default settings. Select temperature, kT , with the slider
at low, intermediate, and high values. At each point, give enough timewaiting for the
spin flipping and energy fluctuating as the system settles into equilibrium. Describe
the spin alignment and its relationship to the total energy. Why does the energy
remain negative? Note the fluctuation in energy at all but the lowest temperatures.

(b) Graph the energy as a function of temperature. The fluctuation seen above is due to
the spin chain being very small (N = 32). To reduce fluctuation, increase the chain
size to N = 400 (or higher), and take average over many Monte Carlo samplings,
Mc. As a rule, Mc should be Mc ≥ f N such that each spin on average has f  1
chances to flip to ensure equilibrium conditions. This is especially true at low
temperatures where system changes slowly. The method can be summarized as

def energy(E, Mc):
sum = 0
for iterations < Mc: # sample energy

E = flip(E)
sum = sum + E

Eavg = sum/Mc # energy per spin
return Eavg

kT = 0.1
N = 400
f = 40
Mc = f*N
while kT < 100:
for iterations < Mc: # wait for equilibrium

E = flip(E)
Eavg = energy(E, Mc)
append kT and Eavg
kT = 1.3*kT

In the pseudo code, temperature is increased by a constant factor as opposed to a constant
increment. This way, we can space out the temperature on the semilog scale efficiently.
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Plot the energy vs. temperature on the semilog scale in temperature. Compare with results
shown in Fig. 8.8. What temperature range has the most scatter? Why?

(c) Calculate and graphmagnetization (average spin) defined asM = ∑
i si/N = s/N .

Even though we could perform the sum each time, it would be inefficient. Rather,
incrementally update M in the same way as updating energy. If the current net spin
is s, a spin flip si → −si means s → s − 2si . Modify the flip function as

def flip(E, s):
......
if flip accepted:

s = s − 2*spin[n]
......
return E, s

Nowsample s (andM) in the samewayas energy (partExercise 8.5b) for kT = [0.1, 100].
Graph M vs. kT on the semilog scale in temperature. Discuss the behavior of magnetization
at large and small temperatures. Why is there wilder fluctuations from low to intermediate
temperature? Try strategies to reduce them.

*(d) Heat capacity is defined as C = �E/�T , the energy needed to raise a unit of
temperature. It is also the slope of E vs. T curve. Based on this definition and
examining the shape of the energy-temperature curve in part Exercise 8.5b, sketch
the C vs. T curve you expect.
It would seem that we could calculate the heat capacity by taking the numerical
derivative of E with respect to T using the generated data. But this does not work
because of the fluctuations inherent in Monte Carlo data of a thermal system,
making numerical derivatives useless.
Instead, we use the theoretical heat capacity of the Ising model given by C =
Nk(ε/kT )2/ cosh2(ε/kT ). Plot this result and compare with your predictions.
Explain why C approaches zero at both small and large temperatures.

*8.6. Measuring entropy. We can calculate entropy from two equivalent definitions in
Eq. (8.9) and Exercise 8.4. As a physical observable, even if we cannot calculate the
entropy of a system, there is a way of measuring it. The change of entropy can be
measured with �S = Q/T where Q is the heat energy absorbed by the system at
constant temperature T .4 If the temperature changes during the process, then divide it
into smaller intervals such that �S = ∑

i Qi/Ti where Ti is approximately constant

4 Heat energy is not a state variable in thermal physics, unlike the energy of a system. So it is
customarily written simply as Q, not �Q or dQ.
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in interval i . If we start from T → 0, a system is typically very ordered with zero (or
very small) entropy, and we can regard �S the entropy at finite T .
We adopt this strategy to “measure” the entropy of the Ising model. We assume the
change of internal energy of the Ising model is due to heat entering the system. The
procedure is similar to the one in Exercise 8.5b,

initialize spin chain, E, kT
set Eold=E, kTold=kT
S = 0
while kT < 100:
let system equilibrate
sample avg energy, Eavg
dE = Eavg−Eold
Tavg = (kT + kTold)/2
dS = dE/Tavg
S = S + dS
reseed Eold, kTold
kT = 1.3*kT

We use the average temperature for better accuracy. Graph the entropy as a function of
temperature on the semilog kT scale. Discuss the shape of the curve in relation to that of
the Einstein solid (Fig. 8.6).

Optionally, look up the exact entropy for the Ising model (see Schroeder (2021)) and plot
it over your results to assess the accuracy.

*8.7. Antiferromagnetic Ising model. Antiferromagnetism refers to the propensity of
spins (magnetic dipoles) to align antiparallel to each other because this is energetically
favorable. To model an antiferromagnetic system, we can set the pair-wise coupling
energy to be negative, ε < 0, so the energy (Eq. (8.11)) of the antiferromagnetic Ising
model (AIM) is E = |ε| ∑i si si+1. We investigate this model next.

(a) Assuming N spins, what are the lowest energy and the corresponding configuration
of AIM? What about the highest energy and its configuration?
Find the change of energy�E if spin i is to be flipped.Make appropriate changes to
Program A.6.5 to simulate AIM. Vary the temperature with the slider and observe
the energy and configuration at low and high temperatures. Explain the results,
particularly the results at higher temperatures.Does the energy ever reach the highest
energy predicted above? Why?

(b) Calculate and graph energy as a function of temperature similar to that of Exer-
cise 8.5b. Comment on the similarities and differences between the ferromagnetic
and antiferromagnetic models.
Optionally, calculate the entropy and compare the results between the two models.
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(c) Calculate magnetization M in the standard way and in a staggered way defined as
Mst = ∑

i (−1)i si/N . The latter is the so-called staggeredmagnetization (borrowed
from 2D Ising models where it plays a more significant role).
Graph the results as a function of temperature. Compare M and Mst , and discuss
the effect with the inclusion of the (−1)i factor in Mst .

8.8. Peak radiation of Earth. Calculate the peak wavelength of blackbody radiation of
Earth with Wien’s displacement law (Exercise 3.4), assuming a surface temperature of
T = 290 K. Sometimes, instead of wavelengths, it is convenient to use wavenumbers
defined as the inverse wavelength 1/λ. Convert the result into a wavenumber in units
of m−1 and cm−1.

8.9. Global warming. Estimate the heat excess coefficient η for various scenarios in the
global warming example (Sect. 8.5).

(a) Calculate the solar energy flux I at the equator of the Earth. In thermal physics,
Stefan’s law relates the energy flux, power per unit area, of a blackbody to its
temperature T as F = σT 4, with σ = 5.7 × 10−8 W/m2/K4.
Find the necessary parameters T , radius of the sun, and the distance to Earth.
For our purpose, T is the surface temperature of the sun. Verify that the flux is
I = 1300 W/m2.

(b) The IPCC currently calls for limiting the global temperature increase to under 1.5◦C
of preindustrial level. Use Program A.6.6 to estimate the η necessary if temperature
is to rise by that amount from the present to midcentury, or in 30years. Give the η

values for both the linear and nonlinear cases.
(c) In our example, we assumed the Earth is fully covered by oceans, when in fact the

coverage is partial at about 70%. How will this affect the change in temperature?
Modify the example and introduce a variable in Program A.6.6 to account for this
partial coverage. Howmuch do the results change in the linear and nonlinear cases?
The depth of oceans is another parameter that we can adjust. Reduce it by half and
double it, respectively. Comment on the results.
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9Complex Systems

A complex system is a collection of interacting components that exhibit collective behavior
and properties that are not apparent from examination of individual components. Examples
include synchronized flashing of fireflies, the human brain, and global weather patterns.
While there is no universal definition of “complex” behavior, complex systems are often very
sensitive to initial conditions. The butterfly effect—the metaphorical idea that perturbations
from a butterfly’s wings can influence a future tornado—is amanifestation of this sensitivity.

In this chapter, we will see how seemingly simple rules governing components lead to
emergent global properties.Wewill see that chaotic, seemingly unpredictable systems can be
completely deterministic.Wewill also usemachine learning to deduce the simple underlying
rules by observing system behavior. Computation and visualization are ideal tools to study
these systems, as analytic solutions and insights are often hard to extract.

9.1 Cellular Automata

A cellular automaton (CA) is a discrete system consisting of a grid of cells, each existing
in a finite set of states. Time is also discretized. The CA starting at time t0 is completely
specified by the states of each cell and an update rule dictating how a cell’s state changes.
The rule is usually based on a cell’s nearest neighbors and applied simultaneously to all
cells, resulting in a new configuration at time t0 + 1. Cellular automata can produce a wide
range of complex behavior from a simple set of rules.

9.1.1 Conway’s Game of Life

Conway’s Game of Life, named after mathematician John Conway, is a 2D binary cellular
automaton where each cell is either alive or dead. The cells are commonly in a rectangular
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grid and interact with their 8 bordering neighbors (including diagonally adjacent). The
update rules loosely represent a population growth model. At the next timestep:

1. Any alive cell with more than 3 alive neighbors dies (overpopulation).
2. Any alive cell with fewer than 2 alive neighbors dies (underpopulation).
3. Any alive cell with 2 or 3 alive neighbors continues stays alive (equilibrium).
4. Any dead cell with 3 alive neighbors becomes alive (reproduction).

Despite the simplicity, many complex patterns arise. Even for a small grid starting with 3
alive cells, slightly different initial conditions yield distinct pattern types as seen in Fig. 9.1.
The first row reaches a still life—a configuration that will not change—at t = 1. This can be
verifiedby applying the rules to each cell: each living cell has 3 living neighbors (equilibrium)
and no dead cell has 3 living neighbors (no reproduction). The second row has a slightly
different initial configuration that results in a grid of all dead cells by t = 2. The third row
shows another initial configuration that results in a period 2 oscillator—a configuration that
constantly oscillates between states.

For larger grids with random initial conditions, evolution usually begins with an initial
chaotic transient phase before still lifes and oscillators emerge. Snapshots are presented
in Fig. 9.2. While the transients are completely deterministic in the sense that there is no
randomness to the update rules, the state at t = 0 provides no intuition to its eventual
stable configuration at t = 105. In fact, changing a single cell can substantially alter its
time evolution (Exercise 9.2). Most grids do, however, eventually stabilize. Exercise 9.4
examines macroscopic properties and long term behavior of random grids.

Spaceships are another commonly occurring pattern type that translate themselves across
the grid. The glider is one example, illustrated in Fig. 9.3. The cells rearrange slightly at
each timestep. After 4 timesteps, every alive cell of the initial glider is translated one cell
right and one cell down. If left undisturbed, the glider will propagate infinitely. It can also
collide with distant cells, e.g. still lifes, effectively introducing nonlocal interactions further
extending or even creating new chaotic transients.

Fig. 9.1 Time evolution of 3
different initial conditions.
Alive cells are green and dead
cells are white

still life

no life

t = 0

oscillator

t = 1 t = 2
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t = 0 t = 25 t = 105

Fig.9.2 Time evolution starting from a random grid where approximately half the cells begin alive.
A stable configuration composed of 5 still lifes is reached after 105 timesteps. An intermediate still
life, the right-most pattern at t = 25, is destroyed in the process

t = 0

glider

t = 1 t = 2 t = 3 t = 4

Fig. 9.3 Time evolution of a moving glider spaceship

To implement the Game of Life, we represent a grid as a numpy array taking values
1 (alive) or 0 (dead). In theory, the Game of Life can be played on an infinite grid and
implemented using dynamically updating grids or even a non-grid representation, but we
will impose boundary conditions instead. Figure9.2 was generated with constant boundary
conditions that constrain all cells on the boundary to take constant value 0, i.e. are always
dead. They are the simplest to implement, but yield artificial behavior at the boundaries. To
remove these edge effects, periodic boundary conditions can be used instead. With periodic
boundaries, the game is played on the surface of a torus. We will discuss implementation
with constant boundaries; periodic boundaries are a straightforward extension explored in
Exercise 9.3.

The main function we need takes an initial grid, applies the Game of Life rules, and
returns the updated grid. The simplest method loops through all cells, except the constant
boundary cells, and stores the updated values in the next grid.

In [1]: import numpy as np

def update_grid(grid):
n_row, n_col = grid.shape
next_grid = np.zeros(grid.shape, dtype=int)
for i in range(1, n_row-1):

for j in range(1, n_col-1):
cell = grid[i, j]
neighborhood = grid[i-1:i+2, j-1:j+2]
n_alive_neighbors = np.sum(neighborhood) - cell
next_grid[i, j] = update_cell(cell, n_alive_neighbors)

return next_grid
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The update rules are encoded in update_cell(), which can be concisely expressed as

In [2]: def update_cell(cell, n_alive_neighbors):
if cell:

return int(2 <= n_alive_neighbors <= 3)
else:

return int(n_alive_neighbors == 3)

Given an initial grid, we can sequentially apply update_grid() to determine its time
evolution. A random 20 × 20 grid can be initialized as

In [3]: grid = np.random.randint(low=0, high=2, size=(20, 20))
grid = np.pad(grid, pad_width=1, mode='constant', constant_values=0)

The padding adds constant boundaries. All that remains is a way to visualize the grid and its
time evolution. We do so using matplotlib, in particular its animation submodule.

In [4]: import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib import colors

def play(grid, T=100, show=True):
fig, ax = plt.subplots(figsize=(5, 5))
ax.set(xticks=[], yticks=[], aspect='equal')
ims = []
for _ in range(T + 1):

im = ax.pcolormesh(grid, edgecolor='k', linewidth=.01, animated=True,
cmap=colors.ListedColormap(['white', 'green']))

ims.append([im])
grid = update_grid(grid)

anim = animation.ArtistAnimation(fig, ims, interval=100, blit=True)
plt.show() if show else plt.close()
return anim

The main calculations take place in the for loop. An image im is stored at each timestep
usingpcolormesh(), which generates a blackmesh coloring alive cells as green and dead
cells as white. The images are stored in the list ims which must be a list of lists, hence the
appending of [im]. The images are then stitched together using ArtistAnimation()
and returned in the objectanim. By default, the animation is playedwhen using a command-
line interface. When using Python interactively, e.g. in Jupyter Notebook, we must use one
of anim’s built-in methods to convert the animation. The full sequence of Fig. 9.2 can be
viewed interactively by running

In [5]: np.random.seed(1)
grid = np.random.randint(low=0, high=2, size=(20, 20))
grid = np.pad(grid, pad_width=1, mode='constant', constant_values=0)
anim = play(grid, T=110, show=False)

from IPython.display import HTML
HTML(anim.to_jshtml())

The animation can also be saved using the anim’s save() method, e.g.
anim.save(’life.mp4’).
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9.1.2 Traffic Flows

Cellular automata can be used to model complex behavior and thus help understand it from a
simple set of rules. One example is theNagel–Schreckenbergmodel for traffic (seeNagel and
Schreckenberg 1992). It is a one-dimensional CA for a single-lane road that can reproduce
traffic jams. We will use periodic boundary conditions, corresponding to a circular road.
Open boundaries yield similar qualitative results, but require a few more modeling steps
(Exercise 9.7). The road is represented by an array of cells that can be empty or occupied
by a car with integer velocity v ranging from 0 to some speed limit vmax. Cars are updated
simultaneously in parallel. Their subsequent positions and velocities are updated according
to the following ordered rules:

1. If v < vmax, increase v → v + 1 (acceleration up to speed limit).
2. If there are only d < v empty cells before the next car, decrease v → d (avoid collision).
3. If v > 0, randomly decrease v → v − 1 with probability pslow (random deceleration).
4. Increase car position by v (motion).

Though the model is 1D, it is more complex than the Game of Life in two ways. First,
each cell has vmax + 2 possible states. Second, and more importantly, the model has a
random component. The random component mimics human behavior and turns out to be
essential for traffic jams.Without it, cars quickly reach a repeating steady state configuration
(Exercise 9.6).As the state of a road cannot be represented by just an array,wewill implement
a Road class to store associated data.

In [6]: class Road:
def __init__(self, length, density, p_slow=.1, v_max=5):

n_car = int(np.round(length * density))
xs = sorted(np.random.choice(length, size=n_car, replace=False))
vs = np.zeros(n_car, dtype=int)
self.cars = [(xs[i], vs[i]) for i in range(n_car)]
self.n_car, self.length, self.density = n_car, length, density
self.p_slow, self.v_max = p_slow, v_max

def update(self):
updated_cars = []
for i in range(self.n_car):

x, v = self.cars[i]
front_x, front_v = self.cars[(i+1) % self.n_car]
dist = (front_x - 1 - x) % self.length
if v < self.v_max: v += 1
if dist < v: v = dist
if v > 0 and np.random.rand() < self.p_slow: v -= 1
updated_cars.append(((x + v) % self.length, v))

self.cars = updated_cars

All Road instances take two required parameters: the length of the road (in cells) and the
density of cars occupying it. For the optional parameters, default values correspond to the
realistic case pslow = 0.1 and vmax = 5. With this speed limit, each timestep is on the time
scale O(1 s), comparable to a human driver’s reaction time.
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The __init__() method is called on every Road instance and initializes a list of
car position-velocity pairs in the cars attribute as well as road-specific constants in the
other attributes. The cars are randomly placed at rest. Since in one-dimension cars cannot
pass, a given car always checks the same car in front of it for collision detection. Sorting
cars by position preserves the ordering for all future updates. Note that we have used a list
comprehension, which is simply notational shorthand for

self.cars = []
for i in range(n_car):

self.cars.append((xs[i], vs[i]))

The update() method implements the above four rules. Updated position-velocity
pairs are stored in a new list so that cars are updated simultaneous in parallel. The % operator
conveniently implements periodic boundaries by automaticallywrapping around to the other
side without case by case if statements. The following creates an instance of Road and
updates the cars once:

In [7]: road = Road(length=100, density=.05)
road.update()

Time evolution of a road is best illustrated with spacetime plots; examples at two different
densities are shown in Fig. 9.4. The state of the road is plotted at each time. Cells occupied by
cars are shaded, where lighter shading corresponds to faster speeds. Empty cells are white.
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Fig.9.4 Spacetime plot of a sparse and dense road of cars that start at rest with speed limit vmax = 5.
Shaded cells represent car locations at each time; the lighter the shading, the faster the car. The sparse
road flows near the speed limit while the dense road creates traffic jams
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Consider the sparse road, ρ = 0.05. At t = 0, there are five black squares representing
cars that start at rest. At time t = 1, the left-most car’s velocity becomes 1 and thus its
position increases by 1. Similarly at time t = 2, its velocity becomes 2 and its position
increases by 2. This continues until it reaches vmax = 5 at t = 5. The left-most car’s time
evolution is simple as there are no nearby cars in front and no initial random slow downs.
The other four cars eventually settle into similar trajectories that appear as approximate
parallel lines with slope 1/vmax. This is because at this low density, the cars are able to flow
freely at the speed limit. At each time update, each car translates in space by approximately
5 cells.1

In contrast in the dense road,ρ = 0.2,we observe a dark band of stationary cars occupying
nearly half the cars, i.e. a traffic jam. The traffic jam propagates backward in space. This is
because before the jam, the flow of cars is actually quite high whereas cars in the front of the
jam must slowly accelerate. Close examination of the jam around t = 30 shows it is caused
by random slow downs of just a few cars. Though pslow is small, the effects propagate to
all cars in the neighborhood behind. When the density of cars is small, the effects are less
dramatic and no traffic jams appear.

The onset of traffic jams can be viewed as a phase transition tuned by the road density.
To determine the critical density ρ∗ separating free flow from jamming, we can measure
the average flow of cars passing through a given point. We expect a sharp transition at ρ∗.
The flow can be measured by placing a detector at some equilibrium point on the road that
counts the number of cars N that pass in T timesteps. The time averaged flow is N/T .

Figure9.5 plots flows as a function of density for two different pslow values. The two plots
are qualitatively similar and display three regimes. First, for low densities, the cars are in free
flow so the average flow increases linearly with density—there is enough space that each car
can safely accelerate to vmax. Second, there is a sharp transition at ρ∗ = 0.17 and ρ∗ = 0.11
for pslow = 0.1 and pslow = 0.5, respectively. This regime marks the onset of traffic jams
where the flow dramatically decreases. The sharp transition is clearer for pslow = 0.5. This
regime is very short lived and due to the discrete nature, we cannot improve our density
resolution. Finally, once traffic jams appear, further increasing the density decreases the
flow due to increased congestion, but not as dramatically as the second regime. Though
short lived, the dramatic decrease in flow in the second regime is crucial evidence for the
onset of traffic jams. Indeed it is absent in the deterministic case pslow = 0 where no traffic
jams appear (Exercise 9.6).

The Nagel–Schreckenberg model can be extended to multi-lane traffic by adding lane-
switching rules. However, as the simpler one-lane model already captures essential features
of traffic jams, we will not pursue those and other generalizations.

1 Approximate because of random deceleration.
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Fig. 9.5 Average flow over 105

timesteps as a function of
density. Flow is only measured
after 103 timesteps to avoid
initial transients. The roads are
100 cells long and vmax = 5
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9.2 Chaos

We tend to associate chaos in the colloquial sense with disorder, irregularity, and random-
ness. However in the mathematical sense, chaos is completely deterministic. The apparent
contradiction in definitions is resolved by a defining feature of chaos—extreme sensitivity
to initial conditions. This sensitivity gives chaotic systems the semblance of randomness, as
even a small rounding error can lead to wildly differing results over time. Weather systems
are a prime example of chaos. They are composed of many components that interact in a
nonlinear fashion, and even small disturbances can lead to dramatic changes over time. This
is what makes long term weather forecasts more than a week away difficult, even though
day to day forecasts are reliable.

Chaos can appear in simple systems as long as nonlinearity is present. We will consider
two 1D systems that exhibit chaotic behavior and features that are universal to all chaotic
systems. We will also introduce analytical and computational tools to understand chaos. For
models of more complex systems like weather, see Strogatz (1994), Wang (2016).

9.2.1 Logistic Map

The logistic map is one of the simplest systems that exhibits chaotic behavior. It takes a
value xt ∈ [0, 1] at time t and maps it at the next timestep to value

xt+1 = 4r xt (1 − xt ), r ∈ [0, 1], xt ∈ [0, 1]. (Logistic map definition) (9.1)

To avoid confusion between a value the system takes and the function that maps xt to xt+1, it
is useful to introduce the map function f (x) = 4r x(1 − x) so that Eq. (9.1) is equivalent to
xt+1 = f (xt ). The restricted domain of r ensures that xt ∈ [0, 1] for all t . Time is discretized,
as was the case in cellular automata, but now xt is continuous. The logistic map can be
interpreted as a simple population model. The map function is a parabola with maximum
at x = 1

2 . For populations x < 1
2 , f (x) is an increasing function of x , capturing increasing

reproduction rates. In contrast for x > 1
2 , f (x) is a decreasing function of x , capturing
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increasing overcrowding and starvation rates. The exact rates are controlled by parameter r .
We will not focus on model interpretation, but rather on model behavior.

The logistic map is straightforward to implement. The map function is

In [8]: def logistic_map(x, r):
return 4*r * x * (1-x)

We can learn about the temporal behavior by applying the map multiple times, starting with
an initial value x0 and plotting xt over time. A cobweb plot is an alternative representation
that explicitly visualizes the map’s role and allows for inference into evolution with different
initial conditions. An example of both is shown in Fig. 9.6 with (x0, r) = (0.1, 0.7). The
left plot shows the xt trajectory over time. Starting at x0 = 0.1 at t = 0, Eq. (9.1) maps x0
to x1 = 4 × 0.7 × 0.1 × 0.9 = 0.252 at t = 1. This process continues and we see xt grow
until t = 5, after which xt seemingly approaches an equilibrium point (also known as fixed
point) with less under- and overshoot over time. The right cobweb plot tells a similar story;
it is constructed as follows:

1. Plot the map function f (xt ) and the line xt+1 = xt . Start at coordinate (x0, 0).
2. Advance vertically to f (xt ), which gives the coordinate of the updated value xt+1 for

any t .
3. Advance horizontally to the line xt+1 = xt . This projects xt+1 on to xt and allows for

repeated iteration of the previous step.
4. Repeat steps 2 and 3 for T timesteps and mark the endpoint.

The cobweb representation allows us to quickly conclude there are two equilibrium points.
An equilibrium point is like a still life—once reached, the system will always stay there.
Mathematically, this means f (xt ) = xt . Geometrically, this is the intersection between the
map and the line in the cobweb plot, which occurs at two (equilibrium) points: x∗ = 0 and
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Fig. 9.6 A snapshot of an interactive slider plot showing evolution toward an equilibrium point
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x∗ = 9
14 . The exact values of the equilibrium points can be found by solving f (xt ) = xt , or

equivalently f (xt ) − xt = 0. The latter form is convenient for solving via sympy:

In [9]: import sympy as sp
x, r = sp.symbols('x r')
sp.solveset(logistic_map(x, r) - x, x)

Out[9]:
{
0,

4r − 1

4r

}

Note that the second equilibrium point is negative for r < 1
4 , implying x∗ = 0 is the only

equilibrium point there. Geometrically, the parabolic map never exceeds the line in the
cobweb plot. Increasing r past 1

4 allows it to and creates a second equilibrium.

9.2.2 Stability of Equilibrium Points

Knowing the exact values of x∗ does not necessarily tell us the behavior of the system. For
instance in Fig. 9.6, the equilibrium point farther away from the initial value x0 is eventually
reached. Indeed tracing out a cobweb for any x0 near x∗ = 0 will lead away from it. We
classify equilibrium points like this as unstable—unless x0 = 0 exactly, the system will
never reach it. In contrast, any web near x∗ = (4r − 1)/(4r) spirals toward it; it is stable.
Stability is not a permanent property. Increasing r further creates a systemwith two unstable
equilibriumpoints, shown in Fig. 9.7.Moreover, there is no longer any structure as the system
wildly fluctuates in a seemingly random manner, a trademark of chaos. As Figs. 9.6 and 9.7
are just two snapshots in a wide range of possibilities, it is best if you run the following in
an interactive notebook to generate your own figures:
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Fig. 9.7 A snapshot of an interactive slider plot showing chaotic evolution
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In [10]: import ipywidgets

def cobweb_coords(x0, r, T=20):
x1 = logistic_map(x0, r)
coords = [(x0, 0), (x0, x1)]
for _ in range(T):

x0, x1 = x1, logistic_map(x1, r)
coords.extend([(x0, x0), (x0, x1)])

return coords

ipywidgets.interact(x0=ipywidgets.FloatSlider(min=0, max=1, step=.01),
r=ipywidgets.FloatSlider(min=0, max=1, step=.01))

def evolution_plots(x0, r):
web_xs, web_ys = list(zip(*cobweb_coords(x0, r)))
traj = [x for i, x in enumerate(web_xs) if i % 2 == 0]
xs = np.arange(0, 1, .01)

fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(7, 3), sharey=True)
axs[0].plot(traj, linestyle='-', marker='.')
axs[0].set(xlabel='$t$', ylabel='$x_t$', ylim=[0, 1])
axs[1].plot([0, 1], [0, 1], color='C0')
axs[1].plot(xs, logistic_map(xs, r), color='C0')
axs[1].plot(web_xs, web_ys, color='C1')
axs[1].plot(web_xs[-1], web_ys[-1], color='black', marker='o')
axs[1].set(xlabel='$x_t$', ylabel='$x_{t+1}$', xlim=[0, 1])

Given an initial value x0 and parameter r , cobweb_coords() returns a list of cobweb
coordinates for T timesteps. The ipywidgets.interact() decorator enables interac-
tive sliders immediately after the plotting function is run. evolution_plots() unzips
the list of coordinate pairs into separate lists of x and y coordinates, extracts the xt trajectory,
and makes the trajectory and cobweb plots. Choose any value of x0, slowly increase r from
0 to 1, and observe the change in stabilities of the equilibrium points.

We can analyze equilibrium point stabilities by considering small perturbations around
them. Suppose at time t the system is at xt in the neighborhood of an equilibrium point x∗,
a distance

|εt | ≡ |xt − x∗| (9.2)

away. At the next timestep, a stable equilibrium point must satisfy

|εt+1| < |εt |, (9.3)

i.e. the system approaches the equilibrium point. We can relate the two distances with the
map function:

|εt+1| = |xt+1 − x∗| = | f (xt ) − x∗| = | f (x∗ + εt ) − x∗|. (9.4)

For small εt , it is sufficient to expand to leading order: f (x∗ + εt ) = f (x∗) + f ′(x∗)εt +
O(ε2t ). Since f (x∗) = x∗, by definition of an equilibrium point, substitution into Eq. (9.4)
yields

|εt+1| = ∣∣ f ′(x∗)εt
∣∣ = ∣∣ f ′(x∗)

∣∣|εt |. (9.5)

It follows from Eq. (9.3) that the stable equilibrium condition is
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∣∣ f ′(x∗)
∣∣ < 1. (Stable equilibrium) (9.6)

Similarly, the unstable equilibriumcondition is
∣∣ f ′(x∗)

∣∣ > 1. The borderline case
∣∣ f ′(x∗)

∣∣ =
1 requires analysis of higher order terms. We can again use sympy to evaluate the stability
condition for the logistic map’s equilibrium points, displaying as a dictionary of equilibrium
point and stability condition pairs:

In [11]: sp.init_printing(use_latex='mathjax') # For pretty printing
solset = sp.solveset(logistic_map(x, r) - x, x)
for sol in solset:

display({sol: logistic_map(x, r).diff(x).subs(x, sol).simplify()})

Out[11]: {0 : 4r}{
4r − 1

4r
: 2 − 4r

}

This tell us that x∗ = 0 becomes unstable for r > 1
4 and x∗ = (4r − 1)/(4r) becomes unsta-

ble for r > 3
4 , which you can verify using the interactive plots.

9.2.3 Onset of Chaos

Loss of stability alone does not guarantee the chaotic behavior seen in Fig. 9.7. Trajectories
could be periodic, for example. To investigate the transition to chaos, it is useful visualize
long term behavior as a function of r . We can do this by applying the map 1, 000 times
and then recording the next 100 values of x in small increments of r , say dr = 0.001.
Figure9.8(left) contains the resultant bifurcation diagram, generated with

In [12]: def bifurcation_plot(rs=np.arange(0, 1, .001), n_toss=1000, n_keep=100):
fig, ax = plt.subplots()
ax.set(xlabel='$r$', ylabel='$x$')
for r in rs:

x, xs_keep = 0.5, []
for _ in range(n_toss): x = logistic_map(x, r)
for _ in range(n_keep):

x = logistic_map(x, r)
xs_keep.append(x)

ax.plot([r]*n_keep, xs_keep, 'C0,')

We plot in batches for efficiency. For simplicity, we always use x0 = 1
2 , but the results are

robust to different initial starts.2 This is because in the presence of stable equilibrium points,
we expect trajectories to converge to that point and in the presence of chaos, we expect
no regularity anyway. Indeed this is what we observe. For r < 1

4 , all trajectories converge
to the equilibrium point x∗ = 0. This point becomes unstable and a new equilibrium point
is created at r = 1

4 . The bifurcation diagram confirms our stability analysis as we see that
equilibrium point is only stable for r ∈ ( 14 ,

3
4 ).

The interesting dynamics occur for r > 3
4 when we observe a bifurcation as the stable

equilibrium point forks into two branches, magnified in Fig. 9.8 (right). This corresponds to

2 If you prefer, you could use random starts with a fixed seed for reproducibility.
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Fig.9.8 Bifurcation diagram of the logistic map, showing the long term behavior as a function of r .
The right plot magnifies the period doubling and chaotic regions

a trajectory with period 2, i.e. one that oscillates between two stable points. In the magnified
view, we see that each of these branches forks into two more near r4 = 0.862 and again
near r8 = 0.886, where the subscripts indicate the period after the branching. One can
find period 16, 32, . . . trajectories computationally (Exercise 9.8) with rapidly shrinking
distances between doublings as we have already seen: [0.862 − 0.75, 0.886 − 0.862, . . .] =
[0.112, 0.024, . . .]. Though the proof is out of the scope of this book, the ratio of distances,
e.g. 0.112/0.024 ≈ 4.67, approaches a constant value δ = 4.669... known as Feigenbaum’s
constant. This means an infinite number of period doublings occur in a short window, as the
geometric series 0.75 + 0.112

∑∞
i=0 δ−i < 0.9, and chaos emerges.

The chaotic regime begins just before r = 0.9 and can be seen as a dense strip of points
in the bifurcation diagram, Fig. 9.8, as it represents an infinite set of points. We mentioned
earlier that chaotic systems are extremely sensitive to initial conditions. To show this is the
case in the logistic map, Fig. 9.9 (left) plots two trajectories separated initially by �x0 =
0.0001. After just 20 timesteps, the trajectories have diverged completely. The absolute
difference in trajectories in the right plot shows that they diverge exponentially fast, indicated
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Fig. 9.9 Two trajectories that quickly diverge, despite differing initially by only �x0 = 0.0001,
showing sensitivity to initial conditions in a chaotic regime of the logistic map
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by the linearity on the semilogarithmic scale. The slope represents a quantitative measure
of chaoticity, known as the Lyapunov exponent (see Strogatz 1994). A positive Lyapunov
exponent indicates chaotic behavior, whereas a negative one regular behavior. The steep dip
at the end is just an artifact of the finite system size: the maximum possible difference is
�x = 1.

One might expect that increasing r further would only yield a more chaotic system, but
this is not the case. In fact order can emerge, evidenced in a window of the bifurcation
diagram near r = 0.96, which corresponds to a period 3 trajectory. Period 3 is noteworthy
because it was not created by the original period doubling cascade into chaos. Remarkably,
zooming in on any of the three branches yields a bifurcation diagram that almost looks like
an identical copy (Exercise 9.9). This self similarity exists in other regions and is another
feature of chaotic systems in general. The period doubling cascade to chaos also is not
unique to the logistic map; more examples are explored in Exercise 9.10.

9.3 Neural Networks

Neural networks have excelled in many tasks in recent years as computational capabilities
have evolved. These tasks include image recognition, speech detection and language trans-
lation, competition in games like chess or StarCraft, and many more, including tasks in
physics and engineering. In this section, we will study the foundational structure of a neural
network and how they learn from data. We will then train a neural network to learn the rules
of the Game of Life by observing how grids evolve.

9.3.1 A Simple Network

Consider a network of just three neurons, schematically shown in Fig. 9.10. The network
consists of two input neurons which take values x1 and x2. The output neuron then uses the
input values, weighted by w1 and w2, to output value y. The exact function used to output y
depends on the network model, but is often based on the linear combinationw1x1 + w2x2 =
w · x.

As a further simplification, suppose the neurons only take binary values 1 or 0 representing
whether a neuron is active or inactive, respectively, but the weights can be any real numbers.
Then given inputs x = [x1, x2] and weights w = [w1, w2], a simple model could output

Fig. 9.10 Graphical
representation of a simple
network

x1

x2

y

w1

w2
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y = f (w · x + b) =
{
1 if w · x + b > 0,

0 if w · x + b ≤ 0,
(9.7)

where b is a constant bias that sets the output neuron’s baseline disposition to activate.
f (·) is known as the activation function because it determines if a neuron activates given
parameters of the network, w and b, and its inputs, x. For example, a network with b =
−2.5 and weights w = [1, 2] is biased against activating, but the positive weights push the
output to activate when the inputs are active. In this case, y = 1 only when both inputs are
active, i.e. it performs the logical and operation x1 and x2. A negative weight would
inhibit activations (when the input is active). The size of the weight determines the relative
importance of a connection—a weight of zero means the input neuron has no influence over
the output’s activation. This simple network can be implemented in Python as follows:

In [13]: class SimpleNetwork:
def __init__(self, w1, w2, b):

self.w1, self.w2, self.b = w1, w2, b

def predict(self, x1, x2):
return int(self.w1*x1 + self.w2*x2 + self.b > 0)

net = SimpleNetwork(w1=1, w2=2, b=-2.5)
net.predict(x1=1, x2=1)

Out[13]: 1

It is reassuring that the simplified binary case can produce a logical operator, but the
real utility comes from a neural network’s ability to learn from data. In that regard, the
binary model is unsatisfactory for a number of reasons, a major one being that data is
often continuous. For example, suppose we are interested in determining whether an image
contains or does not contain a cat. The output is binary, but the image input data are pixel
intensities. It would be wasteful and inaccurate to reduce each pixel in an image to just a
1 or 0. Relaxing the binary input requirement helps, say letting xi ∈ [0, 1]. However from
a learning perspective, the step activation function in Eq. (9.7) is still too abrupt. To see
this, think about a learning algorithm tasked to finding the optimal parameters. Optimal in
this context means the network’s output best matches the output of the actual data, e.g. the
network correctly classifies the most cat images. The algorithm would like to finely tune
the weights wi and bias b with continuous feedback based on the output of the network and
the data. With the step activation function, there is only feedback at the single point where
w · x + b crosses zero, so fine tuning of the parameters is not possible.

A better activation function smooths out the step function and typically are sigmoid
functions with a characteristic “S”-shaped curve. We will be using the logistic function3 for
classification, again based on the linear combination z ≡ w · x + b:

f (z) = 1/(1 + e−z). (9.8)

3 The name is derived from being the solution to a continuous version of the logistic map.
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Fig. 9.11 Comparison of step
and logistic activation
functions, Equations (9.7) and
(9.8)
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It is plotted in Fig. 9.11 in comparison to the step function. The logistic function smoothly
transitions from 0 to 1, allowing for continuous feedback to obtain the optimal parameters.
Furthermore if the underlying data truly did have a step-like transition, the neural network
could capture that by increasing the weights and bias by a constant factor. Though y is now
continuous, binary classification can be achieved by thresholding, e.g. classify as a cat if y >

0.5. This provides more flexibility because we can change the threshold depending on the
application. For example, increasing the threshold to y > 0.9 results in a more conservative
classifier with fewer false positives.

9.3.2 Extending the Network

The most straightforward and practical extension of the three neuron network adds more
input neurons. For example, an imagewith p pixels can be represented as a vector of p inputs.
It is also useful to add more output neurons so we can classify images with q categories.
Supposing we are interested in labeling cats and dogs, we have q = 2 represented by two
outputs y1 and y2. We use y1 to determine whether the image contains a cat and y2 to
determine whether the image contains a dog. Note that the categories do not need to be
mutually exclusive.

We will consider fully connected networks, where each input neuron is connected to
every output neuron for a total of p × q weights and q biases, illustrated in Fig. 9.12 (left).
To simplify the notation, we have represented the biases as ordinary weights w0l stemming
from an input neuron with value x0 = 1. Each output has a different set of weights and bias,
so there are q output equations:

yl = f (zl), l = 1, 2, . . . , q. (9.9)

As usual, f (zl) is the activation function based on the linear combination zl = wl · x, where
the bias has been incorporated into the weights wl = [w0, w1, w2, . . . , wp] and input data
x = [1, x1, x2, . . . , xp].

While linearity is often a good approximation, it limits the range of patterns the neural
network can learn (Exercise 9.11). To overcome this limitation, we can add intermediate
layers to the network as in Fig. 9.12 (right). The r neurons in the intermediate layer use x as
inputswith (bias and)weightswk = [w0k, w1k, w2k, . . . , wpk] to determine their outputs hk ,
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Fig. 9.12 Graphical representation of fully connected neural networks

k = 1, 2, . . . , r . After appending a neuron h0 = 1 to incorporate new biases, they are fed as
inputs into the output layerwith another set of (bias and)weights vl = [v0l , v1l , v2l , . . . , vrl ].
Because the hk are not of direct interest, they are known as hidden neurons. The outputs are
then computed from

hk = g(wk · x), k = 1, 2, . . . , r ,

yl = f (vl · h), l = 1, 2, . . . , q,
(9.10)

where g(·) and f (·) are possibly different activation functions. As long as g(·) is a nonlinear
function of the inputs, then so are the final outputs yl . In general, there can be multiple
hidden layers, each additional layer increasing the complexity of patterns the network can
learn. More complexity is not always better, however, as we do not want to learn random
noise in a dataset which would generalize poorly to new data. One hidden layer is a good
starting point, though some experimentation on the number of layers and neurons in each
layer is usually needed.

Aside from smoothness, nonlinearity is the main requirement for activation functions in
the hidden layer(s). The degree of nonlinearity is not crucial, as more hidden neurons can
be added for increased complexity. Indeed the simple ramp activation function

g(z) = max(0, z) =
{
z if z > 0,

0 otherwise.
(9.11)

is popular, in part due to its simplicity and thus computational efficiency. Though the deriva-
tive is undefined at z = 0, in practice we just choose it to be 0 or 1 with little impact on the
final model. A neuron with ramp activation is referred to as a rectified linear unit (ReLU).
Linear combinations of ReLUs can closely approximate nonlinear functions, demonstrated
in Fig. 9.13.With just r = 2 units, the quadratic approximation is crude, but quickly improves
as we add units (hidden neurons). Many variations of ReLUs exist, e.g. modifications that
smooth out the discontinuous derivative. Hidden sigmoid activations are also common, but
ReLUs are good enough for our purposes.
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Fig. 9.13 Approximating a
quadratic function f (x) = x2

using linear combinations of 2,
4, and 16 ReLUs
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Choice of activation function in the final output layer f (·) depends on the application of
the neural network. For classification, the logistic function works well because it is rooted
in statistical theory. Indeed, its output can be interpreted as a probability. Our previous
thresholding rule y > 0.9 can be interpreted as “classify as a cat if the predicted probability
of being a cat is greater than 0.9”. When the categories are mutually exclusive, the softmax
function should be used:

softmax(z)l = ezl∑q
l=1 e

zl
. (9.12)

The denominator is a normalization constant, analogous to the thermodynamic partition
function. When a neural network is used to approximate an unknown function, f (·) is com-
monly the identity function so the network output (with q = 1) is just the linear combination
y = v · h. The output is unbounded and nonlinearities are encoded in the hidden layers, so
a large class of functions can be learned (Exercise 9.12).

9.3.3 Learning fromData

In order for a network to learn, we must train it using data. Suppose we have a dataset with
N observations, each observation consisting of a vector of inputs xi = [1, xi1, xi2, . . . , xip]
and a vector of outputs yi = [yi1, yi2, . . . , yir ], i = 1, 2, . . . , N . For a network with one
hidden layer, as in Fig. 9.12 (right), training amounts to finding the optimal sets of weights
which we represented as matrices W and V, whose elements are w jk , j = 0, 1, . . . , p and
k = 1, 2, . . . , r , and vkl , k = 0, 1, . . . , r and l = 1, 2, . . . , q. The kth column ofW are the
wk in Eq. (9.10), and similarly the lth column of V are the vl . Note the slightly different
range of k values depending on if it is the first or second index; this is because no connections
are directed into the bias neuron, or equivalently w j0 = 0.

Denote the network’s predicted outputs as ŷi , which is a function of W and V. Ideally
we would want ŷi to closely match the data yi , so it is intuitively appealing to measure a
network’s performance based on the error yi − ŷi . Since positive and negative errors should
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be treated equally, we use the squared errors (yi − ŷi) · (yi − ŷi) ≡ (yi − ŷi )
2. Furthermore,

treating each data observation equally, our goal is to minimize the loss function4

L(W,V) = 1

N

N∑
i=1

(yi − ŷi )
2, (9.13)

sometimes referred to as the mean squared error (see also Sect. 4.5). The mean rather than
sum of squared errors is not strictly necessary, but it is useful in practice for training, which
we will see later.

In principle, the task is simple.We justminimize the loss function, Eq. (9.13), with respect
to the weights using our favorite optimization algorithm. However, because there can easily
be thousands ofweights and observations,most algorithms are too slow to be used in practice.
This rules out second order methods like Newton’s method which require a matrix of second
derivatives. Even gradient descent (GD), which just calculates first derivatives and updates
the weights at the (t + 1)th iteration via

wt+1
jk = wt

jk − η
∂L

∂wt
jk
,

vt+1
kl = vtkl − η

∂L

∂vtkl
,

(9.14)

where η is the learning rate, can be too slow. The remainder of the section will discuss how
to modify GD to speedup the training process.

We begin by tackling the large number of observations problem.Because the loss function
is a sum of N observations, to make a single update to a single weight we must compute N
derivatives. If N = 1, 000 and there are 1, 000 weights, then we need to compute a million
derivatives to update the weights just once.We then need to repeat this process enough times
so we converge to a suitable local minimum.

A much faster method updates the weights by approximating the true gradient using
smaller, but representative mini-batches of size n < N . That is, we approximate

∇L(W,V) = 1

N

N∑
i=1

∇(yi − ŷi )
2 ≈ 1

n

n∑
i ′=1

∇(yi ′ − ŷi ′)
2 (9.15)

for a random selection of i ′. This allows us to update the weights after computing only n
derivatives. Next, we draw another mini-batch from the remaining observations, ensuring all
observations in the dataset are used equally, and update the weights again. We repeat this for
N/n batches, after which we have completed an epoch of training using all the data once.5

We can then complete more epochs, each time randomizing the N/n batches, until suitable

4 This sometimes referred to as the cost function.
5 If N/n is not an integer, there are �N/n� batches, the last batch being smaller than n.
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Fig. 9.14 Comparison between gradient descent and its stochastic variant. The left panel plots con-
tours of the loss function and the updated weight paths, initially randomized near zero. The right
panel shows the loss after each update

convergence is reached. Though we will not step down in the “best” direction each time, we
will step much more frequently in a good directions, on average. This procedure is known
as stochastic gradient descent (SGD). The mean squared error is useful for SGD because it
decouples the learning rate η from the batch size. If we used sum of squares instead, larger
batches would learn faster for a fixed η.

The difference between SGD and ordinary GD is illustrated in Fig. 9.14 for a simple
network with just two weights so that L = L(w0, w1). GD evolves perpendicularly to the
contour lines while SGD meanders about, though they both approach similar small values
of L after the same number of updates. Not pictured is the considerable speedup associated
with SGD because multiple updates are made per epoch of training.

9.3.4 Learning the Game of Life Rules

We will now demonstrate how to build and use neural networks with the Keras library. In
Sect. 9.1.1, we showed how complex global patterns can emerge in the Game of Life from
a simple set of local rules. Supposing we did not know the rules, could we infer them based
on grid snapshots, e.g. a series of snapshots like in Fig. 9.2? Although we know the rules
end up being simple, it is not so obvious from just a series of snapshots. It is conceivable
to have a modified Game of Life where a single cell can interact with cells within a larger
radius. We will attempt to solve this problem using a neural network.

First we must define the inputs and output. Given a n × m grid of cells in the Game of
Life, a neural network that has successfully learned the rules will be able to perfectly predict
which cells live and die at the next timestep. The input data consists of an n × m array of
binary elements, indicating whether the cell is dead or alive. For simplicity, we will update
grids with constant boundary conditions, but only use the inner cells for training since the
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outer ones are externally forced to be dead, i.e. the rules are modified at the boundaries. The
following generates the 1,000 samples of training data to input into Keras:

In [14]: from tensorflow import keras

def add_grid_padding(grid):
return np.pad(grid, pad_width=1, mode='constant', constant_values=0)

def remove_grid_padding(grid):
return grid[1:-1, 1:-1]

def generate_data(n_sample, n_row, n_col):
X, Y = [], []
for _ in range(n_sample):

grid = add_grid_padding(
np.random.randint(low=0, high=2, size=(n_row, n_col)))

updated_grid = update_grid(grid)
X.append(remove_grid_padding(grid))
Y.append(remove_grid_padding(updated_grid))

return np.expand_dims(X, -1), np.expand_dims(Y, -1)

keras.utils.set_random_seed(1)
n_row, n_col = 20, 20
X_train, Y_train = generate_data(n_sample=1000, n_row=n_row, n_col=n_col)
X_train.shape

Out[14]: (1000, 20, 20, 1)

Note that we have expanded each of the 1,000 grids to have shape (20, 20, 1) for Keras. The
last dimension corresponds to the number of channels the input has. In our case, our grid
can be thought of as a single grayscale “image” with one channel.

We are now ready to train a neural network using a fully connected architecture described
by Fig. 9.12 in Sect. 9.3.2. We specify the 3-layer architecture with a
keras.Sequential() model:

In [15]: input_shape = (n_row, n_col, 1)
model = keras.Sequential([

keras.Input(shape=input_shape),
keras.layers.Dense(units=100, activation='relu'),
keras.layers.Dense(units=1, activation='sigmoid')

])

We first specify the shape of the input data, add a hidden layer using ReLU activation
with 100 neurons, and finally add an output layer using sigmoid activation for two distinct
classes.6

Given an instantiated model, we can now configure training methods. We will use mean
squared error as our loss function, optimize via stochastic gradient descent, and use accuracy
as our performance metric. We will then iterate over the 1,000 samples in entirety in 10
epochs, each iteration using a batch size of 10.

In [16]: SGD = keras.optimizers.SGD(learning_rate=1)
model.compile(loss='mse', optimizer=SGD, metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=10, batch_size=10, verbose=1)

6 A binary classification only needs one unit since given P(X = 0), we know P(X = 1). In general,
k-class classification requires k − 1 units.
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Out[16]: Epoch 1/10
100/100 [===================] - 1s 6ms/step - loss: 0.2104 - accuracy: 0.6888
Epoch 2/10
100/100 [===================] - 1s 7ms/step - loss: 0.2084 - accuracy: 0.6896
...
Epoch 10/10
100/100 [===================] - 1s 7ms/step - loss: 0.2084 - accuracy: 0.6896

After 10 epochs of training, the network’s prediction accuracy on the training data is better
than random guessing, but is far from perfect and suggests it has not learned the rules of
the Game of Life. We could try increasing the number of epochs, but the loss function
the network is minimizing barely changes from the second to the tenth epoch. Perhaps the
learning rate is too fast and the minima of interest are skipped over, perhaps the batch size is
too small, or perhaps the loss function is ill-suited to measure a binary response. Before we
make those, and countless other potential adjustments, it is illuminating to try to understand
what the network has learned. In general, this extremely difficult due to the shear number of
parameters estimated. In this example, however, it is useful to observe the predictions made
by invoking the predict()method. Because we are using a sigmoid activation function,
the output of the network is the probability a cell is alive. It turns out that predictions across
the entire 1,000 training samples only result in two unique probabilities:

In [17]: np.unique(model.predict(X_train))

Out[17]: array([0.22743931, 0.36943513], dtype=float32)

With a symmetric thresholding rule of alive if p > 0.5 and dead otherwise, the model is
predicts that every cell in the Game of Life will die at the next iteration. In other words, a
model that simply predicts every cell dies has the same accuracy as the neural network. We
can verify this by counting the number of dead cells in the next-iteration training data:

In [18]: np.mean(Y_train == 0)

Out[18]: 0.6896

While underwhelming, the network has learned two features: it has learned that there are
more dead cells than alive ones and, from the comparatively larger probability 0.37, that
alive cells are more likely to stay alive. But it has clearly failed our goal to learn the rules of
the Game of Life.

What went wrong? The trained network resulted in a solution that is just a wide local
minima far from the truly informative ones. It turns out that the Game of Life is difficult,
but not impossible, for neural networks to learn (see Springer and Kenyon 2021). One of the
issues is our fully connected architecture. We know in the Game of Life, a cell’s neighbors
also determine its future state. Yet from the network output’s two unique probabilities, we
see it has only used information from a single cell to determine its future. If we used an
architecture that clustered neighboring cells together, it would facilitate learning of larger
patterns. A variation on the fully connected architecture, known as a convolutional neural
network (CNN), does exactly this. We first demonstrate by example:



9.3 Neural Networks 225

In [19]: model = keras.Sequential([
keras.Input(shape=input_shape),
keras.layers.Conv2D(filters=3, kernel_size=(3, 3), activation='relu',

padding='same'),
keras.layers.Dense(units=1, activation='sigmoid')

])
model.compile(loss='mse', optimizer=SGD, metrics=['accuracy'])
model.fit(X_train, Y_train, epochs=10, batch_size=10, verbose=1)

Out[19]: Epoch 1/10
100/100 [===================] - 1s 2ms/step - loss: 0.1688 - accuracy: 0.7185
Epoch 2/10
100/100 [===================] - 0s 2ms/step - loss: 0.1421 - accuracy: 0.7248
...
Epoch 10/10
100/100 [===================] - 0s 2ms/step - loss: 0.0028 - accuracy: 1.0000

This neural network has successfully learned the rules of the Game of Life with just one
change in the second layer, using Conv2D instead of Dense (fully connected). We should
verify that the network generalizes to external data outside the training set:

In [20]: X_test, Y_test = generate_data(n_sample=1000, n_row=n_row, n_col=n_col)
print(model.metrics_names)
print(model.evaluate(X_test, Y_test, verbose=0))

Out[20]: ['loss', 'accuracy']
[0.002449536696076393, 1.0]

Indeed, its perfect prediction accuracy is maintained.
Thefilters argument sets the flexibility of the CNN and is analogous to the number of

neurons in a fully connected hidden layer. The kernel_size specifies the clustering size.
In theory, a 3 × 3 clustering size would be ideal since the Game of Life rules are based on
3 × 3 neighborhoods, but in practice we do not know the ideal size ahead of time (assuming
it exists). Despite the 5 × 5 kernel size, the CNN able to properly filter and learn desired
rules.7

The Game of Life has shown us once again that despite having a simple set of rules, the
evolution of the game is complex enough such that the rules are hard for a vanilla neural
network to deduce. That being said, we have seen that neural networks can represent complex
nonlinear functions and that we can modify them so that they are able to learn these complex
patterns. A myriad of other neural network extensions exist that address shortcomings we
have not seen and speak to the potential of these methods. However, questions like choosing
the correct architecture, tuning the parameters, and interpreting the trained network are not
so simple to answer. Neural networks are certainly a powerful tool, but are not a panacea for
all problems and do not replace intuition and value built from simpler theoretical models.

7 This property makes CNNs particularly common in image recognition. Instead of mapping a single
pixel to the output classification, neighboring pixels are grouped together which can reduce noise and
overfitting.
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9.4 Exercises

9.1. Exploring the Game of Life.

(a) Play the Game of Life starting from 4-cell configurations in the shape of Tetris
blocks. Ensure there is enough padding so there are no edge effects. Characterize
the results as in Fig. 9.1.

(b) Consider a grid with just 2 gliders moving in opposite directions. Define a collision
as an event that changes the gliders as they pass each other. Approximately how
many unique collisions are there?What is themost common outcome of a collision?

(c) Determine the time evolution of the initial configuration in Fig. 9.15 on an infinite
grid. Assume all other cells start dead. Does the system ever stabilize?

9.2. Game of Life’s sensitivity to initial conditions. Start with the grid in Fig. 9.2 at t = 0,
generated by

In [21]: np.random.seed(1)
grid = np.pad(np.random.randint(low=0, high=2, size=(20, 20)), 1)

It eventually stabilizes at t = 105. Is the same stable configuration reached if 1 cell at
t = 0 was flipped? Consider all 20 × 20 unique initial conditions that differ from grid
by just 1 cell. Howmany of these initial conditions result in the same stable configuration
at t = 105? More generally, for each initial condition, calculate the number of cells at
t = 105 that differ from grid’s eventual t = 105 stable configuration and plot the
distribution of differences. What distinguishes initial conditions that end up with large
differences as opposed to small but nonzero differences?

9.3. Game of Life with periodic boundary conditions. Modify the text’s Game of Life
implementation to use periodic boundary conditions. Specifically, the grid is wrapped
so any cell at the right boundary has neighbors on the left boundary and any cell at the

Fig. 9.15 Initial configuration for Exercise 9.1c



9.4 Exercises 227

top boundary has neighbors on the bottom boundary. It follows that all corner cells are
connected. Test your code by visualizing the behavior of a single glider.
Using the same initial configuration of Fig. 9.2 (without the dead cell padding), compare
the final stabilized grids.

*9.4. Macroscopic properties and long term behavior of random grids. A random grid
can be formalized as a grid whose individual cells start alive with probability p,
independent of other cells. The random grid in Fig. 9.2 set p = 0.5. In this problem,
you will investigate properties of random grids as a function of p using periodic
boundary conditions (Exercise 9.3).

(a) Write a function that initializes a random grid with arbitrary start probability p ∈
[0, 1].

(b) For a given grid, write a function to determine the number of timesteps until it
stabilizes, i.e. dies out or is composed of still lifes, oscillators, and/or spaceships
whose behaviors predictably repeat. Since some grids may not stabilize for a long
time, impose a maximum timesteps parameter Tmax. Calibrate this parameter for
a random 20 × 20 grid. Does it depend strongly on p? Restrict analysis in future
parts to random 20 × 20 grids that stabilize within Tmax.

(c) Using Monte Carlo simulations, plot the proportion of grids that die out, stabilize
into a collection of still lifes, and stabilize with at least one oscillator or spaceship
as a function of p. Run enough simulations so that standard errors are within 2%.

(d) Plot the average ratio of alive to total cells when a grid first stabilizes as a function of
p. These are estimates of the asymptotic densities of cells. Run enough simulations
so that standard errors are within 0.1%.

(e) Do grids that stabilize quickly differ from those that take a long time to stabilize?
What about when p is fixed, say p = 1

2 ?
(f) Investigate temporal behavior of cell densities. Plot the average density over time

for various p with distinct asymptotic behavior. Describe your results. Are they
consistent with what you expected?

9.5. Game of Life on a hexagonal grid. There are many variations of the Game of Life
obtained by changing the rules and/or geometry. Here you will implement 2 different
rulesets on a hexagonal grid.

(a) Oneway to represent a hexagonal grid uses a 2D arraywhere every 2nd row is offset.
A 3 × 3 array corresponds to the hexagonal grid in Fig. 9.16 where each hexago-
nal cell is labeled by the corresponding array indices. Modify update_grid()
accordingly with the same cell update rules except now each cell has 6 instead of 8
neighbors.
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0, 0 0, 1 0, 2

1, 0 1, 1 1, 2

2, 0 2, 1 2, 2

t = 0 t = 7

Fig.9.16 Representation of a hexagonal grid using a 2D array and test configuration for Exercise 9.5

(b) Modify play() to visualize hexagonal grids like in Fig. 9.16. There is no
pcolormesh() equivalent for hexagonal grids, so one approach plots each
hexagon individually as a patch. A list of patches constitutes a frame and can then
be appended to ims. For instance, to plot a single hexagonal patch at (x, y) with
radius r on an Axes ax, use

In [24]: from matplotlib.patches import RegularPolygon
hexagon = RegularPolygon((x, y), numVertices=6, radius=r)
ax.add_patch(hexagon)

Test your code by playing the t = 0 configuration in Fig. 9.16. It should converge
to the still life at t = 7. The grid can be initialized with

In [25]: np.random.seed(1)
grid = np.pad(np.random.randint(low=0, high=2, size=(8, 8)), 1)

(c) Characterize a few common still lifes. What is the largest still life you come across
or can think of? Can you find an oscillator?

(d) Modify the update rules to your liking. For instance, one might object to the original
Game of Life update since there are now 2 fewer neighbors. Characterize common
patterns that arise.

9.6. Variation on parameters in the Nagel–Schreckenberg model.

(a) Consider the deterministic limit pslow = 0 with length 100 and vmax = 5. Plot the
time averaged flow as a function of density. What kind of transition occurs and at
what critical density ρ∗? For ρ > ρ∗, after initial transients, why does each car in a
spacetime plot appear to translate 1 cell backward per timestep? What is different
for ρ < ρ∗?

(b) Modify the speed limit to two extremes: vmax = 1 and vmax = 25. How does the
interpretation of the model change? What differences, if any, do you observe in
spacetime and average flow vs. density plots?
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9.7. Nagel–Schreckenberg model with open boundaries. Label a length L road’s cells
by x = 0, 1, . . . , L − 1. Open boundary conditions are more complex because there is
no well defined interaction for the car closest to x = L − 1. For example, there may
be a car in front at x = L we cannot see that should slow the car. Furthermore, as cars
exit the road, the number and thus density of cars we observe changes. Adding a car
at x = 0 whenever a car exits is problematic because there may already be a car there.
Introducing probabilistic entrance and exit rates is one remedy you will explore here.

(a) Modify the text’s Road.update()method to handle open boundaries as follows.
Before making any updates, if there is not a car at x = 0 add one with v = vmax

with probability pent. Update all cars except for the one closest to x = L as usual.
For the boundary car, assume there is no car in its path. Then if its updated position
x ′ ≥ L , set x ′ = L − 1 with velocity v′ = 0 and remove it with probability pexit.

(b) Make an analogous pair of spacetime plots to those in Fig. 9.4 with vmax = 5 and
pslow = 0.1, choosing parameters pent and pexit so that densities are comparable.
Comment on your results.

(c) Since density is no longer a fixed property of the road, a useful alternativemeasure is
the time averaged density—the average number of cars that occupy a fixed cell over
T timesteps. This definition is similar to the time averaged flow. Plot the average
flow as a function of average density. Identify the critical (time averaged) density
ρ∗ transitioning from free flow to traffic jams. Does ρ∗ depend on which cell you
measure?

9.8. Investigating period doubling. We have seen that a cascade of period doublings in
the logistic map leads to chaos. In this exercise, you will find where period doublings
occur and show they lead to chaos in other periodic windows.

(a) Code an algorithm that determines the period of a sequence of values generated by
the logistic map [x0, x1, . . . , xT ] if there is a periodic orbit. Keep in mind that some
orbits may converge very slowly, so build a reasonably small precision level into
your algorithm.

(b) Test your algorithm just before r = 3
4 where the first period doubling occurs, say

r = 0.749. Does your algorithm correctly detect a period of 1? If not, why, and how
can you fix it? Hint: A plot of xt over time may be helpful. What is the difference
between values separated by 1 and 2 timesteps and how do they compare to your
precision level?

(c) Modify your algorithm to accurately determine where a period doubling point rp
occurs,where p is the associatedperiodof the orbits after doubling.What parameters
control how precise of an rp value you can obtain? Obtaining r2 = 3

4 computation-
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ally is a good benchmark.Hint:A simple, but efficient implementation can be based
off the bisection algorithm.

(d) Obtain r2, r4, r8, . . . , r64 to at least 4 digit precision. Then compute the ratio of
distances between successive rp points to estimate Feigenbaum’s constant, e.g.
(r32 − r16)/(r64 − r32). How close do you get to δ = 4.669...? Using your esti-
mates, predict where r256 is and try to find it with your algorithm. Estimate where
r∞ begins, i.e. chaos.

(e) Repeat (d) for the period 3 window beginning near r = 0.96, finding r3, r6, . . . , r96
and an estimate of δ. Using your data, predict where the window ends, and compare
with an estimate made from just a bifurcation diagram.

9.9. Self-similarity in the logistic map.

(a) Modify bifurcation_plot() so you can generate a bifurcation diagram on
any magnified region [xmin, xmax] × [rmin, rmax]. Ensure in the magnified region
there are n_keep points plotted. Use your modification to magnify any branch of
the period 3 window near r = 0.96, the largest of the periodic windows after the
onset of chaos. Add another level of magnification in the resultant largest window.
Compare your plots to Fig. 9.8 (right).

(b) Self-similarity is not unique to the period 3 window. There is a period 11 window
beginning near r = 0.92043. Find it, then magnify any of the 11 branches.

9.10. Other chaotic maps in 1D. For each map, compute equilibrium points of period 1
and characterize their stabilities, create an interactive evolution widget, and plot the
bifurcation diagram. Compare and contrast your results with the logistic map.

(a) Explore the sine map:

xt+1 = r sin(πxt ), r ∈ [0, 1], xt ∈ [0, 1].

Viewed as a Taylor expansion about π/2, the sine map contains nonlinearities at all
even powers, not just quadratic.

(b) Explore the tent map:

xt+1 = r ×

⎧⎪⎪⎨
⎪⎪⎩
xt/s if xt < s,

(1 − xt )/s if xt > 1 − s,

1 otherwise,

a two parameter map, r ∈ [0, 1] and s ∈ (0, 1
2 ], defined for xt ∈ [0, 1]. Its name

comes from its shape at s = 1
2 . What does the parameter s do? Consider the s = 1

2
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case and s = 0.49 case separately. Why are there no periodic windows after chaos
emerges when s = 1

2 ?

9.11. The XOR problem. Consider the simple neural network in Fig. 9.10. We demon-
strated that with binary inputs x1 and x2 and proper choice of parameters w1, w2, and
b, the network effectively acts as a logical and operator, i.e. y = 1 if x1 = x2 = 1
and y = 0 otherwise. Show that this simple network architecture cannot replicate the
behavior of an xor operator (exclusive or), i.e.

y =
{
1 if (x1, x2) ∈ {(1, 1), (0, 0)},
0 if (x1, x2) ∈ {(0, 1), (1, 0)}.

Introduce a hidden layer with ReLU activation and specify an architecture with sam-
ple parameter values that replicates an xor operator.

9.12. Neural networks as function approximators.

(a) Generate n samples of training data according to

x ∼ N (0, 1),

y = x + N (0, 1),

whereN (μ, σ 2) represents a random value from a normal distribution with mean
μ and variance σ 2, e.g. x = np.random.randn(n). We are essentially gen-
erating data that fits the line y = x , but with random fluctuations.
Train a fully connected neural network with your chosen n. Plot the original data
and overlay two curves: the theoretical solution y = x and the predictions of your
trained network. Now repeat for various n. What is the (approximate) minimum
sample size n such that the neural network generally represents the true line?

(b) Repeat (a), but for a more complex Gaussian:

x ∼ N (0, 1),

y = e−x2 + N (0, 1),

(c) Now extend to two dimensions, i.e. x = np.random.randn(n, n), and
vary between two complexities: a plane and a 2D Gaussian. Approximately how
much larger does the minimum sample size need to be?

*(d) Extend further to ten dimensions. Since we cannot visualize how well a 10D
Gaussian fits, you will need to determine a metric to measure the neural network’s
performance. How does the (approximate) minimum sample size scale as the
dimensionality increases?
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9.13. Image recognition. Visual tasks like recognizing handwritten digits are simple for
humans, but very difficult for logic based programs. Neural networks circumvent the
need to create a large set of rules, with many exceptions to accommodate different
styles, though there is one important caveat—they require lots of quality training data.

(a) Westartwith a classic example using theMNISTdataset of handwritten digit images.
Load in the data with the following:

In [27]: (X_train, y_train), (X_test, y_test) = (
keras.datasets.mnist.load_data())

Y_train = keras.utils.to_categorical(y_train)
Y_test = keras.utils.to_categorical(y_test)

Get familiar with the data and visualize a few images. What does the
to_categorical() utility do, and why do we need it before training a neu-
ral network?

(b) Train a feed forward neural network with a single hidden layer to recognize digits
from an image. Evaluate its accuracy on the test data. Once you have a network
that does better than random guessing, spend some time optimizing the network for
accuracy. Suggestions include tuning the parameters, changing the architecture, or
trying a convolutional neural network. Explain why your changes had the effect they
did. Once you have a network that works well, visualize a few images where its
predictions are incorrect, and comment on your findings.

(c) Let us revisit our Game of Life example from a different angle. Instead of predicting
the next state of the game, suppose we want to answer a more general question: given
an image of the current state of the game, classify whether the board will stabilize
within 100 timesteps. Do you expect this to be more or less difficult than learning the
rules of the game? Justify your answer.

*(d) Implement the classifier described in (c). See Exercise 9.4 for more details on gener-
ating the data.
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AProgram Listings

This appendix lists most complete Python (.py) programs discussed in the text. All pro-
grams, including in Jupyter notebook (.ipynb) format, are available online at

• https://github.com/com-py/intro

Additionally, select GlowScript and Trinket programs are available at

• GlowScript: https://www.glowscript.org/#/user/jaywang/folder/intro/
• Trinket: https://github.com/com-py/intro

A.1 Programs from Chap.3

Program A.1.1 Interactive computing with IPywidgets.

1 # See links to online programs below

See Chap. 3 Program p1-ipywidgets online at https://github.com/com-py/intro.

Program A.1.2 Interactive computing with Matplotlib widgets.

1 import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, RadioButtons, CheckButtons

3 import numpy as np

5 x = np.linspace(-1, 1, 101) # grid

7 def updatefig(*args): # update figure data
k = slider.val

9 if func.value_selected == fs[0]: # sin
f = np.sin(k*np.pi*x)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2023
J. Wang and A. Wang, Introduction to Computation in Physical Sciences,
Synthesis Lectures on Computation and Analytics,
https://doi.org/10.1007/978-3-031-17646-3
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11 else:
f = np.cos(k*np.pi*x)

13 if refresh.get_status()[0]: # checkbox 0 val
plot.set_ydata(f)

15 ax.set_ylim(min(f), max(f))
fig.canvas.draw_idle()

17
fig = plt.figure()

19 fig.canvas.set_window_title('Interactive plotting')
fig.subplots_adjust(left=0.15, bottom=0.35, top=.95)

21 ax = fig.add_subplot(111)
plot = ax.plot(x, [0]*len(x))[0]

23
axes = fig.add_axes([.15, .20, .75, .03]) # k slider

25 slider = Slider(axes, '$k$', 0, 2, 1) # range, init val
slider.on_changed(updatefig)

27
fs = ['sin', 'cos'] # radio buttons

29 rbox =fig.add_axes([.15, .02, .15, .15])
func = RadioButtons(rbox, fs, 0) # active = sin (0)

31
cbox = fig.add_axes([.4, .02, .15, .15]) # checkbox, real+extra

33 refresh = CheckButtons(cbox, ['refresh', 'extra'], [1,0])
func.on_clicked(updatefig)

35 refresh.on_clicked(updatefig)

37 updatefig(None)
plt.show()

Program A.1.3 Animation with Matplotlib.

# See links to online programs below

See Chap. 3 Program p3-matplotam.ipynb online at https://github.com/com-py/intro.

Program A.1.4 3D visualization with VPython. Also available in GlowScript.

1 import vpython as vp

3 scene = vp.canvas(title=('right drag to change camera,' +
'double drag to zoom'))

5 ball = vp.sphere()
box = vp.box(pos=vp.vector(0,0,-1.1), length=10, height=5, width=.2,

7 color=vp.color.cyan)

9 t = 0
while t<10:

11 vp.rate(10)
ball.pos = vp.vector(2*vp.sin(2*t),0,0)

13 t = t + 0.1

Program A.1.5 Symbolic computation with Sympy.

1 # See links to online programs below

See Chap. 3 Program p5-sympy.ipynb online at https://github.com/com-py/intro.

https://github.com/com-py/intro
https://github.com/com-py/intro
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Program A.1.6 Numpy library.

1 # See links to online programs below

See Chap. 3 Program p6-numpy.ipynb online at https://github.com/com-py/intro.

Program A.1.7 Scientific computing with Scipy.

1 # See links to online programs below

See Chap. 3 Program p7-scipy.ipynb online at https://github.com/com-py/intro.

Program A.1.8 Numba optimization.

1 import numpy as np, time
from numba import jit

3
@jit # optimization

5 def calc(u0, u1):
u2 = - u0

7 for n in range(1, N-1):
u2[n] += u1[n-1] + u1[n+1] # left, right

9 return u2

11 N = 5000
u0 = np.random.random(N)

13 u1 = 0.9*u0

15 tc = time.perf_counter()
for i in range(2000):

17 u2 = calc(u0, u1)
u0, u1 = u1, u2

19
tc = time.perf_counter() - tc

21 print(tc)

A.2 Programs from Chap.4

Program A.2.1 Curve fitting.

1 from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

3 from numpy.random import random
import numpy as np

5
def lin(t, a, b):

7 return a + b*t

9 def quad(t, a, b, c):
return a + b*t + c*t*t

11
N = 101

13 t = np.linspace(0, 0.5, N)
x = 5*t - 4.9*t*t + 0.2*random(N)

https://github.com/com-py/intro
https://github.com/com-py/intro
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15
cl = curve_fit(lin, t, x)[0]

17 cq = curve_fit(quad, t, x)[0]
print(cl, cq)

19
plt.plot(t, x, 'o')

21 plt.plot(t, lin(t, cl[0], cl[1]), 'k--')
plt.plot(t, quad(t, cq[0], cq[1], cq[2]), 'r-')

23 plt.xlabel('t (s)'), plt.ylabel('f (m)')
plt.show()

Program A.2.2 Locating minima and maxima.

import numpy as np
2 import matplotlib.pyplot as plt

4 def minmax(y): # return indices of minima and maxima
mini = (y[1:-1]<=y[:-2])*(y[1:-1]<=y[2:]) # minima array

6 maxi = (y[1:-1]>=y[:-2])*(y[1:-1]>=y[2:]) # maxima array
mini = 1 + np.where(mini)[0] # indices of minima

8 maxi = 1 + np.where(maxi)[0] # indices of maxima
return mini, maxi

10
x = np.linspace(0, 5, 100)

12 y = np.exp(-x/2)*np.sin(2*np.pi*x)
mini, maxi = minmax(y)

14
plt.plot(x, y, '-o', mfc='none') # open circle marker

16 plt.plot(x[mini], y[mini], 'kv', label='minima')
plt.plot(x[maxi], y[maxi], 'r^', label='maxima')

18 plt.legend()
plt.xlabel('x')

20 plt.ylabel('y')
plt.show()

A.3 Programs from Chap.5

Program A.3.1 Ideal projectile motion.

1 import matplotlib.pyplot as plt
import numpy as np

3 g = 9.8
a = np.array([0.0, -g])

5 r = np.array([0.0, 0.0])
v = np.array([4.0, 9.0])

7 dt = 0.1
t = 0.0

9 tlist = []
rlist = []

11 vlist = []
for i in range(20):
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13 tlist.append(t)
rlist.append(r)

15 vlist.append(v)
r = r + v*dt

17 v = v + a*dt
t = t + dt

19
rlist = np.array(rlist)

21 vlist = np.array(vlist)

23 plt.plot(tlist, rlist[:,0], tlist, rlist[:,1])
plt.xlabel('time (s)')

25 plt.ylabel('x, y (m)')
plt.figure()

27 plt.plot(tlist, vlist[:,0], tlist, vlist[:,1])
plt.xlabel('time (s)')

29 plt.ylabel('vx, vy (m/s)')
plt.show()

Program A.3.2 Realistic projectile motion with drag. Also available in GlowScript.

import matplotlib.pyplot as plt
2 import numpy as np
c1 = 0.0

4 c2 = 0.2
g = 9.8

6 ag = np.array([0.0, -g])
r = np.array([0.0, 0.0])

8 v = np.array([4.0, 9.0])
dt = 0.1

10 t = 0.0
tlist = []

12 rlist = []
vlist = []

14 while r[1] >= 0.0: # y-position above 0
tlist.append(t)

16 rlist.append(r)
vlist.append(v)

18 speed = np.sqrt(v[0]**2 + v[1]**2)
a = ag - c1*v - c2*speed*v

20 r = r + v*dt
v = v + a*dt

22 t = t + dt

24 rlist = np.array(rlist)
vlist = np.array(vlist)

26
plt.plot(tlist, rlist[:,0], tlist, rlist[:,1])

28 plt.xlabel('time (s)')
plt.ylabel('x, y (m)')

30 plt.figure()
plt.plot(tlist, vlist[:,0], tlist, vlist[:,1])

32 plt.xlabel('time (s)')
plt.ylabel('vx, vy (m/s)')

34 plt.show()
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Program A.3.3 Simple harmonic oscillator in 2D. Also available in GlowScript.

import matplotlib.pyplot as plt
2 import numpy as np
omega = 1.0

4 r = np.array([1.0, 1.5])
v = np.array([1.0, 0.0])

6 dt = 0.1
t = 0.0

8 tlist = []
rlist = []

10 while t< 10.0:
tlist.append(t)

12 rlist.append(r)
r = r + v*dt

14 a = - omega**2 * r
v = v + a*dt

16 t = t + dt

18 rlist = np.array(rlist)

20 plt.plot(tlist, rlist[:,0], tlist, rlist[:,1])
plt.xlabel('time (s)')

22 plt.ylabel('x, y (m)')
plt.figure()

24 plt.plot(rlist[:,0], rlist[:,1])
plt.xlabel('x (m)')

26 plt.ylabel('y (m)')
plt.show()

Program A.3.4 Planetary motion. Also available in GlowScript.

1 import matplotlib.pyplot as plt
import numpy as np

3 import vpython as vp

5 GM = 4*np.pi**2
r = np.array([1.0, 0.0])

7 v = np.array([0.0, 2*np.pi])
dt = 0.01

9 rlist = []
t = 0.0

11 scene = vp.canvas(background=vp.vector(.0, .20, 1))
star = vp.sphere(radius=0.1, color=vp.color.yellow)

13 planet = vp.sphere(radius=0.1, texture=vp.textures.earth)
trail = vp.curve(radius=0.005)

15
while t< 2.0:

17 vp.rate(20)
planet.pos=vp.vector(r[0], r[1], 0.)

19 trail.append(planet.pos)
rlist.append(r)

21 r = r + v*dt
rmag = np.sqrt(r[0]**2 + r[1]**2)

23 a = - GM * r/rmag**3
v = v + a*dt

25 t = t + dt
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27 rlist = np.array(rlist)
ax = plt.subplot(111, aspect='equal') # equal aspect ratio

29 ax.plot(rlist[:,0], rlist[:,1])
plt.xlabel('x (AU)')

31 plt.ylabel('y (AU)')
plt.show()

Program A.3.5 Motion in electromagnetic fields.

import matplotlib.pyplot as plt
2 from mpl_toolkits.mplot3d import Axes3D
import numpy as np

4
def paraperp(v, B): # project para // and perp _|_ velocities

6 vpara = np.dot(v,B) * B/np.dot(B, B)
vperp = v - vpara

8 mperp = np.sqrt(np.dot(vperp, vperp))
return vpara, vperp, mperp

10
E = np.array([0, 0.0, 1.e4])

12 B = np.array([1.0, 0.0, 0.0])
qm = 1.0 # q/m

14 dt = 0.01
t = 0.0

16 r = np.array([0., 0., 0.])
v = np.array([2.e4, 1.e5, 0.])

18 rlist = []
while t < 20.0:

20 rlist.append(r)
r = r + v*dt/2 # half step r at midpoint

22
v = v + qm*E*dt/2 # half step by E field

24 vpara, vperp, mperp0 = paraperp(v, B)

26 a = qm*np.cross(v, B) # full step by B field
v = v + a*dt

28 vpara, vperp, mperp = paraperp(v, B)
vperp = vperp*mperp0/mperp # correct magnitude

30 v = vpara + vperp

32 v = v + qm*E*dt/2 # 2nd half step by E field
r = r + v*dt/2 # 2nd half step r

34 t = t + dt

36 rlist = np.array(rlist)/np.max(np.abs(rlist)) # scale r
ax = plt.subplot(111, projection='3d')

38 ax.plot(rlist[:,0], rlist[:,1], rlist[:,2])
ax.set_xlabel('x (arb)'), ax.set_ylabel('y (arb)')

40 ax.set_zlabel('z (arb)'), ax.set_zlim(-.5 ,0)
plt.show()
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A.4 Programs from Chap.6

Program A.4.1 Symbolic determination of normal modes.

1 # See links to online programs below

SeeChap. 6Programp1-normalmodes.ipynbonline at https://github.com/com-py/intro.

Program A.4.2 Coupled three-body oscillator.

1 import matplotlib.pyplot as plt
import numpy as np

3
k1, k2 = 1.0, 1.0

5 m1, m2, m3 = 1.0, 3.0, 1.0
u = np.array([1.0, 0.0, 0.5])

7 v = np.array([0.0, 0.0, 0.0])

9 t, dt = 0.0, 0.1
tlist, ulist = [], []

11 while t< 20.0:
tlist.append(t)

13 ulist.append(u)

15 u = u + 0.5*v*dt # leapfrog
f12 = -k1*(u[0]-u[1])

17 f23 = -k2*(u[1]-u[2])
a = np.array([f12/m1, -f12/m2 + f23/m2, -f23/m3])

19 v = v + a*dt
u = u + 0.5*v*dt

21 t = t + dt

23 ulist = np.array(ulist)
plt.plot(tlist, ulist[:,0], tlist, ulist[:,1], '-.', tlist, ulist[:,2], '--')

25 plt.xlabel('time (s)')
plt.ylabel('$u_{1,2,3}$ (m)')

27 plt.show()

Program A.4.3 Waves on a string.

1 import matplotlib.pyplot as plt, numpy as np
import matplotlib.animation as am

3 from numba import jit

5 @jit # optimization
def waves(u0, u1):

7 u2 = 2*(1-b)*u1 - u0 # unshifted terms
for i in range(1, len(u0)-1):

9 u2[i] += b*( u1[i-1] + u1[i+1] ) # left, right
return u2

11
def updatefig(*args): # args[0] = frame

13 global u0, u1
u2 = waves(u0, u1)

15 u0, u1 = u1, u2

https://github.com/com-py/intro
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plot.set_data(x, u0) # update data
17

N, b = 100, 1.0 # number of points, beta^2
19 x = np.linspace(0., 1., N)

u0 = np.sin(np.pi*x)**2 # initial cond
21 u1 = 0.98*u0

23 fig = plt.figure()
plot = plt.plot(x, u0)[0] # create plot object

25 ani = am.FuncAnimation(fig, updatefig, interval=5) # animate
plt.axis('off') # don't need axes

27 plt.ylim(-1.2,1.2)
plt.show()

Program A.4.4 Standing waves on a string.

from scipy.linalg import eigh # eigenvalue solver
2 import numpy as np, matplotlib.pyplot as plt

4 N = 101 # number of grids
x = np.linspace(0., 1., N) # grids

6
A = np.diag([2.]*(N-2)) # diagonal

8 A += np.diag([-1.]*(N-3),1) + np.diag([-1.]*(N-3),-1) # off diags
A = A/(x[1]-x[0])**2 # delta x = x_1 - x_0

10
lamb, X = eigh(A) # solve for eigenvals and eigenvecs

12
sty = ['-','--','-.',':']

14 print (np.sqrt(lamb[:len(sty)])/np.pi) # wave vector k/pi

16 for i in range(len(sty)): # plot a few standing waves
Xi = np.insert(X[:,i], [0, N-2], [0., 0.]) # insert end points

18 plt.plot(x, Xi, sty[i], label=repr(i+1))

20 plt.xlabel('$x$'), plt.ylabel('$X$')
plt.legend(loc='lower right'), plt.show()

A.5 Programs from Chap.7

Program A.5.1 Time dilation.

1 import numpy as np, matplotlib.pyplot as plt
import matplotlib.animation as am

3 from matplotlib.widgets import Slider

5 def updatefig(*args): # args[0] = time counter
n = args[0]

7 if n < len(x):
xn = x[n-1]

9 w = 0.1/gamma # contracted width
boxx = [xn - w, xn - w, xn + w, xn + w] # car
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11 boxy = [0, .1, .1, 0]
plot[0].set_data(x[:n], y[:n]) # lab

13 plot[1].set_data([xn, xn], [y[n-10],y[n-1]]) # light beam
plot[2].set_data(boxx, boxy)

15 labtxt.set_position((.9*L, .8)) # time update
labtxt.set_text(r'$\beta$='+repr(slider.val)[:4] # 4 digits

17 + '\n' + repr(tlab[n])[:4])
cartxt.set_position((xn-0.2*w, .12))

19 cartxt.set_text(repr(tcar[n])[:4])

21 def animate(dummy):
global x, y, tlab, tcar, L, gamma, labtxt, ani

23
beta = slider.val

25 gamma = 1./np.sqrt((1-beta)*(1+beta))
y = 1 - np.abs(np.linspace(-1,1,201)) # up/down parts

27 L = beta*gamma # half way point
x = np.linspace(0, 2*L, len(y)) # grid

29 tcar = np.linspace(0, 2, len(y)) # proper time (train)
tlab = gamma*tcar # time dilation (lab)

31 ax.set_xlim(-.05, max(.2,2.1*L)), ax.set_ylim(0,1)
labtxt = ax.text(.9*L,.8, '', color='blue') # lab time, new each run

33 ani = am.FuncAnimation(fig, updatefig, interval=1)

35 fig = plt.figure()
fig.canvas.set_window_title('Time dilation')

37 fig.subplots_adjust(left=0.15, bottom=0.35, top=.95) # setup for slider
ax, z = fig.add_subplot(111), [0]

39 plot = ax.plot(z, z, '-', z, z, '-or', z, z, '-r') # 3 curves
ax.set_xlabel('$x$ (arb)'), ax.set_ylabel('$y$ (arb)')

41 cartxt = ax.text(.2, .2, '', color='red') # train time

43 axes = fig.add_axes([.15, .20, .75, .03]) # beta slider
slider = Slider(axes, r'$\beta$', 0, .99, .5) # range, init val

45 slider.on_changed(animate) # link slider to animate
animate(None)

47 plt.show()

Program A.5.2 Double-slit interference.

1 import numpy as np, matplotlib.pyplot as plt
from matplotlib.widgets import Slider, RadioButtons

3
def singleslit(lamda, x0, w, h, N=10):

5 k = 2*np.pi*1.e9/lamda # wave vector (conv from nm)
theta = np.arctan(x/h)

7 r = np.sqrt(h*h + x*x)
d = np.linspace(-w/2, w/2, N) # divisions

9 psi = 0.0
for s in d - x0: # offset origin

11 r1 = np.sqrt(r*r +s*s - 2*r*s*np.sin(theta))
psi += np.exp(1j*k*r1)/r1

13 return psi/N # normalize

15 def updatefig(dummy): # called when paras are changed
lamda, w, d = sliders[0].val, sliders[1].val, sliders[2].val

17 psi = singleslit(lamda, -1.e-6*d/2, 1.e-6*w, h) # slit 1
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if button.value_selected == items[1]: # slit 2
19 psi = (psi + singleslit(lamda, 1.e-6*d/2, 1.e-6*w, h))/2

intensity = np.abs(psi)**2
21 plot.set_ydata(intensity)

ax.set_ylim(0, max(intensity))
23 fig.canvas.draw_idle()

25 h = 1.0 # dist to screen (m)
x = np.linspace(-.1*h, .1*h, 1000) # grids on screen

27 vars = [r'$\lambda$, nm', 'w, $\mu$m', 'd, $\mu$m'] # lamda (nm), w, d (micron)
vals = [[400, 800, 600], [0, 20, 10], [0, 100, 50]] # min, max, start

29
fig = plt.figure()

31 fig.canvas.set_window_title('Double slit interference')
ax = fig.add_subplot(111)

33 fig.subplots_adjust(left=0.15, bottom=0.35, top=.95)
plot = ax.plot(x, 0*x, '-r', lw=2)[0] # initiate plot

35 plt.xlabel('$x$ (m)'), plt.ylabel('Intensity (arb.)')

37 sliders = [] # draw sliders at bottom
xw, yw, offset, dx, dy = .15, .20, .05, .5, .03 # widgets pos.

39 for i in range(len(vars)):
axes = fig.add_axes([xw, yw-i*offset, dx, dy])

41 sliders.append(Slider(axes, vars[i], vals[i][0], vals[i][1], vals[i][2]))
sliders[i].on_changed(updatefig)

43
items = ['single slit', 'double slit'] # add buttons

45 baxes =fig.add_axes([.75, .1, .15, .15])
button = RadioButtons(baxes, items, 1) # active = double slit (1)

47 button.on_clicked(updatefig)

49 updatefig(0)
plt.show()

Program A.5.3 Fitting the wave function in a box.

import numpy as np, matplotlib.pyplot as plt
2 from matplotlib.widgets import Slider

4 def updatefig(dummy): # called when paras are changed
A, B, n = sliders[0].val, sliders[1].val, sliders[2].val

6 psi = A*np.sin(n*np.pi*x) + B*np.cos(n*np.pi*x)
plot.set_ydata(psi)

8 ax.set_ylim(-1.2,1.2)
ax.set_xlim(0, 1)

10 fig.canvas.draw_idle() # necessary?

12 x = np.linspace(0, 1, 100) # x grids
vars = ['A', 'B', 'n'] # A sin(kx) + B cos(kx)

14 vals = [[0, 1, 0.5], [0, 1, 0.5], [0, 10, 5.2]] # min, max, start

16 fig = plt.figure()
fig.canvas.set_window_title('Square well potential')

18 ax = fig.add_subplot(111)
fig.subplots_adjust(left=0.15, bottom=0.35, top=.95)

20 plot = ax.plot(x, 0*x, '-r', lw=2)[0] # initiate plot
plt.axhline(0, ls='--') # y=0 axes

22 plt.text(.2, .8, '$A\, \sin(n\pi x) + B\, \cos(n \pi x)$')
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plt.xlabel('$x$ (arb.)'), plt.ylabel('$\psi$ (arb.)')
24

sliders = [] # draw sliders at bottom
26 xw, yw, offset, dx, dy = .15, .20, .05, .5, .03 # widgets pos.

for i in range(len(vars)):
28 axes = fig.add_axes([xw, yw-i*offset, dx, dy])

sliders.append(Slider(axes, vars[i], vals[i][0], vals[i][1], vals[i][2]))
30 sliders[i].on_changed(updatefig)

32 updatefig(0)
plt.show()

Program A.5.4 Visualizing quantum states.

1 import numpy as np, matplotlib.pyplot as plt
from matplotlib.widgets import Slider

3 from numba import jit

5 def pot(x): # change to your own
return 0.5*x*x # make sure to adjust Emin/Emax below

7
Emin, Emax = 0., 5. # adjust according to pot(x)

9 R = 5. # large enough so wf(+/- R) small
N = 200

11 m = N//2 + 5 # off-center matching point, must be > N/2
x, dx = np.linspace(-R, R, N+1, retstep=True)

13 V = np.vectorize(pot)(x) # vectorize pot just in case

15 @jit
def compute(E): # integrate Sch. eqn.

17 wfu = np.zeros(m+1) # init nonzeros
wfd = np.zeros(m+1)

19 wfu[1], wfd[1] = 1., 1.
pfac = 2*(1 + dx*dx*(V-E))

21 for i in range(1, m):
wfu[i+1] = pfac[i]*wfu[i] - wfu[i-1] # upward march

23 wfd[i+1] = pfac[N-i]*wfd[i] - wfd[i-1] # downward
wfd = wfd*wfu[m]/wfd[N-m] # normalize at match pt

25 dfu = (wfu[m] - wfu[m-2]) # df/dx at m-1
dfd = (wfd[N-m] - wfd[N-m+2])

27 wfd = wfd[:N-m+1] # from the matching pt up
return wfu, np.flip(wfd), dfu, dfd

29
def updatefig(dummy): # called when paras are changed

31 E = slider.val
wfu, wfd, dfu, dfd = compute(E)

33 err = (dfd-dfu)/max(abs(dfu),abs(dfd))
scale = max(max(abs(wfu)), max(abs(wfd)))

35 plot1.set_ydata(wfu/scale)
plot2.set_ydata(wfd/scale)

37 etxt.set_text('E=' + repr(E)[:5])
dtxt.set_text("$\Psi'$ err%=" + repr(err*100)[:4])

39 if abs(err) < 0.05: # good state 5% level
num = float(repr(E)[:5])

41 if min(abs(1-np.array(good)/num)) > 0.05: # a likely distinct state
good.append(num)



Appendix A: Program Listings 245

43 allowed.set_text('Allowed E:' + str(good[1:]))

45 fig = plt.figure()
fig.canvas.set_window_title('Visualizing quantum states')

47 ax = fig.add_subplot(111)
fig.subplots_adjust(left=0.15, bottom=0.35, top=.95)

49 ax.plot(x, V/max(abs(V)+1.e-9), 'k-') # add small num if V=0

51 plot1 = ax.plot(x[:m+1], 0*x[:m+1], 'b-', lw=2)[0] # initiate plots
plot2 = ax.plot(x[m:], 0*x[m:], 'r-', lw=2)[0]

53 plt.axvline(x[m], ls=':') # match pt
etxt = ax.text(-R, -.5, '')

55 dtxt = ax.text(x[m+10], .95, '')
good = [1.e10]

57 allowed = ax.text(-R, -.9, '')
plt.xlabel('$x$ (a.u.)'), plt.ylabel('$\Psi$ (arb.)')

59 plt.ylim(-1.1,1.1)

61 axes = fig.add_axes([.1, .20, .8, .03]) # energy slider
slider = Slider(axes, 'E', Emin, Emax, Emin) # range, init val

63 slider.on_changed(updatefig)
updatefig(slider.val)

65
plt.show()

Program A.5.5 Quantum computer simulator.

import numpy as np
2 from numpy.random import random

4 def Qubit(): # returns spin up [1,0]
return np.array([1, 0])

6
def H(qubit): # Hadamard gate

8 hg = np.array([[1,1], [1,-1]])/np.sqrt(2.0)
return np.dot(hg, qubit)

10
def M(qubit): # Measurement

12 return np.dot([1, 0], qubit)

14 s = 0.0 # spin count
N = 1000 # samplings

16 for i in range(N):
q = Qubit()

18 hq = H(q)
c1 = M(hq) # amplitude

20 r = random()
if (r < c1**2): # spin up

22 s = s + 1.0

24 print('Probability of spin up:', s/N)
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Program A.5.6 Grover search method.

1 # See links to online programs below

See Chap. 7 Program p6-grover.ipynb online at https://github.com/com-py/intro.

A.6 Programs from Chap.8

Program A.6.1 Nuclear decay.

1 from numpy.random import random
import matplotlib.pyplot as plt

3
p = 0.05

5 N = 1000
Nlist = []

7
while N>10:

9 Nlist.append(N)
dN = 0

11 for _ in range(N):
if random() < p:

13 dN = dN - 1
N = N + dN

15
plt.plot(range(len(Nlist)), Nlist, '.')

17 plt.xlabel('time (arb.)')
plt.ylabel('$N$')

19 plt.show()

Program A.6.2 Brownian motion.

1 import numpy as np
from numpy.random import random

3 import matplotlib.pyplot as plt
import matplotlib.animation as am

5
def move():

7 for i in range(N):
fac = np.exp(-b*dt)

9 r[i] += v[i]*(1-fac)/b
v[i] = v[i]*fac

11 phi = random()*2*np.pi # apply kick
v[i] += [dv*np.cos(phi), dv*np.sin(phi)]

13
def updatefig(*args): # update figure data

15 move()
plot.set_data(r[:,0], r[:,1]) # update positions

17 return [plot] # return plot object

19 N = 500
r = np.zeros((N, 2))

21 v = np.zeros((N, 2))

https://github.com/com-py/intro
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b = 0.1
23 dt = 0.1

dv = 0.002 # impulse
25

fig = plt.figure()
27 plt.subplot(111, aspect='equal')

plot = plt.plot(r[:,0], r[:,1], '.')[0] # create plot object
29 ani = am.FuncAnimation(fig, updatefig, interval=10, blit=True) # animate

plt.xlim(-.75, .75)
31 plt.ylim(-.75, .75)

plt.show()

Program A.6.3 Energy sharing in a solid.

from numpy.random import random, randint
2 import matplotlib.pyplot as plt, numpy as np
import matplotlib.animation as am

4
def exchange(L=20): # iterate L times

6 for _ in range(L):
donor = randint(0, N) # random pair

8 getor = randint(0, N)
while solid[donor] == 0: # find a nonzero donor

10 donor = randint(0, N)
solid[donor] -= 1 # exchange energy

12 solid[getor] += 1

14 def updateimg(*args): # args[0] = frame
L = 20 if args[0]<400 else 200 # slower init rate

16 exchange(L)
plot.set_data(np.reshape(solid, (K,K))) # update image

18 return [plot] # return line object in a list

20 K = 16 # grid dimension
N = K*K

22 solid = [10]*N # 10 units of energy/cell
fig = plt.figure()

24 img = np.reshape(solid, (K,K)) # shape to KxK image
plot = plt.imshow(img, interpolation='none', vmin=0, vmax=50)

26 plt.colorbar(plot)
plt.axis('off')

28 anim = am.FuncAnimation(fig, updateimg, interval=1, blit=True) # animate
plt.show()

Program A.6.4 Entropy of an atom.

1 from numpy.random import random, randint
import matplotlib.pyplot as plt, numpy as np

3
def exchange(L=20): # iterate L times

5 for _ in range(L):
donor = randint(0, N) # random pair

7 getor = randint(0, N)
while solid[donor] == 0: # find a nonzero donor

9 donor = randint(0, N)
solid[donor] -= 1 # exchange energy
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11 solid[getor] += 1

13 def entropy(): # entropy of Einstein solid
Et, E, n, s = sum(solid), 0, 0, 0. # Et = tot units of energy

15 pn = []
while E < Et: # until all units are counted

17 cn = solid.count(n) # num. of cells with En
E = E + cn*n # cumul. count

19 p = cn/float(N) # probability
if (cn != 0): s -= p*np.log(p) # entropy/k,

21 pn.append(p) # record p
n = n + 1 # next energy to sample

23 return s, pn

25 N = 400
solid = [1]*N # initialize solid

27 t, s = [], []
step = 1

29 for i in range(11):
si, pn = entropy()

31 s.append(si)
t.append(step)

33 step = 2*step # double steps each time
exchange(step)

35
plt.plot(t, s, '-o')

37 plt.semilogx()
plt.xlabel('Iteration')

39 plt.ylabel('Scaled entropy')
plt.show()

Program A.6.5 The Ising model.

import numpy as np
2 from numpy.random import random, randint
import matplotlib.pyplot as plt

4 import matplotlib.animation as am
from matplotlib.widgets import Slider

6
def flip(E):

8 kT = slider.val # kT from slider
n = randint(0, N) # pick one to flip

10 dE = 2*spin[n]*(spin[n-1] + spin[(n+1)%N]) # periodic bc
accept = False

12 if (dE <= 0.0): accept = True # flip if dE<0
else:

14 p = np.exp(-dE/kT) # else flip with exp(-dE/kT)
if (random() < p): accept = True

16 if accept: # actual flip
E = E + dE

18 spin[n] = -spin[n]
xy[n,1] += dy[n]*3.7 # offset y-pos for level arrows

20 dy[n] = -dy[n]
return E

22
def updatefig(*args): # update figure data
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24 global E, m
E = flip(E) # trial flip

26 plot.set_offsets(xy) # update pos/dir
plot.set_UVC(dx, dy)

28 Eavg[m%mc] = E # last mc points
m = m+1

30 etxt.set_text('E='+repr(sum(Eavg)/mc)[:5]) # 5 digits
return [plot]

32
N = 32

34 spin = [1]*N # initial spins all up
E = -N

36 mc = 1000 # running average length
Eavg = [E]*mc

38 m = 0

40 xy = np.zeros((N,2)) # (x,y) pos of arrows
xy[:,0] = np.linspace(0,1,N) # x-pos of arrows

42 dx = np.zeros(N) # x offset
dy = 0.02*np.ones(N) # length of arrow=0.02

44
fig = plt.figure()

46 plot = plt.quiver(xy[:,0], xy[:,1], dx, dy)
ani = am.FuncAnimation(fig, updatefig, interval=1) # animate

48 etxt = plt.text(0, -.1, '', color='black') # energy
plt.axis('off')

50 plt.ylim(-.5,.5)

52 fig.canvas.set_window_title('Ising model')
axes = fig.add_axes([.15, .20, .75, .03]) # kT slider

54 slider = Slider(axes, 'kT', 0.01, 8, 4) # range, init val
plt.show()

Program A.6.6 Global warming example.

1 import matplotlib.pyplot as plt
from matplotlib.widgets import Slider, RadioButtons

3 import numpy as np

5 sunflux = 1300.
ocean_depth = 1000.

7 specific_heat = 4182.
water_density = 1000.

9 mass = 4*ocean_depth*water_density

11 secs = 365*24*3600/2 # seconds in a year, sunny half the time
time = np.linspace(0, 100, 101) # in years

13
def updatefig(*args): # update figure data

15 eta = slider.val
heat = sunflux*time*secs*(eta/100)

17 if button.value_selected == items[1]: # nonlinear
nonl = np.linspace(1, np.sqrt(2+eta/10), 101)**2 # nonlinear effects

19 heat = heat*nonl
deltaT = heat/(specific_heat*mass)

21 plot.set_ydata(deltaT)
ax.set_ylim(min(deltaT), max(deltaT))
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23 etat.set_text('$\eta=$'+repr(eta)[:4]+'%') # 4 digits
fig.canvas.draw_idle()

25
fig = plt.figure()

27 fig.canvas.set_window_title('Earth warming')
fig.subplots_adjust(left=0.15, bottom=0.35, top=.95)

29 ax = fig.add_subplot(111)
plot = ax.plot(time, [0]*len(time))[0]

31 plt.xlabel('Time (years)')
plt.ylabel('Temperature change ($^\circ$C)')

33 etat = plt.text(45, .01, '', color='black') # eta text

35 axes = fig.add_axes([.15, .20, .75, .03]) # trap slider
slider = Slider(axes, '$\eta$ %', -5, 10, 1) # range, init val

37 slider.on_changed(updatefig)

39 items = ['linear', 'nonlinear'] # add buttons
baxes =fig.add_axes([.75, .4, .15, .15])

41 button = RadioButtons(baxes, items, 1) # active = nonlinear (1)
button.on_clicked(updatefig)

43
updatefig(None)

45 plt.show()

A.7 Programs from Chap.9

Program A.7.1 Game of life. Also available in GlowScript.

1 # See links to online programs below

See Chap. 9 Program ch09.ipynb online at https://github.com/com-py/intro.

https://github.com/com-py/intro
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A
air resistance, 99, 110
Anaconda, 2
animation, 43

Brownian motion, 179
double-slit interference, 144
Einstein solid, 182
game of life, 206
global warming, 193
Ising model, 189
Matplotlib, 48
motion in E&M fields, 107
planetary motion, 105
quantum wave function, 149, 151
special relativity, 141
VPython, 49
waves, 130

antiferromagnetism, 199
atomic units, 151

B
binder, 3
bisection method, 71, 85
blackbody radiation, 192
Boltzmann distribution, 183
boundary conditions

fixed ends, 129
periodic, 135
waves, 128

Brownian motion, 177

C
carbon dioxide, 191
cellular automaton, 203

Game of Life, 203
Nagel–Schreckenberg traffic model, 207

chaos, 210
bifurcation diagram, 214
logistic map, 210
period doubling, 215

characteristic equation, 85, 117
characteristic time, 105
class, see object oriented programming

particle, 38
road, 207

climate change, 191, see also global warming
Colab, 4
complex system, 203
Coulomb potential, 171
cross product, 65
curve fitting, 86

kinematics, 109

D
de Broglie wavelength, 145
debugging, 4, 5, 32, 35
differential equation integration, 82

Euler’s method, 83
Euler-Cromer method, 83
leapfrog method, 84

diffraction, 143
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single slit, 144
discrete states, 147, 149, see also

particle in a box, 149
dot product, 65
drag, 99

E
eigenequation, see characteristic equation
eigenvalues and eigenvectors, 59, 72, 120
electromagnetic fields, 107
energy

balance, 190
classical oscillator, 111
conservation, 99, 110, 113
discrete levels, 150
dissipation, 101
Ising model, 186, 197
kinetic, 107
mechanical, 110
particle in a box, 149
quantum oscillator, 152
relativistic, 145
solar flux, 193
thermal, 181
waves, 136

entropy, 184
Einstein solid, 184
Ising model, 199

error fixing, 5, 31, see also debugging
Euler method, 83, 92
Euler-Cromer method, 83, 103, 106

F
ferromagnetism, 185
free fall, 96
fundamental modes, 131

G
game of life, 203, see alsocellular automaton,

neural network
github, 3
global warming, 190

temperature change, 190
GlowScript, 6, 50
gravity, 103
greenhouse effect, 192

Grover search, 158, see also quantum computing
convergence rate, 173

H
Hadamard gate, 155
heat capacity, 189

Ising model, 198
Hooke’s law, 101
hydrogen atom, 60

I
IDLE, 5
indexing, 16, see also list, Numpy
infrared, 192
installation, 9, see also program
integrated development environments, see

programming environment
interactive computing, 43

animation, 48
IPywidgets, 44
plotting, 45
visualization, 47
Widgets, 47

interference, 143
double slit, 144, 146

Ising model, 185

J
Jupyter notebook, 1
JupyterHub, 3

K
Kepler’s second law, 105
Keras, 222, see also neural network
kinematics, 91

curve fitting, 109
kinetic energy

by Lorentz force, 107
in projectile motion, 110
in waves, 136

L
Lambert W function, see special functions
leapfrog method, 84, 105–107
least square fit, 86
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length contraction, 142
linear systems, 58, 72
Lissajous figure, 125
list, 25, see also Numpy

indexing, 25, see also indexing
slicing, 25, see also slicing

logistic map, 210, see also chaos
cobweb, 211
equilibrium points, 212

stability, 213, 214
Feigenbaum constant, 215

Lorentz force, 107
kinetic energy, 107

Lyapunov exponent, 215, 216, see also logistic
map

M
machine learning, 203, see also neural networks
magnetization, 185, 198
mean square error, see neural network
Metropolis method, 188
minima and maxima, 87
Monte Carlo method, 178
Morse potential, 170
motion

Brownian motion, 179
constant acceleration, 96
free fall, 96
in E&M fields, 107
planetary, 103
projectile, 98
time stepping, 92

N
neural network, 216

activation function, 217
convolutional, 224
cost function, see neural network, loss
function

game of life, 222
gradient descent, 221
hidden layer, 219
Keras, 222
loss function, 221
mean square error, 221
stochastic gradient descent, 222
training, 220, 223

epoch, 221
weights, 216, 221

Newton’s method, 85
normal modes, 118
normalization, see wave function
nuclear decay, 176
numba, 73, 130
numerical integration, 81

Simpson’s method, 81
trapezoid method, 81

Numpy, 62, see also list
array broadcasting, 64
array creation, 62
array indexing, 63
array slicing, 63, 87
constants, 62
cross product, 65
diagonal matrix, 65
dot product, 65
flip, 65
insert, 65
locating minima and maxima, 87
random numbers, 67
True elements, 87
truth array, 87
universal functions, 66
vector operation, 63
vectorize, 67

O
object oriented programming, 38

method, 38
traffic flow, 207

optimization algorithms
stochastic gradient descent, 222

ordinary differential equation, 69
coupled, 97
Euler method, 92

oscillator
2-body, 116
classical, 101
coupled 3-body, 121
normal modes, 118, 121
quantum, 59
trajectory, 102
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P
partial differential equation

waves, 127
photon, 145

infrared, 192
planetary motion, 103
principle of superposition, 146, 153
program

listing, 8
online repository, 8
requirements, 9

programming environment, 1
binder, 3
Colab, 4
GlowScript, 6
IDLE, 5
Jupyter notebook, 1
JupyterHub, 3
Spyder, 5
Trinket, 6

projectile motion, 98
Python

animation, 48
as a calculator, 11
conditional, 21
debugging, 5, 32
dictionary, 29
error, 31
exception, 32
function, 17
integrated development environment, 4
interactive computing, 43
Jupyter notebook, 1
libraries

Numba, 73
Numpy, 62
Scipy, 67
Sympy, 51
VPython, 49

lists, 25
locating minima and maxima, 87
looping, 23
strings, 15
tuples, 28
tutorial, 11
variable scope, 19
variables, 13
visualization, 47
widgets, 44, 47

Q
quantization

angle, 110
particle in a box, 149
quantum oscillator, 152

quantum computing, 152
Grover search, 158

convergence, 167
oracle gate, 162
winner gate, 163

quantum gate
flip, 155
Hadamard, 155
phase, 171

quantum measurement problem, 146
qubit, 154

R
random numbers, 30, 67, 175
relativity, see special relativity
root solver, 85

quantum square well, 85
Runge-Kutta methods, 84, 106

S
Schrödinger’s cat, 153
Scipy, 67

bisection method, 71, 85
curve fitting, 86
eigenvalues, 72
equation solver, 71, 85
linear system solver, 72
numerical integration, 68, 82

differential equations, 69, 85
special functions, 70

Simpson’s method, 81
slicing, 17, see also list, Numpy
solar units, 104
special functions, 56, 70

Airy, 57
error, 57
Lambert W , 57
spherical Bessel, 57

special relativity, 139
length contraction, 142
postulates, 140
time dilation, 142
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speed optimization, 73, 130, 135
implicit looping, 135
numba, 73, 130, 135

spin, 153
Spyder, 5
stability, 130
string, 16

indexing, 16, see also Numpy
slicing, 17

Sympy, 51, 81, 119
definite integrals, 54
derivative, 52
eigenvalues, 59
equation solver, 53, 212
Grover search, 164
hydrogen atom, 60
integration, 52
LambertW, 57
linear system solver, 58
math modules, 51
physics modules, 59
quantum mechanics, 55
quantum oscillator, 59
qubit, 159
special functions, 56
symbols, 52

T
tensorflow, see Keras
thermal model

Einstein solid, 181
Ising model, 185

thermal processes, 175
Brownian motion, 177
energy, 181
entropy, 184
equilibrium, 181

three-body oscillator, 121
time dilation, 142
traffic flow, 207
transcendental equation, 58
triatomic molecule, 122
Trinket, 6, 50

U
uncertainty principle, 145, 155

in diffraction, 145
unitary, 162, 163

V
Verlet method, see leapfrog method
visualization

quantum states, 149, 150
VPython, 49

GlowScript, 50
objects, 49
Trinket, 50

W
W gate, see quantum computing
wave function, 146

collapse, 146
continuity, 147
matching, 151, 152
normalization, 149, 160
particle in a box, 149
simple harmonic oscillator, 151

waves, 125
on a string, 127
standing, 135
traveling, 135

Wien’s displacement law, 57, 76, 192
WinPython, 9

X
X gate, see quantum gate

Y
Young’s double-slit interference, 143
Young’s modulus, 122, 126

Z
zero division error, 33
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