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Abstract

This chapter presents an inclusion of 3D optical (RGB-D) sensors into medical 
clinical practice, as an alternative to the conventional imaging and diagnostic 
methods, which are expensive in many aspects. It focuses on obstructive sleep apnea, 
the respiratory syndrome that occurs in an increasing proportion of the population, 
including children. We introduce the novel application, a response to the request for 
an alternative pre-diagnostic method for obstructive sleep apnea in the region of 
Slovakia. The main objective of the proposed system is to obtain an extensive dataset 
of scans (head and face) from various views and add detailed information about 
patient. The application consists of the 3D craniofacial scanning system using multiple 
depth camera sensors. Several technologies are presented with the proposed method-
ology for their comprehensive comparison based on depth sensing and evaluation of 
their suitability for parallel multi-view scanning (mutual interference, noise parame-
ters). The application also includes the assistance algorithm guaranteeing the patient’s 
head positioning, graphical interface for scanning management, and standardized EU 
medical sleep questionnaire. Compared to polysomnography, which is the golden 
standard for this diagnostics, the needed data acquisition time is reduced significantly, 
the same with the price and accessibility.

Keywords: RGB-D sensors, multi-sensor system, 3D imaging, medical applications, 
obstructive sleep apnea, time of flight sensor, structured light sensor, stereo vision

1. Introduction

Obstructive sleep apnea syndrome (OSAS) is a common sleep disorder with arising
prevalence. The course of the disease is followed by repeating breath interruptions
during sleep. The reason is the collapse of soft upper airway tissue. This restriction of
ventilation results in several breathing difficulties, such as snoring during sleep and
hypoxemia. OSAS also leads to long-term changes in autonomous functions, hyper-
tension, or reduced left ventricular function. As a result of the propagation and
activation of inflammatory pathways, immune regulation is often disrupted in
pediatric patients. Early diagnostics and relevant treatment are the keys for improve
the health status of patients.
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Polysomnography (PSG) is the golden standard for OSAS diagnostics [1]. PSG is
performed for whole night in specialized sleep laboratories and the PSG device is
continuously monitoring selected vital functions, such as ECG, EEG, thoraco-
abdominal movements, nasal airflow, blood oxygen saturation, snoring, or body posi-
tion. OSAS is confirmed if the number of apnea episodes is higher than 15 during a
night and the episode takes more than 10 seconds [1, 2]. The apnea-hypopnea index
(AHI) is calculated, which is used to indicate the severity of the disease.

Diagnostics and care of patients with obstructive sleep apnea vary by country and
depend on the patient’s symptoms. Available data suggest that most cases remain
undiagnosed and untreated even in developed countries, which can increase the risk
of cardiovascular, metabolic, and neural diseases and affect the quality of life. Gener-
ally, PSG is a time-consuming procedure carried out using specialized equipment, so
there will be always a patient limit for undergoing the diagnostic test. As an example,
there is only one specialized child and adolescent sleep laboratory in Slovakia for
approximately one million children under 19 years.

Therefore, there is a reasoned demand for alternative or pre-diagnostic testing that
will distinguish the patients with a high risk of OSA. Today’s PSG testing can be also
proved by telemedicine. Although it holds great promise to change health care deliv-
ery, it has not been proven to have the same accuracy as conventional PSG. Besides
the conventional PSG, there are several supplementary testing methods. One of the
best known is the sleep questionnaire [3–5] focused on the medical history of the
patient and the physical examination. Another supportive diagnostic tool is the pulse
oximetry or examination of a specific protein in blood serum. Mentioned question-
naires evaluate the subjective and objective symptoms, as well as the craniofacial and
intraoral anatomy. These structures are considered an important indicator of the
predisposition of the OSAS [6]. Nowadays there is an effort to make diagnostics more
available, therefore, the emphasis is placed on the use of fast imaging techniques.

Many recent publications [7–9] focus on the face anatomy (craniofacial anthro-
pometry, structure of the soft tissue in oral cavity, and anterior neck subcutaneous fat
tissue thickness) and use advanced imaging techniques such as X-ray [10], MRI [11],
and CT [12, 13]. Although, mentioned modalities do not match the criteria for cost
reduction, faster procedure, and simplification of the clinical examination. Last but
not least, the speed of scanning process is very important to avoid motion artifacts in
resulting 3D models, especially if the system is dedicated to pediatric medicine.

As an alternative, we present an optical depth multi-sensor system that can be used
excluding other emerging disadvantages with lower quality of an output model. Opti-
cal depth sensors allow capturing the nature of craniofacial anatomy needed for
prediction of OSAS, such as shape and contour in a faster, cheaper, and more readily
available way, compared with the other imaging techniques [14]. The geometrical
precision of an output model is the key attribute for the desired application. It is also
the goal of the proposed multi-camera parallel scanning system � to reconstruct a
complete 3D model of the object from a collection of images taken from known
camera viewpoints. Therefore, it is important to choose a suitable optical sensor with
the least measurement error. For a real application, the main requirement is to obtain
a complete 3D model without any noisy artifacts. In this work, we aim to evaluate
each of the camera technologies: The Intel® RealSense™ Depth Camera D415 Series
sensors, Stereolab’s ZED Mini depth camera, Microsoft Kinect for Windows V2, and
Intel® RealSense™ Camera SR300 and offer a comparison of individual operating
technologies. With the selection of a suitable optical sensor, also the fact that the
scanning object is a pediatric patient is taken into account.
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  Based  on  accuracy  measurements,  we  prefer  active  stereo  pair  technology.  The 
design,  including  the  optimal  topology  of  used  cameras,  user  interface,  and  imple-
mentation  of  conventional  OSAS  screening  questionnaire  is  introduced.  Our  effort  is  
to  predict  the  probability  of  OSAS  occurrence  without  the  need  for  traditional 
polysomnography  testing.  For  this  purpose,  in  the  first  stage  of  research,  we  use  the 
scanning  system  primarily  to  obtain  the  3D  models  of  the  patient’s  head,  and  subse-
quently,  the  database  of  point  cloud  models  will  be  created  for  further  research
(automated  extraction  of  key  points  in  the  face  and  head  and  automated  measurement 
of  geometric  dependencies  indicating  the  risk  of  OSAS).  Currently,  the  absence  of  the 
database  of  3D  scans  is  the  crucial  limitation  of  OSAS  data  processing  and  assessment.
Many  studies  dedicated  to  automated  diagnostics  of  OSAS  suffer  from  the  datasets 
with  small  numbers  of  images  and  models.  For  this  reason,  building  a  huge  datasets  of 
3D  scans  taken  from  various  points  of  view  with  additive  information  about  the 
patient  is  one  of  the  main  objectives  of  our  research.
  Additive  information  is  a  de  facto  electronic  version  of  an  internationally  stan-
dardized  sleep  questionnaire.  This  dataset  will  be  used  for  further  automated  diag-
nostics  and  research  in  this  field.  The  result  of  our  work  is  the  system  that  consists  of  a  
fixing  stand  (that  allows  changing  the  camera  layout)  and  software  web-based  appli-
cation  (includes  the  data  annotation  and  the  assistance  support  system)  that  helps  the 
operator  to  set  the  patient’s  head  into  the  normalized  position.  Using  the  advantage  of 
machine  learning  it  seems  to  be  possible  to  evaluate  the  presence  of  OSAS  from  the 
point  cloud  representation  of  the  patient’s  head  and  neck  [15].  In  the  future,  we  
assume  the  use  of  obtained  dataset  (composed  of  different  views  and  facial  expres-
sions)  with  additive  information  in  OSAS  automated  diagnostics.  The  experimental 
system  is  located  in  Martin  University  Hospital  in  Slovakia,  Clinic  of  Children  and 
Adolescents.

2. Related  research  in  the  field

  Nowadays,  the  research  of  the  new  predictive  diagnostic  method  of  OSAS  based  on  
the  2D  or  3D  craniofacial  image  of  the  patient  uses  the  advantage  of  machine  learning,
artificial  intelligence,  or  statistical  analysis.  This  research  is  based  on  the  fact  that 
OSAS  occurrence  is  correlated  with  many  diseases  and  syndromes  (obesity,  Down 
syndrome,  adenotonsillar  hypertrophy  …  )  manifesting  on  the  head  and  face.  Many 
modern  diagnostic  approaches  for  OSAS  use  automated  detection  of  selected  points  on 
the  head  and  face  (e.g.  eye  corners,  lips,  earlobes,  chin  …  )  and  measure  distance
between  selected  points  (Figure  1).  Description  of  head  and  face  with  given  distances 
serves  as  basic  for  classification  process  to  compare  with  normal  (physiological)
model.  Craniofacial  points  and  their  distances  correspond  with  metrics  obtained  from 
paper  sleep  questionnaires  dedicated  to  computing  the  score  of  OSAS  risk.
  Frontal  and  profile  2D  facial  photographic  images  of  the  control  and  experimental 
group  are  used  in  Ref.  [16],  and  the  features  and  landmarks  were  identified.  The 
features  were  processed  by  support  vector  machine  (SVM)  classifier  and  get  the 
resulting  accuracy  of  80%  correct  OSAS  detections.  In  Ref  [17],  the  authors  use  the 
training  set  of  3D  images  of  400  patients.  All  of  them  were  identified  with  PSG,  AHI 
index  and  were  divided  into  4  groups.  The  landmarks  were  identified  manually  and 
were  expressed  as  the  Euclidian  and  geodetic  distance  between  them.  The  distances 
were  considered  as  the  features  for  further  OSAS  classification.  In  Ref  [18],  for  OSAS 
distinction  geometrical  morphometry  is  used,  also  via  3D  photography;  in  Ref  [14]
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convolutional neural network is a tool for OSAS prediction. Although the network was
not trained on the depth data, the pretrained network achieved the 67% accuracy.
Taking into account the information from previous research in this area, we can say
that 3D model of the face and neck of the patient contains sufficient shape and
structural features to determine the OSAS prediction. In most cases, the studies work
with limited datasets, small groups of patients, or use only the frontal 3D scan of
patients. As an alternative, we offer a standardized and well-described 3D model
acquisition scanning system, applied in the clinical environment.

3. RGB-D sensors

Solving image processing tasks in various fields of research [19–21] is often helpful
to obtain depth information for a better description of the scene in addition to color
information. The goal is to capture the geometrical nature of the real-world object and
convert it to the digital format with the highest possible accuracy. For obtaining
mentioned information the depth sensors (RGB-D sensors) are widely used. They can
convert the scene to the 2D plane called depth map. The depth map can be converted
back to 3D space using reversed reconstruction. The depth map is usually represented
by a monochromatic image, where the intensity value of the pixel represents the
distance of the corresponding point from the imaging sensor. Using a combination of
depth maps and color RGB images we can create a textured 3D model of scene. One of
the novel application areas is the reconstruction of the 3D surface in medical research
(scanning of the human heads, faces, or other body parts), taking the advantage of the
noninvasive nature of digital imaging. A geometrically accurate model of head is
applicable in medicine for predicting various diseases, e.g., respiratory syndromes,
where the 3D representation of the patient’s head and neck offers detailed visualiza-
tion of craniofacial parameters with a given accuracy. In the field of 3D imaging, we
know many principles and methods, e.g., photogrammetry or laser scanning devices.
These methods provide high-quality 3D information; on the other side, their applica-
tion is limited by the size of scanned object, size of scanner, or both object and
scanner, these devices are often expensive and scanning time is too high. Also in most
cases, laser scanners are not eye-safe. In the next sections, the basic principles of
RGB-D sensors will be described.

Figure 1.
Selected examples of craniofacial measurement.
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3.1  Time  of  flight  RGB-D  sensor

  The  time  of  flight  (ToF)  RGB-D  sensors  are  optical  sensors  that  measure  the  depth 
of  scene  using  an  active  light  source.  This  light  source  emits  an  amplitude  modulated 
signal.  The  emitted  signal  can  be  continuous  or  impulse.  Most  ToF  cameras  generate 
amplitude-modulated  continuous  waves  (AMCW)  with  a  frequency  near  IR  for  illu-
minating  the  scene  [22].  The  depth  of  scene  is  based  on  measurement  of  the  amplitude 
of  phase  shift  between  received  and  transmitted  modulated  signal.  The  depth  infor-
mation  for  each  pixel  can  be  calculated  by  the  synchronous  demodulation  of  the 
received  modulated  light  in  the  detector.  The  demodulation  can  be  performed  by  
interleaving  with  the  original  modulated  signal.

3.2  Stereo  RGB-D  sensor

3.2.1  Passive  stereo  sensor

  Passive  stereo  vision  RGB-D  sensors  reproduce  the  depth  of  the  scene  the  same 
way  as  the  binocular  vision  of  a  human.  The  scene  must  be  captured  from  different 
points  of  view.  This  is  done  by  using  two  RGB  sensors  (corresponding  to  human  eyes)
horizontally  separated  by  known  distance.  This  distance  is  called  baseline.  For  exam-
ple,  the  depth  sensor  ZED  MINI  used  in  our  experiments  has  two  RGB  sensors 
separated  by  a  12  cm  baseline.  The  depth  of  scene  is  then  computed  based  on  disparity 
of  corresponding  points  in  single  views.  Solving  the  correspondence  problem  means 
giving  a  point  in  the  image  and  finding  the  same  point  in  another  image  [23].  Stereo 
sensors  use  computationally  intensive  algorithms  to  search  for  point  matches  and  for 
computation  of  depth.  These  sensors  are  suitable  for  environments  with  good  lighting 
conditions  including  outdoors.

3.2.2  Active  stereo  sensor

  If  the  scene  contains  fewer  color  and  intensity  variations,  or  lighting  conditions  are 
not  good,  the  passive  stereo  vision  system  can  be  less  effective  and  accurate.  The 
typical  example  of  such  environment  is  the  texture-less  surface  like  indoor  dimly  lit  
white  walls.  Active  stereo  vision  relies  on  the  addition  of  an  optical  projector  that 
overlays  the  observed  scene  with  a  semi-random  texture  that  facilitates  finding  cor-
respondences.  The  current  generation  of  RealSense  D4xx  sensors  working  in  bright 
environments  captures  the  texture  of  objects  in  really  slight  details  and  they  are 
applicable  also  outdoors.  In  the  case  of  scanning  dynamic  objects  using  the  multi-
sensor  system,  there  is  no  limitation  on  how  many  sensors  are  used  in  a  given  physical 
layout.  It  does  not  decrease  the  quality  of  scanning  process  if  several  sensors  project 
their  light  patterns  to  the  same  part  of  scene.  All  additional  projectors  actually 
improve  the  overall  performance  by  adding  more  light  and  more  texture  [24].

3.3  Structured  light  RGB-D  sensor

  Depth  sensors  based  on  structured  light  (SLS)  need  additive  light  source.  This 
source  projects  the  regular  patterns  to  the  scene.  The  surface  of  the  object  distorts  this 
regular  pattern.  If  the  structure  of  light  pattern  is  known,  the  depth  image  of  the  scene 
can  be  easily  computed  based  on  its  distortion  [23].  Light  patterns  are  emitted  in 
infrared  band,  so  the  entire  process  is  invisible  to  the  user.  If  stripes  are  used  as  regular
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patterns, the optical resolution of the depth map can be increased by the reduction of
strips width.

4. Measuring of accuracy of RGB-D sensors

In this section, the methods and basic measurements are described leading to
proper RGB-D sensor selection, that allows capturing objects in the parallel multi-
view system. Parallel multi-sensor (multi-view) system is required to reduce the
scanning time (because object of interest is a pediatric patient and its potential motion
can cause artifacts in resulting 3D model). Parallel means that all sensors in a given
topology are capturing the object at the same time. The partial views (depth maps or
point clouds produced by single sensors) must be then registered (aligned) and joined
into final 3D model.

In our previous study [25], we described interference artifacts, which occur while
scanning using ToF sensors. The interference is present also using several SLS sensors:
projected patterns are overlaid on the surface of objects. A passive or active stereo
camera pair is the technology that, in principle, does not suffer from interference in
parallel multi-view systems. The depth scanning precision of sensors is compared in
several recent works [26]. Known methodologies for error estimation of sensors often
use a precise object and its digital model as ground truth, which is difficult to obtain.
The main benefit of versatile methods described in this section is a comprehensive
comparison of all sensor technologies. The measurement is based on capturing testing
patterns on surfaces at small distances. The ToF sensors seem to be more accurate
against the passive or active stereo pairs, according to the recent works [27, 28]. The
next contribution of this research to the practice is the evaluation of the differences
between these technologies in terms of accuracy. The results should show if the stereo
pairs can achieve similar depth-sensing accuracy as ToF or structured light sensors at
small distances.

4.1 The noise measurement

The noise measurement is a simple method based on evaluation of time variability
of single points in the depth map. The depth is measured against a flat surface at
several given distances. Depth variability (or standard deviation of the depth) in given
points is represented as the noise of a depth sensor. Obviously, the noise increases
with the sensor-to-object distance. All sensors were placed at distances of 0.5 m,
0.7 m, and 1 m from the flat surface. The scene was captured in 10 seconds.

4.2 Ideal cloud fitting

Another metric for depth error estimation is a simplified technique based on the
methodology of the study [29]. Study [30] brings another technique that can be used
as a generalized method for depth error estimation for any device.

The depth error estimation is based on comparing two point clouds. First point
cloud is created from captured depth map and the second is the ideal software model,
as shown in Figure 2. The results of the following measurements are extracted from
our study [31]. The testing pattern is the chessboard 9 � 7 squares (square side length
is 36 mm). The ideal reference point cloud was generated with the same dimensions.
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The corners of a chessboard in RGB image were detected using the OpenCV algo-
rithm. Based on equations of the pinhole camera model for projection from image
coordinate system to world coordinate system (X, Y, Z) we obtain the real point cloud.
The Z-coordinate is obtained from the depth map at pixel position (u, v). Following
the Eq. (1) and (2), it is needed to know the intrinsic parameters Cx, Cy, fx, and fy of
cameras for getting world coordinates X and Y:

X ¼ u� Cx

f x
Z (1),

Y ¼ v� Cy

f y
Z (2),

Captured (real) point cloud is fitted to the ideal one using translation and rotation
estimation. As the global registration technique, Coherent Point Drift was used and
final precise registration was Iterative Closest Point (ICP). The Root Mean Square
Error (RMSE) of Euclidean distance was used as a relevant metric for sensor accuracy
assessment:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

n¼1
pi � p0i
� �2r

(3),

where the pi and pi’, are the sets of coordinates of the real and ideal points,
respectively.

Since we are not able to construct the precise 3D object with chessboard patterns
and its ideal software model, we decide to use a flat surface. To simulate 3D scene, we
captured the flat chessboard from 3 different views (Figure 3). The resulting error is
represented as the mean value of errors obtained from views A, B, and C.

4.3 Ideal plane fitting

As described in the study [23], another way of depth error estimation is fitting the
captured real point cloud to an ideal surface. We used the plane without chessboard
captured from different positions similarly in previous method. The mean Euclidean

Figure 2.
Real point cloud captured by RealSense D415 sensor compared with ideal one.
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distance between the ideal plane and real point cloud represent the estimated error.
The fitting of real and ideal point clouds is shown in Figure 4 [31].

4.4 Comparison of selected RGB-D sensors

In accuracy measurement of sensors described above, we used 4 sensors of differ-
ent principles. We also assessed the suitability of these sensors in multi-sensor parallel
configurations. The ToF sensor in KinectV2 and the structured light sensor in
RealSense SR300 use infrared light, so their usage in parallel multi-view system is
complicated due to mutual interference. The good candidates for desired imaging
system are ZED MINI and RealSense D415. These sensors represent passive and active
stereo pairs technology, respectively. The main depth sensor parameters of each
camera are summarized in Table 1 and available on product websites [32, 33] and
comparison table in [23].

Figure 3.
The possible approach on how to capture the test chessboard pattern in 3D: (a) precise 3D construction used in
studies [29, 30] (b) our approach: Capturing test chessboard from several views.

Figure 4.
Real point cloud captured by RealSense D415 and fitted to ideal plane.

8

Vision Sensors - Recent Advances

8



Table 1 brings the comparison of key parameters of each sensor, such as resolu-
tion, diagonal field of view (DFOV), frame rate, and range for an optimal distance of
sensor from object.

4.4.1 Comparison based on noise measurement

The noise measurement methodology is described above and results are taken
from our study [31]. The standard deviation of depth error for different distances
represents amount of sensor noise. The comparison of sensors is in Table 2.

Figure 5 shows the statistical comparison for a distance of 0.5 m. The amount of
noise increases with the distance between the sensor and the surface. In this compar-
ison, the offset of sensor is ignored, and also variable part of signal is taken into the
account.

As seen in Table 2, SLS technology (RealSense RS 300) achieved the best results.
As expected, there is an evident difference between ZED MINI and RealSense D415.
As expected the accuracy of active stereo sensor is more accurate than passive sensor.

4.4.2 Comparison based on ideal cloud fitting

In this experiment, the same sensor parameters were set, as in the previous mea-
surement. In the case of ZED MINI and RealSense D415, the chessboard pattern was
captured from distances of 0.5 m and 1 m. The results including Table 3 are obtained
from our study [31].

In this experiment, the results only for two sensors were shown, because of several
negative facts. Because the RGB resolutions of ZED MINI and RealSense D415 sensors

Range [m]FR* [fps]Max. resolutionDFOV*TechnologySensor

128072Active stereoRealSense D415 � 0.390720 –10

70ToFKinect V2 � 51260 � 0.530424 –4.5

4416110StereoZED MINI � 0.151001242 –12

64090Structured lightRealSense SR300 � 0.260480 –1.5

*Maximal FR value might depend on resolution used/ *DFOV � Diagonal Field of View.

Table 1.
Depth sensors parameters comparison.

Sensor σ for distance [mm]

1000700500

1.3030.6390.307RealSense D415

2.1801.3431.499ZED MINI

1.3751.2671.151Kinect V2

0.7160.2530.124RealSense SR300

Table 2.
Standard deviation of depth error for different distances.

9

Usage  of  RGB-D  Multi-Sensor  Imaging  System  for  Medical  Applications  
DOI:  http://dx.doi.org/10.5772/.106567

9



are the same, we expect the same corner detection error. For this reason, the
comparison of passive and active stereo sensors in this way we consider as precise.
Some problems occurred when capturing the chessboard pattern with SR300 and
KinectV2 sensors. The sensor SR300 produces the depth map that contains “empty
areas” of unknown depth demonstrated as black holes in depth images. Due to this
fact it is not able to compute the depth of the chessboard corner point. We can say that
the real point of cloud construction is impossible. Also, while using KinectV2 in a
distance of more than 0.7 m, the depth map contains the black regions of unknown
depth. The depth deviation is caused by different object surface reflections. Such a
phenomenon, associated with ToF camera calibration is described in the study [34].
To avoid this, the color version of chessboard instead of black and white can be used.
Also, the precisely constructed cube covered by the chessboard pattern is a potential
way, as described in [30]. The small resolution of Kinect V2 RGB image does not allow
to detect chessboard corners correctly. Due to this fact, the comparison of all 4
technologies in this way we consider inadequate.

4.4.3 Comparison based on ideal plane fitting

Table 4 taken from Ref [31] shows the comparison of all tested sensor
technologies.

The estimated depth error is independent of the corners detection error, so
the corresponding results in Tables 3 and 4 are different. The difference in

Figure 5.
Noise of depth sensors comparison for distance 0.5 m.

Sensor RMS error for distance [mm]

500 1000

RealSense D415 1.382 3.172

ZED MINI 1.803 4.582

Table 3.
RMS error for multiple distances and positions using ideal cloud fitting.
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RMSE between structured light and active stereo pair for a distance of 0.5 m is only
0.3 mm.

5. Development of multi-sensor system

Based on previous measurements we decided to use active stereo sensor RealSense
D415 as a key element of our imaging system. The scanning accuracy is comparable to
other sensor technologies and it is absolutely sufficient for given medical use. On the
other hand, active stereo pair does not suffer mutual interference in parallel mode of
scanning. From the previous results, we can determine the optimal distance of head
from the sensors and this distance is approximately 0.5 m. This distance is respected in
a physical model of the sensor stand. For mounting 3 sensors in the fixed position, we
use the constructed stand, shown in Figure 6a. The spatial configuration schema is
shown in Figure 6b.

The distance d is set approximately to 0.5 m. In our application, the frontal side of
the object (the face) is the most important for scanning, so the layout needs to be set
to obtain a high fill rate in this area. For future automated processing of captured 3D
models and their normalization, the patient must sit in a normalized position. To
avoid covering the important parts of the head we had to replace physical head
fixation by software assistance tool mentioned later. This assistance algorithm places
the head to the center of frontal sensor because the features obtained from this view
(facial view) are the most important.

RMS error for distance [mm]Sensor

700500

1.0260.646RealSense D415

1.0520.782ZED MINI

1.5881.515Kinect V2

0.9180.321RealSense SR300

Table 4.
RMS error for different distances and positions using ideal plane fitting.

Figure 6.
(a) Adjustable sensor stand. (b) Layout of sensor positions (top view).
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5.1 Data capturing

All the sensors are connected via the USB 3 interface to the acquisition computer,
which allows capturing the color and depth frames with a 30 fps frame rate at Full HD
spatial resolution. The system for the capturing and data processing is designed as GUI
running as a web application. The server application is created using Python. This
application acquires the depth and RGB color image frames from all sensors and
streams the image data to user interface. The RealSense SDK tool is used for controlling
the sensors, flask for server operation, and OpenCV framework for image processing.
Image acquisition and streaming of the image data run in separated threads. The data
flow is reduced due to JPEG encoding of images (depth and also RGB). When the
server application receives a request for saving from the user interface, the saving
procedure is triggered. Acquired images are stored locally in a temporary folder. When
image acquisition process is finalized, the content of the temporary folder is zipped,
encrypted, and named by patient identifier and actual time. The script then copies the
ZIP to external server storage to collect and backup the data. When the external server
is not accessible, the file is queued and sent in the next time [35].

5.2 Graphical user interface of system

The graphical user interface enables to control the scanning of the patient’s head
and neck and also to annotate the captured data. For annotating, the digital version of
standardized sleep questionnaire is part of application and it is described later. Web-
based design of this interface enables to use of any portable device in the network to
provide scanning and annotating the data. Also, the interface can be accessed locally
on the PC where the server runs. The main window of the interface is shown in
Figure 7. Menu on the left side contains several settings:

• # of frames � the number of color and depth frames saved by one shot,
• ID � personal identifier of patient,
• Expression � the facial expression of the patient.

Number of frames taken by “one shot” helps to provide temporal filtering of data.
Considering our study [25], resulting depth image from given view is a product of
averaging the stack of images in buffer. This averaging helps to eliminate noise
artifacts in 3D reconstruction.

Figure 7.
Graphical user interface – Main window.
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Figure 8.
Difference of eye positions: (a) X-axis offset. (b) Y-axis offset.
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  Facial  expression  is  functionality  prepared  for  further  research.  It  could  be 
interesting  to  correlate  the  OSAS  detection  based  on  normalized  face  expression
(e.g.,  smile,  neutral  expression).

  After  capturing  request,  the  data  are  zipped  and  sent  to  the  acquisition  server.  If 
any  error,  the  data  are  saved  locally  and  resent  to  the  acquisition  server  in  next 
capturing  request.  If  the  webserver  is  unavailable,  the  warning  message  is  displayed.
The  data  saved  on  server  can  be  identified  by  personal  ID  of  patient.  The  user  can 
switch  between  color  and  depth  view.

5.3  Normalized  head  position  assistance  algorithm

  For  obtaining  the  most  precise,  accurate,  and  normalized  3D  scans,  we  need  to  set 
the  patient’s  head  to  a  defined  position  (as  equal  as  possible  in  all  patients).  This  task 
may  be  very  difficult  and  stressful  for  young  patients.  Based  on  this  fact,  we  created 
the  head  position  assistance  tool  based  on  the  algorithm  of  eyes  and  head  detection.
Detected  eye  position  is  used  to  compute  the  difference  from  ideal  eye  position.  The 
depth  map  is  also  available  so,  the  algorithm  can  get  the  difference  in  eye  positions  in
Z-axis.  This  information  is  obtained  only  from  the  central  sensor  images.  In  Figure  8,
we  can  see  the  angle  offsets  of  detected  eyes  from  ideal  position.  The  angles  α  and  β
are  used  for  determining  how  much  is  the  head  rotated  or  tilted.  The  limits  were
chosen  empirically  and  they  can  be  improved  during  further  research.  Based  on  the 
depth  map,  we  are  also  able  to  compute  the  distance  of  the  head  from  sensors  (if  it  is 
too  close  or  too  far  from  sensor).  In  other  words,  head  positioning  assistance  tool  helps
to  keep  the  head  in  red  highlighted  area  according  to  Figure  6b  [35].

  When  the  head  position  is  inside  the  optimal  range,  imaging  can  be  provided.  If  the 
position  of  head  is  outside  the  tolerance,  the  moving,  rotation,  and  tilting  commands 
are  shown  for  the  user  on  the  screen  to  adjust  the  head  position.  For  detection  of  face 
in  actual  sensor  view,  the  Viola-Jones  algorithm  is  used.  This  algorithm  is  a  frequently 
used  tool  for  given  object  detection.  The  original  algorithm  is  used  to  detect  and 
classify  the  objects  into  several  classes.  In  our  case,  it  was  trained  for  human  faces.  In 
comparison  with  other  algorithms,  the  training  time  is  relatively  high,  but  detection  is  
very  fast.  The  algorithm  uses  Haar  basis  feature  filters  and  it  does  not  use  multiplica-
tions  [36].  The  computation  time  is  minimized  by  placing  the  classifiers  with  fewest
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features at the beginning of cascade. The features are most commonly trained using
Ada-Boost algorithm. This method selects only those features that improve the detec-
tion accuracy and potentially decrease the execution time.

5.4 The annotation questionnaire

In addition to mentioned functions, the application includes an online question-
naire, which is the digital format of the EU questionnaire [5]. Besides the 3D imaging
of patient heads, the specialist (user) is able to insert additional information about the
patient (age, weight, subjective rating of intraoral anatomy… ) [35]. This additive
information can be used to extend features for machine learning methods and auto-
mated diagnostics based on artificial intelligence. Implemented electronic question-
naire is shown in Figure 9.

5.5 Experimental results

After pilot testing, the system was placed in an experimental workplace inside the
sleep laboratory of Clinic of Children and Adolescents in University Hospital Martin,
Slovakia.

Application is designed in a simple layout and also assists medical staff (as we can
see as an example in Figure 10) to obtain the best results without any sophisticated
manipulation.

Figure 9.
Graphical user interface � online EU questionnaire (excerpt).

Figure 10.
Head positioning assistance: (a) incorrect head position; the command is tilt head right. (b) Correct position of
head.
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After capturing the stack of images from single sensors, the 3D reconstruction of
data can be provided. Using intrinsic camera parameters, we can compute the colored
point cloud from depth and color frame. The point clouds of individual views must be
also denoised and transformed into a common coordinate system. As a denoising
method, the statistical outlier filter was used. The resulting 3D model with the possi-
bility of rotation is shown in Figure 11.

The partial point clouds from single sensors are registered by the global registra-
tion RANSAC method and local refinement is done by ICP (Iterative Closest Point)
algorithm. For further scientific research, it is very interesting to implement and
compare different filtration algorithms for depth maps or point clouds, registration
methods, and calibration algorithms that can improve the accuracy of models. Nowa-
days, it exists a lot of machine learning methods that can obtain the relevant features
from the head (from depth maps, RGB images, or directly from 3D models) and will
finalize the feature vector for automated diagnostics.

6. Conclusion

Our study focuses on the development of the multi-sensor scanning system, that
aims to be the future pre-diagnostic tool for obstructive sleep apnea diagnostics.
Because the obstructive sleep apnea syndrome can correspond with some abnormali-
ties in cranio-facial parameters on the head, 3D scanning of head can be a promising
procedure to obtain an automated method for OSAS screening. A system for early
screening can easily prioritize the patients for complex diagnostics and then for early
therapy. Especially in Slovakia, the waiting periods for conventional OSAS diagnostic
can be several months.

RGB-D sensors are relatively non-expensive sensors with increasing popularity
used in many fields: from entertainment to mechanical engineering or medical appli-
cations. To complete the 3D scanning system for biomedical use, the main research
was focused on the selection of suitable RGB-D sensor for obtaining the accurate
model of the head and neck. This model can be used for noninvasive automated
procedures. After selecting the representative for all technologies of RGB-D sensors

Figure 11.
The resulting 3D model of patient: (a) frontal view. (b) Rotated view.

15

Usage  of  RGB-D  Multi-Sensor  Imaging  System  for  Medical  Applications  
DOI:  http://dx.doi.org/10.5772/.106567

15



we used some metrics, which can compare their accuracy. The noise measurement,
the ideal point cloud fitting, and ideal plane fitting were selected for this assessment.

After the series of experiments, we can say that the difference in accuracy between
the all sensors is not so significant and all of them could be used for our implementa-
tion. On the other hand, considering the second condition – multi-sensor parallel
system – the mutual interference of sensors must be taken into the account. Because
ToF sensors and also SLS sensors interfere and can generate interference artifacts, we
focused on stereo pair technology of RGB-D sensors. Finally, we selected the active
stereo pair Intel RealSense D415. Based on depth error, the optimal distance of the
sensor from object is set to 0.5 m. The system with 3 sensors respects this distance.

The scanning system is driven by a web-based application with simple graphical
user interface. 3D scans can be extended by information from a digitized EU sleep
questionnaire. The database of 3D models with information form questionnaire is
strictly needed to build an automated diagnostic system based on machine learning or
artificial intelligence. These methods are now state of the art in many imaging and
signal processing tasks. System is now implemented in clinical environment to obtain
first elements of the dataset.

Further research can be oriented for selecting and implementing the filtration
methods for obtained data, registration methods for partial models from single sen-
sors, and calibration algorithms for the case of changes in sensor layout.
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Chapter 2

Multi-Object Recognition Using a
Feature Descriptor and Neural
Classifier
Enrique Guzmán-Ramírez, Ayax García,
Esteban Guerrero-Ramírez, Antonio Orantes-Molina,
Oscar Ramírez-Cárdenas and Ignacio Arroyo-Fernández

Abstract

In the field of object recognition, feature descriptors have proven to be able to 
provide accurate representations of objects facilitating the recognition task. In this 
sense, Histograms of Oriented Gradients (HOG), a descriptor that uses this approach, 
together with Support Vector Machines (SVM) have proven to be successful human 
detection methods. In this paper, we propose a scheme consisting of improved HOG 
and a classifier with a neural approach to producing a robust system for object 
recognition. The main contributions of this work are: First, we propose an improved 
gradient calculation that allows for better discrimination for the classifier system, 
which consists of performing a threshold over both the magnitude and direction of the 
gradients. This improvement reduces the rate of false positives. Second, although 
HOG is particularly suited for human detection, we demonstrate that it can be used to 
represent different objects accurately, and even perform well in multi-class applica-
tions. Third, we show that a classifier that uses a neuronal approach is an excellent 
complement to a HOG-based feature extractor. Finally, experimental results on the 
well-known Caltech 101 dataset illustrate the benefits of the proposed scheme.

Keywords: multi-object recognition systems, object representation based on feature 
descriptor, histogram of oriented gradients, classifier with a neural approach

1. Introduction

Computer vision is a discipline through which a machine is enabled in order to
recognize the world around it using visual perception, allowing it to deduce the struc-
ture and properties of a three-dimensional world from one or more two-dimensional
images. In this respect, Forsyth-Ponce and Ballard-Brown argue that computer vision
refers to the construction of explicit and significant descriptions of physical objects from
images [1, 2]. That is, computer vision enables a machine to extract and analyze spectral,
spatial, and temporal information of the different objects contained within an image.
While spectral information includes frequency (color) and intensity (grayscale), spatial
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information refers to aspects such as shape and position (one, two, and three dimen-
sions) and temporal information comprising stationary aspects (presence and/or
absence) and time-dependent (events, movements, and processes).

Due to this ability, tasks such as failure detection [3, 4]; verification [5, 6]; identi-
fication [7, 8]; tracking analysis [9, 10]; and recognition [11, 12] can be performed by
a computer vision system.

The object recognition task is of particular interest to this research as it plays a
significant role in a computer vision system and is necessary even in order to complete
some of the tasks listed above. It is evident that there are an increasing number of areas
and/or applications requiring object recognition, e.g., fruit sorting [13], face detection
[14], people detection [15], face recognition [16], object tracking [17], automatic traffic
sign recognition [18], and vehicle license plate recognition [7], among many others.
Gonzales and Woods define object recognition as the task of organizing input data into
previously defined classes, using significant features extracted from objects that are
immersed in an image containing irrelevant details [19]. Considering this definition, it is
evident that both feature extraction and classification are extremely important for an
object recognition task to achieve its aim. The feature extraction process applies opera-
tions to an image in order to obtain information describing the objects it contains.
Moreover, this information should be able to discriminate between different object
classes. The goal of this process is to improve the effectiveness and efficiency of the
classification process [20]. The classification process uses the information generated by
the feature extractor to perform both phases comprising it, learning, (thereby creating a
bank of models), and recognition (responsible for determining which objects belonging
to the bank of models is present in analyzed image) [21].

The development of the work presented in this paper is motivated by the increas-
ing demand and necessity of techniques and algorithms that efficiently perform tasks
related to the recognition of objects, as well as their implementation in real applica-
tions, both industrial and research, where a visual perception system is required.
Considering the above, this work proposes the design and implementation of an object
recognition system using methods based on feature descriptor and neural classifier.
We will focus on a type of descriptor called the feature descriptor. In their original
form, these descriptors characterize shape in 2D images as histograms of edge pixels,
HOG (Histograms of Oriented Gradients) algorithm belongs to this family of descrip-
tors [22]. Two practical objectives have been defined to meet the proposal. First, study
and development of an improved HOG algorithm that can accurately represent dif-
ferent objects. Second, to demonstrate that the performance of a neuronal approach in
the task of classification and labeling of the data generated by HOG is competitive
with the techniques currently used.

The HOG method for object representation, proposed by Dalal and Triggs [23],
describes the appearance of local regions (objects) within an image by means of the
distribution of intensity gradients or edge directions. For this purpose, the HOGmethod
applies a similar principle to be used by different methods, such as edge orientation
histograms [24], shape contexts [25], and scale-invariant feature transform (SIFT) [26],
which counts the number of occurrences of gradient orientation in specific portions of
an image but differs in that it is computed on a dense grid of uniformly spaced cells and
uses overlapping local contrast normalization for improved accuracy.

HOG has demonstrated that it is capable of generating representations that provide
discriminative information from the objects in an image using normalized represen-
tations of objects. Since it operates on local cells, it is invariant to geometric and
photometric transformations. For improved accuracy, the local histograms can be
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contrast-normalized  by  calculating  a  measure  of  the  intensity  across  a  larger  region  of 
the  image,  called  a  block,  and  then  using  this  value  to  normalize  all  cells  within  the 
block.  This  normalization  results  in  better  invariance  to  changes  in  illumination  and 
shadowing.  Furthermore,  HOG  is  invariant  to  changes  in  the  data  background  as  well 
as  object  position.
  Although,  the  HOG  method  is  particularly  suited  for  human  detection  in  images
[11,  12,  23,  27–29],  in  this  paper  we  show  that  it  can  be  used  to  represent  different 
objects  accurately,  and  even  perform  well  in  multi-class  applications.
  On  the  other  hand,  artificial  neural  networks  (ANN)  have  been  successfully  used 
in  a  variety  of  classification  tasks  in  real  industrial,  scientific,  and  business  applica-
tions  [13,  30–33].  Several  kinds  of  neural  networks  can  be  used  for  this  purpose,  but 
we  decided  to  use  feedforward  multi-layer  networks  or  multi-layer  perceptron
(MLP),  which  are  the  most  widely  studied  and  used  neural  network  classifiers.

  MLP  offers  features  that  make  it  a  competitive  alternative  to  various  conventional 
classification  methods  [34].  First,  adaptability,  MLP  is  capable  of  developing  its  own 
feature  representation.  That  is  to  say,  MLP  can  organize  data  into  the  vital  aspects  or 
features  that  enable  one  pattern  to  be  distinguished  from  another.  Second,  generali-
zation,  MLP  has  the  ability  to  respond  appropriately  to  input  patterns  different  from 
those  involved  in  the  learning  process.  Third,  MLP  is  a  universal  function 
approximator,  thus  it  can  approximate  any  function  with  arbitrary  accuracy.  Fourth,
since  MLP  uses  a  nonlinear  activation  function,  it  is  a  nonlinear  model,  which  makes  it 
flexible  in  modeling  real-world  complex  relationships.

1.1  Related  work

  Similar  works  with  which  our  proposal  has  been  compared,  because  they  use 
descriptors  with  similar  characteristics  to  ours,  are  described  below.  In  [35],  an  object 
model  is  generative  and  probabilistic,  so  appearance,  scale,  shape,  and  occlusion  are  all 
modeled  by  probability  density  functions,  which  here  are  Gaussians.  Learning  is 
carried  out  using  the  expectation–maximization  algorithm,  presented  in  [36],  which 
iteratively  converges  to  learn  an  object  category  using  the  detecting  regions  and  their 
scales,  and  then  estimating  the  parameters  of  the  above  densities  from  these  regions,
such  that  the  model  gives  a  maximum-likelihood  description  of  the  training  data.
Recognition  proceeds  by  first  detecting  features,  and  then  evaluating  these  features 
through  a  process  Bayesian,  using  the  model  parameters  estimated  in  the  learning.

  Zhang  et  al.  proposed  a  scheme  that  represents  the  local  features  of  the  object  by 
means  of  PCA-SIFT  method  and  the  global  features  using  shape  context  method  [37].
Both  sets  of  features  are  presented  to  two-layer  AdaBoost  training  network.  Boosting 
refers  to  the  general  method  of  producing  a  very  accurate  prediction  rule  by  combining 
relatively  inaccurate  rules-of-thumb.  It  has  been  used  widely  in  computer  vision,  par-
ticularly  for  object  recognition.  Layer  1  chooses  as  “good”  features,  those  that  have  the 
best  ability  to  discriminate  the  target  object  class  from  the  nontarget  object  class.  Then,
layer  2  locates  the  final  “good”  features  based  on  the  distances  between  the  most 
discriminant  local  features  selected  by  layer  1.  This  two-layered  boosting  method  pro-
duces  two  strong  classifiers,  which  can  then  be  used  in  a  cascaded  for  recognition  tasks.

  On  the  other  hand,  in  [38]  Zhang  et  al.  presented  a  scheme  that  represents  images 
as  distributions  (signatures  or  histograms)  of  features  extracted  with  different  key 
point  detectors  and  descriptors.  The  proposed  scheme  represents  an  object  from  the 
union  of  a  detector  with  a  descriptor.  Two  complementary  local  region  detector  types 
are  used:  The  Harris-Laplace  detector,  which  responds  to  corner-like  regions,  and  the
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Laplacian detector, which extracts blob-like regions. At the most basic level, these two
detectors are invariant to scale transformations only. To achieve invariance to other
transformations, such as rotation or illumination, this scheme may include the
descriptors SIFT, SPIN, and RIFT. For classification process, the authors use the
well-known Support Vector Machines.

In [39], Leibe et al. propose a novel method for detecting and localizing objects of a
visual category in cluttered real-world scenes. For the objects representation, this
proposal introduces a basic object representation model known as Implicit Shape
Model (ISM). ISM consists of a class-specific alphabet of local appearances that are
prototypical for the object category, and of a spatial probability distribution that
specifies where each codebook entry may be found on the object. Then, the object
detection is implemented as a probabilistic Hough voting procedure from which
hypotheses are found by a scale-adaptive Mean-Shift search.

More recently, Leptev showed how histogram-based image descriptors can be
combined with a boosting classifier to provide a robust object detector [40]. Each
feature is represented by a histogram of local image measurements within a region.
For this purpose, HOG features are adopted and considered histograms of alternative
image measurements such as color and second-order image derivatives. The HOG
features are formed from orientation of local image gradient at each point using
Gaussian derivatives of image computed for scale parameter defined. The histograms
are normalized to the l1 unit norm. At the training, the features for normalized
training images are computed, and apply AdaBoost to select a set of features and the
corresponding weak classifiers optimizing classification performance.

The overall organization of the paper is as follows, after the introduction, we
examine theoretical issues of HOG and MLP in Section 2. Section 3 presents the object
recognition system based on HOG and MLP proposed in this paper. Experimental
results are discussed in Section 4. Finally, Section 5 concludes the paper.

Table 1 shows a summary of the main features that the mentioned schemes and
the one proposed in this paper possess.

2. Theoretical background of HOG and MLP models

As mentioned earlier, we will focus on a type of descriptor called the feature
descriptor. In general terms, this approach uses 4 steps to calculate a descriptor from an
image, 1. An edge detector is applied to the image. 2. a basis point is chosen, which is a
coordinate in the edge map, then a template is defined, mainly circular, centered at that
point and it is divided into sections of the same size. These sections divide the image into

Method Feature extraction Classifier

[35] Detector of Kadir and Brady Bayesian approach

[37] PCA-SIFT/shape context multi-layer Adaboost

[38] SIFT/SPIN/RIFT SVM

[39] Hessian-Laplace/Harris-Laplace context k-means/Agglomerative/RNN

[40] Histogram-based descriptor AdaBoost

Our proposal HOG MLP

Table 1.
Main features summary of the mentioned schemes and our proposal.
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regions,  each  of  which  corresponds  to  one  dimension  of  the  feature  vector.  3.  The  value 
of  a  dimension  is  calculated  as  the  number  of  edge  pixels  that  fall  into  the  region  (a 
histogram  that  summarizes  the  spatial  distribution  of  edges  in  the  image  relative  to  the  
chosen  basis  point).  It  is  common  to  use  the  term  “bin”  to  refer  to  the  region  in  the 
image  as  well  as  the  dimension  in  the  feature  vector.  4.  Feature  vector  normalization.
  With  this  approach,  if  the  bins  were  small  enough  to  each  contain  one  pixel,  then 
the  histogram  would  be  an  exact  description  of  the  shape  in  the  support  region.
  The  HOG  descriptor  is  a  member  of  this  family,  it  was  proposed  by  Dalal  and  Triggs 
in  [23]  and  extensively  documented  by  Dalal  in  his  PhD  thesis,  which  was  supervised 
by  Triggs  [41].  HOG  offers  a  successful  and  popular  object  representation,  particularly 
with  human  representation  [22,  42].  HOG  is  inspired  by  SIFT,  thus  it  can  be  regarded  as 
a  dense  version  of  SIFT.  Both  algorithms  are  based  on  histograms  of  gradient  orienta-
tions  weighted  by  gradient  magnitudes.  However,  there  are  important  differences 
between  these  algorithms.  First,  these  two  algorithms  differ  slightly  with  regard  to  the 
type  of  spatial  bins  that  they  use,  as  HOG  has  a  more  sophisticated  way  of  binning.
Second,  HOG  computes  the  descriptors  by  means  of  blocks  in  dense  grids  at  some  single 
scale  without  orientation  alignment,  while  in  SIFT,  descriptors  are  computed  at  sparse,
scale-invariant  key  image  points,  and  rotated  to  align  orientation.  Third,  SIFT  only 
computes  the  gradient  histogram  for  patches  around  specific  interest  points  obtained  by  
taking  the  difference  of  Gaussians  in  the  scale  space  (this  is  a  local  descriptor  and  SIFT 
features  are  usually  compared  by  computing  the  Euclidean  distance  between  them).
HOG,  on  the  other  hand  is  computed  for  an  entire  image  by  dividing  it  into  smaller  cells 
and  summing  up  the  gradients  over  every  pixel  within  each  cell  in  an  image  (HOG  is  
used  to  classify  patches  using  classifiers  such  as  SVM).  Finally,  SIFT  is  used  for  the 
identification  of  specific  objects  since  the  Gaussian  weighting  involved  enables  it  to 
describe  the  importance  of  a  particular  point,  while  HOG  does  not  have  such  a  bias.
HOG,  therefore,  is  better  suited  to  the  classification  task  than  SIFT.
  The  main  idea  behind  the  HOG  descriptors  is  that  the  appearance  and  shape  of  a  
local  object  within  an  image  can  be  described  by  the  distribution  of  intensity  gradients 
or  edge  directions.  That  is  to  say,  the  HOG  features  concentrate  on  the  contrast  of 
silhouette  contours  against  the  background.  HOG  is  a  window-based  descriptor,
whereby  the  window  is  typically  computed  by  dense  sampling  over  all  image  points.

  In  general,  the  HOG  algorithm  can  be  divided  into  4  phases:  gradient  computation,
orientation  binning,  descriptor  blocks,  and  normalization  blocks.  In  the  first  phase,  the 
gradients  are  computed  using  Gaussian  smoothing  followed  by  discrete  derivative 
masks.  The  experiments  by  Dalal  and  Triggs  demonstrated  that  a  simple  1-D½�1,  0,  1�
mask  at  none  scale  smoothing  ðσ  ¼  0Þ  works  best.  The  second  phase  is  responsible  for 

dividing  the  gradient  image  into  small-connected  regions  called  cells  (typical  cell  size  is 
6  �  6  or  8  �  8  pixels),  and  within  each  cell,  a  frequency  histogram  is  computed 

representing  the  distribution  of  edge  orientations  within  the  cell.  For  this  purpose,  each 
pixel  calculates  a  weighted  function  of  the  gradient  magnitude  (called  vote,  typically  the 
magnitude  itself  is  used)  based  on  the  orientation  of  the  gradient  element  centered  on  it.
Then,  the  edge  orientations  are  quantized  into  q  bin  uniformly  spaced  over  0–180°  when 
an  unsigned  gradient  is  used,  or  0–360°  when  a  signed  gradient  is  used.  In  a  third  phase,
groups  of  adjacent  cells  are  considered  as  spatial  regions  called  blocks,  (typical  block  size 
is  2  �  2  or  3  �  3  cells),  and  using  an  overlap  between  blocks  significantly  improves  the 

algorithm  performance.  The  grouping  of  cells  into  a  block  is  the  basis  for  the  grouping 
and  normalization  of  histograms.  Two  classes  of  block  geometries  commonly  used  are 
square  or  rectangular  (R-HOG),  with  associations  of  spatial  cells  in  squares  or  rectan-
gles,  and  circular  blocks  (C-HOG)  partitioned  into  cells  in  log-polar  fashion.  Finally,  the
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blocks defined in the previous phase are normalized. For this purpose, let v be the
unnormalized block, vk kk be its k-norm for k ¼ 1,2, and ϵ be a small normalization
constant to avoid division by zero [41], then the following schemes can be used:

1.L2� norm v ! v=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vk k22 þ ϵ2

q� �
;

2.L2�Hys (L2� norm followed by clipping, limiting the maximum values of v to
0.2, and renormalizing);

3.L1� norm v ! v= vk k1 þ ϵ
� �

;

4.L1� sqrt v ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v= vk k1 þ ϵ

p� �
.

The final descriptor is then the vector of all components of the normalized cell
responses from all of the blocks in the detection window.

On the other hand, it is common to find a support vector machine (SVM) classifier to
complement a feature extractor HOGwithin a scheme of object recognition. One purpose
of this paper is to determine the performance of an object recognition system that uses
HOG and neural network-based classifier, particularly a multi-layer perceptron (MLP).

MLP was derived from the neuronal model known as perceptron, which was
presented by Rossenblatt in 1958 [43]. The perceptron is based on the model of
McCulloch and Pitts [44] and presents a learning rule based on error correction. MLP
is an ANN composed of an input layer, n hidden layers, and an output layer, all
consisting of m type-perceptron neurons. MLP is the most studied neural network
model, which can approximate any continuous nonlinear function arbitrarily well on a
compact interval. Due to this property, MLP became popular in order to parametrize
nonlinear models and with classification purposes. Furthermore, the characteristics of
the MLP are well known to solve the problem that occurs when the data available in
training are generally not sufficient to cover the variability of the object’s appearance.
This problem is present in most recognition systems, including our own.

MLP belongs to the category of supervised classifiers. Then, with the training set,
composed of p pairs of input–output vectors that define the behavior of the system
that the ANN will adapt, is defined as

x1, t1
� �

, x2, t2
� �

, … , xp, tpð Þ� � ¼ xμ, tμð Þjμ ¼ 1, 2, … , pf g (1)

where xμ ¼ xμi
	 


n and tμ ¼ tμk
	 


q are the input and target vectors, respectively.

MPL structure is defined as follows: It has an input layer of n units, one or more
successive hidden layers of intermediate units, and a layer of q output units. Consid-
ering an MLP with r hidden layers, where xμ ¼ xμi

	 

nis the μ-th input vector that

belongs to the training set (defined by Eq. (1)). Then, yl
� �μ ¼ yl

jl

� �μh i
ml
, zμ ¼ zμk

	 

q

and tμ ¼ tμk
	 


q represent the output of the l-th hidden layer, the output generated by

MLP and the output target that MLP must generate, respectively, when xμ is
presented to the network; where l ¼ 1, 2, … , rð Þ, ml and q indicate the number of
units comprising the l-th hidden layer and the output layer, respectively.

Each unit’s output of layer l will be connected to the input of each unit in the layer
l + 1, and a synaptic weight will be associated with each of these connections. Thus,
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W1 ¼ w1
j1i

h i
m1�n

and θ1 ¼ θ1j1
h i

m1
, respectively. For remaining hidden layers, l ¼

2, … , rð Þ, the synaptic weights and thresholds are defined as Wl ¼ wl
jljl�1

h i
ml�ml�1

and

θl ¼ θljl
h i

ml
. Finally, the synaptic weights and thresholds of the output layer are

defined as Wrþ1 ¼ wrþ1
kjr

h i
q�mr

and θrþ1 ¼ θrþ1
k

	 

q.

MLP is a feed-forward neural network, and its operation is defined as follows. The
output of first hidden layer is expressed mathematically as follows:

y1j1 ¼ f
X
i

w1
j1i ∙ xi � θ1j1

 !
(2)

Whereas the output of the l-th hidden layer, with l ¼ 2, … , rð Þ, is computed by

yljl ¼ f
X
jl�1

wl
jljl�1 ∙ yl�1

jl�1 � θljl

0
@

1
A (3)

Finally, the MLP operation is defined as:

zk ¼ g
X
jr
wrþ1

kjr ∙ yrjr � θrþ1
k

0
@

1
A (4)

Typically, activation functions for units of hidden layers, f ∙ð Þ, are nonlinear;
e.g., unipolar sigmoid function 1= 1þ e�xð Þ and bipolar sigmoid function
1� e�xð Þ= 1þ e�xð Þ. Activation functions of this type introduce the nonlinearity into
the network and enable the MLP to approximate any nonlinear function with arbi-
trary accuracy. The activation functions of the units in the output layer, g ∙ð Þ may be
linear or nonlinear, depending on the application.

The MLP evolution based its success on the design of training algorithms that could
minimize the error committed by the network by adequately and automatically modi-
fying the values of the synaptic weights. In this sense, the training algorithm called
backpropagation is the most popular used to adapt the MLP to a specific application
because it is conceptually simple and computationally efficient. In 1974 Paul Werbos
developed the basic principles of backpropagation, while developing his PhD thesis, by
implementing a system that estimated a dynamic model for predicting social commu-
nications and nationalism [45]. In 1986 Rumelhart et al. formalized the backpropagation
algorithm as a method that allows a type-MLP ANN to learn the association that exists
between a set of input patterns and the corresponding classes [46]. Over time,
backpropagation has become one of the most widely used neural learning methods,
proving to be an efficient tool in applications of pattern recognition, dynamic modeling,
sensitivity analysis, and the control of systems over time, among others.

The backpropagation algorithm looks for the minimum error function in weight
space using the method of gradient descent. This method is applied for training the
units of hidden layers of an MLP; that is to say, the basic idea of this algorithm states
that updating the synaptic weights of the units of a layer depends on the error
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generated by the layer itself and errors generated by the following layers. The
aforementioned is established by the mathematical structure of the backpropagation
algorithm, which can be expressed as follows:

Δwrþ1
kjr ¼ ε ∙ δzk ∙ yrjr , (5a)

where δzk ¼ tk � zkð Þg0 urþ1
k

� �
and urþ1

k ¼P
jr
wrþ1

kjr ∙ yrjr � θrþ1
k

Δwl
jljl�1 ¼ ε ∙ δyljl ∙ y

l�1
jl�1 , (5b)

where δyl
jl
¼ f 0ljl ul

jl

� �P
k
δzk ∙wlþ1

kjl
and ul

jl
¼P

jl�1

wl
jljl�1 ∙ yl�1

jl�1 � θljl ; for l ¼ 2, … , rð Þ

Δw1
j1i ¼ ε ∙ δy1j1 ∙ xi (5c)

where δy1j1 ¼ f 01j1 u1j1
� �P

j2
δy2j2 ∙w

2
j2j1 and u1j1 ¼

P
i
w1

j1i ∙ xi � θ1:j1 ε is a small-valued

constant that defines the learning rate of the network.

3. Object recognition based on histogram of oriented gradients
and multi-layer perceptron

The Object recognition system based on the histogram of oriented gradients and
multi-layer perceptron (ORS HOG-MLP) proposed in this paper presents the follow-
ing contributions: (1) offers good performance in multiclass applications. (2) Deter-
mine the performance of an object recognition system that uses HOG and neural
network-based classifier, particularly an MLP. (3) In order to improve the
characterization process of the image, a modification that improves the properties
representation of the gradient calculation algorithm is proposed.

The ORS HOG-MLP is an algorithm that is geared to automatic object recognition.
Figure 1 shows the elements that are part of this system and the relationship that
exists between them.

Initially, a window detector process takes samples over the entire image, each
sample has a fixed size and it is called a detection window. Better performance of the
algorithm occurs when there is an overlap between detection windows. The image will
be sampled several times and on each occasion, the detection window size will be
different. This feature is intended to avoid image segmentation and get an algorithm
robust to the object’s size.

Then the ORS HOG-MLP algorithm is applied to the extracted detection window.
First, the gradient of an image at each pixel is computed. Let the discrete version of a
detection window be represented as the matrix A ¼ aij

	 

wi�hi; wi and hi are the width

and height of the detection window, respectively, and a represents the ij-th pixel
value, 0≤ a≤ 2n � 1, and n is the number of bits necessary to represent the value of a
pixel. Now, the aim of this process is to compute the magnitude and direction of the
gradients for each pixel. For this purpose, we use a 1-D �1, 0, 1½ � mask at none scale
smoothing σ ¼ 0ð Þ which is applied over all image pixels. The magnitudes and direc-
tions obtained by this process are grouped into two matrices (M and Th); these
matrices are defined as

8
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M ¼ mij
	 


wi�hi;mij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiþ1,j � ai�1,j
	 
2 þ ai,jþ1 � ai,j�1

	 
2q

Th ¼ thij
	 


wi�hi; thij ¼ tan �1 ai,jþ1 � ai,j�1

aiþ1,j � ai�1,j

(6)

Figure 2 shows the results of gradient computation process. A detection window
includes information that does not belong to the interest object (information about
other objects and background information), during the gradient computation process,
this information corrupts the interest object.

In order to improve the representation of the interest object properties by reducing
this information, we propose to apply a threshold operation on the matricesM and Th,

mij ¼
0, if mij < umbral_grad

nij, otherwise

(

thij ¼
0, if mij < umbral_grad

thij, otherwise

( (7)

Figure 2 also shows the result obtained by applying this process on the matrices.
Now, both matrices M and Th are divided into cx� cy small-connected regions of

px� py pixels, called magnitude cells and direction cells, and defined as cmlk ¼

c_mlk
ij

h icx�cy

px�py
and cthlk ¼ c_thlkij

h icx�cy

px�py
; cx ¼ wi=px and cy ¼ hi=py (see Figure 3).

Then, each pixel calculates a weighted function of its gradient magnitude based on its
gradient orientation to contribute to the building of the histogram of the cell to which it
belongs. For this purpose, a vector of p ¼ 9 bins uniformly spaced over 0–180° is
defined for the quantification process of gradient orientations: bin0, bin1, … , bin8f g ¼
10°, 30°, … , 170°� �

. The distance between bins is denoted by dbins ¼ 20°.
Let MC ¼ Mclk½ � be a matrix of cx� cy elements, called bins matrix, where the

Mclk ¼ mclko
	 


element is a p-dimensional vector containing the corresponding bins

Figure 1.
Block diagram of ORS HOG-MLP.

9

Multi-Object  Recognition  Using  a  Feature  Descriptor  and  Neural  Classifier  
DOI:  http://dx.doi.org/10.5772/.106754

29



mclko
� �

of the histogram of the lk-th cell, o ¼ 0,1,… ,p� 1 (see Figure 3). Furthermore,

considering two adjacent bins, bino and binoþ1, where bino ≤ c_thlkij ≤ binoþ1, the dis-

tances between c_thlkij and each of the bins are defined as do ¼ c_thlkij � bino
� �

and

doþ1 ¼ binoþ1 � c_thlkij
� �

.

Thus, the result of this process is defined as

mclko ¼
mclko þ 1� do

dbins

� �
∙ c_mlk

ij , if bino < c_thlkij

mclko þ c_mlk
ij , if bino ¼ c_thlkij

8><
>:

mclkoþ1 ¼
mclkoþ1 þ 1� doþ1

dbins

� �
∙ c_mlk

ij , if c_thlkij < binoþ1

mclkoþ1 þ c_mlk
ij , if binoþ1 ¼ c_thlkij

8><
>:

(8)

Figure 4 shows the result of applying orientation binning process.
In the next process, sets of 2� 2 adjacent cells are grouped into spatial regions

called descriptor blocks (n_Mc - number of Mc per block). In order to get better

Figure 2.
Results of gradient computation process. (a) Original image. (b) Gradient magnitude. (c) Pixel intensity
proportional to the gradient direction (gradient direction). (d) Gradient magnitude improved. (e) Pixel intensity
proportional to the gradient direction improved.

Figure 3.
Details of orientation binning and descriptor block phases.
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blbx,by ¼
blbx,byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

blbx,by


 

2

2 þ ϵ2
q

¼ blbx,byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
o

mcbx,byo

��� ���2 þP
o

mcbx,byþ1
o

��� ���2 þP
o

mcbxþ1,by
o

��� ���2 þP
o

mcbxþ1,byþ1
o

��� ���2 þ ϵ2
r

(10)

Thus, each mc: (bin) of the blbx,by block is limited to a maximum value of 0.2:
mc ¼ 0:2, if mc>0:2j , and then it is renormalized again with L2� norm:

Eventually, the final object descriptor,Od, is a r-dimensional vector of all components
(bins) of the normalized cell responses from all of the blocks in the detection window

Od ¼ od½ �r ¼ bl1,1, bl1,2, … , blbx,by
� �

¼ Mc1,1, Mc1,2, Mc2,1, Mc2,2f g, Mc1,2, Mc1,3, Mc2,2, Mc2,3f g, … ,f
Mcbx,by, Mcbx,byþ1, Mcbxþ1,by, Mcbxþ1,byþ1
� ��
¼ mc110 , … , mc118

� �
, mc120 , … , mc128
� �

, mc210 , … , mc218
��
, mc220 , … , mc228

��� �
,

�
mc120 , … , mc128
� �

, mc130 , … , mc138
� �

, mc220 , … , mc228
� �

, mc230 , … , mc238
� �� �

,… ,

mcbx,by0 , … , mcbx,by8

on
,

n
mcbx,byþ1

0 , … , mcbx,byþ1
8

on
, mcbxþ1,by

0 , … , mcbxþ1,by
8

n o
,

mcbxþ1,byþ1
0 , … , mcbxþ1,byþ1

8

n ooo

(11)

where r ¼ bx� by� n_Mc� p and od0 ¼ mc110 ,od1 ¼ mc111 ,… ,od8 ¼ mc118 ,od9 ¼
mc120 ,… ,od17 ¼ mc128 ,… ,odr�9 ¼ mcbxþ1,byþ1

0 ,odr�1 ¼ mcbxþ1,byþ1
8

Figure 4.
Result of orientation binning process. (a) Original image. (b) Gradient magnitude. (c) Gradient direction. (d)
Histograms of the cells. (e) Descriptor blocks phase.
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performance,  the  blocks  are  formed  using  an  overlap  of  one  cell  on  both  x-axis  and
y-axis  (see  Figures  3  and  4e).  The  result  of  this  process  is  the  matrix  BL  ¼  ½bl�,
composed  of  bx  �  by  descriptor  blocks;  where  bx  ¼  1,2,  …  ,cx  �  1,  by  ¼  1,2,  …  ,cy  �  1
and  a  bl  block  is  defined  as

blbx,by  ¼  
�
Mcbx,by,  Mcbx,byþ1,  Mcbxþ1,by,  Mcbxþ1,byþ1

�  
(9)

  Then,  each  descriptor  block  must  be  normalized.  For  this  purpose,  we  decided  to  use 
the  L2  �  Hys  block  normalization  scheme,  which  first  applied  the  L2  �  norm  (scheme)

31



Figure 5 shows the sequence of processes that generate the HOG descriptor of the
object.

Now, the MLP belonging to ORS HOG-MLP must be adapted to be able to recog-
nize the interest objects. For this purpose, the processes described above are applied to
q interest objects and each descriptor obtained is associated with its corresponding
class, c ¼ c½ �k; thus, the training set of MLP is defined as

Od1, c1
� �

, Od2, c2
� �

, … , Odq, cqð Þ� � ¼ Odμ, cμð Þjμ ¼ 1, 2, … , qf g (12)

The MPL structure is established as follows: It has one hidden layer of h units, the
input layer has r units and the output layer has v units. Considering the training set,
the backpropagation learning algorithm is used to generate the bank of models, which
includes the vital information of the objects that integrate the training set. Essentially, the

bank of models is present in the synaptic weights,W1 ¼ w1
jo

h i
h�r

andW2 ¼ w2
kj

h i
v�h

,

that define the connections between neurons that integrate the MLP.
Finally, the operation process of ORS HOG-MLP, when the Odμ object is

presented, is defined as

cμk ¼ g
Xh�1

j¼0

w2
kj ∙ f

Xr�1

o¼0

w1
jo ∙ od

μ
o � θ1j

 !
� θ2k

 !
(13)

where k ¼ 0,2,… ,v.

Figure 5.
Sequence of processes for generating the HOG descriptor of the object.
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This section is intended to measure the ORS HOG-MLP performance through a set
of experiments. In the first experiment, system performance is analyzed when it is
adapted to recognize only one object class and was conducted on several object classes.
In the second experiment, the system behavior is analyzed when it is configured to
recognize multiple classes. Finally, our scheme’s performance is with other results
reported in the literature.

Before we present and discuss the data obtained from experiments, let us intro-
duce concepts and methods used to measure ORS HOG-MLP performance. Let O be
an object presented to ORS HOG-MLP and the system generates the class c0 to
indicate that the object does not belong to its bank of models, then

A True Positive (TP) occurs when the class generated by the system is cμ and O
belongs to the class cμ, for μ ¼ 2,… ,q; this indicates a successful classification.

A true negative (TN) occurs when the class generated by the system is c0 and O
does not belong to the bank of models; this indicates a successful rejection.

A False Positive (FP) occurs when the class generated by the system is cμ and O
does not belong to this class, for μ ¼ 2,… ,q; this indicates an incorrect classification.

A False Negative (FN) occurs when the class generated by the system is c0 and O
belongs to the bank of models; this indicates an incorrect rejection.

From these concepts, objective methods, which give information concerning sys-
tem performance are obtained.

True positive rate (TPR). TPR determines the sensitivity of the system, i.e. it
measures the proportion of successful classification obtained by system; TPR is
defined as

TPR ¼ number of TP
number of TPþ number of FN

(14)

False Positive Rate (FPR). FPR indicates the proportion of wrongly classified
objects; FPR is defined as

E uð Þ ¼ FPPW uð Þ, FNR uð Þð Þ (15)

Accuracy (ACC). ACC is used to evaluate the tendency of the system to ascertain
correct TPs, defined as

ACC ¼ number of TPþ number of TN
number of TPþ number of TNþ number of FPþ number of FN

(16)

False negative rate (FNR). FNR indicates the miss rate of the system, defined as

FNR ¼ number of FN
number of TPþ number of FN

¼ 1� (17)TPR

False positives per window (FPPW). FPPW indicates the number of errors by
detection window and it is defined as

FPPW ¼ number of FP
N

(18)
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where N is the total number of windows processed. Finally, the proposed MLP
classifier returns a real value for each detection window, this value is thresholding
with a fixed value u in order to determine whether or not it is an object belonging to a
class of bank of models. Thus, FNR and FPPW are dependent functions of u, allowing
the plotting of evaluation curves ROC (Receiver Operating Characteristic) [47],
Eq. (19), that show the tradeoff between the miss rate and the FPPW for each u.

E uð Þ ¼ FPPW uð Þ, FNR uð Þð Þ (19)

The Caltech 101 dataset, collected by Fei-Fei et al. [48], was used for
benchmarking our proposal. For both training and operation phases of the system,
positive images (those that contain only interest objects) and negative images (those
that do not contain objects of interest or background) were generated.

The Caltech 101 dataset consists of a set of 1179 negative images for the system
training phase Itrain�

� �
and a set of 1179 negative images for the system operation phase

Itest�
� �

. The number of positive images for training and operation phases is Wtrain_γ
þ

� �
and Wtest_γ

þ
� �

, respectively, varies for each class (see Table 2).
In order to demonstrate the performance of our proposal when only one object

needs to be identified, in first experiment, ORS HOG-MLP was adapted to individu-
ally identify each class of objects in Table 2. With the intention of adding robustness

Data set Positive images
V-Scan

Training Wtrain_γ
þ

� �
Testin Wtest_γ

þ
� �

Airplane 200 W train_cA
þ

� �
200 W test_cA

þ
� �

Butterfly 40 Wtrain_cB
þ

� �
40 W test_cB

þ
� �

CarSide 86 W train_cC
þ

� �
86 W test_cC

þ
� �

Chair 30 Wtrain_cD
þ

� �
30 W test_cD

þ
� �

Electric guitar 30 Wtrain_cE
þ

� �
30 Wtest_cE

þ
� �

Faces 100 W train_cF
þ

� �
100 W test_cF

þ
� �

Helicopter 40 W train_cG
þ

� �
40 W test_cG

þ
� �

Horses 85 W train_cH
þ

� �
85 Wtest_cH

þ
� �

Ketch 50 Wtrain_cI
þ

� �
50 Wtest_cI

þ
� �

Laptop 40 Wtrain_cJ
þ

� �
40 Wtest_cJ

þ
� �

Motorbikes 200 Wtrain_cK
þ

� �
200 Wtest_cK

þ
� �

Piano 45 W train_cL
þ

� �
45 Wtest_cL

þ
� �

Revolver 40 Wtrain_cM
þ

� �
40 Wtest_cM

þ
� �

SoccerBall 30 Wtrain_cN
þ

� �
30 Wtest_cN

þ
� �

Table 2.
Positive images per class.
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Itrain� þWtrain
� ¼ 2922, and I0test� ¼ Itest� þWtest

� ¼ 3288.
Then, negative images are associated with class 0, and positive images of the object

under study, defined by γ, to class 1. The training set is defined as

I0train�
n o

, c0
� �

, Wtrain_γ
þ

n o
, c1

� �n o
, this set is presented to ORS HOG-MLP in order

to adapt it to recognize the object γ. On the other hand, the ORS HOG-MLP perfor-
mance is evaluated by applying the recognition phase to sets I0test� and Wtest_γ

þ . This
process was repeated for all objects belonging to Table 2.

The HOG algorithm parameters were adjusted as follows: The number of cells by
detection window varies depending on the object shape, 9 bins uniformly spaced over
0–180° are defined, the size of blocks is of 2� 2 adjacent cells and overlap of one cell
in both x-axis and y-axis is used. The MLP is defined with the following features: The
hidden layer has 5 neurons, the activation functions of neurons in the hidden layer and
output layer are sigmoid, and random initial weights in the range of �0:25,0:25½ �,
neurons bias is �1.0, learning rate ε ¼ 0:01, and for each object, 20,000 iterations
were carried out to train the network. Figure 6 shows some examples of detections,
and Figure 7 and Table 3 summarize the results of the first experiment.

Considering the results shown in Table 3, the average value of TPR and FPR
parameters, 0.6387 and 0.001228, respectively, show that the probability of cor-
rectly classifying an object is approximately 64%, and the probability of
misclassifying an object is less than 1%. Meanwhile, the ACC parameter indicates
that the system accuracy is over 98% (e.g., for motorbikes, corresponding to 198 out

Figure 6.
Examples of detection results on the Caltech 101 dataset. Detected objects are enclosed in rectangles.

Figure 7.
Performance of our proposal based on evaluation curves ROC: (a) Airplane class, (b) Butterfly class, (c)
Motorbikes class.
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to  the  system,  from  Itra�  
in  and  Ites�  

t,  additional  negative  windows  for  training  and  testing 
of  the  system,  W tra

�  
in  ¼  1743  and  W tes

�  
t  ¼  1909,  respectively,  were  generated.  Thus,  the 

training  and  testing  of  the  final  sets  of  negative  images  were  defined  as:  I0t�
rain  ¼
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of 200 correct detections with 2 false positives). These results also show that using a
detection window size of 8� 8 or 16� 8 cells does not significantly affect system
performance.

In the definition of MLP structure, tests were performed using 5, 10, 15, and 20
neurons in the hidden layer. The results show variations of 0.5% of 10�3 FPPW, so we

Data set Performance Number
of cells

TPR FPR ACC FP FN

Airplane 0.955 0.00097 0.9963 3 9 16x8

Airplane 0.945 0.00060 0.9960 2 11 8x8

Butterfly 0.45 0.00130 0.9916 4 22 12x8

Butterfly 0.45 0.00190 0.9910 6 22 8x8

Carside 0.767 0.00097 0.9927 3 20 12x8

Carside 0.732 0.00097 0.9918 3 23 8x8

Chair 0.133 0.0 0.9916 0 26 12x8

Chair 0.233 0.00032 0.9923 1 23 8x8

Electric guitar 0.400 0.00032 0.9939 1 18 12x8

Electric guitar 0.400 0.00032 0.9939 1 18 8x8

Faces 0.960 0.00010 0.9987 0 4 16x8

Faces 0.760 0.00010 0.9924 0 24 8x8

Helicopter 0.375 0.00356 0.9884 11 25 16x8

Helicopter 0.500 0.00453 0.9891 14 20 8x8

Horses 0.741 0.0 0.9930 0 22 12x8

Horses 0.823 0.00388 0.9914 12 15 8x8

Ketch 0.680 0.00226 0.9926 7 16 10x10

Ketch 0.740 0.00064 0.9952 2 13 8x8

Laptop 0.650 0.00032 0.9952 1 14 16x16

Laptop 0.625 0.00064 0.9945 2 15 8x8

Motorbikes 0.960 0.00032 0.9972 1 8 16x8

Motorbikes 0.980 0.00001 0.9987 0 4 8x8

Piano 0.800 0.00064 0.9964 2 9 12x8

Piano 0.777 0.0 0.9968 0 10 8x8

Revolver 0.700 0.00194 0.9942 6 12 16x8

Revolver 0.675 0.00129 0.9945 4 13 8x8

Soccerball 0.241 0.00032 0.9926 1 22 12x12

Soccerball 0.241 0.00064 0.9923 1 22 8x8

Watch 0.660 0.00226 0.9871 7 34 12x8

Watch 0.700 0.00259 0.9880 8 30 8x8

Table 3.
Results of first experiment.
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decided to work with the smaller number of neurons to reduce the computational cost
of the system.

In second experiment, ORS HOG-MLP is configured as a multi-class recognition
system. Therefore, the system is trained to recognize several groups of objects belonging
to Table 2, where the number of objects by group can be 2, 3, 4, or 6. Thus, the training

set is defined as I0train�
n o

, c0
� �

, Wtrain_γ
þ

n o
, c1

� �
, … , Wtrain_γ

þ
n o

, cμ
� �n o

, μ ¼
2,3,4,6, and γ identifies the different objects belonging to a group; e.g.

I0train�
n o

, c0
� �

, Wtrain_cA
þ

� �
, c1

� �
, Wtrain_cC

þ
� �

, c2
� �

, Wtrain_cK
þ

� �
, c3

� �n o
is a group

that includes the airplane, carside, and motorbike objects, and the negative images are
associated with the class 0. For this group, the recognition phase uses I0test� ,Wtest_cA

þ ,
Wtest_cC

þ , and Wtest_cK
þ to evaluate system performance.

The configuration parameters of the HOG algorithm and MLP are the same as
those used in Experiment 1. Table 4 shows the results of this experiment. The results
of second experiment show that system performance is not affected when operating in
multiclass mode. This is deduced from the average values of TPR and ACC, which
indicate that the probability of correctly classifying an object is approximately 68%
and that the system accuracy fluctuates between 97% and 99%. e.g., for group2 = {air-
plane1, carside2, electricguitar3, motorbikes4, revolver5, watch6}, using a block of 8�8
cells, ORS HOG-MLP presents an ACC = 98% for airplane1 (corresponding to 196 out
of 200 correct detections with 4 false positives), and it presents an ACC = 99% for
motorbikes4 (corresponding to 198 out of 200 correct detections with 2 false posi-
tives). Those results make the robustness of the proposed system evident, when it is
used in multi-object recognition applications.

Finally, the performance of the proposed scheme is compared with several object
recognition schemes that have been cited frequently in related studies in this area.
Table 5 shows the results of this comparison.

Table 5 shows a comparison of our scheme’s performance with other results
reported in the literature. With an ACC performance of 99%, our method presents a
significant improvement over the previous result. The table also shows that the perfor-
mance of the proposed scheme is not significantly affected when used in multi-object

Method Data set

Motorbikes Cars

Object recognition scheme proposed in [35] 92.5% 88.5%

Object recognition scheme proposed in [37] 99.0% —

Object recognition scheme proposed in [38] 98.5% 95.0%

Object recognition scheme proposed in [39] 97.4% 96.7%

Object recognition scheme proposed in [40] 89.6% 66.3%

HOG + MLP (our proposal, one object) 99.87% 99.27%

HOG + MLP (our proposal, multi-objects) 3 objects 99.6% 99.0%

4 objects 99.5% 99.0%

6 objects 99.1% 98.9%

Table 5.
Performance comparison on accuracy for object recognition for two of the Caltech categories with other methods
from the literature.
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recognition  applications.  Zhang  et  al.  reported  a  similar  performance  with  99%  using  a  
scheme  composed  of  PCA-SIFT  method  and  shape  context  method  for  object 
representation  and  two-layer  AdaBoost  network  as  classification  technique  [37].
However,  due  to  the  methods  and  techniques  used  by  Zhang  et  al.,  this  scheme  presents 
a  computational  cost  relatively  greater  than  that  presented  by  our  proposal.

5.  Conclusions

Although object recognition is a very active area of research, it is still considered an 
overly complex task due to the following difficulties: 1. Objects of the same class with 
high variability in appearance. A class of objects can integrate elements with variations 
in shape, color, and texture. In addition, multiple factors such as position, lighting, and 
occlusions, among others, can increase these differences. 2. The lack of reference 
images for the training phase of the classifier. The available data are generally not 
enough to cover the variability in appearance of objects. Furthermore, there may be 
significant differences in the conditions of training and system operation.
  This research has placed special emphasis on the study of HOG algorithms for the 

feature extraction stage. This is because HOG has demonstrated that using normalized 
representations of objects can generate representations that provide discriminative 
information from the objects in an image. Furthermore, since HOG operates on local 
cells, it is invariant to geometric and photometric transformations as well as to 
changes in background and object position. On the other hand, it seeks to exploit the 
well-known features of the MLP to solve the problem that occurs when the limited 
data available during training are generally not enough to cover the variability in the 
appearance of objects.
  It is important to emphasize that the proposed improvement in the step of calcu-

lating the HOG algorithm gradient reduces the rate of false positives. It was also 
demonstrated that HOG can accurately represent different objects and offers good 
performance in multiclass applications. Finally, we show that a classifier that uses a 
neuronal approach is an excellent complement to a HOG-based feature extractor.
  It is the intention of this working group to use the proposed system in autonomous 

systems applications through its modeling on reconfigurable logic.
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Chapter 3

EEG and MRI Processing for 
Alzheimer’s Diseases
Elias Mazrooei Rad

Abstract

A new method for the diagnosis of Alzheimer’s disease in the mild stage is presented 
according to combining the characteristics of electroencephalogram (EEG) signal and 
magnetic resonance imaging (MRI) images. Then, proper features of brain signals are 
extracted according to the nonlinear and chaotic nature of the brain such as Lyapunov 
exponent, correlation dimension, and entropy. These features combined with brain 
MRI images properties include medial temporal lobe atrophy (MTA), cerebrospinal 
fluid flow (CSF), gray matter (GM), index asymmetry (IA), and white matter (WM) 
to diagnose the disease. Then two classifiers, the support vector machine and Elman 
neural network, are used with the optimal combined features extracted by analysis of 
variance. Results showed that between the three brain signals, and between the four 
modes of evaluation, the accuracy of the Pz channel and excitation mode was more than 
the others The accuracy of the results in Elman neural network with the combination 
of brain signal features and medical images is 94.4% and in the case without combining 
the signal and image features, the accuracy of the results is 92.2%. 

Keywords: EEG, MRI, Alzheimer’s diseases, SVM, Elman neural network

1. Introduction

Alzheimer’s disease is a progressive disease of the mental faculties commonly 
seen in the elderly. Significant symptoms of this disease are memory loss, judgment, 
and important behavioral changes in the person [1]. The disease results in the loss 
of synapses of neurons in some areas of the brain, necrosis of brain cells in different 
areas of the nervous system, the formation of spherical protein structures called aging 
plaques outside neurons in some areas of the brain, and fibrous protein structures 
called neurofibrillary Tangles. A spiral is identified in the cell body of neurons. There 
is currently no definitive diagnosis or treatment for this disease. The prevalence of 
Alzheimer’s disease is increasing rapidly [2]. The number of Alzheimer’s patients in 
Iran has almost doubled in 13 years, according to the Iranian Alzheimer’s Association. 
On the other hand, the costs of treatment, as well as care and nursing of these 
patients, are very high and difficult. This disease causes various mental disorders in 
the patient. It usually takes several years from the first signs of the disease to the acute 
stages of the disease, when most of the brain cells are destroyed. If this disease is not 
detected in time, new and up-to-date treatment methods will not work. The solution 
is to accurately identify the mechanism of this disease and its effect on brain signals, 
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which is very difficult due to the dynamic nature of EEG signals and medical images, 
which due to the complex nature of this disease as a result, we must determine the 
best and most effective indicator to identify this disease and how this indicator relates 
to the characteristics of the brain signal and medical images. Medical image analysis 
has become very important in the diagnosis of mild Alzheimer’s disease in recent 
years [3]. The high volume and complexity of medical images make early detection of 
Alzheimer’s disease difficult for physicians and increase the workload of radiologists, 
in which case the use of computer-aided diagnostic (CAD), including image process-
ing technologies, can help to increase the accuracy of diagnosis. The use of machine 
learning systems and deep processing of medical images with proper labeling and 
feature extraction can be one of the effective methods of diagnosing this disease [4]. 
Deep learning methods and machine learning techniques can be two effective and 
accurate methods in the early diagnosis of Alzheimer’s disease [5]. Hippocampal 
volume analysis is used in medical image processing to diagnose mild Alzheimer’s 
disease. Because before the atrophy creation, analyzing the volume of hippocampal 
material in MRI images can be used with deep processing techniques to extract proper 
features to identify mild-Alzheimer’s disease [6]. 3D segmentation of MRI images fur-
ther helps researchers diagnose Alzheimer’s disease and obtain important information 
[7]. Determining the degree of atrophy of MRI images is an effective method for early 
detection of Alzheimer’s disease. Also, assessing the degree of asymmetry in both the 
right and left hemispheres and analyzing volumetric mismatch can differentiate from 
mild to severe Alzheimer’s disease [7]. Using statistical features of signal and obtain-
ing temporal information and using spatial features of MRI images is an effective 
method for the more accurate evaluation of Alzheimer’s disease [8]. Cortical atrophy 
means the gradual destruction of the nerve cells that make up the upper regions of the 
brain, specifically the structures found in the cerebral cortex, mostly due to a reduc-
tion or loss of oxygen and nutrients in these areas. There are also different methods 
for evaluating the medial temporal lobe that has different functional accuracy [9]. 
Longitudinal T1-weighted MRI studies are another effective way to distinguish 
mild-Alzheimer’s patients from healthy ones [10]. Also, extracting the appropriate 
characteristics and deciding on the classification in this field are among the issues to 
be considered. Currently, there are several methods to diagnose this disease, and it 
is important to examine two issues in these methods. The cost of these methods and 
the acceptable accuracy are the points under consideration, so it seems necessary to 
identify a low-cost method with appropriate accuracy and precision. Therefore, in 
addition to extracting proper features of EEG signals and MRI images for AD diagno-
sis, another aim of this study is to identify the proper multimodal combining of these 
extracted features to increase the accuracy of mild-Alzheimer’s disease detection by 
using a proper classifier.

2. Materials and methods

In this study, 40 volunteers were used to record brain signals and MRI images in 
healthy, mild, and severely ill groups. The number of subjects is 19 in the healthy 
group, 11 in the mild patient group, and 10 in the severely ill group. Forty volunteers 
with an age range of 60 to 88 years have been used to record brain signals. All par-
ticipants in all groups were right-handed. Nineteen participants in the Mini-Mental 
State Exam (MMSE) test scored between 23 and 30 and were included in the group of 

45



3

EEG and MRI Processing for Alzheimer’s Diseases
DOI: http://dx.doi.org/10.5772/.107162

healthy people. Eleven participants with an MMSE score of 19 to 22 were classified as 
mild-Alzheimer’s patients, and finally, 10 participants with an MMSE score between 3 
and 18 were included in the group of severe Alzheimer’s patients.
  The Powerlab SP device with two amplifiers was used to record the brain signal. In 
this device, three channels for recording the brain signal and one channel for recording 
the EOG signal, and the other channel for the external audio signal for stimulation 
have been used so that the stimulation signal and ERP do not occur simultaneously.
The signal was recorded in 4-channel mode according to the standard 10–20. The 
sampling rate of the device is 1 kHz and 16 bits for each sample. Recording the brain 
signal in the form of subject training, recording the closed eye for 1 minute, record-
ing the open eye for 1 minute, and recording while performing the task assigned to
the subject, which includes A. Remembering the displayed shapes; B. The counting
of target and non-target sounds in an oddball auditory test. After proper labeling by 
the physician in segregation of healthy individuals, and mild and severe Alzheimer’s 
patients by MMSE test in the first part, how to record the brain signal in four steps
is explained to people and they are asked to relax during Keep records to prevent the 
formation of motion artifacts and other unwanted factors, and this method of reg-
istration does not cause harm to the person. After preparing the subject, we perform 
the second step. In the closed eye mode, we record the signal for 1 minute. Then in the 
third step, the subject will be asked to open the eyes and record the signal for 1 minute.
At the end of the third stage, the displayed images have no color so that the color fea-
ture does not have a different effect on different subjects. These images are displayed 
for 1 minute and after this time, the subject will be asked to close the eyes and recall
the images (review the images) in the mind. Meanwhile, brain signals will be recorded 
for 1 minute. Participants will then be asked to open their eyes and express the shapes 
one by one aloud. In the last part, a sound with a frequency of 1 kHz called non-target 
sound and 1.5 kHz sound called target sound will be given to the subject. Before 
playing these two categories of sound, this step has been taught to the subject. In the 
fourth part of section (b), these sounds are played, and the subject is asked to press
the right key as soon as hearing the target sound and the left key as soon as hearing the 
non-target sound. The interval between stimuli (sound playback) is 2 seconds and the 
sounds will be played randomly. The only important point is that 75% of the number
of stimuli is non-target sound and 25% of the number of stimuli is target sound. If we 
assume the total number of stimuli to be 120, we will have a total of 30 target stimuli 
and 90 non-target stimuli, which can be randomly distributed between the non-target 
stimuli at 2-second intervals. The playing time of each sound (target and non-target)
will be 300 milliseconds. This recording section is 276 seconds with the assumption of 
120 excitations and the total signal recording time for each subject is approximately
10 minutes. A sample image of recording brain signals is shown in  Figure 1.
  The first step in processing brain signals is to eliminate high- and low-frequency 
noise and interference and to remove motion artifacts. It is clear that the removal
of unwanted factors such as motion artifacts, signal deviation from the baseline,
high- and low-frequency noise, and reduction of sampling rate is necessary for proper 
processing of brain signals and extraction of optimal features, and this increases the 
accuracy of brain signal processing [11]. The motion artifacts in the brain signal are 
caused by contractions of the muscles of the head and neck as well as the movement
of the electrode. On the other hand, transpiration also causes frequency interference.
To eliminate these artifacts and noise from the city, a pass filter with cutoff frequen-
cies of 0.5 to 45 Hz was used [12].
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Neuroimaging techniques, physiological signs, and genetic analysis are methods 
used to diagnose Alzheimer’s disease [13]. To detect Alzheimer’s disease in its early 
stages, neuroimaging methods are used, which include SPECT, PET, and magnetic 
resonance imaging. The problem with SPECT and PET is the risks of radiation and 
its very high cost, time-consuming, and inconvenient. Therefore, apart from all 
these neuroimaging methods, MRI imaging is one of the standard methods used to 
diagnose Alzheimer’s disease. The advantage of this method is the ease of registration 
and economic cost over the above methods. MRI images should be at least 3 Tesla and 
the slices should be 3 mm thick so that acceptable images can be seen to examine the 
lesions of aging coils and spiral plaques. The MRI image is displayed in three different 
directions in Figure 2. Then, the appropriate image segmentation, mask, and sharp 
filter are used for pre-processing.

Various diagnostic tools from the clinical and processing areas for early diagnosis 
of Alzheimer’s disease have been reviewed. Methods of blood tests, speech therapy, 
physical function, and hearing status were first examined by a physician and then 
diagnosed with mild Alzheimer’s disease by recording an electroencephalogram 
and combining it with medical images [14]. First, the EEG signal is recorded from 
three channels Fz, Cz, Pz as unipolar and then MRI images from the peritoneal area. 
Combining MRI images and EEG signals can be a way to diagnose mild Alzheimer’s 
disease. Medial temporal lobe atrophy, cerebrospinal fluid, white and gray matter 
volume, and asymmetry between the two hemispheres are effective features in MRI 
images to diagnose Alzheimer’s disease. Another approach to EEG signal analysis 
is nonlinear and dynamic signal methods. The parameters that express nonlinear 
behavior are dual. The first category is parameters that emphasize the dynamics 
of signal behaviors such as entropy and Lyapunov’s exponent. These parameters 
describe how the system behaves over time. The second category emphasizes the 
geometric nature of motion paths in state space, such as the correlation dimension. In 
this view, the system is allowed to move in the adsorption bed at the appropriate time 
and then, the geometric dimension of the adsorption bed is obtained. One of the most 
important tools used to understand the behavior and dynamics of time series of vital 
signals, which are mainly extracted from nonlinear systems, is the phase diagram. 

Figure 1. 
A sample research participant during brain signal recording.

47



5

EEG and MRI Processing for Alzheimer’s Diseases
DOI: http://dx.doi.org/10.5772/.107162

Using this tool, the behavioral characteristics and chaotic nature of the data can be 
demonstrated appropriately and qualitatively, as well as important parameters such as 
the path of the system in the state space [15]. In order to draw this diagram using the 
recorded time series, it is enough to draw each sample at any time in terms of another 
sample in the previous time. Figure 3 shows the two-dimensional phase curve, and 
Figure 4 shows the three-dimensional phase curve of the Fz, Cz, and Pz channels of 
the EEG signal from a healthy person with the eyes closed.

Lyapanov’s exponent shows the average convergence or divergence of the tra-
jectory path in the phase space. The correlation dimension shows the number of 

Figure 2. 
MRI image in three different modes.

Figure 3. 
Two-dimensional phase curve of Fz, Cz, Pz channels EEG signal in closed eye.
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independent variables needed to describe the dynamics of the system and is another 
way to examine the chaotic signal. If the correlation dimension of a path is zero, it 
represents a steady state of the system, and if the value is equal to one, it represents 
prodigal behavior. The value of this variable is incorrect when chaotic behavior 
occurs. The higher the value of this parameter, the more complex the nonlinear sys-
tem. Therefore, it can be said that the correlation dimension is the degree of complex-
ity of the distribution of points in the phase space. Figure 5 compares the correlation 
dimension of Pz channels between 3 groups of healthy people, mild patients, and 
severe patients. The amount of this feature decreases with the severity of the disease, 
which is evident in the Pz channel.

In patients with a clinical diagnosis of Alzheimer’s disease, atrophy of the 
inner part of the temporal lobe is evident [16]. In the autosomal dominant form 
of Alzheimer’s disease, atrophy of the inner part of the temporal lobe in patients, 
compared with controls, can be detected up to 3 years before the onset of clinical 
signs of cognitive impairment. In patients with Alzheimer’s disease, hippocampal 
atrophy was reduced (10–50%), the amygdala was reduced to 40%, and parahippo-
campus was reduced to 40% compared with the control group, which was standard-
ized for age. There is compelling evidence that atrophy of the internal structures of 
the temporal lobe, especially the hippocampus and entorhinal cortex, occurs early 
in the course of the disease and even before the onset of clinical symptoms [17]. The 
severity of changes in imaging of healthy elderly people makes it difficult to use MRI 

Figure 4. 
Three-dimensional phase curve of Fz, Cz, Pz channels EEG signal in closed eye.
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as a definitive diagnostic method. By the time mild symptoms appear, the volume of 
the hippocampus may have decreased by more than 25%. Clinically, a reduction in 
hippocampal volume is associated with the severity of clinical signs and symptoms 
of memory loss, the patient’s score on cognitive evaluation tests, and pathologi-
cal findings. Figure 6 shows the determination of spinal atrophy and asymmetry. 
However, another group believes that there is no clear association between lesions 
in the course of dementia, including lesions of hyperexcitability of white matter on 
MRI, and the severity of the symptoms of post-adjustment cognitive impairment for 
age. They believe that due to the high sensitivity of MRI in the diagnosis of hyperex-
citability lesions in T2 view and on the other hand the low specificity of these lesions 
in the diagnosis of the disease, there is a weak relationship between MRI findings and 
clinical and neuropathological symptoms. Eq. (1) shows how to determine medial 
temporal lobe atrophy (MTA):

Figure 5. 
Dimensional comparison of Pz channel correlation for three groups of healthy subjects, mild patient and severe 
patient.

Figure 6. 
How to determine atrophy in MTA images.
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A: Internal temporal loop area.
B: Hippocampus and parahippocampus.
C: Unilateral lateral ventricle.

			   ( )= − ×MTAi A B 10 /C  				              (1)

		  = = =Cleft : Area 187.3mm2, 691.1, 128.3.Avg Dev 	

		  = = =Cright : Area 173.1mm2, 648.2, 146.2.Avg Dev 	

		  = = =Aleft : Area 324.7mm2, 323.9, 238.1.Avg Dev 	

		  = = =Aright : Area 325.5mm2, 245.3, 191.3.Avg Dev 	

		  = = =Bleft : Area 200.3mm2, 190.8, 121.6.Avg Dev 	

		  = = =Bright : Area 220.1mm2, 160.4, 118.3.Avg Dev 	

When MTAi is calculated, two values are determined that each corresponds to a 
hemisphere. According to MTAi, the asymmetry index is calculated as Eq. (2), and 
the mean values of MTAi and IA for the three groups are given in Table 1 (Figure 7).

	 ( ) ( )= − + ×lMTAi dMTAi / lMTAi dMTAi 100IA  	 (2)

Measurement of cerebrospinal fluid, gray matter, and white matter volumes from 
MRI images has been used to diagnose mild Alzheimer’s disease [18].

In this study, nonlinear property that reflects the dynamic nature of the brain 
signal, including Lyapunov exponent and correlation dimension, is also determined. 
On the other hand, in order to determine the optimal characteristics in three classes of 
healthy people, mild patients, and severe patients, the method of analysis of variance 
has been used. Brain signals from the three channels Fz, Cz, and Pz are recorded in 
four modes: closed-eye, open-eye, reminder, and stimulus. Forty-five properties are 
specified in the excitation mode. Table 2 shows the results of analysis of variance for 
three channels of Fz, Cz, and Pz between the group of healthy individuals, and mild 
and severe patients [19]. This analysis method is used in the classification of three or 
more classes to determine the optimal and effective characteristics.

Group Mean MTAi Mean IA

Healthy 2.3 1.7

Mild AD 4.5 2.5

Severe AD 5.7 3.3

Table 1. 
Mean values of MTAi and IA for the three groups are given.
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In this study, the purpose of using the classifier, after extracting the optimal 
characteristics of brain signals, was to separate the three groups of healthy people, 
mild and severe patients, and two classifiers such as SVM and the Elman neural net-
work been used, aiming at comparing static and dynamic classifiers [20]. One of the 
classification methods with the teacher is the backup vector machine method. This 
view is based on statistical learning theory, but its implementation is similar to the 
neural network. This method was designed to separate data into two categories. Of 
course, if you use several SVMs in parallel and with different methods, this method 
can be used to classify data into more than two categories. SVM claims: It solves the 
major problem of neural networks, namely overfitting [21]. The results of EEG signal 
accuracy of different channels in different modes are determined at two levels (mild-
severe, mild-healthy, and healthy-severe). Due to the linear separator for three classes 
containing poor results accuracy, levels are divided into two levels. In this study, a 
2-layer Elman neural network was used which has 8 neurons in the latent layer and 1 
neuron in the output layer [22]. The number of neural network inputs is equal to the 
number of features, and the number of hidden layer neurons is equal to the number 
of optimal features, and to determine the best results, various experiments with 

Figure 7. 
Cerebrospinal fluid, gray and white matter volume in the image in 18th slice of a participant with mild AD.

Channel Benefit features with ANOVA Number of benefit feature

Fz A-band power,D3-absolute Mean,D3-average 
power,D3-Std,Coherence

5

Cz A-band power,D3-absolute Mean,D3-average 
power,D3-Std,Colierence,L-ave,D2

7

Pz T-band power, A-band power,D3-absolute Mean,D3-average 
power,D3-Std, Coherence,L-ave,D2,ApEn

9

Table 2. 
Compare the number and types of optimum features between Fz, Cz, Pz channels.
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different numbers of neurons in the hidden layer have been performed. In the hidden 
layer and the output, the Sigmoid activation function is used due to its nonlinear 
property. There are many training functions for teaching the Elman network, wherein 
in this study the Levenberg-Marquardt error propagation algorithm was used due 
to higher convergence than other training functions, and the condition for stopping 
neural network training is an error coefficient of 0.001.

3. Block diagram of proposed method

Figure 8 shows the block diagram of the steps of the proposed method to diagnose 
Alzheimer’s disease.

4. Result

Selected optimal features by ANOVA method in four modes of the closed eye, 
open eye, Reminder and stimulation are shown in Table 2 to compare the number 
and types of optimum features between Fz, Cz, Pz channels. The results of the 
accuracy of the separation of brain signals using SVM with different core func-
tions with optimal characteristics obtained from ANOVA are shown in Figure 8. 
Figure 9 evaluates closed-eye, open-eye, reminder, and stimulation modes for the 
desired channels. According to the four modes of closing the eyes, opening the eyes, 
reminding and stimulating the brain signal, in order to better identify and intro-
duce the features more accurately, each section is considered with a certain index. 
The closed part is considered with index c, the open eye part is considered with 
index o, the reminder part is with index r, and the stimulation part is considered 

Figure 8. 
Results of SVM signal separation accuracy with different core functions with optimal characteristics obtained.
from ANOVA.
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with index s. In the excitation section, the target and non-target sound sections are 
defined with st and ss indices, respectively. In Figure 10, the results of separation 
of brain signals by SVM classifier with different main functions are compared with 
optimized ANOVA features with MRI features and without MRI features.

Due to the comparison of the results in Figure 11, by the support vector machine 
with different cores by the optimal brain signal characteristics by ANOVA with the 
addition of MRI image features, the accuracy of the results is reduced compared to the 
case where only the brain signal features are used.

Finally, by using neural network dynamics because of the nonlinear properties 
studied and due to the nonlinear dynamics of the EEG signal, Elman neural network 
is used. The results in Figure 12 are compared by Elman with the optimal features of 
the brain signal obtained from ANOVA and with the addition of the features of MRI 
images, and the accuracy of the results is increased compared to the case where only 
the features of the brain signal are used.

Figure 9. 
Evaluation of closed-eye, open-eye, reminder and excitation modes for Fz, Cz, Pz channels in ANOVA mode.

Figure 10. 
Compares the results of the resolution of brain signals by the SVM classifier with different core functions with 
ANOVA-optimized features with MRI features and without MRI features.
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5. Discussion

Medical image analysis has become very important in the diagnosis of mild 
Alzheimer’s disease in recent years [3]. But the important point is that from the way 
of analyzing medical images, we can determine the most effective channel for record-
ing brain signals. 3D segmentation of MRI images further helps researchers diagnose 
Alzheimer’s disease and obtain important information [7]. And in 3D images, the 
most appropriate direction in the image is effective in determining the appropriate 
features. Determining the degree of atrophy of MRI images is an effective method 
for early detection of Alzheimer’s disease. Also, assessing the degree of asymmetry in 
both the right and left hemispheres and analyzing volumetric mismatch can differ-
entiate between mild and severe Alzheimer’s disease [7]. The degree of asymmetry 

Figure 12. 
Compared by Elman with the optimal features of the brain signal obtained from ANOVA and with the addition 
of the features of MRI images.

Figure 11. 
Support vector machine with different cores by the optimal brain signal characteristics by ANOVA with the 
addition of MRI image.
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in the left and right hemispheres should be determined by the degree of atrophy and 
the ratio of the volume of gray matter to the volume of white matter. Using statistical 
features of signal and obtaining temporal information and using spatial features of 
MRI images is an effective method for the more accurate evaluation of Alzheimer’s 
disease [8]. The statistical properties of the signal are temporal in nature and the 
statistical properties of the image are spatial in nature. Cortical atrophy means the 
gradual destruction of the nerve cells that make up the upper regions of the brain,
specifically the structures found in the cerebral cortex, mostly due to a reduction or 
loss of oxygen and nutrients in these areas. There are several methods for examining 
the Medial temporal lobe, the accuracy of which is not clear [9]. However, this condi-
tion is more suitable for mild patients. Longitudinal T1-weighted MRI studies are 
another effective way to distinguish mild Alzheimer’s patients from healthy ones [10].
But this feature has better results in severe patients to differentiate with mild patients.
Also, extracting the appropriate characteristics and deciding on the classification in 
this field are among the issues to be considered.

6. Conclusion

  Investigation and analysis of nonlinear dynamics of brain signal show nonlinear 
and dynamic behavior in different stages of Alzheimer’s disease. Nonlinear dynamics 
analysis of this signal shows a decrease in the complexity of the brain signal pat-
tern and a decrease in connections due to a decrease in the nonlinear cell dynamics 
between cortical regions. The next two features are correlation and Lyapanov’s 
appearance, which indicates the feature space, and the convergence or divergence
of this space is slightly reduced in this disease. The courses studied are closed-eyed,
open-eyed, reminder, and stimulation, and among these four periods, the stimula-
tion period was the best period for recording brain signals, because to diagnose 
Alzheimer’s disease, it is more effective to evaluate the speed of stimulus-response.
The mean rate of asymmetry and the mean rate of temporal lobe atrophy increase 
with the progression of Alzheimer’s disease because the amount of damage to the 
temporal lobe in MRI images of Alzheimer’s disease has increased. The accuracy of
the results in Elman neural network with the combination of brain signal features
and medical images is 94.4% and in the case without combining the signal and image 
features, the accuracy of the results is 92.2%. The use of nonlinear classifiers is more 
appropriate than other classification methods due to the nonlinear dynamics of the 
brain signal. The accuracy of the results in the support vector machine with RBF
core with the combination of brain signal features and medical images is 75.5% and
in the case without combining the signal and image features, the accuracy of the 
results is 76.8%. Due to its nonlinear and normal distribution nature, this nucleus
has been able to produce better results. Among the processing methods proposed to 
classify the three classes of healthy, mild, and severely ill, the method of combining 
brain signal characteristics and medical images has increased the accuracy of Elman 
classifier results and decreased the accuracy of SVM results. Because spatial features 
do not have the same nature as temporal features, and if the classifier divides the 
groups based on linear and non-return methods by extracting inappropriate features,
the correct results will not be created. The main innovation in this research is the 
extraction of the most appropriate features and the appropriate combination of 
spatial features of medical images and temporal features of brain signals to diagnose 
Alzheimer’s disease.
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Chapter 4

Saliency Detection from Subitizing
Processing
Carola Figueroa-Flores

Abstract

Most of the saliency methods are evaluated for their ability to generate saliency 
maps, and not for their functionality in a complete vision pipeline, for instance, image 
classification or salient object subitizing. In this work, we introduce saliency subitizing 
as the weak supervision. This task is inspired by the ability of people to quickly and 
accurately identify the number of items within the subitizing range (e.g., 1 to 4 
different types of things). This means that the subitizing information will tell us the 
number of featured objects in a given image. To this end, we propose a saliency 
subitizing process (SSP) as a first approximation to learn saliency detection, without 
the need for any unsupervised methods or some random seeds. We conduct extensive 
experiments on two benchmark datasets (Toronto and SID4VAM). The experimental 
results show that our method outperforms other weakly supervised methods and even 
performs comparable to some fully supervised methods as a first approximation.

Keywords: saliency prediction, subitizing, object recognition, deep learning and 
convolutional neural network

1. Introduction

For humans, object recognition is a nearly instantaneous, precise, and extremely
adaptable process. Furthermore, it has the innate ability to learn new classes of objects
from a few examples [1, 2]. The human brain reduces the complexity of incoming data
by filtering out some of the information and processes only those things that grab our
attention. This, combined with our biological predisposition to respond to certain
shapes or colors, allows us to recognize at a glance the most important or outstanding
regions of an image. This mechanism can be observed by analyzing which parts of the
images humans pay more attention to; for example, where they fix their eyes when
they are shown an image [3, 4]. The most accurate way to record this behavior is by
tracking eye movements, while the subject in question is presented with a set of
images to evaluate. Computational estimation of saliency (or salient or salient regions)
aims to identify to what extent regions or objects stand out from their surroundings or
background to human observers. Saliency maps can be used in a wide range of
applications, including object detection, image and video understanding, and eye
tracking. On the other hand, it is known that the human visual system can effortlessly
identify the number of objects in the range 1 to 4 by having just one glance [5]. Since
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then, this phenomenon, coined later by [6] as subitizing, has been studied and tested
in various experimental settings [7].

Therefore, inspired by subitizing and the results obtained in [8, 9], the main
objective of this project is to incorporate the subitizing of salient objects (SOS), in
order to improve our previous results. This means that the subitizing information will
tell us the number of outgoing objects in a given image and thus subsequently provide
us with the location or appearance information of the outgoing objects explicitly, and
everything will be done within a weakly supervised configuration. It should be noted
that when the network is trained with the subitizing supervisions, the network will
learn to focus on the regions related to the outgoing objects. Therefore, it will design a
saliency subitizing process (SSP) architecture that is responsible for extracting atten-
tion regions as saliency map. A second module that is in charge of improving the
quality of the saliency masks can be defined as the saliency map update process
(SUP), which will basically be in charge of refining the activation regions in an end-
to-end way. It will then merge the source images and saliency maps to get the masked
images as new inputs for the next refinement. Finally, in this work we propose to
design and build a convolutional neural network (CNN), which will basically consist
of a process that will be in charge of SSP and a function that will help us in the task of
SUP. The first SSP will serve as a support to obtain and calculate the number of
outstanding objects and thus extract the saliency maps with their respective locations.
Instead, SUP will help us update the saliency masks produced by the first module. The
general model of our proposal is shown in Figure 1.

However, as this work is a first attempt at the final result, it will only consider the
development, experimentation, and explanation associated with step 1.

It briefly summarizes below its main contributions:

• It proposes an approach that generates saliency maps from subitizing of saliency
process (SSP),

Figure 1.
Overview of our proposed method with the saliency subitizing process (SSP) and the saliency updating process
(SUP).
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• Our  saliency  does  not  require  any  saliency  maps  for  training  (like  previous  works
[10,  11])  but  instead  is  trained  indirectly  in  an  end-to-end  fashion  by  training  the 
network  for  image  classification  with  subitizing  saliency  process  (SSP).

• The  saliency  maps  obtained  without  using  any  saliency  groundtruth  data  shows 
competitive  results.

  The  chapter  is  organized  as  follows.  Section  2  is  devoted  to  review  the  related  work 
in  saliency  detection.  Section  3  presents  our  approach.  Experimental  results  are 
reported  in  Section  4.  Finally,  Section  5  contains  our  conclusions.

2. Related  work

  Saliency  is  generally  known  as  local  contrast  [12],  which  generally  originates  from 
contrasts  between  objects  and  their  surroundings,  such  as  differences  in  color,  tex-
ture,  shape.  This  mechanism  measures  intrinsically  salient  stimuli  to  the  vision  system 
that  primarily  attracts  the  attention  of  humans,  in  the  initial  stage  of  visual  exposure 
to  an  input  image  [13].  To  quickly  extract  the  most  relevant  information  from  a  scene,
the  human  visual  system  pays  more  attention  to  highlighted  regions,  as  seen  in
Figure  1.  Research  on  computational  saliency  focuses  on  the  design  of  algorithms  that,
like  human  vision,  predict  which  regions  of  a  scene  stand  out  [14,  15].

  Initial  efforts  to  model  saliency  involved  multi-scale  representations  of  color,  orien-
tation,  and  intensity  contrast.  These  were  often  biologically  inspired,  such  as  the  well-
known  works  [12,  16].  From  that  model,  a  large  number  of  models  were  based  on  the 
manual  elaboration  of  these  features  to  obtain  an  accurate  saliency  map  [17,  18],  either 
maximizing  [19]  or  learning  statistics  from  natural  images  [13,  20].  Relevancy  research 
was  further  driven  by  the  availability  of  large  datasets  that  enabled  the  use  of  machine 
learning  algorithms  [21],  primarily  pre-trained  on  existing  human  fixation  data.
  The  question  of  whether  saliency  is  important  for  object  recognition  and  tracking 
has  been  raised  in  [22].  More  recent  methods  [23]  take  advantage  of  end-to-end 
convolutional  architectures  by  fine  graining  on  fixation  prediction  [4,  24,  25].  But  the 
main  goal  of  these  works  was  to  estimate  a  saliency  map,  not  how  saliency  might 
contribute  to  object  recognition.
  Several  works  have  shown  that  having  the  saliency  map  of  an  image  can  be  useful 
for  object  recognition,  for  example,  [8,  10,  11].  Since  the  saliency  map  can  help  focus 
attention  on  the  relevant  parts  of  the  image  to  improve  recognition,  additionally,  it  
can  help  guide  training  by  focusing  backpropagation  on  relevant  image  regions.  Pre-
vious  work  has  shown  that  saliency  modulated  image  classification  (SMIC)  is  espe-
cially  efficient  for  training  on  data  sets  with  few  labeled  data  [10].  The  main  drawback 
of  these  methods  is  that  they  require  a  trained  saliency  method.  Also,  Refs.  [8,  9]  show 
that  this  restriction  can  be  removed  and  that  it  can  hallucinate  the  saliency  image  from 
the  RGB  image.  By  training  the  network  for  image  classification  on  the  ImageNet 
dataset  [26],  it  can  obtain  the  saliency  branch  without  using  human  reference  images.
  Recently,  the  progress  in  the  detection  of  salient  objects  has  grown  substantially,
mainly  benefiting  from  the  development  of  deep  neural  networks  (CNN).  In  [27],  a  
CNN  based  on  the  use  of  superpixels  for  saliency  detection  was  proposed.  Instead,  Li 
et  al.  [28]  used  multi-scale  features  extracted  from  a  deep  CNN.  Zhao  et  al.  [29]
proposed  a  multi-context  deep  learning  framework  to  detect  salient  objects  with  two 
different  CNNs,  which  were  useful  for  learning  local  and  global  information.  Yuan
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et al. [30] proposed a saliency detection framework, which extracted the correlations
between object contours and RGB features of the image. On the other hand, Wang and
Shen [31] defined a pyramid-shaped structure to expand the receptive field in visual
attention. Hou and Zhang [32] introduced short connections for edge or contour
detection. Zhu [33], on the other hand, proposed a visual attention architecture called
DenseASPP, to extract information. Chen [34] proposed a spatial attenuation context
network, which recursively translated and aggregated the context features in different
layers. Tu [35] introduced an edge-guided block to embed boundary information in
saliency maps. Zhou [36] proposed a multi-type self-attention network to learn more
semantic details from degraded images. However, these methods rely heavily on
pixel-based monitoring. Overcoming the scarcity of pixel-based data, it focusses on
the saliency detection task.

2.1 Weakly supervised saliency detection

There are many works using weak supervisions for the saliency detection task. For
example, Li [37] used the image-level labels to train the classification network and
applied coarse activation maps as saliency maps. Wang [38] proposed a weakly
supervised two-stage method by designing an inference network to predict fore-
ground regions and global smooth pooling (GSP) to aggregate responses from those
predicted objects. On the other hand, Zeng [39] designed a unified network, which is
capable of weak monitoring of multiple sources, including image labels, captions, and
pseudo-labels. Furthermore, they designed a loss of attention transfer to transmit
signals between subnetworks with different supervisions.

Different from the previous methods, it proposes to use subitizing information as
weak supervision in the saliency detection task, where it will first study the problem
of subitizing of the outgoing object and the relationships between subitizing and
saliency detection.

3. Proposed method

This work proposes to design and implement a convolutional neural network,
which will consist mainly of saliency subitizing process (SSP). The SSP will help us to
count the highlighted objects and at the same time extract the saliency from the maps
that will contain the locations (positions) of the objects.

3.1 Subitizing of saliency process (SSP)

It should be noted that the information provided by the subitizing process will
indicate the number of outgoing objects in a given image [40]. Therefore, it will not
explicitly provide the location or information related to the appearance of the output
objects. However, when the network is being trained with subitizing (simulating
supervised learning), the network will learn to focus on the regions related to the most
salient (or salient) objects. Training images are divided into five categories based on
the number of salient objects: 0, 1, 2, 3, and 4 or +. For the same reason, it will design
the SSP to extract these regions as if it were a saliency mask. During this process, a
classification network will be used for the object subitizing task, in this context
ResNet-152 or ResNet50 [41] and AlexNet [42] as “backbone network,” which are
pre-trained from the ImageNet dataset [43].

4
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I ¼
X
I∈D

logpc Ið Þ yjIð Þ (1)

In addition, it applies the technique of the gradient-weighted class activation map-
ping (Grad-CAM) [44] to extract salient regions as the initial saliency maps, which
contains the gradient information flowing into the last convolutional layers during the
backward phase. The gradient information represents the importance of each neuron
during inference of the network. It assumes that the features produced from the last
convolutional layer has a channel size of K. For a given image, let f k be the activation of
unit K, where k∈ 1, K½ �. For each class c, the gradients of the score yc with respect to
activation map f k are averaged to obtain the neuron significant weight ack of class c:

ack ¼
1
N

Xm
i

Xh
j

∂yc

∂f ki,j
(2)

where i and j represent the coordinates in the features map N ¼ m� h. With the
neuron importance weight ack, we can compute the activation map Mc:

Mc ¼ ReLU
X
k

ackf
k

 !
(3)

And, finally it adds an activation map with ReLU (rectified linear unit) function
layer; this function filters negative gradient values, since only the positive ones con-
tribute to the class decision, while the negative values contribute to other categories.
The size of the saliency map is the same as the size of the last convolutional feature
maps (1/8 of the original resolution). This process is shown in Figure 2.

Figure 2.
The pipeline of the saliency subitizing process (SSP).
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  Also,  it  uses  cross-entropy  as  the  classification  loss  (see  Eq.  (1)).  In  order  to  obtain 
denser  saliency  maps,  the  stride  of  the  last  two  down-sampling  layers  is  set  as  1  in  our 
backbone  network,  which  produces  feature  maps  with  1/8  of  the  original  resolution 
before  the  classification  layer.  In  order  to  enhance  the  representation  power  of  the 
proposed  network,  it  also  applies  two  attention  modules:  channel  attention  module 
and  spatial  attention  module,  which  tell  the  network  “where”  and  “what”  to  focus,
respectively.  Both  of  them  are  placed  in  a  sequential  way  between  the  ResNet  blocks 
and  AlexNet  convolutional  layers.
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4. Experiments

This section discusses the advantage of SSP that help us to learn counting of salient
objects and extract coarse saliency maps with the precise locations of the target
objects.

4.1 Experimental setup

Datasets. The saliency maps have been computed for images from a distinct eye-
tracking dataset, corresponding to 120 real scenes (Toronto) [19] and 230 synthetic
images with specific feature contrast (SID4VAM) (see Table 1) [45]. These images
datasets have been computed with our approach, a supervised artificial model that
specifically computes high-level features (DeepGazeII, ML-Net (multi-level net),
SAM (saliency attentive model), salGAN), and models biological inspiration (IKN
(Itti, Koch, and Niebur) [16], AIM [19] (saliency based on information maximiza-
tion), SDLF (saliency detection by using local features) [20], and GBVS (graph-based
visual saliency) [13]).

Networks architectures. It evaluates approach using two network architectures:
AlexNet [42] and ResNet-152 [41]. It is modified to meet our requirement. In both
cases, the weights were pretrained on ImageNet and then fine-tuned on each of the
datasets mentioned above. The networks were trained for 70 epochs with a learning
rate of 0.0001 and a weight decay of 0.005. The top classification layer was initialized
from scratch using Xavier method [46]. The SSP consists of four convolutional layers
for AlexNet and four residual blocks for ResNet-152.

Comparison. This work compares its proposal with other models (see Tables 2
and 3—rows 8) from fixation data. For instance, DeepGazeII summed the center
baseline, whereas in ML-Net and SAM, the learned priors are used for modulating the
result of the network.

4.2 Results

4.2.1 First experiment: Multiple networks

In order to evaluate how accurately the saliency map is able to match the location
of human fixations, it used a set of metrics previously defined by [17].

In Table 4 we show results of area under ROC (AUC), correlation coefficient
(CC), normalized scanpath saliency (NSS), Kullback-Leibler divergence (KL), and
similarity (SIM) for every network for all datasets.

The area under ROC (AUC) is considered as true positives, the saliency map values
coincide with a fixation and false positives, and the saliency map values that have no
fixation then compute the area under the curve. Similarly, the NSS computes the

Data Set Type # Images # PP pxva Resolution

Toronto Indoors and outdoors 120 20 32 681x511

SID4VAM Synthetic pop-out 230 34 40 1280x1024

pxva: pixels per 1 degree of visual angle, PP: participants.

Table 1.
Characteristics of eye-tracking datasets.
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average normalized saliency map that coincides with fixations. Other metrics such as
CC, KL, and SIM compute the score upon the region distribution statistics of all pixels
(KL calculating the divergence and CC/SIM the histogram intersection or similarity of
the distribution).

KLAUCMethod ↓ InfoGainsAUCSIM

IKN [16] 1.2490.782 0.6500.366 �0.024

0.6630.3141.6120.716AIM [19] �0.580

0.6640.3041.5180.703SDLF [20] �0.398

GBVS [13] 1.1680.803 0.6320.397 0.077

DeepGazeII [24] 0.838 0.7630.3251.367 �0.200

2.4200.725SAM-ResNet [4] 0.516 0.666 �1.555

SalGAN [47] 0.818 1.272 0.7150.435 0.392

0.5970.3991.4090.740Our Approach (SSP) �0.399

2.4250.9021.0000.0000.954GroundTruth (Humans)

Table 2.
Comparison of our saliency output with standard benchmark methods over real image Toronto dataset for
saliency prediction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep saliency models. Best
score for each metric is defined as bold and TOP-3 scores are italicized.

KLAUCMethod ↓ InfoGainsAUCSIM

IKN [16] 0.678 0.6080.3801.748 �0.233

0.5570.22414.4720.566AIM [19] �18.181

0.5960.3223.9540.607SDLF [20] �3.244

GBVS [13] 0.718 1.363 0.6280.413 0.331

0.610DeepGazeII [24] 1.434 0.5710.335 �0.964

2.6100.673SAM-ResNet [4] 0.388 0.600 �1.475

0.5930.3732.5060.662SalGAN [47] �1.350

Our Approach (SSP) 0.741 1.658 0.6330.445 �0.122

2.8020.8601.0000.0000.882GroundTruth (Humans)

Table 3.
Comparison of our saliency output with standard benchmark methods over synthetic image SID4VAM dataset for
saliency prediction. (Top) Baseline low-level saliency models. (Bottom) State-of-the-art deep saliency models. Best
score for each metric is defined as bold and TOP-3 scores are italicized.

KLNSSCCAUC-BorjiAUC-JuddModelDataset ↓ SIM

1.38880.46030.72980.7655AlexNet 1.5155 0.3955

ResNet152Toronto 1.63910.54400.74430.7911 1.6891 0.4410

1.41060.38890.73660.6910AlexNet 0.43851.7152

ResNet152SID4VAM 1.11550.39100.77230.7015 0.39961.9890

Table 4.
Benchmark of our method with different networks (top 1 networks are italicized).
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After computing the saliency maps for all datasets (see in Table 4) with AlexNet
and ResNet152, we observed that metric scores vary considerately depending on
dataset or network. AlexNet is shown to provide best results for pop-out patterns
(SID4VAM), whereas ResNet152 shows overall higher scores with real images of
Toronto dataset.

4.2.2 Second experiment: Qualitative results

These saliency prediction results show that our model has robust metric scores on
both real and synthetic images for saliency prediction. Again, we would like to stress
that our model is not trained on fixation prediction datasets (Figure 3). Its model with
subitizing supervision performs best on detecting pop-out effects (from visual atten-
tion theories [16]) while performing similarly for real image datasets (Figure 4).
Some deep saliency models use several mechanisms to leverage (or/and train) perfor-
mance for improving saliency metric scores, such as smoothing/thresholding (see
Figure 4, row 4). It is also considered that some of these models are already fine-
tuned for synthetic images (e.g., SAM-ResNet [4]). Our approach (which has not been
trained in these type of data sets) has shown to be robust on these two distinct
scenarios/domains.

4.3 Evaluation benchmark of saliency estimation

Here, we compare the saliency estimation that is obtained after only performing
Step 1 in Figure 1 with existing saliency models (see Table 5). This saliency estima-
tion is trained without access to any groundtruth saliency data.

Saliency prediction metrics assign a score depending on how well the predicted
saliency map is able to match with locations of human fixations (see definitions in
Borji et al. [17]). It selected the area under ROC (AUC), Kullback-Leibler divergence
(KL), similarity (SIM), shuffled AUC (sAUC) and information gain (IG) metrics
considering its consistency of predictions of human fixation maps. It compares scores

Figure 3.
Qualitative results for real images (Toronto dataset). Each image is represented in a different column and each
model saliency map in each row. The ground truth density map of human fixations is represented in the second
row.
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with classical saliency models, both with handcrafted low-level features (i.e., IKN
[16], AIM [19], SDLF [20], and GBVS [13]) and with state-of-the-art deep saliency
models (i.e., DeepGazeII [24], SAM-ResNet [4], and SalGAN [47]) mainly pretrained
on human fixations. The results are surprising; our method, which has not been
trained on any saliency data, obtains competitive results. For the case of Toronto
(Table 2), the best model is GBVS, followed by our model, which scores in the top 3
of KL and SAM-ResNet and scores slightly higher in InfoGain metric. For the case of
SID4VAM (Table 3), our approach gets the best scores for most metrics compared
with other deep saliency models, being mainly among the top 2 acquiring similar
scores to GBVS in most metrics (outperforming it in AUC measures).

These saliency prediction results show that our model has robust metric scores on
both real and synthetic images for saliency prediction. Again, we would like to stress
that our model is not trained on fixation prediction datasets and our model with
subitizing supervision (SUP) performs best on detecting pop-out effects (from visual
attention theories [16]), while performing similarly for real image datasets (Figure 4).
Some deep saliency models use several mechanisms to leverage (or/and train) perfor-
mance for improving saliency metric scores, such as smoothing/thresholding (see
Figure 4, rows 5). It also considers that some of these models are already fine-tuned
for synthetic images (e.g., SAM-ResNet [4]). Our approach (which has not been
trained in these types of datasets) has shown to be robust on these two distinct
scenarios/domains.

5. Conclusions

In this chapter, we proposed a method for the saliency estimation with weak
subitizing supervision. We designed a model with the saliency subitizing process
(SSP), which generates the initial saliency map using subitizing information. Without
any seeds from unsupervised methods, this method outperforms other weakly super-
vised methods and even performs comparable to some fully supervised methods.

Figure 4.
Qualitative results for synthetic images (SID4VAM dataset). Each image is represented in a different column and
each model saliency map in each row. The ground truth density map of human fixations is represented in the second
row.
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Finally, as this work is a first approximation, future work would be to verify how its
saliency map would improve if the SUP update module were added.
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Additional information

This chapter is a continuation of my PhD thesis, previous works related to the
subject of saliency, and the use of the subitizing technique, because it had already
been tested by other works, and in this way, the saliency estimation of my previous
works was improved.

# Name Year Features/Architecture Mechanism

1 IKN 1998 DoG (color+intensity) —

2 AIM 2005 ICA (infomax) max-like

3 GBVS 2006 Markov chains graph prob.

4 SDLF 2006 Steerable pyramid local+global prob.

5 ML-Net 2016 VGG-16 Backprop.(finetuning)

6 DeepGazeII 2016 VGG-19 Backprop.(finetuning)

7 SAM 2018 VGG-16/ResNet-50 + LSTM Backprop.(finetuning)

8 SalGAN 2017 VGG-16 Autoencoder Finetuning+GAN Loss

# Name Learning Training Data (#img) Bias/Priors

1 IKN — — —

2 AIM Unsupervised Corel (3600) —

3 GBVS Unsupervised Einhauser (108) graph norm.

4 SDLF Unsupervised Oliva (8100) scene priors

5 ML-Net SALICON (10 k), MIT (1003) learned priors —

6 DeepGazeII Supervised SALICON (10 k), MIT (1003) center bias

7 SAM Supervised SALICON (10 k) & others Gaussian priors

8 SalGAN Supervised SALICON (10 k), MIT (1003) —

DoG: difference of Gaussians, ICA: independent component analysis, C-S: center-surround, max-like: max-likelihood
probability, BCE: binary cross-entropy, GAN: generative adversarial network.

Table 5.
Description of saliency models.
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Chapter 5

The Use of Leap Motion in Manual 
Dexterity Testing by the Box  
and Blocks Test: A Review Study
Natália Regina Kintschner, Thiago Leandro Liporace,  
Silvana Maria Blascovi-Assis and Ana Grasielle Dionísio Corrêa

Abstract

This chapter aims to analyze works in the literature that show the therapeutic 
effects of using the Leap Motion Controller (LMC) sensor to assess hand fine motor 
dexterity, especially those involving the Box and Blocks Test. Besides the introduc-
tion, we will describe: (a) the LMC device and its forms of interaction in a Virtual 
Reality environment (immersive and non-immersive); (b) aspects of manual func-
tion assessment; (c) the functioning of the traditional Box and Blocks Test (BBT) and 
its virtual version (VBBT) developed with Virtual Reality technologies; (d) discussion 
about the VBBT integrated with the LMC, in physical therapy practice.

Keywords: moto rehabilitation, manual dexterity, leap motion, box and blocks test, 
virtual reality

1. Introduction

The Leap Motion Controller (LMC) is a small, portable, relatively low-cost device 
compared with other motion capture devices such as Doctor Kinetic®. It accurately 
detects all the hand and finger joints [1]. It is an interactive technology in Virtual 
Reality (VR) environments. LMC can be used in non-immersive mode, plugged into 
the computer via USB (desktop version), or attached to VR glasses (headset version) 
for immersive interaction. It has been currently being investigated as a technological 
resource to support upper limb motor rehabilitation interventions, as it allows captur-
ing finer movements of the hands and fingers, which are essential for the rehabilita-
tion of manual dysfunctions found in different conditions [2–6].

Several models of VR headsets are on the market, such as Gear VR, Rift glasses, 
and HTC Vive [2, 7–19]. Gear VR is a more cost-effective solution because it uses the 
screen of a Samsung smartphone as a viewing display [18]. The trend is that these 
technologies are available in people’s homes, offering services in the most diverse 
areas of entertainment, education, and health.

Research with LMC points to its potential use by people with difficulties in fine 
and gross motor skills, explicitly concerning pincer grasp and power grip strength 
movements, extension and flexion of fists and fingers, forearm supination and 
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pronation. Due to this extensive repertoire of gestures that LMC can detect, it is 
possible to find several studies with groups of people with stroke, older people 
with manual motor dysfunctions caused by aging [13], parkinsonians [8], children 
with developmental psychomotor disabilities, including cerebral palsy [20], Down 
syndrome [21], and autism [6].

The LMC allows measuring the motor performance of these people, such as reac-
tion time, bimanual coordination, and the sequence of movements performed with the 
hands and fingers. For this reason, this remote sensing technology has shown promise 
for the rehabilitation field as it does not require the patient to wear motion detection 
devices (e.g., gloves with force and feedback sensors). Therefore, it provides a new 
interaction between the user and the computer, allowing for more natural and touch-
free interaction. Hand dexterity in patients with upper limb motor disorders can be 
assessed from programmed tasks with graphic objects added to the virtual world [14].

Research involving the LMC integrated with the Box and Block Test (BBT) has 
emerged recently. Physical and occupational therapists use this test to verify manual 
function to assess and quantify the unilateral gross manual dexterity in children and 
adults. The BBT is made up of a wooden box with colored cubes, whose objective is 
to transport the cubes from one compartment of the box to the other in 1 minute. In 
the end, the number of cubes transferred per minute is counted. In its VR version, the 
LMC is used as an interaction device to transport blocks from one compartment to the 
other of the Box.

This chapter presents the works investigated using the LMC sensor integrated 
into the BBT. We are developing a version of BBT in VR that can be used on Desktop 
computers, both with video monitors and with VR glasses (HTC Vive). Then, we 
present details of this virtual BBT version in this chapter.

In addition to this introductory section, we divided this article into five sections: 
Section 2 provides details on how the LMC device works; Section 3 briefly presents 
the main tools for assessing manual function; Section 4 presents the functioning of 
the Box and Blocks Test and its virtual version in Virtual Reality developed by the 
researchers of our Game Therapy and Virtual Reality Laboratory; Section 5 shows 
scientific studies (performed with the Virtual BBT) found in the literature; Section 6 
presents the conclusions.

The method adopted for the theoretical review was the query in indexed databases 
seeking information about the advantages and disadvantages of using the LMC device 
in immersive and non-immersive virtual reality situations. We sought to identify the 
errors and inaccuracies most commonly in the use of this device associated with the 
box and blocks test and the results found regarding the performance of the manual 
function.

2. Leap motion controller

Leap Motion Controller (LMC) is a small, portable device that accurately detects 
all the hand and finger joints [1]. It is a compact device, 8 cm wide by 3 cm high. The 
top of the device is made of smoked glass to hide the two image sensors and infrared 
LEDs that work together to track the user’s hand movements (Figure 1).

It is possible to use the LMC connected directly to the computer in non-
immersive experiences (Figure 2a). In this case, the video monitor is used as a 
viewing device. In immersive experiences, the LMC is coupled to VR glasses, such as 
a Gear VR. (Figure 2b). The simplicity of the LMC could facilitate the approach to 
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technology, increasing the feeling of immersion, imagination, and interaction with 
the virtual environment [4].

The LMC works with accuracy down to 1/100 mm without visible latency in its 
visual field. The viewing range is 80 cm above and around the device. This limit 
occurs due to the propagation of the LED light through space since it is difficult to 
infer the hand’s position from a certain distance.

The LMC is postulated as a playful tool that can favor the inclusion of participants 
in a different environment, in which they can face new challenges and achieve new 
goals by interacting in real time with hand and finger movements, functioning as an 
active therapy that requires high commitment and motivation [9].

In a study by [9], the authors conclude that the LMC is the primary haptic VR 
sensor for upper limb mobility recovery compared with other non-immersive VR 
devices, such as the Doctor Kinetic® and Nintendo® Wii game systems, which are 
more specialized in posture and balance. The results suggest that the LMC can be 
considered a valuable and effective haptic VR device to improve different aspects of 
upper limb motor function in neurological patients [9].

3. Manual function assessment

The functional assessment of the hands is part of the therapeutic routine of several 
professionals who work with strategies for functional recovery of the upper limbs. For 

Figure 1. 
Leap motion controller (LMC). Source: Leap motion, 2019 https://www.leapmotion.com/.

Figure 2. 
(a) LMC with non-immersive interaction (desktop). (b) LMC with immersive interaction (VR headset). Source: 
Leap Motion, 2019 https://www.leapmotion.com/.
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this, several tests evaluate the precision and speed of movements, proposing different 
tasks in standardized tests and validated in other countries. Reference [22] analyzes, 
through a critical review, several tools for assessing manual dexterity, referring to their 
psychometric properties. Among the tools reviewed are tests commonly used for upper 
limb assessment, such as the Minnesota Dexterity Test, the Nine Hole Peg Test (9HPT), 
the Jebsen-Taylor Hand Function Test (JTHFT), and the Box and Blocks Test (BBT).

These conventional tests for assessing manual function have several limitations, 
such as the long time to be done, the need for a highly trained professional to deter-
mine the patient’s outcome, the patient’s displacement, and the reliability of the per-
formance evaluation, which is low [23]. The use of technology associated with these 
tests is a way of fulfilling these principles since it can provide exercises in a controlled, 
repetitive, intensive, interactive, and motivating way [22].

4. Box and blocks test

A. Jean Ayres and Patricia Holser Buehler created the first Box and Blocks Test 
(BBT). They used a bowl and blocks to assess gross manual dexterity in adults with 
cerebral palsy [24]. Later, Patricia Holser Buehler and Elizabeth Fuchs changed the 
shape of the test to a gift box, obtaining copyright in 1957 [16].

As described by [16, 17], the BBT (Figure 3) is used to verify manual function 
to assess and quantify unilateral gross manual dexterity in children and adults. It 
consists of a wooden box, 53.7 cm long, with a partition, also made of wood, higher 
than the edges of the box, separating it into two compartments of equal dimensions. 
The blocks, also made of wood and in the form of colored cubes (primary colors), are 
150 in number, measuring 2.5 cm on a side divided equally by color. The box’s long 
sides are 53.7 cm by 8.5 cm and are nailed 1 cm thick from the base. The short ends are 
7.5 cm by 25.4 cm and have been fixed to the top of the bottom between the long sides.

As a prerequisite for the application of the test, a quiet environment is required, 
with the examinee seated in a chair suitable for his/her height. The wooden box 
should be placed horizontally in front of him so he can fully view the area and equip-
ment in question. It consists of moving as many cubes as possible from one compart-
ment to another for 1 minute [25]. The BBT was proposed [16] with parameters 
between 20 and 94 years old. In Brazil, the BBT was used for the age group between 

Figure 3. 
Box and blocks test (BBT). Source: MENDES et al., 2001 [17].
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Figure 4. 
Virtual BBT home screen. Source: Author.

15 and 86 years, with typical groups and multiple sclerosis [17]. For the lower ranges,
from 7 to 14 years old, the test parameters for Brazilians were mentioned by [12].
  These functional measures of dexterity contrast with neuroscientific investiga-
tions that show that skill is multicomponent, including the ability to control force,
control the timing of movements, execute independent finger movements, and 
execute motor sequence [26].

4.1 The virtual box and blocks test

  Our researchers from the Game Therapy and Virtual Reality Laboratory (Lab 
GameVR) created a virtual application of BBT, which we call Virtual BBT (desktop 
version and HTC Vive). The main requirements raised were the following:

• Availability of two forms of use:

• Conventional: with the countdown starting at 60 seconds.

• Training: with progressive time without time counting.

• On-screen display of the score to the user.

• Storage of collected data.

• Help feature with usage instructions.

• Bilateral hand training.

  Based on these requirements, a game prototype was conceived in VR using the Unity 
3D game engine integrated into the LMC. When executing the game file, the Virtual BBT 
start screen is presented to the user with the following configuration and selection options
(Figure 4) “Right or left hand,” “Start,” “Training,” and “? [Help].” At that moment, the 
user must plug the LMC into the computer where the application is running.
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When selecting the “Start” option, the Virtual BBT screen is shown to the user 
(Figure 5). The screen shows the Wooden Box and the blocks modeled with Unity 
3D. The user can observe the virtual hand moving around the scenario by placing 
the hands on the LMC. The screen displays the timer counting down. In this game 
scenario, the user has 60 seconds to transfer the blocks from one box compartment 
to the other. The same game scenario is displayed by selecting the “Training” option 
but without the countdown. In this scenario, the user can stay as long as he wants to 
interact with the Virtual BBT. An immersive version of BBT Virtual is being devel-
oped for use with HTC Vive.

At the end of use, the data referring to the player’s score, date, time, patient’s 
name, time, and laterality score of the executed hand are stored locally on the user’s 
computer in a file in the csv format.

5. Discussion

Scientific studies involving box and blocks test in its virtual version are emerg-
ing in the context of rehabilitation in patients with neurological diseases, such as 
Parkinson’s Disease (PD), Cerebral Vascular Accident (CVA), and Multiple Sclerosis 
(MS), among others, intending to study the validity, feasibility, and psychometric 
properties of the test [3, 10, 15]. However, few studies have developed the virtual BBT 
(VBBT) [10].

The interest in developing virtual tests is multiple [10]. It can reduce the inter-
observer subjectivity in the classic assessment, providing a complete virtual reha-
bilitation at home where patients can assess their cognitive and motor improvements 
using validated virtual evaluation.

Table 1 shows some studies that addressed the topic, including author, study 
population, research country, goals, method, and the main results.

Researchers [3] assessed the validity of BBT and VBBT in participants with 
Parkinson’s Disease (PD). They developed the VBBT using an immersive headset 
(Rift eyewear) and the LMC to evaluate unilateral manual dexterity in this audience. 
Participants were instructed to perform the physical BBT (once) and the virtual BBT 
(twice, one immersive and one non-immersive) separately. The results indicated a 
moderate correlation between the physical BBT and the VBBT scores.

Figure 5. 
Virtual BBT screen in run mode. Source: Author.
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The results show that the 3D depth perception allowed the movement of more 
cubes in the immersive virtual BBT regarding BBT. This study presented three 
relevant findings: the gap in the number of blocks transported in the physical and 
virtual systems seems to tend to be a constant, the correlation between the obtained 
result between the physical and virtual systems is statistically significant, and the 
test-retest analysis shows an excellent statistically considerable correlation between 

Author Study population Research country Goals and method Main results

Onã et al., 
2020.

Participants with 
Parkinson’s Disease 
(PD)

Spain Developed the VBBT 
using an immersive 
headset and the LMC 
to evaluate unilateral 
manual dexterity. 
Participants performed 
the physical BBT (once) 
and the virtual BBT 
(twice, one immersive 
and one non-immersive) 
separately.

3D depth 
perception 
allowed the 
movement of 
more cubes in 
the immersive 
virtual BBT 
regarding BBT.

Giersen et 
al., 2016.

Typical Individuals United States Present their version of 
the VBBT and the results 
of a pilot study in which 
participants completed 
the BBT and VBBT, 
comparing their scores 
and opinions.

The number 
of video 
games and VR 
experience 
was positively 
correlated 
with task 
performance.

Alvarez-
Rodriguez 
et al., 
2020.

Neurological 
Diseases

Spain Developed a form of 
application of the VBBT 
using the LMC. The 
sample consisted of 24 
individuals, divided into 
two groups: the typical 
group (n = 12) and the 
group with neurological 
diseases (n = 12). The 
study is conducted in 
a single experimental 
session by performing 
the physical and virtual 
BBT with the dominant 
hand.

BBT and 
VBBT high-
performance 
showed 
corresponding 
final results, 
with a high 
tendency 
between the 
two tests.

Teruel et 
al., 2019.

Patients who suffer 
a spinal cord injury 
at the cervical level 
and affects the 
function of
the upper limb.

Spain Present a tool developed 
from the BBT for its 
virtual version, using 
the LMC and Unity 3d 
to supervise the therapy 
execution.

VBBT enables 
the therapists 
to customize 
therapy 
according to 
each patient’s 
specific needs.

Source: Author.

Table 1. 
Summary of studies.
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attempts with the virtual system. In this sense, the relationship between physical 
and virtual systems can be improved using fully immersive VR due to better depth 
perception.

In a study [11], researchers present their version of the VBBT and the results of 
a pilot study in which participants completed the BBT and VBBT, comparing their 
scores and opinions. The authors also compared how the participants handled time 
during both versions running. The Unity 3d platform and the LMC device were used 
for the virtual version. For gameplay, timers were implemented for the participants’ 
15-second practice and the 60 seconds of the entire session. During the whole session, 
the LMC data were recorded for future analysis. These data include participant posi-
tion, palm position, fingertip position, and joint angles.

The results compared the scores and opinions of participants who took both 
versions of the test, showing that the number of video games and VR experience was 
positively correlated with task performance. The results also showed that participants 
with less knowledge of video games and VR performed in a slower time than those 
with more experience, who reported greater enjoyment than those who did not have 
VR contact. Finally, the authors conclude that the participants found the virtual 
version more frustrating. However, they still preferred to deal with this version rather 
than the physical one to have one more chance at performance. On average, healthy 
participants moved more 35 blocks in the BBT than in the VBBT.

In another study by [27], they developed a form of application of the VBBT using 
the LMC. The sample in the research consisted of 24 individuals, divided into two 
groups: the typical group (n = 12) and the group with neurological diseases (n = 12) 
and, consequently, impairment of upper limb motor function. The study is conducted 
in a single experimental session by performing the physical and virtual BBT with the 
dominant hand. Firstly, the physical BBT was performed, starting with a practice test 
lasting 15 seconds. Once the test was completed, the participants had a 5-minute rest 
before running the VBBT. Before beginning this version, there was also a practical 
period in which the participant performed two 1-minute tests to make him comfort-
able and familiar with the virtual environment. The 15-second test period started 
with the dominant or less affected hand, followed by 60 seconds with the automatic 
counting of correctly transported blocks.

This research presented some limitations reported by the authors, such as difficul-
ties with the technology used (LMC), whose performance was strongly conditioned 
by the environmental conditions and the computer’s performance. However, this 
study showed that considering the physical BBT, upper limb motor skill was statisti-
cally higher in the typical population than in the people with neurological diseases. 
The same behavior was observed for the VBBT. Besides, within each analyzed group, 
the performance in the BBT was superior to that of the VBBT. However, BBT and 
VBBT high performance showed corresponding final results, with a high tendency 
between the two tests.

The VBBT version developed in this work showed high consistency in its appli-
cation in a sample of typical individuals and patients with neurological diseases. 
According to the authors, the next step is that the VBBT, integrated with LMC, serves 
as an element to assess motor dysfunctions, allowing manual dexterity training in the 
population with neurological diseases.

Other researchers [28] present a tool developed from the BBT for its virtual ver-
sion, using the LMC and Unity 3d. The authors included some feedback in this version 
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(VBBT) to increase the patients’ motivation, with the intention that they become 
aware of their competence while performing exercises for rehabilitation. The devel-
oped game can be configured according to the needs of each one. It offers facilities to 
define the dominant hand, the number of blocks the patients will have to pick up and 
their size. After that, the game starts so that the player can interact with the blocks,
lasting until all the blocks have been placed on the non-dominant side area of the 
screen or until the participant gives up playing.
  During the VBBT execution, patients receive information about the current game 
and their progression concerning previous moves. While the participant performs
the task, the game simultaneously shows the number of moved blocks (score), the 
number of blocks they need to move to finish the game correctly (goals), the elapsed 
time, and the current speed related to the number of blocks moved per minute. In 
addition, to complete this information, a dynamic status bar is also shown to describe 
the relationship between the patient’s current speed and the speed of their previous 
best and worst performance. The value of this status bar changes in real time, decreas-
ing if the patient does not move new blocks or increasing when a new block is moved.
When finished, additional information is presented to the patient on a result screen,
showing the player’s final score, goal, elapsed time, and speed.

  The authors emphasize that upper limb rehabilitation has become a critical need 
due to the number of people affected by this condition when they have a neuro-
logical disease, for example. They also point out that the existing treatments for 
these conditions are demanding and expensive. Therefore, the VBBT enables the 
therapists to customize therapy according to each patient’s specific needs, exploring 
an important feature, which is the introduction of different motivation facilities to 
attract this audience to perform a repetitive task, which, on the other hand, could
be tedious.
  From the studies discussed, it can be noticed some of the advantages and disad-
vantages of using the LMC [27], which can be a device dependent on the conditions 
presented by the computer to which it will be connected. Some results [11] showed 
that participants with less knowledge of video games and VR performed in a slower 
time than those with more experience, who reported greater enjoyment than those 
who did not have VR contact. Therefore, the use of LMC may also be related to the 
individual’s previous contact with technology.
  When used with the BBT, the LMC proved to be more acceptable in its immersive 
version [3], mainly because users are able to transfer more blocks when inserted in
the 3d view, which consequently generates less fatigue in the manual function and
an increase in the motivation. Another advantage of using this technology is that 
together with the virtual BBT, health professionals have the possibility to meet the 
needs of each patient individually, through time, the number of blocks, feedbacks,
among others [28].
  It is important consider that the use of MC associated with the virtual BBT allows 
the execution of the task of transferring blocks in a situation of evaluation and 
training for the manual function without the need to the physical blocks, reducing
the chance of any type of contamination, BBT the manual dexterity, promoting the 
development and health of users.
  Therefore, there is a need for expansion in studies that encompass the rehabilita-
tion of manual dexterity, technology, and its devices and the tests involved in this 
context, such as BBT in its virtual version.
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6. Conclusions

This chapter aimed to present an overview of a research development using the 
Virtual BBT. It is noteworthy that the development of BBT, in its immersive and non-
immersive virtual version integrated with the LCM device, presents itself as a pos-
sibility for testing and assessing patients with or without changes in manual dexterity. 
This technology emerges as an innovative and motivating way for use in various areas, 
such as health. Then, more research is needed with different audiences to investigate 
its usability and effectiveness of both (virtual BBT and the LMC device) and their 
forms of use so that technical issues can be increasingly improved in the use of these 
equipment.
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Chapter 6

Precise 6DOF Localization of Robot
End Effectors Using 3D Vision and
Registration without Referencing
Targets
Liang-Chia Chen, Sheng-Hao Huang and Bo-Han Huang

Abstract

A method for detecting the precise 6-degree-of-freedom (6DOF) localization of 
robotic arms end effectors without referencing any additional feature target during in-
line robot operation is introduced to facilitate precise robot positioning and monitor-
ing. In this work, a 3D vision probe with digital structured-light projection is inte-
grated with a wafer handling robot to perform online 6DOF location monitoring in 
semiconductor production. Precise alignment of the robotic arms end effector moving 
in the 3D operation space is realized by robust point cloud object alignment using 
regional surface area descriptors and the variant iterative closest point algorithm. 
Verified and confirmed by experimental tests, the developed method can achieve 
online 6DOF location monitoring with micron-level accuracy. Moreover, the proposed 
method can completely avoid the disadvantages of existing methods, namely relying 
on planar 2D images and demanding an additional target to be embedded with the end 
effector for localization, which reduces practical application, especially in an in-line 
operation environment. The major technical breakthrough of the present work is the 
target-free precise 6DOF localization of moving objects.

Keywords: 6DOF localization, iterative closest point, point cloud alignment,
3D vision, robot end effectors

1. Introduction

Robotic arms are usually used in automated production lines to perform repetitive
or hazardous operations to ensure high manufacturing quality. For instance, a wafer
handling robot is usually used in the automated production line of semiconductor
components for sending or taking wafers between cassettes at etching, deposition, and
photolithography stations with demanding accuracy, repeatability, and reliability [1].
However, potential induced stress or deformation during continuous robotic arm
operation may cause the end effector position and orientation to deviate from the
position specified, which would result in the collapse of the processing unit with the
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wafer scrapped or crushed, as shown in Figure 1, thus incurring significant produc-
tion losses. To avoid such an undesired scenario, this study proposes a robust and
precise monitoring method for performing the 6-degree-of-freedom (6DOF) localiza-
tion of robotic arms end effectors.

Recent studies have investigated the problems related to position uncertainties
of robotic arms end effectors and analyzed the life cycle of the robotic arm to
improve the reliability of the wafer handling robot [2, 3]. However, in general,
planar translation of end effectors has been measured using only 2D imaging;
with depth information missing, 6DOF localization of end effectors cannot be
realized.

To obtain accurate variations in both position and orientation of the robotic arms
end effector, this study developed a 3D machine vision probe with point clouds
measured for achieving 6DOF localization of the end effector. Point cloud registration
is crucial to determining precise object 6DOF transformation between different
locations in the 3D space and involves the coarse alignment stage and the refined
model alignment stage. During coarse alignment, the object point cloud aligns only
approximately with the target (reference) point cloud. Methods used include spin
image [4], point signature [5], and regional surface area descriptor [6], with
different levels of accuracy, efficiency, and robustness achieved. This initial
matching between the object and the target model is then followed by fine model
alignment for more precise matching of the two. The most widely adopted algorithm
is the iterative closest point (ICP) [7], which uses singular value decomposition (SVD)
to find the set of closest point clouds between the object and the target model. It
refines the deviation between the corresponding points until the least-squares error is
minimized.

This chapter presents a novel 6DOF detection method that uses a developed
structured-light 3D scanner [8] to obtain the 3D information of the robotic arms end
effector and then performs point cloud alignment to detect the 6DOF variations of the
robotic arms end effector. The process of the proposed method is illustrated in
Figure 2 and described in detail in Section 2.

Figure 1.
Wafer damage caused by positioning deviation of robot end effectors during manufacturing.
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2. Methods

2.1 Point cloud preprocessing

2.1.1 Denoise algorithm

Optical measurement is susceptible to noise and outliers caused by the external
environment, object surface material, and reflectivity, and these noises and outliers
must be eliminated before point cloud registration. In this study, Statistical Outlier
Removal (SOR) [9] was applied to neighboring points of each point in the point cloud
cluster. First, the average distance of each point to their K nearest neighbors is
calculated. The average distance dmean and standard deviation σ are then used as the
threshold for determining noise or outlier. The distance threshold can be expressed as:

dthresh ¼ dmean þ K ∗ σ (1)

where K is a scale factor and is usually set to equal 1.0. Figure 3 illustrates the
outlier determination and removal. First, the distances of the nearest K points Pj

(j = 0,1,2,3,… ,k) of the point Pi are calculated. The average distance between Po and
its neighboring point Pj is di; if di is greater than the distance threshold, dthresh, Po is
regarded as an outlier and is thus removed from the point set P.

Figure 4a shows the original point cloud, while Figure 4b shows the point cloud
with the outlier removed with a multiplicity factor of 1.0 after searching the neigh-
boring points.

2.1.2 Downsampling strategy

The structured-light measurement probe uses a high-resolution sensor of up to two
megapixels; hence, the amount of data for the reconstructed point cloud is significant
and dense, often reaching hundreds of thousands of points. It is thus necessary to

Figure 2.
Process of the proposed method.
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effectively reduce the number of data points while strictly preserving the morpholog-
ical characteristics of the object for evaluating pose variation.

The widely used point-cloud downsampling algorithms are voxel grid filtering and
Delaunay Triangulation. Pixel is the basic unit that constitutes an image, and voxel
means a cubic grid, which is the unit cube that constitutes a 3D space. For data
reduction, the voxel grid filter replaces all the points in the voxel with the mass center
of all the points. All the points in the voxel are represented by the n points belonging
to the unit voxel, as shown in Figure 5.

Delaunay triangulation [10] allows all input points to form a convex polygon
(convex hull) [11], as shown in Figure 6, and all triangles within the convex polygon
must satisfy the property of maximizing the minimum interior angle and the
noncircularity of any four points. If Delaunay triangulation is applied to the 3D space,
the four adjacent points can form a tetrahedron and create an external sphere, the
so-called Alpha-ball, as shown in Figure 7. The red circle denotes the external sphere
of the tetrahedron, and the excess points can be removed using the Alpha-ball
algorithm [12], thus achieving data reduction while preserving the object’s surface
characteristics.

As shown in Figure 8a, a precision ceramic gauge block with sharp edges was used
as the test object to compare the above two-point cloud downsampling methods. The

Figure 3.
Illustration of outlier removal.

Figure 4.
(a) Original point cloud and (b) point cloud after outlier removal.
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Figure 5.
Illustration of voxel-grid filtering: (a) unfiltered voxel; (b) unfiltered unit voxel; and (c) the mass center of the
unit voxel.

Figure 6.
Illustration of convex hull formed by Delaunay triangulation.

Figure 7.
Illustration of alpha-ball [12] formed by applying Delaunay triangulation to 3D space.

Figure 8.
(a) Original and (b) reconstructed gauge block after outlier removal.
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reconstructed result after outlier removal is shown in Figure 8b, and the number of
points is enormous, totaling 300,495.

Such a large amount of data typically requires a long computation time. Therefore,
voxel grid filtering and Delaunay triangulation are performed in the proposed method
to reduce the amount of 3D reconstructed point cloud data. Their performances are
compared in terms of the integrity of object features retained. Figure 9a shows the
result of the original point cloud data after voxel grid filtering; the total number of
points becomes 9239, reduced by 96.9%; and Figure 9b shows the registration result
with an average registration error of 40.8 μm between the original and downsampled
point cloud, and the maximum error of 520 μm at the object’s corner edge. Figure 9a
shows the result of the original point cloud data after Delaunay triangulation; the total
number of points becomes 9253, reduced by 96.9%; and the registration result, shown
in Figure 10b, has an average registration error of 10 μm and the maximum error of
90 μm.

Comparing the two-point cloud downsampling methods revealed that Delaunay
triangulation can achieve a much smaller registration error than voxel grid filtering,
especially in the edge area of the measured object. Voxel grid filtering uses average
filtering, which smooths out the edge features of the object. In contrast, Delaunay
triangulation removes only unnecessary points, thus preserving the edge features of
the object. Hence, using Delaunay triangulation to reduce the number of data points as
inputs for the subsequent algorithm can obtain better accuracy when calculating pose
variation and avoid the error generated by the preprocessing of point clouds.

Figure 9.
(a) Original point cloud after voxel grid filtering and (b) registration result.

Figure 10.
(a) Original point cloud after Delaunay triangulation and (b) registration result.
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Figure 11.
Matching using regional surface area descriptor (RSAD).
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2.2  Coarse  alignment  between  scanned  data  and  model  object

  This  study  used  the  regional  surface  area  descriptor  (RSAD),  proposed  by  Chen
et  al.  [6],  to  determine  the  geometric  relation  between  6DOF  of  two  sets  of  point 
clouds  measured  on  an  object  of  two  different  locations  and  orientations.  The  method 
assumes  that  the  same  surface  area  distribution  defined  in  the  oriented  bounding  box
(OBB)  [13]  of  a  point  cloud  set  can  be  employed  to  detect  the  6DOF  of  the  object  in 
3D  space.  Thus,  to  find  the  most  matched  pose,  the  RSAD  of  the  measured  point  cloud 
is  iteratively  compared  with  the  feature  descriptor  generated  by  the  3D  virtual  camera 
from  the  model  point  cloud,  which  represents  the  target  model  or  the  original  pose  of
the  object.  Figure  11  illustrates  the  matching  method  using  the  RSAD.

2.2.1  Database  generation

  First,  a  coordinate  system  is  established  at  the  center  of  the  model  point  cloud,  and 
the  virtual  camera  is  located  on  the  z-axis  of  the  model  point  cloud  coordinate  system,
as  shown  in  Figure  12.  The  template  point  cloud  is  generated  by  rotating  along  the
x-axis  and  y-axis  of  the  model  point  cloud  coordinate  system  with  a  fixed  incremental 
rotation  angle.  As  shown  in  Figure  13a–f,  the  template  point  clouds  recorded  by  the 
virtual  camera  are  rotated  along  the  y-axis  by  0,  60,  120,  180,  240,  and  270  degrees,
respectively.

  After  the  virtual  camera  records  the  template  point  clouds  with  different  viewing 
angles,  the  surface  area  feature  descriptors  can  be  calculated  for  each  template  point 
cloud.  First,  the  OBB  of  the  template  point  cloud  is  calculated;  it  is  the  smallest  3D 
rectangular  bounding  frame  that  can  be  covered  by  the  point  cloud,  as  shown  in
Figure  14.  The  OBB  thus  obtained  can  be  divided  into  k1  �  k2  �  k3  sub-oriented 
bounding  boxes  (Sub-OBB)  along  its  three  main  directions,  as  shown  in  Figure  15.
The  total  number  of  sub-OBB  equal  to  v  ¼  k1  �  k2  �  k3,  and  the  total  number  of  points
covered  by  the  objects  in  a  single  sub-OBB  is  npv .  If  n  is  the  total  number  of  points  in 
the  whole  template  point  cloud,  then  the  number  of  points  in  a  sub-OBB  f  v  can  be 
expressed  as:

93



f v ¼
npv
n

(2)

where npv is the total number of points in the vth sub-OBB and n is the total number
of points in the template point cloud.

According to (2), the percentage of point clouds in each sub-OBB can be calculated
to obtain the regional surface area distribution of the whole point cloud, which is
called the surface area feature descriptor FV and expressed as:

Figure 12.
Location of the virtual camera in model point cloud coordinate system.

Figure 13.
(a)–(h) are model point clouds captured by the virtual camera at different viewing angles.
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FV ¼ f p0, f
p
1 , … , f pv

� �
(3)

The surface area distribution of the object point cloud in Figure 14 is shown in
Figure 16.

2.2.2 Feature matching

Feature matching involves two steps, which aim to obtain the closest pose between
the model point cloud and the object point cloud. First, the OBB parameters between
the object point cloud and the model point cloud are compared. If the above matching
conditions are met, the surface area feature descriptors of the object point cloud and
the model point cloud are compared. The feature matching process is summarized in
Figure 17.

Each OBB is represented by three principal vectors and a corner. The matching
process involves finding a template point cloud with an OBB size similar to the object
point cloud. These two OBBs should satisfy the following equation:

Figure 14.
OBB of an object point cloud.

Figure 15.
Sub-OBB of an object point cloud.

9

Precise  6DOF  Localization  of  Robot  End  Effectors  Using  3D  Vision  and  Registration  without…
DOI:  http://dx.doi.org/10.5772/.107968

95



dcorr ¼ 1
3

CCM1 � CCO1k k
CCM1k k þ CCM2 � CCO2k k

CCM2k k þ CCM3 � CCO3k k
CCM3k k

� �
< dthresh (4)

where dthresh is the given adequate threshold, CCMi and CCOi (i = 1,2,3) are the
three principal vectors of the model OBB and object OBB, respectively.

If (Eq. (4)) is satisfied, matching is successful. On the contrary, if dcorr > dthresh,
matching fails, indicating a significant OBB size difference between the object point
cloud and the model point cloud. Assume that Figure 18a and b depict, respectively,
the OBB of the object and model point cloud. According to details of their three

Figure 17.
Flowchart of feature matching process.

Figure 16.
Regional surface area distribution histogram of the object point cloud.

Figure 18.
(a) OBB of the model point cloud and (b) OBB of the object point cloud.
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principal vectors listed in Table 1, the OBB matching coefficient dcorr between the two
point clouds is 0.593. Hence, if the matching coefficient threshold is set as 0.2, then
the matching between Figure 18a and b fails because dcorr exceeds the given threshold.

Following this, to determine the best match between the model point cloud and the
object point cloud measured using the 3D scanner, the feature descriptors of the
model point cloud and the object point clouds measured at different viewing angles
are matched using conventional normalized cross-correlation (NCC) [14, 15].

If the OBB matching satisfies (Eq. (4)), then the regional surface area descriptors
of the two-point clouds are compared. The regional surface area descriptor shows the
surface area distribution of the point cloud within its OBB. The similarity of regional
surface area descriptors between the two point clouds can be determined using the
NCC method [14, 15]. Assume that the regional surface area descriptor of the object
point cloud is expressed as FO ¼ f v, v ¼ 0, … , nv

� �
, and the regional surface area

descriptor of the model point cloud is FM ¼ f v, v ¼ 0, … , nv
� �

, then the NCC
coefficient between the two descriptors FO and FM can be expressed as:

C FO, FMð Þ ¼
Pnv

v¼0 f v � f
� �

fMv � fM
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnv
v¼0 f v � f

� �2
∙
Pnv

v¼0 fMv � fM
� �2

r (5)

where

f ¼ 1
nv þ 1

Xnv
v¼0

f v (6)

fM ¼ 1
nv þ 1

Xnv
v¼0

fMv (7)

If the NCC C(F0, FM) between the RASD of the model point cloud and that of the
object point cloud is greater than the preset threshold, the two-point clouds have
similar poses in the 3D space. The relationship between the two point clouds can be
calculated using OBB parameters. Assume that the initial conversion matrix Tinitial

is the relationship between the two point clouds, as shown in Figure 19. Their
conversion relationship in the space Tinitial can be expressed as:

xc xc þ v11 xc þ v21 xc þ v31
yc yc þ v12 yc þ v22 yc þ v32
zc zc þ v13 zc þ v23 zc þ v33
1 1 1 1

2
6664

3
7775 ¼ Tinitial

xMc xMc þ vM11 xMc þ vM21 xMc þ vM31

yMc yMc þ vM12 yMc þ vM22 yMc þ vM32

zMc zMc þ vM13 zMc þ vM23 zMc þ vM33

1 1 1 1

2
6664

3
7775

(8)

Model point cloud (CCM Object point cloud (CC) 0)

(69.3,0,0)(112.4,0,0)Principal vector of X-axis

(0,68.6,0)(0,35.1,0)Principal vector of Y-axis

(0,0,12.1)(0,0,21.7)Principal vector of Z-axis

Table 1.
OBB parameters of model and object point clouds.
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where

Tinitial ¼

r11 r21 r31 tx
r12 r22 r23 ty
r13 r23 r33 tz
0 0 0 1

2
6664

3
7775:

2.3 Fine alignment

The iterative closest point (ICP) algorithm proposed by Besl [7] is a reliable and
widely used point-cloud fine alignment algorithm. The ICP algorithm starts with two
point clouds and an initial guess for their relative rigid-body transform and refines
iteratively the transform by repeatedly generating pairs of corresponding points on
the point clouds and minimizing an error metric. The flowchart of the ICP algorithm is
shown in Figure 20.

To further improve the computational efficiency of the ICP algorithm and opti-
mize the alignment results of the 3D point cloud, many variants have been developed
from the basic ICP concept, such as NICP [16], GICP [17], and Point-to-Plane ICP
[18]. Rusinkiewicz [19] classified these variants as six stages in the ICP algorithm,
illustrated in Figure 21, and indicated that the most critical stages that affect the
convergence speed and the accuracy of the ICP algorithm are correspondence
calculation and error minimization.

In this work, the classic ICP algorithm is further improved with the normal shoot-
ing method used in the stage of correspondence calculation instead of finding the
closest point. Moreover, in the stage of metric error selection, the point-to-plane
distance is applied instead of the point-to-point distance. The concept of the normal
shooting method and point-to-plane distance is shown in Figures 22 and 23,
respectively.

In the proposed approach, test data make up the measured point cloud obtained by
measuring a robotic arms end effector with the developed structured-light 3D scan-
ner. In contrast, target data make up the measured point cloud transformed by a
known transformation matrix, as shown in Figure 24a. The white point cloud is the
original point cloud, and the green point cloud contains target data transformed by a
known transformation matrix. An example of the end effector alignment result is
shown in Figure 24b. It is important to indicate that no artifact calibration is deployed

Figure 19.
Schematic diagram of the relationship between object and model point cloud.
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in the detection and alignment of the method. This is significantly different from the
conventional method, which generally utilizes a known or pre-defined artifact for
alignment and calibration purposes. The alignment object used in the method is only
the robot arm itself.

Figure 25 compares the performance between the classic ICP algorithm and the
proposed method. As can be seen, the proposed method takes only 0.116 seconds for
the mean squared error (MSE) of point-to-point distance to converge to less than

Figure 20.
Flow chart of the ICP algorithm.

Figure 21.
Six stages of the ICP algorithm.
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1 μm, while the classic ICP takes a longer time of 0.659 seconds to reach convergence,
yet a higher deviation of 230 μm. These results indicate that the proposed method has
a faster convergence speed and higher accuracy than the classic ICP algorithm.

Figure 22.
Correspondence calculation is achieved by (a) the conventional method by finding the closest point and (b) the
proposed method using normal shooting.

Figure 23.
Error metric selection is achieved by (a) the conventional method using point-to-point distance and (b) the
proposed method using point-to-plane distance.

Figure 24.
Fine point-cloud registration: (a) test data (white) and target data (green); (b) registration result after fine
alignment.
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3. 6DOF measuring system

3.1 Experimental setup

Figure 26 displays the setup of the developed system for detecting 6DOF varia-
tions of the robotic arms end effector, which comprises the developed structured-light
3D scanner, a wafer handling robot, and a computer. The specifications of these three
modules are listed in Table 2.

Figure 25.
Comparison of performance between conventional ICP and the proposed method.

Figure 26.
Experimental setup.
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3.2 Design of 3D structured-light measurement probe

The 3D structured-light measurement probe, as shown in Figure 27, is designed
according to the triangulation measuring principle. As can be seen, it comprises a
structured-light projector and a camera, with the projector’s optical axis and the
camera’s optical axis intersecting at a point and forming a triangular relationship with
each other. Moreover, the greater the angle between the projector and the camera, the
better the depth resolution is. Under a trade-off between the effect of light shielding
and depth resolution, this system adopts an included angle of 30°. Moreover, to avoid
blurring or poor contrast of the image taken by the sensor module, the measurement
depth range is defined as the area where the contrast between the nearest focus
surface and the farthest focus surface of the camera lens in the modulation transfer
function (MTF) diagram, was maintained above 70%. As shown in Figure 28, the area
is a trapezoid space, and the camera’s field of view is gradually enlarged from the front
to the back focal plane.

Wafer handling robot

Positioning accuracy � 25 μm

Wafer sizes 75 to 300 mm

Structured light 3D scanner

Working distance 250 mm

Measurable depth range 100 mm

Volumetric measuring accuracy 60 μm

Computer

CPU Intel Core i7–8700

RAM 32.0 GB

Table 2.
System specifications.

Figure 27.
Schematic diagram of the 3D structured-light measurement probe.
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Figure 29 is the engineering drawing of the structured-light measurement probe
designed by Autodesk Inventor. As shown in the actual image (Figure 30), the
internal structure includes a DLP projection module, an image sensor, a perspective

Figure 28.
Schematic diagram of the structured-light probe measurement range.

Figure 29.
Engineering drawing of the structured-light probe: (a) internal structure and (b) external view.
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lens, Arduino Mega 2560, and a breadboard. Arduino Mega 2560 is to synchronize the
trigger signal between the camera and the projector. The measurement probe’s outer
shell (Figure 31) is made of high-strength aluminum alloy to avoid deformation by
external forces. The two side covers of the measurement probe are designed for heat
dissipation so that the heat generated by the hardware device can be removed through
the heat dissipation holes.

4. Experimental results analysis and discussion

Usually, when the robotic arm moves to a specified position, it generally vibrates
and shakes due to undesired external force or load. Therefore, upon reaching the
working position, it often stops for a short time till the shaking ends and the arm
becomes stable. In this study, the end effector of the robotic arm is measured in three
dimensions during the standstill time, and the morphological information of the end

Figure 30.
Actual internal image of the probe.

Figure 31.
Actual appearance image of the probe.
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Figure 32.
Pose variation detection during the robotic arm.
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effector  is  recorded  and  compared  with  the  prebuilt  database  to  find  the  point  cloud 
closest  to  the  pose  and  obtain  the  initial  transformation  matrix.  The  position  and  pose 
variation  of  the  end  effector  are  calculated  and  displayed  as  error  diagrams  in  the
measurement  software’s  graphic  user  interface  (GUI),  as  shown  in  Figure  32.

4.1  Database  generation

  Coarse  registration  requires  database  creation  for  prematched  objects  before  mea-
surement.  In  this  experiment,  the  3D  point  cloud  information  of  the  robot  arm  end 
effector  at  the  working  position  was  used  as  the  model  point  cloud,  the  virtual  camera 
recorded  the  template  point  clouds  at  different  viewing  angles,  and  the  surface  area 
feature  descriptors  were  calculated  and  stored  in  the  database  as  the  basis  for  subse-
quent  comparison.

Step  1:  Move  the  robot  arm  to  the  working  position,  as  shown  in  Figure  33.
  Step  2:  Obtain  the  3D  constructed  point  cloud  of  the  robotic  arms  ends  effector  by  
the  scanning  probe.  Figure  34  shows  the  measurement  range  of  the  scanning  probe.
Figure  35  shows  the  image  of  the  robotic  arm  captured  by  the  camera,  and  Figure  36
shows  the  raw  data  of  the  3D  reconstructed  point  cloud.

  Step  3:  Preprocess  point  cloud  data.  Figure  37  shows  the  point  cloud  after  noise 
removal,  and  Figure  38  shows  the  downsampled  point  cloud.
  Step  4:  Create  a  multiview  template  point  cloud  from  the  model  point  cloud,  as 
shown  in  Figure  39a–h.
  5:  Calculate  the  regional  surface  area  descriptor  of  the  corresponding  template 
point  cloud,  as  shown  in  Figure  40a–h.

4.2  Experimental  results  analyses  and  discussion

  To  verify  the  actual  performance  of  the  developed  method,  a  robotic  arm  with  an 
end  effector  was  repeatedly  moved  100  times  to  observe  its  variations  in  position  and
orientation.  As  shown  in  Figure  41a  and  b,  the  robotic  arm  repeatedly  moves  between 
position  A  and  position  B.  In  the  test,  the  developed  3D  scanner  was  integrated  with
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Figure 34.
Measurement FOV of the probe.

Figure 35.
Image of robot arm end effector captured by the measurement probe.

Figure 33.
The robot arm is moved to the work position.
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the system to measure the robotic arms end effector for its 3D point clouds whenever
the robotic arm reaches position B.

In the test, the 6DOF variations of the robotic arms end effector are compared with
the measured point cloud whenever the arm moves from position A to B and stops at
position B. Figure 42a shows the image captured using the developed 3D scanner
when the robotic arm reaches position B and Figure 42b is the original reconstructed
point cloud. Figure 43 shows point-cloud registration results before and after align-
ment without referencing any target.

Figures 44 and 45 show the dynamic variations in position and angular orienta-
tion, respectively, obtained after 100 tests. As can be seen, for the robot end effector
in the x-, y-, and z-axis, the averaged pose variations are 0.039 mm, 0.003 mm, and
0.005 mm, respectively. In contrast, the averaged orientation variations are 0.009°,
0.029°, and 0.009°, respectively. These results indicate that the tested robot end
effector achieved positioning with micron accuracy in the worst scenario. The

Figure 36.
Reconstructed point cloud of robot arm end effector.

Figure 37.
Point cloud after outlier removal.
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Figure 38.
Point cloud after downsampling.

Figure 39.
Multiview template point clouds.
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experimental results also show that the translational error of the x-axis and the
rotation error of the y-axis may increase significantly with the operation time of the
robotic arm. This discovery can lead to possible inspection and maintenance of the

Figure 40.
RSAD of the corresponding template point cloud.

Figure 41.
Different measured positions of the tested robotic arm with its end effector.
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Figure 42.
(a) Image captured using the developed 3D scanner when the robotic arm reaches position B. (b) Reconstructed
point cloud at position B.

Figure 43.
Point-cloud registration before (left) and after (right) alignment without using any calibration artifact.

Figure 44.
Dynamic variations in positioning of robot end-effector along x-, y- and z axes.

24

Vision Sensors - Recent Advances

110



robot to be arranged to ensure robust manufacturing operation and avoid any
potential catastrophic damage.

4.3 Error analysis of robot arm pose variation

The sources of error in the analysis of the robot’s pose variation include the error of
the structured-light measurement probe, pose detection algorithm, and the robotic
arm itself. In addition to the positioning error of the robot arm itself, which is known
from the technical specifications provided by the original manufacturer, the position-
ing repetition of the robot arm is 25 μm. In contrast, the reconstruction error of the
measurement probe and the error of the pose detection algorithm must be found
through experiments. The ideal point cloud data is used as the benchmark to quantify
how error sources affect measurement results. The principle is to transform the
known point cloud data through a known transformation matrix and to obtain the
pose variation using the proposed pose detection algorithm. The method obtains the
transformation matrix between the transformed point cloud data and the original
point cloud data. It compares the known transformation matrix with the transforma-
tion matrix obtained using the proposed algorithm to quantify the error. The error of
the structured-light measurement probe is calculated by repeatedly measuring the
pose variation of the robot arm at a fixed position, and the remaining error after
deduction from the algorithm error can be regarded as the error of the structured-light
measurement probe.

The translation error Terr, defined as the absolute difference between the transla-
tion component of the known transformation matrix Ttrue and the translation vector
of the transformation matrix Talg obtained using the proposed pose detection
algorithm [20], is expressed as:

Terr ¼ Talg � Ttrue
		 		 (9)

The measured point cloud is converted in the 3D space to quantify the algorithm
error using a known transformation matrix, as shown in Figure 46. The object to be

Figure 45.
Dynamic variations in angular orientation of the robot end effector along x-, y- and z axes, defined as roll, pitch,
and yaw angular errors.
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measured is a 3D printing hammer. The red point cloud is the original point cloud,
while the yellow one is transformed from the original point cloud in 3D space using 30
different known transformation matrices. Figure 47 shows the translation errors
obtained using the proposed pose detection algorithm. The average translation error
of the 30 transformations is 0.007 mm.

System uncertainty of the 3D structured-light measurement probe will cause the
measurement results of the same object to deviate. The robotic arm was scanned by
the measurement probe 30 times to detect pose variation. For a fixed robot arm, the
pose variation should be zero. Otherwise, the measurement obtained after deducting
the algorithm error can be regarded as an error attributed to the structured-light
measurement probe. Figure 48 shows the translation error obtained for the 30 scan-
nings. The average translation error contributed by the structured-light measurement
probe was 46 μm.

Table 3 summarizes the error source distribution of the robot arm pose variations.
As can be seen, the error comes mainly from the structured-light measurement probe.
Light perception by the image sensor in the measurement probe may vary for the
same object even under the same conditions, thus causing differences in measurement
results. Experiments detected an average pose variation of 46 μm from this source,
accounting for 58.5% of the total error. The next major source of error is the robotic

Figure 46.
Original (red) and transformed (yellow) point clouds.

Figure 47.
Translation error was obtained using the proposed pose detection algorithm.
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arm itself. System errors lead to the difference in the position specified by the con-
troller and the actual position reached. According to the original technical specifica-
tions, the pose variation is 25 μm, which accounts for 31.8% of the total error. A minor
source of error is the pose detection algorithm, with pose variation attributed to
floating point and matrix calculation errors. An average pose variation of 7 μm was
detected, accounting for 9.6% of the total error.

5. Conclusions

This chapter introduces a novel method for measuring 6DOF variations of the
robotic arms end effector using regional surface area descriptors and variant ICP to
monitor accurate positioning and orientation. Experimental test results confirmed
that the proposed method can accurately position and detect three angular errors,
namely pitch, yaw, and roll angle, without referencing any known artifact for system
alignment. A comprehensive measurement uncertainty was also performed to identify
possible measured sources. From the measurement results, it reveals that the 3D
optical probe can achieve 60 μm measurement accuracy and 100 μm depth resolution
within the entire measurement range of 100 mm. On the other hand, for the auto-
matic detection of the position and orientation on the robot arm end-effector, the
experimental results show that it achieves the positioning accuracy of 100 um in the
X, Y, and Z positions within the entire measurement range. Most importantly, it was
also verified that the angular detection accuracy can be kept within 0.01 degrees for
the pitch, yaw, and roll angular motions. The developed method can be widely applied

Figure 48.
Translation error contributed by the structured-light measurement probe.

Error (μ Percentage (%)m)

58.546Measurement probe

31.825Robotic arm

9.67.6Pose detection algorithm

10078.6Total

Table 3.
Error budget analysis of pose variation of the robotic arm.

27

Precise  6DOF  Localization  of  Robot  End  Effectors  Using  3D  Vision  and  Registration  without…
DOI:  http://dx.doi.org/10.5772/.107968

113



to precise 6DOF detection of arbitrary objects moving dynamically in 3D space. Its
high-accuracy 6DOF monitoring with target-free 3D image registration capability is a
significant technical breakthrough in automated optical inspection (AOI) and preci-
sion metrology in manufacturing.
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Chapter 7

A Cognitive Digital-Optical
Architecture for Object Recognition
Applications in Remote Sensing
Ioannis Kypraios

Abstract

From coastal landscapes to biodiversity remote sensing can on the one hand cap-
ture all the natural heritage elements and on the other hand can help in maintaining 
protected species. In a typical remote sensing application, a few thousands of super 
high-resolution images are captured and need to be processed. The next step of the 
processing involves converting those images to an appropriate format for visual dis-
play of the data. Then, the image analyst needs to define the regions of interests
(ROIs) in each captured image. Next, ROIs need to be defined for identifying specific 
objects or extracting the required information. First drawback of this processing cycle 
is the use of image analysis tools which provide them only with scaling or zooming 
features. Second, there is no conceptual connection between the image analysis tools 
and the actual processing cycle. Third, such existing tools do not usually automate any 
steps in the processing cycle. We combine an optical correlator with a supervised or an 
unsupervised classifier learning algorithm and show how our proposed novel cogni-
tive architecture is conceptually connected with the image analysis processing cycle. 
We test the architecture with captured images and describe how it can automate the 
processing cycle.

Keywords: object recognition, cognitive digital-optical architecture, image analysis, 
knowledge representation and learning, remote sensing

1. Introduction

Cultural heritage consists of all the tangible and intangible elements from
monuments and cultural traditions to natural landscape, including all the extinct or
current biological species. Cultural heritage and specifically tourism activities related
to cultural heritage contribute to economic growth, regeneration, education and tour-
ism [1, 2]. A previous report [3] published by the HLF and Visit Britain revealed that
the heritage tourism is a £12.4 billion a year industry. £7.3 billion of heritage expen-
diture is based on visits to built heritage attractions and museums, with the overall
£12.4 billion including visits to parks and countryside as well. In a recent article, it was
reported that to reduce the risk of extinction for all the threatened species worldwide
would cost annually approximately £2.97bn, with an additional £47.4bn required per
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year to establish and manage protected areas for species known to be at risk from
habitat loss, hunting and other human activities [4].

Remote sensing has become one of the main technologies nowadays used for
protecting cultural heritage due to its non-invasiveness [5]. Thus, remote sensing has
been used in many cases for the conservation analysis of monuments, archaeological
site detection and risk protection, together with the protection of natural landscapes
consisting of living species. Aerial photography is one of the forms of modern remote
sensing. It has been applied in many application areas [6]. For example, aerial pho-
tography has been successfully used in locating ancient civilisation structures amongst
thick jungle vegetation [7].

One of the key tools in remote sensing image analysis is the object recognition.
Advanced machine learning (ML) and artificial intelligence (AI) algorithms can be
used for detecting and classifying different classes of objects in different applications,
such as environmental monitoring, geological hazard detection, land-use/land-cover
(LULC) mapping, geographic information systems (GIS), precision agriculture and
urban planning. Still, object recognition in remote sensing images (RSIs) can be very
challenging due to the large variations in the visual appearance of objects caused by
camera viewpoint variations, occlusion, background clutter, and illumination
changes. Thus, in low spatial resolution satellite images such as Landsat the
recognition of objects becomes even harder. Therefore, higher resolution satellite
images such as IKONOS or Quickbird are preferred since provide researchers
and image analysts with more detailed spatial and textural information. In effect, a
greater range of object categories can be recognised due to the increased sub-meter
resolution.

Nowadays the technological advancements in satellite and aerial RSIs have offered
us opportunities for new applications in many image analysis areas. Pixels in an image
can be grouped and clustered into regions of interest (ROIs) where then object recog-
nition algorithms can be applied for classifying a range of categories of objects.
Supervised and unsupervised such classifiers can be utilised depending on the appli-
cation. Supervised classification require larger amount of data than unsupervised with
manual annotation and labelling of a bounding box which contains the true class
object for training purposes. However, such manual annotation suffers from scaling
up issues when a very large amount of such data is needed. Moreover, it becomes a
significantly difficult task either when the ROIs consist of a cluster of a few pixels in
an RSI or the objects are occluded, camouflaged and may include complex textures.

Thus, object recognition algorithms become of great importance in applications of
RSIs. Extracting the features of an object either through manually labelling them or
through a classifier algorithm becomes essential when aiming to recognise them in
image analysis applications. However, when dealing with large or very large (big)
data, then this task turns complex with high computational costs for processing those
extracted feature vectors. The manual labelling is time consuming and unreliable
since duplicates or redundant features are often created. Here, we will be focusing
more on automated feature extraction through a classifier algorithm for large or very
large data.

In Section 2, we discuss the object recognition systems and their design character-
istics. In Section 3, we explain the k-means algorithm. Section 4 discusses the optical
correlator classifiers. In Section 5, our cognitive object recognition architecture is
described. Then, in Section 6 we discuss the results recorded when applying our
cognitive architecture. Section 7 contains the Conclusions and future work.
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2. Object  recognition  systems  for  automated  image  analysis

  Aerial  or  satellite  survey  consists  of  several  steps  that  need  to  be  followed.  Starting 
from  the  data  acquisition  procedures,  they  include  visual  observations,  the  capturing 
of  imagery  and  the  use  of  metric  measurements  on  the  acquired  images.  Then,  this 
raw  information  is  typically  used  to  produce  a  set  of  documents  which  consists  of  text 
and  related  images.  However,  the  resulting  documents  are  often  hard  to  use  since  they 
have  been  created  for  a  specific  application  and  require  expert  knowledge  to  compre-
hend.  In  addition,  image  quality  can  vary  depending  on  the  remote  sensing  site  
conditions.  Other  challenges  on  image  analysis  from  aerial  surveys  can  include  poor 
lighting  conditions,  occlusions,  and  varying  depths.  Also,  limitations  on  the  geospatial 
information  provided  with  the  acquired  images  can  limit  their  spatial  analysis.
Restrictions  on  the  field-of-view  (FOV)  and  the  image  sensor  footprint  can  affect  the 
number  of  images  collected  per  aerial  survey.  Then,  consequently,  a  higher  number  of 
images  require  a  higher  processing  time  to  be  completed.  Where  time  of  completion  is  
of  essence  for  cost  reasons,  then  someone  can  expect  that  automated  image  analysis 
tools  are  necessary  for  minimising  those  processing  and  completion  times.
  Integral  part  of  such  automated  image  analysis  tools  plays  the  object  recognition 
system  used  which  need  to  be  designed  in  novel  architectures,  if  they  are  to  be 
applied  for  solving  more  complex  problems  [8].  Recent  advances  have  led  to  the 
development  of  biologically-inspired  also  known  as  cognitive  architectures  [9]  of 
object  recognition  systems  with  separate  design  blocks  of  a  recognition  unit  and  a  
separate  knowledge  learning  unit  [10,  11].  Thus,  cognitive  architectures  need  to 
exploit  the  non-linearity,  the  learning  and  adaptation  to  the  input  data,  and  provide 
an  attentional  mechanism  for  the  hybrid  system  to  be  able  to  select  certain  input 
information  to  be  included  in  its  learning  against  other  input.  Therefore,  knowledge 
representation  and  learning  becomes  a  central  issue  in  the  design  and  implementa-
tion  of  such  hybrid  biologically-inspired  pattern  recognition  [12].  Knowledge  repre-
sentation  can  have  altering  effects  on  problem  knowledge  learning  and  problem 
solving  [13].  A  problem  solving  system  consists  of  a  domain  theory  which  specifies 
the  task  to  be  solved,  the  initial  problem  states  and  the  targeted  problem  goals,  and  a  
control  knowledge  which  guides  the  decision-making  process.  Thus,  knowledge  rep-
resentation  can  have  a  direct  effect  to  the  efficiency  of  the  problem  solving  process
[14,  15].

2.1  Defining  the  problem

  In  this  chapter,  we  describe  a  new  object  recognition  architecture  for  improving 
the  speciation  of  an  endangered  bird  species  from  aerial  surveys.  For  reasons  of 
confidentiality,  we  use  here  the  term  endangered  bird  sub-species  1  or,  simply,
endangered  species  1,  and  the  term  endangered  sub-species  2  or,  simply,  endangered 
species  2.  In  particular,  we  are  looking  to  improve  the  accuracy  and  precision  of
the  recognition  of  endangered  bird  sub-species  1and  2  in  winter  plumage  which
the  task  of  correctly  speciating  them  becomes  harder  than  in  their  summer
plumage.  Our  proposed  cognitive  object  recognition  architecture  incorporates
the  features  of  shape,  size  and  colour  (3-bands  R,  G  and  B)  of  the  endangered
sub-species  1  and  2  in  the  architecture’s  knowledge  representation,  and  then  apply  an 
unsupervised  knowledge  learning  unit  for  improving  the  accuracy  and  precision  in 
recognising  them.

119



3. Unsupervised clustering

Unsupervised machine learning refers to learning the input but without a refer-
ence to known or labelled data. Unlike to supervised machine learning, unsupervised
machine learning algorithms cannot be directly applied to a classification problem
since there is no prior knowledge of either the number of object classes or each class
threshold. Instead, unsupervised learning can be used for discovering the underlying
structure or pattern of the data. Thus, the term “clustering” refers to a process of
grouping similar things together [14]. Therefore, unsupervised learning can be used
for discovering such clusters in the input data.

K-means is an unsupervised algorithm for clustering m objects into k clusters in
which each observation belongs to the cluster with the nearest mean [15]. Each cen-
troid is a point in a 2- or N-dimensional space that represents the centre of the cluster.
Figure 1 shows an example of K-means clustering algorithm [17]. The algorithm
begins with k randomly placed centroids and assigns every item to the nearest one.
After the initial assignment, the centroids start being moved to the average location of
all the nodes assigned to them, and new assignments of objects to centroids are redone.
The process repeats until the centroids stop being moved by the algorithm [18].

Bennet et al. [19] described a method for unsupervised classification in
multitemporal optical RSIs based on discreet wavelet transform (DWT) feature
extraction and K-means clustering is proposed. After pre-processing the optical
image, they applied a feature extraction using the DWT for creating the input vectors.
Then, the authors applied a feature reduction for selecting the most discriminative
features using an energy based selection. Finally, they used K-means clustering for
unsupervised learning of the input data clusters and compared the results by labelling
the clusters using ground truth data. Shulei Wu et al. [20] introduced a novel classifi-
cation method based on K-means using hue, saturation, value (HSV) colour features.
Their novel method with HSV data produced higher classification accuracy results
when tested with Landsat satellite data than K-means method with RGB data. Abbas
et al. [21] compared K-means unsupervised clustering method with the Iterative Self-
Organising Data Analysis Technique Algorithm (ISODATA) unsupervised method for
automatically grouping pixels of similar spectral features from remote sensing images.

Figure 1.
Example of K-means clustering algorithm. There are initially k = {k1} centroids assigned in the object M-
dimensional space. As the algorithm goes through the recursive steps the centroids are re-assigned and the clusters
boundaries are moved around the objects space. (adapted by [16]).
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Figure 2.
K-means clustering algorithm flowchart –recursive steps (adapted by [25]).
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Vishwanath  et  al.  [22]  combined  K-means  unsupervised  clustering  with  a  Laplacian-
of-Gaussian  and  a  Prewitt  filters  for  improving  the  classification  and  road  edge  detec-
tion  in  RSIs.  Yin  et  al.  [23]  applied  K-means  clustering  algorithm  on  Lidar  based  3D 
object  detection  and  classification  tasks  in  automated  driving  (AD).  Specifically,  they 
used  K-means  for  3D  points  cloud  segmentation.  The  authors  reported  a  high-speed 
3D  object  recognition  when  run  using  a  GPU  enabled  platform.  Huu  Thu  Nguyen  et  al.
[24]  combined  deep  learning  algorithms  with  K-means  clustering  for  achieving  mul-
tiple  object  detection  in  both  sonar  images  and  3D  point  cloud  Lidar  data.

  Figure  2  shows  the  K-means  algorithm  flowchart  [25].  The  algorithm  is  a  recursive 
one  where  previous  steps  in  the  flowchart  will  be  called  in  another  step  afterwards.  The 
first  basic  step  of  this  recursive-type  algorithm  is  to  determine  the  number  of  clusters  K.
We  assume  the  centroid  of  these  clusters,  which  it  can  be  any  random  objects.  Alterna-
tively,  we  can  assign  as  the  initial  centroids  to  be  the  first  K  objects  in  sequence.  The
algorithm  as  shown  on  Figure  2  consists  of  the  following  three  recursive  steps:

1.  Determine  the  centroid  coordinate.

2.  Determine  the  Euclidean  distance  of  each  object  to  the  centroids.

3.  Group  the  object  based  on  minimum  Euclidean  distance  values.

4.  Repeat  steps  1–3  till  all  the  centroids  stop  being  moved  in  the  objects  space  i.e.
  the  algorithm  has  converged  to  a  solution.
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We can re-write the above equation for points pn, P is the vector of all the points
where n = 1…M, m is the index of cluster points and M is the total number of points,
and centroid point τk where k = 1… .C is the index of centroid points, C is the total
number of centroid points and T is the vector which contains all the centroid points:

d pn, τk
� � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τxk � pxn

� �2
þ τyk � pyn

� �2
r

(2)

Then each cluster point pn is assigned to a cluster based on estimating the mini-
mum of the distance argmindistðÞ to a centroid τk which is given by:

argmin τk ∈Tdist τk, pn

� �2 (3)

Then, we can compute the new centroid τk from the clustered group of points by
the equation:

τk ¼ 1
jSnj

X
pnϵSn

pn (4)

where Sn is the set of all 2D data points assigned to the kth cluster.
Assume now we have two points in X-Y-Z three-dimensional (3D) space. Then,

the Euclidean Distance between those two 3D points p3D1
x1, y1, z1
� �

and
p3D2

x2, y3, z2
� �

is given by:

d p3D1
, p3D2

� �
3D

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � x1ð Þ2 þ y2 � y1

� �2 þ z2 � z1ð Þ2
q

(5)

We can re-write the above Eq. (2) for a 3D centroid point τk3D where k = 1… .C is
the index of 3D centroid points, C is the total number of 3D centroid points and T3D is
the vector which contains all the 3D centroid points:

d p3Dn
, τ3Dk

� �
3D

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ3Dxk � p3D

xk

� �2
þ τ3Dyk � p3D

yk

� �2
r

(6)

where p3Dn
are the 3D cluster points, P3D is the vector of all the 3D points where

n = 1…M, n is the index of 3D cluster points and M is the total number of 3D points, and
centroid point τ3Dk where k = 1… .C is the index of 3D centroid points, C is the total
number of centroid points and T3D is the vector which contains all the 3D centroid points.

Then, Eq. (3) can be re-written for each 3D data point and for estimating the
minimum of the distance argmindist3DðÞ to a centroid τ3Dk to a centroid as follows:

argmin τ3Dk ∈T3Ddist τ3Dk , p3Dn

� �2

3D
(7)

Then, Eq. (4) can be re-written for a 3D centroid as:

τ3Dk ¼
1

jS3Dn j
X

p3Dn ϵS3Dn

p3Dn
(8)

where S3Dn is the set of all 3D data points assigned to the kth cluster.
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4. Optical  correlator  classifiers

  Since  the  pioneering  work  made  by  VanderLugt  on  spatial  filtering  [26–28],  it  
became  possible  to  construct  complex  matched  filters.  Several  correlation  filters  for  
object  recognition  have  been  proposed  to  improve  recognition  capability,  mostly  by  
modifications  of  the  amplitude  or  phase  of  the  original  matched  filter.

4.1  Optical  correlators  categories

  All  the  optical  correlator  classifiers  can  be  further  categorised  based  on  the  com-
putational  domain  i.e.  (a)  spatial  domain,  (b)  frequency/Fourier  domain,  and  (c)
hybrid  domain  by  a  combination  of  spatial  and  frequency  domains.

  For  the  frequency  domain,  correlator  type  of  filters  are  commonly  used.  The 
correlator  type  of  filters  can  be  further  classified  into  two  main  classes,  the  single  type 
of  filters  and  the  cascaded  type  of  filters.  From  the  first  class,  Jamal-Aldin  et  al.  [29–
31]  have  presented  previously  their  work  on  the  non-linear  difference-of-Gaussians 
synthetic  discriminant  function  (NL-DOG  SDF)  filter.  Their  design  of  the  filter  was 
motivated  by  the  good  detectability  of  the  modified  difference  of  Gaussians  (DOG)
filter  [32].  In  order  to  improve  the  interclass  discrimination  but  still  keep  an  intraclass 
tolerance  for  a  higher  distortion  range  of  the  true-class  object,  a  non-linear  operation 
was  integrated  into  the  synthesis  of  the  modified  synthetic  discriminant  function 
filter.  The  DOG  function  approximates  the  second-  differential  operator  on  the  image-
intensity  function.  In  practice,  when  convolved  with  the  image,  the  DOG  filter  results 
to  an  edge  map  of  the  reduced-resolution  image.  By  properly  adjusting  the  ratio  of  the 
standard  deviations  of  the  inhibitory  and  excitatory  Gaussians  to  be  equal  to  1.6,  the 
DOG  filter  provides  smoother  performance  for  the  true-class  object  distortions,  in 
effect  improving  the  intraclass  properties  of  the  filter.  The  NL-DOG  SDF  filter  is  
based  on  integrating  the  NL-DOG  operation  into  the  synthesis  of  the  SDF  filter  as  well 
as  the  input  test  images.  Mahalanobis  et  al.  [33],  were  first  to  propose  the  minimum 
average  correlation  energy  (MACE)  filter.  The  MACE  filter  belongs  to  the  linear 
combinatorial  type  of  filters  derived  from  the  synthetic  discriminant  function.  It  is 
designed  to  maximise  the  training  set  images  peak  height  and  minimise  the  response 
of  the  filter  to  non-training  set  input  images,  with  the  constraint  of  keeping  the  peak-
amplitude  response  of  the  filter  to  a  fixed  value  for  all  the  true-class  objects  included 
in  the  training  set.  It  can  be  designed  to  give  a  fixed  peak-amplitude  response  to  the 
non-training  set  images,  too.  The  solution  to  this  resulted  optimization  problem  is 
found  by  applying  the  Langrange  multipliers  method.  The  resulting  MACE  filter  pro-
duces  a  sharp  peak  response  with  narrow  sidelobes  and  with  a  fixed  peak-height  for 
the  true-class  object  images  included  in  the  training  set  of  the  filter.  Later,
Mahalanobis  et  al.  [34]  observed  that  filters  may  perform  better  if  hard  constraints  are  
not  imposed  on  the  correlation  peaks,  and  suggested  the  use  of  unconstrained  corre-
lation  filters.  Despite  the  previous  work  in  SDF  synthesis  that  assumed  the  correlation 
values  at  the  origin  are  pre-specified,  there  is  no  need  for  such  a  constraint.  Thus  by 
removing  the  hard  constraints,  we  increase  the  number  of  possible  solutions,  thus 
improving  the  chances  of  finding  a  filter  with  better  performance.  A  statistical 
approach  is  used  for  the  design  of  an  unconstrained  filter.  This  method  produces  sharp 
peaks,  it  is  computationally  simpler  and  the  proposed  filters  offer  improved  distortion 
tolerance.  The  reason  lies  in  the  fact  that  we  do  not  treat  training  images  as  determin-
istic  representations  of  the  objects  but  as  samples  of  a  class  whose  characteristic
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parameters are used in encoding the filter. Three types of metrics [33, 35] are used in
the design of the unconstrained filters, namely: the average correlation energy (ACE),
the average similarity measure (ASM) and average correlation height (ACH). If a
filter is designed to maximise the ACH criterion, it is called the maximum average
correlation height (MACH) filter [34, 36]. The MACH filter maximises the relative
height of the average correlation peak with respect to the expected distortions.
The MACH filter yields a high correlation peak in response to the average of the
training image vector. Besides optimising the ACH criterion, in practice some other
performance measures, e.g. the ACE and ONV, also need to be balanced to better
suit different application scenarios. Thus, based on Refregier’s approach on optimal
trade-off [36] filters, Mahalanobis et al. designed the optimal-tradeoff [37, 38]
maximum average correlation height (OT-MACH) filter, which minimises the aver-
age correlation height criterion, holding the others constant. By adjusting the values of
the three non-negative parameters of α,β and γ (0≤ α,β,γ ≤ 1), we control the OT-
MACH filter’s behaviour to match different application requirements. If b = g = 0,
the resulting filter behaves much like a minimum variance synthetic discriminant
function (MVSDF) [39] filter with relatively good noise tolerance but broad peaks. If
α ¼ γ ¼ 0 then the filter behaves more like a MACE filter, which generally exhibits
sharp peaks and good clutter suppression but is very sensitive to distortion of the
target object. If α ¼ β ¼ 0, the filter gives high tolerance for distortion but is less
discriminating.

From the second class category of cascaded filters [40], Reed and Coupland [41]
have studied a cascade of linear shift invariant processing modules (correlators), each
augmented with a non-linear threshold as a means to increase the performance of high
speed optical pattern recognition. They propose that their cascaded correlators con-
figuration can be considered as a special case of multilayer feed-forward neural net-
works. They have proven that their cascaded correlator’s non-linear performance can
exceed the MACE filter’s performance. Mahalanobis et al. [42, 43] have developed the
Distance Classifier Correlation Filter (DCCF). Similarly with the work of Reed and
Coupland [41], DCCF uses a cascade of shift-invariant linear filters (correlators) to
compute the linear distances between the input test image and the trainset images
under an optimum transformation. DCCF can be extended to support recognition of
multiple object classes. Alkanhal and Kumar [44] have developed the Polynomial
Distance Classifier Correlator filter (PDCCF). The underlying theory extends the
original linear distance classifier correlation filter to include non-linear functions of
the input pattern. PDCCF can optimise jointly all the correlators of the cascaded
design, and can support multi-class object recognition.

4.2 Synthetic discriminant function filter

The main idea behind the Synthetic Discriminant Function (SDF) filter is to
include the expected distortions in the filter design such that improved immunity to
such distortions is achieved. For example, the inclusion of the out-of-class objects in
the filter design achieves multi-class discrimination filter ability. In the conventional
SDF filter [28] design the weighted versions of the target object are linearly
superimposed, such that when the composite image is cross-correlated with any input
training image, the resulting cross-correlation outputs at the origin of these cross-
correlations are the same and are equal to a pre-specified constant.

The basic filter’s equation constructed by the weighted combination of the training
set images is:
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h x, yð Þ ¼
XN
i¼1

ai � ti x, yð Þ (9)

where

a ¼ R�1c (10)

are the weights, c is an appropriate external vector and

R ¼
ðð

ti x, yð Þtj x, yð Þ (11)dxdy

is the correlation matrix of the training image set ti.

4.3 Pure SDF correlator classifier for endangered species 1 and 2 speciation

Figure 3 shows the block diagram of the Pure SDF Correlator Classifier. The train
set consists of images of endangered bird species 1 and 2. Endangered bird species 1’s
peak value is constrained to be 0.2, and endangered bird species 2’s peak value is
constrained to be 1.0. By linearly superimposing the constraints weighted training set
images, the composite image of the Pure SDF Classifier tool is synthesised. The test set
consists of images (snags) of birds captured during an aerial survey. Each test image is
then correlated with the composite image of the Pure SDF Correlator Classifier. The
center peak of the output correlation plane for each input test image is then used for
classifying the object snag as being either an endangered bird species 1 or an endan-
gered bird species 2. A scatter plot of the classified endangered bird species is then
drawn. For each input snag the spectral absolute peak (SAP) value Red and SAP value
Blue values are used in the scatter plot.

5. Cognitive object recognition architecture

For the endangered species 1 and 2, we represent an object as a vector of an input
image histogram’s SAP for Red and Blue components. In effect, we assume that each input
image of a species bird captured during an aerial survey can have a spectral signature
which consists of those SAP Red and SAP Blue values. It is important to note here that
K-means clustering algorithm is an unsupervised learning method. In effect, there is no
a-priori information regarding the clusters size and final positions of the centroids. As we
have assumed that each object is represented by two vector components, one SAP Red
and one SAP Blue component, then we have a 2-Dimensional (2D) object space.

5.1 Biologically-inspired hybrid digital-optical system

We need to develop a new method to improve the speciation of the endangered
bird species 1 and 2 for automating the image analysis from the collected datasets of
the aerial surveys. There is an increased level of difficulty in correctly classifying and
performing speciation for endangered bird species 1 and 2 during the winter aerial
surveys due to the higher similarity of the birds’ plumage between species 1 and
species 2. Therefore, we propose the design and development of a novel biologically-
inspired hybrid digital-optical system [14] for increasing the accuracy of the bird
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species speciation and the overall time it takes to process an aerial survey. As we are
going to describe in the next sections, our proposed system is capable of performing
both knowledge representation and knowledge learning by incorporating in its data:
(i) the shape of each endangered species 1 and 2, (ii) the size of each endangered
species 1 and 2, and (iii) the colour information of each endangered species 1 and 2.

5.2 Knowledge representation and knowledge learning

Figure 4 shows the block diagram of our proposed novel biologically-inspired
hybrid digital-optical system called, Fast SDF K-means. It is a hybrid digital-optical
design. Thus, the optical part and the K-means Clustering unit forms the digital part.
The term “Fast” originates from the optical unit of the design where it consists of a
correlator which can be implemented as a space domain function in a joint transform

Figure 3.
Pure SDF correlator classifier for endangered bird species speciation.
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correlator architecture or be Fourier Transformed (FT) and used as a Fourier domain
filter in a 4-f Vander Lugt type optical correlator [26]. Therefore, it can operate to the
speed of the light wavelength.

Figure 4.
Fast SDF K-means classifier for endangered species speciation.
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On Figure 4 two different modules are shown. The first is the knowledge repre-
sentation module [45, 46] which consists of the optical correlator unit, and the second
is the knowledge learning module. In effect, in the first module of the knowledge
representation the shape, size and 3-band colour information of each input image are
synthesised into the composite image of the Fast SDF K-means Classifier. For each
input object then a correlation peak value is recorded which translates this informa-
tion into a numerical value. This essentially forms the knowledge representation of all
the objects space in the training set.

In the second module of the knowledge learning [47], spectral histogram informa-
tion together with the composite image which consists of shape, size and colour
information are learned by the Fast SDF K-means Classifier. Thus, the correlation
peak value together with the Red and Blue components of the spectral histogram form
a 3D vector for each input object. Then, those 3D vectors which have coded the shape,
size, colour and histogram information of each object are unsupervised learned by the
K-means clustering unit. The output values of the Fast SDF K-means Classifier can be
visualised by a scatter plot of the recognised endangered species 1 and 2 where the
separate clusters of the two classes can be observed together shown with any input
objects either from endangered species 1 class or from endangered species 2 class
which have been misclassified.

6. Results

In this section, the datasets used will be described. Then, the details of the recorded
results will be shown together with the Fast SDF K-means performance metrics for the
different datasets.

6.1 Datasets

Two different datasets have been used for testing the performance of the Fast SDF
K-means classifier: (a) Winter Dataset which consisted of aeriial images taken during
the Winter months, and (b) Summer Dataset which consisted of aerial images taken
during the Summer months. Winter Dataset consisted of 221 three-band JPEG for-
matted aerial image shots also known as snags. Each snag had the size of [320240]
pixels. Summer Dataset consisted of 270 three-band JPEG formatted snags. Each snag
had, as for the Winter Dataset, the size of [320240] pixels. For aerial survey logging
and identification reasons, all the shapefiles “.jgw” and “.mat” tagged information
files have been saved for both datasets, too. To match the aerial survey automated
image analysis of the snags with the ground truth data an object identification
(ObjectID) information had been provided with each snag. Ground truth data had
been collected from sea surveys or on-shore remote view including the total number
of endangered species 1 and the total number of endangered species 2.

6.1.1 Winter dataset results

Figure 5 shows the K-means clustering algorithm classification scatter plot. The
classified endangered species 1 and species 2 are drawn against their SAP Red (x-axis)
and SAP Blue (y-axis) values. All the objects snags were classified using their histo-
gram spectral values of SAP Red and SAP Blue. There is a high deviation and popula-
tion ratio reverse between the circa ratio of species 1 and species 2 given by the boat
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survey i.e. (species1/species2) = 13:1 and the classified by the algorithm endangered
species i.e. classified species2 = 185 and classified species1 = 36.

Figure 6 shows the Pure SDF Correlator classification scatter plot. The classified
endangered species 1 and species 2 are drawn against their SAP Red (x-axis) and SAP
Blue (y-axis) values. However, now all the objects snags were classified using their
shape, size and 3-band colour information. This time the classified by the Pure SDF
Correlator endangered species produced a ratio of (species1/species2) = 24:2.

Figure 5.
Winter dataset speciation: K-means clustering algorithm. It shows the scatter plot of the classified endangered
species 1 and species 2. The classified endangered species are drawn against their SAP red (x-axis) and SAP blue
(y-axis) values. There is a high number of endangered species which their ID tagged by the GT scientists was
uncertain i.e. tagged as “species 1 or species 2”.

Figure 6.
Winter dataset speciation: Pure SDF correlator classifier. It shows the scatter plot of the classified endangered
species 1 and species 2. All the objects snags were classified using the correlation peak value of each input image
which encoded their shape, size and colour information. The classified endangered species are drawn against their
SAP red (x-axis) and SAP blue (y-axis) values. There is a high number of endangered species which their ID
tagged by the GT scientists was uncertain i.e. shown on the plot as “species 1 or species 2”.
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Figure 7 shows the Fast SDF K-means Classifier scatter plot. The classified
endangered species 1 and species 2 are drawn against their SAP Red (x-axis) and
SAP Blue (y-axis) values. Now all the objects snags were classified using their 3D
vectors which encode shape, size, 3-band colour, and spectral histogram information.
This time the classified by the Fast SDF K-means Classifier produced a ratio of
(species1/species2) = 20:4.

6.1.2 Summer dataset results

Figure 8 shows the K-means Clustering algorithm classification scatter plot. The
classified endangered species 1 and species 2 are drawn against their SAP Red (x-axis)
and SAP Blue (y-axis) values. All the objects snags were classified using their histo-
gram spectral values of SAP Red and SAP Blue. There is a high deviation and popula-
tion ratio reverse between the circa ratio of species 1 and species 2 given by the boat
survey i.e. (species1/species2) = 15:2 and the classified by the algorithm endangered
species i.e. classified species2 = 151 and classified species1 = 96.

Figure 9 shows the Pure SDF Correlator classification scatter plot. The classified
endangered species 1 and species 2 are drawn against their SAP Red (x-axis) and SAP
Blue (y-axis) values. However, now all the objects snags were classified using their
shape, size and 3-band colour information. This time the classified by the Pure SDF
Correlator endangered species produced a ratio of (species1/species2) = 11:1.

Figure 10 shows the Fast SDF K-means Classifier scatter plot. The classified
endangered species 1 and species 2 are drawn against their SAP Red (x-axis) and SAP

Figure 7.
Winter dataset speciation: Fast SDF K-means classifier. It shows the scatter plot of the classified endangered species
1 and species 2. All the objects snags were classified using their 3D vectors which have encoded their shape, size, 3-
band colour and histogram spectral information. The classified endangered species are drawn against their SAP
red (x-axis) and SAP blue (y-axis) values.
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Blue (y-axis) values. Now all the objects snags were classified using their 3D vectors
which encode shape, size, 3-band colour, and spectral histogram information. This
time the classified by the Fast SDF K-means Classifier produced a ratio of
(species1/species2) = 15:1.

Figure 8.
Summer dataset speciation: K-means clustering algorithm. It shows the scatter plot of the classified endangered
species 1 and species 2. The classified endangered species are drawn against their SAP red (x-axis) and SAP blue
(y-axis) values.

Figure 9.
Summer dataset speciation: Pure SDF correlator classifier. It shows the scatter plot of the classified endangered
species 1 and species 2. All the objects snags were classified using the correlation peak value of each input image
which encoded their shape, size and colour information. The classified endangered species are drawn against their
SAP red (x-axis) and SAP blue (y-axis) values.
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6.1.3 Performance metrics

Performance metrics have been used to assess the k-means classification
algorithm, the Pure SDF correlator classifier, and the novel Fast SDF k-means
classifier. Thus, precision metric is given by the ratio of true positives (TP)
over the total number of false positives (FP) plus true positives:

Precision ¼ TP
TPþ FP

(12)

Recall metric is computed as the ratio of the TP versus the TP plus the false
negatives (FN):

Recall ¼ TP
TPþ FN

(13)

True negative rate (TNR) is computed as the ratio of the true negatives (TN)
versus the TN plus the FP:

TNR ¼ TN
TNþ FP

(14)

Accuracy is given by the ratio of TP plus TN over the sum of TP, TN, FP and FN:

Accuracy ¼ TPþ TN
TPþ TNþ FPþ FN

(15)

Table 1 shows the performance metric values for the winter dataset of all the three
tested classifiers. In effect, the second column shows the performance metric values

Figure 10.
Summer dataset speciation: Fast SDF K-means classifier. It shows the scatter plot of the classified endangered
species 1 and species 2. All the objects snags were classified using their 3D vectors which have encoded their shape,
size, 3-band colour and histogram spectral information. The classified endangered species are drawn against their
SAP red (x-axis) and SAP blue (y-axis) values.
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of the k-means classification algorithm, the third column shows the performance metric
values of the Pure SDF correlator classifier, and the fourth column shows the perfor-
mance metric values of the novel Fast SDF k-means classifier. Similarly, Table 2 shows
the performance metric values for the summer dataset of all the three evaluated classi-
fiers. The results are shown on the corresponding columns of Table 2 as for Table 1.

7. Discussion and conclusions

In this section, the results of our evaluated classifiers are analysed and compared.
In particular, the discussion is focused on the performance of the three classifiers
during the winter dataset tests since the endangered species 1 and species 2 offer a
greater classification challenge during the winter months than the summer ones. A
separate section is included with the main conclusions of this work together with some
future research suggestions.

7.1 Discussion

From Figures 5–7 it can be found that, overall, the Fast SDF k-means has
performed better than the k-mean classification algorithm and the Pure SDF corre-
lator classifier, too, for the winter dataset. Though the Pure SDF correlator classifier
gave a classification rate of (species1/species2) closer to the ground-truth (GT) scien-
tists ratio than the Fast SDF k-means, it still had a much higher, almost the double of
the total number of classified endangered species i.e. sum of species 1 and species 2, of

Winter Speciation

Fast SDF k-means classifierPure SDF correlator classifierk-means clustering

96.1186.3316Precision %

89.684.334Accuracy %

04.30TNR %

92.9697.251.7Recall %

Table 1.
Winter dataset speciation performance metric values for the k-means clustering algorithm, the pure SDF correlator
and the fast SDF k-means classifier.

Summer Speciation

Fast SDF k-means classifierPure SDF correlator classifierk-means clustering

89.9383.9442.5Precision %

83.2382.031.87Accuracy %

015.00TNR %

91.8097.256.04Recall %

Table 2.
Summer dataset speciation performance metric values for the k-means lustering algorithm, the pure SDF
correlator and the fast SDF k-means classifier.
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uncertain classifications which cannot be matched with either species1 or species2.
Similarly, from Figures 8–10 it can be found that, overall, the Fast SDF k-means has
performed better than the k-mean classification algorithm and the Pure SDF corre-
lator classifier, too, for the summer dataset. Thus, the classification rate of (species1/
species2) for the Fast SDF k-means was almost identical to the classification rate of the
GT scientists. By incorporating the shape, size, 3-band colour and histogram spectral
information into the Fast SDF k-means classifier it has improved the classification
performance for both summer and winter datasets in comparison to the other two
classifiers.

From Tables 1 and 2 the performance of all the classifiers can be assessed which
they were used for the winter endangered bird species plumage and summer endan-
gered bird species plumage speciation. It is can be clearly shown that k-means classi-
fication algorithm performed worse than the Pure SDF Correlator and Fast SDF K-
means classifiers for both summer and winter endangered bird species plumage. In
effect, the precision value was 96.11% and the accuracy value was 89.6% for the Fast
SDF k-means classifier when tested with the winter dataset. The precision value
became 89.93% and the accuracy value reached 83.23% for the Fast SDF k-means
classifier when tested with the summer dataset. It worth of mentioning that the
precision values of the Fast SDF k-means classifier for both datasets were higher than
the human image analysts values which was not more than 88% for the winter
plumage and not more than 89% for the summer plumage.

It should be noted that during the summer and winter surveys the weather condi-
tions were significantly different. In effect, during the winter aerial survey the
weather conditions were poor but during the summer boat survey the conditions were
significantly improved. Thus, by observing the performance metric values of Tables 1
and 2, it can be concluded that the Pure SDF Correlator Classifier’s performance has
not been significantly affected due to the different weather conditions when the
surveys were conducted. Also, though the performance of Fast SDF k-means classifier
seems to deviate on summer survey from the winter survey this was found to be due
to glint effects in the capture image data. After examining the summer datasets, it was
identified approximately 25% of the total number of snags to have significant glint
effects in them. Nevertheless, the overall performance of the Pure SDF correlator
classifier and the Fast SDF k-means classifier closely matched the boat survey during
both winter and summer weather conditions.

Further, the novel Fast SDF k-means classifier has minimised the amount of total
data needed to be ground-truthed by the GT scientists i.e. it can lead to an increased
automation of the speciation process. We assessed the Fast SDF k-means classifier
precision and accuracy values to be greater than 85% during the winter surveys i.e.
approximately only 20% or less of the total amount of survey data would need to be
ground-truthed. Hence, that would make more cost-effective the processing of the
datasets i.e. more surveys per day would become possible to be processed by the GT
scientists.

7.2 Conclusion

We have shown how our novel cognitive architecture of the Fast SDF k-means
classifier is conceptually connected with the image analysis processing cycle. It com-
bines a hybrid digital-optical design where the k-means unsupervised learning algo-
rithm is integrated with a correlator. Thus, Fast SDF k-means classifier consists of a
knowledge representation module formed by the SDF correlator and a knowledge
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learning  module  formed  by  the  k-means  classifier.  The  shape,  size  and  3-band  colour 
information  of  each  input  image  is  synthesised  into  the  composite  image  of  the  Fast 
SDF  k-means  classifier  and,  then,  a  corresponding  correlation  value  is  recorded  which 
translates  this  information  into  a  numerical  value.  Then,  the  knowledge  learning 
module  formed  by  the  k-means  classifier  will  learn  the  coded  3D  vector  of  the  com-
posite  image  together  with  the  Red  and  Blue  components  of  the  spectral  histogram  for 
each  input  object.
  We  have  assessed  the  novel  Fast  SDF  k-means  classifier  using  performance  met-
rics,  and,  then,  compared  it  with  the  k-means  classifier  and  the  Pure  SDF  correlator  
classifier,  too.  The  k-means  classifier  learns  the  vectors  of  the  SAP  Red  (x-axis)  and  
SAP  Blue  (y-axis)  values  of  the  input  dataset.  The  Pure  SDF  correlator  classifier  uses  
the  correlation  peak  value  of  each  input  image  which  encoded  their  shape,  size  and 
colour  information.  The  precision  values  of  the  Fast  SDF  k-means  classifier  for  both 
datasets  were  found  to  be  higher  than  the  human  image  analysts  values  which  was  not  
more  than  88%  for  the  winter  plumage  and  not  more  than  89%  for  the  summer 
plumage.  Both  the  Pure  SDF  correlator  classifier  and  the  Fast  SDF  k-means  classifier 
consistently  performed  under  the  different  summer  and  winter  conditions.  Though 
the  other  types  of  surveys,  e.g.  boat  survey  can  be  prone  to  human  error,  applying 
those  performance  metrics  with  our  developed  Fast  SDF  k-means  correlator  classifier
could  be  used  for  quality  control  (QC)  and  quality  assessment  (QA)  of  the  classifier’s
results  over  the  aerial  survey  data.

  In  Section  4.1,  NL-DoG  SDF  correlator  classifier  was  described.  NL-DoG  SDF 
correlator  in  comparison  with  the  Pure  SDF  correlator  offers  improved  detectability 
and  interclass  discrimination  but  still  keep  an  intraclass  tolerance  for  a  higher  distor-
tion  range  of  the  true-class  object.  Thus,  we  propose  in  future  work  to  integrate  a  NL-
DoG  in  our  Fast  SDF  k-means  classifier  design  which  is  expected  to  enhance  its
performance.
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